Science.gov

Sample records for latitude-dependent solar wind

  1. Cosmic ray modulation with a Fisk-type heliospheric magnetic field and a latitude-dependent solar wind speed

    NASA Astrophysics Data System (ADS)

    Hitge, M.; Burger, R. A.

    2010-01-01

    The effect of a latitude-dependent solar wind speed on a Fisk heliospheric magnetic field [Fisk, L. A. Motion of the footpoints of heliospheric magnetic field lines at the Sun: implications for recurrent energetic particle events at high heliographic latitudes. J. Geophys. Res. 101, 15547-15553, 1996] was first discussed by Schwadron and Schwadron and McComas [Schwadron, N.A. An explanation for strongly underwound magnetic field in co-rotating rarefaction regions and its relationship to footpoint motion on the the sun. Geophys. Res. Lett. 29, 1-8, 2002. and Schwadron, N.A., McComas, D.J. Heliospheric “FALTS”: favored acceleration locations at the termination shock. Geophys. Res. Lett. 30, 41-1, 2003]. Burger and Sello [Burger, R.A., Sello, P.C. The effect on cosmic ray modulation of a Parker field modified by a latitudinal-dependent solar wind speed. Adv. Space Res. 35, 643-646, 2005] found a significant effect for a simplified 2D version of a latitude-dependent Fisk-type field while Miyake and Yanagita [Miyake, S., Yanagita, S. The effect of a modified Parker field on the modulation of the galactic cosmic rays. In: Proceedings of 30th International Cosmic Ray Conference. Merida, Mexico, vol. 1, 445-448, 2007] found a smaller effect. The current report improves on a previous attempt Hitge and Burger [Hitge, M., Burger, R.A. The effect of a latitude-dependent solar wind speed on cosmic-ray modulation in a Fisk-type heliospheric magnetic field. In: Proceedings of 30th International Cosmic Ray Conference. Merida, Mexico, vol. 1, pp. 449-450, 2007] where the global change in the solar wind speed and not the local speed gradient was emphasized. The sheared Fisk field of Schwadron and McComas [Schwadron, N.A., McComas, D.J. Heliospheric “FALTS”: Favored acceleration locations at the termination shock. Geophys. Res. Lett. 30, 41-1, 2003.) is similar to the current Schwadron-Parker hybrid field. Little difference is found between the effects of a Parker field and a Schwadron-Parker hybrid field on cosmic-ray modulation, in contrast to the results of Burger and Sello and Miyake and Yanagita [Burger, R.A., Sello, P.C. The effect on cosmic ray modulation of a Parker field modified by a latitudinal-dependent solar wind speed. Adv. Space Res. 35, 643-646, 2005 and Miyake, S., Yanagita, S. The effect of a modified Parker field on the modulation of the galactic cosmic rays. In: Proceedings of 30th International Cosmic Ray Conference. Merida, Mexico, vol. 1, pp. 445-448, 2007]. The two-dimensional approximation used by these authors is therefore inadequate to model the complexities of the actual three-dimensional field. We also show that a Fisk-type field with a latitude-dependent solar wind speed (Schwadron-Parker hybrid field) decreases both the relative amplitude of recurrent cosmic ray intensity variations and latitude gradients and yields similar constants of proportionality for these quantities as for the constant solar wind speed case.

  2. Latitude dependence of solar wind velocity observed > or approx. =1 AU

    SciTech Connect

    Mitchell, D.G.; Roelof, E.C.; Wolfe, J.H.

    1981-01-01

    The large-scale solar wind velocity structure in the outer heliosphere has been systematically analyzed for Carrington rotations 1587-1541 (March 1972 to April 1976). Spacecraft data were taken from Imp 7/8 at earth, Pioneer 6, 8, and 9 near 1AU, and Pioneer 10 and 11 between 1.6 and 5 AU. Using the constant radial velocity solar wind approximation to map all of the velocity data to its high coronal emission heliolongitude, we examined the velocity structure observed at different spacecraft for latitudinal dependence and compared it with coronal structure in soft X rays and Ha absorption features. The constant radial velocity approximation usually remains self-consistent in decreasing or constant velocity solar wind out to 5 AU, enabling us to separate radial from latitudinal propagation effects. We found several examples of sharp nonmeridional stream boundaries in interplanetary space (approx.5/sup 0/ latitude in width), often directly associated with features in coronal X rays and Ha. In one structure there is evidence for significant (up to 40/sup 0/) nonradial flow of the plasma in the corona below the altitude of transition to super-Alfvenic flow.

  3. Latitude dependence of solar wind velocity observed at not less than 1 AU

    NASA Technical Reports Server (NTRS)

    Mitchell, D. G.; Roelof, E. C.; Wolfe, J. H.

    1981-01-01

    The large-scale solar wind velocity structure in the outer heliosphere has been systematically analyzed for Carrington rotations 1587-1541 (March 1972 to April 1976). Spacecraft data were taken from Imp 7/8 at earth, Pioneer 6, 8, and 9 near 1 AU, and Pioneer 10 and 11 between 1.6 and 5 AU. Using the constant radial velocity solar wind approximation to map all of the velocity data to its high coronal emission heliolongitude, the velocity structure observed at different spacecraft was examined for latitudinal dependence and compared with coronal structure in soft X-rays and H-alpha absorption features. The constant radial velocity approximation usually remains self-consistent in decreasing or constant velocity solar wind out to 5 AU, enabling us to separate radial from latitudinal propagation effects. Several examples of sharp nonmeridional stream boundaries in interplanetary space (about 5 deg latitude in width), often directly associated with features in coronal X-rays and H-alpha were found.

  4. Depth and latitude dependence of the solar internal angular velocity

    NASA Technical Reports Server (NTRS)

    Rhodes, Edward J., Jr.; Cacciani, Alessandro; Korzennik, Sylvain; Tomczyk, Steven; Ulrich, Roger K.; Woodard, Martin F.

    1990-01-01

    One of the design goals for the dedicated helioseismology observing state located at Mount Wilson Observatory was the measurement of the internal solar rotation using solar p-mode oscillations. In this paper, the first p-mode splittings obtained from Mount Wilson are reported and compared with those from several previously published studies. It is demonstrated that the present splittings agree quite well with composite frequency splittings obtained from the comparisons. The splittings suggest that the angular velocity in the solar equatorial plane is a function of depth below the photosphere. The latitudinal differential rotation pattern visible at the surface appears to persist at least throughout the solar convection zone.

  5. Solar modulation of galactic cosmic rays 4: Latitude dependent modulation

    NASA Technical Reports Server (NTRS)

    Fisk, L. A.

    1976-01-01

    A numerical method is outlined for solving the equation which describes the solar modulation of cosmic rays in models where interplanetary conditions can vary with heliocentric latitude. As an illustration of the use of this method, it is shown how variations in the modulation with latitude could produce the small radial gradients in the intensity that were observed from the Pioneers 10 and 11 spacecraft.

  6. Time trends and latitude dependence of uveal and cutaneous malignant melanoma induced by solar radiation

    SciTech Connect

    Moan, J.; Setlow, R.; Cicarma, E.; Porojnicu, A. C.; Grant, W. B.; Juzeniene, A.

    2010-01-01

    In order to evaluate the role of solar radiation in uveal melanoma etiology, the time and latitude dependency of the incidence rates of this melanoma type were studied in comparison with those of cutaneous malignant melanoma (CMM). Norway and several other countries with Caucasian populations were included. There is a marked north - south gradient of the incidence rates of CMM in Norway, with three times higher rates in the south than in the north. No such gradient is found for uveal melanoma. Similar findings have been published for CMM in other Caucasian populations, with the exception of Europe as a whole. In most populations the ratios of uveal melanoma incidence rates to those of CMM tend to decrease with increasing CMM rates. This is also true for Europe, in spite of the fact that in this region there is an inverse latitude gradient of CMM, with higher rates in the north than in the south. In Norway the incidence rates of CMM have increased until about 1990 but have been constant, or even decreased (for young people) after that time, indicating constant or decreasing sun exposure. The uveal melanoma rates have been increasing after 1990. In most other populations the incidence rates of CMM have been increasing until recently while those of uveal melanoma have been decreasing. These data generally support the assumption that uveal melanomas are not generated by ultraviolet (UV) radiation and that solar UV, via its role in vitamin D photosynthesis, may have a protective effect.

  7. Latitude dependence of Thermospheric Neutral Winds and Plasma Drifts: Observations and modelling

    NASA Astrophysics Data System (ADS)

    Martinis, C.; Meriwether, J.; Biondi, M.; Niciewjewski, R.; Eccles, V.; Fesen, C.; Mendillo, M.

    2001-05-01

    We report on the coupling between thermospheric winds and ionospheric electrodynamics using the first coordinated set of low latitude groundbased diagnostics in the same longitude sector. All-sky imagers in Arequipa, Perú (16.5° S, 71.5° W, dip latitude = -2.7° ), and in Tucumán, Argentina (26.5° S, 65° W, dip latitude = -14.5° ), are used to track the plasma drift patterns of 630 nm airglow depletions associated with equatorial spread-F (ESF) events. A Fabry-Perot interferometer co-located in Arequipa, and a campaign-mode FPI in Carmen Alto, Chile (23.1° S, 69.4° W, dip latitude = -10.2° ), are used to obtain zonal neutral winds. Results for the solar minimum equinox periods of 1995-1997 suggest that low-latitude zonal neutral winds are slowed down by the presence of the Equatorial Ionization Anomaly (EIA) crests. Yet, plasma drifts obtained from airglow depletions measurements at Arequipa are smaller than results at Tucumán in the post-sunset period. During the post-midnight hours, the opposite pattern occurs. A comparison of the results with predictions by current neutral winds and plasma drifts models is also caried out The results from the observations establish that the neutral-ion dynamical coupling in the F-region involves a mix of influences from flux-tube integrated E and F-region conductivities, neutral wind shears in altitude, and ion drag effects due to the EIA.

  8. Latitude-Dependent Effects in the Stellar Wind of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Smith, Nathan; Davidson, Kris; Gull, Theodore R.; Ishibashi, Kazunori; Hillier, D. John

    2002-01-01

    The Homunculus reflection nebula around eta Carinae provides the rare opportunity to observe the spectrum of a star from more than one direction. In the case of eta Car, the nebula's geometry is known well enough to infer how wind profiles vary with latitude. We present STIS spectra of several positions in the Homunculus, showing directly that eta Car has an aspherical and axisymmetric stellar wind. P Cygni absorption in Balmer lines depends on latitude, with relatively high velocities and strong absorption near the polar axis. Stronger absorption at high latitudes is surprising, and it suggests higher mass flux toward the poles, perhaps resulting from equatorial gravity darkening on a rotating star. Reflected profiles of He I lines are more puzzling, and offer clues to eta Car's wind geometry and ionization structure. During eta Car's high-excitation state in March 2000, the wind had a fast, dense polar wind, with higher ionization at low latitudes. Older STIS data obtained since 1998 reveal that this global stellar-wind geometry changes during eta Car's 5.5 year cycle, and may suggest that this star s spectroscopic events are shell ejections. Whether or not a companion star triggers these outbursts remains ambiguous. The most dramatic changes in the wind occur at low latitudes, while the dense polar wind remains relatively undisturbed during an event. The apparent stability of the polar wind also supports the inferred bipolar geometry. The wind geometry and its variability have critical implications for understanding the 5.5 year cycle and long-term variability, but do not provide a clear alternative to the binary hypothesis for generating eta Car s X-rays.

  9. A COMPANION AS THE CAUSE OF LATITUDE-DEPENDENT EFFECTS IN THE WIND OF ETA CARINAE

    SciTech Connect

    Groh, J. H.; Madura, T. I.; Weigelt, G.; Hillier, D. J.; Kruip, C. J. H.

    2012-11-01

    We analyze spatially resolved spectroscopic observations of the Eta Carinae binary system obtained with the Hubble Space Telescope/STIS. Eta Car is enshrouded by the dusty Homunculus nebula, which scatters light emitted by the central binary and provides a unique opportunity to study a massive binary system from different vantage points. We investigate the latitudinal and azimuthal dependence of H{alpha} line profiles caused by the presence of a wind-wind collision (WWC) cavity created by the companion star. Using two-dimensional radiative transfer models, we find that the wind cavity can qualitatively explain the observed line profiles around apastron. Regions of the Homunculus which scatter light that propagated through the WWC cavity show weaker or no H{alpha} absorption. Regions scattering light that propagated through a significant portion of the primary wind show stronger P Cygni absorption. Our models overestimate the H{alpha} absorption formed in the primary wind, which we attribute to photoionization by the companion, not presently included in the models. We can qualitatively explain the latitudinal changes that occur during periastron, shedding light on the nature of Eta Car's spectroscopic events. Our models support the idea that during the brief period of time around periastron when the primary wind flows unimpeded toward the observer, H{alpha} absorption occurs in directions toward the central object and Homunculus SE pole, but not toward equatorial regions close to the Weigelt blobs. We suggest that observed latitudinal and azimuthal variations are dominated by the companion star via the WWC cavity, rather than by rapid rotation of the primary star.

  10. Mapping the latitude dependence of the primary stellar wind of eta Carinae using the spectrum reflected on the Homunculus nebula

    NASA Astrophysics Data System (ADS)

    Odessey, Rachel

    2016-01-01

    The binary star Eta Carinae underwent a massive eruption in the 1840s, resulting in a huge nebula of ejected material, called the Homunculus. Despite preventing us from the direct view from the central source, the Homunculus acts like a mirror, allowing us to see the spectrum of the central binary system from different stellar latitudes. Therefore, by mapping the spectrum along the nebula we are actually probing the dependence of the spectrum with stellar latitude. Our project focuses on the P Cyg absorption component of H lines mostly in the optical and near-infrared wavelengths. in order to investigate the structure of the primary stellar wind. A full spectral mapping of the entire nebula was constructed by combining multiple dithered long slit observations using the ESO/X-Shooter high-resolution spectrograph. Such mapping allowed us to assemble a data cube containing the spectrum of each position along the nebula. Preliminary analysis confirms that the primary wind indeed has a deeper absorption component at high stellar latitudes (polar region). Also, contrary to our expectations, our analysis indicates that the polar region does not seem entirely radially symmetric in terms of density, which invites further investigation into the source of these discrepancies.

  11. Solar Wind

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Tsurutani, B. T.

    2000-01-01

    The sun is losing mass in form of the solar wind, which has affected its evolution from its birth and will continue to do so until its death. This is not unusual in that nearly all stars are losing mass through stellar winds throughout a major portion of their lives. As far as the Earth is concerned, the solar wind blows against the Earth's magnetosphere, causes aurora and geomagnetic storms, and can affect the Earth's climate.

  12. Solar Wind Five

    NASA Technical Reports Server (NTRS)

    Neugebauer, M. (Editor)

    1983-01-01

    Topics of discussion were: solar corona, MHD waves and turbulence, acceleration of the solar wind, stellar coronae and winds, long term variations, energetic particles, plasma distribution functions and waves, spatial dependences, and minor ions.

  13. Solar Wind Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1995-01-01

    The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

  14. Warming: mechanism and latitude dependence

    NASA Astrophysics Data System (ADS)

    Barkin, Yury

    2010-05-01

    Introduction. In the work it is shown, that in present warming of climate of the Earth and in style of its display a fundamental role the mechanism of the forced swing and relative oscillations of eccentric core of the Earth and its mantle plays. Relative displacements of the centers of mass of the core and the mantle are dictated by the features of orbital motions of bodies of solar system and nonineriality of the Earth reference frame (or ot the mantle) at the motion of the Earth with respect to a baricenter of solar system and at rotation of the planet. As a result in relative translational displacements of the core and the mantle the frequencies characteristic for orbital motion of all bodies of solar system, and also their combination are shown. Methods of a space geodesy, gravimetry, geophysics, etc. unequivocally and clearly confirm phenomenon of drift of the center of mass of the Earth in define northern direction. This drift is characterized by the significant velocity in about 5 mm/yr. The unique opportunity of its explanation consists in the natural assumption of existence of the unidirectional relative displacement (drift) the center of mass of the core and the center of mass of the mantle of the Earth. And this displacement (at superfluous mass of the core in 16.7 % from the mass of full the Earth) is characterized still more significant velocity in 2.6 cm/yr and occurs on our geodynamic studies in a direction to Taimyr peninsula. The dynamic explanation to century drift for today does not exist. It is possible to note, however, that data of observations of last years, indirectly testifying that similar drifts of the centers of mass in present epoch occur on other bodies of Solar system have been obtain: the Sun, Mars, the Titan, Enceladus, the Neptune, etc. We connect with mentioned phenomena the observed secular variations of natural processes on this celestial bodies. I.e. it is possible to assume, that observable eccentric positions of the centers of mass of some bodies of solar system and attributes of secular displacements of their centers of mass are universal and testify to relative translational displacements of shells of these bodies (such as the core, the mantle and others). And it means, that there is a highly effective mechanism of an active life of planets and satellites [1, 2]. This mechanism is distinct from the tidal mechanism of gravitational interaction of deformable celestial bodies. Its action is shown, for example, even in case if the core and the mantle are considered as absolutely rigid gravitating bodies, but separated by a is viscous-elastic layer. Classics of celestial mechanics did not consider gravitational interaction and relative translational displacement of the core and the mantle of the Earth. As our studies have shown the specified new mechanism is high energetic and allows to explain many of the phenomena earlier inaccessible to understanding in various geosciences, including climatology [1] - [5]. It has been shown, that secular changes in activity of all planetary processes on the Earth are connected with a secular drift of the core of the Earth, and are controlled by the core and are reflections and displays of the core drift [5]. It is naturally, that slow climatic changes are connected with drift of the core, with induced by this drift inversion changes in an atmosphere, ocean, with thermodynamic variations of state of layer D ', with changes and variations in mantle convection and in plume activity of the Earth. The drift of the core controls a transmission of heat in the top layers of the mantle and on a surface of the Earth, organizes volcanic and seismic activity of the Earth in planetary scale. The mechanism of a warming up of layers of the mantle and cyclic inversion changes of a climate. According to a developed geodynamic model all layers of the mantle at oscillations and motions of the core under action of its gravitational attraction test wide class of inversion deformations [1]. Thus the part of energy of deformations passes in heat by virtue of dissipation properties of the mantle. Than more intensively oscillations of the core, the more amplitudes of these oscillations, the occur the specified thermal transformations more intensively. As relative displacements of the core have cyclic character, because of cyclic influences on the core-mantle system of external celestial bodies also a formation of heat flows and warmed plume materials (substances) will have also cyclic character. In particular orbital perturbations with Milankovitch's periods in 100 kyr, 41 kyr, etc. will be precisely reflected in variations of the specified thermal flows and, accordingly, a planetary climate. In it the essence of occurrence of cycles of congelations on the Earth [3] consists. If during any period of time the core behaves passively, amplitudes of its oscillations are small the thermal flows to a surface of a planet will be decrease. This geodynamic conditions corresponds to the periods of a cold snap. And on the contrary, if the core and mantle interact actively and make significant oscillations the thermal flows to a surface of a planet accrues. This geodynamic state corresponds to the periods of warming. At drift of the core to the north and its oscillations with accrueing amplitude (for example, in present period) submission of heat in the top layers of the mantle will accrue. It is warmly allocated in all layers of the mantle deformed by an attraction of the drifting and oscillating core. But a base layer is the layer D" ("kitchen of plume-tectonics"). As we know the two mechanisms work for warm redistribution into the Earth. First is a mechanism of convection. In our geodynamical model it has forced nature and is organized and controlled by gravitational action of external celestial bodies and as result has cyclical character. Second mechanism is a plume mechanism which organizes the warmed masses redistributions in higher levels of the mantle, on a bottom of ocean and on a surface of the Earth. In accordance with our geodynamical model mentioned redistribution of warmed mass also has forced character. It is organized and controlled by gravitational cyclic action of the external celestial bodies on core-mantle system. N/S inversion of the natural processes. Reliable an attribute of influence of oscillations of the core on a variation of natural processes is their property of inversion when, for example, activity of process accrues in northern hemisphere and decreases in a southern hemisphere. Such contrast secular changes in northern and southern (N/S) hemispheres have been predicted on the base of geodynamic model [1] and revealed according to observations: from gravimetry measurements of a gravity; in determination of a secular trend of a sea level, as global, and in northern and southern hemispheres; in redistribution of air masses; in geodetic measurements of changes of average radiuses of northern and southern hemispheres; in contrast changes of physical fields, for example, streams of heat, currents and circulation at ocean and an atmosphere, etc. [5]. The geodynamic mechanism [1] also unequivocally specifies, that the secular trend in global climatic characteristics of the Earth, and also inversion and asymmetric tendencies of change of a climate, in its northern and southern hemispheres in present period should be observed. The hemispherical asymmetry of global heat flows. In the paper [6] authors have shown that the mean heat flow of the Southern Hemisphere is 99.3 mW/m2, significantly higher than that of the Northern Hemisphere (74.0 mW/m2). The mantle heat loss from the Southern Hemisphere is 22.1 × 1012 W, as twice as that from the Northern Hemisphere (10.8 × 1012 W). The authors believe that this hemispherical asymmetry of global heat loss is originated by the asymmetry of geographic distribution of continents and oceans. In accordance with our geodynamical model discussed assymmetry of heat flows distribution with respect the Earth's hemispheres in first caused by eccentric position of the Earth core with respect to the mantle (displaced in present geological epoch in direction to Brasil). Of course the asymmetric distribution of heat loss is a long-term phenomenon in the geological history. But in present epoch due to drift of the core to the North we must observe some increasing of the heat flow of the Northern hemisphere and decreasing of the heat flow of the Southern hemisphere. In reality mentioned changes of heat flows are contrast (asymmetrical) and can have general tendency of increasing heat flows in both hemispheres (due to activization of relative oscillations of the core and mantle relatively polar axis). Contrast secular warming of Northern and Southern hemispheres of the Earth in present epoch. Dependence of warming from latitude. And warm flows are asymmetrically, more intensively warm is redistributed in northern hemisphere of the Earth and less intensively in a southern hemisphere. From here it follows, that the phenomenon of more intensive warming up of northern hemisphere, rather than southern in present period should be observed. Data of climatic observations (in first temperature trends for various latitude belts). More detailed analysis shows, that the phenomenon of warming in different form is shown in various latitudinal belts of the Earth. This phenomenon is more clearly shown in latitudinal belts further situated on latitude from South Pole, i.e. in high northern latitudes. Really, the trend of increase of temperature in northern hemisphere is characterized by greater rate, than a trend of temperature in a southern hemisphere. And not only trend components of temperatures increase with increasing of latitudes from southern pole to northern pole, but also amplitudes of decade fluctuations of temperature in high northern breadthes are more bigger than in southern hemisphere. Thus again it is necessary to expect a contrast and asymmetry in decade variations of temperatures in northern and southern hemispheres (smaller variations in a southern hemisphere). References [1] Barkin Yu.V. (2002) An explanation of endogenous activity of planets and satellites and its cyclisity. Isvestia sekcii nauk o Zemle Rossiiskoi akademii ectestvennykh nauk. Vyp. 9, M., VINITI, pp. 45-97. In Russian. [2] Barkin Yu.V. (2009) Moons and planets: mechanism of their life. Proceedings of International Conference 'Astronomy and World Heritage: across Time and Continents' (Kazan, 19-24 August 2009). KSU, pp. 142-161. [3] Barkin Yu.V. (2004) Dynamics of the Earth shells and variations of paleoclimate. Proceedings of Milutin Milankovitch Anniversary Symposium 'Paleoclimate and the Earth climate system' (Belgrade, Serbia, 30 August - 2 September, 2004). Belgrade, Serbian Academy of Sciences and Art, pp. 161-164. [4] Barkin Yu.V. (2007) Inversion of periodic and trend variations of climate in opposite hemispheres of the Earth and their mechanism. Proceedings of IUGG XXIV General Assembly, Perugia, Italy 2007: Earth: Our Changing Planet (Perugia, Italy, July 2-13, 2007) (P) - IAPSO, JPS001 'Interannual and Interdecadal Climate Variability', p. 1674. www. iugg2007perugia.it. [5] Barkin Yu.V. (2008) Secular polar drift of the core in present epoch: geodynamical and geophysical consequences and confirmations. General and regional problems of tectonics and geodynamics. Materials of XLI Tectonic Conference. V. 1. -M.:GEOS. p. 55-59. In Russian. [6] Yang Wang, Jiyang Wangand Zongji Ma (1998) On the asymmetric distribution of heat loss from the Earth's interior. Chinese Science Bulletin, Volume 43, Number 18 , p. 1566-1570.

  15. Solar wind composition

    NASA Technical Reports Server (NTRS)

    Ogilvie, K. W.; Coplan, M. A.

    1995-01-01

    Advances in instrumentation have resulted in the determination of the average abundances of He, C, N, O, Ne, Mg, Si, S, and Fe in the solar wind to approximately 10%. Comparisons with solar energetic particle (SEP) abundances and galactic cosmic ray abundances have revealed many similarities, especially when compared with solar photospheric abundances. It is now well established that fractionation in the corona results in an overabundance (with respect to the photosphere) of elements with first ionization potentials less than 10 eV. These observations have in turn led to the development of fractionation models that are reasonably successful in reproducing the first ionization (FIP) effect. Under some circumstances it has been possible to relate solar wind observations to particular source regions in the corona. The magnetic topologies of the source regions appear to have a strong influence on the fractionation of elements. Comparisons with spectroscopic data are particularly useful in classifying the different topologies. Ions produced from interstellar neutral atoms are also found in the solar wind. These ions are picked up by the solar wind after ionization by solar radiation or charge exchange and can be identified by their velocity in the solar wind. The pick-up ions provide most of the pressure in the interplanetary medium at large distances. Interstellar abundances can be derived from the observed fluxes of solar wind pick-up ions.

  16. Solar wind travel time

    NASA Astrophysics Data System (ADS)

    Russell, C. T.

    A useful rule of thumb in solar terrestrial studies is that the solar wind travels 4 Earth radii (RE) per minute. Long-term studies of solar wind velocity [e.g., Luhmann et al., 1993; 1994] show that the median velocity is about 420 km/s, corresponding to 3.96 RE min-1. The quartiles are about 370 km/s and 495 km/s, corresponding to 3.48 Re min-1 and 4.66 Re min-1 respectively. This number helps estimate the delays expected when observing a discontinuity at a solar wind monitor; one example is ISEE-3 when it was at the forward libration point (about 60 min). It is also helpful for estimating how much time passes before the dayside magnetosphere is compressed as denser solar wind flows by (about 2.5 min).

  17. Flank solar wind interaction

    NASA Technical Reports Server (NTRS)

    Moses, Stewart L.; Greenstadt, Eugene W.; Coroniti, Ferdinand V.

    1994-01-01

    In this report we will summarize the results of the work performed under the 'Flank Solar Wind Interaction' investigation in support of NASA's Space Physics Guest Investigator Program. While this investigation was focused on the interaction of the Earth's magnetosphere with the solar wind as observed by instruments on the International Sun-Earth Explorer (ISEE) 3 spacecraft, it also represents the culmination of decades of research performed by scientists at TRW on the rich phenomenology of collisionless shocks in space.

  18. Heliomagnetic latitude dependence of the heliospheric magnetic field

    NASA Astrophysics Data System (ADS)

    Burton, M. E.; Smith, E. J.; Balogh, A.; Murphy, N.

    1996-07-01

    ICE and IMP-8 magnetic field data from 1984-1988 have been analyzed in a magnetic coordinate system defined by the orientation of the solar magnetic dipole. The heliomagnetic latitude dependence of the radial component of the magnetic field (Br) has then been investigated in a wide range of magnetic latitudes above and below the heliospheric current sheet (HCS). Br reverses sign abruptly across the current sheet, consistent with the solar magnetic field models of Pneuman and Kopp [1971] and Wolfson [1985] but inconsistent with the source surface models [Hoeksema, 1986]. No evidence is found for an asymmetry in the magnetic field suggested by earlier studies of interplanetary magnetic field data [Luhmann, 1987, Burton, 1990]. A slight (~.03 nT per degree) latitude gradient has been found which is consistent with the MHD model of Pneuman and Kopp and the recent model of Zhao and Hoeksema [1995].

  19. Personal overview of solar wind 6

    SciTech Connect

    Gosling, J.T.

    1987-01-01

    The author reviews papers presented at the Solar Wind 6 Proceedings. The particular topics discussed are solar wind acceleration theory, heliosphere production of solar winds, coronal mass ejections, interplanetary shock disturbance, and solar wind ionic composition. A concern for the steady decline in solar wind observations is expressed. (LSP)

  20. Latitude dependence of narrow bipolar pulse emissions

    NASA Astrophysics Data System (ADS)

    Ahmad, M. R.; Esa, M. R. M.; Cooray, V.; Baharudin, Z. A.; Hettiarachchi, P.

    2015-06-01

    In this paper, we present a comparative study on the occurrence of narrow bipolar pulses (NBPs) and other forms of lightning flashes across various geographical areas ranging from northern regions to the tropics. As the latitude decreased from Uppsala, Sweden (59.8°N) to South Malaysia (1.5°N), the percentage of NBP emissions relative to the total number of lightning flashes increased significantly from 0.13% to 12%. Occurrences of positive NBPs were more common than negative NBPs at all observed latitudes. However, as latitudes decreased, the negative NBP emissions increased significantly from 20% (Uppsala, Sweden) to 45% (South Malaysia). Factors involving mixed-phase region elevations and vertical extents of thundercloud tops are invoked to explain the observed results. These factors are fundamentally latitude dependent. Our results suggest that the NBP emission rate is not a useful measure to monitor thunderstorm severity because regular tropical thunderstorms, where relatively high NBP emissions occur, lack suitable conditions to become severe (i.e., there is modest convective available potential energy and a lack of baroclinity in such regions). Observations of significantly high negative NBP occurrences together with very rare occurrences of positive cloud-to-ground flashes and isolated breakdown pulses in tropical thunderstorms are indicative of a stronger negative screening layer magnitude and weaker lower positive charge region magnitude than those in northern regions.

  1. Solar wind photoplate study

    NASA Technical Reports Server (NTRS)

    Scott, B. W.; Voorhies, H. G.

    1972-01-01

    An ion sensitive emulsion detection system has been considered for use in a cycloidal focusing mass spectrometer to measure the various atomic species which comprise the solar plasma. The responses of Ilford Q2 and Kodak SC7 emulsions were measured with N(+) ions at 6 keV to 10 keV, He(++) ions at 750 eV to 2500 eV, and H(+) ions at 550 eV to 1400 eV. These ions have the approximate range of velocities (about 300-500 km/sec) encountered in the solar wind. The work was carried out on a specially prepared magnetic sector mass analyzer. Characteristic response curves were generated, each one utilizing approximately 50 data points at three or more current densities. In addition to the ion response, measurements of the response of these emulsions to a photon flux simulating the visible portion of the solar spectrum were made. The results obtained will be presented in detail and interpreted in relation to other data available for these emulsions.

  2. Wind and solar powered turbine

    NASA Technical Reports Server (NTRS)

    Wells, I. D.; Koh, J. L.; Holmes, M. (Inventor)

    1984-01-01

    A power generating station having a generator driven by solar heat assisted ambient wind is described. A first plurality of radially extendng air passages direct ambient wind to a radial flow wind turbine disposed in a centrally located opening in a substantially disc-shaped structure. A solar radiation collecting surface having black bodies is disposed above the fist plurality of air passages and in communication with a second plurality of radial air passages. A cover plate enclosing the second plurality of radial air passages is transparent so as to permit solar radiation to effectively reach the black bodies. The second plurality of air passages direct ambient wind and thermal updrafts generated by the black bodies to an axial flow turbine. The rotating shaft of the turbines drive the generator. The solar and wind drien power generating system operates in electrical cogeneration mode with a fuel powered prime mover.

  3. Wind and solar powered turbine

    NASA Astrophysics Data System (ADS)

    Wells, I. D.; Koh, J. L.; Holmes, M.

    1984-02-01

    A power generating station having a generator driven by solar heat assisted ambient wind is described. A first plurality of radially extendng air passages direct ambient wind to a radial flow wind turbine disposed in a centrally located opening in a substantially disc-shaped structure. A solar radiation collecting surface having black bodies is disposed above the fist plurality of air passages and in communication with a second plurality of radial air passages. A cover plate enclosing the second plurality of radial air passages is transparent so as to permit solar radiation to effectively reach the black bodies. The second plurality of air passages direct ambient wind and thermal updrafts generated by the black bodies to an axial flow turbine. The rotating shaft of the turbines drive the generator. The solar and wind drien power generating system operates in electrical cogeneration mode with a fuel powered prime mover.

  4. 77 FR 61597 - Avalon Wind, LLC; Avalon Wind 2, LLC; Catalina Solar, LLC; Catalina Solar 2, LLC; Pacific Wind...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-10

    ... Energy Regulatory Commission Avalon Wind, LLC; Avalon Wind 2, LLC; Catalina Solar, LLC; Catalina Solar 2, LLC; Pacific Wind Lessee, LLC; Pacific Wind 2, LLC; Valentine Solar, LLC; EDF Renewable Development..., LLC, Avalon Wind 2, LLC, Catalina Solar, LLC, Catalina Solar 2, LLC, Pacific Wind Lessee, LLC,...

  5. Wind and Solar Curtailment: Preprint

    SciTech Connect

    Lew, D.; Bird, L.; Milligan, M.; Speer, B.; Wang, X.; Carlini, E. M.; Estanqueiro, A.; Flynn, D.; Gomez-Lazaro, E.; Menemenlis, N.; Orths, A.; Pineda, I.; Smith, J. C.; Soder, L.; Sorensen, P.; Altiparmakis, A.; Yoh, Y.

    2013-09-01

    High penetrations of wind and solar generation on power systems are resulting in increasing curtailment. Wind and solar integration studies predict increased curtailment as penetration levels grow. This paper examines experiences with curtailment on bulk power systems internationally. It discusses how much curtailment is occurring, how it is occurring, why it is occurring, and what is being done to reduce curtailment. This summary is produced as part of the International Energy Agency Wind Task 25 on Design and Operation of Power Systems with Large Amounts of Wind Power.

  6. Highly Alfvenic Slow Solar Wind

    NASA Technical Reports Server (NTRS)

    Roberts, D. Aaron

    2010-01-01

    It is commonly thought that fast solar wind tends to be highly Alfvenic, with strong correlations between velocity and magnetic fluctuations, but examples have been known for over 20 years in which slow wind is both Alfvenic and has many other properties more typically expected of fast solar wind. This paper will present a search for examples of such flows from more recent data, and will begin to characterize the general characteristics of them. A very preliminary search suggests that such intervals are more common in the rising phase of the solar cycle. These intervals are important for providing constraints on models of solar wind acceleration, and in particular the role waves might or might not play in that process.

  7. Solar wind latitudinal variations deduced from Mariner 10 interplanetary H /1216 A/ observations

    NASA Technical Reports Server (NTRS)

    Witt, N.; Blum, P. W.; Ajello, J. M.

    1979-01-01

    The Mariner 10 H (1216-A) interplanetary observations are examined by using models that consider anisotropies in the solar fluxes. It is verified that the dominant contribution to asymmetric structure in the Mariner 10 H (1216-A) data is a latitudinal variation of the solar-wind flux and of the solar wind velocity, leading to a hydrogen atom lifetime that is latitude dependent. The average lifetime at 1 AU is found to increase from the solar equator to the solar poles by about 25%. This allows interstellar hydrogen to penetrate closer to the solar poles than to the equator. A general analytic model is constructed for evaluating the neutral hydrogen density distribution in interplanetary space. This model takes into account the latitude-dependent ionization rate. When this model is applied to the Mariner 10 H (1216-A) data, it is shown to be capable of matching the observations with a statistical accuracy of 5%. The effect of this latitudinal variation on H (1216-A) sky background maps is to produce a latitudinal shift in the maximum toward the north ecliptic pole.

  8. STATIONARITY IN SOLAR WIND FLOWS

    SciTech Connect

    Perri, S.; Balogh, A. E-mail: a.balogh@imperial.ac.u

    2010-05-01

    By using single-point measurements in space physics it is possible to study a phenomenon only as a function of time. This means that we cannot have direct access to information about spatial variations of a measured quantity. However, the investigation of the properties of turbulence and of related phenomena in the solar wind widely makes use of an approximation frequently adopted in hydrodynamics under certain conditions, the so-called Taylor hypothesis; indeed, the solar wind flow has a bulk velocity along the radial direction which is much higher than the velocity of a single turbulent eddy embedded in the main flow. This implies that the time of evolution of the turbulent features is longer than the transit time of the flow through the spacecraft position, so that the turbulent field can be considered frozen into the solar wind flow. This assumption allows one to easily associate time variations with spatial variations and stationarity to homogeneity. We have investigated, applying criteria for weak stationarity to Ulysses magnetic field data in different solar wind regimes, at which timescale and under which conditions the hypothesis of stationarity, and then of homogeneity, of turbulence in the solar wind is well justified. We extend the conclusions of previous studies by Matthaeus and Goldstein to different parameter ranges in the solar wind. We conclude that the stationarity assumption in the inertial range of turbulence on timescales of 10 minutes to 1 day is reasonably satisfied in fast and uniform solar wind flows, but that in mixed, interacting fast, and slow solar wind streams the assumption is frequently only marginally valid.

  9. Solar cycle variations in the solar wind

    NASA Technical Reports Server (NTRS)

    Freeman, John W.; Lopez, Ramon E.

    1986-01-01

    The solar cycle variations of various solar wind parameters are reviewed. It is shown that there is a gradual decrease in the duration of high-speed streams from the declining phase of solar cycle 20 through the ascending phase of cycle 21 and a corresponding decrease in the annual average of the proton speed toward solar maximum. Beta, the ratio of the proton thermal pressure to magnetic pressure, undergoes a significant solar cycle variation, as expected from the variation in the IMF. Individual hourly averages of beta often exceed unity with 20 cases exceeding 10 and one case as high as 25. The Alfven Mach number shows a solar cycle variation similar to beta, lower aboard solar maximum. High-speed streams can be seen clearly in epsilon and the y component of the interplanetary magnetic field.

  10. Wind in the Solar System

    ERIC Educational Resources Information Center

    McIntosh, Gordon

    2010-01-01

    As an astronomy instructor I am always looking for commonly experienced Earthly phenomena to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote short "TPT" articles on frost and precipitation. The present article is on winds in the solar system. A windy day or storm might motivate

  11. Wind in the Solar System

    ERIC Educational Resources Information Center

    McIntosh, Gordon

    2010-01-01

    As an astronomy instructor I am always looking for commonly experienced Earthly phenomena to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote short "TPT" articles on frost and precipitation. The present article is on winds in the solar system. A windy day or storm might motivate…

  12. Photoionization in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Landi, E.; Lepri, S. T.

    2015-10-01

    In this work we investigate the effects of photoionization on the charge state composition of the solar wind. Using measured solar EUV and X-ray irradiance, the Michigan Ionization Code and a model for the fast and slow solar wind, we calculate the evolution of the charge state distribution of He, C, N, O, Ne, Mg, Si, S, and Fe with and without including photoionization for both types of wind. We find that the solar radiation has significant effects on the charge state distribution of C, N, and O, causing the ionization levels of these elements to be higher than without photoionization; differences are largest for oxygen. The ions commonly observed for elements heavier than O are much less affected, except in ICMEs where Fe ions more ionized than 16+ can also be affected by the solar radiation. We also show that the commonly used O7+/O6+ density ratio is the most sensitive to photoionization; this sensitivity also causes the value of this ratio to depend on the phase of the solar cycle. We show that the O7+/O6+ ratio needs to be used with caution for solar wind classification and coronal temperature estimates, and recommend the C6+/C4+ ratio for these purposes.

  13. Solar wind absorption by Venus

    NASA Technical Reports Server (NTRS)

    Gombosi, T. I.; Cravens, T. E.; Nagy, A. F.; Elphic, R. C.; Russell, C. T.

    1980-01-01

    The portion of solar wind interacting with the dayside ionosphere and atmosphere of Venus was determined based on magnetic field fluctuations in the ionosheath and the interaction with the upper neutral atmosphere above the ionopause. Fluctuations with the ratio of the number of particles intersecting the daytide ionopause to the total number of particles of 0.3 suggest that about 0.3% of solar wind may be absorbed. Most of fast H atoms resulting from the charge exchange interactions with the atmosphere escape; some of the energy deposition processes produce observable signatures (such as a narrow Lyman alpha emission region), but penetrating solar wind particles do not control the physical and/or chemical structure of the daytime Venus ionosphere.

  14. Solar wind and coronal structure

    NASA Technical Reports Server (NTRS)

    Withbroe, G. L.

    1983-01-01

    Spectroscopic diagnostic techniques used to determine the coronal source region of the solar wind, and results of preliminary applications are examined. The topics reviewed are magnetic fields, coronal mass ejections, coronal holes, flow velocities, coronal temperatures, fine spatial structure, and future observational programs. The physical mechanisms responsible for plasma heating, solar-wind acceleration, the transport of mass momentum and energy, and the spatial differentiation of chemical abundances are also discussed. Among the data presented are Skylab's white-light coronagraph photograph of a coronal transient, X-ray photographs of the corona, and spectroheliograms showing bright points overlying polar plumes, and macrospicules.

  15. Latitude-dependent sensitivity to stationary perturbations in simple climate models

    NASA Technical Reports Server (NTRS)

    Salmun, H.; Cahalan, R. F.; North, G. R.

    1980-01-01

    The steady-state zonally averaged climate is perturbed by adding a latitude-dependent heat source to an energy balance equation of the simplified Budyko-Sellers type. The latitude of the ice edge, which is attached to an isotherm, becomes dependent on the strength of the perturbation. This dependence is given in terms of the well-known iceline-solar constant relation, and the latitude dependence of the perturbed temperature field is then uniquely determined. The exact analytical solution is linearized and expressed in terms of a superposition of line sources at various latitudes. The main features are: (1) The total temperature response is a sum of the direct effect of the perturbation and an indirect ice-albedo effect proportional to the solar ice-edge sensitivity; and (2) the indirect feedback effect produces an enhanced response in polar latitudes.

  16. Coronal holes as sources of solar wind

    NASA Technical Reports Server (NTRS)

    Nolte, J. T.; Krieger, A. S.; Timothy, A. F.; Gold, R. E.; Roelof, E. C.; Vaiana, G.; Lazarus, A. J.; Sullivan, J. D.; Mcintosh, P. S.

    1976-01-01

    We investigate the association of high-speed solar wind with coronal holes during the Skylab mission by: (1) direct comparison of solar wind and coronal X-ray data; (2) comparison of near-equatorial coronal hole area with maximum solar wind velocity in the associated streams; and (3) examination of the correlation between solar and interplanetary magnetic polarities. We find that all large near-equatorial coronal holes seen during the Skylab period were associated with high-velocity solar wind streams observed at 1 AU.

  17. Comet Borrelly Slows Solar Wind

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Over 1300 energy spectra taken on September 22, 2001 from the ion and electron instruments on NASA's Deep Space 1 span a region of 1,400,000 kilometers (870,000 miles) centered on the closest approach to the nucleus of comet Borrelly. A very strong interaction occurs between the solar wind (horizontal red bands to left and right in figure) and the comet's surrounding cloud of dust and gas, the coma. Near Deep Space 1's closest approach to the nucleus, the solar wind picked up charged water molecules from the coma (upper green band near the center), slowing the wind sharply and creating the V-shaped energy structure at the center.

    Deep Space 1 completed its primary mission testing ion propulsion and 11 other advanced, high-risk technologies in September 1999. NASA extended the mission, taking advantage of the ion propulsion and other systems to undertake this chancy but exciting, and ultimately successful, encounter with the comet. More information can be found on the Deep Space 1 home page at http://nmp.jpl.nasa.gov/ds1/ .

    Deep Space 1 was launched in October 1998 as part of NASA's New Millennium Program, which is managed by JPL for NASA's Office of Space Science, Washington, D.C. The California Institute of Technology manages JPL for NASA.

  18. Solar energy tracking structure incorporating wind spoilers

    SciTech Connect

    Frohardt, M.W.; Hartz, K.H.; Hardee, P.C.

    1989-12-19

    This patent describes a solar energy tracking assembly. The assembly producing reduced torque loading forces due to wind on the rotating portion of the tracking assembly. The solar energy tracking assembly comprised of: a fixed position base having one end securely fixed to the ground and having the second end supporting the remaining tracking assembly components; solar energy collecting means comprising a moving structure frame and at least one solar collecting element attached thereto means for rotating the solar energy collecting means in relation to the sun in order that the solar energy collecting means maintain the proper attitude for collection of incident solar energy; and a wind spoiler assembly.

  19. The Solar Wind Ion Composition Spectrometer

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.; Geiss, J.; Balsiger, H.; Bedini, P.; Cain, J. C.; Fisher, J.; Fisk, L. A.; Galvin, A. B.; Gliem, F.; Hamilton, D. C.

    1992-01-01

    The Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses is designed to determine uniquely the elemental and ionic-charge composition, and the temperatures and mean speeds of all major solar-wind ions, from H through Fe, at solar wind speeds ranging from 175 km/s (protons) to 1280 km/s (Fe(8+)). The instrument, which covers an energy per charge range from 0.16 to 59.6 keV/e in about 13 min, combines an electrostatic analyzer with postacceleration, followed by a time-of-flight and energy measurement. The measurements made by SWICS will have an impact on many areas of solar and heliospheric physics, in particular providing essential and unique information on: (1) conditions and processes in the region of the corona where the solar wind is accelerated; (2) the location of the source regions of the solar wind in the corona; (3) coronal heating processes; (4) the extent and causes of variations in the composition of the solar atmosphere; (5) plasma processes in the solar wind; (6) the acceleration of energetic particles in the solar wind; (7) the thermalization and acceleration of interstellar ions in the solar wind, and their composition; and (8) the composition, charge states, and behavior of the plasma in various regions of the Jovian magnetosphere.

  20. Multifractals in the solar wind

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.

    1992-01-01

    Multifractals have been observed in the solar wind in several contexts. The velocity fluctuations observed by Voyager 2 near 8 AU have the structure of intermittent turbulence which has multifractal scaling symmetry. The velocity fluctuations in corotating streams at 1 AU and near 6 AU also have multifractal structure, and the structure evolves significantly between 1 AU and 6 AU. Multifractal scaling has also been observed in the magnetic field strength, density and temperature in recurrent streams at 1 AN and in large-scale fluctuations the magnetic field strength at 25 AU.

  1. Solar wind thermal electron distributions

    SciTech Connect

    Phillips, J.L.; Gosling, J.T.

    1991-12-01

    Solar wind thermal electron distributions exhibit distinctive trends which suggest Coulomb collisions and geometric expansion in the interplanetary magnetic field play keys roles in electron transport. We introduce a simple numerical model incorporating these mechanisms, discuss the ramifications of model results, and assess the validity of the model in terms of ISEE-3 and Ulysses observations. Although the model duplicates the shape of the electron distributions, and explains certain other observational features, observed gradients in total electron temperature indicate the importance of additional heating mechanisms. 5 refs., 7 figs.

  2. Solar identification of solar-wind disturbances observed at Ulysses

    NASA Astrophysics Data System (ADS)

    Lemen, J. R.; Acton, L. W.; Alexander, D.; Galvin, A. B.; Harvey, K. L.; Hoeksema, J. T.; Zhao, X.; Hudson, H. S.

    1996-07-01

    The Ulysses polar passages are producing a unique set of observations of solar-wind disturbances at high heliographic latitudes. In this paper we use the Yohkoh soft X-ray telescope (SXT) to locate some of these events, as defined by the Ulysses/SWICS data, in the solar corona. Of 8 events, we identify two with flares, three with front-side large arcade events, two with far-side events, and one was not seen in the Ulysses data. The arcade events generally resemble long-duration flares seen in active regions, but are larger, slower, and cooler. We present Yohkoh images of each of these events. In the large arcade events (see Alexander et al., 1996, for a detailed look at one of them) the magnetic morphology at the location of the Yohkoh arcade is generally consistent with the development of a large system of loops. Some of the identifications are ambiguous, and we summarize the reasons for this. From the SWICS data we have obtained ionization temperatures for several events, and find that they have no obvious pattern in relation to the X-ray temperatures; this may be expected on the basis that the interplanetary plasma cloud is physically distinct from the plasma trapped in the corona. Soft X-ray observations of the solar corona show occasional occurrences of large-scale brightenings in the form of arcades of loops. Such structures have been known since Skylab (e.g., Sturrock, 1980), and have a clear relationship with coronal mass ejections (e.g., Kahler, 1977). We now may study this phenomenon statistically with the much more comprehensive Yohkoh observations; with Yohkoh movies we can also begin to extend our knowledge to the three-dimensional development of the structures. At the same time Ulysses has sampled the latitude dependence of the interplanetary effects. With this paper we introduce this subject and provide a preliminary listing of events from the passage of Ulysses through high heliographic latitudes. The starting point of the present survey is a list of interplanetary plasma clouds (IPC's) derived from Ulysses/SWICS data. These are essentially the same as the events termed CMEs by Gosling et al. (1994a, 1994b). For this identification the presence of bidirectional streaming in the suprathermal electron distribution is one of the main criteria. We note that there are no direct coronagraph observations, however. The Yohkoh observations were examined at the apparent time of origin of each Ulysses event, resulting in some clear and some less-certain identifications. We also studied the ionization temperatures of the IPC material as a beginning step to give the identifications a physical basis. There has been little study thus far of the Yohkoh soft X-ray observations in relationship to CMEs, which we believe to be closely related to the interplanetary disturbances. Hiei et al. (1993) reported the only Yohkoh event yet studied in conjunction with white-light coronagraph observations. However Klimchuk et al. (1994) showed that X-ray eruptive phenomena with parameters similar to those of CMEs occur frequently at the limb, and there have been several studies of individual eruptive events (e.g., Watanabe et al., 1992). Presently there is no systematic knowledge of the X-ray coronal counterparts of CMEs, and the survey represented here is part of the effort to rectify this situation.

  3. MHD Waves in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Ofman, L.

    2016-02-01

    This chapter focuses on reviewing several observational aspects of magnetohydrodynamic (MHD) waves in the solar wind, in particular on Alfvén waves, Alfvénic turbulent spectrum, and their role in heating and accelerating the solar wind. It also reviews computational models that incorporate Alfvén waves as the driving source of the wind in the lower corona (coronal holes) and in the inner heliosphere, with emphasis on multi-dimensional models. Evidence for MHD waves in the solar wind is obtained from interplanetary scintillation (IPS) observations using Earth-based radio telescope observations of distant (galactic) radio sources. The solar wind electron density variability in the line of sight affects the received radio signal. The propagating fluctuations and their correlations are used to estimate the solar wind velocity and the wave amplitude in the parallel and the perpendicular directions in line of sight.

  4. Simulations of Solar Wind Turbulence

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.; Usmanov, A. V.; Roberts, D. A.

    2008-01-01

    Recently we have restructured our approach to simulating magnetohydrodynamic (MHD) turbulence in the solar wind. Previously, we had defined a 'virtual' heliosphere that contained, for example, a tilted rotating current sheet, microstreams, quasi-two-dimensional fluctuations as well as Alfven waves. In this new version of the code, we use the global, time-stationary, WKB Alfven wave-driven solar wind model developed by Usmanov and described in Usmanov and Goldstein [2003] to define the initial state of the system. Consequently, current sheets, and fast and slow streams are computed self-consistently from an inner, photospheric, boundary. To this steady-state configuration, we add fluctuations close to, but above, the surface where the flow become super-Alfvenic. The time-dependent MHD equations are then solved using a semi-discrete third-order Central Weighted Essentially Non-Oscillatory (CWENO) numerical scheme. The computational domain now includes the entire sphere; the geometrical singularity at the poles is removed using the multiple grid approach described in Usmanov [1996]. Wave packets are introduced at the inner boundary such as to satisfy Faraday's Law [Yeh and Dryer, 1985] and their nonlinear evolution are followed in time.

  5. Solar Wind Interaction with Venus

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Luhmann, J. G.; Ma, Y. J.; Villarreal, M. N.; Zhang, T. L.

    2014-04-01

    Venus Express, which was inserted into orbit in mid-2006, has added significantly to the knowledge gained from Pioneer Venus from 1978 to 1992. This observational database interpreted in terms of modern multi-fluid codes and hybrid simulations has deepened our understanding of Earth's very different twin sister planet. Furthermore, the very different orbits of VEX and PVO has allowed the more complete mapping of the volume of space around the planet. Now the bow shock has been probed over its full surface, the ionosphere mapped everywhere, and the tail studied from the ionosphere to 12 Venus radii. Some unexpected discoveries have been made. The exospheric hydrogen at Venus, unlike that at Mars,does not produce ion-cyclotron waves, perhapsbecause the stronger gravity of Venus produces a smaller geocorona. The solar wind interaction drapes the magnetic field around the planet, and a strong layer of magnetic field builds up at low altitudes. While the layer does not appear to penetrate into the dayside atmosphere (perhaps diffusing only slowly through the low atmosphere), it does appear to dip into the atmosphere at night. Surprisingly, over the poles, this layer is most strongly seen when the IMF BY component has a positive Y-component in Venus- Solar-Orbital coordinates. Multi-fluid simulations show that this result is consistent with the pressure of significant ion densities of ions with quite different mass which causes magnetic polarity control of the ion flow over the terminators. Reconnection is found in the tail close to the planet, and the structure of the outer tail found by PVO is confirmed to exist in the inner tail by VEX. When combined, the VEX and PVO Data provide a very comprehensive picture of the physics of the solar wind interaction with the ionosphere of Venus.

  6. Sources of solar wind over the solar activity cycle

    PubMed Central

    Poletto, Giannina

    2012-01-01

    Fast solar wind has been recognized, about 40 years ago, to originate in polar coronal holes (CHs), that, since then, have been identified with sources of recurrent high speed wind streams. As of today, however, there is no general consensus about whether there are, within CHs, preferential locations where the solar wind is accelerated. Knowledge of slow wind sources is far from complete as well. Slow wind observed in situ can be traced back to its solar source by backward extrapolation of magnetic fields whose field lines are streamlines of the outflowing plasma. However, this technique often has not the necessary precision for an indisputable identification of the region where wind originates. As the Sun progresses through its activity cycle, different wind sources prevail and contribute to filling the heliosphere. Our present knowledge of different wind sources is here summarized. Also, a Section addresses the problem of wind acceleration in the low corona, as inferred from an analysis of UV data, and illustrates changes between fast and slow wind profiles and possible signatures of changes along the solar cycle. A brief reference to recent work about the deep roots of solar wind and their changes over different solar cycles concludes the review. PMID:25685421

  7. Sources of solar wind over the solar activity cycle.

    PubMed

    Poletto, Giannina

    2013-05-01

    Fast solar wind has been recognized, about 40 years ago, to originate in polar coronal holes (CHs), that, since then, have been identified with sources of recurrent high speed wind streams. As of today, however, there is no general consensus about whether there are, within CHs, preferential locations where the solar wind is accelerated. Knowledge of slow wind sources is far from complete as well. Slow wind observed in situ can be traced back to its solar source by backward extrapolation of magnetic fields whose field lines are streamlines of the outflowing plasma. However, this technique often has not the necessary precision for an indisputable identification of the region where wind originates. As the Sun progresses through its activity cycle, different wind sources prevail and contribute to filling the heliosphere. Our present knowledge of different wind sources is here summarized. Also, a Section addresses the problem of wind acceleration in the low corona, as inferred from an analysis of UV data, and illustrates changes between fast and slow wind profiles and possible signatures of changes along the solar cycle. A brief reference to recent work about the deep roots of solar wind and their changes over different solar cycles concludes the review. PMID:25685421

  8. Expansion effects on solar wind hybrid simulations

    SciTech Connect

    Parashar, Tulasi N.; Velli, Marco; Goldstein, Bruce E.

    2013-06-13

    Ion kinetic simulations of the solar wind using hybrid codes can model local wave input, heating and instabilities, but generally do not include long term evolution effects in the expanding solar wind. We further develop the expanding box model used in earlier studies to include the mirror force effects and study their role in the evolution of the proton distribution functions in the outer corona and inner heliosphere. The mirror force, significant in the acceleration region of the solar wind, is required for consistency with the conservation of magnetic moment of particles in the expanding wind. We present preliminary results from the modified 1D expanding box hybrid (EBHM) simulations.

  9. The solar wind-magnetosphere-ionosphere system

    PubMed

    Lyon

    2000-06-16

    The solar wind, magnetosphere, and ionosphere form a single system driven by the transfer of energy and momentum from the solar wind to the magnetosphere and ionosphere. Variations in the solar wind can lead to disruptions of space- and ground-based systems caused by enhanced currents flowing into the ionosphere and increased radiation in the near-Earth environment. The coupling between the solar wind and the magnetosphere is mediated and controlled by the magnetic field in the solar wind through the process of magnetic reconnection. Understanding of the global behavior of this system has improved markedly in the recent past from coordinated observations with a constellation of satellite and ground instruments. PMID:10856203

  10. Solar- and wind-powered irrigation systems

    NASA Astrophysics Data System (ADS)

    Enochian, R. V.

    1982-02-01

    Five different direct solar and wind energy systems are technically feasible for powering irrigation pumps. However, with projected rates of fossil fuel costs, only two may produce significant unsubsidied energy for irrigation pumping before the turn of the century. These are photovoltaic systems with nonconcentrating collectors (providing that projected costs of manufacturing solar cells prove correct); and wind systems, especially in remote areas where adequate wind is available.

  11. Solar energy system with wind vane

    SciTech Connect

    Grip, Robert E

    2015-11-03

    A solar energy system including a pedestal defining a longitudinal axis, a frame that is supported by the pedestal and that is rotateable relative to the pedestal about the longitudinal axis, the frame including at least one solar device, and a wind vane operatively connected to the frame to urge the frame relative to the pedestal about the longitudinal axis in response to wind acting on the wind vane.

  12. The distribution of solar wind speeds during solar minimum: Calibration for numerical solar wind modeling constraints on the source of the slow solar wind

    NASA Astrophysics Data System (ADS)

    McGregor, S. L.; Hughes, W. J.; Arge, C. N.; Owens, M. J.; Odstrcil, D.

    2011-03-01

    It took the solar polar passage of Ulysses in the early 1990s to establish the global structure of the solar wind speed during solar minimum. However, it remains unclear if the solar wind is composed of two distinct populations of solar wind from different sources (e.g., closed loops which open up to produce the slow solar wind) or if the fast and slow solar wind rely on the superradial expansion of the magnetic field to account for the observed solar wind speed variation. We investigate the solar wind in the inner corona using the Wang-Sheeley-Arge (WSA) coronal model incorporating a new empirical magnetic topology-velocity relationship calibrated for use at 0.1 AU. In this study the empirical solar wind speed relationship was determined by using Helios perihelion observations, along with results from Riley et al. (2003) and Schwadron et al. (2005) as constraints. The new relationship was tested by using it to drive the ENLIL 3-D MHD solar wind model and obtain solar wind parameters at Earth (1.0 AU) and Ulysses (1.4 AU). The improvements in speed, its variability, and the occurrence of high-speed enhancements provide confidence that the new velocity relationship better determines the solar wind speed in the outer corona (0.1 AU). An analysis of this improved velocity field within the WSA model suggests the existence of two distinct mechanisms of the solar wind generation, one for fast and one for slow solar wind, implying that a combination of present theories may be necessary to explain solar wind observations.

  13. Solar Wind Acceleration and the Dynamic Character of the Polar Solar Wind

    NASA Astrophysics Data System (ADS)

    Jackson, B. V.; Yu, H.; Hick, P. P.; Buffington, A.

    2013-12-01

    SOHO LASCO C2 and STEREO SECCHI COR 2 coronagraph images, when analyzed using correlation tracking techniques, show a surprising result in regions ordinarily thought of as 'quiet' solar wind above the poles in coronal hole regions. Here, the observed solar wind outflow is not the static well-ordered flow and gradual acceleration normally expected of quiescent polar hole regions. Rather, coronagraph images show outflow in polar coronal holes as intermittent highly-variable solar wind speed structures. We compare measurements of this highly-variable solar wind structure using different coronagraphs, and compare these structures with coronal brightness. Measurement of the mean velocities derived with height show the solar wind acceleration and are compared with mass flux and other determinations of the solar wind outflow in the large polar coronal hole regions. We also compare these measurements with IPS velocities obtained at large solar distances from the Sun at approximately these same times.

  14. Bimodal Solar Wind-Magnetosphere-Ionosphere Coupling

    NASA Astrophysics Data System (ADS)

    Siscoe, G.

    2005-05-01

    Regarding its coupling to the solar wind, the magnetosphere-ionosphere system appears to be schizophrenic. That is, it seems to manifest two modes with contradictory qualities, modes that alternate depending on solar wind conditions. Normal conditions elicit the normal mode (aka the solar wind-dominated mode). But extreme conditions bring out the un-normal mode (aka the ionosphere-dominated mode). This talk emphasizes the un-normal, ionosphere-dominated mode, which makes its presence during great magnetic storms. Then the magnetosphere-confining Chapman-Ferraro current system fades away to be replaced by the region 1 currents system which links the now dominant ionosphere to the whole of geospace out to and including the bow shock. Dst no longer responds to the ram pressure of the solar wind. The electrical potential across the polar cap stops growing as solar wind driving strengthens. Instead, it becomes bound to ionospheric conductance, which as the storm intensifies transforms under local instability. The ionosphere appears to lose its grip on magnetospheric convection, although this is not certain. The plasmasphere is stripped away, most likely to feed (by global circulation) an intensifying ring current. The outer magnetosphere begins a series of slow, macroscale convulsions. Huge parallel potentials possibly develop in the magnetosphere's outer regions, reacting against the ionosphere's domination. Compared to the solar wind-dominated magnetosphere, the ionosphere-dominated magnetosphere is comparatively unknown and, so, provides opportunities for significantly advancing our understanding of the coupled solar wind-magnetosphere-ionosphere system.

  15. Global Network of Slow Solar Wind

    NASA Technical Reports Server (NTRS)

    Crooker, N. U.; Antiochos, S. K.; Zhao, X.; Neugebauer, M.

    2012-01-01

    The streamer belt region surrounding the heliospheric current sheet (HCS) is generally treated as the primary or sole source of the slow solar wind. Synoptic maps of solar wind speed predicted by the Wang-Sheeley-Arge model during selected periods of solar cycle 23, however, show many areas of slow wind displaced from the streamer belt. These areas commonly have the form of an arc that is connected to the streamer belt at both ends. The arcs mark the boundaries between fields emanating from different coronal holes of the same polarity and thus trace the paths of belts of pseudostreamers, i.e., unipolar streamers that form over double arcades and lack current sheets. The arc pattern is consistent with the predicted topological mapping of the narrow open corridor or singular separator line that must connect the holes and, thus, consistent with the separatrix-web model of the slow solar wind. Near solar maximum, pseudostreamer belts stray far from the HCS-associated streamer belt and, together with it, form a global-wide web of slow wind. Recognition of pseudostreamer belts as prominent sources of slow wind provides a new template for understanding solar wind stream structure, especially near solar maximum.

  16. Multifractality and chaos in the solar wind

    NASA Astrophysics Data System (ADS)

    Macek, Wiesław M.

    2002-07-01

    We analyze a time series of velocities of the solar wind plasma stream including Alfvénic fluctuations measured in situ by the Helios spacecraft in the inner heliosphere, which is the region of space dominated by the solar wind flow. We calculate the generalized dimensions directly from the cleaned experimental signal. The resulting spectrum of dimensions shows multifractal structure of the solar wind in the inner heliosphere. The obtained multifractal spectrum is consistent with that for the multifractal measure on the self-similar weighted Cantor set.

  17. DSCOVR High Time Resolution Solar Wind Measurements

    NASA Technical Reports Server (NTRS)

    Szabo, Adam

    2012-01-01

    The Deep Space Climate Observatory (DSCOVR), previously known as Triana, spacecraft is expected to be launched in late 2014. It will carry a fluxgate magnetometer, Faraday Cup solar wind detector and a top-hat electron electrostatic analyzer. The Faraday Cup will provide an unprecedented 10 vectors/sec time resolution measurement of the solar wind proton and alpha reduced distribution functions. Coupled with the 40 vector/sec vector magnetometer measurements, the identification of specific wave modes in the solar wind will be possible for the first time. The science objectives and data products of the mission will be discussed.

  18. DSCOVR High Time Resolution Solar Wind Measurements

    NASA Astrophysics Data System (ADS)

    Szabo, A.

    2012-12-01

    The Deep Space Climate Observatory (DSCOVR), previously known as Triana, spacecraft is expected to be launched in late 2014. It will carry a fluxgate magnetometer, Faraday Cup solar wind detector and a top-hat electron electrostatic analyzer. The Faraday Cup will provide an unprecedented 10 vectors/sec time resolution measurement of the solar wind proton and alpha reduced distribution functions. Coupled with the 40 vector/sec vector magnetometer measurements, the identification of specific wave modes in the solar wind will be possible for the first time. The science objectives and data products of the mission will be discussed.

  19. On periodicity of solar wind phenomena

    NASA Technical Reports Server (NTRS)

    Verma, V. K.; Joshi, G. C.

    1995-01-01

    We have investigated the rate of occurrence of solar wind phenomena observed between 1972-1984 using power spectrum analysis. The data have been taken from the high speed solar wind (HSSW) streams catalogue published by Mavromichalaki et al. (1988). The power spectrum analysis of HSSW events indicate that HSSW stream events have a periodicity of 9 days. This periodicity of HSSW events is 1/3 of the 27 days period of coronal holes which are the major source of solar wind events. In our opinion the 9 days period may be the energy build up time to produce the HSSW stream events.

  20. Solar wind tans young asteroids

    NASA Astrophysics Data System (ADS)

    2009-04-01

    A new study published in Nature this week reveals that asteroid surfaces age and redden much faster than previously thought -- in less than a million years, the blink of an eye for an asteroid. This study has finally confirmed that the solar wind is the most likely cause of very rapid space weathering in asteroids. This fundamental result will help astronomers relate the appearance of an asteroid to its actual history and identify any after effects of a catastrophic impact with another asteroid. ESO PR Photo 16a/09 Young Asteroids Look Old "Asteroids seem to get a ‘sun tan' very quickly," says lead author Pierre Vernazza. "But not, as for people, from an overdose of the Sun's ultraviolet radiation, but from the effects of its powerful wind." It has long been known that asteroid surfaces alter in appearance with time -- the observed asteroids are much redder than the interior of meteorites found on Earth [1] -- but the actual processes of this "space weathering" and the timescales involved were controversial. Thanks to observations of different families of asteroids [2] using ESO's New Technology Telescope at La Silla and the Very Large Telescope at Paranal, as well as telescopes in Spain and Hawaii, Vernazza's team have now solved the puzzle. When two asteroids collide, they create a family of fragments with "fresh" surfaces. The astronomers found that these newly exposed surfaces are quickly altered and change colour in less than a million years -- a very short time compared to the age of the Solar System. "The charged, fast moving particles in the solar wind damage the asteroid's surface at an amazing rate [3]", says Vernazza. Unlike human skin, which is damaged and aged by repeated overexposure to sunlight, it is, perhaps rather surprisingly, the first moments of exposure (on the timescale considered) -- the first million years -- that causes most of the aging in asteroids. By studying different families of asteroids, the team has also shown that an asteroid's surface composition is an important factor in how red its surface can become. After the first million years, the surface "tans" much more slowly. At that stage, the colour depends more on composition than on age. Moreover, the observations reveal that collisions cannot be the main mechanism behind the high proportion of "fresh" surfaces seen among near-Earth asteroids. Instead, these "fresh-looking" surfaces may be the results of planetary encounters, where the tug of a planet has "shaken" the asteroid, exposing unaltered material. Thanks to these results, astronomers will now be able to understand better how the surface of an asteroid -- which often is the only thing we can observe -- reflects its history. More information This result was presented in a paper published this week in the journal Nature, "Solar wind as the origin of rapid reddening of asteroid surfaces", by P. Vernazza et al. The team is composed of Pierre Vernazza (ESA), Richard Binzel (MIT, Cambridge, USA), Alessandro Rossi (ISTI-CNR, Pisa, Italy), Marcello Fulchignoni (Paris Observatory, France), and Mirel Birlan (IMCCE, CNRS-8028, Paris Observatory, France). A PDF file can be downloaded here. Notes [1] Meteorites are small fragments of asteroids that fall on Earth. While a meteorite enters the Earth's atmosphere its surface can melt and be partially charred by the intense heat. Nevertheless, the meteorite interior remains unaffected, and can be studied in a laboratory, providing a wealth of information on the nature and composition of asteroids. [2] An asteroid family is a group of asteroids that are on similar orbits around the Sun. The members of a given family are believed to be the fragments of a larger asteroid that was destroyed during a collision. [3] The surface of an asteroid is affected by the highly energetic particles forming the solar wind. These particles partially destroy the molecules and crystals on the surface, re-arranging them in other combinations. Over time, these changes give formation of a thin crust or irradiated material with distinct colours and properties.

  1. Properties of the very slow solar wind

    NASA Astrophysics Data System (ADS)

    Sanchez-Diaz, Eduardo; Segura, Kevin; Rouillard, Alexis P.; Lavraud, Benoit

    2015-04-01

    Solar wind plasma data taken between 0.29-0.9 AU by the twin HELIOS spacecraft reveals the frequent occurrence of very low radial wind speeds (200 < V < 300 km/s), very rarely measured near 1 AU. By analysing the occurrence as a function of heliocentric distance and time, we show that it is primarly measured inside 0.5 AU and mostly during solar maximum, although some very slow wind events were also measured during short periods at solar minimum. We show that the very slow wind is frequently measured during the passage of the solar wind plasma sheet usually detected in the vicinity of the heliospheric current sheet. By tracing these slow events back to the Sun and using a potential field reconstruction of the coronal magnetic field based on magnetograms taken by Mount Wilson Observatory, we compare the speed of the very slow wind with the geometry of the magnetic flux tube at its source. We discuss theoretical mechanisms that could explain the abundance and origin of this very slow wind, we also stress the importance of these findings for our understanding of solar wind structure. This study was carried out as part of the HELCATS FP7 project.

  2. Solar wind drivers of energetic electron precipitation

    NASA Astrophysics Data System (ADS)

    Asikainen, T.; Ruopsa, M.

    2016-03-01

    Disturbances of near-Earth space are predominantly driven by coronal mass ejections (CMEs) mostly originating from sunspots and high-speed solar wind streams (HSSs) emanating from coronal holes. Here we study the relative importance of CMEs and HSSs as well as slow solar wind in producing energetic electron precipitation. We use the recently corrected energetic electron measurements from the Medium Energy Proton Electron Detector instrument on board low-altitude NOAA/Polar Orbiting Environmental Satellites from 1979 to 2013. Using solar wind observations categorized into three different flow types, we study the contributions of these flows to annual electron precipitation and their efficiencies in producing precipitation. We find that HSS contribution nearly always dominates over the other flows and peaks strongly in the declining solar cycle phase. CME contribution mostly follows the sunspot cycle but is enhanced also in the declining phase. The efficiency of both HSS and CME peaks in the declining phase. We also study the dependence of electron precipitation on solar wind southward magnetic field component, speed, and density and find that the solar wind speed is the dominant factor affecting the precipitation. Since HSSs enhance the average solar wind speed in the declining phase, they also enhance the efficiency of CMEs during these times and thus have a double effect in enhancing energetic electron precipitation.

  3. Solar wind behavior throughout the heliosphere

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.

    1993-01-01

    Observations and interpretations of solar wind behavior in the heliosphere are reviewed. The spiral magnetic field, the heliospheric vortex street, multifractals and large-scale fluctuations, and intermittent turbulence are examined. Voyager observations of the outer heliosphere are stressed.

  4. Pluto's interaction with the solar wind

    SciTech Connect

    Bagenal, F. ); McNutt, R.L. Jr. )

    1989-11-01

    If Pluto's atmospheric escape rate is significantly greater than 1.5 x 10{sup 27} molecules s{sup {minus}1} then the interaction with the tenuous solar wind at 30 A.U. will be like that of a comet: there will be extensive ion pick-up upstream and the size of the interaction region will vary directly with variations in the solar wind flux. If the escape flux is much less, then one expects that the solar wind will be deflected around Pluto's ionosphere in a Venus-like interaction. In either case, the weak interplanetary magnetic field at 30 A.U. results in very large gyroradii for the picked up ions and a thick bow shock, necessitating a kinetic treatment of the interaction. Strong variations in the size of the interaction region are expected on time scales of days due to changes in the solar wind.

  5. Turbulence in solar wind and laboratory plasmas

    SciTech Connect

    Carbone, V.

    2010-06-16

    Recent studies of plasma turbulence based on measurements within solar wind and laboratory plasmas has been discussed. Evidences for the presence of a turbulent energy cascade, using the Yaglom's law for MHD turbulence, has been provided through data from the Ulysses spacecraft. This allows, for the first time, a direct estimate of the turbulent energy transfer rate, which can contribute to the in situ heating of the solar wind. The energy cascade has been evidenced also for ExB electrostatic turbulence in laboratory magnetized plasmas using measurements of intermittent transport (bursty turbulence) at the edge of the RFX-mod reversed field pinch plasma device. Finally the problem of the dispersive region of turbulence in solar wind above the ion-cyclotron frequency, where a spectral break is usually observed, and the problem of dissipation in a collisionless fluid as the solar wind, are briefly discussed.

  6. Genesis Solar Wind Array Collector Cataloging Status

    NASA Astrophysics Data System (ADS)

    Burkett, P. J.; Rodriguez, M. C.; Calaway, M. C.; Allton, J. H.

    2009-03-01

    A focused characterization task was initiated in May 2008 to document the largest array fragments in the Genesis solar wind collection. To date, the collection consists of 3460 samples. By area, total percentage of cataloged array material is 18%.

  7. Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets

    NASA Technical Reports Server (NTRS)

    Malaspina, David M.; Newman, David L.; Wilson, Lynn Bruce; Goetz, Keith; Kellogg, Paul J.; Kerstin, Kris

    2013-01-01

    A strong spatial association between bipolar electrostatic solitary waves (ESWs) and magnetic current sheets (CSs) in the solar wind is reported here for the first time. This association requires that the plasma instabilities (e.g., Buneman, electron two stream) which generate ESWs are preferentially localized to solar wind CSs. Distributions of CS properties (including shear angle, thickness, solar wind speed, and vector magnetic field change) are examined for differences between CSs associated with ESWs and randomly chosen CSs. Possible mechanisms for producing ESW-generating instabilities at solar wind CSs are considered, including magnetic reconnection.

  8. Solar Corona/Wind Composition and Origins of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Lepri, S. T.; Gilbert, J. A.; Landi, E.; Shearer, P.; von Steiger, R.; Zurbuchen, T.

    2014-12-01

    Measurements from ACE and Ulysses have revealed a multifaceted solar wind, with distinctly different kinetic and compositional properties dependent on the source region of the wind. One of the major outstanding issues in heliophysics concerns the origin and also predictability of quasi-stationary slow solar wind. While the fast solar wind is now proven to originate within large polar coronal holes, the source of the slow solar wind remains particularly elusive and has been the subject of long debate, leading to models that are stationary and also reconnection based - such as interchange or so-called S-web based models. Our talk will focus on observational constraints of solar wind sources and their evolution during the solar cycle. In particular, we will point out long-term variations of wind composition and dynamic properties, particularly focused on the abundance of elements with low First Ionization Potential (FIP), which have been routinely measured on both ACE and Ulysses spacecraft. We will use these in situ observations, and remote sensing data where available, to provide constraints for solar wind origin during the solar cycle, and on their correspondence to predictions for models of the solar wind.

  9. Magnetic energy flow in the solar wind.

    NASA Technical Reports Server (NTRS)

    Modisette, J. L.

    1972-01-01

    Discussion of the effect of rotation (tangential flow) of the solar wind on the conclusions of Whang (1971) suggesting an increase in the solar wind velocity due to the conversion of magnetic energy to kinetic energy. It is shown that the effect of the rotation of the sun on the magnetic energy flow results in most of the magnetic energy being transported by magnetic shear stress near the sun.

  10. Origin of the Ubiquitous Fast Solar Wind

    NASA Technical Reports Server (NTRS)

    Habbal, S. R.; Woo, R.; Fineschi, S.; O'Neal, R.; Kohl, J.; Noci, G.

    1997-01-01

    The solar wind is a direct manifestation of the coronal heating processes which continue to elude us. For over three decades, observations in interplanetary space have identified two types of wind: a slow component with highly variable physical properties also characterized by speeds typically beow 500 kn/s, and a much less variable fast wind flowing on average at 750 km/s1.

  11. The Genesis Solar Wind Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Wiens, Roger C.; Burnett, Donald S.; Neugebauer, Marcia; Sasaki, Chester; Sevilla, Donald; Stansbery, Eileen; Clark, Ben; Smith, Nick; Oldham, Lloyd

    1990-01-01

    The Genesis spacecraft was launched on August 8 from Cape Canaveral on a journey to become the first spacecraft to return from interplanetary space. The fifth in NASA's line of low-cost Discovery-class missions, its goal is to collect samples of solar wind and return them to Earth for detailed isotopic and elemental analysis. The spacecraft is to collect solar wind for over two years, while circling the L1 point 1.5 million km sunward of the earth, before heading back for a capsule-style re-entry in September, 2004. After parachute deployment, a mid-air helicopter recovery will be used to avoid a hard landing. The mission has been in the planning stages for over ten years. Its cost, including development, mission operations, and sample analysis, is approximately $209M. The Genesis science team, headed by principal investigator Donald Burnett of Caltech, consists of approximately 20 co-investigators from universities and science centers around the country and internationally. The spacecraft consists of a relatively flat spacecraft bus containing most of the subsystem components, situated below a sample return capsule (SRC) which holds the solar-wind collection substrates and an electrostatic solar wind concentrator. Some of the collectors are exposed throughout the collection period, for a sample of bulk solar wind, while others are exposed only to certain solar wind regimes, or types of flow. Ion and electron spectrometers feed raw data to the spacecraft control and data-handling (C&DH) unit, which determines ion moments and electron flux geometries in real time. An algorithm is used to robotically decide between interstream (IS), coronal hole (CH), and coronal mass ejection (CME) regimes, and to control deployment of the proper arrays to sample these wind regimes independently. This is the first time such a solar-wind decision algorithm has been used on board a spacecraft.

  12. The Genesis Mission Solar Wind Collection: Solar-Wind Statistics over the Period of Collection

    NASA Technical Reports Server (NTRS)

    Barraclough, B. L.; Wiens, R. C.; Steinberg, J. E.; Reisenfeld, D. B.; Neugebauer, M.; Burnett, D. S.; Gosling, J.; Bremmer, R. R.

    2004-01-01

    The NASA Genesis spacecraft was launched August 8, 2001 on a mission to collect samples of solar wind for 2 years and return them to earth September 8, 2004. Detailed analyses of the solar wind ions implanted into high-purity collection substrates will be carried out using various mass spectrometry techniques. These analyses are expected to determine key isotopic ratios and elemental abundances in the solar wind, and by extension, in the solar photosphere. Further, the photospheric composition is thought to be representative of the solar nebula with a few exceptions, so that the Genesis mission will provide a baseline for the average solar nebula composition with which to compare present-day compositions of planets, meteorites, and asteroids. The collection of solar wind samples is almost complete. Collection began for most substrates in early December, 2001, and is scheduled to be complete on April 2 of this year. It is critical to understand the solar-wind conditions during the collection phase of the mission. For this reason, plasma ion and electron spectrometers are continuously monitoring the solar wind proton density, velocity, temperature, the alpha/proton ratio, and angular distribution of suprathermal electrons. Here we report on the solar-wind conditions as observed by these in-situ instruments during the first half of the collection phase of the mission, from December, 2001 to present.

  13. Diffusive Shock Acceleration in Structured Solar Wind

    NASA Astrophysics Data System (ADS)

    Kocharov, L. G.

    2014-12-01

    Solar energetic particle (SEP) events, especially at high energies are rare and hence may require some special conditions to exist. Sufficiently high level of Alfvenic turbulence is needed for the fast acceleration of particles in shocks driven by coronal mass ejections in solar wind. However, the turbulence level observed in association with SEP events is highly intermittent, which may be essential for the particle emission to upstream of the shock or back to the Sun. Several model cases are considered to illustrate how the pre-existing solar wind structures can affect the acceleration and escape of solar energetic ions. The model includes both the shock acceleration and the stochastic re-acceleration by the shock-amplified turbulence with account for the turbulence attenuation caused by the particle re-acceleration. Implications for the Solar Orbiter and Solar Probe Plus science are discussed.

  14. Are There Natural Categories of Solar Wind?

    NASA Astrophysics Data System (ADS)

    Roberts, D. A.; Sipes, T.; Karimabadi, H.

    2014-12-01

    What seem to be the most obvious categories of solar wind, such as fast and slow, often turn out to be difficult to pin down on closer examination. For example, while slow winds tend to be dense and nonAlfvenic, there are significant exceptions, with some slow winds being not only very Alfvenic but also exhibiting many fast wind traits. Here we use "unsupervised" data mining to look for "natural" solar wind types. We use a set of variables to represent the state of the system and apply what are now standard algorithms to look for natural clustering of these variables. We have done this process for the solar wind density, speed, a carbon charge state ratio (6+ to 5+), the cross-helicity, and the "residual energy." When using the first three of these, we find two groups that tend to be slow and fast, but with the boundary between the groups that is a combination of speed and density. When all five variables are used, the best characterization of the states is as three basic groups in the cross-helicity vs residual energy space, i.e., in terms of "turbulence" measures rather than simple parameters. The three-variable case is largely but not completely reproduced in its subspace. We will suggest what the results could mean for the understanding of issues such as solar wind acceleration.

  15. Response of Solar Wind on Extreme Solar Activity

    NASA Astrophysics Data System (ADS)

    Suzuki, T. K.

    2015-09-01

    We investigate how the mass loss by the solar wind depends on the solar activity levels, particularly focusing on the solar wind during extremely high activity. We perform forward-type magnetohydrodynamical (MHD) numerical experiments for Alfvén wave-driven solar winds with a wide range of the input Poynting flux from the photosphere. Increasing the magnetic field strength and the turbulent velocity at the solar photosphere from the current solar level, the mass loss rate rapidly increases at first owing to the suppression of the reflection of the Alfvén waves. The surface materials are lifted up by the magnetic pressure associated with the Alfvén waves, and the cool dense chromosphere is extended to ∼ 10% of the stellar radius. The dense atmospheres enhance the radiative losses and eventually most of the input Poynting energy from the surface escapes by the radiation. As a result, there is no more sufficient energy remained for the kinetic energy of the wind; the solar wind saturates for the extreme activity level, as observed in Wood et al. The saturation level is positively correlated with the average magnetic field strength contributed from open flux tubes. If the field strength is a few times larger than the present level, the mass loss rate could be as high as 1000 times.

  16. New Horizons Solar Wind Around Pluto Solar Wind (SWAP) Measurements from 5 to 23 AU

    NASA Astrophysics Data System (ADS)

    Elliott, H. A.; McComas, D. J.; Delamere, P. A.

    2012-12-01

    This year the Solar Wind Around Pluto (SWAP) instrument on the New Horizons (NH) spacecraft collected 79 days of solar wind measurements during hibernation, about 30 days of data during annual checkout operations, and has begun recording another 168 days of data in hibernation which will be played back next year. The currently available NH-SWAP solar wind observations now span from about 5.1 to 23.4 AU. We examine how the peak solar wind speed in the New Horizons measurements vary with distance, report on progress toward automating the fitting of the SWAP solar wind count rate distributions, and take an initial look at the solar wind temperature-speed relationship beyond 11 AU. Since most of the SWAP solar wind observations were collected while spinning, and ions from the entire field-of-view (10 by 276 degrees) are focused onto one pair of coincidence Channel Electron Multiplier, we need to evaluate the effect of spinning on the measured rates. By comparing the 3-axis stabilized, to the rolling and spinning measurements, we strive to assess spin variations in the observed SWAP count rates and develop techniques to account for them. To test our analysis, we fit simulated count rate distributions to quantify how well our technique recovers the input solar wind conditions.

  17. Solar wind origin in coronal funnels.

    PubMed

    Tu, Chuan-Yi; Zhou, Cheng; Marsch, Eckart; Xia, Li-Dong; Zhao, Liang; Wang, Jing-Xiu; Wilhelm, Klaus

    2005-04-22

    The origin of the solar wind in solar coronal holes has long been unclear. We establish that the solar wind starts flowing out of the corona at heights above the photosphere between 5 megameters and 20 megameters in magnetic funnels. This result is obtained by a correlation of the Doppler-velocity and radiance maps of spectral lines emitted by various ions with the force-free magnetic field as extrapolated from photospheric magnetograms to different altitudes. Specifically, we find that Ne7+ ions mostly radiate around 20 megameters, where they have outflow speeds of about 10 kilometers per second, whereas C3+ ions with no average flow speed mainly radiate around 5 megameters. Based on these results, a model for understanding the solar wind origin is suggested. PMID:15845846

  18. PULSED ALFVEN WAVES IN THE SOLAR WIND

    SciTech Connect

    Gosling, J. T.; Tian, H.; Phan, T. D.

    2011-08-20

    Using 3 s plasma and magnetic field data from the Wind spacecraft located in the solar wind well upstream from Earth, we report observations of isolated, pulse-like Alfvenic disturbances in the solar wind. These isolated events are characterized by roughly plane-polarized rotations in the solar wind magnetic field and velocity vectors away from the directions of the underlying field and velocity and then back again. They pass over Wind on timescales ranging from seconds to several minutes. These isolated, pulsed Alfven waves are pervasive; we have identified 175 such events over the full range of solar wind speeds (320-550 km s{sup -1}) observed in a randomly chosen 10 day interval. The large majority of these events are propagating away from the Sun in the solar wind rest frame. Maximum field rotations in the interval studied ranged from 6 Degree-Sign to 109 Degree-Sign . Similar to most Alfvenic fluctuations in the solar wind at 1 AU, the observed changes in velocity are typically less than that predicted for pure Alfven waves (Alfvenicity ranged from 0.28 to 0.93). Most of the events are associated with small enhancements or depressions in magnetic field strength and small changes in proton number density and/or temperature. The pulse-like and roughly symmetric nature of the magnetic field and velocity rotations in these events suggests that these Alfvenic disturbances are not evolving when observed. They thus appear to be, and probably are, solitary waves. It is presently uncertain how these waves originate, although they may evolve out of Alfvenic turbulence.

  19. THREE-DIMENSIONAL NUMERICAL SIMULATIONS OF MAGNETIZED WINDS OF SOLAR-LIKE STARS

    SciTech Connect

    Vidotto, A. A.; Jatenco-Pereira, V.; Opher, M.; Gombosi, T. I.

    2009-07-01

    By means of self-consistent three-dimensional magnetohydrodynamics (MHD) numerical simulations, we analyze magnetized solar-like stellar winds and their dependence on the plasma-{beta} parameter (the ratio between thermal and magnetic energy densities). This is the first study to perform such analysis solving the fully ideal three-dimensional MHD equations. We adopt in our simulations a heating parameter described by {gamma}, which is responsible for the thermal acceleration of the wind. We analyze winds with polar magnetic field intensities ranging from 1 to 20 G. We show that the wind structure presents characteristics that are similar to the solar coronal wind. The steady-state magnetic field topology for all cases is similar, presenting a configuration of helmet streamer-type, with zones of closed field lines and open field lines coexisting. Higher magnetic field intensities lead to faster and hotter winds. For the maximum magnetic intensity simulated of 20 G and solar coronal base density, the wind velocity reaches values of {approx}1000 km s{sup -1} at r {approx} 20r {sub 0} and a maximum temperature of {approx}6 x 10{sup 6} K at r {approx} 6r {sub 0}. The increase of the field intensity generates a larger 'dead zone' in the wind, i.e., the closed loops that inhibit matter to escape from latitudes lower than {approx}45 deg. extend farther away from the star. The Lorentz force leads naturally to a latitude-dependent wind. We show that by increasing the density and maintaining B {sub 0} = 20 G the system recover back to slower and cooler winds. For a fixed {gamma}, we show that the key parameter in determining the wind velocity profile is the {beta}-parameter at the coronal base. Therefore, there is a group of magnetized flows that would present the same terminal velocity despite its thermal and magnetic energy densities, as long as the plasma-{beta} parameter is the same. This degeneracy, however, can be removed if we compare other physical parameters of the wind, such as the mass-loss rate. We analyze the influence of {gamma} in our results and we show that it is also important in determining the wind structure.

  20. Solar wind electron measurements from the Wind spacecraft

    NASA Astrophysics Data System (ADS)

    Bale, S. D.

    2014-12-01

    The Wind spacecraft has been on orbit for 20 years and produced a wealth solar wind science. In this talk, I will describe results from the Three Dimensional Plasma (3DP) instrument on Wind. In particular, we will use measurements of 1 AU electron distribution functions to show that the thermal electron bulk speed lags the proton speed and that this velocity difference is controlled by Coulomb collisions. By integrating the equation of dynamical friction back into the inner heliosphere, we infer that the plasma environment of the corona (within 20 Rs) is higher kinetic.

  1. The Three-Dimenstional Solar Wind at Solar Activity Minimum

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.

    1998-01-01

    In late 1997, the Ulysses spacecraft completed its first orbit around the Sun, observing the properties of the heliosphere at all latitudes between 80 degrees South and 80 degrees North. Because the mission occurred during a period of near-minimum solar activity, the configuration of the solar wind and interplanetary magnetic field were particularly simple, thus allowing confident comparisons between the properties of the polar corona observed by instruments of the Spartan and SOHO spacecraft and the resulting properties of the solar wind.

  2. Clouds blown by the solar wind

    NASA Astrophysics Data System (ADS)

    Voiculescu, M.; Usoskin, I.; Condurache-Bota, S.

    2013-12-01

    In this letter we investigate possible relationships between the cloud cover (CC) and the interplanetary electric field (IEF), which is modulated by the solar wind speed and the interplanetary magnetic field. We show that CC at mid-high latitudes systematically correlates with positive IEF, which has a clear energetic input into the atmosphere, but not with negative IEF, in general agreement with predictions of the global electric circuit (GEC)-related mechanism. Thus, our results suggest that mid-high latitude clouds might be affected by the solar wind via the GEC. Since IEF responds differently to solar activity than, for instance, cosmic ray flux or solar irradiance, we also show that such a study allows distinguishing one solar-driven mechanism of cloud evolution, via the GEC, from others.

  3. Laboratory Facility for Simulating Solar Wind Sails

    SciTech Connect

    Funaki, Ikkoh; Ayabe, Tomohiro; Horisawa, Hideyuki; Yamakawa, Hiroshi

    2008-12-31

    Magnetic sail (MagSail) is a deep space propulsion system, in which an artificial magnetic cavity captures the energy of the solar wind to propel a spacecraft in the direction leaving the sun. For a scale-model experiment of the plasma flow of MagSail, we employed a magnetoplasmadynamic arcjet as a solar wind simulator. It is observed that a plasma flow from the solar wind simulator reaches a quasi-steady state of about 0.8 ms duration after a transient phase when initiating the discharge. During this initial phase of the discharge, a blast-wave was observed to develop radially in a vacuum chamber. When a solenoidal coil (MagSail scale model) is immersed into the quasi-steady flow where the velocity is 45 km/s, and the number density is 10{sup 19} m-3, a bow shock as well as a magnetic cavity were formed in front of the coil. As a result of the interaction between the plasma flow and the magnetic cavity, the momentum of the simulated solar wind is decreased, and it is found from the thrust measurement that the solar wind momentum is transferred to the coil simulating MagSail.

  4. Ancient solar wind in lunar microbreccias

    NASA Technical Reports Server (NTRS)

    Thiemens, M. H.; Clayton, R. N.

    1980-01-01

    Possible components of the ancient solar wind, particularly the N-15/N-14 ratio, are investigated on the basis of lunar microbreccia studies. Nitrogen contents and isotope ratios were determined for Apollo 11 and 15 microbreccia samples by means of vacuum pyrolysis techniques. The Apollo 11 soil breccias, which had been closed to the addition of recent solar wind due to their compaction, are found to contain the lowest N-15/N-14 ratios yet reported for the solar wind, extending the range of variation of the ratio to between a delta N-15 of -190% in the past to +120% at present. Nitrogen isotope analysis of the Apollo 15 drill core, which had undergone two episodes of solar wind exposure, also support the secular variation in the N-15 content of the solar wind, which is attributed to spallation reactions in the sun. The formation of the breccias at the Apollo 11 and 15 sites is discussed on the basis of the observed nitrogen systematics, and differences between N-15 and Ne-21 cosmic ray exposure ages implied are attributed to the diffusive loss of neon from lunar soils.

  5. The Solar Wind Ion Analyzer for MAVEN

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Taylor, E. R.; Dalton, G.; Johnson, G.; Curtis, D. W.; McFadden, J. P.; Mitchell, D. L.; Lin, R. P.; Jakosky, B. M.

    2015-12-01

    The Solar Wind Ion Analyzer (SWIA) on the MAVEN mission will measure the solar wind ion flows around Mars, both in the upstream solar wind and in the magneto-sheath and tail regions inside the bow shock. The solar wind flux provides one of the key energy inputs that can drive atmospheric escape from the Martian system, as well as in part controlling the structure of the magnetosphere through which non-thermal ion escape must take place. SWIA measurements contribute to the top level MAVEN goals of characterizing the upper atmosphere and the processes that operate there, and parameterizing the escape of atmospheric gases to extrapolate the total loss to space throughout Mars' history. To accomplish these goals, SWIA utilizes a toroidal energy analyzer with electrostatic deflectors to provide a broad 360∘×90∘ field of view on a 3-axis spacecraft, with a mechanical attenuator to enable a very high dynamic range. SWIA provides high cadence measurements of ion velocity distributions with high energy resolution (14.5 %) and angular resolution (3.75∘×4.5∘ in the sunward direction, 22.5∘×22.5∘ elsewhere), and a broad energy range of 5 eV to 25 keV. Onboard computation of bulk moments and energy spectra enable measurements of the basic properties of the solar wind at 0.25 Hz.

  6. Evidence for solar wind modulation of lightning

    NASA Astrophysics Data System (ADS)

    Scott, C. J.; Harrison, R. G.; Owens, M. J.; Lockwood, M.; Barnard, L.

    2014-05-01

    The response of lightning rates over Europe to arrival of high speed solar wind streams at Earth is investigated using a superposed epoch analysis. Fast solar wind stream arrival is determined from modulation of the solar wind V y component, measured by the Advanced Composition Explorer spacecraft. Lightning rate changes around these event times are determined from the very low frequency arrival time difference (ATD) system of the UK Met Office. Arrival of high speed streams at Earth is found to be preceded by a decrease in total solar irradiance and an increase in sunspot number and Mg II emissions. These are consistent with the high speed stream’s source being co-located with an active region appearing on the Eastern solar limb and rotating at the 27 d period of the Sun. Arrival of the high speed stream at Earth also coincides with a small (˜1%) but rapid decrease in galactic cosmic ray flux, a moderate (˜6%) increase in lower energy solar energetic protons (SEPs), and a substantial, statistically significant increase in lightning rates. These changes persist for around 40 d in all three quantities. The lightning rate increase is corroborated by an increase in the total number of thunder days observed by UK Met stations, again persisting for around 40 d after the arrival of a high speed solar wind stream. This result appears to contradict earlier studies that found an anti-correlation between sunspot number and thunder days over solar cycle timescales. The increase in lightning rates and thunder days that we observe coincides with an increased flux of SEPs which, while not being detected at ground level, nevertheless penetrate the atmosphere to tropospheric altitudes. This effect could be further amplified by an increase in mean lightning stroke intensity that brings more strokes above the detection threshold of the ATD system. In order to remove any potential seasonal bias the analysis was repeated for daily solar wind triggers occurring during the summer months (June to August). Though this reduced the number of solar wind triggers to 32, the response in both lightning and thunder day data remained statistically significant. This modulation of lightning by regular and predictable solar wind events may be beneficial to medium range forecasting of hazardous weather.

  7. Solar wind ion composition and charge states

    SciTech Connect

    Vonsteiger, R.

    1995-06-01

    The solar wind, a highly tenuous plasma streaming from the Sun into interplanetary space at supersonic speed, is roughly composed of 95% hydrogen and 5% helium by number. All other, heavy elements contribute less than 0.1% by number and thus are truly test particles Nevertheless, these particles provide valuable information not present in the main components. The authors first discuss the importance of the heavy ions as tracers for processes in the solar atmosphere. Specifically, their relative abundances are found to be different in the solar wind as compared to the photosphere. This fractionation, which is best organized as a function of the first ionization time (FIT) of the elements under solar surface conditions, provides information on the structure of the chromosphere, where it is imparted on the partially ionized material by an atom-ion separation mechanism. Moreover, the charge states of the heavy ions can be used to infer the coronal temperature, since they are frozen-in near the altitude where the expansion time scale overcomes the ionization/recombination time scales. Next, the authors review the published values of ion abundances in the solar wind, concentrating on the recent results of the SWICS instrument on Ulysses. About 8 elements and more than 20 charge states can be routinely analyzed by this sensor. There is clear evidence that both the composition and the charge state distribution is significantly different in the fast solar wind from the south polar coronal hole, traversed by Ulysses in 1993/94, as compared to the solar wind normally encountered near the ecliptic plane. The fractionation between low- and high-FIT elements is reduced, and the charge states indicate a lower, more uniform coronal temperature in the hole. Finally, the authors discuss these results in the framework of existing theoretical models of the chromosphere and corona, attempting to identify differences between the low- and high-latitude regions of the solar atmosphere.

  8. Energy Dissipation Processes in Solar Wind Turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wei, F. S.; Feng, X. S.; Xu, X. J.; Zhang, J.; Sun, T. R.; Zuo, P. B.

    2015-12-01

    Turbulence is a chaotic flow regime filled by irregular flows. The dissipation of turbulence is a fundamental problem in the realm of physics. Theoretically, dissipation ultimately cannot be achieved without collisions, and so how turbulent kinetic energy is dissipated in the nearly collisionless solar wind is a challenging problem. Wave particle interactions and magnetic reconnection (MR) are two possible dissipation mechanisms, but which mechanism dominates is still a controversial topic. Here we analyze the dissipation region scaling around a solar wind MR region. We find that the MR region shows unique multifractal scaling in the dissipation range, while the ambient solar wind turbulence reveals a monofractal dissipation process for most of the time. These results provide the first observational evidences for intermittent multifractal dissipation region scaling around a MR site, and they also have significant implications for the fundamental energy dissipation process.

  9. Genesis Capsule Yields Solar Wind Samples

    NASA Astrophysics Data System (ADS)

    Wiens, Roger C.; Burnett, Donald S.; Stansbery, Eileen K.; McNamara, Karen M.

    2004-11-01

    NASA's Genesis capsule, carrying the first samples ever returned from beyond the Moon, took a hard landing in the western Utah desert on 8 September after its parachutes failed to deploy. Despite the impact, estimated at 310 km per hour, some valuable solar wind collector materials have been recovered. With these samples, the Genesis team members are hopeful that nearly all of the primary science goals may be met. The Genesis spacecraft was launched in August 2001 to collect and return samples of solar wind for precise isotopic and elemental analysis. The spacecraft orbited the Earth-Sun Lagrangian point (L1), ~1.5 million km sunward of the Earth, for 2.3 years. It exposed ultrapure materials-including wafers of silicon, silicon carbide, germanium, chemically deposited diamond, gold, aluminum, and metallic glass-to solar wind ions, which become embedded within the substrates' top 100 nm of these materials.

  10. Chaos and multifractals in the solar wind

    NASA Astrophysics Data System (ADS)

    Macek, Wiesław M.

    2010-08-01

    By using the false-nearest-neighbours method, we have argued that the deterministic component of solar wind plasma dynamics should be low-dimensional. In fact, the results we have obtained using the method of topological embedding indicate that the behaviour of the solar wind can be approximately described by a low-dimensional chaotic attractor in the inertial manifold, which is a subspace of system phase space. We have also shown that the multifractal spectrum of the solar wind attractor is consistent with that for the multifractal measure of the self-similar generalized weighted Cantor set with two different scaling parameters and one probability measure parameter responsible for nonuniform compression in phase space and multifractality. The values of the parameters fitted also demonstrate that the complex solar wind system could only be weakly non-conservative (small dissipation) and quantify nonlinear dynamics; some parts of the attractor in phase space are visited much more frequently than other parts. In addition, to quantify the multifractality of space plasma intermittent turbulence, we consider that generalized Cantor set also in the context of scaling properties of solar wind turbulence. We investigate the resulting multifractal spectrum of a one-dimensional phenomenological model of turbulence cascade depending on its parameters, especially for asymmetric scaling. In particular, we have shown that intermittent pulses are stronger for the cascade model with two different scaling parameters. Even thought solar wind turbulence appears to be rather space filling, a better agreement with the data is obtained, especially for the negative index of generalized dimensions. Therefore we argue that there is a need to use a two-scale asymmetric cascade model. We hope that this generalized multifractal model will be a useful tool for analysis of intermittent turbulence in space plasmas. We thus believe that fractal analysis of chaotic systems could lead us to a deeper understanding of their nature, and maybe even to predict their seemingly unpredictable behaviour.

  11. Comparison of the Genesis solar wind regime algorithm results with solar wind composition observed by ACE

    SciTech Connect

    Reisenfeld, D. B.; Steinberg, J. T; Barraclough, B. L.; Dors, E. E.; Weins, R. C.; Neugebauer, Marcia; Reinard, A.

    2002-01-01

    Launched on 8 August 2001, the NASA Genesis mission is now collecting samples of the solar wind in various materials, and will return those samples to Earth in 2004 for analysis. A primary science goal of Genesis is the determination of the isotopic and elemental composition of the solar atmosphere from the solar wind material returned. In particular, Genesis will provide measurements of those species that are not provided by solar and in situ observations. We know from in situ measurements that the solar wind exhibits compositional variations across different types of solar wind flows. Therefore, Genesis exposes different collectors to solar wind originating from three flow types: coronal hole, coronal mass ejection (CME), and interstream flows. Flow types are identified using in situ measurements of solar wind protons, alphas, and electrons from electrostatic analyzers carried by Genesis. The flow regime selection algorithm and subsequent collector deployment on Genesis act autonomously. We present an assessment of composition variations of O, He, and Mg ions observed by ACE/SWICS concurrent with Genesis observations, and compare these to the Genesis algorithm decisions. Not only does this serve as a test of the algorithm, the compilation of composition vs. regime will be important for comparison to the abundances determined from sample analysis at the end of the mission.

  12. Solar cycle evolution of the solar wind in three dimensions

    NASA Technical Reports Server (NTRS)

    Rickett, B. J.; Coles, W. A.

    1983-01-01

    Measurements of the solar wind speed both in and out of the ecliptic are presented for 1971-82. The speed estimates, which were made with the interplanetary scintillation system at UC San Diego, have been compared to in situ for large, slowly evolving structures, and thus such structures can be studied up to 60 degrees north and south heliographic latitude. Annual average wind speeds are presented versus latitude for an entire solar cycle. Fast wind streams from the poles persisted through declining and low solar activity, but were closed off during four years of high activity. This evolution follows that of the polar coronal holes, as displayed by comparing averaged speed and coronal density over latitude and longitude. The most recent data (1982) show the reestablishment of large tilted polar holes and associated fast streams. Coronal magnetic field data show that the neutral sheet is confined to low latitudes at solar minimum and extends to high latitudes at solar maximum; thus the slow solar wind comes from the same latitude range as that of the neutral sheet.

  13. Geomagnetic activity: Dependence on solar wind parameters

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1977-01-01

    Current ideas about the interaction between the solar wind and the earth's magnetosphere are reviewed. The solar wind dynamic pressure as well as the influx of interplanetary magnetic field lines are both important for the generation of geomagnetic activity. The influence of the geometry of the situation as well as the variability of the interplanetary magnetic field are both found to be important factors. Semi-annual and universal time variations are discussed as well as the 22-year cycle in geomagnetic activity. All three are found to be explainable by the varying geometry of the interaction. Long term changes in geomagnetic activity are examined.

  14. Solar Wind Change Exchange from the Magnetosheath

    NASA Technical Reports Server (NTRS)

    Snowden, Steve

    2008-01-01

    We report the results of a long (approximately 100 ks) XMM-Newton observation designed to observe solar wind charge exchange emission (SWCX) from Earth's magnetosheath. By luck, the observation took place during a period of minimal solar wind flux so the SWCX emission was also minimal. Never-the-less, there is a significant if not stunning correlation between the observed O VIII count rate and our model for magnetosheath emission. We also report on the observed O VII and O VII emission.

  15. Magnetohydrodynamic turbulence in the solar wind

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.

    1995-01-01

    The fluctuations in magnetic field and plasma velocity in solar wind, which possess many features of fully developed magnetohydrodynamic (MHD) turbulence, are discussed. Direct spacecraft observations from 0.3 to over 20 AU, remote sensing radio scintillation observations, numerical simulations, and various models provide complementary methods that show that the fluctuations in the wind parameters undergo significant dynamical evolution independent of whatever turbulence might exist in the solar photosphere and corona. The Cluster mission, with high time resolution particle and field measurements and its variable separation strategies, should be able to provide data for answering many questions on MHD turbulence.

  16. Solar wind observations at STEREO: 2007 - 2011

    NASA Astrophysics Data System (ADS)

    Jian, L. K.; Russell, C. T.; Luhmann, J. G.; Galvin, A. B.; Simunac, K. D. C.

    2013-06-01

    We have observed the solar wind extensively using the twin STEREO spacecraft in 2007 - 2011, covering the deep solar minimum 23/24 and the rising phase of solar cycle 24. Hundreds of large-scale solar wind structures have been surveyed, including stream interaction regions (SIRs), interplanetary CMEs (ICMEs), and interplanetary shocks. The difference in location can cause one STEREO spacecraft to encounter 1/3 more of the above structures than the other spacecraft in a single year, even of the quasi-steady SIRs. In contrast with the rising phase of cycle 23, SIRs and ICMEs have weaker field and pressure compression in this rising phase, and ICMEs drive fewer shocks. Although the majority of shocks are driven by SIRs and ICMEs, we find ~13% of shocks without clear drivers observed in situ.

  17. Radio detection of solar wind discontinuities

    NASA Technical Reports Server (NTRS)

    Landt, J. A.

    1972-01-01

    Geomagnetic field sudden increases or storm sudden commencements are compared with measurements of electron content of the solar wind. The latter data are obtained by a radio propagation experiment, which measures the electron content along a radio path between transmitters on the ground and several spacecraft in solar orbit. Measurements were examined during time periods that included 40 of the geomagnetic disturbances (gmd) reported between January 1, 1966, and June 30, 1969. These studies indicate that some widely reported solar wind discontinuities have been detected by the radio propagation experiment. Eleven of the 40 gmd were classified as storm sudden commencements (ssc), which usually result when a shock in the solar wind strikes the magnetosphere. The relative timings of these 11 events are consistent with conclusions drawn from comparisons of experiment geometry to prevailing shock models. Compared to the nature of these 11 events, the characteristics of the solar-wind disturbances corresponding to the remaining 29 gmd were generally found to have been less favorable for detection by the radio propagation experiment, but sharp changes in the content were clearly evident at the time of several minor gmd.

  18. Solar wind composition from the Moon;

    NASA Astrophysics Data System (ADS)

    Bochsler, P.

    1994-06-01

    The lunar regolith contains the best accessible record of the solar wind composition of the past few billion years. Interpreting this record crucially depends on our understanding of the implantation mechanisms, potential alternative sources other than the solar wind, storage and degradation processes, and transport- and loss-mechanisms of trapped particles in the regolith. We therefore suggest that a future mission to the Moon should contain the following objectives: (1) A thorough in-situ investigation of the contemporary solar wind composition by means of long-duration exposure experiments with various techniques as baseline for investigation of the historic and ancient solar wind. (2) A multidisciplinary program, involving an experimental investigation of implantation-, storage- and loss-processes of solar particles at the conditions of the lunar environment. This program is complementary to an elaborated systematic sampling of all layers of the lunar regolith, based on the experience from the Apollo- and the Luna-missions. Difficulties with the interpretation of the lunar record are illuminated in the case of surface correlated nitrogen. (3) A complementary goal for the extensive sampling of the lunar surface is the documentation of the lunar regolith for future generations, prior to extended human activites which could have detrimental effects to the lunar environment.

  19. Workshop on Solar Activity, Solar Wind, Terrestrial Effects, and Solar Acceleration

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A summary of the proceedings from the workshop are presented. The areas covered were solar activity, solar wind, terrestrial effects, and solar acceleration. Specific topics addressed include: (1) solar cycle manifestations, both large and small scale, as well as long-term and short-term changes, including transients such as flares; (2) sources of solar wind, as identified by interplanetary observations including coronal mass ejections (CME's) or x-ray bright points, and the theory for and evolution of large-scale and small-scale structures; (3) magnetosphere responses, as observed by spacecraft, to variable solar wind and transient energetic particle emissions; and (4) origin and propagation of solar cosmic rays as related to solar activity and terrestrial effects, and solar wind coronal-hole relationships and dynamics.

  20. CORONAL PLUMES IN THE FAST SOLAR WIND

    SciTech Connect

    Velli, Marco; Lionello, Roberto; Linker, Jon A.; Mikic, Zoran E-mail: lionel@predsci.com E-mail: mikicz@predsci.com

    2011-07-20

    The expansion of a coronal hole filled with a discrete number of higher density coronal plumes is simulated using a time-dependent two-dimensional code. A solar wind model including an exponential coronal heating function and a flux of Alfven waves propagating both inside and outside the structures is taken as a basic state. Different plasma plume profiles are obtained by using different scale heights for the heating rates. Remote sensing and solar wind in situ observations are used to constrain the parameter range of the study. Time dependence due to plume ignition and disappearance is also discussed. Velocity differences of the order of {approx}50 km s{sup -1}, such as those found in microstreams in the high-speed solar wind, may be easily explained by slightly different heat deposition profiles in different plumes. Statistical pressure balance in the fast wind data may be masked by the large variety of body and surface waves which the higher density filaments may carry, so the absence of pressure balance in the microstreams should not rule out their interpretation as the extension of coronal plumes into interplanetary space. Mixing of plume-interplume material via the Kelvin-Helmholtz instability seems to be possible within the parameter ranges of the models defined here, only at large distances from the Sun, beyond 0.2-0.3 AU. Plasma and composition measurements in the inner heliosphere, such as those which will become available with Solar Orbiter and Solar Probe Plus, should therefore definitely be able to identify plume remnants in the solar wind.

  1. Coronal Plumes in the Fast Solar Wind

    NASA Astrophysics Data System (ADS)

    Velli, Marco; Lionello, Roberto; Linker, Jon A.; Mikić, Zoran

    2011-07-01

    The expansion of a coronal hole filled with a discrete number of higher density coronal plumes is simulated using a time-dependent two-dimensional code. A solar wind model including an exponential coronal heating function and a flux of Alfvén waves propagating both inside and outside the structures is taken as a basic state. Different plasma plume profiles are obtained by using different scale heights for the heating rates. Remote sensing and solar wind in situ observations are used to constrain the parameter range of the study. Time dependence due to plume ignition and disappearance is also discussed. Velocity differences of the order of ~50 km s-1, such as those found in microstreams in the high-speed solar wind, may be easily explained by slightly different heat deposition profiles in different plumes. Statistical pressure balance in the fast wind data may be masked by the large variety of body and surface waves which the higher density filaments may carry, so the absence of pressure balance in the microstreams should not rule out their interpretation as the extension of coronal plumes into interplanetary space. Mixing of plume-interplume material via the Kelvin-Helmholtz instability seems to be possible within the parameter ranges of the models defined here, only at large distances from the Sun, beyond 0.2-0.3 AU. Plasma and composition measurements in the inner heliosphere, such as those which will become available with Solar Orbiter and Solar Probe Plus, should therefore definitely be able to identify plume remnants in the solar wind.

  2. Coronal Plumes in the Fast Solar Wind

    NASA Technical Reports Server (NTRS)

    Velli, Marco; Lionello, Roberto; Linker, Jon A.; Mikic, Zoran

    2011-01-01

    The expansion of a coronal hole filled with a discrete number of higher density coronal plumes is simulated using a time-dependent two-dimensional code. A solar wind model including an exponential coronal heating function and a flux of Alfven waves propagating both inside and outside the structures is taken as a basic state. Different plasma plume profiles are obtained by using different scale heights for the heating rates. Remote sensing and solar wind in situ observations are used to constrain the parameter range of the study. Time dependence due to plume ignition and disappearance is also discussed. Velocity differences of the order of approximately 50 km/s, such as those found in microstreams in the high-speed solar wind, may be easily explained by slightly different heat deposition profiles in different plumes. Statistical pressure balance in the fast wind data may be masked by the large variety of body and surface waves which the higher density filaments may carry, so the absence of pressure balance in the microstreams should not rule out their interpretation as the extension of coronal plumes into interplanetary space. Mixing of plume-interplume material via the Kelvin-Helmholtz instability seems to be possible within the parameter ranges of the models defined here, only at large di stances from the Sun, beyond 0.2-0.3 AU. Plasma and composition measurements in the inner heliosphere, such as those which will become available with Solar Orbiter and Solar Probe Plus, should therefore definitely be able to identify plume remnants in the solar wind.

  3. Particle propagation channels in the solar wind

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.; Dougherty, W. M.

    1987-01-01

    The intensities of low energy solar-interplanetary electrons and ions at 1 AU occasionally change in a square wave manner. The changes may be increases or decreases and they typically have durations of from one hour to a few hours. In some cases these channels are bounded by discontinuities in the interplanetary field and the plasma properties differ from the surrounding solar wind. In one case solar flare particles were confined to a channel of width 3 x 10 to the 6th km at Earth. At the Sun this dimension extrapolates to about 12,000 km, a size comparable to small flares.

  4. Apollo 11 solar wind composition experiment: first results.

    PubMed

    Bühler, F; Eberhardt, P; Geiss, J; Meister, J; Signer, P

    1969-12-19

    The helium-4 solar wind flux during the Apollo 11 lunar surface excursion was (6.3 +/- 1.2) x 10(6) atoms per square centimeter per second. The solar wind direction and energy are essentially not perturbed by the moon. Evidence for a lunar solar wind albedo was found. PMID:17742848

  5. Modeling Multifractality of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Macek, Wiesław M.

    2006-02-01

    The question of multifractality is of great importance because it allows us to investigate interplanetary hydromagnetic turbulence. The multifractal spectrum has been investigated with Voyager (magnetic field) data in the outer heliosphere and with Helios (plasma) data in the inner heliosphere. We use the Grassberger and Procaccia method that allows calculation of the generalized dimensions of the solar wind attractor in the phase space directly from the cleaned experimental signal. We analyze time series of plasma parameters of the low-speed streams of the solar wind measured in situ by Helios in the inner heliosphere. The resulting spectrum of dimensions shows a multifractal structure of the solar wind attractor. In order to quantify that multifractality, we use a simple analytical model of the dynamical system. Namely, we consider the generalized self-similar baker’s map with two parameters describing uniform compression and natural invariant measure on the attractor of the system. The action of this map exhibits stretching and folding properties leading to sensitive dependence on initial conditions. The obtained solar wind singularity spectrum is consistent with that for the multifractal measure on the weighted baker’s map.

  6. The energy balance of the solar wind

    NASA Technical Reports Server (NTRS)

    Hollweg, J. V.

    1981-01-01

    The effects of modifying some of the 'classical' assumptions underlying many of the solar wind models constructed over the past 20 years are examined in an effort to obtain both a better fit with the observations and a deeper understanding of the relevant physical processes.

  7. Hemispheric differences in solar wind - magnetosphere interactions

    NASA Astrophysics Data System (ADS)

    Reistad, J. P.; Ostgaard, N.; Laundal, K.; Snekvik, K.; Tenfjord, P.; Oksavik, K.

    2014-12-01

    Although the aurora to a large degree behave similar in the two hemispheres, recent simultaneous observations of the global aurora from space have revealed that sometimes rather large intensity and location asymmetries are present in the global aurora. From event studies using e.g. conjugate imaging, multiple mechanisms have been proposed to be responsible for the asymmetric aurora. However, we know very little about their general importance. We have investigated the general importance of an asymmetric solar wind dynamo. It has been suggested that the radial component of the IMF can modify the energy conversion between the solar wind and magnetosphere differently in the two hemispheres in a general sense. By looking at the global aurora using IMAGE WIC during carefully selected events minimally contaminated by other mechanisms affecting the two hemispheres differently, we find that the dusk side aurora depend oppositely on the radial IMF direction in the two hemispheres. These results are consistent with an asymmetric solar wind dynamo where the hemispheric preference is controlled by the radial IMF. This is the first study indicating the importance of the asymmetric solar wind dynamo in a general sense. A different mechanism, the asymmetric loading of magnetic flux during IMF By conditions is also expected to account for North-South asymmetries in the nightside global aurora. This will be investigated using a similar approach to establish the general importance of of this IMF By mechanism on the global aurora in the two hemispheres.

  8. Energy Primer: Solar, Water, Wind, and Biofuels.

    ERIC Educational Resources Information Center

    Portola Inst., Inc., Menlo Park, CA.

    This is a comprehensive, fairly technical book about renewable forms of energy--solar, water, wind, and biofuels. The biofuels section covers biomass energy, agriculture, aquaculture, alcohol, methane, and wood. The focus is on small-scale systems which can be applied to the needs of the individual, small group, or community. More than one-fourth…

  9. Identifying Wind and Solar Ramping Events: Preprint

    SciTech Connect

    Florita, A.; Hodge, B. M.; Orwig, K.

    2013-01-01

    Wind and solar power are playing an increasing role in the electrical grid, but their inherent power variability can augment uncertainties in power system operations. One solution to help mitigate the impacts and provide more flexibility is enhanced wind and solar power forecasting; however, its relative utility is also uncertain. Within the variability of solar and wind power, repercussions from large ramping events are of primary concern. At the same time, there is no clear definition of what constitutes a ramping event, with various criteria used in different operational areas. Here the Swinging Door Algorithm, originally used for data compression in trend logging, is applied to identify variable generation ramping events from historic operational data. The identification of ramps in a simple and automated fashion is a critical task that feeds into a larger work of 1) defining novel metrics for wind and solar power forecasting that attempt to capture the true impact of forecast errors on system operations and economics, and 2) informing various power system models in a data-driven manner for superior exploratory simulation research. Both allow inference on sensitivities and meaningful correlations, as well as the ability to quantify the value of probabilistic approaches for future use in practice.

  10. Electrodynamic sailing - Beating into the solar wind.

    NASA Technical Reports Server (NTRS)

    Sonett, C. P.; Fahleson, U.; Alfven, H.

    1972-01-01

    The recent suggestion by Alfven (1972) of a novel means of spacecraft propulsion based upon energy extraction from the electromagnetic field of the solar wind is critically reviewed. In response to this review, the original suggestion is somewhat amplified and clarified by its author.

  11. Solar Wind Drivers for Steady Magnetospheric Convection

    NASA Technical Reports Server (NTRS)

    McPherron, Robert L.; O'Brien, T. Paul; Thompson, Scott; Lui, A. T. Y. (Editor)

    2005-01-01

    Steady magnetospheric convection (SMC) also known as convection bays, is a particular mode of response of the magnetosphere to solar wind coupling. It is characterized by convection lasting for times longer than a typical substorm recovery during which no substorms expansions can be identified. It is generally believed that the solar wind must be unusually steady for the magnetosphere to enter this state. However, most previous studies have assumed this is true and have used such conditions to identify events. In a preliminary investigation using only the AE and AL indices to select events we have shown that these expectations are generally correct. SMC events seem to be associated with slow speed solar wind and moderate, stable IMF Bz. In this report we extend our previous study including additional parameters and the time variations in various statistical quantities. For the intervals identified as SMCs we perform a detailed statistical analysis of the properties of different solar wind variables. We compare these statistics to those determined from all data, and from intervals in which substorms but not SMCs are present. We also consider the question of whether substorms are required to initiate and terminate an SMC. We conclude that the intervals we have identified as SMC are likely to be examples of the original Dungey concept of balanced reconnection at a pair of x-lines on the day and night side of the Earth.

  12. Energy Primer: Solar, Water, Wind, and Biofuels.

    ERIC Educational Resources Information Center

    Portola Inst., Inc., Menlo Park, CA.

    This is a comprehensive, fairly technical book about renewable forms of energy--solar, water, wind, and biofuels. The biofuels section covers biomass energy, agriculture, aquaculture, alcohol, methane, and wood. The focus is on small-scale systems which can be applied to the needs of the individual, small group, or community. More than one-fourth

  13. Material Interactions with Solar Wind Ion Environments

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; McWilliams, Brett

    2006-01-01

    Solar wind composition is dominated by hydrogen (approx.96%) and helium (approx.3 to 4%) with a minor fraction (less than or equal to 1%) of heavy ions. Hydrogen (helium) ions impact spacecraft surfaces with energies from 0.5 to 5 keV (1.8 to 21 keV) due to variations in solar wind velocity from 300 km/s to 1000 km/sec with extremes of a few 10 s keV during periods of extremely high solar wind velocity exceeding 1000 km/sec. Mean impact energies are typically on the order of approximately 1 keV and 4 keV for hydrogen ions and helium ions, respectively. These energies are typically of the peak of the energy dependent light ion sputter yields for hydrogen and helium on many metals. In addition, light ions with kilovolt energies have been shown to produce blister (or exfoliation) damage to metal surfaces due to formation of high pressure gas bubbles within the materials when exposed to ion fluences on the order of 10(exp 16 to (10(exp 17 ions/sq cm. A number of spacecraft designs for current and future missions include gossamer polymer structures with thin metallic reflection coatings to shield instruments from the Sun or solar sail propulsion systems for use in a variety of locations in the inner solar system from 0.5 to 1 AU. In addition, there is interest in designing spacecraft for solar physics missions requiring operations as close to the Sun as 0.16 to 0.2 AU. Integrity of the metallic coatings is critical in many of these applications since degradation will result in modification of material thermal properties or exposure of polymers to solar UV photons which can compromise mission requirements. This paper will evaluate the relative contributions of sputtering and blister formation to material degradation in solar wind environments over a range of radial distances from the Sun to demonstrate where solar wind environments become important for materials selection. We will first review the physics and results from laboratory measurements of light ion sputtering, blistering, and exfoliation of metallic surfaces to establish the order of magnitude ion fluence required for significant surface damage. Solar wind ion fluence environments will then be evaluated due to variations in solar wind conditions as a function of solar cycle for varying distances from the Sun using models for radial variations in solar wind ion number density, temperature, and velocity to determine where sputtering and blistering is most likely to be an issue. Finally, ion fluence statistics for varying radial distances from the Sun will be shown to establish the mission duration and radial distances from the Sun where missions will encounter sufficient ion fluence to exhibit damage to metallic surfaces.

  14. Imaging the origins of solar wind variability

    NASA Astrophysics Data System (ADS)

    DeForest, C.; Howard, T. A.

    2012-12-01

    STEREO/SECCHI permits near-continuous imaging of of solar plasma packets as they form and propagate from the low, middle, and high corona into the heliosphere. The plasma packets in the solar wind "should" be visible as they leave the Sun. So why are they hard to view? Partly because it is difficult to identify the relevant phenomena against the changing, bright background of the corona itself. We will show recently produced movies from the COR and HI instruments in the STEREO/SECCHI suite, using new motion-filtering and background subtraction techniques that highlight variable features over the fixed and slowly-evolving streamer belt. These data reveal several potential sources of the solar wind variability, including packets of departing coronal material, signs of turbulent instabilities that may break up some streamers, and possible turbulent mixing in the low heliosphere. We will present initial results and discuss the course of future work.

  15. Noncompressive density enhancements in the solar wind

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Hildner, E.

    1977-01-01

    When the bulk flow speed is nearly constant or falling, high densities are sometimes observed in the solar wind. These densities do not appear to be generated in interplanetary space. It is noted that the magnetic field is not enhanced within these events, and that the proton and/or electron temperatures are low, varying in opposition to the density. About 1/3 of these density events contains interplanetary magnetic field reversals, some of which are noisy and do not qualify as sector boundaries. It is estimated that the average event contains approximately 10 to the 16th g of material and 2.6 x 10 to the 31st ergs, so that aggregated events, when they are common, make a negligible contribution to the total mass and energy budget of the solar wind at 1 AU. It is suggested that there may be an association between density enhancements and solar coronal mass ejection events.

  16. Ion Cyclotron Waves in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Wei, H. Y.; Jian, L. K.; Russell, C. T.; Omidi, N.

    2016-02-01

    The ion cyclotron waves (ICWs) refer to electromagnetic transverse waves with nearly field-aligned propagation, circular polarization, and frequencies near the proton gyro-frequency. This chapter presents the ICW studies observed in the solar wind over a wide range of heliocentric distances, at all solar longitudes, and at locations far from planets or comets. To better understand the wave source region, case studies have been performed on a special group of ICW storm events, in which the left-handed (LH) and right-handed (RH) waves were observed simultaneously in the spacecraft frame. The study in the chapter assumes the waves are generated through one possible mechanism (i.e., the temperature anisotropy instability). The variations of the wave properties with heliocentric distances may also provide information on the possible wave generation sources and the effects of the wave to the solar wind plasma.

  17. Wind and IMP 8 Solar Wind, Magnetosheath and Shock Data

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The purpose of this project was to provide the community access to magnetosheath data near Earth. We provided 27 years of IMP 8 magnetosheath proton velocities, densities, and temperatures with our best (usually 1-min.) time resolution. IMP 8 crosses the magnetosheath twice each 125 day orbit, and we provided magnetosheath data for the roughly 27 years of data for which magnetometer data are also available (which are needed to reliably pick boundaries). We provided this 27 years of IMP 8 magnetosheath data to the NSSDC; this data is now integrated with the IMP 8 solar wind data with flags indicating whether each data point is in the solar wind, magnetosheath, or at the boundary between the two regions. The plasma speed, density, and temperature are provided for each magnetosheath point. These data are also available on the MIT web site ftp://space .mit.edu/pub/plasma/imp/www/imp.html. We provide ASCII time-ordered rows of data giving the observation time, the spacecraft position in GSE, the velocity is GSE, the density and temperature for protons. We also have analyzed and archived on our web site the Wind magnetosheath plasma parameters. These consist of ascii files of the proton and alpha densities, speeds, and thermal speeds. These data are available at ftp://space.mit.edu/pub/plasma/wind/sheath These are the two products promised in the work statement and they have been completed in full.

  18. The Genesis Mission: Solar Wind Conditions, and Implications for the FIP Fractionation of the Solar Wind.

    SciTech Connect

    Reisenfeld, D. B.; Wiens, R. C.; Barraclough, B. L.; Steinberg, J. T; Dekoning, C. A.; Zurbuchen, T. H.; Burnett, D. S.

    2005-01-01

    The NASA Genesis mission collected solar wind on ultrapure materials between November 30, 2001 and April 1, 2004. The samples were returned to Earth September 8, 2004. Despite the hard landing that resulted from a failure of the avionics to deploy the parachute, many samples were returned in a condition that will permit analyses. Sample analyses of these samples should give a far better understanding of the solar elemental and isotopic composition (Burnett et al. 2003). Further, the photospheric composition is thought to be representative of the solar nebula, so that the Genesis mission will provide a new baseline for the average solar nebula composition with which to compare present-day compositions of planets, meteorites, and asteroids. Sample analysis is currently underway. The Genesis samples must be placed in the context of the solar and solar wind conditions under which they were collected. Solar wind is fractionated from the photosphere by the forces that accelerate the ions off of the Sun. This fractionation appears to be ordered by the first ionization potential (FIP) of the elements, with the tendency for low-FIP elements to be over-abundant in the solar wind relative to the photosphere, and high-FIP elements to be under-abundant (e.g. Geiss, 1982; von Steiger et al., 2000). In addition, the extent of elemental fractionation differs across different solarwind regimes. Therefore, Genesis collected solar wind samples sorted into three regimes: 'fast wind' or 'coronal hole' (CH), 'slow wind' or 'interstream' (IS), and 'coronal mass ejection' (CME). To carry this out, plasma ion and electron spectrometers (Barraclough et al., 2003) continuously monitored the solar wind proton density, velocity, temperature, the alpha/proton ratio, and angular distribution of suprathermal electrons, and those parameters were in turn used in a rule-based algorithm that assigned the most probable solar wind regime (Neugebauer et al., 2003). At any given time, only one of three regime-specific collectors (CH, IS, or CME) was exposed to the solar wind. Here we report on the regime-specific solar wind conditions from in-situ instruments over the course of the collection period. Further, we use composition data from the SWICS (Solar Wind Ion Composition Spectrometer) instrument on ACE (McComas et al., 1998) to examine the FIP fractionation between solar wind regimes, and make a preliminary comparison of these to the FIP analysis of Ulysses/SWICS composition data (von Steiger et al. 2000). Our elemental fractionation study includes a reevaluation of the Ulysses FIP analysis in light of newly reported photospheric abundance data (Asplund, Grevesse & Sauval, 2005). The new abundance data indicate a metallicity (Z/X) for the Sun almost a factor of two lower than that reported in the widely used compilation of Anders & Grevesse (1989). The new photospheric abundances suggest a lower degree of solar wind fractionation than previously reported by von Steiger et al. (2000) for the first Ulysses polar orbit (1991-1998).

  19. Solar Wind Ablation of Terrestrial Planet Atmospheres

    NASA Technical Reports Server (NTRS)

    Moore, Thomas Earle; Fok, Mei-Ching H.; Delcourt, Dominique C.

    2009-01-01

    Internal plasma sources usually arise in planetary magnetospheres as a product of stellar ablation processes. With the ignition of a new star and the onset of its ultraviolet and stellar wind emissions, much of the volatiles in the stellar system undergo a phase transition from gas to plasma. Condensation and accretion into a disk is replaced by radiation and stellar wind ablation of volatile materials from the system- Planets or smaller bodies that harbor intrinsic magnetic fields develop an apparent shield against direct stellar wind impact, but UV radiation still ionizes their gas phases, and the resulting internal plasmas serve to conduct currents to and from the central body along reconnected magnetic field linkages. Photoionization and thermalization of electrons warms the ionospheric topside, enhancing Jeans' escape of super-thermal particles, with ambipolar diffusion and acceleration. Moreover, observations and simulations of auroral processes at Earth indicate that solar wind energy dissipation is concentrated by the geomagnetic field by a factor of 10-100, enhancing heavy species plasma and gas escape from gravity, and providing more current carrying capacity. Thus internal plasmas enable coupling with the plasma, neutral gas and by extension, the entire body. The stellar wind is locally loaded and slowed to develop the required power. The internal source plasma is accelerated and heated, inflating the magnetosphere as it seeks escape, and is ultimately blown away in the stellar wind. Bodies with little sensible atmosphere may still produce an exosphere of sputtered matter when exposed to direct solar wind impact. Bodies with a magnetosphere and internal sources of plasma interact more strongly with the stellar wind owing to the magnetic linkage between the two created by reconnection.

  20. On Solar-Wind Electron Heating at Large Solar Distances

    NASA Astrophysics Data System (ADS)

    Chashei, Igor V.; Fahr, Hans J.

    2014-04-01

    We study the temperature of electrons advected with the solar wind to large solar distances far beyond 1 AU. Almost nothing is known about the thermodynamics of these electrons from in-situ plasma observations at these distances, and usually it is tacitly assumed that electrons, due to adiabatic behaviour and vanishing heat conduction, rapidly cool off to very low temperatures at larger distances. In this article we show, however, that electrons on their way to large distances undergo non-adiabatic interactions with travelling shocks and solar-wind bulk-velocity jumps and thereby are appreciably heated. Examining this heating process on an average statistical basis, we find that solar-wind electrons first cool down to a temperature minimum, which depending on the occurrence frequency of bulk velocity jumps is located between 3 and 6 AU, but beyond this the lowest electron temperature again starts to increase with increasing solar distance, finally achieving temperatures of about 7×104 K to 7×105 K at the location of the termination shock. Hence these electrons are unexpectedly shown to play an important dynamical role in structuring this shock and in determining the downstream plasma properties.

  1. Elemental building blocks of the slow solar wind

    NASA Astrophysics Data System (ADS)

    Kepko, L.; Viall, N. M.; Lepri, S. T.

    2014-12-01

    While the source of the fast solar wind is well understood to be linked to coronal holes, the source of the slow solar wind has remained elusive. A distinguishing characteristic of the slow solar wind is the high variability of the plasma parameters, such as magnetic field, velocity, density, composition, and charge state. Many previous studies of the slow solar wind have examined trends in the composition and charge states over long time scales and using data with comparatively low temporal resolution. In this study, we take advantage of high time resolution (12 min) measurements of the charge-state abundances recently reprocessed by the ACE SWICS science team to probe the timescales of solar wind variability of coherent structures at relatively small scales (<2000 Mm, or ~ 90 minutes at slow wind speeds). We use an interval of slow solar wind containing quasi pressure-balanced, periodic number density structures previously studied by Kepko et al and shown to be important in solar wind-magnetospheric coupling. The combination of high temporal resolution composition measurements and the clearly identified boundaries of the periodic structures allows us to probe the elemental slow solar wind flux tubes/structures. We use this train of 2000Mm periodic density structures as tracers of solar wind origin and/or acceleration. We find that each 2000 Mm parcel of slow solar wind, though its speed is steady, exhibits the complete range of charge state and composition variations expected for the entire range of slow solar wind, in a repeated sequence. Each parcel cycles through three states: 1) 'normal' slow wind, 2) compositionally slow wind with very high density, and 3) compositionally fast but typical slow solar wind density. We conclude by suggesting these structures form elemental building blocks of the slow solar wind, and discuss whether it is necessary to decouple separately the process(es) responsible for the release and acceleration.

  2. Heliomagnetic latitude dependence of the heliospheric magnetic field

    NASA Technical Reports Server (NTRS)

    Burton, M. E.; Smith, E. J.; Balogh, A.

    1995-01-01

    Previous studies have revealed systematic variations of the interplanetary magnetic field with heliographic latitude. Luhmann et al. (1987) modeled Pioneer Venus (PVO) and ISEE-3 observations by assuming an asymmetric dependence on heliolatitude with stronger fields in the northern hemisphere. In a subsequent study, using data from ISEE-3/ICE and IMP-8, Burton et al. (1990) found evidence for a similar asymmetry. However, neither model has been completely successful. The model derived from PVO/ICE observations agrees quite well near solar maximum but shows significant discrepancies during the descending phase of the solar cycle. The model derived from the ICE/IMP-8 comparison suffers from significant phase delays between the difference in field magnitude at the two spacecraft and their latitude difference. In an attempt to account for these phase shifts, the IMP-8 and ICE data have been reexamined in heliomagnetic coordinates which are defined by the orientation of the solar magnetic dipole. The latitude and longitude of the dipole inferred from the data have then been compared with those implicit in source surface calculations. The IMP/ICE correlations have been extended into the recent solar maximum and descending phase. Comparisons have also been carried out between IMP-8 and Ulysses as it traveled to -30 deg south heliographic latitude.

  3. Heliomagnetic latitude dependence of the heliospheric magnetic field

    NASA Astrophysics Data System (ADS)

    Burton, M. E.; Smith, E. J.; Balogh, A.

    1995-06-01

    Previous studies have revealed systematic variations of the interplanetary magnetic field with heliographic latitude. Luhmann et al. (1987) modeled Pioneer Venus (PVO) and ISEE-3 observations by assuming an asymmetric dependence on heliolatitude with stronger fields in the northern hemisphere. In a subsequent study, using data from ISEE-3/ICE and IMP-8, Burton et al. (1990) found evidence for a similar asymmetry. However, neither model has been completely successful. The model derived from PVO/ICE observations agrees quite well near solar maximum but shows significant discrepancies during the descending phase of the solar cycle. The model derived from the ICE/IMP-8 comparison suffers from significant phase delays between the difference in field magnitude at the two spacecraft and their latitude difference. In an attempt to account for these phase shifts, the IMP-8 and ICE data have been reexamined in heliomagnetic coordinates which are defined by the orientation of the solar magnetic dipole. The latitude and longitude of the dipole inferred from the data have then been compared with those implicit in source surface calculations. The IMP/ICE correlations have been extended into the recent solar maximum and descending phase. Comparisons have also been carried out between IMP-8 and Ulysses as it traveled to -30 deg south heliographic latitude.

  4. Solar sources of the interplanetary magnetic field and solar wind

    NASA Technical Reports Server (NTRS)

    Levine, R. H.; Altschuler, M. D.; Harvey, J. W.

    1977-01-01

    Open magnetic field lines, those which extend from the solar photosphere to interplanetary space, are traced in the current-free (potential field) approximation using measured photospheric fields as a boundary condition. It is found that (1) only a relatively small fraction of the photospheric area connects via open field lines to the interplanetary magnetic field; (2) those photospheric areas which do contribute open field lines lie beneath coronal holes and within the boundaries of the holes as projected onto the photosphere or else between loop systems of an active region; (3) the interplanetary magnetic field in the plane of the sun's equator, essentially the field in the ecliptic plane, may connect to photospheric regions of high latitude; and (4) the fastest solar wind streams are correlated with those magnetic flux tubes which expand least in cross-sectional area over the distance between the photosphere and the coronal height where the solar wind begins.

  5. Corotation of an intermittent solar wind source

    NASA Technical Reports Server (NTRS)

    Croft, T. A.

    1972-01-01

    The measured electron content of the solar wind in mid-1970 exhibited a region of relatively high electron density that reappeared at intervals of about 27.8 days. It is shown that the repeating event cannot be reconciled with the concept of a long-enduring steady flow, even though the recurrence period is close to the rotation period of the sun. This evidence of transients is inferred from the short duration of each appearance of the interval of higher density; each should last for roughly one corotation interval if it is caused by a steady stream. The radio path was approximately 0.8 AU long, and the corotation interval exceeded 3 days. Other aspects of the content data patterns support the view that such transient events are common in the solar wind. The mid-1970 repeating event is an unusually good example of the intermittent character of flow regions in the solar wind that fluctuate on a time scale of days but endure as identifiable regions for many months. A sputtering corotating source of thin solar plasma streams could explain this series of events; it could also be explained in terms of a stream that is steady in density and speed but undulating north-south so that it passes into and out of the 0.8 AU radio path in a matter of a day or less.

  6. Pluto's solar wind interaction: Collisional effects

    NASA Astrophysics Data System (ADS)

    Cravens, T. E.; Strobel, D. F.

    2015-01-01

    Exospheric neutral atoms and molecules (primarily N2, with trace amounts of CH4 and CO according to our current understanding of Pluto's atmosphere) escape from Pluto and travel into interplanetary space for millions of kilometers. Eventually, the neutrals are ionized by solar EUV photons and/or by collisions with solar wind electrons. The mass-loading associated with this ion pick-up is thought to produce a comet-like interaction of the solar wind with Pluto. Within a few thousand kilometers of Pluto the solar wind interaction should lead to a magnetic field pile-up and draping, as it does around other "non-magnetic" bodies such as Venus and comets. The structure of plasma regions and boundaries will be greatly affected by large gyroradii effects and the extensive exosphere. Energetic plasma should disappear from the flow within radial distances of a few thousand kilometers due to charge exchange collisions. An ionosphere should be present close to Pluto with a composition that is determined both by the primary ion production and ion-neutral chemistry. One question discussed in the paper is whether or not the ionosphere has a Venus-like sharply defined ionopause boundary or a diamagnetic cavity such as that found around comet Halley. Simple physical estimates of plasma processes and structures in the collision-dominated region are made in this paper and predictions are made for the New Horizons mission.

  7. Laboratory experiments simulating solar wind driven magnetospheres

    SciTech Connect

    Brady, P.; Ditmire, T.; Horton, W.; Mays, M. L.; Zakharov, Y.

    2009-04-15

    Magnetosphere-solar wind interactions are simulated in a laboratory setting with a small permanent magnet driven by two types of supersonic plasma wind sources. The first higher speed, shorter duration plasma wind is from a laser blow-off plasma while the second longer duration, lower speed plasma wind is produced with a capacitor discharge driven coaxial electrode creating plasma jets. The stand off distance of the solar wind from the magnetosphere was measured to be 1.7{+-}0.3 cm for the laser-produced plasma experiment and 0.87{+-}0.03 cm for the coaxial electrode plasma experiment. The stand off distance of the plasma was calculated using data from HYADES[J. T. Larsen and S. M. Lane, J. Quant. Spectrosc. Radiat. Transf. 51, 179 (1994)] as 1.46{+-}0.02 cm for the laser-produced plasma, and estimated for the coaxial plasma jet as r{sub mp}=0.72{+-}0.07 cm. Plasma build up on the poles of the magnets, consistent with magnetosphere systems, was also observed.

  8. Role of solar wind turbulence in the coupling of the solar wind to the Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Borovsky, Joseph E.; Funsten, Herbert O.

    2003-06-01

    The correlation between the amplitude of the MHD turbulence in the upstream solar wind and the amplitude of the Earth's geomagnetic activity indices AE, AU, AL, Kp, ap, Dst, and PCI is explored. The amplitude of the MHD turbulence is determined by the fluctuation amplitude of the solar wind magnetic field. This "turbulence effect" in solar wind/magnetosphere coupling is more easily discerned when the interplanetary magnetic field (IMF) is northward, but the effect is also present when the IMF is southward. The magnitude of the effect is the same for northward and southward IMF, accounting for about 150 nT of the variability of the AE index. Tests are performed that conclude (1) that the turbulence effect is not caused by the turbulence amplitude acting as a proxy for ∣B∣ in the solar wind and (2) that reversals of the IMF from northward to southward in the turbulent fluctuations is not the cause of the correlations. An expression is derived for the total viscous-shear force on the surface of the magnetosphere; improved solar wind/magnetosphere correlations result when this expression is used. With insight from fluid-flow experiments, the turbulence effect is interpreted as an enhanced viscous coupling of the solar wind flow to the Earth's magnetosphere caused by an eddy viscosity that is controlled by the amplitude of MHD turbulence in the upstream solar wind: more upstream turbulence means more momentum transfer from the magnetosheath into the magnetosphere, resulting in more stirring of the magnetosphere, which produces enhanced geomagnetic activity indices.

  9. Interpreting the solar wind ionization state

    NASA Technical Reports Server (NTRS)

    Owocki, S. P.

    1983-01-01

    The ionization state of the solar coronal expansion is frozen within a few solar radii of the solar photosphere, and spacecraft measurements of the solar wind heavy ion charge state can therefore yield information about coronal conditions (e.g., electron temperature). Previous interpretations of the frozen-in ionization state have always assumed that in the coronal freezing-in region, (1) all heavy ions flow at the same bulk speed as protons, (2) the electron velocity distribution function is Maxwellian, and (3) conditions vary in space but not in time. The consequences of relaxing these assumptions for the interpretation of solar wind charge state measurements are examined. It is found that: (1) the temperature inferred by traditional interpretation of the interplanetary ionization state overestimates (underestimate) the actual coronal electron temperature if higher ion charge stages flow systematically faster (slower) than lower stages at the coronal freezing radius; (2) temperatures inferred from relative abundance measurements of ion-charge-stages with high ionization potentials moderately overestimate the actual coronal electron temperature if the high-energy tail of the coronal electron velocity distribution is enhanced relative to a Maxwellian distribution; (3) the propagation of a disturbance, e.g., a shock wave, through the corona can strongly affect the frozen-in charge state, but only over a time (a few times ten minutes) corresponding to the coronal transit time for the disturbance.

  10. Solar wind thermally induced magnetic fluctuations.

    PubMed

    Navarro, R E; Moya, P S; Muoz, V; Araneda, J A; F-Vias, A; Valdivia, J A

    2014-06-20

    A kinetic description of Alfvn-cyclotron magnetic fluctuations for anisotropic electron-proton quasistable plasmas is studied. An analytical treatment, based on the fluctuation-dissipation theorem, consistently shows that spontaneous fluctuations in plasmas with stable distributions significantly contribute to the observed magnetic fluctuations in the solar wind, as seen, for example, in [S.?D. Bale et al., Phys. Rev. Lett. 103, 211101 (2009)], even far below from the instability thresholds. Furthermore, these results, which do not require any adjustable parameters or wave excitations, are consistent with the results provided by hybrid simulations. It is expected that this analysis contributes to our understanding of the nature of magnetic fluctuations in the solar wind. PMID:24996092

  11. Surface Waves on solar wind tangential discontinuities

    SciTech Connect

    Hollweg, J.V.

    1982-10-01

    We demonstrate that (tangential) discontinuities in the magnetic field direction can support MHD surface waves. The surface waves resemble the usual Alfven wave, but there are some important differences: (1) The surface waves exhibit a low-frequency cutoff. (2) The velocity and magnetic field fluctuations are elliptically, and sometimes circularly, polarized. They may account for the solar wind helicity spectrum. (3) The surface waves are compressive, but there are special cases where they are noncompressive. (4) The wave vector k, the local normals to the surfaces of constant phase, and the magnetic minimum variance direction (mvd) do not all coincide. (5) There is a tendency for the mvd to align itself with the mean magnetic field direction. (6) The waves can be intrinsically nonplanar. (7) Equipartition between magnetic and kinetic energies is not obeyed locally. These properties of the surface waves lead us to believe that surface waves may be common in the solar wind.

  12. The solar wind and magnetospheric dynamics

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1974-01-01

    The dynamic processes involved in the interaction between the solar wind and the earth's magnetosphere are reviewed. The evolution of models of the magnetosphere is first surveyed. The existence of the auroral substorm and the cyclical polar magnetic substorm is evidence that the magnetosphere is a dynamic system. The dynamic changes occurring in the magnetosphere, including erosion of the magnetopause, changes in the size of the polar cap, variations in the flaring angle of the tail, neutral point formation, plasma sheet motions, and the inward collapse of the midnight magnetosphere, are discussed. The cyclical variations of geomagnetic activity are explained in terms of the control of the solar wind-magnetosphere interaction by the north-south component of the interplanetary magnetic field. Present phenomenological models allow prediction of geomagnetic activity from interplanetary measurements, but modeling of detailed magnetospheric processes is still in its infancy.

  13. Possible evidence for latitude-dependent cosmic-ray modulation

    NASA Technical Reports Server (NTRS)

    Fisk, L. A.

    1975-01-01

    It is suggested that the slope of the modulated proton spectrum at low energies (less than 250 MeV) is not well accounted for in a steady state spherically symmetrical cosmic-ray modulation model and therefore may contain information on the effects of latitude variations. Under quasi-steady interplanetary conditions, slopes steeper than unity have been observed for low-energy protons. It is shown that the slope of unity or a steeper slope may be a natural consequence of having a region of enhanced modulation lying immediately above or below the solar equatorial plane and therefore may be due to the variation of interplanetary conditions with heliocentric latitude.

  14. Turbulence and waves in the solar wind

    SciTech Connect

    Roberts, D.A.; Goldstein, M.L. )

    1991-01-01

    Studies of turbulence and waves in the solar wind is discussed. Consideration is given to the observations and theory concerning the origin and evolution of interplanetary MHD fluctuations and to the observations, theory, and simulations of compressive fluctuations. Particular attention is given to extrapolations to near-sun and polar fields regions. Results obtained on turbulence at comets and magnetic turbulence of low-frequency waves excited by unstable distributions of ions are discussed. 230 refs.

  15. Magnetic pumping of the solar wind

    NASA Astrophysics Data System (ADS)

    Egedal, Jan; Lichko, Emily; Daughton, William

    2015-11-01

    The transport of matter and radiation in the solar wind and terrestrial magnetosphere is a complicated problem involving competing processes of charged particles interacting with electric and magnetic fields. Given the rapid expansion of the solar wind, it would be expected that superthermal electrons originating in the corona would cool rapidly as a function of distance to the Sun. However, this is not observed, and various models have been proposed as candidates for heating the solar wind. In the compressional pumping mechanism explored by Fisk and Gloeckler particles are accelerated by random compressions by the interplanetary wave turbulence. This theory explores diffusion due to spatial non-uniformities and provides a mechanism for redistributing particle. For investigation of a related but different heating mechanism, magnetic pumping, in our work we include diffusion of anisotropic features that develops in velocity space. The mechanism allows energy to be transferred to the particles directly from the turbulence. Guided by kinetic simulations a theory is derived for magnetic pumping. At the heart of this work is a generalization of the Parker Equation to capture the role of the pressure anisotropy during the pumping process. Supported by NASA grant NNX15AJ73G.

  16. Solar Wind Charge Exchange During Geomagnetic Storms

    NASA Technical Reports Server (NTRS)

    Robertson, Ina P.; Cravens, Thomas E.; Sibeck, David G.; Collier, Michael R.; Kuntz, K. D.

    2012-01-01

    On March 31st. 2001, a coronal mass ejection pushed the subsolar magnetopause to the vicinity of geosynchronous orbit at 6.6 RE. The NASA/GSFC Community Coordinated Modeling Center (CCMe) employed a global magnetohydrodynamic (MHD) model to simulate the solar wind-magnetosphere interaction during the peak of this geomagnetic storm. Robertson et aL then modeled the expected 50ft X-ray emission due to solar wind charge exchange with geocoronal neutrals in the dayside cusp and magnetosheath. The locations of the bow shock, magnetopause and cusps were clearly evident in their simulations. Another geomagnetic storm took place on July 14, 2000 (Bastille Day). We again modeled X-ray emission due to solar wind charge exchange, but this time as observed from a moving spacecraft. This paper discusses the impact of spacecraft location on observed X-ray emission and the degree to which the locations of the bow shock and magnetopause can be detected in images.

  17. Cometary ion instabilities in the solar wind

    NASA Astrophysics Data System (ADS)

    Matteini, L.; Schwartz, S. J.; Hellinger, P.

    2015-12-01

    We review some of the processes that characterize the interaction of the solar wind with newborn cometary ions. Instabilities generated by the typical ring-beam velocity-space configuration of the pick-up ions in the solar wind frame are studied by means of one- and two-dimensional hybrid numerical simulations. In agreement with previous studies, we find that instabilities generated by the cometary ions play an important role in shaping the properties of the plasma. The resulting ion distributions are in good agreement with observations, showing the presence of energy shells in velocity space. Bi-spherical shells for the heavy oxygen ions are also observed in the late phase of the simulations. Moreover, we also investigate some new aspects of the dynamics, such as the generation of turbulent cascade from the initial spectra of unstable waves, and the related heating and back reaction of the solar wind plasma. We also consider the case of initial non-gyrotropic pick-up ion distributions, and we focus on the polarization of the associated waves, suggesting that linear polarization can be a signature of this configuration, possibly observed by the Rosetta spacecraft in orbit around comet 67P/CG.

  18. The MAVEN Solar Wind Electron Analyzer

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.; Mazelle, C.; Sauvaud, J.-A.; Thocaven, J.-J.; Rouzaud, J.; Fedorov, A.; Rouger, P.; Toublanc, D.; Taylor, E.; Gordon, D.; Robinson, M.; Heavner, S.; Turin, P.; Diaz-Aguado, M.; Curtis, D. W.; Lin, R. P.; Jakosky, B. M.

    2016-04-01

    The MAVEN Solar Wind Electron Analyzer (SWEA) is a symmetric hemispheric electrostatic analyzer with deflectors that is designed to measure the energy and angular distributions of 3-4600-eV electrons in the Mars environment. This energy range is important for impact ionization of planetary atmospheric species, and encompasses the solar wind core and halo populations, shock-energized electrons, auroral electrons, and ionospheric primary photoelectrons. The instrument is mounted at the end of a 1.5-meter boom to provide a clear field of view that spans nearly 80 % of the sky with ˜20° resolution. With an energy resolution of 17 % (Δ E/E), SWEA readily distinguishes electrons of solar wind and ionospheric origin. Combined with a 2-second measurement cadence and on-board real-time pitch angle mapping, SWEA determines magnetic topology with high (˜8-km) spatial resolution, so that local measurements of the plasma and magnetic field can be placed into global context.

  19. The MAVEN Solar Wind Electron Analyzer

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.; Mazelle, C.; Sauvaud, J.-A.; Thocaven, J.-J.; Rouzaud, J.; Fedorov, A.; Rouger, P.; Toublanc, D.; Taylor, E.; Gordon, D.; Robinson, M.; Heavner, S.; Turin, P.; Diaz-Aguado, M.; Curtis, D. W.; Lin, R. P.; Jakosky, B. M.

    2016-02-01

    The MAVEN Solar Wind Electron Analyzer (SWEA) is a symmetric hemispheric electrostatic analyzer with deflectors that is designed to measure the energy and angular distributions of 3-4600-eV electrons in the Mars environment. This energy range is important for impact ionization of planetary atmospheric species, and encompasses the solar wind core and halo populations, shock-energized electrons, auroral electrons, and ionospheric primary photoelectrons. The instrument is mounted at the end of a 1.5-meter boom to provide a clear field of view that spans nearly 80 % of the sky with ˜20° resolution. With an energy resolution of 17 % ( Δ E/E), SWEA readily distinguishes electrons of solar wind and ionospheric origin. Combined with a 2-second measurement cadence and on-board real-time pitch angle mapping, SWEA determines magnetic topology with high (˜8-km) spatial resolution, so that local measurements of the plasma and magnetic field can be placed into global context.

  20. Solar Wind Associated with Near Equatorial Coronal Hole

    NASA Astrophysics Data System (ADS)

    Hegde, M.; Hiremath, K. M.; Doddamani, Vijayakumar H.; Gurumath, Shashanka R.

    2015-09-01

    Present study probes temporal changes in the area and radiative flux of near equatorial coronal hole associated with solar wind parameters such as wind speed, density, magnetic field and temperature. Using high temporal resolution data from SDO/AIA for the two wavelengths 193 Å and 211 Å, area and radiative flux of coronal holes are extracted and are examined for the association with high speed solar wind parameters. We find a strong association between different parameters of coronal hole and solar wind. For both the wavelength bands, we also compute coronal hole radiative energy near the earth and it is found to be of similar order as that of solar wind energy. However, for the wavelength 193 Å, owing to almost similar magnitudes of energy emitted by coronal hole and energy due to solar wind, it is conjectured that solar wind might have originated around the same height where 193 Å line is formed in the corona.

  1. CHARGE STATE EVOLUTION IN THE SOLAR WIND. RADIATIVE LOSSES IN FAST SOLAR WIND PLASMAS

    SciTech Connect

    Landi, E.; Gruesbeck, J. R.; Lepri, S. T.; Zurbuchen, T. H.; Fisk, L. A.

    2012-10-10

    We study the effects of departures from equilibrium on the radiative losses of the accelerating fast, coronal hole-associated solar wind plasma. We calculate the evolution of the ionic charge states in the solar wind with the Michigan Ionization Code and use them to determine the radiative losses along the wind trajectory. We use the velocity, electron temperature, and electron density predicted by Cranmer et al. as a benchmark case even though our approach and conclusions are more broadly valid. We compare non-equilibrium radiative losses to values calculated assuming ionization equilibrium at the local temperature, and we find that differences are smaller than 20% in the corona but reach a factor of three in the upper chromosphere and transition region. Non-equilibrium radiative losses are systematically larger than the equilibrium values, so that non-equilibrium wind plasma radiates more efficiently in the transition region. Comparing the magnitude of the dominant energy terms in the Cranmer et al. model, we find that wind-induced departures from equilibrium are of the same magnitude as the differences between radiative losses and conduction in the energy equation. We investigate which ions are most responsible for such effects, finding that carbon and oxygen are the main source of departures from equilibrium. We conclude that non-equilibrium effects on the wind energy equation are significant and recommend that they are included in theoretical models of the solar wind, at least for carbon and oxygen.

  2. Western Wind and Solar Integration Study (Fact Sheet)

    SciTech Connect

    Not Available

    2012-09-01

    Initiated in 2007 to examine the operational impact of up to 35% penetration of wind, photovoltaic (PV), and concentrating solar power (CSP) energy on the electric power system, the Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. The goal is to understand the effects of variability and uncertainty of wind, PV, and CSP on the grid. In the Western Wind and Solar Integration Study Phase 1, solar penetration was limited to 5%. Utility-scale PV was not included because of limited capability to model sub-hourly, utility-scale PV output . New techniques allow the Western Wind and Solar Integration Study Phase 2 to include high penetrations of solar - not only CSP and rooftop PV but also utility-scale PV plants.

  3. Solar wind effects on atmosphere evolution at Venus and Mars

    NASA Technical Reports Server (NTRS)

    Luhmann, Janet G.; Bauer, S. J.

    1992-01-01

    The weak intrinsic magnetism of Venus and Mars leaves these planets subject to some unique atmospheric loss processes. This paper reviews the ways in which material seems to be removed by the solar wind interaction, including atmospheric ion pickup by the solar wind, bulk removal and outflow of ionospheric plasma, and atmospheric sputtering by pickup ions. The factors in the planets' and sun's histories, such as planetary magnetism, solar luminosity, and past solar wind properties, that must ultimately be folded into considerations of the effects of the solar wind interaction on atmosphere evolution are discussed.

  4. Electron energy flux in the solar wind.

    NASA Technical Reports Server (NTRS)

    Ogilvie, K. W.; Scudder, J. D.; Sugiura, M.

    1971-01-01

    Description of studies of electrons between 10 eV and 9.9 keV in the solar wind. The transport of energy in the rest frame of the plasma is evaluated and shown to be parallel to the interplanetary magnetic field. The presence of electrons from solar events causes this energy-flux density to exceed the heat flow due to thermal electrons. In one such event, the observations are shown to be consistent with the solar-electron observations made at higher energies. When observations are made at a point connected to the earth's bow shock by an interplanetary-field line, a comparatively large energy flux along the field toward the sun is observed, but the heat flow remains outwardly directed during this time interval. In either situation the heat flow is found to be consistent with measurements made on Vela satellites by a different method. These values, less than .01 ergs/sq cm/sec, are sufficiently low to require modifications to the Spitzer-Harm conductivity formula for use in solar-wind theories.

  5. Equatorwards Expansion of Unperturbed, High-Latitude Fast Solar Wind

    NASA Astrophysics Data System (ADS)

    Dorrian, G. D.; Breen, A. R.; Fallows, R. A.; Bisi, M. M.

    2013-07-01

    We use dual-site radio observations of interplanetary scintillation (IPS) with extremely long baselines (ELB) to examine meridional flow characteristics of the ambient fast solar wind at plane-of-sky heliocentric distances of 24 - 85 solar radii ( R ⊙). Our results demonstrate an equatorwards deviation of 3 - 4∘ in the bulk fast solar wind flow direction over both northern and southern solar hemispheres during different times in the declining phase of Solar Cycle 23.

  6. Solar wind interaction with the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Garnier, Philippe; Milillo, Anna; Radioti, Aikaterini

    2015-09-01

    This issue entitled "Solar wind interaction with the terrestrial planets" follows the recurrent session PS5.1 (Planetary Plasma Physics and Interactions in the Solar System) held at the European Geophysical Union conference. The EGU session hosts original studies on all aspects of planetary plasma physics and interactions in the Solar System. This issue more specifically includes studies presented at several international meetings during the recent years on the physics of magnetospheres, ionospheres, auroras, and also the surface-plasma or atmosphere-plasma interactions, at inner planets such as Mercury, Earth (and Moon), Mars and Venus. The following papers, in fact, cover all of these aspects, and are based on a variety of techniques: space and ground-based observations, numerical modeling and even laboratory measurements.

  7. Dust in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Kramer, Emily; Bauer, James; Mainzer, Amy; Grav, Tommy; Nugent, Carolyn; Sonnett, Sarah; Stevenson, Rachel

    2015-08-01

    As some of the most pristine objects in the Solar System, comets present an excellent opportunity to understand the mechanics and chemistry of the planetary formation era. By studying a large number of comets in different dynamical classes, we can better understand their ensemble properties.NEOWISE is the planetary-funded mission that uses data from the Wide-field Infrared Survey Explorer (WISE) spacecraft to detect and characterize moving objects. The WISE mission surveyed the sky in four infrared wavelength bands (3.4, 4.6, 12 and 22-microns) between January 2010 and February 2011, during which time over 160 comets were detected. Since the restart of the mission as NEOWISE in December 2013, over 60 additional comets have been observed in the shorter two wavelength channels. In both phases of the mission, a mix of both long-period comets and short-period comets were detected. Over half of the comets in the prime mission displayed a significant dust tail in the 12 and 22-micron (thermal emission) bands, showing a wide range of activity levels and dust morphology. In both the prime and restarted phases of the mission, extended dust structures were also detected for many of the comets in the 3.4 and 4.6-micron bands. For the comets that displayed a significant dust tail, we have estimated the sizes and ages of the particles using dynamical models based on the Finson-Probstein method. We will present updated modeling results, comparing the different comet populations.

  8. Topological Origins of the Slow Solar Wind

    NASA Technical Reports Server (NTRS)

    Antiochos, Spiro

    2008-01-01

    Although the slow solar wind has been studied for decades with both in situ and remote sensing observations, its origin is still a matter of intense debate. In the standard quasi-steady model, the slow wind is postulated to originate near coronal hole boundaries that define topologically well-behaved separatrices between open and closed field regions. In the interchange model, on the other hand, the slow wind is postulated to originate on open flux that is dynamically diffusing throughout the seemingly closed-field corona. We argue in favor of the quasi-steady scenario and propose that the slow wind is due to two effects: First, the open-closed boundary is highly complex due to the complexity of the photospheric flux distribution. Second, this boundary is continuously driven by the transport of magnetic helicity from the closed field region into the open. The implications of this model for the structure and dynamics of the corona and slow wind are discussed, and observational tests of the mode

  9. Topological Origins of the Slow Solar Wind

    NASA Astrophysics Data System (ADS)

    Antiochos, S.

    2008-12-01

    Although the slow solar wind has been studied for decades with both in situ and remote sensing observations, its origin is still a matter of intense debate. In the standard quasi-steady model, the slow wind is postulated to originate near coronal hole boundaries that define topologically well-behaved separatrices between open and closed field regions. In the interchange model, on the other hand, the slow wind is postulated to originate on open flux that is dynamically diffusing throughout the seemingly closed-field corona. We argue in favor of the quasi-steady scenario and propose that the slow wind is due to two effects: First, the open-closed boundary is highly complex due to the complexity of the photospheric flux distribution. Second, this boundary is continuously driven by the transport of magnetic helicity from the closed field region into the open. The implications of this model for the structure and dynamics of the corona and slow wind are discussed, and observational tests of the model are presented. This work has been supported, in part, by the NASA LWS, HTP, and SR&T programs.

  10. The Rising Phase of Solar Cycle 24: General Solar Wind, Large-Scale Solar Wind Structures, and Sector Asymmetry

    NASA Astrophysics Data System (ADS)

    Jian, L.; Russell, C. T.; Luhmann, J. G.; Riley, P.; Hoeksema, J. T.; Odstrcil, D.; Petrie, G. J.

    2011-12-01

    The solar polar field is presently nearing its reversal, suggesting the approach of solar maximum. However, the sunspot number, solar wind dynamic pressure, and IMF are still weak, similar to conditions in 1998 (the middle of last rising phase), suggesting a peculiar rising phase for Solar Cycle 24. In this presentation, following the study of solar minimum 23/24 in Jian et al. (2011), we first report the variations of solar wind parameters from the beginning of space era to present and compare the current rising phase with that of previous cycles. Secondly, based on our long-term study of large-scale solar wind structures, including interplanetary CMEs (ICMEs), stream interaction regions (SIRs), and their associated shocks at 1 AU from 1995 to present, we compare their properties in this rising phase with those of Cycle 23 and study their possible influence on geomagnetic activity. Thirdly, dividing the solar wind into positive (anti-sunward) and negative (sunward) sectors depending on the IMF polarity, we compare the solar wind parameters of the two polarity sectors from the beginning of Solar Cycle 21 to present. We note that an asymmetry between the two sectors exists for past cycles as reported by Hiltula and Mursula (2007) as well as Erdos and Balogh (2010). The sector asymmetry is more pronounced during the last solar minimum 23/24. Positive polarity solar wind is observed more often at 1 AU than negative polarity in Cycles 21 and 23 and less often in Cycle 22 and likely in this Cycle 24. Using the PFSS and MHD models, we can calculate the polarity distributions closer to the Sun, and they do not always agree with the observations. We closely examine several representative Carrington rotations to find out the reason. From 1-AU observations, the solar wind from the negative polarity sector (currently from northern hemisphere of the Sun) is found to be faster, hotter, and have a smaller proton density than the wind from the positive sector since 2009. This can affect the geomagnetic activity systematically. Comparing with the solar and coronal observations, we look for interpretations of the asymmetry.

  11. ISOTOPIC MASS FRACTIONATION OF SOLAR WIND: EVIDENCE FROM FAST AND SLOW SOLAR WIND COLLECTED BY THE GENESIS MISSION

    SciTech Connect

    Heber, Veronika S.; Baur, Heinrich; Wieler, Rainer; Bochsler, Peter; McKeegan, Kevin D.; Neugebauer, Marcia; Reisenfeld, Daniel B.; Wiens, Roger C.

    2012-11-10

    NASA's Genesis space mission returned samples of solar wind collected over {approx}2.3 years. We present elemental and isotopic compositions of He, Ne, and Ar analyzed in diamond-like carbon targets from the slow and fast solar wind collectors to investigate isotopic fractionation processes during solar wind formation. The solar wind provides information on the isotopic composition for most volatile elements for the solar atmosphere, the bulk Sun and hence, on the solar nebula from which it formed 4.6 Ga ago. Our data reveal a heavy isotope depletion in the slow solar wind compared to the fast wind composition by 63.1 {+-} 2.1 per mille for He, 4.2 {+-} 0.5 per mille amu{sup -1} for Ne and 2.6 {+-} 0.5 per mille amu{sup -1} for Ar. The three Ne isotopes suggest that isotopic fractionation processes between fast and slow solar wind are mass dependent. The He/H ratios of the collected slow and fast solar wind samples are 0.0344 and 0.0406, respectively. The inefficient Coulomb drag model reproduces the measured isotopic fractionation between fast and slow wind. Therefore, we apply this model to infer the photospheric isotopic composition of He, Ne, and Ar from our solar wind data. We also compare the isotopic composition of oxygen and nitrogen measured in the solar wind with values of early solar system condensates, probably representing solar nebula composition. We interpret the differences between these samples as being due to isotopic fractionation during solar wind formation. For both elements, the magnitude and sign of the observed differences are in good agreement with the values predicted by the inefficient Coulomb drag model.

  12. Interpretation of Solar Wind Ion Composition Measurements from Ulysses

    NASA Technical Reports Server (NTRS)

    Esser, Ruth

    1998-01-01

    The ion compositions measured in situ in the solar wind are important since the ion fractions carry information on the plasma conditions in the inner corona. The conditions in the inner corona define the properties of the solar wind plasma flow. Thus, if the ion fraction measurements can be used to unravel some of the plasma parameters in the inner corona, they will provide a valuable contribution to solving the heating and acceleration problem of the solar wind. The ion charge states in the solar wind carry information on electron temperature, electron density and ion flow speed. They are also sensitive to the shape of the electron distribution function. Through carefully modeling the solar wind and calculating the ion fractions predicted for different solar wind conditions, constraints on the electron temperature and ion flow speeds can be placed if the electron density is measured using polarization brightness measurements.

  13. Variations of Strahl Properties with Fast and Slow Solar Wind

    NASA Technical Reports Server (NTRS)

    Figueroa-Vinas, Adolfo; Goldstein, Melvyn L.; Gurgiolo, Chris

    2008-01-01

    The interplanetary solar wind electron velocity distribution function generally shows three different populations. Two of the components, the core and halo, have been the most intensively analyzed and modeled populations using different theoretical models. The third component, the strahl, is usually seen at higher energies, is confined in pitch-angle, is highly field-aligned and skew. This population has been more difficult to identify and to model in the solar wind. In this work we make use of the high angular, energy and time resolution and three-dimensional data of the Cluster/PEACE electron spectrometer to identify and analyze this component in the ambient solar wind during high and slow speed solar wind. The moment density and fluid velocity have been computed by a semi-numerical integration method. The variations of solar wind density and drift velocity with the general build solar wind speed could provide some insight into the source, origin, and evolution of the strahl.

  14. Morphology of Pseudostreamers and Solar Wind Properties

    NASA Astrophysics Data System (ADS)

    Panasenco, Olga; Velli, Marco

    2016-05-01

    The solar dynamo and photospheric convection lead to three main types of structures extending from the solar surface into the corona – active regions, solar filaments (prominences when observed at the limb) and coronal holes. These structures exist over a wide range of scales, and are interlinked with each other in evolution and dynamics. Active regions can form clusters of magnetic activity and the strongest overlie sunspots. In the decay of active regions, the boundaries separating opposite magnetic polarities (neutral lines) develop the specific structures called filament channels above which filaments form. In the presence of flux imbalance decaying active regions can also give birth to lower latitude coronal holes. The accumulation of magnetic flux at coronal hole boundaries also creates the conditions for filament formation: polar crown filaments are permanently present at the boundaries of the polar coronal holes. Middle-latitude and equatorial coronal holes - the result of active region evolution - can create pseudostreamers (PSs) if other coronal holes of the same polarity are present. While helmet streamers form between open fields of opposite polarities, the pseudostreamer, characterized by a smaller coronal imprint, typically shows a more prominent straight ray or stalk extending from the corona. The pseudostreamer base at photospheric heights is multipolar; often one observes tripolar magnetic configurations with two neutral lines - where filaments can form - separating the coronal holes. Here we discuss the specific role of filament channels on pseudostreamer topology and on solar wind properties. 1D numerical analysis of PSs shows that the properties of the solar wind from around PSs depend on the presence/absence of filament channels, number of channels and chirality at the PS base low in the corona.

  15. Radial evolution of the energy density of solar wind fluctuations

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Matthaeus, W. H.; Smith, C. W.

    1995-01-01

    On the basis of transport theories appropriate to a radially expanding solar wind, we describe new results for the radial evolution of the energy density in solar wind fluctuations at MHD scales. These models include the effects of 'mixing' and driving as well as the possibility of non-isotropic MHD turbulence. Implications of these results for solar wind heating, cosmic ray diffusion and interstellar pick-up ions will also be addressed.

  16. Elemental and charge state composition of the fast solar wind observed with SMS instruments on WIND

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.; Galvin, A. B.; Ipavich, F. M.; Hamilton, D. C.; Bochsler, P.; Geiss, J.; Fisk, L. A.; Wilken, B.

    1995-01-01

    The elemental composition and charge state distributions of heavy ions of the solar wind provide essential information about: (1) atom-ion separation processes in the solar atmosphere leading to the 'FIP effect' (the overabundance of low First Ionization potential (FIP) elements in the solar wind compared to the photosphere); and (2) coronal temperature profiles, as well as mechanisms which heat the corona and accelerate the solar wind. This information is required for solar wind acceleration models. The SWICS instrument on Ulysses measures for all solar wind flow conditions the relative abundance of about 8 elements and 20 charge states of the solar wind. Furthermore, the Ulysses high-latitude orbit provides an unprecedented look at the solar wind from the polar coronal holes near solar minimum conditions. The MASS instrument on the WIND spacecraft is a high-mass resolution solar wind ion mass spectrometer that will provide routinely not only the abundances and charge state of all elements easily measured with SWICS, but also of N, Mg, S. The MASS sensor was fully operational at the end of 1994 and has sampled the in-ecliptic solar wind composition in both the slow and the corotating fast streams. This unique combination of SWICS on Ulysses and MASS on WIND allows us to view for the first time the solar wind from two regions of the large coronal hole. Observations with SWICS in the coronal hole wind: (1) indicate that the FIP effect is small; and (2) allow us determine the altitude of the maximum in the electron temperature profile, and indicate a maximum temperature of approximately 1.5 MK. New results from the SMS instruments on Wind will be compared with results from SWICS on Ulysses.

  17. In-situ Measurements of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Neugebauer, Marcia

    2003-09-01

    In-situ measurements of the solar wind began with simple ion traps on Soviet spacecraft in 1959. It wasn't, however, until 1962 that the major properties of the solar wind were determined by Mariner 2. Improvements in instrumentation since then include the use of particle detectors, extension of the observations of the solar wind velocity vector to 2 or 3 dimensions, better time and energy resolution, greater variety of measurement locations, multipoint measurements, electron measurements, and the use of mass spectrometers and sample returns. This review summarizes what was learned about the solar wind from each of these improvements in instrumentation.

  18. Coupling of the Solar Wind to the Magnetosphere

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Solar wind-magnetosphere coupling is considered in the context of four major questions. The first of these questions is concerned with the process of solar wind plasma entry. The processes of energy and momentum transfer from the solar wind to the magnetosphere comprise the focus of the second question. The third question deals with the physics of magnetospheric boundary layers, specifically their role as generators, loads, and plasma transport regions. The final question concerns the global magnetohydrodynamics that characterize the magnetosphere for the various coupling processes and as functions of solar wind parameters.

  19. Reception of real-time solar wind data at NICT

    NASA Astrophysics Data System (ADS)

    Watari, Shinichi; Ishii, Mamoru; Kubo, Yuki

    National Institute of Information and Communications Technology (NICT) has contributed reception of real-time solar wind data from Advanced Composition Explorer (ACE) since 1997. ACE has made in-situ solar wind observations at L1 point and has provided the data in real-time. The data is useful for warnings of geomagnetic storms up to one hour in advance. We renewed our antenna system for real-time solar wind data considering Deep Space Climate Observatory (DSCOVR), which follows on mission of ACE. In our presentation, we will report on our new antenna system and our application of solar wind data in Japanese space weather center.

  20. The solar wind during current and past solar minima and maxima

    NASA Astrophysics Data System (ADS)

    Zerbo, J.-L.; Richardson, J. D.

    2015-12-01

    This paper presents solar wind data from the last five solar cycles. We review solar wind parameters over the four solar minima and five maxima for which spacecraft data are available and show the recovery from the last very weak minimum to the current solar maximum. The solar wind magnetic field, speed, and density have remained anomalously low in this time period. However, the distributions of these parameters about the (lower than normal) average are similar to those from previous solar minima and maxima. This result suggests that the acceleration mechanism for the recent weak solar wind is probably not significantly different from earlier solar cycles. The He++/H+ ratio variation with solar cycle continues to be a function of speed, but the most recent solar minimum has significantly lower ratios than in the previous solar cycle.

  1. Time Variable Solar Wind Interaction of Mercury

    NASA Astrophysics Data System (ADS)

    Ip, W.-H.; Kopp, A.

    A three-dimensional MHD code was used to simulate the solr wind interaction of Mercury's magnetosphere with interplanetary magnetic field (IMF) of different orien- tations. It can be shown that for northward pointing IMF, the Hermean magnetosphere is nearly closed with the polar cap shrinking to a small area. On the other hand, the boundary of the polar cap expands to mid-latitude region (about 30 degrees latitude) for south-pointing IMF. Such large changes in the size and morphology of the polar cap in response to directional variations of the IMF could be related to the observed temporal variabilities of the atomic sodium emission on Mercury's disk. That is, the production rate of the sodium atoms could be significantly modulated i.e., weak for northward IMF and large for southward IMF) if solar wind sputtering of the surface material is an important source mechanism of the sodium atoms.

  2. The ISPM solar-wind ion composition spectrometer

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.; Geiss, J.; Balsiger, H.; Fisk, L. A.; Gliem, F.; Ipavich, F. M.; Ogilvie, K. W.; Stuedemann, W.; Wilken, B.

    1983-01-01

    The International Solar Polar Mission (ISPM) Solar-Wind Ion Composition Spectrometer which determines elemental and ionic-charge composition, and the temperatures and mean speeds of all major solar-wind ions, from H through Fe, at solar wind speeds ranging from 145 km/sec (protons) to 1352 km/sec (Fe+8) is described. The instrument, which covers an energy per charge range from 110 eV/q to 66.7 keV/q in 13 min, combines an electrostatic analyzer with postacceleration, followed by a time-of-flight and energy measurement. Conditions and processes in the region of the corona where the solar wind is accelerated; location of the source regions of the solar wind in the corona; coronal heating processes; the extent and causes of variations in the composition of the solar atmosphere; plasma processes in the solar wind; acceleration of energetic particles in the solar wind; the thermalization and acceleration of interstellar ions in the solar wind, and their composition; and the composition and behavior of the plasma in the Jovian magnetosphere are studied.

  3. Solar wind turbulence: anisotropy, anisotropy, anisotropy!

    NASA Astrophysics Data System (ADS)

    Wicks, R.; Forman, M. A.; Summerlin, E. J.; Roberts, D. A.; Salem, C. S.

    2014-12-01

    Turbulence heats the solar wind as it expands away from the Sun, but where and how does heating of ions and electrons occur? In order to understand this we must first look at the fluctuations making up the cascade, the properties and anisotropies of which will determine whether ions or electrons are heated and whether field-parallel or -perpendicular heating will occur, all of which amounts to a lot of different anisotropies! With this in mind, we present a review of recent advances in the observation of plasma turbulence in the solar wind and comparison with simulations; which features of solar wind turbulence are well reproduced and which need to be captured better? The first anisotropy is that of the fluctuations making up the turbulent cascade itself, fluctuations are known to be highly transverse, meaning that the perpendicular magnetic field components are dominant over the field-parallel component. The second anisotropy is that of the scaling of amplitude towards smaller scales with steeper spectra parallel to the local magnetic field direction. Observations of the anisotropy of the full power spectral tensor will be discussed, in particular with reference to Alfvenic and pseudo-Alfvenic fluctuations (effectively two different polarizations of Alfven waves), the next step beyond the traditional "slab + 2D" approach to incompressible MHD turbulence. The third anisotropy is that of the ion and electron distributions. Both sets of charged particles frequently show non-Maxwellian distributions with higher temperatures found either perpendicular to or parallel to the magnetic field direction. Proton distributions often show beams and the heavier alpha particles are often hotter than the protons. Localized structures such as current sheets and magnetic discontinuities are shown to be sites of intense and anisotropic heating. Small scale fluctuations filling the space between such discontinuities may also dissipate energy into ions and electrons, either through electric fields intrinsic to the modes generated by the turbulence or through resonant or stochastic processes. Observations show that kinetic Alfven waves are the dominant mode.

  4. Gaseous isotope separation using solar wind phenomena

    PubMed Central

    Wang, Chia-Gee

    1980-01-01

    A large evacuated drum-like chamber fitted with supersonic nozzles in the center, with the chamber and the nozzles corotating, can separate gaseous fluids according to their molecular weights. The principle of separation is essentially the same as that of the solar wind propagation, in which components of the plasma fluid are separated due to their difference in the time-of-flight. The process can inherently be very efficient, serving as a pump as well as a separator, and producing well over 105 separative work units (kg/year) for the hydrogen/deuterium mixture at high-velocity flows. PMID:16592924

  5. Genesis Solar Wind Samples: Update of Availability

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. P.; Allums, K. K.; Allton, J. H.

    2015-01-01

    The Genesis mission collected solar wind atoms for 28 months with a variety of collectors. The array wafer collector availability is displayed in the online catalog. The purpose of this report is to update the community on availability of array wafer samples and to preview other collectors which are in the process of being added to the online catalog. A total of fifteen pure materials were selected based on engineering and science requirements. Most of the materials were semiconductor wafers which were mounted on the arrays.

  6. Genesis Solar Wind Science Canister Components Curated as Potential Solar Wind Collectors and Reference Contamination Sources

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Gonzalez, C. P.; Allums, K. K.

    2016-01-01

    The Genesis mission collected solar wind for 27 months at Earth-Sun L1 on both passive and active collectors carried inside of a Science Canister, which was cleaned and assembled in an ISO Class 4 cleanroom prior to launch. The primary passive collectors, 271 individual hexagons and 30 half-hexagons of semiconductor materials, are described in. Since the hard landing reduced the 301 passive collectors to many thousand smaller fragments, characterization and posting in the online catalog remains a work in progress, with about 19% of the total area characterized to date. Other passive collectors, surfaces of opportunity, have been added to the online catalog. For species needing to be concentrated for precise measurement (e.g. oxygen and nitrogen isotopes) an energy-independent parabolic ion mirror focused ions onto a 6.2 cm diameter target. The target materials, as recovered after landing, are described in. The online catalog of these solar wind collectors, a work in progress, can be found at: http://curator.jsc.nasa.gov/gencatalog/index.cfm This paper describes the next step, the cataloging of pieces of the Science Canister, which were surfaces exposed to the solar wind or component materials adjacent to solar wind collectors which may have contributed contamination.

  7. ELECTRON TRANSPORT IN THE FAST SOLAR WIND

    SciTech Connect

    Smith, H. M.; Marsch, E.; Helander, P.

    2012-07-01

    The electron velocity distribution function is studied in the extended solar corona above coronal holes (i.e., the inner part of the fast solar wind) from the highly collisional corona close to the Sun to the weakly collisional regions farther out. The electron kinetic equation is solved with a finite-element method in velocity space using a linearized Fokker-Planck collision operator. The ion density and temperature profiles are assumed to be known and the electric field and electron temperature are determined self-consistently. The results show quantitatively how much lower the electron heat flux and the thermal force are than predicted by high-collisionality theory. The sensitivity of the particle and heat fluxes to the assumed ion temperature profile and the applied boundary condition at the boundary far from the Sun is also studied.

  8. Magnetic Influences on the Solar Wind

    NASA Astrophysics Data System (ADS)

    Woolsey, Lauren N.

    2016-01-01

    The Sun is our closest star, and even with the ability to resolve fine structure, there are several large mysteries that remain unsolved. One of these unanswered questions is how the supersonic outflow from the Sun, the solar wind, is generated and accelerated. In this dissertation, I have investigated the role of Alfvén waves in heating the corona and accelerating the wind. I focus on modeling of flux tubes that are open to the heliosphere, i.e. bundles of magnetic field that stretch beyond a few solar radii into the heliosphere. In these flux tubes, Alfvén waves are launched by the shaking of the footpoints from the convective motions of granulation on the solar photosphere. I present results of modeling efforts in one dimension that investigate how this process changes for a variety of different magnetic field structures over a solar cycle and three-dimensional modeling of time-dependent processes that unlock a connection between pico- and nanoflare-scale events and the turbulent heating generated by counter-propagating Alfvén waves. In addition to computational modeling, I also present efforts to find magnetic thresholds in observations of small-scale network jets seen with the Interface Region Imaging Spectrograph (IRIS). These jets were first discovered by IRIS due to their short lifetimes (10s of seconds) and small size (widths of 100s of kilometers). The findings for this project suggest that the modeled Alfvén-wave-driven turbulence is consistent with these network jets.

  9. QBO in solar wind speed and its relation to ENSO

    NASA Astrophysics Data System (ADS)

    Hocke, Klemens

    2009-02-01

    Corotating coronal holes of the Sun induce fluctuations of the solar wind speed in the vicinity of the Earth. The fluctuations of solar wind speed are closely correlated with geomagnetic activity. Solar wind speed has been monitored by satellites since the mid 1960s. The long-term series of solar wind speed show enhanced amplitudes at the solar rotation period 27.3 days and at its harmonics 13.6 and 9.1 days. The amplitude series are modulated by a quasi-biennial oscillation (QBO) with a period of 1.75a (21 months) as bispectral analysis reveals. A 1.75a QBO component is also present in the equatorial, zonal wind of the stratosphere at 30 hPa, in addition to the well-known QBO component at the period 2.4a (29 months). The solar wind QBO may influence the stratospheric QBO, the global electric circuit, and cloud cover by modulation of ionospheric electric fields, cosmic ray flux, and particle precipitation. For a further analysis, the series of solar wind speed fluctuations are bandpass-filtered at the period 1.75a. The filtered series provide the amplitude of the solar wind QBO as function of time. The maxima of the solar wind QBO series are correlated with those of the ENSO index. The analysis indicate that the solar wind QBO may trigger the ENSO activity. This result is speculative at the moment. However, the focus of the study is on the investigation of the long-term modulations of the short-term (4-45 days) oscillations of the solar wind speed which are quite unexplored yet.

  10. The floor in the solar wind: status report

    NASA Astrophysics Data System (ADS)

    Cliver, E. W.

    2012-07-01

    Cliver & Ling (2010) recently suggested that the solar wind had a floor or ground-state magnetic field strength at Earth of ~2.8 nT and that the source of the field was the slow solar wind. This picture has recently been given impetus by the evidence presented by Schrijver et al. (2011) that the Sun has a minimal magnetic state that was approached globally in 2009, a year in which Earth was imbedded in slow solar wind ~70% of the time. A precursor relation between the solar dipole field strength at solar minimum and the peak sunspot number (SSN MAX ) of the subsequent 11-yr cycle suggests that during Maunder-type minima (when SSN MAX was ~0), the solar polar field strength approaches zero - indicating weak or absent polar coronal holes and an increase to nearly ~100% in the time that Earth spends in slow solar wind.

  11. Velocity shear generation of solar wind turbulence

    SciTech Connect

    Roberts, D.A.; Goldstein, M.L.; Ghosh, S.; Matthaeus, W.H.

    1992-11-01

    The authors use a two-dimensional, incompressible MHD spectral code to establish that shear-driven turbulence is a possible means for producing many observed properties of the evolution of the magnetic and velocity fluctuations in the solar wind and, in particular, the evolution of the cross helicity ({open_quotes}Alfvenicity{close_quotes}) at small scales. They find that large-scale shear can nonlinearly produce a cascade to smaller scale fluctuations even when the linear Kelvin-Helmholtz mode is stable and that a roughly power law inertial range is established by this process. While the fluctuations thus produced are not Alfvenic, they are nearly equipartitioned between magnetic and kinetic energy. The authors report simulations with Alfvenic fluctuations at high wave numbers, both with and without shear layers and find that it is the low cross helicity at low wave numbers that is critical to the cross helicity evolution, rather than the geometry of the flow or the dominance of kinetic energy at large scales. The fluctuations produced by shear effects are shown to evolve similarly but more slowly in the presence of a larger mean field and to be anisotropic with a preferred direction of spectral transfer perpendicular to the mean field. The evolution found is similar to that seen in some other simulations of HMD turbulence, and thus seems in many respects to be an instance of a more generic turbulent evolution rather than due to specific conditions in the solar wind. 75 refs., 18 figs.

  12. Magnetic pumping of the solar wind

    NASA Astrophysics Data System (ADS)

    Egedal, Jan; Lichko, Emily; Daughton, William

    2014-10-01

    The transport of matter and radiation in the solar wind and terrestrial magnetosphere is a complicated problem involving competing processes of charged particles interacting with electric and magnetic fields. Given the rapid expansion of the solarwind, it would be expected that superthermal electrons originating in the corona would cool rapidly as a function of distance to the Sun. However, this is not observed, and various models have been proposed as plausible candidates for heating the solar wind as it super-sonically streams away from the sun. In the compressional pumping mechanism explored by Fisk & Gloeckler particles are accelerated by random compressions by the interplanetary wave turbulence. This theory explores diffusion due to spatial non-uniformities and provides a mechanism for redistributing particle. For investigation of a related but different heating mechanism, magnetic pumping, in our work we include diffusion of anisotropic features that develops in velocity space. The mechanism allows energy to be transferred to the particles directly from the turbulence. The efficiency of the process is explored using kinetic simulations. Moved to poster by APS.

  13. Anisotropy in solar wind plasma turbulence.

    PubMed

    Oughton, S; Matthaeus, W H; Wan, M; Osman, K T

    2015-05-13

    A review of spectral anisotropy and variance anisotropy for solar wind fluctuations is given, with the discussion covering inertial range and dissipation range scales. For the inertial range, theory, simulations and observations are more or less in accord, in that fluctuation energy is found to be primarily in modes with quasi-perpendicular wavevectors (relative to a suitably defined mean magnetic field), and also that most of the fluctuation energy is in the vector components transverse to the mean field. Energy transfer in the parallel direction and the energy levels in the parallel components are both relatively weak. In the dissipation range, observations indicate that variance anisotropy tends to decrease towards isotropic levels as the electron gyroradius is approached; spectral anisotropy results are mixed. Evidence for and against wave interpretations and turbulence interpretations of these features will be discussed. We also present new simulation results concerning evolution of variance anisotropy for different classes of initial conditions, each with typical background solar wind parameters. PMID:25848082

  14. Anisotropy in solar wind plasma turbulence

    PubMed Central

    Oughton, S.; Matthaeus, W. H.; Wan, M.; Osman, K. T.

    2015-01-01

    A review of spectral anisotropy and variance anisotropy for solar wind fluctuations is given, with the discussion covering inertial range and dissipation range scales. For the inertial range, theory, simulations and observations are more or less in accord, in that fluctuation energy is found to be primarily in modes with quasi-perpendicular wavevectors (relative to a suitably defined mean magnetic field), and also that most of the fluctuation energy is in the vector components transverse to the mean field. Energy transfer in the parallel direction and the energy levels in the parallel components are both relatively weak. In the dissipation range, observations indicate that variance anisotropy tends to decrease towards isotropic levels as the electron gyroradius is approached; spectral anisotropy results are mixed. Evidence for and against wave interpretations and turbulence interpretations of these features will be discussed. We also present new simulation results concerning evolution of variance anisotropy for different classes of initial conditions, each with typical background solar wind parameters. PMID:25848082

  15. An asymmetric solar wind termination shock.

    PubMed

    Stone, Edward C; Cummings, Alan C; McDonald, Frank B; Heikkila, Bryant C; Lal, Nand; Webber, William R

    2008-07-01

    Voyager 2 crossed the solar wind termination shock at 83.7 au in the southern hemisphere, approximately 10 au closer to the Sun than found by Voyager 1 in the north. This asymmetry could indicate an asymmetric pressure from an interstellar magnetic field, from transient-induced shock motion, or from the solar wind dynamic pressure. Here we report that the intensity of 4-5 MeV protons accelerated by the shock near Voyager 2 was three times that observed concurrently by Voyager 1, indicating differences in the shock at the two locations. (Companion papers report on the plasma, magnetic field, plasma-wave and lower energy particle observations at the shock.) Voyager 2 did not find the source of anomalous cosmic rays at the shock, suggesting that the source is elsewhere on the shock or in the heliosheath. The small intensity gradient of Galactic cosmic ray helium indicates that either the gradient is further out in the heliosheath or the local interstellar Galactic cosmic ray intensity is lower than expected. PMID:18596802

  16. Ulysses Composition, Plasma and Magnetic Field Observations of High Speed Solar wind Streams

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1997-01-01

    During 1992-3 as the Ulysses spacecraft passed in and out of the southern high speed solar wind stream, the Solar Wind Ion Spectrometer, SWICS made continuous composition and temperature measurements of all major solar wind ions.

  17. The solar wind effect on cosmic rays and solar activity

    NASA Technical Reports Server (NTRS)

    Fujimoto, K.; Kojima, H.; Murakami, K.

    1985-01-01

    The relation of cosmic ray intensity to solar wind velocity is investigated, using neutron monitor data from Kiel and Deep River. The analysis shows that the regression coefficient of the average intensity for a time interval to the corresponding average velocity is negative and that the absolute effect increases monotonously with the interval of averaging, tau, that is, from -0.5% per 100km/s for tau = 1 day to -1.1% per 100km/s for tau = 27 days. For tau 27 days the coefficient becomes almost constant independently of the value of tau. The analysis also shows that this tau-dependence of the regression coefficiently is varying with the solar activity.

  18. Solar wind velocity and temperature in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Gazis, P. R.; Barnes, A.; Mihalov, J. D.; Lazarus, A. J.

    1994-01-01

    At the end of 1992, the Pioneer 10, Pioneer 11, and Voyager 2 spacecraft were at heliocentric distances of 56.0, 37.3, and 39.0 AU and heliographic latitudes of 3.3 deg N, 17.4 deg N, and 8.6 deg S, respectively. Pioneer 11 and Voyager 2 are at similar celestial longitudes, while Pioneer 10 is on the opposite side of the Sun. All three spacecraft have working plasma analyzers, so intercomparison of data from these spacecraft provides important information about the global character of the solar wind in the outer heliosphere. The averaged solar wind speed continued to exhibit its well-known variation with solar cycle: Even at heliocentric distances greater than 50 AU, the average speed is highest during the declining phase of the solar cycle and lowest near solar minimum. There was a strong latitudinal gradient in solar wind speed between 3 deg and 17 deg N during the last solar minimum, but this gradient has since disappeared. The solar wind temperature declined with increasing heliocentric distance out to a heliocentric distance of at least 20 AU; this decline appeared to continue at larger heliocentric distances, but temperatures in the outer heliosphere were suprisingly high. While Pioneer 10 and Voyager 2 observed comparable solar wind temperatures, the temperature at Pioneer 11 was significantly higher, which suggests the existence of a large-scale variation of temperature with heliographic longitude. There was also some suggestion that solar wind temperatures were higher near solar minimum.

  19. The solar wind in the third dimension

    SciTech Connect

    Neugebauer, M.

    1996-07-20

    For many years, solar-wind physicists have been using plasma and field data acquired near the ecliptic plane together with data on the scintillation of radio sources and remote sensing of structures in the solar corona to estimate the properties of the high-latitude solar wind. Because of the highly successful Ulysses mission, the moment of truth is now here. This paper summarizes the principal agreements and differences between the Ulysses observations and expectations. The speed of the high-latitude solar wind was even greater than anticipated. The strength of the radial component of the interplanetary magnetic field was found to be independent of latitude. The tilt of the heliospheric current sheet caused reverse corotating shocks to be observed to higher latitudes than forward corotating shocks. The energetic particles accelerated in these shocks were detected well poleward of the latitudes at which Ulysses observed the interaction regions themselves. As anticipated, there was a strong flux of outward propagating Alfven waves throughout the polar flow. Those waves were probably largely responsible for the smaller-than-anticipated increase of galactic cosmic rays with increasing latitude. As expected, the charge state or ionization temperature of heavy ions was lower in the polar flow than in low-latitude interstream flows. What was not anticipated was the correlation of elemental abundances with ionization temperatures; the Ulysses data revealed a connection between the first ionization time in the upper chromosphere and the final ionization state in the corona. As expected, transient events were detected to {approx}60 deg. latitude, but the properties of those high latitude transient flows held some surprises. At high latitudes, the speeds of the transient interplanetary plasma clouds were approximately the same as the speed of the ambient plasma and the expansion of the clouds drove forward and reverse shock pairs that had never been seen at low latitudes. At high latitudes, the plasma in interplanetary clouds differed from low-latitude events in that it was not enriched in helium and did not have high ionization temperatures.

  20. Turbulence in the solar wind: Kinetic effects

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.

    1995-01-01

    Although a casual look at the fluctuating magnetic and velocity fields in the solar wind may be reminiscent of a chaotic and disordered flow, there is, nonetheless. considerable organization and structure in the temporal and spatial evolution of those fluctuations. Much of that evolution is controlled by processes operating on rather large scales for example, in the inner heliosphere, the fluctuations in magnetic and velocity are highly correlated in the sense of outward propagating Alfven waves. This correlation can be destroyed both in time and distance by the velocity gradients present between fast and slow streams and by other nonlinear processes which stir the medium, producing a turbulent cascade of energy from large to small scales. Many aspects of this turbulent evolution can be described using fluid models; however, at some scale the fluid approximation breaks down and a more detailed paradigm is necessary. The breakdown is evident in the power spectrum of magnetic fluctuations at scales approaching the wavelength of ion cyclotron waves. At those scales, as evident in Mariner 10 and other magnetometer data, the spectrum bends over and the fluctuations damp, possibly heating the ambient plasma. Some evidence for heating of the solar wind is present in the Voyager data. Fluid models can be modified to some extent to incorporate aspects of a kinetic treatment. This is done by modifying the dissipation terms in the fluid equations and by including extra terms, such as the Hall term. As the scale lengths of phenomena shrink further and approach the spatial and temporal scales characteristic of electron phenomena, the fluid description must be abandoned altogether and a fully kinetic treatment is required. One example is the generation of Langmuir solitons produced by the electron beams that generate type 3 solar radio bursts.

  1. Venus Ionosphere and Solar Wind Interaction

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Luhmann, Janet G.; Ma, Yingjuan; Zhang, Tielong; Villarreal, M.

    Venus Express, which was inserted into orbit in mid-2006, has added significantly to the knowledge gained from Pioneer Venus from 1978 to 1992. This observational database interpreted in terms of modern multi-fluid codes and hybrid simulations has deepened our understanding of Earth’s very different twin sister planet. Furthermore, the very different orbits of VEX and PVO has allowed the more complete mapping of the volume of space around the planet. Now the bow shock has been probed over its full surface, the ionosphere mapped everywhere, and the tail studied from the ionosphere to 12 Venus radii. Some unexpected discoveries have been made. The exospheric hydrogen at Venus, unlike that at Mars, does not produce ion-cyclotron waves, perhaps because the stronger gravity of Venus produces a smaller geocorona. The solar wind interaction drapes the magnetic field around the planet, and a strong layer of magnetic field builds up at low altitudes. While the layer does not appear to penetrate into the dayside atmosphere (perhaps diffusing only slowly through the low atmosphere), it does appear to dip into the atmosphere at night. Surprisingly, over the poles, this layer is most strongly seen when the IMF BY component has a positive Y-component in Venus-Solar-Orbital coordinates. Multi-fluid simulations show that this result is consistent with the pressure of significant ion densities of ions with quite different mass which causes magnetic polarity control of the ion flow over the terminators. Reconnection is found in the tail close to the planet, and the structure of the outer tail found by PVO is confirmed to exist in the inner tail by VEX. When combined, the VEX and PVO Data provide a very comprehensive picture of the physics of the solar wind interaction with the ionosphere of Venus.

  2. Correlations between solar wind parameters and auroral kilometric radiation intensity

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Dangelo, N.

    1981-01-01

    The relationship between solar wind properties and the influx of energy into the nightside auroral region as indicated by the intensity of auroral kilometric radiation is investigated. Smoothed Hawkeye satellite observations of auroral radiation at 178, 100 and 56.2 kHz for days 160 through 365 of 1974 are compared with solar wind data from the composite Solar Wind Plasma Data Set, most of which was supplied by the IMP-8 spacecraft. Correlations are made between smoothed daily averages of solar wind ion density, bulk flow speed, total IMF strength, electric field, solar wind speed in the southward direction, solar wind speed multiplied by total IMF strength, the substorm parameter epsilon and the Kp index. The greatest correlation is found between solar wind bulk flow speed and auroral radiation intensity, with a linear correlation coefficient of 0.78 for the 203 daily averages examined. A possible mechanism for the relationship may be related to the propagation into the nightside magnetosphere of low-frequency long-wavelength electrostatic waves produced in the magnetosheath by the solar wind.

  3. On WKB expansions for Alfven waves in the solar wind

    NASA Technical Reports Server (NTRS)

    Hollweg, Joseph V.

    1990-01-01

    The WKB expansion for 'toroidal' Alfven waves in solar wind, which is described by equations of Heinemann and Olbert (1980), is examined. In this case, the multiple scales method (Nayfeh, 1981) is used to obtain a uniform expansion. It is shown that the WKB expansion used by Belcher (1971) and Hollweg (1973) for Alfven waves in the solar wind is nonuniformly convergent.

  4. On WKB expansions for Alfven waves in the solar wind

    NASA Astrophysics Data System (ADS)

    Hollweg, Joseph V.

    1990-09-01

    The WKB expansion for 'toroidal' Alfven waves in solar wind, which is described by equations of Heinemann and Olbert (1980), is examined. In this case, the multiple scales method (Nayfeh, 1981) is used to obtain a uniform expansion. It is shown that the WKB expansion used by Belcher (1971) and Hollweg (1973) for Alfven waves in the solar wind is nonuniformly convergent.

  5. Solar and Wind Technologies for Hydrogen Production Report to Congress

    SciTech Connect

    None, None

    2005-12-01

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills the requirement under section 812 of the Energy Policy Act of 2005.

  6. Western Wind and Solar Integration Study Phase 3: Technical Overview

    SciTech Connect

    2015-11-01

    Technical fact sheet outlining the key findings of Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3). NREL and GE find that with good system planning, sound engineering practices, and commercially available technologies, the Western grid can maintain reliability and stability during the crucial first minute after grid disturbances with high penetrations of wind and solar power.

  7. Ablation of Venusian oxygen ions by unshocked solar wind

    NASA Astrophysics Data System (ADS)

    Wei, Yong; Fraenz, Markus; Dubinin, Eduard; Wan, Weixing; Jarvinen, Riku; Zhang, Tielong; Barabash, Stas; Lundin, Rickard

    2014-05-01

    Venus, without Earth-like magnetic dipole, has been seriously losing volatiles into the interplanetary space due to the force of solar wind and radiation. Solar wind is shocked near Venus, and then scavenges ionospheric particles in various ways. The oxygen ion (O+) loss rates estimated from spacecrafts' observations over decades are thought important for understanding the evolution of planetary habitability, considering the accumulation of escape over the history of solar system. However, all the previous observations were made in the shocked solar wind and/or inside the wake, though some simulations showed that unshocked solar wind can also ablate O+ ions. Here we report Venus Express observations of O+ ions in the unshocked solar wind during a solar minimum. These O+ ions are accelerated by the unshocked solar wind through pickup processes. The estimated O+ loss rates are comparable to those measured in the shocked solar wind and the wake. Our results suggest that the atmospheric loss at unmagnetized planets is significantly underestimated by previous observations, and thus the importance of Earth-like dipole for planetary habitability should be appreciated further.

  8. Jupiter's Main Auroral Emission for Different Solar Wind Conditions

    NASA Astrophysics Data System (ADS)

    Chané, E.; Saur, J.; Poedts, S.

    2014-12-01

    We study the temporal change of Jupiter's magnetosphere and aurora due to changing solar wind conditions. In particular, we examine how the the main auroral emission is affected by the solar wind density. Using three dimensional global MHD simulations, we perform three different runs, with: 1) quiet solar wind conditions (ram pressure of 0.05 nPa), 2) disturbed solar wind conditions (ram pressure of 0.17 nPa), and 3) very disturbed solar wind conditions (ram pressure of 0.34 nPa). We show that the response of the main auroral emission depends on local time: at noon, the main oval is only weakly affected by the variations in the solar wind; whereas on the night side, the main emission becomes brighter when the solar wind ram pressure increases. For instance, 10 hours after the high density solar wind reached the magnetosphere, the peak in parallel electrical current on the night side is 20% and 40% stronger for the disturbed and very disturbed solar wind conditions, respectively. The main auroral emission begins to change three hours after the solar wind density enhancement strikes the bow-shock and it takes approximately three days for the magnetosphere to adjust to the new solar wind conditions. The total electrical current flowing out of the ionosphere is then 30% (50%) higher for the (very) disturbed solar wind conditions than for the quiet solar wind conditions. In addition, for the three simulations, a localized enhancement of the main oval emission is periodically observed around noon local time (inside the main oval discontinuity). A very similar enhancement has already been observed with the Hubble Space Telescope in Far-UV images by Palmaerts et al. (JGR, under review). In our simulations, the localized peak is not caused by fluctuations in the solar wind, but is always associated with a region of negative radial velocity in the equatorial plane at the position where the corotation breaks down. The shearing motions associated with this negative radial velocity region produce strong gradients for Bz in the azimuthal direction, which causes an enhancement of the electrical current.

  9. Heliospheric Solar-Wind Charge Exchange

    NASA Astrophysics Data System (ADS)

    Wargelin, Bradford J.

    2011-05-01

    X-ray emission from solar wind charge exchange (SWCX) arises in the Earth's exosphere and throughout the solar system in the heliosphere. The intensity of SXCW emission observed by X-ray telescopes from within these emission regions varies a great deal, both as a function of viewing geometry and solar activity. SWCX accounts for much or most of the soft X-ray background (SXRB) but distinguishing it from Galactic emission is a tricky problem. One approach is to measure the SXRB at a given point on the sky at different times and with different lines of sight through the heliosphere. The Chandra Deep Field-South, comprising 52 observations and 4 Msec of data collected between 2000 and 2010, is uniquely suited for such studies. This talk will also discuss the potential of high-spectral-resolution observations and prospects for measuring mass-loss rates around other stars from their charge exchange emission. Support for this work was provided by NASA through Chandra Award Number SP1-12001X issued by the Chandra X-ray Observatory Center (CXC), which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060.

  10. Plasma Properties of Pseudostreamers and Associated Solar Wind Streams

    NASA Astrophysics Data System (ADS)

    Miralles, M. P.; Cranmer, S. R.; Stenborg, G.

    2014-12-01

    We study pseudostreamers (i.e., open-field extensions of plasma from unipolar footpoints in the corona; distinct from classical helmet streamers that have opposite-polarity footpoints) that are believed to be sources of slow to intermediate speed wind streams. We make use of multi-spacecraft and ground-based observations that extend from the solar corona to the solar wind at 1 AU. We compare the physical properties of selected pseudostreamers and helmet streamers to characterize how the differences in magnetic topology affect the plasma properties of the coronal structures and their wind. Due to the large number of pseudostreamers and their long persistence over multiple solar rotations, their contribution to the solar wind is likely to be substantial. In order to investigate solar wind heating and acceleration, we also compare our measurements with predictions from pseudostreamer and streamer theoretical models. This work is supported by NASA grant NNX10AQ58G to the Smithsonian Astrophysical Observatory.

  11. The Western Wind and Solar Integration Study Phase 2

    SciTech Connect

    Lew, D.; Brinkman, G.; Ibanez, E.; Hodge, B. M.; Hummon, M.; Florita, A.; Heaney, M.

    2013-09-01

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West.

  12. The Western Wind and Solar Integration Study Phase 2

    SciTech Connect

    Lew, Debra; Brinkman, Greg; Ibanez, E.; Florita, A.; Heaney, M.; Hodge, B. -M.; Hummon, M.; Stark, G.; King, J.; Lefton, S. A.; Kumar, N.; Agan, D.; Jordan, G.; Venkataraman, S.

    2013-09-01

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West(GE Energy 2010).

  13. Magnetohydrodynamic modeling of the solar wind in the outer heliosphere

    NASA Astrophysics Data System (ADS)

    Usmanov, A. V.; Goldstein, M. L.; Matthaeus, W. H.

    2012-05-01

    We present initial results from a solar wind model that accounts for transport of turbulence and treats pickup protons as a separate fluid. The model is based on a numerical solution of the coupled set of mean-field Reynolds-averaged solar wind equations and small-scale turbulence transport equations in the region from 0.3-100 AU. The pickup protons are assumed to be comoving with the solar wind flow and described by separate mass and energy equations. The equations include the terms for energy transfer from pickup protons to solar wind protons and for the plasma heating by turbulent dissipation. The momentum equation contains a term that describes the loss of momentumby the solar wind flow due to the charge exchangewith the interstellar neutral hydrogen.

  14. Solar-wind tritium limit and nuclear processes in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Fireman, E. L.; Damico, J.; Defelice, J.

    1975-01-01

    Tritium in Surveyor 3 material is measured, and the resulting H-3/H-1 ratio for the solar wind is applied in a solar flare-solar wind relation to investigate the mixing requirements for the solar atmosphere. The flare-wind relation is derived. None of the tritium can be attributed to solar-wind implantation. The upper limit for the H-3/He ratio in the solar wind is 4 times 10 to the minus tenth power and corresponds to a H-3/H-1 limit of 2 times 10 to the minus eleventh power. This limit imposes a requirement on the mixing rate in the solar atmosphere if the H-3 production rate in solar-surface nuclear reactions is greater than 160/sq cm per sec.

  15. Polar solar wind and interstellar wind properties from interplanetary Lyman-alpha radiation measurements

    NASA Technical Reports Server (NTRS)

    Witt, N.; Blum, P. W.; Ajello, J. M.

    1981-01-01

    The analysis of Mariner 10 observations of Lyman-alpha resonance radiation shows an increase of interplanetary neutral hydrogen densities above the solar poles. This increase is caused by a latitudinal variation of the solar wind velocity and/or flux. Using both the Mariner 10 results and other solar wind observations, the values of the solar wind flux and velocity with latitude are determined for several cases of interest. The latitudinal variation of interplanetary hydrogen gas, arising from the solar wind latitudinal variation, is shown to be most pronounced in the inner solar system. From this result it is shown that spacecraft Lyman-alpha observations are more sensitive to the latitudinal anisotropy for a spacecraft location in the inner solar system near the downwind axis.

  16. Implications of L1 observations for slow solar wind formation by solar reconnection

    NASA Astrophysics Data System (ADS)

    Kepko, L.; Viall, N. M.; Antiochos, S. K.; Lepri, S. T.; Kasper, J. C.; Weberg, M.

    2016-05-01

    While the source of the fast solar wind is known to be coronal holes, the source of the slow solar wind has remained a mystery. Long time scale trends in the composition and charge states show strong correlations between solar wind velocity and plasma parameters, yet these correlations have proved ineffective in determining the slow wind source. We take advantage of new high time resolution (12 min) measurements of solar wind composition and charge state abundances at L1 and previously identified 90 min quasiperiodic structures to probe the fundamental timescales of slow wind variability. The combination of new high temporal resolution composition measurements and the clearly identified boundaries of the periodic structures allows us to utilize these distinct solar wind parcels as tracers of slow wind origin and acceleration. We find that each 90 min (2000 Mm) parcel of slow wind has near-constant speed yet exhibits repeatable, systematic charge state and composition variations that span the entire range of statistically determined slow solar wind values. The classic composition-velocity correlations do not hold on short, approximately hourlong, time scales. Furthermore, the data demonstrate that these structures were created by magnetic reconnection. Our results impose severe new constraints on slow solar wind origin and provide new, compelling evidence that the slow wind results from the sporadic release of closed field plasma via magnetic reconnection at the boundary between open and closed flux in the Sun's atmosphere.

  17. Solar Coronal Plumes and the Fast Solar Wind

    NASA Astrophysics Data System (ADS)

    Dwivedi, Bhola N.; Wilhelm, Klaus

    2015-03-01

    The spectral profiles of the coronal Ne viii line at 77 nm have different shapes in quiet-Sun regions and Coronal Holes (CHs). A single Gaussian fit of the line profile provides an adequate approximation in quiet-Sun areas, whereas, a strong shoulder on the long-wavelength side is a systematic feature in CHs. Although this has been noticed since 1999, no physical reason for the peculiar shape could be given. In an attempt to identify the cause of this peculiarity, we address three problems that could not be conclusively resolved, in a review article by a study team of the International Space Science Institute (ISSI) (Wilhelm et al. 2011): (1) The physical processes operating at the base and inside of plumes, as well as their interaction with the Solar Wind (SW). (2) The possible contribution of plume plasma to the fast SW streams. (3) The signature of the First-Ionization Potential (FIP) effect between plumes and inter-plume regions (IPRs). Before the spectroscopic peculiarities in IPRs and plumes in Polar Coronal Holes (PCHs) can be further investigated with the instrument Solar Ultraviolet Measurements of Emitted Radiation (SUMER) aboard the Solar and Heliospheric Observatory (SOHO), it is mandatory to summarize the results of the review to place the spectroscopic observations into context. Finally, a plume model is proposed that satisfactorily explains the plasma flows up and down the plume field lines and leads to the shape of the neon line in PCHs.

  18. Solar energetic particle events in different types of solar wind

    SciTech Connect

    Kahler, S. W.; Vourlidas, A.

    2014-08-10

    We examine statistically some properties of 96 20 MeV gradual solar energetic proton (SEP) events as a function of three different types of solar wind (SW) as classified by Richardson and Cane. Gradual SEP (E > 10 MeV) events are produced in shocks driven by fast (V ≳ 900 km s{sup –1}) and wide (W > 60°) coronal mass ejections (CMEs). We find no differences among the transient, fast, and slow SW streams for SEP 20 MeV proton event timescales. It has recently been found that the peak intensities Ip of these SEP events scale with the ∼2 MeV proton background intensities, which may be a proxy for the near-Sun shock seed particles. Both the intensities Ip and their 2 MeV backgrounds are significantly enhanced in transient SW compared to those of fast and slow SW streams, and the values of Ip normalized to the 2 MeV backgrounds only weakly correlate with CME V for all SW types. This result implies that forecasts of SEP events could be improved by monitoring both the Sun and the local SW stream properties and that the well known power-law size distributions of Ip may differ between transient and long-lived SW streams. We interpret an observed correlation between CME V and the 2 MeV background for SEP events in transient SW as a manifestation of enhanced solar activity.

  19. Intermittent turbulence in the solar wind

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.

    1991-01-01

    This paper demonstrates the existence of intermittent turbulence in the solar wind at 8.5 AU. The pth-order velocity structure functions show scaling behavior in the range of periods from 0.85 hour to 13.6 hours for p of less than 20. The exponent of the scaling law s(p) is a quadratic function of p. These observations of s(p) for compressible MHD turbulence on a scale of the order of about 1 AU are consistent with laboratory measurements of s(p) for gasdynamic turbulence on a scale of the order of 1 m, indicating the universal character of intermittent turbulence. The observations are not described by the 'constant beta' model of intermittent turbulence. They are marginally consistent with the lognormal model. The observations are consistent with a random beta model prediction which assumes that the turbulence is a mixture of sheets and space-filling eddies.

  20. ASYMMETRIC ELECTRON DISTRIBUTIONS IN THE SOLAR WIND

    SciTech Connect

    Rha, Kicheol; Ryu, Chang-Mo; Yoon, Peter H.

    2013-09-20

    A plausible mechanism responsible for producing asymmetric electron velocity distribution functions in the solar wind is investigated by means of one-dimensional electrostatic particle-in-cell (PIC) simulation. A recent paper suggests that the variation in the ion-to-electron temperature ratio influences the nonlinear wave-particle dynamics such that it results in the formation of asymmetric distributions. The present PIC code simulation largely confirms this finding, but quantitative differences between the weak turbulence formalism and the present PIC simulation are also found, suggesting the limitation of the analytical method. The inter-relationship between the asymmetric electron distribution and the ion-to-electron temperature ratio may be a new useful concept for the observation.

  1. Nonaxisymmetric anisotropy of solar wind turbulence.

    PubMed

    Turner, A J; Gogoberidze, G; Chapman, S C; Hnat, B; Müller, W-C

    2011-08-26

    A key prediction of turbulence theories is frame-invariance, and in magnetohydrodynamic (MHD) turbulence, axisymmetry of fluctuations with respect to the background magnetic field. Paradoxically the power in fluctuations in the turbulent solar wind are observed to be ordered with respect to the bulk macroscopic flow as well as the background magnetic field. Here, nonaxisymmetry across the inertial and dissipation ranges is quantified using in situ observations from Cluster. The observed inertial range nonaxisymmetry is reproduced by a "fly through" sampling of a direct numerical simulation of MHD turbulence. Furthermore, fly through sampling of a linear superposition of transverse waves with axisymmetric fluctuations generates the trend in nonaxisymmetry with power spectral exponent. The observed nonaxisymmetric anisotropy may thus simply arise as a sampling effect related to Taylor's hypothesis and is not related to the plasma dynamics itself. PMID:21929247

  2. Bidirectional solar wind electron heat flux events

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Baker, D. N.; Bame, S. J.; Feldman, W. C.; Zwickl, R. D.; Smith, E. J.

    1987-01-01

    ISEE 3 plasma and magnetic field data are used here to document the general characteristics of bidirectional electron heat flux events (BEHFEs). Significant field rotations often occur at the beginning and/or end of such events and, at times, the large-field rotations characteristic of 'magnetic clouds' are present. Approximately half of all BEHFEs are associated with and follow interplanetary shocks, while the other events have no obvious shock associations. When shock-associated, the delay from shock passage typically is about 13 hours, corresponding to a radial separation of about 0.16 AU. When independent of any shock association, BEHFEs typically are about 0.13 AU thick in the radial direction. It is suggested that BEHFEs are one of the more prominent signatures of coronal mass ejection events in the solar wind at 1 AU.

  3. Microstructures in the Polar Solar Wind: Ulysses

    NASA Technical Reports Server (NTRS)

    Tsuruyani, Bruce T.; Arballo, J. K.; Galvan, C.; Goldstein, B. E.; Lakhina, G. S.; Sakurai, R.; Smith, E. J.; Neugebauer, M.

    1999-01-01

    We find that small (10-200 rP) magnetic decreases comprise a dominant part of the polar solar wind microstructure at Ulysses distances (2.2 AU). These magnetic field dips are almost always bounded by tangential discontinuities, a feature which is not well understood at this time. Hundreds of these events have been examined in detail and a variety of types have been found. These will be described. It is speculated that these structures have been generated by perpendicular heating of ions closer to the Sun and have then been convected to distances of Ulysses. Such structures may be very important for the rapid cross- field diffusion of ions in the polar regions of the heliosphere.

  4. Suprathermal protons in the interplanetary solar wind

    NASA Technical Reports Server (NTRS)

    Goodrich, C. C.; Lazarus, A. J.

    1976-01-01

    Using the Mariner 5 solar wind plasma and magnetic field data, we present observations of field-aligned suprathermal proton velocity distributions having pronounced high-energy shoulders. These observations, similar to the interpenetrating stream observations of Feldman et al. (1974), are clear evidence that such proton distributions are interplanetary rather than bow shock associated phenomena. Large Alfven speed is found to be a requirement for the occurrence of suprathermal proton distribution; further, we find the proportion of particles in the shoulder to be limited by the magnitude of the Alfven speed. It is suggested that this last result could indicate that the proton thermal anisotropy is limited at times by wave-particle interactions

  5. Innovations in Wind and Solar PV Financing

    SciTech Connect

    Cory, K.; Coughlin, J.; Jenkin, T.; Pater, J.; Swezey, B.

    2008-02-01

    There is growing national interest in renewable energy development based on the economic, environmental, and security benefits that these resources provide. Historically, greater development of our domestic renewable energy resources has faced a number of hurdles, primarily related to cost, regulation, and financing. With the recent sustained increase in the costs and associated volatility of fossil fuels, the economics of renewable energy technologies have become increasingly attractive to investors, both large and small. As a result, new entrants are investing in renewable energy and new business models are emerging. This study surveys some of the current issues related to wind and solar photovoltaic (PV) energy project financing in the electric power industry, and identifies both barriers to and opportunities for increased investment.

  6. RELAXATION PROCESSES IN SOLAR WIND TURBULENCE

    SciTech Connect

    Servidio, S.; Carbone, V.; Gurgiolo, C.; Goldstein, M. L.

    2014-07-10

    Based on global conservation principles, magnetohydrodynamic (MHD) relaxation theory predicts the existence of several equilibria, such as the Taylor state or global dynamic alignment. These states are generally viewed as very long-time and large-scale equilibria, which emerge only after the termination of the turbulent cascade. As suggested by hydrodynamics and by recent MHD numerical simulations, relaxation processes can occur during the turbulent cascade that will manifest themselves as local patches of equilibrium-like configurations. Using multi-spacecraft analysis techniques in conjunction with Cluster data, we compute the current density and flow vorticity and for the first time demonstrate that these localized relaxation events are observed in the solar wind. Such events have important consequences for the statistics of plasma turbulence.

  7. Genesis Solar Wind Array Collector Cataloging Status

    NASA Technical Reports Server (NTRS)

    Burkett, P.J.; Rodriguez, M.C.; Calaway, M.C.; Allton, J.H.

    2009-01-01

    Genesis solar wind array collectors were fractured upon landing hard in Utah in 2004. The fragments were retrieved from the damaged canister, imaged, repackaged and shipped to the Johnson Space Center curatorial facility [1]. As of January 2009, the collection consists of 3460 samples. Of these, 442 are comprised into "multiple" sample groupings, either affixed to adhesive paper (177) or collected in jars (17), culture trays (87), or sets of polystyrene vials (161). A focused characterization task was initiated in May 2008 to document the largest samples in the collection. The task consisted of two goals: to document sapphire based fragments greater than 2 cm in one dimension, and to document silicon based fragments greater than 1 cm in one direction.

  8. Stationarity of extreme bursts in the solar wind.

    PubMed

    Moloney, N R; Davidsen, J

    2014-05-01

    Recent results have suggested that the statistics of bursts in the solar wind vary with solar cycle. Here, we show that this variation is basically absent if one considers extreme bursts. These are defined as threshold-exceeding events over the range of high thresholds for which their number decays as a power law. In particular, we find that the distribution of duration times and energies of extreme bursts in the solar wind ε parameter and similar observables are independent of the solar cycle and in this sense stationary, and show robust asymptotic power laws with exponents that are independent of the specific threshold. This is consistent with what has been observed for solar flares and, thus, provides evidence in favor of a link between solar flares and extreme bursts in the solar wind. PMID:25353849

  9. Solar wind compressible structures at ion scales

    NASA Astrophysics Data System (ADS)

    Perrone, D.; Alexandrova, O.; Rocoto, V.; Pantellini, F. G. E.; Zaslavsky, A.; Maksimovic, M.; Issautier, K.; Mangeney, A.

    2014-12-01

    In the solar wind turbulent cascade, the energy partition between fluid and kinetic degrees of freedom, in the vicinity of plasma characteristic scales, i.e. ion and electron Larmor radius and inertial lengths, is still under debate. In a neighborhood of the ion scales, it has been observed that the spectral shape changes and fluctuations become more compressible. Nowadays, a huge scientific effort is directed to the comprehension of the link between macroscopic and microscopic scales and to disclose the nature of compressive fluctuations, meaning that if space plasma turbulence is a mixture of quasi-linear waves (as whistler or kinetic Alfvèn waves) or if turbulence is strong with formation of coherent structures responsible for dissipation. Here we present an automatic method to identify compressible coherent structures around the ion spectral break, using Morlet wavelet decomposition of magnetic signal from Cluster spacecraft and reconstruction of magnetic fluctuations in a selected scale range. Different kind of coherent structures have been detected: from soliton-like one-dimensional structures to current sheet- or wave-like two-dimensional structures. Using a multi-satellite analysis, in order to characterize 3D geometry and propagation in plasma rest frame, we recover that these structures propagate quasi-perpendicular to the mean magnetic field, with finite velocity. Moreover, without using the Taylor hypothesis, the spatial scales of coherent structures have been estimated. Our observations in the solar wind can provide constraints on theoretical modeling of small scale turbulence and dissipation in collisionless magnetized plasmas.

  10. COMPOSITION OF THE SOLAR CORONA, SOLAR WIND, AND SOLAR ENERGETIC PARTICLES

    SciTech Connect

    Schmelz, J. T.; Reames, D. V.; Von Steiger, R.; Basu, S.

    2012-08-10

    Along with temperature and density, the elemental abundance is a basic parameter required by astronomers to understand and model any physical system. The abundances of the solar corona are known to differ from those of the solar photosphere via a mechanism related to the first ionization potential of the element, but the normalization of these values with respect to hydrogen is challenging. Here, we show that the values used by solar physicists for over a decade and currently referred to as the 'coronal abundances' do not agree with the data themselves. As a result, recent analysis and interpretation of solar data involving coronal abundances may need to be revised. We use observations from coronal spectroscopy, the solar wind, and solar energetic particles as well as the latest abundances of the solar photosphere to establish a new set of abundances that reflect our current understanding of the coronal plasma.

  11. RESIDUAL ENERGY SPECTRUM OF SOLAR WIND TURBULENCE

    SciTech Connect

    Chen, C. H. K.; Bale, S. D.; Salem, C. S.; Maruca, B. A.

    2013-06-20

    It has long been known that the energy in velocity and magnetic field fluctuations in the solar wind is not in equipartition. In this paper, we present an analysis of 5 yr of Wind data at 1 AU to investigate the reason for this. The residual energy (difference between energy in velocity and magnetic field fluctuations) was calculated using both the standard magnetohydrodynamic (MHD) normalization for the magnetic field and a kinetic version, which includes temperature anisotropies and drifts between particle species. It was found that with the kinetic normalization, the fluctuations are closer to equipartition, with a mean normalized residual energy of {sigma}{sub r} = -0.19 and mean Alfven ratio of r{sub A} = 0.71. The spectrum of residual energy, in the kinetic normalization, was found to be steeper than both the velocity and magnetic field spectra, consistent with some recent MHD turbulence predictions and numerical simulations, having a spectral index close to -1.9. The local properties of residual energy and cross helicity were also investigated, showing that globally balanced intervals with small residual energy contain local patches of larger imbalance and larger residual energy at all scales, as expected for nonlinear turbulent interactions.

  12. CONDITIONED ANALYSIS OF HIGH-LATITUDE SOLAR WIND INTERMITTENCY

    SciTech Connect

    D'Amicis, R.; Consolini, G.; Bavassano, B.; Bruno, R.

    2012-08-10

    The solar wind is a turbulent medium displaying intermittency. Its intermittent features have been widely documented and studied, showing how the intermittent character is different in fast and slow wind. In this paper, a statistical conditioned analysis of the solar wind intermittency for a period of high-latitude fast solar wind is presented. In particular, the intermittent features are investigated as a function of the Alfvenic degree of fluctuations at a given scale. The results show that the main contribution to solar wind intermittency is due to non-Alfvenic structures, while Alfvenic increments are found to be characterized by a smaller level of intermittency than the previous ones. Furthermore, the lifetime statistics of Alfvenic periods are discussed in terms of a multiscale texture of randomly oriented flux tubes.

  13. Analysis of Wind Forces on Roof-Top Solar Panel

    NASA Astrophysics Data System (ADS)

    Panta, Yogendra; Kudav, Ganesh

    2011-03-01

    Structural loads on solar panels include forces due to high wind, gravity, thermal expansion, and earthquakes. International Building Code (IBC) and the American Society of Civil Engineers are two commonly used approaches in solar industries to address wind loads. Minimum Design Loads for Buildings and Other Structures (ASCE 7-02) can be used to calculate wind uplift loads on roof-mounted solar panels. The present study is primarily focused on 2D and 3D modeling with steady, and turbulent flow over an inclined solar panel on the flat based roof to predict the wind forces for designing wind management system. For the numerical simulation, 3-D incompressible flow with the standard k- ɛ was adopted and commercial CFD software ANSYS FLUENT was used. Results were then validated with wind tunnel experiments with a good agreement. Solar panels with various aspect ratios for various high wind speeds and angle of attacks were modeled and simulated in order to predict the wind loads in various scenarios. The present study concluded to reduce the strong wind uplift by designing a guide plate or a deflector before the panel. Acknowledgments to Northern States Metal Inc., OH (GK & YP) and School of Graduate Studies of YSU for RP & URC 2009-2010 (YP).

  14. Wind and radiant solar energy for drying fruits and vegetables

    SciTech Connect

    Wagner, C.J. Jr.; Coleman, R.L.; Berry, R.E.

    1981-01-01

    The combination of wind with radiant solar energy for drying fruits and vegetables can help promote conservation of food and nonrenewable energy resources. Low-cost, small-scale solar dryers have been developed with the potential for developing larger dryers. These dryers depend on natural air convection to remove moisture. Designing the dryers to incorporate natural wind currents, providing forced air circulation, could increase drying rates. Preliminary studies to provide information for such designs included: (1) comparing drying tests with and without forced air circulation, (2) monitoring wind speeds on-site, and (3) testing wind collecting devices. Average wind speeds during solar periods were higher than air velocities from unassisted air convection in these small food dryers. Drying rates were increased by 6 to 11% when the natural convection dryer was provided with a small electric fan. Either of two wind collecting devices also could increase drying rates.

  15. Statistical Analysis of Solar Wind Turbulence at Solar Maximum and Solar Minimum

    NASA Astrophysics Data System (ADS)

    Olson, D. K.; Coplan, M.; Ogilvie, K.; Holland, M.; Kulkarni, V.; Banerjee, A.

    2008-12-01

    We have applied statistical methods to a study of turbulence in the solar wind using data from the SWE experiment on NASA's WIND mission during solar minimum (1996 and 2006) and solar maximum (2001). We examined the probability distribution functions (PDFs) for solar wind velocity differences at lag times from 1 to 105 minutes. The statistical features of these PDFs reveal information regarding the cascade of momentum from large to small scale structures as well as intermittency within the solar wind. We have analyzed the velocity differences using three component velocity data, allowing us to determine turbulent anisotropies and examine the PDFs for velocity differences parallel and perpendicular to the local magnetic field. At small time differences, the PDFs of bulk velocity differences have the form of a double exponential function. For increasing time differences, there is a shift in the mean of the PDF to negative velocity difference with a noticeable asymmetry as seen previously by Burlaga et al. (J. Geophys. Res., 107, 1403, 2002). However, the shift and asymmetry are absent when examining velocities parallel to the magnetic field suggesting anisotropy in the turbulence is found in the component perpendicular to the magnetic field. The second statistical moment (variance) of the PDFs are found to have different behavior in time scales less and greater than about 103 minutes. These two regimes each follow a separate power law scaling with the time difference. The regimes appear to be related to the Kolmogorov 2/3 and 4/5 laws that define the power law scaling for inertial and Gaussian regimes. The third and fourth statistical moments (skew and kurtosis) also follow power laws. Comparison between solar minimum and solar maximum shows general similarity in the results. However, at solar maximum only a single regime exists for the kurtosis, while at solar minimum two regimes are present, similar to the regimes found for the variance.

  16. Simulation of lunar carbon chemistry. I - Solar wind contribution

    NASA Technical Reports Server (NTRS)

    Bibring, J. P.; Chaumont, J.; Langevin, Y.; Maurette, M.; Burlingame, A. L.; Wszolek, P. C.

    1974-01-01

    Simulation experiments were conducted to identify the role of solar and lunar winds in the evolution of lunar carbon chemistry. Major conclusions are that (1) implantation of solar wind C, D, and N ions in silicates synthesizes small molecules that can be released into vacuum either by ion sputtering or by heating; (2) this synthesis is highly specific when compared to other processes accounting for the formation of molecules in the solar nebula or in interstellar space; (3) the carbon injected by the solar wind in the crystalline component of mature soils should reach a saturation concentration of about 200 ppm; and (4) the carbon chemistry of the crystalline component of mature soils is dominated by solar wind implantation effects.

  17. Using comet plasma tails to study the solar wind

    NASA Astrophysics Data System (ADS)

    Jackson, B. V.; Buffington, A.; Clover, J. M.; Hick, P. P.; Yu, H.-S.; Bisi, M. M.

    2013-06-01

    The plasma tails of comets have been used as probes of the solar wind for many years, and well before direct solar wind measurements. Now, analyses utilizing the much greater regularity and extent of comet tails imaged from space detail outward solar wind flow much better than was previously possible. These analyses mark the location of the solar wind flow in three-dimensions over time much as do in-situ measurements. Data from comet plasma tails using coronagraphs and heliospheric white-light imagers provide a view closer to the Sun than where spacecraft have ventured to date. These views show that this flow is chaotic and highly variable, and not the benign regular outward motion of a quiescent plasma. While this is no surprise to those who study and characterize the solar wind in situ or use remotely-sensed interplanetary scintillation (IPS) techniques, these spacecraft images provide a visualization of this as never-before possible. Here we summarize the results of an analysis that determines solar wind velocity from multiple comet tails that were observed by the Solar Mass Ejection Imager (SMEI) and also by the inner Heliospheric Imager (HI) on board the Solar Terrestrial Relations Observatory Ahead (STEREOA) spacecraft. Finally, we present results using a similar analysis that measures this same behavior using coronagraph observations in the low corona.

  18. Little or no solar wind enters Venus' atmosphere at solar minimum.

    PubMed

    Zhang, T L; Delva, M; Baumjohann, W; Auster, H-U; Carr, C; Russell, C T; Barabash, S; Balikhin, M; Kudela, K; Berghofer, G; Biernat, H K; Lammer, H; Lichtenegger, H; Magnes, W; Nakamura, R; Schwingenschuh, K; Volwerk, M; Vörös, Z; Zambelli, W; Fornacon, K-H; Glassmeier, K-H; Richter, I; Balogh, A; Schwarzl, H; Pope, S A; Shi, J K; Wang, C; Motschmann, U; Lebreton, J-P

    2007-11-29

    Venus has no significant internal magnetic field, which allows the solar wind to interact directly with its atmosphere. A field is induced in this interaction, which partially shields the atmosphere, but we have no knowledge of how effective that shield is at solar minimum. (Our current knowledge of the solar wind interaction with Venus is derived from measurements at solar maximum.) The bow shock is close to the planet, meaning that it is possible that some solar wind could be absorbed by the atmosphere and contribute to the evolution of the atmosphere. Here we report magnetic field measurements from the Venus Express spacecraft in the plasma environment surrounding Venus. The bow shock under low solar activity conditions seems to be in the position that would be expected from a complete deflection by a magnetized ionosphere. Therefore little solar wind enters the Venus ionosphere even at solar minimum. PMID:18046399

  19. Iron charge states in the solar wind as measured by SMS on Wind

    NASA Technical Reports Server (NTRS)

    Galvin, A. B.; Cohen, C. M. S.; Ipavich, F. M.; Gloeckler, G.; Hamilton, D. C.; Chotoo, K.; Balsiger, H.; Sheldon, R.

    1995-01-01

    The Wind spacecraft was launched in November 1994. In the first half of 1995 it was in the interplanetary medium upstream of the Earth. The Solar Wind and Suprathermal Ion Composition Experiment (SMS) on Wind consists of three sensors, the Solar Wind Ion Composition Spectrometer (SWICS), the Suprathermal Ion Composition Spectrometer (STICS), and the high mass resolution spectrometer (MASS). All three instruments utilize electrostatic deflection combined with time-of-flight measurement. The data from these three sensors allows the determination of the ionic composition of the solar wind in a variety of solar wind conditions over a large energy/charge range (0.5 to 230 keV/e). We have examined the Wind database for time periods conducive to observing solar wind iron. With the high mass resolution of the MASS spectrometer (M/Delta-M greater than 100) iron is easily identified while the electrostatic deflection provides information concerning the mass/charge distribution. We present here the relative abundance of iron charge states in the solar wind near 1 AU.

  20. Measurements of lunar magnetic field interaction with the solar wind.

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Snyder, C. W.; Clay, D. R.

    1972-01-01

    Study of the compression of the remanent lunar magnetic field by the solar wind, based on measurements of remanent magnetic fields at four Apollo landing sites and of the solar wind at two of these sites. Available data show that the remanent magnetic field at the lunar surface is compressed as much as 40% above its initial value by the solar wind, but the total remanent magnetic pressure is less than the stagnation pressure by a factor of six, implying that a local shock is not formed.

  1. Solar wind control of Jupiter's hectometric radio emission

    NASA Technical Reports Server (NTRS)

    Barrow, C. H.; Desch, M. D.

    1989-01-01

    Radio, plasma, and magnetic field data obtained by Voyager 1 and Voyager 2 were used to examine the manner in which the Jovian hectometric radio emission (HOM) is controlled by the solar wind. Using the method of superposed epochs, it was found that the higher energy HOM is correlated with the IMF as well as with the solar wind density and pressure. However, unlike the Io-independent decametric radio emission (Non-Io DAM), the HOM displayed no correlation with the solar wind velocity, although this radio component appear to be also influenced by the IMF. The results suggest separate HOM amd Non-Io DAM sources.

  2. The solar wind interaction with unmagnetized planets - A tutorial

    NASA Technical Reports Server (NTRS)

    Luhmann, J. G.

    1990-01-01

    The interaction of the solar wind with the Venus ionosphere induces currents which can substantially exclude the solar wind and IMF from the dayside ionosphere beneath the 'ionopause', where ionosphere thermal pressure equals incident solar wind dynamic pressure. The field then diffuses through the ionopause with increasing speed at decreasing altitudes, and is weakest in the subpolar region. Once within the ionopause, the magnetic field is redistributed by ionospheric convection, and then decays at low altitudes via collisional dissipation of the associated currents. The maximum ionospheric field magnitudes observed, of about 150 nT, furnish magnetic pressures exceeding the ionospheric thermal pressure by a factor of about 3.

  3. Mars: A Richly Complicated Obstacle to the Solar Wind

    NASA Astrophysics Data System (ADS)

    Crider, Dana H.; Brain, David A.; Lundin, Rickard

    2008-06-01

    Chapman Conference on the Solar Wind Interaction With Mars; San Diego, California, 22-25 January 2008; Although studies of the solar wind interaction with Mars (SWIM) date back to the mid-1960s, whether Mars possessed a global magnetic field remained uncertain until 1997. We now know that Mars lacks a measurable dynamo; however, it has intense, localized regions of magnetization tied to its crust. With this patchy magnetic field, the solar wind interacts directly with the upper atmosphere of Mars, driving structural and compositional variations and providing energy for atmospheric escape to space. These processes may have played an important role in the long-term evolution of the Martian climate.

  4. MEASUREMENTS OF RAPID DENSITY FLUCTUATIONS IN THE SOLAR WIND

    SciTech Connect

    Malaspina, D. M.; Ergun, R. E.; Kellogg, P. J.; Bale, S. D.

    2010-03-01

    The power spectrum of density fluctuations in the solar wind is inferred by tracking small timescale changes in the electron plasma frequency during periods of strong Langmuir wave activity. STEREO electric field waveform data are used to produce time profiles of plasma density from which the density power spectrum is derived. The power spectra obtained by this method extend the observed frequency range by an order of magnitude while remaining consistent with previous results near a few Hertz. Density power spectral indices are found to be organized by the angle between the local magnetic field and the solar wind direction, indicating significant anisotropy in solar wind high-frequency density turbulence.

  5. On calculating the solar wind parameters from the solar magnetic field data

    NASA Astrophysics Data System (ADS)

    Obridko, V. N.; Kharshiladze, A. F.; Shelting, B. D.

    It is shown that the expansion factor of the solar magnetic field is insufficient to calculate the solar wind velocity. Moreover, the magnetic field structure cannot unambiguously determine the solar wind velocity field in therms of the source surface concept and the potential magnetic field approximation in the corona. It is shown that characteristics relating the solar and near-Earth interplanetary magnetic field undergo cyclic variations.

  6. Alfvén wave interactions in the solar wind

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; McKenzie, J. F.; Hu, Q.; le Roux, J. A.; Zank, G. P.

    2012-11-01

    Alfvén wave mixing (interaction) equations used in locally incompressible turbulence transport equations in the solar wind are analyzed from the perspective of linear wave theory. The connection between the wave mixing equations and non-WKB Alfven wave driven wind theories are delineated. We discuss the physical wave energy equation and the canonical wave energy equation for non-WKB Alfven waves and the WKB limit. Variational principles and conservation laws for the linear wave mixing equations for the Heinemann and Olbert non-WKB wind model are obtained. The connection with wave mixing equations used in locally incompressible turbulence transport in the solar wind are discussed.

  7. Wind loading on solar concentrators: some general considerations

    SciTech Connect

    Roschke, E. J.

    1984-05-01

    A survey has been completed to examine the problems and complications arising from wind loading on solar concentrators. Wind loading is site specific and has an important bearing on the design, cost, performance, operation and maintenance, safety, survival, and replacement of solar collecting systems. Emphasis herein is on paraboloidal, two-axis tracking systems. Thermal receiver problems also are discussed. Wind characteristics are discussed from a general point of view; current methods for determining design wind speed are reviewed. Aerodynamic coefficients are defined and illustrative examples are presented. Wind tunnel testing is discussed, and environmental wind tunnels are reviewed; recent results on heliostat arrays are reviewed as well. Aeroelasticity in relation to structural design is discussed briefly. Wind loads, i.e., forces and moments, are proportional to the square of the mean wind velocity. Forces are proportional to the square of concentrator diameter, and moments are proportional to the cube of diameter. Thus, wind loads have an important bearing on size selection from both cost and performance standpoints. It is concluded that sufficient information exists so that reasonably accurate predictions of wind loading are possible for a given paraboloidal concentrator configuration, provided that reliable and relevant wind conditions are specified. Such predictions will be useful to the design engineer and to the systems engineer as well. Information is lacking, however, on wind effects in field arrays of paraboloidal concentrators. Wind tunnel tests have been performed on model heliostat arrays, but there are important aerodynamic differences between heliostats and paraboloidal dishes.

  8. Solar wind proton flux extremes and their association with pseudostreamers

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Gibson, Sarah E.; Fisk, Lennard A.

    2013-06-01

    Proton flux, as defined by the product of proton number density and proton speed, while exhibiting remarkable constancy across heliographic latitudes from pole to equator as measured by the Ulysses spacecraft, nevertheless showed obvious departure from this constancy for some mid-latitude wind and extended to high heliomagnetic latitudes during the recent two solar minima. We examine the solar wind exclusive of ICMEs from Ulysses and ACE observations, to analyze the solar wind in-situ data exhibiting extremes in proton flux. We first find these extreme-proton-flux winds generally originate in latitudes middle-distant from the heliospheric current sheet (HCS), and they have relatively slower speed than the bulk of the solar wind. Then we map the in-situ ACE observations in Carrington rotation (CR) 1997 back to the solar surface by using the Potential-Field-Source-Surface (PFSS) model, in order to consider the coronal properties at the extreme-proton-flux wind sources. We find there is a clear association between these extreme-proton-flux solar wind and the mid-latitude coronal holes and "pseudostreamer" structures.

  9. Sources of the solar wind - the heliospheric point of view

    NASA Astrophysics Data System (ADS)

    Von Steiger, Rudolf; Shearer, Paul; Zurbuchen, Thomas

    The solar wind as observed in the heliosphere has several properties that can be interpreted as signatures of conditions and processes at its source in the solar atmosphere. Traditionally it has been customary to distinguish between solar wind types solely based on its speed, "fast" and "slow" wind. Over the last couple of decades new instruments resolving not only the main constituents (protons and alpha particles) but also heavy ions from C to Fe have added new observables, in particular the charge state and elemental composition of these ions. The charge states are indicators of the coronal temperature at the source region; they have confirmed that the "fast" wind emanates from the relatively cool coronal hole regions, while the "slow" wind originates from hotter sources such as the streamer belt and active regions. Thus they are more reliable indicators of solar wind source than the speed alone could be because they readily discriminate between "fast" wind from coronal holes and fast coronal mass ejections (CMEs). The elemental composition in the solar wind compared to the abundances in the photosphere shows a typical fractionation that depends on the first ionization potential (FIP) of the elements. Since that fractionation occurs beneath the corona, in the chromosphere, its strength is indicative of the conditions in that layer. While the "fast" wind is very similar to photospheric composition, the fractionation of the "slow" wind and of CMEs is higher and strongly variable. We will review the observations of the SWICS composition instruments on both the ACE and the Ulysses missions, which have made composition observations between 1 and 5 AU and at all latitudes in the heliosphere over the last two decades. Specifically, analysis of the "slow" wind observations at all time scales, from hours to complete solar cycles, will be used to better characterize its source regions.

  10. Solar-wind control of plasma sheet dynamics

    NASA Astrophysics Data System (ADS)

    Myllys, M.; Kilpua, E.; Pulkkinen, T.

    2015-07-01

    The purpose of this study is to quantify how solar-wind conditions affect the energy and plasma transport in the geomagnetic tail and its large-scale configuration. To identify the role of various effects, the magnetospheric data were sorted according to different solar-wind plasma and interplanetary magnetic field (IMF) parameters: speed, dynamic pressure, IMF north-south component, epsilon parameter, Auroral Electrojet (AE) index and IMF ultra low-frequency (ULF) fluctuation power. We study variations in the average flow speed pattern and the occurrence rate of fast flow bursts in the magnetotail during different solar-wind conditions using magnetospheric data from five Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission spacecraft and solar-wind data from NASA's OMNIWeb. The time interval covers the years from 2008 to 2011 during the deep solar minimum between cycles 23 and 24 and the relatively quiet rising phase of cycle 24. Hence, we investigate magnetospheric processes and solar-wind-magnetospheric coupling during a relatively quiet state of the magnetosphere. We show that the occurrence rate of the fast (|Vtail| > 100 km s-1) sunward flows varies under different solar-wind conditions more than the occurrence of the fast tailward flows. The occurrence frequency of the fast tailward flows does not change much with the solar-wind conditions. We also note that the sign of the IMF BZ has the most visible effect on the occurrence rate and pattern of the fast sunward flows. High-speed flow bursts are more common during the slow than fast solar-wind conditions.

  11. Stationarity of magnetohydrodynamic fluctuations in the solar wind

    NASA Technical Reports Server (NTRS)

    Matthaeus, W. H.; Goldstein, M. L.

    1982-01-01

    Solar wind research and studies of charged particle propagation often assume that the interplanetary magnetic field represents a stationary random process. The extent to which ensemble averages of the solar wind magnetic fields follow the asymptotic behavior predicted by the ergodic theorem was investigated. Several time periods, including a span of nearly two years, are analyzed. Data intervals which span many solar rotations satisfy the conditions of weak stationarity if the effects of solar rotation are included in the asymptotic analysis. Shorter intervals which include a small integral number of interplanetary sectors also satisfy weak stationarity. The results are illustrated using magnetometer data from the ISEE-3, Voyager and IMP spacecraft.

  12. Dst Prediction Based on Solar Wind Parameters

    NASA Astrophysics Data System (ADS)

    Park, Yoon-Kyung; Ahn, Byung-Ho

    2009-12-01

    We reevaluate the Burton equation (Burton et al. 1975) of predicting Dst index using high quality hourly solar wind data supplied by the ACE satellite for the period from 1998 to 2006. Sixty magnetic storms with monotonously decreasing main phase are selected. In order to determine the injection term (Q) and the decay time (tau) of the equation, we examine the relationships between Dst^ast and VB_s, Delta Dst^ast and VB_s, and Delta Dst^ast and Dst^ast during the magnetic storms. For this analysis, we take into account one hour of the propagation time from the ACE satellite to the magnetopause, and a half hour of the response time of the magnetosphere/ring current to the solar wind forcing. The injection term is found to be Q({nT}/h)=-3.56VB_s for VB_s>0.5mV/m and Q({nT}/h)=0 for VB_s leq0.5mV/m. The tau (hour) is estimated as 0.060 Dst^ast + 16.65 for Dst^ast>-175nT and 6.15 hours for Dst^ast leq -175nT. Based on these empirical relationships, we predict the 60 magnetic storms and find that the correlation coefficient between the observed and predicted Dst^ast is 0.88. To evaluate the performance of our prediction scheme, the 60 magnetic storms are predicted again using the models by Burton et al. (1975) and O'Brien & McPherron (2000a). The correlation coefficients thus obtained are 0.85, the same value for both of the two models. In this respect, our model is slightly improved over the other two models as far as the correlation coefficients is concerned. Particularly our model does a better job than the other two models in predicting intense magnetic storms (Dst^ast lesssim -200nT).

  13. Erosion of carbon/carbon by solar wind charged particle radiation during a solar probe mission

    NASA Technical Reports Server (NTRS)

    Sokolowski, Witold; O'Donnell, Tim; Millard, Jerry

    1991-01-01

    The possible erosion of a carbon/carbon thermal shield by solar wind-charged particle radiation is reviewed. The present knowledge of erosion data for carbon and/or graphite is surveyed, and an explanation of erosion mechanisms under different charged particle environments is discussed. The highest erosion is expected at four solar radii. Erosion rates are analytically estimated under several conservative assumptions for a normal quiet and worst case solar wind storm conditions. Mass loss analyses and comparison studies surprisingly indicate that the predicted erosion rate by solar wind could be greater than by nominal free sublimation during solar wind storm conditions at four solar radii. The predicted overall mass loss of a carbon/carbon shield material during the critical four solar radii flyby can still meet the mass loss mission requirement of less than 0.0025 g/sec.

  14. He abundance variations in the solar wind: Observations from Ulysses

    SciTech Connect

    Barraclough, B.L.; Gosling, J.T.; Phillips, J.L.; McComas, D.J.; Feldman, W.C.; Goldstein, B.E.

    1995-09-01

    The Ulysses mission is providing the first opportunity to observe variations in solar wind plasma parameters at heliographic latitudes far removed from the ecliptic plane. We present an overview of the solar wind speed and the variability in helium abundance, [He] data on [He] in six high latitude coronal mass ejections (CMEs), and a superposed epoch analysis of [He] variations at the seven heliospheric current sheet (HCS) crossings made during the rapid-latitude-scan portion of the mission. The differences in the variability of the solar wind speed and [He] in high latitude and equatorial regions are quite striking. Solar wind speed is generally low but highly variable near the solar equator, while at higher latitudes the average speed is quite high with little variability. [He] can vary over nearly two decades at low solar latitudes, while at high latitudes it varies only slightly. In contrast to the high [He] that is commonly associated with CMEs observed in the ecliptic, none of the six high-speed CMEs encountered at high southern heliographic latitudes showed any significant variation in helium content. A superposed epoch analysis of the [He] during all seven HCS crossings made as Ulysses passed from the southern to northern solar hemisphere shows the expected [He] minimum near the crossing and a broad region of low [He] around the crossing time. We discuss how our solar wind [He] observations may provide an accurate measure of the helium composition for the entire convective zone of the Sun.

  15. Transient flows of the solar wind associated with small-scale solar activity in solar minimum

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir; Veselovsky, Igor; Kuzin, Sergey; Gburek, Szymon; Ulyanov, Artyom; Kirichenko, Alexey; Shugay, Yulia; Goryaev, Farid

    The data obtained by the modern high sensitive EUV-XUV telescopes and photometers such as CORONAS-Photon/TESIS and SPHINX, STEREO/EUVI, PROBA2/SWAP, SDO/AIA provide good possibilities for studying small-scale solar activity (SSA), which is supposed to play an important role in heating of the corona and producing transient flows of the solar wind. During the recent unusually weak solar minimum, a large number of SSA events, such as week solar flares, small CMEs and CME-like flows were observed and recorded in the databases of flares (STEREO, SWAP, SPHINX) and CMEs (LASCO, CACTUS). On the other hand, the solar wind data obtained in this period by ACE, Wind, STEREO contain signatures of transient ICME-like structures which have shorter duration (<10h), weaker magnetic field strength (<10 nT) and lower proton temperature than usual ICMEs. To verify the assumption that ICME-like transients may be associated with the SSA events we investigated the number of weak flares of C-class and lower detected by SPHINX in 2009 and STEREO/EUVI in 2010. The flares were classified on temperature and emission measure using the diagnostic means of SPHINX and Hinode/EIS and were confronted with the parameters of the solar wind (velocity, density, ion composition and temperature, magnetic field, pitch angle distribution of the suprathermal electrons). The outflows of plasma associated with the flares were identified by their coronal signatures - CMEs (only in few cases) and dimmings. It was found that the mean parameters of the solar wind projected to the source surface for the times of the studied flares were typical for the ICME-like transients. The results support the suggestion that weak flares can be indicators of sources of transient plasma flows contributing to the slow solar wind at solar minimum, although these flows may be too weak to be considered as separate CMEs and ICMEs. The research leading to these results has received funding from the European Union’s Seventh Programme for Research, Technological Development and Demonstration under Grant Agreement “eHeroes” (project n° 284461, www.eheroes.eu).

  16. Empirical evidence for latitude dependence and asymmetry of geomagnetic spatial variation in mainland China

    NASA Astrophysics Data System (ADS)

    Lu, Shikun; Zhang, Hao; Li, Xihai; Liu, Daizhi; Wang, Xiqin

    2016-05-01

    Spatiotemporal geomagnetic variation is a significant research topic of geomagnetism and space physics. Generated by convection and flows within the fluid outer core, latitude dependence and asymmetry, as the inherent spatiotemporal properties of geomagnetic field, have been extensively studied. We apply and modify an extension of existing method, Hidden Markov Model (HMM), which is an efficient tool for modeling the statistical properties of time series. Based on ground magnetic measurement data set in mainland China, first, we find the parameters of HMM can be used as the geomagnetic statistical signature to represent the spatiotemporal geomagnetic variations for each site. The results also support the existence of the geomagnetic latitude dependence more apparently. Furthermore, we provide solid empirical evidence for geomagnetic asymmetry relying on such ground magnetic measurement data set.

  17. Electron energetics in the expanding solar wind via Helios observations

    NASA Astrophysics Data System (ADS)

    Å tverák, Å. těpán.; Trávníček, Pavel M.; Hellinger, Petr

    2015-10-01

    We present an observational analysis of electron cooling/heating rates in the fast and slow solar wind between 0.3 and 1 AU. We fit electron velocity distribution functions acquired in situ by Helios 1 and 2 spacecraft by a three-component (core-halo-strahl) analytical model. The resulting radial profiles of macroscopic characteristics (density, temperatures, and heat fluxes) are employed to examine properties of theoretical energy balance equations and to estimate external cooling/heating terms. Our analysis indicates that in contrast to solar wind protons the electrons do not require important heating mechanisms to explain the observed temperature gradients. The electron heating rates are actually found to be negative for both the slow and fast solar wind, namely, due to the significant degradation of the electron heat flux with increasing radial distance from the Sun. Cooling mechanisms acting on electrons are found to be significantly stronger in the slow wind than in the fast wind streams.

  18. Electrodynamics of solar wind-magnetosphere-ionosphere interactions

    NASA Technical Reports Server (NTRS)

    Kan, Joseph R.; Akasofu, Syun-Ichi

    1989-01-01

    The paper presents a coherent picture of fundamental physical processes in three basic elements of the solar-wind/magnetosphere/ionosphere coupling system: (1) the field-aligned potential structure which leads to the formation of auroral arcs, (2) the magnetosphere-ionosphere coupling which leads to the onset of magnetospheric substorms, and (3) the solar-wind/magnetosphere dynamo which supplies the power driving various magnetospheric processes. Process (1) is forced into existence by the loss-cone constriction effect when the upward field-aligned current density exceeds the loss-cone thermal flux limit. Substorm onset occurs when the ionosphere responds fully to the enhanced magnetospheric convection driven by the solar wind. Energy is transferred from the solar wind to the magnetosphere by a dynamo process, primarily on open field lines.

  19. On the Dynamic Character of the Polar Solar Wind

    NASA Astrophysics Data System (ADS)

    Yu, H. S.; Jackson, B. V.; Hick, P. P.; Buffington, A.

    2014-12-01

    SOHO LASCO C2 and STEREO SECCHI COR 2 coronagraph images, when analyzed using correlation tracking techniques, show a surprising result in polar coronal hole regions ordinarily thought of as "quiet" solar wind. Here what we observe is not the static well-ordered flow and gradual acceleration expected of quiescent regions. Rather, the coronagraph images show outflow in polar coronal holes as intermittent, highly-variable solar wind speed structures. We compare measurements of these structures in different simultaneously-measured coronagraph images, and with coronal brightness. The distribution of structure speeds shows a gradual decrease with speed in the overlap regions of the two coronagraphs. Measurements of the mean speed derived versus height shows the solar wind acceleration with position angle, and are compared with mass flux and other determinations of solar wind outflow over the large polar coronal hole regions. In this presentation we give the most recent work on this ongoing analysis.

  20. Integrating Multiple Approaches to Solving Solar Wind Turbulence Problems (Invited)

    NASA Astrophysics Data System (ADS)

    Karimabadi, H.; Roytershteyn, V.

    2013-12-01

    The ultimate understanding of the solar wind turbulence must explain the physical process and their connection at all scales ranging from the largest down to electron kinetic scales. This is a daunting task and as a result a more piecemeal approach to the problem has been followed. For example, the role of each wave has been explored in isolation and in simulations with scales limited to those of the underlying waves. In this talk, we present several issues with this approach and offer an alternative with an eye towards more realistic simulations of solar wind turbulence. The main simulation techniques used have been MHD, Hall MHD, hybrid, fully kinetic, and gyrokinetic. We examine the limitations of each approach and their viability for studies of solar wind turbulence. Finally, the effect of initial conditions on the resulting turbulence and their comparison with solar wind are demonstrated through several kinetic simulations.

  1. Genesis Solar Wind Sample Curation: A Progress Report

    NASA Technical Reports Server (NTRS)

    Allton, Judith H.; Calaway, M. J.; Rodriquez, M. C.; Hittle, J. D.; Wentworth, S. J.; Stansbery, E. K.; McNamara, K. M.

    2006-01-01

    In the year since the Genesis solar wind collector fragments were returned, early science samples, specimens for cleaning experiments, and science allocations have been distributed. Solar wind samples are stored under nitrogen and handled in an ISO Class 4 (Class 10) laboratory. For array collector fragments, a basic characterization process has been established. This characterization consists of identification of solar wind regime, whole fragment image for identification and surface quality, higher magnification images for contaminant particle density, and assessment of molecular film contaminant thickness via ellipsometry modeling. Compilations of this characterization data for AuOS (gold film on sapphire), and sapphire from the bulk solar wind for fragments greater than 2 cm are available. Removal of contaminant particles using flowing ultrapure water (UPW) energized megasonically is provided as requested.

  2. Solar wind stream structure at large heliocentric distances Pioneer observations

    NASA Technical Reports Server (NTRS)

    Gazis, P. R.

    1987-01-01

    Time profiles and histograms of plasma data from Pioneers 10 and 11 are examined for the period between 1975 and 1983. During this time, Pioneer 10 traveled between a heliocentric distance of 8.7 and 30.4 AU. The velocity structure of the solar wind at these heliocentric distances is found to have one of two distinct forms: approximately 70 percent of the time the solar wind has a nearly flat velocity profile. Occasionally, this flat velocity profile is accompanied by quasi-periodic variations in density and in thermal speed consistent with the concept that the 'corotating interaction regions' which are produced by the interaction of high- and low-speed streams at intermediate heliocentric distances are replaced by 'pressure regions' in the outer heliosphere. The remaining 30 percent of the time the solar wind is marked by large (50-200 km/s) long-term (30-120 days) shifts in the average solar wind velocity.

  3. A parametric study of the solar wind interaction with comets

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Le, G.; Luhmann, J. G.; Fedder, J. A.

    1991-01-01

    The Naval Research Laboratory's magnetohydrodynamic simulation code is used to simulate the solar wind interction with comet Halley for two different outgassing rates and several different solar wind states. The magnetic field is more strongly draped for fast solar wind conditions than slow. For higher mass loading rates, the tail becomes wider and contains more magnetic flux. The visual appearance of the comet differs for the case in which the interplanetary magnetic field lies in the plane of the sky from the case when it lies along the line of sight. The ion tail appears shorter in the latter case. Thus variation in the IMF direction can cause significant changes in the appearance of comets. The comet also creates a large momentum flux deficit in the solar wind with a narrow enhanced region within it corresponding to the ion tail.

  4. The visual appearance of comets under varying solar wind conditions

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Guan, L.; Luhmann, J. G.; Fedder, J. A.

    1989-01-01

    Three-dimensional MHD simulations have been performed for four different sets of solar wind conditions and cometary outgassing rates appropriate to the Halley encounters. Even though the simulations are single fluid calculations, it is possible to separate the solar wind and cometary ions using the divergenceless nature of the solar wind ions. The cometary ion density is then integrated along the line-of-sight from the observer through the comet to determine how the comet would look to a distant observer under these different conditions. In general, comet tails appear longer when the interplanetary magnetic field lies in the plane of the sky rather than along the line-of-sight. Also, the tail shrinks as the speed of the solar wind increases and/or the mass loading rate decreases.

  5. Saturn radio emission and the solar wind - Voyager-2 studies

    NASA Technical Reports Server (NTRS)

    Desch, M. D.; Rucker, H. O.

    1985-01-01

    Voyager 2 data from the Plasma Science experiment, the Magnetometer experiment and the Planetary Radio Astronomy experiment were used to analyze the relationship between parameters of the solar wind/interplanetary medium and the nonthermal Saturn radiation. Solar wind and interplanetary magnetic field properties were combined to form quantities known to be important in controlling terrestrial magnetospheric processes. The Voyager 2 data set used in this investigation consists of 237 days of Saturn preencounter measurements. However, due to the immersion of Saturn and the Voyager 2 spacecraft into the extended Jupiter magnetic tail, substantial periods of the time series were lacking solar wind data. To cope with this problem a superposed epoch method (CHREE analysis) was used. The results indicate the superiority of the quantities containing the solar wind density in stimulating the radio emission of Saturn - a result found earlier using Voyager 1 data - and the minor importance of quantities incorporating the interplanetary magnetic field.

  6. Western Wind and Solar Integration Study Phase 2 (Fact Sheet)

    SciTech Connect

    Not Available

    2013-09-01

    This is one-page, two-sided fact sheet presents high-level summary results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  7. Western Wind and Solar Integration Study: Phase 2 (Presentation)

    SciTech Connect

    Lew, D.; Brinkman, G.; Ibanez, E.; Lefton, S.; Kumar, N.; Venkataraman, S.; Jordan, G.

    2013-09-01

    This presentation summarizes the scope and results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  8. A view of solar magnetic fields, the solar corona, and the solar wind in three dimensions

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.; Wilcox, J. M.

    1978-01-01

    In the last few years it has been recognized that the solar corona and the solar wind are three-dimensional. The deviations from spherical or even cylindrical symmetry are first-order effects, which are important for a basic description and physical understanding of the coronal expansion. Models of coronal magnetic fields are considered along with the characteristics of large-scale solar structure, the interplanetary magnetic field, coronal holes, geomagnetic activity, cosmic rays, and polar fields of the sun. It is pointed out that the present understanding of coronal and interplanetary morphology is based on data acquired during the descending part and the minimum of the considered sunspot cycle.

  9. Far-ultraviolet studies. VII - The spectrum and latitude dependence of the local interstellar radiation field

    NASA Technical Reports Server (NTRS)

    Henry, R. C.; Anderson, R. C.; Fastie, W. G.

    1980-01-01

    A direct measurement has been made of the spectrum (1180-1680 A) and Gould-latitude dependence of the local interstellar radiation field, over about one-third of the sky. The result is corrected to give expected values for the entire sky. The average local 1180-1680 A energy density is 5.8 x 10 to the -17th ergs/cu cm A. The surface brightness falls off toward high latitudes much more steeply than published models predict.

  10. Calculation of solar wind flows about terrestrial planets

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.; Spreiter, J. R.

    1982-01-01

    A computational model was developed for the determination of the plasma and magnetic field properties of the global interaction of the solar wind with terrestrial planetary magneto/ionospheres. The theoretical method is based on an established single fluid, steady, dissipationless, magnetohydrodynamic continuum model, and is appropriate for the calculation of supersonic, super Alfvenic solar wind flow past terrestrial planets. A summary is provided of the important research results.

  11. Interplanetary stream magnetism: Kinematic effects. [solar magnetic fields and wind

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Barouch, E.

    1974-01-01

    The particle density, and the magnetic field intensity and direction are calculated in corotating streams of the solar wind, assuming that the solar wind velocity is constant and radial and that its azimuthal variations are not two rapid. The effects of the radial velocity profile in corotating streams on the magnetic fields were examined using kinematic approximation and a variety of field configurations on the inner boundary. Kinematic and dynamic effects are discussed.

  12. Analysis of ISEE-3/ICE solar wind data

    NASA Technical Reports Server (NTRS)

    Coplan, Michael A.

    1989-01-01

    Under the grant that ended November 11, 1988 work was accomplished in a number of areas, as follows: (1) Analysis of solar wind data; (2) Analysis of Giacobini/Zinner encounter data; (3) Investigation of solar wind and magnetospheric electron velocity distributions; and (4) Experimental investigation of the electronic structure of clusters. Reprints and preprints of publications resulting from this work are included in the appendices.

  13. Interaction of Comets and the Solar Wind

    NASA Technical Reports Server (NTRS)

    Wagner, William (Technical Monitor); Raymond, John C.

    2003-01-01

    We had originally planned to analyze UVCS observations of Comet Machholz, but we obtained higher quality observations of Comet Kudo-Fujikawa in January 2003 at its 0.19 AU perihelion. Besides a large and rapidly increasing water outgassing rate, we detected a bright tail in doubly ionized carbon. The amount of carbon was greater than could be accounted for by GO photodissociation, and we attribute the carbon to evaporation of organics from dust. A spectacular disconnection event was apparent in the C III tail, and it coincides within the uncertainties with the position of the heliospheric current sheet. A paper is in press in Science, and it will be the subject of a press release. We are also analyzing two sungrazing comets. Comet C/2001 C2 shows evidence for sub-fragments and for a very long lasting source of neutrals, which we tentatively identify as evaporation of pyroxene dust grains. Comet C/2002 S2 shows a sudden 2 magnitude drop in optical brightness and an equally sudden recovery. UVCS observations during that time show a steadily increasing outgassing rate. We have derived solar wind densities for both comets, but we are still sorting out the ambiguities involving the fragmentation and optical behavior. We are collaborating with Philippe Lamy on the LASCO measurements.

  14. Interaction of Comets and the Solar Wind

    NASA Technical Reports Server (NTRS)

    Wagner, William (Technical Monitor); Raymond, John C.

    2004-01-01

    The analysis of Comet Kudo-Fujikawa at perihelion was published and picked up by Der Spiegel. Besides a large and rapidly increasing water outgassing rate, we detected a bright tail in doubly ionized carbon. The amount of carbon was greater than could be accounted for by CO photodissociation, and we attribute it to evaporation of organics from dust. A spectacular disconnection event was apparent in the C III tail, and it coincides within the uncertainties to the position of the heliospheric current sheet. The analysis of the sungrazing comet C2001 C2 is in press. It showed evidence for subfragments and for a very long lasting source of neutrals, which we identify as evaporation of pyroxene dust grains. Results were also presented at COSPAR. We are working on observations of another sungrazer, comet C2002 S2, which shows a sudden 2 magnitude drop in optical brightness and an equally sudden recovery. UVCS observations during that time show a steadily increasing outgassing rate. We have derived solar wind densities for both comets, but we are still sorting out the ambiguities involving the fragmentation and optical behavior.

  15. Dissipation of Turbulence in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.

    2010-01-01

    I will describe the first three-dimensional (3-D) dispersion relations and wavenumber spectra of magnetic turbulence in the solar wind at sub-proton scales. The analysis takes advantage of the short separations of the Cluster spacecraft (d/sim approx.200 km) to apply the {it k}-filtering technique to the frequency range where the transition to sub-proton scales occurs. The dispersion diagrams show unambiguously that the cascade is carried by highly oblique Kinetic Alfven Wave with \\omega\\leq 0.1\\omega_{ci} in the plasma rest frame down to k_\\perp\\rho_i \\sim 2. The wavenumber spectra in the direction perpendicular to the mean magnetic field consists of two ranges of scales separated by a breakpoint in the interval [0.4,1] k_\\perp \\rho_i. Above the breakpoint, the spectra follow the Kolmogorov scaling k_\\perp^{-1.7}, consistent with existing theoretical predictions. Below the breakpoint, the spectra steepen to \\sim k_\\perp^{-4.5}. We conjecture that the turbulence undergoes a {\\it transition-range}, where part of energy is dissipated into proton heating via Landau damping, and the remaining energy cascades down to electron scales where electron Landau damping may predominate.

  16. The Dynamic Character of the Polar Solar Wind

    NASA Astrophysics Data System (ADS)

    Jackson, B. V.; Yu, H.-S.; Buffington, A.; Hick, P. P.

    2014-09-01

    The Solar and Heliospheric Observatory (SOHO) Large Angle and Spectrometric Coronagraph C2 and Solar Terrestrial Relations Observatory (STEREO) COR2A coronagraph images, when analyzed using correlation tracking techniques, show a surprising result in places ordinarily thought of as "quiet" solar wind above the poles in coronal hole regions. Instead of the static well-ordered flow and gradual acceleration normally expected, coronagraph images show outflow in polar coronal holes consisting of a mixture of intermittent slow and fast patches of material. We compare measurements of this highly variable solar wind from C2 and COR2A images and show that both coronagraphs measure essentially the same structures. Measurements of the mean velocity as a function of height of these structures are compared with mass flux determinations of the solar wind outflow in the large polar coronal hole regions and give similar results.

  17. The Character of the Solar Wind, Surface Interactions, and Water

    NASA Technical Reports Server (NTRS)

    Farrell, William M.

    2011-01-01

    We discuss the key characteristics of the proton-rich solar wind and describe how it may interact with the lunar surface. We suggest that solar wind can be both a source and loss of water/OH related volatiles, and review models showing both possibilities. Energy from the Sun in the form of radiation and solar wind plasma are in constant interaction with the lunar surface. As such, there is a solar-lunar energy connection, where solar energy and matter are continually bombarding the lunar surface, acting at the largest scale to erode the surface at 0.2 Angstroms per year via ion sputtering [1]. Figure 1 illustrates this dynamically Sun-Moon system.

  18. The dynamic character of the polar solar wind

    SciTech Connect

    Jackson, B. V.; Yu, H.-S.; Buffington, A.; Hick, P. P. E-mail: hsyu@ucsd.edu E-mail: pphick@ucsd.edu

    2014-09-20

    The Solar and Heliospheric Observatory (SOHO) Large Angle and Spectrometric Coronagraph C2 and Solar Terrestrial Relations Observatory (STEREO) COR2A coronagraph images, when analyzed using correlation tracking techniques, show a surprising result in places ordinarily thought of as 'quiet' solar wind above the poles in coronal hole regions. Instead of the static well-ordered flow and gradual acceleration normally expected, coronagraph images show outflow in polar coronal holes consisting of a mixture of intermittent slow and fast patches of material. We compare measurements of this highly variable solar wind from C2 and COR2A images and show that both coronagraphs measure essentially the same structures. Measurements of the mean velocity as a function of height of these structures are compared with mass flux determinations of the solar wind outflow in the large polar coronal hole regions and give similar results.

  19. Potential for Development of Solar and Wind Resource in Bhutan

    SciTech Connect

    Gilman, P.; Cowlin, S.; Heimiller, D.

    2009-09-01

    With support from the U.S. Agency for International Development (USAID), the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) produced maps and data of the wind and solar resources in Bhutan. The solar resource data show that Bhutan has an adequate resource for flat-plate collectors, with annual average values of global horizontal solar radiation ranging from 4.0 to 5.5 kWh/m2-day (4.0 to 5.5 peak sun hours per day). The information provided in this report may be of use to energy planners in Bhutan involved in developing energy policy or planning wind and solar projects, and to energy analysts around the world interested in gaining an understanding of Bhutan's wind and solar energy potential.

  20. Wind loading on solar concentrators: Some general considerations

    NASA Technical Reports Server (NTRS)

    Roschke, E. J.

    1984-01-01

    A survey was completed to examine the problems and complications arising from wind loading on solar concentrators. Wind loading is site specific and has an important bearing on the design, cost, performance, operation and maintenance, safety, survival, and replacement of solar collecting systems. Emphasis herein is on paraboloidal, two-axis tracking systems. Thermal receiver problems also are discussed. Wind characteristics are discussed from a general point of view. Current methods for determining design wind speed are reviewed. Aerodynamic coefficients are defined and illustrative examples are presented. Wind tunnel testing is discussed, and environmental wind tunnels are reviewed. Recent results on heliostat arrays are reviewed as well. Aeroelasticity in relation to structural design is discussed briefly.

  1. Asymptotic Theory of Solar Wind Electron Halo Distribution

    NASA Astrophysics Data System (ADS)

    Kim, S.; Yoon, P. H.

    2014-12-01

    The solar wind electrons are conveniently divided into core Maxwellian background, isotropic halo, and super-halo components (and some times, highly field-aligned strahl component, which can be considered as a fourth element). Recently, a theory was proposed that explains the origin of super-halo distribution. It was assumed that the super-halo distribution forms as a result of wave-particle interaction between the super-halo electron and steady-state Langmuir fluctuation known as the quasi-thermal noise. In the present paper, we discuss a theory of solar wind halo electron distribution. It is assumed that the solar wind electrons whose energy is intermediate to the Gaussian cold core and super-halo components can interact efficiently with the whistler turbulence, which is pervasively detected in the solar wind near 1 AU. By making use of Fokker-Planck particle kinetic equations for the electrons and the wave kinetic equation for the whistler waves, it is shown that the solar wind halo distribution emerges as an asymptotic steady-state solution. The figure shown below summarizes the theoretical reconstruction of the total solar wind electron velocity distribution.

  2. Western Wind and Solar Integration Study Phase 2: Preprint

    SciTech Connect

    Lew, D.; Brinkman, G.; Ibanez, E.; Hodge, B.-M.; King, J.

    2012-09-01

    The Western Wind and Solar Integration Study (WWSIS) investigates the impacts of high penetrations of wind and solar power into the Western Interconnection of the United States. WWSIS2 builds on the Phase 1 study but with far greater refinement in the level of data inputs and production simulation. It considers the differences between wind and solar power on systems operations. It considers mitigation options to accommodate wind and solar when full costs of wear-and-tear and full impacts of emissions rates are taken into account. It determines wear-and-tear costs and emissions impacts. New data sets were created for WWSIS2, and WWSIS1 data sets were refined to improve realism of plant output and forecasts. Four scenarios were defined for WWSIS2 that examine the differences between wind and solar and penetration level. Transmission was built out to bring resources to load. Statistical analysis was conducted to investigate wind and solar impacts at timescales ranging from seasonal down to 5 minutes.

  3. Sputtering by the Solar Wind: Effects of Variable Composition

    NASA Technical Reports Server (NTRS)

    Killen, R. M.; Arrell, W. M.; Sarantos, M.; Delory, G. T.

    2011-01-01

    It has long been recognized that solar wind bombardment onto exposed surfaces in the solar system will produce an energetic component to the exospheres about those bodies. Laboratory experiments have shown that there is no increase in the sputtering yield caused by highly charged heavy ions for metallic and for semiconducting surfaces, but the sputter yield can be noticeably increased in the case of a good insulating surface. Recently measurements of the solar wind composition have become available. It is now known that the solar wind composition is highly dependent on the origin of the particular plasma. Using the measured composition of the slow wind, fast wind, solar energetic particle (SEP) population, and coronal mass ejection (CME), broken down into its various components, we have estimated the total sputter yield for each type of solar wind. Whereas many previous calculations of sputtering were limited to the effects of proton bombardment. we show that the heavy ion component. especially the He++ component. can greatly enhance the total sputter yield during times when the heavy ion population is enhanced. We will discuss sputtering of both neutrals and ions.

  4. Structure of magnetic field in the solar wind

    NASA Technical Reports Server (NTRS)

    Chertkov, A. D.

    1995-01-01

    This work is concerned with empirical data on magnetic field in the solar wind in frame of a concept of dissipative solar wind, developed in papers (Solar Wind 7 Conf., Pergamon Press, 1992, 165 and 1992 STEP/5th COSPAR Coll. Pergamon Press, 1994, 117; 235; 803). Interplanetary magnetic fields should be classified with respect to their origin. It is very important for all the theoretical problems from the necessity to specify correctly boundary and initial conditions: the magnetic field must be sewed with its source. One should select the field, connected directly with the Sun (stretched out from it), and the field of moving electric currents. It occured central in discussion about the velocity of Alfven waves, probably warming up the solar wind, relative to the Sun, the magnetic field and solar wind plasma. The selection problem corresponds to an inverse problem and obviously has no single solution. The dissipative model of the solar wind introduce the slipping and leakage of plasma relative to magnetic field. There are no 'interplanetary current sheets' in it. But temporal fluctuations from the filamentation of electric currents play the key role. As a whole, the new concept requires the re-interpretation of main objects in the interplanetary magnetic field.

  5. Impacts of wind stilling on solar radiation variability in China

    PubMed Central

    Lin, Changgui; Yang, Kun; Huang, Jianping; Tang, Wenjun; Qin, Jun; Niu, Xiaolei; Chen, Yingying; Chen, Deliang; Lu, Ning; Fu, Rong

    2015-01-01

    Solar dimming and wind stilling (slowdown) are two outstanding climate changes occurred in China over the last four decades. The wind stilling may have suppressed the dispersion of aerosols and amplified the impact of aerosol emission on solar dimming. However, there is a lack of long-term aerosol monitoring and associated study in China to confirm this hypothesis. Here, long-term meteorological data at weather stations combined with short-term aerosol data were used to assess this hypothesis. It was found that surface solar radiation (SSR) decreased considerably with wind stilling in heavily polluted regions at a daily scale, indicating that wind stilling can considerably amplify the aerosol extinction effect on SSR. A threshold value of 3.5 m/s for wind speed is required to effectively reduce aerosols concentration. From this SSR dependence on wind speed, we further derived proxies to quantify aerosol emission and wind stilling amplification effects on SSR variations at a decadal scale. The results show that aerosol emission accounted for approximately 20% of the typical solar dimming in China, which was amplified by approximately 20% by wind stilling. PMID:26463748

  6. Impacts of wind stilling on solar radiation variability in China.

    PubMed

    Lin, Changgui; Yang, Kun; Huang, Jianping; Tang, Wenjun; Qin, Jun; Niu, Xiaolei; Chen, Yingying; Chen, Deliang; Lu, Ning; Fu, Rong

    2015-01-01

    Solar dimming and wind stilling (slowdown) are two outstanding climate changes occurred in China over the last four decades. The wind stilling may have suppressed the dispersion of aerosols and amplified the impact of aerosol emission on solar dimming. However, there is a lack of long-term aerosol monitoring and associated study in China to confirm this hypothesis. Here, long-term meteorological data at weather stations combined with short-term aerosol data were used to assess this hypothesis. It was found that surface solar radiation (SSR) decreased considerably with wind stilling in heavily polluted regions at a daily scale, indicating that wind stilling can considerably amplify the aerosol extinction effect on SSR. A threshold value of 3.5 m/s for wind speed is required to effectively reduce aerosols concentration. From this SSR dependence on wind speed, we further derived proxies to quantify aerosol emission and wind stilling amplification effects on SSR variations at a decadal scale. The results show that aerosol emission accounted for approximately 20% of the typical solar dimming in China, which was amplified by approximately 20% by wind stilling. PMID:26463748

  7. Implications of the Deep Minimum for Slow Solar Wind Origin

    NASA Astrophysics Data System (ADS)

    Antiochos, S. K.; Mikic, Z.; Lionello, R.; Titov, V. S.; Linker, J. A.

    2009-12-01

    The origin of the slow solar wind has long been one of the most important problems in solar/heliospheric physics. Two observational constraints make this problem especially challenging. First, the slow wind has the composition of the closed-field corona, unlike the fast wind that originates on open field lines. Second, the slow wind has substantial angular extent, of order 30 degrees, which is much larger than the widths observed for streamer stalks or the widths expected theoretically for a dynamic heliospheric current sheet. We propose that the slow wind originates from an intricate network of narrow (possibly singular) open-field corridors that emanate from the polar coronal hole regions. Using topological arguments, we show that these corridors must be ubiquitous in the solar corona. The total solar eclipse in August 2008, near the lowest point of the Deep Minimum, affords an ideal opportunity to test this theory by using the ultra-high resolution Predictive Science's (PSI) eclipse model for the corona and wind. Analysis of the PSI eclipse model demonstrates that the extent and scales of the open-field corridors can account for both the angular width of the slow wind and its closed-field composition. We discuss the implications of our slow wind theory for the structure of the corona and heliosphere at the Deep Minimum and describe further observational and theoretical tests. This work has been supported by the NASA HTP, SR&T, and LWS programs.

  8. Using the fingerprints of solar magnetic reconnection to identify the elemental building blocks of the slow solar wind

    NASA Astrophysics Data System (ADS)

    Kepko, Larry; Viall, Nicholeen M.; Kasper, Justin; Lepri, Sue

    2015-04-01

    While the source of the fast solar wind is well understood to be linked to coronal holes, the source of the slow solar wind has remained elusive. Many previous studies of the slow solar wind have examined trends in the composition and charge states over long time scales and found strong relationships between the solar wind velocity and these plasma parameters. These relationships have been used to constrain models of solar wind source and acceleration. In this study, we take advantage of high time resolution (12 min) measurements of solar wind composition and charge-state abundances recently reprocessed by the ACE Solar Wind Ion Composition Spectrometer (SWICS) science team to probe the timescales of solar wind variability at relatively small scales. We study an interval of slow solar wind containing quasi-periodic 90 minute structures and show that they are remnants of solar magnetic reconnection. Each 90-minute parcel of slow solar wind, though the speed remains steady, exhibits the complete range of charge state and composition variations expected for the entire range of slow solar wind, which is repeated again in the next 90-minute interval. These observations show that previous statistical results break down on these shorter timescales, and impose new and important constraints on models of slow solar wind creation. We conclude by suggesting these structures were created through interchange magnetic reconnection and form elemental building blocks of the slow solar wind. We also discuss the necessity of decoupling separately the process(es) responsible for the release and acceleration.

  9. Electron energy transport in the solar wind: Ulysses observations

    NASA Technical Reports Server (NTRS)

    Scime, Earl; Gary, S. Peter; Phillips, J. L.; Corniileau-Wehrlin, N.; Solomon, J.

    1995-01-01

    The electron heat flux in the solar wind has been measured by the Ulysses solar wind plasma experiment in the ecliptic from 1 to 5 AU and out of the ecliptic during the recently completed pass over the solar south pole and the ongoing pass over the solar north pole. Although the electron heat flux contains only a fraction of the kinetic energy of the solar wind. the available energy is sufficient to account for the non-adiabatic expansion of the solar wind electrons. The Ulysses measurements indicate that the electron heat flux is actively dissipated in the solar wind. The exact mechanism or mechanisms is unknown. but a model based on the whistler heat flux instability predicts radial gradients for the electron heat flux in good agreement with the data. We will present measurements of the correlation between wave activity measured by the unified radio and plasma experiment (URAP) and the electron heat flux throughout the Ulysses mission. The goal is to determine if whistler waves are a good candidate for the observed electron heat flux dissipation. The latitudinal gradients of the electron heat flux. wave activity. and electron pressure will be discussed in light of the changes in the magnetic field geometry from equator to poles.

  10. Constraints on neon and argon isotopic fractionation in solar wind.

    PubMed

    Meshik, Alex; Mabry, Jennifer; Hohenberg, Charles; Marrocchi, Yves; Pravdivtseva, Olga; Burnett, Donald; Olinger, Chad; Wiens, Roger; Reisenfeld, Dan; Allton, Judith; McNamara, Karen; Stansbery, Eileen; Jurewicz, Amy J G

    2007-10-19

    To evaluate the isotopic composition of the solar nebula from which the planets formed, the relation between isotopes measured in the solar wind and on the Sun's surface needs to be known. The Genesis Discovery mission returned independent samples of three types of solar wind produced by different solar processes that provide a check on possible isotopic variations, or fractionation, between the solar-wind and solar-surface material. At a high level of precision, we observed no significant inter-regime differences in 20Ne/22Ne or 36Ar/38Ar values. For 20Ne/22Ne, the difference between low- and high-speed wind components is 0.24 +/- 0.37%; for 36Ar/38Ar, it is 0.11 +/- 0.26%. Our measured 36Ar/38Ar ratio in the solar wind of 5.501 +/- 0.005 is 3.42 +/- 0.09% higher than that of the terrestrial atmosphere, which may reflect atmospheric losses early in Earth's history. PMID:17947578

  11. Solar wind temperature observations in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Gazis, P. R.; Barnes, A.; Mihalov, J. D.; Lazarus, A. J.

    1992-01-01

    The Pioneer 10, Pioneer 11, and Voyager 2 spacecraft are now at heliocentric distances of 50, 32 and 33 AU, and heliographic latitudes of 3.5 deg N, 17 deg N, and 0 deg N, respectively. Pioneer 11 and Voyager 2 are at similar celestial longitudes, while Pioneer l0 is on the opposite side of the sun. The baselines defined by these spacecraft make it possible to resolve radial, longitudinal, and latitudinal variations of solar wind parameters. The solar wind temperature decreases with increasing heliocentric distance out to a distance of 10-15 AU. At larger heliocentric distances, this gradient disappears. These high solar wind temperatures in the outer heliosphere have persisted for at least 10 years, which suggests that they are not a solar cycle effect. The solar wind temperature varied with heliographic latitude during the most recent solar minimum. The solar wind temperature at Pioneer 11 and Voyager 2 was higher than that seen at Pioneer 10 for an extended period of time, which suggests the existence of a large-scale variation of temperature with celestial longitude, but the contribution of transient phenomena is yet to be clarified.

  12. Solar wind eddies and the heliospheric current sheet

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Mccomas, D. J.; Bame, S. J.; Goldstein, B. E.

    1995-01-01

    Ulysses has collected data between 1 and 5 AU during, and just following solar maximum, when the heliospheric current sheet (HCS) can be thought of as reaching its maximum tilt and being subject to the maximum amount of turbulence in the solar wind. The Ulysses solar wind plasma instrument measures the vector velocity and can be used to estimate the flow speed and direction in turbulent 'eddies' in the solar wind that are a fraction of an astronomical unit in size and last (have either a turnover or dynamical interaction time of) several hours to more than a day. Here, in a simple exercise, these solar wind eddies at the HCS are characterized using Ulysses data. This character is then used to define a model flow field with eddies that is imposed on an ideal HCS to estimate how the HCS will be deformed by the flow. This model inherently results in the complexity of the HCS increasing with heliocentric distance, but the result is a measure of the degree to which the observed change in complexity is a measure of the importance of solar wind flows in deforming the HCS. By comparison with randomly selected intervals not located on the HCS, it appears that eddies on the HCS are similar to those elsewhere at this time during the solar cycle, as is the resultant deformation of the interplanetary magnetic field (IMF). The IMF deformation is analogous to what is often termed the 'random walk' of interplanetary magnetic field lines.

  13. Chandrayaan-1 results on the solar wind ion - regolith interaction

    NASA Astrophysics Data System (ADS)

    Barabash, Stas

    Recently several missions (Kaguya, Chandrayaan-1, IBEX) revealed for the first time the complexity of the solar wind ions interaction with the lunar regolith. In this review we focus on the observations performed by the Chandrayaan-1 mission at the Moon but similar interaction processes take place on all airless bodies covered by regolith. Contrary to early assumptions the solar wind ions are not fully absorbed by the regolith but experience strong (10-20% of the impinging flux) backscattering. Only hydrogen was firmly identified. Helium for the helium enriched solar wind was detected only tentatively. The charge - state of the backscattered particles is mainly neutral. The fraction of H (+) varies strongly with the impinging solar wind velocity and constitutes 0.01 - 10% of the total backscattered flux. No H (-) ions were detected. The spectrum of the backscattered hydrogen is best-fitted by a Maxwellian distribution with a temperature of 40 - 160 eV linearly proportional to the solar wind velocity. The spectrum of the backscattered protons is also Maxwellian although shifted to a velocity some what smaller than the solar wind velocity. The scattering function of the neutrals is close to isotropic at large impinging angles (small solar zenith angles) and becomes backward peaked at shallow impinging angles. The scattering function and energy spectra of the backscatters indicate that the solar wind protons experience multiple collisions with surfaces of individual grain when traveling in the inter-grain space. Why the reflection efficiency is so high in this case is a puzzle. The solar wind also causes sputtering of elements composing the regolith minerals. Only sputtered oxygen was identified although at levels lower than expected. Chandrayaan-1 results on the solar wind ion - regolith interaction still remain to be explained. The orbital measurements should be complemented by measurements from landers revealing the “ground true”. Further studies of the interaction physics are required not only for further development of ENA imaging of airless bodies but also for understanding space weathering, ion implantation processes, and impact of backscattering on the global solar wind - Moon interaction picture.

  14. Solar flare acceleration of solar wind - Influence of active region magnetic field

    NASA Technical Reports Server (NTRS)

    Lundstedt, H.; Wilcox, J. M.; Scherrer, P. H.

    1981-01-01

    The direction of the photospheric magnetic field at the site of a solar flare is a good predictor of whether the flare will accelerate solar wind plasma. If the field has a southward component, high-speed solar wind plasma is usually observed near the earth about 4 days later. If the field has a northward component, such high-speed solar wind is almost never observed. Southward-field flares may then be expected to have much larger terrestrial effects than northward flares.

  15. On the Relationship Between Solar Wind Speed, Geomagnetic Activity, and the Solar Cycle Using Annual Values

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    The aa index can be decomposed into two separate components: the leading sporadic component due to solar activity as measured by sunspot number and the residual or recurrent component due to interplanetary disturbances, such as coronal holes. For the interval 1964-2006, a highly statistically important correlation (r = 0.749) is found between annual averages of the aa index and the solar wind speed (especially between the residual component of aa and the solar wind speed, r = 0.865). Because cyclic averages of aa (and the residual component) have trended upward during cycles 11-23, cyclic averages of solar wind speed are inferred to have also trended upward.

  16. A survey of solar wind conditions at 5 AU: A tool for interpreting solar wind-magnetosphere interactions at Jupiter

    NASA Astrophysics Data System (ADS)

    Ebert, Robert; Bagenal, Fran; McComas, David; Fowler, Christopher

    2014-09-01

    We examine Ulysses solar wind and interplanetary magnetic field (IMF) observations at 5 AU for two ~13 month intervals during the rising and declining phases of solar cycle 23 and the predicted response of the Jovian magnetosphere during these times. The declining phase solar wind, composed primarily of corotating interaction regions and high-speed streams, was, on average, faster, hotter, less dense, and more Alfvénic relative to the rising phase solar wind, composed mainly of slow wind and interplanetary coronal mass ejections. Interestingly, none of solar wind and IMF distributions reported here were bimodal, a feature used to explain the bimodal distribution of bow shock and magnetopause standoff distances observed at Jupiter. Instead, many of these distributions had extended, non-Gaussian tails that resulted in large standard deviations and much larger mean over median values. The distribution of predicted Jupiter bow shock and magnetopause standoff distances during these intervals were also not bimodal, the mean/median values being larger during the declining phase by ~1 - 4%. These results provide data-derived solar wind and IMF boundary conditions at 5 AU for models aimed at studying solar wind-magnetosphere interactions at Jupiter and can support the science investigations of upcoming Jupiter system missions. Here, we provide expectations for Juno, which is scheduled to arrive at Jupiter in July 2016. Accounting for the long-term decline in solar wind dynamic pressure reported by McComas et al. (2013), Jupiter’s bow shock and magnetopause is expected to be at least 8 - 12% further from Jupiter, if these trends continue.

  17. Solar wind electron suprathermal strength and temperature gradients: Ulysses observations

    NASA Astrophysics Data System (ADS)

    Maksimovic, Milan; Gary, S. Peter; Skoug, Ruth M.

    2000-08-01

    We use observations from the Ulysses electron spectrometer to examine global trends of the electron suprathermal population and to study, for the first time, the electron core, halo, and total temperature gradients in the fast solar wind over the poles. We use a data set covering the period from the beginning of the mission (1990, day of year 322) to approximately the first completion of Ulysses out-of-ecliptic orbit around the Sun (1998, day 32). This allows us to characterize very well the two states of the solar wind: the high-speed wind, emanating from polar coronal holes, and the low-speed streams, emanating from equatorial regions. From a classical bi-Maxwellian (core and halo) model of electron velocity distribution functions, we define the electron suprathermal strengths S as the ratio of the halo to core kinetic pressures: S=nhTh/ncTc. The fast wind has larger average values of S than the slow wind. This global correlation between S and the solar wind bulk speed is also observed on a smaller scale in the polar regions. We find that the small-scale variations of the solar wind bulk speed in the polar regions, typically +/-50 km/s around an average value of 750 km/s, are correlated with small-scale variations of S. We present also the first observations of the electron core, halo, and total temperature gradients in time-stationary fast solar wind periods over the poles. We examine all the previous observations in the context of simple solar wind exospheric models. We find, for instance, that the total electron temperature can be well fitted by a law of the form Te=T0+T1r-4/3, as predicted by the exospheric approximation.

  18. Element Abundances in the Sun and Solar Wind Along the Solar Cycle

    NASA Astrophysics Data System (ADS)

    Landi, Enrico

    2015-04-01

    Element abundances are a critical parameter in almost every aspect of solar physics, from regulating the energy flow and the structure of the solar interior, to shaping the energy losses of the solar atmosphere, ruling the radiative output of the UV, EUV and X-rays solar radiation which impacts the Earth's upper atmosphere, and determining the composition of the solar wind.In this work we study the evolution of the element abundances in the solar corona and in the solar wind from 1996 to date using data from SoHO, Hinode, Ulysses and ACE satellites, in order to determine their variability along the solar cycle, and the relationship between solar abundance variations in the solar wind and in its source regions in the solar atmosphere. We study all the most abundant elements, with a special emphasis on Ne and O. We discuss our results in light of the source region of the solar wind, and of the radiative output of the solar corona.

  19. Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion

    NASA Astrophysics Data System (ADS)

    Janhunen, P.; Sandroos, A.

    2007-03-01

    One possibility for propellantless propulsion in space is to use the momentum flux of the solar wind. A way to set up a solar wind sail is to have a set of thin long wires which are kept at high positive potential by an onboard electron gun so that the wires repel and deflect incident solar wind protons. The efficiency of this so-called electric sail depends on how large force a given solar wind exerts on a wire segment and how large electron current the wire segment draws from the solar wind plasma when kept at a given potential. We use 1-D and 2-D electrostatic plasma simulations to calculate the force and present a semitheoretical formula which captures the simulation results. We find that under average solar wind conditions at 1 AU the force per unit length is (5±1×10-8 N/m for 15 kV potential and that the electron current is accurately given by the well-known orbital motion limited (OML) theory cylindrical Langmuir probe formula. Although the force may appear small, an analysis shows that because of the very low weight of a thin wire per unit length, quite high final speeds (over 50 km/s) could be achieved by an electric sailing spacecraft using today's flight-proved components. It is possible that artificial electron heating of the plasma in the interaction region could increase the propulsive effect even further.

  20. Velocity Distributions and Proton Beam Production in the Solar Wind

    SciTech Connect

    Pierrard, Viviane; Voitenko, Yuriy

    2010-03-25

    Helios, Ulysses, and Wind spacecraft have observed the velocity distribution functions (VDFs) of solar wind particles deviating significantly from Maxwellians. We review recent models using different approximations and mechanisms that determine various observed characteristics of the VDFs for the electrons, protons and minor ions. A new generation mechanism is proposed for super-Alfvenic proton beams and tails that are often observed in the fast solar wind. The mechanism is based on the proton trapping and acceleration by kinetic Alfven waves (KAWs), which carry a field-aligned potential well propagating with super-Alfven velocities.

  1. Small Scale Magnetic Reconnection in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Foster, Alice; Owen, Christopher; Forsyth, Colin; Rae, Jonathan; Fazakerley, Andrew; Carr, Christopher; Dandouras, Iannis

    2015-04-01

    Previous studies of magnetic reconnection in the solar wind have suggested that a single reconnection X-line can extend and be active over millions of kilometres. We present a case study of an event observed in the solar wind on the 2nd March 2006 by the four Cluster spacecraft. We utilised the four point measurement capability to study the event at sub-second resolution over separation distances of 10,000 km as well as over the larger scales separating Cluster from ACE and WIND. We thus test the consistency of the temporal and spatial structure of magnetic reconnection from large scales to small scales. This reconnection event showed significant differences between the Cluster spacecraft, particularly in the magnetic field data, suggesting reconnection in the solar wind can be variable over relatively small temporal and or spatial scales (< 60 s and/or ~ 10,000 km). This leads to the conclusion that magnetic reconnection in the solar wind is not necessarily large scale and may be patchy in nature. This result raises questions about our current understanding of magnetic reconnection in the solar wind.

  2. Scale-free texture of the fast solar wind.

    PubMed

    Hnat, B; Chapman, S C; Gogoberidze, G; Wicks, R T

    2011-12-01

    The higher-order statistics of magnetic field magnitude fluctuations in the fast quiet solar wind are quantified systematically, scale by scale. We find a single global non-Gaussian scale-free behavior from minutes to over 5 h. This spans the signature of an inertial range of magnetohydrodynamic turbulence and a ~1/f range in magnetic field components. This global scaling in field magnitude fluctuations is an intrinsic component of the underlying texture of the solar wind and puts a strong constraint on any theory of solar corona and the heliosphere. Intriguingly, the magnetic field and velocity components show scale-dependent dynamic alignment outside of the inertial range. PMID:22304144

  3. Preferred solar wind emitting longitudes on the sun

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.

    1977-01-01

    During the 11 1/2-year period from July 1964 through December 1975, high- and low-speed solar wind flows originated from preferred solar longitudes. The preferred longitude effect was most pronounced from 1970 onward but was also evident in the years preceding 1970. The most pronounced modulation in average solar wind speed with longitude (approximately 20%) was obtained when it was assumed that the synodic rotation period of the sun is 27.025 days. Some deep internal structure in the sun must ultimately be responsible for these long-lived longitudinal effects, which appear to rotate rigidly with the sun.

  4. Solar Wind Stream Interaction Regions without Sector Boundaries

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.; Liewer, P. C.; Goldstein, B. E.; Zhou., X.; Steinberg, J. T.

    2004-01-01

    During periods of high solar activity when there are many sources of solar wind on the solar disk, a spacecraft occasionally encounters consecutive solar wind streams with the same magnetic polarity. The low-speed wind in the region of interaction between the two streams exhibits many of the same features as, but has some differences from, the low-speed wind that includes crossings of the heliospheric current sheet (HCS) where the direction of the heliospheric magnetic field reverses. The non-HCS slow wind exhibits many of the same small-scale structures usually associated with the slow wind around the HCS; these include discontinuous stream interfaces and other discontinuities, magnetic holes, and low-entropy structures. These entropy holes do not appear to have the same origin as the plasma sheets observed near the HCS, however. The helium abundances and heavy ion charge states in the non-HCS regions are not significantly different from those in HCS-associated regions. Some of the dynamical properties of the non-HCS regions differ from those found near the HCS; the regions between leading and trailing stream interfaces have a shorter duration or scale size, greater minimum speed, and lower peak and average densities. No correlation could be found between the non-HCS slow wind and visible coronal streamers.

  5. The Yaglom law in the expanding solar wind

    SciTech Connect

    Gogoberidze, G.; Perri, S.; Carbone, V.

    2013-06-01

    We study the Yaglom law, which relates the mixed third-order structure function to the average dissipation rate of turbulence, in a uniformly expanding solar wind by using the two-scale expansion model of magnetohydrodynamic (MHD) turbulence. We show that due to the expansion of the solar wind, two new terms appear in the Yaglom law. The first term is related to the decay of the turbulent energy by nonlinear interactions, whereas the second term is related to the non-zero cross-correlation of the Elsässer fields. Using magnetic field and plasma data from WIND and Helios 2 spacecrafts, we show that at lower frequencies in the inertial range of MHD turbulence the new terms become comparable to Yaglom's third-order mixed moment, and therefore they cannot be neglected in the evaluation of the energy cascade rate in the solar wind.

  6. The interaction of active comets with the solar wind

    SciTech Connect

    Neugebauer, M. )

    1990-11-01

    The interaction of the solar wind with active comets is investigated based on observations of cometary plasma processes and studies of comets using telescopes and photographic plates. Data were also collected when a spacecraft flew through the tail of Comet Giacobini-Zinner in 1985 and five spacecraft encountered Comet Halley in 1986. The solar wind is considered to be supersonic (thermal Mach number 2-10) and to carry a magnetic field twisted into an Archimedean spiral by the rotation of the sun. Since the wind can change its properties during the time a spacecraft is inside the ionosphere or magnetosphere of the body being studied, it is difficult to separate spatial from temporal effects. Photoionization results in addition of plasma to the solar wind. Between the outer and inner edges of the cometosheath, the increasing rate of ion pickup causes the flow to slow down until it stagnates, while the plasma density and the magnetic field strength increase.

  7. Self-consistent Castaing Distribution of Solar Wind Turbulent Fluctuations

    NASA Astrophysics Data System (ADS)

    Sorriso-Valvo, L.; Marino, R.; Lijoi, L.; Perri, S.; Carbone, V.

    2015-07-01

    The intermittent behavior of solar wind turbulent fluctuations has often been investigated through the modeling of their probability distribution functions (PDFs). Among others, the Castaing model has successfully been used in the past. In this paper, the energy dissipation field of solar wind turbulence has been studied for fast, slow, and polar wind samples recorded by Helios 2 and Ulysses spacecraft. The statistical description of the dissipation rate has then been used to remove intermittency through conditioning of the PDFs. Based on such observation, a self-consistent, parameter-free Castaing model is presented. The self-consistent model is tested against experimental PDFs, showing good agreement and supporting the picture of a multifractal energy cascade at the origin of solar wind intermittency.

  8. The Sun and the Solar Wind Close to the Sun

    NASA Technical Reports Server (NTRS)

    Suess, S. T.

    1998-01-01

    The structure of the solar corona is directly reflected in the structure of the solar wind. But, the importance of this simple observation to coronal modeling has become much greater with the arrival of results from Ulysses and SOHO. High speed wind is relatively smooth and uniform (Ulysses) but the coronal holes from which it comes contain highly filamented flows that expand in area by factors of two to sevenfold between the solar surface and 10 solar radii (SOHO). Different models of the relationship between solar and interplanetary magnetic fields produce similar predictions and are still being reconciled. Slow wind seems to come from the boundaries of streamers (Ulysses) by a process which is even less well understood. Again, there are different ideas for the leakage of slow wind from streamers but these models are quickly becoming highly constrained by new data on composition in the core and boundaries of streamers (SOHO). Perhaps the most significant conclusion is that there is a changing paradigm for the processes governing solar wind acceleration and energy flow, one that requires the presence of filamented, energetic, transient flows in a low-beta plasma close to the Sun that become mixed to produce the evolving turbulent MHD plasma that Is observed in the interplanetary medium.

  9. The Solar Wind Interaction with Pluto's Escaping Atmosphere

    NASA Astrophysics Data System (ADS)

    Bagenal, F.

    2014-12-01

    NASA's New Horizons mission presents the opportunity to obtain in-situ measurements of the solar wind interaction with Pluto. Ionization of Pluto's escaping atmosphere suggests the interaction with the solar wind will be similar to that of a comet. In contrast to cometary interactions that have been measured relatively close to the Sun, the weak magnetic field and tenuous density of the solar wind in the outer heliosphere imply that the interaction with Pluto's atmosphere will include significant kinetic effects and be highly asymmetric. Understanding these interactions will expand our knowledge of the astrophysical processes affecting these bodies and that part of the solar system. The SWAP instrument on New Horizons will make measurements of the solar wind deceleration and deflection due to the interaction with Pluto. The PEPPSI instrument will measure energetic particles produced in the interaction region. SWAP will also measure solar wind conditions at large distances from the Sun and measure the effects of pickup protons from the interstellar medium in the distant heliosphere.

  10. Ulysses solar wind plasma observations at high latitudes

    SciTech Connect

    Riley, P.; Bame, S.J.; Barraclough, B.L.

    1996-10-01

    Ulysses reached its peak northerly heliolatitude of 80.2{degrees}N on July 31, 1995, and now is moving towards aphelion at 5.41 AU which it will reach in May, 1998. We summarize measurements from the solar wind plasma experiment, SWOOPS, emphasizing northern hemispheric observations but also providing southern and equatorial results for comparison. The solar wind momentum flux during Ulysses` fast pole-to- pole transit at solar minimum was significantly higher over the poles than at near-equatorial latitudes, suggesting a non-circular cross section for the heliosphere. Furthermore, modest asymmetries in the wind speed, density, and mass flux were observed between the two hemispheres during the fast latitude scan. The solar wind was faster and less dense in the north than in the south. These asymmetries persist in the most recent high- and mid-latitude data but are less pronounced. As of July 1, 1996 the northern fast solar wind has lacked any strong stream interactions or shocks and, although a comprehensive search has not yet been made, no CMEs have yet been identified during this interval. On the other hand, Alfv{acute e}nic, compressional, and pressure balanced features are abundant at high latitudes. The most recent data, at 4 AU and 32{degrees}N, has begun to show the effects of solar rotation modulated features in the form of recurrent compressed regions.

  11. CARBON IONIZATION STAGES AS A DIAGNOSTIC OF THE SOLAR WIND

    SciTech Connect

    Landi, E.; Alexander, R. L.; Gruesbeck, J. R.; Gilbert, J. A.; Lepri, S. T.; Manchester, W. B.; Zurbuchen, T. H.

    2012-01-10

    Oxygen charge states measured by in situ instrumentation have long been used as a powerful diagnostic of the solar corona and to discriminate between different solar wind regimes, both because they freeze in very close to the Sun, and because the oxygen element abundance is comparatively high, allowing for statistically relevant measures. Like oxygen, carbon is also rather abundant and freezes in very close to the Sun. Here, we show an analysis of carbon and oxygen ionic charge states. First, through auditory and Fourier analysis of in situ measurements of solar wind ion composition by ACE/SWICS we show that some carbon ion ratios are very sensitive to solar wind type, even more sensitive than the commonly used oxygen ion ratios. Then we study the evolution of the ionization states of carbon and oxygen by means of a freeze-in code, and find that carbon ions, commonly found in the solar wind, freeze in at comparable coronal distances, while oxygen ions evolve over a much larger range of coronal distances. Finally, we show that carbon and oxygen ion abundance ratios have similar sensitivity to the electron plasma temperature, but the carbon ratios are more robust against atomic physics uncertainties and a better indicator of the temperature of the solar wind source regions.

  12. Improving solar wind modeling at Mercury: Incorporating transient solar phenomena into the WSA-ENLIL model

    NASA Astrophysics Data System (ADS)

    Dewey, R. M.; Baker, D. N.; Anderson, B. J.; Benna, M.; Johnson, C. L.; Korth, H.; Gershman, D. J.; Ho, G. C.; McClintock, W. E.; Odstrcil, D.; Philpott, L. C.; Raines, J. M.; Schriver, D.; Slavin, J. A.; Solomon, S. C.; Winslow, R. M.; Zurbuchen, T.

    2014-12-01

    Coronal mass ejections (CMEs) and other transient solar phenomena play important roles in magnetospheric and exospheric dynamics. Although a planet may only occasionally interact with the products of these events, such transient phenomena can result in departures from the background solar wind that often involve more than an order of magnitude greater ram pressure and interplanetary electric field applied to the magnetosphere. For Mercury, an order of magnitude greater ram pressure can push the magnetopause to the planet's surface, exposing the surface directly to the solar wind. In order to understand how the solar wind interacts with Mercury's magnetosphere and exosphere, previous studies have used the Wang-Sheeley-Arge (WSA)-ENLIL solar wind modeling tool to calculate basic and composite solar wind parameters, such as solar wind velocity (V) and Alfvén Mach number (MA) at Mercury's orbital location. This model forecasts only the background solar wind, however, and does not include these transient events. The Cone extension permits the inclusion of CMEs and other phenomena, and thus enables characterization of the effect of strong solar wind perturbations on the Mercury system. The Cone extension is predicated on the assumption of constant angular and radial velocities of ejecta to integrate them into the WSA-ENLIL coupled model. Comparisons of the model results with the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft observations indicate that the WSA-ENLIL-Cone model more accurately forecasts total solar wind conditions at Mercury and has greater predictive power for magnetospheric and exospheric processes than the WSA-ENLIL model alone.

  13. Shapes of strong shock fronts in an inhomogeneous solar wind

    NASA Technical Reports Server (NTRS)

    Heinemann, M. A.; Siscoe, G. L.

    1974-01-01

    The shapes expected for solar-flare-produced strong shock fronts in the solar wind have been calculated, large-scale variations in the ambient medium being taken into account. It has been shown that for reasonable ambient solar wind conditions the mean and the standard deviation of the east-west shock normal angle are in agreement with experimental observations including shocks of all strengths. The results further suggest that near a high-speed stream it is difficult to distinguish between corotating shocks and flare-associated shocks on the basis of the shock normal alone. Although the calculated shapes are outside the range of validity of the linear approximation, these results indicate that the variations in the ambient solar wind may account for large deviations of shock normals from the radial direction.

  14. Elemental composition in the slow solar wind measured with the MASS instrument on WIND

    NASA Technical Reports Server (NTRS)

    Bochsler, P.; Gonin, M.; Sheldon, R. B.; Zurbuchen, Th.; Gloeckler, G.; Galvin, A. B.; Hovestadt, D.

    1995-01-01

    The MASS instrument on WIND contains the first isochronous time-offlight spectrometer to be flown in the solar wind. The first spectra obtained with this instrument has demonstrated its capability to measure the abundances of several high-and low-FIP elements in the solar wind. The derivation of these abundances requires a careful calibration of the charge exchange efficiencies of the relevant ions in carbon foils. These efficiencies and the corresponding instrument functions have been determined in extensive calibration campaigns at different institutions. We present first and preliminary results obtained in slow solar wind streams and we compare these results with those obtained from previous investigations of solar wind abundances and of coronal abundances as derived from Solar Energetic Particles. Recent models of the FIP related fractionation effect predict a depletion of a factor of typically 4 to 5 for high-FIP elements (He, N, O, Ne, Ar, etc.) relative to low-FIP elements (Mg, Fe, Si, etc.). We also compare our results with the detailed predictions of the different models and we discuss the resulting evidence to validate or to invalidate different physical scenarios explaining the feeding and the acceleration of slow stream solar wind.

  15. SOLAR WIND HEAVY IONS OVER SOLAR CYCLE 23: ACE/SWICS MEASUREMENTS

    SciTech Connect

    Lepri, S. T.; Landi, E.; Zurbuchen, T. H.

    2013-05-01

    Solar wind plasma and compositional properties reflect the physical properties of the corona and its evolution over time. Studies comparing the previous solar minimum with the most recent, unusual solar minimum indicate that significant environmental changes are occurring globally on the Sun. For example, the magnetic field decreased 30% between the last two solar minima, and the ionic charge states of O have been reported to change toward lower values in the fast wind. In this work, we systematically and comprehensively analyze the compositional changes of the solar wind during cycle 23 from 2000 to 2010 while the Sun moved from solar maximum to solar minimum. We find a systematic change of C, O, Si, and Fe ionic charge states toward lower ionization distributions. We also discuss long-term changes in elemental abundances and show that there is a {approx}50% decrease of heavy ion abundances (He, C, O, Si, and Fe) relative to H as the Sun went from solar maximum to solar minimum. During this time, the relative abundances in the slow wind remain organized by their first ionization potential. We discuss these results and their implications for models of the evolution of the solar atmosphere, and for the identification of the fast and slow wind themselves.

  16. Numerical studies on neutral solar wind flux at Solar Orbiter's perihelion

    NASA Astrophysics Data System (ADS)

    D'Amicis, Raffaella; Mura, Alessandro; Orsini, Stefano; Hilchenbach, Martin; Hsieh, K. C.; Telloni, Daniele; Bruno, Roberto; Antonucci, Ester

    Solar wind neutral hydrogen, flowing together with the ionized component, has basically a different phase-space distribution function. As a matter of fact, contrary to the ionized component, neutrals can cover long distances on ballistic trajectories, unmodified by magnetic and electric fields. As a consequence, once decoupled from protons, neutral hydrogen atoms retain information on the three-dimensional distribution of protons at the location where they are generated. In the present study, we perform numerical simulations of neutral hydrogen flux distribution to be measured by Solar Orbiter at a perihelion distance of 48 solar radii (RS ), using different models of solar wind expansion and considering neutral hydrogen coming from fast and slow solar wind. By analysing flux distributions as a function of energy and heliocentric distance, we find that the generation region of neutral hydrogen is at approximately 10 RS for fast wind and at about 20 RS for slow wind. Moreover, the differential flux in angle shows that the signal is concentrated in a small region around the Sun direction. The width of this region depends on the solar wind model applied, and may be up to 10° for fast wind and up to 20° for slow wind.

  17. A Study of Extremely Low Density Solar Wind Detected on Three Successive Solar Rotations

    NASA Astrophysics Data System (ADS)

    Wang, L.-H.; Lin, R. P.; Larson, D. E.; Hudson, H. S.

    2003-05-01

    Three periods of extremely low density solar wind (n < 1 cm-3) were detected by the WIND 3D plasma and Energetic Particle (3DP) instrument on successive solar rotations, July 4, July 31 and Aug 28,1999. The measurements show that the halo electron pitch angle distributions were far narrower than those in normal solar wind. With the increasing distance from the Sun, adiabactic focusing narrows the pitch angle distribution, while Coulomb collisions, which are proportional to the electron number density, widens the pitch angle distribution.In the low density events, fewer Coulomb collisions lead to a more anisotropic halo electron distribution. The observations are compared to numerical results from a 1-dimensional simulation based on the Fokker-Planck equation. We also examine solar observations from SOHO and YOHKOH to search for the source of the low density solar wind.

  18. Solar wind H-3 and C-14 abundances and solar surface processes. [in lunar soil

    NASA Technical Reports Server (NTRS)

    Fireman, E. L.; Defelice, J.; Damico, J.

    1976-01-01

    Tritium is measured as a function of depth in a Surveyor 3 sample. The upper limit for solar-wind-implanted tritium gives an H-3/H-1 limit for the solar wind of 10 to the -11th power. The temperature-release patterns of C-14 from lunar soils are measured. The C-14 release pattern from surface soils differs from a trench-bottom soil and gives positive evidence for the presence of C-14 in the solar wind with a C-14/H-1 ratio of approximately 6 by 10 to the -11th power. This C-14 content fixes a minimal magnitude for nuclear processes on the solar surface averaged over the past 10,000 yr. The H-3 and C-14 contents combine to require that either the mixing rate above the photosphere be rapid or that the H-3 produced by nuclear reactions be destroyed by secondary nuclear reactions before escaping in the solar wind.

  19. Solar cosmic ray, solar wind, solar flare, and neutron albedo measurements, part C

    NASA Technical Reports Server (NTRS)

    Burnett, D.; Hohenberg, C.; Maurette, M.; Monnin, M.; Walker, R.; Wollum, D.

    1972-01-01

    All mineral detectors exposed on Apollo 16 had high surface track densities probably produced by a solar flare that occurred during the mission. The heavy ions followed a power law spectrum with exponent approximately 3 down to approximately 200 KeV/nucleon. The abundance of low-energy particle tracks observed in this flare may explain the high track densities observed in lunar dust grains. Pristine heavy-particle tracks in feldspar give long tracks. Shallow pits similar to those expected from extremely heavy solar wind ions were observed in about the expected number. Initial results give a low apparent value of neutron albedo relative to theory.

  20. Latitudinal Variation of Solar Wind Speed and Mass Flux in the Acceleration Region of the Solar Wind during Solar Minimum Inferred from Spectral Broadening measurements

    NASA Technical Reports Server (NTRS)

    Woo, R.; Goldstein, R.

    1993-01-01

    In this paper, we use an aggregate of S-band 2.3 GHz (13 cm) spectral broadening observations conducted during solar minimum conditions by the Mariner 4, Pioneer 10, Mariner 10, Helios 1 & 2 and Viking spacecraft to infer the first measurements of the latitudinal variation of solar wind speed and mass flux in the acceleration region of the solar wind at 3-8 R(sub o).

  1. Chromospheric alfvenic waves strong enough to power the solar wind.

    PubMed

    De Pontieu, B; McIntosh, S W; Carlsson, M; Hansteen, V H; Tarbell, T D; Schrijver, C J; Title, A M; Shine, R A; Tsuneta, S; Katsukawa, Y; Ichimoto, K; Suematsu, Y; Shimizu, T; Nagata, S

    2007-12-01

    Alfvén waves have been invoked as a possible mechanism for the heating of the Sun's outer atmosphere, or corona, to millions of degrees and for the acceleration of the solar wind to hundreds of kilometers per second. However, Alfvén waves of sufficient strength have not been unambiguously observed in the solar atmosphere. We used images of high temporal and spatial resolution obtained with the Solar Optical Telescope onboard the Japanese Hinode satellite to reveal that the chromosphere, the region sandwiched between the solar surface and the corona, is permeated by Alfvén waves with strong amplitudes on the order of 10 to 25 kilometers per second and periods of 100 to 500 seconds. Estimates of the energy flux carried by these waves and comparisons with advanced radiative magnetohydrodynamic simulations indicate that such Alfvén waves are energetic enough to accelerate the solar wind and possibly to heat the quiet corona. PMID:18063784

  2. Charge state composition in coronal hole and CME related solar wind: Latitudinal variations observed by Ulysses and WIND

    NASA Technical Reports Server (NTRS)

    Galvin, A. B.; Gloeckler, G.

    1997-01-01

    Iron charge states in recurrent coronal hole-associated solar wind flows are obtained in the ecliptic by WIND/SMS, while measurements of iron and silicon from the polar coronal holes are available from Ulysses/SWICS. Ulysses/SWICS also provides ion composition of coronal mass ejection (CME)-related solar wind. Both coronal hole-associated and CME-related solar wind charge charges show heliographic latitudinal variations.

  3. Solar activity variations in midlatitude thermospheric meridional winds

    NASA Technical Reports Server (NTRS)

    Hedin, A. E.; Buonsanto, M. J.; Codrescu, M.; Duboin, M.-L.; Fesen, C. G.; Hagan, M. E.; Miller, K. L.; Sipler, D. P.

    1994-01-01

    Upper thermospheric meridional wind data at midlatitudes and for low magnetic activity are examined for solar activity variations following an analysis scheme suggested by a Coordinated Analysis of the Thermosphere workshop. Wind data from incoherent scatter, Fabry-Perot, and F2 peak heights show decreasing diurnal amplitudes with increasing solar activity during all seasons, except for Saint Santin data, which show a slight increase in summer. Equivalent winds from F2 peak height data have strong decreases in diurnal amplitude in all seasons. The coupled thermosphere ionosphere model and thermosphere ionosphere global circulation model predictions of diurnal amplitude, while differing considerably in magnitude, also show decreasing amplitudes during all seasons except summer, while the HWM90 empirical model amplitudes increase slightly with solar activity during all seasons. The diurnal mean wind trends with solar activity are fairly weak, except for Millstone Hill incoherent scatter radar, which shows a shift from strong southward to near zero or northward wind with increasing activity. Model results for the mean generally fall within the band of measurements. Near midnight, most of the data also show that the typically southward winds weaken with increasing solart activity in all seasons except summer, when results are mixed. There are significant differences between the trends and between absolute values for the various data sets and models which need further investigation.

  4. On the correlation of spatial wind speed and solar irradiance variability above the North Sea

    NASA Astrophysics Data System (ADS)

    Rieke Mehrens, Anna; von Bremen, Lueder

    2016-04-01

    Mesoscale wind fluctuations on a time scale of tens of minutes to several hours lead to high wind power fluctuations. Enhanced mesoscale wind variability emerges during cold air outbreaks and resulting cellular convection. The study investigates spatial wind and solar variability and their correlation during cellular convection. Cellular convection leads to simultaneous high solar and wind variability, but the highest solar or wind variability occurs due to other meteorological phenomena.

  5. Fast solar wind monitoring available: BMSW in operation

    NASA Astrophysics Data System (ADS)

    afrnkov, J.; N?me?ek, Z.; P?ech, L.; Zastenker, G.

    2013-06-01

    The Spektr-R spacecraft was launched on a Zenit-3F rocket into an orbit with a perigee of 10.000 kilometers and apogee of 390.000 km on July 18, 2011. The spacecraft operational lifetime would exceed five years. The main task of the mission is investigations of distant sources of electromagnetic emissions but, as a supporting measurement, the spacecraft carries a complex of instruments for solar wind monitoring because it will spend there ~ 8 days out of the 9-day orbit. The main task of the solar wind monitor (BMSW) is to provide fast measurements of the solar wind density, velocity, and temperature with a maximum time resolution of 31 ms. Such time resolution was obtained using simultaneous measurements of several Faraday cups oriented permanently nearly in the solar wind direction. In this paper, we describe briefly basic principles of the BMSWoperation, and show a few examples its observations. We present frequency spectra of the solar wind turbulence at the kinetic scale and an example of high-frequency waves associated with an IP shock.

  6. Solar-Wind/Magnetosphere Coupling: The Turbulence Effect

    NASA Astrophysics Data System (ADS)

    Borovsky, J. E.; Funsten, H. O.

    2002-12-01

    The correlation between the amplitude of the MHD turbulence in the upstream solar wind and the amplitude of the Earth's geomagnetic-activity indices AE, AU, AL, Kp, ap, Dst, and PCI is explored. Increased amplitudes of the turbulence results in elevated geomagnetic indices. It is found that this "turbulence effect" accounts for about 100 nT of the variability of the AE index. The magnitude of the effect is the same for northward and for southward IMF. Tests are performed that conclude (1) that the turbulence effect is not caused by the turbulence amplitude acting as a proxy for |B| in the solar wind and (2) that reversals of the IMF from northward to southward in the turbulent fluctuations is not the cause of the correlations. An expression is derived for the total viscous-shear force on the surface of the magnetosphere; improved solar-wind/magnetosphere correlations result when this expression is used. The turbulence effect is interpreted as an enhanced viscous coupling of the solar-wind flow to the Earth's magnetosphere caused by an eddy viscosity that is controlled by the amplitude of MHD turbulence in the upstream solar wind: more upstream turbulence means more momentum transfer from the magnetosheath into the magnetosphere, resulting in more stirring of the magnetosphere, which produces enhanced geomagnetic-activity indices. The total energy input to the magnetosphere by this eddy-viscous coupling is theoretically estimated and compared with the data.

  7. Direct evidence for kinetic effects associated with solar wind reconnection

    NASA Astrophysics Data System (ADS)

    Xu, Xiaojun; Wang, Yi; Wei, Fengsi; Feng, Xueshang; Deng, Xiaohua; Ma, Yonghui; Zhou, Meng; Pang, Ye; Wong, Hon-Cheng

    2015-01-01

    Kinetic effects resulting from the two-fluid physics play a crucial role in the fast collisionless reconnection, which is a process to explosively release massive energy stored in magnetic fields in space and astrophysical plasmas. In-situ observations in the Earth's magnetosphere provide solid consistence with theoretical models on the point that kinetic effects are required in the collisionless reconnection. However, all the observations associated with solar wind reconnection have been analyzed in the context of magnetohydrodynamics (MHD) although a lot of solar wind reconnection exhausts have been reported. Because of the absence of kinetic effects and substantial heating, whether the reconnections are still ongoing when they are detected in the solar wind remains unknown. Here, by dual-spacecraft observations, we report a solar wind reconnection with clear Hall magnetic fields. Its corresponding Alfvenic electron outflow jet, derived from the decouple between ions and electrons, is identified, showing direct evidence for kinetic effects that dominate the collisionless reconnection. The turbulence associated with the exhaust is a kind of background solar wind turbulence, implying that the reconnection generated turbulence has not much developed.

  8. COLLISIONLESS DAMPING AT ELECTRON SCALES IN SOLAR WIND TURBULENCE

    SciTech Connect

    TenBarge, J. M.; Howes, G. G.; Dorland, W.

    2013-09-10

    The dissipation of turbulence in the weakly collisional solar wind plasma is governed by unknown kinetic mechanisms. Two candidates have been suggested to play an important role in the dissipation, collisionless damping via wave-particle interactions and dissipation in small-scale current sheets. High resolution spacecraft measurements of the turbulent magnetic energy spectrum provide important constraints on the dissipation mechanism. The limitations of popular fluid and hybrid numerical schemes for simulation of the dissipation of solar wind turbulence are discussed, and instead a three-dimensional kinetic approach is recommended. We present a three-dimensional nonlinear gyrokinetic simulation of solar wind turbulence at electron scales that quantitatively reproduces the exponential form of the turbulent magnetic energy spectrum measured in the solar wind. A weakened cascade model that accounts for nonlocal interactions and collisionless Landau damping also quantitatively agrees with the observed exponential form. These results establish that a turbulent cascade of kinetic Alfven waves that is terminated by collisionless Landau damping is sufficient to explain the observed magnetic energy spectrum in the dissipation range of solar wind turbulence.

  9. Direct evidence for kinetic effects associated with solar wind reconnection.

    PubMed

    Xu, Xiaojun; Wang, Yi; Wei, Fengsi; Feng, Xueshang; Deng, Xiaohua; Ma, Yonghui; Zhou, Meng; Pang, Ye; Wong, Hon-Cheng

    2015-01-01

    Kinetic effects resulting from the two-fluid physics play a crucial role in the fast collisionless reconnection, which is a process to explosively release massive energy stored in magnetic fields in space and astrophysical plasmas. In-situ observations in the Earth's magnetosphere provide solid consistence with theoretical models on the point that kinetic effects are required in the collisionless reconnection. However, all the observations associated with solar wind reconnection have been analyzed in the context of magnetohydrodynamics (MHD) although a lot of solar wind reconnection exhausts have been reported. Because of the absence of kinetic effects and substantial heating, whether the reconnections are still ongoing when they are detected in the solar wind remains unknown. Here, by dual-spacecraft observations, we report a solar wind reconnection with clear Hall magnetic fields. Its corresponding Alfvenic electron outflow jet, derived from the decouple between ions and electrons, is identified, showing direct evidence for kinetic effects that dominate the collisionless reconnection. The turbulence associated with the exhaust is a kind of background solar wind turbulence, implying that the reconnection generated turbulence has not much developed. PMID:25628139

  10. Direct evidence for kinetic effects associated with solar wind reconnection

    PubMed Central

    Xu, Xiaojun; Wang, Yi; Wei, Fengsi; Feng, Xueshang; Deng, Xiaohua; Ma, Yonghui; Zhou, Meng; Pang, Ye; Wong, Hon-Cheng

    2015-01-01

    Kinetic effects resulting from the two-fluid physics play a crucial role in the fast collisionless reconnection, which is a process to explosively release massive energy stored in magnetic fields in space and astrophysical plasmas. In-situ observations in the Earth's magnetosphere provide solid consistence with theoretical models on the point that kinetic effects are required in the collisionless reconnection. However, all the observations associated with solar wind reconnection have been analyzed in the context of magnetohydrodynamics (MHD) although a lot of solar wind reconnection exhausts have been reported. Because of the absence of kinetic effects and substantial heating, whether the reconnections are still ongoing when they are detected in the solar wind remains unknown. Here, by dual-spacecraft observations, we report a solar wind reconnection with clear Hall magnetic fields. Its corresponding Alfvenic electron outflow jet, derived from the decouple between ions and electrons, is identified, showing direct evidence for kinetic effects that dominate the collisionless reconnection. The turbulence associated with the exhaust is a kind of background solar wind turbulence, implying that the reconnection generated turbulence has not much developed. PMID:25628139

  11. SOLAR WIND MODELING WITH TURBULENCE TRANSPORT AND HEATING

    SciTech Connect

    Usmanov, Arcadi V.; Goldstein, Melvyn L.; Matthaeus, William H.; Breech, Benjamin A.

    2011-02-01

    We have developed an axisymmetric steady-state solar wind model that describes properties of the large-scale solar wind, interplanetary magnetic field, and turbulence throughout the heliosphere from 0.3 AU to 100 AU. The model is based on numerical solutions of large-scale Reynolds-averaged magnetohydrodynamic equations coupled with a set of small-scale transport equations for the turbulence energy, normalized cross helicity, and correlation scale. The combined set of time-dependent equations is solved in the frame of reference corotating with the Sun using a time-relaxation method. We use the model to study the self-consistent interaction between the large-scale solar wind and smaller-scale turbulence and the role of the turbulence in the large-scale structure and temperature distribution in the solar wind. To illuminate the roles of the turbulent cascade and the pickup protons in heating the solar wind depending on the heliocentric distance, we compare the model results with and without turbulence/pickup protons. The variations of plasma temperature in the outer heliosphere are compared with Ulysses and Voyager 2 observations.

  12. Structure of magnetic field in the solar wind

    SciTech Connect

    Chertkov, A.D.

    1995-06-01

    This work is concerned with empirical data on magnetic field in the solar wind in frame of a concept of dissipative solar wind, developed in earlier work. Interplanetary magnetic fields should be classified with respect to their origin. It is very important for all the theoretical problems from the necessity to specify correctly boundary and initial conditions: the magnetic field must be sewed with its source. One should select the field, connected directly with the Sun (stretched out from it), and the field of moving electric currents. It occured central in discussion about the velocity of Alfven waves, probably warming up the solar wind, relative to the Sun, the magnetic field and solar wind plasma. The selection problem corresponds to an inverse problem and obviously has no single solution. The dissipative model of the solar wind introduce the slipping and leakage of plasma relative to magnetic field. There are no `interplanetary current sheets` in it. But temporal fluctuations from the filamentation of electric currents play the key role. As a whole, the new concept requires the re-interpretation of main objects in the interplanetary magnetic field.

  13. The abundances of elements and isotopes in the solar wind

    NASA Technical Reports Server (NTRS)

    Gloeckler, George; Geiss, Johannes

    1989-01-01

    Solar wind abundances have now been measured for eleven elements and the isotopes of the noble gases. Aside from solar wind protons and alpha particles, which have been studied extensively since the 1960's, information for heavier elements is limited. Nevertheless, two effects stand out. First is the enrichment of abundances of elements with low first ionization potential (FIP), most likely the combined result of an atom-ion separation process in the upper chromosphere, and a marginal coupling of low-charge-state heavy ions to protons and alphas during the acceleration of the solar wind. Second, there is variability in the solar wind composition over a whole range of time scales. Recent measurements carried out in the earth's magnetosheath during times that included high-speed coronal-hole-associated flows indicate a significantly lower overabundance of low FIP elements. Given the fact that the He/H ratio is remarkably constant in the coronal hole solar wind, this result suggests that both enrichment and variability are reduced in such flows.

  14. Thermalization of Heavy Ions in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Tracy, Patrick J.; Kasper, Justin C.; Zurbuchen, Thomas H.; Raines, Jim M.; Shearer, Paul; Gilbert, Jason

    2015-10-01

    Observations of velocity distribution functions from the Advanced Composition Explorer/Solar Wind Ion Composition Spectrometer heavy ion composition instrument are used to calculate ratios of kinetic temperature and Coulomb collisional interactions of an unprecedented 50 ion species in the solar wind. These ions cover a mass per charge range of 1-5.5 amu/e and were collected in the time range of 1998-2011. We report the first calculation of the Coulomb thermalization rate between each of the heavy ion (A > 4 amu) species present in the solar wind along with protons (H+) and alpha particles (He2+). From these rates, we find that protons are the dominant source of Coulomb collisional thermalization for heavy ions in the solar wind and use this fact to calculate a collisional age for those heavy ion populations. The heavy ion thermal properties are well organized by this collisional age, but we find that the temperature of all heavy ions does not simply approach that of protons as Coulomb collisions become more important. We show that He2+ and C6+ follow a monotonic decay toward equal temperatures with protons with increasing collisional age, but O6+ shows a noted deviation from this monotonic decay. Furthermore, we show that the deviation from monotonic decay for O6+ occurs in solar wind of all origins, as determined by its Fe/O ratio. The observed differences in heavy ion temperature behavior point toward a local heating mechanism that favors ions depending on their charge and mass.

  15. Interaction of the solar wind with the moon.

    NASA Technical Reports Server (NTRS)

    Ness, N. F.

    1972-01-01

    During its orbit about the earth, the moon is located in the interplanetary medium or in the geomagnetosheath-geomagnetotail formed by the solar wind interaction with earth. In the tail, no evidence is found for a lunar magnetic field. In the interplanetary medium, no evidence exists for a bow shock or a trailing shock, although a well defined plasma wake region is observed in the anti-solar wind direction. The moon absorbs the solar wind plasma that strikes its surface and creates a void region or cavity in the flow. The observed lunar Mach cone gives evidence for the anisotropic propagation of waves in the magnetized collisionless warm plasma of the solar wind. The transmission of microstructural discontinuities in the interplanetary medium past the moon shows little distortion, indicating a low effective electrical conductivity of the lunar body. Fluctuations of the interplanetary magnetic field upstream from the plasma wake are stimulated by the disturbed conditions in that region. The moon behaves like a cold, nonmagnetic, fully absorbing dielectric sphere in the solar wind flow.

  16. Role of Concentrating Solar Power in Integrating Solar and Wind Energy: Preprint

    SciTech Connect

    Denholm, P.; Mehos, M.

    2015-06-03

    As wind and solar photovoltaics (PV) increase in penetration it is increasingly important to examine enabling technologies that can help integrate these resources at large scale. Concentrating solar power (CSP) when deployed with thermal energy storage (TES) can provide multiple services that can help integrate variable generation (VG) resources such as wind and PV. CSP with TES can provide firm, highly flexible capacity, reducing minimum generation constraints which limit penetration and results in curtailment. By acting as an enabling technology, CSP can complement PV and wind, substantially increasing their penetration in locations with adequate solar resource.

  17. Influence of interplanetary solar wind sector polarity on the ionosphere

    NASA Astrophysics Data System (ADS)

    liu, jing

    2014-05-01

    Knowledge of solar sector polarity effects on the ionosphere may provide some clues in understanding of the ionospheric day-to-day variability. A solar-terrestrial connection ranging from solar sector boundary (SB) crossings, geomagnetic disturbance and ionospheric perturbations has been demonstrated. The increases in interplanetary solar wind speed within three days are seen after SB crossings, while the decreases in solar wind dynamic pressure and magnetic field intensity immediately after SB crossings are confirmed by the superposed epoch analysis results. Furthermore, the interplanetary magnetic field (IMF) Bz component turns from northward to southward in March equinox and June solstice as the Earth passes from a solar sector of outward to inward directed magnetic fields, whereas the reverse situation occurs for the transition from toward to away sectors. The F2 region critical frequency (foF2) covering about four solar cycles and total electron content (TEC) during 1998-2011 are utilized to extract the related information, revealing that they are not modified significantly and vary within the range of 15% on average. The responses of the ionospheric TEC to SB crossings exhibit complex temporal and spatial variations and have strong dependencies on season, latitude, and solar cycle. This effect is more appreciable in equinoctial months than in solstitial months, which is mainly caused by larger southward Bz components in equinox. In September equinox, latitudinal profile of relative variations of foF2 at noon is featured by depressions at high latitudes and enhancements in low-equatorial latitudes during IMF away sectors. The negative phase of foF2 is delayed at solar minimum relative to it during other parts of solar cycle, which might be associated with the difference in longevity of major interplanetary solar wind drivers perturbing the Earth's environment in different phases of solar cycle.

  18. Solar Wind Drivers of Storm-Time Radiation Belt Variations

    NASA Astrophysics Data System (ADS)

    Kilpua, Emilia; Hietala, Heli; Turner, Drew; Koskinen, Hannu; Pulkkinen, Tuija; Rodriguez, Juan; Reeves, Geoffrey; Claudepierre, Seth; Spence, Harlan

    2015-04-01

    It is an outstanding question why some storms result in an increase of the outer radiation belt electron fluxes, while others deplete them or produce no change. One approach to this problem is to look at differences in the large-scale solar wind storm drivers. The drivers have traditionally been classified to Stream Interaction Regions (SIRs) and Interplanetary Coronal Mass Ejections (ICMEs). However, ICMEs and SIRs are complex structures: SIRs consist of a slow stream followed by a turbulent, higher pressure interface region and then a faster stream. The core of the ICME is an ejecta. If the mass ejection is fast enough, it can drive a shock in front of it. This leads to the formation of a sheath region between the interplanetary shock and the leading edge of the ejecta. Fast streams that are integral part of SIR may or may not follow the ICME. The solar wind properties, and hence, the magnetospheric driving of different substructures in SIRs and ICMEs are very distinct. In this work we will investigate the radiation belt response to different storm drivers by combining near-Earth solar wind observations, long-term geosynchronous observations from GOES spanning over 1.5 solar cycles (1995-2013) and the state-of-the art Van Allen Probe data. Our study uses superposed epoch analysis with multiple reference times and we expand/contract each solar wind substructure to the population mean. This novel approach allows us to determine the typical evolution of the electron fluxes during each solar wind structure. Our results show that the separation of the effects from different parts of the ICME and SIRs will be crucial for understanding how radiation belt electrons react to different solar wind driving conditions.

  19. Self-similar signature of the active solar corona within the inertial range of solar-wind turbulence.

    PubMed

    Kiyani, K; Chapman, S C; Hnat, B; Nicol, R M

    2007-05-25

    We quantify the scaling of magnetic energy density in the inertial range of solar-wind turbulence seen in situ at 1 AU with respect to solar activity. At solar maximum, when the coronal magnetic field is dynamic and topologically complex, we find self-similar scaling in the solar wind, whereas at solar minimum, when the coronal fields are more ordered, we find multifractality. This quantifies the solar-wind signature that is of direct coronal origin and distinguishes it from that of local MHD turbulence, with quantitative implications for coronal heating of the solar wind. PMID:17677760

  20. THE TURBULENT CASCADE AND PROTON HEATING IN THE SOLAR WIND DURING SOLAR MINIMUM

    SciTech Connect

    Coburn, Jesse T.; Smith, Charles W.; Vasquez, Bernard J.; Stawarz, Joshua E.; Forman, Miriam A. E-mail: Charles.Smith@unh.edu E-mail: Joshua.Stawarz@Colorado.edu

    2012-08-01

    The recently protracted solar minimum provided years of interplanetary data that were largely absent in any association with observed large-scale transient behavior on the Sun. With large-scale shear at 1 AU generally isolated to corotating interaction regions, it is reasonable to ask whether the solar wind is significantly turbulent at this time. We perform a series of third-moment analyses using data from the Advanced Composition Explorer. We show that the solar wind at 1 AU is just as turbulent as at any other time in the solar cycle. Specifically, the turbulent cascade of energy scales in the same manner proportional to the product of wind speed and temperature. Energy cascade rates during solar minimum average a factor of 2-4 higher than during solar maximum, but we contend that this is likely the result of having a different admixture of high-latitude sources.

  1. Change of solar wind quasi-invariant in solar cycle 23—Analysis of PDFs

    NASA Astrophysics Data System (ADS)

    Leitner, M.; Farrugia, C. J.; Vörös, Z.

    2011-02-01

    An in situ solar wind measurement which is a very good proxy for solar activity, correlating well with the sunspot number, is the solar wind “quasi-invariant” (QI), which is defined as the ratio between magnetic and kinetic energy densities. Here we use 1-min OMNI data to determine yearly probability density functions (PDFs) for QI. We distinguish between fast and slow solar winds, and exclude interplanetary coronal mass ejections (ICMEs) from the data, since the latter have a different distribution. Fitting the PDFs by a log-kappa distribution, we discuss the variation of QI in the period 1995-2009, encompassing solar cycle 23 and the long, very quiet minimum in 2007-2009. The additional value of kappa allows us to obtain a better description for the tails of the distribution than the log-normal approach. Here we describe for the first time how parameter kappa changes over one solar cycle.

  2. Solar wind and coronal rotation during an activity cycle

    NASA Astrophysics Data System (ADS)

    Pinto, Rui; Brun, Allan Sacha

    The properties of the solar wind flow are strongly affected by the time-varying strength and geometry of the global background magnetic field. The wind velocity and mass flux depend directly on the size and position of the wind sources at the surface, and on the geometry of the magnetic flux-tubes along which the wind flows. We address these problems by performing numerical simulations coupling a kinematic dynamo code (STELEM) evolve in a 2.5D axisymmetric coronal MHD code (DIP) covering an 11 yr activity cycle. The latitudinal distribution of the calculated wind velocities agrees with in-situ (ULYSSES, HELIO) and radio measurements (IPS). The transition from fast to slow wind flows can be explained in terms of the high overall flux-tube superradial expansion factors in the vicinities of coronal streamer boundaries. We found that the Alfvén radii and the global Sun's mass loss rate vary considerably throughout the cycle (by a factor 4.5 and 1.6, respectively), leading to strong temporal modulations of the global angular momentum flux and magnetic braking torque. The slowly varying magnetic topology introduces strong non-uniformities in the coronal rotation rate in the first few solar radii. Finally, we point out directions to assess the effects of surface transient phenomena on the global properties of the solar wind.

  3. Observing MHD Waves in the Solar Wind Acceleration Region

    NASA Astrophysics Data System (ADS)

    DeForest, Craig; McComas, Dave; Howard, Tim A.

    2014-06-01

    We have, for the first time, observed and characterized compressive waves propagating both outward and inward in the outer solar corona above 4 Rs. In addition to detecting the waves, we have used them to measure outflow in the all-important wind acceleration region. Because the corona is an MHD system, any disturbance in the corona launches low-frequency waves that propagate at the familiar MHD speeds and serve to communicate that disturbance to other parts of the system. Through careful filtration of synoptic STEREO-A/COR-2 data, we have been able to measure both inbound and outbound waves at all locations in the solar corona. By measuring in/out asymmetries in the wave characteristics we have been able to estimate the solar wind acceleration profile. Further, we are able to estimate the location of the Alfvén surface - the hard-to-measure transition between the corona and the superalfvénic solar wind, and the boundary at which solar magnetic field lines transition from "closed" to "open". There is a great deal of work to be done beyond these preliminary results, which - it is hoped - open a new avenue for understanding coronal dynamics and the origin of the solar wind.

  4. Simulation of solar wind space weathering in orthopyroxene

    NASA Astrophysics Data System (ADS)

    Kuhlman, Kimberly R.; Sridharan, Kumar; Kvit, Alexander

    2015-09-01

    We have simulated solar wind-based space weathering on airless bodies in our Solar System by implanting hydrogen and helium into orthopyroxene at solar wind energies (~1 keV/amu). Here we present the results of the first scanning transmission electron microscope (STEM) study of one of these simulants. It has been demonstrated that the visible/near infrared (VNIR) reflectance spectra of airless bodies are dependent on the size and abundance of nanophase iron (npFe0) particles in the outer rims of regolith grains. However, the mechanism of formation of npFe0 in the patina on lunar regolith grains and in lunar agglutinates remains debated. As the lattice is disrupted by hydrogen and helium implantation, broken bonds are created. These dangling bonds are free to react with hydrogen, creating OH and/or H2O molecules within the grain. These molecules may diffuse out through the damaged lattice and migrate toward the cold traps identified at the lunar poles. This mechanism would leave the iron in a reduced state and able to form npFe0. This work illustrates that npFe0 can be nucleated in orthopyroxene under implantation of solar wind hydrogen and helium. Our data suggest that the solar wind provides a mechanism by which iron is reduced in the grain and npFe0 is nucleated in the outer surfaces of regolith grains. This formation mechanism should also operate on other airless bodies in the Solar System.

  5. The Solar Wind at 20-30 AU

    NASA Technical Reports Server (NTRS)

    Barnes, A.; Gazis, P. R.

    1984-01-01

    Pioneer 10 sampled the interplanetary plasma over the range 20 to 30 astronomical units, during the period 1979-1983. The median flow speed is about 400 km/s, and at 20 AU the median density, proton temperature and dynamic pressure are, respectively, 0.025 cm-3, 10(4) K, and 6x10-11 dyne cm-2. It is shown that the average solar wind flow speed does not vary significantly with increasing heliocentric distance, and the density falls off as R-2, as predicted by simple solar wind models. The day-to-day variations in solar wind parameters are smaller at larger distance. Very large shocks however, were detected beyond 25 AU. Comparison of Pioneer 10 and 11 observations at similar distances but different phases of the solar activity cycle shows that solar wind dynamic pressure varies over a wider range during epochs of high solar activity. The variation near 20 AU is likely to be smaller at Voyager 2 Uranus encounter than observed by Pioneer 10 in the 1979-80 period.

  6. Generalized similarity in finite range solar wind magnetohydrodynamic turbulence.

    PubMed

    Chapman, S C; Nicol, R M

    2009-12-11

    Extended or generalized similarity is a ubiquitous but not well understood feature of turbulence that is realized over a finite range of scales. The ULYSSES spacecraft solar polar passes at solar minimum provide in situ observations of evolving anisotropic magnetohydrodynamic turbulence in the solar wind under ideal conditions of fast quiet flow. We find a single generalized scaling function characterizes this finite range turbulence and is insensitive to plasma conditions. The recent unusually inactive solar minimum--with turbulent fluctuations down by a factor of approximately 2 in power--provides a test of this invariance. PMID:20366193

  7. Generalized Similarity in Finite Range Solar Wind Magnetohydrodynamic Turbulence

    SciTech Connect

    Chapman, S. C.; Nicol, R. M.

    2009-12-11

    Extended or generalized similarity is a ubiquitous but not well understood feature of turbulence that is realized over a finite range of scales. The ULYSSES spacecraft solar polar passes at solar minimum provide in situ observations of evolving anisotropic magnetohydrodynamic turbulence in the solar wind under ideal conditions of fast quiet flow. We find a single generalized scaling function characterizes this finite range turbulence and is insensitive to plasma conditions. The recent unusually inactive solar minimum - with turbulent fluctuations down by a factor of approx2 in power - provides a test of this invariance.

  8. He abundance variations in the solar wind: Observations from Ulysses

    SciTech Connect

    Barraclough, B.L.; Feldman, W.C.; Gosling, J.T.; McComas, D.J.; Phillips, J.L.; Goldstein, B.E.

    1996-07-01

    The Ulysses mission is providing the first opportunity to observe variations in solar wind plasma parameters at heliographic latitudes far removed from the ecliptic plane. We present here an overview of the solar wind speed and the variability in helium abundance, [He], for the entire mission to date, data on [He] in six high-latitude coronal mass ejections (CMEs), and a superposed epoch analysis of [He] variations at the seven heliospheric current sheet (HCS) crossings made during the rapid-latitude-scan portion of the mission. The differences in the variability of the solar wind speed and [He] in high-latitude and equatorial regions are quite striking. Solar wind speed is generally low but highly variable near the solar equator, while at higher latitudes the average speed is quite high (average speed around 760 km/s) with little variability. [He] can vary over nearly two decades at low solar latitudes, while at high latitudes it varies only slightly around an average value of {approximately}4.3{percent}. In contrast to the high [He] that is often associated with CMEs observed near the ecliptic, none of the six high-speed CMEs encountered at high southern heliographic latitudes showed any significant variation in helium content from average values. Reasons for this difference between high and low latitude CME observations are not yet understood. A superposed epoch analysis of the [He] during all seven HCS crossings made as Ulysses passed from the southern to northern solar hemisphere shows the expected [He] minimum near the crossing and a broad ({plus_minus}3day) period of low [He] around the crossing time. We briefly discuss how our solar wind [He] observations may provide an accurate measure of the helium composition for all regions of the sun lying above the helium ionization zone. {copyright} {ital 1996 American Institute of Physics.}

  9. Weakest solar wind of the space age and the current 'MINI' solar maximum

    SciTech Connect

    McComas, D. J.; Angold, N.; Elliott, H. A.; Livadiotis, G.; Schwadron, N. A.; Smith, C. W.; Skoug, R. M.

    2013-12-10

    The last solar minimum, which extended into 2009, was especially deep and prolonged. Since then, sunspot activity has gone through a very small peak while the heliospheric current sheet achieved large tilt angles similar to prior solar maxima. The solar wind fluid properties and interplanetary magnetic field (IMF) have declined through the prolonged solar minimum and continued to be low through the current mini solar maximum. Compared to values typically observed from the mid-1970s through the mid-1990s, the following proton parameters are lower on average from 2009 through day 79 of 2013: solar wind speed and beta (∼11%), temperature (∼40%), thermal pressure (∼55%), mass flux (∼34%), momentum flux or dynamic pressure (∼41%), energy flux (∼48%), IMF magnitude (∼31%), and radial component of the IMF (∼38%). These results have important implications for the solar wind's interaction with planetary magnetospheres and the heliosphere's interaction with the local interstellar medium, with the proton dynamic pressure remaining near the lowest values observed in the space age: ∼1.4 nPa, compared to ∼2.4 nPa typically observed from the mid-1970s through the mid-1990s. The combination of lower magnetic flux emergence from the Sun (carried out in the solar wind as the IMF) and associated low power in the solar wind points to the causal relationship between them. Our results indicate that the low solar wind output is driven by an internal trend in the Sun that is longer than the ∼11 yr solar cycle, and they suggest that this current weak solar maximum is driven by the same trend.

  10. The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation for Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Kasper, J. C.; SWEAP Investigation Team

    2010-12-01

    The NASA Solar Probe Plus mission will be humanity’s first direct visit to the atmosphere of our Sun. The spacecraft will close to within nine solar radii (about four million miles) of the solar surface in order to observe the heating of the corona and the acceleration of the solar wind first hand. A key requirement for Solar Probe Plus is the ability to make continuous, accurate, and fast measurements of the electrons and ionized helium (alpha-particles) and hydrogen (protons) that constitute the bulk of the solar wind. The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation is a two-instrument suite that provides these observations. The purpose of this talk is to describe the science motivation for SWEAP, the instrument designs, and the expected data products. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SWEAP measurements enable discovery and understanding of solar wind acceleration and formation, coronal and solar wind heating, high-energy particle acceleration, and the interaction between solar wind and the dust environment of the inner heliosphere. SPC is a Faraday Cup (FC) that looks at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic analyzer (ESA) on the ram side of SPP (SPAN-A) and an electron ESA on the anti-ram side (SPAN-B). SPAN-A and -B are rotated 90 degrees relative to one another so their broad FOV combine like the seams on a baseball to view the entire sky except for the region obscured by the heat shield. SWEAP data products include ion and electron velocity distribution functions with high energy and angular resolution at 0.5-16 Hz and flow angles and fluxes at 128 Hz. Continuous buffering provides triggered burst observations during shocks, reconnection events, and other transient structures with no changes to the instrument operating mode.

  11. XMM-Newton Observations of Solar Wind Charge Exchange Emission

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.; Collier, M. R.; Kuntz, K. D.

    2004-01-01

    We present an XMM-Newton spectrum of diffuse X-ray emission from within the solar system. The spectrum is dominated by O VII and O VIII lines at 0.57 keV and 0.65 keV, O VIII (and possibly Fe XVII) lines at approximately 0.8 keV, Ne IX lines at approximately 0.92 keV, and Mg XI lines at approximately 1.35 keV. This spectrum is consistent with what is expected from charge exchange emission between the highly ionized solar wind and either interstellar neutrals in the heliosphere or material from Earth's exosphere. The emission is clearly seen as a low-energy ( E less than 1.5 keV) spectral enhancement in one of a series of observations of the Hubble Deep Field North. The X-ray enhancement is concurrent with an enhancement in the solar wind measured by the ACE satellite. The solar wind enhancement reaches a flux level an order of magnitude more intense than typical fluxes at 1 AU, and has ion ratios with significantly enhanced higher ionization states. Whereas observations of the solar wind plasma made at a single point reflect only local conditions which may only be representative of solar wind properties with spatial scales ranging from less than half of an Earth radii (approximately 10 s) to 100 Earth radii, X-ray observations of solar wind charge exchange are remote sensing measurements which may provide observations which are significantly more global in character. Besides being of interest in its own right for studies of the solar system, this emission can have significant consequences for observations of more cosmological objects. It can provide emission lines at zero redshift which are of particular interest (e.g., O VII and O VIII) in studies of diffuse thermal emission, and which can therefore act as contamination in objects which cover the entire detector field of view. We propose the use of solar wind monitoring data, such as from the ACE and Wind spacecraft, as a diagnostic to screen for such possibilities.

  12. Application of grazing incidence x-ray fluorescence technique to discriminate and quantify implanted solar wind

    SciTech Connect

    Kitts, K.; Choi, Y.; Eng, P. J.; Ghose, S. K.; Sutton, S. R.; Rout, B.

    2009-03-15

    NASA launched the Genesis return mission to obtain pristine solar wind samples in order to better understand solar wind mechanics, solar physics, and solar system evolution. Unfortunately, the probe crash-landed shattering the collector plates necessitating the application of a grazing incidence x-ray fluorescence technique. This nondestructive methodology differentiates the terrestrial contamination from the low concentration implanted solar wind. Using this technique, the elemental depth distribution is obtained resulting in the determination of absolute solar wind elemental abundance. We describe this application and present the solar wind Fe concentration determination as an example.

  13. Solar wind driving of magnetospheric ultra-low frequency pulsations

    NASA Astrophysics Data System (ADS)

    Claudepierre, Seth G.

    Two solar wind parameters in particular are thought to be responsible for the majority of solar wind-driven ULF waves. These two parameters, solar wind dynamic pressure and solar wind velocity, are studied in this work through the use of global magnetohydrodynamic (MHD) simulations of the solar wind- magnetosphere interaction. We drive the global MHD simulations with idealized solar wind input conditions, chosen to mimic each of the above mechanisms. This allows us to study, in isolation, both of the solar wind parameters and to compare and contrast their effectiveness in the generation of magnetospheric ULF waves. Moreover, the global, three-dimensional nature of the MHD simulations allows us to fully characterize the spectral properties and global distribution of the ULF waves generated. These wave properties are known from a theoretical standpoint to be important for the interaction of ULF waves with radiation belt electrons. From these considerations, we are able to quantify the effect that the simulated ULF waves could have on radiation belt electrons, and thus, how the solar wind ultimately couples its energy into the radiation belts. Though this is the primary goal of our work, these investigations have uncovered two magnetospheric phenomenon, the MHD Kelvin-Helmholtz instability and magnetospheric cavity modes, that have never before been studied in the realistic magnetospheric configuration provided by global MHD simulations. The MHD Kelvin-Helmholtz instability has long been predicted to occur at the boundary interface between the solar wind and the magnetosphere and is often invoked as an explanation for various magnetospheric phenomenon. For example, several theoretical studies have suggested that the Kelvin-Helmholtz instability at the magnetospheric boundary drives magnetospheric field-line resonances, resonant oscillations of geomagnetic field lines analogous to standing waves on a string. In addition, the nonlinear evolution of the MHD Kelvin-Helmholtz instability leads to large-scale (several times the size of the Earth) vortices in the plasma flow. A number of studies have suggested that these vortical structures are responsible for the entry of solar wind plasma into the magnetosphere. This is an important process in the magnetosphere as solar wind plasma ultimately fuels geomagnetic storms and the auroras. Though the magnetospheric Kelvin-Helmholtz interaction has been studied from a theoretical standpoint in simple flow configurations for many years, it has received little attention in modern, global MHD simulations. Moreover, while many studies have presented surface wave observations that can be easily explained in terms of the Kelvin-Helmholtz theory, others argue that the observations can just as easily be explained by fluctuating upstream solar wind plasma parameters. We circumvent these ambiguities by driving global MHD simulations with idealized solar wind input conditions, where all of the upstream solar wind plasma parameters are held constant. Thus, any surface waves generated at the magnetospheric boundary cannot be due to fluctuations in the upstream solar wind. We show that the Kelvin-Helmholtz instability is excited at both edges of the magnetospheric boundary layer and over a wide range of solar wind speeds (400-800 km/s). The results presented in the first half of this work are the first comprehensive study of the MHD Kelvin-Helmholtz instability in a realistic magnetospheric configuration. Magnetospheric cavity modes have been studied for many years, both theoretically and through simple numerical simulations. The concept of magnetospheric cavity modes is physically quite appealing; however, such oscillations have proved elusive in magnetospheric observations. Moreover, global MHD simulations have yet to reproduce cavity mode oscillations, further calling into question their existence. The results presented in the second half of this work show the excitation of magnetospheric cavity modes in global MHD simulations of the solar wind-magnetosphere interaction. These resonant cavity modes are excited when the frequency of upstream solar wind dynamic pressure fluctuations matches one of the natural frequencies of the magnetospheric cavity. Furthermore, the results from this study suggest that only even mode number cavity resonances can be excited within the magnetosphere. We also show that monochromatic fluctuations in the upstream solar wind dynamic pressure directly drive magnetospheric pulsations at the same frequency, regardless of whether or not these fluctuations simultaneously energize cavity mode resonances. These results provide substantial support for the existence of magnetospheric cavity modes, and also shed light on why cavity mode observations have thus far proved so elusive. (Abstract shortened by UMI.)

  14. Testing for multifractality of the slow solar wind

    NASA Astrophysics Data System (ADS)

    Macek, Wiesław M.; Bruno, Roberto; Consolini, Giuseppe

    We analyse a time series of the radial component of the Elsässer variable for the low-speed stream of the solar wind plasma representing Alfvénic fluctuations propagating downstream as measured in situ by the Helios spacecraft in the inner heliosphere. We demonstrate that the influence of noise in the data can be efficiently reduced by moving average and singular-value decomposition filters. We calculate the multifractal spectrum for the flow of the solar wind directly from the cleaned experimental signal. The resulting spectrum of dimensions shows a multifractal structure of the solar wind in the inner heliosphere. The obtained multifractal spectrum is consistent with that for the multifractal measure on the self-similar weighted Cantor set with the degree of multifractality of ˜10 -1.

  15. Energy coupling between the solar wind and the magnetosphere

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.

    1981-01-01

    A description is given of the path leading to the first approximation expression for the solar wind-magnetosphere energy coupling function (epsilon), which correlates well with the total energy consumption rate (U sub T) of the magnetosphere. It is shown that epsilon is the primary factor controlling the time development of magnetospheric substorms and storms. The finding of this particular expression epsilon indicates how the solar wind couples its energy to the magnetosphere; the solar wind and the magnetosphere make up a dynamo. In fact, the power generated by the dynamo can be identified as epsilon through the use of a dimensional analysis. In addition, the finding of epsilon suggests that the magnetosphere is closer to a directly driven system than to an unloading system which stores the generated energy before converting it to substorm and storm energies. The finding of epsilon and its implications is considered to have significantly advanced and improved the understanding of magnetospheric processes.

  16. Dominant 2D magnetic turbulence in the solar wind

    NASA Technical Reports Server (NTRS)

    Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.

    1995-01-01

    There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevector aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of inertial ranged magnetic spectra in the solar wind. The first test is based upon a characteristic difference between perpendicular and parallel reduced power spectra which is expected for the 2D component but not for the slab component. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant (approximately 85 percent by energy) 2D component in solar wind magnetic turbulence.

  17. Observations of the solar wind with high temporal resolution

    NASA Astrophysics Data System (ADS)

    Zastenker, G. N.; Yermolaev, Yu. I.; Pinter, S.; Nemechek, Z.; Shafrankova, Ia.; Belikova, A. B.; Leibov, A. V.; Prokhorenko, V. I.; Stefanovich, A. E.; Bedrikov, A. G.

    1982-11-01

    During 1980-1981, the joint Soviet-Czechoslovakian plasma spectrometer ('Monitor') aboard the Prognoz-8 satellite was used to carry out high-temporal-resolution observations of processes in the solar wind and earth's magnetosphere. The objective of the experiment was to obtain continuous data on basic parameters of the solar wind, i.e., velocity, ion temperature and density, and arrival angles of the flow; as well as to investigate fast variations of the energy spectrum of the ion component of the solar wind in the interplanetary medium and at characteristic boundaries of the earth's magnetosphere. This paper describes the method of the experiment, and discusses first results relating to ion spectra and magnetospheric boundaries.

  18. Solar-wind interactions - Nature and composition of lunar atmosphere

    NASA Technical Reports Server (NTRS)

    Mukherjee, N. R.

    1975-01-01

    The nature and composition of the lunar atmosphere are examined on the basis of solar-wind interactions, and the nature of the species in the trapped-gas layer is discussed using results of theoretical and experimental investigations. It is shown that the moon has a highly tenuous atmosphere consisting of various species derived from five sources: solar-wind interaction products, cosmic-ray interaction products, effects of meteoritic impacts, planetary degassing, and radioactive-decay products. Atmospheric concentrations are determined for those species derived from solar-wind protons, alpha particles, and oxygen ions. Carbon chemistry is briefly discussed, and difficulties encountered in attempts to determine quantitatively the concentrations of molecular oxygen, atomic oxygen, carbon monoxide, carbon dioxide, and methane are noted. The calculated concentrations are shown to be in good agreement with observations by the Apollo 17 lunar-surface mass spectrometer and orbital UV spectrometer.

  19. Effects of electrons on the solar wind proton temperature anisotropy

    SciTech Connect

    Michno, M. J.; Lazar, M.; Schlickeiser, R.; Yoon, P. H. E-mail: mlazar@tp4.rub.de E-mail: yoonp@umd.edu

    2014-01-20

    Among the kinetic microinstabilities, the firehose instability is one of the most efficient mechanisms to restrict the unlimited increase of temperature anisotropy in the direction of an ambient magnetic field as predicted by adiabatic expansion of collision-poor solar wind. Indeed, the solar wind proton temperature anisotropy detected near 1 AU shows that it is constrained by the marginal firehose condition. Of the two types of firehose instabilities, namely, parallel and oblique, the literature suggests that the solar wind data conform more closely to the marginal oblique firehose condition. In the present work, however, it is shown that the parallel firehose instability threshold is markedly influenced by the presence of anisotropic electrons, such that under some circumstances, the cumulative effects of both electron and proton anisotropies could describe the observation without considering the oblique firehose mode.

  20. PROTON KINETIC EFFECTS IN VLASOV AND SOLAR WIND TURBULENCE

    SciTech Connect

    Servidio, S.; Valentini, F.; Perrone, D.; Veltri, P.; Osman, K. T.; Chapman, S.; Califano, F.; Matthaeus, W. H.

    2014-02-01

    Kinetic plasma processes are investigated in the framework of solar wind turbulence, employing hybrid Vlasov-Maxwell (HVM) simulations. Statistical analysis of spacecraft observation data relates proton temperature anisotropy T /T {sub ∥} and parallel plasma beta β{sub ∥}, where subscripts refer to the ambient magnetic field direction. Here, this relationship is recovered using an ensemble of HVM simulations. By varying plasma parameters, such as plasma beta and fluctuation level, the simulations explore distinct regions of the parameter space given by T /T {sub ∥} and β{sub ∥}, similar to solar wind sub-datasets. Moreover, both simulation and solar wind data suggest that temperature anisotropy is not only associated with magnetic intermittent events, but also with gradient-type structures in the flow and in the density. This connection between non-Maxwellian kinetic effects and various types of intermittency may be a key point for understanding the complex nature of plasma turbulence.

  1. A hydromagnetic model of corotating conductive solar wind streams

    NASA Astrophysics Data System (ADS)

    Yeh, T.

    1984-01-01

    Under the assumption of quasi-azimuthal symmetry the governing equations of a steady hydromagnetic flow in a thermally conductive flux tube possess six invariants. Four of them represent constancy of mass efflux, energy efflux, angular momentum efflux and magnetic flux. Based on the entropy equation we obtain useful approximation in explicit expressions for the two remaining invariants. One of them provides the constraint which determines the compatible heat flux to ensure a vanishing pressure at infinity. Thus, the admissible solution that represents a corotating solar wind stream in terms of specified interplanetary condition can be calculated by an algebraic method, without the necessity of numerical integration. A two-point relationship is then derived, which correlates the solar wind properties at two separated interplanetary sites measured at two properly separated instants. This relationship may be applied to observational data from spacecraft and earth-bound satellites to discern the corotation feature in the solar wind.

  2. Ulysses solar wind plasma observations at high southerly latitudes.

    PubMed

    Phillips, J L; Bame, S J; Feldman, W C; Gosling, J T; Hammond, C M; McComas, D J; Goldstein, B E; Neugebauer, M; Scime, E E; Suess, S T

    1995-05-19

    Solar wind plasma observations made by the Ulysses spacecraft through -80.2 degrees solar latitude and continuing equatorward to -40.1 degrees are summarized. Recurrent high-speed streams and corotating interaction regions dominated at middle latitudes. The speed of the solar wind was typically 700 to 800 kilometers per second poleward of -35 degrees . Corotating reverse shocks persisted farther south than did forward shocks because of the tilt of the heliomagnetic streamer belt. Sporadic coronal mass ejections were seen as far south as -60.5 degrees . Proton temperature was higher and the electron strahl was broader at higher latitudes. The high-latitude wind contained compressional, pressure-balanced, and Alfvénic structures. PMID:17774231

  3. Lunar fossil magnetism and perturbations of the solar wind.

    NASA Technical Reports Server (NTRS)

    Sonett, C. P.; Mihalov, J. D.

    1972-01-01

    Perturbations of the solar wind downstream of the moon and lying outside of the rarefaction wave that defines the diamagnetic cavity are used to define possible source regions comprised of intrinsically magnetized areas of the moon. A map of the moon is constructed showing that a model in which the sources are exposed to the grazing solar wind during the lunation yields a selenographically invariant set of regions strongly favoring the lunar highlands over the maria. An alternative model with the source due to electromagnetic induction is explored. The ages of the field sources should be consistent with those based on the basalt ages and possibly far older if the sources are connected with the formation of the highland rocks themselves. The perturbations are tentatively identified as weak shock waves, and a Mach angle in accord with nominal values for the solar wind is found.

  4. CME propagation: where does solar wind drag 'take over'?

    NASA Astrophysics Data System (ADS)

    Subramanian, P.

    2013-12-01

    Coronal mass ejections (CMEs) from the Sun are known to be acted upon by driving as well as drag forces. They are generally thought to be driven by Lorentz self-forces, while the drag is due to viscous interaction with the ambient solar wind. However, the typical heliocentric distances at which driving forces cease to be dominant (and solar wind drag becomes important) is not obvious for most CMEs. We use a recently developed microphysical model for solar wind viscous drag (Subramanian, Lara and Borgazzi 2012) together with data for driving forces from a well observed set of flux rope CMEs to answer this question. These results are important for building quantitative models for CME propagation, especially for those CMEs which are not fast enough for one to assume that they are acted upon primarily by drag forces.

  5. Magnetic measurements of the solar wind interaction with the moon

    NASA Technical Reports Server (NTRS)

    Lichtenstein, B. R.; Coleman, P. J., Jr.; Russell, C. T.

    1973-01-01

    The magnetic signature of the interaction between the moon and the solar wind (as observed by the Apollo 15 subsatellite) is an enhanced field directly behind the moon, bounded on either side by two dips in the field strength. On occasion, compressions of the field strength are observed external to either one or sometimes both of these dips. Theories of the interaction postulate either that these compressions are a general feature of the solar wind-moon interaction modulated by changes in the solar wind parameters or that they are associated with the appearance of specific lunar regions at the limbs. The measurements of the lunar magnetic field with the Apollo 15 and 16 subsatellites, the mapping of projected source positions of limb compressions onto the lunar surface, and the study of the persistence of limb compressions supports the hypothesis that limb compressions are formed when regions of high magnetization are at the lunar limbs.

  6. Features of solar wind acceleration according to radio occultation data

    NASA Technical Reports Server (NTRS)

    Efimov, A. I.

    1995-01-01

    In addressing one of the fundamental problems in solar physics establishing the mechanism(s) responsible for the solar wind acceleration and the corona heating - it is essential to have a reliable knowledge of the heliocentric radial dependence of the solar wind properties. Adequate data are available for small solar distances R less than 4 R(solar mass) from coronal white light and EUV observations and at distances R greater than 60 R(solar mass) from in situ measurements. One of the few methods available to fill in the gap between these boundaries is the radio scintillation technique. Taking the example of the solar wind velocity, the most reliable such measurements are obtained when phase fluctuation observations of scattered radio waves, which are not susceptible to saturation effects, are recorded at two or more widely-spaced ground stations. Two extensive observation campaigns of this type were carried out with the Venus-orbiting satellites Venera 10 in 1976 and Venera 15/16 in 1984. The observations were performed over the course of three months near superior conjunction at solar offset distances R approximately 6-80 R(solar mass). The main results from the subsequent analysis of these data are: (1) velocities vary between 250 and 380 km s(exp -1) for R greater than 20 R(solar mass), agreeing with similar measurements using natural sources (IPS); (2) velocities derived from two-station phase fluctuation observations varv between 70 and 120 km s(exp -1) for R less than 12 R(solar mass), i.e. values substantially lower than those derived from conventional IPS data; and (3) it is suggested that the different velocity profiles derived from the two data sets at small R may be due to the effects of magnetosonic and Alfvenic waves on radio wave scattering. Further analysis of additional radio sounding data should help resolve the apparent discrepancy.

  7. Solar Wind Observations from 10 to 30 AU Measured With The New Horizons Solar Wind Around Pluto (SWAP) Instrument

    NASA Astrophysics Data System (ADS)

    Elliott, H. A.; McComas, D. J.; Valek, P. W.; Nicolaou, G.; Bagenal, F.; Delamere, P. A.; Livadiotis, G.

    2014-12-01

    Beginning in 2012 the New Horizons mission to Pluto began collecting solar wind observations during the spacecraft hibernation greatly increasing the solar wind coverage. We have extensively analyzed both the laboratory and flight calibration measurements for the Solar Wind Around Pluto (SWAP) instrument to produce a data set of solar wind observations at times when the New Horizons spacecraft is spinning. This full data set spans from 10 to 30 AU, and the improved coverage portion spans from 20- 30 AU. Coincidently, in 2012 and 2013 the ACE, STEREO A, and STEREO B were well separated in longitude. We compare the New Horizons speeds with propagated 1 AU speed measurements, and find many of the largest scale structures persist beyond 20 AU. The New Horizons solar wind coverage between 20 and 30 AU is now extensive enough to examine the temperature-speed relationship and compare that to the relationship found in the inner heliosphere and to that in the Voyager 2 observations. Upon initial examination we also find a temperature-speed relationship that persists in the 20-30 AU distance range.

  8. The New Horizons Solar Wind Around Pluto (SWAP) Observations of the Solar Wind from 11-33 au

    NASA Astrophysics Data System (ADS)

    Elliott, H. A.; McComas, D. J.; Valek, P.; Nicolaou, G.; Weidner, S.; Livadiotis, G.

    2016-04-01

    The Solar Wind Around Pluto (SWAP) instrument on National Aeronautics and Space Administration's New Horizons Pluto mission has collected solar wind observations en route from Earth to Pluto, and these observations continue beyond Pluto. Few missions have explored the solar wind in the outer heliosphere making this dataset a critical addition to the field. We created a forward model of SWAP count rates, which includes a comprehensive instrument response function based on laboratory and flight calibrations. By fitting the count rates with this model, the proton density (n), speed (V), and temperature (T) parameters are determined. Comparisons between SWAP parameters and both propagated 1 au observations and prior Voyager 2 observations indicate consistency in both the range and mean wind values. These comparisons as well as our additional findings confirm that small and midsized solar wind structures are worn down with increasing distance due to dynamic interaction of parcels of wind with different speed. For instance, the T-V relationship steepens, as the range in V is limited more than the range in T with distance. At times the T-V correlation clearly breaks down beyond 20 au, which may indicate wind currently expanding and cooling may have an elevated T reflecting prior heating and compression in the inner heliosphere. The power of wind parameters at shorter periodicities decreases with distance as the longer periodicities strengthen. The solar rotation periodicity is present in temperature beyond 20 au indicating the observed parcel temperature may reflect not only current heating or cooling, but also heating occurring closer to the Sun.

  9. Search for fine scale structures in high latitude solar wind

    NASA Technical Reports Server (NTRS)

    Livi, S.; Parenti, S.; Poletto, G.

    1995-01-01

    About 25 years ago, E. Parker suggested that, as a consequence of the inhomogeneous structure of the corona, the solar wind might consist of adjacent structures with different physical conditions. Since that suggestion was made, the solar wind plasma characteristics have been measured in situ through many experiments, but little has been done to check whether the solar wind shows any evidence for fine scale structures, and, in the affirmative, how far from the Sun these structures persist. A previous work on this subject, by Thieme, Marsch and Schwenn (1990), based on Helios data, lead these authors to claim that the solar wind, between 0.3 and 1 AU, is inhomogeneous on a scale consistent with the hypothesis that the plume-interplume plasmas, at those distances, still retain their identity. In this work we present preliminary results from an investigation of the solar wind fine structure from Ulysses high latitude observations. To this end, we have analyzed data over several months, during 1994, at times well after Ulysses's last encounter with the Heliospheric Current Sheet, when the spacecraft was at latitudes above 50 degrees. These data refer to high speed wind coming from southern polar coronal holes and are best suited for plume-interplume identification. We have performed a power spectra analysis of typical plasma parameters, to test whether the wind plasma consist of two distinct plasma populations. We also examined data to check whether there is any evidence for an horizontal pressure balance over the hypothesized distinct structures. Our results are discussed and compared with previous findings.

  10. Agua Caliente Wind/Solar Project at Whitewater Ranch

    SciTech Connect

    Hooks, Todd; Stewart, Royce

    2014-12-16

    Agua Caliente Band of Cahuilla Indians (ACBCI) was awarded a grant by the Department of Energy (DOE) to study the feasibility of a wind and/or solar renewable energy project at the Whitewater Ranch (WWR) property of ACBCI. Red Mountain Energy Partners (RMEP) was engaged to conduct the study. The ACBCI tribal lands in the Coachella Valley have very rich renewable energy resources. The tribe has undertaken several studies to more fully understand the options available to them if they were to move forward with one or more renewable energy projects. With respect to the resources, the WWR property clearly has excellent wind and solar resources. The DOE National Renewable Energy Laboratory (NREL) has continued to upgrade and refine their library of resource maps. The newer, more precise maps quantify the resources as among the best in the world. The wind and solar technology available for deployment is also being improved. Both are reducing their costs to the point of being at or below the costs of fossil fuels. Technologies for energy storage and microgrids are also improving quickly and present additional ways to increase the wind and/or solar energy retained for later use with the network management flexibility to provide power to the appropriate locations when needed. As a result, renewable resources continue to gain more market share. The transitioning to renewables as the major resources for power will take some time as the conversion is complex and can have negative impacts if not managed well. While the economics for wind and solar systems continue to improve, the robustness of the WWR site was validated by the repeated queries of developers to place wind and/or solar there. The robust resources and improving technologies portends toward WWR land as a renewable energy site. The business case, however, is not so clear, especially when the potential investment portfolio for ACBCI has several very beneficial and profitable alternatives.

  11. Turbulent Heating and Wave Pressure in Solar Wind Acceleration Modeling: New Insights to Empirical Forecasting of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Woolsey, L. N.; Cranmer, S. R.

    2013-12-01

    The study of solar wind acceleration has made several important advances recently due to improvements in modeling techniques. Existing code and simulations test the competing theories for coronal heating, which include reconnection/loop-opening (RLO) models and wave/turbulence-driven (WTD) models. In order to compare and contrast the validity of these theories, we need flexible tools that predict the emergent solar wind properties from a wide range of coronal magnetic field structures such as coronal holes, pseudostreamers, and helmet streamers. ZEPHYR (Cranmer et al. 2007) is a one-dimensional magnetohydrodynamics code that includes Alfven wave generation and reflection and the resulting turbulent heating to accelerate solar wind in open flux tubes. We present the ZEPHYR output for a wide range of magnetic field geometries to show the effect of the magnetic field profiles on wind properties. We also investigate the competing acceleration mechanisms found in ZEPHYR to determine the relative importance of increased gas pressure from turbulent heating and the separate pressure source from the Alfven waves. To do so, we developed a code that will become publicly available for solar wind prediction. This code, TEMPEST, provides an outflow solution based on only one input: the magnetic field strength as a function of height above the photosphere. It uses correlations found in ZEPHYR between the magnetic field strength at the source surface and the temperature profile of the outflow solution to compute the wind speed profile based on the increased gas pressure from turbulent heating. With this initial solution, TEMPEST then adds in the Alfven wave pressure term to the modified Parker equation and iterates to find a stable solution for the wind speed. This code, therefore, can make predictions of the wind speeds that will be observed at 1 AU based on extrapolations from magnetogram data, providing a useful tool for empirical forecasting of the sol! ar wind.

  12. The turbulent cascade and proton heating in the solar wind during solar minimum

    SciTech Connect

    Coburn, Jesse T.; Smith, Charles W.; Vasquez, Bernard J.; Stawarz, Joshua E.; Forman, Miriam A.

    2013-06-13

    Solar wind measurements at 1 AU during the recent solar minimum and previous studies of solar maximum provide an opportunity to study the effects of the changing solar cycle on in situ heating. Our interest is to compare the levels of activity associated with turbulence and proton heating. Large-scale shears in the flow caused by transient activity are a source that drives turbulence that heats the solar wind, but as the solar cycle progresses the dynamics that drive the turbulence and heat the medium are likely to change. The application of third-moment theory to Advanced Composition Explorer (ACE) data gives the turbulent energy cascade rate which is not seen to vary with the solar cycle. Likewise, an empirical heating rate shows no significan changes in proton heating over the cycle.

  13. Magnetotail substorms observations during different solar wind streams

    NASA Astrophysics Data System (ADS)

    Despirak, Irina; Lubchich, Andris; Koleva, Rositza

    In the literature there is enough evidence that in the course of substorm fast plasma flows in the magnetotail are observed and satellites in the near or middle tail can register a reversal of a tailward plasma flow to an earthward plasma flow. The observation of oppositely directed flows is interpreted as tailward movement of the reconnection site. In this work we will investigate the reconnection site location in the magnetotail during substorms observed under different solar wind structures - recurrent streams (RS), magnetic clouds (MC), and the region of compressed plasma in front of these streams (Sheaths and CIRs). We use data from Geotail spacecraft in the magnetotail and solar wind parameters from Wind spacecraft observations; the auroral bulge parameters were obtained by the Ultra Violet Imager onboard Polar. We considered data from the Geotail spacecraft in the magnetotail measured in the course of auroral bulge formation, during passage of solar wind magnetic clouds, recurrent streams and Sheaths and CIRs regions. 17 events are selected. It is shown that magnetic reconnection in the magnetotail takes place closer to Earth when substorm is observed during MC, and further in radial distance for substorms during solar wind recurrent streams.

  14. Source reliability in a combined wind-solar-hydro system

    NASA Astrophysics Data System (ADS)

    Traca de Almeida, A.; Martins, A.; Jesus, H.; Climaco, J.

    1983-06-01

    The results of an examination of the feasibility of using coupled wind-solar-hydro power generation systems to provide all of Portugal's electricity by the year 2000 are reported. Portugal used 15.6 TWh of electricity in 1981, of which hydro supplied 10 TWh. Demand is expected to reach 34 TWh in 2000 AD. The full development of hydropower resource would furnish 18 TWh and a storage capacity of 4.5 TWh. The installed hydro system could meet the peak demand of 6 GW, while solar cells and wind turbines must produce 16 TWh annually plus a reserve. The Growian wind turbine, 100 m tall, is considered for its 2.2 MW output. A coastal strip of wind turbines 150 x 20 km, with 1 km spacing between the machines, would be needed to produce 5.4 GW of power. Partially tracking solar cell arrays generating 9.4 GW of electricity would require an area of 100 sq km. Computer simulations of the annual rainfall, combined with projections of the variations in wind-solar output, demonstrates that a reserve margin of 1.20 will be necessary. The costs of installation of the renewable energy converters are estimated at about three times that currently necessary for obtaining the same capacity from fission power plants, although the situation may change due to import and technical considerations.

  15. SOLAR WIND MAGNETOHYDRODYNAMICS TURBULENCE: ANOMALOUS SCALING AND ROLE OF INTERMITTENCY

    SciTech Connect

    Salem, C.; Bale, S. D.; Mangeney, A.; Veltri, P.

    2009-09-01

    In this paper, we present a study of the scaling properties and intermittency of solar wind MHD turbulence based on the use of wavelet transforms. More specifically, we use the Haar Wavelet transform on simultaneous 3 s resolution particle and magnetic field data from the Wind spacecraft, to investigate anomalous scaling and intermittency effects of both magnetic field and solar wind velocity fluctuations in the inertial range. For this purpose, we calculated spectra, structure functions, and probability distribution functions. We show that this powerful wavelet technique allows for a systematic elimination of intermittency effects on spectra and structure functions and thus for a clear determination of the actual scaling properties in the inertial range. The scaling of the magnetic field and the velocity fluctuations are found to be fundamentally different. Moreover, when the most intermittent structures superposed to the standard fluctuations are removed, simple statistics are recovered. The magnetic field and the velocity fluctuations exhibit a well-defined, although different, monofractal behavior, following a Kolmogorov -5/3 scaling and a Iroshnikov-Kraichnan -3/2 scaling, respectively. The multifractal properties of solar wind turbulence appear to be determined by the presence of those most intermittent structures. Finally, our wavelet technique also allows for a direct and systematic identification of the most active, singular structures responsible for the intermittency in the solar wind.

  16. Solar wind mass-loading due to dust

    NASA Astrophysics Data System (ADS)

    Rasca, A. P.; Hornyi, M.

    2013-06-01

    Collisionless mass-loading by interplanetary dust particles is expected to cause a significant disruption in the flow of the solar wind. Dust particles near the Sun can become a source of ions and neutrals due to evaporation and sputtering. This mass-loading effect can lead to the formation of collisionless shocks, as it was first discussed in the case of solar wind interaction with comets. This effect can also be compared with a de Laval nozzle, which behaves differently between subsonic and supersonic flows. We investigate the effects of mass-loading resulting from sun-grazing comets or collisions by larger bodies in the vicinity of the Sun, where the solar wind transitions from subsonic to supersonic speeds. We look at results obtained using a simple 1D hydrodynamic model to mass-load ionized dust into the the wind near the sonic point, which are relevant for understanding the acceleration of the solar wind and possible changes in its composition due to dust.

  17. Solar Wind Mass-Loading Due to Dust

    NASA Astrophysics Data System (ADS)

    Rasca, A.; Horanyi, M.

    2011-12-01

    Collisionless mass-loading by interplanetary dust particles is expected to cause a significant disruption in the flow of the solar wind. Dust particles near the Sun can become a source of ions and neutrals due to evaporation and sputtering. This mass-loading effect can lead to the formation of collisionless shocks, as it was first discussed in the case of solar wind interaction with comets. This effect can also be compared with a de Laval nozzle, which behaves differently between subsonic and supersonic flows. We investigate the effects of mass-loading resulting from sun-grazing comets or collisions in the vicinity of the Sun, where the solar wind transitions from subsonic to supersonic speeds. We implement a hydrodynamic numerical model to generate a steady wind extending out to the inner heliosphere. Dust is introduced through a set of mass-loading source terms, and the model is evolved using a shock-capturing scheme. These results are relevant for understanding the acceleration of the solar wind and possible changes in its composition due to dust.

  18. Modulation of Saturn's radio clock by solar wind speed.

    PubMed

    Zarka, Philippe; Lamy, Laurent; Cecconi, Baptiste; Prangé, Renée; Rucker, Helmut O

    2007-11-01

    The internal rotation rates of the giant planets can be estimated by cloud motions, but such an approach is not very precise because absolute wind speeds are not known a priori and depend on latitude: periodicities in the radio emissions, thought to be tied to the internal planetary magnetic field, are used instead. Saturn, despite an apparently axisymmetric magnetic field, emits kilometre-wavelength (radio) photons from auroral sources. This emission is modulated at a period initially identified as 10 h 39 min 24 +/- 7 s, and this has been adopted as Saturn's rotation period. Subsequent observations, however, revealed that this period varies by +/-6 min on a timescale of several months to years. Here we report that the kilometric radiation period varies systematically by +/-1% with a characteristic timescale of 20-30 days. Here we show that these fluctuations are correlated with solar wind speed at Saturn, meaning that Saturn's radio clock is controlled, at least in part, by conditions external to the planet's magnetosphere. No correlation is found with the solar wind density, dynamic pressure or magnetic field; the solar wind speed therefore has a special function. We also show that the long-term fluctuations are simply an average of the short-term ones, and therefore the long-term variations are probably also driven by changes in the solar wind. PMID:17994092

  19. CORE ELECTRON HEATING IN SOLAR WIND RECONNECTION EXHAUSTS

    SciTech Connect

    Pulupa, M. P.; Salem, C.; Phan, T. D.; Bale, S. D.; Gosling, J. T.

    2014-08-10

    We present observational evidence of core electron heating in solar wind reconnection exhausts. We show two example events, one which shows clear heating of the core electrons within the exhaust, and one which demonstrates no heating. The event with heating occurred during a period of high inflow Alfvén speed (V {sub AL}), while the event with no heating had a low V {sub AL}. This agrees with the results of a recent study of magnetopause exhausts, and suggests that similar core electron heating can occur in both symmetric (solar wind) and asymmetric (magnetopause) exhausts.

  20. The Impact of Solar Winds on Navigation Aids

    NASA Astrophysics Data System (ADS)

    Sandford, W. H.

    Recent developments in remote imaging equipment carried on satellites have given the scientific community a vast amount of new information about the Sun and its atmosphere. Media coverage of the remarkable discoveries accompanied by impressive images of the Sun's atmosphere, and linkage to the loss of a television satellite over the United States, have focused public attention on the existence and effects of the Solar Wind. This paper sets out to illustrate the impact of the Solar Wind on radio aids to navigation, and to look at the possible effects on present and proposed systems.

  1. The solar wind-magnetosphere-ionosphere current-voltage relationship

    NASA Technical Reports Server (NTRS)

    Fedder, J. A.; Lyon, J. G.

    1987-01-01

    The global current-voltage relationship for the solar wind-magnetosphere-ionosphere system (SW-M-I) is investigated, restricting the study to strong southward IMF. The dynamo presently identified is on open field lines, and it operates at close to short circuit and at a fraction of the available power output. Control of the dynamo by ionospheric conductivity is discussed. Implications of the simulation results, including the relationship between open and closed field dynamos, the effect of solar wind conditions, the control of reconnection on the bow, the size of the open field line region, and the effects of increased auroral conductivity, are discussed.

  2. Solar wind control of magnetospheric pressure (CDAW 6)

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.

    1985-01-01

    The CDAW 6 data base is used to compare solar wind and magnetospheric pressures. The flaring angle of the tail magnetopause is determined by assuming that the component of solar wind pressure normal to the tail boundary is equal to the total pressure within the tail. Results indicate an increase in the tail flaring angle from 18 deg to 32 deg prior to the 1055 substorm onset and a decrease to 25 deg after the onset. This behavior supports the concept of tail energy storage before the substorm and subsequent release after the onset.

  3. Interpretation of Solar Wind Composition Measurements from Ulysses

    NASA Technical Reports Server (NTRS)

    Esser, Ruth

    1999-01-01

    Ion charge states measured in situ in interplanetary space carry information on the properties of the solar wind plasma in the inner corona. This information is, however, not easy to extract from the in situ observations. The goal of the proposal was to determine solar wind models and coronal observations that are necessary tools for the interpretation of charge state observations. It has been shown that the interpretation of the in situ ion fractions are heavily dependent on the assumptions about conditions in the inner corona.

  4. Mass fractionation of the lunar surface by solar wind sputtering

    NASA Technical Reports Server (NTRS)

    Switkowski, Z. E.; Haff, P. K.; Tombrello, T. A.; Burnett, D. S.

    1977-01-01

    An investigation is conducted concerning the mass-fractionation effects produced in connection with the bombardment of the moon by the solar wind. Most of the material ejected by sputtering escapes the moon's gravity, but some returning matter settles back onto the lunar surface. This material, which is somewhat richer in heavier atoms than the starting surface, is incorporated into the heavily radiation-damaged outer surfaces of grains. The investigation indicates that sputtering of the lunar surface by the solar wind will give rise to significant surface heavy atom enrichments if the grain surfaces are allowed to come into sputtering equilibrium.

  5. Electron energy transport in the solar wind: Ulysses observations

    SciTech Connect

    Scime, E.E.; Gary, S.P.; Phillips, J.L.; Balogh, A.; Lengyel-Frey, D.

    1996-07-01

    Previous analysis suggests that the whistler heat flux instability is responsible for the regulation of the electron heat flux of the solar wind. For an interval of quiescent solar wind during the in-ecliptic phase of the Ulysses mission, the plasma wave data in the whistler frequency regime are compared to the predictions of the whistler heat flux instability model. The data is well constrained by the predicted upper bound on the electron heat flux and a clear correlation between wave activity and electron heat flux dissipation is observed. {copyright} {ital 1996 American Institute of Physics.}

  6. Compressive turbulent cascade and heating in the solar wind

    SciTech Connect

    Marino, R.; Sorriso-Valvo, L.; Noullez, A.; Bruno, R.

    2010-03-25

    A turbulent energy cascade has been recently identified in high-latitude solar wind data samples by using a Yaglom-like relation. However, analogous scaling law, suitably modified to take into account compressible fluctuations, has been observed in a much more extended fraction of the same data set recorded by the Ulysses spacecraft. Thus, it seems that large scale density fluctuations, despite their low amplitude, play a major role in the basic scaling properties of turbulence. The compressive turbulent cascade, moreover, seems to be able to supply the energy needed to account for the local heating of the non-adiabatic solar wind.

  7. Electron energy transport in the solar wind: Ulysses observations

    SciTech Connect

    Scime, Earl E.; Gary, S. Peter; Phillips, John L.; Balogh, Andre; Lengyel-Frey, Denise

    1996-07-20

    Previous analysis suggests that the whistler heat flux instability is responsible for the regulation of the electron heat flux of the solar wind. For an interval of quiescent solar wind during the in-ecliptic phase of the Ulysses mission, the plasma wave data in the whistler frequency regime are compared to the predictions of the whistler heat flux instability model. The data is well constrained by the predicted upper bound on the electron heat flux and a clear correlation between wave activity and electron heat flux dissipation is observed.

  8. Solar wind interaction with Pluto’s escaping atmosphere

    NASA Astrophysics Data System (ADS)

    Bagenal, Fran; Stern, S. A.; Weaver, H. A.; Young, L. A.; Ennico, K.; Olkin, C.; McComas, D. J.; McNutt, R. L.; Horanyi, M.; Elliott, H. A.; Hill, M. E.; Zernstein, E.; Kollman, P.; Krimigis, S. M.; Lisse, C. M.; Strobel, D. F.; SzalAy, J.; Piquette, M.

    2015-11-01

    NASA’s New Horizons spacecraft carries two instruments, SWAP and PEPSSI, that measure low and high energy particles respectively. These particle instruments have been measuring the conditions in the solar wind for most of the trajectory from Earth to Pluto. The Venetia Burney Student Dust Counter measured impacts from micron-sixed dust particles. These particle instruments also made observations during the flyby of Pluto on July 14, 2015. We report on New Horizons measurements of the interaction of the solar wind interaction with Pluto’s extended atmosphere and discuss comparisons with theoretical expectations.

  9. On the long-tail solar wind electron velocity distribution

    NASA Technical Reports Server (NTRS)

    Shlesinger, Michael F.; Coplan, Michael A.

    1988-01-01

    The role of the log-normal distribution in the description of the high-energy tail of the electron velocity distribution in the solar wind plasma is examined. Specifically, it is shown that the core-halo solar wind distribution function can be understood in terms of a simple phenomenological model of general applicability in which the core has a Maxwellian or normal distribution and the halo a log-normal distribution. In the presence of structures in the interplanetary medium capable of interacting with the electrons, the model predicts a transition at the highest velocities to a secondary halo distribution.

  10. Interaction of Low-Activity Comets with the Solar Wind

    NASA Astrophysics Data System (ADS)

    Lebedev, Michail G.; Baranov, Vladimir B.; Alexashov, Dmitry B.

    2015-12-01

    The solar wind flow around a cometary atmosphere is calculated using the three-dimensional magnetohydrodynamic model developed by the authors. Emphasis is placed on the case of low-activity comets in which some special features, both quantitative and qualitative, are inherent. The behavior of the flowfield and the magnetic field disturbed by the cometary outflow is analyzed. Some similarity laws that govern the pattern of the interaction between the solar wind and a cometary atmosphere are derived on the basis of the calculated results.

  11. Measurement of Damage Profiles from Solar Wind Implantation

    NASA Technical Reports Server (NTRS)

    McNamara, K. M.; Synowicki, R. A.; Tiwald, T. E.

    2007-01-01

    NASA's Genesis Mission launched from Cape Canaveral in August of 2001 with the goal of collecting solar wind in ultra-pure materials. The samples were returned to Earth more than three years later for subsequent analysis. Although the solar wind is comprised primarily of protons, it also contains ionized species representing the entire periodic table. The Genesis mission took advantage of the natural momentum of these ionized species to implant themselves in specialized collectors including single crystal Si and SiC. The collectors trapped the solar wind species of interest and sustained significant damage to the surface crystal structure as a result of the ion bombardment. In this work, spectroscopic ellipsometry has been used to evaluate the extent of this damage in Si and SiC samples. These results and models are compared for artificially implanted samples and pristine non-flight material. In addition, the flown samples had accumulated a thin film of molecular contamination as a result of outgassing in flight, and we demonstrate that this layer can be differentiated from the material damage. In addition to collecting bulk solar wind samples (continuous exposure), the Genesis mission actually returned silicon exposed to four different solar wind regimes: bulk, high speed, low speed, and coronal mass ejections. Each of these solar wind regimes varies in energy, but may vary in composition as well. While determining the composition is a primary goal of the mission, we are also interested in the variation in depth and extent of the damage layer as a function of solar wind regime. Here, we examine flight Si from the bulk solar wind regime and compare the results to both pristine and artificially implanted Si. Finally, there were four samples which were mounted in an electrostatic "concentrator" designed to reject a large fraction (>85%) of incoming protons while enhancing the concentration of ions mass 4-28 amu by a factor of at least 20. Two of these samples were single crystal 6H silicon carbide. (The others were polycrystalline CVD diamond and amorphous carbon that were not examined in the work.) The ion damaged SiC samples from the concentrator were studied in comparison to the flight Si from the bulk array to understand differences in the extent of the damage.

  12. Coronal Magnetic Field Topology and Source of Fast Solar Wind

    NASA Technical Reports Server (NTRS)

    Guhathakurta, M.; Sittler, E.; Fisher, R.; McComas, D.; Thompson, B.

    1999-01-01

    We have developed a steady state, 2D semi-empirical MHD model of the solar corona and the solar wind with many surprising results. This model for the first time shows, that the boundary between the fast and the slow solar wind as observed by Ulysses beyond 1 AU, is established in the low corona. The fastest wind observed by Ulysses (680-780 km/s) originates from the polar coronal holes at 70 -90 deg. latitude at the Sun. Rapidly diverging magnetic field geometry accounts for the fast wind reaching down to a latitude of +/- 30 deg. at the orbit of Earth. The gradual increase in the fast wind observed by Ulysses, with latitude, can be explained by an increasing field strength towards the poles, which causes Alfven wave energy flux to increase towards the poles. Empirically, there is a direct relationship between this gradual increase in wind speed and the expansion factor, f, computed at r greater than 20%. This relationship is inverse if f is computed very close to the Sun.

  13. ACCELERATION OF THE SOLAR WIND BY ALFVEN WAVE PACKETS

    SciTech Connect

    Galinsky, V. L.; Shevchenko, V. I.

    2013-01-20

    A scale separation kinetic model of the solar wind acceleration is presented. The model assumes an isotropic Maxwellian distribution of protons and a constant influx of outward propagating Alfven waves with a single exponent Kolmogorov-type spectrum at the base of a coronal acceleration region ({approx}2 R {sub Sun }). Our results indicate that nonlinear cyclotron resonant interaction taking energy from Alfven waves and depositing it into mostly perpendicular heating of protons in initially weakly expanding plasma in a spherically non-uniform magnetic field is able to produce the typical fast solar wind velocities for the typical plasma and wave conditions after expansion to about 5-10 solar radii R {sub Sun }. The acceleration model takes into account the gravity force and the ambipolar electric field, as well as the mirror force, which plays the most important role in driving the solar wind acceleration. Contrary to the recent claims of Isenberg, the cold plasma dispersion only slightly slows down the acceleration and actually helps in obtaining the more realistic fast solar wind speeds.

  14. CHARACTERIZATION OF TRANSITIONS IN THE SOLAR WIND PARAMETERS

    SciTech Connect

    Perri, S.; Balogh, A. E-mail: a.balogh@imperial.ac.u

    2010-02-20

    The distinction between fast and slow solar wind streams and the dynamically evolved interaction regions is reflected in the characteristic fluctuations of both the solar wind and the embedded magnetic field. High-resolution magnetic field data from the Ulysses spacecraft have been analyzed. The observations show rapid variations in the magnetic field components and in the magnetic field strength, suggesting a structured nature of the solar wind at small scales. The typical sizes of fluctuations cover a broad range. If translated to the solar surface, the scales span from the size of granules ({approx}10{sup 3} km) and supergranules ({approx}10{sup 4} km) on the Sun down to {approx}10{sup 2} km and less. The properties of the short time structures change in the different types of solar wind. While fluctuations in fast streams are more homogeneous, slow streams present a bursty behavior in the magnetic field variances, and the regions of transition are characterized by high levels of power in narrow structures around the transitions. The probability density functions of the magnetic field increments at several scales reveal a higher level of intermittency in the mixed streams, which is related to the presence of well localized features. It is concluded that, apart from the differences in the nature of fluctuations in flows of different coronal origin, there is a small-scale structuring that depends on the origin of streams themselves but it is also related to a bursty generation of the fluctuations.

  15. Zero-beta MHD simulations of a solar eruption driven by a solar wind in the corona

    NASA Astrophysics Data System (ADS)

    Lee, Hwanhee; Magara, Tetsuya; Kang, Jihye

    2016-05-01

    Solar winds always exist in the corona, continuously carrying out magnetized plasmas from the solar surface toward the interplanetary space. We assume that a solar wind also plays an important role in producing a solar eruption. To confirm this hypothesis, we construct a solar eruption model in which a solar wind upflow is imposed at the top boundary of three-dimensional zero-beta magnetogydrodynamic (MHD) simulations. The initial magnetic field is given by nonlinear force-free field (NLFFF) reconstruction that is applied to the surface field provided by a flux emergence simulation. The simulation demonstrates that a solar eruption occurs due to the imbalance between magnetic pressure gradient force and magnetic tension force caused by a solar wind that gradually transports the envelope flux outward. This result provides important insights into the role of solar winds in producing solar eruptions.

  16. On the Origin of Mid-latitude Fast Wind: Challenging the Two-state Solar Wind Paradigm

    NASA Astrophysics Data System (ADS)

    Stakhiv, Mark; Landi, Enrico; Lepri, Susan T.; Oran, Rona; Zurbuchen, Thomas H.

    2015-03-01

    The bimodal paradigm of solar wind describes a slow solar wind situated near the heliospheric current sheet while a fast wind overexpands from the poles to fill in the remainder of the heliosphere. In this paper, we challenge this paradigm and focus here on mid-latitude wind using three fast-latitude passes completed by the Ulysses spacecraft. Based on its composition and dynamic properties, we discuss how this wind differs from both the fast, polar coronal hole wind and the low latitude, streamer-associated slow solar wind. Using a detailed analysis of ionic and elemental abundances, as well as solar wind dynamic properties, we conclude that there is a third quasi-stationary solar wind state, called the boundary wind. This boundary wind is characterized by a charge-state distribution that is similar to slow wind, but with an elemental composition that is coronal hole like. Based on these data, we present arguments for the location of the origin of this wind. We conclude that the boundary wind is a subset of the fast wind emanating from regions close to the boundaries of coronal holes and is accelerated by a similar process.

  17. The solar wind as a turbulence laboratory- some new quantitative points of contact between theory, simulation and solar wind observations

    NASA Astrophysics Data System (ADS)

    Chapman, S. C.; Gogoberidze, G.; Hnat, B.; Mueller, W.-C.; Turner, A. J.

    2012-04-01

    The solar wind flow has a Reynolds number of order 105. Single point observations suitable for the study of turbulence are on timescales from below ion kinetic scales up to days. Central to the concept of using the solar wind as a test laboratory for plasma turbulence are methods that allow direct quantitative comparison between the predictions of theory and simulation, and the observations. Critically, theoretical predictions, and data analysis methods, must come together in a manner in which uncertainties can be well understood, and thus different theoretical scenarios be distinguished unambiguously. Scaling is a key prediction of theories of infinite range turbulence. Its full characterization requires the scaling exponents of all the moments of the probability density of fluctuations as a function of scale. In practice, only the first few moments are accessible. Most comparisons with theory focus on the second moment scaling, that is, the exponent of the power spectral density (PSD). Solar wind plasma turbulence is anisotropic due to the presence of a background field, so that in general the power spectral density (or correlation) tensor is needed to characterise the turbulence. We focus on the ratios of the PSD tensor terms which are sensitive to the scaling exponent, providing a method for direct observational tests of theories. The reduced PSD tensor accessed by single spacecraft measurements yields ratios of perpendicular terms which we show are robust to uncertainties. These can clearly distinguish turbulence theories as we show for the Goldreich-Sridhar model of MHD turbulence, and the 'slab-2D' solar wind model, which we compare with ULYSSES observations. The comparison between solar wind observations, and 'fly throughs' of DNS of MHD turbulence, is also an informative tool to understand the reduced PSD tensor. We will use this alongside Cluster observations to propose an origin of the observed non-axisymmetry of solar wind turbulence. Properties of the PSD tensor thus provide a useful diagnostic to test theories of turbulence, both in DNS, and in the data.

  18. Elemental and isotopic abundances in the solar wind

    NASA Technical Reports Server (NTRS)

    Geiss, J.

    1972-01-01

    The use of collecting foils and lunar material to assay the isotopic composition of the solar wind is reviewed. Arguments are given to show that lunar surface correlated gases are likely to be most useful in studying the history of the solar wind, though the isotopic abundances are thought to give a good approximation to the solar wind composition. The results of the analysis of Surveyor material are also given. The conditions leading to a significant component of the interstellar gas entering the inner solar system are reviewed and suggestions made for experimental searches for this fraction. A critical discussion is given of the different ways in which the basic solar composition could be modified by fractionation taking place between the sun's surface and points of observation such as on the Moon or in interplanetary space. An extended review is made of the relation of isotopic and elemental composition of the interplanetary gas to the dynamic behavior of the solar corona, especially processes leading to fractionation. Lastly, connection is made between the subject of composition, nucleosynthesis and the convective zone of the sun, and processes leading to modification of initial accretion of certain gases on the Earth and Moon.

  19. Solar wind plasma: Kinetic properties and micro- instabilities

    NASA Astrophysics Data System (ADS)

    Kasper, Justin Christophe

    2002-11-01

    The kinetic properties of ions in the solar wind plasma are studied. Observations of solar wind +H and +2He by the Faraday Cup instrument component of the Solar Wind Experiment on the Wind spacecraft show that these ions have magnetic field- aligned, convected, bi-Maxwellian velocity distribution functions. The analysis yields the best-fit values of the bulk velocity, U? , number density n, and parallel T ? and perpendicular T? temperatures of each of the ion species. The accuracy of each of these measurements is studied and an absolute calibration of the Faraday Cup is performed, demonstrating the accuracy of the densities to ?2%. The range of the proton temperature anisotropy Rp ? T?p/T ?p is explored, and it is demonstrated that thermodynamic concepts such as the double adiabatic equations of state are insufficient approximations for a kinetic description of the solar wind plasma. It is shown that Rp is constrained on macroscopic timescales by Coulomb relaxation and the expansion of the solar wind, and on kinetic timescales by the mirror, cyclotron, and firehose plasma micro- instabilities. Electromagnetic fluctuations generated by growing mirror and cyclotron modes are detected in the solar wind. The first detailed observations of the firehose instability are presented. The limiting bounds to Rp imposed by each of these instabilities are measured and compared with the theoretical predictions of fluid magnetohydrodynamics, linear kinetic Vlasov theory, and numerical simulations. It is shown that the predictions of linear theory and the simulations are in agreement with the observations. A new proton temperature anisotropy driven instability in the regieme Rp < 1, ? ?p < 1 is discovered. The kinetic properties of +H and +2He are compared. For the first time a cyclotron resonant instability driven by the proton temperature anisotropy is demonstrated to limit the differential flow DU??U? a- Up attainable in the solar wind, in confirmation of recent theoretical predictions. It is shown that the +2He temperature anisotropy R? ? T??/T ?? is also constrained by micro- instabilities, and the first observations of the +2He cyclotron and firehose instabilities are presented. The parallel and perpendicular temperatures of +H and +2He are compared, and evidence of cyclotron-resonant heating of +2He preferentially to +H in the interplanetary medium is presented. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  20. A Model fot the Sources of the Slow Solar Wind

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.; Mikic, Z.; Titov, V. S.; Lionello, R.; Linker, J. A.

    2011-01-01

    Models for the origin of the slow solar wind must account for two seemingly contradictory observations: the slow wind has the composition of the closed-field corona, implying that it originates from the continuous opening and closing of flux at the boundary between open and closed field. On the other hand, the slow wind also has large angular width, up to approx.60deg, suggesting that its source extends far from the open-closed boundary. We propose a model that can explain both observations. The key idea is that the source of the slow wind at the Sun is a network of narrow (possibly singular) open-field corridors that map to a web of separatrices and quasi-separatrix layers in the heliosphere. We compute analytically the topology of an open-field corridor and show that it produces a quasi-separatrix layer in the heliosphere that extends to angles far from the heliospheric current sheet. We then use an MHD code and MDI/SOHO observations of the photospheric magnetic field to calculate numerically, with high spatial resolution, the quasi-steady solar wind, and magnetic field for a time period preceding the 2008 August 1 total solar eclipse. Our numerical results imply that, at least for this time period, a web of separatrices (which we term an S-web) forms with sufficient density and extent in the heliosphere to account for the observed properties of the slow wind. We discuss the implications of our S-web model for the structure and dynamics of the corona and heliosphere and propose further tests of the model. Key words: solar wind - Sun: corona - Sun: magnetic topology

  1. Solar Wind Characteristics from SOHO-Sun-Ulysses Quadrature Observations

    NASA Technical Reports Server (NTRS)

    Poletto, Giannina; Suess, Steve T.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Over the past few years, we have been running SOHO (Solar and Heliospheric Observatory)-Sun-Ulysses quadrature campaigns, aimed at comparing the plasma properties at coronal altitudes with plasma properties at interplanetary distances. Coronal plasma has been observed by SOHO experiments: mainly, we used LASCO (Large Angle and Spectrometric Coronagraph Experiment) data to understand the overall coronal configuration at the time of quadratures and analyzed SUMER (Solar Ultraviolet Measurements of Emitted Radiation), CDS (Coronal Diagnostic Spectrometer) and UVCS (Ultraviolet Coronagraph Spectrometer) data to derive its physical characteristics. At interplanetary distances, SWICS (Solar Wind Ion Composition Spectrometer) and SWOOPS (Solar Wind Observation over the Poles of the Sun) aboard Ulysses provided us with interplanetary plasma data. Here we report on results from some of the campaigns. We notice that, depending on the geometry of the quadrature, i.e. on whether the radial to Ulysses traverses the corona at high or low latitudes, we are able to study different kinds of solar wind. In particular, a comparison between low-latitude and high-latitude wind, allowed us to provide evidence for differences in the acceleration of polar, fast plasma and equatorial, slow plasma: the latter occurring at higher levels and through a more extended region than fast wind. These properties are shared by both the proton and heavy ions outflows. Quadrature observations may provide useful information also on coronal vs. in situ elemental composition. To this end, we analyzed spectra taken in the corona, at altitudes ranging between approx. 1.02 and 2.2 solar radii, and derived the abundances of a number of ions, including oxygen and iron. Values of the O/Fe ratio, at coronal levels, have been compared with measurements of this ratio made by SWICS at interplanetary distances. Our results are compared with previous findings and predictions from modeling efforts.

  2. Electric Solar Wind Sail (E-sail) mission to asteroids

    NASA Astrophysics Data System (ADS)

    Merikallio, Sini; Janhunen, Pekka; Toivanen, Petri; Jouni Envall, M.(Tech.).

    2012-07-01

    There are an estimated one to two million asteroids of diameter over 1 km in-between the orbits of Mars and Jupiter. Impact threat, mining prospects and the understanding of solar system history make asteroids interesting objects for further in-situ studies. Electric Solar Wind Sail (E-sail) [1] technology enables touring several different asteroids with the same spacecraft. It is a propulsion technology first proposed in 2006 and currently developed with the EUs FP7 funding (http://www.electric-sailing.fi/fp7). The E-sail utilizes long, conducting, highly charged tethers to gather momentum from the solar wind ions. It does not consume any propellant and is well maneuverable. The Electric Solar Wind Sail producing 1 N of thrust at 1 AU distance from the Sun could be manufactured to weigh 100-150 kg in total. The constant acceleration gives a large advantage over traditional methods when calculated over the mission lifetime. In a ten year mission a baseline 1 N E-sail could produce 300 MNs of total impulse, Itot. As an example, such a total impulse would be able to move a 3 million ton Earth-threatening asteroid to a safer track [2]. With chemical propellant it would take 100 000 tons of fuel to achieve the same feat. Scientists and miners could have a closer look at several targets and they could decide the next target and the duration of investigations once at the vicinity of the asteroid, so the operations would be very flexible. Such a mission could characterize and map several asteroids, some with rapid fly-bys and a few chosen ones during lengthier rendezvous. [1] Janhunen, P., et. al, Electric solar wind sail: Towards test missions (Invited article), Rev. Sci. Instrum., 81, 111301, 2010. [2] Merikallio, S. and P. Janhunen, Moving an asteroid with electric solar wind sail, Astrophys. Space Sci. Trans., 6, 41-48, 2010

  3. Enabling Technologies for High Penetration of Wind and Solar Energy

    SciTech Connect

    Denholm, P.

    2011-01-01

    High penetration of variable wind and solar electricity generation will require modifications to the electric power system. This work examines the impacts of variable generation, including uncertainty, ramp rate, ramp range, and potentially excess generation. Time-series simulations were performed in the Texas (ERCOT) grid where different mixes of wind, solar photovoltaic and concentrating solar power provide up to 80% of the electric demand. Different enabling technologies were examined, including conventional generator flexibility, demand response, load shifting, and energy storage. A variety of combinations of these technologies enabled low levels of surplus or curtailed wind and solar generation depending on the desired penetration of renewable sources. At lower levels of penetration (up to about 30% on an energy basis) increasing flexible generation, combined with demand response may be sufficient to accommodate variability and uncertainty. Introduction of load-shifting through real-time pricing or other market mechanisms further increases the penetration of variable generation. The limited time coincidence of wind and solar generation presents increasing challenges as these sources provide greater than 50% of total demand. System flexibility must be increased to the point of virtually eliminating must-run baseload generators during periods of high wind and solar generation. Energy storage also becomes increasingly important as lower cost flexibility options are exhausted. The study examines three classes of energy storage - electricity storage, including batteries and pumped hydro, hybrid storage (compressed-air energy storage), and thermal energy storage. Ignoring long-distance transmission options, a combination of load shifting and storage equal to about 12 hours of average demand may keep renewable energy curtailment below 10% in the simulated system.

  4. Solar wind interaction with lunar magnetic fields.

    NASA Technical Reports Server (NTRS)

    Siscoe, G. L.; Goldstein, B.

    1973-01-01

    Two basic interaction modes have been identified: (1) deflection currents that close above the surface, typified by a subsurface dipole with its axis perpendicular to the surface, and (2) deflection currents that intersect the lunar surface, typified by a subsurface dipole with its axis parallel to the surface. The first results in a compression of the lunar field and, if it is strong enough, can stop the wind above the surface. The extent of compression depends on how much the wind is slowed before striking the surface. The second mode results in a small deflection of the wind. In both modes, charging up of the surface is important. The effects of discharging the surface charge through the photolayer and the lunar crust are found to be unimportant for typical lunar parameters.

  5. Solar and solar-wind composition results from the genesis mission

    SciTech Connect

    Wiens, Roger C.; Burnett, D. S.; Hohenberg, C. M.; Meshik, A.; Heber, V.; Grimberg, A.; Wieler, R.; Reisenfeld, D. B.

    2007-02-20

    The Genesis mission returned samples of solar wind to Earth in September, 2004 for ground-based analyses of solar-wind composition, particularly for isotope ratios. Substrates, consisting mostly of high-purity semiconductor materials, were exposed to the solar wind at L1 from December 2001 to April 2004. In addition to a bulk sample of the solar wind, separate samples of coronal hole, interstream, and coronal mass ejection material were obtained. While many of the substrates were broken upon landing due to the failure to deploy the parachute, a number of results have been obtained, and most of the primary science objectives will likely be met. These include noble gas (He, Ne, Ar, Kr, and Xe) isotope ratios in the bulk solar wind and in different solarwind regimes, and the nitrogen and oxygen isotope ( 18O/17O/16O) ratios to high precision. The greatest successes to date have been with the noble gases. Light noble gases from bulk solar wind and separate solar-wind regime samples have been analyzed to date. The regime compositions are so far ambiguous on the occurrence of the type of isotopic fractionation expected from Coulomb drag acceleration. Neon results from closed system stepped etching of bulk metallic glass have revealed the nature of isotopic fractionation as a function of depth, which in lunar samples have for years deceptively suggested the presence of a separate solar component. Isotope ratios of the heavy noble gases, nitrogen, and oxygen are still in the process of being measured.

  6. Large and Fast Solar Wind Ion Flux (density) Pulses and Their Possible Solar Sources

    NASA Astrophysics Data System (ADS)

    Riazantseva, M. O.; Dalin, P. A.; Zastenker, G. N.; Eselevich, M. V.; Eselevich, V. G.

    The special consideration was performed of the large disturbances of solar wind ion flux (or density, or dynamic pressure) pulses with very sharp fronts. Study of such changes is important as for determination of the nature and properties of plasma insta- bilities on the way of solar plasma from Sun to the Earth, as for the understanding of the features of solar wind-magnetosphere interaction (Space Weather problems). The large set (about 30,000) of the significant (more than 0.5 · E + 08 cm-2 s-1) and fast (shorter than 10 min.) jumps of solar wind ion flux were selected by obser- vations with high time resolution onboard INTERBALL-1 satellite during 1996-1999 and were compared with other spacecraft (WIND, IMP-8, Geotail) data. The absolute and relative values of flux (or pressure) changes, the frequency of their observations as the dependence on their amplitudes, and the behavior of other solar wind (velocity, temperature) and magnetic field (magnitude and direction) parame- ters were statistically studied. For the subset of about hundred the strongest density changes the conservation of pressure balance (thermal+ magnetic ones) was investi- gated and it was shown that in the many cases such balance is not supported for fast plasma jumps. Also we tried to associate these sharp pulses with possible solar sources. Our statistics show that the strong plasma jumps are observed not homogeneously but concentrated in some groups of days that are definitely connected to the slow solar wind from streamer belts on the Sun or to the solar wind disturbed by interplanetary shocks.

  7. IMPLICATIONS OF THE RECENT LOW SOLAR MINIMUM FOR THE SOLAR WIND DURING THE MAUNDER MINIMUM

    SciTech Connect

    Lockwood, M.; Owens, M. J.

    2014-01-20

    The behavior of the Sun and near-Earth space during grand solar minima is not understood; however, the recent long and low minimum of the decadal-scale solar cycle gives some important clues, with implications for understanding the solar dynamo and predicting space weather conditions. The speed of the near-Earth solar wind and the strength of the interplanetary magnetic field (IMF) embedded within it can be reliably reconstructed for before the advent of spacecraft monitoring using observations of geomagnetic activity that extend back to the mid-19th century. We show that during the solar cycle minima around 1879 and 1901 the average solar wind speed was exceptionally low, implying the Earth remained within the streamer belt of slow solar wind flow for extended periods. This is consistent with a broader streamer belt, which was also a feature of the recent low minimum (2009), and yields a prediction that the low near-Earth IMF during the Maunder minimum (1640-1700), as derived from models and deduced from cosmogenic isotopes, was accompanied by a persistent and relatively constant solar wind of speed roughly half the average for the modern era.

  8. Implications of the Recent Low Solar Minimum for the Solar Wind during the Maunder Minimum

    NASA Astrophysics Data System (ADS)

    Lockwood, M.; Owens, M. J.

    2014-01-01

    The behavior of the Sun and near-Earth space during grand solar minima is not understood; however, the recent long and low minimum of the decadal-scale solar cycle gives some important clues, with implications for understanding the solar dynamo and predicting space weather conditions. The speed of the near-Earth solar wind and the strength of the interplanetary magnetic field (IMF) embedded within it can be reliably reconstructed for before the advent of spacecraft monitoring using observations of geomagnetic activity that extend back to the mid-19th century. We show that during the solar cycle minima around 1879 and 1901 the average solar wind speed was exceptionally low, implying the Earth remained within the streamer belt of slow solar wind flow for extended periods. This is consistent with a broader streamer belt, which was also a feature of the recent low minimum (2009), and yields a prediction that the low near-Earth IMF during the Maunder minimum (1640-1700), as derived from models and deduced from cosmogenic isotopes, was accompanied by a persistent and relatively constant solar wind of speed roughly half the average for the modern era.

  9. A comparison of solar wind streams and coronal structure near solar minimum

    NASA Technical Reports Server (NTRS)

    Nolte, J. T.; Davis, J. M.; Gerassimenko, M.; Lazarus, A. J.; Sullivan, J. D.

    1977-01-01

    Solar wind data from the MIT detectors on the IMP 7 and 8 satellites and the SOLRAD 11B satellite for the solar-minimum period September-December, 1976, were compared with X-ray images of the solar corona taken by rocket-borne telescopes on September 16 and November 17, 1976. There was no compelling evidence that a coronal hole was the source of any high speed stream. Thus it is possible that either coronal holes were not the sources of all recurrent high-speed solar wind streams during the declining phase of the solar cycle, as might be inferred from the Skylab period, or there was a change in the appearance of some magnetic field regions near the time of solar minimum.

  10. A review of solar wind ion and electron plasma distributions: Present understanding and Ulysses results

    SciTech Connect

    Goldstein, B. E.

    1996-07-20

    Unlike the oral version of this paper at Solar Wind 8, this written version is not intended as an overview of the observational aspects of solar wind ion and electron distributions, but discusses only recent results in this area with emphasis on Ulysses measurements. Although primarily a review, some new results on solar wind proton temperatures at high latitudes are presented.

  11. Asteroid surface processes: Experimental studies of the solar wind on reflectance and optical properties of asteroids

    NASA Technical Reports Server (NTRS)

    Mcfadden, Lucy-Ann

    1991-01-01

    The effect of the solar wind on the optical properties of meteorites was studied to determine whether the solar wind can alter the properties of ordinary chondrite parent bodies resulting in the spectral properties of S-type asteroids. The existing database of optical properties of asteroids was analyzed to determine the effect of solar wind in altering asteroid surface properties.

  12. Assessment of existing studies of wind loading on solar collectors

    SciTech Connect

    Murphy, L. M.

    1981-02-01

    In developing solar collectors, wind loading is the major structural design consideration. Wind loading investigations have focused on establishing safe bounds for steady state loading and verifying rational but initial and conservative design approaches for the various solar collector concepts. As such, the effort has been very successful, and has contributed greatly to both the recognition and qualitative understanding of many of the physical phenomena involved. Loading coefficients corresponding to mean wind velocities have been derived in these prior studies to measure the expected structural loading on the various solar collectors. Current design and testing procedures for wind loading are discussed. The test results corresponding to numerous wind tests on heliostats, parabolic troughs, parabolic dishes, and field mounted photovoltaic arrays are discussed and the applicability of the findings across the various technologies is assessed. One of the most significant consistencies in the data from all the technologies is the apparent benefit provided by fences and field shielding. Taken in toto, these data show that load reductions of three or possibly more seem feasible, though a more thorough understanding of the phenomena involved must be attained before this benefit can be realized. It is recommended that the required understanding be developed to take advantage of this benefit and that field tests be conducted to correlate with both analyses and tests.

  13. A Model for the Sources of the Slow Solar Wind

    NASA Astrophysics Data System (ADS)

    Antiochos, Spiro K.; Mikic, Z.; Lionello, R.; Titov, V.; Linker, J.

    2010-05-01

    Models for the origin of the slow solar wind must account for two seemingly contradictory observations: The slow wind has the composition of the closed-field corona, implying that it originates at the open-closed field boundary layer, but it also has large angular width, up to 40 degrees. We propose a model that can explain both observations. The key idea is that the source of the slow wind at the Sun is a network of narrow (possibly singular) open-field corridors that map to a web of separatrices and quasi-separatrix layers in the heliosphere. We calculate with high numerical resolution, the quasi-steady solar wind and magnetic field for a Carrington rotation centered about the August 1, 2008 total solar eclipse. Our numerical results demonstrate that, at least for this time period, a web of separatrices (S-web) forms with sufficient density and extent in the heliosphere to account for the observed properties of the slow wind. We discuss the implications of our S-web model for the structure and dynamics of the corona and heliosphere, and propose further tests of the model. This work was supported, in part, by the NASA HTP, TR&T and SR&T programs.

  14. The Solar-Wind Interaction with Comet Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Burch, James

    2015-04-01

    The instruments of the Rosetta Plasma Consortium are providing close-up views of the solar-wind interaction with a comet from its dormancy into a period of significant coma development. Although a bow shock has not yet developed, the interactions so far involve significant deflection of the solar wind; pickup of cometary ions, charge exchange of solar-wind ions by the coma resulting in He+ and H- ions being entrained in the solar wind; the generation of low-frequency 10 - 100 mHz magnetic waves near the comet; electric-fields and waves in the range from DC up to 3.5 MHz, and significant plasma density enhancements, particularly over the neck of the comet. Also observed are negatively-charged nanograins with energies exceeding 20 keV and monoenergetic electron beams (up to 400 eV) indicative of negative charging of shaded regions of the nucleus. As the comet moves closer to the Sun these effects should increase along with the appearance of other expected effects such as a diamagnetic cavity, ionopause, and bow shock along with possibly other new and unexpected plasma and field phenomena.

  15. The latitudinal distribution of magnetic holes in the solar wind

    NASA Technical Reports Server (NTRS)

    Winterhalter, D.; Neugebauer, M.; Smith, E. J.; Balogh, A.

    1995-01-01

    A large number of magnetic holes have been found in the Ulysses data during its cruise in the ecliptic. They are interpreted as convecting structures, probably caused by the mirror instability which exists in high beta plasmas with anisotropic temperatures. The characteristics of the holes reflect the solar wind condition of the region in which the holes are formed, and the point of observation may be far removed from where the instability occurs. A preliminary survey appears to indicate that the number of holes has no significant radial dependence. However, the number of holes does appear to increase with increasing heliographic latitude. Yet the large scale solar wind structures with their compression regions disappeared at approximately 57 deg south latitude. Thus any causal relationship between the holes and large scale solar wind structures is questionable. The temperature anisotropy and high beta required by the mirror instability must be generated by other mechanisms. In order to tie the magnetic holes and the mirror instability to their cause, the evolution of their characteristics with heliocentric distance and latitude needs to be investigated. With the progression of Ulysses around the sun a survey will be conducted to ascertain the characteristics of the magnetic holes as a function of heliographic latitude and heliocentric distance. A comparison of the results with the solar wind conditions may lead to the identification of the magnetic hole generating mechanism(s).

  16. Dayside long-period magnetospheric pulsations: Solar wind dependence

    SciTech Connect

    Junginger, H.; Baumjohann, W.

    1988-02-01

    The spectral power and occurrence rate of long-period magnetospheric pulsations (predominantly fundamental mode toroidal Pc 5) observed by the electron beam experiment on board GEOS 2 are compared with IMF and solar wind parameters. No clear influences of IMF orientation and magnitude on pulsation amplitudes and occurrence rate are found. Significant correlations, however, do exist between the spectral power of pulsations and the solar wind bulk velocity, and between the spectral power and the solar wind kinetic energy flux. The sign of the latter correlation depends on the Kp index. For Kp = 0 the pulsation power decreases with increasing solar wind kinetic energy flux, whereas it increases for Kpgreater than or equal to1. Our results are consistent with the Kelvin-Helmholtz instability at the inner side of the low-latitude boundary layer being the dominant mechanism for the generation of fundamental mode toroidal Pc 5 magnetospheric pulsations. Flux transfer events play only an inferior role as energy sources for these pulsations. The coupling efficiency of surface waves at the boundary layer to shear Alfven waves near geostationary orbit seems to change significantly if the geostationary orbit is inside the plasmasphere. copyright American Geophysical Union 1988

  17. Tsallis non-extensive statistics and solar wind plasma complexity

    NASA Astrophysics Data System (ADS)

    Pavlos, G. P.; Iliopoulos, A. C.; Zastenker, G. N.; Zelenyi, L. M.; Karakatsanis, L. P.; Riazantseva, M. O.; Xenakis, M. N.; Pavlos, E. G.

    2015-03-01

    This article presents novel results revealing non-equilibrium phase transition processes in the solar wind plasma during a strong shock event, which took place on 26th September 2011. Solar wind plasma is a typical case of stochastic spatiotemporal distribution of physical state variables such as force fields (B → , E →) and matter fields (particle and current densities or bulk plasma distributions). This study shows clearly the non-extensive and non-Gaussian character of the solar wind plasma and the existence of multi-scale strong correlations from the microscopic to the macroscopic level. It also underlines the inefficiency of classical magneto-hydro-dynamic (MHD) or plasma statistical theories, based on the classical central limit theorem (CLT), to explain the complexity of the solar wind dynamics, since these theories include smooth and differentiable spatial-temporal functions (MHD theory) or Gaussian statistics (Boltzmann-Maxwell statistical mechanics). On the contrary, the results of this study indicate the presence of non-Gaussian non-extensive statistics with heavy tails probability distribution functions, which are related to the q-extension of CLT. Finally, the results of this study can be understood in the framework of modern theoretical concepts such as non-extensive statistical mechanics (Tsallis, 2009), fractal topology (Zelenyi and Milovanov, 2004), turbulence theory (Frisch, 1996), strange dynamics (Zaslavsky, 2002), percolation theory (Milovanov, 1997), anomalous diffusion theory and anomalous transport theory (Milovanov, 2001), fractional dynamics (Tarasov, 2013) and non-equilibrium phase transition theory (Chang, 1992).

  18. Livestock water pumping with wind and solar power

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent developments in pumping technologies have allowed for efficient use of renewable energies like wind and solar to power new pumps for remote water pumping. A helical type, positive displacement pump was developed a few years ago and recently modified to accept input from a variable power sourc...

  19. The source of electrostatic fluctuations in the solar-wind

    NASA Technical Reports Server (NTRS)

    Lemons, D. S.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Gary, S. P.; Gosling, J. T.

    1979-01-01

    Solar wind electron and ion distribution functions measured simultaneously with or close to times of intense electrostatic fluctuations are subjected to a linear Vlasov stability analysis. Although all distributions tested were found to be stable, the analysis suggests that the ion beam instability is the most likely source of the fluctuations.

  20. Alpha particle heating at comet-solar wind interaction regions

    NASA Technical Reports Server (NTRS)

    Sharma, A. S.; Papadopoulos, K.

    1995-01-01

    The satellite observations at comet Halley have shown strong heating of solar wind alpha particles over an extended region dominated by high-intensity, low-frequency turbulence. These waves are excited by the water group pickup ions and can energize the solar wind plasma by different heating processes. The alpha particle heating by the Landau damping of kinetic Alfven waves and the transit time damping of low-frequency hydromagnetic waves in this region of high plasma beta are studied in this paper. The Alfven wave heating was shown to be the dominant mechanism for the observed proton heating, but it is found to be insufficient to account for the observed alpha particle heating. The transit time damping due to the interaction of the ions with the electric fields associated with the magnetic field compressions of magnetohydrodynamic waves is found to heat the alpha particles preferentially over the protons. Comparison of the calculated heating times for the transit time damping with the observations from comet Halley shows good agreement. These processes contribute to the thermalization of the solar wind by the conversion of its directed energy into the thermal energy in the transition region at comet-solar wind interaction.

  1. How Reliable Is the Prediction of Solar Wind Background?

    NASA Astrophysics Data System (ADS)

    Jian, Lan K.; MacNeice, Peter; Taktakishvili, Aleksandre; Odstrcil, Dusan; Jackson, Bernard; Yu, Hsiu-Shan; Riley, Pete; Sokolov, Igor

    2015-04-01

    The prediction of solar wind background is a necessary part of space weather forecasting. Multiple coronal and heliospheric models have been installed at the Community Coordinated Modeling Center (CCMC) to produce the solar wind, including the Wang-Sheely-Arge (WSA)-Enlil model, MHD-Around-a-Sphere (MAS)-Enlil model, Space Weather Modeling Framework (SWMF), and heliospheric tomography using interplanetary scintillation (IPS) data. By comparing the modeling results with the OMNI data over 7 Carrington rotations in 2007, we have conducted a third-party validation of these models for the near-Earth solar wind. This work will help the models get ready for the transition from research to operation. Besides visual comparison, we have quantitatively assessed the models’ capabilities in reproducing the time series and statistics of solar wind parameters. Using improved algorithms, we have identified magnetic field sector boundaries (SBs) and slow-to-fast stream interaction regions (SIRs) as focused structures. The success rate of capturing them and the time offset vary largely with models. For this period, the 2014 version of MAS-Enlil model works best for SBs, and the heliospheric tomography works best for SIRs. General strengths and weaknesses for each model are identified to provide an unbiased reference to model developers and users.

  2. Orientation of solar wind dynamic pressure phase fronts

    NASA Astrophysics Data System (ADS)

    Jackel, Brian J.; Cameron, Taylor; Weygand, James M.

    2013-04-01

    Orientation of structures in the solar wind plays an important role when attempting to use upstream observations at L1 for prediction of subsequent conditions near the Earth. In this study, the relationship between solar wind dynamic pressure forcing and geosynchronous magnetic field response is used to determine a very large set of lagged correlations between the ACE and GOES satellites. Effects due to tilted solar wind structures are explored using the dispersion of arrival times relative to a simple phase plane model. Assuming that structure phase-front normal vectors were located in the GSE-xy plane, we found a characteristic azimuth of 15°. Similar analysis carried out with velocity scaling according to the Parker spiral model did not produce an improved fit. Binning by average interplanetary magnetic field (IMF) B→ orientation produced a clear pattern in characteristic azimuth, with phase-front normals perpendicular to both the predominant Parker spiral orientation and the less common ortho-spiral configuration. An empirical relationship φn°=-45°sin(2φB) was found to predict phase-front normal azimuth over the entire range of observed IMF azimuths. The effects of lateral displacement from the Sun-Earth line in the GSE-z direction are comparable to those for GSE-y, indicating that solar wind structures are often significantly inclined with respect to the ecliptic plane.

  3. Iron charge states observed in the solar wind

    NASA Technical Reports Server (NTRS)

    Ipavich, F. M.; Galvin, A. B.; Gloeckler, G.; Hovestadt, D.; Klecker, B.; Scholer, M.

    1983-01-01

    Solar wind measurements from the ULECA sensor of the Max-Planck-Institut/University of Maryland experiment on ISEE-3 are reported. The low energy section of approx the ULECA sensor selects particles by their energy per charge (over the range 3.6 keV/Q to 30 keV/Q) and simultaneously measures their total energy with two low-noise solid state detectors. Solar wind Fe charge state measurements from three time periods of high speed solar wind occurring during a post-shock flow and a coronal hole-associated high speed stream are presented. Analysis of the post-shock flow solar wind indicates the charge state distributions for Fe were peaked at approx +16, indicative of an unusually high coronal temperature (3,000,000 K). In contrast, the Fe charge state distribution observed in a coronal hole-associated high speed stream peaks at approx -9, indicating a much lower coronal temperature (1,400,000 K). This constitutes the first reported measurements of iron charge states in a coronal hole-associated high speed stream.

  4. Mechanisms for energetic particle acceleration in the solar wind

    NASA Technical Reports Server (NTRS)

    Fisk, L. A.

    1979-01-01

    Recent work on energetic particle acceleration in the solar wind is reviewed. In particular, it is shown that a statistical mechanism, in which particles interact with magnetosonic waves, may account for particle acceleration in corotating interaction regions, and for the acceleration of the anomalous cosmic-ray component. This mechanism can yield the observed spectra and composition of the accelerated particles.

  5. The Solar Wind in the Outer Heliosphere and Heliosheath

    NASA Technical Reports Server (NTRS)

    Richardson, J. D.; Burlaga, L. F.

    2011-01-01

    The solar wind environment has a large influence on the transport of cosmic rays. This chapter discusses the observations of the solar wind plasma and magnetic field in the outer heliosphere and the heliosheath. In the supersonic solar wind, interaction regions with large magnetic fields form barriers to cosmic ray transport. This effect, the "CR-B" relationship, has been quantified and is shown to be valid everywhere inside the termination shock (TS). In the heliosheath, this relationship breaks down, perhaps because of a change in the nature of the turbulence. Turbulence is compressive in the heliosheath, whereas it was non-compressive in the solar wind. The plasma pressure in the outer heliosphere is dominated by the pickup ions which gain most of the flow energy at the TS. The heliosheath plasma and magnetic field are highly variable on scales as small as ten minutes. The plasma flow turns away from the nose roughly as predicted, but the radial speeds at Voyager 1 are much less than those at Voyager 2, which is not understood. Despite predictions to the contrary, magnetic reconnection is not an important process in the inner heliosheath with only one observed occurrence to date.

  6. Genesis Solar-Wind Sample Return Mission: The Materials

    NASA Technical Reports Server (NTRS)

    Jurewicz, A. J. G.; Burnett, D. S.; Wiens, R. C.; Woolum, D.

    2003-01-01

    The Genesis spacecraft has two primary instruments which passively collect solar wind. The first is the collector arrays , a set of panels, each of which can deploy separately to sample the different kinds of solar wind (regimes). The second is the concentrator, an electrostatic mirror which will concentrate ions of mass 4 through mass 25 by about a factor of 20 by focusing them onto a 6 cm diameter target. When not deployed, these instruments fit into a compact canister. After a two year exposure time, the deployed instruments can be folded up, sealed into the canister, and returned to earth for laboratory analysis. Both the collector arrays and the concentrator will contain suites of ultra-high purity target materials, each of which is tailored to enable the analysis of a different family of elements. This abstract is meant to give a brief overview of the Genesis mission, insight into what materials were chosen for flight and why, as well as head s up information as to what will be available to planetary scientist for analysis when the solar-wind samples return to Earth in 2003. Earth. The elemental and isotopic abundances of the solar wind will be analyzed in state-of-the-art laboratories, and a portion of the sample will be archived for the use of future generations of planetary scientists. Technical information about the mission can be found at www.gps.caltech.edu/genesis.

  7. Genesis Solar-Wind Sample Return Mission: The Materials

    NASA Technical Reports Server (NTRS)

    Jurewicz, A. J. G.; Burnett, D. S.; Wiens, R. C.; Woolum, D.

    2000-01-01

    This abstract is a brief overview of the Genesis mission. Included is an instrument description, what materials were chosen for capturing solar wind and why, and information as to what will be available for analysis when the samples return to Earth in 2003.

  8. Response of polar cap to solar wind conditions

    NASA Astrophysics Data System (ADS)

    Liou, K.; Sotirelis, T.

    2014-12-01

    The ionospheric polar cap is an optically dark area encircled by the luminous auroral oval. It is created by solar wind-magnetospheric coupling, and its size is proportional to the open magnetic flux available for nightside reconnection. One of the difficulties in the study of solar wind-magnetosphere coupling is the large spatial domain it involves. Systematic studies of the polar cap dynamics are still rare. This study addresses this issue by utilizing global auroral images, from which the polar cap area can be extracted, acquired with the Ultraviolet Imager on board the Polar satellite. In particular, we quantify the area of polar cap and correlate it with solar wind parameters. Our preliminary results clearly demonstrate, as expected, a clear relationship between the dayside polar cap area and the north-south component of the interplanetary magnetic field. Other solar wind parameters also affect the polar cap size but with a lesser degree. We will present a detailed analysis and discuss the resulting implications.

  9. Prediction of Ground Magnetic Field Fluctuations from Upstream Solar Wind

    NASA Astrophysics Data System (ADS)

    Weigel, R. S.; Vassiliadis, D.; Horton, W.; Klimas, A. J.

    2001-12-01

    A study of the predictability of temporal fluctuations in auroral--zone ground magnetic fields is presented. The fluctuation measure considered is the absolute value of the horizontal field time derivative (dH/dt) averaged over a 15--30~minute interval. This averaging time allows for a prediction lead time of approximately 30--45~minutes, depending on the solar wind speed. The fluctuation level is predicted using a neural network mapping of solar wind plasma and field data from the ACE satellite. Various solar wind inputs to the network are considered to determine which variables contain the most information, or drives, ground magnetic field fluctuations. The predictability of ground magnetic field fluctuations, which are responsible for ground induction currents (GICs), is shown to depend strongly on both local time and latitude. For some magnetometers, the predictability is found to be highest at local times that have the highest average fluctuation level and lowest at local times that have the lowest average fluctuation level. A maximum of 50% of the variability in a time series composed of 30~minute averages of |dH/dt| can be explained by the solar wind. When time delayed values of the fluctuation level at nearby magnetometer stations are included, up to 70% of of the variance in the |dH/dt| time series can be predicted.

  10. Solar Wind Simulations Based on Ooty IPS Data

    NASA Astrophysics Data System (ADS)

    Muehe, S. C.; Kim, T. K.; Pogorelov, N. V.

    2014-12-01

    The solar wind is a constantly-flowing stream of charged particles that expands from the sun's outer atmosphere into interplanetary space. This plasma carries the sun's magnetic field along with it, where it interacts with and causes disruptions in the earth's magnetic field. Our understanding of the solar wind is vital to efforts toward minimizing the impact of these disturbances on both ground and space-based systems. Using interplanetary scintillation data gathered by the ground-based Ooty Radio Telescope (ORT) in India, we have constructed boundary maps of solar wind velocities at 1 day intervals. For a simple, first approximation, we use what is called the "P-point" method to crudely estimate the solar wind velocity at the point of closest approach to the Sun along each line of sight. Then we trace the P-point values back to a spherical surface at 0.2 AU where we interpolate them to a structured gird. The resulting boundary maps can serve as the initial input to a time-dependent MHD tomography program being developed at the University of Alabama in Huntsville.

  11. Solar wind oscillations with a 1.3 year period

    NASA Technical Reports Server (NTRS)

    Richardson, John D.; Paularena, Karolen I.; Belcher, John W.; Lazarus, Alan J.

    1994-01-01

    The Interplanetary Monitoring Platform 8 (IMP-8) and Voyager 2 spacecraft have recently detected a very strong modulation in the solar wind speed with an approximately 1.3 year period. Combined with evidence from long-term auroral and magnetometer studies, this suggests that fundamental changes in the Sun occur on a roughly 1.3 year time scale.

  12. Solar Wind Monitoring with SWIM-SARA Onboard Chandrayaan-1

    NASA Astrophysics Data System (ADS)

    Bhardwaj, A.; Barabash, S.; Sridharan, R.; Wieser, M.; Dhanya, M. B.; Futaana, Y.; Asamura, K.; Kazama, Y.; McCann, D.; Varier, S.; Vijayakumar, E.; Mohankumar, S. V.; Raghavendra, K. V.; Kurian, T.; Thampi, R. S.; Andersson, H.; Svensson, J.; Karlsson, S.; Fischer, J.; Holmstrom, M.; Wurz, P.; Lundin, R.

    The SARA experiment aboard the Indian lunar mission Chandrayaan-1 consists of two instruments: Chandrayaan-1 Energetic Neutral Analyzer (CENA) and the SolarWind Monitor (SWIM). CENA will provide measurements of low energy neutral atoms sputtered from lunar surface in the 0.01-3.3 keV energy range by the impact of solar wind ions. SWIM will monitor the solar wind flux precipitating onto the lunar surface and in the vicinity of moon. SWIM is basically an ion-mass analyzer providing energy-per-charge and number density of solar wind ions in the energy range 0.01-15 keV. It has sufficient mass resolution to resolve H+ , He++, He+, O++, O+, and >20 amu, with energy resolution 7% and angular resolution 4:5° × 22:5. The viewing angle of the instrument is 9° × 180°.Mechanically, SWIM consists of a sensor and an electronic board that includes high voltage supply and sensor electronics. The sensor part consists of an electrostatic deflector to analyze the arrival angle of the ions, cylindrical electrostatic analyzer for energy analysis, and the time-of-flight system for particle velocity determination. The total size of SWIM is slightly larger than a credit card and has a mass of 500 g.

  13. Air emissions due to wind and solar power.

    PubMed

    Katzenstein, Warren; Apt, Jay

    2009-01-15

    Renewables portfolio standards (RPS) encourage large-scale deployment of wind and solar electric power. Their power output varies rapidly, even when several sites are added together. In many locations, natural gas generators are the lowest cost resource available to compensate for this variability, and must ramp up and down quickly to keep the grid stable, affecting their emissions of NOx and CO2. We model a wind or solar photovoltaic plus gas system using measured 1-min time-resolved emissions and heat rate data from two types of natural gas generators, and power data from four wind plants and one solar plant. Over a wide range of renewable penetration, we find CO2 emissions achieve approximately 80% of the emissions reductions expected if the power fluctuations caused no additional emissions. Using steam injection, gas generators achieve only 30-50% of expected NOx emissions reductions, and with dry control NOx emissions increase substantially. We quantify the interaction between state RPSs and NOx constraints, finding that states with substantial RPSs could see significant upward pressure on NOx permit prices, if the gas turbines we modeled are representative of the plants used to mitigate wind and solar power variability. PMID:19238948

  14. Solar wind reconstruction from magnetosheath data using an adjoint approach

    NASA Astrophysics Data System (ADS)

    Nabert, C.; Othmer, C.; Glassmeier, K.-H.

    2015-12-01

    We present a new method to reconstruct solar wind conditions from spacecraft data taken during magnetosheath passages, which can be used to support, e.g., magnetospheric models. The unknown parameters of the solar wind are used as boundary conditions of an MHD (magnetohydrodynamics) magnetosheath model. The boundary conditions are varied until the spacecraft data matches the model predictions. The matching process is performed using a gradient-based minimization of the misfit between data and model. To achieve this time-consuming procedure, we introduce the adjoint of the magnetosheath model, which allows efficient calculation of the gradients. An automatic differentiation tool is used to generate the adjoint source code of the model. The reconstruction method is applied to THEMIS (Time History of Events and Macroscale Interactions during Substorms) data to calculate the solar wind conditions during spacecraft magnetosheath transitions. The results are compared to actual solar wind data. This allows validation of our reconstruction method and indicates the limitations of the MHD magnetosheath model used.

  15. Solar wind interaction with Comet Bennett (1969i

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Rahe, J.; Donn, B. D.; Neugebauer, M.

    1972-01-01

    The relations are examined between the solar-wind and Comet Bennett during the period 23 March to 5 April 1970. A large kink was observed in the ion tail of the comet on April 4, but no solar wind stream was observed in the ecliptic plane which could have caused the kink. Thus, either there was no correlation between the solar wind at the earth and that at Comet Bennett (which was 40 deg above the ecliptic) or the kink was caused by something other than a high-speed stream. The fine structure visible in photographs of the kink favors the second of these alternatives. It is shown that a shock probably passed through Comet Bennett on March 31, but no effect was seen in photographs of the comet. A stream preceded by another shock and a large abrupt change in momentum flux might have intercepted the comet between 24 March and 28 March, but again no effect was seen in photographs of the Comet. In view of these results, the possibility must be considered that a large, abrupt change in momentum flux of the solar-wind is neither necessary nor sufficient to cause a large kink in a comet tail.

  16. Western Wind and Solar Integration Study: Executive Summary

    SciTech Connect

    none,

    2010-05-01

    This Study investigates the operational impact of up to 35% energy penetration of wind, photovoltaics (PVs), and concentrating solar power (CSP) on the power system operated by the WestConnect group of utilities in Arizona, Colorado, Nevada, New Mexico, and Wyoming.

  17. Polar and high latitude substorms and solar wind conditions

    NASA Astrophysics Data System (ADS)

    Despirak, I. V.; Lyubchich, A. A.; Kleimenova, N. G.

    2014-09-01

    All substorm disturbances observed in polar latitudes can be divided into two types: polar, which are observable at geomagnetic latitudes higher than 70° in the absence of substorms below 70°, and high latitude substorms, which travel from auroral (<70°) to polar (>70°) geomagnetic latitudes. The aim of this study is to compare conditions in the IMF and solar wind, under which these two types of substorms are observable on the basis of data from meridional chain of magnetometers IMAGE and OMNI database for 1995, 2000, and 2006-2011. In total, 105 polar and 55 high latitude substorms were studied. It is shown that polar substorms are observable at a low velocity of solar wind after propagation of a high-speed recurrent stream during the late recovery phase of a magnetic storm. High latitude substorms, in contrast, are observable with a high velocity of solar wind, increased values of the Bz component of the IMF, the Ey component of the electric field, and solar wind temperature and pressure, when a high-speed recurrent stream passes by the Earth.

  18. Ion-driven instabilities in the solar wind: Wind observations of 19 March 2005

    NASA Astrophysics Data System (ADS)

    Gary, S. Peter; Jian, Lan K.; Broiles, Thomas W.; Stevens, Michael L.; Podesta, John J.; Kasper, Justin C.

    2016-01-01

    Intervals of enhanced magnetic fluctuations have been frequently observed in the solar wind. But it remains an open question as to whether these waves are generated at the Sun and then transported outward by the solar wind or generated locally in the interplanetary medium. Magnetic field and plasma measurements from the Wind spacecraft under slow solar wind conditions on 19 March 2005 demonstrate seven events of enhanced magnetic fluctuations at spacecraft-frame frequencies somewhat above the proton cyclotron frequency and propagation approximately parallel or antiparallel to the background magnetic field Bo. The proton velocity distributions during these events are characterized by two components: a more dense, slower core and a less dense, faster beam. Observed plasma parameters are used in a kinetic linear dispersion equation analysis for electromagnetic fluctuations at k x Bo = 0; for two events the most unstable mode is the Alfvén-cyclotron instability driven by a proton component temperature anisotropy T⊥/T|| > 1 (where the subscripts denote directions relative to Bo), and for three events the most unstable mode is the right-hand polarized magnetosonic instability driven primarily by ion component relative flows. Thus, both types of ion anisotropies and both types of instabilities are likely to be local sources of these enhanced fluctuation events in the solar wind.

  19. Solar-wind krypton and solid/gas fractionation in the early solar nebula

    NASA Technical Reports Server (NTRS)

    Wiens, Roger C.; Burnett, D. S.; Neugebauer, M.; Pepin, R. O.

    1991-01-01

    The solar-system Kr abundance is calculated from solar-wind noble-gas ratios, determined previously by low-temperature oxidations of lunar ilmenite grains, normalized to Si by spacecraft solar-wind measurements. The estimated Kr-83 abundance of 4.1 + or - 1.5 per million Si atoms is within uncertainty of estimates assuming no fractionation, determined from CI-chondrite abundances of surrounding elements. This is significant because it is the first such constraint on solid/gas fractionation, though the large uncertainty only confines it to somewhat less than a factor of two.

  20. Signature of open magnetic field lines in the extended solar corona and of solar wind acceleration

    NASA Technical Reports Server (NTRS)

    Antonucci, E.; Giordano, S.; Benna, C.; Kohl, J. L.; Noci, G.; Michels, J.; Fineschi, S.

    1997-01-01

    The observations carried out with the ultraviolet coronagraph spectrometer onboard the Solar and Heliospheric Observatory (SOHO) are discussed. The purpose of the observations was to determine the line of sight and radial velocity fields in coronal regions with different magnetic topology. The results showed that the regions where the high speed solar wind flows along open field lines are characterized by O VI 1032 and HI Lyman alpha 1216 lines. The global coronal maps of the line of sight velocity were reconstructed. The corona height, where the solar wind reaches 100 km/s, was determined.

  1. THREE-DIMENSIONAL EVOLUTION OF SOLAR WIND DURING SOLAR CYCLES 22-24

    SciTech Connect

    Manoharan, P. K.

    2012-06-01

    This paper presents an analysis of three-dimensional evolution of solar wind density turbulence and speed at various levels of solar activity between solar cycles 22 and 24. The solar wind data used in this study have been obtained from the interplanetary scintillation (IPS) measurements made at the Ooty Radio Telescope, operating at 327 MHz. Results show that (1) on average, there was a downward trend in density turbulence from the maximum of cycle 22 to the deep minimum phase of cycle 23; (2) the scattering diameter of the corona around the Sun shrunk steadily toward the Sun, starting from 2003 to the smallest size at the deepest minimum, and it corresponded to a reduction of {approx}50% in the density turbulence between the maximum and minimum phases of cycle 23; (3) the latitudinal distribution of the solar wind speed was significantly different between the minima of cycles 22 and 23. At the minimum phase of solar cycle 22, when the underlying solar magnetic field was simple and nearly dipole in nature, the high-speed streams were observed from the poles to {approx}30 Degree-Sign latitudes in both hemispheres. In contrast, in the long-decay phase of cycle 23, the sources of the high-speed wind at both poles, in accordance with the weak polar fields, occupied narrow latitude belts from poles to {approx}60 Degree-Sign latitudes. Moreover, in agreement with the large amplitude of the heliospheric current sheet, the low-speed wind prevailed in the low- and mid-latitude regions of the heliosphere. (4) At the transition phase between cycles 23 and 24, the high levels of density and density turbulence were observed close to the heliospheric equator and the low-speed solar wind extended from the equatorial-to-mid-latitude regions. The above results in comparison with Ulysses and other in situ measurements suggest that the source of the solar wind has changed globally, with the important implication that the supply of mass and energy from the Sun to the interplanetary space has been significantly reduced in the prolonged period of low solar activity. The IPS results are consistent with the onset and growth of the current solar cycle 24, starting from the middle of 2009. However, the width of the high-speed wind at the northern high latitudes has almost disappeared and indicates that the ascending phase of the current cycle has almost reached the maximum phase in the northern hemisphere of the Sun. However, in the southern part of the hemisphere, the solar activity has yet to develop and/or increase.

  2. Large Scale Wind and Solar Integration in Germany

    SciTech Connect

    Ernst, Bernhard; Schreirer, Uwe; Berster, Frank; Pease, John; Scholz, Cristian; Erbring, Hans-Peter; Schlunke, Stephan; Makarov, Yuri V.

    2010-02-28

    This report provides key information concerning the German experience with integrating of 25 gigawatts of wind and 7 gigawatts of solar power capacity and mitigating its impacts on the electric power system. The report has been prepared based on information provided by the Amprion GmbH and 50Hertz Transmission GmbH managers and engineers to the Bonneville Power Administration (BPA) and Pacific Northwest National Laboratory representatives during their visit to Germany in October 2009. The trip and this report have been sponsored by the BPA Technology Innovation office. Learning from the German experience could help the Bonneville Power Administration engineers to compare and evaluate potential new solutions for managing higher penetrations of wind energy resources in their control area. A broader dissemination of this experience will benefit wind and solar resource integration efforts in the United States.

  3. High amplitude waves in the expanding solar wind plasma

    NASA Technical Reports Server (NTRS)

    Schmidt, J. M.; Velli, M.; Grappin, R.

    1995-01-01

    We simulated the 1-D nonlinear time-evolution of high-amplitude Alfven, slow and fast magnetoacoustic waves in the solar wind propagating outward at different angles to the mean magnetic (spiral) field, using the expanding box model. The simulation results for Alfven waves and fast magnetoacustic waves fit the observational constraints in the solar wind best, showing decreasing trends for energies and other rms-quantities due to expansion and the appearance of inward propagating waves as minor species in the wind. Inward propagating waves are generated by reflection of Alfven waves propagating at large angles to the magnetic field or they coincide with the occurrence of compressible fluctuations. In our simulations, fast and slow magnetoacoustic waves seem to have a level in the density-fluctuations which is too high when we compare with the observations. Furthermore, the evolution of energies for slow magnetoacoustic waves differs strongly from the evolution of fluctuation energies in situ.

  4. Solar origins of solar wind properties during the cycle 23 solar minimum and rising phase of cycle 24.

    PubMed

    Luhmann, Janet G; Petrie, Gordon; Riley, Pete

    2013-05-01

    The solar wind was originally envisioned using a simple dipolar corona/polar coronal hole sources picture, but modern observations and models, together with the recent unusual solar cycle minimum, have demonstrated the limitations of this picture. The solar surface fields in both polar and low-to-mid-latitude active region zones routinely produce coronal magnetic fields and related solar wind sources much more complex than a dipole. This makes low-to-mid latitude coronal holes and their associated streamer boundaries major contributors to what is observed in the ecliptic and affects the Earth. In this paper we use magnetogram-based coronal field models to describe the conditions that prevailed in the corona from the decline of cycle 23 into the rising phase of cycle 24. The results emphasize the need for adopting new views of what is 'typical' solar wind, even when the Sun is relatively inactive. PMID:25685422

  5. Global distribution of the solar wind and its evolution during cycles 22-24

    NASA Astrophysics Data System (ADS)

    Tokumaru, M.; Fujiki, K.; Kojima, M.; Iju, T.; Nakano, H.; Satonaka, D.; Shimoyama, T.; Hakamada, K.

    2016-03-01

    Ground-based observations of the solar wind using interplanetary scintillation (IPS) have been regularly performed since 1980s at the Solar-Terrestrial Environment Laboratory of Nagoya University using the 327-MHz multi-station system. It has been revealed from the IPS observations that the global distribution of the solar wind is well ordered by the Sun's magnetic field. This fact suggests that the magnetic field plays an important role in the formation of the solar wind. The IPS observations evidently demonstrate that global distribution of the solar wind systematically changes with the solar activity. Recently, some peculiar aspects of the solar wind have been found from the IPS observations; e.g. increase of low-latitude fast winds, global reduction of the fast wind area and the density fluctuation level, North-South asymmetry of polar fast winds. These are considered as a manifestation of weaker dynamo activity in this cycle.

  6. HEMISPHERIC ASYMMETRIES IN THE POLAR SOLAR WIND OBSERVED BY ULYSSES NEAR THE MINIMA OF SOLAR CYCLES 22 AND 23

    SciTech Connect

    Ebert, R. W.; Dayeh, M. A.; Desai, M. I.; McComas, D. J.; Pogorelov, N. V.

    2013-05-10

    We examined solar wind plasma and interplanetary magnetic field (IMF) observations from Ulysses' first and third orbits to study hemispheric differences in the properties of the solar wind and IMF originating from the Sun's large polar coronal holes (PCHs) during the declining and minimum phase of solar cycles 22 and 23. We identified hemispheric asymmetries in several parameters, most notably {approx}15%-30% south-to-north differences in averages for the solar wind density, mass flux, dynamic pressure, and energy flux and the radial and total IMF magnitudes. These differences were driven by relatively larger, more variable solar wind density and radial IMF between {approx}36 Degree-Sign S-60 Degree-Sign S during the declining phase of solar cycles 22 and 23. These observations indicate either a hemispheric asymmetry in the PCH output during the declining and minimum phase of solar cycles 22 and 23 with the southern hemisphere being more active than its northern counterpart, or a solar cycle effect where the PCH output in both hemispheres is enhanced during periods of higher solar activity. We also report a strong linear correlation between these solar wind and IMF parameters, including the periods of enhanced PCH output, that highlight the connection between the solar wind mass and energy output and the Sun's magnetic field. That these enhancements were not matched by similar sized variations in solar wind speed points to the mass and energy responsible for these increases being added to the solar wind while its flow was subsonic.

  7. Characterization of Solar Wind Interaction With Magnetized Bodies

    NASA Astrophysics Data System (ADS)

    Omidi, N.; Blanco-Cano, X.; Russell, C.; Karimabadi, H.

    2002-12-01

    Since the dawn of the space age, the magnetosphere has been studied extensively not only to understand the geospace environment but also how solar wind, or stellar winds in general, interact with magnetized bodies. Early theoretical investigations of solar wind interaction with magnetized asteroids suggested that in addition to a magnetospheric type interaction it was possible that, instead, only a whistler wing would be generated. Recently, through 2-D global hybrid (fluid electrons, kinetic ions) simulations, we have demonstrated that depending on the magnetic dipole strength of a body its interaction with the solar wind can be even more diverse and that a variety of solutions exist. For example, in addition to a whistler wing it is possible for a magnetized asteroid to have a set of fast and slow magnetosonic wakes. In another type of solution, a fast magnetosonic wake is the dominant feature of the interaction region. Our studies have also demonstrated that depending on the magnetic field strength of a body, the size of the interaction region may be comparable or smaller than ion gyroradius and, as a result, kinetic motion of the ions has a profound influence on the global structure of the interaction region. We have found that a useful parameter in characterization of the interaction region is Dp, the distance from the body at which solar wind ram pressure is balanced by its magnetic pressure. In this presentation, we illustrate the transition of the interaction region from a single whistler wing to a full magnetospheric type interaction as Dp, normalized to ion inertial length, is increased from values less than 1 to over 100. Implication of these results for various bodies in the solar system is also discussed.

  8. Proton thermal energetics in the solar wind: Helios reloaded

    NASA Astrophysics Data System (ADS)

    Hellinger, Petr; TráVníček, Pavel M.; Štverák, Štěpán; Matteini, Lorenzo; Velli, Marco

    2013-04-01

    The proton thermal energetics in the slow solar wind between 0.3 and 1 AU is reinvestigated using the Helios 1 and 2 data, complementing a similar analysis for the fast solar wind [Hellinger et al., 2011]. The results for slow and fast solar winds are compared and discussed in the context of previous results. Protons need to be heated in the perpendicular direction with respect to the ambient magnetic field from 0.3 to 1 AU. In the parallel direction, protons need to be cooled at 0.3 AU, with a cooling rate comparable to the corresponding perpendicular heating rate; between 0.3 and 1 AU, the required cooling rate decreases until a transition to heating occurs: by 1 AU the protons require parallel heating, with a heating rate comparable to that required to sustain the perpendicular temperature. The heating/cooling rates (per unit volume) in the fast and slow solar winds are proportional to the ratio between the proton kinetic energy and the expansion time. On average, the protons need to be heated and the necessary heating rates are comparable to the energy cascade rate of the magnetohydrodynamic turbulence estimated from the stationary Kolmogorov-Yaglom law at 1 AU; however, in the expanding solar wind, the stationarity assumption for this law is questionable. The turbulent energy cascade may explain the average proton energetics (although the stationarity assumption needs to be justified) but the parallel cooling is likely related to microinstabilities connected with the structure of the proton velocity distribution function. This is supported by linear analysis based on observed data and by results of numerical simulations.

  9. A Comparison of Magnetic Correlation Functions in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Weygand, J. M.; Matthaeus, W. H.; Kivelson, M. G.; Dasso, S.

    2012-12-01

    Magnetic field data from 11 different solar wind spacecraft from many different intervals are employed to estimate spatial and time correlations in the interplanetary magnetic field. Different approaches are employed to find the autocorrelation, cross correlation, and Eulerian correlation functions versus spatial or time separation for turbulent intervals in both the slow and fast solar wind. The cross correlation function is determined by correlating time series data from multiple spacecraft separated in space and relies on many intervals with different spacecraft spatial separations. This is a pure two-point measurement, The autocorrelation function is determined by correlating turbulent magnetic field fluctuations time series data from a single spacecraft with itself "lagged" or separated in time . This relies on frozen in flow approximation to convert to a spatial separation. One method uses the spacecraft separation vector and the flow vector as opposed to simply the separation along X GSE and the solar wind speed. The other method finds the time lag between the spacecraft pairs from a maximum cross correlation value of the turbulent magnetic field intervals. The Eulerian correlation function, purely temporal in the plasma frame, is determined in the spacecraft frame by correlating time series data from multiple spacecraft separated in time and space. This relies on both the frozen in flow approximation and the use of many intervals. For this study we interpret the exponential decay constants from the exponential fit to the Eulerian correlation function as characteristic decorrelation time of the turbulent plasma. Preliminary results demonstrate that the Eulerian decorrelation time is significantly longer in the slow solar wind (<450 km/s) than the fast solar wind (>600 km/s). Our results are compared with the Eulerian decorrelation times in Matthaeus et al. [2010], Weygand et al [2012],Zhou et al. [2004], and Servidio et al. [2011].

  10. Solar wind outflow and the chromospheric magnetic network

    PubMed

    Hassler; Dammasch; Lemaire; Brekke; Curdt; Mason; Vial; Wilhelm

    1999-02-01

    Observations of outflow velocities in coronal holes (regions of open coronal magnetic field) have recently been obtained with the Solar and Heliospheric Observatory (SOHO) spacecraft. Velocity maps of Ne7+ from its bright resonance line at 770 angstroms, formed at the base of the corona, show a relationship between outflow velocity and chromospheric magnetic network structure, suggesting that the solar wind is rooted at its base to this structure, emanating from localized regions along boundaries and boundary intersections of magnetic network cells. This apparent relation to the chromospheric magnetic network and the relatively large outflow velocity signatures will improve understanding of the complex structure and dynamics at the base of the corona and the source region of the solar wind. PMID:9933156

  11. Semiannual variation of the geomagnetic activity and solar wind parameters

    NASA Astrophysics Data System (ADS)

    Orlando, M.; Moreno, G.; Parisi, M.; Storini, M.

    1993-10-01

    The semiannual variation of the geomagnetic activity is investigated in connection with a large set of solar wind and interplanetary magnetic field data (4494 daily averages from 1965 to 1987). Our analysis confirms that the geomagnetic activity (described by the aa index), is mainly modulated by the southward component of the magnetic field (BS), as suggested by Russell and McPherron. On the other hand, it is also found that the solar wind velocity (V) has a relevant role in this phenomenon. In fact, the amplitude of the aa modulation is best correlated with the function BSV2. We also explore the linkage between the annual trend of aa and the sunspot activity (1868-1989), showing that the modulation of the geomagnetic activity follows a more regular pattern during the descending phase of the solar cycle than during the rising and maximum parts.

  12. Plasma observations of the solar wind interaction with Mars

    NASA Technical Reports Server (NTRS)

    Vaisberg, O. L.; Luhmann, J. G.; Russell, C. T.

    1990-01-01

    Measurements with the plasma analyzers on the Mars-2, 3 and 5 spacecraft show that Mars deflects a large fraction of the incoming solar wind flow to form a strong bow shock. The bow shock is about 1.41 Rm from the center of the planet at the subsolar point and about 2.40 Rm at the terminator. These distances are similar to those for Venus at times of moderate solar activity. The inferred effective obstacle altitude is about 400-700 km. An ion cushion has been found which is similar in its properties to the Venus magnetic barrier. The formation of this cushion appears to cause the deflection of the solar wind. Inside the cushion but well above the ionosphere is found a region where the ions are at the background, the electrons are cool and the magnetic pressure dominates. This region may resemble a planetary magnetosphere.

  13. Transport of transient solar wind particles in Earth's cusps

    SciTech Connect

    Parks, G. K.; Lee, E.; Teste, A.; Wilber, M.; Lin, N.; Canu, P.; Dandouras, I.; Reme, H.; Fu, S. Y.; Goldstein, M. L.

    2008-08-15

    An important problem in space physics still not understood well is how the solar wind enters the Earth's magnetosphere. Evidence is presented that transient solar wind particles produced by solar disturbances can appear in the Earth's mid-altitude ({approx}5 R{sub E} geocentric) cusps with densities nearly equal to those in the magnetosheath. That these are magnetosheath particles is established by showing they have the same ''flattop'' electron distributions as magnetosheath electrons behind the bow shock. The transient ions are moving parallel to the magnetic field (B) toward Earth and often coexist with ionospheric particles that are flowing out. The accompanying waves include electromagnetic and broadband electrostatic noise emissions and Bernstein mode waves. Phase-space distributions show a mixture of hot and cold electrons and multiple ion species including field-aligned ionospheric O{sup +} beams.

  14. Parallel and Perpendicular Heating of Solar Wind Protons by Kinetic Waves as Inferred from WIND Observations

    NASA Astrophysics Data System (ADS)

    He, J.; Wang, L.; Tu, C. Y.; Marsch, E.

    2014-12-01

    The solar wind may be heated non-adiabatically by Joule dissipation of coherent current structures or by wave-particle interaction with kinetic waves. In high-speed solar wind, where current structures of tangential-discontinuity type are rare and Alfven-like waves are abundant, wave-particle interaction may be a promising candidate for the heating mechanism. Here we address how the solar wind protons are heated parallel and perpendicularly based on the observations of proton velocity distributions and kinetic wave fluctuations from the WIND spacecraft. It is shown that solar wind protons consist of anisotropic core and beam populations with a relative field-aligned drift speed of ~VA between them. Both quasi-parallel left-handed Alfven-cyclotron waves (LH-ACWs) and quasi-perpendicular right-handed Alfven-cyclotron waves / kinetic Alfven waves (RH-ACWs/KAWs) are also identified. It seems that the proton velocity distribution contours may be shaped by left-cyclotron resonance with quasi-parallel LH-ACWs for its anisotropic core components, Landau resonance with quasi-perpendicular KAWs for its beam drift, and right-cyclotron resonance with quasi-perpendicular RH-ACWs for its anisotropic beam component. Plasma instability is also investigated from the data, which shows that the core component anisotropy is usually unstable and may be responsible for the observed LH-ACWs with enhanced fluctuations; whereas the beam drift is stable and no RH-fast/whistler waves are observed. Moreover, the solar wind protons are observed, with the unprecedented cadence of 3s, to be highly dynamic in their velocity distributions with an apparent alternation between the stretching and contracting of the drifted beam, which may be connected with amplitude intermittency of associated waves.

  15. Solar Panel Buffeted by Wind at Phoenix Site

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Winds were strong enough to cause about a half a centimeter (.19 inch) of motion of a solar panel on NASA's Phoenix Mars lander when the lander's Surface Stereo Imager took this picture on Aug. 31, 2008, during the 96th Martian day since landing.

    The lander's telltale wind gauge has been indicating wind speeds of about 4 meters per second (9 miles per hour) during late mornings at the site.

    These conditions were anticipated and the wind is not expected to do any harm to the lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. Coronal holes and solar wind streams during the sunspot cycle

    NASA Technical Reports Server (NTRS)

    Sheeley, N. R., Jr.

    1992-01-01

    Complementary synoptic observations of the Sun and interplanetary space have been obtained nearly continuously for more than two sunspot cycles and have led to new ideas about the origin of the solar wind. These observations show an inverse correlation between wind speed at Earth and magnetic flux tube expansion in the corona, with fast wind originating from slowly diverging tubes and vice versa. Although this result is consistent with the Skylab-era concept that fast wind originates from the center of a large isolated coronal hole, it implies that the wind may be even faster at the facing edges of like-polarity holes where the flux-tubes converge as they begin their outward extension. Thus, very fast wind ought to originate from the high-latitude edges of the circumpolar holes soon after sunspot maximum and from the mid-latitude necks of the polar-hole lobes during the declining phase of the cycle. The observed inverse correlation may be understood physically in terms of a model in which Alfven waves boost the wind to high speed provided that the wave energy flux is distributed approximately uniformly at the coronal base.

  17. Simulation and optimum design of hybrid solar-wind and solar-wind-diesel power generation systems

    NASA Astrophysics Data System (ADS)

    Zhou, Wei

    Solar and wind energy systems are considered as promising power generating sources due to its availability and topological advantages in local power generations. However, a drawback, common to solar and wind options, is their unpredictable nature and dependence on weather changes, both of these energy systems would have to be oversized to make them completely reliable. Fortunately, the problems caused by variable nature of these resources can be partially overcome by integrating these two resources in a proper combination to form a hybrid system. However, with the increased complexity in comparison with single energy systems, optimum design of hybrid system becomes more complicated. In order to efficiently and economically utilize the renewable energy resources, one optimal sizing method is necessary. This thesis developed an optimal sizing method to find the global optimum configuration of stand-alone hybrid (both solar-wind and solar-wind-diesel) power generation systems. By using Genetic Algorithm (GA), the optimal sizing method was developed to calculate the system optimum configuration which offers to guarantee the lowest investment with full use of the PV array, wind turbine and battery bank. For the hybrid solar-wind system, the optimal sizing method is developed based on the Loss of Power Supply Probability (LPSP) and the Annualized Cost of System (ACS) concepts. The optimization procedure aims to find the configuration that yields the best compromise between the two considered objectives: LPSP and ACS. The decision variables, which need to be optimized in the optimization process, are the PV module capacity, wind turbine capacity, battery capacity, PV module slope angle and wind turbine installation height. For the hybrid solar-wind-diesel system, minimization of the system cost is achieved not only by selecting an appropriate system configuration, but also by finding a suitable control strategy (starting and stopping point) of the diesel generator. The optimal sizing method was developed to find the system optimum configuration and settings that can achieve the custom-required Renewable Energy Fraction (fRE) of the system with minimum Annualized Cost of System (ACS). Du to the need for optimum design of the hybrid systems, an analysis of local weather conditions (solar radiation and wind speed) was carried out for the potential installation site, and mathematical simulation of the hybrid systems' components was also carried out including PV array, wind turbine and battery bank. By statistically analyzing the long-term hourly solar and wind speed data, Hong Kong area is found to have favorite solar and wind power resources compared with other areas, which validates the practical applications in Hong Kong and Guangdong area. Simulation of PV array performance includes three main parts: modeling of the maximum power output of the PV array, calculation of the total solar radiation on any tilted surface with any orientations, and PV module temperature predictions. Five parameters are introduced to account for the complex dependence of PV array performance upon solar radiation intensities and PV module temperatures. The developed simulation model was validated by using the field-measured data from one existing building-integrated photovoltaic system (BIPV) in Hong Kong, and good simulation performance of the model was achieved. Lead-acid batteries used in hybrid systems operate under very specific conditions, which often cause difficulties to predict when energy will be extracted from or supplied to the battery. In this thesis, the lead-acid battery performance is simulated by three different characteristics: battery state of charge (SOC), battery floating charge voltage and the expected battery lifetime. Good agreements were found between the predicted values and the field-measured data of a hybrid solar-wind project. At last, one 19.8kW hybrid solar-wind power generation project, designed by the optimal sizing method and set up to supply power for a telecommunication relay station on a remote island of Guangdong province, was studied. Simulation and experimental results about the operating performances and characteristics of the hybrid solar-wind project have demonstrated the feasibility and accuracy of the recommended optimal sizing method developed in this thesis.

  18. Ulysses sees differences in solar wind at high, low latitudes

    NASA Astrophysics Data System (ADS)

    1995-06-01

    Scientists presenting results today of their data at the spring meeting of the American Geophysical Union in Baltimore, Md., said the speed of the solar wind over the southern pole is high, compared to its low velocity near the Sun's equator. The solar wind is the hot ionized gas that escapes from the solar corona and expands into interplanetary space. At the present minimum of the solar activity cycle, the angle between the Sun's rotational and magnetic equators has decreased -- in these conditions Ulysses found that the region of low-speed solar winds were confined more closely to the rotational equator than in earlier portions of the solar cycle. Now on its way to the northern solar pole, Ulysses is nearly 62 degrees north of the Sun's equator today. The second phase of the primary mission -- to explore the northern pole of the Sun -- will begin on June 19, when the spacecraft reaches 70 degrees north latitude, The spacecraft will reach a maximum northern latitude of 80,2 degrees on 31 July 1995. Ulysses' trajectory from 80 degrees south of the equator in September 1994, back down to the Sun's equator in March 1995, also brought the spacecraft within 1.3 astronomical units (121 million miles, 194 million km) of the Sun, the closest Ulysses would ever travel to the Sun since it was launched on October 6, 1990. The spacecraft picked up speed during this phase allowing the entire region to be scanned in just six months time. Scientists refer to this phase of the mapping as the "fast latitude scan", Ulysses had left the equatorial plane in early 1992 after a gravitational swingby of Jupiter, and had gradually climbed in latitude until reaching 80 degrees south in September 1994. Ulysses' observations during the fast latitude scan have shown that the solar wind being continuously emitted by the Sun is distinctly different at high and low latitudes, said Dr. Edward J. Smith, Ulysses project scientist at NASA's Jet Propulsion Laboratory, for the joint NASA-European Space Agency mission. Data from science experiments onboard the spacecraft also revealed the strong influence of the Sun's magnetic equator which is inclined, or tilted, with respect to the Sun's rotational equator. "As the Sun rotates, the magnetic equator appears to wobble up and down and the solar wind in the region occupied by the Earth alternates between the two types of solar wind," Smith said. The high latitude solar wind, as reported in the May 19 issue of Science, is fast and relatively smooth, whereas the low latitude solar wind travels more slowly, These velocity differences are organised by magnetic latitude rather than heliographic latitude, As the Sun rotates, the wobble introduced by the magnetic field causes the fast, high latitude solar wind to alternate with slow, low latitude solar wind, Before the slow solar wind has time to reach the orbit of Earth, it is overtaken by the faster wind, forming a high pressure "front". "These fronts are the equivalent of weather fronts on Earth and are responsible for much of the interplanetary 'weather' which causes aurora -- spectacular curtains of light seen in the northern and southern hemispheres of Earth's atmosphere," Smith said, "These fronts also cause magnetic storms, which can interrupt radio and satellite communications on Earth." Scientists at the American Geophysical Union meetings, describing the return of Ulysses to the equatorial zone, reported a drop in the solar wind speed by a factor of two - from approximately 2 million miles per hour (800 kilometres per second) over the southern pole to approximately I million miles per hour (400 kilometres per second) along the equator - and the reappearance after two years of large excursions in speed, particle density and magnetic field strength. "Magnetic fields characteristic of the north solar hemisphere, which point outward from the sun, are seen interspersed with inward-directed fields from the southern hemisphere," Smith said, "This change in the magnetic field polarity indicates whether the solar wind is coming from the South or from the north. Thus, the equatorial zone in which the Earth is located is aiternatingly traversed by particles originating from northern or southern regions of the Sun." "Periodic excursions in the flux of solar energetic particles between low and high intensity have also reappeared," added Dr. Richard G. Marsden, the European Space Agency project scientist for Ulysses. "They accompany the solar wind fronts -- called interaction regions -- in which energy is transferred to these particles by shocks associated with the interaction regions." An unexpected feature of the Ulysses observations was the detection of these energetic particles at higher latitudes than the shucks that are known to create them. "We really don't know for certain the explanation of these results," Marsden said. "Possible explanations are that the shucks extend to higher latitudes farther from the Sun, or that the particles can diffuse rapidly in latitude without being nearly so much scattered in longitude. These results, when properly understood, will aid us in understanding the creation and propagation of solar energetic particles." Ulysses crossed the Sun's equator on March 5, 1995, making its closest approach at the same time. This period was also marked by a rare line-up of the Earth, Sun and spacecraft that scientists can a conjunction. At this time, the radio beam path from the spacecraft to the Earth swept through all solar latitudes from the south pole to the equator as it probed the Sun's corona. Radio scientists used this opportunity to remotely measure the density of the corona, The scientists warned that this simple global configuration of the Sun to date -- of high speeds over the poles and low speeds near the equator -- is very likely tied to the current phase of the Sun's 11-year sunspot cycle. Currently the Sun is very near to its minimum of activity, with just a few spots observed at low, latitudes. In particular the equatorial zone has been found to be only half as wide during the fast pole-to-equator passage -- taking place from September 1994 through March 1995 -- compared to the earlier equator-to-pole passage. The shrinking of the equatorial zone in the intervening two years shows the closer correspondence between the Sun's rotational and magnetic equators. The Jet Propulsion Laboratory manages the U.S, portion of the Ulysses mission for NASA's Office of Space Science, Washington, D,C. * Ulysses is a joint ESA/NASA mission. WA developed the probe and is contributing an estimated ECU 170 million up to 1995 to its in-light operation. European research laboratories provided half of the scientific instruments. NASA provided the other half of the experiments flown, a radio-isotopic power generator and the launch; it is also maintaining day-to-day communications with the probe via its dedicated antennas.

  19. Permutation entropy analysis of dynamical turbulence in the SSX MHD wind tunnel and the solar wind

    NASA Astrophysics Data System (ADS)

    Weck, P. J.; Hudson, E. R.; Schaffner, D. A.; Brown, M. R.; Wicks, R. T.; Lukin, V. S.

    2014-10-01

    The statistical character of turbulence in the plasma wind-tunnel configuration at the Swarthmore Spheromak Experiment (SSX) and the solar wind is evaluated using ordinal pattern-based measures of complexity. The SSX MHD wind tunnel measures fluctuations in magnetic field, velocity, and density as highly magnetized spheromaks (typical values are B ~ 0 . 1 T , n >=1020 m-3 ,and T >= 20 eV) evolve dynamically into a relaxed state. Flow speeds are measured with a visible light array. Ḃ time series for 3 spatial directions recorded by a 16-channel, high-resolution probe array embedded in the chamber are analyzed using the permutation entropy and Jensen-Shannon statistical complexity. By calculating the position of signals on a complexity-entropy plane, the degree of stochastic, periodic, or chaotic dynamics can be evaluated. Complexity-entropy positions of SSX signals are compared to those of turbulent fluctuations in the solar wind and the Large Plasma Device (LAPD) as well as Hall-MHD simulations of the SSX plasma, and it is found that the dynamics in the SSX plasma source are more truly turbulent than those in the LAPD but less stochastic than fluctuations in the solar wind. Work supported by DOE OFES and NSF CMSO.

  20. Solar Cycle Changes of Solar Wind and their Geo-effectiveness

    NASA Astrophysics Data System (ADS)

    Charan Dwivedi, Vidya; Manoharan, P. K.

    2012-07-01

    In this study, we report the solar cycle changes in solar wind parameters and their impact on Earth's magnetosphere. We consider daily as well as 27-day averages of solar wind speed, density, temperature, and magnetic field measurements made at near-Earth space and compare them with the geomagnetic disturbance index (e.g., Ap), for the period between 1965 and 2010, which covers solar cycles 20 to 23. When the solar wind speed (also density) is compared with geomagnetic disturbance, it is noticed that at the declining phase of each cycle, the high-speed wind (in the case of density, low-density wind) dominates, during when Ap value is also enhanced. It suggests that the high-speed streams from mid- and low-latitude coronal holes and their interactions with ambient solar wind (i.e., CIRs) tend to order the geomagnetic disturbances. However, the width on the time axis and the peak value of the high-speed distribution differ from one cycle to the other. Moreover, the effects of these high-speed streams at the Earth magnetosphere vary between one cycle and the other. In particular, it is revealed that during the long-declining phase of the solar cycle 23, the low-latitude belt of the Sun was dominated by medium to large size coronal holes. This study provides evidence that the location of coronal hole with respect to the neutral sheet (i.e., heliospheric current sheet) seems to play a significant role in determining the geo-effectiveness.

  1. Dayside Erosion During Intervals of Tenuous Solar Wind

    NASA Astrophysics Data System (ADS)

    Farrugia, C. J.; Muehlbachler, S.; Torbert, R. B.; Biernat, H. K.

    2001-12-01

    We present six data examples where we infer erosion of the dayside magnetosphere during intervals of very tenuous solar wind (density < 1 cm-3). The interplanetary observations were made by the Wind spacecraft when the average solar wind dynamic pressure P dyn and the interplanetary magnetic field (IMF) Bz were in the ranges (0.07, 0.62) nPa and (-7.6, -0.9) nT, respectively. The inner magnetospheric signature of erosion we focus on is a decrease in the strength of the geostationary magnetic field, as monitored by NOAA's GOES spacecraft. We obtain this decrease as a function of IMF Bz by comparing each event with a reference day, May 11, 1999. During the reference day the lowest P dyn of the set was attained (0.07 nPa), IMF Bz > 0, and the geomagnetic field at geostationary orbit was dipolar. The central point we make is that although compared to the reference day the P dyn in each event is higher, the strength of the geostationary field is weaker. We interpret this as evidence that the field compression due to P dyn has been overcome by the field depression due to erosion. Correcting empirically for the compression of the geostationary field due to solar wind dynamic pressure, we find that for the tenuous solar winds we consider the decrease of the geostationary field, Δ BGS, is related to IMF Bz as Δ BGS (nT)= -2.8 + 2.3 Bz (nT). This work is supported by NASA Living with a Star Grant NAG5-10883 and DARA grant 50 OC 8911 0.

  2. Detection of fast nanoparticles in the solar wind

    SciTech Connect

    Meyer-Vernet, N.; Maksimovic, M.; Lecacheux, A.; Le Chat, G.; Czechowski, A.; Mann, I.; Goetz, K.; Kaiser, M. L.; Cyr, O. C. St.; Bale, S. D.

    2010-03-25

    Dust grains in the nanometer range bridge the gap between atoms and larger grains made of bulk material. Their small size embodies them with special properties. Due to their high relative surface area, they have a high charge-to-mass ratio, so that the Lorentz force in the solar wind magnetic field exceeds the gravitational force and other forces by a large amount, and they are accelerated to a speed of the order of magnitude of the solar wind speed. When such fast nanoparticles impact a spacecraft, they produce craters whose matter vaporises and ionises, yielding transient voltages as high as do much larger grains of smaller speed. These properties are at the origin of their recent detection at 1 AU in the solar wind. We discuss the detection of fast nanoparticles by wave instruments of different configurations, with applications to the recent detections on STEREO/WAVES and CASSINI/RPWS. Finally we discuss the opportunities for nanoparticle detection by wave instruments on future missions and/or projects in the inner heliosphere such as Bepi-Colombo and Solar Orbiter.

  3. Alfvenic fluctuations in the solar wind observed by Ulysses

    NASA Technical Reports Server (NTRS)

    Smith, E. J.; Neugebauer, M; Tsurutani, B. T.; Balogh, A.; McComas, D. J.

    1995-01-01

    One of the striking results of the Sun's south polar pass by Ulysses was the discovery of large amplitude, long period Alfvenic fluctuations that were continuously present in the solar wind flow from the polar coronal hole. The fluctuations dominate the variances and power spectra at periods greater than or equal to 1 hour and are evident as correlated fluctuations in the magnetic field and solar wind velocity components. Various properties of the fluctuations in the magnetic field, in the velocity, and in the electric field have been established. The waves appear to have important implications for galactic cosmic rays and for the solar wind, topics which have continued to be investigated. Their origin is also under study, specifically whether or not they represent motions of the ends of the field lines at the Sun. The resolution of these issues has benefited from the more recent observations as the spacecraft traveled northward toward the ecliptic and passed into the northern solar hemisphere. All these observations will be presented and their implications will be discussed.

  4. Small solar wind transients: Stereo-A observations in 2009

    NASA Astrophysics Data System (ADS)

    Yu, W.; Farrugia, C. J.; Galvin, A. B.; Simunac, K. D. C.; Kilpua, E. K. J.; Popecki, M. A.; Moestl, C.; Lugaz, N.; Luhmann, J. G.; Opitz, A.; Sauvaud, J.-A.

    2013-06-01

    Year 2009 was the last year of a long and pronounced solar activity minimum. In this year the solar wind in the inner heliosphere was for 90% of the time slow (< 450 km s-1) and with a weaker magnetic field strength compared to the previous solar minimum 1995-1996. We choose this year to present the results of a systematic search for small solar wind transients (STs) observed by the STEREO-Ahead (ST-A) probe. The data are from the PLASTIC and IMPACT instrument suites. By "small" we mean a duration from ~1 to 12 hours. The parameters we search for to identify STs are (i) the total field strength, (ii) the rotation of the magnetic field vector, (iii) its smoothness, (iv) proton temperature, (v) proton beta, and (vi) Alfvén Mach number. We find 45 examples. The STs have an average duration of ~4 hours. Ensemble averages of key quantities are: (i) maximum B = 7.01 nT; (ii) proton β = 0.18; (iii) proton thermal speed = 20.8 km s-1 and (iv) Alfvén Mach number = 6.13. No distinctive feature is found in the pitch angle distributions of suprathermal electrons. Our statistical results are compared with those of STs observed near Earth by Wind during 2009.

  5. Small solar wind transients: Stereo-A observations in 2009

    SciTech Connect

    Yu, W.; Farrugia, C. J.; Galvin, A. B.; Simunac, K. D. C.; Popecki, M. A.; Lugaz, N.; Kilpua, E. K. J.; Moestl, C.; Luhmann, J. G.; Opitz, A.; Sauvaud, J.-A.

    2013-06-13

    Year 2009 was the last year of a long and pronounced solar activity minimum. In this year the solar wind in the inner heliosphere was for 90% of the time slow (< 450 km s{sup -1}) and with a weaker magnetic field strength compared to the previous solar minimum 1995-1996. We choose this year to present the results of a systematic search for small solar wind transients (STs) observed by the STEREO-Ahead (ST-A) probe. The data are from the PLASTIC and IMPACT instrument suites. By 'small' we mean a duration from {approx}1 to 12 hours. The parameters we search for to identify STs are (i) the total field strength, (ii) the rotation of the magnetic field vector, (iii) its smoothness, (iv) proton temperature, (v) proton beta, and (vi) Alfven Mach number. We find 45 examples. The STs have an average duration of {approx}4 hours. Ensemble averages of key quantities are: (i) maximum B = 7.01 nT; (ii) proton {beta}= 0.18; (iii) proton thermal speed = 20.8 km s{sup -1}; and (iv) Alfven Mach number = 6.13. No distinctive feature is found in the pitch angle distributions of suprathermal electrons. Our statistical results are compared with those of STs observed near Earth by Wind during 2009.

  6. Some remarks on waves in the solar wind

    SciTech Connect

    Kellogg, P. J.; Goetz, K.; Monson, S. J.; Balogh, A.; Forsyth, R. J.

    1996-07-20

    Waves are significant to the solar wind in two ways--as modifiers of the particle distribution functions, and as diagnostics. In addition, the solar wind serves as an important laboratory for the study of plasma wave processes, as it is possible to make detailed measurements of phenomena which are too small to be easily measured by laboratory sized sensors. The waves, both electromagnetic and electrostatic, which are part of the solar type III burst phenomenon, have been extensively studied as examples of nonlinear plasma phenomena, and also used as remote sensors to trace the solar magnetic field. The observations made by Ulysses show that the field can be traced in this way out to perhaps a little more than an A.U., but then the electromagnetic part of the type III burst fades out. Nevertheless, sometimes Langmuir waves appear at Ulysses at an appropriate extrapolated time. This seems to support the picture in which the electromagnetic waves at the fundamental plasma frequency are trapped in density fluctuations. Recently it has been found that Langmuir waves are associated with magnetic holes. This may help to elucidate the nature of magnetic holes. Nonlinear processes are important in the transformation of wave energy to particle energy. Some recent examples from Wind data are shown.

  7. Measurements of electric fields in the solar wind: Interpretation difficulties

    SciTech Connect

    Chertkov, A.D.

    1995-06-01

    The traditionally measured electric fields in the solar wind plasma (about 1-10 mV/m) are not the natural, primordial ones but are the result of plasma-vehicle interaction. The theory of this interaction is not complete now and current interpretation of the measurements can fail. The state of fully ionized plasma depends on the entropy of the creating source and on the process in which plasma is involved. The increasing twofold of a moving volume in the solar wind (with energy transfer across its surface which is comparable with its whole internal energy) is a more rapid process than the relaxation for the pressure. The presumptive source of the solar wind creation - the induction electric field of the solar origin - has very low entropy. The state of plasma must be very far from the state of thermodynamic equilibrium. The internal energy of plasma can be contained mainly in plasma waves, resonant plasma oscillations, and electric currents. The primordial microscopic oscillating electric fields could be about 1 V/m. It can be checked by special measurements, not ruining the natural plasma state. The tool should be a dielectrical microelectroscope outside the distortion zone of the spacecraft, having been observed from the latter.

  8. Invited Article: Electric solar wind sail: Toward test missions

    NASA Astrophysics Data System (ADS)

    Janhunen, P.; Toivanen, P. K.; Polkko, J.; Merikallio, S.; Salminen, P.; Haeggström, E.; Seppänen, H.; Kurppa, R.; Ukkonen, J.; Kiprich, S.; Thornell, G.; Kratz, H.; Richter, L.; Krömer, O.; Rosta, R.; Noorma, M.; Envall, J.; Lätt, S.; Mengali, G.; Quarta, A. A.; Koivisto, H.; Tarvainen, O.; Kalvas, T.; Kauppinen, J.; Nuottajärvi, A.; Obraztsov, A.

    2010-11-01

    The electric solar wind sail (E-sail) is a space propulsion concept that uses the natural solar wind dynamic pressure for producing spacecraft thrust. In its baseline form, the E-sail consists of a number of long, thin, conducting, and centrifugally stretched tethers, which are kept in a high positive potential by an onboard electron gun. The concept gains its efficiency from the fact that the effective sail area, i.e., the potential structure of the tethers, can be millions of times larger than the physical area of the thin tethers wires, which offsets the fact that the dynamic pressure of the solar wind is very weak. Indeed, according to the most recent published estimates, an E-sail of 1 N thrust and 100 kg mass could be built in the rather near future, providing a revolutionary level of propulsive performance (specific acceleration) for travel in the solar system. Here we give a review of the ongoing technical development work of the E-sail, covering tether construction, overall mechanical design alternatives, guidance and navigation strategies, and dynamical and orbital simulations.

  9. Neutral Solar Wind Generated by Lunar Exospheric Dust at the Terminator

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Stubbs, Timothy J.

    2007-01-01

    We calculate the flux of neutral solar wind observed on the lunar surface at the terminator due to solar wind protons penetrating exospheric dust with: (1) grains larger that 0.1 microns and (2) grains larger than 0.01 microns. For grains larger than 0.1 microns, the ratio of the neutral solar wind to solar wind flux is estimated to be approx.10(exp -4)-10(exp -3) at solar wind speeds in excess of 800 km/s, but much lower (less than 10(exp -5) at average to low solar wind speeds. However, when the smaller grain sizes are considered, the ratio of the neutral solar wind flux to solar wind flux is estimated to be greater than or equal to 10(exp -5) at all speeds and at speeds in excess of 700 km/s reaches 10(exp -3)-10(exp -2). These neutral solar wind fluxes are easily measurable with current low energy neutral atom instrumentation. Observations of neutral solar wind from the surface of the Moon could provide a very sensitive determination of the distribution of very small dust grains in the lunar exosphere and would provide data complementary to optical measurements at ultraviolet and visible wavelengths. Furthermore, neutral solar wind, unlike its ionized counterpart, is .not held-off by magnetic anomalies, and may contribute to greater space weathering than expected in certain lunar locations.

  10. Predictions of the solar wind speed by the probability distribution function model

    NASA Astrophysics Data System (ADS)

    Bussy-Virat, C. D.; Ridley, A. J.

    2014-06-01

    The near-Earth space environment is strongly driven by the solar wind and interplanetary magnetic field. This study presents a model for predicting the solar wind speed up to 5 days in advance. Probability distribution functions (PDFs) were created that relate the current solar wind speed and slope to the future solar wind speed, as well as the solar wind speed to the solar wind speed one solar rotation in the future. It was found that a major limitation of this type of technique is that the solar wind periodicity is close to 27 days but can be from about 22 to 32 days. Further, the optimum lag between two solar rotations can change from day to day, making a prediction of the future solar wind speed based solely on the solar wind speed approximately 27 days ago quite difficult. It was found that using a linear combination of the solar wind speed one solar rotation ago and a prediction of the solar wind speed based on the current speed and slope is optimal. The linear weights change as a function of the prediction horizon, with shorter prediction times putting more weight on the prediction based on the current solar wind speed and the longer prediction times based on an even spread between the two. For all prediction horizons from 8 h up to 120 h, the PDF Model is shown to be better than using the current solar wind speed (i.e., persistence), and better than the Wang-Sheeley-Arge Model for prediction horizons of 24 h.

  11. A 3-d time-dependent ideal mhd solar wind model

    NASA Astrophysics Data System (ADS)

    Feng, X.; Wu, S.; Wei, F.

    A new numerical three-dimensional MHD model of solar wind is introduced in spherical coordinates by using a TVD type numerical scheme. In order to show its validation in modeling three-dimensional solar wind background, numerical tests are carried out with initiation magnetic field depending on (r, theta, phi), which is obtained from a force-free formu lation. The numerical density and velocity distributions of the solar wind at the solar surface and 20 solar radii reproduce the typical characteristics of interplanetary solar wind, and are in qualitatively accordance with those obtained from K-corona brightness observation of HAO and magnetic filed observation of WSO.

  12. Control of Suprathermal Electron Flux by Solar Wind Dynamics

    NASA Astrophysics Data System (ADS)

    Crooker, N. U.; Appleton, E. M.; Owens, M. J.; Schwadron, N. A.

    2009-05-01

    The high variability of the intensity of suprathermal electron flux in the solar wind is usually ascribed to the high variability of sources on the Sun. Here we demonstrate that a substantial amount of the variability arises instead from solar wind dynamics in stream interaction regions, where fast wind runs into slow wind and creates a pressure ridge at the interface. Superposed epoch analysis centered on stream interfaces in 26 interaction regions previously identified in Wind data reveal a twofold increase in 250-eV flux (integrated over pitch angle). This result is understood in terms of the magnetic field compression there. If suprathermal electrons spiraling along field lines are viewed as beads along strings, then increasing the density of the strings through compression will also increase the density of the beads. An intriguing aspect of the result is that while the field strength peaks at the stream interface, as expected, the peak in electron flux lags by ˜1.5 hours. Although this lag may not be statistically significant, its sense is consistent with the systematic transport of open magnetic flux via interchange reconnection at coronal hole boundaries predicted by the global footpoint circulation model of L. A. Fisk and colleagues.

  13. Western Wind and Solar Integration Study: Hydropower Analysis

    SciTech Connect

    Acker, T.; Pete, C.

    2012-03-01

    The U.S. Department of Energy's (DOE) study of 20% Wind Energy by 2030 was conducted to consider the benefits, challenges, and costs associated with sourcing 20% of U.S. energy consumption from wind power by 2030. This study found that with proactive measures, no insurmountable barriers were identified to meet the 20% goal. Following this study, DOE and the National Renewable Energy Laboratory (NREL) conducted two more studies: the Eastern Wind Integration and Transmission Study (EWITS) covering the eastern portion of the U.S., and the Western Wind and Solar Integration Study (WWSIS) covering the western portion of the United States. The WWSIS was conducted by NREL and research partner General Electric (GE) in order to provide insight into the costs, technical or physical barriers, and operational impacts caused by the variability and uncertainty of wind, photovoltaic, and concentrated solar power when employed to serve up to 35% of the load energy in the WestConnect region (Arizona, Colorado, Nevada, New Mexico, and Wyoming). WestConnect is composed of several utility companies working collaboratively to assess stakeholder and market needs to and develop cost-effective improvements to the western wholesale electricity market. Participants include the Arizona Public Service, El Paso Electric Company, NV Energy, Public Service of New Mexico, Salt River Project, Tri-State Generation and Transmission Cooperative, Tucson Electric Power, Xcel Energy and the Western Area Power Administration.

  14. A Model for the Sources of the Slow Solar Wind

    NASA Technical Reports Server (NTRS)

    Antiochos, Spiro K.; Mikic, Z.; Titov, V. S.; Lionello, R.; Linker, J. A.

    2010-01-01

    Models for the origin of the slow solar wind must account for two seemingly contradictory observations: The slow wind has the composition of the closed-field corona, implying that it originates from the continuous opening and closing of flux at the boundary between open and closed field. On the other hand, the slow wind has large angular width, up to approximately 60 degrees, suggesting that its source extends far from the open-closed boundary. We propose a model that can explain both observations. The key idea is that the source of the slow wind at the Sun is a network of narrow (possibly singular) open-field corridors that map to a web of separatrices and quasi-separatrix layers in the heliosphere. We compute analytically the topology of an open-field corridor and show that it produces a quasi-separatrix layer in the heliosphere that extends to angles far front the heliospheric current sheet. We then use an MHD code and MIDI/SOHO observations of the photospheric magnetic field to calculate numerically, with high spatial resolution, the quasi-steady solar wind and magnetic field for a time period preceding the August 1, 2008 total solar eclipse. Our numerical results imply that, at least for this time period, a web of separatrices (which we term an S-web) forms with sufficient density and extent in the heliosphere to account for the observed properties of the slow wind. We discuss the implications of our S-web model for the structure and dynamics of the corona and heliosphere, and propose further tests of the model.

  15. A MODEL FOR THE SOURCES OF THE SLOW SOLAR WIND

    SciTech Connect

    Antiochos, S. K.; Mikic, Z.; Titov, V. S.; Lionello, R.; Linker, J. A.

    2011-04-20

    Models for the origin of the slow solar wind must account for two seemingly contradictory observations: the slow wind has the composition of the closed-field corona, implying that it originates from the continuous opening and closing of flux at the boundary between open and closed field. On the other hand, the slow wind also has large angular width, up to {approx}60{sup 0}, suggesting that its source extends far from the open-closed boundary. We propose a model that can explain both observations. The key idea is that the source of the slow wind at the Sun is a network of narrow (possibly singular) open-field corridors that map to a web of separatrices and quasi-separatrix layers in the heliosphere. We compute analytically the topology of an open-field corridor and show that it produces a quasi-separatrix layer in the heliosphere that extends to angles far from the heliospheric current sheet. We then use an MHD code and MDI/SOHO observations of the photospheric magnetic field to calculate numerically, with high spatial resolution, the quasi-steady solar wind, and magnetic field for a time period preceding the 2008 August 1 total solar eclipse. Our numerical results imply that, at least for this time period, a web of separatrices (which we term an S-web) forms with sufficient density and extent in the heliosphere to account for the observed properties of the slow wind. We discuss the implications of our S-web model for the structure and dynamics of the corona and heliosphere and propose further tests of the model.

  16. Signatures of shock drivers in the solar wind and their dependence on the solar source location

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    1993-01-01

    Solar wind and energetic ion observations following 40 interplanetary shocks with well-established solar source locations have been examined in order to determine whether signatures characteristic of the coronal material forming the shock driver are present. The signatures considered include magnetic-field-aligned bidirectional ion flows observed by the ISEE 3 and IMP 8 spacecraft; bidirectional solar wind electron heat fluxes; solar wind plasma proton and electron temperature depressions; low-beta plasma; enhanced, low-variance magnetic fields; and energetic ion depressions. Several shock driver signatures are commonly observed following shocks originating from within about 50 deg of central meridian, and are generally absent for other events. We conclude that shock drivers generally extend up to about 100 deg in longitude, centered on the solar source longitude. Since shocks from central meridian events are not usually associated with all the shock driver signatures examined, the absence of a driver cannot be confirmed from consideration of one of these signatures alone. We also find evidence that a few bidirectional energetic ion and solar wind electron heat flux events following shocks (in particular from far eastern sources) may occur on open field lines outside of shock drivers.

  17. Radiation belt electrons respond to multiple solar wind inputs

    NASA Astrophysics Data System (ADS)

    Rigler, E. J.; Wiltberger, M.; Baker, D. N.

    2007-06-01

    The multivariate statistical basis that underlies both single- and multi-input linear prediction filter analyses is reviewed, providing context necessary to understand the full capabilities and limitations of such models. A brief reanalysis of single-input filters is conducted primarily as a contrast to subsequent analysis of multi-input linear filters, which (1) guarantee similar or better prediction capabilities than single-input linear filters and (2) reduce bias in estimated filter coefficients that is inherent to underspecified linear models when ordinary least squares algorithms are employed. The former is clearly valuable from a practical standpoint, but the latter helps build confidence in any physical interpretations of both the filter coefficients, which often emulate stable low-order dynamical response functions quite well, as well as prediction error statistics that can be used to provide a lower bound on the fractional or percent variance of radiation belt electron flux that can be attributed to each different solar wind input. We find that the solar wind bulk speed tends to be the primary driver of electron flux enhancements at magnetic L shells larger than 4, with little or no relation to flux decreases. Changes in the solar wind's magnetic field strength tend to temporarily reduce electron fluxes between L = 4 and L = 8, while enhancing it between L = 3 and L = 4. In contrast to predictions generated by single-input linear filters, multi-input filters show that solar wind plasma density only contributes weakly to electron flux variability, although it does so consistently across nearly all L shells. Finally, we studied two distinct 4-year intervals within the most recent solar cycle and found that smaller, more time-stationary prediction errors are generated by multi-input linear filters. We therefore conclude that multi-input filters more accurately reflect real dynamic relationships than any single-input linear filter alone.

  18. Solar Wind Fluctuations and Their Consequences on the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Li, Xin-Lin

    2005-01-01

    Efforts have been made to extract the physical meaning of each term in our prediction model of the Dst index using the solar wind as the only input. The work has been published Journal of Geophysical Research (Temerin and Li, 21002). We found different terms in the model representing different current in the magnetospheric system and each current has different rise and decay times, with the symmetric ring current the slowest, then the partial ring current, then the tail current. We also have been trying to understand the physical meaning of the diffusion coefficient used in our prediction model of relativistic electron fluxes at geostationary orbit. The model reproduced the observations of MeV electron flux variations well, the diffusion coefficient had be assumed only die to local magnetic field fluctuations, leading to its 10th power dependence on the L. We have studied the theoretical derivation of the diffusion coefficient and we believe that the effect electric field fluctuations at smaller L could become more significant. We have expanded our previous radiation belt electron prediction model, which predicted MeV electron geosynchronous orbit based on solar wind measurements, to predict MeV electrons inside geosynchronous orbit. The model results are compared with measurements from Polar/CEPPAD. Prediction efficiencies of 0.56 and 0.54, respectively, at L=6 and L=4, have been achieved over the entire year of 1998. This work wa reported at 2003 Fall AGU and has been accepted for publication in Space Weather (Barker et al., 2005). We also have used simultaneous measurements of the upstream solar wind and of energetic electrons at geosynchronous orbit to analyze the response of electrons over a very wide energy range, 50 keV-6MeV, to solar wind variations. Enhancements of energetic electron fluxes over this whole energy range are modulated by the solar wind speed and the polarity of the interplanetary magnetic field (IMF). The solar wind speed seems to be a dominant controlling parameter for electrons of all energy. This work has been published in Space Weather (Li et al., 2005).

  19. Generalized similarity in magnetohydrodynamic turbulence as seen in the solar corona and solar wind

    NASA Astrophysics Data System (ADS)

    Chapman, S. C.; Leonardis, E.; Nicol, R. M.; Foullon, C.

    2010-12-01

    A key property of turbulence is that it can be characterized and quantified in a robust and reproducible way in terms of the ensemble averaged statistical properties of fluctuations. Importantly, fluctuations associated with a turbulent field show similarity or scaling in their statistics and we test for this in observations of magnetohydrodynamic turbulence in the solar corona and solar wind with both power spectra and Generalized Structure Functions. Realizations of turbulence that are finite sized are known to exhibit a generalized or extended self-similarity (ESS). ESS was recently demonstrated in magnetic field timeseries of Ulysses single point in-situ observations of fluctuations of quiet solar wind for which a single robust scaling function was found [1-2]. Flows in solar coronal prominences can be highly variable, with dynamics suggestive of turbulence. The Hinode SOT instrument provides observations (images) at simultaneous high spatial and temporal resolution which span several decades in both spatial and temporal scales. We focus on specific Calcium II H-line observations of solar quiescent prominences with dynamic, highly variable small-scale flows. We analyze these images from the perspective of a finite sized turbulent flow. We discuss this evidence of ESS in the SOT images and in Ulysses solar wind observations- is there a single universal scaling of the largest eddies in the finite range magnetohydrodynamic turbulent flow? [1] S. C. Chapman, R. M. Nicol, Generalized Similarity in Finite Range Solar Wind Magnetohydrodynamic Turbulence, Phys. Rev. Lett., 103, 241101 (2009) [2] S. C. Chapman, R. M. Nicol, E. Leonardis, K. Kiyani, V. Carbone, Observation of universality in the generalized similarity of evolving solar wind turbulence as seen by ULYSSES, Ap. J. Letters, 695, L185, (2009)

  20. How the Solar Wind Ties to its Photospheric Origins

    NASA Astrophysics Data System (ADS)

    Leamon, Robert J.; McIntosh, Scott W.

    2009-05-01

    We present a new method of visualizing the solar photospheric magnetic field based on the "Magnetic Range of Influence" (MRoI). The MRoI is a simple realization of the magnetic environment in the photosphere, reflecting the distance required to balance the integrated magnetic field contained in any magnetogram pixel. It provides a new perspective on where subterrestrial field lines in a Potential Field Source Surface (PFSS) model connect to the photosphere, and thus the source of Earth-directed solar wind (within the limitations of PFSS models), something that is not usually obvious from a regular synoptic magnetogram. In each of three sample solar rotations, at different phases of the solar cycle, the PFSS footpoint either jumps between isolated areas of high MRoI or moves slowly within one such area. Footpoint motions are consistent with Fisk's interchange reconnection model.

  1. EUV spectroscopic plasma diagnostics for the solar wind acceleration region

    NASA Technical Reports Server (NTRS)

    Kohl, J. L.; Withbroe, G. L.

    1982-01-01

    Possibilities are considered for probing physical conditions in the solar corona with strong EUV resonance lines from ions such as N V, O VI, Ne VIII, Mg X, and Si XII. Through measurements of the intensities and profiles of EUV spectral lines with coronagraphic instrumentation employing normal incidence reflecting optics, it is possible to acquire information on electron, proton, and ion temperatures and velocity distributions; electron, H I, and ion densities; mass flow and nonthermal velocities; and chemical abundances. This information will provide critical empirical constraints on physical processes responsible for plasma heating, solar wind acceleration, and transport of mass, momentum, and energy in the solar corona, as well as providing constraints on theoretical models for solar and stellar coronae and mass loss.

  2. Radar wind profiler observations of solar semidiurnal atmospheric tides

    SciTech Connect

    Whiteman, C.D.; Bian, X.

    1995-04-15

    Semidiurnal solar tides in the mid-latitude troposhphere are investigated using harmonic analysis of 404 MHz radar profiler wind data obtained from a wide longitude zone in the U.S. The tides are apparent above a 1000-m-deep surface layer and increase in amplitude with height, attaining speeds of 0.5-0.7 m/s at 5-7 km. Observed wind characteristics agree well with tidal characteristics obtained with a dynamical model driven by observed global semidiurnal horizontal pressure gradients. 10 refs., 6 figs., 1 tab.

  3. A Statistical Analysis of 50 Years of Daily Solar Wind Velocity Data

    NASA Astrophysics Data System (ADS)

    LI, K. J.; ZHANNG, J.; FENG, W.

    2016-05-01

    Daily mean value of solar wind velocity measured by various spacecraft near the Earth’s orbit from 1963 November 27 to 2013 December 31 given by OMNIWeb is utilized to investigate its characteristics through statistical analyses. The percent probability distribution of solar wind velocity can be described well by the Γ distribution function with the most probable velocity to be 373 {km} {{{s}}}-1. It is found that solar wind could be statistically classified into three groups: (1) the low-velocity wind, v\\lt 450 {km} {{{s}}}-1, which positively responds to, and in the cycle phase lags, the solar activity cycle; (2) the high-velocity wind, 450≤slant v\\lt 725 {km} {{{s}}}-1, which negatively responds to, and in the cycle phase leads, the solar activity cycle, but in a short timescale (one-rotation-period) lags the solar activity cycle; and (3) the extreme-high-velocity wind, v≥slant 725 {km} {{{s}}}-1, which positively responds to, and in cycle phase leads, the solar activity cycle. A period of about 27 days is determined for solar wind in the first two groups, so that solar wind in the groups is modulated by the solar rotation and related with solar long-life magnetic structures. Solar wind of extreme high velocity appears mainly at the descending phases of the solar cycles.

  4. Observations of Rapid Velocity Variations in the Slow Solar Wind

    NASA Astrophysics Data System (ADS)

    Hardwick, S. A.; Bisi, M. M.; Davies, J. A.; Breen, A. R.; Fallows, R. A.; Harrison, R. A.; Davis, C. J.

    2013-07-01

    The technique of interplanetary scintillation (IPS) is the observation of rapid fluctuations of the radio signal from an astronomical compact source as the signal passes through the ever-changing density of the solar wind. Cross-correlation of simultaneous observations of IPS from a single radio source, received at multiple sites of the European Incoherent SCATter (EISCAT) radio antenna network, is used to determine the velocity of the solar wind material passing over the lines of sight of the antennas. Calculated velocities reveal the slow solar wind to contain rapid velocity variations when viewed on a time-scale of several minutes. Solar TErrestrial RElations Observatory (STEREO) Heliospheric Imager (HI) observations of white-light intensity have been compared with EISCAT observations of IPS to identify common density structures that may relate to the rapid velocity variations in the slow solar wind. We have surveyed a one-year period, starting in April 2007, of the EISCAT IPS observing campaigns beginning shortly after the commencement of full science operations of the STEREO mission in a bid to identify common density structures in both EISCAT and STEREO HI datasets. We provide a detailed investigation and presentation of joint IPS/HI observations from two specific intervals on 23 April 2007 and 19 May 2007 for which the IPS P-Point (point of closest approach of the line of sight to the Sun) was between 72 and 87 solar radii out from the Sun's centre. During the 23 April interval, a meso-scale (of the order of 105 km or larger) transient structure was observed by HI-1A to pass over the IPS ray path near the P-Point; the observations of IPS showed a micro-scale structure (of the order of 102 km) within the meso-scale transient. Observations of IPS from the second interval, on 19 May, revealed similar micro-scale velocity changes, however, no transient structures were detected by the HIs during that period. We also pose some fundamental thoughts on the slow solar wind structure itself.

  5. The genesis solar-wind sample return mission

    SciTech Connect

    Wiens, Roger C

    2009-01-01

    The compositions of the Earth's crust and mantle, and those of the Moon and Mars, are relatively well known both isotopically and elementally. The same is true of our knowledge of the asteroid belt composition, based on meteorite analyses. Remote measurements of Venus, the Jovian atmosphere, and the outer planet moons, have provided some estimates of their compositions. The Sun constitutes a large majority, > 99%, of all the matter in the solar system. The elemental composition of the photosphere, the visible 'surface' of the Sun, is constrained by absorption lines produced by particles above the surface. Abundances for many elements are reported to the {+-}10 or 20% accuracy level. However, the abundances of other important elements, such as neon, cannot be determined in this way due to a relative lack of atomic states at low excitation energies. Additionally and most importantly, the isotopic composition of the Sun cannot be determined astronomically except for a few species which form molecules above sunspots, and estimates derived from these sources lack the accuracy desired for comparison with meteoritic and planetary surface samples measured on the Earth. The solar wind spreads a sample of solar particles throughout the heliosphere, though the sample is very rarified: collecting a nanogram of oxygen, the third most abundant element, in a square centimeter cross section at the Earth's distance from the Sun takes five years. Nevertheless, foil collectors exposed to the solar wind for periods of hours on the surface of the Moon during the Apollo missions were used to determine the helium and neon solar-wind compositions sufficiently to show that the Earth's atmospheric neon was significantly evolved relative to the Sun. Spacecraft instruments developed subsequently have provided many insights into the composition of the solar wind, mostly in terms of elemental composition. These instruments have the advantage of observing a number of parameters simultaneously, including charge state distributions, velocities, and densities, all of which have been instrumental in characterizing the nature of the solar wind. However, these instruments have lacked the ability to make large dynamic range measurements of adjacent isotopes (i.e., {sup 17}O/{sup 16}O {approx} 2500) or provide the permil (tenths of percent) accuracy desirable for comparison with geochemical isotopic measurements. An accurate knowledge of the solar and solar-wind compositions helps to answer important questions across a number of disciplines. It aids in understanding the acceleration mechanisms of the solar wind, gives an improved picture of the charged particle environment near the photosphere, it constrains processes within the Sun over its history, and it provides a database by which to compare differences among planetary systems with the solar system's starting composition, providing key information on planetary evolution. For example, precise knowledge of solar isotopic and elemental compositions of volatile species in the Sun provides a baseline for models of atmospheric evolution over time for Earth, Venus, and Mars. Additionally, volatile and chemically active elements such as C, H, O, N, and S can tell us about processes active during the evolution of the solar nebula. A classic example of this is the oxygen isotope system. In the 1970s it was determined that the oxygen isotopic ratio in refractory inclusions in primitive meteorites was enriched {approx}4% in {sup 16}O relative to the average terrestrial, lunar, and thermally processed meteorite materials. In addition, all processed solar-system materials appeared to each have a unique oxygen isotopic composition (except the Moon and Earth, which are thought to be formed from the same materials), though differences are in the fraction of a percent range, much smaller than the refractory material {sup 16}O enrichment. Several theories were developed over the years to account for the oxygen isotope heterogeneity, each theory predicting a different solar isotopic composition and each invoking a different early solar-system process to produce the heterogeneity. Other volatiles such as C, N, and H may also have experienced similar effects, but with only two isotopes it is often impossible to distinguish with these elements between mass-dependent fractionation and other effects such as mixing or mass-independent fractionation. Table 1 provides a summary of the major measurement objectives of the Genesis mission. Determining the solar oxygen isotopic composition is at the top of the list. Volatile element and isotope ratios constitute six of the top seven priorities. A number of disciplines stand to gain from information from the Genesis mission, as will be discussed later. Based on the Apollo solar-wind foil experiment, the Genesis mission was designed to capture solar wind over orders of magnitude longer duration and in a potentially much cleaner environment than the lunar surface.

  6. Solar winds surfs waves in the Sun's atmosphere!

    NASA Astrophysics Data System (ADS)

    1999-06-01

    The fact that this electrified plasma speeds up to almost 3 million kilometres per hour as it leaves the Sun - twice as fast as originally predicted - has been known for years. The interpretation of how it happens is the real and surprising novelty: "The waves in the Sun's atmosphere are produced by vibrating solar magnetic field lines, which give solar wind particles a push just like an ocean wave gives a surfer a ride" said Dr John Kohl, principal investigator for the Ultraviolet Coronal Spectrometer (UVCS) - the instrument among the 12 aboard SOHO which gathered the data - and for the Spartan 201 mission. The outermost solar atmosphere, or corona, is only seen from Earth during a total eclipse of the Sun, when it appears as a shimmering, white veil surrounding the black lunar disc. The corona is an extremely tenuous, electrically charged gas, known as plasma, that flows throughout the solar system as the solar wind. The waves are formed by rapidly vibrating magnetic fields in the coronal plasma. They are called magneto - hydro - dynamic (MHD) waves and are believed to accelerate the solar wind. The solar wind is made up of electrons and ions, electrically charged atoms that have lost electrons. The electric charge of the solar wind particles forces them to travel along invisible lines of magnetic force in the corona. The particles spiral around the magnetic field lines as they rush into space. "The magnetic field acts like a violin string: when it's touched, it vibrates. When the Sun's magnetic field vibrates with a frequency equal to that of the particle spiraling around the magnetic field, it heats it up, producing a force that accelerates the particle upward and away from the Sun," says Dr. Ester Antonucci, an astronomer at the observatory of Turin, Italy, and co-investigator for SOHO's UVCS an instrument developed with considerable financial support by the Italian Space Agency, ASI. In a way this is similar to what happens if two people hold a string at opposite ends after threading it through an object, like a ring. If one person wiggles the string rapidly up and down, waves form in the string that move toward the person at the other end. The ring will "surf" these waves and move toward the other person as well. Try it! "Even with this major discovery, there are questions left to answer. The observations have made it abundantly clear that heavy particles like oxygen 'surf' on the waves, and there is also mounting evidence that waves are responsible for accelerating the hydrogen atoms, the most common constituent of the solar wind. Future observations are needed to establish this fact. Many other kinds of particles, such as helium (second most common) have never been observed in the accelerating part of the corona, and new observations are also needed to refine our understanding of how the waves interact with the solar wind as a whole," said Dr. Steven Cranmer of the Harvard-Smithsonian Center for Astrophysics, lead author of the research to be published in the Astrophysical Journal*. Nevertheless, SOHO has again been able to reveal another of the Sun's mysteries: "This is another triumph for SOHO, stealing a long-held secret from our Sun", said Dr Martin Huber, Head of ESA Space Science Department and co-investigator for UVCS. *Ref. Article by S.Cranmer, G.B. Field and J.L. Kohl on Astrophysical Journal ( June 20, Vol 518, p. 937-947) available on the web at: http://www.journals.uchicago.edu/ApJ/journal/issues/ApJ/v518n2/39802/sc0.html

  7. Solar winds surfs waves in the Sun's atmosphere!

    NASA Astrophysics Data System (ADS)

    1999-07-01

    The fact that this electrified plasma speeds up to almost 3 million kilometres per hour as it leaves the Sun - twice as fast as originally predicted - has been known for years. The interpretation of how it happens is the real and surprising novelty: "The waves in the Sun's atmosphere are produced by vibrating solar magnetic field lines, which give solar wind particles a push just like an ocean wave gives a surfer a ride" said Dr John Kohl, principal investigator for the Ultraviolet Coronal Spectrometer (UVCS) - the instrument among the 12 aboard SOHO which gathered the data - and for the Spartan 201 mission. The outermost solar atmosphere, or corona, is only seen from Earth during a total eclipse of the Sun, when it appears as a shimmering, white veil surrounding the black lunar disc. The corona is an extremely tenuous, electrically charged gas, known as plasma, that flows throughout the solar system as the solar wind. The waves are formed by rapidly vibrating magnetic fields in the coronal plasma. They are called magneto - hydro - dynamic (MHD) waves and are believed to accelerate the solar wind. The solar wind is made up of electrons and ions, electrically charged atoms that have lost electrons. The electric charge of the solar wind particles forces them to travel along invisible lines of magnetic force in the corona. The particles spiral around the magnetic field lines as they rush into space. "The magnetic field acts like a violin string: when it's touched, it vibrates. When the Sun's magnetic field vibrates with a frequency equal to that of the particle spiraling around the magnetic field, it heats it up, producing a force that accelerates the particle upward and away from the Sun," says Dr. Ester Antonucci, an astronomer at the observatory of Turin, Italy, and co-investigator for SOHO's UVCS an instrument developed with considerable financial support by the Italian Space Agency, ASI. In a way this is similar to what happens if two people hold a string at opposite ends after threading it through an object, like a ring. If one person wiggles the string rapidly up and down, waves form in the string that move toward the person at the other end. The ring will "surf" these waves and move toward the other person as well. Try it! "Even with this major discovery, there are questions left to answer. The observations have made it abundantly clear that heavy particles like oxygen 'surf' on the waves, and there is also mounting evidence that waves are responsible for accelerating the hydrogen atoms, the most common constituent of the solar wind. Future observations are needed to establish this fact. Many other kinds of particles, such as helium (second most common) have never been observed in the accelerating part of the corona, and new observations are also needed to refine our understanding of how the waves interact with the solar wind as a whole," said Dr. Steven Cranmer of the Harvard-Smithsonian Center for Astrophysics, lead author of the research to be published in the Astrophysical Journal*. Nevertheless, SOHO has again been able to reveal another of the Sun's mysteries: "This is another triumph for SOHO, stealing a long-held secret from our Sun", said Dr Martin Huber, Head of ESA Space Science Department and co-investigator for UVCS. *Ref. Article by S.Cranmer, G.B. Field and J.L. Kohl on Astrophysical Journal ( June 20, Vol 518, p. 937-947) available on the web at: http://www.journals.uchicago.edu/ApJ/journal/issues/ApJ/v518n2/39802/sc0.html

  8. Electron densities and temperatures in the Venus ionosphere Effects of solar EUV, solar wind pressure and magnetic field

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Russell, C. T.; Brace, L. H.

    1985-01-01

    The Venus ionosphere is influenced by variations in both solar EUV flux and solar wind conditions. On the dayside the location of the topside of the ionosphere, the ionopause, is controlled by solar wind dynamic pressure. Within the dayside ionosphere, however, electron density is affected mainly by solar EUV variations, and is relatively unaffected by solar wind variations and associated magnetic fields induced within the ionosphere. The existence of a substantial nightside ionosphere of Venus is thought to be due to the rapid nightward transport of dayside ionospheric plasma across the terminator. Typical solar wind conditions do not strongly affect this transport and consequently have little direct influence on nightside ionospheric conditions, except on occasions of extremely high solar wind dynamic pressure. However, both nightside electron density and temperature are affected by the presence of magnetic field, as in the case of ionospheric holes.

  9. Reconstruction of Helio-Latitudinal Structure of the Solar Wind Proton Speed and Density

    NASA Astrophysics Data System (ADS)

    Sokół, Justyna M.; Swaczyna, Paweł; Bzowski, Maciej; Tokumaru, Munetoshi

    2015-09-01

    The modeling of the heliosphere requires continuous three-dimensional solar wind data. The in-situ out-of-ecliptic measurements are very rare, so that other methods of solar wind detection are needed. We use the remote-sensing data of the solar wind speed from observations of interplanetary scintillation (IPS) to reconstruct spatial and temporal structures of the solar wind proton speed from 1985 to 2013. We developed a method of filling the data gaps in the IPS observations to obtain continuous and homogeneous solar wind speed records. We also present a method to retrieve the solar wind density from the solar wind speed, utilizing the invariance of the solar wind dynamic pressure and energy flux with latitude. To construct the synoptic maps of the solar wind speed we use the decomposition into spherical harmonics of each of the Carrington rotation map. To fill the gaps in time we apply the singular spectrum analysis to the time series of the coefficients of spherical harmonics. We obtained helio-latitudinal profiles of the solar wind proton speed and density over almost three recent solar cycles. The accuracy in the reconstruction is, due to computational limitations, about 20 %. The proposed methods allow us to improve the spatial and temporal resolution of the model of the solar wind parameters presented in our previous paper (Sokół et al., Solar Phys. 285, 167, 2013) and give a better insight into the time variations of the solar wind structure. Additionally, the solar wind density is reconstructed more accurately and it fits better to the in-situ measurements from Ulysses.

  10. Nitrogen isotope abundances in the recent solar wind.

    PubMed

    Kim, J S; Kim, Y; Marti, K; Kerridge, J F

    1995-06-01

    Although lunar crystalline rocks are essentially devoid of nitrogen, the same is not true of the lunar regolith. The nitrogen contents of individual regolith samples (which can be as high as 0.012% by mass) correlate strongly with abundances of noble gases known to be implanted in the lunar surface by solar radiation, indicating that lunar regolith nitrogen is also predominantly of solar origin. The large variability in 15N/14N ratios measured in different regolith samples may thus reflect long-term changes in the isotopic composition of the solar radiation. But attempts to explain these variations have been hampered by the lack of any firm constraint on 15N/14N in the present solar wind. Here we report measurements of nitrogen isotopes from two lunar samples that have had simple (and relatively recent) exposure histories. We find that nitrogen implanted in the lunar surface during the past 10(5) to 5 x 10(7) years has a 15N/14N ratio approximately 40% higher than that in the terrestrial atmosphere, which is substantially lower than most previous estimates. This isotopic signature probably represents the best measure of 15N/14N in the present-day solar wind. PMID:7760930

  11. Neutral hydrogen in the solar wind acceleration region

    NASA Technical Reports Server (NTRS)

    Olsen, Espen Lyngdal; Leer, Egil; Holzer, Thomas E.

    1994-01-01

    Observation of solar Ly alpha radiation scattered by coronal neutral hydrogen atoms can be used to investigate the acceleration region of the solar wind. In this paper we focus on the use of these observations to study Alfven waves, which can accelerate the solar wind plasma to flow speeds observed in high-speed streams if their amplitude at the coronal base is 20 km/s or larger. The wave amplitude is then larger than the proton thermal speed in the outer corona, so that the mean proton speed (averaged over a wave period) is significantly larger than the proton thermal speed. For low-frequency wave the hydrogen atoms follow the proton motion in the waves, while for higher frequencies the protons move relative to the neutrals. Nevertheless, in the higher frequency case, the rates for charge exchange and recombination are high enough to broaden the velocity distribution function of neutral hydrogen. Both the wave motion of the hydrogen atoms in low-frequency Alfven waves and the 'heating' by higher frequency waves lead to a broadening of the scattered solar Ly alpha line. For coronal base amplitues of 20 km/s, the line broadening increases with heliocentric distance beyond 4-5 solar radii.

  12. Solar Rotational Periodicities and the Semiannual Variation in the Solar Wind, Radiation Belt, and Aurora

    NASA Technical Reports Server (NTRS)

    Emery, Barbara A.; Richardson, Ian G.; Evans, David S.; Rich, Frederick J.; Wilson, Gordon R.

    2011-01-01

    The behavior of a number of solar wind, radiation belt, auroral and geomagnetic parameters is examined during the recent extended solar minimum and previous solar cycles, covering the period from January 1972 to July 2010. This period includes most of the solar minimum between Cycles 23 and 24, which was more extended than recent solar minima, with historically low values of most of these parameters in 2009. Solar rotational periodicities from S to 27 days were found from daily averages over 81 days for the parameters. There were very strong 9-day periodicities in many variables in 2005 -2008, triggered by recurring corotating high-speed streams (HSS). All rotational amplitudes were relatively large in the descending and early minimum phases of the solar cycle, when HSS are the predominant solar wind structures. There were minima in the amplitudes of all solar rotational periodicities near the end of each solar minimum, as well as at the start of the reversal of the solar magnetic field polarity at solar maximum (approx.1980, approx.1990, and approx. 2001) when the occurrence frequency of HSS is relatively low. Semiannual equinoctial periodicities, which were relatively strong in the 1995-1997 solar minimum, were found to be primarily the result of the changing amplitudes of the 13.5- and 27-day periodicities, where 13.5-day amplitudes were better correlated with heliospheric daily observations and 27-day amplitudes correlated better with Earth-based daily observations. The equinoctial rotational amplitudes of the Earth-based parameters were probably enhanced by a combination of the Russell-McPherron effect and a reduction in the solar wind-magnetosphere coupling efficiency during solstices. The rotational amplitudes were cross-correlated with each other, where the 27 -day amplitudes showed some of the weakest cross-correlations. The rotational amplitudes of the > 2 MeV radiation belt electron number fluxes were progressively weaker from 27- to 5-day periods, showing that processes in the magnetosphere act as a low-pass filter between the solar wind and the radiation belt. The A(sub p)/K(sub p) magnetic currents observed at subauroral latitudes are sensitive to proton auroral precipitation, especially for 9-day and shorter periods, while the A(sub p)/K(sub p) currents are governed by electron auroral precipitation for 13.5- and 27-day periodicities.

  13. Solar wind nitrogen - Mechanisms for isotopic evolution. [in lunar regolith

    NASA Technical Reports Server (NTRS)

    Kerridge, J. F.; Kaplan, I. R.; Lingenfelter, R. E.; Boynton, W. V.

    1977-01-01

    Isotope systematics of nitrogen implanted in the lunar regolith indicate that the N-15/N-14 ratio at the source of the nitrogen has increased substantially with time. This source is most plausibly identified as the solar wind reservoir. However, rigorous testing of possible mechanisms for isotopic evolution of the solar convective zone shows that they all fail, by large factors, to explain the observed effect. Evolutionary processes on the lunar surface may be similarly eliminated, leaving the lunar nitrogen isotope anomaly currently unexplained.

  14. Solar wind iron abundance variations at solar wind speeds up to 600 km s sup -1, 1972 to 1976

    NASA Technical Reports Server (NTRS)

    Mitchell, D. G.; Roelof, E. C.; Bame, S. J.

    1982-01-01

    The Fe/H ratios in the peaks of high speed streams (HSS) were analyzed during the decline of Solar Cycle 20 and the following minimum (October 1972 to December 1976). The response of the 50 to 200 keV ion channel of the APL/JHU energetic particle experiment (EPE) on IMP-7 and 8 was utilized to solar wind iron ions at high solar wind speeds (V or = 600 km/sec). Fe measurements with solar wind H and He parameters were compared from the Los Alamos National Laboratory (LANL) instruments on the same spacecraft. In general, the Fe distribution parameters (bulk velocity, flow direction, temperature) are found to be similar to the LANL He parameters. Although the average Fe/H ration in many steady HSS peaks agrees within observational uncertainties with the nominal coronal ratio of 4.7 x 0.00001, abundance variations of a factor of up to 6 are obtained across a given coronal-hole associated HSS.

  15. Minor Ion Species in the Solar Wind As Seen with SOHO/Celias/Mtof

    NASA Astrophysics Data System (ADS)

    Heidrich-Meisner, V.; Berger, L.; Wimmer-Schweingruber, R. F.; Wurz, P.; Bochsler, P. A.; Ipavich, F. M.; Gloeckler, G.; Klecker, B.; Paquette, J. A.

    2014-12-01

    The continuous solar wind is typically categorized as either fast or slow wind. Unlike the name implies the constitutive difference between these types of solar wind streams lies not in their respective solar wind velocity but in their elemental compositions. The long-term averages of the dominant ions in the solar wind have been measured with various instruments and are remarkably homogeneous. Here, we are interested in investigating the minor species contained in the solar wind. SOHO/CELIAS/MTOF is a high resolution mass spectrometer which has been continuously operational from 1996 to the present day. The high mass resolution and long life time of MTOF allows to complement the existing observations with the abundances of less abundant species for both typical slow and typical fast solar wind. This allows to further strengthen the characteristics of both types of solar wind. In principle MTOF's time resolution of up to five minutes facilitates to investigate the short-term variability of the solar wind. However, MTOF is a complex instrument that was intended to be in-flight calibrated with its sister instrument SOHO/CELIAS/CTOF. But unfortunately CTOF was only fully operable for about half a year in 1996. Instead we use solar wind data from ACE/SWICS for the calibration of MTOF whenever both instruments are sufficiently close to each other that we can expect them to observe the same solar wind stream.

  16. Dynamical age of solar wind turbulence in the outer heliosphere

    NASA Astrophysics Data System (ADS)

    Matthaeus, William H.; Smith, Charles W.; Oughton, Sean

    1998-04-01

    In an evolving turbulent medium, a natural timescale can be defined in terms of the energy decay time. The time evolution may be complicated by other effects such as energy supply due to driving, and spatial inhomogeneity. In the solar wind the turbulence appears not to be simply engaging in free decay, but rather the energy level observed at a particular position in the heliosphere is affected by expansion, 'mixing', and driving by stream shear. Here we discuss a new approach for estimating the 'age' of solar wind turbulence as a function of heliocentric distance, using the local turbulent decay rate as the natural clock, but taking into account expansion and driving effects. The simplified formalism presented here is appropriate to low cross helicity turbulence in the outer heliosphere especially at low heliolatitudes. We employ Voyager data to illustrate our method, which improves upon the familiar estimates in terms of local eddy turnover times.

  17. Solar wind dynamic pressure variations: Quantifying the statistical magnetospheric response

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.

    1990-01-01

    Solar wind dynamic pressure variations are common and have large amplitudes. Existing models for the transient magnetospheric and ionospheric response to the solar wind dynamic pressure variation are quantified. The variations drive large amplitude (approx 1 R sub E) magnetopause motion with velocities of approx. 60 km/s and transient dayside ionospheric flows of 2 km/s which are organized into double convection vortices. Ground magnetometer signatures are more pronounced under the auroral ionosphere, where they reach 60 to 300 nT, and under the equatorial electrojet. A statistical comparison of transient ground magnetometer events seen at a South Pole station and geosynchronous orbit indicates that all but the weakest ground events are associated with clear compressional signatures at the dayside geosynchronous orbit.

  18. Can solar wind viscous drag account for CME deceleration?

    NASA Astrophysics Data System (ADS)

    Subramanian, Prasad; Lara, Alejandro; Borgazzi, Andrea

    2012-07-01

    An understanding of the forces that act on Coronal Mass Ejections (CMEs) in the interplanetary medium are of prime importance in predicting their arrival at the Earth. These forces have been evaluated so far only in terms of an empirical drag coefficient C_{D} 1 that quantifies the role of the aerodynamic drag experienced by a typical CME due to its interaction with the ambient solar wind. We examine microphysical models for viscosity in the turbulent solar wind and apply them to a simplified model for CME propagation. Using this, we obtain an analytical expression for the dynamical viscosity coefficient and C_{D} as a function of heliocentric distance. This is the first physical characterization of the important issue of the aerodynamic drag experienced by CMEs. Our results elucidate the essential physics involved in explaining observations of CME deceleration and have implications for predictions of CME arrival time at the Earth.

  19. Interaction of the solar wind with the outer planets.

    NASA Technical Reports Server (NTRS)

    Dryer, M.; Rizzi, A. W.; Shen, W.-W.

    1973-01-01

    The hypersonic analog for the interaction of the solar wind with Jupiter, Saturn, Uranus, Neptune, and Pluto is used to provide estimates of shock shapes and locations, as well as average magnetosheath and/or ionosheath properties for these planets. Several representative spacecraft flyby trajectories (designed for outer-planet 'Grand Tour' simulations) are superimposed upon a series of figures in order to provide estimates of potential plasma and field parameters which may be encountered. Consideration is given first to the possibility that several of these planets have intrinsic magnetic fields and, secondly, to the interaction of the solar wind directly on the ionosphere should there actually be no intrinsic field. Saturn and Pluto are chosen as examples of this latter case.

  20. Generation of residual energy in the turbulent solar wind

    SciTech Connect

    Gogoberidze, G.

    2012-10-15

    In situ observations of the fluctuating solar wind flow show that the energy of magnetic field fluctuations always exceeds that of the kinetic energy, and therefore the difference between the kinetic and magnetic energies, known as the residual energy, is always negative. The same behaviour is found in numerical simulations of magnetohydrodynamic turbulence. We study the dynamics of the residual energy for strong, anisotropic, critically balanced magnetohydrodynamic turbulence using the eddy damped quasi-normal Markovian approximation. Our analysis shows that for stationary critically balanced magnetohydrodynamic turbulence, negative residual energy will always be generated by nonlinear interacting Alfven waves. This offers a general explanation for the observation of negative residual energy in solar wind turbulence and in the numerical simulations.

  1. Coronal sources of the intrastream structure of the solar wind

    NASA Technical Reports Server (NTRS)

    Sullivan, J. D.; Bridge, H. S.

    1983-01-01

    Short time scale changes in the bulk speed were found not to coincide with X-ray transients near the sub-earth point nor with the number of X-ray bright points within a coronal hole and near the equator. The changes in bulk speed, it is shown, are associated with changes in light areas in a hole which may be associated with the opening or closing of magnetic field lines within the coronal hole. That there is a causal connection between these sudden changes (apperance or disappearance) in light area and sudden changes in the bulk speed of the solar wind is further evidenced by the spatial proximity on the Sun of these changing light regions to the source position of stream lines from Levine's model that connect into the same solar wind streams.

  2. THREE-DIMENSIONAL STRUCTURE OF SOLAR WIND TURBULENCE

    SciTech Connect

    Chen, C. H. K.; Bale, S. D.; Mallet, A.; Schekochihin, A. A.; Horbury, T. S.; Wicks, R. T.

    2012-10-20

    We present a measurement of the scale-dependent, three-dimensional structure of the magnetic field fluctuations in inertial range solar wind turbulence with respect to a local, physically motivated coordinate system. The Alfvenic fluctuations are three-dimensionally anisotropic, with the sense of this anisotropy varying from large to small scales. At the outer scale, the magnetic field correlations are longest in the local fluctuation direction, consistent with Alfven waves. At the proton gyroscale, they are longest along the local mean field direction and shortest in the direction perpendicular to the local mean field and the local field fluctuation. The compressive fluctuations are highly elongated along the local mean field direction, although axially symmetric perpendicular to it. Their large anisotropy may explain why they are not heavily damped in the solar wind.

  3. Counterstreaming solar wind halo electron events on open field lines?

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Mccomas, D. J.; Phillips, J. L.

    1992-01-01

    Counterstreaming solar wind halo electron events have been identified as a common 1 AU signature of coronal mass ejection events, and have generally been interpreted as indicative of closed magnetic field topologies, i.e., magnetic loops or flux ropes rooted at both ends in the Sun, or detached plasmoids. In this paper we examine the possibility that these events may instead occur preferentially on open field lines, and that counterstreaming results from reflection or injection behind interplanetary shocks or from mirroring from regions of compressed magnetic field farther out in the heliosphere. We conclude that neither of these suggested sources of counterstreaming electron beams is viable and that the best interpretation of observed counterstreaming electron events in the solar wind remains that of passage of closed field structures.

  4. Numerical simulation of MHD shock waves in the solar wind

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.; Dryer, M.

    1978-01-01

    The effects of the interplanetary magnetic field on the propagation speed of shock waves through an ambient solar wind are examined by numerical solutions of the time-dependent nonlinear equations of motion. The magnetic field always increases the velocity of strong shocks. Although the field may temporarily slow down weak shocks inside 1 AU, it eventually also causes weak shocks to travel faster than they would without the magnetic field at larger distances. Consistent with the increase in the shock velocity, the gas pressure ratio across a shock is reduced considerably in the presence of the magnetic field. The numerical method is used to simulate (starting at 0.3 AU) the large deceleration of a shock observed in the lower corona by ground-based radio instrumentation and the more gradual deceleration of the shock in the solar wind observed by the Pioneer 9 and Pioneer 10 spacecraft.

  5. Mass fractionation of the lunar surface by solar wind sputtering

    NASA Technical Reports Server (NTRS)

    Switkowski, Z. E.; Haff, P. K.; Tombrello, T. A.; Burnett, D. S.

    1975-01-01

    The sputtering of the lunar surface by the solar wind is examined as a possible mechanism of mass fractionation. Simple arguments based on current theories of sputtering and the ballistics of the sputtered atoms suggest that most ejected atoms will have sufficiently high energy to escape lunar gravity. However, the fraction of atoms which falls back to the surface is enriched in the heavier atomic components relative to the lighter ones. This material is incorporated into the heavily radiation-damaged outer surfaces of grains where it is subject to resputtering. Over the course of several hundred years an equilibrium surface layer, enriched in heavier atoms, is found to form. The dependence of the calculated results upon the sputtering rate and on the details of the energy spectrum of sputtered particles is investigated. It is concluded that mass fractionation by solar wind sputtering is likely to be an important phenomenon on the lunar surface.

  6. Counterstreaming solar wind halo electron events on open field lines

    SciTech Connect

    Gosling, J.T.; McComas, D.J.; Phillips, J.L.

    1991-01-01

    Counterstreaming solar wind halo electron events have been identified as a common 1 AU signature of coronal mass ejection events, and have generally been interpreted as indicative of closed magnetic field topologies, i.e., magnetic loops or flux ropes rooted at both ends in the Sun, or detached plasmoids. In this paper we examine the possibility that these events may instead occur preferentially on open field lines, and that counterstreaming results from reflection or injection behind interplanetary shocks or from mirroring from regions of compressed magnetic field farther out in the heliosphere. We conclude the neither of these suggested sources of counterstreaming electron beams is viable and that the best interpretation of observed counterstreaming electron events in the solar wind remains that of passage of closed field structures. 4 refs., 4 figs.

  7. Anisotropy of Solar Wind Turbulence in the Dissipation Range

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Horbury, T. S.; Schekochihin, A. A.; Wicks, R. T.; Alexandrova, O.

    2009-12-01

    Although turbulence is readily observed in the solar wind, some aspects are poorly understood with unexplained observations and conflicting theoretical descriptions. In particular the dissipation range (fluctuations smaller than the ion gyroscale) is only just beginning to be thoroughly investigated. Here we present methods and results from a multi-spacecraft analysis of the solar wind dissipation range between the ion and electron gyroscales using the four Cluster satellites. We find that the fluctuations are anisotropic, having a higher power in the direction perpendicular to the local mean magnetic field than parallel to it. We also compare the observed anisotropic scaling to predictions for a kinetic Alfven wave cascade. The implications of anisotropic fluctuations for the interpretation of dissipation range measurements in general are also discussed.

  8. Kinetic theory analysis of solar wind interaction with planetary objects

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Dryer, M.

    1973-01-01

    A purely kinetic treatment is proposed for the interaction of the solar wind with any small planetary object. Small refers to those cases where the solar wind proton's thermal gyroradius is arbitrarily taken to be greater than 0.1 radius of the object under investigation. The 'object' may possibly include an ionosphere or magnetosphere. The collisionless Boltzmann equation, neglecting the magnetic field, is used to calculate steady-state profiles of density and velocity around the obstacle. A low density plasma void in the umbral region and a compression in the penumbral region are clearly found. The present technique, despite its neglect of the interplanetary magnetic field, is proposed as an alternative zeroth order approach to the continuum, local magnetic anomaly, and guiding center approaches used by others for the particular case of moon. Some recent, potentially relevant, observations on and in front of the moon are discussed.

  9. Solar wind and micrometeorite alteration of the lunar regolith

    NASA Technical Reports Server (NTRS)

    Housley, R. M.; Cirlin, E. H.; Paton, N. E.; Goldberg, I. B.

    1974-01-01

    Developments in the understanding of reduction processes which occur in the lunar regolith as a result of solar-wind bombardment and micrometeorite impacts are discussed. The mechanism is described by which water released during reduction is removed from the lunar surface, and the possible contribution of solar-wind sputtering to the reduction process is considered. It is shown that the overall reduction efficiency of incoming hydrogen ions may reach several per cent, which is sufficient to produce all the metallic iron observed in the regolith. Mossbauer spectroscopic data on the amount of metallic iron present as isolated atoms or small clusters in reduced grain surfaces are presented together with data on the metallic iron content of fines samples obtained by Mossbauer spectroscopy, ferromagnetic resonance, and scanning as well as transmission electron microscopy. A portable magnetic probe is described which has been designed for determining surface-exposure age profiles in intact lunar core and drive-tube samples.

  10. A desalination plant with solar and wind energy

    NASA Astrophysics Data System (ADS)

    Chen, H.; Ye, Z.; Gao, W.

    2013-12-01

    The shortage of freshwater resources has become a worldwide problem. China has a water shortage, although the total amount of water resources is the sixth in the world, the per capita water capacity is the 121th (a quarter of the world's per capita water capacity), and the United Nations considers China one of the poorest 13 countries in the world in terms of water. In order to increase the supply of fresh water, a realistic way is to make full use of China's long and narrow coastline for seawater desalination. This paper discusses a sea water desalination device, the device adopts distillation, uses the greenhouse effect principle and wind power heating principle, and the two-type start is used to solve the problem of vertical axis wind turbine self-starting. Thrust bearings are used to ensure the stability of the device, and to ensure absorbtion of wind energy and solar energy, and to collect evaporation of water to achieve desalination. The device can absorb solar and wind energy instead of input energy, so it can be used in ship, island and many kinds of environment. Due to the comprehensive utilization of wind power and solar power, the efficiency of the device is more than other passive sea water desalting plants, the initial investment and maintenance cost is lower than active sea water desalting plant. The main part of the device cannot only be used in offshore work, but can also be used in deep sea floating work, so the device can utilise deep sea energy. In order to prove the practicability of the device, the author has carried out theory of water production calculations. According to the principle of conservation of energy, the device ais bsorbing solar and wind power, except loose lost part which is used for water temperature rise and phase transition. Assume the inflow water temperature is 20 °C, outflow water temperature is 70 °C, the energy utilization is 60%, we can know that the water production quantity is 8 kg/ m2 per hour. Comparing with the disk solar distillation apparatus, of which water production quantity is only 3-4kg/m2 per hour only in sunny day, but can't be used at night, the water production quantity is highly increased. So the device should have a good application prospect.

  11. Solar Wind Influence on the Oxygen Content of Ion Outflow in the High Altitude Polar Cap During Solar Minimum Conditions

    NASA Technical Reports Server (NTRS)

    Elliott, Heather A.; Comfort, Richard H.; Craven, Paul D.; Chandler, Michael O.; Moore, Thomas E.

    2000-01-01

    We correlate solar wind and IMF properties with the properties of O(+) and H(+) in the polar cap in early 1996 during solar minimum conditions at altitudes between 5.5 and 8.9 Re geocentric using the Thermal Ion Dynamics Experiment (TIDE) on the POLAR satellite. Throughout the high altitude polar cap, we observe H(+) to be more abundant than O(+). H(+) is a significant fraction of both the ionosphere and the solar wind, and O(+) is not a significant species in the solar wind. O(+) is the major species in the ionosphere so the faction of O(+) present in the magnetosphere is commonly used as a measure of the ionospheric contribution to the magnetosphere. For these reasons, 0+ is of primary interest in this study. We observe O(+) to be most abundant at lower latitudes when the solar wind speed is low (and low Kp), and at higher solar wind speeds (and high Kp) O(+) is observed across most of the polar cap. We also find that O(+) density and parallel flux are well organized by solar wind dynamic pressure; they both increase with solar wind dynamic pressure. H(+) is not as highly correlated with solar wind and IMF parameters, but H(+) density and parallel flux have some negative correlation with IMF By, and some positive correlation with VswBIMF. In this solar minimum data set, H(+) is dominant so that contributions of this plasma to the plasma sheet would have a very low O(+) to H(+) ratio.

  12. Heliospheric x-rays due to solar wind charge exchange

    NASA Astrophysics Data System (ADS)

    Robertson, Ina Piket

    X-ray emission due to charge transfer between heavy solar wind ions and interstellar and geocoronal neutrals has been predicted to exist in both the heliosphere and in the geocorona. The high charge state solar wind ions resulting from these collisions are left in highly excited states and emit extreme ultraviolet or soft x-ray photons. Models have been created to simulate this type of x-ray emission with interstellar and geocoronal neutrals. Time variations in the x-ray emissions were studied by using measured solar wind proton fluxes. The Fahr hot model was used to determine interstellar neutral densities. It was found that x-rays from interstellar hydrogen showed little variation in their intensities. The greatest variation was in geocoronal x-rays, although x-rays from interstellar helium can show considerable variation when the look direction is through the helium cone. Simulated images of Earth's geocorona as seen from an observation point outside the geocorona were created. The locations of the bow shock and magnetopause are evident in these images. Time independent maps were created that showed steady-state x-ray intensities due to the interaction between the solar wind and both interstellar neutrals and the geocoronal neutrals as a function of look direction and time of year. In all cases, the x-ray intensity is highest when the view direction is towards the Sun, but the intensity is also re