Sample records for lateral root development1cwoa

  1. Lateral root development in the maize (Zea mays) lateral rootless1 mutant

    PubMed Central

    Husakova, Eva; Hochholdinger, Frank; Soukup, Ales

    2013-01-01

    Background and Aims The maize lrt1 (lateral rootless1) mutant is impaired in its development of lateral roots during early post-embryonic development. The aim of this study was to characterize, in detail, the influences that the mutation exerts on lateral root initiation and the subsequent developments, as well as to describe the behaviour of the entire plant under variable environmental conditions. Methods Mutant lrt1 plants were cultivated under different conditions of hydroponics, and in between sheets of moist paper. Cleared whole mounts and anatomical sections were used in combination with both selected staining procedures and histochemical tests to follow root development. Root surface permeability tests and the biochemical quantification of lignin were performed to complement the structural data. Key Results The data presented suggest a redefinition of lrt1 function in lateral roots as a promoter of later development; however, neither the complete absence of lateral roots nor the frequency of their initiation is linked to lrt1 function. The developmental effects of lrt1 are under strong environmental influences. Mutant primordia are affected in structure, growth and emergence; and the majority of primordia terminate their growth during this last step, or shortly thereafter. The lateral roots are impaired in the maintenance of the root apical meristem. The primary root shows disturbances in the organization of both epidermal and subepidermal layers. The lrt1-related cell-wall modifications include: lignification in peripheral layers, the deposition of polyphenolic substances and a higher activity of peroxidase. Conclusions The present study provides novel insights into the function of the lrt1 gene in root system development. The lrt1 gene participates in the spatial distribution of initiation, but not in its frequency. Later, the development of lateral roots is strongly affected. The effect of the lrt1 mutation is not as obvious in the primary root, with no

  2. Lateral root development in the maize (Zea mays) lateral rootless1 mutant.

    PubMed

    Husakova, Eva; Hochholdinger, Frank; Soukup, Ales

    2013-07-01

    The maize lrt1 (lateral rootless1) mutant is impaired in its development of lateral roots during early post-embryonic development. The aim of this study was to characterize, in detail, the influences that the mutation exerts on lateral root initiation and the subsequent developments, as well as to describe the behaviour of the entire plant under variable environmental conditions. Mutant lrt1 plants were cultivated under different conditions of hydroponics, and in between sheets of moist paper. Cleared whole mounts and anatomical sections were used in combination with both selected staining procedures and histochemical tests to follow root development. Root surface permeability tests and the biochemical quantification of lignin were performed to complement the structural data. The data presented suggest a redefinition of lrt1 function in lateral roots as a promoter of later development; however, neither the complete absence of lateral roots nor the frequency of their initiation is linked to lrt1 function. The developmental effects of lrt1 are under strong environmental influences. Mutant primordia are affected in structure, growth and emergence; and the majority of primordia terminate their growth during this last step, or shortly thereafter. The lateral roots are impaired in the maintenance of the root apical meristem. The primary root shows disturbances in the organization of both epidermal and subepidermal layers. The lrt1-related cell-wall modifications include: lignification in peripheral layers, the deposition of polyphenolic substances and a higher activity of peroxidase. The present study provides novel insights into the function of the lrt1 gene in root system development. The lrt1 gene participates in the spatial distribution of initiation, but not in its frequency. Later, the development of lateral roots is strongly affected. The effect of the lrt1 mutation is not as obvious in the primary root, with no influences observed on the root apical meristem

  3. The key players of the primary root growth and development also function in lateral roots in Arabidopsis.

    PubMed

    Tian, Huiyu; Jia, Yuebin; Niu, Tiantian; Yu, Qianqian; Ding, Zhaojun

    2014-05-01

    The core regulators which are required for primary root growth and development also function in lateral root development or lateral root stem cell niche maintenance. The primary root systems and the lateral root systems are the two important root systems which are vital to the survival of plants. Though the molecular mechanism of the growth and development of both the primary root systems and the lateral root systems have been extensively studied individually in Arabidopsis, there are not so much evidence to show that if both root systems share common regulatory mechanisms. AP2 family transcription factors such as PLT1 (PLETHORA1) and PLT2, GRAS family transcription factors such as SCR (SCARECROW) and SHR (SHORT ROOT) and WUSCHEL-RELATED HOMEOBOX transcription factor WOX5 have been extensively studied and found to be essential for primary root growth and development. In this study, through the expression pattern analysis and mutant examinations, we found that these core regulators also function in lateral root development or lateral root stem cell niche maintenance.

  4. Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Reed, R. C.; Brady, S. R.; Muday, G. K.

    1998-01-01

    In roots two distinct polar movements of auxin have been reported that may control different developmental and growth events. To test the hypothesis that auxin derived from the shoot and transported toward the root controls lateral root development, the two polarities of auxin transport were uncoupled in Arabidopsis. Local application of the auxin-transport inhibitor naphthylphthalamic acid (NPA) at the root-shoot junction decreased the number and density of lateral roots and reduced the free indoleacetic acid (IAA) levels in the root and [3H]IAA transport into the root. Application of NPA to the basal half of or at several positions along the root only reduced lateral root density in regions that were in contact with NPA or in regions apical to the site of application. Lateral root development was restored by application of IAA apical to NPA application. Lateral root development in Arabidopsis roots was also inhibited by excision of the shoot or dark growth and this inhibition was reversible by IAA. Together, these results are consistent with auxin transport from the shoot into the root controlling lateral root development.

  5. OsAUX1 controls lateral root initiation in rice (Oryza sativa L.).

    PubMed

    Zhao, Heming; Ma, Tengfei; Wang, Xin; Deng, Yingtian; Ma, Haoli; Zhang, Rongsheng; Zhao, Jie

    2015-11-01

    Polar auxin transport, mediated by influx and efflux transporters, controls many aspects of plant growth and development. The auxin influx carriers in Arabidopsis have been shown to control lateral root development and gravitropism, but little is known about these proteins in rice. This paper reports on the functional characterization of OsAUX1. Three OsAUX1 T-DNA insertion mutants and RNAi knockdown transgenic plants reduced lateral root initiation compared with wild-type (WT) plants. OsAUX1 overexpression plants exhibited increased lateral root initiation and OsAUX1 was highly expressed in lateral roots and lateral root primordia. Similarly, the auxin reporter, DR5-GUS, was expressed at lower levels in osaux1 than in the WT plants, which indicated that the auxin levels in the mutant roots had decreased. Exogenous 1-naphthylacetic acid (NAA) treatment rescued the defective phenotype in osaux1-1 plants, whereas indole-3-acetic acid (IAA) and 2,4-D could not, which suggested that OsAUX1 was a putative auxin influx carrier. The transcript levels of several auxin signalling genes and cell cycle genes significantly declined in osaux1, hinting that the regulatory role of OsAUX1 may be mediated by auxin signalling and cell cycle genes. Overall, our results indicated that OsAUX1 was involved in polar auxin transport and functioned to control auxin-mediated lateral root initiation in rice. © 2014 John Wiley & Sons Ltd.

  6. Form matters: morphological aspects of lateral root development

    PubMed Central

    Szymanowska-Pułka, Joanna

    2013-01-01

    Background The crucial role of roots in plant nutrition, and consequently in plant productivity, is a strong motivation to study the growth and functioning of various aspects of the root system. Numerous studies on lateral roots, as a major determinant of the root system architecture, mostly focus on the physiological and molecular bases of developmental processes. Unfortunately, little attention is paid either to the morphological changes accompanying the formation of a lateral root or to morphological defects occurring in lateral root primordia. The latter are observed in some mutants and occasionally in wild-type plants, but may also result from application of external factors. Scope and Conclusions In this review various morphological aspects of lateral branching in roots are analysed. Morphological events occurring during the formation of a typical lateral root are described. This process involves dramatic changes in the geometry of the developing organ that at early stages are associated with oblique cell divisions, leading to breaking of the symmetry of the cell pattern. Several types of defects in the morphology of primordia are indicated and described. Computer simulations show that some of these defects may result from an unstable field of growth rates. Significant changes in both primary and lateral root morphology may also be a consequence of various mutations, some of which are auxin-related. Examples reported in the literature are considered. Finally, lateral root formation is discussed in terms of mechanics. In this approach the primordium is considered as a physical object undergoing deformation and is characterized by specific mechanical properties. PMID:24190952

  7. miRNA164-directed cleavage of ZmNAC1 confers lateral root development in maize (Zea mays L.).

    PubMed

    Li, Jing; Guo, Guanghui; Guo, Weiwei; Guo, Ganggang; Tong, Dan; Ni, Zhongfu; Sun, Qixin; Yao, Yingyin

    2012-11-21

    MicroRNAs are a class of small, non-coding RNAs that regulate gene expression by binding target mRNA, which leads to cleavage or translational inhibition. The NAC proteins, which include NAM, ATAF, and CUC, are a plant-specific transcription factor family with diverse roles in development and stress regulation. It has been reported that miR164 negatively regulates NAC1 expression, which in turn affects lateral root development in Arabidopsis; however, little is known about the involvement of the maize NAC family and miR164 in lateral root development. We collected 175 maize transcripts with NAC domains. Of these, 7 ZmNACs were putative targets for regulation by miR164. We isolated one gene, called TC258020 (designated ZmNAC1) from 2 maize inbred lines, 87-1 and Zong3. ZmNAC1 had a high expression level in roots and showed higher abundance (1.8 fold) in Zong3 relative to 87-1, which had less lateral roots than Zong3. There was a significant correlation between the expression level of ZmNAC1 and the lateral root density in the recombinant inbred line (RIL) population. Transgenic Arabidopsis that overexpressed ZmNAC1 had increased lateral roots in comparison to the wild type. These findings suggest that ZmNAC1 played a significant role in lateral root development. An allelic expression assay showed that trans-regulatory elements were the dominant mediators of ZmNAC1 differential expression in 87-1 and Zong3, and further analysis revealed that miR164 was a trans-element that guided the cleavage of endogenous ZmNAC1 mRNA. Both mature miR164 and miR164 precursors had higher expression in 87-1 than Zong3, which was the opposite of the expression pattern of ZmNAC1. Additionally, the allelic assay showed that the cis-regulatory element most likely affected Zm-miR164b's expression pattern. A β-glucuronidase (GUS) assay showed that the Zm-miR164b promoter had higher GUS activity in 87-1 than in Zong3. In addition, we detected miR164b expression in the RIL population, and the

  8. Graviresponsiveness and the Development of Columella Tissue in Primary and Lateral Roots of Ricinus communis1

    PubMed Central

    Moore, Randy; Pasieniuk, John

    1984-01-01

    Half-tipped primary and lateral roots of Ricinus communis cv Hale bend toward the side of the root on which the intact half-tip remains. Therefore, the minimal graviresponsiveness of lateral roots is not due to the inability of their caps to produce growth effectors (presumably inhibitors). The columella tissues of primary (i.e. graviresponsive) roots are (a) 4.30 times longer, (b) 2.95 times wider, (c) 37.4 times more voluminous, and (d) composed of 17.2 times more cells than those of lateral roots. The onset of positive gravitropism by lateral roots is positively correlated with a (a) 2.99-fold increase in length, (b) 2.63-fold increase in width, and (c) 20.7-fold increase in volume of their columella tissues. We propose that the minimal graviresponsiveness of lateral roots is due to the small size of their columella tissues, which results in their caps being unable to (a) establish a concentration gradient of the effector sufficient to induce gravicurvature and (b) produce as much of the effector as caps of graviresponsive roots. Images Fig. 1 PMID:11540818

  9. Tomato root growth, gravitropism, and lateral development: correlation with auxin transport

    NASA Technical Reports Server (NTRS)

    Muday, G. K.; Haworth, P.

    1994-01-01

    Tomato (Lycopersicon esculentum, Mill.) roots were analyzed during growth on agar plates. Growth of these roots was inhibited by the auxin transport inhibitors naphthylphthalamic acid (NPA) and semicarbazone derivative I (SCB-1). The effect of auxin transport inhibitors on root gravitropism was analyzed by measurement of the angle of gravitropic curvature after the roots were reoriented 90 degrees from the vertical. NPA and SCB-1 abolished both the response of these roots to gravity and the formation of lateral roots, with SCB-1 being the more effective at inhibition. Auxins also inhibited root growth. Both auxins tested has a slight effect on the gravity response, but this effect is probably indirect, since auxins reduced the growth rate. Auxins also stimulated lateral root growth at concentration where primary root growth was inhibited. When roots were treated with both IAA and NPA simultaneously, a cumulative inhibition of root growth was found. When both compounds were applied together, analysis of gravitropism and lateral root formation indicated that the dominant effect was exerted by auxin transport inhibitors. Together, these data suggest a model for the role of auxin transport in controlling both primary and lateral root growth.

  10. Localized Iron Supply Triggers Lateral Root Elongation in Arabidopsis by Altering the AUX1-Mediated Auxin Distribution[C][W][OA

    PubMed Central

    Giehl, Ricardo F.H.; Lima, Joni E.; von Wirén, Nicolaus

    2012-01-01

    Root system architecture depends on nutrient availability, which shapes primary and lateral root development in a nutrient-specific manner. To better understand how nutrient signals are integrated into root developmental programs, we investigated the morphological response of Arabidopsis thaliana roots to iron (Fe). Relative to a homogeneous supply, localized Fe supply in horizontally separated agar plates doubled lateral root length without having a differential effect on lateral root number. In the Fe uptake-defective mutant iron-regulated transporter1 (irt1), lateral root development was severely repressed, but a requirement for IRT1 could be circumvented by Fe application to shoots, indicating that symplastic Fe triggered the local elongation of lateral roots. The Fe-stimulated emergence of lateral root primordia and root cell elongation depended on the rootward auxin stream and was accompanied by a higher activity of the auxin reporter DR5-β-glucuronidase in lateral root apices. A crucial role of the auxin transporter AUXIN RESISTANT1 (AUX1) in Fe-triggered lateral root elongation was indicated by Fe-responsive AUX1 promoter activities in lateral root apices and by the failure of the aux1-T mutant to elongate lateral roots into Fe-enriched agar patches. We conclude that a local symplastic Fe gradient in lateral roots upregulates AUX1 to accumulate auxin in lateral root apices as a prerequisite for lateral root elongation. PMID:22234997

  11. CLE-like (CLEL) peptides control the pattern of root growth and lateral root development in Arabidopsis.

    PubMed

    Meng, Ling; Buchanan, Bob B; Feldman, Lewis J; Luan, Sheng

    2012-01-31

    CLE peptides, named for the CLV3/ESR-related peptide family, participate in intercellular-signaling pathways. Here we investigated members of the CLE-like (CLEL) gene family that encode peptide precursors recently designated as root growth factors [Matsuzaki Y et al. (2010) Science 329:1065-1067]. CLEL precursors share a similar domain structure with CLE precursors (i.e., they contain a putative N-terminal signal peptide and a C-terminal conserved 13-amino-acid CLEL motif with a variable middle portion). Our evidence shows that, unlike root growth factor, CLEL peptides are (i) unmodified and (ii) function in the regulation of the direction of root growth and lateral root development. Overexpression of several CLEL genes in Arabidopsis resulted in either long roots or long and wavy roots that also showed altered lateral root patterning. Exogenous application of unmodified synthetic 13-amino-acid peptides derived from two CLEL motifs resulted in similar phenotypic changes in roots of wild-type plants. In CLEL peptide-induced long roots, the root apical meristem (RAM) was enlarged and consisted of an increased number of cells, compared with wild-type root apical meristems. The wavy-root phenotype appeared to be independent of other responses of the roots to the environment (e.g., gravitropism, phototropism, and thigmotropism). Results also showed that the inhibition of lateral initiation by CLEL overexpression was not overcome by the application of auxin. These findings establish CLEL as a peptide family with previously unrecognized regulatory functions controlling the pattern of root growth and lateral root development in plants.

  12. Low phosphate alters lateral root setpoint angle and gravitropism.

    PubMed

    Bai, Hanwen; Murali, Bhavna; Barber, Kevin; Wolverton, Chris

    2013-01-01

    Lateral roots, responsible for water and nutrient uptake, maintain nonvertical angles throughout development. Soil phosphate is one limiting nutrient for plant growth that is known to induce changes to root system architecture, such as increased lateral root formation. This study seeks to determine whether phosphate concentration affects lateral root orientation in addition to its previously described influences on root architecture. Images of intact Arabidopsis root systems were recorded for 24 h, and lateral root tip angles were measured for wild-type and mutant pgm-1 and pin3-1 roots on a full or low phosphate medium. Setpoint angles of unstimulated root systems were determined, as were gravitropic responses of lateral roots over time. The root system setpoint angles of wild-type and mutant pin3-1 roots showed a shift toward a more vertical orientation on low orthophosphate (Pi) medium. The gravitropic responses of both pgm-1 and pin3-1 roots on low Pi medium was elevated relative to control Pi medium. Mutations in two phosphate transporters with high levels of expression in the root showed a gravitropic response similar to wild-type roots grown on low Pi, supporting a role for Pi status in regulating lateral root gravitropism. Lateral root orientation and gravitropism are affected by Pi status and may provide an important additional parameter for describing root responses to low Pi. The data also support the conclusion that gravitropic setpoint angle reacts to nutrient status and is under dynamic regulation.

  13. SIZ1 Regulation of Phosphate Starvation-Induced Root Architecture Remodeling Involves the Control of Auxin Accumulation1[C][W][OA

    PubMed Central

    Miura, Kenji; Lee, Jiyoung; Gong, Qingqiu; Ma, Shisong; Jin, Jing Bo; Yoo, Chan Yul; Miura, Tomoko; Sato, Aiko; Bohnert, Hans J.; Hasegawa, Paul M.

    2011-01-01

    Phosphate (Pi) limitation causes plants to modulate the architecture of their root systems to facilitate the acquisition of Pi. Previously, we reported that the Arabidopsis (Arabidopsis thaliana) SUMO E3 ligase SIZ1 regulates root architecture remodeling in response to Pi limitation; namely, the siz1 mutations cause the inhibition of primary root (PR) elongation and the promotion of lateral root (LR) formation. Here, we present evidence that SIZ1 is involved in the negative regulation of auxin patterning to modulate root system architecture in response to Pi starvation. The siz1 mutations caused greater PR growth inhibition and LR development of seedlings in response to Pi limitation. Similar root phenotypes occurred if Pi-deficient wild-type seedlings were supplemented with auxin. N-1-Naphthylphthalamic acid, an inhibitor of auxin efflux activity, reduced the Pi starvation-induced LR root formation of siz1 seedlings to a level equivalent to that seen in the wild type. Monitoring of the auxin-responsive reporter DR5::uidA indicated that auxin accumulates in PR tips at early stages of the Pi starvation response. Subsequently, DR5::uidA expression was observed in the LR primordia, which was associated with LR elongation. The time-sequential patterning of DR5::uidA expression occurred earlier in the roots of siz1 as compared with the wild type. In addition, microarray analysis revealed that several other auxin-responsive genes, including genes involved in cell wall loosening and biosynthesis, were up-regulated in siz1 relative to wild-type seedlings in response to Pi starvation. Together, these results suggest that SIZ1 negatively regulates Pi starvation-induced root architecture remodeling through the control of auxin patterning. PMID:21156857

  14. MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals.

    PubMed

    Yu, Lin-Hui; Miao, Zi-Qing; Qi, Guo-Feng; Wu, Jie; Cai, Xiao-Teng; Mao, Jie-Li; Xiang, Cheng-Bin

    2014-11-01

    Plant root system morphology is dramatically influenced by various environmental cues. The adaptation of root system architecture to environmental constraints, which mostly depends on the formation and growth of lateral roots, is an important agronomic trait. Lateral root development is regulated by the external signals coordinating closely with intrinsic signaling pathways. MADS-box transcription factors are known key regulators of the transition to flowering and flower development. However, their functions in root development are still poorly understood. Here we report that AGL21, an AGL17-clade MADS-box gene, plays a crucial role in lateral root development. AGL21 was highly expressed in root, particularly in the root central cylinder and lateral root primordia. AGL21 overexpression plants produced more and longer lateral roots while agl21 mutants showed impaired lateral root development, especially under nitrogen-deficient conditions. AGL21 was induced by many plant hormones and environmental stresses, suggesting a function of this gene in root system plasticity in response to various signals. Furthermore, AGL21 was found positively regulating auxin accumulation in lateral root primordia and lateral roots by enhancing local auxin biosynthesis, thus stimulating lateral root initiation and growth. We propose that AGL21 may be involved in various environmental and physiological signals-mediated lateral root development and growth. © The Author 2014. Published by Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  15. Initiation and elongation of lateral roots in Lactuca sativa

    NASA Technical Reports Server (NTRS)

    Zhang, N.; Hasenstein, K. H.

    1999-01-01

    Lactuca sativa cv. Baijianye seedlings do not normally produce lateral roots, but removal of the root tip or application of auxin, especially indole-butyric acid, triggered the formation of lateral roots. Primordia initiated within 9 h and were fully developed after 24 h by activating the pericycle cells opposite the xylem pole. The pericycle cells divided asymmetrically into short and long cells. The short cells divided further to form primordia. The effect of root tip removal and auxin application was reversed by 6-benzylaminopurine at concentrations >10(-8) M. The cytokinin oxidase inhibitor N1-(2chloro4pyridyl)-N2-phenylurea also suppressed auxin-induced lateral rooting. The elongation of primary roots was promoted by L-alpha-(2-aminoethoxyvinyl) glycine and silver ions, but only the latter enhanced elongation of lateral roots. The data indicate that the induction of lateral roots is controlled by basipetally moving cytokinin and acropetally moving auxin. Lateral roots appear to not produce ethylene.

  16. Gravitropism and Lateral Root Emergence are Dependent on the Trans-Golgi Network Protein TNO1.

    PubMed

    Roy, Rahul; Bassham, Diane C

    2015-01-01

    The trans-Golgi network (TGN) is a dynamic organelle that functions as a relay station for receiving endocytosed cargo, directing secretory cargo, and trafficking to the vacuole. TGN-localized SYP41-interacting protein (TNO1) is a large, TGN-localized, coiled-coil protein that associates with the membrane fusion protein SYP41, a target SNARE, and is required for efficient protein trafficking to the vacuole. Here, we show that a tno1 mutant has auxin transport-related defects. Mutant roots have delayed lateral root emergence, decreased gravitropic bending of plant organs and increased sensitivity to the auxin analog 2,4-dichlorophenoxyacetic acid and the natural auxin 3-indoleacetic acid. Auxin asymmetry at the tips of elongating stage II lateral roots was reduced in the tno1 mutant, suggesting a role for TNO1 in cellular auxin transport during lateral root emergence. During gravistimulation, tno1 roots exhibited delayed auxin transport from the columella to the basal epidermal cells. Endocytosis to the TGN was unaffected in the mutant, indicating that bulk endocytic defects are not responsible for the observed phenotypes. Together these studies demonstrate a role for TNO1 in mediating auxin responses during root development and gravistimulation, potentially through trafficking of auxin transport proteins.

  17. Gravitropism in lateral roots of Arabidopsis pgm-1 mutants is indistinguishable from that of wild-type

    PubMed Central

    Bai, Hanwen

    2011-01-01

    The majority of understanding of root gravity responses comes from the study of primary roots, even though lateral roots make a far greater contribution to root system architecture. The focus of this report is the analysis of gravitropic responses in lateral roots of wild-type background and pgm-1 mutants. Despite the significant reduction in gravitropic response of primary roots of pgm-1 mutants, the lateral roots of this mutant demonstrate wild-type rates of gravitropism, suggesting a significant difference in gravity signal transduction between primary and lateral roots. PMID:21921698

  18. Gravitropism in lateral roots of Arabidopsis pgm-1 mutants is indistinguishable from that of wild-type.

    PubMed

    Bai, Hanwen; Wolverton, Chris

    2011-10-01

    The majority of understanding of root gravity responses comes from the study of primary roots, even though lateral roots make a far greater contribution to root system architecture. The focus of this report is the analysis of gravitropic responses in lateral roots of wild-type background and pgm-1 mutants. Despite the significant reduction in gravitropic response of primary roots of pgm-1 mutants, the lateral roots of this mutant demonstrate wild-type rates of gravitropism, suggesting a significant difference in gravity signal transduction between primary and lateral roots.

  19. Relationships between root diameter, root length and root branching along lateral roots in adult, field-grown maize

    PubMed Central

    Wu, Qian; Pagès, Loïc; Wu, Jie

    2016-01-01

    Background and Aims Root diameter, especially apical diameter, plays an important role in root development and function. The variation in diameter between roots, and along roots, affects root structure and thus the root system’s overall foraging performance. However, the effect of diameter variation on root elongation, branching and topological connections has not been examined systematically in a population of high-order roots, nor along the roots, especially for mature plants grown in the field. Methods A method combining both excavation and analysis was applied to extract and quantify root architectural traits of adult, field-grown maize plants. The relationships between root diameter and other root architectural characteristics are analysed for two maize cultivars. Key Results The basal diameter of the lateral roots (orders 1–3) was highly variable. Basal diameter was partly determined by the diameter of the bearing segment. Basal diameter defined a potential root length, but the lengths of most roots fell far short of this. This was explained partly by differences in the pattern of diameter change along roots. Diameter tended to decrease along most roots, with the steepness of the gradient of decrease depending on basal diameter. The longest roots were those that maintained (or sometimes increased) their diameters during elongation. The branching density (cm–1) of laterals was also determined by the diameter of the bearing segment. However, the location of this bearing segment along the mother root was also involved – intermediate positions were associated with higher densities of laterals. Conclusions The method used here allows us to obtain very detailed records of the geometry and topology of a complex root system. Basal diameter and the pattern of diameter change along a root were associated with its final length. These relationships are especially useful in simulations of root elongation and branching in source–sink models. PMID:26744490

  20. A proposed role for selective autophagy in regulating auxin-dependent lateral root development under phosphate starvation in Arabidopsis.

    PubMed

    Sankaranarayanan, Subramanian; Samuel, Marcus A

    2015-01-01

    Plants respond to limited soil nutrient availability by inducing more lateral roots (LR) to increase the root surface area. At the cellular level, nutrient starvation triggers the process of autophagy through which bulk degradation of cellular materials is achieved to facilitate nutrient mobilization. Whether there is any link between the cellular autophagy and induction of LR had remained unknown. We recently showed that the S-Domain receptor Kinase (ARK2) and U Box/Armadillo Repeat-Containing E3 ligase (PUB9) module is required for lateral root formation under phosphate starvation in Arabidopsis thaliana.(1) We also showed that PUB9 localized to autophagic bodies following either activation by ARK2 or under phosphate starvation and ark2-1/pub9-1 plants displayed lateral root defects with inability to accumulate auxin in the root tips under phosphate starvation.(1) Supplementing exogenous auxin was sufficient to rescue the LR defects in ark2-1/pub9-1 mutant. Blocking of autophagic responses in wild-type Arabidopsis also resulted in inhibition of both lateral roots and auxin accumulation in the root tips indicating the importance of autophagy in mediating auxin accumulation under phosphate starved conditions.(1) Here, we propose a model for ARK2/AtPUB9 module in regulation of lateral root development via selective autophagy.

  1. Lateral root initiation in Marsilea quadrifolia. I. Origin and histogensis of lateral roots

    NASA Technical Reports Server (NTRS)

    Lin, B. L.; Raghavan, V.

    1991-01-01

    In Marsilea quadrifolia, lateral roots arise from modified single cells of the endodermis located opposite the protoxylem poles within the meristematic region of the parent root. The initial cell divides in four specific planes to establish a five-celled lateral root primordium, with a tetrahedral apical cell in the centre and the oldest merophytes and the root cap along the sides. The cells of the merophyte divide in a precise pattern to give rise to the cells of the cortex, endodermis, pericycle, and vascular tissues of the emerging lateral root. Although the construction of the parent root is more complicated than that of lateral roots, patterns of cell division and tissue formation are similar in both types of roots, with the various tissues being arranged in similar positions in relation to the central axis. Vascular connection between the lateral root primordium and the parent root is derived from the pericycle cells lying between the former and the protoxylem members of the latter. It is proposed that the central axis of the root is not only a geometric centre, but also a physiological centre which determines the fate of the different cell types.

  2. Genetic and Phenotypic Analysis of Lateral Root Development in Arabidopsis thaliana.

    PubMed

    Napsucialy-Mendivil, Selene; Dubrovsky, Joseph G

    2018-01-01

    Root system formation to a great extent depends on lateral root (LR) formation. In Arabidopsis thaliana, LRs are initiated within a parent root in pericycle that is an external tissue of the stele. LR initiation takes place in a strictly acropetal pattern, whereas posterior lateral root primordium (LRP) formation is asynchronous. In this chapter, we focus on methods of genetic and phenotypic analysis of LR initiation, LRP morphogenesis, and LR emergence in Arabidopsis. We provide details on how to make cleared root preparations and how to identify the LRP stages. We also pay attention to the categorization of the LRP developmental stages and their variations and to the normalization of the number of LRs and LRPs formed, per length of the primary root, and per number of cells produced within a root. Hormonal misbalances and mutations affect LRP morphogenesis significantly, and the evaluation of LRP abnormalities is addressed as well. Finally, we deal with various molecular markers that can be used for genetic and phenotypic analyses of LR development.

  3. PHYTOCHROME KINASE SUBSTRATE1 Regulates Root Phototropism and Gravitropism1[C][W][OA

    PubMed Central

    Boccalandro, Hernán E.; De Simone, Silvia N.; Bergmann-Honsberger, Ariane; Schepens, Isabelle; Fankhauser, Christian; Casal, Jorge J.

    2008-01-01

    Light promotes the expression of PHYTOCHROME KINASE SUBSTRATE1 (PKS1) in the root of Arabidopsis thaliana, but the function of PKS1 in this organ is unknown. Unilateral blue light induced a negative root phototropic response mediated by phototropin 1 in wild-type seedlings. This response was absent in pks1 mutants. In the wild type, unilateral blue light enhanced PKS1 expression in the subapical region of the root several hours before bending was detectable. The negative phototropism and the enhanced PKS1 expression in response to blue light required phytochrome A (phyA). In addition, the pks1 mutation enhanced the root gravitropic response when vertically oriented seedlings were placed horizontally. The negative regulation of gravitropism by PKS1 occurred even in dark-grown seedlings and did not require phyA. Blue light also failed to induce negative phototropism in pks1 under reduced gravitational stimulation, indicating that the effect of pks1 on phototropism is not simply the consequence of the counteracting effect of enhanced gravitropism. We propose a model where the background level of PKS1 reduces gravitropism. After a phyA-dependent increase in its expression, PKS1 positively affects root phototropism and both effects contribute to negative curvature in response to unilateral blue light. PMID:18024556

  4. ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1) is required for cell production, patterning, and morphogenesis in root development

    PubMed Central

    Napsucialy-Mendivil, Selene; Alvarez-Venegas, Raúl; Shishkova, Svetlana; Dubrovsky, Joseph G.

    2014-01-01

    ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1/SDG27), a known regulator of flower development, encodes a H3K4histone methyltransferase that maintains a number of genes in an active state. In this study, the role of ATX1 in root development was evaluated. The loss-of-function mutant atx1-1 was impaired in primary root growth. The data suggest that ATX1 controls root growth by regulating cell cycle duration, cell production, and the transition from cell proliferation in the root apical meristem (RAM) to cell elongation. In atx1-1, the quiescent centre (QC) cells were irregular in shape and more expanded than those of the wild type. This feature, together with the atypical distribution of T-divisions, the presence of oblique divisions, and the abnormal cell patterning in the RAM, suggests a lack of coordination between cell division and cell growth in the mutant. The expression domain of QC-specific markers was expanded both in the primary RAM and in the developing lateral root primordia of atx1-1 plants. These abnormalities were independent of auxin-response gradients. ATX1 was also found to be required for lateral root initiation, morphogenesis, and emergence. The time from lateral root initiation to emergence was significantly extended in the atx1-1 mutant. Overall, these data suggest that ATX1 is involved in the timing of root development, stem cell niche maintenance, and cell patterning during primary and lateral root development. Thus, ATX1 emerges as an important player in root system architecture. PMID:25205583

  5. Arabidopsis thaliana RALF1 opposes brassinosteroid effects on root cell elongation and lateral root formation

    PubMed Central

    Moura, Daniel S.

    2014-01-01

    Rapid alkalinization factor (RALF) is a peptide signal that plays a basic role in cell biology and most likely regulates cell expansion. In this study, transgenic Arabidopsis thaliana lines with high and low levels of AtRALF1 transcripts were used to investigate this peptide’s mechanism of action. Overexpression of the root-specific isoform AtRALF1 resulted in reduced cell size. Conversely, AtRALF1 silencing increased root length by increasing the size of root cells. AtRALF1-silenced plants also showed an increase in the number of lateral roots, whereas AtRALF1 overexpression produced the opposite effect. In addition, four AtRALF1-inducible genes were identified: two genes encoding proline-rich proteins (AtPRP1 and AtPRP3), one encoding a hydroxyproline-rich glycoprotein (AtHRPG2), and one encoding a xyloglucan endotransglucosylase (TCH4). These genes were expressed in roots and involved in cell-wall rearrangement, and their induction was concentration dependent. Furthermore, AtRALF1-overexpressing plants were less sensitive to exogenous brassinolide (BL); upon BL treatment, the plants showed no increase in root length and a compromised increase in hypocotyl elongation. In addition, the treatment had no effect on the number of emerged lateral roots. AtRALF1 also induces two brassinosteroid (BR)-downregulated genes involved in the BR biosynthetic pathway: the cytochrome P450 monooxygenases CONSTITUTIVE PHOTOMORPHISM AND DWARFISM (CPD) and DWARF4 (DWF4). Simultaneous treatment with both AtRALF1 and BL caused a reduction in AtRALF1-inducible gene expression levels, suggesting that these signals may compete for components shared by both pathways. Taken together, these results indicate an opposing effect of AtRALF1 and BL, and suggest that RALF’s mechanism of action could be to interfere with the BR signalling pathway. PMID:24620000

  6. Measurements of water uptake of maize roots: the key function of lateral roots

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Zarebanadkouki, M.; Kroener, E.; Kaestner, A.; Carminati, A.

    2014-12-01

    Maize (Zea mays L.) is one of the most important crop worldwide. Despite its importance, there is limited information on the function of different root segments and root types of maize in extracting water from soils. Therefore, the aim of this study was to investigate locations of root water uptake in maize. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maizes were grown in aluminum containers (40×38×1 cm) filled with a sandy soil. When the plants were 16 days old, we injected D2O into selected soil regions containing primary, seminal and lateral roots. The experiments were performed during the day (transpiring plants) and night (not transpiring plants). The transport of D2O into roots was simulated using a new convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusional permeability and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Water uptake occurred primarily in lateral roots. Lateral roots had the highest diffusional permeability (9.4×10-7), which was around six times higher that the diffusional permeability of the old seminal segments (1.4×10-7), and two times higher than the diffusional permeability of the young seminal segments (4.7×10-7). The radial flow of D2O into the lateral (6.7×10-5 ) was much higher than in the young seminal roots (1.1×10-12). The radial flow of D2O into the old seminal was negligible. We concluded that the function of the primary and seminal roots was to collect water from the lateral roots and transport it to the shoot. A maize root system with lateral roots branching from deep primary and seminal roots would be

  7. Poplar PtabZIP1-like enhances lateral root formation and biomass growth under drought stress

    DOE PAGES

    Dash, Madhumita; Yordanov, Yordan S.; Georgieva, Tatyana; ...

    2017-02-10

    Developing drought-resistance varieties is a major goal for bioenergy crops, such as poplar (Populus), which will be grown on marginal lands with little or no water input. Root architecture can affect drought resistance, but few genes that affect root architecture in relation to water availability have been identified. Here in this study, using activation tagging in the prime bioenergy crop poplar, we have identified a mutant that overcomes the block of lateral root (LR) formation under osmotic stress. Positioning of the tag, validation of the activation and recapitulation showed that the phenotype is caused by the poplar PtabZIP1-like (PtabZIP1L) genemore » with highest homology to bZIP1 from Arabidopsis. PtabZIP1L is predominantly expressed in roots, particularly in zones where lateral root primordia (LRP) initiate and LR differentiate and emerge. Transgenics overexpressing PtabZIP1L showed precocious LRP and LR development, while PtabZIP1L suppression significantly delayed both LRP and LR formation. Transgenic overexpression and suppression of PtabZIP1L also resulted in modulation of key metabolites like proline, asparagine, valine and several flavonoids. Consistently, expression of both of the poplar Proline Dehydrogenase orthologs and two of the Flavonol Synthases genes was also increased and decreased in overexpressed and suppressed transgenics, respectively. These findings suggest that PtabZIP1L mediates LR development and drought resistance through modulation of multiple metabolic pathways.« less

  8. Poplar PtabZIP1-like enhances lateral root formation and biomass growth under drought stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dash, Madhumita; Yordanov, Yordan S.; Georgieva, Tatyana

    Developing drought-resistance varieties is a major goal for bioenergy crops, such as poplar (Populus), which will be grown on marginal lands with little or no water input. Root architecture can affect drought resistance, but few genes that affect root architecture in relation to water availability have been identified. Here in this study, using activation tagging in the prime bioenergy crop poplar, we have identified a mutant that overcomes the block of lateral root (LR) formation under osmotic stress. Positioning of the tag, validation of the activation and recapitulation showed that the phenotype is caused by the poplar PtabZIP1-like (PtabZIP1L) genemore » with highest homology to bZIP1 from Arabidopsis. PtabZIP1L is predominantly expressed in roots, particularly in zones where lateral root primordia (LRP) initiate and LR differentiate and emerge. Transgenics overexpressing PtabZIP1L showed precocious LRP and LR development, while PtabZIP1L suppression significantly delayed both LRP and LR formation. Transgenic overexpression and suppression of PtabZIP1L also resulted in modulation of key metabolites like proline, asparagine, valine and several flavonoids. Consistently, expression of both of the poplar Proline Dehydrogenase orthologs and two of the Flavonol Synthases genes was also increased and decreased in overexpressed and suppressed transgenics, respectively. These findings suggest that PtabZIP1L mediates LR development and drought resistance through modulation of multiple metabolic pathways.« less

  9. Phototropism and gravitropism in lateral roots of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kiss, John Z.; Miller, Kelley M.; Ogden, Lisa A.; Roth, Kelly K.

    2002-01-01

    Gravitropism and, to a lesser extent, phototropism have been characterized in primary roots, but little is known about structural/functional aspects of these tropisms in lateral roots. Therefore, in this study, we report on tropistic responses in lateral roots of Arabidopsis thaliana. Lateral roots initially are plagiogravitropic, but when they reach a length of approximately 10 mm, these roots grow downward and exhibit positive orthogravitropism. Light and electron microscopic studies demonstrate a correlation between positive gravitropism and development of columella cells with large, sedimented amyloplasts in wild-type plants. Lateral roots display negative phototropism in response to white and blue light and positive phototropism in response to red light. As is the case with primary roots, the photoresponse is weak relative to the graviresponse, but phototropism is readily apparent in starchless mutant plants, which are impaired in gravitropism. To our knowledge, this is the first report of phototropism of lateral roots in any plant species.

  10. Phototropism and gravitropism in lateral roots of Arabidopsis.

    PubMed

    Kiss, John Z; Miller, Kelley M; Ogden, Lisa A; Roth, Kelly K

    2002-01-01

    Gravitropism and, to a lesser extent, phototropism have been characterized in primary roots, but little is known about structural/functional aspects of these tropisms in lateral roots. Therefore, in this study, we report on tropistic responses in lateral roots of Arabidopsis thaliana. Lateral roots initially are plagiogravitropic, but when they reach a length of approximately 10 mm, these roots grow downward and exhibit positive orthogravitropism. Light and electron microscopic studies demonstrate a correlation between positive gravitropism and development of columella cells with large, sedimented amyloplasts in wild-type plants. Lateral roots display negative phototropism in response to white and blue light and positive phototropism in response to red light. As is the case with primary roots, the photoresponse is weak relative to the graviresponse, but phototropism is readily apparent in starchless mutant plants, which are impaired in gravitropism. To our knowledge, this is the first report of phototropism of lateral roots in any plant species.

  11. Auxin fluxes in the root apex co-regulate gravitropism and lateral root initiation.

    PubMed

    Lucas, M; Godin, C; Jay-Allemand, C; Laplaze, L

    2008-01-01

    Root architecture plays an important role in water and nutrient acquisition and in the ability of the plant to adapt to the soil. Lateral root development is the main determinant of the shape of the root system and is controlled by external factors such as nutrient concentration. Here it is shown that lateral root initiation and root gravitropism, two processes that are regulated by auxin, are co-regulated in Arabidopsis. A mathematical model was generated that can predict the effects of gravistimulations on lateral root initiation density and suggests that lateral root initiation is controlled by an inhibitory fields mechanism. Moreover, gene transactivation experiments suggest a mechanism involving a single auxin transport route for both responses. Finally, co-regulation may offer a selective advantage by optimizing soil exploration as supported by a simple quantitative analysis.

  12. AtrbohD and AtrbohF negatively regulate lateral root development by changing the localized accumulation of superoxide in primary roots of Arabidopsis.

    PubMed

    Li, Ning; Sun, Lirong; Zhang, Liyue; Song, Yalin; Hu, Panpan; Li, Cui; Hao, Fu Shun

    2015-03-01

    NADPH oxidase AtrbohD an d AtrbohF negatively modulate lateral root development by changing the peroxidase activity and increasing the local generation of superoxide in primary roots of Arabidopsis in an auxin-independent manner. NADPH oxidase subunits AtrbohD and AtrbohF play pivotal roles in regulating growth, development and stress responses in Arabidopsis. However, whether they modulate lateral root (LR) formation has not yet been addressed, and the detailed mechanisms underlying the process remain unanswered. Here, we show that two null double mutants atrbohD1/F1 and atrbohD2/F2, in which both AtrbohD and AtrbohF genes are disrupted, had remarkably higher LR density than wild-type (WT), or the single mutant atrbohD1 and atrbohF1. Compared to WT, the double mutants exhibited early emerged LRs and enhanced density of lateral root primordia (LRP). Unexpectedly, the production of superoxide (O2 (-)), but not hydrogen peroxide, in the mature area of the primary root containing LRs significantly increased in the double mutants relative to that in WT. Further experiments revealed that the local accumulation of O2 (-) led to the enhancement of LR density in the double mutants. Moreover, the deficiency of AtrbohD and AtrbohF caused a marked increase in peroxidase activity in the mature root zone, which contributed to the localized accumulation of O2 (-) and the elevated LR density in the double mutants. Furthermore, the double mutants were not sensitive to exogenous auxin naphthalene acetic acid or auxin transport inhibitor 1-N-naphthylphthalamic acid in terms of LR formation. The auxin response of LRP in vivo in atrbohD1/F1 was also similar to that in WT. Taken together, these results suggest that AtrbohD and AtrbohF negatively modulate LR development by controlling the local generation of superoxide in an auxin-independent manner. These findings provide new insights into the mechanisms of NADPH oxidase-mediated regulation of LR branching in Arabidopsis.

  13. The Optimal Lateral Root Branching Density for Maize Depends on Nitrogen and Phosphorus Availability1[C][W][OPEN

    PubMed Central

    Postma, Johannes Auke; Dathe, Annette; Lynch, Jonathan Paul

    2014-01-01

    Observed phenotypic variation in the lateral root branching density (LRBD) in maize (Zea mays) is large (1–41 cm−1 major axis [i.e. brace, crown, seminal, and primary roots]), suggesting that LRBD has varying utility and tradeoffs in specific environments. Using the functional-structural plant model SimRoot, we simulated the three-dimensional development of maize root architectures with varying LRBD and quantified nitrate and phosphorus uptake, root competition, and whole-plant carbon balances in soils varying in the availability of these nutrients. Sparsely spaced (less than 7 branches cm−1), long laterals were optimal for nitrate acquisition, while densely spaced (more than 9 branches cm−1), short laterals were optimal for phosphorus acquisition. The nitrate results are mostly explained by the strong competition between lateral roots for nitrate, which causes increasing LRBD to decrease the uptake per unit root length, while the carbon budgets of the plant do not permit greater total root length (i.e. individual roots in the high-LRBD plants stay shorter). Competition and carbon limitations for growth play less of a role for phosphorus uptake, and consequently increasing LRBD results in greater root length and uptake. We conclude that the optimal LRBD depends on the relative availability of nitrate (a mobile soil resource) and phosphorus (an immobile soil resource) and is greater in environments with greater carbon fixation. The median LRBD reported in several field screens was 6 branches cm−1, suggesting that most genotypes have an LRBD that balances the acquisition of both nutrients. LRBD merits additional investigation as a potential breeding target for greater nutrient acquisition. PMID:24850860

  14. Reduced Lateral Root Branching Density Improves Drought Tolerance in Maize1[OPEN

    PubMed Central

    Zhan, Ai; Schneider, Hannah

    2015-01-01

    An emerging paradigm is that root traits that reduce the metabolic costs of soil exploration improve the acquisition of limiting soil resources. Here, we test the hypothesis that reduced lateral root branching density will improve drought tolerance in maize (Zea mays) by reducing the metabolic costs of soil exploration, permitting greater axial root elongation, greater rooting depth, and thereby greater water acquisition from drying soil. Maize recombinant inbred lines with contrasting lateral root number and length (few but long [FL] and many but short [MS]) were grown under water stress in greenhouse mesocosms, in field rainout shelters, and in a second field environment with natural drought. Under water stress in mesocosms, lines with the FL phenotype had substantially less lateral root respiration per unit of axial root length, deeper rooting, greater leaf relative water content, greater stomatal conductance, and 50% greater shoot biomass than lines with the MS phenotype. Under water stress in the two field sites, lines with the FL phenotype had deeper rooting, much lighter stem water isotopic signature, signifying deeper water capture, 51% to 67% greater shoot biomass at flowering, and 144% greater yield than lines with the MS phenotype. These results entirely support the hypothesis that reduced lateral root branching density improves drought tolerance. The FL lateral root phenotype merits consideration as a selection target to improve the drought tolerance of maize and possibly other cereal crops. PMID:26077764

  15. Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea1[C][W][OA

    PubMed Central

    Rasmussen, Amanda; Mason, Michael Glenn; De Cuyper, Carolien; Brewer, Philip B.; Herold, Silvia; Agusti, Javier; Geelen, Danny; Greb, Thomas; Goormachtig, Sofie; Beeckman, Tom; Beveridge, Christine Anne

    2012-01-01

    Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation. PMID:22323776

  16. Nitric oxide enhances development of lateral roots in tomato (Solanum lycopersicum L.) under elevated carbon dioxide.

    PubMed

    Wang, Huan; Xiao, Wendan; Niu, Yaofang; Jin, Chongwei; Chai, Rushan; Tang, Caixian; Zhang, Yongsong

    2013-01-01

    Elevated carbon dioxide (CO₂) has been shown to enhance the growth and development of plants, especially of roots. Amongst them, lateral roots play an important role in nutrient uptake, and thus alleviate the nutrient limitation to plant growth under elevated CO₂. This paper examined the mechanism underlying CO₂ elevation-induced lateral root formation in tomato. The endogenous nitric oxide (NO) in roots was detected by the specific probe 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM DA). We suggest that CO₂ elevation-induced NO accumulation was important for lateral root formation. Elevated CO₂ significantly increased the activity of nitric oxide synthase in roots, but not nitrate reductase activity. Moreover, the pharmacological evidence showed that nitric oxide synthase rather than nitrate reductase was responsible for CO₂ elevation-induced NO accumulation. Elevated CO₂ enhanced the activity of nitric oxide synthase and promoted production of NO, which was involved in lateral root formation in tomato under elevated CO₂.

  17. Role of Root Hairs and Lateral Roots in Silicon Uptake by Rice

    PubMed Central

    Ma, Jian Feng; Goto, Shoko; Tamai, Kazunori; Ichii, Masahiko

    2001-01-01

    The rice plant (Oryza sativa L. cv Oochikara) is known to be a Si accumulator, but the mechanism responsible for the high uptake of Si by the roots is not well understood. We investigated the role of root hairs and lateral roots in the Si uptake using two mutants of rice, one defective in the formation of root hairs (RH2) and another in that of lateral roots (RM109). Uptake experiments with nutrient solution during both a short term (up to 12 h) and relatively long term (26 d) showed that there was no significant difference in Si uptake between RH2 and the wild type (WT), whereas the Si uptake of RM109 was much less than that of WT. The number of silica bodies formed on the third leaf in RH2 was similar to that in WT, but the number of silica bodies in RM109 was only 40% of that in WT, when grown in soil amended with Si under flooded conditions. There was also no difference in the shoot Si concentration between WT and RH2 when grown in soil under upland conditions. Using a multi-compartment transport box, the Si uptake at the root tip (0–1 cm, without lateral roots and root hairs) was found to be similar in WT, RH2, and RM109. However, the Si uptake in the mature zone (1–4 cm from root tip) was significantly lower in RM109 than in WT, whereas no difference was found in Si uptake between WT and RH2. All these results clearly indicate that lateral roots contribute to the Si uptake in rice plant, whereas root hairs do not. Analysis of F2 populations between RM109 and WT showed that Si uptake was correlated with the presence of lateral roots and that the gene controlling formation of lateral roots and Si uptake is a dominant gene. PMID:11743120

  18. Root Type-Specific Reprogramming of Maize Pericycle Transcriptomes by Local High Nitrate Results in Disparate Lateral Root Branching Patterns1[OPEN

    PubMed Central

    Lithio, Andrew

    2016-01-01

    The adaptability of root system architecture to unevenly distributed mineral nutrients in soil is a key determinant of plant performance. The molecular mechanisms underlying nitrate dependent plasticity of lateral root branching across the different root types of maize are only poorly understood. In this study, detailed morphological and anatomical analyses together with cell type-specific transcriptome profiling experiments combining laser capture microdissection with RNA-seq were performed to unravel the molecular signatures of lateral root formation in primary, seminal, crown, and brace roots of maize (Zea mays) upon local high nitrate stimulation. The four maize root types displayed divergent branching patterns of lateral roots upon local high nitrate stimulation. In particular, brace roots displayed an exceptional architectural plasticity compared to other root types. Transcriptome profiling revealed root type-specific transcriptomic reprogramming of pericycle cells upon local high nitrate stimulation. The alteration of the transcriptomic landscape of brace root pericycle cells in response to local high nitrate stimulation was most significant. Root type-specific transcriptome diversity in response to local high nitrate highlighted differences in the functional adaptability and systemic shoot nitrogen starvation response during development. Integration of morphological, anatomical, and transcriptomic data resulted in a framework underscoring similarity and diversity among root types grown in heterogeneous nitrate environments. PMID:26811190

  19. Geoperception in primary and lateral roots of Phaseolus vulgaris (Fabaceae). III. A model to explain the differential georesponsiveness of primary and lateral roots

    NASA Technical Reports Server (NTRS)

    Ransom, J. S.; Moore, R.

    1985-01-01

    Half-tipped primary and lateral roots of Phaseolus vulgaris bend toward the side of the root on which the intact half tip remains. Therefore, tips of lateral and primary roots produce growth effectors capable of inducing gravicurvature. The asymmetrical placement of a tip of a lateral root onto a detipped primary root results in the root bending toward the side of the root onto which the tip was placed. That is, the lesser graviresponsiveness of lateral roots as compared with primary roots is not due to the inability of their caps to produce growth inhibitors. The more pronounced graviresponsiveness of primary roots is positively correlated with the presence of columella tissues that are 3.8 times longer, 1.7 times wider, and 10.5 times more voluminous than the columellas of lateral roots. We propose that the lack of graviresponsiveness exhibited by lateral roots is due to the fact that they (i) produce smaller amounts of the inhibitor than primary (i.e., strongly graviresponsive) roots and (ii) are unable to redistribute the inhibitor so as to be able to create a concentration gradient sufficient to induce a pronounced gravitropic response.

  20. Characterization of Pearl Millet Root Architecture and Anatomy Reveals Three Types of Lateral Roots

    PubMed Central

    Passot, Sixtine; Gnacko, Fatoumata; Moukouanga, Daniel; Lucas, Mikaël; Guyomarc’h, Soazig; Ortega, Beatriz Moreno; Atkinson, Jonathan A.; Belko, Marème N.; Bennett, Malcolm J.; Gantet, Pascal; Wells, Darren M.; Guédon, Yann; Vigouroux, Yves; Verdeil, Jean-Luc; Muller, Bertrand; Laplaze, Laurent

    2016-01-01

    Pearl millet plays an important role for food security in arid regions of Africa and India. Nevertheless, it is considered an orphan crop as it lags far behind other cereals in terms of genetic improvement efforts. Breeding pearl millet varieties with improved root traits promises to deliver benefits in water and nutrient acquisition. Here, we characterize early pearl millet root system development using several different root phenotyping approaches that include rhizotrons and microCT. We report that early stage pearl millet root system development is characterized by a fast growing primary root that quickly colonizes deeper soil horizons. We also describe root anatomical studies that revealed three distinct types of lateral roots that form on both primary roots and crown roots. Finally, we detected significant variation for two root architectural traits, primary root lenght and lateral root density, in pearl millet inbred lines. This study provides the basis for subsequent genetic experiments to identify loci associated with interesting early root development traits in this important cereal. PMID:27379124

  1. Root type matters: measurements of water uptake by seminal, crown and lateral roots of maize

    NASA Astrophysics Data System (ADS)

    Ahmed, Mutez Ali; Zarebanadkouki, Mohsen; Kaestner, Anders; Carminati, Andrea

    2016-04-01

    Roots play a key role in water acquisition and are a significant component of plant adaptation to different environmental conditions. Although maize (Zea mays L.) is one of the most important crops worldwide, there is limited information on the function of different root segments and types in extracting water from soils. Aim of this study was to investigate the location of root water uptake in mature maize. We used neutron radiography to image the spatial distribution of maize roots and trace the transport of injected deuterated water (D2O) in soil and roots. Maize plants were grown in aluminum containers filled with a sandy soil that was kept homogeneously wet throughout the experiment. When the plants were five weeks-old, we injected D2O into selected soil regions. The transport of D2O was simulated using a diffusion-convection numerical model. By fitting the observed D2O transport we quantified the diffusion coefficient and the water uptake of the different root segments. The model was initially developed and tested with two weeks-old maize (Ahmed et. al. 2015), for which we found that water was mainly taken up by lateral roots and the water uptake of the seminal roots was negligible. Here, we used this method to measure root water uptake in a mature maize root system. The root architecture of five weeks-old maize consisted of primary and seminal roots with long laterals and crown (nodal) roots that emerged from the above ground part of the plant two weeks after planting. The crown roots were thicker than the seminal roots and had fewer and shorter laterals. Surprisingly, we found that the water was mainly taken up by the crown roots and their laterals, while the lateral roots of seminal roots, which were the main location of water uptake of younger plants, stopped to take up water. Interestingly, we also found that in contrast to the seminal roots, the crown roots were able to take up water also from their distal segments. We conclude that for the two weeks

  2. Apical control, gravitropic signaling, and the growth of lateral roots in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Mullen, Jack L.; Wolverton, Chris; Hangarter, Roger P.

    Most research on gravity responses in plants has focused on primary roots and shoots, which typically grow in a vertical orientation. However, the patterns of lateral organ growth, which generally have large effects on overall plant architecture, are such that the organs are typically not vertical. In lateral roots of Arabidopsis, growth is initially in a nearly horizontal orientation but changes to a near-vertical orientation as the lateral root develops. Although the non-vertical lateral roots are gravitropically competent, following gravitropic reorientation of seedlings, the lateral roots on the upper flank of the primary root have different growth patterns from those on the lower side of the primary root. The differences are in part dependent on reorientation of the primary root, suggesting that gravitropic signaling from the primary root also contributes to the control of lateral root growth. The hormone auxin appears to play a role in this signaling between the primary and lateral roots, as auxin transport inhibitors applied to the primary root affect lateral root growth. Also, lateral roots of pin3 mutants, which are impaired in polar auxin transport, have altered lateral root orientations. However, other signals from the primary root tip also play an important role in regulating lateral root growth.

  3. An auxin-induced β-type endo-1,4-β-glucanase in poplar is involved in cell expansion and lateral root formation.

    PubMed

    Yu, Liangliang; Li, Qiong; Zhu, Yingying; Afzal, Muhammad Saddique; Li, Laigeng

    2018-05-01

    PtrGH9A7, a poplar β-type endo-1,4-β-glucanase gene induced by auxin, promotes both plant growth and lateral root development by enhancing cell expansion. Endo-1,4-β-glucanase (EGase) family genes function in multiple aspects of plant growth and development. Our previous study found that PtrCel9A6, a poplar EGase gene of the β subfamily, is specifically expressed in xylem tissue and is involved in the cellulose biosynthesis required for secondary cell wall formation (Yu et al. in Mol Plant 6:1904-1917, 2013). To further explore the functions and regulatory mechanism of β-subfamily EGases, we cloned and characterized another poplar β-type EGase gene PtrGH9A7, a close homolog of PtrCel9A6. In contrast to PtrCel9A6, PtrGH9A7 is predominantly expressed in parenchyma tissues of the above-ground part; in roots, PtrGH9A7 expression is specifically restricted to lateral root primordia at all stages from initiation to emergence and is strongly induced by auxin application. Heterologous overexpression of PtrGH9A7 promotes plant growth by enhancing cell expansion, suggesting a conserved role for β-type EGases in 1,4-β-glucan chains remodeling, which is required for cell wall loosening. Moreover, the overexpression of PtrGH9A7 significantly increases lateral root number, which might result from improved lateral root primordium development due to enhanced cell expansion. Taken together, these results demonstrate that this β-type EGase induced by auxin signaling has a novel role in promoting lateral root formation as well as in enhancing plant growth.

  4. Three-Dimensional Root Phenotyping with a Novel Imaging and Software Platform1[C][W][OA

    PubMed Central

    Clark, Randy T.; MacCurdy, Robert B.; Jung, Janelle K.; Shaff, Jon E.; McCouch, Susan R.; Aneshansley, Daniel J.; Kochian, Leon V.

    2011-01-01

    A novel imaging and software platform was developed for the high-throughput phenotyping of three-dimensional root traits during seedling development. To demonstrate the platform’s capacity, plants of two rice (Oryza sativa) genotypes, Azucena and IR64, were grown in a transparent gellan gum system and imaged daily for 10 d. Rotational image sequences consisting of 40 two-dimensional images were captured using an optically corrected digital imaging system. Three-dimensional root reconstructions were generated and analyzed using a custom-designed software, RootReader3D. Using the automated and interactive capabilities of RootReader3D, five rice root types were classified and 27 phenotypic root traits were measured to characterize these two genotypes. Where possible, measurements from the three-dimensional platform were validated and were highly correlated with conventional two-dimensional measurements. When comparing gellan gum-grown plants with those grown under hydroponic and sand culture, significant differences were detected in morphological root traits (P < 0.05). This highly flexible platform provides the capacity to measure root traits with a high degree of spatial and temporal resolution and will facilitate novel investigations into the development of entire root systems or selected components of root systems. In combination with the extensive genetic resources that are now available, this platform will be a powerful resource to further explore the molecular and genetic determinants of root system architecture. PMID:21454799

  5. Cell wall properties play an important role in the emergence of lateral root primordia from the parent root.

    PubMed

    Roycewicz, Peter S; Malamy, Jocelyn E

    2014-05-01

    Plants adapt to their unique soil environments by altering the number and placement of lateral roots post-embryonic. Mutants were identified in Arabidopsis thaliana that exhibit increased lateral root formation. Eight mutants were characterized in detail and were found to have increased lateral root formation due to at least three distinct mechanisms. The causal mutation in one of these mutants was found in the XEG113 gene, recently shown to be involved in plant cell wall biosynthesis. Lateral root primordia initiation is unaltered in this mutant. In contrast, synchronization of lateral root initiation demonstrated that mutation of XEG113 increases the rate at which lateral root primordia develop and emerge to form lateral roots. The effect of the XEG113 mutation was specific to the root system and had no apparent effect on shoot growth. Screening of 17 additional cell wall mutants, altering a myriad of cell wall components, revealed that many (but not all) types of cell wall defects promote lateral root formation. These results suggest that proper cell wall biosynthesis is necessary to constrain lateral root primordia emergence. While previous reports have shown that lateral root emergence is accompanied by active remodelling of cell walls overlying the primordia, this study is the first to demonstrate that alteration of the cell wall is sufficient to promote lateral root formation. Therefore, inherent cell wall properties may play a previously unappreciated role in regulation of root system architecture.

  6. Plant roots use a patterning mechanism to position lateral root branches toward available water.

    PubMed

    Bao, Yun; Aggarwal, Pooja; Robbins, Neil E; Sturrock, Craig J; Thompson, Mark C; Tan, Han Qi; Tham, Cliff; Duan, Lina; Rodriguez, Pedro L; Vernoux, Teva; Mooney, Sacha J; Bennett, Malcolm J; Dinneny, José R

    2014-06-24

    The architecture of the branched root system of plants is a major determinant of vigor. Water availability is known to impact root physiology and growth; however, the spatial scale at which this stimulus influences root architecture is poorly understood. Here we reveal that differences in the availability of water across the circumferential axis of the root create spatial cues that determine the position of lateral root branches. We show that roots of several plant species can distinguish between a wet surface and air environments and that this also impacts the patterning of root hairs, anthocyanins, and aerenchyma in a phenomenon we describe as hydropatterning. This environmental response is distinct from a touch response and requires available water to induce lateral roots along a contacted surface. X-ray microscale computed tomography and 3D reconstruction of soil-grown root systems demonstrate that such responses also occur under physiologically relevant conditions. Using early-stage lateral root markers, we show that hydropatterning acts before the initiation stage and likely determines the circumferential position at which lateral root founder cells are specified. Hydropatterning is independent of endogenous abscisic acid signaling, distinguishing it from a classic water-stress response. Higher water availability induces the biosynthesis and transport of the lateral root-inductive signal auxin through local regulation of tryptophan aminotransferase of Arabidopsis 1 and PIN-formed 3, both of which are necessary for normal hydropatterning. Our work suggests that water availability is sensed and interpreted at the suborgan level and locally patterns a wide variety of developmental processes in the root.

  7. Clonal variation in lateral and basal rooting of Populus irrigated with landfill leachate

    Treesearch

    R.S. Zalesny Jr.; J.A. Zalesny

    2011-01-01

    Successful establishment and productivity of Populus depends upon adventitious rooting from: 1) lateral roots that develop from either preformed or induced primordia and 2) basal roots that differentiate from callus at the base of the cutting in response to wounding. Information is needed for phytotechnologies about the degree to which ...

  8. A Kinetic Analysis of the Auxin Transcriptome Reveals Cell Wall Remodeling Proteins That Modulate Lateral Root Development in Arabidopsis[W][OPEN

    PubMed Central

    Lewis, Daniel R.; Olex, Amy L.; Lundy, Stacey R.; Turkett, William H.; Fetrow, Jacquelyn S.; Muday, Gloria K.

    2013-01-01

    To identify gene products that participate in auxin-dependent lateral root formation, a high temporal resolution, genome-wide transcript abundance analysis was performed with auxin-treated Arabidopsis thaliana roots. Data analysis identified 1246 transcripts that were consistently regulated by indole-3-acetic acid (IAA), partitioning into 60 clusters with distinct response kinetics. We identified rapidly induced clusters containing auxin-response functional annotations and clusters exhibiting delayed induction linked to cell division temporally correlated with lateral root induction. Several clusters were enriched with genes encoding proteins involved in cell wall modification, opening the possibility for understanding mechanistic details of cell structural changes that result in root formation following auxin treatment. Mutants with insertions in 72 genes annotated with a cell wall remodeling function were examined for alterations in IAA-regulated root growth and development. This reverse-genetic screen yielded eight mutants with root phenotypes. Detailed characterization of seedlings with mutations in CELLULASE3/GLYCOSYLHYDROLASE9B3 and LEUCINE RICH EXTENSIN2, genes not normally linked to auxin response, revealed defects in the early and late stages of lateral root development, respectively. The genes identified here using kinetic insight into expression changes lay the foundation for mechanistic understanding of auxin-mediated cell wall remodeling as an essential feature of lateral root development. PMID:24045021

  9. A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development

    PubMed Central

    Chen, Qian; Liu, Yang; Maere, Steven; Lee, Eunkyoung; Van Isterdael, Gert; Xie, Zidian; Xuan, Wei; Lucas, Jessica; Vassileva, Valya; Kitakura, Saeko; Marhavý, Peter; Wabnik, Krzysztof; Geldner, Niko; Benková, Eva; Le, Jie; Fukaki, Hidehiro; Grotewold, Erich; Li, Chuanyou; Friml, Jiří; Sack, Fred; Beeckman, Tom; Vanneste, Steffen

    2015-01-01

    Multiple plant developmental processes, such as lateral root development, depend on auxin distribution patterns that are in part generated by the PIN-formed family of auxin-efflux transporters. Here we propose that AUXIN RESPONSE FACTOR7 (ARF7) and the ARF7-regulated FOUR LIPS/MYB124 (FLP) transcription factors jointly form a coherent feed-forward motif that mediates the auxin-responsive PIN3 transcription in planta to steer the early steps of lateral root formation. This regulatory mechanism might endow the PIN3 circuitry with a temporal ‘memory' of auxin stimuli, potentially maintaining and enhancing the robustness of the auxin flux directionality during lateral root development. The cooperative action between canonical auxin signalling and other transcription factors might constitute a general mechanism by which transcriptional auxin-sensitivity can be regulated at a tissue-specific level. PMID:26578065

  10. Arabidopsis ROP-interactive CRIB motif-containing protein 1 (RIC1) positively regulates auxin signalling and negatively regulates abscisic acid (ABA) signalling during root development.

    PubMed

    Choi, Yunjung; Lee, Yuree; Kim, Soo Young; Lee, Youngsook; Hwang, Jae-Ung

    2013-05-01

    Auxin and abscisic acid (ABA) modulate numerous aspects of plant development together, mostly in opposite directions, suggesting that extensive crosstalk occurs between the signalling pathways of the two hormones. However, little is known about the nature of this crosstalk. We demonstrate that ROP-interactive CRIB motif-containing protein 1 (RIC1) is involved in the interaction between auxin- and ABA-regulated root growth and lateral root formation. RIC1 expression is highly induced by both hormones, and expressed in the roots of young seedlings. Whereas auxin-responsive gene induction and the effect of auxin on root growth and lateral root formation were suppressed in the ric1 knockout, ABA-responsive gene induction and the effect of ABA on seed germination, root growth and lateral root formation were potentiated. Thus, RIC1 positively regulates auxin responses, but negatively regulates ABA responses. Together, our results suggest that RIC1 is a component of the intricate signalling network that underlies auxin and ABA crosstalk. © 2012 Blackwell Publishing Ltd.

  11. Overexpression of OsRAA1 Causes Pleiotropic Phenotypes in Transgenic Rice Plants, including Altered Leaf, Flower, and Root Development and Root Response to Gravity1

    PubMed Central

    Ge, Lei; Chen, Hui; Jiang, Jia-Fu; Zhao, Yuan; Xu, Ming-Li; Xu, Yun-Yuan; Tan, Ke-hui; Xu, Zhi-Hong; Chong, Kang

    2004-01-01

    There are very few root genes that have been described in rice as a monocotyledonous model plant so far. Here, the OsRAA1 (Oryza sativa Root Architecture Associated 1) gene has been characterized molecularly. OsRAA1 encodes a 12.0-kD protein that has 58% homology to the AtFPF1 (Flowering Promoting Factor 1) in Arabidopsis, which has not been reported as modulating root development yet. Data of in situ hybridization and OsRAA1∷GUS transgenic plant showed that OsRAA1 expressed specifically in the apical meristem, the elongation zone of root tip, steles of the branch zone, and the young lateral root. Constitutive expression of OsRAA1 under the control of maize (Zea mays) ubiquitin promoter resulted in phenotypes of reduced growth of primary root, increased number of adventitious roots and helix primary root, and delayed gravitropic response of roots in seedlings of rice (Oryza sativa), which are similar to the phenotypes of the wild-type plant treated with auxin. With overexpression of OsRAA1, initiation and growth of adventitious root were more sensitive to treatment of auxin than those of the control plants, while their responses to 9-hydroxyfluorene-9-carboxylic acid in both transgenic line and wild type showed similar results. OsRAA1 constitutive expression also caused longer leaves and sterile florets at the last stage of plant development. Analysis of northern blot and GUS activity staining of OsRAA1∷GUS transgenic plants demonstrated that the OsRAA1 expression was induced by auxin. At the same time, overexpression of OsRAA1 also caused endogenous indole-3-acetic acid to increase. These data suggested that OsRAA1 as a new gene functions in the development of rice root systems, which are mediated by auxin. A positive feedback regulation mechanism of OsRAA1 to indole-3-acetic acid metabolism may be involved in rice root development in nature. PMID:15247372

  12. Diageotropica and lateral rooting, the rest of the story

    USDA-ARS?s Scientific Manuscript database

    The nature of the control of lateral root initiation has been controversial for 80+ years. A mutant tomato (diageotropica), incapable of producing lateral roots, was first classified as ethylene requiring since exceptionally low concentrations of ethylene, applied to the shoot, stimulated lateral r...

  13. Influence of irrigation and obturation techniques on artificial lateral root canal filling capacity.

    PubMed

    Silva, Emmanuel J; Herrera, Daniel R; Souza-Júnior, Eduardo J; Teixeira, João M

    2013-01-01

    The aim of this study was to evaluate the influence of two different irrigation protocols on artificial lateral root canal filling capacity using different obturation techniques. Sixty single-root human teeth were used. Two artificial lateral canals were created in the apical third. Root canals were instrumented up to a 45 K-file to the working length. Before each file, root canals were irrigated either with 2 mL of 2.5% NaOCl or 2% chlorhexidine gel with further irrigation with saline solution and 3 mL of 17% EDTA. Specimens were randomly divided into three groups according to the obturation technique: (1) lateral compaction technique; (2) Tagger hybrid technique; and (3) thermoplasticized technique using BeeFill 2 in 1. All groups used AH Plus as the root canal sealer. The specimens were decalcified and cleared in methyl salicylate. The total length of lateral canals was observed under X30 magnification with a stereomicroscope and measured on the buccal and lingual root surfaces using Leica IM50 software. The data were submitted to ANOVA and Tukey test (p < 0.05). Among the obturation techniques, BeeFill 2 in 1 showed deeper penetration into all lateral canals than the lateral compaction or Tagger hybrid techniques (p < 0.05). The lateral compaction group showed the worst results (p < 0.05). Irrigants did not affect the outcome; there was no difference between NaOCl and chlorhexidine when the same obturation technique was used (p > 0.05). Regardless of the irrigant used during endodontic procedures, the thermoplasticized techniques showed higher penetration behavior for filling artificial lateral canals than the lateral compaction technique.

  14. Air lateral root pruning affects longleaf pine seedling root system morphology

    Treesearch

    Shi-Jean Susana Sung; Dave Haywood

    2016-01-01

    Longleaf pine (Pinus palustris) seedlings were cultured with air lateral root pruning (side-vented containers, VT) or without (solid-walled containers, SW). Seedling root system morphology and growth were assessed before planting and 8 and 14 months after planting. Although VT seedlings had greater root collar diameter than the SW before planting,...

  15. Combining Enhanced Root and Shoot Growth Reveals Cross Talk between Pathways That Control Plant Organ Size in Arabidopsis1[C][W][OA

    PubMed Central

    Vercruyssen, Liesbeth; Gonzalez, Nathalie; Werner, Tomáš; Schmülling, Thomas; Inzé, Dirk

    2011-01-01

    Functionally distinct Arabidopsis (Arabidopsis thaliana) genes that positively affect root or shoot growth when ectopically expressed were combined to explore the feasibility of enhanced biomass production. Enhanced root growth resulting from cytokinin deficiency was obtained by overexpressing CYTOKININ OXIDASE/DEHYDROGENASE3 (CKX3) under the control of the root-specific PYK10 promoter. Plants harboring the PYK10-CKX3 construct were crossed with four different transgenic lines showing enhanced leaf growth. For all combinations, the phenotypic traits of the individual lines could be combined, resulting in an overall growth increase. Unexpectedly, three out of four combinations had more than additive effects. Both leaf and root growth were synergistically enhanced in plants ectopically expressing CKX3 and BRASSINOSTEROID INSENSITIVE1, indicating cross talk between cytokinins and brassinosteroids. In agreement, treatment of PYK10-CKX3 plants with brassinolide resulted in a dramatic increase in lateral root growth that could not be observed in wild-type plants. Coexpression of CKX3 and the GROWTH-REGULATING FACTOR5 (GRF5) antagonized the effects of GRF5 overexpression, revealing an interplay between cytokinins and GRF5 during leaf cell proliferation. The combined overexpression of CKX3 and GIBBERELLIN 20-OXIDASE1 led to a synergistic increase in leaf growth, suggesting an antagonistic growth control by cytokinins and gibberellins. Only additive effects on root and shoot growth were visible in plants ectopically expressing both CKX3 and ARABIDOPSIS VACUOLAR PYROPHOSPHATASE1, hinting at an independent action mode. Our results show new interactions and contribute to the molecular and physiological understanding of biomass production at the whole plant level. PMID:21205622

  16. Silencing of ABCC13 transporter in wheat reveals its involvement in grain development, phytic acid accumulation and lateral root formation.

    PubMed

    Bhati, Kaushal Kumar; Alok, Anshu; Kumar, Anil; Kaur, Jagdeep; Tiwari, Siddharth; Pandey, Ajay Kumar

    2016-07-01

    Low phytic acid is a trait desired in cereal crops and can be achieved by manipulating the genes involved either in its biosynthesis or its transport in the vacuoles. Previously, we have demonstrated that the wheat TaABCC13 protein is a functional transporter, primarily involved in heavy metal tolerance, and a probable candidate gene to achieve low phytate wheat. In the current study, RNA silencing was used to knockdown the expression of TaABCC13 in order to evaluate its functional importance in wheat. Transgenic plants with significantly reduced TaABCC13 transcripts in either seeds or roots were selected for further studies. Homozygous RNAi lines K1B4 and K4G7 exhibited 34-22% reduction of the phytic acid content in the mature grains (T4 seeds). These transgenic lines were defective for spike development, as characterized by reduced grain filling and numbers of spikelets. The seeds of transgenic wheat had delayed germination, but the viability of the seedlings was unaffected. Interestingly, early emergence of lateral roots was observed in TaABCC13-silenced lines as compared to non-transgenic lines. In addition, these lines also had defects in metal uptake and development of lateral roots in the presence of cadmium stress. Our results suggest roles of TaABCC13 in lateral root initiation and enhanced sensitivity towards heavy metals. Taken together, these data demonstrate that wheat ABCC13 is functionally important for grain development and plays an important role during detoxification of heavy metals. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Nitrate Controls Root Development through Posttranscriptional Regulation of the NRT1.1/NPF6.3 Transporter/Sensor1

    PubMed Central

    Perrine-Walker, Francine; Rochette, Juliette; Martinière, Alexandre; Bach, Lien; Gojon, Alain

    2016-01-01

    Plants are able to modulate root growth and development to optimize their nitrogen nutrition. In Arabidopsis (Arabidopsis thaliana), the adaptive root response to nitrate (NO3−) depends on the NRT1.1/NPF6.3 transporter/sensor. NRT1.1 represses emergence of lateral root primordia (LRPs) at low concentration or absence of NO3− through its auxin transport activity that lowers auxin accumulation in LR. However, these functional data strongly contrast with the known transcriptional regulation of NRT1.1, which is markedly repressed in LRPs in the absence of NO3−. To explain this discrepancy, we investigated in detail the spatiotemporal expression pattern of the NRT1.1 protein during LRP development and combined local transcript analysis with the use of transgenic lines expressing tagged NRT1.1 proteins. Our results show that although NO3− stimulates NRT1.1 transcription and probably mRNA stability both in primary root tissues and in LRPs, it acts differentially on protein accumulation, depending on the tissues considered with stimulation in cortex and epidermis of the primary root and a strong repression in LRPs and to a lower extent at the primary root tip. This demonstrates that NRT1.1 is strongly regulated at the posttranscriptional level by tissue-specific mechanisms. These mechanisms are crucial for controlling the large palette of adaptive responses to NO3− mediated by NRT1.1 as they ensure that the protein is present in the proper tissue under the specific conditions where it plays a signaling role in this particular tissue. PMID:27543115

  18. Comparative assessment of the polypeptide profiles from lateral and primary roots of Phaseolus vulgaris L

    NASA Technical Reports Server (NTRS)

    Westberg, J.; Odom, W. R.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    In Phaseolus vulgaris, primary roots show gravitational sensitivity soon after emerging from the seed. In contrast, lateral roots are agravitropic during early development, and become gravitropic after several cm growth. Primary and lateral root tissues were examined by polyacrylamide gel electrophoresis, coupled with western blotting techniques, to compare proteins which may contribute to the acquisition of gravitational sensitivity. Root tips and zones of cell elongation were compared for each root type, using immunological probes for calmodulin, alpha-actin, alpha-tubulin, and proteins of the plastid envelope. Lateral roots contained qualitatively less calmodulin, and showed a slightly different pattern of actin-related epitope proteins, than did primary root tissues, suggesting that polypeptide differences may contribute to the gravitational sensitivity which these root types express.

  19. Acetylcholine promotes the emergence and elongation of lateral roots of Raphanus sativus

    PubMed Central

    Sugiyama, Kou-ichi

    2011-01-01

    Radish (Raphanus sativus L.) was grown on four layers of paper towel moistened with distilled water with and without acetylcholine (ACh) for five days in the dark after sowing. ACh at 1 nM promoted the growth (emergence and elongation) of lateral roots of radish plants, but had no effect on the stems and main roots. Moreover, ACh enhanced the dry weight of roots [main (primary) + lateral roots]. Neostigmine, an inhibitor of acetylcholinesterase (AChE) also promoted the emergence and elongation of lateral roots, and atropine, a competitive inhibitor of ACh receptor, suppressed the emergence and elongation. ACh promoted the activities of glyceraldehyde-3-phosephate dehydrogenase (G-3-PD), nicotinamide adenine dinucleotide-specific isocitrate dehydrogenase (NAD-ICDH), succinate dehydrogenase (SDH) and cytochrome-c oxidase (Cyt-c OD) in seedlings. Moreover, ACh suppressed the activity of AChE and increased the amount of proteins and pyridine nucleotides (NAD and NADH) in the roots of the seedlings. It also increased the activities of NAD-forming enzymes [NAD synthetase and ATP-nicotinamide mononucleotide (ATP-NMN) adenyltransferase], and enhanced the amount of DNA in the roots of the seedlings. The relationship between ACh and the emergence and growth of lateral roots was discussed from a biochemical viewpoint. PMID:21900743

  20. Respiration rate in maize roots is related to concentration of reduced nitrogen and proliferation of lateral roots

    NASA Technical Reports Server (NTRS)

    Granato, T. C.; Raper, C. D. Jr; Wilkerson, G. G.; Raper CD, J. r. (Principal Investigator)

    1989-01-01

    The relationship between specific rate of respiration (respiration rate per unit root dry weight) and concentration of reduced nitrogen was examined for maize (Zea mays L.) roots. Plants with 2 primary nodal root axes were grown for 8 days in a split-root hydroponic system in which NO3- was supplied to both axes at 1.0 mol m-3, to one axis at 1.0 mol m-3 and the other axis at 0.0 mol m-3, or to both axes at 0.0 mol m-3. Respiration rates and root characteristics were measured at 2-day intervals. Specific rate of respiration was positively correlated in a nonlinear relationship with concentration of reduced nitrogen. The lowest specific rates of respiration occurred when neither axis received exogenous NO3- and the concentration of reduced nitrogen in the axes was less than 9 mg g-1. The greatest rates occurred in axes that were actively absorbing NO3- and contained more than 35 mg g-1 of reduced nitrogen. At 23 mg g-1 of reduced nitrogen, below which initiation of lateral branches was decreased by 30-50%, specific rate of respiration was 17% greater for roots actively absorbing NO3- than for roots not absorbing NO3-. Increases in specific rate of respiration associated with concentrations of reduced nitrogen greater than 23 mg g-1 were concluded to be attributable primarily to proliferation of lateral branches.

  1. White lupin cluster root acclimation to phosphorus deficiency and root hair development involve unique glycerophosphodiester phosphodiesterases

    USDA-ARS?s Scientific Manuscript database

    White lupin (Lupinus albus L.) is a phosphate (Pi) deficiency tolerant legume which develops short, densely clustered tertiary lateral roots (cluster/proteoid roots) in response to Pi limitation. In this report we characterize two glycerophosphodiester phosphodiesterase (GPX-PDE) genes (GPX-PDE1 and...

  2. Growth and root development of four mangrove seedlings under varying salinity

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Keliat, D. A.; Lubis, M. U.; Manalu, N. B.; Syuhada, A.; Wati, R.; Yunasfi

    2018-03-01

    This present study describes four mangrove seedlings namely Bruguiera cylindrica, B. sexangula, Ceriops tagal, and Rhizophora apiculata in response to salinity with particular emphasis to root development. The seedlings of four mangroves were grown for 5 months in 0%, 0.5%, 1.5%, 2.0% and 3.0% salt concentration. Salinity significantly decreased the growth (diameter and plant height) of all mangrove seedlings. Root developments were observed from the tap and lateral root. The number, length and diameter of both roots-typed of B. cylindrica, B. sexangula and C. tagal seedlings significantly decreased with increasing salt concentration with optimum development at 0.5% salinity. By contrast, the number, length, and diameter of tap root of R. apiculata seedlings were significantly enhanced by salt with maximal stimulation at 0.5%, and this increase was attenuated by increasing salinity. On the other hand, lateral root development of R. apiculata significantly thrived up to 1.5% salinity then decreasing with the increasing salinity. The different response of root development suggested valuable information for mangrove rehabilitation in North Sumatra and their adaption to withstand salt stress.

  3. Knock-Down of CsNRT2.1, a Cucumber Nitrate Transporter, Reduces Nitrate Uptake, Root length, and Lateral Root Number at Low External Nitrate Concentration

    PubMed Central

    Li, Yang; Li, Juanqi; Yan, Yan; Liu, Wenqian; Zhang, Wenna; Gao, Lihong; Tian, Yongqiang

    2018-01-01

    Nitrogen (N) is a macronutrient that plays a crucial role in plant growth and development. Nitrate (NO3-) is the most abundant N source in aerobic soils. Plants have evolved two adaptive mechanisms such as up-regulation of the high-affinity transport system (HATS) and alteration of the root system architecture (RSA), allowing them to cope with the temporal and spatial variation of NO3-. However, little information is available regarding the nitrate transporter in cucumber, one of the most important fruit vegetables in the world. In this study we isolated a nitrate transporter named CsNRT2.1 from cucumber. Analysis of the expression profile of the CsNRT2.1 showed that CsNRT2.1 is a high affinity nitrate transporter which mainly located in mature roots. Subcellular localization analysis revealed that CsNRT2.1 is a plasma membrane transporter. In N-starved CsNRT2.1 knock-down plants, both of the constitutive HATS (cHATS) and inducible HATS (iHATS) were impaired under low external NO3- concentration. Furthermore, the CsNRT2.1 knock-down plants showed reduced root length and lateral root numbers. Together, our results demonstrated that CsNRT2.1 played a dual role in regulating the HATS and RSA to acquire NO3- effectively under N limitation. PMID:29911677

  4. Genetic analysis of the gravitropic set-point angle in lateral roots of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Mullen, J. L.; Hangarter, R. P.; Kiss, J. Z. (Principal Investigator)

    2003-01-01

    Research on gravity responses in plants has mostly focused on primary roots and shoots, which typically orient to a vertical orientation. However, the distribution of lateral organs and their characteristically non-vertical growth orientation are critical for the determination of plant form. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting overall root system architecture. We found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of new lateral roots appears to be determined by what is called the gravitropic set-point angle (GSA). This developmental control of the GSA of lateral roots in Arabidopsis provides a useful system for investigating the components involved in regulating gravitropic responses. Using this system, we have identified several Arabidopsis mutants that have altered lateral root orientations but maintain normal primary root orientation. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  5. Identifying Developmental Zones in Maize Lateral Root Cell Length Profiles using Multiple Change-Point Models

    PubMed Central

    Moreno-Ortega, Beatriz; Fort, Guillaume; Muller, Bertrand; Guédon, Yann

    2017-01-01

    The identification of the limits between the cell division, elongation and mature zones in the root apex is still a matter of controversy when methods based on cellular features, molecular markers or kinematics are compared while methods based on cell length profiles have been comparatively underexplored. Segmentation models were developed to identify developmental zones within a root apex on the basis of epidermal cell length profiles. Heteroscedastic piecewise linear models were estimated for maize lateral roots of various lengths of both wild type and two mutants affected in auxin signaling (rtcs and rum-1). The outputs of these individual root analyses combined with morphological features (first root hair position and root diameter) were then globally analyzed using principal component analysis. Three zones corresponding to the division zone, the elongation zone and the mature zone were identified in most lateral roots while division zone and sometimes elongation zone were missing in arrested roots. Our results are consistent with an auxin-dependent coordination between cell flux, cell elongation and cell differentiation. The proposed segmentation models could extend our knowledge of developmental regulations in longitudinally organized plant organs such as roots, monocot leaves or internodes. PMID:29123533

  6. The Aux/IAA gene rum1 involved in seminal and lateral root formation controls vascular patterning in maize (Zea mays L.) primary roots.

    PubMed

    Zhang, Yanxiang; Paschold, Anja; Marcon, Caroline; Liu, Sanzhen; Tai, Huanhuan; Nestler, Josefine; Yeh, Cheng-Ting; Opitz, Nina; Lanz, Christa; Schnable, Patrick S; Hochholdinger, Frank

    2014-09-01

    The maize (Zea mays L.) Aux/IAA protein RUM1 (ROOTLESS WITH UNDETECTABLE MERISTEMS 1) controls seminal and lateral root initiation. To identify RUM1-dependent gene expression patterns, RNA-Seq of the differentiation zone of primary roots of rum1 mutants and the wild type was performed in four biological replicates. In total, 2 801 high-confidence maize genes displayed differential gene expression with Fc ≥2 and FDR ≤1%. The auxin signalling-related genes rum1, like-auxin1 (lax1), lax2, (nam ataf cuc 1 nac1), the plethora genes plt1 (plethora 1), bbm1 (baby boom 1), and hscf1 (heat shock complementing factor 1) and the auxin response factors arf8 and arf37 were down-regulated in the mutant rum1. All of these genes except nac1 were auxin-inducible. The maize arf8 and arf37 genes are orthologues of Arabidopsis MP/ARF5 (MONOPTEROS/ARF5), which controls the differentiation of vascular cells. Histological analyses of mutant rum1 roots revealed defects in xylem organization and the differentiation of pith cells around the xylem. Moreover, histochemical staining of enlarged pith cells surrounding late metaxylem elements demonstrated that their thickened cell walls displayed excessive lignin deposition. In line with this phenotype, rum1-dependent mis-expression of several lignin biosynthesis genes was observed. In summary, RNA-Seq of RUM1-dependent gene expression in maize primary roots, in combination with histological and histochemical analyses, revealed the specific regulation of auxin signal transduction components by RUM1 and novel functions of RUM1 in vascular development. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. [Difference of anti-fracture mechanical characteristics between lateral-root branches and adjacent upper straight roots of four plant species in vigorous growth period].

    PubMed

    Liu, Peng-fei; Liu, Jing; Zhu, Hong-hui; Zhang, Xin; Zhang, Ge; Li, You-fang; Su, Yu; Wang, Chen-jia

    2016-01-01

    Taking four plant species, Caragana korshinskii, Salix psammophila, Hippophae rhamnides and Artemisia sphaerocephala, which were 3-4 years old and in vigorous growth period, as test materials, the anti-fracture forces of lateral-root branches and adjacent upper straight roots were measured with the self-made fixture and the instrument of TY 8000. The lateral-root branches were vital and the diameters were 1-4 mm. The results showed that the anti-fracture force and anti-fracture strength of lateral-root branches were lesser than those of the adjacent upper straight roots even though the average diameter of lateral-root branches was greater. The ratios of anti-fracture strength of lateral-root branches to the adjacent upper straight roots were 71.5% for C. korshinskii, 62.9% for S. psammophila, 45.4% for H. rhamnides and 35.4% for A. sphaerocephala. For the four plants, the anti-fracture force positively correlated with the diameter in a power function, while the anti-fracture strength negatively correlated with diameter in a power function. The anti-fracture strengths of lateral-root branches and adjacent upper straight roots for the four species followed the sequence of C. korshinskii (33.66 and 47.06 MPa) > S. psammophila (17.31 and 27.54 MPa) > H. rhamnides (3.97 and 8.75 MPa) > A. sphaerphala (2.18 and 6.15 MPa).

  8. Comparison of Medial and Lateral Meniscus Root Tears.

    PubMed

    Koo, Ji Hyun; Choi, Sang-Hee; Lee, Seung Ah; Wang, Joon Ho

    2015-01-01

    The meniscus root plays an essential role in maintaining the circumferential hoop tension and preventing meniscal displacement. Studies on meniscus root tears have investigated the relationship of osteoarthritis and an anterior cruciate ligament tear. However, few studies have directly compared the medial and lateral root tears. To assess the prevalence of meniscal extrusion and its relationship with clinical features in medial and lateral meniscus root tears, we performed a retrospective review of the magnetic resonance imaging (MRI) results of 42 knee patients who had meniscus posterior horn root tears and who had undergone arthroscopic operations. The presence of meniscal extrusion was evaluated and the exact extent was measured from the tibial margin. The results were correlated with arthroscopic findings. Clinical features including patients' ages, joint abnormalities, and previous trauma histories were evaluated. Twenty-two patients had medial meniscus root tears (MMRTs) and twenty patients had lateral meniscus root tears (LMRTs). Meniscal extrusion was present in 18 MMRT patients and one LMRT patient. The mean extent of extrusion was 4.2mm (range, 0.6 to 7.8) in the MMRT group and 0.9mm (range, -1.9 to 3.4) in the LMRT group. Five patients with MMRT had a history of trauma, while 19 patients with LMRT had a history of trauma. Three patients with MMRT had anterior cruciate ligament (ACL) tears, while 19 patients with LMRT had ACL tears. The mean age of the patients was 52 years (range: 29-71 years) and 30 years (range: 14-62 years) in the MMRT and LMRT group, respectively. There was a significant correlation between a MMRT and meniscal extrusion (p<0.0001), and between an ACL tear and LMRT (p<0.0001). A history of trauma was significantly common in LMRT (p<0.0001). LMRT patients were significantly younger than MMRT patients (p<0.0001). Kellgren-Lawrence (K-L) grade differed significantly between MMRT and LMRT group (p<0.0001). Meniscal extrusion is common in

  9. Comparison of Medial and Lateral Meniscus Root Tears

    PubMed Central

    Koo, Ji Hyun; Choi, Sang-Hee; Lee, Seung Ah; Wang, Joon Ho

    2015-01-01

    The meniscus root plays an essential role in maintaining the circumferential hoop tension and preventing meniscal displacement. Studies on meniscus root tears have investigated the relationship of osteoarthritis and an anterior cruciate ligament tear. However, few studies have directly compared the medial and lateral root tears. To assess the prevalence of meniscal extrusion and its relationship with clinical features in medial and lateral meniscus root tears, we performed a retrospective review of the magnetic resonance imaging (MRI) results of 42 knee patients who had meniscus posterior horn root tears and who had undergone arthroscopic operations. The presence of meniscal extrusion was evaluated and the exact extent was measured from the tibial margin. The results were correlated with arthroscopic findings. Clinical features including patients’ ages, joint abnormalities, and previous trauma histories were evaluated. Twenty-two patients had medial meniscus root tears (MMRTs) and twenty patients had lateral meniscus root tears (LMRTs). Meniscal extrusion was present in 18 MMRT patients and one LMRT patient. The mean extent of extrusion was 4.2mm (range, 0.6 to 7.8) in the MMRT group and 0.9mm (range, -1.9 to 3.4) in the LMRT group. Five patients with MMRT had a history of trauma, while 19 patients with LMRT had a history of trauma. Three patients with MMRT had anterior cruciate ligament (ACL) tears, while 19 patients with LMRT had ACL tears. The mean age of the patients was 52 years (range: 29–71 years) and 30 years (range: 14–62 years) in the MMRT and LMRT group, respectively. There was a significant correlation between a MMRT and meniscal extrusion (p<0.0001), and between an ACL tear and LMRT (p<0.0001). A history of trauma was significantly common in LMRT (p<0.0001). LMRT patients were significantly younger than MMRT patients (p<0.0001). Kellgren-Lawrence (K-L) grade differed significantly between MMRT and LMRT group (p<0.0001). Meniscal extrusion is

  10. DRO1 influences root system architecture in Arabidopsis and Prunus species.

    PubMed

    Guseman, Jessica M; Webb, Kevin; Srinivasan, Chinnathambi; Dardick, Chris

    2017-03-01

    Roots provide essential uptake of water and nutrients from the soil, as well as anchorage and stability for the whole plant. Root orientation, or angle, is an important component of the overall architecture and depth of the root system; however, little is known about the genetic control of this trait. Recent reports in Oryza sativa (rice) identified a role for DEEPER ROOTING 1 (DRO1) in influencing the orientation of the root system, leading to positive changes in grain yields under water-limited conditions. Here we found that DRO1 and DRO1-related genes are present across diverse plant phyla, and fall within the IGT gene family. The IGT family also includes TAC1 and LAZY1, which are known to affect the orientation of lateral shoots. Consistent with a potential role in root development, DRO1 homologs in Arabidopsis and peach showed root-specific expression. Promoter-reporter constructs revealed that AtDRO1 is predominantly expressed in both the root vasculature and root tips, in a distinct developmental pattern. Mutation of AtDRO1 led to more horizontal lateral root angles. Overexpression of AtDRO1 under a constitutive promoter resulted in steeper lateral root angles, as well as shoot phenotypes including upward leaf curling, shortened siliques and narrow lateral branch angles. A conserved C-terminal EAR-like motif found in IGT genes was required for these ectopic phenotypes. Overexpression of PpeDRO1 in Prunus domestica (plum) led to deeper-rooting phenotypes. Collectively, these data indicate a potential application for DRO1-related genes to alter root architecture for drought avoidance and improved resource use. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  11. [Effects nutrients on the seedlings root hair development and root growth of Poncirus trifoliata under hydroponics condition].

    PubMed

    Cao, Xiu; Xia, Ren-Xue; Zhang, De-Jian; Shu, Bo

    2013-06-01

    Ahydroponics experiment was conducted to study the effects of nutrients (N, P, K, Ca, Mg, Fe, and Mn) deficiency on the length of primary root, the number of lateral roots, and the root hair density, length, and diameter on the primary root and lateral roots of Poncirus trifoliata seedlings. Under the deficiency of each test nutrient, root hair could generate, but was mainly concentrated on the root base and fewer on the root tip. The root hair density on lateral roots was significantly larger than that on primary root, but the root hair length was in adverse. The deficiency of each test nutrient had greater effects on the growth and development of root hairs, with the root hair density on primary root varied from 55.0 to 174.3 mm(-2). As compared with the control, Ca deficiency induced the significant increase of root hair density and length on primary root, P deficiency promoted the root hair density and length on the base and middle part of primary root and on the lateral roots significantly, Fe deficiency increased the root hair density but decreased the root hair length on the tip of primary root significantly, K deficiency significantly decreased the root hair density, length, and diameter on primary root and lateral roots, whereas Mg deficiency increased the root hair length of primary root significantly. In all treatments of nutrient deficiency, the primary root had the similar growth rate, but, with the exceptions of N and Mg deficiency, the lateral roots exhibited shedding and regeneration.

  12. Nitric oxide mediates strigolactone signaling in auxin and ethylene-sensitive lateral root formation in sunflower seedlings

    PubMed Central

    Bharti, Niharika; Bhatla, Satish C

    2015-01-01

    Strigolactones (SLs) play significant role in shaping root architecture whereby auxin-SL crosstalk has been observed in SL-mediated responses of primary root elongation, lateral root formation and adventitious root (AR) initiation. Whereas GR24 (a synthetic strigolactone) inhibits LR and AR formation, the effect of SL biosynthesis inhibitor (fluridone) is just the opposite (root proliferation). Naphthylphthalamic acid (NPA) leads to LR proliferation but completely inhibits AR development. The diffusive distribution of PIN1 in the provascular cells in the differentiating zone of the roots in response to GR24, fluridone or NPA treatments further indicates the involvement of localized auxin accumulation in LR development responses. Inhibition of LR formation by GR24 treatment coincides with inhibition of ACC synthase activity. Profuse LR development by fluridone and NPA treatments correlates with enhanced [Ca2+]cyt in the apical region and differentiating zones of LR, indicating a critical role of [Ca2+] in LR development in response to the coordinated action of auxins, ethylene and SLs. Significant enhancement of carotenoid cleavage dioxygenase (CCD) activity (enzyme responsible for SL biosynthesis) in tissue homogenates in presence of cPTIO (NO scavenger) indicates the role of endogenous NO as a negative modulator of CCD activity. Differences in the spatial distribution of NO in the primary and lateral roots further highlight the involvement of NO in SL-modulated root morphogenesis in sunflower seedlings. Present work provides new report on the negative modulation of SL biosynthesis through modulation of CCD activity by endogenous nitric oxide during SL-modulated LR development. PMID:26076049

  13. Nitric oxide mediates strigolactone signaling in auxin and ethylene-sensitive lateral root formation in sunflower seedlings.

    PubMed

    Bharti, Niharika; Bhatla, Satish C

    2015-01-01

    Strigolactones (SLs) play significant role in shaping root architecture whereby auxin-SL crosstalk has been observed in SL-mediated responses of primary root elongation, lateral root formation and adventitious root (AR) initiation. Whereas GR24 (a synthetic strigolactone) inhibits LR and AR formation, the effect of SL biosynthesis inhibitor (fluridone) is just the opposite (root proliferation). Naphthylphthalamic acid (NPA) leads to LR proliferation but completely inhibits AR development. The diffusive distribution of PIN1 in the provascular cells in the differentiating zone of the roots in response to GR24, fluridone or NPA treatments further indicates the involvement of localized auxin accumulation in LR development responses. Inhibition of LR formation by GR24 treatment coincides with inhibition of ACC synthase activity. Profuse LR development by fluridone and NPA treatments correlates with enhanced [Ca(2+)]cyt in the apical region and differentiating zones of LR, indicating a critical role of [Ca(2+)] in LR development in response to the coordinated action of auxins, ethylene and SLs. Significant enhancement of carotenoid cleavage dioxygenase (CCD) activity (enzyme responsible for SL biosynthesis) in tissue homogenates in presence of cPTIO (NO scavenger) indicates the role of endogenous NO as a negative modulator of CCD activity. Differences in the spatial distribution of NO in the primary and lateral roots further highlight the involvement of NO in SL-modulated root morphogenesis in sunflower seedlings. Present work provides new report on the negative modulation of SL biosynthesis through modulation of CCD activity by endogenous nitric oxide during SL-modulated LR development.

  14. Gravity-regulated differential auxin transport from columella to lateral root cap cells

    NASA Technical Reports Server (NTRS)

    Ottenschlager, Iris; Wolff, Patricia; Wolverton, Chris; Bhalerao, Rishikesh P.; Sandberg, Goran; Ishikawa, Hideo; Evans, Mike; Palme, Klaus

    2003-01-01

    Gravity-induced root curvature has long been considered to be regulated by differential distribution of the plant hormone auxin. However, the cells establishing these gradients, and the transport mechanisms involved, remain to be identified. Here, we describe a GFP-based auxin biosensor to monitor auxin during Arabidopsis root gravitropism at cellular resolution. We identify elevated auxin levels at the root apex in columella cells, the site of gravity perception, and an asymmetric auxin flux from these cells to the lateral root cap (LRC) and toward the elongation zone after gravistimulation. We differentiate between an efflux-dependent lateral auxin transport from columella to LRC cells, and an efflux- and influx-dependent basipetal transport from the LRC to the elongation zone. We further demonstrate that endogenous gravitropic auxin gradients develop even in the presence of an exogenous source of auxin. Live-cell auxin imaging provides unprecedented insights into gravity-regulated auxin flux at cellular resolution, and strongly suggests that this flux is a prerequisite for root gravitropism.

  15. The Nematode Resistance Allele at the rhg1 Locus Alters the Proteome and Primary Metabolism of Soybean Roots1[C][W][OA

    PubMed Central

    Afzal, Ahmed J.; Natarajan, Aparna; Saini, Navinder; Iqbal, M. Javed; Geisler, Matt; El Shemy, Hany A.; Mungur, Rajsree; Willmitzer, Lothar; Lightfoot, David A.

    2009-01-01

    Heterodera glycines, the soybean cyst nematode (SCN), causes the most damaging chronic disease of soybean (Glycine max). Host resistance requires the resistance allele at rhg1. Resistance destroys the giant cells created in the plant's roots by the nematodes about 24 to 48 h after commencement of feeding. In addition, 4 to 8 d later, a systemic acquired resistance develops that discourages later infestations. The molecular mechanisms that control the rhg1-mediated resistance response appear to be multigenic and complex, as judged by transcript abundance changes, even in near isogenic lines (NILs). This study aimed to focus on key posttranscriptional changes by identifying proteins and metabolites that were increased in abundance in both resistant and susceptible NILs. Comparisons were made among NILs 10 d after SCN infestation and without SCN infestation. Two-dimensional gel electrophoresis resolved more than 1,000 protein spots on each gel. Only 30 protein spots with a significant (P < 0.05) difference in abundance of 1.5-fold or more were found among the four treatments. The proteins in these spots were picked, trypsin digested, and analyzed using quadrupole time-of-flight tandem mass spectrometry. Protein identifications could be made for 24 of the 30 spots. Four spots contained two proteins, so that 28 distinct proteins were identified. The proteins were grouped into six functional categories. Metabolite analysis by gas chromatography-mass spectrometry identified 131 metabolites, among which 58 were altered by one or more treatment; 28 were involved in primary metabolism. Taken together, the data showed that 17 pathways were altered by the rhg1 alleles. Pathways altered were associated with systemic acquired resistance-like responses, including xenobiotic, phytoalexin, ascorbate, and inositol metabolism, as well as primary metabolisms like amino acid synthesis and glycolysis. The pathways impacted by the rhg1 allelic state and SCN infestation agreed with

  16. Nucleic acid and protein synthesis during lateral root initiation in Marsilea quadrifolia (Marsileaceae)

    NASA Technical Reports Server (NTRS)

    Lin, B. L.; Raghavan, V.

    1991-01-01

    The pattern of DNA, RNA, and protein synthesis during lateral root initiation in Marsilea quadrifolia L. was monitored by autoradiography of incorporated of 3H-thymidine, 3H-uridine, and 3H-leucine, respectively. DNA synthesis was associated with the enlargement of the lateral root initial prior to its division. Consistent with histological studies, derivatives of the lateral root initial as well as the cells of the adjacent inner cortex and pericycle of the parent root also continued to synthesize DNA. RNA and protein synthetic activities were found to be higher in the lateral root initials than in the endodermal initials of the same longitudinal layer. The data suggest a role for nucleic acid and protein synthesis during cytodifferentiation of a potential endodermal cell into a lateral root initial.

  17. Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development.

    PubMed

    Mishra, Bhuwaneshwar S; Singh, Manjul; Aggrawal, Priyanka; Laxmi, Ashverya

    2009-01-01

    Plant root growth and development is highly plastic and can adapt to many environmental conditions. Sugar signaling has been shown to affect root growth and development by interacting with phytohormones such as gibberellins, cytokinin and abscisic acid. Auxin signaling and transport has been earlier shown to be controlling plant root length, number of lateral roots, root hair and root growth direction. Increasing concentration of glucose not only controls root length, root hair and number of lateral roots but can also modulate root growth direction. Since root growth and development is also controlled by auxin, whole genome transcript profiling was done to find out the extent of interaction between glucose and auxin response pathways. Glucose alone could transcriptionally regulate 376 (62%) genes out of 604 genes affected by IAA. Presence of glucose could also modulate the extent of regulation 2 fold or more of almost 63% genes induced or repressed by IAA. Interestingly, glucose could affect induction or repression of IAA affected genes (35%) even if glucose alone had no significant effect on the transcription of these genes itself. Glucose could affect auxin biosynthetic YUCCA genes family members, auxin transporter PIN proteins, receptor TIR1 and members of a number of gene families including AUX/IAA, GH3 and SAUR involved in auxin signaling. Arabidopsis auxin receptor tir1 and response mutants, axr2, axr3 and slr1 not only display a defect in glucose induced change in root length, root hair elongation and lateral root production but also accentuate glucose induced increase in root growth randomization from vertical suggesting glucose effects on plant root growth and development are mediated by auxin signaling components. Our findings implicate an important role of the glucose interacting with auxin signaling and transport machinery to control seedling root growth and development in changing nutrient conditions.

  18. Lateral Root Initiation in Arabidopsis: Developmental Window, Spatial Patterning, Density and Predictability

    PubMed Central

    DUBROVSKY, J. G.; GAMBETTA, G. A.; HERNÁNDEZ-BARRERA, A.; SHISHKOVA, S.; GONZÁLEZ, I.

    2006-01-01

    • Background and Aims The basic regulatory mechanisms that control lateral root (LR) initiation are still poorly understood. An attempt is made to characterize the pattern and timing of LR initiation, to define a developmental window in which LR initiation takes place and to address the question of whether LR initiation is predictable. • Methods The spatial patterning of LRs and LR primordia (LRPs) on cleared root preparations were characterized. New measures of LR and LRP densities (number of LRs and/or LRPs divided by the length of the root portions where they are present) were introduced and illustrate the shortcomings of the more customarily used measure through a comparative analysis of the mutant aux1-7. The enhancer trap line J0121 was used to monitor LR initiation in time-lapse experiments and a plasmolysis-based method was developed to determine the number of pericycle cells between successive LRPs. • Key Results LRP initiation occurred strictly acropetally and no de novo initiation events were found between already developed LRs or LRPs. However, LRPs did not become LRs in a similar pattern. The longitudinal spacing of lateral organs was variable and the distance between lateral organs was proportional to the number of cells and the time between initiations of successive LRPs. There was a strong tendency towards alternation in LR initiation between the two pericycle cell files adjacent to the protoxylem poles. LR density increased with time due to the emergence of slowly developing LRPs and appears to be unique for individual Arabidopsis accessions. • Conclusions. In Arabidopsis there is a narrow developmental window for LR initiation, and no specific cell-count or distance-measuring mechanisms have been found that determine the site of successive initiation events. Nevertheless, the branching density and lateral organ density (density of LRs and LRPs) are accession-specific, and based on the latter density the average distance between successive

  19. A new phenotyping pipeline reveals three types of lateral roots and a random branching pattern in two cereals.

    PubMed

    Passot, Sixtine; Moreno-Ortega, Beatriz; Moukouanga, Daniel; Balsera, Crispulo; Guyomarc'h, Soazig; Lucas, Mikael; Lobet, Guillaume; Laplaze, Laurent; Muller, Bertrand; Guédon, Yann

    2018-05-11

    Recent progress in root phenotyping has focused mainly on increasing throughput for genetic studies while identifying root developmental patterns has been comparatively underexplored. We introduce a new phenotyping pipeline for producing high-quality spatio-temporal root system development data and identifying developmental patterns within these data. The SmartRoot image analysis system and temporal and spatial statistical models were applied to two cereals, pearl millet (Pennisetum glaucum) and maize (Zea mays). Semi-Markov switching linear models were used to cluster lateral roots based on their growth rate profiles. These models revealed three types of lateral roots with similar characteristics in both species. The first type corresponds to fast and accelerating roots, the second to rapidly arrested roots, and the third to an intermediate type where roots cease elongation after a few days. These types of lateral roots were retrieved in different proportions in a maize mutant affected in auxin signaling, while the first most vigorous type was absent in maize plants exposed to severe shading. Moreover, the classification of growth rate profiles was mirrored by a ranking of anatomical traits in pearl millet. Potential dependencies in the succession of lateral root types along the primary root were then analyzed using variable-order Markov chains. The lateral root type was not influenced by the shootward neighbor root type or by the distance from this root. This random branching pattern of primary roots was remarkably conserved, despite the high variability of root systems in both species. Our phenotyping pipeline opens the door to exploring the genetic variability of lateral root developmental patterns. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  20. The effect of complete radial lateral meniscus posterior root tear on the knee contact mechanics: a finite element analysis.

    PubMed

    Bao, H R C; Zhu, D; Gong, H; Gu, G S

    2013-03-01

    In recent years, with technological advances in arthroscopy and magnetic resonance imaging and improved biomechanical studies of the meniscus, there has been some progress in the diagnosis and treatment of injuries to the roots of the meniscus. However, the biomechanical effect of posterior lateral meniscus root tears on the knee has not yet become clear. The purpose of this study was to determine the effect of a complete radial posterior lateral meniscus root tear on the knee contact mechanics and the function of the posterior meniscofemoral ligament on the knee with tear in the posterior root of lateral meniscus. A finite element model of the knee was developed to simulate different cases for intact knee, a complete radial posterior lateral meniscus root tear, a complete radial posterior lateral meniscus root tear with posterior meniscofemoral ligament deficiency, and total meniscectomy of the lateral meniscus. A compressive load of 1000 N was applied in all cases to calculate contact areas, contact pressure, and meniscal displacements. The complete radial posterior lateral meniscus root tear decreased the contact area and increased the contact pressure on the lateral compartment under compressive load. We also found a decreased contact area and increased contact pressure in the medial compartment, but it was not obvious compared to the lateral compartment. The lateral meniscus was radially displaced by compressive load after a complete radial posterior lateral meniscus root tear, and the displacement took place mainly in the body and posterior horn of lateral meniscus. There were further decrease in contact area and increases in contact pressure and raidial displacement of the lateral meniscus in the case of the complete posterior lateral meniscus root tear in combination with posterior meniscofemoral ligament deficiency. Complete radial posterior lateral meniscus root tear is not functionally equivalent to total meniscectomy. The posterior root torn lateral

  1. Composite Cucurbita pepo plants with transgenic roots as a tool to study root development

    PubMed Central

    Ilina, Elena L.; Logachov, Anton A.; Laplaze, Laurent; Demchenko, Nikolay P.; Pawlowski, Katharina; Demchenko, Kirill N.

    2012-01-01

    Background and Aims In most plant species, initiation of lateral root primordia occurs above the elongation zone. However, in cucurbits and some other species, lateral root primordia initiation and development takes place in the apical meristem of the parental root. Composite transgenic plants obtained by Agrobacterium rhizogenes-mediated transformation are known as a suitable model to study root development. The aim of the present study was to establish this transformation technique for squash. Methods The auxin-responsive promoter DR5 was cloned into the binary vectors pKGW-RR-MGW and pMDC162-GFP. Incorporation of 5-ethynyl-2′-deoxyuridine (EdU) was used to evaluate the presence of DNA-synthesizing cells in the hypocotyl of squash seedlings to find out whether they were suitable for infection. Two A. rhizogenes strains, R1000 and MSU440, were used. Roots containing the respective constructs were selected based on DsRED1 or green fluorescent protein (GFP) fluorescence, and DR5::Egfp-gusA or DR5::gusA insertion, respectively, was verified by PCR. Distribution of the response to auxin was visualized by GFP fluorescence or β-glucuronidase (GUS) activity staining and confirmed by immunolocalization of GFP and GUS proteins, respectively. Key Results Based on the distribution of EdU-labelled cells, it was determined that 6-day-old squash seedlings were suited for inoculation by A. rhizogenes since their root pericycle and the adjacent layers contain enough proliferating cells. Agrobacterium rhizogenes R1000 proved to be the most virulent strain on squash seedlings. Squash roots containing the respective constructs did not exhibit the hairy root phenotype and were morphologically and structurally similar to wild-type roots. Conclusions The auxin response pattern in the root apex of squash resembled that in arabidopsis roots. Composite squash plants obtained by A. rhizogenes-mediated transformation are a good tool for the investigation of root apical meristem

  2. Root water uptake and lateral interactions among root systems in a temperate forest

    NASA Astrophysics Data System (ADS)

    Agee, E.; He, L.; Bisht, G.; Gough, C. M.; Couvreur, V.; Matheny, A. M.; Bohrer, G.; Ivanov, V. Y.

    2016-12-01

    A growing body of research has highlighted the importance of root architecture and hydraulic properties to the maintenance of the transpiration stream under water limitation and drought. Detailed studies of single plant systems have shown the ability of root systems to adjust zones of uptake due to the redistribution of local water potential gradients, thereby delaying the onset of stress under drying conditions. An open question is how lateral interactions and competition among neighboring plants impact individual and community resilience to water stress. While computational complexity has previously hindered the implementation of microscopic root system structure and function in larger scale hydrological models, newer hybrid approaches allow for the resolution of these properties at the plot scale. Using a modified version of the PFLOTRAN model, which represents the 3-D physics of variably saturated soil, we model root water uptake in a one-hectare temperate forest plot under natural and synthetic forcings. Two characteristic hydraulic architectures, tap roots and laterally sprawling roots, are implemented in an ensemble of simulations. Variations of root architecture, their hydraulic properties, and degree of system interactions produce variable local response to water limitation and provide insights on individual and community response to changing meteorological conditions. Results demonstrate the ability of interacting systems to shift areas of active uptake based on local gradients, allowing individuals to meet water demands despite competition from their peers. These results further illustrate how inter- and intra-species variations in root properties may influence not only individual response to water stress, but also help quantify the margins of resilience for forest ecosystems under changing climate.

  3. Transcription factors PRE3 and WOX11 are involved in the formation of new lateral roots from secondary growth taproot in A. thaliana.

    PubMed

    Baesso, B; Chiatante, D; Terzaghi, M; Zenga, D; Nieminen, K; Mahonen, A P; Siligato, R; Helariutta, Y; Scippa, G S; Montagnoli, A

    2018-05-01

    The spatial deployment of lateral roots determines the ability of a plant to interact with the surrounding environment for nutrition and anchorage. This paper shows that besides the pericycle, the vascular cambium becomes active in Arabidopsis thaliana taproot at a later stage of development and is also able to form new lateral roots. To demonstrate the above, we implemented a two-step approach in which the first step leads to development of a secondary structure in A. thaliana taproot, and the second applies a mechanical stress on the vascular cambium to initiate formation of a new lateral root primordium. GUS staining showed PRE3, DR5 and WOX11 signals in the cambial zone of the root during new lateral root formation. An advanced level of wood formation, characterized by the presence of medullar rays, was achieved. Preliminary investigations suggest the involvement of auxin and two transcription factors (PRE3/ATBS1/bHLH135/TMO7 and WOX11) in the transition of some vascular cambium initials from a role as producers of xylem/phloem mother cells to founder cells of a new lateral root primordium. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  4. Posterior root tear of the medial and lateral meniscus.

    PubMed

    Petersen, Wolf; Forkel, Philipp; Feucht, Matthias J; Zantop, Thore; Imhoff, Andreas B; Brucker, Peter U

    2014-02-01

    An avulsion of the tibial insertion of the meniscus or a radial tear close to the meniscal insertion is defined as a root tear. In clinical practice, the incidence of these lesions is often underestimated. However, several biomechanical studies have shown that the effect of a root tear is comparable to a total meniscectomy. Clinical studies documented progredient arthritic changes following root tears, thereby supporting basic science studies. The clinical diagnosis is limited by unspecific symptoms. In addition to the diagnostic arthroscopy, MRI is considered to be the gold standard of diagnosis of a meniscal root tear. Three different direct MRI signs for the diagnosis of a meniscus root tear have been described: Radial linear defect in the axial plane, vertical linear defect (truncation sign) in the coronal plane, and the so-called ghost meniscus sign in the sagittal plane. Meniscal extrusion is also considered to be an indirect sign of a root tear, but is less common in lateral root tears. During arthroscopy, the function of the meniscus root must be assessed by probing. However, visualization of the meniscal insertions is challenging. Refixation of the meniscal root can be performed using a transtibial pull-out suture, suture anchors, or side-to-side repair. Several short-term studies reported good clinical results after medial or lateral root repair. Nevertheless, MRI and second-look arthroscopy revealed high rates of incomplete or absent healing, especially for medial root tears. To date, most studies are case series with short-term follow-up and level IV evidence. Outerbridge grade 3 or 4 chondral lesions and varus malalignment of >5° were found to predict an inferior clinical outcome after medial meniscus root repair. Further research is needed to evaluate long-term results and to define evident criteria for meniscal root repair.

  5. Branching Out in Roots: Uncovering Form, Function, and Regulation1

    PubMed Central

    Atkinson, Jonathan A.; Rasmussen, Amanda; Traini, Richard; Voß, Ute; Sturrock, Craig; Mooney, Sacha J.; Wells, Darren M.; Bennett, Malcolm J.

    2014-01-01

    Root branching is critical for plants to secure anchorage and ensure the supply of water, minerals, and nutrients. To date, research on root branching has focused on lateral root development in young seedlings. However, many other programs of postembryonic root organogenesis exist in angiosperms. In cereal crops, the majority of the mature root system is composed of several classes of adventitious roots that include crown roots and brace roots. In this Update, we initially describe the diversity of postembryonic root forms. Next, we review recent advances in our understanding of the genes, signals, and mechanisms regulating lateral root and adventitious root branching in the plant models Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and rice (Oryza sativa). While many common signals, regulatory components, and mechanisms have been identified that control the initiation, morphogenesis, and emergence of new lateral and adventitious root organs, much more remains to be done. We conclude by discussing the challenges and opportunities facing root branching research. PMID:25136060

  6. [Diagnostic value of MRI for posterior root tear of medial and lateral meniscus].

    PubMed

    Qian, Yue-Nan; Liu, Fang; Dong, Yi-Long; Cai, Chun-Yuan

    2018-03-25

    To explore diagnostic value of MRI on posterior root tear of medial and lateral meniscus. From January 2012 to January 2016, clinical data of 43 patients with meniscal posterior root tear confirmed by arthroscopy were retrospective analyzed, including 25 males and 18 females, aged from 27 to 69 years old with an average age of(42.5±8.3)years old;27 cases on the right side and 16 cases on the left side. MRI examinations of 43 patients with tear of posterior meniscus root confirmed by knee arthroscopies were retrospectively reviewed. MRI images were double-blinded, independently, retrospectively scored by two imaging physicians. Sensitivity, specificity and accuracy of MRI diagnosis of lateral and medial meniscus posterior root tear were calculated, and knee ligament injury and meniscal dislocation were calculated. Forty-three of 143 patients were diagnosed with meniscus posterior root tears by arthroscopy, including 19 patients with lateral tears and 24 patients with medial tears. The sensitivity, specificity and accuracy in diagnosis of posterior medial meniscus root tears for doctor A were 91.67%, 86.6% and 83.9% respectively, and for doctor B were 87.5%, 87.4% and 87.4%, 19 patients with medial meniscal protrusion and 2 patients with anterior cruciate ligament tear. The sensitivity, specificity and accuracy in diagnosis of posterior lateral meniscus root tears for doctor A were 73.7%, 79.9% and 79% respectively, and for doctor B were 78.9%, 82.3% and 82.5%, 4 patients with lateral meniscus herniation and 16 patients with cruciate ligament tear. Kappa statistics for posterior medial meniscus root tears and posterior lateral meniscus root tears were 0.84 and 0.72. MRI could effectively demonstrate imaging features of medial and lateral meniscal root tear and its accompanying signs. It could provide the basis for preoperative diagnosis of clinicians, and be worthy to be popularized. Copyright© 2018 by the China Journal of Orthopaedics and Traumatology Press.

  7. Extending Cassava Root Shelf Life via Reduction of Reactive Oxygen Species Production1[C][W][OA

    PubMed Central

    Zidenga, Tawanda; Leyva-Guerrero, Elisa; Moon, Hangsik; Siritunga, Dimuth; Sayre, Richard

    2012-01-01

    One of the major constraints facing the large-scale production of cassava (Manihot esculenta) roots is the rapid postharvest physiological deterioration (PPD) that occurs within 72 h following harvest. One of the earliest recognized biochemical events during the initiation of PPD is a rapid burst of reactive oxygen species (ROS) accumulation. We have investigated the source of this oxidative burst to identify possible strategies to limit its extent and to extend cassava root shelf life. We provide evidence for a causal link between cyanogenesis and the onset of the oxidative burst that triggers PPD. By measuring ROS accumulation in transgenic low-cyanogen plants with and without cyanide complementation, we show that PPD is cyanide dependent, presumably resulting from a cyanide-dependent inhibition of respiration. To reduce cyanide-dependent ROS production in cassava root mitochondria, we generated transgenic plants expressing a codon-optimized Arabidopsis (Arabidopsis thaliana) mitochondrial alternative oxidase gene (AOX1A). Unlike cytochrome c oxidase, AOX is cyanide insensitive. Transgenic plants overexpressing AOX exhibited over a 10-fold reduction in ROS accumulation compared with wild-type plants. The reduction in ROS accumulation was associated with a delayed onset of PPD by 14 to 21 d after harvest of greenhouse-grown plants. The delay in PPD in transgenic plants was also observed under field conditions, but with a root biomass yield loss in the highest AOX-expressing lines. These data reveal a mechanism for PPD in cassava based on cyanide-induced oxidative stress as well as PPD control strategies involving inhibition of ROS production or its sequestration. PMID:22711743

  8. Phosphate Availability Alters Architecture and Causes Changes in Hormone Sensitivity in the Arabidopsis Root System1

    PubMed Central

    López-Bucio, José; Hernández-Abreu, Esmeralda; Sánchez-Calderón, Lenin; Nieto-Jacobo, María Fernanda; Simpson, June; Herrera-Estrella, Luis

    2002-01-01

    The postembryonic developmental program of the plant root system is plastic and allows changes in root architecture to adapt to environmental conditions such as water and nutrient availability. Among essential nutrients, phosphorus (P) often limits plant productivity because of its low mobility in soil. Therefore, the architecture of the root system may determine the capacity of the plant to acquire this nutrient. We studied the effect of P availability on the development of the root system in Arabidopsis. We found that at P-limiting conditions (<50 μm), the Arabidopsis root system undergoes major architectural changes in terms of lateral root number, lateral root density, and primary root length. Treatment with auxins and auxin antagonists indicate that these changes are related to an increase in auxin sensitivity in the roots of P-deprived Arabidopsis seedlings. It was also found that the axr1-3, axr2-1, and axr4-1 Arabidopsis mutants have normal responses to low P availability conditions, whereas the iaa28-1 mutant shows resistance to the stimulatory effects of low P on root hair and lateral root formation. Analysis of ethylene signaling mutants and treatments with 1-aminocyclopropane-1-carboxylic acid showed that ethylene does not promote lateral root formation under P deprivation. These results suggest that in Arabidopsis, auxin sensitivity may play a fundamental role in the modifications of root architecture by P availability. PMID:12011355

  9. Formin homology 1 (OsFH1) regulates submergence-dependent root hair development in rice plants.

    PubMed

    Huang, Jin; Liu, Jingmiao; Han, Chang-Deok

    2013-08-01

    By using a forward genetic approach, a formin homology 1 gene (OsFH1) was identified as a critical regulator of rice root hair development. The phenotypic effect of OsFH1 on root hair development was verified by using three independent mutants, one point mutation and two T-DNA insertions. The study showed that OsFH1 is required for the elongation of root-hairs. However, Osfh1 exhibited growth defect of root hairs only when roots were grown submerged in solution. To understand how OsFH1 impinges on plant responses to root submergence, the growth responses of Osfh1 root hairs to anoxia, carbohydrate supplementation and exogenous hormones (auxin and ethylene) and nutrients (Fe and Pi) were examined. However, none of these treatments rescued the growth defects of Osfhl1 root hairs. This study demonstrates that OsFH1 could be involved in preventing submergence-induced inhibition of root hair growth.

  10. Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth

    NASA Technical Reports Server (NTRS)

    Rashotte, A. M.; DeLong, A.; Muday, G. K.; Brown, C. S. (Principal Investigator)

    2001-01-01

    Auxin transport is required for important growth and developmental processes in plants, including gravity response and lateral root growth. Several lines of evidence suggest that reversible protein phosphorylation regulates auxin transport. Arabidopsis rcn1 mutant seedlings exhibit reduced protein phosphatase 2A activity and defects in differential cell elongation. Here we report that reduced phosphatase activity alters auxin transport and dependent physiological processes in the seedling root. Root basipetal transport was increased in rcn1 or phosphatase inhibitor-treated seedlings but showed normal sensitivity to the auxin transport inhibitor naphthylphthalamic acid (NPA). Phosphatase inhibition reduced root gravity response and delayed the establishment of differential auxin-induced gene expression across a gravity-stimulated root tip. An NPA treatment that reduced basipetal transport in rcn1 and cantharidin-treated wild-type plants also restored a normal gravity response and asymmetric auxin-induced gene expression, indicating that increased basipetal auxin transport impedes gravitropism. Increased auxin transport in rcn1 or phosphatase inhibitor-treated seedlings did not require the AGR1/EIR1/PIN2/WAV6 or AUX1 gene products. In contrast to basipetal transport, root acropetal transport was normal in phosphatase-inhibited seedlings in the absence of NPA, although it showed reduced NPA sensitivity. Lateral root growth also exhibited reduced NPA sensitivity in rcn1 seedlings, consistent with acropetal transport controlling lateral root growth. These results support the role of protein phosphorylation in regulating auxin transport and suggest that the acropetal and basipetal auxin transport streams are differentially regulated.

  11. Root hair development in grasses and cereals (Poaceae).

    PubMed

    Dolan, Liam

    2017-08-01

    Root hairs are tubular, cellular outgrowths of epidermal cells that extend from the root surface into the soil. Root hairs tether root systems to their growth substrate, take up inorganic nutrients and water, and interact with the soil microflora. At maturity, the root epidermis comprises two cell types; cells with root hairs and hairless epidermal cells. These two cell types alternate with each other along longitudinal files in grasses and cereals (Poaceae). While the mechanism by which this alternating pattern develops is unknown, the later stages of root hair differentiation are controlled by a conserved mechanism that promotes root hair development among angiosperms. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  12. Radiographic identification of the anterior and posterior root attachments of the medial and lateral menisci.

    PubMed

    James, Evan W; LaPrade, Christopher M; Ellman, Michael B; Wijdicks, Coen A; Engebretsen, Lars; LaPrade, Robert F

    2014-11-01

    Anatomic root placement is necessary to restore native meniscal function during meniscal root repair. Radiographic guidelines for anatomic root placement are essential to improve the accuracy and consistency of anatomic root repair and to optimize outcomes after surgery. To define quantitative radiographic guidelines for identification of the anterior and posterior root attachments of the medial and lateral menisci on anteroposterior (AP) and lateral radiographic views. Descriptive laboratory study. The anterior and posterior roots of the medial and lateral menisci were identified in 12 human cadaveric specimens (average age, 51.3 years; age range, 39-65 years) and labeled using 2-mm radiopaque spheres. True AP and lateral radiographs were obtained, and 2 raters independently measured blinded radiographs in relation to pertinent landmarks and radiographic reference lines. On AP radiographs, the anteromedial and posteromedial roots were, on average, 31.9 ± 5.0 mm and 36.3 ± 3.5 mm lateral to the edge of the medial tibial plateau, respectively. The anterolateral and posterolateral roots were, on average, 37.9 ± 5.2 mm and 39.3 ± 3.8 mm medial to the edge of the lateral tibial plateau, respectively. On lateral radiographs, the anteromedial and anterolateral roots were, on average, 4.8 ± 3.7 mm and 20.5 ± 4.3 mm posterior to the anterior margin of the tibial plateau, respectively. The posteromedial and posterolateral roots were, on average, 18.0 ± 2.8 mm and 19.8 ± 3.5 mm anterior to the posterior margin of the tibial plateau, respectively. The intrarater and interrater intraclass correlation coefficients (ICCs) were >0.958, demonstrating excellent reliability. The meniscal root attachment sites were quantitatively and reproducibly defined with respect to anatomic landmarks and superimposed radiographic reference lines. The high ICCs indicate that the measured radiographic relationships are a consistent means for evaluating meniscal root positions. This study

  13. An Undergraduate Study of Two Transcription Factors that Promote Lateral Root Formation

    ERIC Educational Resources Information Center

    Bargmann, Bastiaan O. R.; Birnbaum, Kenneth D.; Brenner, Eric D.

    2014-01-01

    We present a lab that enables students to test the role of genes involved in the regulation of lateral roots growth in the model plant "Arabidopsis thaliana." Here, students design an experiment that follows the effects of the hormone auxin on the stimulation of genes involved in the formation of lateral root initials. These genes, known…

  14. The apoplasmic pathway via the root apex and lateral roots contributes to Cd hyperaccumulation in the hyperaccumulator Sedum alfredii

    PubMed Central

    Tao, Qi; Jupa, Radek; Luo, Jipeng; Lux, Alexander; Kováč, Ján; Wen, Yue; Zhou, Yimei; Jan, Japenga; Liang, Yongchao

    2017-01-01

    Abstract Although the significance of apoplasmic barriers in roots with regards to the uptake of toxic elements is generally known, the contribution of apoplasmic bypasses (ABs) to cadmium (Cd) hyperaccumulation is little understood. Here, we employed a combination of stable isotopic tracer techniques, an ABs tracer, hydraulic measurements, suberin lamellae staining, metabolic inhibitors, and antitranspirants to investigate and quantify the impact of the ABs on translocation of Cd to the xylem in roots of a hyperaccumulating (H) ecotype and a non-hyperaccumulating (NH) ecotype of Sedum alfredii. In the H ecotype, the Cd content in the xylem sap was proportional to hydrostatic pressure, which was attributed to pressure-driven flow via the ABs. The contribution of the ABs to Cd transportation to the xylem was dependent on the Cd concentration applied to the H ecotype (up to 37% at the highest concentration used). Cd-treated H ecotype roots showed significantly higher hydraulic conductance compared with the NH ecotype (76 vs 52 × 10–8 m s–1MPa–1), which is in accordance with less extensive suberization due to reduced expression of suberin-related genes. The main entry sites of apoplasmically transported Cd were localized in the root apexes and lateral roots of the H ecotype, where suberin lamellae were not well developed. These findings highlight the significance of the apoplasmic bypass in Cd hyperaccumulation in hyperaccumulating ecotypes of S. alfredii. PMID:28204505

  15. Different patterns of lateral meniscus root tears in ACL injuries: application of a differentiated classification system.

    PubMed

    Forkel, Philipp; Reuter, Sven; Sprenker, Frederike; Achtnich, Andrea; Herbst, Elmar; Imhoff, Andreas; Petersen, Wolf

    2015-01-01

    Posterior lateral meniscus root tears (PLMRTs) affect the intra-articular pressure distribution in the lateral compartment of the knee. The biomechanical consequences of these injuries are significantly influenced by the integrity of the meniscofemoral ligaments (MFLs). A newly introduced arthroscopic classification system for PLMRTs that takes MFL integrity into account has not yet been clinically applied but may be useful in selecting the optimal method of PLMRT repair. Prospective ACL reconstruction data were collected. Concomitant injuries of the lateral meniscus posterior horn were classified according to their shape and MFL status. The classifications were: type 1, avulsion of the root; type 2, radial tear of the lateral meniscus posterior horn close to the root with an intact MFL; and type 3, complete detachment of the posterior meniscus horn. Between January 2011 and May 2012, 228 consecutive ACL reconstructions were included. Lateral and medial meniscus tears were identified in 38.2% (n = 87) and 44.7% (n = 102), respectively. Of the 87 lateral meniscus tears, 32 cases had PLMRTs; the overall prevalence of PLMRTs was 14% (n = 32). Two medial meniscus root tears were detected. All PLMRTs were classified according to the classification system described above, and the fixation procedure was adapted to the type of meniscus tear. The PLMRT tear is a common injury among patients undergoing ACL repair and can be arthroscopically classified into three different types. Medial meniscus root tears are rare in association with ACL tears. The PLMRT classification presented here may help to estimate the injury's impact on the lateral compartment and to identify the optimal treatment. These tears should not be overlooked, and the treatment strategy should be chosen with respect to the type of root tear. IV.

  16. Neoformation of clay in lateral root catchments of mallee eucalypts: a chemical perspective

    PubMed Central

    Verboom, William H.; Pate, John S.; Aspandiar, Mehrooz

    2010-01-01

    Background and Aims A previous paper (Annals of Botany 103: 673–685) described formation of clayey pavements in lateral root catchments of eucalypts colonizing a recently formed sand dune in south-west Western Australia. Here chemical and morphological aspects of their formation at the site are studied. Methods Chemical and physical examinations of soil cores through pavements and sand under adjacent heath assessed build-up of salts, clay and pH changes in or below pavements. Relationships of root morphology to clay deposition were examined and deposits subjected to scanning electron microscopy and energy-dispersive X-ray analysis. Xylem transport of mineral elements in eucalypt and non-eucalypt species was studied by analysis of xylem (tracheal) sap from lateral roots. Key Results The columns of which pavements are composed develop exclusively on lower-tier lateral roots. Such sites show intimate associations of fine roots, fungal filaments, microbiota and clay deposits rich in Si, Al and Fe. Time scales for construction of pavements by eucalypts were assessed. Cores through columns of pavemented profiles showed gross elevations of bulk density, Al, Fe and Si in columns and related increases in pH, Mg and Ca status in lower profiles. A cutting through the dune exhibited pronounced alkalinity (pH 7–10) under mallee woodland versus acidity (pH 5–6·5) under proteaceous heath. Xylem sap analyses showed unusually high concentrations of Al, Fe, Mg and Si in dry-season samples from column-bearing roots. Conclusions Deposition of Al–Fe–Si-rich clay is pivotal to pavement construction by eucalypts and leads to profound chemical and physical changes in relevant soil profiles. Microbial associates of roots are likely to be involved in clay genesis, with parent eucalypts supplying the required key mineral elements and carbon sources. Acquisition of the Al and Fe incorporated into clay derives principally from hydraulic uplift from ground water via deeply

  17. Specification of Cortical Parenchyma and Stele of Maize Primary Roots by Asymmetric Levels of Auxin, Cytokinin, and Cytokinin-Regulated Proteins1[C][W][OA

    PubMed Central

    Saleem, Muhammad; Lamkemeyer, Tobias; Schützenmeister, André; Madlung, Johannes; Sakai, Hajime; Piepho, Hans-Peter; Nordheim, Alfred; Hochholdinger, Frank

    2010-01-01

    In transverse orientation, maize (Zea mays) roots are composed of a central stele that is embedded in multiple layers of cortical parenchyma. The stele functions in the transport of water, nutrients, and photosynthates, while the cortical parenchyma fulfills metabolic functions that are not very well characterized. To better understand the molecular functions of these root tissues, protein- and phytohormone-profiling experiments were conducted. Two-dimensional gel electrophoresis combined with electrospray ionization tandem mass spectrometry identified 59 proteins that were preferentially accumulated in the cortical parenchyma and 11 stele-specific proteins. Hormone profiling revealed preferential accumulation of indole acetic acid and its conjugate indole acetic acid-aspartate in the stele and predominant localization of the cytokinin cis-zeatin, its precursor cis-zeatin riboside, and its conjugate cis-zeatin O-glucoside in the cortical parenchyma. A root-specific β-glucosidase that functions in the hydrolysis of cis-zeatin O-glucoside was preferentially accumulated in the cortical parenchyma. Similarly, four enzymes involved in ammonium assimilation that are regulated by cytokinin were preferentially accumulated in the cortical parenchyma. The antagonistic distribution of auxin and cytokinin in the stele and cortical parenchyma, together with the cortical parenchyma-specific accumulation of cytokinin-regulated proteins, suggest a molecular framework that specifies the function of these root tissues that also play a role in the formation of lateral roots from pericycle and endodermis cells. PMID:19933382

  18. Understanding genetic control of root system architecture in soybean: Insights into the genetic basis of lateral root number.

    PubMed

    Prince, Silvas J; Valliyodan, Babu; Ye, Heng; Yang, Ming; Tai, Shuaishuai; Hu, Wushu; Murphy, Mackensie; Durnell, Lorellin A; Song, Li; Joshi, Trupti; Liu, Yang; Van de Velde, Jan; Vandepoele, Klaas; Grover Shannon, J; Nguyen, Henry T

    2018-05-10

    Developing crops with better root systems is a promising strategy to ensure productivity in both optimum and stress environments. Root system architectural (RSA) traits in 397 soybean accessions were characterized and a high-density single nucleotide polymorphisms (SNP) based genome-wide association study was performed to identify the underlying genes associated with root structure. SNPs associated with root architectural traits specific to landraces and elite germplasm pools were detected. Four loci were detected in landraces for lateral root number (LRN) and distribution of root thickness in diameter class I with a major locus on chromosome 16. This major loci was detected in the coding region of unknown protein, and subsequent analyses demonstrated that root traits are affected with mutated haplotypes of the gene. In elite germplasm pool, three significant SNPs in alanine-glyoxalate aminotransferase, Leucine-Rich Repeat receptor/No apical meristem and unknown functional genes were found to govern multiple traits including root surface area and volume. However, no major loci were detected for LRN in elite germplasm. Nucleotide diversity analysis found evidence of selective sweeps around the landraces LRN gene. Soybean accessions with minor and mutated allelic variants of LRN gene were found to perform better in both water-limited and optimal field conditions. This article is protected by copyright. All rights reserved.

  19. Biomechanical consequences of a posterior root tear of the lateral meniscus: stabilizing effect of the meniscofemoral ligament.

    PubMed

    Forkel, Philipp; Herbort, Mirco; Schulze, Martin; Rosenbaum, Dieter; Kirstein, Lars; Raschke, Michael; Petersen, Wolf

    2013-05-01

    The purpose of this study was to evaluate the effects of different types of lateral meniscus root tears in terms of tibiofemoral contact stress. Ten porcine knees each underwent five different testing conditions with the menisci intact, a simulated lateral posterior root tear with and without cutting the meniscofemoral ligament and with an artificial tear of the posterior root of the medial meniscus. Biomechanical testing was performed at 30° of flexion with an axial load of 100 N. A pressure sensor (st Sensor Type S2042, Novel, Munich) was used to measure the tibiofemoral contact area and the tibiofemoral contact pressure. Data were analyzed to assess the differences in contact area and tibiofemoral peak contact pressure among the five meniscal conditions. There was no significant difference in mean contact pressure between the state with the menisci intact and an isolated posterior root tear of the lateral meniscus. In case of a root tear and a tear of the meniscofemoral ligament, the contact area decreased in comparison with the intact state of the menisci. After additional cutting of the meniscofemoral ligament, the tibiofemoral contact pressure was significantly higher in comparison with the intact state and the avulsion injury. In the medial compartment, joint compression forces were significantly increased in comparison with the intact state after cutting the posterior root of the medial meniscus (P < 0.05). The consequence of a medial meniscus root tear is well known and was verified by this analysis. The results of the present study show that the biomechanical consequences of a lateral meniscus root tear depend on the state of the meniscofemoral ligament. An increase in tibiofemoral contact pressure is only to be expected in combined injuries of the meniscus root and the meniscofemoral ligaments. Posterior lateral meniscus root tear might have a better prognosis in terms of the development of osteoarthritis when the meniscofemoral ligament is intact.

  20. Anatomy of the anterior root attachments of the medial and lateral menisci: a quantitative analysis.

    PubMed

    LaPrade, Christopher M; Ellman, Michael B; Rasmussen, Matthew T; James, Evan W; Wijdicks, Coen A; Engebretsen, Lars; LaPrade, Robert F

    2014-10-01

    While the biomechanical importance of the meniscal roots has been demonstrated, the anatomy of the anterior meniscal roots remains largely unknown. Defining the quantitative anatomy of the anterior meniscal root attachments is essential for developing improved diagnostic and surgical techniques. The anterior medial (AM) and anterior lateral (AL) meniscal roots could be quantitatively defined relative to open and arthroscopic surgical landmarks. Descriptive laboratory study. Twelve nonpaired human cadaveric knees were used (average age, 51.3 years). A coordinate measuring device quantified the anatomic relationships of the AM and AL root attachments to open and arthroscopic surgical landmarks. The tibial attachments of both anterior roots were defined and quantified by categorizing the fibers of the root as either central, dense attachments or peripheral, supplemental attachments. The center of the tibial tuberosity and the medial tibial eminence apex were 27.0 mm lateral and distal and 27.5 mm posterior to the center of the AM root, respectively. The center of the anterior cruciate ligament (ACL) and the lateral tibial eminence apex were 5.0 mm posteromedial and 14.4 mm posterolateral to the center of the AL root, respectively. The AM root attachment had a mean area of 110.4 mm(2) (95% CI, 92.2-128.5) with a central attachment of 56.3 mm(2) (95% CI, 46.9-65.8). The AL root attachment had a mean area of 140.7 mm(2) (95% CI, 121.6-159.8) and inserted deeply beneath the ACL in all specimens. The overlap of the ACL on the AL root averaged 88.9 mm(2) (95% CI, 63.3-114.6), comprising 63.2% of the AL root attachment. The anterior meniscal roots were identified in relation to pertinent open and arthroscopic landmarks. The extended overlap between the AL root and ACL attachment revealed a more intimate tibial attachment relationship than previously recognized. Quantitative descriptions of the anterior meniscal roots elucidate the relationship between the root attachments

  1. Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism

    PubMed Central

    Band, Leah R.; Wells, Darren M.; Larrieu, Antoine; Sun, Jianyong; Middleton, Alistair M.; French, Andrew P.; Brunoud, Géraldine; Sato, Ethel Mendocilla; Wilson, Michael H.; Péret, Benjamin; Oliva, Marina; Swarup, Ranjan; Sairanen, Ilkka; Parry, Geraint; Ljung, Karin; Beeckman, Tom; Garibaldi, Jonathan M.; Estelle, Mark; Owen, Markus R.; Vissenberg, Kris; Hodgman, T. Charlie; Pridmore, Tony P.; King, John R.; Vernoux, Teva; Bennett, Malcolm J.

    2012-01-01

    Gravity profoundly influences plant growth and development. Plants respond to changes in orientation by using gravitropic responses to modify their growth. Cholodny and Went hypothesized over 80 years ago that plants bend in response to a gravity stimulus by generating a lateral gradient of a growth regulator at an organ's apex, later found to be auxin. Auxin regulates root growth by targeting Aux/IAA repressor proteins for degradation. We used an Aux/IAA-based reporter, domain II (DII)-VENUS, in conjunction with a mathematical model to quantify auxin redistribution following a gravity stimulus. Our multidisciplinary approach revealed that auxin is rapidly redistributed to the lower side of the root within minutes of a 90° gravity stimulus. Unexpectedly, auxin asymmetry was rapidly lost as bending root tips reached an angle of 40° to the horizontal. We hypothesize roots use a “tipping point” mechanism that operates to reverse the asymmetric auxin flow at the midpoint of root bending. These mechanistic insights illustrate the scientific value of developing quantitative reporters such as DII-VENUS in conjunction with parameterized mathematical models to provide high-resolution kinetics of hormone redistribution. PMID:22393022

  2. Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism.

    PubMed

    Band, Leah R; Wells, Darren M; Larrieu, Antoine; Sun, Jianyong; Middleton, Alistair M; French, Andrew P; Brunoud, Géraldine; Sato, Ethel Mendocilla; Wilson, Michael H; Péret, Benjamin; Oliva, Marina; Swarup, Ranjan; Sairanen, Ilkka; Parry, Geraint; Ljung, Karin; Beeckman, Tom; Garibaldi, Jonathan M; Estelle, Mark; Owen, Markus R; Vissenberg, Kris; Hodgman, T Charlie; Pridmore, Tony P; King, John R; Vernoux, Teva; Bennett, Malcolm J

    2012-03-20

    Gravity profoundly influences plant growth and development. Plants respond to changes in orientation by using gravitropic responses to modify their growth. Cholodny and Went hypothesized over 80 years ago that plants bend in response to a gravity stimulus by generating a lateral gradient of a growth regulator at an organ's apex, later found to be auxin. Auxin regulates root growth by targeting Aux/IAA repressor proteins for degradation. We used an Aux/IAA-based reporter, domain II (DII)-VENUS, in conjunction with a mathematical model to quantify auxin redistribution following a gravity stimulus. Our multidisciplinary approach revealed that auxin is rapidly redistributed to the lower side of the root within minutes of a 90° gravity stimulus. Unexpectedly, auxin asymmetry was rapidly lost as bending root tips reached an angle of 40° to the horizontal. We hypothesize roots use a "tipping point" mechanism that operates to reverse the asymmetric auxin flow at the midpoint of root bending. These mechanistic insights illustrate the scientific value of developing quantitative reporters such as DII-VENUS in conjunction with parameterized mathematical models to provide high-resolution kinetics of hormone redistribution.

  3. Auxin acts as a local morphogenetic trigger to specify lateral root founder cells

    PubMed Central

    Dubrovsky, Joseph G.; Sauer, Michael; Napsucialy-Mendivil, Selene; Ivanchenko, Maria G.; Friml, Jiří; Shishkova, Svetlana; Celenza, John; Benková, Eva

    2008-01-01

    Plants exhibit an exceptional adaptability to different environmental conditions. To a large extent, this adaptability depends on their ability to initiate and form new organs throughout their entire postembryonic life. Plant shoot and root systems unceasingly branch and form axillary shoots or lateral roots, respectively. The first event in the formation of a new organ is specification of founder cells. Several plant hormones, prominent among them auxin, have been implicated in the acquisition of founder cell identity by differentiated cells, but the mechanisms underlying this process are largely elusive. Here, we show that auxin and its local accumulation in root pericycle cells is a necessary and sufficient signal to respecify these cells into lateral root founder cells. Analysis of the alf4–1 mutant suggests that specification of founder cells and the subsequent activation of cell division leading to primordium formation represent two genetically separable events. Time-lapse experiments show that the activation of an auxin response is the earliest detectable event in founder cell specification. Accordingly, local activation of auxin response correlates absolutely with the acquisition of founder cell identity and precedes the actual formation of a lateral root primordium through patterned cell division. Local production and subsequent accumulation of auxin in single pericycle cells induced by Cre-Lox-based activation of auxin synthesis converts them into founder cells. Thus, auxin is the local instructive signal that is sufficient for acquisition of founder cell identity and can be considered a morphogenetic trigger in postembryonic plant organogenesis. PMID:18559858

  4. Independent signalling cues underpin arbuscular mycorrhizal symbiosis and large lateral root induction in rice.

    PubMed

    Chiu, Chai Hao; Choi, Jeongmin; Paszkowski, Uta

    2018-01-01

    Perception of arbuscular mycorrhizal fungi (AMF) triggers distinct plant signalling responses for parallel establishment of symbiosis and induction of lateral root formation. Rice receptor kinase CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) and α/β-fold hydrolase DWARF14-LIKE (D14L) are involved in pre-symbiotic fungal perception. After 6 wk post-inoculation with Rhizophagus irregularis, root developmental responses, fungal colonization and transcriptional responses were monitored in two independent cerk1 null mutants; a deletion mutant lacking D14L, and with D14L complemented as well as their respective wild-type cultivars (cv Nipponbare and Nihonmasari). Here we show that although essential for symbiosis, D14L is dispensable for AMF-induced root architectural modulation, which conversely relies on CERK1. Our results demonstrate uncoupling of symbiosis and the symbiotic root developmental signalling during pre-symbiosis with CERK1 required for AMF-induced root architectural changes. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  5. A morphometric analysis of cellular differentiation in caps of primary and lateral roots of Helianthus annuus

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1985-01-01

    In order to determine if patterns of cell differentiation are similar in primary and lateral roots, I performed a morphometric analysis of the ultrastructure of calyptrogen, columella, and peripheral cells in primary and lateral roots of Helianthus annuus. Each cell type is characterized by a unique ultrastructure, and the ultrastructural changes characteristic of cellular differentiation in root caps are organelle specific. No major structural differences exist in the structures of the composite cell types, or in patterns of cell differentiation in caps of primary vs. lateral roots.

  6. Immature Loblolly Pine Growth and Biomass Accumulation: Correlations with Seedlings Initial First-Order Lateral Roots

    Treesearch

    Paul P. Kormanik; Shi-Jean S. Sung; Stanley J. Zarnoch

    1998-01-01

    Five to seven years after being graded by first-order lateral root (FOLR) numbers and outplanted, loblolly pine (Pinus taeda L.) seedlings were excavated using a commercial tree spade and root systems reevaluated. Current competitive position of trees was related to initial FOLR numbers of 1-0 seedlings. Current FOLR numbers were comparable among tree size classes, but...

  7. Quantifying root lateral distribution and turnover using pine trees with a distinct stable carbon isotope signature

    Treesearch

    Kurt H. Johnsen; Chris A. Maier; Lance W. Kress

    2005-01-01

    In order to help assess spatial competition for below-ground resources, we quantified the effects of fertilization on root biomass quantity and lateral root distribution of midrotation Pinus taeda trees. Open-top chambers exposed trees to ambient or ambient plus 200 µmol mol-1 atmospheric CO2...

  8. Heritability of first-order-lateral roots in five Quercus species: effect on 1-0 seedling quality evaluation

    Treesearch

    Paul P. Kormanik; Shi-Jean S. Sung; Taryn L. Kormanik; Stanley J. Zarnoch; Scott Schlarbaum

    1997-01-01

    Heritability estimates (h2) were calculated for first-order lateral root (FOLR) numbers on a family plot mean basis for 5 Quercus species: Q. alba, Q. falcata, Q, michauxii, Q. pagoda, and Q. rubra. All species were grown with the...

  9. Phosphate-Dependent Root System Architecture Responses to Salt Stress1[OPEN

    PubMed Central

    Sommerfeld, Hector Montero; ter Horst, Anneliek; Haring, Michel A.

    2016-01-01

    Nutrient availability and salinity of the soil affect the growth and development of plant roots. Here, we describe how inorganic phosphate (Pi) availability affects the root system architecture (RSA) of Arabidopsis (Arabidopsis thaliana) and how Pi levels modulate responses of the root to salt stress. Pi starvation reduced main root length and increased the number of lateral roots of Arabidopsis Columbia-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75 mm) on all measured RSA components. At higher salt concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid signaling compared with the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general, lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied, and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By genome-wide association mapping, 12 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses. PMID:27208277

  10. Dissecting the Role of CHITINASE-LIKE1 in Nitrate-Dependent Changes in Root Architecture1[C][W

    PubMed Central

    Hermans, Christian; Porco, Silvana; Vandenbussche, Filip; Gille, Sascha; De Pessemier, Jérôme; Van Der Straeten, Dominique; Verbruggen, Nathalie; Bush, Daniel R.

    2011-01-01

    The root phenotype of an Arabidopsis (Arabidopsis thaliana) mutant of CHITINASE-LIKE1 (CTL1), called arm (for anion-related root morphology), was previously shown to be conditional on growth on high nitrate, chloride, or sucrose. Mutants grown under restrictive conditions displayed inhibition of primary root growth, radial swelling, proliferation of lateral roots, and increased root hair density. We found here that the spatial pattern of CTL1 expression was mainly in the root and root tips during seedling development and that the protein localized to the cell wall. Fourier-transform infrared microspectroscopy of mutant root tissues indicated differences in spectra assigned to linkages in cellulose and pectin. Indeed, root cell wall polymer composition analysis revealed that the arm mutant contained less crystalline cellulose and reduced methylesterification of pectins. We also explored the implication of growth regulators on the phenotype of the mutant response to the nitrate supply. Exogenous abscisic acid application inhibited more drastically primary root growth in the arm mutant but failed to repress lateral branching compared with the wild type. Cytokinin levels were higher in the arm root, but there were no changes in mitotic activity, suggesting that cytokinin is not directly involved in the mutant phenotype. Ethylene production was higher in arm but inversely proportional to the nitrate concentration in the medium. Interestingly, eto2 and eto3 ethylene overproduction mutants mimicked some of the conditional root characteristics of the arm mutant on high nitrate. Our data suggest that ethylene may be involved in the arm mutant phenotype, albeit indirectly, rather than functioning as a primary signal. PMID:21949212

  11. PLETHORA transcription factors orchestrate de novo organ patterning during Arabidopsis lateral root outgrowth

    PubMed Central

    Du, Yujuan

    2017-01-01

    Plant development is characterized by repeated initiation of meristems, regions of dividing cells that give rise to new organs. During lateral root (LR) formation, new LR meristems are specified to support the outgrowth of LRs along a new axis. The determination of the sequential events required to form this new growth axis has been hampered by redundant activities of key transcription factors. Here, we characterize the effects of three PLETHORA (PLT) transcription factors, PLT3, PLT5, and PLT7, during LR outgrowth. In plt3plt5plt7 triple mutants, the morphology of lateral root primordia (LRP), the auxin response gradient, and the expression of meristem/tissue identity markers are impaired from the “symmetry-breaking” periclinal cell divisions during the transition between stage I and stage II, wherein cells first acquire different identities in the proximodistal and radial axes. Particularly, PLT1, PLT2, and PLT4 genes that are typically expressed later than PLT3, PLT5, and PLT7 during LR outgrowth are not induced in the mutant primordia, rendering “PLT-null” LRP. Reintroduction of any PLT clade member in the mutant primordia completely restores layer identities at stage II and rescues mutant defects in meristem and tissue establishment. Therefore, all PLT genes can activate the formative cell divisions that lead to de novo meristem establishment and tissue patterning associated with a new growth axis. PMID:29078398

  12. Antisense expression of an Arabidopsis ran binding protein renders transgenic roots hypersensitive to auxin and alters auxin-induced root growth and development by arresting mitotic progress

    NASA Technical Reports Server (NTRS)

    Kim, S. H.; Arnold, D.; Lloyd, A.; Roux, S. J.

    2001-01-01

    We cloned a cDNA encoding an Arabidopsis Ran binding protein, AtRanBP1c, and generated transgenic Arabidopsis expressing the antisense strand of the AtRanBP1c gene to understand the in vivo functions of the Ran/RanBP signal pathway. The transgenic plants showed enhanced primary root growth but suppressed growth of lateral roots. Auxin significantly increased lateral root initiation and inhibited primary root growth in the transformants at 10 pM, several orders of magnitude lower than required to induce these responses in wild-type roots. This induction was followed by a blockage of mitosis in both newly emerged lateral roots and in the primary root, ultimately resulting in the selective death of cells in the tips of both lateral and primary roots. Given the established role of Ran binding proteins in the transport of proteins into the nucleus, these findings are consistent with a model in which AtRanBP1c plays a key role in the nuclear delivery of proteins that suppress auxin action and that regulate mitotic progress in root tips.

  13. The roles of peptide hormones during plant root development.

    PubMed

    Yamada, Masashi; Sawa, Shinichiro

    2013-02-01

    Peptide hormones are a key mechanism that plants use for cell-cell interactions; these interactions function to coordinate development, growth, and environmental responses among different cells. Peptide signals are produced by one cell and received by receptors in neighboring cells. It has previously been reported that peptide hormones regulate various aspects of plant development. The mechanism of action of peptides in the shoot is well known. However, the function of peptides in the root has been relatively uncharacterized. Recent studies have discovered important roles for peptide hormones in the development of the root meristem, lateral roots, and nodules. In this review, we focus on current findings regarding the function of peptide hormones in root development. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Cell Type-Specific Gene Expression Analyses by RNA Sequencing Reveal Local High Nitrate-Triggered Lateral Root Initiation in Shoot-Borne Roots of Maize by Modulating Auxin-Related Cell Cycle Regulation1[OPEN

    PubMed Central

    Yu, Peng; Eggert, Kai; von Wirén, Nicolaus; Li, Chunjian; Hochholdinger, Frank

    2015-01-01

    Plants have evolved a unique plasticity of their root system architecture to flexibly exploit heterogeneously distributed mineral elements from soil. Local high concentrations of nitrate trigger lateral root initiation in adult shoot-borne roots of maize (Zea mays) by increasing the frequency of early divisions of phloem pole pericycle cells. Gene expression profiling revealed that, within 12 h of local high nitrate induction, cell cycle activators (cyclin-dependent kinases and cyclin B) were up-regulated, whereas repressors (Kip-related proteins) were down-regulated in the pericycle of shoot-borne roots. In parallel, a ubiquitin protein ligase S-Phase Kinase-Associated Protein1-cullin-F-box proteinS-Phase Kinase-Associated Protein 2B-related proteasome pathway participated in cell cycle control. The division of pericycle cells was preceded by increased levels of free indole-3-acetic acid in the stele, resulting in DR5-red fluorescent protein-marked auxin response maxima at the phloem poles. Moreover, laser-capture microdissection-based gene expression analyses indicated that, at the same time, a significant local high nitrate induction of the monocot-specific PIN-FORMED9 gene in phloem pole cells modulated auxin efflux to pericycle cells. Time-dependent gene expression analysis further indicated that local high nitrate availability resulted in PIN-FORMED9-mediated auxin efflux and subsequent cell cycle activation, which culminated in the initiation of lateral root primordia. This study provides unique insights into how adult maize roots translate information on heterogeneous nutrient availability into targeted root developmental responses. PMID:26198256

  15. Overexpression of the Arabidopsis thaliana signalling peptide TAXIMIN1 affects lateral organ development.

    PubMed

    Colling, Janine; Tohge, Takayuki; De Clercq, Rebecca; Brunoud, Geraldine; Vernoux, Teva; Fernie, Alisdair R; Makunga, Nokwanda P; Goossens, Alain; Pauwels, Laurens

    2015-08-01

    Lateral organ boundary formation is highly regulated by transcription factors and hormones such as auxins and brassinosteroids. However, in contrast to many other developmental processes in plants, no role for signalling peptides in the regulation of this process has been reported yet. The first characterization of the secreted cysteine-rich TAXIMIN (TAX) signalling peptides in Arabidopsis is presented here. TAX1 overexpression resulted in minor alterations in the primary shoot and root metabolome, abnormal fruit morphology, and fusion of the base of cauline leaves to stems forming a decurrent leaf attachment. The phenotypes at the paraclade junction match TAX1 promoter activity in this region and are similar to loss of LATERAL ORGAN FUSION (LOF) transcription factor function. Nevertheless, TAX1 expression was unchanged in lof1lof2 paraclade junctions and, conversely, LOF gene expression was unchanged in TAX1 overexpressing plants, suggesting TAX1 may act independently. This study identifies TAX1 as the first plant signalling peptide influencing lateral organ separation and implicates the existence of a peptide signal cascade regulating this process in Arabidopsis. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Knockdown of the partner protein OsNAR2.1 for high-affinity nitrate transport represses lateral root formation in a nitrate-dependent manner

    PubMed Central

    Huang, Shuangjie; Chen, Si; Liang, Zhihao; Zhang, Chenming; Yan, Ming; Chen, Jingguang; Xu, Guohua; Fan, Xiaorong; Zhang, Yali

    2015-01-01

    The morphological plasticity of root systems is critical for plant survival, and understanding the mechanisms underlying root adaptation to nitrogen (N) fluctuation is critical for sustainable agriculture; however, the molecular mechanism of N-dependent root growth in rice remains unclear. This study aimed to identify the role of the complementary high-affinity NO3− transport protein OsNAR2.1 in NO3−-regulated rice root growth. Comparisons with wild-type (WT) plants showed that knockdown of OsNAR2.1 inhibited lateral root (LR) formation under low NO3− concentrations, but not under low NH4+ concentrations. 15N-labelling NO3− supplies (provided at concentrations of 0–10 mM) demonstrated that (i) defects in LR formation in mutants subjected to low external NO3− concentrations resulted from impaired NO3− uptake, and (ii) the mutants had significantly fewer LRs than the WT plants when root N contents were similar between genotypes. LR formation in osnar2.1 mutants was less sensitive to localised NO3− supply than LR formation in WT plants, suggesting that OsNAR2.1 may be involved in a NO3−-signalling pathway that controls LR formation. Knockdown of OsNAR2.1 inhibited LR formation by decreasing auxin transport from shoots to roots. Thus, OsNAR2.1 probably functions in both NO3− uptake and NO3−-signalling. PMID:26644084

  17. Root architecture simulation improves the inference from seedling root phenotyping towards mature root systems.

    PubMed

    Zhao, Jiangsan; Bodner, Gernot; Rewald, Boris; Leitner, Daniel; Nagel, Kerstin A; Nakhforoosh, Alireza

    2017-02-01

    Root phenotyping provides trait information for plant breeding. A shortcoming of high-throughput root phenotyping is the limitation to seedling plants and failure to make inferences on mature root systems. We suggest root system architecture (RSA) models to predict mature root traits and overcome the inference problem. Sixteen pea genotypes were phenotyped in (i) seedling (Petri dishes) and (ii) mature (sand-filled columns) root phenotyping platforms. The RSA model RootBox was parameterized with seedling traits to simulate the fully developed root systems. Measured and modelled root length, first-order lateral number, and root distribution were compared to determine key traits for model-based prediction. No direct relationship in root traits (tap, lateral length, interbranch distance) was evident between phenotyping systems. RootBox significantly improved the inference over phenotyping platforms. Seedling plant tap and lateral root elongation rates and interbranch distance were sufficient model parameters to predict genotype ranking in total root length with an RSpearman of 0.83. Parameterization including uneven lateral spacing via a scaling function substantially improved the prediction of architectures underlying the differently sized root systems. We conclude that RSA models can solve the inference problem of seedling root phenotyping. RSA models should be included in the phenotyping pipeline to provide reliable information on mature root systems to breeding research. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Root architecture simulation improves the inference from seedling root phenotyping towards mature root systems

    PubMed Central

    Zhao, Jiangsan; Rewald, Boris; Leitner, Daniel; Nagel, Kerstin A.; Nakhforoosh, Alireza

    2017-01-01

    Abstract Root phenotyping provides trait information for plant breeding. A shortcoming of high-throughput root phenotyping is the limitation to seedling plants and failure to make inferences on mature root systems. We suggest root system architecture (RSA) models to predict mature root traits and overcome the inference problem. Sixteen pea genotypes were phenotyped in (i) seedling (Petri dishes) and (ii) mature (sand-filled columns) root phenotyping platforms. The RSA model RootBox was parameterized with seedling traits to simulate the fully developed root systems. Measured and modelled root length, first-order lateral number, and root distribution were compared to determine key traits for model-based prediction. No direct relationship in root traits (tap, lateral length, interbranch distance) was evident between phenotyping systems. RootBox significantly improved the inference over phenotyping platforms. Seedling plant tap and lateral root elongation rates and interbranch distance were sufficient model parameters to predict genotype ranking in total root length with an RSpearman of 0.83. Parameterization including uneven lateral spacing via a scaling function substantially improved the prediction of architectures underlying the differently sized root systems. We conclude that RSA models can solve the inference problem of seedling root phenotyping. RSA models should be included in the phenotyping pipeline to provide reliable information on mature root systems to breeding research. PMID:28168270

  19. Brassinosteroids Antagonize Gibberellin- and Salicylate-Mediated Root Immunity in Rice1[C][W][OA

    PubMed Central

    De Vleesschauwer, David; Van Buyten, Evelien; Satoh, Kouji; Balidion, Johny; Mauleon, Ramil; Choi, Il-Ryong; Vera-Cruz, Casiana; Kikuchi, Shoshi; Höfte, Monica

    2012-01-01

    Brassinosteroids (BRs) are a unique class of plant steroid hormones that orchestrate myriad growth and developmental processes. Although BRs have long been known to protect plants from a suite of biotic and abiotic stresses, our understanding of the underlying molecular mechanisms is still rudimentary. Aiming to further decipher the molecular logic of BR-modulated immunity, we have examined the dynamics and impact of BRs during infection of rice (Oryza sativa) with the root oomycete Pythium graminicola. Challenging the prevailing view that BRs positively regulate plant innate immunity, we show that P. graminicola exploits BRs as virulence factors and hijacks the rice BR machinery to inflict disease. Moreover, we demonstrate that this immune-suppressive effect of BRs is due, at least in part, to negative cross talk with salicylic acid (SA) and gibberellic acid (GA) pathways. BR-mediated suppression of SA defenses occurred downstream of SA biosynthesis, but upstream of the master defense regulators NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 and OsWRKY45. In contrast, BR alleviated GA-directed immune responses by interfering at multiple levels with GA metabolism, resulting in indirect stabilization of the DELLA protein and central GA repressor SLENDER RICE1 (SLR1). Collectively, these data favor a model whereby P. graminicola coopts the plant BR pathway as a decoy to antagonize effectual SA- and GA-mediated defenses. Our results highlight the importance of BRs in modulating plant immunity and uncover pathogen-mediated manipulation of plant steroid homeostasis as a core virulence strategy. PMID:22353574

  20. Long-term evaluation of posterior lateral meniscus root tears left in situ at the time of anterior cruciate ligament reconstruction.

    PubMed

    Shelbourne, K Donald; Roberson, Troy A; Gray, Tinker

    2011-07-01

    The long-term radiographic and subjective results of patients with posterior lateral meniscus root tears left in situ at the time of anterior cruciate ligament reconstruction has not been reported. The authors hypothesized that patients who had posterior lateral meniscus root tears left in situ would have statistically significantly lower subjective scores and greater joint-space narrowing as compared with a control group. Cohort study; Level of evidence, 3. Thirty-three patients who had isolated posterior lateral meniscus root tear and >5 years objective and subjective follow-up were evaluated and compared with a matched control group without meniscal tears based on sex, chronicity of tear, age, and follow-up time. Patients were evaluated subjectively and objectively using the International Knee Documentation Committee criteria. The mean objective follow-up time was 10.6 ± 4.5 years. The mean subjective total score was 84.6 ± 14 in the study group versus 90.5 ± 13 in the control group (P = .09). Radiographs showed lateral joint-space narrowing rated as normal in 19, mild in 10, moderate in 3, and severe in 1 versus the control group, which was normal in 28 and mild in 5 patients. The measured amount of lateral joint-space narrowing compared with the other knee was 1.0 ± 1.6 mm in the study group versus 0 ± 1.1 mm in the controls on 45° flexed posteroanterior radiographs (P < .006). At a mean of 10 years' follow-up of posterior lateral meniscus root tears left in situ, mild lateral joint-space narrowing was measured without significant differences in subjective or objective scores compared with controls. This study provides a baseline that can be used to compare the results of procedures used to treat these tears in other manners.

  1. Ammonium-induced loss of root gravitropism is related to auxin distribution and TRH1 function, and is uncoupled from the inhibition of root elongation in Arabidopsis.

    PubMed

    Zou, Na; Li, Baohai; Dong, Gangqiang; Kronzucker, Herbert J; Shi, Weiming

    2012-06-01

    Root gravitropism is affected by many environmental stresses, including salinity, drought, and nutrient deficiency. One significant environmental stress, excess ammonium (NH(4)(+)), is well documented to inhibit root elongation and lateral root formation, yet little is known about its effects on the direction of root growth. We show here that inhibition of root elongation upon elevation of external NH(4)(+) is accompanied by a loss in root gravitropism (agravitropism) in Arabidopsis. Addition of potassium (K(+)) to the treatment medium partially rescued the inhibition of root elongation by high NH(4)(+) but did not improve gravitropic root curvature. Expression analysis of the auxin-responsive reporter gene DR5::GUS revealed that NH(4)(+) treatment delayed the development of gravity-induced auxin gradients across the root cap but extended their duration once initiated. Moreover, the β-glucuronidase (GUS) signal intensity in root tip cells was significantly reduced under high NH(4)(+) treatment over time. The potassium carrier mutant trh1 displayed different patterns of root gravitropism and DR5::GUS signal intensity in root apex cells compared with the wild type in response to NH(4)(+). Together, the results demonstrate that the effects of NH(4)(+) on root gravitropism are related to delayed lateral auxin redistribution and the TRH1 pathway, and are largely independent of inhibitory effects on root elongation.

  2. Ultrasonic irrigation of a maxillary lateral incisor with perforation of the apical third of the root.

    PubMed

    Tsurumachi, Tamotsu; Takita, Toshiya; Hashimoto, Kazuhiro; Katoh, Takeshi; Ogiso, Bunnai

    2010-12-01

    We describe the successful use of a combination of nonsurgical root canal treatment and ultrasonic irrigation for collaborative management of a maxillary left lateral incisor with perforation of the apical third of the root. During the endodontic treatment procedure, the ultrasonically activated tip was used for intracanal irrigation. The area of perforation in the apical third of the root and the main root canal space were obturated with gutta-percha and root canal sealer, using a lateral condensation method. A follow-up clinical and radiographic examination at 5 years after treatment showed an asymptomatic tooth with excellent osseous healing.

  3. GENOME ENABLED MODIFICATION OF POPLAR ROOT DEVELOPMENT FOR INCREASED CARBON SEQUESTRATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busov, Victor

    designated as a bioenergy crop by the U.S. Department of Energy, as a result of research following the oil embargo. Populus species also serve as model trees for plant molecular biology research. In this article, we will review recent progress in the genetic improvement of Populus, considering both classical breeding and genetic engineering for bioenergy, as well as in using transgenics to elucidate gene functionality. A perspective for future improvement of Populus via functional genomics will also be presented. The role of gibberellins (GAs) in regulation of lateral root development is poorly understood. We show that GA-deficient (35S:PcGA2ox1) and GA-insensitive (35S:rgl1) transgenic Populus exhibited increased lateral root proliferation and elongation under in vitro and greenhouse conditions, and these effects were reversed by exogenous GA treatment. In addition, RNA interference suppression of two poplar GA 2-oxidases predominantly expressed in roots also decreased lateral root formation. GAs negatively affected lateral root formation by inhibiting lateral root primordium initiation. A whole-genome microarray analysis of root development in GA-modified transgenic plants revealed 2069 genes with significantly altered expression. The expression of 1178 genes, including genes that promote cell proliferation, growth, and cell wall loosening, corresponded to the phenotypic severity of the root traits when transgenic events with differential phenotypic expression were compared. The array data and direct hormone measurements suggested crosstalk of GA signaling with other hormone pathways, including auxin and abscisic acid. Transgenic modification of a differentially expressed gene encoding an auxin efflux carrier suggests that GA modulation of lateral root development is at least partly imparted by polar auxin transport modification. These results suggest a mechanism for GA-regulated modulation of lateral root proliferation associated with regulation of plant allometry during

  4. Effect of Oryzalin and 1,1-Dimethylpiperidinium Chloride on Cotton and Tomato Roots Infected with the Root-knot Nematode, Meloidogyne incognita

    PubMed Central

    Orum, T. V.; Bartels, P. G.; McClure, M. A.

    1979-01-01

    Oryzalin (3,5-dinitro-N4,N4-dipropyl-sulfanilamide) and BAS 083 (l,l-dimethylpiperdinium chloride) reduced root-knot infection in tomato roots when respectively applied as a soil drench at 20 ppm and 10,000 ppm. Oryzalin reduced knot counts with various intervals between treatment and inoculation. BAS 083 reduced knot counts only when applied before inoculation. Oryzalin was shown not to be a contact nematicide, and BAS 083 was only a weak one. Neither compound reduced penetration by infective larvae. Postinfection reduction in knot counts by Oryzalin and BAS 083 resulted, in part, from activation of natural defense mechanisms of the host. Giant-cell development in cotton roots inoculated with nematodes was inhibited by Oryzalin. Lateral root development was inhibited by BAS 083. PMID:19305533

  5. Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation?

    PubMed Central

    Fusconi, Anna

    2014-01-01

    Background Arbuscular mycorrhizae (AMs) form a widespread root–fungus symbiosis that improves plant phosphate (Pi) acquisition and modifies the physiology and development of host plants. Increased branching is recognized as a general feature of AM roots, and has been interpreted as a means of increasing suitable sites for colonization. Fungal exudates, which are involved in the dialogue between AM fungi and their host during the pre-colonization phase, play a well-documented role in lateral root (LR) formation. In addition, the increased Pi content of AM plants, in relation to Pi-starved controls, as well as changes in the delivery of carbohydrates to the roots and modulation of phytohormone concentration, transport and sensitivity, are probably involved in increasing root system branching. Scope This review discusses the possible causes of increased branching in AM plants. The differential root responses to Pi, sugars and hormones of potential AM host species are also highlighted and discussed in comparison with those of the non-host Arabidopsis thaliana. Conclusions Fungal exudates are probably the main compounds regulating AM root morphogenesis during the first colonization steps, while a complex network of interactions governs root development in established AMs. Colonization and high Pi act synergistically to increase root branching, and sugar transport towards the arbusculated cells may contribute to LR formation. In addition, AM colonization and high Pi generally increase auxin and cytokinin and decrease ethylene and strigolactone levels. With the exception of cytokinins, which seem to regulate mainly the root:shoot biomass ratio, these hormones play a leading role in governing root morphogenesis, with strigolactones and ethylene blocking LR formation in the non-colonized, Pi-starved plants, and auxin inducing them in colonized plants, or in plants grown under high Pi conditions. PMID:24227446

  6. The Autoregulation Gene SUNN Mediates Changes in Root Organ Formation in Response to Nitrogen through Alteration of Shoot-to-Root Auxin Transport1[W][OA

    PubMed Central

    Jin, Jian; Watt, Michelle; Mathesius, Ulrike

    2012-01-01

    We tested whether a gene regulating nodule number in Medicago truncatula, Super Numeric Nodules (SUNN ), is involved in root architecture responses to carbon (C) and nitrogen (N) and whether this is mediated by changes in shoot-to-root auxin transport. Nodules and lateral roots are root organs that are under the control of nutrient supply, but how their architecture is regulated in response to nutrients is unclear. We treated wild-type and sunn-1 seedlings with four combinations of low or increased N (as nitrate) and C (as CO2) and determined responses in C/N partitioning, plant growth, root and nodule density, and changes in auxin transport. In both genotypes, nodule density was negatively correlated with tissue N concentration, while only the wild type showed significant correlations between N concentration and lateral root density. Shoot-to-root auxin transport was negatively correlated with shoot N concentration in the wild type but not in the sunn-1 mutant. In addition, the ability of rhizobia to alter auxin transport depended on N and C treatment as well as the SUNN gene. Nodule and lateral root densities were negatively correlated with auxin transport in the wild type but not in the sunn-1 mutant. Our results suggest that SUNN is required for the modulation of shoot-to-root auxin transport in response to altered N tissue concentrations in the absence of rhizobia and that this controls lateral root density in response to N. The control of nodule density in response to N is more likely to occur locally in the root. PMID:22399647

  7. Enhanced Reactive Oxygen Species Scavenging by Overproduction of Superoxide Dismutase and Catalase Delays Postharvest Physiological Deterioration of Cassava Storage Roots1[C][W][OA

    PubMed Central

    Xu, Jia; Duan, Xiaoguang; Yang, Jun; Beeching, John R.; Zhang, Peng

    2013-01-01

    Postharvest physiological deterioration (PPD) of cassava (Manihot esculenta) storage roots is the result of a rapid oxidative burst, which leads to discoloration of the vascular tissues due to the oxidation of phenolic compounds. In this study, coexpression of the reactive oxygen species (ROS)-scavenging enzymes copper/zinc superoxide dismutase (MeCu/ZnSOD) and catalase (MeCAT1) in transgenic cassava was used to explore the intrinsic relationship between ROS scavenging and PPD occurrence. Transgenic cassava plants integrated with the expression cassette p54::MeCu/ZnSOD-35S::MeCAT1 were confirmed by Southern-blot analysis. The expression of MeCu/ZnSOD and MeCAT1 was verified by quantitative reverse transcription-polymerase chain reaction and enzymatic activity analysis both in the leaves and storage roots. Under exposure to the ROS-generating reagent methyl viologen or to hydrogen peroxide (H2O2), the transgenic plants showed higher enzymatic activities of SOD and CAT than the wild-type plants. Levels of malondialdehyde, chlorophyll degradation, lipid peroxidation, and H2O2 accumulation were dramatically reduced in the transgenic lines compared with the wild type. After harvest, the storage roots of transgenic cassava lines show a delay in their PPD response of at least 10 d, accompanied by less mitochondrial oxidation and H2O2 accumulation, compared with those of the wild type. We hypothesize that this is due to the combined ectopic expression of Cu/ZnSOD and CAT leading to an improved synergistic ROS-scavenging capacity of the roots. Our study not only sheds light on the mechanism of the PPD process but also develops an effective approach for delaying the occurrence of PPD in cassava. PMID:23344905

  8. An Auxin Transport Independent Pathway Is Involved in Phosphate Stress-Induced Root Architectural Alterations in Arabidopsis. Identification of BIG as a Mediator of Auxin in Pericycle Cell Activation1

    PubMed Central

    López-Bucio, José; Hernández-Abreu, Esmeralda; Sánchez-Calderón, Lenin; Pérez-Torres, Anahí; Rampey, Rebekah A.; Bartel, Bonnie; Herrera-Estrella, Luis

    2005-01-01

    Arabidopsis (Arabidopsis thaliana) plants display a number of root developmental responses to low phosphate availability, including primary root growth inhibition, greater formation of lateral roots, and increased root hair elongation. To gain insight into the regulatory mechanisms by which phosphorus (P) availability alters postembryonic root development, we performed a mutant screen to identify genetic determinants involved in the response to P deprivation. Three low phosphate-resistant root lines (lpr1-1 to lpr1-3) were isolated because of their reduced lateral root formation in low P conditions. Genetic and molecular analyses revealed that all lpr1 mutants were allelic to BIG, which is required for normal auxin transport in Arabidopsis. Detailed characterization of lateral root primordia (LRP) development in wild-type and lpr1 mutants revealed that BIG is required for pericycle cell activation to form LRP in both high (1 mm) and low (1 μm) P conditions, but not for the low P-induced alterations in primary root growth, lateral root emergence, and root hair elongation. Exogenously supplied auxin restored normal lateral root formation in lpr1 mutants in the two P treatments. Treatment of wild-type Arabidopsis seedlings with brefeldin A, a fungal metabolite that blocks auxin transport, phenocopies the root developmental alterations observed in lpr1 mutants in both high and low P conditions, suggesting that BIG participates in vesicular targeting of auxin transporters. Taken together, our results show that auxin transport and BIG function have fundamental roles in pericycle cell activation to form LRP and promote root hair elongation. The mechanism that activates root system architectural alterations in response to P deprivation, however, seems to be independent of auxin transport and BIG. PMID:15681664

  9. A Simple Chamber for Long-term Confocal Imaging of Root and Hypocotyl Development.

    PubMed

    Kirchhelle, Charlotte; Moore, Ian

    2017-05-17

    Several aspects of plant development, such as lateral root morphogenesis, occur on time spans of several days. To study underlying cellular and subcellular processes, high resolution time-lapse microscopy strategies that preserve physiological conditions are required. Plant tissues must have adequate nutrient and water supply with sustained gaseous exchange but, when submerged and immobilized under a coverslip, they are particularly susceptible to anoxia. One strategy that has been successfully employed is the use of a perfusion system to maintain a constant supply of oxygen and nutrients. However, such arrangements can be complicated, cumbersome, and require specialized equipment. Presented here is an alternative strategy for a simple imaging system using perfluorodecalin as an immersion medium. This system is easy to set up, requires minimal equipment, and is easily mounted on a microscope stage, allowing several imaging chambers to be set up and imaged in parallel. In this system, lateral root growth rates are indistinguishable from growth rates under standard conditions on agar plates for the first two days, and lateral root growth continues at reduced rates for at least another day. Plant tissues are supplied with nutrients via an agar slab that can be used also to administer a range of pharmacological compounds. The system was established to monitor lateral root development but is readily adaptable to image other plant organs such as hypocotyls and primary roots.

  10. Heuristic aspect of the lateral root initiation index: A case study of the role of nitric oxide in root branching.

    PubMed

    Lira-Ruan, Verónica; Mendivil, Selene Napsucialy; Dubrovsky, Joseph G

    2013-10-01

    Lateral root (LR) initiation (LRI) is a central process in root branching. Based on LR and/or LR primordium densities, it has been shown that nitric oxide (NO) promotes LRI. However, because NO inhibits primary root growth, we hypothesized that NO may have an opposite effect if the analysis is performed on a cellular basis. Using a previously proposed parameter, the LRI index (which measures how many LRI events take place along a root portion equivalent to the length of a single file of 100 cortical cells of average length), we addressed this hypothesis and illustrate here that the LRI index provides a researcher with a tool to uncover hidden but important information about root initiation. • Arabidopsis thaliana roots were treated with an NO donor (sodium nitroprusside [SNP]) and/or an NO scavenger (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide [cPTIO]). LRI was analyzed separately in the root portions formed before and during the treatment. In the latter, SNP caused root growth inhibition and an increase in the LR density accompanied by a decrease in LRI index, indicating overall inhibitory outcome of the NO donor on branching. The inhibitory effect of SNP was reversed by cPTIO, showing the NO-specific action of SNP on LRI. • Analysis of the LRI index permits the discovery of otherwise unknown modes of action of a substance on the root system formation. NO has a dual action on root branching, slightly promoting it in the root portion formed before the treatment and strongly inhibiting it in the root portion formed during the treatment.

  11. Chloroplast redox homeostasis is essential for lateral root formation in Arabidopsis.

    PubMed

    Ferrández, Julia; González, Maricruz; Cejudo, Francisco Javier

    2012-09-01

    Redox regulation based on dithiol-disulphide interchange is an essential component of the control of chloroplast metabolism. In contrast to heterotrophic organisms, and non-photosynthetic plant tissues, chloroplast redox regulation relies on ferredoxin (Fd) reduced by the photosynthetic electron transport chain, thus being highly dependent on light. The finding of the NADPH-dependent thioredoxin reductase C (NTRC), a chloroplast-localized NTR with a joint thioredoxin domain, showed that NADPH is also used as source of reducing power for chloroplast redox homeostasis. Recently we have found that NTRC is also in plastids of non-photosynthetic tissues. Because these non-green plastids lack photochemical reactions, their redox homeostasis depends exclusively on NADPH produced from sugars and, thus, NTRC may play an essential role maintaining the redox homeostasis in these plastids. The fact that redox regulation occurs in any type of plastids raises the possibility that the functions of chloroplasts and non-green plastids, such as amyloplasts, are integrated to harmonize the growth of the different organs of the plant. To address this question, we generated Arabidopsis plants the redox homeostasis of which is recovered exclusively in chloroplasts, by leaf-specific expression of NTRC in the ntrc mutant, or exclusively in amyloplasts, by root-specific expression of NTRC. The analysis of these plants suggests that chloroplasts exert a pivotal role on plant growth, as expected because chloroplasts constitute the major source of nutrients and energy, derived from photosynthesis, for growth of heterotrophic tissues. However, NTRC deficiency causes impairment of auxin synthesis and lateral root formation. Interestingly, recovery of redox homeostasis of chloroplasts, but not of amyloplasts, was sufficient to restore wild type levels of lateral roots, showing the important signaling function of chloroplasts for the development of heterotrophic organs.

  12. Root-type-specific plasticity in response to localized high nitrate supply in maize (Zea mays)

    PubMed Central

    Yu, Peng; Hochholdinger, Frank; Li, Chunjian

    2015-01-01

    Background and Aims Shoot-borne roots contribute to most of the nutrient uptake throughout the life cycle of maize (Zea mays). Compared with numerous studies with embryonic roots, detailed information on the phenotypic plasticity of shoot-borne roots in response to a heterogeneous nitrogen supply is scarce. The present study therefore provides a comprehensive profile of fine-scale plastic responses of distinct root types to localized high nitrate supply. Methods Seedlings of the maize inbred line B73 were grown in split-root systems. The anatomy and morphological plasticity of the primary root and the roots initiated from the 2nd, 5th and 7th shoot nodes, and their lateral roots, were studied in response to local high nitrate supply to one side of the root system. Key Results In contrast to the insensitivity of axial roots, local high nitrate supply increased the length of 1st-order lateral roots on the primary root and the three whorls of shoot-borne roots at different growth stages, and increased the density of 1st-order lateral roots on the 7th shoot-borne root after silking. The length and density of 2nd-order lateral roots on the three whorls of shoot-borne roots displayed a more flexible response to local high nitrate than 1st-order lateral roots. Root diameter and number, and total area and diameter of metaxylem vessels increased from the primary root to early and then later developed shoot-borne roots, which showed a positive relationship with shoot growth and N accumulation. Conclusions Maize axial roots and lateral roots responded differently to local high nitrate, and this was related to their function. The extent of morphological plasticity of lateral roots in response to local high nitrate depended on the initiation time of the shoot-borne roots on which the lateral roots developed. Morphological plasticity was higher on 2nd-order than on 1st-order lateral roots. The results suggest that higher order lateral root branching might be a potential target

  13. Root-type-specific plasticity in response to localized high nitrate supply in maize (Zea mays).

    PubMed

    Yu, Peng; Hochholdinger, Frank; Li, Chunjian

    2015-10-01

    Shoot-borne roots contribute to most of the nutrient uptake throughout the life cycle of maize (Zea mays). Compared with numerous studies with embryonic roots, detailed information on the phenotypic plasticity of shoot-borne roots in response to a heterogeneous nitrogen supply is scarce. The present study therefore provides a comprehensive profile of fine-scale plastic responses of distinct root types to localized high nitrate supply. Seedlings of the maize inbred line B73 were grown in split-root systems. The anatomy and morphological plasticity of the primary root and the roots initiated from the 2nd, 5th and 7th shoot nodes, and their lateral roots, were studied in response to local high nitrate supply to one side of the root system. In contrast to the insensitivity of axial roots, local high nitrate supply increased the length of 1st-order lateral roots on the primary root and the three whorls of shoot-borne roots at different growth stages, and increased the density of 1st-order lateral roots on the 7th shoot-borne root after silking. The length and density of 2nd-order lateral roots on the three whorls of shoot-borne roots displayed a more flexible response to local high nitrate than 1st-order lateral roots. Root diameter and number, and total area and diameter of metaxylem vessels increased from the primary root to early and then later developed shoot-borne roots, which showed a positive relationship with shoot growth and N accumulation. Maize axial roots and lateral roots responded differently to local high nitrate, and this was related to their function. The extent of morphological plasticity of lateral roots in response to local high nitrate depended on the initiation time of the shoot-borne roots on which the lateral roots developed. Morphological plasticity was higher on 2nd-order than on 1st-order lateral roots. The results suggest that higher order lateral root branching might be a potential target for genetic improvement in future maize breeding.

  14. Comparative Biomechanical Study on Contact Alterations After Lateral Meniscus Posterior Root Avulsion, Transosseous Reinsertion, and Total Meniscectomy.

    PubMed

    Perez-Blanca, Ana; Espejo-Baena, Alejandro; Amat Trujillo, Daniel; Prado Nóvoa, María; Espejo-Reina, Alejandro; Quintero López, Clara; Ezquerro Juanco, Francisco

    2016-04-01

    To compare the effects of lateral meniscus posterior root avulsion left in situ, its repair, and meniscectomy on contact pressure distribution in both tibiofemoral compartments at different flexion angles. Eight cadaveric knees were tested under compressive 1000 N load for 4 lateral meniscus conditions (intact, posterior root avulsion, transosseous root repair, and total meniscectomy) at flexion angles 0°, 30°, 60°, and 90°. Contact area and pressure distribution were registered using K-scan pressure sensors inserted between menisci and tibial plateau. In the lateral compartment, root detachment decreased contact area (P = .017, 0° and 30°; P = .012, 60° and 90°) and increased mean (P = .012, all angles) and maximum (P = .025, 0° and 30°; P = .017, 60°; P = .012, 90°) pressures relative to intact condition. Repair restored all measured parameters close to intact at 0°, but effectiveness decreased with flexion angle, yielding no significant effect at 90°. Meniscectomy produced higher decreases than root avulsion in contact area (P = .012, 0° and 90°; P = .05, 30° and 60°) and increases in mean (P = .017, 0° and 30°; P = .018, 90°) and maximum pressure (P = .012, 0°; P = .036, 30°). In the medial compartment, lesion changed the contact area at high flexion angles only, while meniscectomy induced greater changes at all angles. Lateral meniscus posterior root avulsion generates significant alterations in contact area and pressures at lateral knee compartment for flexion angles between full extension and 90°. Meniscectomy causes greater disorders than the avulsion left in situ. Transosseous repair with a single suture restores these alterations to conditions close to intact at 0° and 30° but not at 60° and 90°. Altered contact mechanics after lateral meniscus posterior root avulsion might have degenerative consequences. Transosseous repair with one suture should be revised to effectively restore contact mechanics at high flexion angles

  15. The effect of altered dosage of a mutant allele of Teosinte branched 1 (tb1-ref) on the root system of modern maize

    PubMed Central

    2014-01-01

    Background There was ancient human selection on the wild progenitor of modern maize, Balsas teosinte, for decreased shoot branching (tillering), in order to allow more nutrients to be diverted to grain. Mechanistically, the decline in shoot tillering has been associated with selection for increased expression of the major domestication gene Teosinte Branched 1 (Tb1) in shoot primordia. Therefore, TB1 has been defined as a repressor of shoot branching. It is known that plants respond to changes in shoot size by compensatory changes in root growth and architecture. However, it has not been reported whether altered TB1 expression affects any plant traits below ground. Previously, changes in dosage of a well-studied mutant allele of Tb1 in modern maize, called tb1-ref, from one to two copies, was shown to increase tillering. As a result, plants with two copies of the tb1-ref allele have a larger shoot biomass than heterozygotes. Here we used aeroponics to phenotype the effects of tb1-ref copy number on maize roots at macro-, meso- and micro scales of development. Results An increase in the tb1-ref copy number from one to two copies resulted in: (1) an increase in crown root number due to the cumulative initiation of crown roots from successive tillers; (2) higher density of first and second order lateral roots; and (3) reduced average lateral root length. The resulting increase in root system biomass in homozygous tb1-ref mutants balanced the increase in shoot biomass caused by enhanced tillering. These changes caused homozygous tb1-ref mutants of modern maize to more closely resemble its ancestor Balsas teosinte below ground. Conclusion We conclude that a decrease in TB1 function in maize results in a larger root system, due to an increase in the number of crown roots and lateral roots. Given that decreased TB1 expression results in a more highly branched and larger shoot, the impact of TB1 below ground may be direct or indirect. We discuss the potential implications

  16. The effect of altered dosage of a mutant allele of Teosinte branched 1 (tb1-ref) on the root system of modern maize.

    PubMed

    Gaudin, Amelie C M; McClymont, Sarah A; Soliman, Sameh S M; Raizada, Manish N

    2014-02-14

    There was ancient human selection on the wild progenitor of modern maize, Balsas teosinte, for decreased shoot branching (tillering), in order to allow more nutrients to be diverted to grain. Mechanistically, the decline in shoot tillering has been associated with selection for increased expression of the major domestication gene Teosinte Branched 1 (Tb1) in shoot primordia. Therefore, TB1 has been defined as a repressor of shoot branching. It is known that plants respond to changes in shoot size by compensatory changes in root growth and architecture. However, it has not been reported whether altered TB1 expression affects any plant traits below ground. Previously, changes in dosage of a well-studied mutant allele of Tb1 in modern maize, called tb1-ref, from one to two copies, was shown to increase tillering. As a result, plants with two copies of the tb1-ref allele have a larger shoot biomass than heterozygotes. Here we used aeroponics to phenotype the effects of tb1-ref copy number on maize roots at macro-, meso- and micro scales of development. An increase in the tb1-ref copy number from one to two copies resulted in: (1) an increase in crown root number due to the cumulative initiation of crown roots from successive tillers; (2) higher density of first and second order lateral roots; and (3) reduced average lateral root length. The resulting increase in root system biomass in homozygous tb1-ref mutants balanced the increase in shoot biomass caused by enhanced tillering. These changes caused homozygous tb1-ref mutants of modern maize to more closely resemble its ancestor Balsas teosinte below ground. We conclude that a decrease in TB1 function in maize results in a larger root system, due to an increase in the number of crown roots and lateral roots. Given that decreased TB1 expression results in a more highly branched and larger shoot, the impact of TB1 below ground may be direct or indirect. We discuss the potential implications of these findings for whole

  17. Overexpression of Arabidopsis plasmodesmata germin-like proteins disrupts root growth and development.

    PubMed

    Ham, Byung-Kook; Li, Gang; Kang, Byung-Ho; Zeng, Fanchang; Lucas, William J

    2012-09-01

    In plants, a population of non-cell-autonomous proteins (NCAPs), including numerous transcription factors, move cell to cell through plasmodesmata (PD). In many cases, the intercellular trafficking of these NCAPs is regulated by their interaction with specific PD components. To gain further insight into the functions of this NCAP pathway, coimmunoprecipitation experiments were performed on a tobacco (Nicotiana tabacum) plasmodesmal-enriched cell wall protein preparation using as bait the NCAP, pumpkin (Cucurbita maxima) PHLOEM PROTEIN16 (Cm-PP16). A Cm-PP16 interaction partner, Nt-PLASMODESMAL GERMIN-LIKE PROTEIN1 (Nt-PDGLP1) was identified and shown to be a PD-located component. Arabidopsis thaliana putative orthologs, PDGLP1 and PDGLP2, were identified; expression studies indicated that, postgermination, these proteins were preferentially expressed in the root system. The PDGLP1 signal peptide was shown to function in localization to the PD by a novel mechanism involving the endoplasmic reticulum-Golgi secretory pathway. Overexpression of various tagged versions altered root meristem function, leading to reduced primary root but enhanced lateral root growth. This effect on root growth was corrected with an inability of these chimeric proteins to form stable PD-localized complexes. PDGLP1 and PDGLP2 appear to be involved in regulating primary root growth by controlling phloem-mediated allocation of resources between the primary and lateral root meristems.

  18. Diversification of Root Hair Development Genes in Vascular Plants1[OPEN

    PubMed Central

    Shi, Xinhui; Wang, Wenjia; Ryu, Kook Hui

    2017-01-01

    The molecular genetic program for root hair development has been studied intensively in Arabidopsis (Arabidopsis thaliana). To understand the extent to which this program might operate in other plants, we conducted a large-scale comparative analysis of root hair development genes from diverse vascular plants, including eudicots, monocots, and a lycophyte. Combining phylogenetics and transcriptomics, we discovered conservation of a core set of root hair genes across all vascular plants, which may derive from an ancient program for unidirectional cell growth coopted for root hair development during vascular plant evolution. Interestingly, we also discovered preferential diversification in the structure and expression of root hair development genes, relative to other root hair- and root-expressed genes, among these species. These differences enabled the definition of sets of genes and gene functions that were acquired or lost in specific lineages during vascular plant evolution. In particular, we found substantial divergence in the structure and expression of genes used for root hair patterning, suggesting that the Arabidopsis transcriptional regulatory mechanism is not shared by other species. To our knowledge, this study provides the first comprehensive view of gene expression in a single plant cell type across multiple species. PMID:28487476

  19. Long range lateral root activity by neo-tropical savanna trees.

    Treesearch

    Leonel da S. L. Sternberg; Sandra Bucci; Augusto Franco; Guillermo Goldstein; William A. Hoffman; Frederick C. Meinzer; Marcelo Z. Moreira; Fabian Scholz

    2004-01-01

    The extent of water uptake by lateral roots of savanna trees in the Brazilian highlands was measured by irrigating two 2 by 2 m plots with deuterium-enriched water and assaying for the abundance of deuterium in stem water from trees inside and at several distances from the irrigation plots. Stem water of trees inside the irrigation plots was highly enriched compared to...

  20. The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryza sativa L.).

    PubMed

    Yu, ChenLiang; Sun, ChenDong; Shen, Chenjia; Wang, Suikang; Liu, Fang; Liu, Yan; Chen, YunLong; Li, Chuanyou; Qian, Qian; Aryal, Bibek; Geisler, Markus; Jiang, De An; Qi, YanHua

    2015-09-01

    Auxin and cadmium (Cd) stress play critical roles during root development. There are only a few reports on the mechanisms by which Cd stress influences auxin homeostasis and affects primary root (PR) and lateral root (LR) development, and almost nothing is known about how auxin and Cd interfere with root hair (RH) development. Here, we characterize rice osaux1 mutants that have a longer PR and shorter RHs in hydroponic culture, and that are more sensitive to Cd stress compared to wild-type (Dongjin). OsAUX1 expression in root hair cells is different from that of its paralogous gene, AtAUX1, which is expressed in non-hair cells. However, OsAUX1, like AtAUX1, localizes at the plasma membrane and appears to function as an auxin tranporter. Decreased auxin distribution and contents in the osaux1 mutant result in reduction of OsCyCB1;1 expression and shortened PRs, LRs and RHs under Cd stress, but may be rescued by treatment with the membrane-permeable auxin 1-naphthalene acetic acid. Treatment with the auxin transport inhibitors 1-naphthoxyacetic acid and N-1-naphthylphthalamic acid increased the Cd sensitivity of WT rice. Cd contents in the osaux1 mutant were not altered, but reactive oxygen species-mediated damage was enhanced, further increasing the sensitivity of the osaux1 mutant to Cd stress. Taken together, our results indicate that OsAUX1 plays an important role in root development and in responses to Cd stress. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  1. Single-point ACT2 gene mutation in the Arabidopsis root hair mutant der1-3 affects overall actin organization, root growth and plant development.

    PubMed

    Vaškebová, L; Šamaj, J; Ovecka, M

    2017-12-27

    The actin cytoskeleton forms a dynamic network in plant cells. A single-point mutation in the DER1 (deformed root hairs1) locus located in the sequence of ACTIN2, a gene for major actin in vegetative tissues of Arabidopsis thaliana, leads to impaired root hair development (Ringli C, Baumberger N, Diet A, Frey B, Keller B. 2002. ACTIN2 is essential for bulge site selection and tip growth during root hair development of Arabidopsis. Plant Physiology129: 1464-1472). Only root hair phenotypes have been described so far in der1 mutants, but here we demonstrate obvious aberrations in the organization of the actin cytoskeleton and overall plant development. Organization of the actin cytoskeleton in epidermal cells of cotyledons, hypocotyls and roots was studied qualitatively and quantitatively by live-cell imaging of transgenic lines carrying the GFP-FABD2 fusion protein and in fixed cells after phalloidin labelling. Patterns of root growth were characterized by FM4-64 vital staining, light-sheet microscopy imaging and microtubule immunolabelling. Plant phenotyping included analyses of germination, root growth and plant biomass. Speed of germination, plant fresh weight and total leaf area were significantly reduced in the der1-3 mutant in comparison with the C24 wild-type. Actin filaments in root, hypocotyl and cotyledon epidermal cells of the der1-3 mutant were shorter, thinner and arranged in more random orientations, while actin bundles were shorter and had altered orientations. The wavy pattern of root growth in der1-3 mutant was connected with higher frequencies of shifted cell division planes (CDPs) in root cells, which was consistent with the shifted positioning of microtubule-based preprophase bands and phragmoplasts. The organization of cortical microtubules in the root cells of the der1-3 mutant, however, was not altered. Root growth rate of the der1-3 mutant is not reduced, but changes in the actin cytoskeleton organization can induce a wavy root growth pattern

  2. Adenosine Kinase Modulates Root Gravitropism and Cap Morphogenesis in Arabidopsis1[W][OA

    PubMed Central

    Young, Li-Sen; Harrison, Benjamin R.; U.M., Narayana Murthy; Moffatt, Barbara A.; Gilroy, Simon; Masson, Patrick H.

    2006-01-01

    Adenosine kinase (ADK) is a key enzyme that regulates intra- and extracellular levels of adenosine, thereby modulating methyltransferase reactions, production of polyamines and secondary compounds, and cell signaling in animals. Unfortunately, little is known about ADK's contribution to the regulation of plant growth and development. Here, we show that ADK is a modulator of root cap morphogenesis and gravitropism. Upon gravistimulation, soluble ADK levels and activity increase in the root tip. Mutation in one of two Arabidopsis (Arabidopsis thaliana) ADK genes, ADK1, results in cap morphogenesis defects, along with alterations in root sensitivity to gravistimulation and slower kinetics of root gravitropic curvature. The kinetics defect can be partially rescued by adding spermine to the growth medium, whereas the defects in cap morphogenesis and gravitropic sensitivity cannot. The root morphogenesis and gravitropism defects of adk1-1 are accompanied by altered expression of the PIN3 auxin efflux facilitator in the cap and decreased expression of the auxin-responsive DR5-GUS reporter. Furthermore, PIN3 fails to relocalize to the bottom membrane of statocytes upon gravistimulation. Consequently, adk1-1 roots cannot develop a lateral auxin gradient across the cap, necessary for the curvature response. Interestingly, adk1-1 does not affect gravity-induced cytoplasmic alkalinization of the root statocytes, suggesting either that ADK1 functions between cytoplasmic alkalinization and PIN3 relocalization in a linear pathway or that the pH and PIN3-relocalization responses to gravistimulation belong to distinct branches of the pathway. Our data are consistent with a role for ADK and the S-adenosyl-l-methionine pathway in the control of root gravitropism and cap morphogenesis. PMID:16891550

  3. [The mechanism of root hair development and molecular regulation in plants].

    PubMed

    Wang, Yue-Ping; Li, Ying-Hui; Guan, Rong-Xia; Liu, Zhang-Xiong; Chen, Xiong-Ting; Chang, Ru-Zhen; Qiu, Li-Juan

    2007-04-01

    The formation of the root epidermis in Arabidopsis thaliana provides a simple model to study mechanisms underlying patterning in plants. Root hair increases the root surface area and effectively increases the root diameter, so root hair is thought to aid plants in nutrient uptake, anchorage and microbe interactions. The determination of root hair development has two types, lateral inhibition with feedback and position-dependent pattern of cell differentiation. The initiation and development of root hair in Arabidopsis provide a simple and efficacious model for the study of cell fate determination in plants. Molecular genetic studies identify a suite of putative transcription factors which regulate the epidermal cell pattern. The homeodomain protein GLABRA2 (GL2), R2R3 MYB-type transcription factor WEREWOLF (WER) and WD-repeat protein TRANSPARENTT TESTA GLABRA (TTG) are required for specification of non-hair cell type. The CAPRICE (CPC) and TRYPTICHON (TRY) are involved in specifying the hair cell fate.

  4. Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the Arabidopsis root apex.

    PubMed

    Rigas, Stamatis; Ditengou, Franck Anicet; Ljung, Karin; Daras, Gerasimos; Tietz, Olaf; Palme, Klaus; Hatzopoulos, Polydefkis

    2013-03-01

    Active polar transport establishes directional auxin flow and the generation of local auxin gradients implicated in plant responses and development. Auxin modulates gravitropism at the root tip and root hair morphogenesis at the differentiation zone. Genetic and biochemical analyses provide evidence for defective basipetal auxin transport in trh1 roots. The trh1, pin2, axr2 and aux1 mutants, and transgenic plants overexpressing PIN1, all showing impaired gravity response and root hair development, revealed ectopic PIN1 localization. The auxin antagonist hypaphorine blocked root hair elongation and caused moderate agravitropic root growth, also leading to PIN1 mislocalization. These results suggest that auxin imbalance leads to proximal and distal developmental defects in Arabidopsis root apex, associated with agravitropic root growth and root hair phenotype, respectively, providing evidence that these two auxin-regulated processes are coupled. Cell-specific subcellular localization of TRH1-YFP in stele and epidermis supports TRH1 engagement in auxin transport, and hence impaired function in trh1 causes dual defects of auxin imbalance. The interplay between intrinsic cues determining root epidermal cell fate through the TTG/GL2 pathway and environmental cues including abiotic stresses modulates root hair morphogenesis. As a consequence of auxin imbalance in Arabidopsis root apex, ectopic PIN1 mislocalization could be a risk aversion mechanism to trigger root developmental responses ensuring root growth plasticity. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  5. Effect of Seedling Size and First-Order-Lateral Roots on Early Development of Northern Red Oak on Mesic Sites

    Treesearch

    Paul P. Kormanik; Shi-Jean S. Sung; Donald J. Kass; Scott Schlarbaum

    1997-01-01

    Northern red oak (Quercus rubra) seedlings were placed in three grades based on number of first-order-lateral roots. The grades were poor, medium, and good and had numbers of 0 to 6, 7 to 11, 12, and > 12, respectively. Eighty seedlings from each group were either underplanted or established in an adjacent clearcut on a high-quality mesic site in...

  6. CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants.

    PubMed

    Delay, Christina; Imin, Nijat; Djordjevic, Michael A

    2013-12-01

    The manifestation of repetitive developmental programmes during plant growth can be adjusted in response to various environmental cues. During root development, this means being able to precisely control root growth and lateral root development. Small signalling peptides have been found to play roles in many aspects of root development. One member of the CEP (C-TERMINALLY ENCODED PEPTIDE) gene family has been shown to arrest root growth. Here we report that CEP genes are widespread among seed plants but are not present in land plants that lack true branching roots or root vasculature. We have identified 10 additional CEP genes in Arabidopsis. Expression analysis revealed that CEP genes are regulated by environmental cues such as nitrogen limitation, increased salt levels, increased osmotic strength, and increased CO2 levels in both roots and shoots. Analysis of synthetic CEP variants showed that both peptide sequence and modifications of key amino acids affect CEP biological activity. Analysis of several CEP over-expression lines revealed distinct roles for CEP genes in root and shoot development. A cep3 knockout mutant showed increased root and shoot growth under a range of abiotic stress, nutrient, and light conditions. We demonstrate that CEPs are negative regulators of root development, slowing primary root growth and reducing lateral root formation. We propose that CEPs are negative regulators that mediate environmental influences on plant development.

  7. Altered tibiofemoral contact mechanics due to lateral meniscus posterior horn root avulsions and radial tears can be restored with in situ pull-out suture repairs.

    PubMed

    LaPrade, Christopher M; Jansson, Kyle S; Dornan, Grant; Smith, Sean D; Wijdicks, Coen A; LaPrade, Robert F

    2014-03-19

    An avulsion of the posterior root attachment of the lateral meniscus or a radial tear close to the root attachment can lead to degenerative knee arthritis. Although the biomechanical effects of comparable injuries involving the medial meniscus have been studied, we are aware of no such study involving the lateral meniscus. We hypothesized that in situ pull-out suture repair of lateral meniscus root avulsions and of complete radial tears 3 and 6 mm from the root attachment would increase the contact area and decrease mean and peak tibiofemoral contact pressures, at all knee flexion angles, relative to the corresponding avulsion or tear condition. Eight human cadaveric knees underwent biomechanical testing. Eight lateral meniscus conditions (intact, footprint tear, root avulsion, root avulsion repair, radial tears at 3 and 6 mm from the posterior root, and repairs of the 3 and 6-mm tears) were tested at five different flexion angles (0°, 30°, 45°, 60°, and 90°) under a compressive 1000-N load. Avulsion of the posterior root of the lateral meniscus or an adjacent radial tear resulted in significantly decreased contact area and increased mean and peak contact pressures in the lateral compartment, relative to the intact condition, in all cases except the root avulsion condition at 0° of flexion. In situ pull-out suture repair of the root avulsion or radial tear significantly reduced mean contact pressures, relative to the corresponding avulsion or tear condition, when the results for each condition were pooled across all flexion angles. Posterior horn root avulsions and radial tears adjacent to the root attachment of the lateral meniscus significantly increased contact pressures in the lateral compartment. In situ pull-out suture repairs of these tears significantly improved lateral compartment joint contact pressures. In situ repair may be an effective treatment to improve tibiofemoral contact profiles after an avulsion of the posterior root of the lateral

  8. [Influences of arbuscular mycorrhizal fungus and phosphorus level on the lateral root formation of tomato seedlings].

    PubMed

    Jiang, Xia; Chen, Wei-li; Xu, Chun-xiang; Zhu, Hong-hui; Yao, Qing

    2015-04-01

    To explore the influences of arbuscular mycorrhizal fungi (AMF) and P level on plant root system architecture, tomato seedlings were inoculated with AMF strain Rhizophagus irregularis BGC JX04B under two P levels, and the influences of AMF and P level on lateral root (LR) formation of tomato seedlings were studied. Results indicated that the promoting effect of AMF on plant biomass was not evident, but significantly decreased the root to shoot ratio of plants. AMF significantly increased the primary root length but decreased the 1st order LR length and interacted with the mycorrhizal colonization period. AMF significantly lowered the 2nd-3rd order LR number and the ratio of 2nd order LR number to 1st order LR number, but did not significantly affect the 1st-2nd order LR density. High P level (50 mg x kg(-1) P) significantly promoted the plant growth and decreased the root to shoot ratio of plants. It had no significant effect on the primary root length and the 1st order root length, but significantly enhanced the 1st-3rd order LR number and the ratio of 2nd order LR number to P order LR number, increased the 1st-2nd order LR density. It suggested that AMF and P level did not share a common mechanism to influence the LR formation of tomato plants. The influence of high P level may depend on its promoting effects on nutrient uptake and plant growth, while the influence of AMF is more complex. Furthermore, the interaction between AMF and mycorrhizal colonization period implies the possible involvement of carbohydrate distribution (sugar signaling) in the regulation of root system architecture by AMF.

  9. Meniscus root repair.

    PubMed

    Vyas, Dharmesh; Harner, Christopher D

    2012-06-01

    Root tears are a subset of meniscal injuries that result in significant knee joint pathology. Occurring on either the medial or lateral side, root tears are defined as radial tears or avulsions of the posterior horn attachment to bone. After a root tear, there is a significant increase in tibio-femoral contact pressure concomitant with altered knee joint kinematics. Previous cadaver studies from our institution have shown that root repair of the medial meniscus is successful in restoring joint biomechanics to within normal limits. Indications for operative management of meniscal root tears include (1) a symptomatic medial meniscus root tear with minimal arthritis and having failed non-operative treatment, and (2) a lateral root tear in associated with an ACL tear. In this review, we describe diagnosis, imaging, patient selection, and arthroscopic surgical technique of medial and lateral meniscus root injuries. In addition we highlight the pearls of repair technique, associated complications, post-operative rehabilitation regimen, and expected outcomes.

  10. Symbiotic Fungi Control Plant Root Cortex Development through the Novel GRAS Transcription Factor MIG1.

    PubMed

    Heck, Carolin; Kuhn, Hannah; Heidt, Sven; Walter, Stefanie; Rieger, Nina; Requena, Natalia

    2016-10-24

    In an approaching scenario of soil nutrient depletion, root association with soil microorganisms can be key for plant health and sustainability [1-3]. Symbiotic arbuscular mycorrhizal (AM) fungi are major players in helping plants growing under nutrient starvation conditions. They provide plants with minerals like phosphate and, furthermore, act as modulators of plant growth altering the root developmental program [4, 5]. However, the precise mechanisms involved in this latter process are not well understood. Here, we show that AM fungi are able to modulate root cortex development in Medicago truncatula by activating a novel GRAS-domain transcription factor, MIG1, that determines the size of cortical root cells. MIG1 expression peaks in arbuscule-containing cells, suggesting a role in cell remodeling during fungal accommodation. Roots ectopically expressing MIG1 become thicker due to an increase in the number and width of cortical cells. This phenotype is fully counteracted by gibberellin (GA) and phenocopied with a GA biosynthesis inhibitor or by expression of a dominant DELLA (Δ18DELLA1) protein. MIG1 downregulation leads to malformed arbuscules, a phenotype rescued by Δ18DELLA1, suggesting that MIG1 intersects with the GA signaling to control cell morphogenesis through DELLA1. DELLA1 was shown to be a central node controlling arbuscule branching [6-8]. Now we provide evidence that, together with MIG1, DELLA1 is responsible for radial cortical cell expansion during arbuscule development. Our data point toward DELLA proteins being not only longitudinal root growth repressors [9] but also positive regulators of cortical radial cell expansion, extending the knowledge of how DELLAs control root growth. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. CsSCL1 is differentially regulated upon maturation in chestnut microshoots and is specifically expressed in rooting-competent cells.

    PubMed

    Vielba, Jesús M; Díaz-Sala, Carmen; Ferro, Enrique; Rico, Saleta; Lamprecht, María; Abarca, Dolores; Ballester, Antonio; Sánchez, Conchi

    2011-10-01

    The Castanea sativa SCL1 gene (CsSCL1) has previously been shown to be induced by auxin during adventitious root (AR) formation in rooting-competent microshoots. However, its expression has not previously been analyzed in rooting-incompetent shoots. This study focuses on the regulation of CsSCL1 during maturation and the role of the gene in the formation of AR. The expression of CsSCL1 in rooting-incompetent microshoots and other tissues was investigated by quantitative reverse transcriptase--polymerase chain reaction. The analysis was complemented by in situ hybridization of the basal segments of rooting-competent and --incompetent microshoots during AR induction, as well as in AR and lateral roots. It was found that CsSCL1 is upregulated by auxin in a cell-type- and phase-dependent manner during the induction of AR. In root-forming shoots, CsSCL1 mRNA was specifically located in the cambial zone and derivative cells, which are rooting-competent cells, whereas in rooting-incompetent shoots the hybridization signal was more diffuse and evenly distributed through the phloem and parenchyma. CsSCL1 expression was also detected in lateral roots and axillary buds. The different CsSCL1 expression patterns in rooting-competent and -incompetent microshoots, together with the specific location of transcripts in cell types involved in root meristem initiation and in the root primordia of AR and lateral roots, indicate an important role for the gene in determining whether certain cells will enter the root differentiation pathway and its involvement in meristem maintenance.

  12. The Physiology of Adventitious Roots1

    PubMed Central

    Steffens, Bianka; Rasmussen, Amanda

    2016-01-01

    Adventitious roots are plant roots that form from any nonroot tissue and are produced both during normal development (crown roots on cereals and nodal roots on strawberry [Fragaria spp.]) and in response to stress conditions, such as flooding, nutrient deprivation, and wounding. They are important economically (for cuttings and food production), ecologically (environmental stress response), and for human existence (food production). To improve sustainable food production under environmentally extreme conditions, it is important to understand the adventitious root development of crops both in normal and stressed conditions. Therefore, understanding the regulation and physiology of adventitious root formation is critical for breeding programs. Recent work shows that different adventitious root types are regulated differently, and here, we propose clear definitions of these classes. We use three case studies to summarize the physiology of adventitious root development in response to flooding (case study 1), nutrient deficiency (case study 2), and wounding (case study 3). PMID:26697895

  13. Overexpression of Arabidopsis Plasmodesmata Germin-Like Proteins Disrupts Root Growth and Development[C][W

    PubMed Central

    Ham, Byung-Kook; Li, Gang; Kang, Byung-Ho; Zeng, Fanchang; Lucas, William J.

    2012-01-01

    In plants, a population of non-cell-autonomous proteins (NCAPs), including numerous transcription factors, move cell to cell through plasmodesmata (PD). In many cases, the intercellular trafficking of these NCAPs is regulated by their interaction with specific PD components. To gain further insight into the functions of this NCAP pathway, coimmunoprecipitation experiments were performed on a tobacco (Nicotiana tabacum) plasmodesmal-enriched cell wall protein preparation using as bait the NCAP, pumpkin (Cucurbita maxima) PHLOEM PROTEIN16 (Cm-PP16). A Cm-PP16 interaction partner, Nt-PLASMODESMAL GERMIN-LIKE PROTEIN1 (Nt-PDGLP1) was identified and shown to be a PD-located component. Arabidopsis thaliana putative orthologs, PDGLP1 and PDGLP2, were identified; expression studies indicated that, postgermination, these proteins were preferentially expressed in the root system. The PDGLP1 signal peptide was shown to function in localization to the PD by a novel mechanism involving the endoplasmic reticulum-Golgi secretory pathway. Overexpression of various tagged versions altered root meristem function, leading to reduced primary root but enhanced lateral root growth. This effect on root growth was corrected with an inability of these chimeric proteins to form stable PD-localized complexes. PDGLP1 and PDGLP2 appear to be involved in regulating primary root growth by controlling phloem-mediated allocation of resources between the primary and lateral root meristems. PMID:22960910

  14. A role for the root cap in root branching revealed by the non-auxin probe naxillin.

    PubMed

    De Rybel, Bert; Audenaert, Dominique; Xuan, Wei; Overvoorde, Paul; Strader, Lucia C; Kepinski, Stefan; Hoye, Rebecca; Brisbois, Ronald; Parizot, Boris; Vanneste, Steffen; Liu, Xing; Gilday, Alison; Graham, Ian A; Nguyen, Long; Jansen, Leentje; Njo, Maria Fransiska; Inzé, Dirk; Bartel, Bonnie; Beeckman, Tom

    2012-09-01

    The acquisition of water and nutrients by plant roots is a fundamental aspect of agriculture and strongly depends on root architecture. Root branching and expansion of the root system is achieved through the development of lateral roots and is to a large extent controlled by the plant hormone auxin. However, the pleiotropic effects of auxin or auxin-like molecules on root systems complicate the study of lateral root development. Here we describe a small-molecule screen in Arabidopsis thaliana that identified naxillin as what is to our knowledge the first non-auxin-like molecule that promotes root branching. By using naxillin as a chemical tool, we identified a new function for root cap-specific conversion of the auxin precursor indole-3-butyric acid into the active auxin indole-3-acetic acid and uncovered the involvement of the root cap in root branching. Delivery of an auxin precursor in peripheral tissues such as the root cap might represent an important mechanism shaping root architecture.

  15. A role for the root cap in root branching revealed by the non-auxin probe naxillin

    PubMed Central

    De Rybel, Bert; Audenaert, Dominique; Xuan, Wei; Overvoorde, Paul; Strader, Lucia C; Kepinski, Stefan; Hoye, Rebecca; Brisbois, Ronald; Parizot, Boris; Vanneste, Steffen; Liu, Xing; Gilday, Alison; Graham, Ian A; Nguyen, Long; Jansen, Leentje; Njo, Maria Fransiska; Inzé, Dirk; Bartel, Bonnie; Beeckman, Tom

    2013-01-01

    The acquisition of water and nutrients by plant roots is a fundamental aspect of agriculture and strongly depends on root architecture. Root branching and expansion of the root system is achieved through the development of lateral roots and is to a large extent controlled by the plant hormone auxin. However, the pleiotropic effects of auxin or auxin-like molecules on root systems complicate the study of lateral root development. Here we describe a small-molecule screen in Arabidopsis thaliana that identified naxillin as what is to our knowledge the first non-auxin-like molecule that promotes root branching. By using naxillin as a chemical tool, we identified a new function for root cap-specific conversion of the auxin precursor indole-3-butyric acid into the active auxin indole-3-acetic acid and uncovered the involvement of the root cap in root branching. Delivery of an auxin precursor in peripheral tissues such as the root cap might represent an important mechanism shaping root architecture. PMID:22885787

  16. Indole-3-butyric acid induces lateral root formation via peroxisome-derived indole-3-acetic acid and nitric oxide.

    PubMed

    Schlicht, Markus; Ludwig-Müller, Jutta; Burbach, Christian; Volkmann, Dieter; Baluska, Frantisek

    2013-10-01

    Controlled plant growth requires regulation through a variety of signaling molecules, including steroids, peptides, radicals of oxygen and nitrogen, as well as the 'classical' phytohormone groups. Auxin is critical for the control of plant growth and also orchestrates many developmental processes, such as the formation of new roots. It modulates root architecture both slowly, through actions at the transcriptional level and, more rapidly, by mechanisms targeting primarily plasma membrane sensory systems and intracellular signaling pathways. The latter reactions use several second messengers, including Ca(2+) , nitric oxide (NO) and reactive oxygen species (ROS). Here, we investigated the different roles of two auxins, the major auxin indole-3-acetic acid (IAA) and another endogenous auxin indole-3-butyric acid (IBA), in the lateral root formation process of Arabidopsis and maize. This was mainly analyzed by different types of fluorescence microscopy and inhibitors of NO production. This study revealed that peroxisomal IBA to IAA conversion is followed by peroxisomal NO, which is important for IBA-induced lateral root formation. We conclude that peroxisomal NO emerges as a new player in auxin-induced root organogenesis. In particular, the spatially and temporally coordinated release of NO and IAA from peroxisomes is behind the strong promotion of lateral root formation via IBA. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  17. Root tensile strength assessment of Dryas octopetala L. and implications for its engineering mechanism on lateral moraine slopes (Turtmann Valley, Switzerland)

    NASA Astrophysics Data System (ADS)

    Eibisch, Katharina; Eichel, Jana; Dikau, Richard

    2015-04-01

    Geomorphic processes and properties are influenced by vegetation. It has been shown that vegetation cover intercepts precipitation, enhances surface detention and storage, traps sediment and provides additional surface roughness. Plant roots impact the soil in a mechanical and hydrological manner and affect shear strength, infiltration capacity and moisture content. Simultaneously, geomorphic processes disturb the vegetation development. This strong coupling of the geomorphic and ecologic system is investigated in Biogeomorphology. Lateral moraine slopes are characterized by a variety of geomorphic processes, e. g. sheet wash, solifluction and linear erosion. However, some plant species, termed engineer species, possess specific functional traits which allow them to grow under these conditions and also enable them to influence the frequency, magnitude and even nature of geomorphic processes. For lateral moraine slopes, Dryas octopetala L., an alpine dwarf shrub, was identified as a potential engineer species. The engineering mechanism of D. octopetala, based on its morphological (e.g., growth form) and biomechanical (e.g., root strength) traits, yet remains unclear and only little research has been conducted on alpine plant species. The objectives of this study are to fill this gap by (A) quantifying D. octopetala root tensile strength as an important trait considering anchorage in and stabilization of the slope and (B) linking plant traits to the geomorphic process they influence on lateral moraine slopes. D. octopetala traits were studied on a lateral moraine slope in Turtmann glacier forefield, Switzerland. (A) Root strength of single root threads of Dryas octopetala L. were tested using the spring scale method (Schmidt et al., 2001; Hales et al., 2013). Measurement equipment was modified to enable field measurements of roots shortly after excavation. Tensile strength of individual root threads was calculated and statistically analyzed. First results show that

  18. C1 lateral mass screw-induced occipital neuralgia: a report of two cases.

    PubMed

    Conroy, Eimear; Laing, Alan; Kenneally, Rory; Poynton, A R

    2010-03-01

    C1-2 polyaxial screw-rod fixation is a relatively new technique. While recognizing the potential for inadvertent vertebral artery injury, there have been few reports in the literature outlining all the possible complications. Aim of this study is to review all cases of C1 lateral mass screws insertion with emphasis on the evaluation of potential structures at risk during the procedure. We retrospectively reviewed all patients in our unit who had C1 lateral mass screw insertion over a 2-year period. The C1 lateral mass screw was inserted as part of an atlantoaxial stabilization or incorporated into a modular occiput/subaxial construct. Outcome measures included clinical and radiological parameters. Clinical indicators included age, gender, neurologic status, surgical indication and the number of levels stabilized. Intraoperative complications including blood loss, vertebral artery injury or dural tears were recorded. Postoperative pain distribution and neurological deficit were recorded. Radiological indicators included postoperative plain radiographs to assess sagittal alignment and to check for screw malposition or construct failure. A total of 18 lateral mass screws were implanted in 9 patients. There were three male and six female patients who had C1 lateral mass screw insertion in this unit. Two patients had atlantoaxial stabilization for C2 fracture. There were four patients with rheumatoid arthritis whose C1 lateral mass screws were inserted as part of an occipitocervical or subaxial cervical stabilization. There was no vertebral artery injury, no cerebrospinal fluid leak and minimal blood loss in all patients. Three patients developed postoperative occipital neuralgia. This neuralgia was transient, in one of the patients having settled at 6-week follow-up. In the other two patients the neuralgia was unresolved at time of latest follow-up but was adequately controlled with appropriate pain management. Postoperatively no patient had radiographic evidence of

  19. C1 lateral mass screw-induced occipital neuralgia: a report of two cases

    PubMed Central

    Laing, Alan; Kenneally, Rory; Poynton, A. R.

    2009-01-01

    C1–2 polyaxial screw-rod fixation is a relatively new technique. While recognizing the potential for inadvertent vertebral artery injury, there have been few reports in the literature outlining all the possible complications. Aim of this study is to review all cases of C1 lateral mass screws insertion with emphasis on the evaluation of potential structures at risk during the procedure. We retrospectively reviewed all patients in our unit who had C1 lateral mass screw insertion over a 2-year period. The C1 lateral mass screw was inserted as part of an atlantoaxial stabilization or incorporated into a modular occiput/subaxial construct. Outcome measures included clinical and radiological parameters. Clinical indicators included age, gender, neurologic status, surgical indication and the number of levels stabilized. Intraoperative complications including blood loss, vertebral artery injury or dural tears were recorded. Postoperative pain distribution and neurological deficit were recorded. Radiological indicators included postoperative plain radiographs to assess sagittal alignment and to check for screw malposition or construct failure. A total of 18 lateral mass screws were implanted in 9 patients. There were three male and six female patients who had C1 lateral mass screw insertion in this unit. Two patients had atlantoaxial stabilization for C2 fracture. There were four patients with rheumatoid arthritis whose C1 lateral mass screws were inserted as part of an occipitocervical or subaxial cervical stabilization. There was no vertebral artery injury, no cerebrospinal fluid leak and minimal blood loss in all patients. Three patients developed postoperative occipital neuralgia. This neuralgia was transient, in one of the patients having settled at 6-week follow-up. In the other two patients the neuralgia was unresolved at time of latest follow-up but was adequately controlled with appropriate pain management. Postoperatively no patient had radiographic evidence of

  20. cis-Cinnamic Acid Is a Novel, Natural Auxin Efflux Inhibitor That Promotes Lateral Root Formation1[OPEN

    PubMed Central

    Steenackers, Ward; Corneillie, Sander; Araújo, Pedro; Viaene, Tom; Nowack, Moritz K.; Blakeslee, Joshua J.; Novák, Ondřej; Zažímalová, Eva

    2017-01-01

    Auxin steers numerous physiological processes in plants, making the tight control of its endogenous levels and spatiotemporal distribution a necessity. This regulation is achieved by different mechanisms, including auxin biosynthesis, metabolic conversions, degradation, and transport. Here, we introduce cis-cinnamic acid (c-CA) as a novel and unique addition to a small group of endogenous molecules affecting in planta auxin concentrations. c-CA is the photo-isomerization product of the phenylpropanoid pathway intermediate trans-CA (t-CA). When grown on c-CA-containing medium, an evolutionary diverse set of plant species were shown to exhibit phenotypes characteristic for high auxin levels, including inhibition of primary root growth, induction of root hairs, and promotion of adventitious and lateral rooting. By molecular docking and receptor binding assays, we showed that c-CA itself is neither an auxin nor an anti-auxin, and auxin profiling data revealed that c-CA does not significantly interfere with auxin biosynthesis. Single cell-based auxin accumulation assays showed that c-CA, and not t-CA, is a potent inhibitor of auxin efflux. Auxin signaling reporters detected changes in spatiotemporal distribution of the auxin response along the root of c-CA-treated plants, and long-distance auxin transport assays showed no inhibition of rootward auxin transport. Overall, these results suggest that the phenotypes of c-CA-treated plants are the consequence of a local change in auxin accumulation, induced by the inhibition of auxin efflux. This work reveals a novel mechanism how plants may regulate auxin levels and adds a novel, naturally occurring molecule to the chemical toolbox for the studies of auxin homeostasis. PMID:27837086

  1. Transcriptome analysis reveals the effects of sugar metabolism and auxin and cytokinin signaling pathways on root growth and development of grafted apple.

    PubMed

    Li, Guofang; Ma, Juanjuan; Tan, Ming; Mao, Jiangping; An, Na; Sha, Guangli; Zhang, Dong; Zhao, Caiping; Han, Mingyu

    2016-02-29

    The root architecture of grafted apple (Malus spp.) is affected by various characteristics of the scions. To provide information on the molecular mechanisms underlying this influence, we examined root transcriptomes of M. robusta rootstock grafted with scions of wild-type (WT) apple (M. spectabilis) and a more-branching (MB) mutant at the branching stage. The growth rate of rootstock grafted MB was repressed significantly, especially the primary root length and diameter, and root weight. Biological function categories of differentially expressed genes were significantly enriched in processes associated with hormone signal transduction and intracellular activity, with processes related to the cell cycle especially down-regulated. Roots of rootstock grafted with MB scions displayed elevated auxin and cytokinin contents and reduced expression of MrPIN1, MrARF, MrAHP, most MrCRE1 genes, and cell growth-related genes MrGH3, MrSAUR and MrTCH4. Although auxin accumulation and transcription of MrPIN3, MrALF1 and MrALF4 tended to induce lateral root formation in MB-grafted rootstock, the number of lateral roots was not significantly changed. Sucrose, fructose and glucose contents were not decreased in MB-grafted roots compared with those bearing WT scions, but glycolysis and tricarboxylic acid cycle metabolic activities were repressed. Root resistance and nitrogen metabolism were reduced in MB-grafted roots as well. Our findings suggest that root growth and development of rootstock are mainly influenced by sugar metabolism and auxin and cytokinin signaling pathways. This study provides a basis that the characteristics of scions are related to root growth and development, resistance and activity of rootstocks.

  2. A Phylogenetic Strategy Based on a Legume-Specific Whole Genome Duplication Yields Symbiotic Cytokinin Type-A Response Regulators1[C][W][OA

    PubMed Central

    Op den Camp, Rik H.M.; De Mita, Stéphane; Lillo, Alessandra; Cao, Qingqin; Limpens, Erik; Bisseling, Ton; Geurts, René

    2011-01-01

    Legumes host their Rhizobium spp. symbiont in novel root organs called nodules. Nodules originate from differentiated root cortical cells that dedifferentiate and subsequently form nodule primordia, a process controlled by cytokinin. A whole-genome duplication has occurred at the root of the legume Papilionoideae subfamily. We hypothesize that gene pairs originating from this duplication event and are conserved in distinct Papilionoideae lineages have evolved symbiotic functions. A phylogenetic strategy was applied to search for such gene pairs to identify novel regulators of nodulation, using the cytokinin phosphorelay pathway as a test case. In this way, two paralogous type-A cytokinin response regulators were identified that are involved in root nodule symbiosis. Response Regulator9 (MtRR9) and MtRR11 in medicago (Medicago truncatula) and an ortholog in lotus (Lotus japonicus) are rapidly induced upon Rhizobium spp. Nod factor signaling. Constitutive expression of MtRR9 results in arrested primordia that have emerged from cortical, endodermal, and pericycle cells. In legumes, lateral root primordia are not exclusively formed from pericycle cells but also require the involvement of the root cortical cell layer. Therefore, the MtRR9-induced foci of cell divisions show a strong resemblance to lateral root primordia, suggesting an ancestral function of MtRR9 in this process. Together, these findings provide a proof of principle for the applied phylogenetic strategy to identify genes with a symbiotic function in legumes. PMID:22034625

  3. Root-derived auxin contributes to the phosphorus-deficiency-induced cluster-root formation in white lupin (Lupinus albus).

    PubMed

    Meng, Zhi Bin; You, Xue Di; Suo, Dong; Chen, Yun Long; Tang, Caixian; Yang, Jian Li; Zheng, Shao Jian

    2013-08-01

    Formation of cluster roots is a typical morphological response to phosphorus (P) deficiency in white lupin (Lupinus albus), but its physiological and molecular mechanisms are still unclear. We investigated the role of auxin in the initiation of cluster roots by distinguishing the sources of auxin, measuring the longitudinal distribution patterns of free indole-3-acetic acid (IAA) along the root and the related gene expressions responsible for polar auxin transport (PAT) in different developmental stages of cluster roots. We found that removal of shoot apex or primary root apex and application of auxin-influx or -efflux transport inhibitors, 3-chloro-4-hydroxyphenylacetic acid, N-1-naphthylphthalamic acid and 2,3,5-triiodobenzoic acid, to the stem did not affect the number of cluster roots and the free-IAA concentration in the roots of P-deficient plants, but when these inhibitors were applied directly to the growth media, the cluster-root formation was greatly suppressed, suggesting the fundamental role of root-derived IAA in cluster-root formation. The concentration of free IAA in the roots was higher in P-deficient plants than in P-adequate ones, and the highest in the lateral-root apex and the lowest in the mature cluster roots. Meanwhile the expression patterns of LaAUX1, LaPIN1 and LaPIN3 transcripts related to PAT was consistent with concentrations of free IAA along the lateral root, indicating the contribution of IAA redistribution in the cluster-root development. We proposed that root-derived IAA plays a direct and important role in the P-deficiency-induced formation of cluster roots. Copyright © Physiologia Plantarum 2012.

  4. High-resolution quantification of root dynamics in split-nutrient rhizoslides reveals rapid and strong proliferation of maize roots in response to local high nitrogen

    PubMed Central

    in ‘t Zandt, Dina; Le Marié, Chantal; Kirchgessner, Norbert; Visser, Eric J.W.; Hund, Andreas

    2015-01-01

    The plant’s root system is highly plastic, and can respond to environmental stimuli such as high nitrogen (N) in patches. A root may respond to an N patch by selective placement of new lateral roots, and therewith increases root N uptake. This may be a desirable trait in breeding programmes, since it decreases NO3 - leaching and N2O emission. Roots of maize (Zea mays L.) were grown without N in split-nutrient rhizoslides. One side of the slides was exposed to high N after 15 d of root development, and root elongation was measured for another 15 d, described in a time course model and parameterized. The elongation rates of crown axile roots on the N-treated side of the plant followed a logistic increase to a maximum of 5.3cm d-1; 95% of the maximum were reached within 4 d. At the same time, on the untreated side, axile root elongation dropped linearly to 1.2cm d-1 within 6.4 d and stayed constant thereafter. Twice as many lateral roots were formed on the crown axis on the N side compared to the untreated side. Most strikingly, the elongation rates of laterals of the N side increased linearly with most of the roots reaching an asymptote ~8 d after start of the N treatment. By contrast, laterals on the side without N did not show any detectable elongation beyond the first day after their emergence. We conclude that split-nutrient rhizoslides have great potential to improve our knowledge about nitrogen responsiveness and selection for contrasting genotypes. PMID:26105997

  5. Effects of subsoiling on lateral roots, sucrose metabolizing enzymes, and soil ergosterol in two Jeffrey pine stands

    Treesearch

    W.J. Otrosina; Shi-Jean S. Sung; L.M. White

    1996-01-01

    We determined the effects of subsoiling on woody lateral roots and enzyme activities involved in stem carbon metabolism of 90- to 100-year-old Jeffrey pine (Pinus jeffreyi Grev. And Balf.) growing on the eastern side of the California Sierra Nevada Range.Twelve 1.0-ha plots were established on each of two sites. Four site treatments thinning and subsoiling entire...

  6. Endodermal ABA Signaling Promotes Lateral Root Quiescence during Salt Stress in Arabidopsis Seedlings[C][W

    PubMed Central

    Duan, Lina; Dietrich, Daniela; Ng, Chong Han; Chan, Penny Mei Yeen; Bhalerao, Rishikesh; Bennett, Malcolm J.; Dinneny, José R.

    2013-01-01

    The endodermal tissue layer is found in the roots of vascular plants and functions as a semipermeable barrier, regulating the transport of solutes from the soil into the vascular stream. As a gateway for solutes, the endodermis may also serve as an important site for sensing and responding to useful or toxic substances in the environment. Here, we show that high salinity, an environmental stress widely impacting agricultural land, regulates growth of the seedling root system through a signaling network operating primarily in the endodermis. We report that salt stress induces an extended quiescent phase in postemergence lateral roots (LRs) whereby the rate of growth is suppressed for several days before recovery begins. Quiescence is correlated with sustained abscisic acid (ABA) response in LRs and is dependent upon genes necessary for ABA biosynthesis, signaling, and transcriptional regulation. We use a tissue-specific strategy to identify the key cell layers where ABA signaling acts to regulate growth. In the endodermis, misexpression of the ABA insensitive1-1 mutant protein, which dominantly inhibits ABA signaling, leads to a substantial recovery in LR growth under salt stress conditions. Gibberellic acid signaling, which antagonizes the ABA pathway, also acts primarily in the endodermis, and we define the crosstalk between these two hormones. Our results identify the endodermis as a gateway with an ABA-dependent guard, which prevents root growth into saline environments. PMID:23341337

  7. Strigolactones Effects on Root Growth

    NASA Astrophysics Data System (ADS)

    Koltai, Hinanit

    2012-07-01

    Strigolactones (SLs) were defined as a new group of plant hormones that suppress lateral shoot branching. Our previous studies suggested SLs to be regulators of root development. SLs were shown to alter root architecture by regulating lateral root formation and to affect root hair elongation in Arabidopsis. Another important effect of SLs on root growth was shown to be associated with root directional growth. Supplementation of SLs to roots led to alterations in root directional growth, whereas associated mutants showed asymmetrical root growth, which was influenced by environmental factors. The regulation by SLs of root development was shown to be conducted via a cross talk of SLs with other plant hormones, including auxin. SLs were shown to regulate auxin transport, and to interfere with the activity of auxin-efflux carriers. Therefore, it might be that SLs are regulators of root directional growth as a result of their ability to regulated auxin transport. However, other evidences suggest a localized effect of SLs on cell division, which may not necessarily be associated with auxin efflux. These and other, recent hypothesis as to the SLs mode of action and the associated root perception and response to environmental factors will be discussed.

  8. ROOT HAIR DEFECTIVE SIX-LIKE Class I Genes Promote Root Hair Development in the Grass Brachypodium distachyon

    PubMed Central

    Kim, Chul Min

    2016-01-01

    Genes encoding ROOT HAIR DEFECTIVE SIX-LIKE (RSL) class I basic helix loop helix proteins are expressed in future root hair cells of the Arabidopsis thaliana root meristem where they positively regulate root hair cell development. Here we show that there are three RSL class I protein coding genes in the Brachypodium distachyon genome, BdRSL1, BdRSL2 and BdRSL3, and each is expressed in developing root hair cells after the asymmetric cell division that forms root hair cells and hairless epidermal cells. Expression of BdRSL class I genes is sufficient for root hair cell development: ectopic overexpression of any of the three RSL class I genes induces the development of root hairs in every cell of the root epidermis. Expression of BdRSL class I genes in root hairless Arabidopsis thaliana root hair defective 6 (Atrhd6) Atrsl1 double mutants, devoid of RSL class I function, restores root hair development indicating that the function of these proteins has been conserved. However, neither AtRSL nor BdRSL class I genes is sufficient for root hair development in A. thaliana. These data demonstrate that the spatial pattern of class I RSL activity can account for the pattern of root hair cell differentiation in B. distachyon. However, the spatial pattern of class I RSL activity cannot account for the spatial pattern of root hair cells in A. thaliana. Taken together these data indicate that that the functions of RSL class I proteins have been conserved among most angiosperms—monocots and eudicots—despite the dramatically different patterns of root hair cell development. PMID:27494519

  9. The xipotl Mutant of Arabidopsis Reveals a Critical Role for Phospholipid Metabolism in Root System Development and Epidermal Cell Integrity

    PubMed Central

    Cruz-Ramírez, Alfredo; López-Bucio, José; Ramírez-Pimentel, Gabriel; Zurita-Silva, Andrés; Sánchez-Calderon, Lenin; Ramírez-Chávez, Enrique; González-Ortega, Emmanuel; Herrera-Estrella, Luis

    2004-01-01

    Phosphocholine (PCho) is an essential metabolite for plant development because it is the precursor for the biosynthesis of phosphatidylcholine, which is the major lipid component in plant cell membranes. The main step in PCho biosynthesis in Arabidopsis thaliana is the triple, sequential N-methylation of phosphoethanolamine, catalyzed by S-adenosyl-l-methionine:phosphoethanolamine N-methyltransferase (PEAMT). In screenings performed to isolate Arabidopsis mutants with altered root system architecture, a T-DNA mutagenized line showing remarkable alterations in root development was isolated. At the seedling stage, the mutant phenotype is characterized by a short primary root, a high number of lateral roots, and short epidermal cells with aberrant morphology. Genetic and biochemical characterization of this mutant showed that the T-DNA was inserted at the At3g18000 locus (XIPOTL1), which encodes PEAMT (XIPOTL1). Further analyses revealed that inhibition of PCho biosynthesis in xpl1 mutants not only alters several root developmental traits but also induces cell death in root epidermal cells. Epidermal cell death could be reversed by phosphatidic acid treatment. Taken together, our results suggest that molecules produced downstream of the PCho biosynthesis pathway play key roles in root development and act as signals for cell integrity. PMID:15295103

  10. Endodontic Management of a Maxillary Lateral Incisor with 4 Root Canals and a Dens Invaginatus Tract.

    PubMed

    Nosrat, Ali; Schneider, S Craig

    2015-07-01

    Dens invaginatus (DI) is associated with complex internal anatomy. This article represents a maxillary lateral incisor with 5 root canals including DI. The treatment was planned and performed using cone-beam computed tomographic (CBCT) imaging. After clinical and radiographic evaluations, tooth #7 was diagnosed with DI and pulp necrosis with symptomatic apical periodontitis. Periapical radiographs of the tooth showed 2 roots and complex internal anatomy. CBCT evaluation revealed tooth #7 had 5 separate canals (4 root canals and 1 DI canal extending through the root to the periodontal ligament), communication between DI and the root canal system, and severe and multiple curvatures of the palatal canals. Root canal treatment was completed in 2 visits. Modified access openings were required to safely treat the dilacerated palatal canals. At the 6-month re-evaluation, the patient reported he had remained asymptomatic and his tooth had remained functional since the treatment was completed. Clinical examination showed tooth #7 had no sensitivity to percussion or palpation, probe depths within normal limits (≤3 mm), and no mobility. Radiographic assessment of the tooth showed significant osseous healing of the preoperative lesion. Three-dimensional imaging is a valuable tool for endodontic management of teeth with complex internal anatomy. Three-dimensional imaging is recommended for evaluating and treatment planning cases with DI. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. 2,4-diacetylphloroglucinol alters plant root development.

    PubMed

    Brazelton, Jessica N; Pfeufer, Emily E; Sweat, Teresa A; Gardener, Brian B McSpadden; Coenen, Catharina

    2008-10-01

    Pseudomonas fluorescens isolates containing the phlD gene can protect crops from root pathogens, at least in part through production of the antibiotic 2,4-diacetylphloroglucinol (DAPG). However, the action mechanisms of DAPG are not fully understood, and effects of this antibiotic on host root systems have not been characterized in detail. DAPG inhibited primary root growth and stimulated lateral root production in tomato seedlings. Roots of the auxin-resistant diageotropica mutant of tomato demonstrated reduced DAPG sensitivity with regards to inhibition of primary root growth and induction of root branching. Additionally, applications of exogenous DAPG, at concentrations previously found in the rhizosphere of plants inoculated with DAPG-producing pseudomonads, inhibited the activation of an auxin-inducible GH3 promoter::luciferase reporter gene construct in transgenic tobacco hypocotyls. In this model system, supernatants of 17 phlD+ P. fluorescens isolates had inhibitory effects on luciferase activity similar to synthetic DAPG. In addition, a phlD() mutant strain, unable to produce DAPG, demonstrated delayed inhibitory effects compared with the parent wild-type strain. These results indicate that DAPG can alter crop root architecture by interacting with an auxin-dependent signaling pathway.

  12. Synergy between root hydrotropic response and root biomass in maize (Zea mays L.) enhances drought avoidance.

    PubMed

    Eapen, Delfeena; Martínez-Guadarrama, Jesús; Hernández-Bruno, Oralia; Flores, Leonardo; Nieto-Sotelo, Jorge; Cassab, Gladys I

    2017-12-01

    Roots of higher plants change their growth direction in response to moisture, avoiding drought and gaining maximum advantage for development. This response is termed hydrotropism. There have been few studies of root hydrotropism in grasses, particularly in maize. Our goal was to test whether an enhanced hydrotropic response of maize roots correlates with a better adaptation to drought and partial/lateral irrigation in field studies. We developed a laboratory bioassay for testing hydrotropic response in primary roots of 47 maize elite DTMA (Drought Tolerant Maize for Africa) hybrids. After phenotyping these hybrids in the laboratory, selected lines were tested in the field. Three robust and three weak hybrids were evaluated employing three irrigation procedures: normal irrigation, partial lateral irrigation and drought. Hybrids with a robust hydrotropic response showed growth and developmental patterns, under drought and partial lateral irrigation, that differed from weak hydrotropic responders. A correlation between root crown biomass and grain yield in hybrids with robust hydrotropic response was detected. Hybrids with robust hydrotropic response showed earlier female flowering whereas several root system traits, such as projected root area, median width, maximum width, skeleton width, skeleton nodes, average tip diameter, rooting depth skeleton, thinner aboveground crown roots, as well as stem diameter, were considerably higher than in weak hydrotropic responders in the three irrigation procedures utilized. These results demonstrate the benefit of intensive phenotyping of hydrotropism in primary roots since maize plants that display a robust hydrotropic response grew better under drought and partial lateral irrigation, indicating that a selection for robust hydrotropism might be a promising breeding strategy to improve drought avoidance in maize. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Endodontic-periodontal management of two rooted maxillary lateral incisor associated with complex radicular lingual groove by using spiral computed tomography as a diagnostic aid: a case report.

    PubMed

    Gandhi, A; Kathuria, A; Gandhi, T

    2011-06-01

    To present the successful endodontic and periodontal management of a two rooted maxillary lateral incisor tooth with a complex radicular lingual groove and severe periodontal destruction using spiral computed tomography as a diagnostic aid. A 30-year-old male patient presented with a chief complaint of mobility and discharge of pus in an upper front tooth. Clinical examination revealed a sinus tract on the labial gingival surface and a 10-mm-deep periodontal pocket associated with maxillary left lateral incisor tooth. On the lingual side, a groove emerging from cingulum, continuing mesioapically down the lingual aspect of tooth was found. Intraoral periapical radiographs demonstrated a lateral periodontal defect around the mesial aspect and a diffuse radiolucency at the apex of maxillary left lateral incisor tooth. The sinus tract was traced with gutta-percha to the maxillary left lateral incisor that showed an accessory root surrounded by a large radiolucent area. A spiral computed tomographic scan for better understanding of the complicated root canal morphology of the tooth was performed. Based on the clinical, radiographic and spiral computed tomographic findings, a diagnosis of an endo-perio lesion in tooth 22 was made. Management consisted of conventional root canal treatment, radiculoplasty, root resection of accessory root and surgical curettage of the periodontal defect. Follow-up with radiographic examination at 3 months and 1 year was performed. At 1-year recall, the patient was asymptomatic, there was no evidence of the sinus tract and a 3-mm nonbleeding pocket was present in relation to tooth 22. Progression of hard tissue healing was observed in the periapical radiograph taken 1 year postoperatively. The key to achieving favourable results in this particular type of developmental anomaly is accurate diagnosis and treatment planning. The health of the periapical osseous tissues appears to be the provital factor for tooth retention. A favourable outcome

  14. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings.

    PubMed

    Martínez-de la Cruz, Enrique; García-Ramírez, Elpidio; Vázquez-Ramos, Jorge M; Reyes de la Cruz, Homero; López-Bucio, José

    2015-03-15

    Maize (Zea mays) root system architecture has a complex organization, with adventitious and lateral roots determining its overall absorptive capacity. To generate basic information about the earlier stages of root development, we compared the post-embryonic growth of maize seedlings germinated in water-embedded cotton beds with that of plants obtained from embryonic axes cultivated in liquid medium. In addition, the effect of four different auxins, namely indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D) on root architecture and levels of the heat shock protein HSP101 and the cell cycle proteins CKS1, CYCA1 and CDKA1 were analyzed. Our data show that during the first days after germination, maize seedlings develop several root types with a simultaneous and/or continuous growth. The post-embryonic root development started with the formation of the primary root (PR) and seminal scutellar roots (SSR) and then continued with the formation of adventitious crown roots (CR), brace roots (BR) and lateral roots (LR). Auxins affected root architecture in a dose-response fashion; whereas NAA and IBA mostly stimulated crown root formation, 2,4-D showed a strong repressing effect on growth. The levels of HSP101, CKS1, CYCA1 and CDKA in root and leaf tissues were differentially affected by auxins and interestingly, HSP101 registered an auxin-inducible and root specific expression pattern. Taken together, our results show the timing of early branching patterns of maize and indicate that auxins regulate root development likely through modulation of the HSP101 and cell cycle proteins. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Cyclic GMP is involved in auxin signalling during Arabidopsis root growth and development.

    PubMed

    Nan, Wenbin; Wang, Xiaomin; Yang, Lei; Hu, Yanfeng; Wei, Yuantao; Liang, Xiaolei; Mao, Lina; Bi, Yurong

    2014-04-01

    The second messenger cyclic guanosine 3',5'-monophosphate (cGMP) plays an important role in plant development and responses to stress. Recent studies indicated that cGMP is a secondary signal generated in response to auxin stimulation. cGMP also mediates auxin-induced adventitious root formation in mung bean and gravitropic bending in soybean. Nonetheless, the mechanism of the participation of cGMP in auxin signalling to affect these growth and developmental processes is largely unknown. In this report we provide evidence that indole-3-acetic acid (IAA) induces cGMP accumulation in Arabidopsis roots through modulation of the guanylate cyclase activity. Application of 8-bromo-cGMP (a cell-permeable cGMP derivative) increases auxin-dependent lateral root formation, root hair development, primary root growth, and gene expression. In contrast, inhibitors of endogenous cGMP synthesis block these processes induced by auxin. Data also showed that 8-bromo-cGMP enhances auxin-induced degradation of Aux/IAA protein modulated by the SCF(TIR1) ubiquitin-proteasome pathway. Furthermore, it was found that 8-bromo-cGMP is unable to directly influence the auxin-dependent TIR1-Aux/IAA interaction as evidenced by pull-down and yeast two-hybrid assays. In addition, we provide evidence for cGMP-mediated modulation of auxin signalling through cGMP-dependent protein kinase (PKG). Our results suggest that cGMP acts as a mediator to participate in auxin signalling and may govern this process by PKG activity via its influence on auxin-regulated gene expression and auxin/IAA degradation.

  16. Root development during soil genesis: effects of root-root interactions, mycorrhizae, and substrate

    NASA Astrophysics Data System (ADS)

    Salinas, A.; Zaharescu, D. G.

    2015-12-01

    A major driver of soil formation is the colonization and transformation of rock by plants and associated microbiota. In turn, substrate chemical composition can also influence the capacity for plant colonization and development. In order to better define these relationships, a mesocosm study was set up to analyze the effect mycorrhizal fungi, plant density and rock have on root development, and to determine the effect of root morphology on weathering and soil formation. We hypothesized that plant-plant and plant-fungi interactions have a stronger influence on root architecture and rock weathering than the substrate composition alone. Buffalo grass (Bouteloua dactyloides) was grown in a controlled environment in columns filled with either granular granite, schist, rhyolite or basalt. Each substrate was given two different treatments, including grass-microbes and grass-microbes-mycorrhizae and incubated for 120, 240, and 480 days. Columns were then extracted and analyzed for root morphology, fine fraction, and pore water major element content. Preliminary results showed that plants produced more biomass in rhyolite, followed by schist, basalt, and granite, indicating that substrate composition is an important driver of root development. In support of our hypothesis, mycorrhizae was a strong driver of root development by stimulating length growth, biomass production, and branching. However, average root length and branching also appeared to decrease in response to high plant density, though this trend was only present among roots with mycorrhizal fungi. Interestingly, fine fraction production was negatively correlated with average root thickness and volume. There is also slight evidence indicating that fine fraction production is more related to substrate composition than root morphology, though this data needs to be further analyzed. Our hope is that the results of this study can one day be applied to agricultural research in order to promote the production of crops

  17. Impact of nursery management practices on heritability estimates and frequency distributions of first-order lateral roots of loblolly pine.

    Treesearch

    Paul P. Kormanik; H.D. Muse; S.J Sung

    1991-01-01

    Frequency distribution and heritability of first-order later root (FOLR) numbers in 1-0 seedlings were followed for 5 years for 115 different half-sib seedlots from the Georgia Forestry Commission's Arrowhead and Baldwin Seed Orchards. In 1986 and 1987, seedlings were permitted unrestricted growth under management conditions similar to those practiced in most...

  18. Down-regulation of the IbEXP1 gene enhanced storage root development in sweetpotato

    PubMed Central

    Bae, Jung Myung

    2013-01-01

    The role of an expansin gene (IbEXP1) in the formation of the storage root (SR) was investigated by expression pattern analysis and characterization of IbEXP1-antisense sweetpotato (Ipomoea batatas cv. Yulmi) plants in an attempt to elucidate the molecular mechanism underlying SR development in sweetpotato. The transcript level of IbEXP1 was high in the fibrous root (FR) and petiole at the FR stage, but decreased significantly at the young storage root (YSR) stage. IbEXP1-antisense plants cultured in vitro produced FRs which were both thicker and shorter than those of wild-type (WT) plants. Elongation growth of the epidermal cells was significantly reduced, and metaxylem and cambium cell proliferation was markedly enhanced in the FRs of IbEXP1-antisense plants, resulting in an earlier thickening growth in these plants relative to WT plants. There was a marked reduction in the lignification of the central stele of the FRs of the IbEXP1-antisense plants, suggesting that the FRs of the mutant plants possessed a higher potential than those of WT plants to develop into SRs. IbEXP1-antisense plants cultured in soil produced a larger number of SRs and, consequently, total SR weight per IbEXP1-antisense plant was greater than that per WT plant. These results demonstrate that SR development was accelerated in IbEXP1-antisense plants and suggest that IbEXP1 plays a negative role in the formation of SR by suppressing the proliferation of metaxylem and cambium cells to inhibit the initial thickening growth of SRs. IbEXP1 is the first sweetpotato gene whose role in SR development has been directly identified in soil-grown transgenic sweetpotato plants. PMID:22945944

  19. IbMADS1 (Ipomoea batatas MADS-box 1 gene) is Involved in Tuberous Root Initiation in Sweet Potato (Ipomoea batatas)

    PubMed Central

    Ku, Amy Tsu; Huang, Yi-Shiuan; Wang, Yu-Shu; Ma, Daifu; Yeh, Kai-Wun

    2008-01-01

    Background and Aims The tuberization mechanism of sweet potato (Ipomoea batatas) has long been studied using various approaches. Morphological data have revealed that the tuberizing events result from the activation of the cambium, followed by cell proliferation. However, uncertainties still remain regarding the regulators participating in this signal-transduction pathway. An attempt was made to characterize the role of one MADS-box transcription factor, which was preferentially expressed in sweet potato roots at the early tuberization stage. Methods A differential expression level of IbMADS1 (Ipomoea batatas MADS-box 1) was detected temporally and spatially in sweet potato tissues. IbMADS1 responses to tuberization-related hormones were assessed. In order to identify the evolutionary significance, the expression pattern of IbMADS1 was surveyed in two tuber-deficient Ipomoea relatives, I. leucantha and I. trifida, and compared with sweet potato. In functional analyses, potato (Solanum tuberosum) was employed as a heterologous model. The resulting tuber morphogenesis was examined anatomically in order to address the physiological function of IbMADS1, which should act similarly in sweet potato. Key Results IbMADS1 was preferentially expressed as tuberous root development proceeded. Its expression was inducible by tuberization-related hormones, such as jasmonic acid and cytokinins. In situ hybridization data showed that IbMADS1 transcripts were specifically distributed around immature meristematic cells within the stele and lateral root primordia. Inter-species examination indicated that IbMADS1 expression was relatively active in sweet potato roots, but undetectable in tuber-deficient Ipomoea species. IbMADS1-transformed potatoes exhibited tuber morphogenesis in the fibrous roots. The partial swellings along fibrous roots were mainly due to anomalous proliferation and differentiation in the xylem. Conclusions Based on this study, it is proposed that IbMADS1 is an

  20. Effect Of Seedling Size And First-Order Lateral Roots On Early Development Of Northern Red Oak On A Mesic Site: Eleventh-Year Results

    Treesearch

    Paul P. Kormanik; Shi-Jean S. Sung; Donald Kass; Stanley J. Zarnoch

    2002-01-01

    Abstract - The effect of initial first-order lateral root (FOLR) groupings of northern red oak (Quercus rubra) seedlings on a high quality mesic site was followed for eleven years on a shelterwood and a clearcut area. The initial FOLR number groups were empirically determined as low (0 to 6) medium (7 to 12) and high (12). The...

  1. Functional Implication of β-Carotene Hydroxylases in Soybean Nodulation1[C][W][OA

    PubMed Central

    Kim, Yun-Kyoung; Kim, Sunghan; Um, Ji-Hyun; Kim, Kyunga; Choi, Sun-Kang; Um, Byung-Hun; Kang, Suk-Woo; Kim, Jee-Woong; Takaichi, Shinichi; Song, Seok-Bo; Lee, Choon-Hwan; Kim, Ho-Seung; Kim, Ki Woo; Nam, Kyoung Hee; Lee, Suk-Ha; Kim, Yul-Ho; Park, Hyang-Mi; Ha, Sun-Hwa; Verma, Desh Pal S.; Cheon, Choong-Ill

    2013-01-01

    Legume-Rhizobium spp. symbiosis requires signaling between the symbiotic partners and differential expression of plant genes during nodule development. Previously, we cloned a gene encoding a putative β-carotene hydroxylase (GmBCH1) from soybean (Glycine max) whose expression increased during nodulation with Bradyrhizobium japonicum. In this work, we extended our study to three GmBCHs to examine their possible role(s) in nodule development, as they were additionally identified as nodule specific, along with the completion of the soybean genome. In situ hybridization revealed the expression of three GmBCHs (GmBCH1, GmBCH2, and GmBCH3) in the infected cells of root nodules, and their enzymatic activities were confirmed by functional assays in Escherichia coli. Localization of GmBCHs by transfecting Arabidopsis (Arabidopsis thaliana) protoplasts with green fluorescent protein fusions and by electron microscopic immunogold detection in soybean nodules indicated that GmBCH2 and GmBCH3 were present in plastids, while GmBCH1 appeared to be cytosolic. RNA interference of the GmBCHs severely impaired nitrogen fixation as well as nodule development. Surprisingly, we failed to detect zeaxanthin, a product of GmBCH, or any other carotenoids in nodules. Therefore, we examined the possibility that most of the carotenoids in nodules are converted or cleaved to other compounds. We detected the expression of some carotenoid cleavage dioxygenases (GmCCDs) in wild-type nodules and also a reduced amount of zeaxanthin in GmCCD8-expressing E. coli, suggesting cleavage of the carotenoid. In view of these findings, we propose that carotenoids such as zeaxanthin synthesized in root nodules are cleaved by GmCCDs, and we discuss the possible roles of the carotenoid cleavage products in nodulation. PMID:23700351

  2. Cleaning lateral morphological features of the root canal: the role of streaming and cavitation.

    PubMed

    Robinson, J P; Macedo, R G; Verhaagen, B; Versluis, M; Cooper, P R; van der Sluis, L W M; Walmsley, A D

    2018-01-01

    To investigate the effects of ultrasonic activation file type, lateral canal location and irrigant on the removal of a biofilm-mimicking hydrogel from a fabricated lateral canal. Additionally, the amount of cavitation and streaming was quantified for these parameters. An intracanal sonochemical dosimetry method was used to quantify the cavitation generated by an IrriSafe 25 mm length, size 25 file inside a root canal model filled with filtered degassed/saturated water or three different concentrations of NaOCl. Removal of a hydrogel, demonstrated previously to be an appropriate biofilm mimic, was recorded to measure the lateral canal cleaning rate from two different instruments (IrriSafe 25 mm length, size 25 and K 21 mm length, size 15) activated with a P5 Suprasson (Satelec) at power P8.5 in degassed/saturated water or NaOCl. Removal rates were compared for significant differences using nonparametric Kruskal-Wallis and/or Mann-Whitney U-tests. Streaming was measured using high-speed particle imaging velocimetry at 250 kfps, analysing both the oscillatory and steady flow inside the lateral canals. There was no significant difference in amount of cavitation between tap water and oversaturated water (P = 0.538), although more cavitation was observed than in degassed water. The highest cavitation signal was generated with NaOCl solutions (1.0%, 4.5%, 9.0%) (P < 0.007) and increased with concentration (P < 0.014). The IrriSafe file outperformed significantly the K-file in removing hydrogel (P < 0.05). Up to 64% of the total hydrogel volume was removed after 20 s. The IrriSafe file typically outperformed the K-file in generating streaming. The oscillatory velocities were higher inside the lateral canal 3 mm compared to 6 mm from WL and were higher for NaOCl than for saturated water, which in turn was higher than for degassed water. Measurements of cavitation and acoustic streaming have provided insight into their contribution to cleaning. Significant

  3. Microarray Analyses of Gene Expression during Adventitious Root Development in Pinus contorta1[w

    PubMed Central

    Brinker, Monika; van Zyl, Leonel; Liu, Wenbin; Craig, Deborah; Sederoff, Ronald R.; Clapham, David H.; von Arnold, Sara

    2004-01-01

    In order to investigate the gene expression pattern during adventitious root development, RNA of Pinus contorta hypocotyls, pulse-treated with the auxin indole-3-butyric acid and harvested at distinct developmental time points of root development, was hybridized to microarrays containing 2,178 cDNAs from Pinus taeda. Over the period of observation of root development, the transcript levels of 220 genes changed significantly. During the root initiation phase, genes involved in cell replication and cell wall weakening and a transcript encoding a PINHEAD/ZWILLE-like protein were up-regulated, while genes related to auxin transport, photosynthesis, and cell wall synthesis were down-regulated. In addition, there were changes in transcript abundance of genes related to water stress. During the root meristem formation phase the transcript abundances of genes involved in auxin transport, auxin responsive transcription, and cell wall synthesis, and of a gene encoding a B-box zinc finger-like protein, increased, while those encoding proteins involved in cell wall weakening decreased. Changes of transcript abundance of genes related to water stress during the root meristem formation and root formation phase indicate that the plant roots had become functional in water transport. Simultaneously, genes involved in auxin transport were up-regulated, while genes related to cell wall modification were down-regulated. Finally, during the root elongation phase down-regulation of transcripts encoding proteins involved in cell replication and stress occurred. Based on the observed changes in transcript abundances, we suggest hypotheses about the relative importance of various physiological processes during the auxin-induced development of roots in P. contorta. PMID:15247392

  4. Waterlogging-induced changes in root architecture of germplasm accessions of the tropical forage grass Brachiaria humidicola.

    PubMed

    Cardoso, Juan Andrés; Jiménez, Juan de la Cruz; Rao, Idupulapati M

    2014-04-08

    Waterlogging is one of the major factors limiting the productivity of pastures in the humid tropics. Brachiaria humidicola is a forage grass commonly used in zones prone to temporary waterlogging. Brachiaria humidicola accessions adapt to waterlogging by increasing aerenchyma in nodal roots above constitutive levels to improve oxygenation of root tissues. In some accessions, waterlogging reduces the number of lateral roots developed from main root axes. Waterlogging-induced reduction of lateral roots could be of adaptive value as lateral roots consume oxygen supplied from above ground via their parent root. However, a reduction in lateral root development could also be detrimental by decreasing the surface area for nutrient and water absorption. To examine the impact of waterlogging on lateral root development, an outdoor study was conducted to test differences in vertical root distribution (in terms of dry mass and length) and the proportion of lateral roots to the total root system (sum of nodal and lateral roots) down the soil profile under drained or waterlogged soil conditions. Plant material consisted of 12 B. humidicola accessions from the gene bank of the International Center for Tropical Agriculture, Colombia. Rooting depth was restricted by 21 days of waterlogging and confined to the first 30 cm below the soil surface. Although waterlogging reduced the overall proportion of lateral roots, its proportion significantly increased in the top 10 cm of the soil. This suggests that soil flooding increases lateral root proliferation of B. humidicola in the upper soil layers. This may compensate for the reduction of root surface area brought about by the restriction of root growth at depths below 30 cm. Further work is needed to test the relative efficiency of nodal and lateral roots for nutrient and water uptake under waterlogged soil conditions. Published by Oxford University Press on behalf of the Annals of Botany Company.

  5. RootGraph: a graphic optimization tool for automated image analysis of plant roots

    PubMed Central

    Cai, Jinhai; Zeng, Zhanghui; Connor, Jason N.; Huang, Chun Yuan; Melino, Vanessa; Kumar, Pankaj; Miklavcic, Stanley J.

    2015-01-01

    This paper outlines a numerical scheme for accurate, detailed, and high-throughput image analysis of plant roots. In contrast to existing root image analysis tools that focus on root system-average traits, a novel, fully automated and robust approach for the detailed characterization of root traits, based on a graph optimization process is presented. The scheme, firstly, distinguishes primary roots from lateral roots and, secondly, quantifies a broad spectrum of root traits for each identified primary and lateral root. Thirdly, it associates lateral roots and their properties with the specific primary root from which the laterals emerge. The performance of this approach was evaluated through comparisons with other automated and semi-automated software solutions as well as against results based on manual measurements. The comparisons and subsequent application of the algorithm to an array of experimental data demonstrate that this method outperforms existing methods in terms of accuracy, robustness, and the ability to process root images under high-throughput conditions. PMID:26224880

  6. Sealing ability of lateral compaction and tapered single cone gutta-percha techniques in root canals prepared with stainless steel and rotary nickel titanium instruments.

    PubMed

    Koçak, Mustafa M; Darendeliler-Yaman, Sis

    2012-07-01

    The aim of this study was to evaluate the sealing ability of lateral compaction and tapered single cone gutta-percha techniques in root canals prepared with stainless steel and rotary nickel titanium root canal instruments by fluid filtration method. The root canals were prepared with stainless steel (SS) and nickel titanium (NiTi) instruments. The canals prepared with SS were obturated with lateral compaction technique using .02 tapered cones and the canals prepared with NiTi instruments were obturated with lateral compaction technique using .02 tapered cones or 06 tapered single cones. The amount of leakage was evaluated by fluid filtration model. The results were statistically analyzed with one-way ANOVA. The group prepared with NiTi instruments and filled with lateral compaction technique showed significantly less coronal leakage than the group prepared with SS instruments and filled with lateral compaction technique (p<0.05). There was no statistically difference between apical leakages of groups (p>0.05). Obturation with lateral compaction of gutta-percha provides a superior coronal seal whilst canal instrumentation with engine-driven NiTi files reduces the extent of microleakage in root canals when compared with stainless steel hand instruments. Tapered single cone technique was comparable with lateral compaction technique because of easier application. Key words:Apical leakage, coronal leakage, lateral compaction technique, single cone technique.

  7. Depth and Diameter of the Parent Roots of Aspen Root Suckers

    Treesearch

    Robert E. Farmer

    1962-01-01

    Studies of the Populus tremuloides root system by Day (1944), Sandberg (1951) and Barnes (1959) have all shown lateral roots extending as much as 30 feet from tree base. These roots may branch extensively and sometimes exhibit an "undulating" growth habit. According to the above authors, suckers occur on the segments of these lateral roots...

  8. Increased symplasmic permeability in barley root epidermal cells correlates with defects in root hair development

    PubMed Central

    Marzec, M; Muszynska, A; Melzer, M; Sas-Nowosielska, H; Kurczynska, E U; Wick, S

    2014-01-01

    It is well known that the process of plant cell differentiation depends on the symplasmic isolation of cells. Before starting the differentiation programme, the individual cell or group of cells should restrict symplasmic communication with neighbouring cells. We tested the symplasmic communication between epidermal cells in the different root zones of parental barley plants Hordeum vulgare L., cv. ‘Karat’ with normal root hair development, and two root hairless mutants (rhl1.a and rhl1.b). The results clearly show that symplasmic communication was limited during root hair differentiation in the parental variety, whereas in both root hairless mutants epidermal cells were still symplasmically connected in the corresponding root zone. This paper is the first report on the role of symplasmic isolation in barley root cell differentiation, and additionally shows that a disturbance in the restriction of symplasmic communication is present in root hairless mutants. PMID:23927737

  9. SCAPs Regulate Differentiation of DFSCs During Tooth Root Development in Swine

    PubMed Central

    Wu, Xiaoshan; Hu, Lei; Li, Yan; Li, Yang; Wang, Fu; Ma, Ping; Wang, Jinsong; Zhang, Chunmei; Jiang, Canhua; Wang, Songlin

    2018-01-01

    The tooth root transmits and balances occlusal forces through the periodontium to the alveolar bone. The periodontium, including the gingiva, the periodontal ligament, the cementum and the partial alveolar bone, derives from the dental follicle (DF), except for the gingiva. In the early developmental stages, the DF surrounds the tooth germ as a sphere and functions to promote tooth eruption. However, the morphological dynamics and factors regulating the differentiation of the DF during root elongation remain largely unknown. Miniature pigs are regarded as a useful experimental animal for modeling in craniofacial research because they are similar to humans with respect to dentition and mandible anatomy. In the present study, we used the third deciduous incisor of miniature pig as the model to investigate the factors influencing DF differentiation during root development. We found that the DF was shaped like a crescent and was located between the root apical and the alveolar bone. The expression levels of WNT5a, β-Catenin, and COL-I gradually increased from the center of the DF (beneath the apical foramen) to the lateral coronal corner, where the DF differentiates into the periodontium. To determine the potential regulatory role of the apical papilla on DF cell differentiation, we co-cultured dental follicle stem cells (DFSCs) with stem cells of the apical papilla (SCAPs). The osteogenesis and fibrogenesis abilities of DFSCs were inhibited when being co-cultured with SCAPs, suggesting that the fate of the DF can be regulated by signals from the apical papilla. The apical papilla may sustain the undifferentiated status of DFSCs before root development finishes. These data yield insight into the interaction between the root apex and surrounding DF tissues in root and periodontium development and shed light on the future study of root regeneration in large mammals. PMID:29511365

  10. Green Revolution Trees: Semidwarfism Transgenes Modify Gibberellins, Promote Root Growth, Enhance Morphological Diversity, and Reduce Competitiveness in Hybrid Poplar1[C][W][OA

    PubMed Central

    Elias, Ani A.; Busov, Victor B.; Kosola, Kevin R.; Ma, Cathleen; Etherington, Elizabeth; Shevchenko, Olga; Gandhi, Harish; Pearce, David W.; Rood, Stewart B.; Strauss, Steven H.

    2012-01-01

    Semidwarfism has been used extensively in row crops and horticulture to promote yield, reduce lodging, and improve harvest index, and it might have similar benefits for trees for short-rotation forestry or energy plantations, reclamation, phytoremediation, or other applications. We studied the effects of the dominant semidwarfism transgenes GA Insensitive (GAI) and Repressor of GAI-Like, which affect gibberellin (GA) action, and the GA catabolic gene, GA 2-oxidase, in nursery beds and in 2-year-old high-density stands of hybrid poplar (Populus tremula × Populus alba). Twenty-nine traits were analyzed, including measures of growth, morphology, and physiology. Endogenous GA levels were modified in most transgenic events; GA20 and GA8, in particular, had strong inverse associations with tree height. Nearly all measured traits varied significantly among genotypes, and several traits interacted with planting density, including aboveground biomass, root-shoot ratio, root fraction, branch angle, and crown depth. Semidwarfism promoted biomass allocation to roots over shoots and substantially increased rooting efficiency with most genes tested. The increased root proportion and increased leaf chlorophyll levels were associated with changes in leaf carbon isotope discrimination, indicating altered water use efficiency. Semidwarf trees had dramatically reduced growth when in direct competition with wild-type trees, supporting the hypothesis that semidwarfism genes could be effective tools to mitigate the spread of exotic, hybrid, and transgenic plants in wild and feral populations. PMID:22904164

  11. Accumulation of misfolded SOD1 in dorsal root ganglion degenerating proprioceptive sensory neurons of transgenic mice with amyotrophic lateral sclerosis.

    PubMed

    Sábado, Javier; Casanovas, Anna; Tarabal, Olga; Hereu, Marta; Piedrafita, Lídia; Calderó, Jordi; Esquerda, Josep E

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is an adult-onset progressive neurodegenerative disease affecting upper and lower motoneurons (MNs). Although the motor phenotype is a hallmark for ALS, there is increasing evidence that systems other than the efferent MN system can be involved. Mutations of superoxide dismutase 1 (SOD1) gene cause a proportion of familial forms of this disease. Misfolding and aggregation of mutant SOD1 exert neurotoxicity in a noncell autonomous manner, as evidenced in studies using transgenic mouse models. Here, we used the SOD1(G93A) mouse model for ALS to detect, by means of conformational-specific anti-SOD1 antibodies, whether misfolded SOD1-mediated neurotoxicity extended to neuronal types other than MNs. We report that large dorsal root ganglion (DRG) proprioceptive neurons accumulate misfolded SOD1 and suffer a degenerative process involving the inflammatory recruitment of macrophagic cells. Degenerating sensory axons were also detected in association with activated microglial cells in the spinal cord dorsal horn of diseased animals. As large proprioceptive DRG neurons project monosynaptically to ventral horn MNs, we hypothesise that a prion-like mechanism may be responsible for the transsynaptic propagation of SOD1 misfolding from ventral horn MNs to DRG sensory neurons.

  12. The Nitrification Inhibitor Methyl 3-(4-Hydroxyphenyl)Propionate Modulates Root Development by Interfering with Auxin Signaling via the NO/ROS Pathway1

    PubMed Central

    Liu, Yangyang; Wang, Ruling; Zhang, Ping

    2016-01-01

    Methyl 3-(4-hydroxyphenyl)propionate (MHPP) is a root exudate that functions as a nitrification inhibitor and as a modulator of the root system architecture (RSA) by inhibiting primary root (PR) elongation and promoting lateral root formation. However, the mechanism underlying MHPP-mediated modulation of the RSA remains unclear. Here, we report that MHPP inhibits PR elongation in Arabidopsis (Arabidopsis thaliana) by elevating the levels of auxin expression and signaling. MHPP induces an increase in auxin levels by up-regulating auxin biosynthesis, altering the expression of auxin carriers, and promoting the degradation of the auxin/indole-3-acetic acid family of transcriptional repressors. We found that MHPP-induced nitric oxide (NO) production promoted reactive oxygen species (ROS) accumulation in root tips. Suppressing the accumulation of NO or ROS alleviated the inhibitory effect of MHPP on PR elongation by weakening auxin responses and perception and by affecting meristematic cell division potential. Genetic analysis supported the phenotype described above. Taken together, our results indicate that MHPP modulates RSA remodeling via the NO/ROS-mediated auxin response pathway in Arabidopsis. Our study also revealed that MHPP significantly induced the accumulation of glucosinolates in roots, suggesting the diverse functions of MHPP in modulating plant growth, development, and stress tolerance in plants. PMID:27217493

  13. Sorghum root-system classification in contrasting P environments reveals three main rooting types and root-architecture-related marker-trait associations.

    PubMed

    Parra-Londono, Sebastian; Kavka, Mareike; Samans, Birgit; Snowdon, Rod; Wieckhorst, Silke; Uptmoor, Ralf

    2018-02-12

    Roots facilitate acquisition of macro- and micronutrients, which are crucial for plant productivity and anchorage in the soil. Phosphorus (P) is rapidly immobilized in the soil and hardly available for plants. Adaptation to P scarcity relies on changes in root morphology towards rooting systems well suited for topsoil foraging. Root-system architecture (RSA) defines the spatial organization of the network comprising primary, lateral and stem-derived roots and is important for adaptation to stress conditions. RSA phenotyping is a challenging task and essential for understanding root development. In this study, 19 traits describing RSA were analysed in a diversity panel comprising 194 sorghum genotypes, fingerprinted with a 90-k single-nucleotide polymorphism (SNP) array and grown under low and high P availability. Multivariate analysis was conducted and revealed three different RSA types: (1) a small root system; (2) a compact and bushy rooting type; and (3) an exploratory root system, which might benefit plant growth and development if water, nitrogen (N) or P availability is limited. While several genotypes displayed similar rooting types in different environments, others responded to P scarcity positively by developing more exploratory root systems, or negatively with root growth suppression. Genome-wide association studies revealed significant quantitative trait loci (P < 2.9 × 10-6) on chromosomes SBI-02, SBI-03, SBI-05 and SBI-09. Co-localization of significant and suggestive (P < 5.7 × 10-5) associations for several traits indicated hotspots controlling root-system development on chromosomes SBI-02 and SBI-03. Sorghum genotypes with a compact, bushy and shallow root system provide potential adaptation to P scarcity in the field by allowing thorough topsoil foraging, while genotypes with an exploratory root system may be advantageous if N or water is the limiting factor, although such genotypes showed highest P uptake levels under the artificial conditions

  14. ELIGULUM-A Regulates Lateral Branch and Leaf Development in Barley1[OPEN

    PubMed Central

    Haaning, Allison; Bilgic, Hatice

    2018-01-01

    The shoot apical and axillary meristems control shoot development, effectively influencing lateral branch and leaf formation. The barley (Hordeum vulgare) uniculm2 (cul2) mutation blocks axillary meristem development, and mutant plants lack lateral branches (tillers) that normally develop from the crown. A genetic screen for cul2 suppressors recovered two recessive alleles of ELIGULUM-A (ELI-A) that partially rescued the cul2 tillering phenotype. Mutations in ELI-A produce shorter plants with fewer tillers and disrupt the leaf blade-sheath boundary, producing liguleless leaves and reduced secondary cell wall development in stems and leaves. ELI-A is predicted to encode an unannotated protein containing an RNaseH-like domain that is conserved in land plants. ELI-A transcripts accumulate at the preligule boundary, the developing ligule, leaf margins, cells destined to develop secondary cell walls, and cells surrounding leaf vascular bundles. Recent studies have identified regulatory similarities between boundary development in leaves and lateral organs. Interestingly, we observed ELI-A transcripts at the preligule boundary, suggesting that ELI-A contributes to boundary formation between the blade and sheath. However, we did not observe ELI-A transcripts at the axillary meristem boundary in leaf axils, suggesting that ELI-A is not involved in boundary development for axillary meristem development. Our results show that ELI-A contributes to leaf and lateral branch development by acting as a boundary gene during ligule development but not during lateral branch development. PMID:29440592

  15. The Arabidopsis Rho of Plants GTPase AtROP6 Functions in Developmental and Pathogen Response Pathways1[C][W][OA

    PubMed Central

    Poraty-Gavra, Limor; Zimmermann, Philip; Haigis, Sabine; Bednarek, Paweł; Hazak, Ora; Stelmakh, Oksana Rogovoy; Sadot, Einat; Schulze-Lefert, Paul; Gruissem, Wilhelm; Yalovsky, Shaul

    2013-01-01

    How plants coordinate developmental processes and environmental stress responses is a pressing question. Here, we show that Arabidopsis (Arabidopsis thaliana) Rho of Plants6 (AtROP6) integrates developmental and pathogen response signaling. AtROP6 expression is induced by auxin and detected in the root meristem, lateral root initials, and leaf hydathodes. Plants expressing a dominant negative AtROP6 (rop6DN) under the regulation of its endogenous promoter are small and have multiple inflorescence stems, twisted leaves, deformed leaf epidermis pavement cells, and differentially organized cytoskeleton. Microarray analyses of rop6DN plants revealed that major changes in gene expression are associated with constitutive salicylic acid (SA)-mediated defense responses. In agreement, their free and total SA levels resembled those of wild-type plants inoculated with a virulent powdery mildew pathogen. The constitutive SA-associated response in rop6DN was suppressed in mutant backgrounds defective in SA signaling (nonexpresser of PR genes1 [npr1]) or biosynthesis (salicylic acid induction deficient2 [sid2]). However, the rop6DN npr1 and rop6DN sid2 double mutants retained the aberrant developmental phenotypes, indicating that the constitutive SA response can be uncoupled from ROP function(s) in development. rop6DN plants exhibited enhanced preinvasive defense responses to a host-adapted virulent powdery mildew fungus but were impaired in preinvasive defenses upon inoculation with a nonadapted powdery mildew. The host-adapted powdery mildew had a reduced reproductive fitness on rop6DN plants, which was retained in mutant backgrounds defective in SA biosynthesis or signaling. Our findings indicate that both the morphological aberrations and altered sensitivity to powdery mildews of rop6DN plants result from perturbations that are independent from the SA-associated response. These perturbations uncouple SA-dependent defense signaling from disease resistance execution. PMID

  16. Characterization of low phosphorus insensitive Mutants Reveals a Crosstalk between Low Phosphorus-Induced Determinate Root Development and the Activation of Genes Involved in the Adaptation of Arabidopsis to Phosphorus Deficiency1

    PubMed Central

    Sánchez-Calderón, Lenin; López-Bucio, José; Chacón-López, Alejandra; Gutiérrez-Ortega, Abel; Hernández-Abreu, Esmeralda; Herrera-Estrella, Luis

    2006-01-01

    Low phosphorus (P) availability is one of the most limiting factors for plant productivity in many natural and agricultural ecosystems. Plants display a wide range of adaptive responses to cope with low P stress, which generally serve to enhance P availability in the soil and to increase its uptake by roots. In Arabidopsis (Arabidopsis thaliana), primary root growth inhibition and increased lateral root formation have been reported to occur in response to P limitation. To gain knowledge of the genetic mechanisms that regulate root architectural responses to P availability, we designed a screen for identifying Arabidopsis mutants that fail to arrest primary root growth when grown under low P conditions. Eleven low phosphorus insensitive (lpi) mutants that define at least four different complementation groups involved in primary root growth responses to P availability were identified. The lpi mutants do not show the typical determinate developmental program induced by P stress in the primary root. Other root developmental aspects of the low P rescue system, including increased root hair elongation and anthocyanin accumulation, remained unaltered in lpi mutants. In addition to the insensitivity of primary root growth inhibition, when subjected to P deprivation, lpi mutants show a reduced induction in the expression of several genes involved in the P starvation rescue system (PHOSPHATE TRANSPORTER 1 and 2, PURPLE ACID PHOSPHATASE 1, ACID PHOSPHATASE 5, and INDUCED BY PHOSPHATE STARVATION 1). Our results provide genetic support for the role of P as an important signal for postembryonic root development and root meristem maintenance and show a crosstalk in developmental and biochemical responses to P deprivation. PMID:16443695

  17. GSA-1/ARG1 protects root gravitropism in Arabidopsis under ammonium stress.

    PubMed

    Zou, Na; Li, Baohai; Chen, Hao; Su, Yanhua; Kronzucker, Herbert J; Xiong, Liming; Baluška, František; Shi, Weiming

    2013-10-01

    Gravitropism plays a critical role in plant growth and development, plant stability and acclimation to changes in water and nutrient availability. Ammonium (NH4(+)) is well known to have profound effects on root growth, but its impacts on gravitropism are poorly understood. To determine which genes are essential for the maintenance of root gravitropism under NH4(+) stress, we isolated and identified an NH4 (+)-sensitive mutant, gsa-1 (gravitropism sensitive to ammonium-1), in Arabidopsis thaliana, using an agar plate root reorientation assay. We found that, under NH4(+) stress, gsa-1 displayed increased loss of root gravitropism. Gene cloning and sequencing revealed that gsa-1 contains a G to C transversion mutation at the highly conserved 5'-GT splice position of intron 10 of ARG1 (ALTERED RESPONSE TO GRAVITY1), known to participate in the transduction of the root gravity signal. Genetic complement tests established the locus of GSA-1/ARG1 and its role in resistance to NH4 (+) inhibition on root gravitropism. GSA-1/ARG1 is required for normal AUX1 expression and basipetal auxin transport in root apices. In addition, PIN-FORMED2 (PIN2) is proposed as a target in the reduction of root gravitropism under NH4(+) stress, a response which can be antagonized by the GSA-1/ARG1-dependent pathway. These results suggest that GSA-1/ARG1 protects root gravitropism in Arabidopsis thaliana under ammonium stress. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  18. Dynamics of Aerenchyma Distribution in the Cortex of Sulfate-deprived Adventitious Roots of Maize

    PubMed Central

    BOURANIS, DIMITRIS L.; CHORIANOPOULOU, STYLIANI N.; KOLLIAS, CHARALAMBOS; MANIOU, PHILIPPA; PROTONOTARIOS, VASSILIS E.; SIYIANNIS, VASSILIS F.; HAWKESFORD, MALCOLM J.

    2006-01-01

    • Background and Aims Aerenchyma formation in maize adventitious roots is induced in nutrient solution by the deprivation of sulfate (S) under well-oxygenated conditions. The aim of this research was to examine the extent of aerenchyma formation in the cortex of sulfate-deprived adventitious roots along the root axis, in correlation with the presence of reactive oxygen species (ROS), calcium levels and pH of cortex cells and root lignification. • Methods The morphometry of the second whorl of adventitious (W2) roots, subject to S-deprivation conditions throughout development, was recorded in terms of root length and lateral root length and distribution. W2 roots divided into sectors according to the mean length of lateral roots, and cross-sections of each were examined for aerenchyma. In-situ detection of alterations in ROS presence, calcium levels and pH were performed by means of fluorescence microscopy using H2DCF-DA, fluo-3AM and BCECF, respectively. Lignification was detected using the Wiesner test. • Key Results S-deprivation reduced shoot growth and enhanced root proliferation. Aerenchyma was found in the cortex of 77 % of the root length, particularly in the region of emerging or developing lateral roots. The basal and apical sectors had no aerenchyma and no aerenchyma connection was found with the shoot. S-deprivation resulted in alterations of ROS, calcium levels and pH in aerenchymatous sectors compared with the basal non-aerenchymatous region. Lignified epidermal layers were located at the basal and the proximal sectors. S-deprivation resulted in shorter lateral roots in the upper sectors and in a limited extension of the lignified layers towards the next lateral root carrying sector. • Conclusions Lateral root proliferation is accompanied by spatially localized induced cell death in the cortex of developing young maize adventitious roots during S-deprivation. PMID:16481362

  19. Beyond the Barrier: Communication in the Root through the Endodermis1

    PubMed Central

    Robbins, Neil E.; Trontin, Charlotte; Duan, Lina; Dinneny, José R.

    2014-01-01

    The root endodermis is characterized by the Casparian strip and by the suberin lamellae, two hydrophobic barriers that restrict the free diffusion of molecules between the inner cell layers of the root and the outer environment. The presence of these barriers and the position of the endodermis between the inner and outer parts of the root require that communication between these two domains acts through the endodermis. Recent work on hormone signaling, propagation of calcium waves, and plant-fungal symbiosis has provided evidence in support of the hypothesis that the endodermis acts as a signaling center. The endodermis is also a unique mechanical barrier to organogenesis, which must be overcome through chemical and mechanical cross talk between cell layers to allow for development of new lateral organs while maintaining its barrier functions. In this review, we discuss recent findings regarding these two important aspects of the endodermis. PMID:25125504

  20. Knock Down of Cell Division Cycle 16 Reveals an Inverse Relationship Between Lateral Root and Nodule Numbers and a Link to Auxin in Medicago truncatula

    USDA-ARS?s Scientific Manuscript database

    The post-embryonic development of lateral roots and nodules is a highly regulated process. Recent studies suggest the existence of cross talk and interdependency in the growth of these two organs. Although plant hormones including auxin and cytokinin appear to be key players in coordinating this cro...

  1. Linking Development and Determinacy with Organic Acid Efflux from Proteoid Roots of White Lupin Grown with Low Phosphorus and Ambient or Elevated Atmospheric CO2 Concentration1

    PubMed Central

    Watt, Michelle; Evans, John R.

    1999-01-01

    White lupin (Lupinus albus L.) was grown in hydroponic culture with 1 μm phosphorus to enable the development of proteoid roots to be observed in conjunction with organic acid exudation. Discrete regions of closely spaced, determinate secondary laterals (proteoid rootlets) emerged in near synchrony on the same plant. One day after reaching their final length (4 mm), citrate exudation occurred over a 3-d pulse. The rate of exudation varied diurnally, with maximal rates during the photoperiod. At the onset of citrate efflux, rootlets had exhausted their apical meristems and had differentiated root hairs and vascular tissues along their lengths. Neither in vitro phosphoenolpyruvate carboxylase nor citrate synthase activity was correlated with the rate of citrate exudation. We suggest that an unidentified transport process, presumably at the plasma membrane, regulates citrate efflux. Growth with elevated (700 μL L−1) atmospheric [CO2] promoted earlier onset of rootlet determinacy by 1 d, resulting in shorter rootlets and citrate export beginning 1 d earlier as a 2-d diurnal pulse. Citrate was the dominant organic acid exported, and neither the rate of exudation per unit length of root nor the composition of exudate was altered by atmospheric [CO2]. PMID:10398705

  2. DNA damage inhibits lateral root formation by up-regulating cytokinin biosynthesis genes in Arabidopsis thaliana.

    PubMed

    Davis, La Ode Muhammad Muchdar; Ogita, Nobuo; Inagaki, Soichi; Takahashi, Naoki; Umeda, Masaaki

    2016-11-01

    Lateral roots (LRs) are an important organ for water and nutrient uptake from soil. Thus, control of LR formation is crucial in the adaptation of plant growth to environmental conditions. However, the underlying mechanism controlling LR formation in response to external factors has remained largely unknown. Here, we found that LR formation was inhibited by DNA damage. Treatment with zeocin, which causes DNA double-strand breaks, up-regulated several DNA repair genes in the LR primordium (LRP) through the signaling pathway mediated by the transcription factor SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1). Cell division was severely inhibited in the LRP of zeocin-treated sog1-1 mutant, which in turn inhibited LR formation. This result suggests that SOG1-mediated maintenance of genome integrity is crucial for proper cell division during LRP development. Furthermore, zeocin induced several cytokinin biosynthesis genes in a SOG1-dependent manner, thereby activating cytokinin signaling in the LRP. LR formation was less inhibited by zeocin in mutants defective in cytokinin biosynthesis or signaling, suggesting that elevated cytokinin signaling is crucial for the inhibition of LR formation in response to DNA damage. We conclude that SOG1 regulates DNA repair and cytokinin signaling separately and plays a key role in controlling LR formation under genotoxic stress. © 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  3. Micro-Computed Tomography Analysis of the Root Canal Morphology of Palatal Roots of Maxillary First Molars.

    PubMed

    Marceliano-Alves, Marília; Alves, Flávio Rodrigues Ferreira; Mendes, Daniel de Melo; Provenzano, José Claudio

    2016-02-01

    A thorough knowledge of root canal anatomy is critical for successful root canal treatments. This study evaluated the internal anatomy of the palatal roots of maxillary first molars with micro-computed tomography (microCT). The palatal roots of extracted maxillary first molars (n = 169) were scanned with microCT to determine several anatomic parameters, including main canal classification, lateral canal occurrence and location, degree of curvature, main foramen position, apical constriction presence, diameters 1 and 2 mm from the apex and 1 mm from the foramen, minor dentin thickness in those regions, canal volume, surface area, and convexity. All canals were classified as Vertucci type I. The cross sections were oval in 61% of the canals. Lateral canals were found in 25% of the samples. The main foramen did not coincide with the root apex in 95% of the cases. Only 8% of the canals were classified as straight. Apical constriction was identified in 38% of the roots. The minor and major canal diameters and minor dentin thickness were decreased near the apex. The minor dentin thickness 1 mm from the foramen was 0.82 mm. The palatal canals exhibited a volume of 6.91 mm(3) and surface area of 55.31 mm(2) and were rod-shaped. The root canals of the palatal roots were classified as type I. However, some factors need to be considered during the treatment of these roots, including the frequent ocurrence of moderate/severe curvatures, oval-shaped cross-sections, and lateral canals, noncoincidence of the apical foramen with the root apex, and absence of apical constriction in most cases. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. OsCSLD1, a Cellulose Synthase-Like D1 Gene, Is Required for Root Hair Morphogenesis in Rice1[C][W

    PubMed Central

    Kim, Chul Min; Park, Sung Han; Je, Byoung Il; Park, Su Hyun; Park, Soon Ju; Piao, Hai Long; Eun, Moo Young; Dolan, Liam; Han, Chang-deok

    2007-01-01

    Root hairs are long tubular outgrowths that form on the surface of specialized epidermal cells. They are required for nutrient and water uptake and interact with the soil microflora. Here we show that the Oryza sativa cellulose synthase-like D1 (OsCSLD1) gene is required for root hair development, as rice (Oryza sativa) mutants that lack OsCSLD1 function develop abnormal root hairs. In these mutants, while hair development is initiated normally, the hairs elongate less than the wild-type hairs and they have kinks and swellings along their length. Because the csld1 mutants develop the same density and number of root hairs along their seminal root as the wild-type plants, we propose that OsCSLD1 function is required for hair elongation but not initiation. Both gene trap expression pattern and in situ hybridization analyses indicate that OsCSLD1 is expressed in only root hair cells. Furthermore, OsCSLD1 is the only member of the four rice CSLD genes that shows root-specific expression. Given that the Arabidopsis (Arabidopsis thaliana) gene KOJAK/AtCSLD3 is required for root hair elongation and is expressed in the root hair, it appears that OsCSLD1 may be the functional ortholog of KOJAK/AtCSLD3 and that these two genes represent the root hair-specific members of this family of proteins. Thus, at least part of the mechanism of root hair morphogenesis in Arabidopsis is conserved in rice. PMID:17259288

  5. A light-sensitive mutation in Arabidopsis LEW3 reveals the important role of N-glycosylation in root growth and development.

    PubMed

    Manzano, Concepción; Pallero-Baena, Mercedes; Silva-Navas, J; Navarro Neila, Sara; Casimiro, Ilda; Casero, Pedro; Garcia-Mina, Jose M; Baigorri, Roberto; Rubio, Lourdes; Fernandez, Jose A; Norris, Matthew; Ding, Yiliang; Moreno-Risueno, Miguel A; Del Pozo, Juan C

    2017-11-02

    Plant roots have the potential capacity to grow almost indefinitely if meristematic and lateral branching is sustained. In a genetic screen we identified an Arabidopsis mutant showing limited root growth (lrg1) due to defects in cell division and elongation in the root meristem. Positional cloning determined that lrg1 affects an alpha-1,2-mannosyltransferase gene, LEW3, involved in protein N-glycosylation. The lrg1 mutation causes a synonymous substitution that alters the correct splicing of the fourth intron in LEW3, causing a mix of wild-type and truncated protein. LRG1 RNA missplicing in roots and short root phenotypes in lrg1 are light-intensity dependent. This mutation disrupts a GC-base pair in a three-base-pair stem with a four-nucleotide loop, which seems to be necessary for correct LEW3 RNA splicing. We found that the lrg1 short root phenotype correlates with high levels of reactive oxygen species and low pH in the apoplast. Proteomic analyses of N-glycosylated proteins identified GLU23/PYK10 and PRX34 as N-glycosylation targets of LRG1 activity. The lrg1 mutation reduces the positive interaction between Arabidopsis and Serendipita indica. A prx34 mutant showed a significant reduction in root growth, which is additive to lrg1. Taken together our work highlights the important role of N-glycosylation in root growth and development. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. High Rate of Missed Lateral Meniscus Posterior Root Tears on Preoperative Magnetic Resonance Imaging

    PubMed Central

    Krych, Aaron J.; Wu, Isabella T.; Desai, Vishal S.; Murthy, Naveen S.; Collins, Mark S.; Saris, Daniel B.F.; Levy, Bruce A.; Stuart, Michael J.

    2018-01-01

    Background: Lateral meniscus posterior root tears (LMPRTs), if left untreated, can cause devastating effects to the knee, with rapid articular cartilage degeneration and loss of the meniscus as a secondary stabilizer. Detection and surgical repair of these defects have been linked to favorable outcomes, but preoperative identification of LMPRTs continues to be challenging. Purpose: To determine the rate of LMPRTs diagnosed preoperatively on magnetic resonance imaging (MRI) in a consecutive series of arthroscopically confirmed LMPRTs. Study Design: Case series; Level of evidence, 4. Methods: A retrospective cohort of 45 consecutive patients with arthroscopically confirmed LMPRTs between 2010 and 2017 were included in this study. The preoperative MRI report for each patient was evaluated and compared with intraoperative findings. Each preoperative MRI study was then reviewed by 2 fellowship-trained musculoskeletal radiologists who worked in consensus. Results: A total of 45 patients (32 males, 13 females) with arthroscopically confirmed LMPRTs and a mean age of 27 years (range, 14-54 years) were included in the study. Only 15 of 45 LMPRTs (33%) were initially diagnosed on preoperative MRI. Past or concurrent anterior cruciate ligament (ACL) reconstruction was present in 37 of 45 cases (82%). Upon retrospective review, 15 of the 30 missed LMPRTs were “clearly evident,” 12 “subtly evident,” and 3 “occult” (unavoidably missed). There were no significant differences in the rate of LMPRT diagnosis based on history of prior knee surgery, meniscus extrusion, or tearing of the meniscofemoral ligament. Conclusion: Despite improved identification of other meniscus tear patterns on MRI, a high percentage of LMPRTs were still missed. In the setting of previous ACL reconstruction, if the root cannot be confidently identified, the MRI interpretation should indicate that “the root is poorly visualized” to alert the surgeon to thoroughly evaluate this structure. The

  7. Rice putative methyltransferase gene OsTSD2 is required for root development involving pectin modification

    PubMed Central

    Qu, Lianghuan; Wu, Chunyan; Zhang, Fei; Wu, Yangyang; Fang, Chuanying; Jin, Cheng; Liu, Xianqing; Luo, Jie

    2016-01-01

    Pectin synthesis and modification are vital for plant development, although the underlying mechanisms are still not well understood. Here, we report the functional characterization of the OsTSD2 gene, which encodes a putative methyltransferase in rice. All three independent T-DNA insertion lines of OsTSD2 displayed dwarf phenotypes and serial alterations in different zones of the root. These alterations included abnormal cellular adhesion and schizogenous aerenchyma formation in the meristematic zone, inhibited root elongation in the elongation zone, and higher lateral root density in the mature zone. Immunofluorescence (with LM19) and Ruthenium Red staining of the roots showed that unesterified homogalacturonan (HG) was increased in Ostsd2 mutants. Biochemical analysis of cell wall pectin polysaccharides revealed that both the monosaccharide composition and the uronic acid content were decreased in Ostsd2 mutants. Increased endogenous ABA content and opposite roles performed by ABA and IAA in regulating cellular adhesion in the Ostsd2 mutants suggested that OsTSD2 is required for root development in rice through a pathway involving pectin synthesis/modification. A hypothesis to explain the relationship among OsTSD2, pectin methylesterification, and root development is proposed, based on pectin’s function in regional cell extension/division in a zone-dependent manner. PMID:27497286

  8. Regulation of Hormonal Control, Cell Reprogramming, and Patterning during De Novo Root Organogenesis1[OPEN

    PubMed Central

    Bustillo-Avendaño, Estefano; Ibáñez, Sergio; Sanz, Oscar; Sousa Barros, Jessica Aline; Gude, Inmaculada; Perianez-Rodriguez, Juan; Micol, José Luis; Del Pozo, Juan Carlos

    2018-01-01

    Body regeneration through formation of new organs is a major question in developmental biology. We investigated de novo root formation using whole leaves of Arabidopsis (Arabidopsis thaliana). Our results show that local cytokinin biosynthesis and auxin biosynthesis in the leaf blade followed by auxin long-distance transport to the petiole leads to proliferation of J0121-marked xylem-associated tissues and others through signaling of INDOLE-3-ACETIC ACID INDUCIBLE28 (IAA28), CRANE (IAA18), WOODEN LEG, and ARABIDOPSIS RESPONSE REGULATORS1 (ARR1), ARR10, and ARR12. Vasculature proliferation also involves the cell cycle regulator KIP-RELATED PROTEIN2 and ABERRANT LATERAL ROOT FORMATION4, resulting in a mass of cells with rooting competence that resembles callus formation. Endogenous callus formation precedes specification of postembryonic root founder cells, from which roots are initiated through the activity of SHORT-ROOT, PLETHORA1 (PLT1), and PLT2. Primordia initiation is blocked in shr plt1 plt2 mutant. Stem cell regulators SCHIZORIZA, JACKDAW, BLUEJAY, and SCARECROW also participate in root initiation and are required to pattern the new organ, as mutants show disorganized and reduced number of layers and tissue initials resulting in reduced rooting. Our work provides an organ regeneration model through de novo root formation, stating key stages and the primary pathways involved. PMID:29233938

  9. Potential involvement of drought-induced Ran GTPase CLRan1 in root growth enhancement in a xerophyte wild watermelon.

    PubMed

    Akashi, Kinya; Yoshimura, Kazuya; Kajikawa, Masataka; Hanada, Kouhei; Kosaka, Rina; Kato, Atsushi; Katoh, Akira; Nanasato, Yoshihiko; Tsujimoto, Hisashi; Yokota, Akiho

    2016-10-01

    Enhanced root growth is known as the survival strategy of plants under drought. Previous proteome analysis in drought-resistant wild watermelon has shown that Ran GTPase, an essential regulator of cell division and proliferation, was induced in the roots under drought. In this study, two cDNAs were isolated from wild watermelon, CLRan1 and CLRan2, which showed a high degree of structural similarity with those of other plant Ran GTPases. Quantitative RT-PCR and promoter-GUS assays suggested that CLRan1 was expressed mainly in the root apex and lateral root primordia, whereas CLRan2 was more broadly expressed in other part of the roots. Immunoblotting analysis confirmed that the abundance of CLRan proteins was elevated in the root apex region under drought stress. Transgenic Arabidopsis overexpressing CLRan1 showed enhanced primary root growth, and the growth was maintained under osmotic stress, indicating that CLRan1 functions as a positive factor for maintaining root growth under stress conditions.

  10. OsCSLD1, a cellulose synthase-like D1 gene, is required for root hair morphogenesis in rice.

    PubMed

    Kim, Chul Min; Park, Sung Han; Je, Byoung Il; Park, Su Hyun; Park, Soon Ju; Piao, Hai Long; Eun, Moo Young; Dolan, Liam; Han, Chang-deok

    2007-03-01

    Root hairs are long tubular outgrowths that form on the surface of specialized epidermal cells. They are required for nutrient and water uptake and interact with the soil microflora. Here we show that the Oryza sativa cellulose synthase-like D1 (OsCSLD1) gene is required for root hair development, as rice (Oryza sativa) mutants that lack OsCSLD1 function develop abnormal root hairs. In these mutants, while hair development is initiated normally, the hairs elongate less than the wild-type hairs and they have kinks and swellings along their length. Because the csld1 mutants develop the same density and number of root hairs along their seminal root as the wild-type plants, we propose that OsCSLD1 function is required for hair elongation but not initiation. Both gene trap expression pattern and in situ hybridization analyses indicate that OsCSLD1 is expressed in only root hair cells. Furthermore, OsCSLD1 is the only member of the four rice CSLD genes that shows root-specific expression. Given that the Arabidopsis (Arabidopsis thaliana) gene KOJAK/AtCSLD3 is required for root hair elongation and is expressed in the root hair, it appears that OsCSLD1 may be the functional ortholog of KOJAK/AtCSLD3 and that these two genes represent the root hair-specific members of this family of proteins. Thus, at least part of the mechanism of root hair morphogenesis in Arabidopsis is conserved in rice.

  11. Transcript profiling of crown rootless1 mutant stem base reveals new elements associated with crown root development in rice

    PubMed Central

    2011-01-01

    Background In rice, the major part of the post-embryonic root system is made of stem-derived roots named crown roots (CR). Among the few characterized rice mutants affected in root development, crown rootless1 mutant is unable to initiate crown root primordia. CROWN ROOTLESS1 (CRL1) is induced by auxin and encodes an AS2/LOB-domain transcription factor that acts upstream of the gene regulatory network controlling CR development. Results To identify genes involved in CR development, we compared global gene expression profile in stem bases of crl1 mutant and wild-type (WT) plants. Our analysis revealed that 250 and 236 genes are down- and up-regulated respectively in the crl1 mutant. Auxin induces CRL1 expression and consequently it is expected that auxin also alters the expression of genes that are early regulated by CRL1. To identify genes under the early control of CRL1, we monitored the expression kinetics of a selected subset of genes, mainly chosen among those exhibiting differential expression, in crl1 and WT following exogenous auxin treatment. This analysis revealed that most of these genes, mainly related to hormone, water and nutrient, development and homeostasis, were likely not regulated directly by CRL1. We hypothesized that the differential expression for these genes observed in the crl1 mutant is likely a consequence of the absence of CR formation. Otherwise, three CRL1-dependent auxin-responsive genes: FSM (FLATENNED SHOOT MERISTEM)/FAS1 (FASCIATA1), GTE4 (GENERAL TRANSCRIPTION FACTOR GROUP E4) and MAP (MICROTUBULE-ASSOCIATED PROTEIN) were identified. FSM/FAS1 and GTE4 are known in rice and Arabidopsis to be involved in the maintenance of root meristem through chromatin remodelling and cell cycle regulation respectively. Conclusion Our data showed that the differential regulation of most genes in crl1 versus WT may be an indirect consequence of CRL1 inactivation resulting from the absence of CR in the crl1 mutant. Nevertheless some genes, FAS1/FSM

  12. The initiation of lateral roots in the primary roots of maize (Zea mays L.) implies a reactivation of cell proliferation in a group of founder pericycle cells.

    PubMed

    Alarcón, M Victoria; Lloret, Pedro G; Martín-Partido, Gervasio; Salguero, Julio

    2016-03-15

    The initiation of lateral roots (LRs) has generally been viewed as a reactivation of proliferative activity in pericycle cells that are committed to initiate primordia. However, it is also possible that pericycle founder cells that initiate LRs never cease proliferative activity but rather are displaced to the most distal root zones while undertaking successive stages of LR initiation. In this study, we tested these two alternative hypotheses by examining the incorporation of 5-bromo-2'-deoxyuridine (BrdU) into the DNA of meristematic root cells of Zea mays. According to the values for the length of the cell cycle and values for cell displacement along the maize root, our results strongly suggest that pericycle cells that initiate LR primordia ceased proliferative activity upon exiting the meristematic zone. This finding is supported by the existence of a root zone between 4 and 20mm from the root cap junction, in which neither mitotic cells nor labelled nuclei were observed in phloem pericycle cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. A chaos wolf optimization algorithm with self-adaptive variable step-size

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Jiang, Wanlu; Kong, Xiangdong; Quan, Lingxiao; Zhang, Yongshun

    2017-10-01

    To explore the problem of parameter optimization for complex nonlinear function, a chaos wolf optimization algorithm (CWOA) with self-adaptive variable step-size was proposed. The algorithm was based on the swarm intelligence of wolf pack, which fully simulated the predation behavior and prey distribution way of wolves. It possessed three intelligent behaviors such as migration, summons and siege. And the competition rule as "winner-take-all" and the update mechanism as "survival of the fittest" were also the characteristics of the algorithm. Moreover, it combined the strategies of self-adaptive variable step-size search and chaos optimization. The CWOA was utilized in parameter optimization of twelve typical and complex nonlinear functions. And the obtained results were compared with many existing algorithms, including the classical genetic algorithm, the particle swarm optimization algorithm and the leader wolf pack search algorithm. The investigation results indicate that CWOA possess preferable optimization ability. There are advantages in optimization accuracy and convergence rate. Furthermore, it demonstrates high robustness and global searching ability.

  14. Simultaneous avulsion fracture of the posterior medial and posterior lateral meniscus root: a case report and review of the literature.

    PubMed

    Feucht, Matthias J; Salzmann, Gian M; Pestka, Jan M; Südkamp, Norbert P; Niemeyer, Philipp

    2014-04-01

    Injuries of the meniscus roots are increasingly recognized as a serious knee joint pathology. An avulsion fracture of the meniscus root is a rare variant of this injury pattern. In this article, a case of a traumatic simultaneous avulsion fracture of both the posterior medial and posterior lateral meniscus root associated with a tear of the anterior cruciate ligament is presented. Both avulsion fractures were treated by indirect arthroscopic transtibial pullout fixation of the bony fragment. Based on the findings of our literature review, root avulsion fractures seem to be more common in young male patients after an acute trauma to the knee joint.

  15. Cellular and molecular mechanisms of tooth root development

    PubMed Central

    Li, Jingyuan; Parada, Carolina

    2017-01-01

    ABSTRACT The tooth root is an integral, functionally important part of our dentition. The formation of a functional root depends on epithelial-mesenchymal interactions and integration of the root with the jaw bone, blood supply and nerve innervations. The root development process therefore offers an attractive model for investigating organogenesis. Understanding how roots develop and how they can be bioengineered is also of great interest in the field of regenerative medicine. Here, we discuss recent advances in understanding the cellular and molecular mechanisms underlying tooth root formation. We review the function of cellular structure and components such as Hertwig's epithelial root sheath, cranial neural crest cells and stem cells residing in developing and adult teeth. We also highlight how complex signaling networks together with multiple transcription factors mediate tissue-tissue interactions that guide root development. Finally, we discuss the possible role of stem cells in establishing the crown-to-root transition, and provide an overview of root malformations and diseases in humans. PMID:28143844

  16. A Novel Sucrose-Regulatory MADS-Box Transcription Factor GmNMHC5 Promotes Root Development and Nodulation in Soybean (Glycine max [L.] Merr.).

    PubMed

    Liu, Wei; Han, Xiangdong; Zhan, Ge; Zhao, Zhenfang; Feng, Yongjun; Wu, Cunxiang

    2015-08-31

    The MADS-box protein family includes many transcription factors that have a conserved DNA-binding MADS-box domain. The proteins in this family were originally recognized to play prominent roles in floral development. Recent findings, especially with regard to the regulatory roles of the AGL17 subfamily in root development, have greatly broadened their known functions. In this study, a gene from soybean (Glycine max [L.] Merr.), GmNMHC5, was cloned from the Zigongdongdou cultivar and identified as a member of the AGL17 subfamily. Real-time fluorescence quantitative PCR analysis showed that GmNMHC5 was expressed at much higher levels in roots and nodules than in other organs. The activation of expression was first examined in leaves and roots, followed by shoot apexes. GmNMHC5 expression levels rose sharply when the plants were treated under short-day conditions (SD) and started to pod, whereas low levels were maintained in non-podding plants under long-day conditions (LD). Furthermore, overexpression of GmNMHC5 in transgenic soybean significantly promoted lateral root development and nodule building. Moreover, GmNMHC5 is upregulated by exogenous sucrose. These results indicate that GmNMHC5 can sense the sucrose signal and plays significant roles in lateral root development and nodule building.

  17. Nitrate-Regulated Glutaredoxins Control Arabidopsis Primary Root Growth1[OPEN

    PubMed Central

    Walters, Laura A.; Cooper, Andrew M.; Olvera, Jocelyn G.; Rosas, Miguel A.; Rasmusson, Allan G.

    2016-01-01

    Nitrogen is an essential soil nutrient for plants, and lack of nitrogen commonly limits plant growth. Soil nitrogen is typically available to plants in two inorganic forms: nitrate and ammonium. To better understand how nitrate and ammonium differentially affect plant metabolism and development, we performed transcriptional profiling of the shoots of ammonium-supplied and nitrate-supplied Arabidopsis (Arabidopsis thaliana) plants. Seven genes encoding class III glutaredoxins were found to be strongly and specifically induced by nitrate. RNA silencing of four of these glutaredoxin genes (AtGRXS3/4/5/8) resulted in plants with increased primary root length (approximately 25% longer than the wild type) and decreased sensitivity to nitrate-mediated inhibition of primary root growth. Increased primary root growth is also a well-characterized phenotype of many cytokinin-deficient plant lines. We determined that nitrate induction of glutaredoxin gene expression was dependent upon cytokinin signaling and that cytokinins could activate glutaredoxin gene expression independent of plant nitrate status. In addition, crosses between “long-root” cytokinin-deficient plants and “long-root” glutaredoxin-silenced plants generated hybrids that displayed no further increase in primary root length (i.e. epistasis). Collectively, these findings suggest that AtGRXS3/4/5/8 operate downstream of cytokinins in a signal transduction pathway that negatively regulates plant primary root growth in response to nitrate. This pathway could allow Arabidopsis to actively discriminate between different nitrogen sources in the soil, with the preferred nitrogen source, nitrate, acting to suppress primary root growth (vertical dimension) in concert with its well-characterized stimulatory effect on lateral root growth (horizontal dimension). PMID:26662603

  18. Rice putative methyltransferase gene OsTSD2 is required for root development involving pectin modification.

    PubMed

    Qu, Lianghuan; Wu, Chunyan; Zhang, Fei; Wu, Yangyang; Fang, Chuanying; Jin, Cheng; Liu, Xianqing; Luo, Jie

    2016-10-01

    Pectin synthesis and modification are vital for plant development, although the underlying mechanisms are still not well understood. Here, we report the functional characterization of the OsTSD2 gene, which encodes a putative methyltransferase in rice. All three independent T-DNA insertion lines of OsTSD2 displayed dwarf phenotypes and serial alterations in different zones of the root. These alterations included abnormal cellular adhesion and schizogenous aerenchyma formation in the meristematic zone, inhibited root elongation in the elongation zone, and higher lateral root density in the mature zone. Immunofluorescence (with LM19) and Ruthenium Red staining of the roots showed that unesterified homogalacturonan (HG) was increased in Ostsd2 mutants. Biochemical analysis of cell wall pectin polysaccharides revealed that both the monosaccharide composition and the uronic acid content were decreased in Ostsd2 mutants. Increased endogenous ABA content and opposite roles performed by ABA and IAA in regulating cellular adhesion in the Ostsd2 mutants suggested that OsTSD2 is required for root development in rice through a pathway involving pectin synthesis/modification. A hypothesis to explain the relationship among OsTSD2, pectin methylesterification, and root development is proposed, based on pectin's function in regional cell extension/division in a zone-dependent manner. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Measurements of water uptake of maize roots: insights for traits that influence water transport from the soil

    NASA Astrophysics Data System (ADS)

    Ahmed, Mutez A.; Zarebanadkouki, Mohsen; Kroener, Eva; Carminati, Andrea

    2015-04-01

    Water availability is a primary constraint to the global crop production. Although maize (Zea mays L.) is one of the most important crops worldwide, there is limited information on the function of different root segments and types in extracting water from soils. Aim of this study was to investigate the location of water uptake in maize roots. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maize plants were grown in aluminum containers (40×38×1 cm) filled with sandy soil. The soil was partitioned into different compartments using 1-cm-thick layers of coarse sand. When the plants were two weeks-old we injected D2O into selected soil compartments. The experiments were performed during the day (transpiring plants) and night (non transpiring plants). The transport of D2O into roots was simulated using a convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusion coefficient and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Both during day and night measurements, D2O entered more quickly into lateral roots than into primary and seminal roots. The quick transport of D2O into laterals was caused by the small radius of lateral roots. The diffusion coefficient of lateral roots (4.68×10-7cm2s-1)was similar to that of the distal segments of seminal roots (4.72×10-7cm2s-1) and higher than of the proximal segments (1.42×10-7cm2s-1). Water uptake of lateral roots (1.64×10-5cms-1)was much higher than that of the distal segments of seminal roots (1.18×10-12cms-1). Water uptake of the proximal seminal segments was negligible. We conclude that the function of lateral

  20. New insights to lateral rooting: Differential responses to heterogeneous nitrogen availability among maize root types

    PubMed Central

    Yu, Peng; White, Philip J; Li, Chunjian

    2015-01-01

    Historical domestication and the "Green revolution" have both contributed to the evolution of modern, high-performance crops. Together with increased irrigation and application of chemical fertilizers, these efforts have generated sufficient food for the growing global population. Root architecture, and in particular root branching, plays an important role in the acquisition of water and nutrients, plant performance, and crop yield. Better understanding of root growth and responses to the belowground environment could contribute to overcoming the challenges faced by agriculture today. Manipulating the abilities of crop root systems to explore and exploit the soil environment could enable plants to make the most of soil resources, increase stress tolerance and improve grain yields, while simultaneously reducing environmental degradation. In this article it is noted that the control of root branching, and the responses of root architecture to nitrate availability, differ between root types and between plant species. Since the control of root branching depends upon both plant species and root type, further work is urgently required to determine the appropriate genes to manipulate to improve resource acquisition by specific crops. PMID:26443081

  1. New insights to lateral rooting: Differential responses to heterogeneous nitrogen availability among maize root types.

    PubMed

    Yu, Peng; White, Philip J; Li, Chunjian

    2015-01-01

    Historical domestication and the "Green revolution" have both contributed to the evolution of modern, high-performance crops. Together with increased irrigation and application of chemical fertilizers, these efforts have generated sufficient food for the growing global population. Root architecture, and in particular root branching, plays an important role in the acquisition of water and nutrients, plant performance, and crop yield. Better understanding of root growth and responses to the belowground environment could contribute to overcoming the challenges faced by agriculture today. Manipulating the abilities of crop root systems to explore and exploit the soil environment could enable plants to make the most of soil resources, increase stress tolerance and improve grain yields, while simultaneously reducing environmental degradation. In this article it is noted that the control of root branching, and the responses of root architecture to nitrate availability, differ between root types and between plant species. Since the control of root branching depends upon both plant species and root type, further work is urgently required to determine the appropriate genes to manipulate to improve resource acquisition by specific crops.

  2. The Arabidopsis DCR Encoding a Soluble BAHD Acyltransferase Is Required for Cutin Polyester Formation and Seed Hydration Properties1[C][W][OA

    PubMed Central

    Panikashvili, David; Shi, Jian Xin; Schreiber, Lukas; Aharoni, Asaph

    2009-01-01

    The cuticle covering every plant aerial organ is largely made of cutin that consists of fatty acids, glycerol, and aromatic monomers. Despite the huge importance of the cuticle to plant development and fitness, our knowledge regarding the assembly of the cutin polymer and its integration in the complete cuticle structure is limited. Cutin composition implies the action of acyltransferase-type enzymes that mediate polymer construction through ester bond formation. Here, we show that a member of the BAHD family of acyltransferases (DEFECTIVE IN CUTICULAR RIDGES [DCR]) is required for incorporation of the most abundant monomer into the polymeric structure of the Arabidopsis (Arabidopsis thaliana) flower cutin. DCR-deficient plants display phenotypes that are typically associated with a defective cuticle, including altered epidermal cell differentiation and postgenital organ fusion. Moreover, levels of the major cutin monomer in flowers, 9(10),16-dihydroxy-hexadecanoic acid, decreased to an almost undetectable amount in the mutants. Interestingly, dcr mutants exhibit changes in the decoration of petal conical cells and mucilage extrusion in the seed coat, both phenotypes formerly not associated with cutin polymer assembly. Excessive root branching displayed by dcr mutants and the DCR expression pattern in roots pointed to the function of DCR belowground, in shaping root architecture by influencing lateral root emergence and growth. In addition, the dcr mutants were more susceptible to salinity, osmotic, and water deprivation stress conditions. Finally, the analysis of DCR protein localization suggested that cutin polymerization, possibly the oligomerization step, is partially carried out in the cytoplasmic space. Therefore, this study extends our knowledge regarding the functionality of the cuticular layer and the formation of its major constituent the polymer cutin. PMID:19828672

  3. Variation in Virus Symptom Development and Root Architecture Attributes at the Onset of Storage Root Initiation in ‘Beauregard’ Sweetpotato Plants Grown with or without Nitrogen

    PubMed Central

    Villordon, Arthur Q.; Clark, Christopher A.

    2014-01-01

    It has been shown that virus infections, often symptomless, significantly limit sweetpotato productivity, especially in regions characterized by low input agricultural systems. In sweetpotatoes, the successful emergence and development of lateral roots (LRs), the main determinant of root architecture, determines the competency of adventitious roots to undergo storage root initiation. This study aimed to investigate the effect of some plant viruses on root architecture attributes during the onset of storage root initiation in ‘Beauregard’ sweetpotatoes that were grown with or without the presence of nitrogen. In two replicate experiments, virus-tested plants consistently failed to show visible symptoms at 20 days regardless of nitrogen treatment. In both experiments, the severity of symptom development among infected plants ranged from 25 to 118% when compared to the controls (virus tested plants grown in the presence of nitrogen). The presence of a complex of viruses (Sweet potato feathery mottle virus, Sweet potato virus G, Sweet potato virus C, and Sweet potato virus 2) was associated with 51% reduction in adventitious root number among plants grown without nitrogen. The effect of virus treatments on first order LR development depended on the presence or absence of nitrogen. In the presence of nitrogen, only plants infected with Sweet potato chlorotic stunt virus showed reductions in first order LR length, number, and density, which were decreased by 33%, 12%, and 11%, respectively, when compared to the controls. In the absence of nitrogen, virus tested and infected plants manifested significant reductions for all first order LR attributes. These results provide evidence that virus infection directly influences sweetpotato yield potential by reducing both the number of adventitious roots and LR development. These findings provide a framework for understanding how virus infection reduces sweetpotato yield and could lead to the development of novel strategies

  4. Expression of insulin-like growth factor-1 and proliferating cell nuclear antigen in human pulp cells of teeth with complete and incomplete root development.

    PubMed

    Caviedes-Bucheli, J; Canales-Sánchez, P; Castrillón-Sarria, N; Jovel-Garcia, J; Alvarez-Vásquez, J; Rivero, C; Azuero-Holguín, M M; Diaz, E; Munoz, H R

    2009-08-01

    To quantify the expression of insulin-like growth factor-1 (IGF-1) and proliferating cell nuclear antigen (PCNA) in human pulp cells of teeth with complete or incomplete root development, to support the specific role of IGF-1 in cell proliferation during tooth development and pulp reparative processes. Twenty six pulp samples were obtained from freshly extracted human third molars, equally divided in two groups according to root development stage (complete or incomplete root development). All samples were processed and immunostained to determine the expression of IGF-1 and PCNA in pulp cells. Sections were observed with a light microscope at 80x and morphometric analyses were performed to calculate the area of PCNA and IGF-1 immunostaining using digital image software. Mann-Whitney's test was used to determine statistically significant differences between groups (P < 0.05) for each peptide and the co-expression of both. Expression of IGF-1 and PCNA was observed in all human pulp samples with a statistically significant higher expression in cells of pulps having complete root development (P = 0.0009). Insulin-like growth factor-1 and PCNA are expressed in human pulp cells, with a significant greater expression in pulp cells of teeth having complete root development.

  5. Root Architecture Responses: In Search of Phosphate1

    PubMed Central

    Kanno, Satomi; Nussaume, Laurent

    2014-01-01

    Soil phosphate represents the only source of phosphorus for plants and, consequently, is its entry into the trophic chain. This major component of nucleic acids, phospholipids, and energy currency of the cell (ATP) can limit plant growth because of its low mobility in soil. As a result, root responses to low phosphate favor the exploration of the shallower part of the soil, where phosphate tends to be more abundant, a strategy described as topsoil foraging. We will review the diverse developmental strategies that can be observed among plants by detailing the effect of phosphate deficiency on primary and lateral roots. We also discuss the formation of cluster roots: an advanced adaptive strategy to cope with low phosphate availability observed in a limited number of species. Finally, we will put this work into perspective for future research directions. PMID:25341534

  6. Complex regulation of Arabidopsis AGR1/PIN2-mediated root gravitropic response and basipetal auxin transport by cantharidin-sensitive protein phosphatases

    NASA Technical Reports Server (NTRS)

    Shin, Heungsop; Shin, Hwa-Soo; Guo, Zibiao; Blancaflor, Elison B.; Masson, Patrick H.; Chen, Rujin

    2005-01-01

    Polar auxin transport, mediated by two distinct plasma membrane-localized auxin influx and efflux carrier proteins/complexes, plays an important role in many plant growth and developmental processes including tropic responses to gravity and light, development of lateral roots and patterning in embryogenesis. We have previously shown that the Arabidopsis AGRAVITROPIC 1/PIN2 gene encodes an auxin efflux component regulating root gravitropism and basipetal auxin transport. However, the regulatory mechanism underlying the function of AGR1/PIN2 is largely unknown. Recently, protein phosphorylation and dephosphorylation mediated by protein kinases and phosphatases, respectively, have been implicated in regulating polar auxin transport and root gravitropism. Here, we examined the effects of chemical inhibitors of protein phosphatases on root gravitropism and basipetal auxin transport, as well as the expression pattern of AGR1/PIN2 gene and the localization of AGR1/PIN2 protein. We also examined the effects of inhibitors of vesicle trafficking and protein kinases. Our data suggest that protein phosphatases, sensitive to cantharidin and okadaic acid, are likely involved in regulating AGR1/PIN2-mediated root basipetal auxin transport and gravitropism, as well as auxin response in the root central elongation zone (CEZ). BFA-sensitive vesicle trafficking may be required for the cycling of AGR1/PIN2 between plasma membrane and the BFA compartment, but not for the AGR1/PIN2-mediated root basipetal auxin transport and auxin response in CEZ cells.

  7. Root System Markup Language: Toward a Unified Root Architecture Description Language1[OPEN

    PubMed Central

    Pound, Michael P.; Pradal, Christophe; Draye, Xavier; Godin, Christophe; Leitner, Daniel; Meunier, Félicien; Pridmore, Tony P.; Schnepf, Andrea

    2015-01-01

    The number of image analysis tools supporting the extraction of architectural features of root systems has increased in recent years. These tools offer a handy set of complementary facilities, yet it is widely accepted that none of these software tools is able to extract in an efficient way the growing array of static and dynamic features for different types of images and species. We describe the Root System Markup Language (RSML), which has been designed to overcome two major challenges: (1) to enable portability of root architecture data between different software tools in an easy and interoperable manner, allowing seamless collaborative work; and (2) to provide a standard format upon which to base central repositories that will soon arise following the expanding worldwide root phenotyping effort. RSML follows the XML standard to store two- or three-dimensional image metadata, plant and root properties and geometries, continuous functions along individual root paths, and a suite of annotations at the image, plant, or root scale at one or several time points. Plant ontologies are used to describe botanical entities that are relevant at the scale of root system architecture. An XML schema describes the features and constraints of RSML, and open-source packages have been developed in several languages (R, Excel, Java, Python, and C#) to enable researchers to integrate RSML files into popular research workflow. PMID:25614065

  8. Theoretical distribution of gutta-percha within root canals filled using cold lateral compaction based on numeric calculus.

    PubMed

    Min, Yi; Song, Ying; Gao, Yuan; Dummer, Paul M H

    2016-08-01

    This study aimed to present a new method based on numeric calculus to provide data on the theoretical volume ratio of voids when using the cold lateral compaction technique in canals with various diameters and tapers. Twenty-one simulated mathematical root canal models were created with different tapers and sizes of apical diameter, and were filled with defined sizes of standardized accessory gutta-percha cones. The areas of each master and accessory gutta-percha cone as well as the depth of their insertion into the canals were determined mathematically in Microsoft Excel. When the first accessory gutta-percha cone had been positioned, the residual area of void was measured. The areas of the residual voids were then measured repeatedly upon insertion of additional accessary cones until no more could be inserted in the canal. The volume ratio of voids was calculated through measurement of the volume of the root canal and mass of gutta-percha cones. The theoretical volume ratio of voids was influenced by the taper of canal, the size of apical preparation and the size of accessory gutta-percha cones. Greater apical preparation size and larger taper together with the use of smaller accessory cones reduced the volume ratio of voids in the apical third. The mathematical model provided a precise method to determine the theoretical volume ratio of voids in root-filled canals when using cold lateral compaction.

  9. Hydraulic conductivity of soil-grown lupine and maize unbranched roots and maize root-shoot junctions.

    PubMed

    Meunier, Félicien; Zarebanadkouki, Mohsen; Ahmed, Mutez A; Carminati, Andrea; Couvreur, Valentin; Javaux, Mathieu

    2018-01-26

    Improving or maintaining crop productivity under conditions of long term change of soil water availability and atmosphere demand for water is one the big challenges of this century. It requires a deep understanding of crop water acquisition properties, i.e. root system architecture and root hydraulic properties among other characteristics of the soil-plant-atmosphere continuum. A root pressure probe technique was used to measure the root hydraulic conductances of seven-week old maize and lupine plants grown in sandy soil. Unbranched root segments were excised in lateral, seminal, crown and brace roots of maize, and in lateral roots of lupine. Their total hydraulic conductance was quantified under steady-state hydrostatic gradient for progressively shorter segments. Furthermore, the axial conductance of proximal root regions removed at each step of root shortening was measured as well. Analytical solutions of the water flow equations in unbranched roots developed recently and relating root total conductance profiles to axial and radial conductivities were used to retrieve the root radial hydraulic conductivity profile along each root type, and quantify its uncertainty. Interestingly, the optimized root radial conductivities and measured axial conductances displayed significant differences across root types and species. However, the measured root total conductances did not differ significantly. As compared to measurements reported in the literature, our axial and radial conductivities concentrate in the lower range of herbaceous species hydraulic properties. In a final experiment, the hydraulic conductances of root junctions to maize stem were observed to highly depend on root type. Surprisingly maize brace root junctions were an order of magnitude more conductive than the other crown and seminal roots, suggesting potential regulation mechanism for root water uptake location and a potential role of the maize brace roots for water uptake more important than reported

  10. Adaptor proteins GIR1 and GIR2. I. Interaction with the repressor GLABRA2 and regulation of root hair development.

    PubMed

    Wu, Renhong; Citovsky, Vitaly

    2017-07-01

    Plants use specialized root outgrowths, termed root hairs, to enhance acquisition of nutrients and water, help secure anchorage, and facilitate interactions with soil microbiome. One of the major regulators of this process is GLABRA2 (GL2), a transcriptional repressor of root hair differentiation. However, regulation of the GL2-function is relatively well characterized, it remains completely unknown whether GL2 itself functions in complex with other transcriptional regulators. We identified GIR1 and GIR2, a plant-specific two-member family of closely related proteins that interact with GL2. Loss-of-function mutants of GIR1 and GIR2 enhanced development of root hair whereas gain-of-function mutants repressed it. Thus, GIR1 and GIR2 might function as adaptor proteins that associate with GL2 and participate in control of root hair formation. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. DNA Topoisomerase 1 Prevents R-loop Accumulation to Modulate Auxin-Regulated Root Development in Rice.

    PubMed

    Shafiq, Sarfraz; Chen, Chunli; Yang, Jing; Cheng, Lingling; Ma, Fei; Widemann, Emilie; Sun, Qianwen

    2017-06-05

    R-loop structures (RNA:DNA hybrids) have important functions in many biological processes, including transcriptional regulation and genome instability among diverse organisms. DNA topoisomerase 1 (TOP1), an essential manipulator of DNA topology during RNA transcription and DNA replication processes, can prevent R-loop accumulation by removing the positive and negative DNA supercoiling that is made by RNA polymerases during transcription. TOP1 is required for plant development, but little is known about its function in preventing co-transcriptional R-loop accumulation in various biological processes in plants. Here we show that knockdown of OsTOP1 strongly affects rice development, causing defects in root architecture and gravitropism, which are the consequences of misregulation of auxin signaling and transporter genes. We found that R-loops are naturally formed at rice auxin-related gene loci, and overaccumulate when OsTOP1 is knocked down or OsTOP1 protein activity is inhibited. OsTOP1 therefore sets the accurate expression levels of auxin-related genes by preventing the overaccumulation of inherent R-loops. Our data reveal R-loops as important factors in polar auxin transport and plant root development, and highlight that OsTOP1 functions as a key to link transcriptional R-loops with plant hormone signaling, provide new insights into transcriptional regulation of hormone signaling in plants. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  12. Aesthetic management of gingival recession by root biomodification with carbon dioxide laser and subepithelial connective tissue graft with lateral repositioned flap technique

    PubMed Central

    Rastogi, Pavitra Kumar; Lal, Nand; Garg, Nimit; Anand, Vishal; Singhal, Rameshwari

    2012-01-01

    Localised gingival recessions continue to represent an important aesthetic condition requiring treatment in periodontics. Various techniques have been tried to treat exposed root surfaces to improve aesthetics with high percentage of success and minimal discomfort. Root biomodification is done to improve the predictability of these procedures. This clinical report describes periodontal plastic procedure involving subepithelial connective tissue graft with lateral repositioned flap technique and root biomodification with CO2 laser for the management of gingival recession. PMID:22778454

  13. Conserved regulatory mechanism controls the development of cells with rooting functions in land plants.

    PubMed

    Tam, Thomas Ho Yuen; Catarino, Bruno; Dolan, Liam

    2015-07-21

    Land plants develop filamentous cells-root hairs, rhizoids, and caulonemata-at the interface with the soil. Members of the group XI basic helix-loop-helix (bHLH) transcription factors encoded by LOTUS JAPONICUS ROOTHAIRLESS1-LIKE (LRL) genes positively regulate the development of root hairs in the angiosperms Lotus japonicus, Arabidopsis thaliana, and rice (Oryza sativa). Here we show that auxin promotes rhizoid and caulonema development by positively regulating the expression of PpLRL1 and PpLRL2, the two LRL genes in the Physcomitrella patens genome. Although the group VIII bHLH proteins, AtROOT HAIR DEFECTIVE6 and AtROOT HAIR DEFECTIVE SIX-LIKE1, promote root-hair development by positively regulating the expression of AtLRL3 in A. thaliana, LRL genes promote rhizoid development independently of PpROOT HAIR DEFECTIVE SIX-LIKE1 and PpROOT HAIR DEFECITVE SIX-LIKE2 (PpRSL1 and PpRSL2) gene function in P. patens. Together, these data demonstrate that both LRL and RSL genes are components of an ancient auxin-regulated gene network that controls the development of tip-growing cells with rooting functions among most extant land plants. Although this network has diverged in the moss and the angiosperm lineages, our data demonstrate that the core network acted in the last common ancestor of the mosses and angiosperms that existed sometime before 420 million years ago.

  14. Rha1, a new mutant of Arabidopsis disturbed in root slanting, gravitropism and auxin physiology.

    PubMed

    Fortunati, Alessio; Piconese, Silvia; Tassone, Paola; Ferrari, Simone; Migliaccio, Fernando

    2008-11-01

    A new Arabidopsis mutant is characterized (rha1) that shows, in the roots, reduced right-handed slanting, reduced gravitropism and resistance to 2,4-D, TIBA, NPA and ethylene. It also shows reduced length in the shoot and root, reduced number of lateral roots and shorter siliques. The gene was cloned through TAIL-PCR and resulted in a HSF. Because none of the known gravitropic and auxinic mutants result from damage in a HSF, rha1 seems to belong to a new class of this group of mutants. Quantitative PCR analysis showed that the expression of the gene is increased by heat and cold shock, and by presence of 2,4-D in the media. Study of the expression through the GUS reporter gene revealed increased expression in clinostated and gravistimulated plants, but only in adult tissues, and not in the apical meristems of shoots and roots.

  15. Rha1, a new mutant of Arabidopsis disturbed in root slanting, gravitropism and auxin physiology

    PubMed Central

    Fortunati, Alessio; Piconese, Silvia; Tassone, Paola; Ferrari, Simone

    2008-01-01

    A new Arabidopsis mutant is characterized (rha1) that shows, in the roots, reduced right-handed slanting, reduced gravitropism and resistance to 2,4-D, TIBA, NPA and ethylene. It also shows reduced length in the shoot and root, reduced number of lateral roots and shorter siliques. The gene was cloned through TAIL-PCR and resulted in a HSF. Because none of the known gravitropic and auxinic mutants result from damage in a HSF, rha1 seems to belong to a new class of this group of mutants. Quantitative PCR analysis showed that the expression of the gene is increased by heat and cold shock, and by presence of 2,4-D in the media. Study of the expression through the GUS reporter gene revealed increased expression in clinostated and gravistimulated plants, but only in adult tissues, and not in the apical meristems of shoots and roots. PMID:19704429

  16. Flavonoids modify root growth and modulate expression of SHORT-ROOT and HD-ZIP III.

    PubMed

    Franco, Danilo Miralha; Silva, Eder Marques; Saldanha, Luiz Leonardo; Adachi, Sérgio Akira; Schley, Thayssa Rabelo; Rodrigues, Tatiane Maria; Dokkedal, Anne Ligia; Nogueira, Fabio Tebaldi Silveira; Rolim de Almeida, Luiz Fernando

    2015-09-01

    Flavonoids are a class of distinct compounds produced by plant secondary metabolism that inhibit or promote plant development and have a relationship with auxin transport. We showed that, in terms of root development, Copaifera langsdorffii leaf extracts has an inhibitory effect on most flavonoid components compared with the application of exogenous flavonoids (glycosides and aglycones). These compounds alter the pattern of expression of the SHORT-ROOT and HD-ZIP III transcription factor gene family and cause morpho-physiological alterations in sorghum roots. In addition, to examine the flavonoid auxin interaction in stress, we correlated the responses with the effects of exogenous application of auxin and an auxin transport inhibitor. The results show that exogenous flavonoids inhibit primary root growth and increase the development of lateral roots. Exogenous flavonoids also change the pattern of expression of specific genes associated with root tissue differentiation. These findings indicate that flavonoid glycosides can influence the polar transport of auxin, leading to stress responses that depend on auxin. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Factors affecting induction and development of in vitro rooting in apple rootstocks.

    PubMed

    Sharma, T; Modgil, M; Thakur, M

    2007-09-01

    Shoots of apple rootstocks raised in vitro were transferred to various rooting media to study the effect of different factors on root initiation and development. Various concentrations of indole-3-butyric acid (IBA) initiated rooting but maximum rooting percentage was found with 2.0 and 2.5 mg l(-1) of IBA in M7 and with 1.0 mg l(-1) of IBA in MM106. The drawback was that the roots were thick, short and with profuse callus. The presence of activated charcoal (AC) in the rooting medium improved the rooting quality but reduced the rooting percentage in both the rootstocks. In high auxin dip of 70, 80 and 90 mg l(-1) IBA for 2, 2 and 1 hr showed 75-85 per cent rooting in M7, but lacked reproducibility of the results. Whereas in MM106, 66 - 70 % rooting was achieved with 70 mg l(-1) of IBA dip for 3 h. Root induction in shoots in IBA containing liquid medium (LM) in dark for few days and root elongation in IBA--free medium in light proved most effective. On the other hand, continuous light treatment showed reduced rooting. Reduction of MS salts and sucrose in root elongation medium showed decreased rooting. Plantlets from two--stage rooting procedure showed more rapid growth and satisfactory survival during hardening of plants and on transfer to field.

  18. Modified Posterior C1 Lateral Mass Screw Insertion for Type II Odontoid Process Fractures Using Intraoperative Computed Tomography-Based Spinal Navigation to Minimize Postoperative Occipital Neuralgia.

    PubMed

    Ishak, Basem; Schneider, Till; Tubbs, R Shane; Gimmy, Valerie; Younsi, Alexander; Unterberg, Andreas W; Kiening, Karl L

    2017-11-01

    Various surgical techniques have been described for treating odontoid instability and achieving effective stabilization. The earliest technique to be described proposed a C1 lateral mass entry point including neurectomy of the C2 nerve roots to ensure hemostasis. Because C2 neurectomy remains controversial, preservation of the C2 nerve root as described in Goel-Harms technique can lead to intractable occipital neuralgia and significant blood loss. The aim of this study was to modify the Goel-Harms technique with a high C1 lateral mass screw entry point to enhance overall intraoperative safety. Sixty-three patients (average age, 70 ± 16 years) with acute traumatic odontoid fracture type II underwent posterior stabilization with a modified posterior C1 lateral mass entry point using intraoperative computed tomography (CT)-guided spinal navigation. Complications were recorded, especially bleeding from the epidural venous plexus and development of occipital neuralgia. All patients were followed up for a minimum of 6 months. None of the patients developed occipital neuralgia or numbness. Blood transfusion was necessary in 1 patient because of a coagulation disorder. There was no bleeding from the epidural venous plexus. All screws were correctly placed. Two patients needed surgical revision (wound infection, dural tear). Two developed cardiopulmonary complications. Solid bony fusion was achieved in all patients. This study confirms that changing the C1 entry point to the junction of the posterior arch and superior-posterior part of the C1 lateral mass by using intraoperative CT navigation yields a safe and effective procedure with few complications. The overall complication rate was 6%. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Ethylene Upregulates Auxin Biosynthesis in Arabidopsis Seedlings to Enhance Inhibition of Root Cell Elongation[W

    PubMed Central

    Swarup, Ranjan; Perry, Paula; Hagenbeek, Dik; Van Der Straeten, Dominique; Beemster, Gerrit T.S.; Sandberg, Göran; Bhalerao, Rishikesh; Ljung, Karin; Bennett, Malcolm J.

    2007-01-01

    Ethylene represents an important regulatory signal for root development. Genetic studies in Arabidopsis thaliana have demonstrated that ethylene inhibition of root growth involves another hormone signal, auxin. This study investigated why auxin was required by ethylene to regulate root growth. We initially observed that ethylene positively controls auxin biosynthesis in the root apex. We subsequently demonstrated that ethylene-regulated root growth is dependent on (1) the transport of auxin from the root apex via the lateral root cap and (2) auxin responses occurring in multiple elongation zone tissues. Detailed growth studies revealed that the ability of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid to inhibit root cell elongation was significantly enhanced in the presence of auxin. We conclude that by upregulating auxin biosynthesis, ethylene facilitates its ability to inhibit root cell expansion. PMID:17630275

  20. Genetic ablation of root cap cells in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Tsugeki, R.; Fedoroff, N. V.

    1999-01-01

    The root cap is increasingly appreciated as a complex and dynamic plant organ. Root caps sense and transmit environmental signals, synthesize and secrete small molecules and macromolecules, and in some species shed metabolically active cells. However, it is not known whether root caps are essential for normal shoot and root development. We report the identification of a root cap-specific promoter and describe its use to genetically ablate root caps by directing root cap-specific expression of a diphtheria toxin A-chain gene. Transgenic toxin-expressing plants are viable and have normal aerial parts but agravitropic roots, implying loss of root cap function. Several cell layers are missing from the transgenic root caps, and the remaining cells are abnormal. Although the radial organization of the roots is normal in toxin-expressing plants, the root tips have fewer cytoplasmically dense cells than do wild-type root tips, suggesting that root meristematic activity is lower in transgenic than in wild-type plants. The roots of transgenic plants have more lateral roots and these are, in turn, more highly branched than those of wild-type plants. Thus, root cap ablation alters root architecture both by inhibiting root meristematic activity and by stimulating lateral root initiation. These observations imply that the root caps contain essential components of the signaling system that determines root architecture.

  1. LATERAL ROOT DISTRIBUTION OF TREES IN AN OLD-GROWTH DOUGLAS-FIR FOREST INFERRED FROM UPTAKE OF TRACER 15N

    EPA Science Inventory

    Belowground competition for nutrients and water is considered a key factor affecting spatial organization and productivity of individual stems within forest stands, yet there are almost no data describing the lateral extent and overlap of competing root systems. We quantified th...

  2. nip, a Symbiotic Medicago truncatula Mutant That Forms Root Nodules with Aberrant Infection Threads and Plant Defense-Like Response1

    PubMed Central

    Veereshlingam, Harita; Haynes, Janine G.; Penmetsa, R. Varma; Cook, Douglas R.; Sherrier, D. Janine; Dickstein, Rebecca

    2004-01-01

    To investigate the legume-Rhizobium symbiosis, we isolated and studied a novel symbiotic mutant of the model legume Medicago truncatula, designated nip (numerous infections and polyphenolics). When grown on nitrogen-free media in the presence of the compatible bacterium Sinorhizobium meliloti, the nip mutant showed nitrogen deficiency symptoms. The mutant failed to form pink nitrogen-fixing nodules that occur in the wild-type symbiosis, but instead developed small bump-like nodules on its roots that were blocked at an early stage of development. Examination of the nip nodules by light microscopy after staining with X-Gal for S. meliloti expressing a constitutive GUS gene, by confocal microscopy following staining with SYTO-13, and by electron microscopy revealed that nip initiated symbiotic interactions and formed nodule primordia and infection threads. The infection threads in nip proliferated abnormally and very rarely deposited rhizobia into plant host cells; rhizobia failed to differentiate further in these cases. nip nodules contained autofluorescent cells and accumulated a brown pigment. Histochemical staining of nip nodules revealed this pigment to be polyphenolic accumulation. RNA blot analyses demonstrated that nip nodules expressed only a subset of genes associated with nodule organogenesis, as well as elevated expression of a host defense-associated phenylalanine ammonia lyase gene. nip plants were observed to have abnormal lateral roots. nip plant root growth and nodulation responded normally to ethylene inhibitors and precursors. Allelism tests showed that nip complements 14 other M. truncatula nodulation mutants but not latd, a mutant with a more severe nodulation phenotype as well as primary and lateral root defects. Thus, the nip mutant defines a new locus, NIP, required for appropriate infection thread development during invasion of the nascent nodule by rhizobia, normal lateral root elongation, and normal regulation of host defense-like responses

  3. Posterior meniscus root tears: associated pathologies to assist as diagnostic tools.

    PubMed

    Matheny, Lauren M; Ockuly, Andrew C; Steadman, J Richard; LaPrade, Robert F

    2015-10-01

    The purpose of this study was to investigate associated pathologies identified at arthroscopy in patients with meniscus root tears. This study was Institutional Review Board approved. All patients who underwent arthroscopic knee surgery where a complete meniscus root tear was identified were included in this study. Concurrent ligament tears and articular cartilage changes ≥Outerbridge grade 2 were recorded and stored in a data registry. Fifty patients (28 males, 22 females) [mean age = 36.5 years (range 17.1-68.1 years)] who were diagnosed with a medial or lateral meniscus root tear at arthroscopy were included in this study out of 673 arthroscopic surgeries (prevalence 7.4 %). Twenty-three (46 %) patients had a medial meniscus root tear, 26 (52 %) patients had a lateral meniscus root tear and one (2 %) patient had both. Thirty-four per cent of patients (n = 17) underwent partial meniscectomy, while 60 % (n = 31) underwent suture repair. During arthroscopy, 60 % (n = 30) of patients were diagnosed with an anterior cruciate ligament (ACL) tear. Patients with lateral meniscus root tears were 10.3 times (95 % CI 2.6-42.5) more likely to have ACL tears than patients with medial meniscus root tears (p = 0.012). Patients who had medial meniscus root tears were 5.8 times (95 % CI 1.6-20.5) more likely to have chondral defects than patients who had lateral meniscus root tears (p = 0.044). In this study, patients' preoperative functional scores and activity levels were low. Patients with lateral meniscal root tears were more likely to have an ACL tear. Patients with medial meniscal root tears were more likely to have an knee articular cartilage defect with an Outerbridge grade 2 or higher chondral defect. This study confirms the importance of comprehensive assessment of concurrent injuries to properly diagnose meniscus root tears. IV.

  4. Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields.

    PubMed

    Arai-Sanoh, Yumiko; Takai, Toshiyuki; Yoshinaga, Satoshi; Nakano, Hiroshi; Kojima, Mikiko; Sakakibara, Hitoshi; Kondo, Motohiko; Uga, Yusaku

    2014-07-03

    To clarify the effect of deep rooting on grain yield in rice (Oryza sativa L.) in an irrigated paddy field with or without fertilizer, we used the shallow-rooting IR64 and the deep-rooting Dro1-NIL (a near-isogenic line homozygous for the Kinandang Patong allele of DEEPER ROOTING 1 (DRO1) in the IR64 genetic background). Although total root length was similar in both lines, more roots were distributed within the lower soil layer of the paddy field in Dro1-NIL than in IR64, irrespective of fertilizer treatment. At maturity, Dro1-NIL showed approximately 10% higher grain yield than IR64, irrespective of fertilizer treatment. Higher grain yield of Dro1-NIL was mainly due to the increased 1000-kernel weight and increased percentage of ripened grains, which resulted in a higher harvest index. After heading, the uptake of nitrogen from soil and leaf nitrogen concentration were higher in Dro1-NIL than in IR64. At the mid-grain-filling stage, Dro1-NIL maintained higher cytokinin fluxes from roots to shoots than IR64. These results suggest that deep rooting by DRO1 enhances nitrogen uptake and cytokinin fluxes at late stages, resulting in better grain filling in Dro1-NIL in a paddy field in this study.

  5. Conserved regulatory mechanism controls the development of cells with rooting functions in land plants

    PubMed Central

    Tam, Thomas Ho Yuen; Catarino, Bruno; Dolan, Liam

    2015-01-01

    Land plants develop filamentous cells—root hairs, rhizoids, and caulonemata—at the interface with the soil. Members of the group XI basic helix–loop–helix (bHLH) transcription factors encoded by LOTUS JAPONICUS ROOTHAIRLESS1-LIKE (LRL) genes positively regulate the development of root hairs in the angiosperms Lotus japonicus, Arabidopsis thaliana, and rice (Oryza sativa). Here we show that auxin promotes rhizoid and caulonema development by positively regulating the expression of PpLRL1 and PpLRL2, the two LRL genes in the Physcomitrella patens genome. Although the group VIII bHLH proteins, AtROOT HAIR DEFECTIVE6 and AtROOT HAIR DEFECTIVE SIX-LIKE1, promote root-hair development by positively regulating the expression of AtLRL3 in A. thaliana, LRL genes promote rhizoid development independently of PpROOT HAIR DEFECTIVE SIX-LIKE1 and PpROOT HAIR DEFECITVE SIX-LIKE2 (PpRSL1 and PpRSL2) gene function in P. patens. Together, these data demonstrate that both LRL and RSL genes are components of an ancient auxin-regulated gene network that controls the development of tip-growing cells with rooting functions among most extant land plants. Although this network has diverged in the moss and the angiosperm lineages, our data demonstrate that the core network acted in the last common ancestor of the mosses and angiosperms that existed sometime before 420 million years ago. PMID:26150509

  6. Parsimonious Model of Vascular Patterning Links Transverse Hormone Fluxes to Lateral Root Initiation: Auxin Leads the Way, while Cytokinin Levels Out

    PubMed Central

    el-Showk, Sedeer; Help-Rinta-Rahko, Hanna; Blomster, Tiina; Siligato, Riccardo; Marée, Athanasius F. M.; Mähönen, Ari Pekka; Grieneisen, Verônica A.

    2015-01-01

    An auxin maximum is positioned along the xylem axis of the Arabidopsis root tip. The pattern depends on mutual feedback between auxin and cytokinins mediated by the PIN class of auxin efflux transporters and AHP6, an inhibitor of cytokinin signalling. This interaction has been proposed to regulate the size and the position of the hormones’ respective signalling domains and specify distinct boundaries between them. To understand the dynamics of this regulatory network, we implemented a parsimonious computational model of auxin transport that considers hormonal regulation of the auxin transporters within a spatial context, explicitly taking into account cell shape and polarity and the presence of cell walls. Our analysis reveals that an informative spatial pattern in cytokinin levels generated by diffusion is a theoretically unlikely scenario. Furthermore, our model shows that such a pattern is not required for correct and robust auxin patterning. Instead, auxin-dependent modifications of cytokinin response, rather than variations in cytokinin levels, allow for the necessary feedbacks, which can amplify and stabilise the auxin maximum. Our simulations demonstrate the importance of hormonal regulation of auxin efflux for pattern robustness. While involvement of the PIN proteins in vascular patterning is well established, we predict and experimentally verify a role of AUX1 and LAX1/2 auxin influx transporters in this process. Furthermore, we show that polar localisation of PIN1 generates an auxin flux circuit that not only stabilises the accumulation of auxin within the xylem axis, but also provides a mechanism for auxin to accumulate specifically in the xylem-pole pericycle cells, an important early step in lateral root initiation. The model also revealed that pericycle cells on opposite xylem poles compete for auxin accumulation, consistent with the observation that lateral roots are not initiated opposite to each other. PMID:26505899

  7. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions.

    PubMed

    Uga, Yusaku; Sugimoto, Kazuhiko; Ogawa, Satoshi; Rane, Jagadish; Ishitani, Manabu; Hara, Naho; Kitomi, Yuka; Inukai, Yoshiaki; Ono, Kazuko; Kanno, Noriko; Inoue, Haruhiko; Takehisa, Hinako; Motoyama, Ritsuko; Nagamura, Yoshiaki; Wu, Jianzhong; Matsumoto, Takashi; Takai, Toshiyuki; Okuno, Kazutoshi; Yano, Masahiro

    2013-09-01

    The genetic improvement of drought resistance is essential for stable and adequate crop production in drought-prone areas. Here we demonstrate that alteration of root system architecture improves drought avoidance through the cloning and characterization of DEEPER ROOTING 1 (DRO1), a rice quantitative trait locus controlling root growth angle. DRO1 is negatively regulated by auxin and is involved in cell elongation in the root tip that causes asymmetric root growth and downward bending of the root in response to gravity. Higher expression of DRO1 increases the root growth angle, whereby roots grow in a more downward direction. Introducing DRO1 into a shallow-rooting rice cultivar by backcrossing enabled the resulting line to avoid drought by increasing deep rooting, which maintained high yield performance under drought conditions relative to the recipient cultivar. Our experiments suggest that control of root system architecture will contribute to drought avoidance in crops.

  8. Accounting carbon storage in decaying root systems of harvested forests.

    PubMed

    Wang, G Geoff; Van Lear, David H; Hu, Huifeng; Kapeluck, Peter R

    2012-05-01

    Decaying root systems of harvested trees can be a significant component of belowground carbon storage, especially in intensively managed forests where harvest occurs repeatedly in relatively short rotations. Based on destructive sampling of root systems of harvested loblolly pine trees, we estimated that root systems contained about 32% (17.2 Mg ha(-1)) at the time of harvest, and about 13% (6.1 Mg ha(-1)) of the soil organic carbon 10 years later. Based on the published roundwood output data, we estimated belowground biomass at the time of harvest for loblolly-shortleaf pine forests harvested between 1995 and 2005 in South Carolina. We then calculated C that remained in the decomposing root systems in 2005 using the decay function developed for loblolly pine. Our calculations indicate that the amount of C stored in decaying roots of loblolly-shortleaf pine forests harvested between 1995 and 2005 in South Carolina was 7.1 Tg. Using a simple extrapolation method, we estimated 331.8 Tg C stored in the decomposing roots due to timber harvest from 1995 to 2005 in the conterminous USA. To fully account for the C stored in the decomposing roots of the US forests, future studies need (1) to quantify decay rates of coarse roots for major tree species in different regions, and (2) to develop a methodology that can determine C stock in decomposing roots resulting from natural mortality.

  9. Fine root architecture of nine North American trees

    Treesearch

    Kurt S. Pregitzer; Jared L. DeForest; Andrew J. Burton; Michael F. Allen; Roger W. Ruess; Ronald L. Hendrick

    2002-01-01

    The fine roots of trees are concentrated on lateral branches that arise from perennial roots. They are important in the acquisition of water and essential nutrients, and at the ecosystem level, they make a significant contribution to biogeochemical cycling. Fine roots have often been studied according to arbitrary size classes, e.g., all roots less than 1 or 2 mm in...

  10. Jasmonic Acid Enhances Al-Induced Root Growth Inhibition1[OPEN

    PubMed Central

    Yang, Zhong-Bao; Ma, Yanqi

    2017-01-01

    Phytohormones such as ethylene and auxin are involved in the regulation of the aluminum (Al)-induced root growth inhibition. Although jasmonate (JA) has been reported to play a crucial role in the regulation of root growth and development in response to environmental stresses through interplay with ethylene and auxin, its role in the regulation of root growth response to Al stress is not yet known. In an attempt to elucidate the role of JA, we found that exogenous application of JA enhanced the Al-induced root growth inhibition. Furthermore, phenotype analysis with mutants defective in either JA biosynthesis or signaling suggests that JA is involved in the regulation of Al-induced root growth inhibition. The expression of the JA receptor CORONATINE INSENSITIVE1 (COI1) and the key JA signaling regulator MYC2 was up-regulated in response to Al stress in the root tips. This process together with COI1-mediated Al-induced root growth inhibition under Al stress was controlled by ethylene but not auxin. Transcriptomic analysis revealed that many responsive genes under Al stress were regulated by JA signaling. The differential responsive of microtubule organization-related genes between the wild-type and coi1-2 mutant is consistent with the changed depolymerization of cortical microtubules in coi1 under Al stress. In addition, ALMT-mediated malate exudation and thus Al exclusion from roots in response to Al stress was also regulated by COI1-mediated JA signaling. Together, this study suggests that root growth inhibition is regulated by COI1-mediated JA signaling independent from auxin signaling and provides novel insights into the phytohormone-mediated root growth inhibition in response to Al stress. PMID:27932419

  11. Role of a respiratory burst oxidase of Lepidium sativum (cress) seedlings in root development and auxin signalling

    PubMed Central

    Müller, Kerstin; Linkies, Ada; Kermode, Allison R.

    2012-01-01

    Reactive oxygen species are increasingly perceived as players in plant development and plant hormone signalling pathways. One of these species, superoxide, is produced in the apoplast by respiratory burst oxidase homologues (rbohs), a family of proteins that is conserved throughout the plant kingdom. Because of the availability of mutants, the focus of research into plant rbohs has been on Arabidopsis thaliana, mainly on AtrbohD and AtrbohF. This study investigates: (i) a different member of the Atrboh family, AtrbohB, and (ii) several rbohs from the close relative of A. thaliana, Lepidium sativum (‘cress’). Five cress rbohs (Lesarbohs) were sequenced and it was found that their expression patterns were similar to their Arabidopsis orthologues throughout the life cycle. Cress plants in which LesarbohB expression was knocked down showed a strong seedling root phenotype that resembles phenotypes associated with defective auxin-related genes. These transgenic plants further displayed altered expression of auxin marker genes including those encoding the auxin responsive proteins 14 and 5 (IAA14 and IAA5), and LBD16 (LATERAL ORGAN BOUNDARIES DOMAIN16), an auxin-responsive protein implicated in lateral root initiation. It is speculated that ROS produced by rbohs play a role in root development via auxin signalling. PMID:23095998

  12. Functional genomics of root growth and development in Arabidopsis.

    PubMed

    Iyer-Pascuzzi, Anjali; Simpson, June; Herrera-Estrella, Luis; Benfey, Philip N

    2009-04-01

    Roots are vital for the uptake of water and nutrients, and for anchorage in the soil. They are highly plastic, able to adapt developmentally and physiologically to changing environmental conditions. Understanding the molecular mechanisms behind this growth and development requires knowledge of root transcriptomics, proteomics, and metabolomics. Genomics approaches, including the recent publication of a root expression map, root proteome, and environment-specific root expression studies, are uncovering complex transcriptional and post-transcriptional networks underlying root development. The challenge is in further capitalizing on the information in these datasets to understand the fundamental principles of root growth and development. In this review, we highlight progress researchers have made toward this goal.

  13. More nerve root injuries occur with minimally invasive lumbar surgery, especially extreme lateral interbody fusion: A review

    PubMed Central

    Epstein, Nancy E.

    2016-01-01

    Background: In the lumbar spine, do more nerve root injuries occur utilizing minimally invasive surgery (MIS) techniques versus open lumbar procedures? To answer this question, we compared the frequency of nerve root injuries for multiple open versus MIS operations including diskectomy, laminectomy with/without fusion addressing degenerative disc disease, stenosis, and/or degenerative spondylolisthesis. Methods: Several of Desai et al. large Spine Patient Outcomes Research Trial studies showed the frequency for nerve root injury following an open diskectomy ranged from 0.13% to 0.25%, for open laminectomy/stenosis with/without fusion it was 0%, and for open laminectomy/stenosis/degenerative spondylolisthesis with/without fusion it was 2%. Results: Alternatively, one study compared the incidence of root injuries utilizing MIS transforaminal lumbar interbody fusion (TLIF) versus posterior lumbar interbody fusion (PLIF) techniques; 7.8% of PLIF versus 2% of TLIF patients sustained root injuries. Furthermore, even higher frequencies of radiculitis and nerve root injuries occurred during anterior lumbar interbody fusions (ALIFs) versus extreme lateral interbody fusions (XLIFs). These high frequencies were far from acceptable; 15.8% following ALIF experienced postoperative radiculitis, while 23.8% undergoing XLIF sustained root/plexus deficits. Conclusions: This review indicates that MIS (TLIF/PLIF/ALIF/XLIF) lumbar surgery resulted in a higher incidence of root injuries, radiculitis, or plexopathy versus open lumbar surgical techniques. Furthermore, even a cursory look at the XLIF data demonstrated the greater danger posed to neural tissue by this newest addition to the MIS lumbar surgical armamentariu. The latter should prompt us as spine surgeons to question why the XLIF procedure is still being offered to our patients? PMID:26904372

  14. Distinct Cell-Specific Expression of Homospermidine Synthase Involved in Pyrrolizidine Alkaloid Biosynthesis in Three Species of the Boraginales1[C][W][OA

    PubMed Central

    Niemüller, Daniel; Reimann, Andreas; Ober, Dietrich

    2012-01-01

    Homospermidine synthase (HSS) is the first specific enzyme in pyrrolizidine alkaloid (PA) biosynthesis, a pathway involved in the plant’s chemical defense. HSS has been shown to be recruited repeatedly by duplication of a gene involved in primary metabolism. Within the lineage of the Boraginales, only one gene duplication event gave rise to HSS. Here, we demonstrate that the tissue-specific expression of HSS in three boraginaceous species, Heliotropium indicum, Symphytum officinale, and Cynoglossum officinale, is unique with respect to plant organ, tissue, and cell type. Within H. indicum, HSS is expressed exclusively in nonspecialized cells of the lower epidermis of young leaves and shoots. In S. officinale, HSS expression has been detected in the cells of the root endodermis and in leaves directly underneath developing inflorescences. In young roots of C. officinale, HSS is detected only in cells of the endodermis, but in a later developmental stage, additionally in the pericycle. The individual expression patterns are compared with those within the Senecioneae lineage (Asteraceae), where HSS expression is reproducibly found in specific cells of the endodermis and the adjacent cortex parenchyma of the roots. The individual expression patterns within the Boraginales species are discussed as being a requirement for the successful recruitment of HSS after gene duplication. The diversity of HSS expression within this lineage adds a further facet to the already diverse patterns of expression that have been observed for HSS in other PA-producing plant lineages, making this PA-specific enzyme one of the most diverse expressed proteins described in the literature. PMID:22566491

  15. Role of root UV-B sensing in Arabidopsis early seedling development.

    PubMed

    Tong, Hongyun; Leasure, Colin D; Hou, Xuewen; Yuen, Gigi; Briggs, Winslow; He, Zheng-Hui

    2008-12-30

    All sun-exposed organisms are affected by UV-B [(UVB) 280-320 nm], an integral part of sunlight. UVB can cause stresses or act as a developmental signal depending on its fluence levels. In plants, the mechanism by which high-fluence-rate UVB causes damages and activates DNA-repair systems has been extensively studied. However, little is known about how nondamaging low-fluence-rate UVB is perceived to regulate plant morphogenesis and development. Here, we report the identification of an Arabidopsis mutant, root UVB sensitive 1 (rus1), whose primary root is hypersensitive to very low-fluence-rate (VLF) UVB. Under standard growth-chamber fluorescent white light, rus1 displays stunted root growth and fails to form postembryonic leaves. Experiments with different monochromatic light sources showed that rus1 phenotypes can be rescued if the seedlings are allowed to grow in light conditions with minimum UVB. We determined that roots, not other organs, perceive the UVB signal. Genetic and molecular analyses confirmed that the root light-sensitive phenotypes are independent of all other known plant photoreceptors. Three rus1 alleles have been identified and characterized. A map-based approach was used to identify the RUS1 locus. RUS1 encodes a protein that contains DUF647 (domain of unknown function 647), a domain highly conserved in eukaryotes. Our results demonstrate a root VLF UVB-sensing mechanism that is involved in Arabidopsis early seedling morphogenesis and development.

  16. Nitrate foraging by Arabidopsis roots is mediated by the transcription factor TCP20 through the systemic signaling pathway

    PubMed Central

    Guan, Peizhu; Wang, Rongchen; Nacry, Philippe; Breton, Ghislain; Kay, Steve A.; Pruneda-Paz, Jose L.; Davani, Ariea; Crawford, Nigel M.

    2014-01-01

    To compete for nutrients in diverse soil microenvironments, plants proliferate lateral roots preferentially in nutrient-rich zones. For nitrate, root foraging involves local and systemic signaling; however, little is known about the genes that function in the systemic signaling pathway. By using nitrate enhancer DNA to screen a library of Arabidopsis transcription factors in the yeast one-hybrid system, the transcription factor gene TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1-20 (TCP20) was identified. TCP20, which belongs to an ancient, plant-specific gene family that regulates shoot, flower, and embryo development, was implicated in nitrate signaling by its ability to bind DNA in more than 100 nitrate-regulated genes. Analysis of insertion mutants of TCP20 showed that they had normal primary and lateral root growth on homogenous nitrate media but were impaired in preferential lateral root growth (root foraging) on heterogeneous media in split-root plates. Inhibition of preferential lateral root growth was still evident in the mutants even when ammonium was uniformly present in the media, indicating that the TCP20 response was to nitrate. Comparison of tcp20 mutants with those of nlp7 mutants, which are defective in local control of root growth but not in the root-foraging response, indicated that TCP20 function is independent of and distinct from NLP7 function. Further analysis showed that tcp20 mutants lack systemic control of root growth regardless of the local nitrate concentrations. These results indicate that TCP20 plays a key role in the systemic signaling pathway that directs nitrate foraging by Arabidopsis roots. PMID:25288754

  17. Functional genomics of root growth and development in Arabidopsis

    PubMed Central

    Iyer-Pascuzzi, Anjali; Simpson, June; Herrera-Estrella, Luis; Benfey, Philip N.

    2009-01-01

    Summary Roots are vital for the uptake of water and nutrients, and for anchorage in the soil. They are highly plastic, able to adapt developmentally and physiologically to changing environmental conditions. Understanding the molecular mechanisms behind this growth and development requires knowledge of root transcriptomics, proteomics and metabolomics. Genomics approaches, including the recent publication of a root expression map, root proteome, and environment-specific root expression studies, are uncovering complex transcriptional and post-transcriptional networks underlying root development. The challenge is in further capitalizing on the information in these datasets to understand the fundamental principles of root growth and development. In this review, we highlight progress researchers have made toward this goal. PMID:19117793

  18. [Selective cervical dorsal root cutting off part of the vertebral lateral mass fixation combined with exercise therapy for treating spastic cerebral paralysis of the upper limbs caused by cerebral palsy].

    PubMed

    Zhang, Peng; Hu, Wei; Cao, Xu; Xu, Shi-gang; Li, De-kui; Xu, Lin

    2009-10-01

    To explore the feasibility and the result for the surgical treatment of spastic cerebral paralysis of the upper limbs in patients who underwent the selective cervical dorsal root cutting off part of the vertebral lateral mass fixation combined with exercise therapy. From March 2004 to April 2008, 27 patients included 19 boys and 8 girls, aging 13-21 years with an average of 15 years underwent selective cervical dorsal root cutting off part of the vertebral lateral mass fixation with exercise therapy. The AXIS 8 holes titanium plate was inserted into the lateral mass of spinous process through guidance of the nerve stimulator, choosed fasciculus of low-threshold nerve dorsal root and cut off its 1.5 cm. After two weeks, training exercise therapy was done in patients. Training will include lying position, turning body, sitting position, crawling, kneeling and standing position, walking and so on. Spastic Bobath inhibiting abnormal pattern was done in the whole process of training. The muscular tension, motor function (GMFM), functional independence (WeeFIM) were observed after treatment. All patients were followed up from 4 to 16 months with an average of 6 months. Muscular tension score were respectively 3.30 +/- 0.47 and 1.25 +/- 0.44 before and after treatment;GMFM score were respectively 107.82 +/- 55.17 and 131.28 +/- 46.45; WeeFIM score were respectively 57.61 +/- 25.51 and 87.91 +/- 22.39. There was significant improvement before and after treatment (P < 0.01). Selective cervical dorsal root cutting off part of the vertebral lateral mass fixation combined with exercise therapy was used to treat spastic cerebral paralysis of the upper limbs is safe and effective method, which can decrease muscular tension and improve motor function, which deserves more wide use.

  19. Gene profiling of the red light signalling pathways in roots.

    PubMed

    Molas, Maria Lia; Kiss, John Z; Correll, Melanie J

    2006-01-01

    Red light, acting through the phytochromes, controls numerous aspects of plant development. Many of the signal transduction elements downstream of the phytochromes have been identified in the aerial portions of the plant; however, very few elements in red-light signalling have been identified specifically for roots. Gene profiling studies using microarrays and quantitative Real-Time PCR were performed to characterize gene expression changes in roots of Arabidopsis seedlings exposed to 1 h of red light. Several factors acting downstream of phytochromes in red-light signalling in roots were identified. Some of the genes found to be differentially expressed in this study have already been characterized in the red-light-signalling pathway for whole plants. For example, PHYTOCHROME KINASE 1 (PKS1), LONG HYPOCOTYL 5 (HY5), EARLY FLOWERING 4 (ELF4), and GIGANTEA (GI) were all significantly up-regulated in roots of seedlings exposed to 1 h of red light. The up-regulation of SUPPRESSOR OF PHYTOCHROME A RESPONSES 1 (SPA1) and CONSTITUTIVE PHOTOMORPHOGENIC 1-like (COP1-like) genes suggests that the PHYA-mediated pathway was attenuated by red light. In addition, genes involved in lateral root and root hair formation, root plastid development, phenylpropanoid metabolism, and hormone signalling were also regulated by exposure to red light. Interestingly, members of the RPT2/NPH3 (ROOT PHOTOTROPIC 2/NON PHOTOTROPIC HYPOCOTYL 3) family, which have been shown to mediate blue-light-induced phototropism, were also differentially regulated in roots in red light. Therefore, these results suggest that red and blue light pathways interact in roots of seedlings and that many elements involved in red-light-signalling found in the aerial portions of the plant are differentially expressed in roots within 1 h of red light exposure.

  20. Unique and Conserved Features of the Barley Root Meristem

    PubMed Central

    Kirschner, Gwendolyn K.; Stahl, Yvonne; Von Korff, Maria; Simon, Rüdiger

    2017-01-01

    Plant root growth is enabled by root meristems that harbor the stem cell niches as a source of progenitors for the different root tissues. Understanding the root development of diverse plant species is important to be able to control root growth in order to gain better performances of crop plants. In this study, we analyzed the root meristem of the fourth most abundant crop plant, barley (Hordeum vulgare). Cell division studies revealed that the barley stem cell niche comprises a Quiescent Center (QC) of around 30 cells with low mitotic activity. The surrounding stem cells contribute to root growth through the production of new cells that are displaced from the meristem, elongate and differentiate into specialized root tissues. The distal stem cells produce the root cap and lateral root cap cells, while cells lateral to the QC generate the epidermis, as it is typical for monocots. Endodermis and inner cortex are derived from one common initial lateral to the QC, while the outer cortex cell layers are derived from a distinct stem cell. In rice and Arabidopsis, meristem homeostasis is achieved through feedback signaling from differentiated cells involving peptides of the CLE family. Application of synthetic CLE40 orthologous peptide from barley promotes meristem cell differentiation, similar to rice and Arabidopsis. However, in contrast to Arabidopsis, the columella stem cells do not respond to the CLE40 peptide, indicating that distinct mechanisms control columella cell fate in monocot and dicot plants. PMID:28785269

  1. Deep Phenotyping of Coarse Root Architecture in R. pseudoacacia Reveals That Tree Root System Plasticity Is Confined within Its Architectural Model

    PubMed Central

    Danjon, Frédéric; Khuder, Hayfa; Stokes, Alexia

    2013-01-01

    This study aims at assessing the influence of slope angle and multi-directional flexing and their interaction on the root architecture of Robinia pseudoacacia seedlings, with a particular focus on architectural model and trait plasticity. 36 trees were grown from seed in containers inclined at 0° (control) or 45° (slope) in a glasshouse. The shoots of half the plants were gently flexed for 5 minutes a day. After 6 months, root systems were excavated and digitized in 3D, and biomass measured. Over 100 root architectural traits were determined. Both slope and flexing increased significantly plant size. Non-flexed trees on 45° slopes developed shallow roots which were largely aligned perpendicular to the slope. Compared to the controls, flexed trees on 0° slopes possessed a shorter and thicker taproot held in place by regularly distributed long and thin lateral roots. Flexed trees on the 45° slope also developed a thick vertically aligned taproot, with more volume allocated to upslope surface lateral roots, due to the greater soil volume uphill. We show that there is an inherent root system architectural model, but that a certain number of traits are highly plastic. This plasticity will permit root architectural design to be modified depending on external mechanical signals perceived by young trees. PMID:24386227

  2. Root Transcriptomic Analysis Revealing the Importance of Energy Metabolism to the Development of Deep Roots in Rice (Oryza sativa L.).

    PubMed

    Lou, Qiaojun; Chen, Liang; Mei, Hanwei; Xu, Kai; Wei, Haibin; Feng, Fangjun; Li, Tiemei; Pang, Xiaomeng; Shi, Caiping; Luo, Lijun; Zhong, Yang

    2017-01-01

    Drought is the most serious abiotic stress limiting rice production, and deep root is the key contributor to drought avoidance. However, the genetic mechanism regulating the development of deep roots is largely unknown. In this study, the transcriptomes of 74 root samples from 37 rice varieties, representing the extreme genotypes of shallow or deep rooting, were surveyed by RNA-seq. The 13,242 differentially expressed genes (DEGs) between deep rooting and shallow rooting varieties (H vs. L) were enriched in the pathway of genetic information processing and metabolism, while the 1,052 DEGs between the deep roots and shallow roots from each of the plants (D vs. S) were significantly enriched in metabolic pathways especially energy metabolism. Ten quantitative trait transcripts (QTTs) were identified and some were involved in energy metabolism. Forty-nine candidate DEGs were confirmed by qRT-PCR and microarray. Through weighted gene co-expression network analysis (WGCNA), we found 18 hub genes. Surprisingly, all these hub genes expressed higher in deep roots than in shallow roots, furthermore half of them functioned in energy metabolism. We also estimated that the ATP production in the deep roots was faster than shallow roots. Our results provided a lot of reliable candidate genes to improve deep rooting, and firstly highlight the importance of energy metabolism to the development of deep roots.

  3. Root Transcriptomic Analysis Revealing the Importance of Energy Metabolism to the Development of Deep Roots in Rice (Oryza sativa L.)

    PubMed Central

    Lou, Qiaojun; Chen, Liang; Mei, Hanwei; Xu, Kai; Wei, Haibin; Feng, Fangjun; Li, Tiemei; Pang, Xiaomeng; Shi, Caiping; Luo, Lijun; Zhong, Yang

    2017-01-01

    Drought is the most serious abiotic stress limiting rice production, and deep root is the key contributor to drought avoidance. However, the genetic mechanism regulating the development of deep roots is largely unknown. In this study, the transcriptomes of 74 root samples from 37 rice varieties, representing the extreme genotypes of shallow or deep rooting, were surveyed by RNA-seq. The 13,242 differentially expressed genes (DEGs) between deep rooting and shallow rooting varieties (H vs. L) were enriched in the pathway of genetic information processing and metabolism, while the 1,052 DEGs between the deep roots and shallow roots from each of the plants (D vs. S) were significantly enriched in metabolic pathways especially energy metabolism. Ten quantitative trait transcripts (QTTs) were identified and some were involved in energy metabolism. Forty-nine candidate DEGs were confirmed by qRT-PCR and microarray. Through weighted gene co-expression network analysis (WGCNA), we found 18 hub genes. Surprisingly, all these hub genes expressed higher in deep roots than in shallow roots, furthermore half of them functioned in energy metabolism. We also estimated that the ATP production in the deep roots was faster than shallow roots. Our results provided a lot of reliable candidate genes to improve deep rooting, and firstly highlight the importance of energy metabolism to the development of deep roots. PMID:28798764

  4. A novel morphological response of maize (Zea mays) adult roots to heterogeneous nitrate supply revealed by a split-root experiment.

    PubMed

    Yu, Peng; Li, Xuexian; Yuan, Lixing; Li, Chunjian

    2014-01-01

    Approximately 35-55% of total nitrogen (N) in maize plants is taken up by the root at the reproductive stage. Little is known about how the root of an adult plant responds to heterogeneous nutrient supply. In this study, root morphological and physiological adaptations to nitrate-rich and nitrate-poor patches and corresponding gene expression of ZmNrt2.1 and ZmNrt2.2 of maize seedlings and adult plants were characterized. Local high nitrate (LoHN) supply increased both lateral root length (LRL) and density of the treated nodal roots of adult maize plants, but only increased LRL of the treated primary roots of seedlings. LoHN also increased plant total N acquisition but not N influx rate of the treated roots, when expressed as per unit of root length. Furthermore, LoHN markedly increased specific root length (m g(-1)) of the treated roots but significantly inhibited the growth of the lateral roots outside of the nitrate-rich patches, suggesting a systemic carbon saving strategy within a whole root system. Surprisingly, local low nitrate (LoLN) supply stimulated nodal root growth of adult plants although LoLN inhibited growth of primary roots of seedlings. LoLN inhibited the N influx rate of the treated roots and did not change plant total N content. The gene expression of ZmNrt2.1 and ZmNrt2.2 of the treated roots of seedlings and adult plants was inhibited by LoHN but enhanced by LoLN. In conclusion, maize adult roots responded to nitrate-rich and nitrate-poor patches by adaptive morphological alterations and displayed carbon saving strategies in response to heterogeneous nitrate supply. © 2013 Scandinavian Plant Physiology Society.

  5. Overexpression of the protein phosphatase 2A regulatory subunit a gene ZmPP2AA1 improves low phosphate tolerance by remodeling the root system architecture of maize

    PubMed Central

    Wang, Jiemin; Pei, Laming; Jin, Zhe; Zhang, Kewei; Zhang, Juren

    2017-01-01

    Phosphate (Pi) limitation is a constraint for plant growth and development in many natural and agricultural ecosystems. In this study, a gene encoding Zea mays L. protein phosphatase 2A regulatory subunit A, designated ZmPP2AA1, was induced in roots by low Pi availability. The function of the ZmPP2AA1 gene in maize was analyzed using overexpression and RNA interference. ZmPP2AA1 modulated root gravitropism, negatively regulated primary root (PR) growth, and stimulated the development of lateral roots (LRs). A detailed characterization of the root system architecture (RSA) in response to different Pi concentrations with or without indole-3-acetic acid and 1-N-naphthylphthalamic acid revealed that auxin was involved in the RSA response to low Pi availability. Overexpression of ZmPP2AA1 enhanced tolerance to Pi starvation in transgenic maize in hydroponic and soil pot experiments. An increased dry weight (DW), root-to-shoot ratio, and total P content and concentration, along with a delayed and reduced accumulation of anthocyanin in overexpressing transgenic maize plants coincided with their highly branched root system and increased Pi uptake capability under low Pi conditions. Inflorescence development of the ZmPP2AA1 overexpressing line was less affected by low Pi stress, resulting in higher grain yield per plant under Pi deprivation. These data reveal the biological function of ZmPP2AA1, provide insights into a linkage between auxin and low Pi responses, and drive new strategies for the efficient utilization of Pi by maize. PMID:28448624

  6. The expression of PTEN in the development of mouse cochlear lateral wall.

    PubMed

    Dong, Y; Sui, L; Yamaguchi, F; Kamitori, K; Hirata, Y; Hossain, A; Noguchi, C; Katagi, A; Nishio, M; Suzuki, A; Lou, X; Tokuda, M

    2014-01-31

    Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor gene that regulates various cell processes including proliferation, growth, synaptogenesis, neural and glioma stem/progenitor cell renewal. In addition, PTEN can regulate sensory cell proliferation and differentiation of hair bundles in the mammalian cochlea. In this study we use immunofluorescence, Western blot and reverse transcriptase-polymerase chain reaction (RT-PCR) to reveal the expression of PTEN in the developing cochlear lateral wall, which is crucial for regulating K(+) homeostasis. Relatively high levels of PTEN are initially expressed in the marginal cells (MCs) of the lateral wall at embryonic day (E) 17.5 when they start to differentiate. Similarly high levels are subsequently expressed in differentiating root cells (RCs) at postnatal day (P) 3 and then in spiral ligament fibrocytes (SLFs) at P 10. In the mature cochlea, PTEN expression is low or undetectable in MCs and SLFs but it remains high in RCs and their processes. The expression pattern for PTEN in the developing lateral wall suggests that it plays a critical role in the differentiation of the cellular pathways that regulate K(+) homeostasis in the cochlea. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. SDG2-Mediated H3K4 Methylation Is Required for Proper Arabidopsis Root Growth and Development

    PubMed Central

    Yao, Xiaozhen; Feng, Haiyang; Yu, Yu; Dong, Aiwu; Shen, Wen-Hui

    2013-01-01

    Trithorax group (TrxG) proteins are evolutionarily conserved in eukaryotes and play critical roles in transcriptional activation via deposition of histone H3 lysine 4 trimethylation (H3K4me3) in chromatin. Several Arabidopsis TrxG members have been characterized, and among them SET DOMAIN GROUP 2 (SDG2) has been shown to be necessary for global genome-wide H3K4me3 deposition. Although pleiotropic phenotypes have been uncovered in the sdg2 mutants, SDG2 function in the regulation of stem cell activity has remained largely unclear. Here, we investigate the sdg2 mutant root phenotype and demonstrate that SDG2 is required for primary root stem cell niche (SCN) maintenance as well as for lateral root SCN establishment. Loss of SDG2 results in drastically reduced H3K4me3 levels in root SCN and differentiated cells and causes the loss of auxin gradient maximum in the root quiescent centre. Elevated DNA damage is detected in the sdg2 mutant, suggesting that impaired genome integrity may also have challenged the stem cell activity. Genetic interaction analysis reveals that SDG2 and CHROMATIN ASSEMBLY FACTOR-1 act synergistically in root SCN and genome integrity maintenance but not in telomere length maintenance. We conclude that SDG2-mediated H3K4me3 plays a distinctive role in the regulation of chromatin structure and genome integrity, which are key features in pluripotency of stem cells and crucial for root growth and development. PMID:23483879

  8. Naturally developed seedling roots of five western conifers.

    Treesearch

    William I. Stein

    1978-01-01

    Two-year-old seedlings grown from seed outdoors in three southwestern Oregon soils were excavated to determine their root development. Roots of Douglas-fir, ponderosa pine, sugar pine, grand fir, and incense-cedar seedlings differed substantially in total extent, form, and balance in relation to tops. Information on the natural development of roots provides a benchmark...

  9. Complex physiological and molecular processes underlying root gravitropism

    NASA Technical Reports Server (NTRS)

    Chen, Rujin; Guan, Changhui; Boonsirichai, Kanokporn; Masson, Patrick H.

    2002-01-01

    Gravitropism allows plant organs to guide their growth in relation to the gravity vector. For most roots, this response to gravity allows downward growth into soil where water and nutrients are available for plant growth and development. The primary site for gravity sensing in roots includes the root cap and appears to involve the sedimentation of amyloplasts within the columella cells. This process triggers a signal transduction pathway that promotes both an acidification of the wall around the columella cells, an alkalinization of the columella cytoplasm, and the development of a lateral polarity across the root cap that allows for the establishment of a lateral auxin gradient. This gradient is then transmitted to the elongation zones where it triggers a differential cellular elongation on opposite flanks of the central elongation zone, responsible for part of the gravitropic curvature. Recent findings also suggest the involvement of a secondary site/mechanism of gravity sensing for gravitropism in roots, and the possibility that the early phases of graviresponse, which involve differential elongation on opposite flanks of the distal elongation zone, might be independent of this auxin gradient. This review discusses our current understanding of the molecular and physiological mechanisms underlying these various phases of the gravitropic response in roots.

  10. Cytokinin-induced promotion of root meristem size in the fern Azolla supports a shoot-like origin of euphyllophyte roots.

    PubMed

    de Vries, Jan; Fischer, Angela Melanie; Roettger, Mayo; Rommel, Sophie; Schluepmann, Henriette; Bräutigam, Andrea; Carlsbecker, Annelie; Gould, Sven Bernhard

    2016-01-01

    The phytohormones cytokinin and auxin orchestrate the root meristem development in angiosperms by determining embryonic bipolarity. Ferns, having the most basal euphyllophyte root, form neither bipolar embryos nor permanent embryonic primary roots but rather an adventitious root system. This raises the questions of how auxin and cytokinin govern fern root system architecture and whether this can tell us something about the origin of that root. Using Azolla filiculoides, we characterized the influence of IAA and zeatin on adventitious fern root meristems and vasculature by Nomarski microscopy. Simultaneously, RNAseq analyses, yielding 36,091 contigs, were used to uncover how the phytohormones affect root tip gene expression. We show that auxin restricts Azolla root meristem development, while cytokinin promotes it; it is the opposite effect of what is observed in Arabidopsis. Global gene expression profiling uncovered 145 genes significantly regulated by cytokinin or auxin, including cell wall modulators, cell division regulators and lateral root formation coordinators. Our data illuminate both evolution and development of fern roots. Promotion of meristem size through cytokinin supports the idea that root meristems of euphyllophytes evolved from shoot meristems. The foundation of these roots was laid in a postembryonically branching shoot system. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. Sibling Curves and Complex Roots 1: Looking Back

    ERIC Educational Resources Information Center

    Harding, Ansie; Engelbrecht, Johann

    2007-01-01

    This paper, the first of a two-part article, follows the trail in history of the development of a graphical representation of the complex roots of a function. Root calculation and root representation are traced through millennia, including the development of the notion of complex numbers and subsequent graphical representation thereof. The…

  12. Auxin modulates the enhanced development of root hairs in Arabidopsis thaliana (L.) Heynh. under elevated CO(2).

    PubMed

    Niu, Yaofang; Jin, Chongwei; Jin, Gulei; Zhou, Qingyan; Lin, Xianyong; Tang, Caixian; Zhang, Yongsong

    2011-08-01

    Root hairs may play a critical role in nutrient acquisition of plants grown under elevated CO(2) . This study investigated how elevated CO(2) enhanced the development of root hairs in Arabidopsis thaliana (L.) Heynh. The plants under elevated CO(2) (800 µL L(-1)) had denser and longer root hairs, and more H-positioned cells in root epidermis than those under ambient CO(2) (350 µL L(-1)). The elevated CO(2) increased auxin production in roots. Under elevated CO(2) , application of either 1-naphthoxyacetic acid (1-NOA) or N-1-naphthylphthalamic acid (NPA) blocked the enhanced development of root hairs. The opposite was true when the plants under ambient CO(2) were treated with 1-naphthylacetic acid (NAA), an auxin analogue. Furthermore, the elevated CO(2) did not enhance the development of root hairs in auxin-response mutants, axr1-3, and auxin-transporter mutants, axr4-1, aux1-7 and pin1-1. Both elevated CO(2) and NAA application increased expressions of caprice, triptychon and rho-related protein from plants 2, and decreased expressions of werewolf, GLABRA2, GLABRA3 and the transparent testa glabra 1, genes related to root-hair development, while 1-NOA and NPA application had an opposite effect. Our study suggests that elevated CO(2) enhanced the development of root hairs in Arabidopsis via the well-characterized auxin signalling and transport that modulate the initiation of root hairs and the expression of its specific genes. © 2011 Blackwell Publishing Ltd.

  13. Selecting Populus with different adventitious root types for environmental benefits, fiber, and energy

    Treesearch

    Ronald S., Jr. Zalesny; Jill A. Zalesny

    2009-01-01

    Primary roots from seeds, sucker roots in aspens, and adventitious roots (ARs) in poplars and their hybrids are prevalent within the genus Populus. Two AR types develop on hardwood cuttings: (i) lateral roots from either preformed or induced primordia along the length of the cutting and (ii) basal roots from callus at the base of the cutting in...

  14. Root Formation in Ethylene-Insensitive Plants1

    PubMed Central

    Clark, David G.; Gubrium, Erika K.; Barrett, James E.; Nell, Terril A.; Klee, Harry J.

    1999-01-01

    Experiments with ethylene-insensitive tomato (Lycopersicon esculentum) and petunia (Petunia × hybrida) plants were conducted to determine if normal or adventitious root formation is affected by ethylene insensitivity. Ethylene-insensitive Never ripe (NR) tomato plants produced more belowground root mass but fewer aboveground adventitious roots than wild-type Pearson plants. Applied auxin (indole-3-butyric acid) increased adventitious root formation on vegetative stem cuttings of wild-type plants but had little or no effect on rooting of NR plants. Reduced adventitious root formation was also observed in ethylene-insensitive transgenic petunia plants. Applied 1-aminocyclopropane-1-carboxylic acid increased adventitious root formation on vegetative stem cuttings from NR and wild-type plants, but NR cuttings produced fewer adventitious roots than wild-type cuttings. These data suggest that the promotive effect of auxin on adventitious rooting is influenced by ethylene responsiveness. Seedling root growth of tomato in response to mechanical impedance was also influenced by ethylene sensitivity. Ninety-six percent of wild-type seedlings germinated and grown on sand for 7 d grew normal roots into the medium, whereas 47% of NR seedlings displayed elongated taproots, shortened hypocotyls, and did not penetrate the medium. These data indicate that ethylene has a critical role in various responses of roots to environmental stimuli. PMID:10482660

  15. Both Posterior Root Lateral-Medial Meniscus Tears With Anterior Cruciate Ligament Rupture: The Step-by-Step Systematic Arthroscopic Repair Technique.

    PubMed

    Chernchujit, Bancha; Prasetia, Renaldi

    2017-10-01

    The occurrence of posterior root tear of both the lateral and medial menisci, combined with anterior cruciate ligament rupture, is rare. Problems may be encountered such as the difficulty to access the medial meniscal root tear, the confusing circumstances about which structure to repair first, and the possibility of the tunnel for each repair to become taut inside the tibial bone. We present the arthroscopy technique step by step to overcome the difficulties in an efficient and time-preserving manner.

  16. Nursery Cultural Practices and Morphological Arrtibutes of Longleaf Pine Bare-Root Stock as Indicators of Early Field Performance

    Treesearch

    Glyndon E. Hatchell; H. David Muse

    1990-01-01

    Longleaf pine seedlings performed satisfactorily after planting on deep sands in South Carolina in dry years when: (1) They were vertically root-pruned in the nursery. (2) They had 14 or more first-order lateral roots and nonfibrous root systems. (3) They had six or more first-order lateral roots and highly fibrous root systems.

  17. Aberrant temporal growth pattern and morphology of root and shoot caused by a defective circadian clock in Arabidopsis thaliana.

    PubMed

    Ruts, Tom; Matsubara, Shizue; Wiese-Klinkenberg, Anika; Walter, Achim

    2012-10-01

    Circadian clocks synchronized with the environment allow plants to anticipate recurring daily changes and give a fitness advantage. Here, we mapped the dynamic growth phenotype of leaves and roots in two lines of Arabidopsis thaliana with a disrupted circadian clock: the CCA1 over-expressing line (CCA1ox) and the prr9 prr7 prr5 (prr975) mutant. We demonstrate leaf growth defects due to a disrupted circadian clock over a 24 h time scale. Both lines showed enhanced leaf growth compared with the wild-type during the diurnal period, suggesting increased partitioning of photosynthates for leaf growth. Nocturnal leaf growth was reduced and growth inhibition occurred by dawn, which may be explained by ineffective starch degradation in the leaves of the mutants. However, this growth inhibition was not caused by starch exhaustion. Overall, these results are consistent with the notion that the defective clock affects carbon and energy allocation, thereby reducing growth capacity during the night. Furthermore, rosette morphology and size as well as root architecture were strikingly altered by the defective clock control. Separate analysis of the primary root and lateral roots revealed strong suppression of lateral root formation in both CCA1ox and prr975, accompanied by unusual changes in lateral root growth direction under light-dark cycles and increased lateral extension of the root system. We conclude that growth of the whole plant is severely affected by improper clock regulation in A. thaliana, resulting not only in altered timing and capacity for growth but also aberrant development of shoot and root architecture. © 2012 Forschungszentrum Jülich. The Plant Journal © 2012 Blackwell Publishing Ltd.

  18. Effect of magnetic attachment with stress breaker on lateral stress to abutment tooth under overdenture.

    PubMed

    Gonda, T; Ikebe, K; Ono, T; Nokubi, T

    2004-10-01

    Recently, a newly developed magnetic attachment with stress breaker was used in retentive components in overdentures. Excessive lateral stress has a more harmful effect on natural teeth than axial stress, and the magnetic attachment with stress breaker is expected to reduce lateral forces on abutment teeth and protect it teeth from excessive stress. However, the properties of this retainer have not yet been determined experimentally. This study compares the lateral forces on abutment teeth for three retainers under loading on the denture base in a model study. A mandibular simulation model is constructed to measure lateral stress. Three types of retentive devices are attached to the canine root. These devices include the conventional root coping, the conventional magnetic attachment and the new magnetic attachment with stress breaker. For each retentive device, load is generated on the occlusal table of the model overdenture, and the lateral stress on the canine root and the displacement of the overdenture measured. The magnetic attachment with stress breaker does not displace the denture and exhibits lower lateral stress in the canine root than conventional root coping and magnetic attachments.

  19. Transcription factors network in root endosymbiosis establishment and development.

    PubMed

    Diédhiou, Issa; Diouf, Diaga

    2018-02-15

    Root endosymbioses are mutualistic interactions between plants and the soil microorganisms (Fungus, Frankia or Rhizobium) that lead to the formation of nitrogen-fixing root nodules and/or arbuscular mycorrhiza. These interactions enable many species to survive in different marginal lands to overcome the nitrogen-and/or phosphorus deficient environment and can potentially reduce the chemical fertilizers used in agriculture which gives them an economic, social and environmental importance. The formation and the development of these structures require the mediation of specific gene products among which the transcription factors play a key role. Three of these transcription factors, viz., CYCLOPS, NSP1 and NSP2 are well conserved between actinorhizal, legume, non-legume and mycorrhizal symbioses. They interact with DELLA proteins to induce the expression of NIN in nitrogen fixing symbiosis or RAM1 in mycorrhizal symbiosis. Recently, the small non coding RNA including micro RNAs (miRNAs) have emerged as major regulators of root endosymbioses. Among them, miRNA171 targets NSP2, a TF conserved in actinorhizal, legume, non-legume and mycorrhizal symbioses. This review will also focus on the recent advances carried out on the biological function of others transcription factors during the root pre-infection/pre-contact, infection or colonization. Their role in nodule formation and AM development will also be described.

  20. Pin1At regulates PIN1 polar localization and root gravitropism

    PubMed Central

    Xi, Wanyan; Gong, Ximing; Yang, Qiaoyun; Yu, Hao; Liou, Yih-Cherng

    2016-01-01

    Root gravitropism allows plants to establish root systems and its regulation depends on polar auxin transport mediated by PIN-FORMED (PIN) auxin transporters. PINOID (PID) and PROTEIN PHOSPHATASE 2A (PP2A) act antagonistically on reversible phosphorylation of PINs. This regulates polar PIN distribution and auxin transport. Here we show that a peptidyl-prolyl cis/trans isomerase Pin1At regulates root gravitropism. Downregulation of Pin1At suppresses root agravitropic phenotypes of pp2aa and 35S:PID, while overexpression of Pin1At affects root gravitropic responses and enhances the pp2aa agravitropic phenotype. Pin1At also affects auxin transport and polar localization of PIN1 in stele cells, which is mediated by PID and PP2A. Furthermore, Pin1At catalyses the conformational change of the phosphorylated Ser/Thr-Pro motifs of PIN1. Thus, Pin1At mediates the conformational dynamics of PIN1 and affects PID- and PP2A-mediated regulation of PIN1 polar localization, which correlates with the regulation of root gravitropism. PMID:26791759

  1. Pin1At regulates PIN1 polar localization and root gravitropism.

    PubMed

    Xi, Wanyan; Gong, Ximing; Yang, Qiaoyun; Yu, Hao; Liou, Yih-Cherng

    2016-01-21

    Root gravitropism allows plants to establish root systems and its regulation depends on polar auxin transport mediated by PIN-FORMED (PIN) auxin transporters. PINOID (PID) and PROTEIN PHOSPHATASE 2A (PP2A) act antagonistically on reversible phosphorylation of PINs. This regulates polar PIN distribution and auxin transport. Here we show that a peptidyl-prolyl cis/trans isomerase Pin1At regulates root gravitropism. Downregulation of Pin1At suppresses root agravitropic phenotypes of pp2aa and 35S:PID, while overexpression of Pin1At affects root gravitropic responses and enhances the pp2aa agravitropic phenotype. Pin1At also affects auxin transport and polar localization of PIN1 in stele cells, which is mediated by PID and PP2A. Furthermore, Pin1At catalyses the conformational change of the phosphorylated Ser/Thr-Pro motifs of PIN1. Thus, Pin1At mediates the conformational dynamics of PIN1 and affects PID- and PP2A-mediated regulation of PIN1 polar localization, which correlates with the regulation of root gravitropism.

  2. Adenosine kinase modulates root gravitropism and cap morphogenesis in Arabidopsis.

    PubMed

    Young, Li-Sen; Harrison, Benjamin R; Narayana Murthy, U M; Moffatt, Barbara A; Gilroy, Simon; Masson, Patrick H

    2006-10-01

    Adenosine kinase (ADK) is a key enzyme that regulates intra- and extracellular levels of adenosine, thereby modulating methyltransferase reactions, production of polyamines and secondary compounds, and cell signaling in animals. Unfortunately, little is known about ADK's contribution to the regulation of plant growth and development. Here, we show that ADK is a modulator of root cap morphogenesis and gravitropism. Upon gravistimulation, soluble ADK levels and activity increase in the root tip. Mutation in one of two Arabidopsis (Arabidopsis thaliana) ADK genes, ADK1, results in cap morphogenesis defects, along with alterations in root sensitivity to gravistimulation and slower kinetics of root gravitropic curvature. The kinetics defect can be partially rescued by adding spermine to the growth medium, whereas the defects in cap morphogenesis and gravitropic sensitivity cannot. The root morphogenesis and gravitropism defects of adk1-1 are accompanied by altered expression of the PIN3 auxin efflux facilitator in the cap and decreased expression of the auxin-responsive DR5-GUS reporter. Furthermore, PIN3 fails to relocalize to the bottom membrane of statocytes upon gravistimulation. Consequently, adk1-1 roots cannot develop a lateral auxin gradient across the cap, necessary for the curvature response. Interestingly, adk1-1 does not affect gravity-induced cytoplasmic alkalinization of the root statocytes, suggesting either that ADK1 functions between cytoplasmic alkalinization and PIN3 relocalization in a linear pathway or that the pH and PIN3-relocalization responses to gravistimulation belong to distinct branches of the pathway. Our data are consistent with a role for ADK and the S-adenosyl-L-methionine pathway in the control of root gravitropism and cap morphogenesis.

  3. The Nitrate Transporter MtNPF6.8 (MtNRT1.3) Transports Abscisic Acid and Mediates Nitrate Regulation of Primary Root Growth in Medicago truncatula1[W

    PubMed Central

    Pellizzaro, Anthoni; Clochard, Thibault; Cukier, Caroline; Bourdin, Céline; Juchaux, Marjorie; Montrichard, Françoise; Thany, Steeve; Raymond, Valérie; Planchet, Elisabeth; Morère-Le Paven, Marie-Christine

    2014-01-01

    Elongation of the primary root during postgermination of Medicago truncatula seedlings is a multigenic trait that is responsive to exogenous nitrate. A quantitative genetic approach suggested the involvement of the nitrate transporter MtNPF6.8 (for Medicago truncatula NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER Family6.8) in the inhibition of primary root elongation by high exogenous nitrate. In this study, the inhibitory effect of nitrate on primary root elongation, via inhibition of elongation of root cortical cells, was abolished in npf6.8 knockdown lines. Accordingly, we propose that MtNPF6.8 mediates nitrate inhibitory effects on primary root growth in M. truncatula. pMtNPF6.8:GUS promoter-reporter gene fusion in Agrobacterium rhizogenes-generated transgenic roots showed the expression of MtNPF6.8 in the pericycle region of primary roots and lateral roots, and in lateral root primordia and tips. MtNPF6.8 expression was insensitive to auxin and was stimulated by abscisic acid (ABA), which restored the inhibitory effect of nitrate in npf6.8 knockdown lines. It is then proposed that ABA acts downstream of MtNPF6.8 in this nitrate signaling pathway. Furthermore, MtNPF6.8 was shown to transport ABA in Xenopus spp. oocytes, suggesting an additional role of MtNPF6.8 in ABA root-to-shoot translocation. 15NO3−-influx experiments showed that only the inducible component of the low-affinity transport system was affected in npf6.8 knockdown lines. This indicates that MtNPF6.8 is a major contributor to the inducible component of the low-affinity transport system. The short-term induction by nitrate of the expression of Nitrate Reductase1 (NR1) and NR2 (genes that encode two nitrate reductase isoforms) was greatly reduced in the npf6.8 knockdown lines, supporting a role of MtNPF6.8 in the primary nitrate response in M. truncatula. PMID:25367858

  4. Micromechanics of root development in soil.

    PubMed

    Dupuy, L X; Mimault, M; Patko, D; Ladmiral, V; Ameduri, B; MacDonald, M P; Ptashnyk, M

    2018-04-16

    Our understanding of how roots develop in soil may be at the eve of significant transformations. The formidable expansion of imaging technologies enables live observations of the rhizosphere micro-pore architecture at unprecedented resolution. Granular matter physics provides ways to understand the microscopic fluctuations of forces in soils, and the increasing knowledge of plant mechanobiology may shed new lights on how roots perceive soil heterogeneity. This opinion paper exposes how recent scientific achievements may contribute to refresh our views on root growth in heterogeneous environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Cell Pattern in the Arabidopsis Root Epidermis Determined by Lateral Inhibition with Feedback

    PubMed Central

    Lee, Myeong Min; Schiefelbein, John

    2002-01-01

    In the root epidermis of Arabidopsis, hair and nonhair cell types are specified in a distinct position-dependent pattern. Here, we show that transcriptional feedback loops between the WEREWOLF (WER), CAPRICE (CPC), and GLABRA2 (GL2) genes help to establish this pattern. Positional cues bias the expression of the WER MYB gene, leading to the induction of CPC and GL2 in cells located in a particular position (N) and adoption of the nonhair fate. The truncated MYB encoded by CPC mediates a lateral inhibition mechanism to negatively regulate WER, GL2, and its own gene in the alternative position (H) to induce the hair fate. These results provide a molecular genetic framework for understanding the determination of a cell-type pattern in plants. PMID:11910008

  6. Cell pattern in the Arabidopsis root epidermis determined by lateral inhibition with feedback.

    PubMed

    Lee, Myeong Min; Schiefelbein, John

    2002-03-01

    In the root epidermis of Arabidopsis, hair and nonhair cell types are specified in a distinct position-dependent pattern. Here, we show that transcriptional feedback loops between the WEREWOLF (WER), CAPRICE (CPC), and GLABRA2 (GL2) genes help to establish this pattern. Positional cues bias the expression of the WER MYB gene, leading to the induction of CPC and GL2 in cells located in a particular position (N) and adoption of the nonhair fate. The truncated MYB encoded by CPC mediates a lateral inhibition mechanism to negatively regulate WER, GL2, and its own gene in the alternative position (H) to induce the hair fate. These results provide a molecular genetic framework for understanding the determination of a cell-type pattern in plants.

  7. An image processing and analysis tool for identifying and analysing complex plant root systems in 3D soil using non-destructive analysis: Root1.

    PubMed

    Flavel, Richard J; Guppy, Chris N; Rabbi, Sheikh M R; Young, Iain M

    2017-01-01

    The objective of this study was to develop a flexible and free image processing and analysis solution, based on the Public Domain ImageJ platform, for the segmentation and analysis of complex biological plant root systems in soil from x-ray tomography 3D images. Contrasting root architectures from wheat, barley and chickpea root systems were grown in soil and scanned using a high resolution micro-tomography system. A macro (Root1) was developed that reliably identified with good to high accuracy complex root systems (10% overestimation for chickpea, 1% underestimation for wheat, 8% underestimation for barley) and provided analysis of root length and angle. In-built flexibility allowed the user interaction to (a) amend any aspect of the macro to account for specific user preferences, and (b) take account of computational limitations of the platform. The platform is free, flexible and accurate in analysing root system metrics.

  8. Brassinolide Increases Potato Root Growth In Vitro in a Dose-Dependent Way and Alleviates Salinity Stress

    PubMed Central

    Xia, Shitou; Su, Yi; Wang, Huiqun; Luo, Weigui; Su, Shengying

    2016-01-01

    Brassinosteroids (BRs) are steroidal phytohormones that regulate various physiological processes, such as root development and stress tolerance. In the present study, we showed that brassinolide (BL) affects potato root in vitro growth in a dose-dependent manner. Low BL concentrations (0.1 and 0.01 μg/L) promoted root elongation and lateral root development, whereas high BL concentrations (1–100 μg/L) inhibited root elongation. There was a significant (P < 0.05) positive correlation between root activity and BL concentrations within a range from 0.01 to 100 μg/L, with the peak activity of 8.238 mg TTC·g−1 FW·h−1 at a BL concentration of 100 μg/L. Furthermore, plants treated with 50 μg/L BL showed enhanced salt stress tolerance through in vitro growth. Under this scenario, BL treatment enhanced the proline content and antioxidant enzymes' (superoxide dismutase, peroxidase, and catalase) activity and reduced malondialdehyde content in potato shoots. Application of BL maintain K+ and Na+ homeostasis by improving tissue K+/Na+ ratio. Therefore, we suggested that the effects of BL on root development from stem fragments explants as well as on primary root development are dose-dependent and that BL application alleviates salt stress on potato by improving root activity, root/shoot ratio, and antioxidative capacity in shoots and maintaining K+/Na+ homeostasis in potato shoots and roots. PMID:27803931

  9. Specialized 'dauciform' roots of Cyperaceae are structurally distinct, but functionally analogous with 'cluster' roots.

    PubMed

    Shane, Michael W; Cawthray, Gregory R; Cramer, Michael D; Kuo, John; Lambers, Hans

    2006-10-01

    When grown in nutrient solutions of extremely low [P] (1.0 microm), the sedge Schoenus unispiculatus Benth. (Cyperaceae) develops dauciform roots, which are short and carrot shaped, and produce dense numbers of long root hairs. It has been suggested that dauciform roots of monocotyledonous sedges function to acquire P from nutrient-poor, P-fixing soils in a manner similar to that of cluster (proteoid) roots developed by some dicotyledonous species, but without evidence to substantiate this claim. To elucidate the ecophysiological role of dauciform roots, we assessed carboxylate exudation, internal carboxylate and P concentrations and O(2) uptake rates during dauciform root development. We showed that O(2) consumption was fastest [9 nmol O(2) g(-1) fresh mass (FM) s(-1)] and root [P] greatest (0.4 mg P g(-1) FM) when dauciform roots were young and rapidly developing. Citrate was the most abundant carboxylate in root tissues at all developmental stages, and was most concentrated (22.2 micromol citrate g(-1) FM) in young dauciform roots, decreasing by more than half in mature dauciform roots. Peak citrate-exudation rates (1.7 nmol citrate g(-1) FM s(-1)) occurred from mature dauciform roots, and were approximately an order of magnitude faster than those from roots of species without root clusters, and similar to those of mature proteoid (cluster) roots of Proteaceae. Both developing and mature dauciform roots had the capacity to acidify (but not alkalinize) the rhizosphere. Anatomical studies showed that epidermal cells in dauciform roots were greatly elongated in the transverse plane; epidermal cells of parent roots were unmodified. Although structurally distinct, the physiology of dauciform roots in sedges appears to be analogous to that of proteoid roots of Proteaceae and Fabaceae, and hence, dauciform roots would facilitate access to sorbed P and micronutrients from soils of low fertility.

  10. Impact of cross-sectional root canal shape on filled canal volume and remaining root filling material after retreatment.

    PubMed

    Rechenberg, D K; Paqué, F

    2013-06-01

    To assess the impact of cross-sectional root canal shape (CSRCS) on the canal volume that can be filled and the root filling material that remains following a subsequent retreatment procedure. A total of 15 extracted two-rooted human maxillary premolars and 15 mandibular first molars were used. Both root canals in the premolars (N = 30) and the distal root canal in the molars (N = 15) were prepared using ProFile instruments and filled by lateral compaction using gutta-percha and AH Plus sealer. Canals were later retreated using the last ProFile used for instrumentation followed by two ProFiles of increasing size. Teeth were viewed in a μCT scanner before and after each treatment step. Defined and validated threshold levels were used to differentiate empty root canal volumes, root dentine and root filling materials from each other. CSRCS was defined as the averaged ratio between bucco-lingual and mesio-distal canal diameter (round ≤ 1, oval 1-2, long oval 2-4 and flattened ≥ 4), determined for each 1 mm over the total root length. Data were averaged between the two canals in premolars, only the distal canals were assessed in molars. Parametric and non-parametric tests were used to statistically compare the data, alpha = 0.01. Canals in premolars had a round CSRCS after preparation (1.0 ± 0.0), whereas distal counterparts in molars were oval (1.6 ± 0.5). Significantly (P < 0.01) more canal volume could be filled, and significantly less filling material remained after retreatment in premolars compared with mandibular molar distal canals. There was a high correlation between CSRCS, filled canal volume and remaining filling material. The endodontic procedures under investigation were significantly influenced by the cross-sectional root canal shape. © 2012 International Endodontic Journal. Published by Blackwell Publishing Ltd.

  11. Apical root resorption during orthodontic treatment. A prospective study using cone beam CT.

    PubMed

    Lund, Henrik; Gröndahl, Kerstin; Hansen, Ken; Gröndahl, Hans-Göran

    2012-05-01

    To investigate the incidence and severity of root resorption during orthodontic treatment by means of cone beam computed tomography (CBCT) and to explore factors affecting orthodontically induced inflammatory root resorption (OIIRR). CBCT examinations were performed on 152 patients with Class I malocclusion. All roots from incisors to first molars were assessed on two or three occasions. At treatment end, 94% of patients had ≥1 root with shortening >1 mm, and 6.6% had ≥1 tooth where it exceeded 4 mm. Among teeth, 56.3% of upper lateral incisors had root shortening >1 mm. Of upper incisors and the palatal root of upper premolars, 2.6% showed root shortenings >4 mm. Slanted surface resorptions of buccal and palatal surfaces were found in 15.1% of upper central and 11.5% of lateral incisors. Monthly root shortening was greater after 6-month control than before. Upper jaw teeth and anterior teeth were significantly associated with the degree of root shortening. Gender, root length at baseline, and treatment duration were not. Practically all patients and up to 91% of all teeth showed some degree of root shortening, but few patients and teeth had root shortenings >4 mm. Slanted root resorption was found on root surfaces that could be evaluated only by a tomographic technique. A CBCT technique can provide more valid and accurate information about root resorption.

  12. Diversification of Root Hair Development Genes in Vascular Plants.

    PubMed

    Huang, Ling; Shi, Xinhui; Wang, Wenjia; Ryu, Kook Hui; Schiefelbein, John

    2017-07-01

    The molecular genetic program for root hair development has been studied intensively in Arabidopsis ( Arabidopsis thaliana ). To understand the extent to which this program might operate in other plants, we conducted a large-scale comparative analysis of root hair development genes from diverse vascular plants, including eudicots, monocots, and a lycophyte. Combining phylogenetics and transcriptomics, we discovered conservation of a core set of root hair genes across all vascular plants, which may derive from an ancient program for unidirectional cell growth coopted for root hair development during vascular plant evolution. Interestingly, we also discovered preferential diversification in the structure and expression of root hair development genes, relative to other root hair- and root-expressed genes, among these species. These differences enabled the definition of sets of genes and gene functions that were acquired or lost in specific lineages during vascular plant evolution. In particular, we found substantial divergence in the structure and expression of genes used for root hair patterning, suggesting that the Arabidopsis transcriptional regulatory mechanism is not shared by other species. To our knowledge, this study provides the first comprehensive view of gene expression in a single plant cell type across multiple species. © 2017 American Society of Plant Biologists. All Rights Reserved.

  13. Expression of Arabidopsis class 1 phytoglobin (AtPgb1) delays death and degradation of the root apical meristem during severe PEG-induced water deficit.

    PubMed

    Mira, Mohamed M; Huang, Shuanglong; Kapoor, Karuna; Hammond, Cassandra; Hill, Robert D; Stasolla, Claudio

    2017-11-28

    Maintenance of a functional root is fundamental to plant survival in response to some abiotic stresses, such as water deficit. In this study, we found that overexpression of Arabidopsis class 1 phytoglobin (AtPgb1) alleviated the growth retardation of polyethylene glycol (PEG)-induced water stress by reducing programmed cell death (PCD) associated with protein folding in the endoplasmic reticulum (ER). This was in contrast to PEG-stressed roots down-regulating AtPgb1 that exhibited extensive PCD and reduced expression of several attenuators of ER stress, including BAX Inhibitor-1 (BI-1). The death program experienced by the suppression of AtPgb1 in stressed roots was mediated by reactive oxygen species (ROS) and ethylene. Suppression of ROS synthesis or ethylene perception reduced PCD and partially restored root growth. The PEG-induced cessation of root growth was preceded by structural changes in the root apical meristem (RAM), including the loss of cell and tissue specification, possibly as a result of alterations in PIN1- and PIN4-mediated auxin accumulation at the root pole. These events were attenuated by the overexpression of AtPgb1 and aggravated when AtPgb1 was suppressed. Specifically, suppression of AtPgb1 compromised the functionality of the WOX5-expressing quiescent cells (QCs), leading to the early and premature differentiation of the adjacent columella stem cells and to a rapid reduction in meristem size. The expression and localization of other root domain markers, such as SCARECROW (SCR), which demarks the endodermis and QCs, and WEREWOLF (WER), which specifies the lateral root cap, were also most affected in PEG-treated roots with suppressed AtPgb1. Collectively, the results demonstrate that AtPgb1 exercises a protective role in roots exposed to lethal levels of PEG, and suggest a novel function of this gene in ensuring meristem functionality through the retention of cell fate specification. © The Author 2017. Published by Oxford University Press

  14. Genome-Wide Direct Target Analysis Reveals a Role for SHORT-ROOT in Root Vascular Patterning through Cytokinin Homeostasis1[W][OA

    PubMed Central

    Cui, Hongchang; Hao, Yueling; Kovtun, Mikhail; Stolc, Viktor; Deng, Xing-Wang; Sakakibara, Hitoshi; Kojima, Mikiko

    2011-01-01

    SHORT-ROOT (SHR) is a key regulator of root growth and development in Arabidopsis (Arabidopsis thaliana). Made in the stele, the SHR protein moves into an adjacent cell layer, where it specifies endodermal cell fate; it is also essential for apical meristem maintenance, ground tissue patterning, vascular differentiation, and lateral root formation. Much has been learned about the mechanism by which SHR controls radial patterning, but how it regulates other aspects of root morphogenesis is still unclear. To dissect the SHR developmental pathway, we have determined the genome-wide locations of SHR direct targets using a chromatin immunoprecipitation followed by microarray analysis method. K-means clustering analysis not only identified additional quiescent center-specific SHR targets but also revealed a direct role for SHR in gene regulation in the pericycle and xylem. Using cell type-specific markers, we showed that in shr, the phloem and the phloem-associated pericycle expanded, whereas the xylem and xylem-associated pericycle diminished. Interestingly, we found that cytokinin level was elevated in shr and that exogenous cytokinin conferred a shr-like vascular patterning phenotype in wild-type root. By chromatin immunoprecipitation-polymerase chain reaction and reverse transcription-polymerase chain reaction assays, we showed that SHR regulates cytokinin homeostasis by directly controlling the transcription of cytokinin oxidase 3, a cytokinin catabolism enzyme preferentially expressed in the stele. Finally, overexpression of a cytokinin oxidase in shr alleviated its vascular patterning defect. On the basis of these results, we suggest that one mechanism by which SHR controls vascular patterning is the regulation of cytokinin homeostasis. PMID:21951467

  15. Beneficial microbes affect endogenous mechanisms controlling root development

    PubMed Central

    Verbon, Eline H.; Liberman, Louisa M.

    2016-01-01

    Plants have incredible developmental plasticity, enabling them to respond to a wide range of environmental conditions. Among these conditions is the presence of plant growth-promoting rhizobacteria (PGPR) in the soil. Recent studies show that PGPR affect root growth and development within Arabidopsis thaliana root. These effects lead to dramatic changes in root system architecture, that significantly impact aboveground plant growth. Thus, PGPR may promote shoot growth via their effect on root developmental programs. This review focuses on contextualizing root developmental changes elicited by PGPR in light of our understanding of plant-microbe interactions and root developmental biology. PMID:26875056

  16. Growth and development of the root apical meristem.

    PubMed

    Perilli, Serena; Di Mambro, Riccardo; Sabatini, Sabrina

    2012-02-01

    A key question in plant developmental biology is how cell division and cell differentiation are balanced to modulate organ growth and shape organ size. In recent years, several advances have been made in understanding how this balance is achieved during root development. In the Arabidopsis root meristem, stem cells in the apical region of the meristem self-renew and produce daughter cells that differentiate in the distal meristem transition zone. Several factors have been implicated in controlling the different functional zones of the root meristem to modulate root growth; among these, plant hormones have been shown to play a main role. In this review, we summarize recent findings regarding the role of hormone signaling and transcriptional networks in regulating root development. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Effects of ginsenosides Rg1 and Rb1 of Panax ginseng on mitosis in root tip cells of Allium cepa.

    PubMed

    Ng, W Y; Chao, C Y

    1981-01-01

    The effects of ginsenosides Rg1 and Rb1 of Panax ginseng on mitosis in the onion root tip cells as well as on the rate of DNA synthesis in onion seedlings were studied. Results obtained from the concentration and time course study in bulb and seeding root tip cells indicate that Rg1 promotes and Rb1 inhibits mitosis, both being dose-dependent. The promoting effect of Rg1 on the rate of DNA synthesis was observed at the peak hour which occurs at the same time as that of the control. Rb1 was found to shift the peak hour of DNA synthesis to a later period of the experiment. These results are in agreement with the results obtained from the study of the cell cycle by pulse labeling and autoradiography, which show that Rg1 shortens the mitotic cell cycle and S period while Rb1 lengthens them. They in turn increase and decrease the mitotic indices respectively.

  18. Copper regulates primary root elongation through PIN1-mediated auxin redistribution.

    PubMed

    Yuan, Hong-Mei; Xu, Heng-Hao; Liu, Wen-Cheng; Lu, Ying-Tang

    2013-05-01

    The heavy metal copper (Cu) is an essential microelement required for normal plant growth and development, but it inhibits primary root growth when in excess. The mechanism underlying how excess Cu functions in this process remains to be further elucidated. Here, we report that a higher concentration of CuSO4 inhibited primary root elongation of Arabidopsis seedlings by affecting both the elongation and meristem zones. In the meristem zone, meristematic cell division potential was reduced by excess Cu. Further experiments showed that Cu can modulate auxin distribution, resulting in higher auxin activities in both the elongation and meristem zones of Cu-treated roots based on DR5::GUS expression patterns. This Cu-mediated auxin redistribution was shown to be responsible for Cu-mediated inhibition of primary root elongation. Additional genetic and physiological data demonstrated that it was PINFORMED1 (PIN1), but not PIN2 or AUXIN1 (AUX1), that regulated this process. However, Cu-induced hydrogen peroxide accumulation did not contribute to Cu-induced auxin redistribution for inhibition of root elongation. When the possible role of ethylene in this process was analyzed, Cu had a similar impact on the root elongation of both the wild type and the ein2-1 mutant, implying that Cu-mediated inhibition of primary root elongation was not due to the ethylene signaling pathway.

  19. The Arabidopsis LAZY1 Family Plays a Key Role in Gravity Signaling within Statocytes and in Branch Angle Control of Roots and Shoots.

    PubMed

    Taniguchi, Masatoshi; Furutani, Masahiko; Nishimura, Takeshi; Nakamura, Moritaka; Fushita, Toyohito; Iijima, Kohta; Baba, Kenichiro; Tanaka, Hirokazu; Toyota, Masatsugu; Tasaka, Masao; Morita, Miyo Terao

    2017-08-01

    During gravitropism, the directional signal of gravity is perceived by gravity-sensing cells called statocytes, leading to asymmetric distribution of auxin in the responding organs. To identify the genes involved in gravity signaling in statocytes, we performed transcriptome analyses of statocyte-deficient Arabidopsis thaliana mutants and found two candidates from the LAZY1 family, AtLAZY1 / LAZY1-LIKE1 ( LZY1 ) and AtDRO3 / AtNGR1 / LZY2 We showed that LZY1 , LZY2 , and a paralog AtDRO1/AtNGR2/LZY3 are redundantly involved in gravitropism of the inflorescence stem, hypocotyl, and root. Mutations of LZY genes affected early processes in gravity signal transduction without affecting amyloplast sedimentation. Statocyte-specific expression of LZY genes rescued the mutant phenotype, suggesting that LZY genes mediate gravity signaling in statocytes downstream of amyloplast displacement, leading to the generation of asymmetric auxin distribution in gravity-responding organs. We also found that lzy mutations reversed the growth angle of lateral branches and roots. Moreover, expression of the conserved C-terminal region of LZY proteins also reversed the growth direction of primary roots in the lzy mutant background. In lateral root tips of lzy multiple mutants, asymmetric distribution of PIN3 and auxin response were reversed, suggesting that LZY genes regulate the direction of polar auxin transport in response to gravity through the control of asymmetric PIN3 expression in the root cap columella. © 2017 American Society of Plant Biologists. All rights reserved.

  20. Developing a methodology for the inverse estimation of root architectural parameters from field based sampling schemes

    NASA Astrophysics Data System (ADS)

    Morandage, Shehan; Schnepf, Andrea; Vanderborght, Jan; Javaux, Mathieu; Leitner, Daniel; Laloy, Eric; Vereecken, Harry

    2017-04-01

    Root traits are increasingly important in breading of new crop varieties. E.g., longer and fewer lateral roots are suggested to improve drought resistance of wheat. Thus, detailed root architectural parameters are important. However, classical field sampling of roots only provides more aggregated information such as root length density (coring), root counts per area (trenches) or root arrival curves at certain depths (rhizotubes). We investigate the possibility of obtaining the information about root system architecture of plants using field based classical root sampling schemes, based on sensitivity analysis and inverse parameter estimation. This methodology was developed based on a virtual experiment where a root architectural model was used to simulate root system development in a field, parameterized for winter wheat. This information provided the ground truth which is normally unknown in a real field experiment. The three sampling schemes coring, trenching, and rhizotubes where virtually applied to and aggregated information computed. Morris OAT global sensitivity analysis method was then performed to determine the most sensitive parameters of root architecture model for the three different sampling methods. The estimated means and the standard deviation of elementary effects of a total number of 37 parameters were evaluated. Upper and lower bounds of the parameters were obtained based on literature and published data of winter wheat root architectural parameters. Root length density profiles of coring, arrival curve characteristics observed in rhizotubes, and root counts in grids of trench profile method were evaluated statistically to investigate the influence of each parameter using five different error functions. Number of branches, insertion angle inter-nodal distance, and elongation rates are the most sensitive parameters and the parameter sensitivity varies slightly with the depth. Most parameters and their interaction with the other parameters show

  1. Root xylem embolisms and refilling. Relation To water potentials of soil, roots, and leaves, and osmotic potentials of root xylem Sap

    PubMed

    McCully

    1999-03-01

    Embolism and refilling of vessels was monitored directly by cryomicroscopy of field-grown corn (Zea mays L.) roots. To test the reliability of an earlier study showing embolism refilling in roots at negative leaf water potentials, embolisms were counted, and root water potentials (Psiroot) and osmotic potentials of exuded xylem sap from the same roots were measured by isopiestic psychrometry. All vessels were full at dawn (Psiroot -0.1 MPa). Embolisms were first seen in late metaxylem vessels at 8 AM. Embolized late metaxylem vessels peaked at 50% at 10 AM (Psiroot -0.1 MPa), fell to 44% by 12 PM (Psiroot -0.23 MPa), then dropped steadily to zero by early evening (Psiroot -0.28 MPa). Transpiration was highest (8.5 μg cm-2 s-1) between 12 and 2 PM when the percentage of vessels embolized was falling. Embolized vessels were refilled by liquid moving through their lateral walls. Xylem sap was very low in solutes. The mechanism of vessel refilling, when Psiroot is negative, requires further investigation. Daily embolism and refilling in roots of well-watered plants is a normal occurrence and may be a component of an important hydraulic signaling mechanism between roots and shoots.

  2. Survival and growth of hardwood seedlings following preplanting-root treatments and treeshelters

    Treesearch

    Felix, Jr. Ponder

    1997-01-01

    The study evaluated the influence of root collar diameter, number of large lateral roots, preplanting-root treatments (biostimulant called Roots and a moisture loss retardant called supersorb) and tree shelters on 1-0 black walnut (Juglans nigra L.) and northern red oak (Quercus rubra L.) seedlings. Four years after outplanting,...

  3. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils

    PubMed Central

    Neumann, G.; Bott, S.; Ohler, M. A.; Mock, H.-P.; Lippmann, R.; Grosch, R.; Smalla, K.

    2014-01-01

    Development and activity of plant roots exhibit high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for 10 years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian) was grown as a model plant under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes). Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils), root growth characteristics (root length, fine root development) as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue). The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes. PMID:24478764

  4. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils.

    PubMed

    Neumann, G; Bott, S; Ohler, M A; Mock, H-P; Lippmann, R; Grosch, R; Smalla, K

    2014-01-01

    Development and activity of plant roots exhibit high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for 10 years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian) was grown as a model plant under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes). Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils), root growth characteristics (root length, fine root development) as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue). The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes.

  5. Integration of root phenes revealed by intensive phenotyping of root system architecture, anatomy, and physiology in cereals

    NASA Astrophysics Data System (ADS)

    York, Larry

    2015-04-01

    Food insecurity is among the greatest challenges humanity will face in the 21st century. Agricultural production in much of the world is constrained by the natural infertility of soil which restrains crops from reaching their yield potential. In developed nations, fertilizer inputs pollute air and water and contribute to climate change and environmental degradation. In poor nations low soil fertility is a primary constraint to food security and economic development. Water is almost always limiting crop growth in any system. Increasing the acquisition efficiency of soil resources is one method by which crop yields could be increased without the use of more fertilizers or irrigation. Cereals are the most widely grown crops, both in terms of land area and in yield, so optimizing uptake efficiency of cereals is an important goal. Roots are the primary interface between plant and soil and are responsible for the uptake of soil resources. The deployment of roots in space and time comprises root system architecture (RSA). Cereal RSA is a complex phenotype that aggregates many elemental phenes (elemental units of phenotype). Integration of root phenes will be determined by interactions through their effects on soil foraging and plant metabolism. Many architectural, metabolic, and physiological root phenes have been identified in maize, including: nodal root number, nodal root growth angle, lateral root density, lateral root length, aerenchyma, cortical cell size and number, and nitrate uptake kinetics. The utility of these phenes needs confirmation in maize and in other cereals. The maize root system is composed of an embryonic root system and nodal roots that emerge in successive whorls as the plant develops, and is similar to other cereals. Current phenotyping platforms often ignore the inner whorls and instead focus on the most visible outer whorls after excavating a maize root crown from soil. Here, an intensive phenotyping platform evaluating phenes of all nodal root

  6. Analysis of gene expression profiles for cell wall modifying proteins and ACC synthases in soybean cyst nematode colonized roots, adventitious rooting hypocotyls, root tips, flooded roots, and IBA and ACC treatment roots

    USDA-ARS?s Scientific Manuscript database

    We hypothesized that soybean cyst nematode (SCN) co-opts a part or all of one or more innate developmental process in soybean to establish its feeding structure, syncytium, in soybean roots. The syncytium in soybean roots is formed in a predominantly lateral direction within the vascular bundle by ...

  7. Fine Mapping of QUICK ROOTING 1 and 2, Quantitative Trait Loci Increasing Root Length in Rice.

    PubMed

    Kitomi, Yuka; Nakao, Emari; Kawai, Sawako; Kanno, Noriko; Ando, Tsuyu; Fukuoka, Shuichi; Irie, Kenji; Uga, Yusaku

    2018-02-02

    The volume that the root system can occupy is associated with the efficiency of water and nutrient uptake from soil. Genetic improvement of root length, which is a limiting factor for root distribution, is necessary for increasing crop production. In this report, we describe identification of two quantitative trait loci (QTLs) for maximal root length, QUICK ROOTING 1 ( QRO1 ) on chromosome 2 and QRO2 on chromosome 6, in cultivated rice ( Oryza sativa L.). We measured the maximal root length in 26 lines carrying chromosome segments from the long-rooted upland rice cultivar Kinandang Patong in the genetic background of the short-rooted lowland cultivar IR64. Five lines had longer roots than IR64. By rough mapping of the target regions in BC 4 F 2 populations, we detected putative QTLs for maximal root length on chromosomes 2, 6, and 8. To fine-map these QTLs, we used BC 4 F 3 recombinant homozygous lines. QRO1 was mapped between markers RM5651 and RM6107, which delimit a 1.7-Mb interval on chromosome 2, and QRO2 was mapped between markers RM20495 and RM3430-1, which delimit an 884-kb interval on chromosome 6. Both QTLs may be promising gene resources for improving root system architecture in rice. Copyright © 2018 Kitomi et al.

  8. Understanding the development of roots exposed to contaminants and the potential of plant-associated bacteria for optimization of growth

    PubMed Central

    Remans, Tony; Thijs, Sofie; Truyens, Sascha; Weyens, Nele; Schellingen, Kerim; Keunen, Els; Gielen, Heidi; Cuypers, Ann; Vangronsveld, Jaco

    2012-01-01

    Background and Scope Plant responses to the toxic effects of soil contaminants, such as excess metals or organic substances, have been studied mainly at physiological, biochemical and molecular levels, but the influence on root system architecture has received little attention. Nevertheless, the precise position, morphology and extent of roots can influence contaminant uptake. Here, data are discussed that aim to increase the molecular and ecological understanding of the influence of contaminants on root system architecture. Furthermore, the potential of plant-associated bacteria to influence root growth by their growth-promoting and stress-relieving capacities is explored. Methods Root growth parameters of Arabidopsis thaliana seedlings grown in vertical agar plates are quantified. Mutants are used in a reverse genetics approach to identify molecular components underlying quantitative changes in root architecture after exposure to excess cadmium, copper or zinc. Plant-associated bacteria are isolated from contaminated environments, genotypically and phenotypically characterized, and used to test plant root growth improvement in the presence of contaminants. Key Results The molecular determinants of primary root growth inhibition and effects on lateral root density by cadmium were identified. A vertical split-root system revealed local effects of cadmium and copper on root development. However, systemic effects of zinc exposure on root growth reduced both the avoidance of contaminated areas and colonization of non-contaminated areas. The potential for growth promotion and contaminant degradation of plant-associated bacteria was demonstrated by improved root growth of inoculated plants exposed to 2,4-di-nitro-toluene (DNT) or cadmium. Conclusions Knowledge concerning the specific influence of different contaminants on root system architecture and the molecular mechanisms by which this is achieved can be combined with the exploitation of plant-associated bacteria to

  9. Understanding the development of roots exposed to contaminants and the potential of plant-associated bacteria for optimization of growth.

    PubMed

    Remans, Tony; Thijs, Sofie; Truyens, Sascha; Weyens, Nele; Schellingen, Kerim; Keunen, Els; Gielen, Heidi; Cuypers, Ann; Vangronsveld, Jaco

    2012-07-01

    Plant responses to the toxic effects of soil contaminants, such as excess metals or organic substances, have been studied mainly at physiological, biochemical and molecular levels, but the influence on root system architecture has received little attention. Nevertheless, the precise position, morphology and extent of roots can influence contaminant uptake. Here, data are discussed that aim to increase the molecular and ecological understanding of the influence of contaminants on root system architecture. Furthermore, the potential of plant-associated bacteria to influence root growth by their growth-promoting and stress-relieving capacities is explored. Root growth parameters of Arabidopsis thaliana seedlings grown in vertical agar plates are quantified. Mutants are used in a reverse genetics approach to identify molecular components underlying quantitative changes in root architecture after exposure to excess cadmium, copper or zinc. Plant-associated bacteria are isolated from contaminated environments, genotypically and phenotypically characterized, and used to test plant root growth improvement in the presence of contaminants. The molecular determinants of primary root growth inhibition and effects on lateral root density by cadmium were identified. A vertical split-root system revealed local effects of cadmium and copper on root development. However, systemic effects of zinc exposure on root growth reduced both the avoidance of contaminated areas and colonization of non-contaminated areas. The potential for growth promotion and contaminant degradation of plant-associated bacteria was demonstrated by improved root growth of inoculated plants exposed to 2,4-di-nitro-toluene (DNT) or cadmium. Knowledge concerning the specific influence of different contaminants on root system architecture and the molecular mechanisms by which this is achieved can be combined with the exploitation of plant-associated bacteria to influence root development and increase plant stress

  10. Nitric oxide mediates alginate oligosaccharides-induced root development in wheat (Triticum aestivum L.).

    PubMed

    Zhang, Yunhong; Liu, Hang; Yin, Heng; Wang, Wenxia; Zhao, Xiaoming; Du, Yuguang

    2013-10-01

    Alginate oligosaccharides (AOS), which are marine oligosaccharides, are involved in regulating plant root growth, but the promotion mechanism for AOS remains unclear. Here, AOS (10-80 mg L(-1)) were found to induce the generation of nitric oxide (NO) in the root system of wheat (Triticum aestivum L.), which promoted the formation and elongation of wheat roots in a dose-dependent manner. NO inhibitors suggested that nitrate reductase (NR), rather than nitric oxide synthase (NOS), was essential for AOS-induced root development. Further studies confirmed that AOS-induced NO generation in wheat roots by up-regulating the gene expression and enzyme activity of NR at the post-transcriptional level. The anatomy and RT-PCR results showed that AOS accelerated the division and growth of stele cells, leading to an increase in the ratio of stele area to root transverse area. This could be inhibited by the NR inhibitor, sodium tungstate, which indicated that NO catalyzed by the NR was involved in AOS regulation of root development. Taken together, in the early stage of AOS-induced root development, NO generation was a novel mechanism by which AOS regulated plant growth. The results also showed that this marine resource could be widely used for crop development. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. Nursery Cultural Practices and Morphological Attributes of Longleaf Pine Bare-Root Stock as Indicators of Early Field Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glyndon E. Hatchell, Research Forester, Retired Institute for Mycorrhizal Research and Development Athens, Georgia and H. David Muse, Professor Department of Mathematics University of North Alabama Florence, Alabama

    1990-02-01

    A large study of morphological attributes of longleaf pine nursery stock at the Savannah River site of the various attributes measured, only number of lateral roots and seedling diameters were related to performance. Lateral root pruning in the nursery also improved performance. Both survival and growth during the first two years were strongly correlated with larger stem diameter and larger root system development.

  12. Relationships between Nutrient Heterogeneity, Root Growth, and Hormones: Evidence for Interspecific Variation

    PubMed Central

    Dong, Jia; Jones, Robert H.; Mou, Pu

    2018-01-01

    (1) Background: Plant roots respond to nutrients through root architecture that is regulated by hormones. Strong inter-specific variation in root architecture has been well documented, but physiological mechanisms that may control the variation have not. (2) Methods: We examined correlations between root architecture and hormones to seek clues on mechanisms behind root foraging behavior. In the green house at Beijing Normal University, hydroponic culture experiments were used to examine the root responses of four species—Callistephus chinensis, Solidago canadensis, Ailanthus altissima, Oryza sativa—to two nitrogen types (NO3− or NH4+), three nitrogen concentrations (low, medium, and high concentrations of 0.2, 1, and 18 mM, respectively) and two ways of nitrogen application (stable vs. variable). The plants were harvested after 36 days to measure root mass, 1st order root length, seminal root length for O. sativa, density of the 1st order laterals, seminal root number for O. sativa, the inter-node length of the 1st order laterals, and root hormone contents of indole-3-acetic acid, abscisic acid, and cytokinins (zeatin + zeatinriboside). (3) Results: Species differed significantly in their root architecture responses to nitrogen treatments. They also differed significantly in hormone responses to the nitrogen treatments. Additionally, the correlations between root architecture and hormone responses were quite variable across the species. Each hormone had highly species-specific relationships with root responses. (4) Conclusions: Our finding implies that a particular root foraging behavior is probably not controlled by the same biochemical pathway in all species. PMID:29495558

  13. GTL1 and DF1 regulate root hair growth through transcriptional repression of ROOT HAIR DEFECTIVE 6-LIKE 4 in Arabidopsis.

    PubMed

    Shibata, Michitaro; Breuer, Christian; Kawamura, Ayako; Clark, Natalie M; Rymen, Bart; Braidwood, Luke; Morohashi, Kengo; Busch, Wolfgang; Benfey, Philip N; Sozzani, Rosangela; Sugimoto, Keiko

    2018-02-08

    How plants determine the final size of growing cells is an important, yet unresolved, issue. Root hairs provide an excellent model system with which to study this as their final cell size is remarkably constant under constant environmental conditions. Previous studies have demonstrated that a basic helix-loop helix transcription factor ROOT HAIR DEFECTIVE 6-LIKE 4 (RSL4) promotes root hair growth, but how hair growth is terminated is not known. In this study, we demonstrate that a trihelix transcription factor GT-2-LIKE1 (GTL1) and its homolog DF1 repress root hair growth in Arabidopsis Our transcriptional data, combined with genome-wide chromatin-binding data, show that GTL1 and DF1 directly bind the RSL4 promoter and regulate its expression to repress root hair growth. Our data further show that GTL1 and RSL4 regulate each other, as well as a set of common downstream genes, many of which have previously been implicated in root hair growth. This study therefore uncovers a core regulatory module that fine-tunes the extent of root hair growth by the orchestrated actions of opposing transcription factors. © 2018. Published by The Company of Biologists Ltd.

  14. GTL1 and DF1 regulate root hair growth through transcriptional repression of ROOT HAIR DEFECTIVE 6-LIKE 4 in Arabidopsis

    PubMed Central

    Breuer, Christian; Kawamura, Ayako; Clark, Natalie M.; Morohashi, Kengo; Busch, Wolfgang; Benfey, Philip N.; Sozzani, Rosangela

    2018-01-01

    ABSTRACT How plants determine the final size of growing cells is an important, yet unresolved, issue. Root hairs provide an excellent model system with which to study this as their final cell size is remarkably constant under constant environmental conditions. Previous studies have demonstrated that a basic helix-loop helix transcription factor ROOT HAIR DEFECTIVE 6-LIKE 4 (RSL4) promotes root hair growth, but how hair growth is terminated is not known. In this study, we demonstrate that a trihelix transcription factor GT-2-LIKE1 (GTL1) and its homolog DF1 repress root hair growth in Arabidopsis. Our transcriptional data, combined with genome-wide chromatin-binding data, show that GTL1 and DF1 directly bind the RSL4 promoter and regulate its expression to repress root hair growth. Our data further show that GTL1 and RSL4 regulate each other, as well as a set of common downstream genes, many of which have previously been implicated in root hair growth. This study therefore uncovers a core regulatory module that fine-tunes the extent of root hair growth by the orchestrated actions of opposing transcription factors. PMID:29439132

  15. The Molecular Mechanism of Ethylene-Mediated Root Hair Development Induced by Phosphate Starvation

    PubMed Central

    Song, Li; Yu, Haopeng; Dong, Jinsong; Liu, Dong

    2016-01-01

    Enhanced root hair production, which increases the root surface area for nutrient uptake, is a typical adaptive response of plants to phosphate (Pi) starvation. Although previous studies have shown that ethylene plays an important role in root hair development induced by Pi starvation, the underlying molecular mechanism is not understood. In this work, we characterized an Arabidopsis mutant, hps5, that displays constitutive ethylene responses and increased sensitivity to Pi starvation due to a mutation in the ethylene receptor ERS1. hps5 accumulates high levels of EIN3 protein, a key transcription factor involved in the ethylene signaling pathway, under both Pi sufficiency and deficiency. Pi starvation also increases the accumulation of EIN3 protein. Combined molecular, genetic, and genomic analyses identified a group of genes that affect root hair development by regulating cell wall modifications. The expression of these genes is induced by Pi starvation and is enhanced in the EIN3-overexpressing line. In contrast, the induction of these genes by Pi starvation is suppressed in ein3 and ein3eil1 mutants. EIN3 protein can directly bind to the promoter of these genes, some of which are also the immediate targets of RSL4, a key transcription factor that regulates root hair development. Based on these results, we propose that under normal growth conditions, the level of ethylene is low in root cells; a group of key transcription factors, including RSL4 and its homologs, trigger the transcription of their target genes to promote root hair development; Pi starvation increases the levels of the protein EIN3, which directly binds to the promoters of the genes targeted by RSL4 and its homologs and further increase their transcription, resulting in the enhanced production of root hairs. This model not only explains how ethylene mediates root hair responses to Pi starvation, but may provide a general mechanism for how ethylene regulates root hair development under both stress

  16. Longleaf Pine Root System Development and Seedling Quality in Response to Copper Root Pruning and Cavity Size

    Treesearch

    Mary Anne Sword Sayer; Shi-Jean Susana Sung; James D. Haywood

    2011-01-01

    Cultural practices that modify root system structure in the plug of container-grown seedlings have the potential to improve root system function after planting. Our objective was to assess how copper root pruning affects the quality and root system development of longleaf pine seedlings grown in three cavity sizes in a greenhouse. Copper root pruning increased seedling...

  17. Do root traits affect a plant's ability to influence soil erosion?

    NASA Astrophysics Data System (ADS)

    Burak, Emma; Quinton, John; Dodd, Ian

    2017-04-01

    With the ever increasing global population the agricultural sector is put under increasing pressure. This pressure is imposed on the soil and results in wide spread degradation that ultimately decreases productivity. Soil erosion is one of the main features of this degradation. Much focus has been put on the ability of plant canopies to mitigate soil erosion but little research has assessed the impact of below ground biomass. It is understood that woody roots reinforce slopes and lateral roots are believed to support the soil surface but the impact of root hairs is completely unknown. This study used two root hairless mutants one of barley (brb) and one of maize (rth3) along with their wild types (WT) to assess the capacity of different root traits to bind soil particles to the root system, creating a physical coating called a rhizosheath. The two genotypes were grown in a clay loam and periodically harvested during vegetative development. Rhizosheath weight was used to measure the ability of the root system to effectively bind soil particles, while root length was measured to standardise the results between genotypes. Overall, rhizosheath weight increased linearly with root length. When compared to WT plants of the same age, the root length of brb was, on average, 37% greater, suggesting that they compensated for the absence of root hairs by proliferating lateral roots. However, WT plants were far superior at binding soil particles as the rhizosheath weights were 5 fold greater, when expressed per unit root length. Thus root hairs are more important in binding soil particles than lateral roots. Whether these genotypic differences in root traits affect soil erosion will be assessed using mesocosm and field trials. Keywords: Soil erosion, Roots, Barley, Rhizosheath

  18. X-ray computed tomography uncovers root-root interactions: quantifying spatial relationships between interacting root systems in three dimensions.

    PubMed

    Paya, Alexander M; Silverberg, Jesse L; Padgett, Jennifer; Bauerle, Taryn L

    2015-01-01

    Research in the field of plant biology has recently demonstrated that inter- and intra-specific interactions belowground can dramatically alter root growth. Our aim was to answer questions related to the effect of inter- vs. intra-specific interactions on the growth and utilization of undisturbed space by fine roots within three dimensions (3D) using micro X-ray computed tomography. To achieve this, Populus tremuloides (quaking aspen) and Picea mariana (black spruce) seedlings were planted into containers as either solitary individuals, or inter-/intra-specific pairs, allowed to grow for 2 months, and 3D metrics developed in order to quantify their use of belowground space. In both aspen and spruce, inter-specific root interactions produced a shift in the vertical distribution of the root system volume, and deepened the average position of root tips when compared to intra-specifically growing seedlings. Inter-specific interactions also increased the minimum distance between root tips belonging to the same root system. There was no effect of belowground interactions on the radial distribution of roots, or the directionality of lateral root growth for either species. In conclusion, we found that significant differences were observed more often when comparing controls (solitary individuals) and paired seedlings (inter- or intra-specific), than when comparing inter- and intra-specifically growing seedlings. This would indicate that competition between neighboring seedlings was more responsible for shifting fine root growth in both species than was neighbor identity. However, significant inter- vs. intra-specific differences were observed, which further emphasizes the importance of biological interactions in competition studies.

  19. Posterior root tear fixation of the lateral meniscus combined with arthroscopic ACL double-bundle reconstruction: technical note of a transosseous fixation using the tibial PL tunnel.

    PubMed

    Forkel, Philipp; Petersen, Wolf

    2012-03-01

    According to our observation in ACL reconstruction, we find root tears of the posterior horn of the lateral meniscus as a common concomitant injury in ACL-deficient knees. This might be a consequence of initial trauma or of the increased anterior-posterior translation of the tibia and an overload impact on the posterior meniscus root in ACL-deficient knees. A tear of the posterior horn of the medial meniscus causes a 25% increase in peak pressure in the medial compartment compared with that found in the intact condition. The repair restores the peak contact pressure to normal (Allaire et al. in J Bone Joint Surg Am 90(9):1922-1931, [2008]). A tear of the posterior horn of the lateral meniscus might have similar consequences. We hypothesize the surgical anatomical reattachment of the root at the tibia helping to restore knee joint kinematics and helping to advance ACL-graft function. This article presents an arthroscopical technique to reattach the posterior meniscus root in combination with ACL double-bundle reconstruction. The procedure uses the tibial PL tunnel to fix the meniscus suture.

  20. Surface-based GPR underestimates below-stump root biomass

    Treesearch

    John R. Butnor; Lisa J. Samuelson; Thomas A. Stokes; Kurt H. Johnsen; Peter H. Anderson; Carlos A. Gonzalez-Benecke

    2016-01-01

    Aims While lateral root mass is readily detectable with ground penetrating radar (GPR), the roots beneath a tree (below-stump) and overlapping lateral roots near large trees are problematic for surface-based antennas operated in reflection mode. We sought to determine if tree size (DBH) effects GPR root detection proximal to longleaf pine (Pinus palustris Mill) and if...

  1. Plant root and shoot dynamics during subsurface obstacle interaction

    NASA Astrophysics Data System (ADS)

    Conn, Nathaniel; Aguilar, Jeffrey; Benfey, Philip; Goldman, Daniel

    As roots grow, they must navigate complex underground environments to anchor and retrieve water and nutrients. From gravity sensing at the root tip to pressure sensing along the tip and elongation zone, the complex mechanosensory feedback system of the root allows it to bend towards greater depths and avoid obstacles of high impedance by asymmetrically suppressing cell elongation. Here we investigate the mechanical and physiological responses of roots to rigid obstacles. We grow Maize, Zea mays, plants in quasi-2D glass containers (22cm x 17cm x 1.4cm) filled with photoelastic gel and observe that, regardless of obstacle interaction, smaller roots branch off the primary root when the upward growing shoot (which contains the first leaf) reaches an average length of 40 mm, coinciding with when the first leaf emerges. However, prior to branching, contacts with obstacles result in reduced root growth rates. The growth rate of the root relative to the shoot is sensitive to the angle of the obstacle surface, whereby the relative root growth is greatest for horizontally oriented surfaces. We posit that root growth is prioritized when horizontal obstacles are encountered to ensure anchoring and access to nutrients during later stages of development. NSF Physics of Living Systems.

  2. Conserved Gene Expression Programs in Developing Roots from Diverse Plants.

    PubMed

    Huang, Ling; Schiefelbein, John

    2015-08-01

    The molecular basis for the origin and diversification of morphological adaptations is a central issue in evolutionary developmental biology. Here, we defined temporal transcript accumulation in developing roots from seven vascular plants, permitting a genome-wide comparative analysis of the molecular programs used by a single organ across diverse species. The resulting gene expression maps uncover significant similarity in the genes employed in roots and their developmental expression profiles. The detailed analysis of a subset of 133 genes known to be associated with root development in Arabidopsis thaliana indicates that most of these are used in all plant species. Strikingly, this was also true for root development in a lycophyte (Selaginella moellendorffii), which forms morphologically different roots and is thought to have evolved roots independently. Thus, despite vast differences in size and anatomy of roots from diverse plants, the basic molecular mechanisms employed during root formation appear to be conserved. This suggests that roots evolved in the two major vascular plant lineages either by parallel recruitment of largely the same developmental program or by elaboration of an existing root program in the common ancestor of vascular plants. © 2015 American Society of Plant Biologists. All rights reserved.

  3. The Arabidopsis LAZY1 Family Plays a Key Role in Gravity Signaling within Statocytes and in Branch Angle Control of Roots and Shoots[OPEN

    PubMed Central

    Taniguchi, Masatoshi; Furutani, Masahiko; Nishimura, Takeshi; Nakamura, Moritaka; Fushita, Toyohito; Iijima, Kohta; Baba, Kenichiro; Toyota, Masatsugu

    2017-01-01

    During gravitropism, the directional signal of gravity is perceived by gravity-sensing cells called statocytes, leading to asymmetric distribution of auxin in the responding organs. To identify the genes involved in gravity signaling in statocytes, we performed transcriptome analyses of statocyte-deficient Arabidopsis thaliana mutants and found two candidates from the LAZY1 family, AtLAZY1/LAZY1-LIKE1 (LZY1) and AtDRO3/AtNGR1/LZY2. We showed that LZY1, LZY2, and a paralog AtDRO1/AtNGR2/LZY3 are redundantly involved in gravitropism of the inflorescence stem, hypocotyl, and root. Mutations of LZY genes affected early processes in gravity signal transduction without affecting amyloplast sedimentation. Statocyte-specific expression of LZY genes rescued the mutant phenotype, suggesting that LZY genes mediate gravity signaling in statocytes downstream of amyloplast displacement, leading to the generation of asymmetric auxin distribution in gravity-responding organs. We also found that lzy mutations reversed the growth angle of lateral branches and roots. Moreover, expression of the conserved C-terminal region of LZY proteins also reversed the growth direction of primary roots in the lzy mutant background. In lateral root tips of lzy multiple mutants, asymmetric distribution of PIN3 and auxin response were reversed, suggesting that LZY genes regulate the direction of polar auxin transport in response to gravity through the control of asymmetric PIN3 expression in the root cap columella. PMID:28765510

  4. Diverse Peptide Hormones Affecting Root Growth Identified in the Medicago truncatula Secreted Peptidome.

    PubMed

    Patel, Neha; Mohd-Radzman, Nadiatul A; Corcilius, Leo; Crossett, Ben; Connolly, Angela; Cordwell, Stuart J; Ivanovici, Ariel; Taylor, Katia; Williams, James; Binos, Steve; Mariani, Michael; Payne, Richard J; Djordjevic, Michael A

    2018-01-01

    Multigene families encoding diverse secreted peptide hormones play important roles in plant development. A need exists to efficiently elucidate the structures and post-translational-modifications of these difficult-to-isolate peptide hormones in planta so that their biological functions can be determined. A mass spectrometry and bioinformatics approach was developed to comprehensively analyze the secreted peptidome of Medicago hairy root cultures and xylem sap. We identified 759 spectra corresponding to the secreted products of twelve peptide hormones including four CEP ( C -TERMINALLY E NCODED P EPTIDE), two CLE ( CL V3/ E NDOSPERM SURROUNDING REGION RELATED) and six XAP ( X YLEM SAP A SSOCIATED P EPTIDE) peptides. The MtCEP1, MtCEP2, MtCEP5 and MtCEP8 peptides identified differed in post-translational-modifications. Most were hydroxylated at conserved proline residues but some MtCEP1 derivatives were tri-arabinosylated. In addition, many CEP peptides possessed unexpected N - and C -terminal extensions. The pattern of these extensions suggested roles for endo- and exoproteases in CEP peptide maturation. Longer than expected, hydroxylated and homogeneously modified mono- and tri-arabinosylated CEP peptides corresponding to their in vivo structures were chemically synthesized to probe the effect of these post-translational-modifications on function. The ability of CEP peptides to elevate root nodule number was increased by hydroxylation at key positions. MtCEP1 peptides with N -terminal extensions or with tri-arabinosylation modification, however, were unable to impart increased nodulation. The MtCLE5 and MtCLE17 peptides identified were of precise size, and inhibited main root growth and increased lateral root number. Six XAP peptides, each beginning with a conserved DY sulfation motif, were identified including MtXAP1a, MtXAP1b, MtXAP1c, MtXAP3, MtXAP5 and MtXAP7. MtXAP1a and MtXAP5 inhibited lateral root emergence. Transcriptional analyses demonstrated peptide

  5. Changes in root length during orthodontic treatment: advantages for immature teeth.

    PubMed

    Mavragani, Maria; Bøe, Olav Egil; Wisth, Per Johan; Selvig, Knut Andreas

    2002-02-01

    The purpose of the study was to investigate root lengthening during orthodontic treatment in relation to the age of the patient, the developmental stage of the root, and the anticipated growth. Specifically, the potential benefit of treating young teeth was addressed. The sample consisted of 80 patients with Angle Class II division 1 malocclusions, treated with extraction of at least two maxillary first premolars, and edgewise technique with 0.018-inch slot brackets. Additionally, a cross-sectional control group of 66 untreated individuals matched to gender, and pre- and post-treatment age of the experimental group was included. Crown and root lengths of the maxillary incisors were measured on peri-apical radiographs before and after treatment, and corrected for image distortion. The stage of root development before treatment was recorded. Root elongation during treatment was found for 50 out of the 280 examined teeth. Age at treatment start was significantly higher among the patients showing root shortening of the lateral incisors during treatment than among those showing root elongation (P < 0.05). The stage of root development was significantly related to the direction of root length change, i.e. shortening or elongation. Roots elongated during treatment did not differ in length from untreated teeth of similarly aged individuals. There was no significant difference in the extent of root lengthening between the roots elongated during treatment and the normal root lengthening in age-matched untreated individuals. Post-treatment root length was significantly related to pre-treatment age. Roots that were incompletely developed before treatment reached a significantly greater length than those that were fully developed at the start of treatment. The results of this study show a definite advantage for younger teeth with regard to post-treatment root length. This finding may influence treatment planning strategy.

  6. TORNADO1 regulates root epidermal patterning through the WEREWOLF pathway in Arabidopsis thaliana.

    PubMed

    Kwak, Su-Hwan; Song, Sang-Kee; Lee, Myeong Min; Schiefelbein, John

    2015-01-01

    Cell fate in the root epidermis of Arabidopsis thaliana is determined in a position-dependent manner. SCRAMBLED (SCM), an atypical leucine-rich repeat receptor-like kinase, mediates this positional regulation via its effect on WEREWOLF (WER) expression, and subsequently, its downstream transcription factor, GLABRA2 (GL2), which are required for nonhair cell development. Previously, TORNADO1 (TRN1), a plant-specific protein with a leucine-rich repeat ribonuclease inhibitor-like domain, was shown to be required for proper epidermal patterning in Arabidopsis roots. In this work, we analyzed the possible involvement of TRN1 in the known root epidermal gene network. We discovered that the trn1 mutant caused the ectopic expression of WER and the randomized expression of GL2 and EGL3. This suggests that TRN1 regulates the position-dependent cell fate determination by affecting WER expression in Arabidopsis root epidermis. Additionally, the distinct phenotypes of the aerial parts of the trn1-t and scm-2 mutant suggest that TRN1 and SCM might have different functions in the development of aerial parts.

  7. TORNADO1 regulates root epidermal patterning through the WEREWOLF pathway in Arabidopsis thaliana

    PubMed Central

    Kwak, Su-Hwan; Song, Sang-Kee; Lee, Myeong Min; Schiefelbein, John

    2015-01-01

    Cell fate in the root epidermis of Arabidopsis thaliana is determined in a position-dependent manner. SCRAMBLED (SCM), an atypical leucine-rich repeat receptor-like kinase, mediates this positional regulation via its effect on WEREWOLF (WER) expression, and subsequently, its downstream transcription factor, GLABRA2 (GL2), which are required for nonhair cell development. Previously, TORNADO1 (TRN1), a plant-specific protein with a leucine-rich repeat ribonuclease inhibitor-like domain, was shown to be required for proper epidermal patterning in Arabidopsis roots. In this work, we analyzed the possible involvement of TRN1 in the known root epidermal gene network. We discovered that the trn1 mutant caused the ectopic expression of WER and the randomized expression of GL2 and EGL3. This suggests that TRN1 regulates the position-dependent cell fate determination by affecting WER expression in Arabidopsis root epidermis. Additionally, the distinct phenotypes of the aerial parts of the trn1-t and scm-2 mutant suggest that TRN1 and SCM might have different functions in the development of aerial parts. PMID:26451798

  8. Distraction Arthrodesis of the C1-C2 Facet Joint with Preservation of the C2 Root for the Management of Intractable Occipital Neuralgia Caused by C2 Root Compression.

    PubMed

    Yeom, Jin S; Riew, K Daniel; Kang, Sung Shik; Yi, Jemin; Lee, Gun Woo; Yeom, Arim; Chang, Bong-Soon; Lee, Choon-Ki; Kim, Ho-Joong

    2015-10-15

    Prospective observational cohort study. To compare the outcomes of our new technique, distraction arthrodesis of C1-C2 facet joint with C2 root preservation (Study group), to those of conventional C1-C2 fusion with C2 root transection (Control group) for the management of intractable occipital neuralgia caused by C2 root compression. We are not aware of any report concerning C2 root decompression during C1-C2 fusion. Inclusion criteria were visual analogue scale (VAS) score for occipital neuralgia 7 or more; C2 root compression at the collapsed C1-C2 neural foramen; and follow-up 12 months or more. The Study group underwent surgery with our new technique including (1) C1-C2 facet joint distraction and bone block insertion while preserving the C2 root; and (2) use of C1 posterior arch screws instead of conventional lateral mass screws during C1-C2 segmental screw fixation. The Control group underwent C2 root transection with C1-C2 segmental screw fixation and fusion. We compared the prospectively collected outcomes data. There were 15 patients in the Study group and 8 in the Control group. Although there was no significant difference in the VAS score for the occipital neuralgia between the 2 groups preoperatively (8.2 ± 0.9 vs. 7.9 ± 0.6, P = 0.39), it was significantly lower in the Study group at 1, 3, and 6 months postoperatively (P < 0.01, respectively). At 12 months, it was 0.4 ± 0.6 versus 2.5 ± 2.6 (P = 0.01). There was no significant difference in improvement in the VAS score for neck pain and neck disability index and Japanese Orthopedic Association recovery rate, which are minimally influenced by occipital neuralgia. Our novel technique of distraction arthrodesis with C2 root preservation can be an effective option for the management of intractable occipital neuralgia caused by C2 root compression.

  9. Yellow-Poplar Rooting Habits

    Treesearch

    John K. Francis

    1979-01-01

    Although the configuration of pole-sized yellow-poplar root systems in Tennessee is quite variable, a branched taproot with several widely spreading laterals is typical. Rooting depth is particularly limited by clayey texture, wetness, and firmness of subsoils.

  10. Expression of grape ACS1 in tomato decreases ethylene and alters the balance between auxin and ethylene during shoot and root formation.

    PubMed

    Ye, Xia; Fu, Mengmeng; Liu, Yu; An, Dongliang; Zheng, Xianbo; Tan, Bin; Li, Jidong; Cheng, Jun; Wang, Wei; Feng, Jiancan

    2018-05-04

    Ethylene plays an important role in the grape rachis, where its production can be 10 times higher than in the berry. VvACS1 is the only rachis-specific ACC synthase (ACS) gene, and its expression is coincident with ethylene production in the rachis of Vitis vinifera 'Thompson seedless'. VvACS1 was cloned and ectopically expressed in tomato (Solanum lycopersicum 'Moneymaker'). Lateral buds were increased in two- or four-week-old 35s∷VvACS1 transgenic tomato plants after transplanting. Compared with wild-type (WT) plants, the transgenic tomato plants showed higher expression of the VvACS1 gene in the flowers, leaves, rachis, and fruits. There was no obvious difference of ACS activity in the fruit of tomato, and only increased ACS activity in the rachis of tomato. Ethylene production was decreased in flowers, leaves, and fruits (seven weeks after full bloom), while the relative expression of endogenous tomato ACS1 and ACS6 genes was not down-regulated by the ectopic expression of VvACS1. These results imply that post-transcriptional or post-translational regulation of ACS may occur, resulting in lower ethylene production in the transgenic tomato plants. Moreover, expression of VvACS1 in tomato resulted in decreased auxin and increased zeatin contents in the lateral buds, as well as reduced or delayed formation of adventitious roots in lateral bud cuttings. RNA-Seq and qRT-PCR analyses of rooted lateral bud cuttings indicated that the relative expression levels of the genes for zeatin O-glucosyltransferase-like, auxin repressed/dormancy-associated protein, and ERF transcription factors were higher in transgenic tomatoes than in WT, suggesting that ethylene may regulate auxin transport and distribution in shoots and that adventitious root formation employs coordination between auxin and ethylene. Copyright © 2018 Elsevier GmbH. All rights reserved.

  11. The divining root: moisture-driven responses of roots at the micro- and macro-scale.

    PubMed

    Robbins, Neil E; Dinneny, José R

    2015-04-01

    Water is fundamental to plant life, but the mechanisms by which plant roots sense and respond to variations in water availability in the soil are poorly understood. Many studies of responses to water deficit have focused on large-scale effects of this stress, but have overlooked responses at the sub-organ or cellular level that give rise to emergent whole-plant phenotypes. We have recently discovered hydropatterning, an adaptive environmental response in which roots position new lateral branches according to the spatial distribution of available water across the circumferential axis. This discovery illustrates that roots are capable of sensing and responding to water availability at spatial scales far lower than those normally studied for such processes. This review will explore how roots respond to water availability with an emphasis on what is currently known at different spatial scales. Beginning at the micro-scale, there is a discussion of water physiology at the cellular level and proposed sensory mechanisms cells use to detect osmotic status. The implications of these principles are then explored in the context of cell and organ growth under non-stress and water-deficit conditions. Following this, several adaptive responses employed by roots to tailor their functionality to the local moisture environment are discussed, including patterning of lateral root development and generation of hydraulic barriers to limit water loss. We speculate that these micro-scale responses are necessary for optimal functionality of the root system in a heterogeneous moisture environment, allowing for efficient water uptake with minimal water loss during periods of drought. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Root canal treatment of a periradicular lesion caused by unintentional root damage after orthodontic miniscrew placement: a case report.

    PubMed

    Er, K; Bayram, M; Taşdemir, T

    2011-12-01

    To present the successful endodontic management of a maxillary lateral incisor tooth with a periradicular lesion caused by unintentional root damage after orthodontic miniscrew placement. A 22-year-old female was diagnosed with a skeletal Class II, Division 2 malocclusion with Class II molar and canine relationships on both sides. The treatment plan included distalization of the maxillary first molars bilaterally followed by full fixed appliance therapy. For the maxillary molar distalization, an appliance in conjunction with a miniscrew anchorage system was designed. Two months later, the patient came to the clinic with complaints of pain in the maxillary right lateral incisor region. On intraoral examination, intraoral sinus tracts were detected in the maxillary right buccal sulcus and palate. A large radiolucent lesion with a well-defined margin around the root of the maxillary right lateral incisor was seen. Root canal treatment was performed on the maxillary right lateral incisor tooth. The root canal was filled with gutta-percha and AH Plus sealer, using a lateral compaction technique. The final restoration of the tooth was completed using composite, and the tooth was reviewed after 10 months. The tooth was asymptomatic and radiographically showed repair of the lesion. Healing was achieved without any need for further endodontic or surgical intervention. Key learning points • This case illustrates the need to take care with miniscrews when performing orthodontic treatment, especially when the miniscrews are in close proximity to root apices. • The periradicular lesion as a result of miniscrew damage was successfully treated with root canal treatment. © 2011 International Endodontic Journal.

  13. In Vitro Evaluation of Apical Sealing Ability of HEROfill® Obturator Versus Cold Lateral Condensation in Curved Root Canals.

    PubMed

    Zarei, Mina; Javidi, Maryam; Kazemi, Zeinab; Afkhami, Farzaneh

    2015-08-01

    This study aimed to assess and compare the apical sealing ability of HEROfill® Soft-Core system and lateral condensation technique in fine curved canals using the fluid filtration method. Forty human mesiobuccal root canals of mandibular first molars with 25° to 40° curvatures were instrumented to an apical size 30/0.04. Roots were randomly assigned to two experimental groups of 15, designated as groups A and B. Two control groups, each containing five teeth, served as positive and negative controls. Group A was obturated using lateral condensation technique and group B with the HEROfill® Soft-Core system. The groups were tested for microleakage using an in vitro fluid filtration apparatus with 0.5 atm pressure at zero, two, four, six, eight and 10 minutes. Independent t-test was used to analyze the microleakage data. The mean and standard deviation (SD) values for fluid microleakage in the lateral condensation group were 0.58±0.49 μL/min, 0.68±0.35 μL/min, 0.74±0.22 μL/min, 0.71±0.29 μL/min and 0.60± 0.29 μL/min at two, four, six, eight and 10 minutes, respectively. The mean and SD values for fluid microleakage in the HEROfill® group were 0.53±0.42 μL/min, 0.67±0.34 μL/min, 0.69±0.26 μL/min, 0.73±0.33 μL/min and 0.63±0.26 μL/min at two, four, six, eight and 10 minutes, respectively. The difference between the lateral condensation and HEROfill® groups was not statistically significant at two (P=0.776), four (P=0.909), six (P=0.562), eight (P=0.861) or 10 (P=0.765) minutes. The HEROfill® system and cold lateral condensation technique were equally effective for apical sealing of curved canals.

  14. Root interaction between Bromud tectorum and Poa pratensis: a three-dimensional analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bookman, P.A.; Mack, R.N.

    1982-06-01

    The spatial distribution of roots of two alien grasses, Bromus tectorum and Poa pratensis, grown singly and in a mixture, was examined using a double-labelling radioisotope technique. Interactions between the root systems of these plants led to a restricted B. tectorum rooting volume in P. pratensis neighborhoods greater than or equal to30-d-old. The roots of B. tectorum failed to develop laterally. The altered B. tectorum root systems may contribute to its inability to persist in established P. pratensis swards.

  15. Alpha-Glucan, Water Dikinase 1 Affects Starch Metabolism and Storage Root Growth in Cassava (Manihot esculenta Crantz).

    PubMed

    Zhou, Wenzhi; He, Shutao; Naconsie, Maliwan; Ma, Qiuxiang; Zeeman, Samuel C; Gruissem, Wilhelm; Zhang, Peng

    2017-08-29

    Regulation of storage root development by source strength remains largely unknown. The cassava storage root delay (srd) T-DNA mutant postpones storage root development but manifests normal foliage growth as wild-type plants. The SRD gene was identified as an orthologue of α-glucan, water dikinase 1 (GWD1), whose expression is regulated under conditions of light/dark cycles in leaves and is associated with storage root development. The GWD1-RNAi cassava plants showed both retarded plant and storage root growth, as a result of starch excess phenotypes with reduced photosynthetic capacity and decreased levels of soluble saccharides in their leaves. These leaves contained starch granules having greatly increased amylose content and type C semi-crystalline structures with increased short chains that suggested storage starch. In storage roots of GWD1-RNAi lines, maltose content was dramatically decreased and starches with much lower phosphorylation levels showed a drastically reduced β-amylolytic rate. These results suggested that GWD1 regulates transient starch morphogenesis and storage root growth by decreasing photo-assimilation partitioning from the source to the sink and by starch mobilization in root crops.

  16. Changes in hydraulic conductivity, mechanical properties, and density reflecting the fall in strain along the lateral roots of two species of tropical trees.

    PubMed

    Christensen-Dalsgaard, Karen K; Ennos, Anthony R; Fournier, Meriem

    2007-01-01

    Roots have been described as having larger vessels and so greater hydraulic efficiency than the stem. Differences in the strength and stiffness of the tissue within the root system itself are thought to be an adaptation to the loading conditions experienced by the roots and to be related to differences in density. It is not known how potential mechanical adaptations may affect the hydraulic properties of the roots. The change in strength, stiffness, conductivity, density, sapwood area, and second moment of area distally along the lateral roots of two tropical tree species in which the strain is known to decrease rapidly was studied and the values were compared with those of the trunk. It was found that as the strain fell distally along the roots, so did the strength and stiffness of the tissue, whereas the conductivity increased exponentially. These changes appeared to be related to differences in density. In contrast to the distal-most roots, the tissue of the proximal roots had a lower conductivity and higher strength than that of the trunk. This suggests that mechanical requirements on the structure rather than the water potential gradient from roots to branches are responsible for the general pattern that roots have larger vessels than the stem. In spite of their increased transectional area, the buttressed proximal roots were subjected to higher levels of stress and had a lower total conductivity than the rest of the root system.

  17. Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations.

    PubMed

    Yıldırım, Kubilay; Yağcı, Adem; Sucu, Seda; Tunç, Sümeyye

    2018-06-01

    Roots are the major interface between the plant and various stress factors in the soil environment. Alteration of root system architecture (RSA) (root length, spread, number and length of lateral roots) in response to environmental changes is known to be an important strategy for plant adaptation and productivity. In light of ongoing climate changes and global warming predictions, the breeding of drought-tolerant grapevine cultivars is becoming a crucial factor for developing a sustainable viticulture. Root-trait modeling of grapevine rootstock for drought stress scenarios, together with high-throughput phenotyping and genotyping techniques, may provide a valuable background for breeding studies in viticulture. Here, tree grafted grapevine rootstocks (110R, 5BB and 41B) having differential RSA regulations and drought tolerance were investigated to define their drought dependent root characteristics. Root area, root length, ramification and number of root tips reduced less in 110R grafted grapevines compared to 5BB and 41B grafted ones during drought treatment. Root relative water content as well as total carbohydrate and nitrogen content were found to be much higher in the roots of 110R than it was in the roots of other rootstocks under drought. Microarray-based root transcriptome profiling was also conducted on the roots of these rootstocks to identify their gene regulation network behind drought-dependent RSA alterations. Transcriptome analysis revealed totally 2795, 1196 and 1612 differentially expressed transcripts at the severe drought for the roots of 110R, 5BB and 41B, respectively. According to this transcriptomic data, effective root elongation and enlargement performance of 110R were suggested to depend on three transcriptomic regulations. First one is the drought-dependent induction in sugar and protein transporters genes (SWEET and NRT1/PTR) in the roots of 110R to facilitate carbohydrate and nitrogen accumulation. In the roots of the same rootstock

  18. HSPRO Controls Early Nicotiana attenuata Seedling Growth during Interaction with the Fungus Piriformospora indica1[C][W][OA

    PubMed Central

    Schuck, Stefan; Camehl, Iris; Gilardoni, Paola A.; Oelmueller, Ralf; Baldwin, Ian T.; Bonaventure, Gustavo

    2012-01-01

    In a previous study aimed at identifying regulators of Nicotiana attenuata responses against chewing insects, a 26-nucleotide tag matching the HSPRO (ORTHOLOG OF SUGAR BEET Hs1pro-1) gene was found to be strongly induced after simulated herbivory (Gilardoni et al., 2010). Here we characterized the function of HSPRO during biotic interactions in transgenic N. attenuata plants silenced in its expression (ir-hspro). In wild-type plants, HSPRO expression was not only induced during simulated herbivory but also when leaves were inoculated with Pseudomonas syringae pv tomato DC3000 and roots with the growth-promoting fungus Piriformospora indica. Reduced HSPRO expression did not affect the regulation of direct defenses against Manduca sexta herbivory or P. syringae pv tomato DC3000 infection rates. However, reduced HSPRO expression positively influenced early seedling growth during interaction with P. indica; fungus-colonized ir-hspro seedlings increased their fresh biomass by 30% compared with the wild type. Grafting experiments demonstrated that reduced HSPRO expression in roots was sufficient to induce differential growth promotion in both roots and shoots. This effect was accompanied by changes in the expression of 417 genes in colonized roots, most of which were metabolic genes. The lack of major differences in the metabolic profiles of ir-hspro and wild-type colonized roots (as analyzed by liquid chromatography time-of-flight mass spectrometry) suggested that accelerated metabolic rates were involved. We conclude that HSPRO participates in a whole-plant change in growth physiology when seedlings interact with P. indica. PMID:22892352

  19. Rhizobial infection in Adesmia bicolor (Fabaceae) roots.

    PubMed

    Bianco, Luciana

    2014-09-01

    The native legume Adesmia bicolor shows nitrogen fixation efficiency via symbiosis with soil rhizobia. The infection mechanism by means of which rhizobia infect their roots has not been fully elucidated to date. Therefore, the purpose of the present study was to identify the infection mechanism in Adesmia bicolor roots. To this end, inoculated roots were processed following conventional methods as part of our root anatomy study, and the shape and distribution of root nodules were analyzed as well. Neither root hairs nor infection threads were observed in the root system, whereas infection sites-later forming nodules-were observed in the longitudinal sections. Nodules were found to form between the main root and the lateral roots. It can be concluded that in Adesmia bicolor, a bacterial crack entry infection mechanism prevails and that such mechanism could be an adaptive strategy of this species which is typical of arid environments.

  20. Evaluation of marginal adaptation of root-end filling materials using scanning electron microscopy.

    PubMed

    Oliveira, Helder Fernandes; Gonçalves Alencar, Ana Helena; Poli Figueiredo, José Antônio; Guedes, Orlando Aguirre; de Almeida Decurcio, Daniel; Estrela, Carlos

    2013-01-01

    The importance of perfect apical seal in endodontics, more specifically in periradicular surgery, is the motivation/reason for development of root-end filling materials with favorable physical, chemical and biological characteristics. The aim of this in vitro study was to evaluate the marginal adaptation of root-end filling materials using scanning electron microscopy. Twenty five human maxillary anterior teeth were prepared using a K-File #50 to 1 mm short of the apical foramen and filled with gutta-percha and Sealapex using the lateral compaction technique. The apical 3 mm of the roots were sectioned perpendicularly to the long axis of the teeth. A 3-mm-deep root-end cavity was prepared using ultrasonic tips powered by an Enac ultrasonic unit. The teeth were randomly assigned to five groups according to the materials tested including IRM, amalgam, ProRoot MTA, Super-EBA and Epiphany/Resilon. Root-end cavities were filled with the materials prepared according to the manufacturers' instructions. The root apices were carefully prepared for sputter coating and later evaluation using Scanning Electron Microscope (SEM). The images of root-end fillings were divided into four quadrants and distributed into five categories according to the level of marginal adaptation between the root-end material and the root canal walls. The Fisher exact test with Bonferroni correction was used for statistical analysis. The level of significance was set at P = 0.005. SEM images showed the presence of gaps in the root-end filling materials. No significant difference was observed between the tested materials (P > 0.005). ProRoot MTA, IRM, amalgam, Super-EBA and Epiphany/Resilon showed similar marginal adaptation as root-end filling materials.

  1. Role of LOTR1 in Nutrient Transport through Organization of Spatial Distribution of Root Endodermal Barriers.

    PubMed

    Li, Baohai; Kamiya, Takehiro; Kalmbach, Lothar; Yamagami, Mutsumi; Yamaguchi, Katsushi; Shigenobu, Shuji; Sawa, Shinichiro; Danku, John M C; Salt, David E; Geldner, Niko; Fujiwara, Toru

    2017-03-06

    The formation of Casparian strips and suberin lamellae at the endodermis limits the free diffusion of nutrients and harmful substances via the apoplastic space between the soil solution and the stele in roots [1-3]. Casparian strips are ring-like lignin polymers deposited in the middle of anticlinal cell walls between endodermal cells and fill the gap between them [4-6]. Suberin lamellae are glycerolipid polymers covering the endodermal cells and likely function as a barrier to limit transmembrane movement of apoplastic solutes into the endodermal cells [7, 8]. However, the current knowledge on the formation of these two distinct endodermal barriers and their regulatory role in nutrient transport is still limited. Here, we identify an uncharacterized gene, LOTR1, essential for Casparian strip formation in Arabidopsis thaliana. The lotr1 mutants display altered localization of CASP1, an essential protein for Casparian strip formation [9], disrupted Casparian strips, ectopic suberization of endodermal cells, and low accumulation of shoot calcium (Ca). Degradation by expression of a suberin-degrading enzyme in the mutants revealed that the ectopic suberization at the endodermal cells limits Ca transport through the transmembrane pathway, thereby causing reduced Ca delivery to the shoot. Moreover, analysis of the mutants showed that suberin lamellae function as an apoplastic diffusion barrier to the stele at sites of lateral root emergence where Casparian strips are disrupted. Our findings suggest that the transmembrane pathway through unsuberized endodermal cells, rather than the sites of lateral root emergence, mediates the transport of apoplastic substances such as Ca into the xylem. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Branching patterns of root systems: quantitative analysis of the diversity among dicotyledonous species

    PubMed Central

    Pagès, Loïc

    2014-01-01

    Background and Aims Root branching, and in particular acropetal branching, is a common and important developmental process for increasing the number of growing tips and defining the distribution of their meristem size. This study presents a new method for characterizing the results of this process in natura from scanned images of young, branched parts of excavated roots. The method involves the direct measurement or calculation of seven different traits. Methods Young plants of 45 species of dicots were sampled from fields and gardens with uniform soils. Roots were separated, scanned and then measured using ImageJ software to determine seven traits related to root diameter and interbranch distance. Results The traits exhibited large interspecific variations, and covariations reflecting trade-offs. For example, at the interspecies level, the spacing of lateral roots (interbranch distance along the parent root) was strongly correlated to the diameter of the finest roots found in the species, and showed a continuum between two opposite strategies: making dense and fine lateral roots, or thick and well-spaced laterals. Conclusions A simple method is presented for classification of branching patterns in roots that allows relatively quick sampling and measurements to be undertaken. The feasibilty of the method is demonstrated for dicotyledonous species and it has the potential to be developed more broadly for other species and a wider range of enivironmental conditions. PMID:25062886

  3. The interaction between glucose and cytokinin signaling in controlling Arabidopsis thaliana seedling root growth and development

    PubMed Central

    Kushwah, Sunita

    2017-01-01

    ABSTRACT Cytokinin (CK) and glucose (GLC) control several common responses in plants. There is an extensive overlap between CK and GLC signal transduction pathways in Arabidopsis. Physiologically, both GLC and CK could regulate root length in light. CK interacts with GLC via HXK1 dependent pathway for root length control. Wild-type (WT) roots cannot elongate in the GLC free medium while CK-receptor mutant ARABIDOPSIS HISTIDINE KINASE4 (ahk4) and type B ARR triple mutant ARABIDOPSIS RESPONSE REGULATOR1, 10,11 (arr1, 10,11) roots could elongate even in the absence of GLC as compared with the WT. The root hair initiation was also found defective in CK signaling mutants ahk4, arr1,10,11 and arr3,4,5,6,8,9 on increasing GLC concentration (up to 3%); and lesser number of root hairs were visible even at 5% GLC as compared with the WT. Out of 941 BAP regulated genes, 103 (11%) genes were involved in root growth and development. Out of these 103 genes, 60 (58%) genes were also regulated by GLC. GLC could regulate 5736 genes, which include 327 (6%) genes involved in root growth and development. Out of these 327 genes, 60 (18%) genes were also regulated by BAP. Both GLC and CK signaling cannot alter root length in light in auxin signaling mutant AUXIN RESPONSE3/INDOLE-3-ACETIC ACID17 (axr3/iaa17) suggesting that they may involve auxin signaling component as a nodal point. Therefore CK- and GLC- signaling are involved in controlling different aspects of root growth and development such as root length, with auxin signaling components working as downstream target. PMID:28467152

  4. The interaction between glucose and cytokinin signaling in controlling Arabidopsis thaliana seedling root growth and development.

    PubMed

    Kushwah, Sunita; Laxmi, Ashverya

    2017-05-04

    Cytokinin (CK) and glucose (GLC) control several common responses in plants. There is an extensive overlap between CK and GLC signal transduction pathways in Arabidopsis. Physiologically, both GLC and CK could regulate root length in light. CK interacts with GLC via HXK1 dependent pathway for root length control. Wild-type (WT) roots cannot elongate in the GLC free medium while CK-receptor mutant ARABIDOPSIS HISTIDINE KINASE4 (ahk4) and type B ARR triple mutant ARABIDOPSIS RESPONSE REGULATOR1, 10,11 (arr1, 10,11) roots could elongate even in the absence of GLC as compared with the WT. The root hair initiation was also found defective in CK signaling mutants ahk4, arr1,10,11 and arr3,4,5,6,8,9 on increasing GLC concentration (up to 3%); and lesser number of root hairs were visible even at 5% GLC as compared with the WT. Out of 941 BAP regulated genes, 103 (11%) genes were involved in root growth and development. Out of these 103 genes, 60 (58%) genes were also regulated by GLC. GLC could regulate 5736 genes, which include 327 (6%) genes involved in root growth and development. Out of these 327 genes, 60 (18%) genes were also regulated by BAP. Both GLC and CK signaling cannot alter root length in light in auxin signaling mutant AUXIN RESPONSE3/INDOLE-3-ACETIC ACID17 (axr3/iaa17) suggesting that they may involve auxin signaling component as a nodal point. Therefore CK- and GLC- signaling are involved in controlling different aspects of root growth and development such as root length, with auxin signaling components working as downstream target.

  5. Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signaling in Arabidopsis thaliana.

    PubMed

    Wimalasekera, Rinukshi; Pejchar, Premysl; Holk, André; Martinec, Jan; Scherer, Günther F E

    2010-05-01

    Phosphatidylcholine-hydrolyzing phospholipase C (PC-PLC) catalyzes the hydrolysis of phosphatidylcholine (PC) to generate phosphocholine and diacylglycerol (DAG). PC-PLC has a long tradition in animal signal transduction to generate DAG as a second messenger besides the classical phosphatidylinositol splitting phospholipase C (PI-PLC). Based on amino acid sequence similarity to bacterial PC-PLC, six putative PC-PLC genes (NPC1 to NPC6) were identified in the Arabidopsis genome. RT-PCR analysis revealed overlapping expression pattern of NPC genes in root, stem, leaf, flower, and silique. In auxin-treated P(NPC3):GUS and P(NPC4):GUS seedlings, strong increase of GUS activity was visible in roots, leaves, and shoots and, to a weaker extent, in brassinolide-treated (BL) seedlings. P(NPC4):GUS seedlings also responded to cytokinin with increased GUS activity in young leaves. Compared to wild-type, T-DNA insertional knockouts npc3 and npc4 showed shorter primary roots and lower lateral root density at low BL concentrations but increased lateral root densities in response to exogenous 0.05-1.0 μM BL. BL-induced expression of TCH4 and LRX2, which are involved in cell expansion, was impaired but not impaired in repression of CPD, a BL biosynthesis gene, in BL-treated npc3 and npc4. These observations suggest NPC3 and NPC4 are important in BL-mediated signaling in root growth. When treated with 0.1 μM BL, DAG accumulation was observed in tobacco BY-2 cell cultures labeled with fluorescent PC as early as 15 min after application. We hypothesize that at least one PC-PLC is a plant signaling enzyme in BL signal transduction and, as shown earlier, in elicitor signal transduction.

  6. An evaluation of root resorption after orthodontic treatment.

    PubMed

    Thomas, E; Evans, W G; Becker, P

    2012-08-01

    Root resorption is commonly seen, albeit in varying degrees, in cases that have been treated orthodontically. In this retrospective study the objective was to compare the amount of root resorption observed after active orthodontic treatment had been completed with one of three different appliance systems, namely, Tip Edge, Modified Edgewise and Damon. The sample consisted of pre and post-treatment cephalograms of sixty eight orthodontic cases. Root resorption of the maxillary central incisor was assessed from pre- and post- treatment lateral ce phalograms using two methods. In the first, overall tooth length from the incisal edge to the apex was measured on both pre and post-treatment lateral cephalograms and root resorption was recorded as an actual millimetre loss of tooth length. There was a significant upward linear trend (p = 0.052) for root resorption from the Tip Edge Group to the Damon Group. In the second method root resorption was visually evaluated by using the five grade ordinal scale of Levander and Malmgren (1988). It was found that the majorty of cases in the sample came under Grade 1 and Grade 2 category of root resorption. Statistical evaluation tested the extent of agree ment in this study between visual measurements and actual measurements and demonstrated a significant association (p = 0.018) between the methods.

  7. The GLABRA2 homeodomain protein directly regulates CESA5 and XTH17 gene expression in Arabidopsis roots.

    PubMed

    Tominaga-Wada, Rumi; Iwata, Mineko; Sugiyama, Junji; Kotake, Toshihisa; Ishida, Tetsuya; Yokoyama, Ryusuke; Nishitani, Kazuhiko; Okada, Kiyotaka; Wada, Takuji

    2009-11-01

    Arabidopsis root hair formation is determined by the patterning genes CAPRICE (CPC), GLABRA3 (GL3), WEREWOLF (WER) and GLABRA2 (GL2), but little is known about the later changes in cell wall material during root hair formation. A combined Fourier-transform infrared microspectroscopy-principal components analysis (FTIR-PCA) method was used to detect subtle differences in the cell wall material between wild-type and root hair mutants in Arabidopsis. Among several root hair mutants, only the gl2 mutation affected root cell wall polysaccharides. Five of the 10 genes encoding cellulose synthase (CESA1-10) and 4 of 33 xyloglucan endotransglucosylase (XTH1-33) genes in Arabidopsis are expressed in the root, but only CESA5 and XTH17 were affected by the gl2 mutation. The L1-box sequence located in the promoter region of these genes was recognized by the GL2 protein. These results indicate that GL2 directly regulates cell wall-related gene expression during root development.

  8. [Effects of arbuscular mycorrhizal fungi on root system morphology and sucrose and glucose contents of Poncirus trifoliata].

    PubMed

    Zou, Ying-Ning; Wu, Qiang-Sheng; Li, Yan; Huang, Yong-Ming

    2014-04-01

    The effects of inoculation with Glomus mosseae, G. versiforme, and their mixture on plant growth, root system morphology, and sucrose and glucose contents of trifoliate orange (Poncirus trifoliata L.) were studied by pot culture. The results showed that all the inoculated treatments significantly increased the plant height, stem diameter, leaf number, and shoot and root biomass. In addition, the mycorrhizal treatments significantly increased the number of 1st, 2nd, and 3rd lateral roots. Inoculation with arbuscular mycorrhizal fungi significantly increased the root projected area, surface area, volume, and total root length (mainly 0-1 cm root length), but decreased the root average diameter. Meanwhile, G. versiforme showed the best effects. Mycorrhizal inoculation significantly increased the leaf sucrose and root glucose contents, but decreased the leaf glucose and root sucrose contents. Owing to the 'mycorrhizal carbon pool' in roots, inoculation with arbuscular mycorrhizal fungi resulted in high glucose content and low sucrose content of roots, which would facilitate the root growth and development, thereby the establishment of better root system morphology of host plants.

  9. Formin homology 1 (OsFH1) regulates root-hair elongation in rice (Oryza sativa).

    PubMed

    Huang, Jin; Kim, Chul Min; Xuan, Yuan-hu; Liu, Jingmiao; Kim, Tae Ho; Kim, Bo-Kyeong; Han, Chang-deok

    2013-05-01

    The outgrowth of root hairs from the epidermal cell layer is regulated by a strict genetic regulatory system and external growth conditions. Rice plants cultivated in water-logged paddy land are exposed to a soil ecology that differs from the environment surrounding upland plants, such as Arabidopsis and maize. To identify genes that play important roles in root-hair growth, a forward genetics approach was used to screen for short-root-hair mutants. A short-root-hair mutant was identified, and the gene was isolated using map-based cloning and sequencing. The mutant harbored a point mutation at a splicing acceptor site, which led to truncation of OsFH1 (rice formin homology 1). Subsequent analysis of two additional T-DNA mutants verified that OsFH1 is important for root-hair elongation. Further studies revealed that the action of OsFH1 on root-hair growth is dependent on growth conditions. The mutant Osfh1 exhibited root-hair defects when roots were grown submerged in solution, and mutant roots produced normal root hairs in the air. However, root-hair phenotypes of mutants were not influenced by the external supply of hormones or carbohydrates, a deficiency of nutrients, such as Fe or P i , or aeration. This study shows that OsFH1 plays a significant role in root-hair elongation in a growth condition-dependent manner.

  10. The Early Entry of Al into Cells of Intact Soybean Roots (A Comparison of Three Developmental Root Regions Using Secondary Ion Mass Spectrometry Imaging).

    PubMed Central

    Lazof, D. B.; Goldsmith, J. G.; Rufty, T. W.; Linton, R. W.

    1996-01-01

    Al localization was compared in three developmental regions of primary root of an Al-sensitive soybean (Glycine max) genotype using secondary ion mass spectrometry. In cryosections obtained after a 4-h exposure to 38 [mu]M [Al3+], Al had penetrated across the root and into the stele in all three regions. Although the greatest localized Al concentration was consistently at the root periphery, the majority of the Al in each region had accumulated in cortical cells. It was apparent that the secondary ion mass spectrometry 27Al+ mass signal was spread throughout the intracellular area and was not particularly intense in the cell wall. Inclusion of some cell wall in determinations of the Al levels across the root radius necessitated that these serve as minimal estimates for intracellular Al. Total accumulation of intracellular Al for each region was 60, 73, and 210 nmol g-1 fresh weight after 4 h, increasing with root development. Early metabolic responses to external Al, including those that have been reported deep inside the root and in mature regions, might result directly from intracellular Al. These responses might include ion transport events at the endodermis of mature roots or events associated with lateral root emergence, as well as events within the root tip. PMID:12226447

  11. Hormonal interactions during cluster-root development in phosphate-deficient white lupin (Lupinus albus L.).

    PubMed

    Wang, Zhengrui; Rahman, A B M Moshiur; Wang, Guoying; Ludewig, Uwe; Shen, Jianbo; Neumann, Günter

    2015-04-01

    This study addresses hormonal interactions involved in cluster-root (CR) development of phosphate (Pi)-deficient white lupin (Lupinus albus), which represents the most efficient plant strategy for root-induced mobilisation of sparingly soluble soil phosphorus (P) sources. Shoot-to-root translocation of auxin was unaffected by P-limitation, while strong stimulatory effects of external sucrose on CR formation, even in P-sufficient plants, suggest sucrose, rather than auxins, acts as a shoot-borne signal, triggering the induction of CR primordia. Ethylene may act as mediator of the sucrose signal, as indicated by moderately increased expression of genes involved in ethylene biosynthesis in pre-emergent clusters and by strong inhibitory effects of the ethylene antagonist CoCl2 on CR formation induced by sucrose amendments or P-limitation. As reported in other plants, moderately increased production of brassinosteroids (BRs) and cytokinin, in pre-emergent clusters, may be required for the formation of auxin gradients necessary for induction of CR primordia via interference with auxin biosynthesis and transport. The well-documented inhibition of root elongation by high doses of ethylene may be involved in the growth inhibition of lateral rootlets during CR maturation, indicated by a massive increased expression of gene involved in ethylene production, associated with a declined expression of transcripts with stimulatory effects (BR and auxin-related genes). Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. The Histone Chaperone NRP1 Interacts with WEREWOLF to Activate GLABRA2 in Arabidopsis Root Hair Development

    PubMed Central

    Rong, Liang; Luo, Qiang; Wang, Baihui; Zhou, Nana; Zhang, Chi; Feng, Haiyang

    2017-01-01

    NUCLEOSOME ASSEMBLY PROTEIN1 (NAP1) defines an evolutionarily conserved family of histone chaperones and loss of function of the Arabidopsis thaliana NAP1 family genes NAP1-RELATED PROTEIN1 (NRP1) and NRP2 causes abnormal root hair formation. Yet, the underlying molecular mechanisms remain unclear. Here, we show that NRP1 interacts with the transcription factor WEREWOLF (WER) in vitro and in vivo and enriches at the GLABRA2 (GL2) promoter in a WER-dependent manner. Crystallographic analysis indicates that NRP1 forms a dimer via its N-terminal α-helix. Mutants of NRP1 that either disrupt the α-helix dimerization or remove the C-terminal acidic tail, impair its binding to histones and WER and concomitantly lead to failure to activate GL2 transcription and to rescue the nrp1-1 nrp2-1 mutant phenotype. Our results further demonstrate that WER-dependent enrichment of NRP1 at the GL2 promoter is involved in local histone eviction and nucleosome loss in vivo. Biochemical competition assays imply that the association between NRP1 and histones may counteract the inhibitory effect of histones on the WER-DNA interaction. Collectively, our study provides important insight into the molecular mechanisms by which histone chaperones are recruited to target chromatin via interaction with a gene-specific transcription factor to moderate chromatin structure for proper root hair development. PMID:28138017

  13. [Upper lateral incisor with 2 canals].

    PubMed

    Fabra Campos, H

    1991-01-01

    Clinical case summary of the patient with an upper lateral incisor with two root canals. The suspicion that there might be an anatomic anomaly in the root that includes a complex root canal system was made when an advanced radicular groove was detected in the lingual surface or an excessively enlarged cingulum.

  14. Control of in vitro rooting and plant development in Corymbia maculata by silver nitrate, silver thiosulfate and thiosulfate ion.

    PubMed

    Steinitz, Benjamin; Barr, Nurit; Tabib, Yona; Vaknin, Yiftach; Bernstein, Nirit

    2010-11-01

    Plant regeneration and transformation in vitro is often improved by adding silver ion (Ag(+)) to the culture media as AgNO(3) or silver thiosulfate (STS). Ag(+) reacts with substances to form insoluble precipitates, while thiosulfate (S(2)O(3) (2-)) interferes with these reactions. We studied the implications of silver precipitation and S(2)O(3) (2-) in the medium for culture development by (1) examining formation of Ag(+) precipitates from AgNO(3) versus STS in agar gels and their possible dependence on agar type; (2) comparing Corymbia maculata culture responses to AgNO(3) and STS and determining which better suits control of culture development; (3) clarifying whether STS-dependent alterations in culture development are due to Ag(+) alone or also to a separate influence of S(2)O(3) (2-). Silver precipitates appeared in aqueous gels of four agar brands supplemented with AgNO(3), but not in Phytagel(™), which remained transparent. No precipitation was observed in gels with STS. Indole-3-butyric acid (IBA)-mediated adventitious root induction and shoot growth were higher in C. maculata shoot tips cultured on gels with STS versus AgNO(3) (6-25 μM Ag(+)). IBA-treated shoot tips exhibited enhanced adventitious root regeneration, accelerated root elongation, increased frequency of lateral root formation, and stimulated shoot growth mediated by 100-250 μM sodium thiosulfate (Na(2)S(2)O(3)) in medium without Ag(+). The potency of S(2)O(3) (2-) in facilitating culture development has never been recognized. It is inferred that superiority of STS in stimulating multiple responses of C. maculata culture results from sustained biological activity of Ag(+) through prevention of its precipitation, and from impact of S(2)O(3) (2-) on cell differentiation and growth.

  15. High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development.

    PubMed

    Clark, Randy T; Famoso, Adam N; Zhao, Keyan; Shaff, Jon E; Craft, Eric J; Bustamante, Carlos D; McCouch, Susan R; Aneshansley, Daniel J; Kochian, Leon V

    2013-02-01

    High-throughput phenotyping of root systems requires a combination of specialized techniques and adaptable plant growth, root imaging and software tools. A custom phenotyping platform was designed to capture images of whole root systems, and novel software tools were developed to process and analyse these images. The platform and its components are adaptable to a wide range root phenotyping studies using diverse growth systems (hydroponics, paper pouches, gel and soil) involving several plant species, including, but not limited to, rice, maize, sorghum, tomato and Arabidopsis. The RootReader2D software tool is free and publicly available and was designed with both user-guided and automated features that increase flexibility and enhance efficiency when measuring root growth traits from specific roots or entire root systems during large-scale phenotyping studies. To demonstrate the unique capabilities and high-throughput capacity of this phenotyping platform for studying root systems, genome-wide association studies on rice (Oryza sativa) and maize (Zea mays) root growth were performed and root traits related to aluminium (Al) tolerance were analysed on the parents of the maize nested association mapping (NAM) population. © 2012 Blackwell Publishing Ltd.

  16. The evolution of root hairs and rhizoids.

    PubMed

    Jones, Victor A S; Dolan, Liam

    2012-07-01

    Almost all land plants develop tip-growing filamentous cells at the interface between the plant and substrate (the soil). Root hairs form on the surface of roots of sporophytes (the multicellular diploid phase of the life cycle) in vascular plants. Rhizoids develop on the free-living gametophytes of vascular and non-vascular plants and on both gametophytes and sporophytes of the extinct rhyniophytes. Extant lycophytes (clubmosses and quillworts) and monilophytes (ferns and horsetails) develop both free-living gametophytes and free-living sporophytes. These gametophytes and sporophytes grow in close contact with the soil and develop rhizoids and root hairs, respectively. Here we review the development and function of rhizoids and root hairs in extant groups of land plants. Root hairs are important for the uptake of nutrients with limited mobility in the soil such as phosphate. Rhizoids have a variety of functions including water transport and adhesion to surfaces in some mosses and liverworts. A similar gene regulatory network controls the development of rhizoids in moss gametophytes and root hairs on the roots of vascular plant sporophytes. It is likely that this gene regulatory network first operated in the gametophyte of the earliest land plants. We propose that later it functioned in sporophytes as the diploid phase evolved a free-living habit and developed an interface with the soil. This transference of gene function from gametophyte to sporophyte could provide a mechanism that, at least in part, explains the increase in morphological diversity of sporophytes that occurred during the radiation of land plants in the Devonian Period.

  17. The evolution of root hairs and rhizoids

    PubMed Central

    Jones, Victor A.S.; Dolan, Liam

    2012-01-01

    Background Almost all land plants develop tip-growing filamentous cells at the interface between the plant and substrate (the soil). Root hairs form on the surface of roots of sporophytes (the multicellular diploid phase of the life cycle) in vascular plants. Rhizoids develop on the free-living gametophytes of vascular and non-vascular plants and on both gametophytes and sporophytes of the extinct rhyniophytes. Extant lycophytes (clubmosses and quillworts) and monilophytes (ferns and horsetails) develop both free-living gametophytes and free-living sporophytes. These gametophytes and sporophytes grow in close contact with the soil and develop rhizoids and root hairs, respectively. Scope Here we review the development and function of rhizoids and root hairs in extant groups of land plants. Root hairs are important for the uptake of nutrients with limited mobility in the soil such as phosphate. Rhizoids have a variety of functions including water transport and adhesion to surfaces in some mosses and liverworts. Conclusions A similar gene regulatory network controls the development of rhizoids in moss gametophytes and root hairs on the roots of vascular plant sporophytes. It is likely that this gene regulatory network first operated in the gametophyte of the earliest land plants. We propose that later it functioned in sporophytes as the diploid phase evolved a free-living habit and developed an interface with the soil. This transference of gene function from gametophyte to sporophyte could provide a mechanism that, at least in part, explains the increase in morphological diversity of sporophytes that occurred during the radiation of land plants in the Devonian Period. PMID:22730024

  18. Cambial Activity and Intra-annual Xylem Formation in Roots and Stems of Abies balsamea and Picea mariana

    PubMed Central

    Thibeault-Martel, Maxime; Krause, Cornelia; Morin, Hubert; Rossi, Sergio

    2008-01-01

    Background and Aims Studies on xylogenesis focus essentially on the stem, whereas there is basically no information about the intra-annual growth of other parts of the tree. As roots strongly influence carbon allocation and tree development, knowledge of the dynamics of xylem production and maturation in roots at a short time scale is required for a better understanding of the phenomenon of tree growth. This study compared cambial activity and xylem formation in stem and roots in two conifers of the boreal forest in Canada. Methods Wood microcores were collected weekly in stem and roots of ten Abies balsamea and ten Picea mariana during the 2004–2006 growing seasons. Cross-sections were cut using a rotary microtome, stained with cresyl violet acetate and observed under visible and polarized light. The number of cells in the cambial zone and in differentiation, plus the number of mature cells, was counted along the developing xylem. Key Results Xylem formation lasted from the end of May to the end of September, with no difference between stem and roots in 2004–2005. On the contrary, in 2006 a 1-week earlier beginning of cell differentiation was observed in the stem, with cell wall thickening and lignification in roots ending up to 22 d later than in the stem. Cell production in the stem was concentrated early in the season, in June, while most cell divisions in roots occurred 1 month later. Conclusions The intra-annual dynamics of growth observed in stem and roots could be related to the different amount of cells produced by the cambium and the patterns of air and soil temperature occurring in spring. PMID:18708643

  19. Imaging tree roots with borehole radar

    Treesearch

    John R. Butnor; Kurt H. Johnsen; Per Wikstrom; Tomas Lundmark; Sune Linder

    2006-01-01

    Ground-penetrating radar has been used to de-tect and map tree roots using surface-based antennas in reflection mode. On amenable soils these methods can accurately detect lateral tree roots. In some tree species (e.g. Pinus taeda, Pinus palustris), vertically orientated tap roots directly beneath the tree, comprise most of the root mass. It is...

  20. CYTOKININ OXIDASE/DEHYDROGENASE3 Maintains Cytokinin Homeostasis during Root and Nodule Development in Lotus japonicus1[OPEN

    PubMed Central

    Heckmann, Anne B.; Kelly, Simon

    2016-01-01

    Cytokinins are required for symbiotic nodule development in legumes, and cytokinin signaling responses occur locally in nodule primordia and in developing nodules. Here, we show that the Lotus japonicus Ckx3 cytokinin oxidase/dehydrogenase gene is induced by Nod factor during the early phase of nodule initiation. At the cellular level, pCkx3::YFP reporter-gene studies revealed that the Ckx3 promoter is active during the first cortical cell divisions of the nodule primordium and in growing nodules. Cytokinin measurements in ckx3 mutants confirmed that CKX3 activity negatively regulates root cytokinin levels. Particularly, tZ and DHZ type cytokinins in both inoculated and uninoculated roots were elevated in ckx3 mutants, suggesting that these are targets for degradation by the CKX3 cytokinin oxidase/dehydrogenase. The effect of CKX3 on the positive and negative roles of cytokinin in nodule development, infection and regulation was further clarified using ckx3 insertion mutants. Phenotypic analysis indicated that ckx3 mutants have reduced nodulation, infection thread formation and root growth. We also identify a role for cytokinin in regulating nodulation and nitrogen fixation in response to nitrate as ckx3 phenotypes are exaggerated at increased nitrate levels. Together, these findings show that cytokinin accumulation is tightly regulated during nodulation in order to balance the requirement for cell divisions with negative regulatory effects of cytokinin on infection events and root development. PMID:26644503

  1. Elevated levels of N-lauroylethanolamine, an endogenous constituent of desiccated seeds, disrupt normal root development in Arabidopsis thaliana seedlings

    NASA Technical Reports Server (NTRS)

    Blancaflor, Elison B.; Hou, Guichuan; Chapman, Kent D.

    2003-01-01

    N-Acylethanolamines (NAEs) are prevalent in desiccated seeds of various plant species, and their levels decline substantially during seed imbibition and germination. Here, seeds of Arabidopsis thaliana (L.) Heynh. were germinated in, and seedlings maintained on, micromolar concentrations of N-lauroylethanolamine (NAE 12:0). NAE 12:0 inhibited root elongation, increased radial swelling of root tips, and reduced root hair numbers in a highly selective and concentration-dependent manner. These effects were reversible when seedlings were transferred to NAE-free medium. Older seedlings (14 days old) acclimated to exogenous NAE by increased formation of lateral roots, and generally, these lateral roots did not exhibit the severe symptoms observed in primary roots. Cells of NAE-treated primary roots were swollen and irregular in shape, and in many cases showed evidence, at the light- and electron-microscope levels, of improper cell wall formation. Microtubule arrangement was disrupted in severely distorted cells close to the root tip, and endoplasmic reticulum (ER)-localized green fluorescent protein (mGFP5-ER) was more abundant, aggregated and distributed differently in NAE-treated root cells, suggesting disruption of proper cell division, endomembrane organization and vesicle trafficking. These results suggest that NAE 12:0 likely influences normal cell expansion in roots by interfering with intracellular membrane trafficking to and/or from the cell surface. The rapid metabolism of NAEs during seed imbibition/germination may be a mechanism to remove this endogenous class of lipid mediators to allow for synchronized membrane reorganization associated with cell expansion.

  2. The promoting effects of alginate oligosaccharides on root development in Oryza sativa L. mediated by auxin signaling.

    PubMed

    Zhang, Yunhong; Yin, Heng; Zhao, Xiaoming; Wang, Wenxia; Du, Yuguang; He, Ailing; Sun, Kegang

    2014-11-26

    Alginate oligosaccharides (AOS), which are marine oligosaccharides, are involved in regulating plant root growth, but the promotion mechanism for AOS remains unclear. Here, AOS (10-80 mg/L) induced the expression of auxin-related gene (OsYUCCA1, OsYUCCA5, OsIAA11 and OsPIN1) in rice (Oryza sativa L.) tissues to accelerate auxin biosynthesis and transport, and reduced indole-3-acetic acid (IAA) oxidase activity in rice roots. These changes resulted in the increase of 37.8% in IAA concentration in rice roots, thereby inducing the expression of root development-related genes, promoting root growth in a dose-dependent manner, which were inhibited by auxin transport inhibitor 2,3,5-triiodo benzoic acid (TIBA) and calcium-chelating agent ethylene glycol bis (2-aminoethyl) tetraacetic acid (EGTA). AOS also induced calcium signaling generation in rice roots. Those results indicated that auxin mediated AOS regulation of root development, and calcium signaling may act mainly in the upstream of auxin in the regulation of AOS on rice root development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Developmental and Tissue-Specific Structural Alterations of the Cell-Wall Polysaccharides of Arabidopsis thaliana Roots.

    PubMed Central

    Freshour, G.; Clay, R. P.; Fuller, M. S.; Albersheim, P.; Darvill, A. G.; Hahn, M. G.

    1996-01-01

    The plant cell wall is a dynamic structure that plays important roles in growth and development and in the interactions of plants with their environment and other organisms. We have used monoclonal antibodies that recognize different carbohydrate epitopes present in plant cell-wall polysaccharides to locate these epitopes in roots of developing Arabidopsis thaliana seedlings. An epitope in the pectic polysaccharide rhamnogalacturonan I is observed in the walls of epidermal and cortical cells in mature parts of the root. This epitope is inserted into the walls in a developmentally regulated manner. Initially, the epitope is observed in atrichoblasts and later appears in trichoblasts and simultaneously in cortical cells. A terminal [alpha]-fucosyl-containing epitope is present in almost all of the cell walls in the root. An arabinosylated (1->6)-[beta]-galactan epitope is also found in all of the cell walls of the root with the exception of lateral root-cap cell walls. It is striking that these three polysaccharide epitopes are not uniformly distributed (or accessible) within the walls of a given cell, nor are these epitopes distributed equally across the two walls laid down by adjacent cells. Our results further suggest that the biosynthesis and differentiation of primary cell walls in plants are precisely regulated in a temporal, spatial, and developmental manner. PMID:12226270

  4. NADPH thioredoxin reductase C is localized in plastids of photosynthetic and nonphotosynthetic tissues and is involved in lateral root formation in Arabidopsis.

    PubMed

    Kirchsteiger, Kerstin; Ferrández, Julia; Pascual, María Belén; González, Maricruz; Cejudo, Francisco Javier

    2012-04-01

    Plastids are organelles present in photosynthetic and nonphotosynthetic plant tissues. While it is well known that thioredoxin-dependent redox regulation is essential for leaf chloroplast function, little is known of the redox regulation in plastids of nonphotosynthetic tissues, which cannot use light as a direct source of reducing power. Thus, the question remains whether redox regulation operates in nonphotosynthetic plastid function and how it is integrated with chloroplasts for plant growth. Here, we show that NADPH-thioredoxin reductase C (NTRC), previously reported as exclusive to green tissues, is also expressed in nonphotosynthetic tissues of Arabidopsis thaliana, where it is localized to plastids. Moreover, we show that NTRC is involved in maintaining the redox homeostasis of plastids also in nonphotosynthetic organs. To test the relationship between plastids of photosynthetic and nonphotosynthetic tissues, transgenic plants were obtained with redox homeostasis restituted exclusively in leaves or in roots, through the expression of NTRC under the control of organ-specific promoters in the ntrc mutant. Our results show that fully functional root amyloplasts are not sufficient for root, or leaf, growth, but fully functional chloroplasts are necessary and sufficient to support wild-type rates of root growth and lateral root formation.

  5. Predisposing factors to severe external root resorption associated to orthodontic treatment.

    PubMed

    Picanço, Gracemia Vasconcelos; de Freitas, Karina Maria Salvatore; Cançado, Rodrigo Hermont; Valarelli, Fabricio Pinelli; Picanço, Paulo Roberto Barroso; Feijão, Camila Pontes

    2013-01-01

    The aim of this study was to evaluate predisposing factors among patients who developed moderate or severe external root resorption (Malmgren's grades 3 and 4), on the maxillary incisors, during fixed orthodontic treatment in the permanent dentition. Ninety-nine patients who underwent orthodontic treatment with fixed edgewise appliances were selected. Patients were divided into two groups: G1 - 50 patients with no root resorption or presenting only apical irregularities (Malmgren's grades 0 and 1) at the end of the treatment, with mean initial age of 16.79 years and mean treatment time of 3.21 years; G2 - 49 patients presenting moderate or severe root resorption (Malmgren's grades 3 and 4) at the end of treatment on the maxillary incisors, with mean initial age of 19.92 years and mean treatment time of 3.98 years. Periapical radiographs and lateral cephalograms were evaluated. Factors that could influence the occurrence of severe root resorption were also recorded. Statistical analysis included chi-square tests, Fisher's exact test and independent t tests. The results demonstrated significant difference between the groups for the variables: Extractions, initial degree of root resorption, root length and crown/root ratio at the beginning, and cortical thickness of the alveolar bone. It can be concluded that: Presence of root resorption before the beginning of treatment, extractions, reduced root length, decreased crown/root ratio and thin alveolar bone represent risk factors for severe root resorption in maxillary incisors during orthodontic treatment.

  6. Identification of genes induced in proteoid roots of white lupin under nitrogen and phosphorus deprivation, with functional characterization of a formamidase

    USDA-ARS?s Scientific Manuscript database

    White lupin (Lupinus albus L.) is considered a model system for understanding plant acclimation to nutrient deficiency. It acclimates to phosphorus (P) and iron (Fe) deficiency by the development of short, densely clustered lateral roots called proteoid (or cluster) roots; proteoid-root development ...

  7. BMP signaling restricts hemato-vascular development from lateral mesoderm during somitogenesis.

    PubMed

    Gupta, Sunny; Zhu, Hao; Zon, Leonard I; Evans, Todd

    2006-06-01

    The bone morphogenetic protein (BMP) signaling pathway is essential during gastrulation for the generation of ventral mesoderm, which makes it a challenge to define functions for this pathway at later stages of development. We have established an approach to disrupt BMP signaling specifically in lateral mesoderm during somitogenesis, by targeting a dominant-negative BMP receptor to Lmo2+ cells in developing zebrafish embryos. This results in expansion of hematopoietic and endothelial cells, while restricting the expression domain of the pronephric marker pax2.1. Expression of a constitutively active receptor and transplantation experiments were used to confirm that BMP signaling in lateral mesoderm restricts subsequent hemato-vascular development. The results show that the BMP signaling pathway continues to function after cells are committed to a lateral mesoderm fate, and influences subsequent lineage decisions by restricting hemato-vascular fate in favor of pronephric development.

  8. Ecophysiology of wetland plant roots: A modelling comparison of aeration in relation to species distribution

    USGS Publications Warehouse

    Sorrell, B.K.; Mendelssohn, I.A.; McKee, K.L.; Woods, R.A.

    2000-01-01

    This study examined the potential for inter-specific differences in root aeration to determine wetland plant distribution in nature. We compared aeration in species that differ in the type of sediment and depth of water they colonize. Differences in root anatomy, structure and physiology were applied to aeration models that predicted the maximum possible aerobic lengths and development of anoxic zones in primary adventitious roots. Differences in anatomy and metabolism that provided higher axial fluxes of oxygen allowed deeper root growth in species that favour more reducing sediments and deeper water. Modelling identified factors that affected growth in anoxic soils through their effects on aeration. These included lateral root formation, which occurred at the expense of extension of the primary root because of the additional respiratory demand they imposed, reducing oxygen fluxes to the tip and stele, and the development of stelar anoxia. However, changes in sediment oxygen demand had little detectable effect on aeration in the primary roots due to their low wall permeability and high surface impedance, but appeared to reduce internal oxygen availability by accelerating loss from laterals. The development of pressurized convective gas flow in shoots and rhizomes was also found to be important in assisting root aeration, as it maintained higher basal oxygen concentrations at the rhizome-root junctions in species growing into deep water. (C) 2000 Annals of Botany Company.

  9. Development of yellow birch nursery stock not affected by transplanting

    Treesearch

    William B. Leak

    1959-01-01

    In nursery seedbeds, severe root competition soon develops among seedlings of yellow birch (Betula alleghaniensis). This is due to the characteristic root system of the species - wide-spreading lateral growth with little downward penetration (fig. 1).

  10. Gravity response mechanisms of lateral organs and the control of plant architecture in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Mullen, J.; Hangarter, R.

    Most research on gravity responses in plants has focused on primary roots and shoots, which typically grow in a vertical orientation. However, the patterns of lateral organ formation and their growth orientation, which typically are not vertical, govern plant architecture. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting the overall root system architecture. We have found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of the new lateral roots is determined by what is called the gravitropic set-point angle (GSA). In Arabidopsis shoots, rosette leaves and inflorescence branches also display GSA-dependent developmental changes in their orientation. The developmental control of the GSA of lateral organs in Arabidopsis provides us with a useful system for investigating the components involved in regulating directionality of tropistic responses. We have identified several Arabidopsis mutants that have either altered lateral root orientations, altered orientation of lateral organs in the shoot, or both, but maintain normal primary organ orientation. The mgsa ({m}odified {g}ravitropic {s}et-point {a}ngle) mutants with both altered lateral root and shoot orientation show that there are common components in the regulation of growth orientation in the different organs. Rosette leaves and lateral roots also have in common a regulation of positioning by red light. Further molecular and physiological analyses of the GSA mutants will provide insight into the basis of GSA regulation and, thus, a better understanding of how gravity controls plant architecture. [This work was

  11. Ethylene and nitric oxide interact to regulate the magnesium deficiency-induced root hair development in Arabidopsis.

    PubMed

    Liu, Miao; Liu, Xing Xing; He, Xiao Lin; Liu, Li Juan; Wu, Hao; Tang, Cai Xian; Zhang, Yong Song; Jin, Chong Wei

    2017-02-01

    Nitric oxide (NO) and ethylene respond to biotic and abiotic stresses through either similar or independent processes. This study examines the mechanism underlying the effects of NO and ethylene on promoting root hair development in Arabidopsis under magnesium (Mg) deficiency. The interaction between NO and ethylene in the regulation of Mg deficiency-induced root hair development was investigated using NO- and ethylene-related mutants and pharmacological methods. Mg deficiency triggered a burst of NO and ethylene, accompanied by a stimulated development of root hairs. Interestingly, ethylene facilitated NO generation by activation of both nitrate reductase and nitric oxide synthase-like (NOS-L) in the roots of Mg-deficient plants. In turn, NO enhanced ethylene synthesis through stimulating the activities of 1-aminocyclopropane-1-carboxylate (ACC) oxidase and ACC synthase (ACS). These two processes constituted an NO-ethylene feedback loop. Blocking either of these two processes inhibited the stimulation of root hair development under Mg deficiency. In conclusion, we suggest that Mg deficiency increases the production of NO and ethylene in roots, each influencing the accumulation and role of the other, and thus these two signals interactively regulate Mg deficiency-induced root hair morphogenesis. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  12. Consequences of a Deficit in Vitamin B6 Biosynthesis de Novo for Hormone Homeostasis and Root Development in Arabidopsis1[OPEN

    PubMed Central

    Boycheva, Svetlana; Dominguez, Ana; Rolcik, Jakub; Boller, Thomas; Fitzpatrick, Teresa B.

    2015-01-01

    Vitamin B6 (pyridoxal 5′-phosphate) is an essential cofactor of many metabolic enzymes. Plants biosynthesize the vitamin de novo employing two enzymes, pyridoxine synthase1 (PDX1) and PDX2. In Arabidopsis (Arabidopsis thaliana), there are two catalytically active paralogs of PDX1 (PDX1.1 and PDX1.3) producing the vitamin at comparable rates. Since single mutants are viable but the pdx1.1 pdx1.3 double mutant is lethal, the corresponding enzymes seem redundant. However, the single mutants exhibit substantial phenotypic differences, particularly at the level of root development, with pdx1.3 being more impaired than pdx1.1. Here, we investigate the differential regulation of PDX1.1 and PDX1.3 by identifying factors involved in their disparate phenotypes. Swapped-promoter experiments clarify the presence of distinct regulatory elements in the upstream regions of both genes. Exogenous sucrose (Suc) triggers impaired ethylene production in both mutants but is more severe in pdx1.3 than in pdx1.1. Interestingly, Suc specifically represses PDX1.1 expression, accounting for the stronger vitamin B6 deficit in pdx1.3 compared with pdx1.1. Surprisingly, Suc enhances auxin levels in pdx1.1, whereas the levels are diminished in pdx1.3. In the case of pdx1.3, the previously reported reduced meristem activity combined with the impaired ethylene and auxin levels manifest the specific root developmental defects. Moreover, it is the deficit in ethylene production and/or signaling that triggers this outcome. On the other hand, we hypothesize that it is the increased auxin content of pdx1.1 that is responsible for the root developmental defects observed therein. We conclude that PDX1.1 and PDX1.3 play partially nonredundant roles and are differentially regulated as manifested in disparate root growth impairment morphologies. PMID:25475669

  13. Genetic diversity of root anatomy in wild and cultivated Manihot species.

    PubMed

    Bomfim, N N; Graciano-Ribeiro, D; Nassar, N M A

    2011-04-05

    An anatomical study of roots was conducted on two wild Manihot species, namely M. glaziovii and M. fortalezensis, and two cassava varieties, M. esculenta Crantz variety UnB 201 and M. esculenta variety UnB 122, to identify taxonomic differences in primary growth. Anatomical characters of cassava roots have been rarely investigated. Their study may help cassava breeders to identify varieties with economically important characters, such as tolerance to drought. We investigated tap and lateral adventitious roots of two specimens of each clone or species. Free-hand cross-sections of roots were drawn; these had been clarified with 20% sodium hypochlorite solution, stained with 1% safranin-alcian blue ethanolic solution, dehydrated in ethanol series and butyl acetate and mounted in synthetic resin. Anatomical differences among Manihot species and varieties were found in the epidermal and exodermal cell shape and wall thickness, content of cortical parenchyma, and number of xylem poles. Wall thickness of the epidermis and exodermis of tap root were similar in all species, while in the lateral root there were differences in cell shape and wall thickness. Epidermal cells with thick walls were found in the tap root of all species and in lateral roots of cassava varieties. This character is apparently associated with tolerance to drought and disease. The variation in the number of xylem poles of cassava varieties was larger (4-8) than in wild species (4-6), and appears to support the hybrid origin of cassava.

  14. Development of prenatal lateralization: evidence from fetal mouth movements.

    PubMed

    Reissland, N; Francis, B; Aydin, E; Mason, J; Exley, K

    2014-05-28

    Human lateralized behaviors relate to the asymmetric development of the brain. Research of the prenatal origins of laterality is equivocal with some studies suggesting that fetuses exhibit lateralized behavior and other not finding such laterality. Given that by around 22weeks of gestation the left cerebral hemisphere compared to the right is significantly larger in both male and female fetuses we expected that the right side of the fetal face would show more movement with increased gestation. This longitudinal study investigated whether fetuses from 24 to 36weeks of gestation showed increasing lateralized behaviors during mouth opening and whether lateralized mouth movements are related to fetal age, gender and maternal self-reported prenatal stress. Following ethical approval, fifteen healthy fetuses (8 girls) of primagravid mothers were scanned four times from 24 to 36-gestation. Two types of mouth opening movements - upper lip raiser and mouth stretch - were coded in 60 scans for 10min. We modeled the proportion of right mouth opening for each fetal scan using a generalized linear mixed model, which takes account of the repeated measures design. There was a significant increase in the proportion of lateralized mouth openings over the period increasing by 11% for each week of gestational age (LRT change in deviance=10.92, 1df; p<0.001). No gender differences were found nor was there any effect of maternally reported stress on fetal lateralized mouth movements. There was also evidence of left lateralization preference in mouth movement, although no evidence of changes in lateralization bias over time. This longitudinal study provides important new insights into the development of lateralized mouth movements from 24 to 36 weeks of gestation. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Enhanced Proton Translocating Pyrophosphatase Activity Improves Nitrogen Use Efficiency in Romaine Lettuce1[C][W][OA

    PubMed Central

    Paez-Valencia, Julio; Sanchez-Lares, Jonathan; Marsh, Ellen; Dorneles, Liane T.; Santos, Mirella P.; Sanchez, Diego; Winter, Alexander; Murphy, Sean; Cox, Jennifer; Trzaska, Marcin; Metler, Jason; Kozic, Alex; Facanha, Arnoldo R.; Schachtman, Daniel; Sanchez, Charles A.; Gaxiola, Roberto A.

    2013-01-01

    Plant nitrate (NO3−) acquisition depends on the combined activities of root high- and low-affinity NO3− transporters and the proton gradient generated by the plasma membrane H+-ATPase. These processes are coordinated with photosynthesis and the carbon status of the plant. Here, we present the characterization of romaine lettuce (Lactuca sativa ‘Conquistador’) plants engineered to overexpress an intragenic gain-of-function allele of the type I proton translocating pyrophosphatase (H+-PPase) of Arabidopsis (Arabidopsis thaliana). The proton-pumping and inorganic pyrophosphate hydrolytic activities of these plants are augmented compared with control plants. Immunohistochemical data show a conspicuous increase in H+-PPase protein abundance at the vasculature of the transgenic plants. Transgenic plants displayed an enhanced rhizosphere acidification capacity consistent with the augmented plasma membrane H+-ATPase proton transport values, and ATP hydrolytic capacities evaluated in vitro. These transgenic lines outperform control plants when challenged with NO3− limitations in laboratory, greenhouse, and field scenarios. Furthermore, we report the characterization of a lettuce LsNRT2.1 gene that is constitutive up-regulated in the transgenic plants. Of note, the expression of the LsNRT2.1 gene in control plants is regulated by NO3− and sugars. Enhanced accumulation of 15N-labeled fertilizer by transgenic lettuce compared with control plants was observed in greenhouse experiments. A negative correlation between the level of root soluble sugars and biomass is consistent with the strong root growth that characterizes these transgenic plants. PMID:23307651

  16. Allometry of root branching and its relationship to root morphological and functional traits in three range grasses.

    PubMed

    Arredondo, J Tulio; Johnson, Douglas A

    2011-11-01

    The study of proportional relationships between size, shape, and function of part of or the whole organism is traditionally known as allometry. Examination of correlative changes in the size of interbranch distances (IBDs) at different root orders may help to identify root branching rules. Root morphological and functional characteristics in three range grasses {bluebunch wheatgrass [Pseudoroegneria spicata (Pursh) Löve], crested wheatgrass [Agropyron desertorum (Fisch. ex Link) Schult.×A. cristatum (L.) Gaert.], and cheatgrass (Bromus tectorum L.)} were examined in response to a soil nutrient gradient. Interbranch distances along the main root axis and the first-order laterals as well as other morphological and allocation root traits were determined. A model of nutrient diffusivity parameterized with root length and root diameter for the three grasses was used to estimate root functional properties (exploitation efficiency and exploitation potential). The results showed a significant negative allometric relationship between the main root axis and first-order lateral IBD (P ≤ 0.05), but only for bluebunch wheatgrass. The main root axis IBD was positively related to the number and length of roots, estimated exploitation efficiency of second-order roots, and specific root length, and was negatively related to estimated exploitation potential of first-order roots. Conversely, crested wheatgrass and cheatgrass, which rely mainly on root proliferation responses, exhibited fewer allometric relationships. Thus, the results suggested that species such as bluebunch wheatgrass, which display slow root growth and architectural root plasticity rather than opportunistic root proliferation and rapid growth, exhibit correlative allometry between the main axis IBD and morphological, allocation, and functional traits of roots.

  17. Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism.

    PubMed

    Wang, Hong-Zhe; Yang, Ke-Zhen; Zou, Jun-Jie; Zhu, Ling-Ling; Xie, Zi Dian; Morita, Miyo Terao; Tasaka, Masao; Friml, Jiří; Grotewold, Erich; Beeckman, Tom; Vanneste, Steffen; Sack, Fred; Le, Jie

    2015-11-18

    PIN proteins are auxin export carriers that direct intercellular auxin flow and in turn regulate many aspects of plant growth and development including responses to environmental changes. The Arabidopsis R2R3-MYB transcription factor FOUR LIPS (FLP) and its paralogue MYB88 regulate terminal divisions during stomatal development, as well as female reproductive development and stress responses. Here we show that FLP and MYB88 act redundantly but differentially in regulating the transcription of PIN3 and PIN7 in gravity-sensing cells of primary and lateral roots. On the one hand, FLP is involved in responses to gravity stimulation in primary roots, whereas on the other, FLP and MYB88 function complementarily in establishing the gravitropic set-point angles of lateral roots. Our results support a model in which FLP and MYB88 expression specifically determines the temporal-spatial patterns of PIN3 and PIN7 transcription that are closely associated with their preferential functions during root responses to gravity.

  18. A heterogeneous boron distribution in soil influences the poplar root system architecture development

    NASA Astrophysics Data System (ADS)

    Rees, R.; Robinson, B. H.; Hartmann, S.; Lehmann, E.; Schulin, R.

    2009-04-01

    Poplars are well suited for the phytomanagement of boron (B)-contaminated sites, due to their high transpiration rate and tolerance to elevated soil B concentrations. However, the uptake and the fate of B in poplar stands are not well understood. This information is crucial to improve the design of phytomanagement systems, where the primary role of poplars is to reduce B leaching by reducing the water flux through the contaminated material. Like other trace elements, B occurs heterogeneously in soils. Concentrations can differ up to an order of magnitude within centimetres. These gradients affect plant root growth and thus via preferential flow along the roots water and mass transport in soils to ground and surface waters. Generally there are three possible reactions of plant roots to patches with elevated trace element concentrations in soils: indifference, avoidance, or foraging. While avoidance or indifference might seem to be the most obvious strategies, foraging cannot be excluded a priori, because of the high demand of poplars for B compared to other tree species. We aimed to determine the rooting strategies of poplars in soils where B is either homo- or heterogeneously distributed. We planted 5 cm cuttings of Populus tremula var. Birmensdorf clones in aluminum (Al) containers with internal dimensions of 64 x 67 x 1.2 cm. The soil used was subsoil from northern Switzerland with a naturally low B and organic C concentration. We setup two treatments and a control with three replicates each. We spiked a bigger and a smaller portion of the soil with the same amount of B(OH)3-salt, in order to obtain soil concentrations of 7.5 mg B kg-1 and 20 mg B kg-1. We filled the containers with (a) un-spiked soil, (b) the 7.5 mg B kg-1 soil and (c) heterogeneously. The heterogeneous treatment consisted of one third 20 mg B kg-1 soil and two thirds control soil. We grew the poplars in a small greenhouse over 2 months and from then on in a climate chamber for another 3 months

  19. Incisal Apical Root Resorption Evaluation after Low-Friction Orthodontic Treatment Using Two-Dimensional Radiographic Imaging and Trigonometric Correction.

    PubMed

    Savoldi, Fabio; Bonetti, Stefano; Dalessandri, Domenico; Mandelli, Gualtiero; Paganelli, Corrado

    2015-11-01

    Root resorption shall be taken into consideration during every orthodontic treatment, and it can be effected by the use of different techniques, such as the application of low friction mechanics. However, its routinely assessment on orthopantomography has limitations related to distortions and changes in dental inclination. The aim of this investigation was to evaluate the severity of apical root resorption of maxillary and mandibular incisors after low-friction orthodontic treatment, using the combination of panoramic and lateral radiographs, and applying a trigonometric correction. A hospital based Retrospective study at the orthodontic Department (Dental School, University of Brescia, Spedali Civili di Brescia, Brescia, Italy). Ninety-three subjects (53 females and 40 males; mean age, 14 years) with mild teeth crowding were treated without extractions by the same operator using a low-friction fixed appliance following an integrated straight wire (ISW) protocol. The pre- and post-treatment tooth lengths of the maxillary and mandibular incisors were measured on panoramic radiographs. A trigonometric factor of correction for the pre-treatment length was calculated based on the difference between the pre and post-treatment incisal inclination on lateral cephalograms. The changes in lengths were investigated using the Student's t-test for paired values (p<0.05). Maxillary central incisors showed no changes (0.3%, 0.6%), maxillary lateral incisors showed a small increase (1.4%, 1.8%) that was attributed to the completion of root development in younger patients, mandibular central and lateral incisors underwent slight resorption (-3.1%, -3.4%). A statistically significant difference was found for the mandibular incisors but not for the maxillary ones. In patients with mild crowding and consequent low amount of root movement, a low-friction orthodontic treatment can lead to slight apical root resorption, mainly involving lower incisors. The use of a trigonometric

  20. The Histone Chaperone NRP1 Interacts with WEREWOLF to Activate GLABRA2 in Arabidopsis Root Hair Development.

    PubMed

    Zhu, Yan; Rong, Liang; Luo, Qiang; Wang, Baihui; Zhou, Nana; Yang, Yue; Zhang, Chi; Feng, Haiyang; Zheng, Lina; Shen, Wen-Hui; Ma, Jinbiao; Dong, Aiwu

    2017-02-01

    NUCLEOSOME ASSEMBLY PROTEIN1 (NAP1) defines an evolutionarily conserved family of histone chaperones and loss of function of the Arabidopsis thaliana NAP1 family genes NAP1-RELATED PROTEIN1 ( NRP1 ) and NRP2 causes abnormal root hair formation. Yet, the underlying molecular mechanisms remain unclear. Here, we show that NRP1 interacts with the transcription factor WEREWOLF (WER) in vitro and in vivo and enriches at the GLABRA2 ( GL2 ) promoter in a WER-dependent manner. Crystallographic analysis indicates that NRP1 forms a dimer via its N-terminal α-helix. Mutants of NRP1 that either disrupt the α-helix dimerization or remove the C-terminal acidic tail, impair its binding to histones and WER and concomitantly lead to failure to activate GL2 transcription and to rescue the nrp1-1 nrp2-1 mutant phenotype. Our results further demonstrate that WER-dependent enrichment of NRP1 at the GL2 promoter is involved in local histone eviction and nucleosome loss in vivo. Biochemical competition assays imply that the association between NRP1 and histones may counteract the inhibitory effect of histones on the WER-DNA interaction. Collectively, our study provides important insight into the molecular mechanisms by which histone chaperones are recruited to target chromatin via interaction with a gene-specific transcription factor to moderate chromatin structure for proper root hair development. © 2017 American Society of Plant Biologists. All rights reserved.

  1. Root features related to plant growth and nutrient removal of 35 wetland plants.

    PubMed

    Lai, Wen-Ling; Wang, Shu-Qiang; Peng, Chang-Lian; Chen, Zhang-He

    2011-07-01

    Morphological, structural, and eco-physiological features of roots, nutrient removal, and correlation between the indices were comparatively studied for 35 emergent wetland plants in small-scale wetlands for further investigation into the hypothesis of two types of wetland plant roots (Chen et al., 2004). Significant differences in root morphological, structural, and eco-physiological features were found among the 35 species. They were divided into two types: fibrous-root plants and thick-root plants. The fibrous-root plants had most or all roots of diameter (D) ≤ 1 mm. Roots of D > 1 mm also had many fine and long lateral roots of D ≤ 1 mm. The roots of these plants were long and had a thin epidermis and a low degree of lignification. The roots of the thick-root plants were almost all thicker than 1 mm, and generally had no further fine lateral roots. The roots were short, smooth, and fleshy, and had a thick epidermis. Root porosity of the fibrous-root plants was higher than that of the thick-root plants (p = 0.001). The aerenchyma of the fibrous-root plants was composed of large cavities which were formed from many small cavities, and distributed radially between the exodermis and vascular tissues. The aerenchyma of the thick-root plants had a large number of small cavities which were distributed in the mediopellis. The fibrous-root plants had a significantly larger root biomass of D ≤ 1 mm, of 1 mm < D < 3 mm, above-ground biomass, total biomass, and longer root system, but shorter root longevity than those of the thick-root plants (p = 0.003, 0.018, 0.020, 0.032, 0.042, 0.001). The fibrous-root plants also had significantly higher radial oxygen loss (ROL), root activity, photosynthetic rate, transpiration rate, and removal rates of total nitrogen and total phosphorus than the thick-root plants (p = 0.001, 0.008, 0.010, 0.004, 0.020, 0.002). The results indicate that significantly different root morphological and structural features existed among different

  2. Mutant ataxin1 disrupts cerebellar development in spinocerebellar ataxia type 1.

    PubMed

    Edamakanti, Chandrakanth Reddy; Do, Jeehaeh; Didonna, Alessandro; Martina, Marco; Opal, Puneet

    2018-06-01

    Spinocerebellar ataxia type 1 (SCA1) is an adult-onset neurodegenerative disease caused by a polyglutamine expansion in the protein ATXN1, which is involved in transcriptional regulation. Although symptoms appear relatively late in life, primarily from cerebellar dysfunction, pathogenesis begins early, with transcriptional changes detectable as early as a week after birth in SCA1-knockin mice. Given the importance of this postnatal period for cerebellar development, we asked whether this region might be developmentally altered by mutant ATXN1. We found that expanded ATXN1 stimulates the proliferation of postnatal cerebellar stem cells in SCA1 mice. These hyperproliferating stem cells tended to differentiate into GABAergic inhibitory interneurons rather than astrocytes; this significantly increased the GABAergic inhibitory interneuron synaptic connections, disrupting cerebellar Purkinje cell function in a non-cell autonomous manner. We confirmed the increased basket cell-Purkinje cell connectivity in human SCA1 patients. Mutant ATXN1 thus alters the neural circuitry of the developing cerebellum, setting the stage for the later vulnerability of Purkinje cells to SCA1. We propose that other late-onset degenerative diseases may also be rooted in subtle developmental derailments.

  3. A QTL for root growth angle on rice chromosome 7 is involved in the genetic pathway of DEEPER ROOTING 1.

    PubMed

    Uga, Yusaku; Kitomi, Yuka; Yamamoto, Eiji; Kanno, Noriko; Kawai, Sawako; Mizubayashi, Tatsumi; Fukuoka, Shuichi

    2015-01-01

    Root growth angle (RGA) is an important trait that influences the ability of rice to avoid drought stress. DEEPER ROOTING 1 (DRO1), which is a major quantitative trait locus (QTL) for RGA, is responsible for the difference in RGA between the shallow-rooting cultivar IR64 and the deep-rooting cultivar Kinandang Patong. However, the RGA differences between these cultivars cannot be fully explained by DRO1. The objective of this study was to identify new QTLs for RGA explaining the difference in RGA between these cultivars. By crossing IR64 (which has a non-functional allele of DRO1) with Kinandang Patong (which has a functional allele of DRO1), we developed 26 chromosome segment substitution lines (CSSLs) that carried a particular chromosome segment from Kinandang Patong in the IR64 genetic background. Using these CSSLs, we found only one chromosomal region that was related to RGA: on chromosome 9, which includes DRO1. Using an F2 population derived from a cross between Kinandang Patong and the Dro1-NIL (near isogenic line), which had a functional DRO1 allele in the IR64 genetic background, we identified a new QTL for RGA (DRO3) on the long arm of chromosome 7. DRO3 may only affect RGA in plants with a functional DRO1 allele, suggesting that DRO3 is involved in the DRO1 genetic pathway.

  4. Shoot-derived abscisic acid promotes root growth.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J; Ross, John J

    2016-03-01

    The phytohormone abscisic acid (ABA) plays a major role in regulating root growth. Most work to date has investigated the influence of root-sourced ABA on root growth during water stress. Here, we tested whether foliage-derived ABA could be transported to the roots, and whether this foliage-derived ABA had an influence on root growth under well-watered conditions. Using both application studies of deuterium-labelled ABA and reciprocal grafting between wild-type and ABA-biosynthetic mutant plants, we show that both ABA levels in the roots and root growth in representative angiosperms are controlled by ABA synthesized in the leaves rather than sourced from the roots. Foliage-derived ABA was found to promote root growth relative to shoot growth but to inhibit the development of lateral roots. Increased root auxin (IAA) levels in plants with ABA-deficient scions suggest that foliage-derived ABA inhibits root growth through the root growth-inhibitor IAA. These results highlight the physiological and morphological importance, beyond the control of stomata, of foliage-derived ABA. The use of foliar ABA as a signal for root growth has important implications for regulating root to shoot growth under normal conditions and suggests that leaf rather than root hydration is the main signal for regulating plant responses to moisture. © 2015 John Wiley & Sons Ltd.

  5. Molecular Transducers from Roots Are Triggered in Arabidopsis Leaves by Root-Knot Nematodes for Successful Feeding Site Formation: A Conserved Post-Embryogenic De novo Organogenesis Program?

    PubMed Central

    Olmo, Rocío; Cabrera, Javier; Moreno-Risueno, Miguel A.; Fukaki, Hidehiro; Fenoll, Carmen; Escobar, Carolina

    2017-01-01

    Root-knot nematodes (RKNs; Meloidogyne spp.) induce feeding cells (giant cells; GCs) inside a pseudo-organ (gall) from still unknown root cells. Understanding GCs ontogeny is essential to the basic knowledge of RKN–plant interaction and to discover novel and effective control strategies. Hence, we report for the first time in a model plant, Arabidopsis, molecular, and cellular features concerning ectopic de novo organogenesis of RKNs GCs in leaves. RKNs induce GCs in leaves with irregular shape, a reticulated cytosol, and fragmented vacuoles as GCs from roots. Leaf cells around the nematode enter G2-M shown by ProCycB1;1:CycB1;1(NT)-GUS expression, consistent to multinucleated GCs. In addition, GCs nuclei present irregular and varied sizes. All these characteristics mentioned, being equivalent to GCs in root-galls. RKNs complete their life cycle forming a gall/callus-like structure in the leaf vascular tissues resembling auxin-induced callus with an auxin-response maxima, indicated by high expression of DR5::GUS that is dependent on leaf auxin-transport. Notably, induction of leaves calli/GCs requires molecular components from roots crucial for lateral roots (LRs), auxin-induced callus and root-gall formation, i.e., LBD16. Hence, LBD16 is a xylem pole pericycle specific and local marker in LR primordia unexpectedly induced locally in the vascular tissue of leaves after RKN infection. LBD16 is also fundamental for feeding site formation as RKNs could not stablish in 35S::LBD16-SRDX leaves, and likely it is also a conserved molecular hub between biotic and developmental signals in Arabidopsis either in roots or leaves. Moreover, RKNs induce the ectopic development of roots from leaf and root-galls, also formed in mutants compromised in LR formation, arf7/arf19, slr, and alf4. Therefore, nematodes must target molecular signatures to induce post-embryogenic de novo organogenesis through the LBD16 callus formation pathway partially different from those prevalent

  6. Molecular Transducers from Roots Are Triggered in Arabidopsis Leaves by Root-Knot Nematodes for Successful Feeding Site Formation: A Conserved Post-Embryogenic De novo Organogenesis Program?

    PubMed

    Olmo, Rocío; Cabrera, Javier; Moreno-Risueno, Miguel A; Fukaki, Hidehiro; Fenoll, Carmen; Escobar, Carolina

    2017-01-01

    Root-knot nematodes (RKNs; Meloidogyne spp.) induce feeding cells (giant cells; GCs) inside a pseudo-organ (gall) from still unknown root cells. Understanding GCs ontogeny is essential to the basic knowledge of RKN-plant interaction and to discover novel and effective control strategies. Hence, we report for the first time in a model plant, Arabidopsis, molecular, and cellular features concerning ectopic de novo organogenesis of RKNs GCs in leaves. RKNs induce GCs in leaves with irregular shape, a reticulated cytosol, and fragmented vacuoles as GCs from roots. Leaf cells around the nematode enter G2-M shown by ProCycB1;1:CycB1;1(NT)-GUS expression, consistent to multinucleated GCs. In addition, GCs nuclei present irregular and varied sizes. All these characteristics mentioned, being equivalent to GCs in root-galls. RKNs complete their life cycle forming a gall/callus-like structure in the leaf vascular tissues resembling auxin-induced callus with an auxin-response maxima, indicated by high expression of DR5::GUS that is dependent on leaf auxin-transport. Notably, induction of leaves calli/GCs requires molecular components from roots crucial for lateral roots (LRs), auxin-induced callus and root-gall formation, i.e., LBD16. Hence, LBD16 is a xylem pole pericycle specific and local marker in LR primordia unexpectedly induced locally in the vascular tissue of leaves after RKN infection. LBD16 is also fundamental for feeding site formation as RKNs could not stablish in 35S::LBD16-SRDX leaves, and likely it is also a conserved molecular hub between biotic and developmental signals in Arabidopsis either in roots or leaves. Moreover, RKNs induce the ectopic development of roots from leaf and root-galls, also formed in mutants compromised in LR formation, arf7/arf19 , slr , and alf4 . Therefore, nematodes must target molecular signatures to induce post-embryogenic de novo organogenesis through the LBD16 callus formation pathway partially different from those prevalent

  7. Root development and structure in seedlings of Ginkgo biloba.

    PubMed

    Bonacorsi, Nikole K; Seago, James L

    2016-02-01

    The popular, highly recognizable, well-known gymnosperm, Ginkgo biloba, was studied to document selected developmental features, which are little known in its primary root system from root tips to cotyledonary node following seed germination. Using seedlings grown in soil, vermiculite, or a mixture, we examined sections at various distances from the root cap to capture a developmental sequence of anatomical structures by using standard brightfield, epifluorescence, and confocal microscopic techniques. The vascular cylinder is usually a diarch stele, although modified diarchy and triarchy are found. Between exarch protoxylem poles, metaxylem usually develops into a complete disc, except near the transition region, which has irregularly arranged tracheary cells. The disc of primary xylem undergoes secondary growth on its metaxylem flanks with many tracheids added radially within a few weeks. Production of fibers in secondary phloem also accompanies secondary growth. In the cortex, endodermis produces Casparian bands early in development and continues into the upper transition region. Phi cells with phi-thickenings (bands of lignified walls) of a layer of inner cortex are often evident before endodermis, and then adjoining, additional layers of cortex develop phi cells; phi cells do not occur in the upper transition region or stem. An exodermis is produced early in root development and is continuous into the transition region and cotyledonary node. Seedling root axes of Ginkgo biloba are more complex than the literature suggests, and our findings contribute to our knowledge of root structure of this ancient gymnosperm. © 2016 Botanical Society of America.

  8. In vitro propagation of fraser photinia using Azospirillum-mediated root development.

    PubMed

    Llorente, Berta E; Larraburu, Ezequiel E

    2013-01-01

    Fraser photinia (Photinia × fraseri Dress.) is a woody plant of high ornamental value. The traditional propagation system for photinia is by rooting apical cuttings using highly concentrated auxin treatments. However, photinia micropropagation is an effective alternative to traditional in vivo propagation which is affected by the seasonal supply of cuttings, the long time required to obtain new plants, and the difficulties in rooting some clones.A protocol for in vitro propagation of fraser photinia using the plant growth-promoting ability of some rhizobacteria is described here. Bacterial inoculation is a new tool in micropropagation protocols that improves plant development in in vitro culture. Shoots culture on a medium containing MS macro- and microelements, Gamborg's vitamins (BM), N (6)-benzyladenine (BA, 11.1 μM), and gibberellic acid (1.3 μM) produce well-established explants. Proliferation on BM medium supplemented with 4.4 μM BA results in four times the number of shoots per initial shoot that develops monthly. Consequently, there is a continuous supply of plant material since shoot production is independent of season. Azospirillum brasilense inoculation, after 49.2 μM indole-3-butyric acid pulse treatment, stimulates early rooting of photinia shoots and produces significant increase in root fresh and dry weights, root surface area, and shoot fresh and dry weights in comparison with controls. Furthermore, inoculated in vitro photinia plants show anatomical and morphological changes that might lead to better adaptation in ex vitro conditions after transplanting, compared with the control plants.

  9. Endodontic treatment of a maxillary central incisor with two roots.

    PubMed

    Maghsoudlou, Amir; Jafarzadeh, Hamid; Forghani, Maryam

    2013-03-01

    This clinical report presents a rare case of maxillary central incisor with two separate roots. Unusual morphology of the roots and root canals may exist in any tooth. Recognition of the dental anatomy and its variations is necessary for successful endodontic therapy. It is well known that maxillary incisors are usually single-rooted teeth. The root canals were instrumented with conventional hand files and Gates Glidden and obturated by using the lateral technique. Recall radiograph after 1 year shows the healing process of the preoperative apical periodontitis. Clinicians should be aware of unexpected root canal morphology when performing root canal therapy. The present case demonstrated the importance of accurate preoperative radiograph and adequate access preparation.

  10. Asymmetrical development of root endodermis and exodermis in reaction to abiotic stresses

    PubMed Central

    Líška, Denis; Martinka, Michal; Kohanová, Jana; Lux, Alexander

    2016-01-01

    Background and Aims In the present study, we show that development of endodermis and exodermis is sensitively regulated by water accessibility. As cadmium (Cd) is known to induce xeromorphic effects in plants, maize roots were exposed also to Cd to understand the developmental process of suberin lamella deposition in response to a local Cd source. Methods In a first experiment, maize roots were cultivated in vitro and unilaterally exposed to water-containing medium from one side and to air from the other. In a second experiment, the roots were placed between two agar medium layers with a strip of Cd-containing medium attached locally and unilaterally to the root surface. Key Results The development of suberin lamella (the second stage of exodermal and endodermal development) started asymmetrically, preferentially closer to the root tip on the side exposed to the air. In the root contact with Cd in a spatially limited area exposed to one side of the root, suberin lamella was preferentially developed in the contact region and additionally along the whole length of the root basipetally from the contact area. However, the development was unilateral and asymmetrical, facing the treated side. The same pattern occurred irrespective of the distance of Cd application from the root apex. Conclusions These developmental characteristics indicate a sensitive response of root endodermis and exodermis in the protection of vascular tissues against abiotic stresses. PMID:27112163

  11. Developing suitable methods for effective characterization of electrical properties of root segments

    NASA Astrophysics Data System (ADS)

    Ehosioke, Solomon; Phalempin, Maxime; Garré, Sarah; Kemna, Andreas; Huisman, Sander; Javaux, Mathieu; Nguyen, Frédéric

    2017-04-01

    The root system represents the hidden half of the plant which plays a key role in food production and therefore needs to be well understood. Root system characterization has been a great challenge because the roots are buried in the soil. This coupled with the subsurface heterogeneity and the transient nature of the biogeochemical processes that occur in the root zone makes it difficult to access and monitor the root system over time. The traditional method of point sampling (root excavation, monoliths, minirhizotron etc.) for root investigation does not account for the transient nature and spatial variability of the root zone, and it often disturbs the natural system under investigation. The quest to overcome these challenges has led to an increase in the application of geophysical methods. Recent studies have shown a correlation between bulk electrical resistivity and root mass density, but an understanding of the contribution of the individual segments of the root system to that bulk signal is still missing. This study is an attempt to understand the electrical properties of roots at the segment scale (1-5cm) for more effective characterization of electrical signal of the full root architecture. The target plants were grown in three different media (pot soil, hydroponics and a mixture of sand, perlite and vermiculite). Resistance measurements were carried out on a single segment of each study plant using a voltmeter while the diameter was measured using a digital calliper. The axial resistance was calculated using the measured resistance and the geometric parameters. This procedure was repeated for each plant replica over a period of 75 days which enabled us to study the effects of age, growth media, diameter and length on the electrical response of the root segments of the selected plants. The growth medium was found to have a significant effect on the root electrical response, while the effect of root diameter on their electrical response was found to vary

  12. The MicroRNA390/TRANS-ACTING SHORT INTERFERING RNA3 Module Mediates Lateral Root Growth under Salt Stress via the Auxin Pathway.

    PubMed

    He, Fu; Xu, Changzheng; Fu, Xiaokang; Shen, Yun; Guo, Li; Leng, Mi; Luo, Keming

    2018-06-01

    Salt-induced developmental plasticity in a plant root system strongly depends on auxin signaling. However, the molecular events underlying this process are poorly understood. MicroRNA390 ( miR390 ), trans-actin small interfering RNA s ( tasiRNA s), and AUXIN RESPONSE FACTORs ( ARFs ) form a regulatory module involved in controlling lateral root (LR) growth. Here, we found that miR390 expression was strongly induced by exposure to salt during LR formation in poplar ( Populus spp.) plants. miR390 overexpression stimulated LR development and increased salt tolerance, whereas miR390 knockdown caused by a short tandem target mimic repressed LR growth and compromised salt resistance. ARF3.1 , ARF3.2 , and ARF4 expression was inhibited significantly by the presence of salt, and transcript abundance was decreased dramatically in the miR390 -overexpressing line but increased in the miR390 -knockdown line. Constitutive expression of ARF4m harboring mutated trans-acting small interfering ARF -binding sites removed the salt resistance of the miR390 overexpressors. miR390 positively regulated auxin signaling in LRs subjected to salt, but ARF4 inhibited auxin signaling. Salinity stabilized the poplar Aux/IAA repressor INDOLE-3-ACETIC ACID17.1, and overexpression of an auxin/salt-resistant form of this repressor suppressed LR growth in miR390 -overexpressing and ARF4 -RNA interfering lines in the presence of salt. Thus, the miR390/TAS3/ARFs module is a key regulator, via modulating the auxin pathway, of LR growth in poplar subjected to salt stress. © 2018 American Society of Plant Biologists. All rights reserved.

  13. Nitrate induction of root hair density is mediated by TGA1/TGA4 and CPC transcription factors in Arabidopsis thaliana.

    PubMed

    Canales, Javier; Contreras-López, Orlando; Álvarez, José M; Gutiérrez, Rodrigo A

    2017-10-01

    Root hairs are specialized cells that are important for nutrient uptake. It is well established that nutrients such as phosphate have a great influence on root hair development in many plant species. Here we investigated the role of nitrate on root hair development at a physiological and molecular level. We showed that nitrate increases root hair density in Arabidopsis thaliana. We found that two different root hair defective mutants have significantly less nitrate than wild-type plants, suggesting that in A. thaliana root hairs have an important role in the capacity to acquire nitrate. Nitrate reductase-null mutants exhibited nitrate-dependent root hair phenotypes comparable with wild-type plants, indicating that nitrate is the signal that leads to increased formation of root hairs. We examined the role of two key regulators of root hair cell fate, CPC and WER, in response to nitrate treatments. Phenotypic analyses of these mutants showed that CPC is essential for nitrate-induced responses of root hair development. Moreover, we showed that NRT1.1 and TGA1/TGA4 are required for pathways that induce root hair development by suppression of longitudinal elongation of trichoblast cells in response to nitrate treatments. Our results prompted a model where nitrate signaling via TGA1/TGA4 directly regulates the CPC root hair cell fate specification gene to increase formation of root hairs in A. thaliana. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  14. PHOTOPERIOD RESPONSE 1 (PHOR1)-like genes regulate shoot/root growth, starch accumulation, and wood formation in Populus.

    PubMed

    Zawaski, Christine; Ma, Cathleen; Strauss, Steven H; French, Darla; Meilan, Richard; Busov, Victor B

    2012-09-01

    This study describes functional characterization of two putative poplar PHOTOPERIOD RESPONSE 1 (PHOR1) orthologues. The expression and sequence analyses indicate that the two poplar genes diverged, at least partially, in function. PtPHOR1_1 is most highly expressed in roots and induced by short days, while PtPHOR1_2 is more uniformly expressed throughout plant tissues and is not responsive to short days. The two PHOR1 genes also had distinct effects on shoot and root growth when their expression was up- and downregulated transgenically. PtPHOR1_1 effects were restricted to roots while PtPHOR1_2 had similar effects on aerial and below-ground development. Nevertheless, both genes seemed to be upregulated in transgenic poplars that are gibberellin-deficient and gibberellin-insensitive, suggesting interplay with gibberellin signalling. PHOR1 suppression led to increased starch accumulation in both roots and stems. The effect of PHOR1 suppression on starch accumulation was coupled with growth-inhibiting effects in both roots and shoots, suggesting that PHOR1 is part of a mechanism that regulates the allocation of carbohydrate to growth or storage in poplar. PHOR1 downregulation led to significant reduction of xylem formation caused by smaller fibres and vessels suggesting that PHOR1 likely plays a role in the growth of xylem cells.

  15. PHOTOPERIOD RESPONSE 1 (PHOR1)-like Genes Regulate Shoot/root Growth, Starch Accumulation, and Wood Formation in Populus

    PubMed Central

    Busov, Victor B.

    2012-01-01

    This study describes functional characterization of two putative poplar PHOTOPERIOD RESPONSE 1 (PHOR1) orthologues. The expression and sequence analyses indicate that the two poplar genes diverged, at least partially, in function. PtPHOR1_1 is most highly expressed in roots and induced by short days, while PtPHOR1_2 is more uniformly expressed throughout plant tissues and is not responsive to short days. The two PHOR1 genes also had distinct effects on shoot and root growth when their expression was up- and downregulated transgenically. PtPHOR1_1 effects were restricted to roots while PtPHOR1_2 had similar effects on aerial and below-ground development. Nevertheless, both genes seemed to be upregulated in transgenic poplars that are gibberellin-deficient and gibberellin-insensitive, suggesting interplay with gibberellin signalling. PHOR1 suppression led to increased starch accumulation in both roots and stems. The effect of PHOR1 suppression on starch accumulation was coupled with growth-inhibiting effects in both roots and shoots, suggesting that PHOR1 is part of a mechanism that regulates the allocation of carbohydrate to growth or storage in poplar. PHOR1 downregulation led to significant reduction of xylem formation caused by smaller fibres and vessels suggesting that PHOR1 likely plays a role in the growth of xylem cells. PMID:22915748

  16. Root System Architecture and Abiotic Stress Tolerance: Current Knowledge in Root and Tuber Crops

    PubMed Central

    Khan, M. A.; Gemenet, Dorcus C.; Villordon, Arthur

    2016-01-01

    The challenge to produce more food for a rising global population on diminishing agricultural land is complicated by the effects of climate change on agricultural productivity. Although great progress has been made in crop improvement, so far most efforts have targeted above-ground traits. Roots are essential for plant adaptation and productivity, but are less studied due to the difficulty of observing them during the plant life cycle. Root system architecture (RSA), made up of structural features like root length, spread, number, and length of lateral roots, among others, exhibits great plasticity in response to environmental changes, and could be critical to developing crops with more efficient roots. Much of the research on root traits has thus far focused on the most common cereal crops and model plants. As cereal yields have reached their yield potential in some regions, understanding their root system may help overcome these plateaus. However, root and tuber crops (RTCs) such as potato, sweetpotato, cassava, and yam may hold more potential for providing food security in the future, and knowledge of their root system additionally focuses directly on the edible portion. Root-trait modeling for multiple stress scenarios, together with high-throughput phenotyping and genotyping techniques, robust databases, and data analytical pipelines, may provide a valuable base for a truly inclusive ‘green revolution.’ In the current review, we discuss RSA with special reference to RTCs, and how knowledge on genetics of RSA can be manipulated to improve their tolerance to abiotic stresses. PMID:27847508

  17. NADPH Thioredoxin Reductase C Is Localized in Plastids of Photosynthetic and Nonphotosynthetic Tissues and Is Involved in Lateral Root Formation in Arabidopsis[W

    PubMed Central

    Kirchsteiger, Kerstin; Ferrández, Julia; Pascual, María Belén; González, Maricruz; Cejudo, Francisco Javier

    2012-01-01

    Plastids are organelles present in photosynthetic and nonphotosynthetic plant tissues. While it is well known that thioredoxin-dependent redox regulation is essential for leaf chloroplast function, little is known of the redox regulation in plastids of nonphotosynthetic tissues, which cannot use light as a direct source of reducing power. Thus, the question remains whether redox regulation operates in nonphotosynthetic plastid function and how it is integrated with chloroplasts for plant growth. Here, we show that NADPH-thioredoxin reductase C (NTRC), previously reported as exclusive to green tissues, is also expressed in nonphotosynthetic tissues of Arabidopsis thaliana, where it is localized to plastids. Moreover, we show that NTRC is involved in maintaining the redox homeostasis of plastids also in nonphotosynthetic organs. To test the relationship between plastids of photosynthetic and nonphotosynthetic tissues, transgenic plants were obtained with redox homeostasis restituted exclusively in leaves or in roots, through the expression of NTRC under the control of organ-specific promoters in the ntrc mutant. Our results show that fully functional root amyloplasts are not sufficient for root, or leaf, growth, but fully functional chloroplasts are necessary and sufficient to support wild-type rates of root growth and lateral root formation. PMID:22505729

  18. PHYTOCHROME KINASE SUBSTRATE1 regulates root phototropism and gravitropism.

    PubMed

    Boccalandro, Hernán E; De Simone, Silvia N; Bergmann-Honsberger, Ariane; Schepens, Isabelle; Fankhauser, Christian; Casal, Jorge J

    2008-01-01

    Light promotes the expression of PHYTOCHROME KINASE SUBSTRATE1 (PKS1) in the root of Arabidopsis thaliana, but the function of PKS1 in this organ is unknown. Unilateral blue light induced a negative root phototropic response mediated by phototropin 1 in wild-type seedlings. This response was absent in pks1 mutants. In the wild type, unilateral blue light enhanced PKS1 expression in the subapical region of the root several hours before bending was detectable. The negative phototropism and the enhanced PKS1 expression in response to blue light required phytochrome A (phyA). In addition, the pks1 mutation enhanced the root gravitropic response when vertically oriented seedlings were placed horizontally. The negative regulation of gravitropism by PKS1 occurred even in dark-grown seedlings and did not require phyA. Blue light also failed to induce negative phototropism in pks1 under reduced gravitational stimulation, indicating that the effect of pks1 on phototropism is not simply the consequence of the counteracting effect of enhanced gravitropism. We propose a model where the background level of PKS1 reduces gravitropism. After a phyA-dependent increase in its expression, PKS1 positively affects root phototropism and both effects contribute to negative curvature in response to unilateral blue light.

  19. Cleaning of Root Canal System by Different Irrigation Methods.

    PubMed

    Tanomaru-Filho, Mário; Miano, Lucas Martinati; Chávez-Andrade, Gisselle Moraima; Torres, Fernanda Ferrari Esteves; Leonardo, Renato de Toledo; Guerreiro-Tanomaru, Juliane Maria

    2015-11-01

    The aim of this study was to compare the cleaning of main and lateral canals using the irrigation methods: negative pressure irrigation (EndoVac system), passive ultrasonic irrigation (PUI) and manual irrigation (MI). Resin teeth were used. After root canal preparation, four lateral canals were made at 2 and 7 mm from the apex. Root canals were filled with contrast solution and radiographed pre- and post-irrigation using digital radiographic system [radiovisiography (RVG)]. The irrigation protocols were: MI1-manual irrigation [22 G needle at 5 mm short of working length-WL]; MI2-manual irrigation (30G needle at 2 mm short of WL); PUI; EV1-EndoVac (microcannula at 1 mm short of WL); EV2-Endovac (microcannula at 3 mm short of WL). The obtained images, initial (filled with contrast solution) and final (after irrigation) were analyzed by using image tool 3.0 software. Statistical analysis was performed by analysis of variance (ANOVA) and Tukey tests (5% significance level). EV1 and EV2, followed by PUI showed better cleaning capacity than manual irrigation (MI1 and MI2) (p < 0.05). Negative pressure irrigation and PUI promoted better cleaning of main and simulated lateral canals. Conventional manual irrigation technique may promote less root canal cleaning in the apical third. For this reason, the search for other irrigation protocols is important, and EndoVac and PUI are alternatives to contribute to irrigation effectiveness.

  20. Control of root meristem establishment in conifers.

    PubMed

    Brunoni, Federica; Ljung, Karin; Bellini, Catherine

    2018-06-19

    The evolution of terrestrial plant life was made possible by the establishment of a root system, which enabled plants to migrate from aquatic to terrestrial habitats. During evolution, root organization has gradually progressed from a very simple to a highly hierarchical architecture. Roots are initiated during embryogenesis and branch afterwards through lateral root formation. Additionally, adventitious roots can be formed post-embryonically from aerial organs. Induction of adventitious roots forms the basis of the vegetative propagation via cuttings in horticulture, agriculture and forestry. This method, together with somatic embryogenesis, is routinely used to clonally multiply conifers. In addition to being utilized as propagation techniques, adventitious rooting and somatic embryogenesis have emerged as versatile models to study cellular and molecular mechanisms of embryo formation and organogenesis of coniferous species. Both formation of the embryonic root and the adventitious root primordia require the establishment of auxin gradients within cells that coordinate the developmental response. These processes also share key elements of the genetic regulatory networks that, for example, are triggering cell fate. This minireview gives an overview of the molecular control mechanisms associated with root development in conifers, from initiation in the embryo to post-embryonic formation in cuttings. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Callose biosynthesis regulates symplastic trafficking during root development.

    PubMed

    Vatén, Anne; Dettmer, Jan; Wu, Shuang; Stierhof, York-Dieter; Miyashima, Shunsuke; Yadav, Shri Ram; Roberts, Christina J; Campilho, Ana; Bulone, Vincent; Lichtenberger, Raffael; Lehesranta, Satu; Mähönen, Ari Pekka; Kim, Jae-Yean; Jokitalo, Eija; Sauer, Norbert; Scheres, Ben; Nakajima, Keiji; Carlsbecker, Annelie; Gallagher, Kimberly L; Helariutta, Ykä

    2011-12-13

    Plant cells are connected through plasmodesmata (PD), membrane-lined channels that allow symplastic movement of molecules between cells. However, little is known about the role of PD-mediated signaling during plant morphogenesis. Here, we describe an Arabidopsis gene, CALS3/GSL12. Gain-of-function mutations in CALS3 result in increased accumulation of callose (β-1,3-glucan) at the PD, a decrease in PD aperture, defects in root development, and reduced intercellular trafficking. Enhancement of CALS3 expression during phloem development suppressed loss-of-function mutations in the phloem abundant callose synthase, CALS7 indicating that CALS3 is a bona fide callose synthase. CALS3 alleles allowed us to spatially and temporally control the PD aperture between plant tissues. Using this tool, we are able to show that movement of the transcription factor SHORT-ROOT and microRNA165 between the stele and the endodermis is PD dependent. Taken together, we conclude that regulated callose biosynthesis at PD is essential for cell signaling. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. A review on phytochemistry and pharmacological activities of the processed lateral root of Aconitum carmichaelii Debeaux.

    PubMed

    Zhou, Guohong; Tang, Liying; Zhou, Xidan; Wang, Ting; Kou, Zhenzhen; Wang, Zhuju

    2015-02-03

    The processed lateral root of Aconitum carmichaelii Debeaux (Ranunculaceae), an extensively used traditional Chinese medicine, is known as Fuzi in China (Chinese: ), "bushi" in Japan, "Kyeong-Po Buja" in Korea, Chinese aconite, monkshood or Chinese wolfsbane. It has been used to treat shock resulting from acute myocardial infarction, low blood pressure, coronary heart disease, chronic heart failure, etc. The present paper aims to provide an up-to-date review at the advancements of the investigations on the ethnopharmacology, phytochemistry, pharmacological effect and toxicity of Fuzi. Besides, the possible tendency and perspective for future research of this plant are discussed, as well. All available information on Fuzi was collected via electronic search (using Elsevier, PubMed, ACS, CNKI, Google Scholar, Baidu Scholar, and Web of Science), books and classic works about Chinese herb. 122 chemical constituents, among which C19-diterpenoid alkaloids and C20-diterpenoid alkaloids are the predominant groups, have been isolated and identified from Fuzi. Fuzi with its active compounds is possessed of wide-reaching biological activities, including effects on cardiovascular system, anti-inflammation and analgesic action, anti-tumor activity, effect on the immune system, hypoglycemic and hypolipidemic effects, anti-aging effect, effect of protecting kidney and effect on energy metabolism. Nearly all of compounds were found from the roots of the plant, so further phytochemical studies should focus more on the other parts of the plant, such as the leaves, flowers or stems. Besides, a majority of the pharmacological studies were carried out using crude and poorly characterized extracts. Thus, more bioactive components particularly cardiotonic and analgesic compounds should be identified through bioactivity-guided isolation strategies. Moreover, investigations on how to develop Fuzi׳s new clinical usage on the basis of its pharmacological effects are in requirement

  3. Posterior Root Meniscal Tears: Preoperative, Intraoperative, and Postoperative Imaging for Transtibial Pullout Repair.

    PubMed

    Palisch, Andrew R; Winters, Ronald R; Willis, Marc H; Bray, Collin D; Shybut, Theodore B

    2016-10-01

    The menisci play an important biomechanical role in axial load distribution of the knees by means of hoop strength, which is contingent on intact circumferentially oriented collagen fibers and meniscal root attachments. Disruption of the meniscal root attachments leads to altered biomechanics, resulting in progressive cartilage loss, osteoarthritis, and subchondral edema, with the potential for development of a subchondral insufficiency fracture. Identification of meniscal root tears at magnetic resonance (MR) imaging is crucial because new arthroscopic surgical techniques (transtibial pullout repair) have been developed to repair meniscal root tears and preserve the tibiofemoral cartilage of the knee. An MR imaging classification of posterior medial meniscal root ligament lesions has been recently described that is dedicated to the posterior root of the medial meniscus. An arthroscopic classification of meniscal root tears has been described that can be applied to the anterior and posterior roots of both the medial meniscus and the lateral meniscus. This arthroscopic classification includes type 1, partial stable root tears; type 2, complete radial root tears; type 3, vertical longitudinal bucket-handle tears; type 4, complex oblique tears; and type 5, bone avulsion fractures of the root attachments. Knowledge of these classifications and the potential contraindications to meniscal root repair can aid the radiologist in the preoperative reporting of meniscal root tear types and the evaluation of the tibiofemoral cartilage. As more patients undergo arthroscopic repair of meniscal root tears, familiarity with the surgical technique and the postoperative radiographic and MR imaging appearance is important to adequately report the imaging findings. © RSNA, 2016.

  4. A Muskingum-based methodology for river discharge estimation and rating curve development under significant lateral inflow conditions

    NASA Astrophysics Data System (ADS)

    Barbetta, Silvia; Moramarco, Tommaso; Perumal, Muthiah

    2017-11-01

    Quite often the discharge at a site is estimated using the rating curve developed for that site and its development requires river flow measurements, which are costly, tedious and dangerous during severe floods. To circumvent the conventional rating curve development approach, Perumal et al. in 2007 and 2010 applied the Variable Parameter Muskingum Stage-hydrograph (VPMS) routing method for developing stage-discharge relationships especially at those ungauged river sites where stage measurements and details of section geometry are available, but discharge measurements are not made. The VPMS method enables to estimate rating curves at ungauged river sites with acceptable accuracy. But the application of the method is subjected to the limitation of negligible presence of lateral flow within the routing reach. To overcome this limitation, this study proposes an extension of the VPMS method, henceforth, known herein as the VPMS-Lin method, for enabling the streamflow assessment even when significant lateral inflow occurs along the river reach considered for routing. The lateral inflow is estimated through the continuity equation expressed in the characteristic form as advocated by Barbetta et al. in 2012. The VPMS-Lin, is tested on two rivers characterized by different geometric and hydraulic properties: 1) a 50 km reach of the Tiber River in (central Italy) and 2) a 73 km reach of the Godavari River in the peninsular India. The study demonstrates that both the upstream and downstream discharge hydrographs are well reproduced, with a root mean square error equal on average to about 35 and 1700 m3 s-1 for the Tiber River and the Godavari River case studies, respectively. Moreover, simulation studies carried out on a river stretch of the Tiber River using the one-dimensional hydraulic model MIKE11 and the VPMS-Lin models demonstrate the accuracy of the VMPS-Lin model, which besides enabling the estimation of streamflow, also enables the estimation of reach averaged

  5. Origin, timing, and gene expression profile of adventitious rooting in Arabidopsis hypocotyls and stems.

    PubMed

    Welander, Margareta; Geier, Thomas; Smolka, Anders; Ahlman, Annelie; Fan, Jing; Zhu, Li-Hua

    2014-02-01

    Adventitious root (AR) formation is indispensable for vegetative propagation, but difficult to achieve in many crops. Understanding its molecular mechanisms is thus important for such species. Here we aimed at developing a rooting protocol for direct AR formation in stems, locating cellular AR origins in stems and exploring molecular differences underlying adventitious rooting in hypocotyls and stems. In-vitro-grown hypocotyls or stems of wild-type and transgenic ecotype Columbia (Col-0) of Arabidopsis thaliana were rooted on rooting media. Anatomy of AR formation, qRT-PCR of some rooting-related genes and in situ GUS expression were carried out during rooting from hypocotyls and stems. We developed a rooting protocol for AR formation in stems and traced back root origins in stems by anatomical and in situ expression studies. Unlike rooting in hypocotyls, rooting in stems was slower, and AR origins were mainly from lateral parenchyma of vascular bundles and neighboring starch sheath cells as well as, to a lesser extent, from phloem cap and xylem parenchyma. Transcript levels of GH3-3, LBD16, LBD29, and LRP1 in hypocotyls and stems were similar, but transcript accumulation was delayed in stems. In situ expression signals of DR5::GUS, LBD16::GUS, LBD29::GUS, and rolB::GUS reporters in stems mainly occurred at the root initiation sites, suggesting their involvement in AR formation. We have developed an efficient rooting protocol using half-strength Lepoivre medium for studying AR formation in stems, traced back the cellular AR origins in stems, and correlated expression of rooting-related genes with root initiation sites.

  6. Growth is required for perception of water availability to pattern root branches in plants.

    PubMed

    Robbins, Neil E; Dinneny, José R

    2018-01-23

    Water availability is a potent regulator of plant development and induces root branching through a process termed hydropatterning. Hydropatterning enables roots to position lateral branches toward regions of high water availability, such as wet soil or agar media, while preventing their emergence where water is less available, such as in air. The mechanism by which roots perceive the spatial distribution of water during hydropatterning is unknown. Using primary roots of Zea mays (maize) we reveal that developmental competence for hydropatterning is limited to the growth zone of the root tip. Past work has shown that growth generates gradients in water potential across an organ when asymmetries exist in the distribution of available water. Using mathematical modeling, we predict that substantial growth-sustained water potential gradients are also generated in the hydropatterning competent zone and that such biophysical cues inform the patterning of lateral roots. Using diverse chemical and environmental treatments we experimentally demonstrate that growth is necessary for normal hydropatterning of lateral roots. Transcriptomic characterization of the local response of tissues to a moist surface or air revealed extensive regulation of signaling and physiological pathways, some of which we show are growth-dependent. Our work supports a "sense-by-growth" mechanism governing hydropatterning, by which water availability cues are rendered interpretable through growth-sustained water movement. Copyright © 2018 the Author(s). Published by PNAS.

  7. Growth is required for perception of water availability to pattern root branches in plants

    PubMed Central

    2018-01-01

    Water availability is a potent regulator of plant development and induces root branching through a process termed hydropatterning. Hydropatterning enables roots to position lateral branches toward regions of high water availability, such as wet soil or agar media, while preventing their emergence where water is less available, such as in air. The mechanism by which roots perceive the spatial distribution of water during hydropatterning is unknown. Using primary roots of Zea mays (maize) we reveal that developmental competence for hydropatterning is limited to the growth zone of the root tip. Past work has shown that growth generates gradients in water potential across an organ when asymmetries exist in the distribution of available water. Using mathematical modeling, we predict that substantial growth-sustained water potential gradients are also generated in the hydropatterning competent zone and that such biophysical cues inform the patterning of lateral roots. Using diverse chemical and environmental treatments we experimentally demonstrate that growth is necessary for normal hydropatterning of lateral roots. Transcriptomic characterization of the local response of tissues to a moist surface or air revealed extensive regulation of signaling and physiological pathways, some of which we show are growth-dependent. Our work supports a “sense-by-growth” mechanism governing hydropatterning, by which water availability cues are rendered interpretable through growth-sustained water movement. PMID:29317538

  8. The effect of graphene oxide on adventitious root formation and growth in apple.

    PubMed

    Li, Feihong; Sun, Chao; Li, Xuehan; Yu, Xinyi; Luo, Chao; Shen, Yanying; Qu, Shenchun

    2018-05-30

    Graphene, a new type of nanomaterial, has unique physical properties and important potential biological applications. However, few studies have been conducted on the environmental impact of graphene. Therefore, to explore the effect of graphene on plants, three-week-old, tissue-cultured 'Gala' apple plants (Malus domestica) were treated with different concentrations (0, 0.1, 1, 10 mg/L) of graphene oxide (GO) and examined after 40 days. Results indicated that adventitious root length, moisture content and the number of lateral roots were all inhibited by 0.1-10 mg/L GO. At 0.1 and 1 mg/L GO, however, the number of adventitious roots and the rooting rate exhibited a significant increase, relative to the control (no GO). Treatment with GO increased the activities of oxidative stress enzymes including catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) in the apple plants, relative to controls. Malondialdehyde (MDA) levels were also significantly decreased at 10 mg/L GO. Treatment of apple plantlets with 0.1 mg/L GO increased the transcript abundance of auxin efflux carrier (PIN7, ABCB1) genes and auxin influx carrier (LAX2, LAX3) genes but inhibited the transcript levels of the ARR3 gene, which involved in cytokinin biosynthesis. Additionally, the transcript levels of ARRO1, ARF19, and TTG1, which play roles in the formation of adventitious roots, lateral roots, and root hairs, respectively, were all decreased in response to treatment with 1 and 10 mg/L GO. Collectively, the results indicate that treatment of 'Gala' apple plants with 0.1 mg/L GO had a positive effect on root formation but a negative effect on root growth. This response may be related to the negative impact of GO on cellular structure and function. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Arbuscular Mycorrhizal Fungus Enhances Lateral Root Formation in Poncirus trifoliata (L.) as Revealed by RNA-Seq Analysis

    PubMed Central

    Chen, Weili; Li, Juan; Zhu, Honghui; Xu, Pengyang; Chen, Jiezhong; Yao, Qing

    2017-01-01

    Arbuscular mycorrhizal fungi (AMF) establish symbiosis with most terrestrial plants, and greatly regulate lateral root (LR) formation. Phosphorus (P), sugar, and plant hormones are proposed being involved in this regulation, however, no global evidence regarding these factors is available so far, especially in woody plants. In this study, we inoculated trifoliate orange seedlings (Poncirus trifoliata L. Raf) with an AMF isolate, Rhizophagus irregularis BGC JX04B. After 4 months of growth, LR formation was characterized, and sugar contents in roots were determined. RNA-Seq analysis was performed to obtain the transcriptomes of LR root tips from non-mycorrhizal and mycorrhizal seedlings. Quantitative real time PCR (qRT-PCR) of selected genes was also conducted for validation. The results showed that AMF significantly increased LR number, as well as plant biomass and shoot P concentration. The contents of glucose and fructose in primary root, and sucrose content in LR were also increased. A total of 909 differentially expressed genes (DEGs) were identified in response to AMF inoculation, and qRT-PCR validated the transcriptomic data. The numbers of DEGs related to P, sugar, and plant hormones were 31, 32, and 25, respectively. For P metabolism, the most up-regulated DEGs mainly encoded phosphate transporter, and the most down-regulated DEGs encoded acid phosphatase. For sugar metabolism, the most up-regulated DEGs encoded polygalacturonase and chitinase. For plant hormones, the most up-regulated DEGs were related to auxin signaling, and the most down-regulated DEGs were related to ethylene signaling. PLS-SEM analysis indicates that P metabolism was the most important pathway by which AMF regulates LR formation in this study. These data reveal the changes of genome-wide gene expression in responses to AMF inoculation in trifoliate orange and provide a solid basis for the future identification and characterization of key genes involved in LR formation induced by AMF

  10. Arbuscular Mycorrhizal Fungus Enhances Lateral Root Formation in Poncirus trifoliata (L.) as Revealed by RNA-Seq Analysis.

    PubMed

    Chen, Weili; Li, Juan; Zhu, Honghui; Xu, Pengyang; Chen, Jiezhong; Yao, Qing

    2017-01-01

    Arbuscular mycorrhizal fungi (AMF) establish symbiosis with most terrestrial plants, and greatly regulate lateral root (LR) formation. Phosphorus (P), sugar, and plant hormones are proposed being involved in this regulation, however, no global evidence regarding these factors is available so far, especially in woody plants. In this study, we inoculated trifoliate orange seedlings ( Poncirus trifoliata L. Raf) with an AMF isolate, Rhizophagus irregularis BGC JX04B. After 4 months of growth, LR formation was characterized, and sugar contents in roots were determined. RNA-Seq analysis was performed to obtain the transcriptomes of LR root tips from non-mycorrhizal and mycorrhizal seedlings. Quantitative real time PCR (qRT-PCR) of selected genes was also conducted for validation. The results showed that AMF significantly increased LR number, as well as plant biomass and shoot P concentration. The contents of glucose and fructose in primary root, and sucrose content in LR were also increased. A total of 909 differentially expressed genes (DEGs) were identified in response to AMF inoculation, and qRT-PCR validated the transcriptomic data. The numbers of DEGs related to P, sugar, and plant hormones were 31, 32, and 25, respectively. For P metabolism, the most up-regulated DEGs mainly encoded phosphate transporter, and the most down-regulated DEGs encoded acid phosphatase. For sugar metabolism, the most up-regulated DEGs encoded polygalacturonase and chitinase. For plant hormones, the most up-regulated DEGs were related to auxin signaling, and the most down-regulated DEGs were related to ethylene signaling. PLS-SEM analysis indicates that P metabolism was the most important pathway by which AMF regulates LR formation in this study. These data reveal the changes of genome-wide gene expression in responses to AMF inoculation in trifoliate orange and provide a solid basis for the future identification and characterization of key genes involved in LR formation induced by AMF.

  11. Dro1, a major QTL involved in deep rooting of rice under upland field conditions.

    PubMed

    Uga, Yusaku; Okuno, Kazutoshi; Yano, Masahiro

    2011-05-01

    Developing a deep root system is an important strategy for avoiding drought stress in rice. Using the 'basket' method, the ratio of deep rooting (RDR; the proportion of total roots that elongated through the basket bottom) was calculated to evaluate deep rooting. A new major quantitative trait locus (QTL) controlling RDR was detected on chromosome 9 by using 117 recombinant inbred lines (RILs) derived from a cross between the lowland cultivar IR64, with shallow rooting, and the upland cultivar Kinandang Patong (KP), with deep rooting. This QTL explained 66.6% of the total phenotypic variance in RDR in the RILs. A BC(2)F(3) line homozygous for the KP allele of the QTL had an RDR of 40.4%, compared with 2.6% for the homozygous IR64 allele. Fine mapping of this QTL was undertaken using eight BC(2)F(3) recombinant lines. The RDR QTL Dro1 (Deeper rooting 1) was mapped between the markers RM24393 and RM7424, which delimit a 608.4 kb interval in the reference cultivar Nipponbare. To clarify the influence of Dro1 in an upland field, the root distribution in different soil layers was quantified by means of core sampling. A line homozygous for the KP allele of Dro1 (Dro1-KP) and IR64 did not differ in root dry weight in the shallow soil layers (0-25 cm), but root dry weight of Dro1-KP in deep soil layers (25-50 cm) was significantly greater than that of IR64, suggesting that Dro1 plays a crucial role in increased deep rooting under upland field conditions.

  12. Arabidopsis pdr2 reveals a phosphate-sensitive checkpoint in root development.

    PubMed

    Ticconi, Carla A; Delatorre, Carla A; Lahner, Brett; Salt, David E; Abel, Steffen

    2004-03-01

    Plants have evolved complex strategies to maintain phosphate (Pi) homeostasis and to maximize Pi acquisition when the macronutrient is limiting. Adjustment of root system architecture via changes in meristem initiation and activity is integral to the acclimation process. However, the mechanisms that monitor external Pi status and interpret the nutritional signal remain to be elucidated. Here, we present evidence that the Pi deficiency response, pdr2, mutation disrupts local Pi sensing. The sensitivity and amplitude of metabolic Pi-starvation responses, such as Pi-responsive gene expression or accumulation of anthocyanins and starch, are enhanced in pdr2 seedlings. However, the most conspicuous alteration of pdr2 is a conditional short-root phenotype that is specific for Pi deficiency and caused by selective inhibition of root cell division followed by cell death below a threshold concentration of about 0.1 mm external Pi. Measurements of general Pi uptake and of total phosphorus (P) in root tips exclude a defect in high-affinity Pi acquisition. Rescue of root meristem activity in Pi-starved pdr2 by phosphite (Phi), a non-metabolizable Pi analog, and divided-root experiments suggest that pdr2 disrupts sensing of low external Pi availability. Thus, PDR2 is proposed to function at a Pi-sensitive checkpoint in root development, which monitors environmental Pi status, maintains and fine-tunes meristematic activity, and finally adjusts root system architecture to maximize Pi acquisition.

  13. ARG1 and ARL2 contribute to gravity signal transduction in the statocytes of Arabidopsis thaliana roots and hypocotyls

    NASA Astrophysics Data System (ADS)

    Masson, Patrick; Harrison, Benjamin; Stanga, John; Otegui, Marisa; Sedbrook, John

    Gravity is an important cue that plant organs use to guide their growth. Each organ is characterized by a defined gravity set point angle that dictates its optimal orientation within the gravity field. Specialized cells, named statocytes, enable this directional growth response by perceiving gravity via the sedimentation of, and/or tension/pressure exerted by, starch-filled plastids within their cytoplasm. Located in the columella region of the cap in roots and in the endodermis of hypocotyls and stems, these cells modulate the lateral transport of auxin across the corresponding organ in a gravistimulus-dependent manner. Upon plant reorientation within the gravity field, a gravity signal transduction pathway is activated within those cells, which in roots leads to a relocalization of the PIN3 auxin efflux carrier toward the lower membrane and an alkalinization of the cytoplasm. In turn, these events appear to promote a lateral transport of auxin toward the bottom side of the stimulated organ, which promotes a curvature. We previously uncovered ARG1 and ARL2 as essential contributors to these cellular processes. Mutations in these genes result in altered root and hypocotyl gravitropism. In roots, this abnormal growth behavior is associated with a lack of PIN3 relocalization within the statocytes and an absence of preferential downward auxin transport upon gravistimulation. These two genes encode paralogous J-domain proteins that are associated with the plasma membrane and other membranes of the vesicular trafficking pathway, and appear to modulate protein trafficking within the statocytes. An analysis of the root gravitropic phenotypes associated with different double mutant configurations affecting ARG1, ARL2 and PIN3 suggest that all three proteins function in a common gravity-signaling pathway. Surprisingly, when a mutation that affects starch biosynthesis (pgm) is introgressed into an arg1-2 mutant, the gravitropic defects are dramatically enhanced relative to

  14. Multiple essential MT1-MMP functions in tooth root formation, dentinogenesis, and tooth eruption

    PubMed Central

    Wimer, H.F.; Yamada, S.S.; Yang, T.; Holmbeck, K.; Foster, B.L.

    2016-01-01

    Membrane-type matrix metalloproteinase 1 (MT1-MMP) is a transmembrane zinc-endopeptidase that breaks down extracellular matrix components, including several collagens, during tissue development and physiological remodeling. MT1-MMP-deficient mice (MT1-MMP−/−) feature severe defects in connective tissues, such as impaired growth, osteopenia, fibrosis, and conspicuous loss of molar tooth eruption and root formation. In order to define the functions of MT1-MMP during root formation and tooth eruption, we analyzed the development of teeth and surrounding tissues in the absence of MT1-MMP. In situ hybridization showed that MT1-MMP was widely expressed in cells associated with teeth and surrounding connective tissues during development. Multiple defects in dentoalveolar tissues were associated with loss of MT1-MMP. Root formation was inhibited by defective structure and function of Hertwig's epithelial root sheath (HERS). However, no defect was found in creation of the eruption pathway, suggesting that tooth eruption was hampered by lack of alveolar bone modeling/remodeling coincident with reduced periodontal ligament (PDL) formation and integration with the alveolar bone. Additionally, we identified a significant defect in dentin formation and mineralization associated with the loss of MT1-MMP. To segregate these multiple defects and trace their cellular origin, conditional ablation of MT1-MMP was performed in epithelia and mesenchyme. Mice featuring selective loss of MT1-MMP activity in the epithelium were indistinguishable from wild type mice, and importantly, featured a normal HERS structure and molar eruption. In contrast, selective knock-out of MT1-MMP in Osterix-expressing mesenchymal cells, including osteoblasts and odontoblasts, recapitulated major defects from the global knock-out including altered HERS structure, short roots, defective dentin formation and mineralization, and reduced alveolar bone formation, although molars were able to erupt. These data

  15. Arabidopsis SHR and SCR transcription factors and AUX1 auxin influx carrier control the switch between adventitious rooting and xylogenesis in planta and in in vitro cultured thin cell layers.

    PubMed

    Della Rovere, F; Fattorini, L; D'Angeli, S; Veloccia, A; Del Duca, S; Cai, G; Falasca, G; Altamura, M M

    2015-03-01

    Adventitious roots (ARs) are essential for vegetative propagation. The Arabidopsis thaliana transcription factors SHORT ROOT (SHR) and SCARECROW (SCR) affect primary/lateral root development, but their involvement in AR formation is uncertain. LAX3 and AUX1 auxin influx carriers contribute to primary/lateral root development. LAX3 expression is regulated by SHR, and LAX3 contributes to AR tip auxin maximum. In contrast, AUX1 involvement in AR development is unknown. Xylogenesis is induced by auxin plus cytokinin as is AR formation, but the genes involved are largely unknown. Stem thin cell layers (TCLs) form ARs and undergo xylogenesis under the same auxin plus cytokinin input. The aim of this research was to investigate SHR, SCR, AUX1 and LAX3 involvement in AR formation and xylogenesis in intact hypocotyls and stem TCLs in arabidopsis. Hypocotyls of scr-1, shr-1, lax3, aux1-21 and lax3/aux1-21 Arabidopsis thaliana null mutant seedlings grown with or without auxin plus cytokinin were examined histologically, as were stem TCLs cultured with auxin plus cytokinin. SCR and AUX1 expression was monitored using pSCR::GFP and AUX1::GUS lines, and LAX3 expression and auxin localization during xylogenesis were monitored by using LAX3::GUS and DR5::GUS lines. AR formation was inhibited in all mutants, except lax3. SCR was expressed in pericycle anticlinally derived AR-forming cells of intact hypocotyls, and in cell clumps forming AR meristemoids of TCLs. The apex was anomalous in shr and scr ARs. In all mutant hypocotyls, the pericycle divided periclinally to produce xylogenesis. Xylary element maturation was favoured by auxin plus cytokinin in shr and aux1-21. Xylogenesis was enhanced in TCLs, and in aux1-21 and shr in particular. AUX1 was expressed before LAX3, i.e. in the early derivatives leading to either ARs or xylogenesis. AR formation and xylogenesis are developmental programmes that are inversely related, but they involve fine-tuning by the same proteins, namely SHR

  16. Catechol, a major component of smoke, influences primary root growth and root hair elongation through reactive oxygen species-mediated redox signaling.

    PubMed

    Wang, Ming; Schoettner, Matthias; Xu, Shuqing; Paetz, Christian; Wilde, Julia; Baldwin, Ian T; Groten, Karin

    2017-03-01

    Nicotiana attenuata germinates from long-lived seedbanks in native soils after fires. Although smoke signals have been known to break seed dormancy, whether they also affect seedling establishment and root development remains unclear. In order to test this, seedlings were treated with smoke solutions. Seedlings responded in a dose-dependent manner with significantly increased primary root lengths, due mainly to longitudinal cell elongation, increased numbers of lateral roots and impaired root hair development. Bioassay-driven fractionations and NMR were used to identify catechol as the main active compound for the smoke-induced root phenotype. The transcriptome analysis revealed that mainly genes related to auxin biosynthesis and redox homeostasis were altered after catechol treatment. However, histochemical analyses of reactive oxygen species (ROS) and the inability of auxin applications to rescue the phenotype clearly indicated that highly localized changes in the root's redox-status, rather than in levels of auxin, are the primary effector. Moreover, H 2 O 2 application rescued the phenotype in a dose-dependent manner. Chemical cues in smoke not only initiate seed germination, but also influence seedling root growth; understanding how these cues work provides new insights into the molecular mechanisms by which plants adapt to post-fire environments. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  17. The Maize (Zea mays L.) AUXIN/INDOLE-3-ACETIC ACID Gene Family: Phylogeny, Synteny, and Unique Root-Type and Tissue-Specific Expression Patterns during Development

    PubMed Central

    Ludwig, Yvonne; Zhang, Yanxiang; Hochholdinger, Frank

    2013-01-01

    The plant hormone auxin plays a key role in the coordination of many aspects of growth and development. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) genes encode instable primary auxin responsive regulators of plant development that display a protein structure with four characteristic domains. In the present study, a comprehensive analysis of the 34 members of the maize Aux/IAA gene family was performed. Phylogenetic reconstructions revealed two classes of Aux/IAA proteins that can be distinguished by alterations in their domain III. Seven pairs of paralogous maize Aux/IAA proteins were discovered. Comprehensive root-type and tissue-specific expression profiling revealed unique expression patterns of the diverse members of the gene family. Remarkably, five of seven pairs of paralogous genes displayed highly correlated expression patterns in roots. All but one (ZmIAA23) tested maize Aux/IAA genes were auxin inducible, displaying two types of auxin induction within three hours of treatment. Moreover, 51 of 55 (93%) differential Aux/IAA expression patterns between different root-types followed the expression tendency: crown roots > seminal roots > primary roots > lateral roots. This pattern might imply root-type-specific regulation of Aux/IAA transcript abundance. In summary, the detailed analysis of the maize Aux/IAA gene family provides novel insights in the evolution and developmental regulation and thus the function of these genes in different root-types and tissues. PMID:24223858

  18. The maize (Zea mays L.) AUXIN/INDOLE-3-ACETIC ACID gene family: phylogeny, synteny, and unique root-type and tissue-specific expression patterns during development.

    PubMed

    Ludwig, Yvonne; Zhang, Yanxiang; Hochholdinger, Frank

    2013-01-01

    The plant hormone auxin plays a key role in the coordination of many aspects of growth and development. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) genes encode instable primary auxin responsive regulators of plant development that display a protein structure with four characteristic domains. In the present study, a comprehensive analysis of the 34 members of the maize Aux/IAA gene family was performed. Phylogenetic reconstructions revealed two classes of Aux/IAA proteins that can be distinguished by alterations in their domain III. Seven pairs of paralogous maize Aux/IAA proteins were discovered. Comprehensive root-type and tissue-specific expression profiling revealed unique expression patterns of the diverse members of the gene family. Remarkably, five of seven pairs of paralogous genes displayed highly correlated expression patterns in roots. All but one (ZmIAA23) tested maize Aux/IAA genes were auxin inducible, displaying two types of auxin induction within three hours of treatment. Moreover, 51 of 55 (93%) differential Aux/IAA expression patterns between different root-types followed the expression tendency: crown roots > seminal roots > primary roots > lateral roots. This pattern might imply root-type-specific regulation of Aux/IAA transcript abundance. In summary, the detailed analysis of the maize Aux/IAA gene family provides novel insights in the evolution and developmental regulation and thus the function of these genes in different root-types and tissues.

  19. Exogenous nitrate induces root branching and inhibits primary root growth in Capsicum chinense Jacq.

    PubMed

    Celis-Arámburo, Teresita de Jesús; Carrillo-Pech, Mildred; Castro-Concha, Lizbeth A; Miranda-Ham, María de Lourdes; Martínez-Estévez, Manuel; Echevarría-Machado, Ileana

    2011-12-01

    The effects of nitrate (NO₃⁻) on the root system are complex and depend on several factors, such as the concentration available to the plant, endogenous nitrogen status and the sensitivity of the species. Though these effects have been widely documented on Arabidopsis and cereals, no reports are available in the Capsicum genus. In this paper, we have determined the effect of an exogenous in vitro application of this nutrient on root growth in habanero pepper (Capsicum chinense Jacq.). Exposure to NO₃⁻ inhibited primary root growth in both, dose- and time-dependent manners. The highest inhibition was attained with 0.1 mM NO₃⁻ between the fourth and fifth days of treatment. Inhibition of primary root growth was observed by exposing the root to both homogeneous and heterogeneous conditions of the nutrient; in contrast, ammonium was not able to induce similar changes. NO₃⁻-induced inhibition of primary root growth was reversed by treating the roots with IAA or NPA, a polar auxin transport inhibitor. Heterogeneous NO₃⁻ application stimulated the formation and elongation of lateral roots in the segment where the nutrient was present, and this response was influenced by exogenous phytohormones. These results demonstrate that habanero pepper responds to NO₃⁻ in a similar fashion to other species with certain particular differences. Therefore, studies in this model could help to elucidate the mechanisms by which roots respond to NO₃⁻ in fluctuating soil environments. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  20. Green fluorescent protein fusions to Arabidopsis fimbrin 1 for spatio-temporal imaging of F-actin dynamics in roots.

    PubMed

    Wang, Yuh-Shuh; Motes, Christy M; Mohamalawari, Deepti R; Blancaflor, Elison B

    2004-10-01

    The visualization of green fluorescent protein (GFP) fusions with microtubule or actin filament (F-actin) binding proteins has provided new insights into the function of the cytoskeleton during plant development. For studies on actin, GFP fusions to talin have been the most generally used reporters. Although GFP-Talin has allowed in vivo F-actin imaging in a variety of plant cells, its utility in monitoring F-actin in stably transformed plants is limited particularly in developing roots where interesting actin dependent cell processes are occurring. In this study, we created a variety of GFP fusions to Arabidopsis Fimbrin 1 (AtFim1) to explore their utility for in vivo F-actin imaging in root cells and to better understand the actin binding properties of AtFim1 in living plant cells. Translational fusions of GFP to full-length AtFim1 or to some truncated variants of AtFim1 showed filamentous labeling in transient expression assays. One truncated fimbrin-GFP fusion was capable of labeling distinct filaments in stably transformed Arabidopsis roots. The filaments decorated by this construct were highly dynamic in growing root hairs and elongating root cells and were sensitive to actin disrupting drugs. Therefore, the fimbrin-GFP reporters we describe in this study provide additional tools for studying the actin cytoskeleton during root cell development. Moreover, the localization of AtFim1-GFP offers insights into the regulation of actin organization in developing roots by this class of actin cross-linking proteins. Copyright 2004 Wiley-Liss, Inc.

  1. Prunasin Hydrolases during Fruit Development in Sweet and Bitter Almonds1[C][W][OA

    PubMed Central

    Sánchez-Pérez, Raquel; Belmonte, Fara Sáez; Borch, Jonas; Dicenta, Federico; Møller, Birger Lindberg; Jørgensen, Kirsten

    2012-01-01

    Amygdalin is a cyanogenic diglucoside and constitutes the bitter component in bitter almond (Prunus dulcis). Amygdalin concentration increases in the course of fruit formation. The monoglucoside prunasin is the precursor of amygdalin. Prunasin may be degraded to hydrogen cyanide, glucose, and benzaldehyde by the action of the β-glucosidase prunasin hydrolase (PH) and mandelonitirile lyase or be glucosylated to form amygdalin. The tissue and cellular localization of PHs was determined during fruit development in two sweet and two bitter almond cultivars using a specific antibody toward PHs. Confocal studies on sections of tegument, nucellus, endosperm, and embryo showed that the localization of the PH proteins is dependent on the stage of fruit development, shifting between apoplast and symplast in opposite patterns in sweet and bitter cultivars. Two different PH genes, Ph691 and Ph692, have been identified in a sweet and a bitter almond cultivar. Both cDNAs are 86% identical on the nucleotide level, and their encoded proteins are 79% identical to each other. In addition, Ph691 and Ph692 display 92% and 86% nucleotide identity to Ph1 from black cherry (Prunus serotina). Both proteins were predicted to contain an amino-terminal signal peptide, with the size of 26 amino acid residues for PH691 and 22 residues for PH692. The PH activity and the localization of the respective proteins in vivo differ between cultivars. This implies that there might be different concentrations of prunasin available in the seed for amygdalin synthesis and that these differences may determine whether the mature almond develops into bitter or sweet. PMID:22353576

  2. How Roots Perceive and Respond to Gravity.

    ERIC Educational Resources Information Center

    Moore, Randy

    1984-01-01

    Discusses graviperception and gravitropism by plant roots. Indicates that graviperception occurs via sedimentation of amyloplasts in columella cells of the root cap and that the minimal graviresponsiveness of lateral roots may be due to the intensity of their caps to establish a concentration gradient of inhibitor(s) sufficient to affect…

  3. Aspen Root Sucker Formation and Apical Dominance

    Treesearch

    Robert E. Farmer

    1962-01-01

    Root suckering is the primary mode of regeneration in the aspens, Populus tremuloides Michx. and P. grandidentata Michx. When stems of these species are cut, numerous suckers originating in the root pericycle are formed on their extensive lateral root systems. During their first season of growth, suckers ordinarily reach a height...

  4. Effect of nitrate on nodule and root growth of soybean (Glycine max (L.) Merr.).

    PubMed

    Saito, Akinori; Tanabata, Sayuri; Tanabata, Takanari; Tajima, Seiya; Ueno, Manabu; Ishikawa, Shinji; Ohtake, Norikuni; Sueyoshi, Kuni; Ohyama, Takuji

    2014-03-13

    The application of combined nitrogen, especially nitrate, to soybean plants is known to strongly inhibit nodule formation, growth and nitrogen fixation. In the present study, we measured the effects of supplying 5 mM nitrate on the growth of nodules, primary root, and lateral roots under light at 28 °C or dark at 18 °C conditions. Photographs of the nodulated roots were periodically taken by a digital camera at 1-h intervals, and the size of the nodules was measured with newly developed computer software. Nodule growth was depressed approximately 7 h after the addition of nitrate under light conditions. The nodule growth rate under dark conditions was almost half that under light conditions, and nodule growth was further suppressed by the addition of 5 mM nitrate. Similar results were observed for the extending growth rate of the primary root as those for nodule growth supplied with 5 mM nitrate under light/dark conditions. In contrast, the growth of lateral roots was promoted by the addition of 5 mM nitrate. The 2D-PAGE profiles of nodule protein showed similar patterns between the 0 and 5 mM nitrate treatments, which suggested that metabolic integrity may be maintained with the 5 mM nitrate treatment. Further studies are required to confirm whether light or temperature condition may give the primary effect on the growth of nodules and roots.

  5. Root growth and development in response to CO2 enrichment

    NASA Technical Reports Server (NTRS)

    Day, Frank P., Jr.

    1994-01-01

    A non-destructive technique (minirhizotron observation tubes) was used to assess the effects of CO2 enrichment on root growth and development in experimental plots in a scrub oak-palmetto community at the Kennedy Space Center. Potential effects of CO2 enrichment on plants have a global significance in light of concerns over increasing CO2 concentrations in the Earth's atmosphere. The study at Kennedy Space Center focused on aboveground physiological responses (photosynthetic efficiency and water use efficiency), effects on process rates (litter decomposition and nutrient turnover), and belowground responses of the plants. Belowground dynamics are an exceptionally important component of total plant response but are frequently ignored due to methodological difficulties. Most methods used to examine root growth and development are destructive and, therefore, severely compromise results. Minirhizotrons allow nondestructive observation and quantification of the same soil volume and roots through time. Root length density and root phenology were evaluated for CO2 effects with this nondestructive technique.

  6. Springback in Root Gravitropism 1

    PubMed Central

    Leopold, A. Carl; Wettlaufer, Scott H.

    1989-01-01

    Conditions under which a gravistimulus of Merit corn roots (Zea mays L.) is withdrawn result in a subsequent loss of gravitropic curvature, an effect which we refer to as `springback.' This loss of curvature begins within 1 to 10 minutes after removal of the gravistimulus. It occurs regardless of the presence or absence of the root cap. It is insensitive to inhibitors of auxin transport (2,3,5-triiodobenzoic acid, naphthylphthalmaic acid) or to added auxin (2,4-dichlorophenoxyacetic acid). Springback is prevented if a clinostat treatment is interjected to neutralize gravistimulation during germination, which suggests that the change in curvature is a response to a `memory' effect carried over from a prior gravistimulation. PMID:11537456

  7. Inducible knock-down of GNOM during root formation reveals tissue-specific response to auxin transport and its modulation of local auxin biosynthesis

    PubMed Central

    Sun, Meng-Xiang

    2014-01-01

    In plants, active transport of auxin plays an essential role in root development. Localization of the PIN1 auxin transporters to the basal membrane of cells directs auxin flow and depends on the trafficking mediator GNOM. GNOM-dependent auxin transport is vital for root development and thus offers a useful tool for the investigation of a possible tissue-specific response to dynamic auxin transport. To avoid pleiotropic effects, DEX-inducible expression of GNOM antisense RNA was used to disrupt GNOM expression transiently or persistently during embryonic root development. It was found that the elongation zone and the pericycle layer are the most sensitive to GNOM-dependent auxin transport variations, which is shown by the phenotypes in cell elongation and the initiation of lateral root primordia, respectively. This suggests that auxin dynamics is critical to cell differentiation and cell fate transition, but not to cell division. The results also reveal that GNOM-dependent auxin transport could affect local auxin biosynthesis. This suggests that local auxin biosynthesis may also contribute to the establishment of GNOM-dependent auxin gradients in specific tissues, and that auxin transport and local auxin biosynthesis may function together in the regulatory network for initiation and development of lateral root primordia. Thus, the data reveal a tissue-specific response to auxin transport and modulation of local auxin biosynthesis by auxin transport. PMID:24453227

  8. Association analysis of genes involved in maize (Zea mays L.) root development with seedling and agronomic traits under contrasting nitrogen levels.

    PubMed

    Abdel-Ghani, Adel H; Kumar, Bharath; Pace, Jordon; Jansen, Constantin; Gonzalez-Portilla, Pedro J; Reyes-Matamoros, Jenaro; San Martin, Juan Pablo; Lee, Michael; Lübberstedt, Thomas

    2015-05-01

    A better understanding of the genetic control of root development might allow one to develop lines with root systems with the potential to adapt to soils with limited nutrient availability. For this purpose, an association study (AS) panel consisting of 74 diverse set of inbred maize lines were screened for seedling root traits and adult plant root traits under two contrasting nitrogen (N) levels (low and high N). Allele re-sequencing of RTCL, RTH3, RUM1, and RUL1 genes related to root development was carried out for AS panel lines. Association analysis was carried out between individual polymorphisms, and both seedling and adult plant traits, while controlling for spurious associations due to population structure and kinship relations. Based on the SNPs identified in RTCL, RTH3, RUM1, and RUL1, lines within the AS panel were grouped into 16, 9, 22, and 7 haplotypes, respectively. Association analysis revealed several polymorphisms within root genes putatively associated with the variability in seedling root and adult plant traits development under contrasting N levels. The highest number of significantly associated SNPs with seedling root traits were found in RTCL (19 SNPs) followed by RUM1 (4 SNPs) and in case of RTH3 and RUL1, two and three SNPs, respectively, were significantly associated with root traits. RTCL and RTH3 were also found to be associated with grain yield. Thus considerable allelic diversity is present within the candidate genes studied and can be utilized to develop functional markers that allow identification of maize lines with improved root architecture and yield under N stress conditions.

  9. Modelling root reinforcement in shallow forest soils

    USGS Publications Warehouse

    Skaugset, Arne E.

    1997-01-01

    A hypothesis used to explain the relationship between timber harvesting and landslides is that tree roots add mechanical support to soil, thus increasing soil strength. Upon harvest, the tree roots decay which reduces soil strength and increases the risk of management -induced landslides. The technical literature does not adequately support this hypothesis. Soil strength values attributed to root reinforcement that are in the technical literature are such that forested sites can't fail and all high risk, harvested sites must fail. Both unstable forested sites and stable harvested sites exist, in abundance, in the real world thus, the literature does not adequately describe the real world. An analytical model was developed to calculate soil strength increase due to root reinforcement. Conceptually, the model is composed of a reinforcing element with high tensile strength, i.e. a conifer root, embedded in a material with little tensile strength, i.e. a soil. As the soil fails and deforms, the reinforcing element also deforms and stretches. The lateral deformation of the reinforcing element is treated analytically as a laterally loaded pile in a flexible foundation and the axial deformation is treated as an axially loaded pile. The governing differential equations are solved using finite-difference approximation techniques. The root reinforcement model was tested by comparing the final shape of steel and aluminum rods, parachute cord, wooden dowels, and pine roots in direct shear with predicted shapes from the output of the root reinforcement model. The comparisons were generally satisfactory, were best for parachute cord and wooden dowels, and were poorest for steel and aluminum rods. A parameter study was performed on the root reinforcement model which showed reinforced soil strength increased with increasing root diameter and soil depth. Output from the root reinforcement model showed a strain incompatibility between large and small diameter roots. The peak

  10. Vertical and horizontal root distribution of mature aspen clones: mechanisms for resource acquisition

    NASA Astrophysics Data System (ADS)

    Landhäusser, S. M.; Snedden, J.; Silins, U.; Devito, K. J.

    2012-04-01

    Spatial root distribution, root morphology, and intra- and inter-clonal connections of mature boreal trembling aspen clones (Populus tremuloides Michx.) were explored to shed light on the functional relationships between vertical and horizontal distribution of roots and the variation in soil water availability along hill slopes. Root systems of mature aspen were hydraulically excavated in large plots (6 m wide and 12 m long) and to a depth of 30 cm. Most aspen roots were located in the upper 20 cm of the soil and fine and coarse root occupancy was highest in the lower slope positions and lowest towards the upper hill slope position likely because of soil moisture availability. Observation of the root system distribution along the hill slope correlated well with the observation of greater leaf area carried by trees growing at the lower portion of the hill slope. Interestingly, trees growing at the bottom of the slope required also less sapwood area to support the same amount of leaf area of trees growing at the top of a slope. These observations appear to be closely related to soil moisture availability and with that greater productivity at the bottom of the slope. However, trees growing on the upper slope tended to have long lateral roots extending downslope, which suggests long distance water transport through these lateral feeder roots. Genetic analysis indicated that both intra- and inter-clonal root connections occur in aspen, which can play a role in the sharing of resources along moisture gradients. Root systems of boreal aspen growing on upper slope positions exhibited a combination of three attributes (1) asymmetric lateral root systems, that are skewed downslope, (2) deeper taproots, and (3) intra and inter-clonal root connections, which can all be considered adaptive strategies to avoid drought stress in upper slope positions.

  11. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems.

    PubMed

    Lynch, Jonathan P

    2013-07-01

    A hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource acquisition is optimized by the coincidence of root foraging and resource availability in time and space. Since water and nitrate enter deeper soil strata over time and are initially depleted in surface soil strata, root systems with rapid exploitation of deep soil would optimize water and N capture in most maize production environments. • THE IDEOTYPE: Specific phenes that may contribute to rooting depth in maize include (a) a large diameter primary root with few but long laterals and tolerance of cold soil temperatures, (b) many seminal roots with shallow growth angles, small diameter, many laterals, and long root hairs, or as an alternative, an intermediate number of seminal roots with steep growth angles, large diameter, and few laterals coupled with abundant lateral branching of the initial crown roots, (c) an intermediate number of crown roots with steep growth angles, and few but long laterals, (d) one whorl of brace roots of high occupancy, having a growth angle that is slightly shallower than the growth angle for crown roots, with few but long laterals, (e) low cortical respiratory burden created by abundant cortical aerenchyma, large cortical cell size, an optimal number of cells per cortical file, and accelerated cortical senescence, (f) unresponsiveness of lateral branching to localized resource availability, and (g) low K(m) and high Vmax for nitrate uptake. Some elements of this ideotype have experimental support, others are hypothetical. Despite differences in N distribution between low-input and commercial maize production, this ideotype is applicable to low-input systems because of the importance of deep rooting for water acquisition. Many features of this ideotype are relevant to other cereal root systems and more generally to root systems of dicotyledonous crops.

  12. Organization and function of the actin cytoskeleton in developing root cells.

    PubMed

    Blancaflor, Elison B; Wang, Yuh-Shuh; Motes, Christy M

    2006-01-01

    The actin cytoskeleton is a highly dynamic structure, which mediates various cellular functions in large part through accessory proteins that tilt the balance between monomeric G-actin and filamentous actin (F-actin) or by facilitating interactions between actin and the plasma membrane, microtubules, and other organelles. Roots have become an attractive model to study actin in plant development because of their simple anatomy and accessibility of some root cell types such as root hairs for microscopic analyses. Roots also exhibit a remarkable developmental plasticity and possess a delicate sensory system that is easily manipulated, so that one can design experiments addressing a range of important biological questions. Many facets of root development can be regulated by the diverse actin network found in the various root developmental regions. Various molecules impinge on this actin scaffold to define how a particular root cell type grows or responds to a specific environmental signal. Although advances in genomics are leading the way toward elucidating actin function in roots, more significant strides will be realized when such tools are combined with improved methodologies for accurately depicting how actin is organized in plant cells.

  13. Linking development and determinacy with organic acid efflux from proteoid roots of white lupin grown with low phosphorus and ambient or elevated atmospheric CO{sub 2} concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watt, M.; Evans, J.R.

    1999-07-01

    White lupin (Lupinus albus L.) was grown in hydroponic culture with 1 {micro}M phosphorus to enable the development of proteoid roots to be observed in conjunction with organic acid exudation. Discrete regions of closely spaced, determinate secondary laterals emerged in near synchrony on the same plant. One day after reaching their final length, citrate exudation occurred over a 3-d pulse. The rate of exudation varied diurnally, with maximal rates during the photoperiod. At the onset of citrate efflux, rootlets had exhausted their apical meristems and had differentiated root hairs and vascular tissues along their lengths. Neither in vitro phosphoenolpyruvate carboxylasemore » nor citrate synthase activity was correlated with the rate of citrate exudation. The authors suggest that an unidentified transport process, presumably at the plasma membrane, regulates citrate efflux. Growth with elevated atmospheric [CO{sub 2}] promoted earlier onset of rootlet determinacy by 1 d, resulting in shorter rootlets and citrate export beginning 1 d earlier as a 2-d diurnal pulse. Citrate was the dominant organic acid exported, and neither the rate of exudation per unit length of root nor the composition of exudate was altered by atmospheric [CO{sub 2}].« less

  14. Root Tip Shape Governs Root Elongation Rate under Increased Soil Strength1[OPEN

    PubMed Central

    Kirchgessner, Norbert; Walter, Achim

    2017-01-01

    Increased soil strength due to soil compaction or soil drying is a major limitation to root growth and crop productivity. Roots need to exert higher penetration force, resulting in increased penetration stress when elongating in soils of greater strength. This study aimed to quantify how the genotypic diversity of root tip geometry and root diameter influences root elongation under different levels of soil strength and to determine the extent to which roots adjust to increased soil strength. Fourteen wheat (Triticum aestivum) varieties were grown in soil columns packed to three bulk densities representing low, moderate, and high soil strength. Under moderate and high soil strength, smaller root tip radius-to-length ratio was correlated with higher genotypic root elongation rate, whereas root diameter was not related to genotypic root elongation. Based on cavity expansion theory, it was found that smaller root tip radius-to-length ratio reduced penetration stress, thus enabling higher root elongation rates in soils with greater strength. Furthermore, it was observed that roots could only partially adjust to increased soil strength. Root thickening was bounded by a maximum diameter, and root tips did not become more acute in response to increased soil strength. The obtained results demonstrated that root tip geometry is a pivotal trait governing root penetration stress and root elongation rate in soils of greater strength. Hence, root tip shape needs to be taken into account when selecting for crop varieties that may tolerate high soil strength. PMID:28600344

  15. EB1 contributes to microtubule bundling and organization, along with root growth, in Arabidopsis thaliana.

    PubMed

    Molines, Arthur T; Marion, Jessica; Chabout, Salem; Besse, Laetitia; Dompierre, Jim P; Mouille, Grégory; Coquelle, Frédéric M

    2018-06-26

    Microtubules are involved in plant development and adaptation to their environment, but the sustaining molecular mechanisms remain elusive. Microtubule-End-Binding 1 (EB1) proteins participate in directional root growth in Arabidopsis thaliana. However, a connection to the underlying microtubule array has not been established yet. We show here that EB1 proteins contribute to the organization of cortical microtubules in growing epidermal plant cells, without significant modulation of microtubule dynamics. Using super-resolution STED microscopy and an original quantification approach, we also demonstrate a significant reduction of apparent microtubule bundling in cytoplasmic-EB1-deficient plants, suggesting a function for EB1 in the interaction between adjacent microtubules. Furthermore, we observed root growth defects in EB1-deficient plants, which are not related to cell division impairment. Altogether, our results support a role for EB1 proteins in root development, in part by maintaining the organization of cortical microtubules. © 2018. Published by The Company of Biologists Ltd.

  16. Transcriptome-wide mining suggests conglomerate of genes associated with tuberous root growth and development in Aconitum heterophyllum Wall.

    PubMed

    Malhotra, Nikhil; Sood, Hemant; Chauhan, Rajinder Singh

    2016-12-01

    Tuberous roots of Aconitum heterophyllum constitute storage organ for secondary metabolites, however, molecular components contributing to their formation are not known. The transcriptomes of A. heterophyllum were analyzed to identify possible genes associated with tuberous root development by taking clues from genes implicated in other plant species. Out of 18 genes, eight genes encoding GDP-mannose pyrophosphorylase (GMPase), SHAGGY, Expansin, RING-box protein 1 (RBX1), SRF receptor kinase (SRF), β-amylase, ADP-glucose pyrophosphorylase (AGPase) and Auxin responsive factor 2 (ARF2) showed higher transcript abundance in roots (13-171 folds) compared to shoots. Comparative expression analysis of those genes between tuberous root developmental stages showed 11-97 folds increase in transcripts in fully developed roots compared to young rootlets, thereby implying their association in biosynthesis, accumulation and storage of primary metabolites towards root biomass. Cluster analysis revealed a positive correlation with the gene expression data for different stages of tuberous root formation in A. heterophyllum. The outcome of this study can be useful in genetic improvement of A. heterophyllum for root biomass yield.

  17. RNA-seq analysis identifies an intricate regulatory network controlling cluster root development in white lupin

    PubMed Central

    2014-01-01

    Background Highly adapted plant species are able to alter their root architecture to improve nutrient uptake and thrive in environments with limited nutrient supply. Cluster roots (CRs) are specialised structures of dense lateral roots formed by several plant species for the effective mining of nutrient rich soil patches through a combination of increased surface area and exudation of carboxylates. White lupin is becoming a model-species allowing for the discovery of gene networks involved in CR development. A greater understanding of the underlying molecular mechanisms driving these developmental processes is important for the generation of smarter plants for a world with diminishing resources to improve food security. Results RNA-seq analyses for three developmental stages of the CR formed under phosphorus-limited conditions and two of non-cluster roots have been performed for white lupin. In total 133,045,174 high-quality paired-end reads were used for a de novo assembly of the root transcriptome and merged with LAGI01 (Lupinus albus gene index) to generate an improved LAGI02 with 65,097 functionally annotated contigs. This was followed by comparative gene expression analysis. We show marked differences in the transcriptional response across the various cluster root stages to adjust to phosphate limitation by increasing uptake capacity and adjusting metabolic pathways. Several transcription factors such as PLT, SCR, PHB, PHV or AUX/IAA with a known role in the control of meristem activity and developmental processes show an increased expression in the tip of the CR. Genes involved in hormonal responses (PIN, LAX, YUC) and cell cycle control (CYCA/B, CDK) are also differentially expressed. In addition, we identify primary transcripts of miRNAs with established function in the root meristem. Conclusions Our gene expression analysis shows an intricate network of transcription factors and plant hormones controlling CR initiation and formation. In addition

  18. The Lateral Organ Boundaries Domain Transcription Factor LBD20 Functions in Fusarium Wilt Susceptibility and Jasmonate Signaling in Arabidopsis1[W

    PubMed Central

    Thatcher, Louise F.; Powell, Jonathan J.; Aitken, Elizabeth A.B.; Kazan, Kemal; Manners, John M.

    2012-01-01

    The LATERAL ORGAN BOUNDARIES (LOB) DOMAIN (LBD) gene family encodes plant-specific transcriptional regulators functioning in organ development. In a screen of Arabidopsis (Arabidopsis thaliana) sequence-indexed transferred DNA insertion mutants, we found disruption of the LOB DOMAIN-CONTAINING PROTEIN20 (LBD20) gene led to increased resistance to the root-infecting vascular wilt pathogen Fusarium oxysporum. In wild-type plants, LBD20 transcripts were barely detectable in leaves but abundant in roots, where they were further induced after F. oxysporum inoculation or methyl jasmonate treatment. Induction of LBD20 expression in roots was abolished in coronatine insensitive1 (coi1) and myc2 (allelic to jasmonate insensitive1) mutants, suggesting LBD20 may function in jasmonate (JA) signaling. Consistent with this, expression of the JA-regulated THIONIN2.1 (Thi2.1) and VEGETATIVE STORAGE PROTEIN2 (VSP2) genes were up-regulated in shoots of lbd20 following treatment of roots with F. oxysporum or methyl jasmonate. However, PLANT DEFENSIN1.2 expression was unaltered, indicating a repressor role for LBD20 in a branch of the JA-signaling pathway. Plants overexpressing LBD20 (LBD20-OX) had reduced Thi2.1 and VSP2 expression. There was a significant correlation between increased LBD20 expression in the LBD20-OX lines with both Thi2.1 and VSP2 repression, and reduced survival following F. oxysporum infection. Chlorosis resulting from application of F. oxysporum culture filtrate was also reduced in lbd20 leaves relative to the wild type. Taken together, LBD20 is a F. oxysporum susceptibility gene that appears to regulate components of JA signaling downstream of COI1 and MYC2 that are required for full elicitation of F. oxysporum- and JA-dependent responses. To our knowledge, this is the first demonstration of a role for a LBD gene family member in either biotic stress or JA signaling. PMID:22786889

  19. DREB1A promotes root development in deep soil layers and increases water extraction under water stress in groundnut.

    PubMed

    Vadez, V; Rao, J S; Bhatnagar-Mathur, P; Sharma, K K

    2013-01-01

    Water deficit is a major yield-limiting factor for many crops, and improving the root system has been proposed as a promising breeding strategy, although not in groundnut (Arachis hypogaea L.). The present work was carried out mainly to assess how root traits are influenced under water stress in groundnut, whether transgenics can alter root traits, and whether putative changes lead to water extraction differences. Several transgenic events, transformed with DREB1A driven by the rd29 promoter, along with wild-type JL24, were tested in a lysimeter system that mimics field conditions under both water stress (WS) and well-watered (WW) conditions. The WS treatment increased the maximum rooting depth, although the increase was limited to about 20% in JL24, compared to 50% in RD11. The root dry weight followed a similar trend. Consequently, the root dry weight and length density of transgenics was higher in layers below 100-cm depth (Exp. 1) and below 30 cm (Exp. 2). The root diameter was unchanged under WS treatment, except a slight increase in the 60-90-cm layer. The root diameter increased below 60 cm in both treatments. In the WW treatment, total water extraction of RD33 was higher than in JL24 and other transgenic events, and somewhat lower in RD11 than in JL24. In the WS treatment, water extraction of RD2, RD11 and RD33 was higher than in JL24. These water extraction differences were mostly apparent in the initial 21 days after treatment imposition and were well related to root length density in the 30-60-cm layer (R(2) = 0.68), but not to average root length density. In conclusion, water stress promotes rooting growth more strongly in transgenic events than in the wild type, especially in deep soil layers, and this leads to increased water extraction. This opens an avenue for tapping these characteristics toward the improvement of drought adaptation in deep soil conditions, and toward a better understanding of genes involved in rooting in groundnut. © 2012

  20. Influence of indole-butyric acid and electro-pulse on in vitro rooting and development of olive (Olea europea L.) microshoots.

    PubMed

    Padilla, Isabel Maria Gonzalez; Vidoy, I; Encina, C L

    2009-09-01

    The effects of indole-butyric acid (IBA) and electro-pulses on rooting and shoot growth were studied in vitro, using olive shoot cultures. Tested shoots were obtained from seedlings belonging to three Spanish cultivars, 'Arbequina', 'Manzanilla de Sevilla' and 'Gordal Sevillana', which have easy-, medium- and difficult-to-root rooting abilities, respectively. The standard two-step rooting method (SRM), consisting of root induction in olive rooting medium supplemented with 0, 0.1 or 1 mg/l IBA followed by root elongation in the same rooting medium without IBA, was compared with a novel one-step method consisting of shoot electro-pulses of 250, 1,250 or 2,500 V in a solution of IBA (0, 0.1 or 1 mg/l) and direct transferral to root elongation medium. The rooting percentage of the seedling-derived shoots obtained with the SRM was 76% for 'Arbequina' and 'Gordal Sevillana' cultivars and 100% for 'Manzanilla de Sevilla' cultivar, whereas with the electro-pulse method, the rooting percentages were 68, 64 and 88%, respectively. IBA dipping without pulse produced 0% rooting in 'Arbequina' seedling-derived shoots. The electroporation in IBA not only had an effect on shoot rooting but also on shoot growth and development, with longer shoots and higher axillary shoot sprouting and growth after some of the treatments. These effects were cultivar-dependent. The electro-pulse per se could explain some of these effects on shoot development.

  1. Regulation of root development in Arabidopsis thaliana by phytohormone-secreting epiphytic methylobacteria.

    PubMed

    Klikno, Jana; Kutschera, Ulrich

    2017-09-01

    In numerous experimental studies, seedlings of the model dicot Arabidopsis thaliana have been raised on sterile mineral salt agar. However, under natural conditions, no plant has ever grown in an environment without bacteria. Here, we document that germ-free (gnotobiotic) seedlings, raised on mineral salt agar without sucrose, develop very short root hairs. In the presence of a soil extract that contains naturally occurring microbes, root hair elongation is promoted; this effect can be mimicked by the addition of methylobacteria to germ-free seedlings. Using five different bacterial species (Methylobacterium mesophilicum, Methylobacterium extorquens, Methylobacterium oryzae, Methylobacterium podarium, and Methylobacterium radiotolerans), we show that, over 9 days of seedling development in a light-dark cycle, root development (hair elongation, length of the primary root, branching patterns) is regulated by these epiphytic microbes that occur in the rhizosphere of field-grown plants. In a sterile liquid culture test system, auxin (IAA) inhibited root growth with little effect on hair elongation and significantly stimulated hypocotyl enlargement. Cytokinins (trans-zeatin, kinetin) and ethylene (application of the precursor ACC) likewise exerted an inhibitory effect on root growth but, in contrast to IAA, drastically stimulated root hair elongation. Methylobacteria are phytosymbionts that produce/secrete cytokinins. We conclude that, under real-world conditions (soil), the provision of these phytohormones by methylobacteria (and other epiphytic microbes) regulates root development during seedling establishment.

  2. Geometric analysis of Arabidopsis root apex reveals a new aspect of the ethylene signal transduction pathway in development

    NASA Technical Reports Server (NTRS)

    Cervantes, Emilio; Tocino, Angel

    2005-01-01

    Structurally, ethylene is the simplest phytohormone and regulates multiple aspects of plant growth and development. Its effects are mediated by a signal transduction cascade involving receptors, MAP kinases and transcription factors. Many morphological effects of ethylene in plant development, including root size, have been previously described. In this article a combined geometric and algebraic approach has been used to analyse the shape and the curvature in the root apex of Arabidopsis seedlings. The process requires the fitting of Bezier curves that reproduce the root apex shape, and the calculation of the corresponding curvatures. The application of the method has allowed us to identify significant differences in the root curvatures of ethylene insensitive mutants (ein2-1 and etr1-1) with respect to the wild-type Columbia.

  3. Two stage surgical procedure for root coverage

    PubMed Central

    George, Anjana Mary; Rajesh, K. S.; Hegde, Shashikanth; Kumar, Arun

    2012-01-01

    Gingival recession may present problems that include root sensitivity, esthetic concern, and predilection to root caries, cervical abrasion and compromising of a restorative effort. When marginal tissue health cannot be maintained and recession is deep, the need for treatment arises. This literature has documented that recession can be successfully treated by means of a two stage surgical approach, the first stage consisting of creation of attached gingiva by means of free gingival graft, and in the second stage, a lateral sliding flap of grafted tissue to cover the recession. This indirect technique ensures development of an adequate width of attached gingiva. The outcome of this technique suggests that two stage surgical procedures are highly predictable for root coverage in case of isolated deep recession and lack of attached gingiva. PMID:23162343

  4. Automated Root Tracking with "Root System Analyzer"

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent

  5. Fast-cycling unit of root turnover in perennial herbaceous plants in a cold temperate ecosystem

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Luke McCormack, M.; Li, Le; Ma, Zeqing; Guo, Dali

    2016-01-01

    Roots of perennial plants have both persistent portion and fast-cycling units represented by different levels of branching. In woody species, the distal nonwoody branch orders as a unit are born and die together relatively rapidly (within 1-2 years). However, whether the fast-cycling units also exist in perennial herbs is unknown. We monitored root demography of seven perennial herbs over two years in a cold temperate ecosystem and we classified the largest roots on the root collar or rhizome as basal roots, and associated finer laterals as secondary, tertiary and quaternary roots. Parallel to woody plants in which distal root orders form a fast-cycling module, basal root and its finer laterals also represent a fast-cycling module in herbaceous plants. Within this module, basal roots had a lifespan of 0.5-2 years and represented 62-87% of total root biomass, thus dominating annual root turnover (60%-81% of the total). Moreover, root traits including root length, tissue density, and biomass were useful predictors of root lifespan. We conclude that both herbaceous and woody plants have fast-cycling modular units and future studies identifying the fast-cycling module across plant species should allow better understanding of how root construction and turnover are linked to whole-plant strategies.

  6. Tree-Substrate Water Relations and Root Development in Tree Plantations Used for Mine Tailings Reclamation.

    PubMed

    Guittonny-Larchevêque, Marie; Bussière, Bruno; Pednault, Carl

    2016-05-01

    Tree water uptake relies on well-developed root systems. However, mine wastes can restrict root growth, in particular metalliferous mill tailings, which consist of the finely crushed ore that remains after valuable metals are removed. Thus, water stress could limit plantation success in reclaimed mine lands. This study evaluates the effect of substrates varying in quality (topsoil, overburden, compost and tailings mixture, and tailings alone) and quantity (50- or 20-cm-thick topsoil layer vs. 1-m plantation holes) on root development and water stress exposure of trees planted in low-sulfide mine tailings under boreal conditions. A field experiment was conducted over 2 yr with two tree species: basket willow ( L.) and hybrid poplar ( Moench × A. Henry). Trees developed roots in the tailings underlying the soil treatments despite tailings' low macroporosity. However, almost no root development occurred in tailings underlying a compost and tailings mixture. Because root development and associated water uptake was not limited to the soil, soil volume influenced neither short-term (water potential and instantaneous transpiration) nor long-term (δC) water stress exposure in trees. However, trees were larger and had greater total leaf area when grown in thicker topsoil. Despite a volumetric water content that always remained above permanent wilting point in the tailings colonized by tree roots, measured foliar water potentials at midday were lower than drought thresholds reported for both tested tree species. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. The Tomato (Solanum Lycopersicum cv. Micro-Tom) Natural Genetic Variation Rg1 and the DELLA Mutant Procera Control the Competence Necessary to Form Adventitious Roots and Shoots

    PubMed Central

    Peres, Lázaro Eustáquio Pereira

    2012-01-01

    Despite the wide use of plant regeneration for biotechnological purposes, the signals that allow cells to become competent to assume different fates remain largely unknown. Here, it is demonstrated that the Regeneration1 (Rg1) allele, a natural genetic variation from the tomato wild relative Solanum peruvianum, increases the capacity to form both roots and shoots in vitro; and that the gibberellin constitutive mutant procera (pro) presented the opposite phenotype, reducing organogenesis on either root-inducing medium (RIM) or shoot-inducing medium (SIM). Mutants showing alterations in the formation of specific organs in vitro were the auxin low-sensitivity diageotropica (dgt), the lateral suppresser (ls), and the KNOX-overexpressing Mouse ears (Me). dgt failed to form roots on RIM, Me increased shoot formation on SIM, and the high capacity for in vitro shoot formation of ls contrasted with its recalcitrance to form axillary meristems. Interestingly, Rg1 rescued the in vitro organ formation capacity in proRg1 and dgtRg1 double mutants and the ex vitro low lateral shoot formation in pro and ls. Such epistatic interactions were also confirmed in gene expression and histological analyses conducted in the single and double mutants. Although Me phenocopied the high shoot formation of Rg1 on SIM, it failed to increase rooting on RIM and to rescue the non-branching phenotype of ls. Taken together, these results suggest REGENERATION1 and the DELLA mutant PROCERA as controlling a common competence to assume distinct cell fates, rather than the specific induction of adventitious roots or shoots, which is controlled by DIAGEOTROPICA and MOUSE EARS, respectively. PMID:22915742

  8. The tomato (Solanum lycopersicum cv. Micro-Tom) natural genetic variation Rg1 and the DELLA mutant procera control the competence necessary to form adventitious roots and shoots.

    PubMed

    Lombardi-Crestana, Simone; da Silva Azevedo, Mariana; e Silva, Geraldo Felipe Ferreira; Pino, Lílian Ellen; Appezzato-da-Glória, Beatriz; Figueira, Antonio; Nogueira, Fabio Tebaldi Silveira; Peres, Lázaro Eustáquio Pereira

    2012-09-01

    Despite the wide use of plant regeneration for biotechnological purposes, the signals that allow cells to become competent to assume different fates remain largely unknown. Here, it is demonstrated that the Regeneration1 (Rg1) allele, a natural genetic variation from the tomato wild relative Solanum peruvianum, increases the capacity to form both roots and shoots in vitro; and that the gibberellin constitutive mutant procera (pro) presented the opposite phenotype, reducing organogenesis on either root-inducing medium (RIM) or shoot-inducing medium (SIM). Mutants showing alterations in the formation of specific organs in vitro were the auxin low-sensitivity diageotropica (dgt), the lateral suppresser (ls), and the KNOX-overexpressing Mouse ears (Me). dgt failed to form roots on RIM, Me increased shoot formation on SIM, and the high capacity for in vitro shoot formation of ls contrasted with its recalcitrance to form axillary meristems. Interestingly, Rg1 rescued the in vitro organ formation capacity in proRg1 and dgtRg1 double mutants and the ex vitro low lateral shoot formation in pro and ls. Such epistatic interactions were also confirmed in gene expression and histological analyses conducted in the single and double mutants. Although Me phenocopied the high shoot formation of Rg1 on SIM, it failed to increase rooting on RIM and to rescue the non-branching phenotype of ls. Taken together, these results suggest REGENERATION1 and the DELLA mutant PROCERA as controlling a common competence to assume distinct cell fates, rather than the specific induction of adventitious roots or shoots, which is controlled by DIAGEOTROPICA and MOUSE EARS, respectively.

  9. The activation of OsEIL1 on YUC8 transcription and auxin biosynthesis is required for ethylene-inhibited root elongation in rice early seedling development

    PubMed Central

    Wang, Juan; Wei, Pengcheng; Huang, Rongfeng

    2017-01-01

    Rice is an important monocotyledonous crop worldwide; it differs from the dicotyledonous plant Arabidopsis in many aspects. In Arabidopsis, ethylene and auxin act synergistically to regulate root growth and development. However, their interaction in rice is still unclear. Here, we report that the transcriptional activation of OsEIL1 on the expression of YUC8/REIN7 and indole-3-pyruvic acid (IPA)-dependent auxin biosynthesis is required for ethylene-inhibited root elongation. Using an inhibitor of YUC activity, which regulates auxin biosynthesis via the conversion of IPA to indole-3-acetic acid (IAA), we showed that ethylene-inhibited primary root elongation is dependent on YUC-based auxin biosynthesis. By screening phenotypes of seedling primary root from mutagenesis libraries following ethylene treatment, we identified a rice ethylene-insensitive mutant, rein7-1, in which YUC8/REIN7 is truncated at its C-terminus. Mutation in YUC8/REIN7 reduced auxin biosynthesis in rice, while YUC8/REIN7 overexpression enhanced ethylene sensitivity in the roots. Moreover, YUC8/REIN7 catalyzed the conversion of IPA to IAA, truncated version at C-terminal end of the YUC8/REIN7 resulted in significant reduction of enzymatic activity, indicating that YUC8/REIN7 is required for IPA-dependent auxin biosynthesis and ethylene-inhibited root elongation in rice early seedlings. Further investigations indicated that ethylene induced YUC8/REIN7 expression and promoted auxin accumulation in roots. Addition of low concentrations of IAA rescued the ethylene response in the rein7-1, strongly demonstrating that ethylene-inhibited root elongation depends on IPA-dependent auxin biosynthesis. Genetic studies revealed that YUC8/REIN7-mediated auxin biosynthesis functioned downstream of OsEIL1, which directly activated the expression of YUC8/REIN7. Thus, our findings reveal a model of interaction between ethylene and auxin in rice seedling primary root elongation, enhancing our understanding of

  10. Transcript and proteomic analysis of developing white lupin (Lupinus albus L.) roots

    PubMed Central

    Tian, Li; Peel, Gregory J; Lei, Zhentian; Aziz, Naveed; Dai, Xinbin; He, Ji; Watson, Bonnie; Zhao, Patrick X; Sumner, Lloyd W; Dixon, Richard A

    2009-01-01

    Background White lupin (Lupinus albus L.) roots efficiently take up and accumulate (heavy) metals, adapt to phosphate deficiency by forming cluster roots, and secrete antimicrobial prenylated isoflavones during development. Genomic and proteomic approaches were applied to identify candidate genes and proteins involved in antimicrobial defense and (heavy) metal uptake and translocation. Results A cDNA library was constructed from roots of white lupin seedlings. Eight thousand clones were randomly sequenced and assembled into 2,455 unigenes, which were annotated based on homologous matches in the NCBInr protein database. A reference map of developing white lupin root proteins was established through 2-D gel electrophoresis and peptide mass fingerprinting. High quality peptide mass spectra were obtained for 170 proteins. Microsomal membrane proteins were separated by 1-D gel electrophoresis and identified by LC-MS/MS. A total of 74 proteins were putatively identified by the peptide mass fingerprinting and the LC-MS/MS methods. Genomic and proteomic analyses identified candidate genes and proteins encoding metal binding and/or transport proteins, transcription factors, ABC transporters and phenylpropanoid biosynthetic enzymes. Conclusion The combined EST and protein datasets will facilitate the understanding of white lupin's response to biotic and abiotic stresses and its utility for phytoremediation. The root ESTs provided 82 perfect simple sequence repeat (SSR) markers with potential utility in breeding white lupin for enhanced agronomic traits. PMID:19123941

  11. Root gravitropism

    NASA Technical Reports Server (NTRS)

    Masson, P. H.

    1995-01-01

    When a plant root is reoriented within the gravity field, it responds by initiating a curvature which eventually results in vertical growth. Gravity sensing occurs primarily in the root tip. It may involve amyloplast sedimentation in the columella cells of the root cap, or the detection of forces exerted by the mass of the protoplast on opposite sides of its cell wall. Gravisensing activates a signal transduction cascade which results in the asymmetric redistribution of auxin and apoplastic Ca2+ across the root tip, with accumulation at the bottom side. The resulting lateral asymmetry in Ca2+ and auxin concentration is probably transmitted to the elongation zone where differential cellular elongation occurs until the tip resumes vertical growth. The Cholodny-Went theory proposes that gravity-induced auxin redistribution across a gravistimulated plant organ is responsible for the gravitropic response. However, recent data indicate that the gravity-induced reorientation is more complex, involving both auxin gradient-dependent and auxin gradient-independent events.

  12. Investigations into in situ Enterococcus faecalis biofilm removal by passive and active sodium hypochlorite irrigation delivered into the lateral canal of a simulated root canal model.

    PubMed

    Mohmmed, S A; Vianna, M E; Penny, M R; Hilton, S T; Mordan, N J; Knowles, J C

    2018-06-01

    To investigate in situ Enterococcus faecalis biofilm removal from the lateral canal of a simulated root canal system using passive or active irrigation protocols. Root canal models (n = 43) were manufactured from transparent resin materials using 3D printing. Each canal was created with an 18 mm length, apical size 30, a .06 taper and a lateral canal of 3 mm length, with 0.3 mm diameter. Biofilms were grown in the lateral canal and apical 3 mm of the main canal for 10 days. Three models from each group were examined for residual biofilm using SEM. The other forty models were divided into four groups (n = 10). The models were observed under a fluorescence microscope. Following 60 s of 9 mL of 2.5% NaOCl irrigation using syringe and needle, the irrigant was either left stagnant in the canal or activated using gutta-percha, sonic or ultrasonic methods for 30 s. Images were then captured every second using an external camera. The residual biofilm percentages were measured using image analysis software. The data were analysed using generalized linear mixed models. A significance level of 0.05 was used throughout. The greatest level of biofilm removal was obtained with ultrasonic agitation (66.76%) followed by sonic (45.49%), manual agitation (43.97%) and passive irrigation groups (38.67%), respectively. The differences were significant between the residual biofilm in the passive irrigation and both sonic and ultrasonic groups (P = 0.001). Agitation resulted in better penetration of 2.5% NaOCl into the lateral canal of an artificial root canal model. Ultrasonic agitation of NaOCl improved the removal of biofilm. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  13. Hydrotropism Interacts with Gravitropism by Degrading Amyloplasts in Seedling Roots of Arabidopsis and Radish1

    PubMed Central

    Takahashi, Nobuyuki; Yamazaki, Yutaka; Kobayashi, Akie; Higashitani, Atsushi; Takahashi, Hideyuki

    2003-01-01

    In response to a moisture gradient, roots exhibit hydrotropism to control the orientation of their growth. To exhibit hydrotropism, however, they must overcome the gravitropism that is dominant on Earth. We found that moisture gradient or water stress caused immediate degradation of the starch anchors, amyloplasts, in root columella cells of Arabidopsis and radish (Raphanus sativus). Namely, development of hydrotropic response was accompanied by a simultaneous reduction in starch content in columella cells. Rapid degradation of amyloplasts in columella cells also occurred in the water-stressed roots with sorbitol or mannitol. Both hydrotropically stimulated and water-stressed roots showed a reduced responsiveness to gravity. Roots of a starchless mutant, pgm1-1, showed an enhanced hydrotropism compared with that of the wild type. These results suggest that the reduced responsiveness to gravity is, at least in part, attributable to the degradation of amyloplasts in columella cells. Thus, the reduction in gravitropism allows the roots to exhibit hydrotropism. PMID:12805610

  14. Extreme Suppression of Lateral Floret Development by a Single Amino Acid Change in the VRS1 Transcription Factor1[OPEN

    PubMed Central

    Lundqvist, Udda; Kakei, Yusuke; Suzuki, Takako; Hori, Kiyosumi; Wu, Jianzhong; Shimada, Yukihisa; Thomas, William T.B.; Komatsuda, Takao

    2017-01-01

    Increasing grain yield is an endless challenge for cereal crop breeding. In barley (Hordeum vulgare), grain number is controlled mainly by Six-rowed spike 1 (Vrs1), which encodes a homeodomain leucine zipper class I transcription factor. However, little is known about the genetic basis of grain size. Here, we show that extreme suppression of lateral florets contributes to enlarged grains in deficiens barley. Through a combination of fine-mapping and resequencing of deficiens mutants, we have identified that a single amino acid substitution at a putative phosphorylation site in VRS1 is responsible for the deficiens phenotype. deficiens mutant alleles confer an increase in grain size, a reduction in plant height, and a significant increase in thousand grain weight in contemporary cultivated germplasm. Haplotype analysis revealed that barley carrying the deficiens allele (Vrs1.t1) originated from two-rowed types carrying the Vrs1.b2 allele, predominantly found in germplasm from northern Africa. In situ hybridization of histone H4, a marker for cell cycle or proliferation, showed weaker expression in the lateral spikelets compared with central spikelets in deficiens. Transcriptome analysis revealed that a number of histone superfamily genes were up-regulated in the deficiens mutant, suggesting that enhanced cell proliferation in the central spikelet may contribute to larger grains. Our data suggest that grain yield can be improved by suppressing the development of specific organs that are not positively involved in sink/source relationships. PMID:29101279

  15. Proper PIN1 Distribution Is Needed for Root Negative Phototropism in Arabidopsis

    PubMed Central

    Zhang, Kun-Xiao; Xu, Heng-Hao; Gong, Wen; Jin, Yan; Shi, Ya-Ya; Yuan, Ting-Ting; Li, Juan; Lu, Ying-Tang

    2014-01-01

    Plants can be adapted to the changing environments through tropic responses, such as light and gravity. One of them is root negative phototropism, which is needed for root growth and nutrient absorption. Here, we show that the auxin efflux carrier PIN-FORMED (PIN) 1 is involved in asymmetric auxin distribution and root negative phototropism. In darkness, PIN1 is internalized and localized to intracellular compartments; upon blue light illumination, PIN1 relocalize to basal plasma membrane in root stele cells. The shift of PIN1 localization induced by blue light is involved in asymmetric auxin distribution and root negative phototropic response. Both blue-light-induced PIN1 redistribution and root negative phototropism is mediated by a BFA-sensitive trafficking pathway and the activity of PID/PP2A. Our results demonstrate that blue-light-induced PIN1 redistribution participate in asymmetric auxin distribution and root negative phototropism. PMID:24465665

  16. Proper PIN1 distribution is needed for root negative phototropism in Arabidopsis.

    PubMed

    Zhang, Kun-Xiao; Xu, Heng-Hao; Gong, Wen; Jin, Yan; Shi, Ya-Ya; Yuan, Ting-Ting; Li, Juan; Lu, Ying-Tang

    2014-01-01

    Plants can be adapted to the changing environments through tropic responses, such as light and gravity. One of them is root negative phototropism, which is needed for root growth and nutrient absorption. Here, we show that the auxin efflux carrier PIN-FORMED (PIN) 1 is involved in asymmetric auxin distribution and root negative phototropism. In darkness, PIN1 is internalized and localized to intracellular compartments; upon blue light illumination, PIN1 relocalize to basal plasma membrane in root stele cells. The shift of PIN1 localization induced by blue light is involved in asymmetric auxin distribution and root negative phototropic response. Both blue-light-induced PIN1 redistribution and root negative phototropism is mediated by a BFA-sensitive trafficking pathway and the activity of PID/PP2A. Our results demonstrate that blue-light-induced PIN1 redistribution participate in asymmetric auxin distribution and root negative phototropism.

  17. The Four Es 1-year later: a tool for predicting the development of gambling problems.

    PubMed

    Rockloff, Matthew J; Dyer, Victoria

    2007-12-01

    The Four Es is a 40-item scale measuring psychological risk for the development of problem gambling behavior. One-year follow-up interviews (n = 395) from a previously reported phone survey in Queensland, Australia (n = 2,577) (Rockloff & Dyer, 2006) tested the ability of the Four Es instrument to prospectively identify persons who would later develop gambling problems. Two groups of participants were selected for the 1-year follow-up interviews, including (1) persons who had gambling problems, high-risk alcohol abuse problems, and/or substance abuse problems (abuse group); and (2) a random selection of other persons from the original survey (random group). The results indicated that the "Excess" trait, which measures impulsive behavior, was predictive of relative increases in gambling problems for both groups over the 1-year period. Additionally, the Four Es questionnaire showed good psychometric properties in the surveys, with a test-retest reliability of r = .70 and a Cronbach's alpha reliability of alpha = .90 and .92 in the original and follow-up interviews, respectively.

  18. Infection, Reproduction Potential, and Root Galling by Root-knot Nematode Species and Concomitant Populations on Peanut and Tobacco

    PubMed Central

    Hirunsalee, Anan; Barker, K. R.; Beute, M. K.

    1995-01-01

    Single populations of Meloidogyne arenaria races 1 (MA1) and 2 (MA2) and M. hapla (MH), and mixed populations of MA1 + MA2 and MA1 + MH with four inoculum levels of eggs were tested on peanut cv. 'Florigiant' and M. incognita-resistant tobacco cv. 'McNair 373' in a greenhouse experiment. Root infection, female development, and reproduction of MA2 on peanut and MA1 on resistant tobacco were limited at 2 and 6 weeks. MA1, MH, and MA1 + MH on peanut had similar root infection (total parasitic forms per root unit) at both 2 and 6 weeks, and similar female development and reproduction potentials at 6 weeks. MA2 tended to depress root infection, female development, and reproduction of MA1 on peanut. MH had little effect on MA1 on this crop. On tobacco, MA2 population had greater incidence of root infection than did MH at 2 weeks. The two nematode species had similar development in roots at 6 weeks. All of these processes were restricted when either MA2 or MH was present together with MA1. As initial inoculum level of parasitically fit populations increased, relative infection ratio on both peanut and tobacco, and reproduction factor on peanut decreased. Populations that had high infection incidence and reproduction rates induced greater root galling than did other populations. Root galling was suppressed in the presence of antagonistic response between nematode populations. PMID:19277277

  19. Posterior Meniscal Root Repairs: Outcomes of an Anatomic Transtibial Pull-Out Technique.

    PubMed

    LaPrade, Robert F; Matheny, Lauren M; Moulton, Samuel G; James, Evan W; Dean, Chase S

    2017-03-01

    Outcomes after transtibial pull-out repair for posterior meniscal root tears remain underreported, and factors that may affect outcomes are unknown. Purpose/Hypothesis: The purpose of this study was to compare patient-centered outcomes after transtibial pull-out repair for posterior root tears in patients <50 and ≥50 years of age. We hypothesized that improvement in function and activity level at minimum 2-year follow-up would be similar among patients <50 years of age compared with patients ≥50 years and among patients undergoing medial versus lateral root repairs. Cohort study; Level of evidence, 3. Inclusion criteria were patients aged 18 years or older who underwent anatomic transtibial pull-out repair of the medial or lateral posterior meniscus root by a single surgeon. All patients were identified from a data registry consisting of prospectively collected data in a consecutive series. Cohorts were analyzed by age (<50 years [n = 35] vs ≥50 years [n = 15]) and laterality (lateral [n = 15] vs medial [n = 35]). Patients completed a subjective questionnaire preoperatively and at minimum of 2 years postoperatively (Lysholm, Tegner, Western Ontario and McMaster Universities Osteoarthritis Index [WOMAC], 12-Item Short Form Health Survey [SF-12], and patient satisfaction with outcome). Failure was defined as revision meniscal root repair or partial meniscectomy. The analysis included 50 knees in 49 patients (16 females, 33 males; mean age, 38.3 years; mean body mass index, 26.6). Of the 50 knees, 45 were available for analysis. Three of 45 (6.7%) required revision surgery. All failures were in patients <50 years old, and all failures underwent medial root repair. No significant difference in failure was found based on age ( P=.541) or laterality ( P = .544). For age cohorts, Lysholm and WOMAC scores demonstrated significant postoperative improvement. For laterality cohorts, all functional scores significantly improved postoperatively. No significant difference

  20. Slow decomposition of lower order roots: a key mechanism of root carbon and nutrient retention in the soil.

    PubMed

    Fan, Pingping; Guo, Dali

    2010-06-01

    Among tree fine roots, the distal small-diameter lateral branches comprising first- and second-order roots lack secondary (wood) development. Therefore, these roots are expected to decompose more rapidly than higher order woody roots. But this prediction has not been tested and may not be correct. Current evidence suggests that lower order roots may decompose more slowly than higher order roots in tree species associated with ectomycorrhizal (EM) fungi because they are preferentially colonized by fungi and encased by a fungal sheath rich in chitin (a recalcitrant compound). In trees associated with arbuscular mycorrhizal (AM) fungi, lower order roots do not form fungal sheaths, but they may have poorer C quality, e.g. lower concentrations of soluble carbohydrates and higher concentrations of acid-insolubles than higher order roots, thus may decompose more slowly. In addition, litter with high concentrations of acid insolubles decomposes more slowly under higher N concentrations (such as lower order roots). Therefore, we propose that in both AM and EM trees, lower order roots decompose more slowly than higher order roots due to the combination of poor C quality and high N concentrations. To test this hypothesis, we examined decomposition of the first six root orders in Fraxinus mandshurica (an AM species) and Larix gmelinii (an EM species) using litterbag method in northeastern China. We found that lower order roots of both species decomposed more slowly than higher order roots, and this pattern appears to be associated mainly with initial C quality and N concentrations. Because these lower order roots have short life spans and thus dominate root mortality, their slow decomposition implies that a substantial fraction of the stable soil organic matter pool is derived from these lower order roots, at least in the two species we studied.

  1. AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues.

    PubMed Central

    Marchant, A; Kargul, J; May, S T; Muller, P; Delbarre, A; Perrot-Rechenmann, C; Bennett, M J

    1999-01-01

    Plants employ a specialized transport system composed of separate influx and efflux carriers to mobilize the plant hormone auxin between its site(s) of synthesis and action. Mutations within the permease-like AUX1 protein significantly reduce the rate of carrier-mediated auxin uptake within Arabidopsis roots, conferring an agravitropic phenotype. We are able to bypass the defect within auxin uptake and restore the gravitropic root phenotype of aux1 by growing mutant seedlings in the presence of the membrane-permeable synthetic auxin, 1-naphthaleneacetic acid. We illustrate that AUX1 expression overlaps that previously described for the auxin efflux carrier, AtPIN2, using transgenic lines expressing an AUX1 promoter::uidA (GUS) gene. Finally, we demonstrate that AUX1 regulates gravitropic curvature by acting in unison with the auxin efflux carrier to co-ordinate the localized redistribution of auxin within the Arabidopsis root apex. Our results provide the first example of a developmental role for the auxin influx carrier within higher plants and supply new insight into the molecular basis of gravitropic signalling. PMID:10205161

  2. Impact of transgenic Cry1Ac + CpTI cotton on diversity and dynamics of rhizosphere bacterial community of different root environments.

    PubMed

    Li, Peng; Li, Yongchun; Shi, Jialiang; Yu, Zhibo; Pan, Aihu; Tang, Xueming; Ming, Feng

    2018-05-08

    The objective of this study was to characterize the diversity and dynamics of rhizosphere bacterial community, especially the response of dominant and rare bacterial taxa to the cultivation of Bt cotton for different root environments at different growth stages. qPCR analyses indicated that bacterial abundances of the taproots and lateral root rhizospheres of the Bt cotton SGK321 were significantly different at seedling and bolling stages. But no significant differences were detected between the same root zones from Bt and the conventional cotton varieties. Total bacterial genera had similar pattern with dominant genera in abundance, and with rare genera in richness to the changes of bacterial community, respectively. Although the rhizosphere bacterial diversity of the three cotton varieties changed in taproot and lateral root, no significant differences were detected in the same root environments between Bt and conventional cotton. Moreover, Soil pH was more correlated with variations in the bacterial community composition than Bt proteins. In conclusion, these results revealed no indication that rhizosphere bacterial community of Bt cotton had different response to increased Bt protein regarding the same root environment. In particular, dominant and rare bacterial taxa showed the variation in diversity and community composition in different root microhabitats. Copyright © 2018. Published by Elsevier B.V.

  3. Influence of development, postharvest handling, and storage conditions on the carbohydrate components of sweetpotato (Ipomea batatas Lam.) roots.

    PubMed

    Nabubuya, Agnes; Namutebi, Agnes; Byaruhanga, Yusuf; Narvhus, Judith; Wicklund, Trude

    2017-11-01

    Changes in total starch and reducing sugar content in five sweetpotato varieties were investigated weekly during root development and following subjection of the roots to different postharvest handling and storage conditions. Freshly harvested (noncured) roots and cured roots (spread under the sun for 4 days at 29-31°C and 63-65% relative humidity [RH]) were separately stored at ambient conditions (23°C-26°C and 70-80% RH) and in a semiunderground pit (19-21°C and 90-95% RH). Changes in pasting properties of flour from sweetpotato roots during storage were analyzed at 14-day intervals. Significant varietal differences ( p  < .05) in total starch, sucrose, glucose, maltose, and fructose concentrations were registered. The total starch and sucrose content of the roots did not change significantly ( p  < .05) during root development (72.4 and 7.4%, respectively), whereas the average concentrations of glucose, maltose, and fructose decreased markedly (0.46-0.18%, 0.55-0.28%, and 0.43-0.21%), respectively. Storage led to decrease in total starch content (73-47.7%) and increase in sucrose and glucose concentrations (8.1-11.2% and 0.22-1.57%, respectively). Storage also resulted in reduction in sweetpotato flour pasting viscosities. Curing resulted in increased sucrose and glucose concentrations (9.1-11.2% and 0.45-0.85%, respectively) and marked reduction ( p  < .05) in total starch content (72.9-47.6%). This resulted in low pasting viscosities compared to flour from storage of uncured roots. These findings show that significant changes occur in the carbohydrate components of sweetpotato roots during storage compared to development and present an opportunity for diverse utilization of flours from sweetpotato roots in the food industry.

  4. Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation1

    PubMed Central

    Li, Juan; Xu, Heng-Hao; Liu, Wen-Cheng; Zhang, Xiao-Wei

    2015-01-01

    Soil alkalinity causes major reductions in yield and quality of crops worldwide. The plant root is the first organ sensing soil alkalinity, which results in shorter primary roots. However, the mechanism underlying alkaline stress-mediated inhibition of root elongation remains to be further elucidated. Here, we report that alkaline conditions inhibit primary root elongation of Arabidopsis (Arabidopsis thaliana) seedlings by reducing cell division potential in the meristem zones and that ethylene signaling affects this process. The ethylene perception antagonist silver (Ag+) alleviated the inhibition of root elongation by alkaline stress. Moreover, the ethylene signaling mutants ethylene response1-3 (etr1-3), ethylene insensitive2 (ein2), and ein3-1 showed less reduction in root length under alkaline conditions, indicating a reduced sensitivity to alkalinity. Ethylene biosynthesis also was found to play a role in alkaline stress-mediated root inhibition; the ethylene overproducer1-1 mutant, which overproduces ethylene because of increased stability of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE5, was hypersensitive to alkaline stress. In addition, the ethylene biosynthesis inhibitor cobalt (Co2+) suppressed alkaline stress-mediated inhibition of root elongation. We further found that alkaline stress caused an increase in auxin levels by promoting expression of auxin biosynthesis-related genes, but the increase in auxin levels was reduced in the roots of the etr1-3 and ein3-1 mutants and in Ag+/Co2+-treated wild-type plants. Additional genetic and physiological data showed that AUXIN1 (AUX1) was involved in alkaline stress-mediated inhibition of root elongation. Taken together, our results reveal that ethylene modulates alkaline stress-mediated inhibition of root growth by increasing auxin accumulation by stimulating the expression of AUX1 and auxin biosynthesis-related genes. PMID:26109425

  5. Compound Synthesis or Growth and Development of Roots/Stomata Regulate Plant Drought Tolerance or Water Use Efficiency/Water Uptake Efficiency.

    PubMed

    Meng, Lai-Sheng

    2018-04-11

    Water is crucial to plant growth and development because it serves as a medium for all cellular functions. Thus, the improvement of plant drought tolerance or water use efficiency/water uptake efficiency is important in modern agriculture. In this review, we mainly focus on new genetic factors for ameliorating drought tolerance or water use efficiency/water uptake efficiency of plants and explore the involvement of these genetic factors in the regulation of improving plant drought tolerance or water use efficiency/water uptake efficiency, which is a result of altered stomata density and improving root systems (primary root length, hair root growth, and lateral root number) and enhanced production of osmotic protectants, which is caused by transcription factors, proteinases, and phosphatases and protein kinases. These results will help guide the synthesis of a model for predicting how the signals of genetic and environmental stress are integrated at a few genetic determinants to control the establishment of either water use efficiency or water uptake efficiency. Collectively, these insights into the molecular mechanism underpinning the control of plant drought tolerance or water use efficiency/water uptake efficiency may aid future breeding or design strategies to increase crop yield.

  6. Cyanogen Metabolism in Cassava Roots: Impact on Protein Synthesis and Root Development.

    PubMed

    Zidenga, Tawanda; Siritunga, Dimuth; Sayre, Richard T

    2017-01-01

    Cassava ( Manihot esculenta Crantz), a staple crop for millions of sub-Saharan Africans, contains high levels of cyanogenic glycosides which protect it against herbivory. However, cyanogens have also been proposed to play a role in nitrogen transport from leaves to roots. Consistent with this hypothesis, analyses of the distribution and activities of enzymes involved in cyanide metabolism provides evidence for cyanide assimilation, derived from linamarin, into amino acids in cassava roots. Both β-cyanoalanine synthase (CAS) and nitrilase (NIT), two enzymes involved in cyanide assimilation to produce asparagine, were observed to have higher activities in roots compared to leaves, consistent with their proposed role in reduced nitrogen assimilation. In addition, rhodanese activity was not detected in cassava roots, indicating that this competing means for cyanide metabolism was not a factor in cyanide detoxification. In contrast, leaves had sufficient rhodanese activity to compete with cyanide assimilation into amino acids. Using transgenic low cyanogen plants, it was shown that reducing root cyanogen levels is associated with elevated root nitrate reductase activity, presumably to compensate for the loss of reduced nitrogen from cyanogens. Finally, we overexpressed Arabidopsis CAS and NIT4 genes in cassava roots to study the feasibility of enhancing root cyanide assimilation into protein. Optimal overexpression of CAS and NIT4 resulted in up to a 50% increase in root total amino acids and a 9% increase in root protein accumulation. However, plant growth and morphology was altered in plants overexpressing these enzymes, demonstrating a complex interaction between cyanide metabolism and hormonal regulation of plant growth.

  7. Cyanogen Metabolism in Cassava Roots: Impact on Protein Synthesis and Root Development

    PubMed Central

    Zidenga, Tawanda; Siritunga, Dimuth; Sayre, Richard T.

    2017-01-01

    Cassava (Manihot esculenta Crantz), a staple crop for millions of sub-Saharan Africans, contains high levels of cyanogenic glycosides which protect it against herbivory. However, cyanogens have also been proposed to play a role in nitrogen transport from leaves to roots. Consistent with this hypothesis, analyses of the distribution and activities of enzymes involved in cyanide metabolism provides evidence for cyanide assimilation, derived from linamarin, into amino acids in cassava roots. Both β-cyanoalanine synthase (CAS) and nitrilase (NIT), two enzymes involved in cyanide assimilation to produce asparagine, were observed to have higher activities in roots compared to leaves, consistent with their proposed role in reduced nitrogen assimilation. In addition, rhodanese activity was not detected in cassava roots, indicating that this competing means for cyanide metabolism was not a factor in cyanide detoxification. In contrast, leaves had sufficient rhodanese activity to compete with cyanide assimilation into amino acids. Using transgenic low cyanogen plants, it was shown that reducing root cyanogen levels is associated with elevated root nitrate reductase activity, presumably to compensate for the loss of reduced nitrogen from cyanogens. Finally, we overexpressed Arabidopsis CAS and NIT4 genes in cassava roots to study the feasibility of enhancing root cyanide assimilation into protein. Optimal overexpression of CAS and NIT4 resulted in up to a 50% increase in root total amino acids and a 9% increase in root protein accumulation. However, plant growth and morphology was altered in plants overexpressing these enzymes, demonstrating a complex interaction between cyanide metabolism and hormonal regulation of plant growth. PMID:28286506

  8. N,N-dimethyl hexadecylamine and related amines regulate root morphogenesis via jasmonic acid signaling in Arabidopsis thaliana.

    PubMed

    Raya-González, Javier; Velázquez-Becerra, Crisanto; Barrera-Ortiz, Salvador; López-Bucio, José; Valencia-Cantero, Eduardo

    2017-05-01

    Plant growth-promoting rhizobacteria are natural inhabitants of roots, colonize diverse monocot and dicot species, and affect several functional traits such as root architecture, adaptation to adverse environments, and protect plants from pathogens. N,N-dimethyl-hexadecylamine (C16-DMA) is a rhizobacterial amino lipid that modulates the postembryonic development of several plants, likely as part of volatile blends. In this work, we evaluated the bioactivity of C16-DMA and other related N,N-dimethyl-amines with varied length and found that inhibition of primary root growth was related to the length of the acyl chain. C16-DMA inhibited primary root growth affecting cell division and elongation, while promoting lateral root formation and root hair growth and density in Arabidopsis thaliana (Arabidopsis) wild-type (WT) seedlings. Interestingly, C16-DMA induced the expression of the jasmonic acid (JA)-responsive gene marker pLOX2:uidA, while JA-related mutants jar1, coi1-1, and myc2 affected on JA biosynthesis and perception, respectively, are compromised in C16-DMA responses. Comparison of auxin-regulated gene expression, root architectural changes in WT, and auxin-related mutants aux1-7, tir1/afb2/afb3, and arf7-1/arf19-1 to C16-DMA shows that the C16-DMA effects occur independently of auxin signaling. Together, these results reveal a novel class of aminolipids modulating root organogenesis via crosstalk with the JA signaling pathway.

  9. Plant growth-promoting rhizobacteria and root system functioning

    PubMed Central

    Vacheron, Jordan; Desbrosses, Guilhem; Bouffaud, Marie-Lara; Touraine, Bruno; Moënne-Loccoz, Yvan; Muller, Daniel; Legendre, Laurent; Wisniewski-Dyé, Florence; Prigent-Combaret, Claire

    2013-01-01

    The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture. PMID:24062756

  10. Transposon tagging and the study of root development in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Tsugeki, R.; Olson, M. L.; Fedoroff, N. V.

    1998-01-01

    The maize Ac-Ds transposable element family has been used as the basis of transposon mutagenesis systems that function in a variety of plants, including Arabidopsis. We have developed modified transposons and methods which simplify the detection, cloning and analysis of insertion mutations. We have identified and are analyzing two plant lines in which genes expressed either in the root cap cells or in the quiescent cells, cortex/endodermal initial cells and columella cells of the root cap have been tagged with a transposon carrying a reporter gene. A gene expressed in root cap cells tagged with an enhancer-trap Ds was isolated and its corresponding EST cDNA was identified. Nucleotide and deduced amino acid sequences of the gene show no significant similarity to other genes in the database. Genetic ablation experiments have been done by fusing a root cap-specific promoter to the diphtheria toxin A-chain gene and introducing the fusion construct into Arabidopsis plants. We find that in addition to eliminating gravitropism, root cap ablation inhibits elongation of roots by lowering root meristematic activities.

  11. Effects of conventional anchorage on premolar root development during treatment with a pendulum appliance.

    PubMed

    Kinzinger, Gero; Pantel, Cora; Ludwig, Björn; Gülden, Norbert; Glasl, Bettina; Lisson, Jörg

    2010-07-01

    By metrically analyzing orthopantomograms, we aimed in this study to retrospectively investigate whether maxillary premolars used as anchoring teeth during molar distalization with pendulum appliances would reveal inhibited root development. The upper molars were distalized with a modified pendulum appliance (Pendulum K) in 36 adolescents (14 males, 22 females, mean age 12.3 years). Mean treatment period was 19.5 weeks. Orthopantomograms of each patient were taken at the start (time point T1) and after completion of molar distalization (time point T2). The enlargement of the posterior region was ascertained individually quadrant by quadrant for each radiograph, followed by measurement of the vestibular tooth lengths of the premolars whose root development was for the most part not yet complete. To assess further root development in the premolar region, the differences were calculated between tooth lengths at the start and end of treatment. During treatment with the pendulum appliance a general increase in tooth lengths in the anchorage region was observed (1.37 +/- 1.70 mm, p<0.0001). Differentiated by dental age, we noted increases in tooth lengths of patients with second molars in the budding stage (patient group PG 1: 0.93 +/- 1.37 mm, p<0.0001) as well as of patients with fully-erupted second molars (patient group PG 2: 1.81 +/- 1.88 mm, p<0.0001). Both groups demonstrated greater increases in the second premolars than the first premolars; the increases group-wise were larger in PG 2 than PG 1. However, both the group comparison (PG 1 versus PG 2) and the side comparison (right versus left) (differentiated into first and second molars) showed no statistically relevant differences. Visual assessment of the radiographs revealed no evidence of treatment-related root deviations. A highly complex system of forces acts on the anchoring teeth during molar distalization with the conventionally-anchored Pendulum K. However, the Pendulum K appliance's specific

  12. Nuclear Trapping Controls the Position-Dependent Localization of CAPRICE in the Root Epidermis of Arabidopsis1[C][W

    PubMed Central

    Kang, Yeon Hee; Song, Sang-Kee; Schiefelbein, John; Lee, Myeong Min

    2013-01-01

    Cell fate determination and differentiation are central processes in the development of multicellular organisms, and the Arabidopsis (Arabidopsis thaliana) root epidermis provides a model system to study the molecular basis of these processes. A lateral inhibition mechanism mediated by an R3 single-repeat MYB protein, CAPRICE (CPC), has been proposed to explain the specification of the two types of root epidermal cells (hair cells and nonhair cells). However, it is not clear how CPC acts preferentially in the H-position cells, rather than the N-position cells, where its gene is expressed. To explore this issue, we examined the effect of misexpressed CPC on cell fate specification and CPC localization in the root epidermis. We show that CPC is able to move readily within the root epidermis when its expression level is high and that CPC can induce the hair cell fate in a cell-autonomous manner. We provide evidence that CPC is capable of moving from the stele tissue in the center of the root to the outermost epidermal layer, where it can induce the hair cell fate. In addition, we show that CPC protein accumulates primarily in the nuclei of H-position cells in the early meristematic region, and this localization requires the H-cell-expressed ENHANCER OF GLABRA3 (EGL3) basic helix-loop-helix transcription factor. These results suggest that cell-cell movement of CPC occurs readily within the meristematic region of the root and that EGL3 preferentially traps the CPC protein in the H-position cells of the epidermis. PMID:23832626

  13. The Roots of Plantation Cottonwood: Their Characteristics and Properties

    Treesearch

    John K. Francis

    1985-01-01

    The root biomass and its distribution and the growth rate of roots of pulpwood-size cottonwood (Popolus deltoides) in plantations were estimated by excavation and sampling. About 27 percent of the total biomass was in root tissue. Equations for predicting stump-taproot dry weight from d.b.h. and top dry weight were derived. Lateral roots in two...

  14. Reactive Oxygen Species Tune Root Tropic Responses1[OPEN

    PubMed Central

    Krieger, Gat

    2016-01-01

    The default growth pattern of primary roots of land plants is directed by gravity. However, roots possess the ability to sense and respond directionally to other chemical and physical stimuli, separately and in combination. Therefore, these root tropic responses must be antagonistic to gravitropism. The role of reactive oxygen species (ROS) in gravitropism of maize and Arabidopsis (Arabidopsis thaliana) roots has been previously described. However, which cellular signals underlie the integration of the different environmental stimuli, which lead to an appropriate root tropic response, is currently unknown. In gravity-responding roots, we observed, by applying the ROS-sensitive fluorescent dye dihydrorhodamine-123 and confocal microscopy, a transient asymmetric ROS distribution, higher at the concave side of the root. The asymmetry, detected at the distal elongation zone, was built in the first 2 h of the gravitropic response and dissipated after another 2 h. In contrast, hydrotropically responding roots show no transient asymmetric distribution of ROS. Decreasing ROS levels by applying the antioxidant ascorbate, or the ROS-generation inhibitor diphenylene iodonium attenuated gravitropism while enhancing hydrotropism. Arabidopsis mutants deficient in Ascorbate Peroxidase 1 showed attenuated hydrotropic root bending. Mutants of the root-expressed NADPH oxidase RBOH C, but not rbohD, showed enhanced hydrotropism and less ROS in their roots apices (tested in tissue extracts with Amplex Red). Finally, hydrostimulation prior to gravistimulation attenuated the gravistimulated asymmetric ROS and auxin signals that are required for gravity-directed curvature. We suggest that ROS, presumably H2O2, function in tuning root tropic responses by promoting gravitropism and negatively regulating hydrotropism. PMID:27535793

  15. Surgical Treatment of Combined Posterior Root Tears of the Lateral Meniscus and ACL Tears

    PubMed Central

    Pan, Fengyu; Hua, Shan; Ma, Zhuang

    2015-01-01

    Background The treatment of anterior cruciate ligament (ACL) rupture complicated with posterior lateral meniscus root (PLMR) tears remains controversial. The goal of this study was to evaluate clinical outcomes of PLMR tear refixation versus left untreated at the time of reconstruction. Material/Methods From August 2001 to January 2012, 31 patients who undergone repair of PLMR tears were evaluated and compared with a matched control group with untreated PLMR tears. Clinical evaluation consisted of the Lysholm scale, subjective International Knee Documentation Committee (IKDC) questionnaires, and radiographic evaluation with MRI. Results Regarding to the Lysholm score and the subjective questionnaire score, there were no statistical difference between the 2 groups. However, patients after operative treatment reach higher functional scores and lower rates of osteoarthritis (normal: group A, 80%, and group B, 48%, respectively) with statistical significance (P<0.05) compared to the matched control group. Conclusions Surgical and conservative treatment of the PLMR can both effectively improve knee function. However, a tendency towards higher functional scores and lower rates of osteoarthritis for patients with operative treatment was observed. PMID:25959903

  16. Modeling coexistence of oscillation and Delta/Notch-mediated lateral inhibition in pancreas development and neurogenesis.

    PubMed

    Tiedemann, Hendrik B; Schneltzer, Elida; Beckers, Johannes; Przemeck, Gerhard K H; Hrabě de Angelis, Martin

    2017-10-07

    During pancreas development, Neurog3 positive endocrine progenitors are specified by Delta/Notch (D/N) mediated lateral inhibition in the growing ducts. During neurogenesis, genes that determine the transition from the proneural state to neuronal or glial lineages are oscillating before their expression is sustained. Although the basic gene regulatory network is very similar, cycling gene expression in pancreatic development was not investigated yet, and previous simulations of lateral inhibition in pancreas development excluded by design the possibility of oscillations. To explore this possibility, we developed a dynamic model of a growing duct that results in an oscillatory phase before the determination of endocrine progenitors by lateral inhibition. The basic network (D/N + Hes1 + Neurog3) shows scattered, stable Neurog3 expression after displaying transient expression. Furthermore, we included the Hes1 negative feedback as previously discussed in neurogenesis and show the consequences for Neurog3 expression in pancreatic duct development. Interestingly, a weakened HES1 action on the Hes1 promoter allows the coexistence of stable patterning and oscillations. In conclusion, cycling gene expression and lateral inhibition are not mutually exclusive. In this way, we argue for a unified mode of D/N mediated lateral inhibition in neurogenic and pancreatic progenitor specification. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Genome-wide association analysis of seedling root development in maize (Zea mays L.).

    PubMed

    Pace, Jordon; Gardner, Candice; Romay, Cinta; Ganapathysubramanian, Baskar; Lübberstedt, Thomas

    2015-02-05

    Plants rely on the root system for anchorage to the ground and the acquisition and absorption of nutrients critical to sustaining productivity. A genome wide association analysis enables one to analyze allelic diversity of complex traits and identify superior alleles. 384 inbred lines from the Ames panel were genotyped with 681,257 single nucleotide polymorphism markers using Genotyping-by-Sequencing technology and 22 seedling root architecture traits were phenotyped. Utilizing both a general linear model and mixed linear model, a GWAS study was conducted identifying 268 marker trait associations (p ≤ 5.3×10(-7)). Analysis of significant SNP markers for multiple traits showed that several were located within gene models with some SNP markers localized within regions of previously identified root quantitative trait loci. Gene model GRMZM2G153722 located on chromosome 4 contained nine significant markers. This predicted gene is expressed in roots and shoots. This study identifies putatively associated SNP markers associated with root traits at the seedling stage. Some SNPs were located within or near (<1 kb) gene models. These gene models identify possible candidate genes involved in root development at the seedling stage. These and respective linked or functional markers could be targets for breeders for marker assisted selection of seedling root traits.

  18. Root (Botany)

    Treesearch

    Robert R. Ziemer

    1981-01-01

    Plant roots can contribute significantly to the stability of steep slopes. They can anchor through the soil mass into fractures in bedrock, can cross zones of weakness to more stable soil, and can provide interlocking long fibrous binders within a weak soil mass. In deep soil, anchoring to bedrock becomes negligible, and lateral reinforcement predominates

  19. Radiologically determined orthodontically induced external apical root resorption in incisors after non-surgical orthodontic treatment of class II division 1 malocclusion: a systematic review.

    PubMed

    Tieu, Long D; Saltaji, Humam; Normando, David; Flores-Mir, Carlos

    2014-07-23

    This study aims to critically evaluate orthodontically induced external apical root resorption (OIEARR) in incisors of patients undergoing non-surgical orthodontic treatment of class II division 1 malocclusion by a systematic review of the published data. An electronic search of two databases was performed; the bibliographies of relevant articles were also reviewed. Studies were included if they examined the amount of OIEARR in incisors produced during non-surgical orthodontic treatment of individuals with class II division I malocclusion in the permanent dentition. Individuals had no previous history of OIEARR, syndromes, pathologies, or general diseases. Study selections, risk of bias assessment, and data extraction were performed in duplicate. Eight studies of moderate methodological quality were finally included. An increased prevalence (65.6% to 98.1%) and mild to moderate severity of OIEARR (<4 mm and <1/3 original root) were reported. No sex difference in root resorption was found. For the maxillary incisors, there was no evidence that either the central or lateral incisor was more susceptible to OIEARR. A weak to moderate positive correlation between treatment duration and root resorption, and anteroposterior apical displacement and root resorption was found. Current limited evidence suggests that non-surgical comprehensive orthodontic treatment to correct class II division 1 malocclusions causes increased prevalence and severity of OIEARR the more the incisor roots are displaced and the longer this movement takes.

  20. Flood-Ring Formation and Root Development in Response to Experimental Flooding of Young Quercus robur Trees

    PubMed Central

    Copini, Paul; den Ouden, Jan; Robert, Elisabeth M. R.; Tardif, Jacques C.; Loesberg, Walter A.; Goudzwaard, Leo; Sass-Klaassen, Ute

    2016-01-01

    Spring flooding in riparian forests can cause significant reductions in earlywood-vessel size in submerged stem parts of ring-porous tree species, leading to the presence of ‘flood rings’ that can be used as a proxy to reconstruct past flooding events, potentially over millennia. The mechanism of flood-ring formation and the relation with timing and duration of flooding are still to be elucidated. In this study, we experimentally flooded 4-year-old Quercus robur trees at three spring phenophases (late bud dormancy, budswell, and internode expansion) and over different flooding durations (2, 4, and 6 weeks) to a stem height of 50 cm. The effect of flooding on root and vessel development was assessed immediately after the flooding treatment and at the end of the growing season. Ring width and earlywood-vessel size and density were measured at 25- and 75-cm stem height and collapsed vessels were recorded. Stem flooding inhibited earlywood-vessel development in flooded stem parts. In addition, flooding upon budswell and internode expansion led to collapsed earlywood vessels below the water level. At the end of the growing season, mean earlywood-vessel size in the flooded stem parts (upon budswell and internode expansion) was always reduced by approximately 50% compared to non-flooded stem parts and 55% compared to control trees. This reduction was already present 2 weeks after flooding and occurred independent of flooding duration. Stem and root flooding were associated with significant root dieback after 4 and 6 weeks and mean radial growth was always reduced with increasing flooding duration. By comparing stem and root flooding, we conclude that flood rings only occur after stem flooding. As earlywood-vessel development was hampered during flooding, a considerable number of narrow earlywood vessels present later in the season, must have been formed after the actual flooding events. Our study indicates that root dieback, together with strongly reduced hydraulic

  1. Root Cortical Senescence Improves Growth under Suboptimal Availability of N, P, and K1[OPEN

    PubMed Central

    Schneider, Hannah M.

    2017-01-01

    Root cortical senescence (RCS) in Triticeae reduces nutrient uptake, nutrient content, respiration, and radial hydraulic conductance of root tissue. We used the functional-structural model SimRoot to evaluate the functional implications of RCS in barley (Hordeum vulgare) under suboptimal nitrate, phosphorus, and potassium availability. The utility of RCS was evaluated using sensitivity analyses in contrasting nutrient regimes. At flowering (80 d), RCS increased simulated plant growth by up to 52%, 73%, and 41% in nitrate-, phosphorus-, and potassium-limiting conditions, respectively. Plants with RCS had reduced nutrient requirement of root tissue for optimal plant growth, reduced total cumulative cortical respiration, and increased total carbon reserves. Nutrient reallocation during RCS had a greater effect on simulated plant growth than reduced respiration or nutrient uptake. Under low nutrient availability, RCS had greater benefit in plants with fewer tillers. RCS had greater benefit in phenotypes with fewer lateral roots at low nitrate availability, but the opposite was true in low phosphorus or potassium availability. Additionally, RCS was quantified in field-grown barley in different nitrogen regimes. Field and virtual soil coring simulation results demonstrated that living cortical volume per root length (an indicator of RCS) decreased with depth in younger plants, while roots of older plants had very little living cortical volume per root length. RCS may be an adaptive trait for nutrient acquisition by reallocating nutrients from senescing tissue and secondarily by reducing root respiration. These simulated results suggest that RCS merits investigation as a breeding target for enhanced soil resource acquisition and edaphic stress tolerance. PMID:28667049

  2. WEREWOLF, a Regulator of Root Hair Pattern Formation, Controls Flowering Time through the Regulation of FT mRNA Stability1[C][W][OA

    PubMed Central

    Seo, Eunjoo; Yu, Jihyeon; Ryu, Kook Hui; Lee, Myeong Min; Lee, Ilha

    2011-01-01

    A key floral activator, FT, integrates stimuli from long-day, vernalization, and autonomous pathways and triggers flowering by directly regulating floral meristem identity genes in Arabidopsis (Arabidopsis thaliana). Since a small amount of FT transcript is sufficient for flowering, the FT level is strictly regulated by diverse genes. In this study, we show that WEREWOLF (WER), a MYB transcription factor regulating root hair pattern, is another regulator of FT. The mutant wer flowers late in long days but normal in short days and shows a weak sensitivity to vernalization, which indicates that WER controls flowering time through the photoperiod pathway. The expression and double mutant analyses showed that WER modulates FT transcript level independent of CONSTANS and FLOWERING LOCUS C. The histological analysis of WER shows that it is expressed in the epidermis of leaves, where FT is not expressed. Consistently, WER regulates not the transcription but the stability of FT mRNA. Our results reveal a novel regulatory mechanism of FT that is non cell autonomous. PMID:21653190

  3. Development of an immunochromatographic lateral flow device for rapid diagnosis of Vibrio cholerae O1 serotype Ogawa.

    PubMed

    Chen, Weixian; Zhang, Jun; Lu, Gang; Yuan, Zuowei; Wu, Qian; Li, Jingjing; Xu, Guiping; He, An; Zheng, Jian; Zhang, Juan

    2014-04-01

    Cholera is an acute malignant infectious disease caused by the bacteria Vibrio cholerae leading to severe dehydrating diarrhea and vomiting, even high rates of mortality in some cases. However, the prevention of the epidemic disease is achievable if proper sanitation practices are followed, provided the accurate and prompt diagnosis of each prevalent serotype in cholera epidemic. The current gold standard of bacterial culture is inadequate for rapid diagnosis. Our aim is to develop an immunochromatographic test format for O1 serotype Ogawa diagnosis and provide the need for better epidemic prevention and early response. The monoclonal antibodies were raised in conventional method and subsequently screened for a match pair. A variety of related and unrelated bacteria strains recruited were employed to test their sensitivity, specificity etc. by indirect ELISA. The human fecal samples were used to test the final lateral-flow device product to satisfy the measurement requirement. A new monoclonal antibody (McAb) pair, named IXiao₃G₆ and IXiao₁D₉, was generated, which is specifically against V. cholerae O1 serotype Ogawa. Additionally, we developed an immunochromatographic lateral flow device (LFD) using this McAb pair for the highly specific and rapid (5 min) detection of Ogawa. Our product has advantages of simplicity and precision, and can benefit the scene and elementary medical institutions. Copyright © 2013 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  4. Unearthing the hidden world of roots: Root biomass and architecture differ among species within the same guild

    PubMed Central

    2017-01-01

    The potential benefits of planting trees have generated significant interest with respect to sequestering carbon and restoring other forest based ecosystem services. Reliable estimates of carbon stocks are pivotal for understanding the global carbon balance and for promoting initiatives to mitigate CO2 emissions through forest management. There are numerous studies employing allometric regression models that convert inventory into aboveground biomass (AGB) and carbon (C). Yet the majority of allometric regression models do not consider the root system nor do these equations provide detail on the architecture and shape of different species. The root system is a vital piece toward understanding the hidden form and function roots play in carbon accumulation, nutrient and plant water uptake, and groundwater infiltration. Work that estimates C in forests as well as models that are used to better understand the hydrologic function of trees need better characterization of tree roots. We harvested 40 trees of six different species, including their roots down to 2 mm in diameter and created species-specific and multi-species models to calculate aboveground (AGB), coarse root belowground biomass (BGB), and total biomass (TB). We also explore the relationship between crown structure and root structure. We found that BGB contributes ~27.6% of a tree’s TB, lateral roots extend over 1.25 times the distance of crown extent, root allocation patterns varied among species, and that AGB is a strong predictor of TB. These findings highlight the potential importance of including the root system in C estimates and lend important insights into the function roots play in water cycling. PMID:29023553

  5. The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range

    USGS Publications Warehouse

    Schmidt, K.M.; Roering, J.J.; Stock, J.D.; Dietrich, W.E.; Montgomery, D.R.; Schaub, T.

    2001-01-01

    Decades of quantitative measurement indicate that roots can mechanically reinforce shallow soils in forested landscapes. Forests, however, have variations in vegetation species and age which can dominate the local stability of landslide-initiation sites. To assess the influence of this variability on root cohesion we examined scarps of landslides triggered during large storms in February and November of 1996 in the Oregon Coast Range and hand-dug soil pits on stable ground. At 41 sites we estimated the cohesive reinforcement to soil due to roots by determining the tensile strength, species, depth, orientation, relative health, and the density of roots ???1 mm in diameter within a measured soil area. We found that median lateral root cohesion ranges from 6.8-23.2 kPa in industrial forests with significant understory and deciduous vegetation to 25.6-94.3 kPa in natural forests dominated by coniferous vegetation. Lateral root cohesion in clearcuts is uniformly ???10 kPa. Some 100-year-old industrial forests have species compositions, lateral root cohesion, and root diameters that more closely resemble 10-year-old clearcuts than natural forests. As such, the influence of root cohesion variability on landslide susceptibility cannot be determined solely from broad age classifications or extrapolated from the presence of one species of vegetation. Furthermore, the anthropogenic disturbance legacy modifies root cohesion for at least a century and should be considered when comparing contemporary landslide rates from industrial forests with geologic background rates.

  6. endodermal-amyloplast less 1 is a novel allele of SHORT-ROOT

    NASA Astrophysics Data System (ADS)

    Morita, Miyo T.; Saito, Chieko; Nakano, Akihiko; Tasaka, Masao

    Plants can sense the direction of gravity and change the growth orientation of their organs. Arabidopsis mutants have been isolated and characterized in order to elucidate the molecular mechanisms of gravitropism. endodermal-amyloplast less 1 ( eal1) is a unique mutant that completely lacks gravitropism in inflorescence stems and exhibits reduced gravitropism in hypocotyls, whereas its roots showed normal gravitropism. Previously, it was suggested that differentiation or development of amyloplasts in shoot statocytes (endodermal cells) is affected by the eal1 mutation. Here, we have identified EAL1 as a SHORT-ROOT ( SHR) allele based on map position. Three nucleotides in the SHR coding region were deleted in the eal1 mutant, resulting in the deletion of just one amino acid. The protein encoded by the novel allele of SHR appears to have retained its function as a transcription factor since the endodermal cell layer was formed both in roots and in shoots of eal1. SCARECROW (SCR) promoter activity monitored by reporter protein expression was significantly decreased in eal1, suggesting that the activity of SHR lacking one amino acid is reduced. In addition, transcription levels of SHOOT GRAVITROPISM 5 (SGR5), which is mainly expressed in the endodermis of inflorescence stems, was markedly decreased. Together with the presence of abnormal endodermal amyloplasts in eal1, these results strongly suggest that the endodermis observed in eal1 is not sufficiently differentiated to execute shoot gravitropism.

  7. Enhanced M1/M2 macrophage ratio promotes orthodontic root resorption.

    PubMed

    He, D; Kou, X; Luo, Q; Yang, R; Liu, D; Wang, X; Song, Y; Cao, H; Zeng, M; Gan, Y; Zhou, Y

    2015-01-01

    Mechanical force-induced orthodontic root resorption is a major clinical challenge in orthodontic treatment. Macrophages play an important role in orthodontic root resorption, but the underlying mechanism remains unclear. In this study, we examined the mechanism by which the ratio of M1 to M2 macrophage polarization affects root resorption during orthodontic tooth movement. Root resorption occurred when nickel-titanium coil springs were applied on the upper first molars of rats for 3 to 14 d. Positively stained odontoclasts or osteoclasts with tartrate-resistant acid phosphatase were found in resorption areas. Meanwhile, M1-like macrophages positive for CD68 and inducible nitric oxide synthase (iNOS) persistently accumulated on the compression side of periodontal tissues. In addition, the expressions of the M1 activator interferon-γ and the M1-associated pro-inflammatory cytokine tumor necrosis factor (TNF)-α were upregulated on the compression side of periodontal tissues. When the coil springs were removed at the 14th day after orthodontic force application, root resorption was partially rescued. The number of CD68(+)CD163(+) M2-like macrophages gradually increased on the compression side of periodontal tissues. The levels of M2 activator interleukin (IL)-4 and the M2-associated anti-inflammatory cytokine IL-10 also increased. Systemic injection of the TNF-α inhibitor etanercept or IL-4 attenuated the severity of root resorption and decreased the ratio of M1 to M2 macrophages. These data imply that the balance between M1 and M2 macrophages affects orthodontic root resorption. Root resorption was aggravated by an enhanced M1/M2 ratio but was partially rescued by a reduced M1/M2 ratio. © International & American Associations for Dental Research 2014.

  8. The Evaluation of Root Fracture with Cone Beam Computed Tomography (CBCT): An Epidemiological Study.

    PubMed

    Doğan, Mehmet-Sinan; Callea, Michele; Kusdhany, Lindawati S; Aras, Ahmet; Maharani, Diah-Ayu; Mandasari, Masita; Adiatman, Melissa; Yavuz, Izzet

    2018-01-01

    The aim of this study was evaluation of the cone-beam computed tomography (CBCT) image of 50 patients at the ages of 8-15 suspecting root fracture and root fracture occurred, exposed to dental traumatic. In additionally, this study was showed effect of crown fracture on root fracture healing. All of the individuals included in the study were obtained images with the cone-beam computed tomography range of 0,3 voxel and 8.9 seconds.(i-CAT®, Model 17-19, Imaging SciencesInternational, Hatfield, Pa USA).The information obtained from the history and CBCT images of patients were evaluated using chi-square test statistical method the mean and the distribution of the independent variables. 50 children, have been exposed to trauma, was detected root fracture injury in 97 teeth. Horizontal root fracture 63.9% of the 97 tooth, the oblique in 31.9%, both the horizontal and oblique in 1.03%, partial fracture in 2.06% ,and both horizontally and vertical in 1.03% was observed.The most affected teeth, respectively of, are the maxillary central incisor (41.23% left, right, 37.11%), maxillary left lateral incisor (9.27%), maxillary right lateral incisor (11.34%), and mandibular central incisor (1.03%). Crown fractures have negative effects on spontaneous healing of root fractures. CBCT are used selected as an alternative to with conventional radiography for diagnosis of root fractures. In particular, ıt's cross-sectional image is quite useful and has been provided more conveniences seeing the results of diagnosis and treatment for clinician. Key words: Root fracture, CBCT, Epidemiolog.

  9. The Association of a Longidorus Species with Stunting and Root Damage of Loblolly Pine (Pinus taeda L.) Seedlings

    Treesearch

    Stephen W. Fraedrich; Michelle M. Cram

    2002-01-01

    A Longidorus species was consistently associated with patches of stunted and chlorotic loblolly pine seedlings at a forest-tree nursery in Georgia. Seedlings from affected areas had poorly developed root systems that lacked lateral and feeder roots. Longidorus population densities in composite soil samples from the margins of...

  10. Implementing Dynamic Root Optimization in Noah-MP for Simulating Phreatophytic Root Water Uptake

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Niu, Guo-Yue; Fang, Yuan-Hao; Wu, Run-Jian; Yu, Jing-Jie; Yuan, Guo-Fu; Pozdniakov, Sergey P.; Scott, Russell L.

    2018-03-01

    Widely distributed in arid and semiarid regions, phreatophytic roots extend into the saturated zone and extract water directly from groundwater. In this paper, we implemented a vegetation optimality model of root dynamics (VOM-ROOT) in the Noah land surface model with multiparameterization options (Noah-MP LSM) to model the extraction of groundwater through phreatophytic roots at a riparian site with a hyperarid climate (with precipitation of 35 mm/yr) in northwestern China. VOM-ROOT numerically describes the natural optimization of the root profile in response to changes in subsurface water conditions. The coupled Noah-MP/VOM-ROOT model substantially improves the simulation of surface energy and water fluxes, particularly during the growing season, compared to the prescribed static root profile in the default Noah-MP. In the coupled model, more roots are required to grow into the saturated zone to meet transpiration demand when the groundwater level declines over the growing season. The modeling results indicate that at the study site, the modeled annual transpiration is 472 mm, accounting for 92.3% of the total evapotranspiration. Direct root water uptake from the capillary fringe and groundwater, which is supplied by lateral groundwater flow, accounts for approximately 84% of the total transpiration. This study demonstrates the importance of implementing a dynamic root scheme in a land surface model for adequately simulating phreatophytic root water uptake and the associated latent heat flux.

  11. Quantitative Classification of Rice (Oryza sativa L.) Root Length and Diameter Using Image Analysis.

    PubMed

    Gu, Dongxiang; Zhen, Fengxian; Hannaway, David B; Zhu, Yan; Liu, Leilei; Cao, Weixing; Tang, Liang

    2017-01-01

    Quantitative study of root morphological characteristics of plants is helpful for understanding the relationships between their morphology and function. However, few studies and little detailed and accurate information of root characteristics were reported in fine-rooted plants like rice (Oryza sativa L.). The aims of this study were to quantitatively classify fine lateral roots (FLRs), thick lateral roots (TLRs), and nodal roots (NRs) and analyze their dynamics of mean diameter (MD), lengths and surface area percentage with growth stages in rice plant. Pot experiments were carried out during three years with three rice cultivars, three nitrogen (N) rates and three water regimes. In cultivar experiment, among the three cultivars, root length of 'Yangdao 6' was longest, while the MD of its FLR was the smallest, and the mean diameters for TLR and NR were the largest, the surface area percentage (SAP) of TLRs (SAPT) was the highest, indicating that Yangdao 6 has better nitrogen and water uptake ability. High N rate increased the length of different types of roots and increased the MD of lateral roots, decreased the SAP of FLRs (SAPF) and TLRs, but increased the SAP of NRs (SAPN). Moderate decrease of water supply increased root length and diameter, water stress increased the SAPF and SAPT, but decreased SAPN. The quantitative results indicate that rice plant tends to increase lateral roots to get more surface area for nitrogen and water uptake when available assimilates are limiting under nitrogen and water stress environments.

  12. Development of Riparian Tree Roots in Compacted Coarse Gravel Mixtures - Analysis of Alternative Measures to Decrease Asphalt Damages caused by Tree Roots

    NASA Astrophysics Data System (ADS)

    Gruber, Eva; Weissteiner, Clemens; Rauch, Hans Peter

    2017-04-01

    Tree roots are a major concern in the maintenance of roads in general, and infrequently used paths along rivers and cycling lanes specifically. High repairing costs paired with insufficient mitigation measures lead to the importance of developing a strategy to prevent tree roots from entering the infrastructural construction. Adding to this, damaged asphalt is a threat to cyclists and pedestrians, which makes the search for a solution altogether a pressing matter. In the process of an ongoing project with ViaDonau, during which different measures are tested on-site along the Danube, a field experiment has been set up to test the impact of coarse gravel as sublayer material on the development of tree roots. The aim is to present a recommendation of a certain gravel mixture to use as sublayer. It should reduce root penetration into the pavement construction and increases a drainage effect to prevent condensation and high moisture levels underneath the asphalt. The present work is focusing on the root development of the field experiment after two vegetation periods. The field experiment simulates a concrete-paved road with a vegetation strip next to it. The setup is identical for all fields with poplars and willow cuttings planted along the paved area and the possibility for the tree roots to enter the sublayers of the pavement. These sublayers are made up of six boxes filled with differently sized coarse gravel mixtures (0/32, 8/32, 8/32 hydraulic bound mixture, 16/32, 0/63 and 16/63) to test if the composition has an impact on the root penetration and permanent development. Root dry biomass data in the boxes was collected in 27 subplots. Root dry biomass data was put in relation to the biomass data of the vegetated soil strips in order to consider different biomass development. Additionally for one column of the subplots tree roots were scanned to gain information on the diameter distribution of the collected biomass. Biomass data was also compared to last year's to

  13. Rates of root and organism growth, soil conditions, and temporal and spatial development of the rhizosphere.

    PubMed

    Watt, Michelle; Silk, Wendy K; Passioura, John B

    2006-05-01

    Roots growing in soil encounter physical, chemical and biological environments that influence their rhizospheres and affect plant growth. Exudates from roots can stimulate or inhibit soil organisms that may release nutrients, infect the root, or modify plant growth via signals. These rhizosphere processes are poorly understood in field conditions. We characterize roots and their rhizospheres and rates of growth in units of distance and time so that interactions with soil organisms can be better understood in field conditions. We review: (1) distances between components of the soil, including dead roots remnant from previous plants, and the distances between new roots, their rhizospheres and soil components; (2) characteristic times (distance(2)/diffusivity) for solutes to travel distances between roots and responsive soil organisms; (3) rates of movement and growth of soil organisms; (4) rates of extension of roots, and how these relate to the rates of anatomical and biochemical ageing of root tissues and the development of the rhizosphere within the soil profile; and (5) numbers of micro-organisms in the rhizosphere and the dependence on the site of attachment to the growing tip. We consider temporal and spatial variation within the rhizosphere to understand the distribution of bacteria and fungi on roots in hard, unploughed soil, and the activities of organisms in the overlapping rhizospheres of living and dead roots clustered in gaps in most field soils. Rhizosphere distances, characteristic times for solute diffusion, and rates of root and organism growth must be considered to understand rhizosphere development. Many values used in our analysis were estimates. The paucity of reliable data underlines the rudimentary state of our knowledge of root-organism interactions in the field.

  14. Bacterial killing by several root filling materials and methods in an ex vivo infected root canal model.

    PubMed

    Özcan, E; Eldeniz, A U; Arı, H

    2011-12-01

    To evaluate the ability of two root canal sealers (Epoxy resin-based AH Plus or polydimethylsiloxane-based GuttaFlow) and five root filling techniques (continuous wave of condensation, Thermafil, lateral condensation, matched taper single gutta-percha point, laterally condensed-matched taper gutta-percha point) to kill bacteria in experimentally infected dentinal tubules. An infected dentine block model was used. One hundred and twenty extracted, single-rooted human teeth were randomly divided into 10 test (n = 10) and 2 control (n = 10) groups. The roots, except negative controls, were infected with Enterococcus faecalis for 21 days. The root canals were then filled using the test materials and methods. Positive controls were not filled. Sterile roots were used as negative controls. Dentine powder was obtained from all root canals using gates glidden drills using a standard method. The dentine powder was diluted and inoculated into bacterial growth media. Total colony-forming units (CFU) were calculated for each sample. Statistical analysis was performed using the Kruskal-Wallis and Mann-Whitney U test. The epoxy resin-based sealer was effective in killing E. faecalis except when using Thermafil (P < 0.05), but the polydimethylsiloxane-based sealer was not effective in killing this microorganism except in the continuous wave group (P < 0.05). In the test model, AH Plus killed bacteria in infected dentine more effectively than GuttaFlow. The filling method was less important than the sealer material. © 2011 International Endodontic Journal.

  15. A novel root gravitropism mutant of Arabidopsis thaliana exhibiting altered auxin physiology

    NASA Technical Reports Server (NTRS)

    Simmons, C.; Migliaccio, F.; Masson, P.; Caspar, T.; Soll, D.

    1995-01-01

    A root gravitropism mutant was isolated from the DuPont Arabidopsis thaliana T-DNA insertional mutagenesis collection. This mutant has reduced root gravitropism, hence the name rgr1. Roots of rgr1 are shorter than those of wild-type, and they have reduced lateral root formation. In addition, roots of rgr1 coil clockwise on inclined agar plates, unlike wild-type roots which grow in a wavy pattern. The rgr1 mutant has increased resistance, as measured by root elongation, to exogenously applied auxins (6-fold to indole-3-acetic acid, 3-fold to 2,4-dichlorophenoxyacetic acid, and 2-fold to napthyleneacetic acid). It is also resistant to polar auxin transport inhibitors (2-fold to triiodobenzoic acid and 3- to 5-fold to napthylphthalamic acid). The rgr1 mutant does not appear to be resistant to other plant hormone classes. When grown in the presence of 10(-7) M 2,4-dichlorophenoxyacetic acid, rgr1 roots have fewer root hairs than wild type. All these rgr1 phenotypes are Mendelian recessives. Complementation tests indicate that rgr1 is not allelic to previously characterized agravitropic or auxin-resistant mutants. The rgr1 locus was mapped using visible markers to 1.4 +/- 0.6 map units from the CH1 locus at 1-65.4. The rgr1 mutation and the T-DNA cosegregate, suggesting that rgr1 was caused by insertional gene inactivation.

  16. GENETIC MODIFICATION OF GIBBERELLIC ACID SIGNALING TO PROMOTE CARBON SEQUESTRATION IN TREE ROOTS AND STEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busov, Victor

    cisgenes that encode proteins involved in gibberellin metabolism or signalling. Intact genomic copies of PtGA20ox7, PtGA2ox2,Pt RGL1_1, PtRGL1_2 and PtGAI1 genes from the genome-sequenced Populus trichocarpa clone Nisqually-1 were transformed into Populus tremula - alba (clone INRA 717-1B4), and growth, morphology and xylem cell size characterized in the greenhouse. Each cisgene encompassed 1-2?kb of 5' and 1?kb of 3' flanking DNA, as well as all native exons and introns. Large numbers of independent insertion events per cisgene (19-38), including empty vector controls, were studied. Three of the cisgenic modifications had significant effects on plant growth rate, morphology or wood properties. The PtGA20ox7 cisgene increased rate of shoot regeneration in vitro, accelerated early growth, and variation in growth rate was correlated with PtGA20ox7 gene expression. PtRGL1_1 and PtGA2ox2 caused reduced growth, while PtRGL1_2 gave rise to plants that grew normally but had significantly longer xylem fibres. RT-PCR studies suggested that the lack of growth inhibition observed in PtRGL1_2 cisgenic plants was a result of co-suppression. PtGAI1 slowed regeneration rate and both PtGAI1 and PtGA20ox7 gave rise to increased variance among events for early diameter and volume index, respectively. Our work suggests that cisgenic insertion of additional copies of native genes involved in growth regulation may provide tools to help modify plant architecture, expand the genetic variance in plant architecture available to breeders and accelerate transfer of alleles between difficult-to-cross species. The role of gibberellins (GAs) in regulation of lateral root development is poorly understood. We show that GA-deficient (35S:PcGA2ox1) and GA-insensitive (35S:rgl1) transgenic Populus exhibited increased lateral root proliferation and elongation under in vitro and greenhouse conditions, and these effects were reversed by exogenous GA treatment. In addition, RNA interference suppression of two

  17. Roles of BOR2, a Boron Exporter, in Cross Linking of Rhamnogalacturonan II and Root Elongation under Boron Limitation in Arabidopsis1[W

    PubMed Central

    Miwa, Kyoko; Wakuta, Shinji; Takada, Shigeki; Ide, Koji; Takano, Junpei; Naito, Satoshi; Omori, Hiroyuki; Matsunaga, Toshiro; Fujiwara, Toru

    2013-01-01

    Boron (B) is required for cross linking of the pectic polysaccharide rhamnogalacturonan II (RG-II) and is consequently essential for the maintenance of cell wall structure. Arabidopsis (Arabidopsis thaliana) BOR1 is an efflux B transporter for xylem loading of B. Here, we describe the roles of BOR2, the most similar paralog of BOR1. BOR2 encodes an efflux B transporter localized in plasma membrane and is strongly expressed in lateral root caps and epidermis of elongation zones of roots. Transfer DNA insertion of BOR2 reduced root elongation by 68%, whereas the mutation in BOR1 reduced it by 32% under low B availability (0.1 µm), but the reduction in shoot growth was not as obvious as that in the BOR1 mutant. A double mutant of BOR1 and BOR2 exhibited much more severe growth defects in both roots and shoots under B-limited conditions than the corresponding single mutants. All single and double mutants grew normally under B-sufficient conditions. These results suggest that both BOR1 and BOR2 are required under B limitation and that their roles are, at least in part, different. The total B concentrations in roots of BOR2 mutants were not significantly different from those in wild-type plants, but the proportion of cross-linked RG-II was reduced under low B availability. Such a reduction in RG-II cross linking was not evident in roots of the BOR1 mutant. Thus, we propose that under B-limited conditions, transport of boric acid/borate by BOR2 from symplast to apoplast is required for effective cross linking of RG-II in cell wall and root cell elongation. PMID:24114060

  18. Spontaneous laterality in mouse Crl:CD1.

    PubMed

    Maciejewska, Maria; Zięba, Katarzyna; Szymańska, Justyna; Warońska, Magdalena

    2016-01-01

    Lateralization developed very early in evolution and it is a characteristic of a wide range of representatives from the animal kingdom. The aim of the present study was to examine the spontaneous laterality in mice (Mus musculus) with the T-maze test. We wanted to check if this kind of functional asymmetry occurs at a population level, and also if there are gender differences in this regard. The study involved 40 mice Crl:CD1. The research procedure was simple: mice had to choose one arm of the T-shaped apparatus to find the exit. The animals performed the 10 trails one after another. We took into account only the animals' fist reactions while preparing results. Most of the animals (68%) chose the right arm of the maze. The lateralization was stronger among females--75% of them had preferences for the right side. The majority of animals, which preferred the right side, were from the food deprivation group. However, the results did not unequivocally resolve whether mice evince the functional asymmetry at the population level, or whether there are gender differences in this area. Further research with a larger group and multiple observations for each animal are required to answer these questions.

  19. The imaging features of the meniscal roots on isotropic 3D MRI in young asymptomatic volunteers.

    PubMed

    Wang, Ping; Zhang, Cheng-Zhou; Zhang, Di; Liu, Quan-Yuan; Zhong, Xiao-Fei; Yin, Zhi-Jie; Wang, Bin

    2018-05-01

    This study aimed to describe clearly the normal imaging features of the meniscal roots on the magnetic resonance imaging (MRI) with a 3-dimensional (3D) proton density-weighted (PDW) sequence at 3T. A total of 60 knees of 31 young asymptomatic volunteers were examined using a 3D MRI. The insertion patterns, constitution patterns, and MR signals of the meniscal roots were recorded. The anterior root of the medial meniscus (ARMM), the anterior root of the lateral meniscus (ARLM), and the posterior root of the medial meniscus (PRMM) had 1 insertion site, whereas the posterior root of the lateral meniscus (PRLM) can be divided into major and minor insertion sites. The ARLM and the PRMM usually consisted of multiple fiber bundles (≥3), whereas the ARMM and the PRLM often consisted of a single fiber bundle. The ARMM and the PRLM usually appeared as hypointense, whereas the ARLM and the PRMM typically exhibited mixed signals. The meniscal roots can be complex and diverse, and certain characteristics of them were observed on 3D MRI. Understanding the normal imaging features of the meniscal roots is extremely beneficial for further diagnosis of root tears.

  20. Influence of different irrigation levels on the root water uptake and the physiology of root-chicory

    NASA Astrophysics Data System (ADS)

    Vandoorne, B.; Dekoninck, N.; Lutts, S.; Capelle, B.; Javaux, M.

    2009-04-01

    In the context of global warming and given recent heat waves observed in Western Europe, the relationship between the soil water status and the plant health has recently received more attention, especially for cash crops like chicory. In this study we particularly investigated the impact of soil water status on the chicory root water uptake and density and made a link with physiological and yield parameters. During five months, we imposed different irrigation levels to 10 plants of chicory (Cichorium intybus var. sativum) growing in greenhouses. Each seed, coming from an autogamous selection in this allogamous species, was sown in a column of 1.42m height and 0.4m diameter filled with yellow sand and irrigated from the bottom with Hoagland solution. On those 10 columns, we measured the distribution of soil moisture with TDR (8 columns) and ERT (2 columns) probes. Lateral windows also allowed us to follow the root growth. The column weights were also monitored in order to quantify the plant transpiration. During the experiment, several physiological indices were also followed like the gas exchange (CO2 and transpiration), the chlorophyll fluorescence, the stomatal conductance, the plastochron, and the Leaf Area Index (LAI). At the end of the experiment, the complete root length density and the water content profiles were measured. We had also a look to the osmotic potential, the pigments content and the isotopic discrimination of carbon in the leaves, which gives information about the level of stress. At a biochemical point of view, we measured the content in enzymes involves in inulin metabolism and sugars synthesis. We observed that the plants suffering from a slight water stress developed better. A simple1-D model was built which describes the root growth in function of the irrigation level and of the soil and atmospheric boundary conditions.