Sample records for latitudinal gradient genetic

  1. A latitudinal phylogeographic diversity gradient in birds

    PubMed Central

    Seeholzer, Glenn F.; Harvey, Michael G.; Cuervo, Andrés M.; Brumfield, Robb T.

    2017-01-01

    High tropical species diversity is often attributed to evolutionary dynamics over long timescales. It is possible, however, that latitudinal variation in diversification begins when divergence occurs within species. Phylogeographic data capture this initial stage of diversification in which populations become geographically isolated and begin to differentiate genetically. There is limited understanding of the broader implications of intraspecific diversification because comparative analyses have focused on species inhabiting and evolving in restricted regions and environments. Here, we scale comparative phylogeography up to the hemisphere level and examine whether the processes driving latitudinal differences in species diversity are also evident within species. We collected genetic data for 210 New World bird species distributed across a broad latitudinal gradient and estimated a suite of metrics characterizing phylogeographic history. We found that lower latitude species had, on average, greater phylogeographic diversity than higher latitude species and that intraspecific diversity showed evidence of greater persistence in the tropics. Factors associated with species ecologies, life histories, and habitats explained little of the variation in phylogeographic structure across the latitudinal gradient. Our results suggest that the latitudinal gradient in species richness originates, at least partly, from population-level processes within species and are consistent with hypotheses implicating age and environmental stability in the formation of diversity gradients. Comparative phylogeographic analyses scaled up to large geographic regions and hundreds of species can show connections between population-level processes and broad-scale species-richness patterns. PMID:28406905

  2. The Genetic Content of Chromosomal Inversions across a Wide Latitudinal Gradient

    PubMed Central

    Simões, Pedro; Calabria, Gemma; Picão-Osório, João; Balanyà, Joan; Pascual, Marta

    2012-01-01

    There is increasing evidence regarding the role of chromosomal inversions in relevant biological processes such as local adaptation and speciation. A classic example of the adaptive role of chromosomal polymorphisms is given by the clines of inversion frequencies in Drosophila subobscura, repeatable across continents. Nevertheless, not much is known about the molecular variation associated with these polymorphisms. We characterized the genetic content of ca. 600 individuals from nine European populations following a latitudinal gradient by analysing 19 microsatellite loci from two autosomes (J and U) and the sex chromosome (A), taking into account their chromosomal inversions. Our results clearly demonstrate the molecular genetic uniformity within a given chromosomal inversion across a large latitudinal gradient, particularly from Groningen (Netherlands) in the north to Málaga (Spain) in the south, experiencing highly diverse environmental conditions. This low genetic differentiation within the same gene arrangement across the nine European populations is consistent with the local adaptation hypothesis for th evolutionof chromosomal polymorphisms. We also show the effective role of chromosomal inversions in maintaining different genetic pools within these inverted genomic regions even in the presence of high gene flow. Inversions represent thus an important barrier to gene flux and can help maintain specific allelic combinations with positive effects on fitness. Consistent patterns of microsatellite allele-inversion linkage disequilibrium particularly in loci within inversions were also observed. Finally, we identified areas within inversions presenting clinal variation that might be under selection. PMID:23272126

  3. Adaptation to a latitudinal thermal gradient within a widespread copepod species: the contributions of genetic divergence and phenotypic plasticity

    PubMed Central

    2017-01-01

    Understanding how populations adapt to heterogeneous thermal regimes is essential for comprehending how latitudinal gradients in species diversification are formed, and how taxa will respond to ongoing climate change. Adaptation can occur by innate genetic factors, by phenotypic plasticity, or by a combination of both mechanisms. Yet, the relative contribution of such mechanisms to large-scale latitudinal gradients of thermal tolerance across conspecific populations remains unclear. We examine thermal performance in 11 populations of the intertidal copepod Tigriopus californicus, ranging from Baja California Sur (Mexico) to British Columbia (Canada). Common garden experiments show that survivorship to acute heat-stress differs between populations (by up to 3.8°C in LD50 values), reflecting a strong genetic thermal adaptation. Using a split-brood experiment with two rearing temperatures, we also show that developmental phenotypic plasticity is beneficial to thermal tolerance (by up to 1.3°C), and that this effect differs across populations. Although genetic divergence in heat tolerance strongly correlates with latitude and temperature, differences in the plastic response do not. In the context of climate warming, our results confirm the general prediction that low-latitude populations are most susceptible to local extinction because genetic adaptation has placed physiological limits closer to current environmental maxima, but our results also contradict the prediction that phenotypic plasticity is constrained at lower latitudes. PMID:28446698

  4. Effect of latitudinal gradient and impact of logging on genetic diversity of Cedrela lilloi along the Argentine Yungas Rainforest

    PubMed Central

    Inza, Maria V; Zelener, Noga; Fornes, Luis; Gallo, Leonardo A

    2012-01-01

    Cedrela lilloi C. DC. (cedro coya, Meliaceae), an important south American timber species, has been historically overexploited through selective logging in Argentine Yungas Rainforest. Management and conservation programs of the species require knowledge of its genetic variation patterns; however, no information is available. Molecular genetic variability of the species was characterized to identify high-priority populations for conservation and domestication purposes. Fourteen native populations (160 individuals) along a latitudinal gradient and with different logging's intensities were assessed by 293 polymorphic AFLP (amplified fragment length polymorphism) markers. Genetic diversity was low (Ht = 0.135), according to marginal location of the species in Argentina. Most of the diversity was distributed within populations (87%). Northern populations showed significant higher genetic diversity (R2= 0.69) that agreed with latitudinal pattern of distribution of taxonomic diversity in the Yungas. Three clusters were identified by Bayesian analysis in correspondence with northern, central, and southern Yungas. An analysis of molecular variance (AMOVA) revealed significant genetic differences among latitudinal clusters even when logging (ΦRT = 0.07) and unlogging populations (ΦPT = 0.10) were separately analyzed. Loss of genetic diversity with increasing logging intensity was observed between neighboring populations with different disturbance (ΦPT = 0.03–0.10). Bottlenecks in disturbed populations are suggested as the main cause. Our results emphasize both: the necessity of maintaining the genetic diversity in protected areas that appear as possible long-term refuges of the species; and to rescue for the national system of protected areas some high genetic diversity populations that are on private fields. PMID:23170208

  5. Latitudinal Gradients in Induced and Constitutive Resistance against Herbivores.

    PubMed

    Anstett, Daniel N; Chen, Wen; Johnson, Marc T J

    2016-08-01

    Plants are hypothesized to evolve increased defense against herbivores at lower latitudes, but an increasing number of studies report evidence that contradicts this hypothesis. Few studies have examined the evolution of constitutive and induced resistance along latitudinal gradients. When induction is not considered, underlying patterns of latitudinal clines in resistance can be obscured because plant resistance represents a combination of induced and constitutive resistance, which may show contrasting patterns with latitude. Here, we asked if there are latitudinal gradients in constitutive versus induced resistance by using genotypes of Oenothera biennis (Onagraceae) sampled along an 18° latitudinal gradient. We conducted two bioassay experiments to compare the resistance of plant genotypes against one generalist (Spodoptera exigua) and one specialist (Acanthoscelidius acephalus) herbivore. These insects were assayed on: i) undamaged control plants, ii) plants that had been induced with jasmonic acid, and iii) plants induced with herbivore damage. Additionally, we examined latitudinal gradients of constitutive and induced chemical resistance by measuring the concentrations of total phenolics, the concentration of oxidized phenolics, and the percentage of phenolics that were oxidized. Spodoptera exigua showed lower performance on plants from lower latitudes, whereas A. acephalus showed no latitudinal pattern. Constitutive total phenolics were greater in plants from lower latitudes, but induced plants showed higher total phenolics at higher latitudes. Oxidative activity was greatest at higher latitudes regardless of induction. Overall, both latitude and induction have an impact on different metrics of plant resistance to herbivory. Further studies should consider the effect of induction and herbivore specialization more explicitly, which may help to resolve the controversy in latitudinal gradients in herbivory and defense.

  6. Molecular evolution and the latitudinal biodiversity gradient.

    PubMed

    Dowle, E J; Morgan-Richards, M; Trewick, S A

    2013-06-01

    Species density is higher in the tropics (low latitude) than in temperate regions (high latitude) resulting in a latitudinal biodiversity gradient (LBG). The LBG must be generated by differential rates of speciation and/or extinction and/or immigration among regions, but the role of each of these processes is still unclear. Recent studies examining differences in rates of molecular evolution have inferred a direct link between rate of molecular evolution and rate of speciation, and postulated these as important drivers of the LBG. Here we review the molecular genetic evidence and examine the factors that might be responsible for differences in rates of molecular evolution. Critical to this is the directionality of the relationship between speciation rates and rates of molecular evolution.

  7. Radial and latitudinal gradients in the solar internal angular velocity

    NASA Technical Reports Server (NTRS)

    Rhodes, Edward J., Jr.; Cacciani, Alessandro; Korzennik, Sylvain G.; Tomczyk, Steven; Ulrich, Roger K.; Woodard, Martin F.

    1988-01-01

    The frequency splittings of intermediate-degree (3 to 170 deg) p-mode oscillations obtained from a 16-day subset of observations were analyzed. Results show evidence for both radial and latitudinal gradients in the solar internal angular velocity. From 0.6 to 0.95 solar radii, the solar internal angular velocity increases systematically from 440 to 463 nHz, corresponding to a positive radial gradient of 66 nHz/solar radius for that portion of the solar interior. Analysis also indicates that the latitudinal differential rotation gradient which is seen at the solar surface persists throughout the convection zone, although there are indications that the differential rotation might disappear entirely below the base of the convection zone. The analysis was extended to include comparisons with additional observational studies and between earlier results and the results of additional inversions of several of the observational datasets. All the comparisons reinforce conclusions regarding the existence of radial and latitudinal gradients in the internal angular velocity.

  8. A latitudinal diversity gradient in terrestrial bacteria of the genus Streptomyces

    DOE PAGES

    Andam, Cheryl P.; Doroghazi, James R.; Campbell, Ashley N.; ...

    2016-04-12

    We show that Streptomyces biogeography in soils across North America is influenced by the regional diversification of microorganisms due to dispersal limitation and genetic drift. Streptomyces spp. form desiccation-resistant spores, which can be dispersed on the wind, allowing for a strong test of whether dispersal limitation governs patterns of terrestrial microbial diversity. We employed an approach that has high sensitivity for determining the effects of genetic drift. Specifically, we examined the genetic diversity and phylogeography of physiologically similar Streptomyces strains isolated from geographically distributed yet ecologically similar habitats. We found that Streptomyces beta diversity scales with geographic distance and bothmore » beta diversity and phylogenetic diversity manifest in a latitudinal diversity gradient. This pattern of Streptomyces biogeography resembles patterns seen for diverse species of plants and animals, and we therefore evaluated these data in the context of ecological and evolutionary hypotheses proposed to explain latitudinal diversity gradients. The data are consistent with the hypothesis that niche conservatism limits dispersal, and historical patterns of glaciation have limited the time for speciation in higher-latitude sites. Most notably, higher-latitude sites have lower phylogenetic diversity, higher phylogenetic clustering, and evidence of range expansion from lower latitudes. In addition, patterns of beta diversity partition with respect to the glacial history of sites. Furthermore, the data support the hypothesis that extant patterns of Streptomyces biogeography have been driven by historical patterns of glaciation and are the result of demographic range expansion, dispersal limitation, and regional diversification due to drift.« less

  9. A Latitudinal Diversity Gradient in Terrestrial Bacteria of the Genus Streptomyces

    PubMed Central

    Andam, Cheryl P.; Doroghazi, James R.; Campbell, Ashley N.; Kelly, Peter J.; Choudoir, Mallory J.

    2016-01-01

    ABSTRACT We show that Streptomyces biogeography in soils across North America is influenced by the regional diversification of microorganisms due to dispersal limitation and genetic drift. Streptomyces spp. form desiccation-resistant spores, which can be dispersed on the wind, allowing for a strong test of whether dispersal limitation governs patterns of terrestrial microbial diversity. We employed an approach that has high sensitivity for determining the effects of genetic drift. Specifically, we examined the genetic diversity and phylogeography of physiologically similar Streptomyces strains isolated from geographically distributed yet ecologically similar habitats. We found that Streptomyces beta diversity scales with geographic distance and both beta diversity and phylogenetic diversity manifest in a latitudinal diversity gradient. This pattern of Streptomyces biogeography resembles patterns seen for diverse species of plants and animals, and we therefore evaluated these data in the context of ecological and evolutionary hypotheses proposed to explain latitudinal diversity gradients. The data are consistent with the hypothesis that niche conservatism limits dispersal, and historical patterns of glaciation have limited the time for speciation in higher-latitude sites. Most notably, higher-latitude sites have lower phylogenetic diversity, higher phylogenetic clustering, and evidence of range expansion from lower latitudes. In addition, patterns of beta diversity partition with respect to the glacial history of sites. Hence, the data support the hypothesis that extant patterns of Streptomyces biogeography have been driven by historical patterns of glaciation and are the result of demographic range expansion, dispersal limitation, and regional diversification due to drift. PMID:27073097

  10. Drift, selection, or migration? Processes affecting genetic differentiation and variation along a latitudinal gradient in an amphibian.

    PubMed

    Cortázar-Chinarro, Maria; Lattenkamp, Ella Z; Meyer-Lucht, Yvonne; Luquet, Emilien; Laurila, Anssi; Höglund, Jacob

    2017-08-14

    Past events like fluctuations in population size and post-glacial colonization processes may influence the relative importance of genetic drift, migration and selection when determining the present day patterns of genetic variation. We disentangle how drift, selection and migration shape neutral and adaptive genetic variation in 12 moor frog populations along a 1700 km latitudinal gradient. We studied genetic differentiation and variation at a MHC exon II locus and a set of 18 microsatellites. Using outlier analyses, we identified the MHC II exon 2 (corresponding to the β-2 domain) locus and one microsatellite locus (RCO8640) to be subject to diversifying selection, while five microsatellite loci showed signals of stabilizing selection among populations. STRUCTURE and DAPC analyses on the neutral microsatellites assigned populations to a northern and a southern cluster, reflecting two different post-glacial colonization routes found in previous studies. Genetic variation overall was lower in the northern cluster. The signature of selection on MHC exon II was weaker in the northern cluster, possibly as a consequence of smaller and more fragmented populations. Our results show that historical demographic processes combined with selection and drift have led to a complex pattern of differentiation along the gradient where some loci are more divergent among populations than predicted from drift expectations due to diversifying selection, while other loci are more uniform among populations due to stabilizing selection. Importantly, both overall and MHC genetic variation are lower at northern latitudes. Due to lower evolutionary potential, the low genetic variation in northern populations may increase the risk of extinction when confronted with emerging pathogens and climate change.

  11. Structure of Benthic Communities along the Taiwan Latitudinal Gradient

    PubMed Central

    De Palmas, Stéphane; Kuo, Chao-Yang; Hsieh, Hernyi Justin; Chen, Chaolun Allen

    2016-01-01

    The distribution and the structure of benthic assemblages vary with latitude. However, few studies have described benthic communities along large latitudinal gradients, and patterns of variation are not fully understood. Taiwan, lying between 21.90°N and 25.30°N, is located at the center of the Philippine-Japan arc and lies at the northern margin of coral reef development. A wide range of habitats is distributed along this latitudinal gradient, from extensive fringing coral reefs at the southern coast to non-reefal communities at the north. In this study, we examined the structure of benthic communities around Taiwan, by comparing its assemblages in four regions, analyzing the effects of the latitudinal gradient, and highlighting regional characteristics. A total of 25 sites, 125 transects, and 2,625 photographs were used to analyze the benthic communities. Scleractinian corals present an obvious gradient of increasing diversity from north to south, whereas macro-algae diversity is higher on the north-eastern coast. At the country scale, Taiwanese coral communities were dominated by turf algae (49%). At the regional scale, we observed an important heterogeneity that may be caused by local disturbances and habitat degradation that smooths out regional differences. In this context, our observations highlight the importance of managing local stressors responsible for reef degradation. Overall, this study provides an important baseline upon which future changes in benthic assemblages around Taiwan can be assessed. PMID:27513665

  12. Range-Wide Latitudinal and Elevational Temperature Gradients for the World's Terrestrial Birds: Implications under Global Climate Change

    PubMed Central

    La Sorte, Frank A.; Butchart, Stuart H. M.; Jetz, Walter; Böhning-Gaese, Katrin

    2014-01-01

    Species' geographical distributions are tracking latitudinal and elevational surface temperature gradients under global climate change. To evaluate the opportunities to track these gradients across space, we provide a first baseline assessment of the steepness of these gradients for the world's terrestrial birds. Within the breeding ranges of 9,014 bird species, we characterized the spatial gradients in temperature along latitude and elevation for all and a subset of bird species, respectively. We summarized these temperature gradients globally for threatened and non-threatened species and determined how their steepness varied based on species' geography (range size, shape, and orientation) and projected changes in temperature under climate change. Elevational temperature gradients were steepest for species in Africa, western North and South America, and central Asia and shallowest in Australasia, insular IndoMalaya, and the Neotropical lowlands. Latitudinal temperature gradients were steepest for extratropical species, especially in the Northern Hemisphere. Threatened species had shallower elevational gradients whereas latitudinal gradients differed little between threatened and non-threatened species. The strength of elevational gradients was positively correlated with projected changes in temperature. For latitudinal gradients, this relationship only held for extratropical species. The strength of latitudinal gradients was better predicted by species' geography, but primarily for extratropical species. Our findings suggest threatened species are associated with shallower elevational temperature gradients, whereas steep latitudinal gradients are most prevalent outside the tropics where fewer bird species occur year-round. Future modeling and mitigation efforts would benefit from the development of finer grain distributional data to ascertain how these gradients are structured within species' ranges, how and why these gradients vary among species, and the capacity

  13. A latitudinal gradient in seed nutrients of the forest herb Anemone nemorosa.

    PubMed

    De Frenne, P; Kolb, A; Graae, B J; Decocq, G; Baltora, S; De Schrijver, A; Brunet, J; Chabrerie, O; Cousins, S A O; Dhondt, R; Diekmann, M; Gruwez, R; Heinken, T; Hermy, M; Liira, J; Saguez, R; Shevtsova, A; Baskin, C C; Verheyen, K

    2011-05-01

    The nutrient concentration in seeds determines many aspects of potential success of the sexual reproductive phase of plants, including the seed predation probability, efficiency of seed dispersal and seedling performance. Despite considerable research interest in latitudinal gradients of foliar nutrients, a similar gradient for seeds remains unexplored. We investigated a potential latitudinal gradient in seed nutrient concentrations within the widespread European understorey forest herb Anemone nemorosa L. We sampled seeds of A. nemorosa in 15 populations along a 1900-km long latitudinal gradient at three to seven seed collection dates post-anthesis and investigated the relative effects of growing degree-hours >5 °C, soil characteristics and latitude on seed nutrient concentrations. Seed nitrogen, nitrogen:phosphorus ratio and calcium concentration decreased towards northern latitudes, while carbon:nitrogen ratios increased. When taking differences in growing degree-hours and measured soil characteristics into account and only considering the most mature seeds, the latitudinal decline remained particularly significant for seed nitrogen concentration. We argue that the decline in seed nitrogen concentration can be attributed to northward decreasing seed provisioning due to lower soil nitrogen availability or greater investment in clonal reproduction. This pattern may have large implications for the reproductive performance of this forest herb as the degree of seed provisioning ultimately co-determines seedling survival and reproductive success. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.

  14. Unifying latitudinal gradients in range size and richness across marine and terrestrial systems

    PubMed Central

    Tomašových, Adam; Kennedy, Jonathan D.; Betzner, Tristan J.; Kuehnle, Nicole Bitler; Edie, Stewart; Kim, Sora; Supriya, K.; White, Alexander E.; Rahbek, Carsten; Huang, Shan; Price, Trevor D.; Jablonski, David

    2016-01-01

    Many marine and terrestrial clades show similar latitudinal gradients in species richness, but opposite gradients in range size—on land, ranges are the smallest in the tropics, whereas in the sea, ranges are the largest in the tropics. Therefore, richness gradients in marine and terrestrial systems do not arise from a shared latitudinal arrangement of species range sizes. Comparing terrestrial birds and marine bivalves, we find that gradients in range size are concordant at the level of genera. Here, both groups show a nested pattern in which narrow-ranging genera are confined to the tropics and broad-ranging genera extend across much of the gradient. We find that (i) genus range size and its variation with latitude is closely associated with per-genus species richness and (ii) broad-ranging genera contain more species both within and outside of the tropics when compared with tropical- or temperate-only genera. Within-genus species diversification thus promotes genus expansion to novel latitudes. Despite underlying differences in the species range-size gradients, species-rich genera are more likely to produce a descendant that extends its range relative to the ancestor's range. These results unify species richness gradients with those of genera, implying that birds and bivalves share similar latitudinal dynamics in net species diversification. PMID:27147094

  15. Latitudinal gradients in ecosystem engineering by oysters vary across habitats.

    PubMed

    McAfee, Dominic; Cole, Victoria J; Bishop, Melanie J

    2016-04-01

    Ecological theory predicts that positive interactions among organisms will increase across gradients of increasing abiotic stress or consumer pressure. This theory has been supported by empirical studies examining the magnitude of ecosystem engineering across environmental gradients and between habitat settings at local scale. Predictions that habitat setting, by modifying both biotic and abiotic factors, will determine large-scale gradients in ecosystem engineering have not been tested, however. A combination of manipulative experiments and field surveys assessed whether along the east Australian coastline: (1) facilitation of invertebrates by the oyster Saccostrea glomerata increased across a latitudinal gradient in temperature; and (2) the magnitude of this effect varied between intertidal rocky shores and mangrove forests. It was expected that on rocky shores, where oysters are the primary ecosystem engineer, they would play a greater role in ameliorating latitudinal gradients in temperature than in mangroves, where they are a secondary ecosystem engineer living under the mangrove canopy. On rocky shores, the enhancement of invertebrate abundance in oysters as compared to bare microhabitat decreased with latitude, as the maximum temperatures experienced by intertidal organisms diminished. By contrast, in mangrove forests, where the mangrove canopy resulted in maximum temperatures that were cooler and of greater humidity than on rocky shores, we found no evidence of latitudinal gradients of oyster effects on invertebrate abundance. Contrary to predictions, the magnitude by which oysters enhanced biodiversity was in many instances similar between mangroves and rocky shores. Whether habitat-context modifies patterns of spatial variation in the effects of ecosystem engineers on community structure will depend, in part, on the extent to which the environmental amelioration provided by an ecosystem engineer replicates that of other co-occurring ecosystem engineers.

  16. Influence of the Latitudinal Temperature Gradient on Soil Dust Concentration and Deposition in Greenland

    NASA Technical Reports Server (NTRS)

    Tegen, Ina; Rind, David

    2000-01-01

    To investigate the effects of changes in the latitudinal temperature gradient and the global mean temperature on dust concentration in the Northern Hemisphere, experiments with the Goddard Institute for Space Studies General Circulation Model (GISS GCM) are performed. The dust concentration over Greenland is calculated from sources in central and eastern Asia, which are integrated on-line in the model. The results show that an increase in the latitudinal temperature gradient increases both the Asian dust source strength and the concentration over Greenland. The source increase is the result of increased surface winds, and to a minor extent, the increase in Greenland dust is also associated with increased northward transport. Cooling the climate in addition to this increased gradient leads to a decrease in precipitation scavenging, which helps produce a further (slight) increase in Greenland dust in this experiment. Reducing the latitudinal gradient reduces the surface wind and hence the dust source, with a subsequent reduction in Greenland dust concentrations. Warming the climate in addition to this reduced gradient leads to a further reduction in Greenland dust due to enhanced precipitation scavenging. These results can be used to evaluate the relationship of Greenland ice core temperature changes to changes in the latitudinal and global temperatures.

  17. Defense pattern of Chinese cork oak across latitudinal gradients: influences of ontogeny, herbivory, climate and soil nutrients

    PubMed Central

    Wang, Xiao-Fei; Liu, Jian-Feng; Gao, Wen-Qiang; Deng, Yun-Peng; Ni, Yan-Yan; Xiao, Yi-Hua; Kang, Feng-Feng; Wang, Qi; Lei, Jing-Pin; Jiang, Ze-Ping

    2016-01-01

    Knowledge of latitudinal patterns in plant defense and herbivory is crucial for understanding the mechanisms that govern ecosystem functioning and for predicting their responses to climate change. Using a widely distributed species in East Asia, Quercus variabilis, we aim to reveal defense patterns of trees with respect to ontogeny along latitudinal gradients. Six leaf chemical (total phenolics and total condensed tannin concentrations) and physical (cellulose, hemicellulose, lignin and dry mass concentration) defensive traits as well as leaf herbivory (% leaf area loss) were investigated in natural Chinese cork oak (Q. variabilis) forests across two ontogenetic stages (juvenile and mature trees) along a ~14°-latitudinal gradient. Our results showed that juveniles had higher herbivory values and a higher concentration of leaf chemical defense substances compared with mature trees across the latitudinal gradient. In addition, chemical defense and herbivory in both ontogenetic stages decreased with increasing latitude, which supports the latitudinal herbivory-defense hypothesis and optimal defense theory. The identified trade-offs between chemical and physical defense were primarily determined by environmental variation associated with the latitudinal gradient, with the climatic factors (annual precipitation, minimum temperature of the coldest month) largely contributing to the latitudinal defense pattern in both juvenile and mature oak trees. PMID:27252112

  18. Defense pattern of Chinese cork oak across latitudinal gradients: influences of ontogeny, herbivory, climate and soil nutrients

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Fei; Liu, Jian-Feng; Gao, Wen-Qiang; Deng, Yun-Peng; Ni, Yan-Yan; Xiao, Yi-Hua; Kang, Feng-Feng; Wang, Qi; Lei, Jing-Pin; Jiang, Ze-Ping

    2016-06-01

    Knowledge of latitudinal patterns in plant defense and herbivory is crucial for understanding the mechanisms that govern ecosystem functioning and for predicting their responses to climate change. Using a widely distributed species in East Asia, Quercus variabilis, we aim to reveal defense patterns of trees with respect to ontogeny along latitudinal gradients. Six leaf chemical (total phenolics and total condensed tannin concentrations) and physical (cellulose, hemicellulose, lignin and dry mass concentration) defensive traits as well as leaf herbivory (% leaf area loss) were investigated in natural Chinese cork oak (Q. variabilis) forests across two ontogenetic stages (juvenile and mature trees) along a ~14°-latitudinal gradient. Our results showed that juveniles had higher herbivory values and a higher concentration of leaf chemical defense substances compared with mature trees across the latitudinal gradient. In addition, chemical defense and herbivory in both ontogenetic stages decreased with increasing latitude, which supports the latitudinal herbivory-defense hypothesis and optimal defense theory. The identified trade-offs between chemical and physical defense were primarily determined by environmental variation associated with the latitudinal gradient, with the climatic factors (annual precipitation, minimum temperature of the coldest month) largely contributing to the latitudinal defense pattern in both juvenile and mature oak trees.

  19. The latitudinal gradient of the NO peak density

    NASA Technical Reports Server (NTRS)

    Fesen, C. G.; Rusch, D. W.; Gerard, J.-C.

    1990-01-01

    Results are presented from SME observations of the latitudinal gradients of peak NO densities at about 110-km altitude during the solstice and equinox periods from 1982 through 1985. It is shown that the response of the peak NO densities to the declining level of solar activity varies with latitude, with the polar regions exhibiting low sensitivity and the low-latitude regions responding strongly. The SME data also revealed marked asymmetries in the latitudinal structure of the two hemispheres for each season and considerable day-to-day variations in the NO densities. The solar cycle minimum data for June were simulated using a two-dimensional model; results of sensitivity studies performed with varied quenching rate and eddy diffusion coefficient are presented.

  20. Evolutionary origin of the latitudinal diversity gradient in liverworts.

    PubMed

    Laenen, Benjamin; Patiño, Jairo; Hagborg, Anders; Désamoré, Aurélie; Wang, Jian; Jonathan Shaw, A; Goffinet, Bernard; Vanderpoorten, Alain

    2018-06-08

    A latitudinal diversity gradient towards the tropics appears as one most recurrent patterns in ecology, but the mechanisms underlying this pattern remain an area of controversy. In angiosperms, the tropical conservatism hypothesis proposes that most groups originated in the tropics and are adapted to a tropical climatic regime, and that relatively few species have evolved physiological adaptations to cold, dry or unpredictable climates. This mechanism is, however, unlikely to apply across land plants, and in particular, to liverworts, a group of about 7500 species, whose ability to withstand cold much better than their tracheophyte counterparts is at odds with the tropical conservatism hypothesis. Molecular dating, diversification rate analyses and ancestral area reconstructions were employed to explore the evolutionary mechanisms that account for the latitudinal diversity gradient in liverworts. As opposed to angiosperms, tropical liverwort genera are not older than their extra-tropical counterparts (median stem age of tropical and extra-tropical liverwort genera of 24.35±39.65 Ma and 39.57±49.07 Ma, respectively), weakening the 'time for speciation hypothesis'. Models of ancestral area reconstructions with equal migration rates between tropical and extra-tropical regions outperformed models with asymmetrical migration rates in either direction. The symmetry and intensity of migrations between tropical and extra-tropical regions suggested by the lack of resolution in ancestral area reconstructions towards the deepest nodes are at odds with the tropical niche conservatism hypothesis. In turn, tropical genera exhibited significantly higher net diversification rates than extra-tropical ones, suggesting that the observed latitudinal diversity gradient results from either higher extinction rates in extra-tropical lineages or higher speciation rates in the tropics. We discuss a series of experiments to help deciphering the underlying evolutionary mechanisms. Copyright

  1. Ephemeral ecological speciation and the latitudinal biodiversity gradient.

    PubMed

    Cutter, Asher D; Gray, Jeremy C

    2016-10-01

    The richness of biodiversity in the tropics compared to high-latitude parts of the world forms one of the most globally conspicuous patterns in biology, and yet few hypotheses aim to explain this phenomenon in terms of explicit microevolutionary mechanisms of speciation and extinction. We link population genetic processes of selection and adaptation to speciation and extinction by way of their interaction with environmental factors to drive global scale macroecological patterns. High-latitude regions are both cradle and grave with respect to species diversification. In particular, we point to a conceptual equivalence of "environmental harshness" and "hard selection" as eco-evolutionary drivers of local adaptation and ecological speciation. By describing how ecological speciation likely occurs more readily at high latitudes, with such nascent species especially prone to extinction by fusion, we derive the ephemeral ecological speciation hypothesis as an integrative mechanistic explanation for latitudinal gradients in species turnover and the net accumulation of biodiversity. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  2. Environmental plasticity of Pinot noir grapevine leaves: A trans-European study of morphological and biochemical changes along a 1,500-km latitudinal climatic gradient.

    PubMed

    Castagna, Antonella; Csepregi, Kristóf; Neugart, Susanne; Zipoli, Gaetano; Večeřová, Kristýna; Jakab, Gábor; Jug, Tjaša; Llorens, Laura; Martínez-Abaigar, Javier; Martínez-Lüscher, Johann; Núñez-Olivera, Encarnación; Ranieri, Annamaria; Schoedl-Hummel, Katharina; Schreiner, Monika; Teszlák, Péter; Tittmann, Susanne; Urban, Otmar; Verdaguer, Dolors; Jansen, Marcel A K; Hideg, Éva

    2017-11-01

    A 2-year study explored metabolic and phenotypic plasticity of sun-acclimated Vitis vinifera cv. Pinot noir leaves collected from 12 locations across a 36.69-49.98°N latitudinal gradient. Leaf morphological and biochemical parameters were analysed in the context of meteorological parameters and the latitudinal gradient. We found that leaf fresh weight and area were negatively correlated with both global and ultraviolet (UV) radiation, cumulated global radiation being a stronger correlator. Cumulative UV radiation (sumUVR) was the strongest correlator with most leaf metabolites and pigments. Leaf UV-absorbing pigments, total antioxidant capacities, and phenolic compounds increased with increasing sumUVR, whereas total carotenoids and xanthophylls decreased. Despite of this reallocation of metabolic resources from carotenoids to phenolics, an increase in xanthophyll-cycle pigments (the sum of the amounts of three xanthophylls: violaxanthin, antheraxanthin, and zeaxanthin) with increasing sumUVR indicates active, dynamic protection for the photosynthetic apparatus. In addition, increased amounts of flavonoids (quercetin glycosides) and constitutive β-carotene and α-tocopherol pools provide antioxidant protection against reactive oxygen species. However, rather than a continuum of plant acclimation responses, principal component analysis indicates clusters of metabolic states across the explored 1,500-km-long latitudinal gradient. This study emphasizes the physiological component of plant responses to latitudinal gradients and reveals the physiological plasticity that may act to complement genetic adaptations. © 2017 John Wiley & Sons Ltd.

  3. Sex-biased transcriptome divergence along a latitudinal gradient.

    PubMed

    Allen, Scott L; Bonduriansky, Russell; Sgro, Carla M; Chenoweth, Stephen F

    2017-03-01

    Sex-dependent gene expression is likely an important genomic mechanism that allows sex-specific adaptation to environmental changes. Among Drosophila species, sex-biased genes display remarkably consistent evolutionary patterns; male-biased genes evolve faster than unbiased genes in both coding sequence and expression level, suggesting sex differences in selection through time. However, comparatively little is known of the evolutionary process shaping sex-biased expression within species. Latitudinal clines offer an opportunity to examine how changes in key ecological parameters also influence sex-specific selection and the evolution of sex-biased gene expression. We assayed male and female gene expression in Drosophila serrata along a latitudinal gradient in eastern Australia spanning most of its endemic distribution. Analysis of 11 631 genes across eight populations revealed strong sex differences in the frequency, mode and strength of divergence. Divergence was far stronger in males than females and while latitudinal clines were evident in both sexes, male divergence was often population specific, suggesting responses to localized selection pressures that do not covary predictably with latitude. While divergence was enriched for male-biased genes, there was no overrepresentation of X-linked genes in males. By contrast, X-linked divergence was elevated in females, especially for female-biased genes. Many genes that diverged in D. serrata have homologs also showing latitudinal divergence in Drosophila simulans and Drosophila melanogaster on other continents, likely indicating parallel adaptation in these distantly related species. Our results suggest that sex differences in selection play an important role in shaping the evolution of gene expression over macro- and micro-ecological spatial scales. © 2017 John Wiley & Sons Ltd.

  4. Decadal Changes in the World's Coastal Latitudinal Temperature Gradients

    PubMed Central

    Baumann, Hannes; Doherty, Owen

    2013-01-01

    Most of the world's living marine resources inhabit coastal environments, where average thermal conditions change predictably with latitude. These coastal latitudinal temperature gradients (CLTG) coincide with important ecological clines,e.g., in marine species diversity or adaptive genetic variations, but how tightly thermal and ecological gradients are linked remains unclear. A first step is to consistently characterize the world's CLTGs. We extracted coastal cells from a global 1°×1° dataset of weekly sea surface temperatures (SST, 1982–2012) to quantify spatial and temporal variability of the world's 11 major CLTGs. Gradient strength, i.e., the slope of the linear mean-SST/latitude relationship, varied 3-fold between the steepest (North-American Atlantic and Asian Pacific gradients: −0.91°C and −0.68°C lat−1, respectively) and weakest CLTGs (African Indian Ocean and the South- and North-American Pacific gradients: −0.28, −0.29, −0.32°C lat−1, respectively). Analyzing CLTG strength by year revealed that seven gradients have weakened by 3–10% over the past three decades due to increased warming at high compared to low latitudes. Almost the entire South-American Pacific gradient (6–47°S), however, has considerably cooled over the study period (−0.3 to −1.7°C, 31 years), and the substantial weakening of the North-American Atlantic gradient (−10%) was due to warming at high latitudes (42–60°N, +0.8 to +1.6°C,31 years) and significant mid-latitude cooling (Florida to Cape Hatteras 26–35°N, −0.5 to −2.2°C, 31 years). Average SST trends rarely resulted from uniform shifts throughout the year; instead individual seasonal warming or cooling patterns elicited the observed changes in annual means. This is consistent with our finding of increased seasonality (i.e., summer-winter SST amplitude) in three quarters of all coastal cells (331 of 433). Our study highlights the regionally variable footprint of global climate change

  5. Phylogenetic niche conservatism explains an inverse latitudinal diversity gradient in freshwater arthropods

    NASA Astrophysics Data System (ADS)

    Morinière, Jérôme; van Dam, Matthew H.; Hawlitschek, Oliver; Bergsten, Johannes; Michat, Mariano C.; Hendrich, Lars; Ribera, Ignacio; Toussaint, Emmanuel F. A.; Balke, Michael

    2016-05-01

    The underlying mechanisms responsible for the general increase in species richness from temperate regions to the tropics remain equivocal. Many hypotheses have been proposed to explain this astonishing pattern but additional empirical studies are needed to shed light on the drivers at work. Here we reconstruct the evolutionary history of the cosmopolitan diving beetle subfamily Colymbetinae, the majority of which are found in the Northern hemisphere, hence exhibiting an inversed latitudinal diversity gradient. We reconstructed a dated phylogeny using 12 genes, to investigate the biogeographical history and diversification dynamics in the Colymbetinae. We aimed to identify the role that phylogenetic niche conservatism plays in the inversed diversification pattern seen in this group. Our results suggest that Colymbetinae originated in temperate climates, which supports the hypothesis that their distribution is the result of an ancestral adaptation to temperate environmental conditions rather than tropical origins, and that temperate niche conservatism can generate and/or maintain inverse latitudinal diversity gradients.

  6. Phylogenetic niche conservatism explains an inverse latitudinal diversity gradient in freshwater arthropods

    PubMed Central

    Morinière, Jérôme; Van Dam, Matthew H.; Hawlitschek, Oliver; Bergsten, Johannes; Michat, Mariano C.; Hendrich, Lars; Ribera, Ignacio; Toussaint, Emmanuel F.A.; Balke, Michael

    2016-01-01

    The underlying mechanisms responsible for the general increase in species richness from temperate regions to the tropics remain equivocal. Many hypotheses have been proposed to explain this astonishing pattern but additional empirical studies are needed to shed light on the drivers at work. Here we reconstruct the evolutionary history of the cosmopolitan diving beetle subfamily Colymbetinae, the majority of which are found in the Northern hemisphere, hence exhibiting an inversed latitudinal diversity gradient. We reconstructed a dated phylogeny using 12 genes, to investigate the biogeographical history and diversification dynamics in the Colymbetinae. We aimed to identify the role that phylogenetic niche conservatism plays in the inversed diversification pattern seen in this group. Our results suggest that Colymbetinae originated in temperate climates, which supports the hypothesis that their distribution is the result of an ancestral adaptation to temperate environmental conditions rather than tropical origins, and that temperate niche conservatism can generate and/or maintain inverse latitudinal diversity gradients. PMID:27215956

  7. Galactic cosmic ray gradients, field-aligned and latitudinal, among Voyagers 1/2 and IMP-8

    NASA Technical Reports Server (NTRS)

    Roelof, E. C.; Decker, R. B.; Krimigis, S. M.; Venkatesan, D.; Lazarus, A. J.

    1982-01-01

    The present investigation represents a summary of a comprehensive analysis of the same subject conducted by Roelof et al. (1981). It is pointed out that the tandem earth-Jupiter trajectories of the Voyager 1/2 spacecraft, combined with baseline measurements from the earth-orbiting IMP 7/8 spacecraft, provide the first opportunity for unambiguously separating latitude from radial or field-aligned effects in galactic cosmic ray gradients. Attention is given to the method of data analysis, and the separation of field-aligned and latitudinal gradients. It is found that latitudinal gradients approximately equal to or greater than 1 percent per deg in the cosmic ray intensity were a common feature of the interplanetary medium between 1 and 5 AU in 1977-78. Except in the most disturbed periods, cosmic ray intensities are well-ordered in field-aligned structures.

  8. Latitudinal gradients in tertiary molluscan faunas of the Pacific coast

    USGS Publications Warehouse

    Addicott, W.O.

    1970-01-01

    Tertiary molluscan faunas of the middle latitudes of the marginal eastern North Pacific are characterized by warm-water taxa whose descendants now live in more southerly latitudes. A series of profiles in which cumulative percentages of warm-water faunal elements are plotted against latitude show progressive northward decreases in the percentage of these elements in the faunas of Pacific coast Tertiary stages. Systematic changes in the relative position of these latitudinal gradients during the Middle and Late Tertiary are related to climatic change in the Pacific Basin. Widespread tropical marine climate in the middle latitudes of the eastern North Pacific during the Eocene is indicated by widespread faunal units characterized by high levels of taxonomic diversity. Succeeding Early Oligocene faunas are less diverse, suggesting cooler climatic conditions. Unusually low representations of warm-water genera characterize the molluscan faunas of the Acila shumardi Zone in central California (latitude 34??-37??N). The anomalously cool-water aspect of these faunas may record the occurrence of upwelling along a bold linear segment of the Pacific coast. During the Late Oligocene or the Early Miocene, they are replaced by faunas of unusually warm-water aspect resulting in positive anomalies in Miocene latitudinal faunal gradients in central California. The Miocene anomalies seem to result from the development of an irregular Neogene coastline with extensive, newly established shallow-water embayments. ?? 1970.

  9. A latitudinal gradient in tree growth response to climate warming in the Siberian taiga

    Treesearch

    Andrea H. Lloyd; Andrew G. Bunn; Logan Berner

    2010-01-01

    We investigated the climate response of three Siberian taiga species, Larix cajanderi, Picea obovata, and Pinus sylvestris, across a latitudinal gradient in central Siberia. We hypothesized that warming is more frequently associated with increased growth for evergreen conifers (P. obovata and P....

  10. Plant species invasions along the latitudinal gradient in the United States: Reply

    Treesearch

    Curtis H. Flather; Thomas J. Stohlgren; Catherine Jarnevich; David Barnett; John Kartesz

    2006-01-01

    We welcome the opportunity to respond to the comments of our colleagues, Fridley et al. (2006), on our recent paper (Stohlgren et al. 2005) regarding plant species invasions along latitudinal gradients. We agree on many aspects of this important line of research. In fact, the two major findings that they report from their analysis of floras are consistent with our main...

  11. An evaluation of the latitudinal gradient of chlorophyll in the California Current

    NASA Astrophysics Data System (ADS)

    Dietrich, W.; Broughton, J.; Kudela, R. M.

    2013-12-01

    Tracking of spatial and temporal trends in phytoplankton abundance and distribution is an important step toward understanding large-scale macroecological processes in the ocean. Measurements of ocean radiance from satellite-borne sensors, such as SeaWiFS and MODIS, can be used to estimate surface chlorophyll concentration, which is a good indicator of phytoplankton biomass. The primary goal of this study was to evaluate the latitudinal gradient in chlorophyll concentration within the California Current first reported by Ware and Thomson (2005). They found that average chlorophyll concentration tended to increase steadily from 32-48°N latitude. This concentration gradient was reevaluated using a longer dataset and an algorithm refined for the region. Radiance data from the MODIS-Aqua instrument were obtained for every year from 2002 through 2013. Data included annual averages of remote sensing radiance as well as monthly averages for February, April, and August. These months were chosen to represent each of the three oceanographic seasons present in the California Current. Estimates of chlorophyll concentration were derived from these data using the CALFIT algorithm developed by Kahru et al. (2012). The resulting maps of chlorophyll concentration were processed in MATLAB and linear regressions were performed using SYSTAT 13 software. A statistically significant (p < 0.05) latitudinal trend in chlorophyll was observed in the annual averaged data as well as in the averaged seasonal data from February and August. No significant trend was observed in the averaged April data. Chlorophyll concentration was positively correlated with latitude in every instance, except in April 2003 and April 2005, where a negative correlation was observed. The positive latitudinal trend was strongest during August and weakest during April. Strong peaks in chlorophyll were observed near San Francisco Bay and the mouth of the Columbia River, suggesting that river-borne nutrient input may be

  12. Olson's Extinction and the latitudinal biodiversity gradient of tetrapods in the Permian

    PubMed Central

    Day, Michael O.; Rubidge, Bruce S.; Fröbisch, Jörg

    2017-01-01

    The terrestrial vertebrate fauna underwent a substantial change in composition between the lower and middle Permian. The lower Permian fauna was characterized by diverse and abundant amphibians and pelycosaurian-grade synapsids. During the middle Permian, a therapsid-dominated fauna, containing a diverse array of parareptiles and a considerably reduced richness of amphibians, replaced this. However, it is debated whether the transition is a genuine event, accompanied by a mass extinction, or whether it is merely an artefact of the shift in sampling from the palaeoequatorial latitudes to the palaeotemperate latitudes. Here we use an up-to-date biostratigraphy and incorporate recent discoveries to thoroughly review the Permian tetrapod fossil record. We suggest that the faunal transition represents a genuine event; the lower Permian temperate faunas are more similar to lower Permian equatorial faunas than middle Permian temperate faunas. The transition was not consistent across latitudes; the turnover occurred more rapidly in Russia, but was delayed in North America. The argument that the mass extinction is an artefact of a latitudinal biodiversity gradient and a shift in sampling localities is rejected: sampling correction demonstrates an inverse latitudinal biodiversity gradient was prevalent during the Permian, with peak diversity in the temperate latitudes. PMID:28381616

  13. Quantitative Genetic Architecture at Latitudinal Range Boundaries: Reduced Variation but Higher Trait Independence.

    PubMed

    Paccard, Antoine; Van Buskirk, Josh; Willi, Yvonne

    2016-05-01

    Species distribution limits are hypothesized to be caused by small population size and limited genetic variation in ecologically relevant traits, but earlier studies have not evaluated genetic variation in multivariate phenotypes. We asked whether populations at the latitudinal edges of the distribution have altered quantitative genetic architecture of ecologically relevant traits compared with midlatitude populations. We calculated measures of evolutionary potential in nine Arabidopsis lyrata populations spanning the latitudinal range of the species in eastern and midwestern North America. Environments at the latitudinal extremes have reduced water availability, and therefore plants were assessed under wet and dry treatments. We estimated genetic variance-covariance (G-) matrices for 10 traits related to size, development, and water balance. Populations at southern and northern distribution edges had reduced levels of genetic variation across traits, but their G-matrices were more spherical; G-matrix orientation was unrelated to latitude. As a consequence, the predicted short-term response to selection was at least as strong in edge populations as in central populations. These results are consistent with genetic drift eroding variation and reducing the effectiveness of correlational selection at distribution margins. We conclude that genetic variation of isolated traits poorly predicts the capacity to evolve in response to multivariate selection and that the response to selection may frequently be greater than expected at species distribution margins because of genetic drift.

  14. Plant species invasions along the latitudinal gradient in the United States

    USGS Publications Warehouse

    Stohlgren, T.J.; Barnett, D.; Flather, C.; Kartesz, J.; Peterjohn, B.

    2005-01-01

    It has been long established that the richness of vascular plant species and many animal taxa decreases with increasing latitude, a pattern that very generally follows declines in actual and potential evapotranspiration, solar radiation, temperature, and thus, total productivity. Using county-level data on vascular plants from the United States (3000 counties in the conterminous 48 states), we used the Akaike Information Criterion (AIC) to evaluate competing models predicting native and nonnative plant species density (number of species per square kilometer in a county) from various combinations of biotic variables (e.g., native bird species density, vegetation carbon, normalized difference vegetation index), environmental/topographic variables (elevation, variation in elevation, the number of land cover classes in the county; radiation, mean precipitation, actual evapotranspiration, and potential evapotranspiration), and human variables (human population density, crop-land, and percentage of disturbed lands in a county). We found no evidence of a latitudinal gradient for the density of native plant species and a significant, slightly positive latitudinal gradient for the density of nonnative plant species. We found stronger evidence of a significant, positive productivity gradient (vegetation carbon) for the density of native plant species and nonnative plant species. We found much stronger significant relationships when biotic, environmental/topographic, and human variables were used to predict native plant species density and nonnative plant species density. Biotic variables generally had far greater influence in multivariate models than human or environmental/topographic variables. Later, we found that the best, single, positive predictor of the density of nonnative plant species in a county was the density of native plant species in a county. While further study is needed, it may be that, while humans facilitate the initial establishment invasions of nonnative

  15. Assessment of tannin variation in Tamarisk foliage across a latitudinal gradient

    USGS Publications Warehouse

    Hussey, A.M.; Kimball, B.A.; Friedman, J.M.

    2011-01-01

    Certain phenotypic traits of plants vary with latitude of origin. To understand if tannin concentration varies among populations of tamarisk (Tamarix spp.) according to a latitudinal gradient, an analytical method was adapted from an enological tannin assay. The tannin content (wet basis) of tamarisk foliage collected from 160 plants grown in a common garden ranged from 8.26 to 62.36 mg/g and was not correlated with the latitude of the original North American plant collection site. Tannins do not contribute to observed differences in herbivory observed among these tamarisk populations.

  16. Temperature and diet effects on omnivorous fish performance: Implications for the latitudinal diversity gradient in herbivorous fishes

    USGS Publications Warehouse

    Behrens, M.D.; Lafferty, K.D.

    2007-01-01

    Herbivorous fishes show a clear latitudinal diversity gradient, making up a larger proportion of the fish species in a community in tropical waters than in temperate waters. One proposed mechanism that could drive this gradient is a physiological constraint due to temperature. One prediction based on this mechanism is that if herbivorous fishes could shift their diet to animal material, they would be better able to grow, survive, and reproduce in cold waters. We tested this prediction on the omnivore Girella nigricans under different temperature and diet regimes using RNA-DNA ratios as an indicator of performance. Fish had increased performance (100%) at low temperatures (12??C) when their diet was supplemented with animal material. In contrast, at higher temperatures (17, 22, and 27??C) fish showed no differences between diets. This indicates that omnivorous fishes could increase their performance at low temperatures by consuming more animal matter. This study supports the hypothesis that a relative increase in the nutritional value of plant material at warmer temperatures could drive the latitudinal diversity gradient in herbivorous fishes. ?? 2007 NRC.

  17. Diversity and Distribution of Freshwater Aerobic Anoxygenic Phototrophic Bacteria across a Wide Latitudinal Gradient

    PubMed Central

    Ferrera, Isabel; Sarmento, Hugo; Priscu, John C.; Chiuchiolo, Amy; González, José M.; Grossart, Hans-Peter

    2017-01-01

    Aerobic anoxygenic phototrophs (AAPs) have been shown to exist in numerous marine and brackish environments where they are hypothesized to play important ecological roles. Despite their potential significance, the study of freshwater AAPs is in its infancy and limited to local investigations. Here, we explore the occurrence, diversity and distribution of AAPs in lakes covering a wide latitudinal gradient: Mongolian and German lakes located in temperate regions of Eurasia, tropical Great East African lakes, and polar permanently ice-covered Antarctic lakes. Our results show a widespread distribution of AAPs in lakes with contrasting environmental conditions and confirm that this group is composed of different members of the Alpha- and Betaproteobacteria. While latitude does not seem to strongly influence AAP abundance, clear patterns of community structure and composition along geographic regions were observed as indicated by a strong macro-geographical signal in the taxonomical composition of AAPs. Overall, our results suggest that the distribution patterns of freshwater AAPs are likely driven by a combination of small-scale environmental conditions (specific of each lake and region) and large-scale geographic factors (climatic regions across a latitudinal gradient). PMID:28275369

  18. Cannibalism and activity rate in larval damselflies increase along a latitudinal gradient as a consequence of time constraints.

    PubMed

    Sniegula, Szymon; Golab, Maria J; Johansson, Frank

    2017-07-14

    Predation is ubiquitous in nature. One form of predation is cannibalism, which is affected by many factors such as size structure and resource density. However, cannibalism may also be influenced by abiotic factors such as seasonal time constraints. Since time constraints are greater at high latitudes, cannibalism could be stronger at such latitudes, but we know next to nothing about latitudinal variation in cannibalism. In this study, we examined cannibalism and activity in larvae of the damselfly Lestes sponsa along a latitudinal gradient across Europe. We did this by raising larvae from the egg stage at different temperatures and photoperiods corresponding to different latitudes. We found that the more seasonally time-constrained populations in northern latitudes and individuals subjected to greater seasonal time constraints exhibited a higher level of cannibalism. We also found that activity was higher at north latitude conditions, and thus correlated with cannibalism, suggesting that this behaviour mediates higher levels of cannibalism in time-constrained animals. Our results go counter to the classical latitude-predation pattern which predicts higher predation at lower latitudes, since we found that predation was stronger at higher latitudes. The differences in cannibalism might have implications for population dynamics along the latitudinal gradients, but further experiments are needed to explore this.

  19. Phenotypic plasticity of invasive Spartina densiflora (Poaceae) along a broad latitudinal gradient on the Pacific Coast of North America

    USDA-ARS?s Scientific Manuscript database

    We examined morphological and physiological leaf traits of Spartina densiflora plants in populations from invaded estuarine sites across broad latitudinal and climate gradients along the Pacific west coast of North America, and in favourable conditions in a common garden experiment. We hypothesized ...

  20. Sap-feeding insects on forest trees along latitudinal gradients in northern Europe: a climate-driven patterns.

    PubMed

    Kozlov, Mikhail V; Stekolshchikov, Andrey V; Söderman, Guy; Labina, Eugenia S; Zverev, Vitali; Zvereva, Elena L

    2015-01-01

    Knowledge of the latitudinal patterns in biotic interactions, and especially in herbivory, is crucial for understanding the mechanisms that govern ecosystem functioning and for predicting their responses to climate change. We used sap-feeding insects as a model group to test the hypotheses that the strength of plant-herbivore interactions in boreal forests decreases with latitude and that this latitudinal pattern is driven primarily by midsummer temperatures. We used a replicated sampling design and quantitatively collected and identified all sap-feeding insects from four species of forest trees along five latitudinal gradients (750-1300 km in length, ten sites in each gradient) in northern Europe (59 to 70°N and 10 to 60°E) during 2008-2011. Similar decreases in diversity of sap-feeding insects with latitude were observed in all gradients during all study years. The sap-feeder load (i.e. insect biomass per unit of foliar biomass) decreased with latitude in typical summers, but increased in an exceptionally hot summer and was independent of latitude during a warm summer. Analysis of combined data from all sites and years revealed dome-shaped relationships between the loads of sap-feeders and midsummer temperatures, peaking at 17 °C in Picea abies, at 19.5 °C in Pinus sylvestris and Betula pubescens and at 22 °C in B. pendula. From these relationships, we predict that the losses of forest trees to sap-feeders will increase by 0-45% of the current level in southern boreal forests and by 65-210% in subarctic forests with a 1 °C increase in summer temperatures. The observed relationships between temperatures and the loads of sap-feeders differ between the coniferous and deciduous tree species. We conclude that climate warming will not only increase plant losses to sap-feeding insects, especially in subarctic forests, but can also alter plant-plant interactions, thereby affecting both the productivity and the structure of future forest ecosystems. © 2014

  1. Genetic and environmental influences on cold hardiness of native and introduced riparian trees

    USGS Publications Warehouse

    Friedman, Jonathan M.; Roelle, James E.; Cade, Brian S.

    2012-01-01

    To explore latitudinal genetic variation in cold hardiness and leaf phenology, we planted a common garden of paired collections of native and introduced riparian trees sampled along a latitudinal gradient. The garden in Fort Collins, Colorado (latitude 40.6°N), included 681 native plains cottonwood (Populus deltoides subsp. monilifera) and introduced saltcedar (Tamarix ramosissima, T. chinensis, and hybrids) collected from 15 sites from 29.2 to 47.6°N in the central United States. In the common garden, both species showed latitudinal variation in fall, but not spring, leaf phenology. This suggests that latitudinal gradient field observations in fall phenology are a result, at least in part, of the inherited variation in the critical photoperiod. Conversely, the latitudinal gradient field observations in spring phenology are largely a plastic response to the temperature gradient. Populations from higher latitudes exhibited earlier bud set and leaf senescence. Cold hardiness varied latitudinally in both fall and spring for both species. Although cottonwood was hardier than saltcedar in midwinter, the reverse was true in late fall and early spring. The latitudinal variation in fall phenology and cold hardiness of saltcedar appears to have developed as a result of multiple introductions of genetically distinct populations, hybridization, and natural selection in the 150 years since introduction.

  2. A genetically-based latitudinal cline in the emission of herbivore-induced plant volatile organic compounds.

    PubMed

    Wason, Elizabeth L; Agrawal, Anurag A; Hunter, Mark D

    2013-08-01

    The existence of predictable latitudinal variation in plant defense against herbivores remains controversial. A prevailing view holds that higher levels of plant defense evolve at low latitudes compared to high latitudes as an adaptive plant response to higher herbivore pressure on low-latitude plants. To date, this prediction has not been examined with respect to volatile organic compounds (VOCs) that many plants emit, often thus attracting the natural enemies of herbivores. Here, we compared genetically-based constitutive and herbivore-induced aboveground vegetative VOC emissions from plants originating across a gradient of more than 10° of latitude (>1,500 km). We collected headspace VOCs from Asclepias syriaca (common milkweed) originating from 20 populations across its natural range and grown in a common garden near the range center. Feeding by specialist Danaus plexippus (monarch) larvae induced VOCs, and field environmental conditions (temperature, light, and humidity) also influenced emissions. Monarch damage increased plant VOC concentrations and altered VOC blends. We found that genetically-based induced VOC emissions varied with the latitude of plant population origin, although the pattern followed the reverse of that predicted-induced VOC concentration increased with increasing latitude. This pattern appeared to be driven by a greater induction of sesquiterpenoids at higher latitudes. In contrast, constitutive VOC emission did not vary systematically with latitude, and the induction of green leafy volatiles declined with latitude. Our results do not support the prevailing view that plant defense is greater at lower than at higher latitudes. That the pattern holds only for herbivore-induced VOC emission, and not constitutive emission, suggests that latitudinal variation in VOCs is not a simple adaptive response to climatic factors.

  3. Global latitudinal species diversity gradient in deep-sea benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Culver, Stephen J.; Buzas, Martin A.

    2000-02-01

    Global scale patterns of species diversity for modern deep-sea benthic foraminifera, an important component of the bathyal and abyssal meiofauna, are examined using comparable data from five studies in the Atlantic, ranging over 138° of latitude from the Norwegian Sea to the Weddell Sea. We show that a pattern of decreasing diversity with increasing latitude characterises both the North and South Atlantic. This pattern is confirmed for the northern hemisphere by independent data from the west-central North Atlantic and the Arctic basin. Species diversity in the North Atlantic northwards from the equator is variable until a sharp fall in the Norwegian Sea (ca. 65°N). In the South Atlantic species diversity drops from a maximum in latitudes less than 30°S and then decreases slightly from 40 to 70°S. For any given latitude, North Atlantic diversity is generally lower than in the South Atlantic. Both ecological and historical factors related to food supply are invoked to explain the formation and maintenance of the latitudinal gradient of deep-sea benthic foraminiferal species diversity. The gradient formed some 36 million years ago when global climatic cooling led to seasonally fluctuating food supply in higher latitudes.

  4. Latitudinal Gradient in Otolith Shape among Local Populations of Atlantic Herring (Clupea harengus L.) in Norway

    PubMed Central

    Libungan, Lísa Anne; Slotte, Aril; Husebø, Åse; Godiksen, Jane A.; Pálsson, Snæbjörn

    2015-01-01

    Otolith shape analysis of Atlantic herring (Clupea harengus) in Norwegian waters shows significant differentiation among fjords and a latitudinal gradient along the coast where neighbouring populations are more similar to each other than to those sampled at larger distances. The otolith shape was obtained using quantitative shape analysis, the outlines were transformed with Wavelet and analysed with multivariate methods. The observed morphological differences are likely to reflect environmental differences but indicate low dispersal among the local herring populations. Otolith shape variation suggests also limited exchange between the local populations and their oceanic counterparts, which could be due to differences in spawning behaviour. Herring from the most northerly location (69°N) in Balsfjord, which is genetically more similar to Pacific herring (Clupea pallasii), differed in otolith shape from all the other populations. Our results suggest that the semi-enclosed systems, where the local populations live and breed, are efficient barriers for dispersal. Otolith shape can thus serve as a marker to identify the origin of herring along the coast of Norway. PMID:26101885

  5. Disease Ecology, Biodiversity, and the Latitudinal Gradient in Income

    PubMed Central

    Bonds, Matthew H.; Dobson, Andrew P.; Keenan, Donald C.

    2012-01-01

    While most of the world is thought to be on long-term economic growth paths, more than one-sixth of the world is roughly as poor today as their ancestors were hundreds of years ago. The majority of the extremely poor live in the tropics. The latitudinal gradient in income is highly suggestive of underlying biophysical drivers, of which disease conditions are an especially salient example. However, conclusions have been confounded by the simultaneous causality between income and disease, in addition to potentially spurious relationships. We use a simultaneous equations model to estimate the relative effects of vector-borne and parasitic diseases (VBPDs) and income on each other, controlling for other factors. Our statistical model indicates that VBPDs have systematically affected economic development, evident in contemporary levels of per capita income. The burden of VBDPs is, in turn, determined by underlying ecological conditions. In particular, the model predicts it to rise as biodiversity falls. Through these positive effects on human health, the model thus identifies measurable economic benefits of biodiversity. PMID:23300379

  6. Phylogenetic support for the Tropical Niche Conservatism Hypothesis despite the absence of a clear latitudinal species richness gradient in Yunnan's woody flora

    NASA Astrophysics Data System (ADS)

    Tang, G.; Zhang, M. G.; Liu, C.; Zhou, Z.; Chen, W.; Slik, J. W. F.

    2014-05-01

    The Tropical Niche Conservatism Hypothesis (TCH) tries to explain the generally observed latitudinal gradient of increasing species diversity towards the tropics. To date, few studies have used phylogenetic approaches to assess its validity, even though such methods are especially suited to detect changes in niche structure. We test the TCH using modeled distributions of 1898 woody species in Yunnan Province (southwest China) in combination with a family level phylogeny. Unlike predicted, species richness and phylogenetic diversity did not show a latitudinal gradient, but identified two high diversity zones, one in Northwest and one in South Yunnan. Despite this, the underlying residual phylogenetic diversity showed a clear decline away from the tropics, while the species composition became progressingly more phylogenetically clustered towards the North. These latitudinal changes were strongly associated with more extreme temperature variability and declining precipitation and soil water availability, especially during the dry season. Our results suggests that the climatically more extreme conditions outside the tropics require adaptations for successful colonization, most likely related to the plant hydraulic system, that have been acquired by only a limited number of phylogenetically closely related plant lineages. We emphasize the importance of phylogenetic approaches for testing the TCH.

  7. Latitudinal diversity gradients in Mesozoic non-marine turtles

    NASA Astrophysics Data System (ADS)

    Nicholson, David B.; Holroyd, Patricia A.; Valdes, Paul; Barrett, Paul M.

    2016-11-01

    The latitudinal biodiversity gradient (LBG)-the pattern of increasing taxonomic richness with decreasing latitude-is prevalent in the structure of the modern biota. However, some freshwater taxa show peak richness at mid-latitudes; for example, extant Testudines (turtles, terrapins and tortoises) exhibit their greatest diversity at 25° N, a pattern sometimes attributed to recent bursts of climatically mediated species diversification. Here, we test whether this pattern also characterizes the Mesozoic distribution of turtles, to determine whether it was established during either their initial diversification or as a more modern phenomenon. Using global occurrence data for non-marine testudinate genera, we find that subsampled richness peaks at palaeolatitudes of 15-30° N in the Jurassic, 30-45° N through the Cretaceous to the Campanian, and from 30° to 60° N in the Maastrichtian. The absence of a significant diversity peak in southern latitudes is consistent with results from climatic models and turtle niche modelling that demonstrate a dearth of suitable turtle habitat in Gondwana during the Jurassic and Late Cretaceous. Our analyses confirm that the modern testudinate LBG has a deep-time origin and further demonstrate that LBGs are not always expressed as a smooth, equator-to-pole distribution.

  8. Genetic structure and bio-climatic modeling support allopatric over parapatric speciation along a latitudinal gradient.

    PubMed

    Rossetto, Maurizio; Allen, Chris B; Thurlby, Katie A G; Weston, Peter H; Milner, Melita L

    2012-08-20

    Four of the five species of Telopea (Proteaceae) are distributed in a latitudinal replacement pattern on the south-eastern Australian mainland. In similar circumstances, a simple allopatric speciation model that identifies the origins of genetic isolation within temporal geographic separation is considered as the default model. However, secondary contact between differentiated lineages can result in similar distributional patterns to those arising from a process of parapatric speciation (where gene flow between lineages remains uninterrupted during differentiation). Our aim was to use the characteristic distributional patterns in Telopea to test whether it reflected the evolutionary models of allopatric or parapatric speciation. Using a combination of genetic evidence and environmental niche modelling, we focused on three main questions: do currently described geographic borders coincide with genetic and environmental boundaries; are there hybrid zones in areas of secondary contact between closely related species; did species distributions contract during the last glacial maximum resulting in distributional gaps even where overlap and hybridisation currently occur? Total genomic DNA was extracted from 619 individuals sampled from 36 populations representing the four species. Seven nuclear microsatellites (nSSR) and six chloroplast microsatellites (cpSSR) were amplified across all populations. Genetic structure and the signature of admixture in overlap zones was described using the Bayesian clustering methods implemented in STUCTURE and NewHybrids respectively. Relationships between chlorotypes were reconstructed as a median-joining network. Environmental niche models were produced for all species using environmental parameters from both the present day and the last glacial maximum (LGM).The nSSR loci amplified a total of 154 alleles, while data for the cpSSR loci produced a network of six chlorotypes. STRUCTURE revealed an optimum number of five clusters

  9. The geography of fear: a latitudinal gradient in anti-predator escape distances of birds across Europe.

    PubMed

    Díaz, Mario; Møller, Anders Pape; Flensted-Jensen, Einar; Grim, Tomáš; Ibáñez-Álamo, Juan Diego; Jokimäki, Jukka; Markó, Gábor; Tryjanowski, Piotr

    2013-01-01

    All animals flee from potential predators, and the distance at which this happens is optimized so the benefits from staying are balanced against the costs of flight. Because predator diversity and abundance decreases with increasing latitude, and differs between rural and urban areas, we should expect escape distance when a predator approached the individual to decrease with latitude and depend on urbanization. We measured the distance at which individual birds fled (flight initiation distance, FID, which represents a reliable and previously validated surrogate measure of response to predation risk) following a standardized protocol in nine pairs of rural and urban sites along a ca. 3000 km gradient from Southern Spain to Northern Finland during the breeding seasons 2009-2010. Raptor abundance was estimated by means of standard point counts at the same sites where FID information was recorded. Data on body mass and phylogenetic relationships among bird species sampled were extracted from the literature. An analysis of 12,495 flight distances of 714 populations of 159 species showed that mean FID decreased with increasing latitude after accounting for body size and phylogenetic effects. This decrease was paralleled by a similar cline in an index of the abundance of raptors. Urban populations had consistently shorter FIDs, supporting previous findings. The difference between rural and urban habitats decreased with increasing latitude, also paralleling raptor abundance trends. Overall, the latitudinal gradient in bird fear was explained by raptor abundance gradients, with additional small effects of latitude and intermediate effects of habitat. This study provides the first empirical documentation of a latitudinal trend in anti-predator behavior, which correlated positively with a similar trend in the abundance of predators.

  10. Size-frequency distributions along a latitudinal gradient in Middle Permian fusulinoideans.

    PubMed

    Zhang, Yichun; Payne, Jonathan L

    2012-01-01

    Geographic gradients in body size within and among living species are commonly used to identify controls on the long-term evolution of organism size. However, the persistence of these gradients over evolutionary time remains largely unknown because ancient biogeographic variation in organism size is poorly documented. Middle Permian fusulinoidean foraminifera are ideal for investigating the temporal persistence of geographic gradients in organism size because they were diverse and abundant along a broad range of paleo-latitudes during this interval (~275-260 million years ago). In this study, we determined the sizes of Middle Permian fusulinoidean fossils from three different paleo-latitudinal zones in order to examine the relationship between the size of foraminifers and regional environment. We recovered the following results: keriothecal fusulinoideans are substantially larger than nonkeriothecal fusulinoideans; fusulinoideans from the equatorial zone are typically larger than those from the north and south transitional zones; neoschwagerinid specimens within a single species are generally larger in the equatorial zone than those in both transitional zones; and the nonkeriothecal fusulinoideans Staffellidae and Schubertellidae have smaller size in the north transitional zone. Fusulinoidean foraminifers differ from most other marine taxa in exhibiting larger sizes closer to the equator, contrary to Bergmann's rule. Meridional variation in seasonality, water temperature, nutrient availability, and carbonate saturation level are all likely to have favored or enabled larger sizes in equatorial regions. Temporal variation in atmospheric oxygen concentrations have been shown to account for temporal variation in fusulinoidean size during Carboniferous and Permian time, but oxygen availability appears unlikely to explain biogeographic variation in fusulinoidean sizes, because dissolved oxygen concentrations in seawater typically increase away from the equator due to

  11. Size-Frequency Distributions along a Latitudinal Gradient in Middle Permian Fusulinoideans

    PubMed Central

    Zhang, Yichun; Payne, Jonathan L.

    2012-01-01

    Geographic gradients in body size within and among living species are commonly used to identify controls on the long-term evolution of organism size. However, the persistence of these gradients over evolutionary time remains largely unknown because ancient biogeographic variation in organism size is poorly documented. Middle Permian fusulinoidean foraminifera are ideal for investigating the temporal persistence of geographic gradients in organism size because they were diverse and abundant along a broad range of paleo-latitudes during this interval (∼275–260 million years ago). In this study, we determined the sizes of Middle Permian fusulinoidean fossils from three different paleo-latitudinal zones in order to examine the relationship between the size of foraminifers and regional environment. We recovered the following results: keriothecal fusulinoideans are substantially larger than nonkeriothecal fusulinoideans; fusulinoideans from the equatorial zone are typically larger than those from the north and south transitional zones; neoschwagerinid specimens within a single species are generally larger in the equatorial zone than those in both transitional zones; and the nonkeriothecal fusulinoideans Staffellidae and Schubertellidae have smaller size in the north transitional zone. Fusulinoidean foraminifers differ from most other marine taxa in exhibiting larger sizes closer to the equator, contrary to Bergmann's rule. Meridional variation in seasonality, water temperature, nutrient availability, and carbonate saturation level are all likely to have favored or enabled larger sizes in equatorial regions. Temporal variation in atmospheric oxygen concentrations have been shown to account for temporal variation in fusulinoidean size during Carboniferous and Permian time, but oxygen availability appears unlikely to explain biogeographic variation in fusulinoidean sizes, because dissolved oxygen concentrations in seawater typically increase away from the equator due to

  12. Comparison of Forest Soil Carbon Dynamics at Five Sites Along a Latitudinal Gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garten Jr, Charles T

    2011-01-01

    Carbon stocks, and C:N ratios, were measured in the forest floor, mineral soil, and two mineral soil fractions (particulate and mineral-associated organic matter, POM and MOM, respectively) at five forest sites, ranging from 60 to 100 years old, along a latitudinal gradient in the eastern United States. Sampling at four sites was replicated over two consecutive years. For many measurements (like forest floor carbon stocks, cumulative soil organic carbon stocks to 20 cm, and the fraction of whole soil carbon in POM), there was no significant difference between years at each site despite the use of somewhat different sampling methods.more » With one exception, forest floor and mineral soil carbon stocks increased from warm, southern, sites (with fine-textured soils) to northern, cool, sites (with more coarse-textured soils). The exception was a northern site, with less than 10% silt-clay content, that had a soil organic carbon stock similar to those measured at southern sites. Soil carbon at each site was partitioned into two pools (labile and stable) on the basis of carbon measured in the forest floor and POM and MOM fractions from the mineral soil. A two-compartment steady-state model, with randomly varying parameter values, was used in probabilistic calculations to estimate the turnover time of labile soil organic carbon (MRTU) and the annual transfer of labile carbon to stable carbon (k2) at each site in two different years. Based on empirical data, the turnover time of stable soil carbon (MRTS) was determined by mean annual temperature and increased from 30 to 100 years from south to north. Moving from south to north, MRTU increased from approximately 5 to 14 years. Consistent with prior studies, 13C enrichment factors ( ) from the Rayleigh equation, that describe the rate of change in 13C through the soil profile, were an indicator of soil carbon turnover times along the latitudinal gradient. Consistent with its role in stabilization of soil organic carbon

  13. Selective Pressure along a Latitudinal Gradient Affects Subindividual Variation in Plants

    PubMed Central

    Sobral, Mar; Guitián, José; Guitián, Pablo; Larrinaga, Asier R.

    2013-01-01

    Individual plants produce repeated structures such as leaves, flowers or fruits, which, although belonging to the same genotype, are not phenotypically identical. Such subindividual variation reflects the potential of individual genotypes to vary with micro-environmental conditions. Furthermore, variation in organ traits imposes costs to foraging animals such as time, energy and increased predation risk. Therefore, animals that interact with plants may respond to this variation and affect plant fitness. Thus, phenotypic variation within an individual plant could be, in part, an adaptive trait. Here we investigated this idea and we found that subindividual variation of fruit size of Crataegus monogyna, in different populations throughout the latitudinal gradient in Europe, was explained at some extent by the selective pressures exerted by seed-dispersing birds. These findings support the hypothesis that within-individual variation in plants is an adaptive trait selected by interacting animals which may have important implications for plant evolution. PMID:24069297

  14. Late Cenozoic onset of the latitudinal diversity gradient of North American mammals

    NASA Astrophysics Data System (ADS)

    Marcot, Jonathan D.; Fox, David L.; Niebuhr, Spencer R.

    2016-06-01

    The decline of species richness from equator to pole, or latitudinal diversity gradient (LDG), is nearly universal among clades of living organisms, yet whether it was such a pervasive pattern in the geologic past remains uncertain. Here, we calculate the strength of the LDG for terrestrial mammals in North America over the past 65 My, using 27,903 fossil occurrences of Cenozoic terrestrial mammals from western North America downloaded from the Paleobiology Database. Accounting for temporal and spatial variation in sampling, the LDG was substantially weaker than it is today for most of the Cenozoic and the robust modern LDG of North American mammals evolved only over the last 4 My. The strength of the LDG correlates negatively with global temperature, suggesting a role of global climate patterns in the establishment and maintenance of the LDG for North American mammals.

  15. Climate Effects on Methylmercury Bioaccumulation Along a Latitudinal Gradient in the Eastern Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Chetelat, J.; Richardson, M.; MacMillan, G. A.; Amyot, M.; Hintelmann, H.; Crump, D.

    2014-12-01

    Recent evidence indicates that inorganic mercury (Hg) loadings to Arctic lakes decline with latitude. However, monomethylmercury (MMHg) concentrations in fish and their prey do not decline in a similar fashion, suggesting that higher latitude lakes are more vulnerable to Hg inputs. Preliminary results will be presented from a three-year study (2012-2015) of climate effects on MMHg bioaccumulation in lakes of the eastern Canadian Arctic. We have investigated mercury transport and accumulation processes in lakes and ponds from three study regions along a latitudinal gradient in climate-controlled ecosystem types in the Canadian Arctic, specifically sub-Arctic taiga, Arctic tundra and polar desert. In each water body, we measured key aspects of MMHg bioaccumulation—MMHg bioavailability to benthic food webs and organism growth rates—as well as how watershed characteristics affect the transport of Hg and organic carbon to lakes. Novel approaches were incorporated including the use of passive samplers (Diffusive Gradient in Thin Film samplers or DGTs) to estimate sediment bioavailable MMHg concentrations and tissue RNA content to compare organism short-term growth rates. A comparison of Arctic tundra and sub-Arctic taiga lakes showed that surface water concentrations of MMHg were strongly and positively correlated to total Hg concentrations both within and among study regions, implying strong control of inorganic Hg supply. Sediment concentrations of bioavailable MMHg were highly variable among lakes, although average concentrations were similar between study regions. Local environmental conditions appear to have a strong influence on sediment potential for MMHg supply. Lake-dwelling Arctic char from tundra lakes had similar or higher total Hg concentrations compared with brook trout from sub-Arctic lakes that were exposed to higher water MMHg concentrations. Potential environmental drivers of these patterns will be discussed. This latitudinal study will provide new

  16. Increased temperatures negatively affect Juniperus communis seeds: evidence from transplant experiments along a latitudinal gradient.

    PubMed

    Gruwez, R; De Frenne, P; Vander Mijnsbrugge, K; Vangansbeke, P; Verheyen, K

    2016-05-01

    With a distribution range that covers most of the Northern hemisphere, common juniper (Juniperus communis) has one of the largest ranges of all vascular plant species. In several regions in Europe, however, populations are decreasing in size and number due to failing recruitment. One of the main causes for this failure is low seed viability. Observational evidence suggests that this is partly induced by climate warming, but our mechanistic understanding of this effect remains incomplete. Here, we experimentally assess the influence of temperature on two key developmental phases during sexual reproduction, i.e. gametogenesis and fertilisation (seed phase two, SP2) and embryo development (seed phase three, SP3). Along a latitudinal gradient from southern France to central Sweden, we installed a transplant experiment with shrubs originating from Belgium, a region with unusually low juniper seed viability. Seeds of both seed phases were sampled during three consecutive years, and seed viability assessed. Warming temperatures negatively affected the seed viability of both SP2 and SP3 seeds along the latitudinal gradient. Interestingly, the effect on embryo development (SP3) only occurred in the third year, i.e. when the gametogenesis and fertilisation also took place in warmer conditions. We found strong indications that this negative influence mostly acts via disrupting growth of the pollen tube, the development of the female gametophyte and fertilisation (SP2). This, in turn, can lead to failing embryo development, for example, due to nutritional problems. Our results confirm that climate warming can negatively affect seed viability of juniper. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. Temperature-stress resistance and tolerance along a latitudinal cline in North American Arabidopsis lyrata.

    PubMed

    Wos, Guillaume; Willi, Yvonne

    2015-01-01

    The study of latitudinal gradients can yield important insights into adaptation to temperature stress. Two strategies are available: resistance by limiting damage, or tolerance by reducing the fitness consequences of damage. Here we studied latitudinal variation in resistance and tolerance to frost and heat and tested the prediction of a trade-off between the two strategies and their costliness. We raised plants of replicate maternal seed families from eight populations of North American Arabidopsis lyrata collected along a latitudinal gradient in climate chambers and exposed them repeatedly to either frost or heat stress, while a set of control plants grew under standard conditions. When control plants reached maximum rosette size, leaf samples were exposed to frost and heat stress, and electrolyte leakage (PEL) was measured and treated as an estimate of resistance. Difference in maximum rosette size between stressed and control plants was used as an estimate of tolerance. Northern populations were more frost resistant, and less heat resistant and less heat tolerant, but-unexpectedly-they were also less frost tolerant. Negative genetic correlations between resistance and tolerance to the same and different thermal stress were generally not significant, indicating only weak trade-offs. However, tolerance to frost was consistently accompanied by small size under control conditions, which may explain the non-adaptive latitudinal pattern for frost tolerance. Our results suggest that adaptation to frost and heat is not constrained by trade-offs between them. But the cost of frost tolerance in terms of plant size reduction may be important for the limits of species distributions and climate niches.

  18. Speciation and the Latitudinal Diversity Gradient: Insights from the Global Distribution of Endemic Fish.

    PubMed

    Hanly, Patrick J; Mittelbach, Gary G; Schemske, Douglas W

    2017-06-01

    The nearly universal pattern that species richness increases from the poles to the equator (the latitudinal diversity gradient [LDG]) has been of intense interest since its discovery by early natural-history explorers. Among the many hypotheses proposed to explain the LDG, latitudinal variation in (1) productivity, (2) time and area available for diversification, and (3) speciation and/or extinction rates have recently received the most attention. Because tropical regions are older and were formerly more widespread, these factors are often intertwined, hampering efforts to distinguish their relative contributions to the LDG. Here we examine the global distribution of endemic lake fishes to determine how lake age, area, and latitude each affect the probability of speciation and the extent of diversification occurring within a lake. We analyzed the distribution of endemic fishes worldwide (1,933 species and subspecies from 47 families in 2,746 lakes) and find that the probability of a lake containing an endemic species and the total number of endemics per lake increase with lake age and area and decrease with latitude. Moreover, the geographic locations of endemics in 34 of 41 families are found at lower latitudes than those of nonendemics. We propose that the greater diversification of fish at low latitudes may be driven in part by ecological opportunities promoted by tropical climates and by the coevolution of species interactions.

  19. Latitudinal gradient of nitrous oxide: inferring source distribution from global measurements and model

    NASA Astrophysics Data System (ADS)

    Ishijima, K.; Kort, E. A.; Crotwell, A. M.; Dlugokencky, E. J.; Patra, P. K.; Tans, P. P.; Wofsy, S. C.

    2010-12-01

    Nitrous oxide (N2O) plays major role in the earth’s climate system through global warming and stratospheric ozone depletion. Recent observations from the HIPPO (Hiaper Pole to Pole Observations) campaign suggest enhanced N2O concentrations in lower and middle troposphere over tropical latitudes. However, the Atmospheric general circulation model-based Chemistry Transport model (ACTM) failed to simulate such features as in the measured N2O. We confirmed no systematic differences in ACTM and HIPPO latitudinal gradients exist for other long-lived species in the troposphere, e.g., sulfur hexafluoride (SF6), methane (CH4) and carbon dioxide (CO2). Further, we use measurements of all species from discrete samples collected at Earth's surface from NOAA/ESRL's global cooperative air sampling network to identify potential deficiencies in N2O simulations alone, which is unlikely to be arising from model transport error. We find that ACTM simulation is successfully capturing the increase in N2O by ~2 ppb from 30S to 30N, but always overestimate for the latitudes north of 30N. The latitudinal distributions of N2O emissions from all-anthropogenic, natural soil and ocean show the largest anthropogenic emission at 45-60N, which is based on the emission database developed in the 1990s. A net decrease in N2O emission in the mid-/high latitude region might have occurred in the past couple of years or earlier emission inventories overestimated the northern high latitude N2O emission.

  20. Variation of cosmic rays and solar wind properties with respect to the heliospheric current sheet. II - Rigidity dependence of the latitudinal gradient of cosmic rays at 1 AU

    NASA Technical Reports Server (NTRS)

    Newkirk, G., Jr.; Asbridge, J.; Lockwood, J. A.; Garcia-Munoz, M.; Simpson, J. A.

    1986-01-01

    The role which empirical determinations of the latitudinal variation of cosmic rays with respect to the current sheet may have in illuminating the importance of the cross-field drift of particles in the large-scale heliospheric magnetic field is discussed. Using K coronameter observations and measured solar wind speeds, the latitudinal gradients have been determined with respect to the current sheet for cosmic rays in four rigidity ranges. Gradients vary between approximately -2 and -50 pct/AU. The rigidity dependence of the decrease of cosmic ray flux with distance from the current sheet lies between the -0.72 to -0.86 power of the rigidity, with the exact dependence being determined by the definition used for the median rigidity of each monitor.

  1. Latitudinal species diversity gradient of marine zooplankton for the last three million years

    USGS Publications Warehouse

    Yasuhara, Moriaki; Hunt, Gene; Dowsett, Harry J.; Robinson, Marci M.; Stoll, Danielle K.

    2012-01-01

    High tropical and low polar biodiversity is one of the most fundamental patterns characterising marine ecosystems, and the influence of temperature on such marine latitudinal diversity gradients is increasingly well documented. However, the temporal stability of quantitative relationships among diversity, latitude and temperature is largely unknown. Herein we document marine zooplankton species diversity patterns at four time slices [modern, Last Glacial Maximum (18 000 years ago), last interglacial (120 000 years ago), and Pliocene (~3.3–3.0 million years ago)] and show that, although the diversity-latitude relationship has been dynamic, diversity-temperature relationships are remarkably constant over the past three million years. These results suggest that species diversity is rapidly reorganised as species' ranges respond to temperature change on ecological time scales, and that the ecological impact of future human-induced temperature change may be partly predictable from fossil and paleoclimatological records.

  2. Speciation gradients and the distribution of biodiversity.

    PubMed

    Schluter, Dolph; Pennell, Matthew W

    2017-05-31

    Global patterns of biodiversity are influenced by spatial and environmental variations in the rate at which new species form. We relate variations in speciation rates to six key patterns of biodiversity worldwide, including the species-area relationship, latitudinal gradients in species and genetic diversity, and between-habitat differences in species richness. Although they sometimes mirror biodiversity patterns, recent rates of speciation, at the tip of the tree of life, are often highest where species richness is low. Speciation gradients therefore shape, but are also shaped by, biodiversity gradients and are often more useful for predicting future patterns of biodiversity than for interpreting the past.

  3. The covariance between genetic and environmental influences across ecological gradients: reassessing the evolutionary significance of countergradient and cogradient variation.

    PubMed

    Conover, David O; Duffy, Tara A; Hice, Lyndie A

    2009-06-01

    Patterns of phenotypic change across environmental gradients (e.g., latitude, altitude) have long captivated the interest of evolutionary ecologists. The pattern and magnitude of phenotypic change is determined by the covariance between genetic and environmental influences across a gradient. Cogradient variation (CoGV) occurs when covariance is positive: that is, genetic and environmental influences on phenotypic expression are aligned and their joint influence accentuates the change in mean trait value across the gradient. Conversely, countergradient variation (CnGV) occurs when covariance is negative: that is, genetic and environmental influences on phenotypes oppose one another, thereby diminishing the change in mean trait expression across the gradient. CnGV has so far been found in at least 60 species, with most examples coming from fishes, amphibians, and insects across latitudinal or altitudinal gradients. Traits that display CnGV most often involve metabolic compensation, that is, the elevation of various physiological rates processes (development, growth, feeding, metabolism, activity) to counteract the dampening effect of reduced temperature, growing season length, or food supply. Far fewer examples of CoGV have been identified (11 species), and these most often involve morphological characters. Increased knowledge of spatial covariance patterns has furthered our understanding of Bergmann size clines, phenotypic plasticity, species range limits, tradeoffs in juvenile growth rate, and the design of conservation strategies for wild species. Moreover, temporal CnGV explains some cases of an apparent lack of phenotypic response to directional selection and provides a framework for predicting evolutionary responses to climate change.

  4. Genetic and environmental influences on leaf phenology and cold hardiness of native and introduced riparian trees

    USGS Publications Warehouse

    Friedman, J.M.; Roelle, J.E.; Cade, B.S.

    2011-01-01

    To explore the roles of plasticity and genetic variation in the response to spatial and temporal climate variation, we established a common garden consisting of paired collections of native and introduced riparian trees sampled along a latitudinal gradient. The garden in Fort Collins, Colorado (latitude 40.6??N), included 681 native plains cottonwood (Populus deltoides subsp. monilifera) and introduced saltcedar (Tamarix ramosissima, T. chinensis and hybrids) collected from 15 sites at 29.2-47.6??N in the central United States. In the common garden both species showed latitudinal variation in fall, but not spring, leaf phenology, suggesting that the latitudinal gradient in fall phenology observed in the field results at least in part from inherited variation in the critical photoperiod, while the latitudinal gradient in spring phenology observed in the field is largely a plastic response to the temperature gradient. Populations from higher latitudes exhibited earlier bud set and leaf senescence. Cold hardiness varied latitudinally in both fall and spring for both species. For cottonwood, cold hardiness began earlier and ended later in northern than in southern populations. For saltcedar northern populations were hardier throughout the cold season than southern populations. Although cottonwood was hardier than saltcedar in midwinter, the reverse was true in late fall and early spring. The latitudinal variation in fall phenology and cold hardiness of saltcedar appears to have developed as a result of multiple introductions of genetically distinct populations, hybridization and natural selection in the 150 years since introduction. ?? 2011 US Government.

  5. Latitudinal Gradients in Tree Ring Stable Carbon and Oxygen Isotopes Reveal Differential Climate Influences of the North American Monsoon System.

    NASA Astrophysics Data System (ADS)

    Szejner, P.; Wright, W. E.; Babst, F.; Belmecheri, S.; Trouet, V.; Leavitt, S. W.; Ehleringer, J. R.; Monson, R. K.

    2016-12-01

    The arrival of the North American Monsoon System (NAMS) terminates a presummer hyperarid period in the southwestern United States (U.S.), providing summer moisture that is favorable for forest growth. Montane forests in this region rely on winter snowpack to drive much of their growth; the extent to which they use NAMS moisture is uncertain. We addressed this by studying stable carbon and oxygen isotopes in earlywood and latewood from 11 sites along a latitudinal gradient extending from Arizona and New Mexico to Utah. This study provides the first regional perspective on the relative roles of winter versus summer precipitation as an ecophysiological resource. Here we present evidence that Ponderosa pine uses NAMS moisture differentially across this gradient. 13C/12C ratios suggest that photosynthetic water use efficiency during latewood formation is more sensitive to summer precipitation at the northern than at the southern sites. This is likely due to the fact that NAMS moisture provides sufficiently favorable conditions for tree photosynthesis and growth during most years in the southern sites, whereas the northern sites experience larger summer moisture variability, which in some years is limiting growth. Cellulose δ18O and δ13C values revealed that photoassimilates in the southern sites were produced under higher vapor pressure deficit conditions during spring compared to summer, demonstrating a previously underappreciated effect of seasonal differences in atmospheric humidity on tree ring isotope ratios. Our findings suggest that future changes in NAMS will potentially alter productivity and photosynthetic water use dynamics differentially along latitudinal gradients in southwestern U.S. montane forests.

  6. Latitudinal gradients in tree ring stable carbon and oxygen isotopes reveal differential climate influences of the North American Monsoon System

    NASA Astrophysics Data System (ADS)

    Szejner, Paul; Wright, William E.; Babst, Flurin; Belmecheri, Soumaya; Trouet, Valerie; Leavitt, Steven W.; Ehleringer, James R.; Monson, Russell K.

    2016-07-01

    The arrival of the North American Monsoon System (NAMS) terminates a presummer hyperarid period in the southwestern United States (U.S.), providing summer moisture that is favorable for forest growth. Montane forests in this region rely on winter snowpack to drive much of their growth; the extent to which they use NAMS moisture is uncertain. We addressed this by studying stable carbon and oxygen isotopes in earlywood and latewood from 11 sites along a latitudinal gradient extending from Arizona and New Mexico to Utah. This study provides the first regional perspective on the relative roles of winter versus summer precipitation as an ecophysiological resource. Here we present evidence that Ponderosa pine uses NAMS moisture differentially across this gradient. 13C/12C ratios suggest that photosynthetic water use efficiency during latewood formation is more sensitive to summer precipitation at the northern than at the southern sites. This is likely due to the fact that NAMS moisture provides sufficiently favorable conditions for tree photosynthesis and growth during most years in the southern sites, whereas the northern sites experience larger summer moisture variability, which in some years is limiting growth. Cellulose δ18O and δ13C values revealed that photoassimilates in the southern sites were produced under higher vapor pressure deficit conditions during spring compared to summer, demonstrating a previously underappreciated effect of seasonal differences in atmospheric humidity on tree ring isotope ratios. Our findings suggest that future changes in NAMS will potentially alter productivity and photosynthetic water use dynamics differentially along latitudinal gradients in southwestern U.S. montane forests.

  7. Genetic and environmental influences on cold hardiness of native and introduced riparian trees

    Treesearch

    Jonathan M. Friedman; James E. Roelle; Brian S. Cade

    2012-01-01

    To explore latitudinal genetic variation in cold hardiness and leaf phenology, we planted a common garden of paired collections of native and introduced riparian trees sampled along a latitudinal gradient. The garden in Fort Collins, Colorado (latitude 40.6°N), included 681 native plains cottonwood (Populus deltoides subsp. monilifera) and introduced saltcedar (Tamarix...

  8. Comparison of genetic algorithms with conjugate gradient methods

    NASA Technical Reports Server (NTRS)

    Bosworth, J. L.; Foo, N. Y.; Zeigler, B. P.

    1972-01-01

    Genetic algorithms for mathematical function optimization are modeled on search strategies employed in natural adaptation. Comparisons of genetic algorithms with conjugate gradient methods, which were made on an IBM 1800 digital computer, show that genetic algorithms display superior performance over gradient methods for functions which are poorly behaved mathematically, for multimodal functions, and for functions obscured by additive random noise. Genetic methods offer performance comparable to gradient methods for many of the standard functions.

  9. Large-scale phytogeographical patterns in East Asia in relation to latitudinal and climatic gradients

    USGS Publications Warehouse

    Qian, H.; Song, J.-S.; Krestov, P.; Guo, Q.; Wu, Z.; Shen, X.; Guo, X.

    2003-01-01

    Aim: This paper aims at determining how different floristic elements (e.g. cosmopolitan, tropical, and temperate) change with latitude and major climate factors, and how latitude affects the floristic relationships between East Asia and the other parts of the world. Location: East Asia from the Arctic to tropical regions, an area crossing over 50?? of latitudes and covering the eastern part of China, Korea, Japan and the eastern part of Russia. Methods: East Asia is divided into forty-five geographical regions. Based on the similarity of their world-wide distributional patterns, a total of 2808 indigenous genera of seed plants found in East Asia were grouped into fourteen geographical elements, belonging to three major categories (cosmopolitan, tropical and temperate). The 50??-long latitudinal gradient of East Asia was divided into five latitudinal zones, each of c. 10??. Phytogeographical relationships of East Asia to latitude and climatic variables were examined based on the forty-five regional floras. Results: Among all geographical and climatic variables considered, latitude showed the strongest relationship to phytogeographical composition. Tropical genera (with pantropical, amphi-Pacific tropical, palaeotropical, tropical Asia-tropical Australia, tropical Asia-tropical Africa and tropical Asia geographical elements combined) accounted for c. 80% of the total genera at latitude 20??N and for c. 0% at latitude 55-60??N. In contrast, temperate genera (including holarctic, eastern Asia-North America, temperate Eurasia, temperate Asia, Mediterranean, western Asia to central Asia, central Asia and eastern Asia geographical elements) accounted for 15.5% in the southernmost latitude and for 80% at 55-60??N, from where northward the percentage tended to level off. The proportion of cosmopolitan genera increased gradually with latitude from 5% at the southernmost latitude to 21% at 55-60??N, where it levelled off northward. In general, the genera present in a more

  10. Equatorial seawater temperatures and latitudinal temperature gradients during the Middle to Late Jurassic: the stable isotope record of brachiopods and oysters from Gebel Maghara, Egypt

    NASA Astrophysics Data System (ADS)

    Alberti, Matthias; Fürsich, Franz T.; Abdelhady, Ahmed A.; Andersen, Nils

    2017-04-01

    The Jurassic climate has traditionally been described as equable, warmer than today, with weak latitudinal temperature gradients, and no polar glaciations. This view changed over the last decades with studies pointing to distinct climate fluctuations and the occasional presence of polar ice caps. Most of these temperature reconstructions are based on stable isotope analyses of fossil shells from Europe. Additional data from other parts of the world is slowly completing the picture. Gebel Maghara in the northern Sinai Peninsula of Egypt exposes a thick Jurassic succession. After a phase of terrestrial sedimentation in the Early Jurassic, marine conditions dominated since the end of the Aalenian. The stable isotope (δ18O, δ13C) composition of brachiopod and oyster shells was used to reconstruct seawater temperatures from the Bajocian to the Kimmeridgian at a palaeolatitude of ca. 3°N. Throughout this time interval, temperatures were comparatively constant aorund an average of 25.7°C. Slightly warmer conditions existed in the Early Bathonian ( 27.0°C), while the Kimmeridgian shows the lowest temperatures ( 24.3°C). The seasonality has been reconstructed with the help of high-resolution sampling of two oyster shells and was found to be very low (<2°C) as can be expected for a tropical palaeolatitude. A comparison of the results from Egypt with literature data enabled the reconstruction of latitudinal temperature gradients. During the Middle Jurassic, this gradient was much steeper than previously expected and comparable to today. During the Kimmeridgian, temperatures in Europe were generally warmer leading to weaker latitudinal gradients. Based on currently used estimates for the δ18O value of seawater during the Jurassic, reconstructed water temperatures for localities above the thermocline in Egypt and Europe were mostly lower than Recent sea-surface temperatures. These results improve our understanding of the Jurassic climate and its influence on marine

  11. Anomalous cosmic ray oxygen gradients throughout the heliosphere

    NASA Technical Reports Server (NTRS)

    Cummings, A. C.; Mewaldt, R. A.; Blake, J. B.; Cummings, J. R.; Franz, M.; Hovestadt, D.; Klecker, B.; Mason, G. M.; Mazur, J. E.; Stone, E. C.

    1995-01-01

    We have used data from the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), Ulysses, Voyager 1, Voyager 2, and Pioneer 10 spacecraft to determine the radial and latitudinal gradients of anomalous cosmic ray oxygen at 10 MeV/nuc during the last half of 1993. These five spacecraft cover radial distances from 1 AU (SAMPEX) to 58 AU (P10) and latitudes to 41 deg S (Ulysses) and 32 deg N (V1). We find that the radial gradient is a decreasing function of radial distance, approximately r(exp -n), with n = 1.7 +/- 0.7. The large-scale radial gradient between the inner and outer heliosphere is much smaller than it was during the last solar minimum period in approximately 1987. The latitudinal gradient is small and positive, 1.3 +/- 0.4 %/deg, as opposed to the large and negative latitudinal gradients found during 1987, but similar to the small positive latitudinal gradient measured during 1976 for anomalous cosmic ray helium. These observations confirm that effects of curvature and gradient drift in the large scale magnetic field of the Sun are important for establishing the three-dimensional intensity distributions of these particles in the heliosphere during periods of solar minimum conditions.

  12. Diversity and distribution of freshwater testate amoebae (protozoa) along latitudinal and trophic gradients in China.

    PubMed

    Ju, Lihua; Yang, Jun; Liu, Lemian; Wilkinson, David M

    2014-11-01

    Freshwater microbial diversity is subject to multiple stressors in the Anthropocene epoch. However, the effects of climate changes and human activities on freshwater protozoa remain poorly understood. In this study, the diversity and distribution of testate amoebae from the surface sediments were investigated in 51 Chinese lakes and reservoirs along two gradients, latitude and trophic status. A total of 169 taxa belonging to 24 genera were identified, and the most diverse and dominant genera were Difflugia (78 taxa), Centropyxis (26 taxa) and Arcella (12 taxa). Our analysis revealed that biomass of testate amoebae decreased significantly along the latitudinal gradient, while Shannon-Wiener indices and species richness presented an opposite trend (P < 0.05). The relationship of diversity and latitude is, we suspect, an artifact of the altitudinal distribution of our sites. Furthermore, biomass-based Shannon-Wiener index and species richness of testate amoebae were significantly unimodally related to trophic status (P < 0.05). This is the first large-scale study showing the effects of latitude and trophic status on diversity and distribution of testate amoebae in China. Therefore, our results provide valuable baseline data on testate amoebae and contribute to lake management and our understanding of the large-scale global patterns in microorganism diversity.

  13. Asymmetric changes of growth and reproductive investment herald altitudinal and latitudinal range shifts of two woody species.

    PubMed

    Matías, Luis; Jump, Alistair S

    2015-02-01

    Ongoing changes in global climate are altering ecological conditions for many species. The consequences of such changes are typically most evident at the edge of the geographical distribution of a species, where range expansions or contractions may occur. Current demographical status at geographical range limits can help us to predict population trends and their implications for the future distribution of the species. Thus, understanding the comparability of demographical patterns occurring along both altitudinal and latitudinal gradients would be highly informative. In this study, we analyse the differences in the demography of two woody species through altitudinal gradients at their southernmost distribution limit and the consistency of demographical patterns at the treeline across a latitudinal gradient covering the complete distribution range. We focus on Pinus sylvestris and Juniperus communis, assessing their demographical structure (density, age and mortality rate), growth, reproduction investment and damage from herbivory on 53 populations covering the upper, central and lower altitudes as well as the treeline at central latitude and northernmost and southernmost latitudinal distribution limits. For both species, populations at the lowermost altitude presented older age structure, higher mortality, decreased growth and lower reproduction when compared to the upper limit, indicating higher fitness at the treeline. This trend at the treeline was generally maintained through the latitudinal gradient, but with a decreased growth at the northern edge for both species and lower reproduction for P. sylvestris. However, altitudinal and latitudinal transects are not directly comparable as factors other than climate, including herbivore pressure or human management, must be taken into account if we are to understand how to infer latitudinal processes from altitudinal data. © 2014 John Wiley & Sons Ltd.

  14. BVOC emissions from English oak (Quercus robur) and European beech (Fagus sylvatica) along a latitudinal gradient

    NASA Astrophysics Data System (ADS)

    van Meeningen, Ylva; Schurgers, Guy; Rinnan, Riikka; Holst, Thomas

    2016-11-01

    intensities and the potential stability in relative compound contribution across a latitudinal gradient.

  15. Reproductive output of a non-zooxanthellate temperate coral is unaffected by temperature along an extended latitudinal gradient.

    PubMed

    Airi, Valentina; Prantoni, Selena; Calegari, Marco; Lisini Baldi, Veronica; Gizzi, Francesca; Marchini, Chiara; Levy, Oren; Falini, Giuseppe; Dubinsky, Zvy; Goffredo, Stefano

    2017-01-01

    Global environmental change, in marine ecosystems, is associated with concurrent shifts in water temperature, circulation, stratification, and nutrient input, with potentially wide-ranging biological effects. Variations in seawater temperature might alter physiological functioning, reproductive efficiency, and demographic traits of marine organisms, leading to shifts in population size and abundance. Differences in temperature tolerances between organisms can identify individual and ecological characteristics, which make corals able to persist and adapt in a climate change context. Here we investigated the possible effect of temperature on the reproductive output of the solitary non-zooxanthellate temperate coral Leptopsammia pruvoti, along an 8° latitudinal gradient. Samples have been collected in six populations along the gradient and each polyp was examined using histological and cyto-histometric analyses. We coupled our results with previous studies on the growth, demography, and calcification of L. pruvoti along the same temperature gradient, and compared them with those of another sympatric zooxanthellate coral Balanophyllia europaea to understand which trophic strategy makes the coral more tolerant to increasing temperature. The non-zooxanthellate species seemed to be quite tolerant to temperature increases, probably due to the lack of the symbiosis with zooxanthellae. To our knowledge, this is the first field investigation of the relationship between reproductive output and temperature increase of a temperate asymbiotic coral, providing novel insights into the poorly studied non-zooxanthellate scleractinians.

  16. Latitudinal concordance between biogeographic regionalization, community structure, and richness patterns: a study on the reptiles of China

    NASA Astrophysics Data System (ADS)

    Chen, Youhua; Srivastava, Diane S.

    2015-02-01

    Latitudinal patterns in species richness may be affected by both continuous variations in macroecological factors as well as discrete change between biogeographic regions. We examined whether latitudinal reptilian richness and community structure in China were best explained by three macroecological patterns (mid-domain effects, Rapoport's rule effects, or environmental correlates) within or across the ranges of biogeographic realms. The results showed that (1) there was a weak mid-domain effect within the Oriental Realm. However, the mid-domain effect was detected neither at the overall regional scale nor in the Palaearctic Realm. (2) Rapoport's rule was only weakly supported for reptilian fauna in China at lower latitudinal areas. (3) Environmental variables were more strongly correlated with species' latitudinal community structure and richness patterns at the scale of biogeographic realms. Based on the faunal similarity of reptilian community across latitudinal bands, we proposed a latitudinal delineation scheme at 34° N for dividing East Asia into Oriental and Palaearctic biogeographic realms. At last, at the functional group level, we also evaluated the relevant ecological patterns for lizard and snake species across different latitudinal bins, showing that the distributions of lizards presented strong mid-domain effects at the latitudinal ranges within the Oriental Realm and over the whole range but did not support Rapoport's rule. In comparison, snake species supported Rapoport's rule at low latitudinal zones but did not present any remarkable mid-domain effects at any spatial extents. In conclusion, biogeographic realms are an appropriate scale for studying macroecological patterns. Reptilian latitudinal richness patterns of China were explained by a combination of environmental factors and geometric constraints, while the latitudinal community structure patterns were greatly affected by environmental gradients. Functional guilds present differentiated

  17. Intra-Specific Latitudinal Clines in Leaf Carbon, Nitrogen, and Phosphorus and their Underlying Abiotic Correlates in Ruellia Nudiflora.

    PubMed

    Abdala-Roberts, Luis; Covelo, Felisa; Parra-Tabla, Víctor; Terán, Jorge C Berny Mier Y; Mooney, Kailen A; Moreira, Xoaquín

    2018-01-12

    While plant intra-specific variation in the stoichiometry of nutrients and carbon is well documented, clines for such traits have been less studied, despite their potential to reveal the mechanisms underlying such variation. Here we analyze latitudinal variation in the concentration of leaf nitrogen (N), phosphorus (P), carbon (C) and their ratios across 30 populations of the perennial herb Ruellia nudiflora. In addition, we further determined whether climatic and soil variables underlie any such latitudinal clines in leaf traits. The sampled transect spanned 5° latitude (ca. 900 km) and exhibited a four-fold precipitation gradient and 2 °C variation in mean annual temperature. We found that leaf P concentration increased with precipitation towards lower latitudes, whereas N and C did not exhibit latitudinal clines. In addition, N:P and C:P decreased towards lower latitudes and latitudinal variation in the former was weakly associated with soil conditions (clay content and cation exchange capacity); C:N did not exhibit a latitudinal gradient. Overall, these results emphasize the importance of addressing and disentangling the simultaneous effects of abiotic factors associated with intra-specific clines in plant stoichiometric traits, and highlight the previously underappreciated influence of abiotic factors on plant nutrients operating under sharp abiotic gradients over smaller spatial scales.

  18. Mammalian Biogeography and the Latitudinal Climatic Gradient in Western North America During the Paleocene Evolutionary Radiation of Mammals (Invited)

    NASA Astrophysics Data System (ADS)

    Fox, D. L.; Rose, P.

    2010-12-01

    We use the middle Paleocene (ca. 63-58) mammalian fossil record of western North America to examine the latitudinal gradients in both species richness and body size of mammals during their evolutionary radiation following the Cretaceous-Paleogene mass extinction. Decreasing species richness with latitude is a biogeographic pattern common to most clades today, including mammals, and is linked to climatic gradients; an inverse relationship between body size and environmental temperature (Bergmann’s rule) is well-known both within and among species of living endothermic vertebrates, including diverse clades of mammals. Despite the frequency among mammals of these patterns today, their long-term histories in the fossil record is not well documented. We compiled mammalian taxonomic occurrence data from published literature, online museum collection databases, and the Paleobiology Database for roughly 160 Torrejonian (To, ca. 63-60 Ma) and Tiffanian (Ti, ca. 60-58 Ma) North American Land Mammal Age fossil localities in western North America from Texas to Alberta. These localities were binned into nine geographic regions based on paleolatitude, and the centroids of the regions span ca. 28° of latitude. For the faunas from these regions, we compiled body size data from the literature for 170 Paleocene (Torrejonian and Tiffanian) mammal species, using lower first molar area (m1 LxW) as a proxy for body mass. The phosphate oxygen isotope composition of teeth from species of a single clade of herbivorous mammals (Phenacodontidae) indicates that mid-Paleocene latitudinal climate gradients were broadly similar to modern gradients in the region, so we treat paleolatitude as a proxy for temperature. Slopes of separate least squares linear regressions of rarefied To and Ti species richness on paleolatitude are not significantly different from zero, and the regressions explain only a small fraction of the variances in richness. For all species, m1 area has a statistically

  19. A latitudinal study of oxygen isotopes within horsehair

    NASA Astrophysics Data System (ADS)

    Thompson, E.; Bronk Ramsey, C.; McConnell, J. R.

    2016-12-01

    This study aims to explore the hypothesis that 'if oxygen isotope ratios deplete with decreasing temperature then a study of oxygen isotope ratios within horsehair from Oxfordshire to Iceland will show a latitudinal depletion gradient'. By looking at oxygen isotope values at different geographical positions, we can track the relationship with latitude and with different regional climate features. This will provide a firmer understanding of how to compare climate records from different locations. Additionally, a comparison of the horse breeds from this study to those analysed within previous studies will create an even better understanding of the intra-species variation within the δ18O values of horsehair. A total of 24 horses were sampled on the 7th March from Thordale Stud in Shetland, the Icelandic Food And Veterinary Authority in Iceland, the Exmoor Pony Centre in Exmoor and the Pigeon House Equestrian Centre in Oxfordshire. By starting the sampling process from the most recent growth at the follicle, the sampling date becomes a chronological marker, temporally fixing the first sample within a sequential set of data points extending for one year or longer, depending on the length of each individual hair. The samples were analysed for oxygen isotope values using an IRMS coupled within a Sercon HTEA. Preliminary results show a latitudinal gradient is evident on comparison between the locations, consistent with the findings of Darling and Talbot's study of fresh water isotopes in the British Isles (2003). These results support the hypothesis, showing that a study of oxygen isotope ratios within horse hair from Oxfordshire to Iceland showing a latitudinal depletion gradient, consistent with a depletion of oxygen isotope ratios due to decreasing temperatures. Darling, W. and Talbot, J. (2003). The O and H stable isotope composition of freshwaters in the British Isles. 1. Rainfall. Hydrol. Earth System Science, 7(2), pp.163-181.

  20. Coupling of soil prokaryotic diversity and plant diversity across latitudinal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Tao; Zheng, Yuan-Ming; Hu, Hang-Wei; Li, Jing; Zhang, Li-Mei; Chen, Bao-Dong; Chen, Wei-Ping; He, Ji-Zheng

    2016-01-01

    The belowground soil prokaryotic community plays a cardinal role in sustaining the stability and functions of forest ecosystems. Yet, the nature of how soil prokaryotic diversity co-varies with aboveground plant diversity along a latitudinal gradient remains elusive. By establishing three hundred 400-m2 quadrats from tropical rainforest to boreal forest in a large-scale parallel study on both belowground soil prokaryote and aboveground tree and herb communities, we found that soil prokaryotic diversity couples with the diversity of herbs rather than trees. The diversity of prokaryotes and herbs responds similarly to environmental factors along the latitudinal gradient. These findings revealed that herbs provide a good predictor of belowground biodiversity in forest ecosystems, and provide new perspective on the aboveground and belowground interactions in forest ecosystems.

  1. Coupling of soil prokaryotic diversity and plant diversity across latitudinal forest ecosystems.

    PubMed

    Wang, Jun-Tao; Zheng, Yuan-Ming; Hu, Hang-Wei; Li, Jing; Zhang, Li-Mei; Chen, Bao-Dong; Chen, Wei-Ping; He, Ji-Zheng

    2016-01-19

    The belowground soil prokaryotic community plays a cardinal role in sustaining the stability and functions of forest ecosystems. Yet, the nature of how soil prokaryotic diversity co-varies with aboveground plant diversity along a latitudinal gradient remains elusive. By establishing three hundred 400-m(2) quadrats from tropical rainforest to boreal forest in a large-scale parallel study on both belowground soil prokaryote and aboveground tree and herb communities, we found that soil prokaryotic diversity couples with the diversity of herbs rather than trees. The diversity of prokaryotes and herbs responds similarly to environmental factors along the latitudinal gradient. These findings revealed that herbs provide a good predictor of belowground biodiversity in forest ecosystems, and provide new perspective on the aboveground and belowground interactions in forest ecosystems.

  2. Asymmetric responses to simulated global warming by populations of Colobanthus quitensis along a latitudinal gradient.

    PubMed

    Acuña-Rodríguez, Ian S; Torres-Díaz, Cristian; Hereme, Rasme; Molina-Montenegro, Marco A

    2017-01-01

    The increase in temperature as consequence of the recent global warming has been reported to generate new ice-free areas in the Antarctic continent, facilitating the colonization and spread of plant populations. Consequently, Antarctic vascular plants have been observed extending their southern distribution. But as the environmental conditions toward southern localities become progressively more departed from the species' physiological optimum, the ecophysiological responses and survival to the expected global warming could be reduced. However, if processes of local adaptation are the main cause of the observed southern expansion, those populations could appear constrained to respond positively to the expected global warming. Using individuals from the southern tip of South America, the South Shetland Islands and the Antarctic Peninsula, we assess with a long term experiment (three years) under controlled conditions if the responsiveness of Colobanthus quitensis populations to the expected global warming, is related with their different foliar traits and photoprotective mechanisms along the latitudinal gradient. In addition, we tested if the release of the stress condition by the global warming in these cold environments increases the ecophysiological performance. For this, we describe the latitudinal pattern of net photosynthetic capacity, biomass accumulation, and number of flowers under current and future temperatures respective to each site of origin after three growing seasons. Overall, was found a clinal trend was found in the foliar traits and photoprotective mechanisms in the evaluated C. quitensis populations. On the other hand, an asymmetric response to warming was observed for southern populations in all ecophysiological traits evaluated, suggesting that low temperature is limiting the performance of C. quitensis populations. Our results suggest that under a global warming scenario, plant populations that inhabiting cold zones at high latitudes could

  3. Asymmetric responses to simulated global warming by populations of Colobanthus quitensis along a latitudinal gradient

    PubMed Central

    Acuña-Rodríguez, Ian S.; Torres-Díaz, Cristian; Hereme, Rasme

    2017-01-01

    The increase in temperature as consequence of the recent global warming has been reported to generate new ice-free areas in the Antarctic continent, facilitating the colonization and spread of plant populations. Consequently, Antarctic vascular plants have been observed extending their southern distribution. But as the environmental conditions toward southern localities become progressively more departed from the species’ physiological optimum, the ecophysiological responses and survival to the expected global warming could be reduced. However, if processes of local adaptation are the main cause of the observed southern expansion, those populations could appear constrained to respond positively to the expected global warming. Using individuals from the southern tip of South America, the South Shetland Islands and the Antarctic Peninsula, we assess with a long term experiment (three years) under controlled conditions if the responsiveness of Colobanthus quitensis populations to the expected global warming, is related with their different foliar traits and photoprotective mechanisms along the latitudinal gradient. In addition, we tested if the release of the stress condition by the global warming in these cold environments increases the ecophysiological performance. For this, we describe the latitudinal pattern of net photosynthetic capacity, biomass accumulation, and number of flowers under current and future temperatures respective to each site of origin after three growing seasons. Overall, was found a clinal trend was found in the foliar traits and photoprotective mechanisms in the evaluated C. quitensis populations. On the other hand, an asymmetric response to warming was observed for southern populations in all ecophysiological traits evaluated, suggesting that low temperature is limiting the performance of C. quitensis populations. Our results suggest that under a global warming scenario, plant populations that inhabiting cold zones at high latitudes could

  4. Latitudinal variation in sensitivity of flower bud formation to high temperature in Japanese Taraxacum officinale.

    PubMed

    Yoshie, Fumio

    2014-05-01

    Control of flowering time plays a key role in the successful range expansion of plants. Taraxacum officinale has expanded throughout Japan during the 110 years after it was introduced into a cool temperate region. The present study tested a hypothesis that there is a genetic difference in the bud formation time in relation to temperature along latitudinal gradient of T. officinale populations. In Experiment 1, plants from three populations at different latitudes (26, 36, and 43°N) were grown at three temperatures. Time to flower bud appearance did not significantly differ among the three populations when plants were grown at 14 °C, whereas it increased with increasing latitude when grown at 19 and 24 °C. Rosette diameter was not different among the populations, indicating that the variation in bud formation time reflected a difference in genetic control rather than size variation. The latitudinal variation in bud appearance time was confirmed by Experiment 2 in which plants from 17 population were used. In Experiment 3, the size of plants that exhibited late-flowering was studied to test a hypothesis that the variation in flowering time reflects dormancy of vegetative growth, but the late-flowering plants were found to continue growth, indicating that vegetative dormancy was not the cause of the variation. The results clearly indicate that the degree of suppression of flower bud formation at high temperature decreases with latitude from north to south, which is under genetic control.

  5. The response of forest plant regeneration to temperature variation along a latitudinal gradient

    PubMed Central

    De Frenne, Pieter; Graae, Bente J.; Brunet, Jörg; Shevtsova, Anna; De Schrijver, An; Chabrerie, Olivier; Cousins, Sara A. O.; Decocq, Guillaume; Diekmann, Martin; Hermy, Martin; Heinken, Thilo; Kolb, Annette; Nilsson, Christer; Stanton, Sharon; Verheyen, Kris

    2012-01-01

    Background and Aims The response of forest herb regeneration from seed to temperature variations across latitudes was experimentally assessed in order to forecast the likely response of understorey community dynamics to climate warming. Methods Seeds of two characteristic forest plants (Anemone nemorosa and Milium effusum) were collected in natural populations along a latitudinal gradient from northern France to northern Sweden and exposed to three temperature regimes in growth chambers (first experiment). To test the importance of local adaptation, reciprocal transplants were also made of adult individuals that originated from the same populations in three common gardens located in southern, central and northern sites along the same gradient, and the resulting seeds were germinated (second experiment). Seedling establishment was quantified by measuring the timing and percentage of seedling emergence, and seedling biomass in both experiments. Key Results Spring warming increased emergence rates and seedling growth in the early-flowering forb A. nemorosa. Seedlings of the summer-flowering grass M. effusum originating from northern populations responded more strongly in terms of biomass growth to temperature than southern populations. The above-ground biomass of the seedlings of both species decreased with increasing latitude of origin, irrespective of whether seeds were collected from natural populations or from the common gardens. The emergence percentage decreased with increasing home-away distance in seeds from the transplant experiment, suggesting that the maternal plants were locally adapted. Conclusions Decreasing seedling emergence and growth were found from the centre to the northern edge of the distribution range for both species. Stronger responses to temperature variation in seedling growth of the grass M. effusum in the north may offer a way to cope with environmental change. The results further suggest that climate warming might differentially affect

  6. Differences in protein expression among five species of stream stonefly (Plecoptera) along a latitudinal gradient in Japan.

    PubMed

    Gamboa, Maribet; Tsuchiya, Maria Claret; Matsumoto, Suguru; Iwata, Hisato; Watanabe, Kozo

    2017-11-01

    Proteome variation among natural populations along an environmental gradient may provide insights into how the biological functions of species are related to their local adaptation. We investigated protein expression in five stream stonefly species from four geographic regions along a latitudinal gradient in Japan with varying climatic conditions. The extracted proteins were separated by two-dimensional gel electrophoresis and identified by matrix-assisted laser desorption/ionization of time-of-flight (MALDI TOF/TOF), yielding 446 proteins. Low interspecies variation in the proteome profiles was observed among five species within geographical regions, presumably due to the co-occurring species sharing the environments. However, large spatial variations in protein expression were found among four geographic regions, suggesting strong regulation of protein expression in heterogeneous environments, where the spatial variations were positively correlated with water temperature. We identified 21 unique proteins expressed specifically in a geographical region and six common proteins expressed throughout all regions. In warmer regions, metabolic proteins were upregulated, whereas proteins related to cold stress, the photoperiod, and mating were downregulated. Oxygen-related and energy-production proteins were upregulated in colder regions with higher altitudes. Thus, our proteomic approach is useful for identifying and understanding important biological functions related to local adaptations by populations of stoneflies. © 2017 Wiley Periodicals, Inc.

  7. Peatland Organic Matter Chemistry Trends Over a Global Latitudinal Gradient

    NASA Astrophysics Data System (ADS)

    Verbeke, B. A.; Hodgkins, S. B.; Carson, M. A.; Lamit, L. J.; Lilleskov, E.; Chanton, J.

    2017-12-01

    Peatlands contain a significant amount of the global soil carbon, and the climate feedback of carbon cycling within these peatland systems is still relatively unknown. Organic matter composition of peatlands plays a major role in determining carbon storage, and while high latitude peatlands seem to be the most sensitive to climate change, a global picture of peat organic matter chemistry is required to improve predictions and models of greenhouse gas emissions fueled by peatland decomposition. The objective of this research is to test the hypothesis that carbohydrate content of peatlands near the equator will be lower than high latitude peatlands, while aromatic content will be higher. As a part of the Global Peatland Microbiome Project (GPMP), around 2000 samples of peat from 10 to 70 cm across a latitudinal gradient of 79 N to 53 S were measured with Fourier transform infrared spectroscopy (FTIR) to examine the organic matter functional groups of peat. Carbohydrate and aromatic content, as determined by FTIR, are useful proxies of decomposition potential and recalcitrance, respectively. We found a highly significant relationship between carbohydrate and aromatic content, latitude, and depth. Carbohydrate content of high latitude sites were significantly greater than at sites near the equator, in contrast to aromatic content which showed the opposite trend. It is also clear that carbohydrate content decreases with depth while aromatic content increases with depth. Higher carbohydrate content at higher latitudes indicates a greater potential for lability and resultant mineralization to form the greenhouse gases, carbon dioxide and methane, whereas the composition of low latitude peatlands is consistent with their apparent stability. We speculate that the combination of low carbohydrates and high aromatics at warmer locations near the equator could foreshadow the organic matter composition of high latitude peat transitioning to a more recalcitrant form with a

  8. Diversity of planktonic fish larvae along a latitudinal gradient in the Eastern Atlantic Ocean estimated through DNA barcodes

    PubMed Central

    Morote, Elvira; Kochzius, Marc; Garcia-Vazquez, Eva

    2016-01-01

    Mid-trophic pelagic fish are essential components of marine ecosystems because they represent the link between plankton and higher predators. Moreover, they are the basis of the most important fisheries resources; for example, in African waters. In this study, we have sampled pelagic fish larvae in the Eastern Atlantic Ocean along a latitudinal gradient between 37°N and 2°S. We have employed Bongo nets for plankton sampling and sorted visually fish and fish larvae. Using the cytochrome oxidase I gene (COI) as a DNA barcode, we have identified 44 OTUs down to species level that correspond to 14 families, with Myctophidae being the most abundant. A few species were cosmopolitan and others latitude-specific, as was expected. The latitudinal pattern of diversity did not exhibit a temperate-tropical cline; instead, it was likely correlated with environmental conditions with a decline in low-oxygen zones. Importantly, gaps and inconsistencies in reference DNA databases impeded accurate identification to the species level of 49% of the individuals. Fish sampled from tropical latitudes and some orders, such as Perciformes, Myctophiformes and Stomiiformes, were largely unidentified due to incomplete references. Some larvae were identified based on morphology and COI analysis for comparing time and costs employed from each methodology. These results suggest the need of reinforcing DNA barcoding reference datasets of Atlantic bathypelagic tropical fish that, as main prey of top predators, are crucial for ecosystem-based management of fisheries resources. PMID:27761307

  9. Photosynthetic performance in Sphagnum transplanted along a latitudinal nitrogen deposition gradient.

    PubMed

    Granath, Gustaf; Strengbom, Joachim; Breeuwer, Angela; Heijmans, Monique M P D; Berendse, Frank; Rydin, Håkan

    2009-04-01

    Increased N deposition in Europe has affected mire ecosystems. However, knowledge on the physiological responses is poor. We measured photosynthetic responses to increasing N deposition in two peatmoss species (Sphagnum balticum and Sphagnum fuscum) from a 3-year, north-south transplant experiment in northern Europe, covering a latitudinal N deposition gradient ranging from 0.28 g N m(-2) year(-1) in the north, to 1.49 g N m(-2) year(-1) in the south. The maximum photosynthetic rate (NP(max)) increased southwards, and was mainly explained by tissue N concentration, secondly by allocation of N to the photosynthesis, and to a lesser degree by modified photosystem II activity (variable fluorescence/maximum fluorescence yield). Although climatic factors may have contributed, these results were most likely attributable to an increase in N deposition southwards. For S. fuscum, photosynthetic rate continued to increase up to a deposition level of 1.49 g N m(-2) year(-1), but for S. balticum it seemed to level out at 1.14 g N m(-2) year(-1). The results for S. balticum suggested that transplants from different origin (with low or intermediate N deposition) respond differently to high N deposition. This indicates that Sphagnum species may be able to adapt or physiologically adjust to high N deposition. Our results also suggest that S. balticum might be more sensitive to N deposition than S. fuscum. Surprisingly, NP(max) was not (S. balticum), or only weakly (S. fuscum) correlated with biomass production, indicating that production is to a great extent is governed by factors other than the photosynthetic capacity.

  10. Latitudinal variation in cold hardiness in introduced Tamarix and native Populus

    USGS Publications Warehouse

    Friedman, Jonathan M.; Roelle, James E.; Gaskin, John F.; Pepper, Alan E.; Manhart, James R.

    2008-01-01

    To investigate the evolution of clinal variation in an invasive plant, we compared cold hardiness in the introduced saltcedar (Tamarix ramosissima, Tamarix chinensis, and hybrids) and the native plains cottonwood (Populus deltoidessubsp. monilifera). In a shadehouse in Colorado (41°N), we grew plants collected along a latitudinal gradient in the central United States (29–48°N). On 17 occasions between September 2005 and June 2006, we determined killing temperatures using freeze-induced electrolyte leakage and direct observation. In midwinter, cottonwood survived cooling to −70°C, while saltcedar was killed at −33 to −47°C. Frost sensitivity, therefore, may limit northward expansion of saltcedar in North America. Both species demonstrated inherited latitudinal variation in cold hardiness. For example, from September through January killing temperatures for saltcedar from 29.18°N were 5–21°C higher than those for saltcedar from 47.60°N, and on September 26 and October 11, killing temperatures for cottonwood from 33.06°N were >43°C higher than those for cottonwood from 47.60°N. Analysis of nine microsatellite loci showed that southern saltcedars are more closely related to T. chinensis while northern plants are more closely related to T. ramosissima. Hybridization may have introduced the genetic variability necessary for rapid evolution of the cline in saltcedar cold hardiness.

  11. Latitudinal variation of the solar limb-darkening function

    NASA Astrophysics Data System (ADS)

    Kroll, Ronald J.

    1994-06-01

    In an effort to monitor solar limb-darkening variability, the continuum radiation intensity at 550 nm over the outermost 32 arcseconds of the limb is measured at various solar latitudes. Using the Finite Fourier Transform Definition, the edge location of the Sun is determined for a series of scan amplitudes at each of the observed positions. The differential radius is the difference between edge locations for a fixed pair of scan amplitudes, and is a quantity which characterizes the slope of the solar limb-darkening function. Utilizing the differential radius, such observations offer the possibility of revealing a latitudinal variation of the photospheric temperature gradient and could provide clues to the mechanisms and variability of energy transport out of the Sun. These observations began in 1988 with measurements at 24 separate limb positions and include observations since 1990 when 36 positions were observed. The daily differential radius measurements for each position that is free of contamination from solar active regions are weighted according to the corresponding daily variance and averaged to obtain an overall value at each position for the observing season. The results indicate that during the 1991 observing season, there were regions near 20 deg N latitude and 30 deg S latitude on the Sun where the differential radius values were significantly greater than surrounding regions. This suggests that perturbations to the temperature gradient occur in latitudinally localized regions and persist for at least several months. It is shown that this phenomenon could have the same origin as the observed latitudinal variations of surface temperature and could also speak to the question of a lag time between the cycles of irradiation and magnetic variation.

  12. Latitudinal Dependence of the Radial IMF Component: Coronal Imprint

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Smith, E. J.

    1996-01-01

    Measurements by Ulysses have confirmed that there is no significant gradient with respect to heliomagnetic latitude in the radial component, B(sub r,) of the interplanetary magnetic field. In the corona, the plasma, beta is much less than 1, except directly above streamers, so longitudinal and latitudinal gradients in field strength will relax due to the transverse magnetic pressure gradient force as the solar wind carries magnetic flux away from the Sun. This happens quickly enough so that the field is essentially uniform by 5 - 10 solar radius, apparently remaining so as it is carried to beyond 1 AU. Here, we illustrate the coronal relaxation with a qualitative physical argument and by reference to a detailed Magneto HydroDynamics (MHD) simulation.

  13. Susceptibility to a metal under global warming is shaped by thermal adaptation along a latitudinal gradient.

    PubMed

    Dinh Van, Khuong; Janssens, Lizanne; Debecker, Sara; De Jonge, Maarten; Lambret, Philippe; Nilsson-Örtman, Viktor; Bervoets, Lieven; Stoks, Robby

    2013-09-01

    Global warming and contamination represent two major threats to biodiversity that have the potential to interact synergistically. There is the potential for gradual local thermal adaptation and dispersal to higher latitudes to mitigate the susceptibility of organisms to contaminants and global warming at high latitudes. Here, we applied a space-for-time substitution approach to study the thermal dependence of the susceptibility of Ischnura elegans damselfly larvae to zinc in a common garden warming experiment (20 and 24 °C) with replicated populations from three latitudes spanning >1500 km in Europe. We observed a striking latitude-specific effect of temperature on the zinc-induced mortality pattern; local thermal adaptation along the latitudinal gradient made Swedish, but not French, damselfly larvae more susceptible to zinc at 24 °C. Latitude- and temperature-specific differences in zinc susceptibility may be related to the amount of energy available to defend against and repair damage since Swedish larvae showed a much stronger zinc-induced reduction of food intake at 24 °C. The pattern of local thermal adaptation indicates that the predicted temperature increase of 4 °C by 2100 will strongly magnify the impact of a contaminant such as zinc at higher latitudes unless there is thermal evolution and/or migration of lower latitude genotypes. Our results underscore the critical importance of studying the susceptibility to contaminants under realistic warming scenarios taking into account local thermal adaptation across natural temperature gradients. © 2013 John Wiley & Sons Ltd.

  14. Altitudinal variation of demographic life-history traits does not mimic latitudinal variation in natterjack toads (Bufo calamita).

    PubMed

    Oromi, Neus; Sanuy, Delfi; Sinsch, Ulrich

    2012-02-01

    In anuran amphibians, age- and size-related life-history traits vary along latitudinal and altiudinal gradients. In the present study, we tested the hypothesis that altitudinal and latitudinal effects cause similar responses by assessing demographic life-history traits in nine Bufo calamita populations inhabiting elevations from sea level to 2270 m. Skeletochronologically determined age at maturity and longevity increased at elevations exceeding 2000 m, but female potential reproductive lifespan (PRLS) did not increase with altitude, as it did with latitude. Integrating the available evidence, it was found that lifetime fecundity of natterjacks decreased at the upper altitudinal range because PRLS was about the same as in lowland populations but females were smaller. In contrast, small size of northern females was compensated for by increased PRLS which minimised latitudinal variation of lifetime fecundity. Thus, this study provides evidence that altitudinal effects on life-history traits do not mimic latitudinal effects. Life-history trait variation along the altitudinal gradient seems to respond directly to the shortening of the annual activity period. As there is no evidence for increasing mortality in highland populations, reduced lifetime fecundity may be the ultimate reason for the natterjacks' inability to colonise elevations exceeding 2500 m. Copyright © 2011 Elsevier GmbH. All rights reserved.

  15. Can temperature explain the latitudinal gradient of ulcerative colitis? Cohort of Norway

    PubMed Central

    2013-01-01

    Background Incidence and prevalence of ulcerative colitis follow a north–south (latitudinal) gradient and increases northwards at the northern hemisphere or southwards at the southern hemisphere. The disease has increased during the last decades. The temporal trend has been explained by the hygiene hypothesis, but few parallel explanations exist for the spatial variability. Many factors are linked to latitude such as climate. Our purpose was to investigate the association between variables governing the climate and prospectively identified patients. Methods In this study, we used a subset of the population-based Cohort of Norway (n = 80412) where 370 prevalent cases of ulcerative colitis were identified through self-reported medication. The meteorological and climatic variables temperature, precipitation, and altitude were recorded from weather stations of the Norwegian Meteorological Institute. Summer temperature was used to capture environmental temperature. Results Summer temperature was significantly related to the prevalence of ulcerative colitis. For each one-degree increase in temperature the odds for ulcerative colitis decreased with about 9% (95% CI: 3%-15%). None of the other climatic factors were significantly associated to the risk of ulcerative colitis. Contextual variables did not change the association to the prevalence of ulcerative colitis. Conclusions The present results show that the prevalence of ulcerative colitis is associated to summer temperature. Our speculation is that summer temperature works as an instrumental variable for the effect of microbial species richness on the development of ulcerative colitis. Environmental temperature is one of the main forces governing microbial species richness and the microbial composition of the commensal gut flora is known to be an important part in the process leading to ulcerative colitis. PMID:23724802

  16. Analysis of seasonal ozone budget and spring ozone latitudinal gradient variation in the boundary layer of the Asia-Pacific region

    NASA Astrophysics Data System (ADS)

    Hou, Xuewei; Zhu, Bin; Kang, Hanqing; Gao, Jinhui

    2014-09-01

    The ozone (O3) budget in the boundary layer of the Asia-Pacific region (AP) was studied from 2001 to 2007 using the output of Model of Ozone and Related chemical Tracers, version 4 (MOZART-4). The model-simulated O3 data agree well with observed values. O3 budget analysis using the model output confirms that the dominant factor controlling seasonal variation of O3 differs by region. Photochemistry was found to play a critical role over Japan, the Korean Peninsula and Eastern China. Over the northwestern Pacific Ocean, advective flux was found to drive the seasonal variation of O3 concentrations. The large latitudinal gradient in O3 with a maximum of 52 ppbv over the marine boundary layer around 35°N during the spring was mainly due to chemistry; meanwhile, advection was found to weaken the gradient. The contribution of stratospheric O3 was ranked second (20%) to the local contribution (25%) in Japan and the Korean Peninsula near 35°N. The rate of O3 export from China's boundary layer was the highest (approximately 30%) in low latitudes and decreased with increasing latitude, while the contribution of North America and Europe increased with increasing latitude, from 10% in lower latitudes to 24% in higher latitudes.

  17. Exploring physiological plasticity and local thermal adaptation in an intertidal crab along a latitudinal cline.

    PubMed

    Gaitán-Espitia, Juan Diego; Bacigalupe, Leonardo D; Opitz, Tania; Lagos, Nelson A; Osores, Sebastián; Lardies, Marco A

    2017-08-01

    Intertidal organisms have evolved physiological mechanisms that enable them to maintain performance and survive during periods of severe environmental stress with temperatures close to their tolerance limits. The level of these adaptive responses in thermal physiology can vary among populations of broadly distributed species depending on their particular environmental context and genetic backgrounds. Here we examined thermal performances and reaction norms for metabolic rate (MR) and heart rate (HR) of seven populations of the porcelanid crab Petrolisthes violaceus from markedly different thermal environments across the latitudinal gradient of ~3000km. Physiological responses of this intertidal crab under common-garden conditions suggest the absence of local thermal adaptation along the geographic gradient (i.e., lack of latitudinal compensation). Moreover, thermal physiological sensitivities and performances in response to increased temperatures evidenced the existence of some level of: i) metabolic rate control or depression during warm temperature exposures; and ii) homeostasis/canalization (i.e., absence or low levels of plasticity) in physiological traits that may reflect some sort of buffering mechanism in most of the populations. Nevertheless, our results indicate that elevated temperatures can reduce cardiac function but not metabolic rate in high latitude crabs. The lack of congruence between HR and MR supports the idea that energy metabolism in marine invertebrates cannot be inferred from HR and different conclusions regarding geographic differentiation in energy metabolism can be obtained from both physiological traits. Integrating thermal physiology and species range extent can contribute to a better understanding of the likely effects of climate change on natural populations of marine ectotherms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Coastal bacterioplankton community diversity along a latitudinal gradient in Latin America by means of V6 tag pyrosequencing.

    PubMed

    Thompson, Fabiano L; Bruce, Thiago; Gonzalez, Alessandra; Cardoso, Alexander; Clementino, Maysa; Costagliola, Marcela; Hozbor, Constanza; Otero, Ernesto; Piccini, Claudia; Peressutti, Silvia; Schmieder, Robert; Edwards, Robert; Smith, Mathew; Takiyama, Luis Roberto; Vieira, Ricardo; Paranhos, Rodolfo; Artigas, Luis Felipe

    2011-02-01

    The bacterioplankton diversity of coastal waters along a latitudinal gradient between Puerto Rico and Argentina was analyzed using a total of 134,197 high-quality sequences from the V6 hypervariable region of the small-subunit ribosomal RNA gene (16S rRNA) (mean length of 60 nt). Most of the OTUs were identified into Proteobacteria, Bacteriodetes, Cyanobacteria, and Actinobacteria, corresponding to approx. 80% of the total number of sequences. The number of OTUs corresponding to species varied between 937 and 1946 in the seven locations. Proteobacteria appeared at high frequency in the seven locations. An enrichment of Cyanobacteria was observed in Puerto Rico, whereas an enrichment of Bacteroidetes was detected in the Argentinian shelf and Uruguayan coastal lagoons. The highest number of sequences of Actinobacteria and Acidobacteria were obtained in the Amazon estuary mouth. The rarefaction curves and Good coverage estimator for species diversity suggested a significant coverage, with values ranging between 92 and 97% for Good coverage. Conserved taxa corresponded to aprox. 52% of all sequences. This study suggests that human-contaminated environments may influence bacterioplankton diversity.

  19. Thermal tolerance in the Andean toad Rhinella spinulosa (Anura: Bufonidae) at three sites located along a latitudinal gradient in Chile.

    PubMed

    Riquelme, Nicza Alveal; Díaz-Páez, Helen; Ortiz, Juan Carlos

    2016-08-01

    Rhinella spinulosa is one of the anuran species with the greatest presence in Chile. This species mainly inhabits mountain habitats and is distributed latitudinally along the western slope of the Andes Range. These habitats undergo great temperature fluctuations, exerting pressure on the amphibian. To identify the physiological strategies and thermal behavior of this species, we analyzed the temperature variables CTmin, CTmax, TTR, τheat, and τcool in individuals of three sites from a latitudinal gradient (22°S to 37°S). The amphibians were acclimated to 10°C and 20°C and fed ad libitum. The results indicate that the species has a high thermal tolerance range, with a mean of 38.14±1.34°C, a critical thermal maxima of 34.6-41.4°C, and a critical thermal minima of 2.6-0.8°C, classifying the species as eurythermic. Furthermore, there were significant differences in CTmáx and TTR only in the northern site. The differences in thermal time constants between sites are due to the effects of size and body mass. For example, those from the central site had larger size and greater thermal inertia; therefore, they warmed and cooled in a slower manner. The wide thermal limits determined in R. spinulosa confirm that it is a thermo-generalist species, a characteristic that allows the species to survive in adverse microclimatic conditions. The level of plasticity in critical temperatures seems ecologically relevant and supports the acclimatization of thermal limits as an important factor for ectothermic animals to adapt to climate change. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Connecting thermal physiology and latitudinal niche partitioning in marine Synechococcus

    PubMed Central

    Pittera, Justine; Humily, Florian; Thorel, Maxine; Grulois, Daphné; Garczarek, Laurence; Six, Christophe

    2014-01-01

    Marine Synechococcus cyanobacteria constitute a monophyletic group that displays a wide latitudinal distribution, ranging from the equator to the polar fronts. Whether these organisms are all physiologically adapted to stand a large temperature gradient or stenotherms with narrow growth temperature ranges has so far remained unexplored. We submitted a panel of six strains, isolated along a gradient of latitude in the North Atlantic Ocean, to long- and short-term variations of temperature. Upon a downward shift of temperature, the strains showed strikingly distinct resistance, seemingly related to their latitude of isolation, with tropical strains collapsing while northern strains were capable of growing. This behaviour was associated to differential photosynthetic performances. In the tropical strains, the rapid photosystem II inactivation and the decrease of the antioxydant β-carotene relative to chl a suggested a strong induction of oxidative stress. These different responses were related to the thermal preferenda of the strains. The northern strains could grow at 10 °C while the other strains preferred higher temperatures. In addition, we pointed out a correspondence between strain isolation temperature and phylogeny. In particular, clades I and IV laboratory strains were all collected in the coldest waters of the distribution area of marine Synechococus. We, however, show that clade I Synechococcus exhibit different levels of adaptation, which apparently reflect their location on the latitudinal temperature gradient. This study reveals the existence of lineages of marine Synechococcus physiologically specialised in different thermal niches, therefore suggesting the existence of temperature ecotypes within the marine Synechococcus radiation. PMID:24401861

  1. Latitudinal Dependence of the Radial IMF Component - Interplanetary Imprint

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Smith, E. J.; Phillips, J.; Goldstein, B. E.; Nerney, S.

    1996-01-01

    Ulysses measurements have confirmed that there is no significant gradient with respect to heliomagnetic latitude in the radial component, B(sub r,), of the interplanetary magnetic field. There are two processes responsible for this observation. In the corona, the plasma beta is much less than 1, except directly above streamers, so both longitudinal and latitudinal (meridional) gradients in field strength will relax, due to the transverse magnetic pressure gradient force, as the solar wind carries magnetic flux away from the Sun. This happens so quickly that the field is essentially uniform by 5 solar radius. Beyond 10 solar radius, beta is greater than 1 and it is possible for a meridional thermal pressure gradient to redistribute magnetic flux - an effect apparently absent in Ulysses and earlier ICE and Interplanetary Magnetic Physics (IMP) data. We discuss this second effect here, showing that its absence is mainly due to the perpendicular part of the anisotropic thermal pressure gradient in the interplanetary medium being too small to drive significant meridional transport between the Sun and approx. 4 AU. This is done using a linear analytic estimate of meridional transport. The first effect was discussed in an earlier paper.

  2. Elevational gradient in the cyclicity of a forest-defoliating insect

    Treesearch

    Kyle J. Haynes; Andrew M. Liebhold; Derek M. Johnson

    2012-01-01

    Observed changes in the cyclicity of herbivore populations along latitudinal gradients and the hypothesis that shifts in the importance of generalist versus specialist predators explain such gradients has long been a matter of intense interest. In contrast, elevational gradients in population cyclicity are largely unexplored. We quantified the cyclicity of gypsy moth...

  3. Two Birch Species Demonstrate Opposite Latitudinal Patterns in Infestation by Gall-Making Mites in Northern Europe

    PubMed Central

    Skoracka, Anna; Zverev, Vitali; Lewandowski, Mariusz; Zvereva, Elena L.

    2016-01-01

    Latitudinal patterns in herbivory, i.e. variations in plant losses to animals with latitude, are generally explained by temperature gradients. However, earlier studies suggest that geographical variation in abundance and diversity of gall-makers may be driven by precipitation rather than by temperature. To test the above hypothesis, we examined communities of eriophyoid mites (Acari: Eriophyoidea) on leaves of Betula pendula and B. pubescens in boreal forests in Northern Europe. We sampled ten sites for each of five latitudinal gradients from 2008–2011, counted galls of six morphological types and identified mites extracted from these galls. DNA analysis revealed cryptic species within two of six morphologically defined mite species, and these cryptic species induced different types of galls. When data from all types of galls and from two birch species were pooled, the percentage of galled leaves did not change with latitude. However, we discovered pronounced variation in latitudinal changes between birch species. Infestation by eriophyoid mites increased towards the north in B. pendula and decreased in B. pubescens, while diversity of galls decreased towards the north in B. pendula and did not change in B. pubescens. The percentage of galled leaves did not differ among geographical gradients and study years, but was 20% lower in late summer relative to early summer, indicating premature abscission of infested leaves. Our data suggest that precipitation has little effect on abundance and diversity of eriophyoid mites, and that climate warming may impose opposite effects on infestation of two birch species by galling mites, favouring B. pendula near the northern tree limit. PMID:27835702

  4. Ross Sea Mollusca from the Latitudinal Gradient Program: R/V Italica 2004 Rauschert dredge samples

    PubMed Central

    Ghiglione, Claudio; Alvaro, Maria Chiara; Griffiths, Huw J.; Linse, Katrin; Schiaparelli, Stefano

    2013-01-01

    Abstract Information regarding the molluscs in this dataset is based on the Rauschert dredge samples collected during the Latitudinal Gradient Program (LGP) on board the R/V “Italica” in the Ross Sea (Antarctica) in the austral summer 2004. A total of 18 epibenthic dredge deployments/samplings have been performed at four different locations at depths ranging from 84 to 515m by using a Rauschert dredge with a mesh size of 500μm. In total 8,359 specimens have been collected belonging to a total of 161 species. Considering this dataset in terms of occurrences, it corresponds to 505 discrete distributional records (incidence data). Of these, in order of abundance, 5,965 specimens were Gastropoda (accounting for 113 species), 1,323 were Bivalvia (accounting for 36 species), 949 were Aplacophora (accounting for 7 species), 74 specimens were Scaphopoda (3 species), 38 were Monoplacophora (1 species) and, finally, 10 specimens were Polyplacophora (1 species). This data set represents the first large-scale survey of benthic micro-molluscs for the area and provides important information about the distribution of several species, which have been seldom or never recorded before in the Ross Sea. All vouchers are permanently stored at the Italian National Antarctic Museum (MNA), Section of Genoa, enabling future comparison and crosschecking. This material is also currently under study, from a molecular point of view, by the barcoding project “BAMBi” (PNRA 2010/A1.10). PMID:24146597

  5. Life history attributes of fishes along the latitudinal gradient of the Missouri River

    USGS Publications Warehouse

    Braaten, P.J.; Guy, C.S.

    2002-01-01

    Populations of two short-lived species (emerald shiner Notropis atherinoides and sicklefin chub Macrhybopsis meeki) and three long-lived species (freshwater drum Aplodinotus grunniens, river carpsucker Carpiodes carpio, and sauger Stizostedion canadense) were studied in the Missouri River to examine spatial variations in life history characteristics across a latitudinal and thermal gradient (38??47???N to 48??03???N). The life history characteristics included longevity (maximum age), the rate at which asymptotic length was approached (K from the von Bertalanffy growth equation), the mean back-calculated length at age, and growth rates during the first year of life (mm/degree-day and mm/d). The mean water temperature and number of days in the growing season averaged 1.3 times greater in the southern than in the northern latitudes, while degree-days averaged twice as great. The longevity of all species except freshwater drum increased significantly from south to north, but the relationships between maximum age and latitude were curvilinear for short-lived species and linear for long-lived species. The von Bertalanffy growth coefficient for river carpsuckers and saugers increased from north to south, as indicated by significant negative relationships between K and latitude. Mean back-calculated length at age was negatively related to latitude for freshwater drums (???age 4) and saugers (ages 1-5) but positively related to latitude for river carpsuckers (???age 6). One of the growth rates examined (mm/degree-day) increased significantly from low to high latitudes for emerald shiners, sicklefin chubs, freshwater drums, and river carpsuckers during the first growing season. The other growth rate (mm/d) increased significantly from low to high latitudes for emerald shiners but was inversely related to latitude for saugers. These results suggest that the thermal regime related to latitude influences the life history characteristics of fishes in the Missouri River.

  6. Latitudinal Distribution of Ammonia-Oxidizing Bacteria and Archaea in the Agricultural Soils of Eastern China

    PubMed Central

    Huang, Liuqin; Deng, Ye; Wang, Shang; Zhou, Yu; Liu, Li

    2014-01-01

    The response of soil ammonia-oxidizing bacterial (AOB) and archaeal (AOA) communities to individual environmental variables (e.g., pH, temperature, and carbon- and nitrogen-related soil nutrients) has been extensively studied, but how these environmental conditions collectively shape AOB and AOA distributions in unmanaged agricultural soils across a large latitudinal gradient remains poorly known. In this study, the AOB and AOA community structure and diversity in 26 agricultural soils collected from eastern China were investigated by using quantitative PCR and bar-coded 454 pyrosequencing of the amoA gene that encodes the alpha subunit of ammonia monooxygenase. The sampling locations span over a 17° latitude gradient and cover a range of climatic conditions. The Nitrosospira and Nitrososphaera were the dominant clusters of AOB and AOA, respectively; but the subcluster-level composition of Nitrosospira-related AOB and Nitrososphaera-related AOA varied across the latitudinal gradient. Variance partitioning analysis showed that geography and climatic conditions (e.g., mean annual temperature and precipitation), as well as carbon-/nitrogen-related soil nutrients, contributed more to the AOB and AOA community variations (∼50% in total) than soil pH (∼10% in total). These results are important in furthering our understanding of environmental conditions influencing AOB and AOA community structure across a range of environmental gradients. PMID:25002421

  7. Global latitudinal-asymmetric vegetation growth trends and their driving mechanisms: 1982-2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Jiafu; Shi, Xiaoying; Thornton, Peter E

    2013-01-01

    Using a recent Leaf Area Index (LAI) dataset and the Community Land Model version 4 (CLM4), we investigate percent changes and controlling factors of global vegetation growth for the period 1982 to 2009. Over that 28-year period, both the remote-sensing estimate and model simulation show a significant increasing trend in annual vegetation growth. Latitudinal asymmetry appeared in both products, with small increases in the Southern Hemisphere (SH) and larger increases at high latitudes in the Northern Hemisphere (NH). The south-to-north asymmetric land surface warming was assessed to be the principal driver of this latitudinal asymmetry of LAI trend. Heterogeneous precipitationmore » functioned to decrease this latitudinal LAI gradient, and considerably regulated the local LAI change. CO2 fertilization during the last three decades, was simulated to be the dominant cause for the enhanced vegetation growth. Our study, though limited by observational and modeling uncertainties, adds further insight into vegetation growth trends and environmental correlations. These validation exercises also provide new quantitative and objective metrics for evaluation of land ecosystem process models at multiple spatio-temporal scales.« less

  8. Aridity promotes bet hedging via delayed hatching: a case study with two temporary pond crustaceans along a latitudinal gradient.

    PubMed

    Pinceel, Tom; Vanschoenwinkel, Bram; Hawinkel, Wouter; Tuytens, Karen; Brendonck, Luc

    2017-05-01

    Climate change does affect not only average rainfall and temperature but also their variation, which can reduce the predictability of suitable conditions for growth and reproduction. This situation is problematic for inhabitants of temporary waters whose reproductive success depends on rainfall and evaporation that determine the length of the aquatic phase. For organisms with long-lived dormant life stages, bet hedging models suggest that a fraction of these should stay dormant during each growing season to buffer against the probability of total reproductive failure in variable environments. Thus far, however, little empirical evidence supports this prediction in aquatic organisms. We study geographic variation in delayed hatching of dormant eggs in natural populations of two crustaceans, Branchinella longirostris and Paralimnadia badia, that occur in temporary rock pools along a 725 km latitudinal aridity gradient in Western Australia. Consistent with bet hedging theory, populations of both species were characterised by delayed hatching under common garden conditions and hatching fractions decreased towards the drier end of the gradient where the probability of reproductive success was shown to be lower. This decrease was most pronounced in the species with the longer maturation time, presumably because it is more sensitive to the higher prevalence of short inundations. Overall, these findings illustrate that regional variation in climate can be reflected in differential investment in bet hedging and hints at a higher importance of delayed hatching to persist when the climate becomes harsher. Such strategies could become exceedingly relevant as determinants of vulnerability under climate change.

  9. Shaping the Latitudinal Diversity Gradient: New Perspectives from a Synthesis of Paleobiology and Biogeography.

    PubMed

    Jablonski, David; Huang, Shan; Roy, Kaustuv; Valentine, James W

    2017-01-01

    An impediment to understanding the origin and dynamics of the latitudinal diversity gradient (LDG)-the most pervasive large-scale biotic pattern on Earth-has been the tendency to focus narrowly on a single causal factor when a more synthetic, integrative approach is needed. Using marine bivalves as a model system and drawing on other systems where possible, we review paleobiologic and biogeographic support for two supposedly opposing views, that the LDG is shaped primarily by (a) local environmental factors that determine the number of species and higher taxa at a given latitude (in situ hypotheses) or (b) the entry of lineages arising elsewhere into a focal region (spatial dynamics hypotheses). Support for in situ hypotheses includes the fit of present-day diversity trends in many clades to such environmental factors as temperature and the correlation of extinction intensities in Pliocene bivalve faunas with net regional temperature changes. Support for spatial dynamics hypotheses includes the age-frequency distribution of bivalve genera across latitudes, which is consistent with an out-of-the-tropics dynamic, as are the higher species diversities in temperate southeastern Australia and southeastern Japan than in the tropical Caribbean. Thus, both in situ and spatial dynamics processes must shape the bivalve LDG and are likely to operate in other groups as well. The relative strengths of the two processes may differ among groups showing similar LDGs, but dissecting their effects will require improved methods of integrating fossil data with molecular phylogenies. We highlight several potential research directions and argue that many of the most dramatic biotic patterns, past and present, are likely to have been generated by diverse, mutually reinforcing drivers.

  10. Latitudinal diversity gradients in New World bats: are they a consequence of niche conservatism?

    PubMed

    Ramos Pereira, Maria João; Palmeirim, Jorge M

    2013-01-01

    The increase in species diversity from the Poles to the Equator is a major biogeographic pattern, but the mechanisms underlying it remain obscure. Our aim is to contribute to their clarification by describing the latitudinal gradients in species richness and in evolutionary age of species of New World bats, and testing if those patterns may be explained by the niche conservatism hypothesis. Maps of species ranges were used to estimate species richness in a 100 x 100 km grid. Root distances in a molecular phylogeny were used as a proxy for the age of species, and the mean root distance of the species in each cell of the grid was estimated. Generalised additive models were used to relate latitude with both species richness and mean root distance. This was done for each of the three most specious bat families and for all Chiroptera combined. Species richness increases towards the Equator in the whole of the Chiroptera and in the Phyllostomidae and Molossidae, families that radiated in the tropics, but the opposite trend is observed in the Vespertilionidae, which has a presumed temperate origin. In the whole of the Chiroptera, and in the three main families, there were more basal species in the higher latitudes, and more derived species in tropical areas. In general, our results were not consistent with the predictions of niche conservatism. Tropical niche conservatism seems to keep bat clades of tropical origin from colonizing temperate zones, as they lack adaptations to survive cold winters, such as the capacity to hibernate. However, the lower diversity of Vespertilionidae in the Neotropics is better explained by competition with a diverse pre-existing community of bats than by niche conservatism.

  11. A General, Synthetic Model for Predicting Biodiversity Gradients from Environmental Geometry.

    PubMed

    Gross, Kevin; Snyder-Beattie, Andrew

    2016-10-01

    Latitudinal and elevational biodiversity gradients fascinate ecologists, and have inspired dozens of explanations. The geometry of the abiotic environment is sometimes thought to contribute to these gradients, yet evaluations of geometric explanations are limited by a fragmented understanding of the diversity patterns they predict. This article presents a mathematical model that synthesizes multiple pathways by which environmental geometry can drive diversity gradients. The model characterizes species ranges by their environmental niches and limits on range sizes and places those ranges onto the simplified geometries of a sphere or cone. The model predicts nuanced and realistic species-richness gradients, including latitudinal diversity gradients with tropical plateaus and mid-latitude inflection points and elevational diversity gradients with low-elevation diversity maxima. The model also illustrates the importance of a mid-environment effect that augments species richness at locations with intermediate environments. Model predictions match multiple empirical biodiversity gradients, depend on ecological traits in a testable fashion, and formally synthesize elements of several geometric models. Together, these results suggest that previous assessments of geometric hypotheses should be reconsidered and that environmental geometry may play a deeper role in driving biodiversity gradients than is currently appreciated.

  12. Latitudinal variation in population structure of wintering Pacific Black Brant

    USGS Publications Warehouse

    Schamber, J.L.; Sedinger, J.S.; Ward, D.H.; Hagmeier, K.R.

    2007-01-01

    Latitudinal variation in population structure during the winter has been reported in many migratory birds, but has been documented in few species of waterfowl. Variation in environmental and social conditions at wintering sites can potentially influence the population dynamics of differential migrants. We examined latitudinal variation in sex and age classes of wintering Pacific Black Brant (Branta bernicla nigricans). Brant are distributed along a wide latitudinal gradient from Alaska to Mexico during the winter. Accordingly, migration distances for brant using different wintering locations are highly variable and winter settlement patterns are likely associated with a spatially variable food resource. We used resightings of brant banded in southwestern Alaska to examine sex and age ratios of birds wintering at Boundary Bay in British Columbia, and at San Quintin Bay, Ojo de Liebre Lagoon, and San Ignacio Lagoon in Baja California from 1998 to 2000. Sex ratios were similar among wintering locations for adults and were consistent with the mating strategy of geese. The distribution of juveniles varied among wintering areas, with greater proportions of juveniles observed at northern (San Quintin Bay and Ojo de Liebre Lagoon) than at southern (San Ignacio Lagoon) locations in Baja California. We suggest that age-related variation in the winter distribution of Pacific Black Brant is mediated by variation in productivity among individuals at different wintering locations and by social interactions among wintering family groups.

  13. Altitudinal vs Latitudinal Climactic Drivers: A Comparison of a Relict Picea and Abies Forest in the Southern Appalachians versus the Hemi-Boreal Transition Zone off Southern Canada

    NASA Astrophysics Data System (ADS)

    Evans, A.; Lafon, C. W.

    2015-12-01

    Identification of biotic and abiotic determinants of tree species range limits is critical for understanding the effects of climate change on species distributions. Upward shifts of species distributions in montane areas have been widely reported but there have been few reports of latitudinal range retractions. Previous studies have indicated that southern latitudinal limits of a species range are dictated by biotic factors such as competition while others have suggested that abiotic factors, such as temperature, dictate these limits. We investigated the potential climatic gradients at the southern latitudinal limit of the Spruce (Picea) and Fir (Abies) species that dominate the Canadian boreal forest community as well as relict boreal forests containing similar species found in the high elevation areas of the Southern Appalachians. Existing research has suggested that relict ecosystems are more sensitive to climate change and can be indicative of future changes at latitudinal range limits. Expanding on this literature, we hypothesized that we would see similar gradients in climatic variables at the southern latitudinal limit of the Canadian boreal forest and those in the relict boreal forests southern Appalachians acting as controlling factors of these species distributions. We used forty years of climate data from weather stations along the southern edge of the boreal forest in the Canadian Shield provinces, species distribution data from the Canadian National Forest Inventory, (CNFI) geospatial data from the National Park Service (NPS), and historical weather data from the National Oceanic and Atmospheric Administration (NOAA) to perform our analysis. Our results indicate different climate variables act as controls of warm edge range limits of the Canadian boreal forest than those of the relict boreal forest of the southern Appalachians. However, we believe range retractions of the relict forest may be indicative of a more gradual response of similar species

  14. Latitudinal Trends in Stable Isotope Signatures of Northeast Atlantic Rhodoliths

    NASA Astrophysics Data System (ADS)

    Hofmann, Laurie

    2017-04-01

    Rhodoliths are free-living calcifying red algae that form extensive beds in shallow marine benthic environments (< 200 m) that provide important habitats and nurseries for marine organisms and contribute to carbonate sediment accumulation. There is growing concern that these organisms are sensitive to global climate change, which will have important consequences for coastal productivity and stability. Despite their significance and sensitivity, their basic photosynthetic and calcification mechanisms are not well understood. The goal of this study was to determine the plasticity of dissolved inorganic carbon (DIC) uptake mechanisms of rhodoliths along a latitudinal gradient in the Northeast (NE) Atlantic using natural stable isotope signatures. The delta 13C signature of macroalgae can be used to provide an indication of the preferred inorganic carbon source (CO2 vs. HCO3-). Here we present the total and organic delta 13C signatures of NE Atlantic rhodoliths with respect to changing temperature and light along the latitudinal gradient from the Canary Islands to Spitsbergen. A decreasing trend in delta 13C signatures with increasing latitude suggests that rhodoliths rely solely on CO2 as an inorganic carbon source at mid latitudes, while those at low latitudes may be able to utilize HCO3-. Polar rhodoliths deviate from this trend, suggesting they may have unique physiological mechanisms related to inorganic carbon acquisition and assimilation, which may have important implications for calcification in an environment undergoing rapid changing ocean chemistry.

  15. Reproductive Efficiency of a Mediterranean Endemic Zooxanthellate Coral Decreases with Increasing Temperature along a Wide Latitudinal Gradient

    PubMed Central

    Airi, Valentina; Gizzi, Francesca; Falini, Giuseppe; Levy, Oren; Dubinsky, Zvy; Goffredo, Stefano

    2014-01-01

    Investments at the organismal level towards reproduction and growth are often used as indicators of health. Understanding how such energy allocation varies with environmental conditions may, therefore, aid in predicting possible responses to global climatic change in the near future. For example, variations in seawater temperature may alter the physiological functioning, behavior, reproductive output and demographic traits (e.g., productivity) of marine organisms, leading to shifts in the structure, spatial range, and abundance of populations. This study investigated variations in reproductive output associated with local seawater temperature along a wide latitudinal gradient on the western Italian coast, in the zooxanthellate Mediterranean coral, Balanophyllia europaea. Reproductive potential varied significantly among sites, where B. europaea individuals from the warmest site experienced loss of oocytes during gametogenesis. Most of the early oocytes from warmest sites did not reach maturity, possibly due to inhibition of metabolic processes at high temperatures, causing B. europaea to reabsorb the oocytes and utilize them as energy for other vital functions. In a progressively warming Mediterranean, the efficiency of the energy invested in reproduction could be considerably reduced in this species, thereby affecting vital processes. Given the projected increase in seawater temperature as a consequence of global climate change, the present study adds evidence to the threats posed by high temperatures to the survival of B. europaea in the next decades. PMID:24618568

  16. The role of latitudinal, genetic and temperature variation in the induction of diapause of Papilio glaucus (Lepidoptera: Papilionidae).

    PubMed

    Ryan, Sean F; Valella, Patti; Thivierge, Gabrielle; Aardema, Matthew L; Scriber, J Mark

    2018-04-01

    A key adaptation in insects for dealing with variable environmental conditions is the ability to diapause. The tiger swallowtail butterflies, Papilio glaucus and P. canadensis are ideal species to explore the genetic causes and population genetic consequences of diapause because divergence in this trait is believed to be a salient factor in maintaining a hybrid zone between these species. Yet little is known about the factors that influence diapause induction in this system. Here we explored how spatial (latitudinal), environmental (temperature) and genetic (hybridization) factors affect diapause induction in this system. Specifically, a series of growth chamber experiments using wild caught individuals from across the eastern United States were performed to: (1) evaluate how critical photoperiod varies with latitude, (2) isolate the stage in which induction occurs, (3) test whether changes in temperature affected rates of diapause induction, and (4) explore how the incidence of diapause is affected in hybrid offspring. We find that induction occurs in the larval stage, is not sensitive to a relatively broad range of temperatures, appears to have a complex genetic basis (i.e., is not simply a dominant trait following a Mendelian inheritance pattern) and that the critical photoperiod increases by 0.4 h with each increasing degree in latitude. This work deepens our understanding of how spatial, environmental and genetic variation influences a key seasonal adaptation (diapause induction) in a well-developed ecological model system and will make possible future studies that explore how climatic variation affects the population dynamics and genetics of this system. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  17. Latitudinal Diversity Gradients in New World Bats: Are They a Consequence of Niche Conservatism?

    PubMed Central

    Ramos Pereira, Maria João; Palmeirim, Jorge M.

    2013-01-01

    The increase in species diversity from the Poles to the Equator is a major biogeographic pattern, but the mechanisms underlying it remain obscure. Our aim is to contribute to their clarification by describing the latitudinal gradients in species richness and in evolutionary age of species of New World bats, and testing if those patterns may be explained by the niche conservatism hypothesis. Maps of species ranges were used to estimate species richness in a 100 x 100 km grid. Root distances in a molecular phylogeny were used as a proxy for the age of species, and the mean root distance of the species in each cell of the grid was estimated. Generalised additive models were used to relate latitude with both species richness and mean root distance. This was done for each of the three most specious bat families and for all Chiroptera combined. Species richness increases towards the Equator in the whole of the Chiroptera and in the Phyllostomidae and Molossidae, families that radiated in the tropics, but the opposite trend is observed in the Vespertilionidae, which has a presumed temperate origin. In the whole of the Chiroptera, and in the three main families, there were more basal species in the higher latitudes, and more derived species in tropical areas. In general, our results were not consistent with the predictions of niche conservatism. Tropical niche conservatism seems to keep bat clades of tropical origin from colonizing temperate zones, as they lack adaptations to survive cold winters, such as the capacity to hibernate. However, the lower diversity of Vespertilionidae in the Neotropics is better explained by competition with a diverse pre-existing community of bats than by niche conservatism. PMID:23935963

  18. Contrasting growth forecasts across the geographical range of Scots pine due to altitudinal and latitudinal differences in climatic sensitivity.

    PubMed

    Matías, Luis; Linares, Juan C; Sánchez-Miranda, Ángela; Jump, Alistair S

    2017-10-01

    Ongoing changes in global climate are altering ecological conditions for many species. The consequences of such changes are typically most evident at the edge of a species' geographical distribution, where differences in growth or population dynamics may result in range expansions or contractions. Understanding population responses to different climatic drivers along wide latitudinal and altitudinal gradients is necessary in order to gain a better understanding of plant responses to ongoing increases in global temperature and drought severity. We selected Scots pine (Pinus sylvestris L.) as a model species to explore growth responses to climatic variability (seasonal temperature and precipitation) over the last century through dendrochronological methods. We developed linear models based on age, climate and previous growth to forecast growth trends up to year 2100 using climatic predictions. Populations were located at the treeline across a latitudinal gradient covering the northern, central and southernmost populations and across an altitudinal gradient at the southern edge of the distribution (treeline, medium and lower elevations). Radial growth was maximal at medium altitude and treeline of the southernmost populations. Temperature was the main factor controlling growth variability along the gradients, although the timing and strength of climatic variables affecting growth shifted with latitude and altitude. Predictive models forecast a general increase in Scots pine growth at treeline across the latitudinal distribution, with southern populations increasing growth up to year 2050, when it stabilizes. The highest responsiveness appeared at central latitude, and moderate growth increase is projected at the northern limit. Contrastingly, the model forecasted growth declines at lowland-southern populations, suggesting an upslope range displacement over the coming decades. Our results give insight into the geographical responses of tree species to climate change

  19. Latitudinal species diversity gradient of mushroom corals off eastern Australia: a baseline from the 1970s

    NASA Astrophysics Data System (ADS)

    Hoeksema, Bert W.

    2015-11-01

    Based on a study of mushroom coral species of eastern Australia, a decrease in species richness can be discerned from north to south. Eastern Australia, including the Great Barrier Reef (GBR), is one of only few coral reef areas suitable for studies on large-scale latitudinal biodiversity patterns. Such patterns may help to recognize biogeographic boundaries and factors regulating biodiversity. Owing to the eastern Australian long coastline, such studies are a logistic challenge unless reliable distribution data are already available, as in museum collections. A large coral collection predominantly sampled from this area in the 1970s is present in the Museum of Tropical Queensland (MTQ). The scleractinian family Fungiidae (mushroom corals), representing about 10% of Indo-Pacific reef coral species, was selected as proxy. It was represented by 1289 specimens belonging to 34 species with latitudinal ranges between 09°09‧S and 31°28‧S. The fauna of the northernmost reefs in the Gulf of Papua and the Torres Strait, and north of the Great Barrier Reef Marine Park (GBRMP), was represented by a maximum of 30 fungiids. From here a southward decline in species number was observed, down to Lord Howe Island with only one species. Together with previous records, the mushroom coral fauna of eastern Australia consists of 37 species, which is more diverse than hitherto known and similar to numbers found in the Coral Triangle. Future field surveys in the GBR should specifically target rarely known species, which are mainly small and found at depths >25 m. In the light of global climate change, they may also show whether previously recorded species are still present and whether their latitudinal ranges have shifted, using the 1970s records as a baseline.

  20. The Effect of Latitudinal Variation on Shrimp Reproductive Strategies.

    PubMed

    van de Kerk, Madelon; Jones Littles, Chanda; Saucedo, Omar; Lorenzen, Kai

    2016-01-01

    Reproductive strategies comprise the timing and frequency of reproductive events and the number of offspring per reproductive event, depending on factors such as climate conditions. Therefore, species that exhibit plasticity in the allocation of reproductive effort can alter their behavior in response to climate change. Studying how the reproductive strategy of species varies along the latitudinal gradient can help us understand and predict how they will respond to climate change. We investigated the effects of the temporal allocation of reproductive effort on the population size of brown shrimp (Farfantepenaeus aztecus) along a latitudinal gradient. Multiple shrimp species exhibit variation in their reproductive strategies, and given the economic importance of brown shrimp to the commercial fishing sector of the Unites States, changes in the timing of their reproduction could have significant economic and social consequences. We used a stage-based, density-dependent matrix population model tailored to the life history of brown shrimp. Shrimp growth rates and environmental carrying capacity were varied based on the seasonal climate conditions at different latitudes, and we estimated the population size at equilibrium. The length of the growing season increased with decreasing latitude and the reproductive strategy leading to the highest population size changed from one annual birth pulse with high reproductive output to continuous low-output reproduction. Hence, our model confirms the classical paradigm of continuous reproduction at low latitudes, with increased seasonality of the breeding period towards the poles. Our results also demonstrate the potential for variation in climate to affect the optimal reproductive strategy for achieving maximum population sizes. Certainly, understanding these dynamics may inform more comprehensive management strategies for commercially important species like brown shrimp.

  1. Energy gradients and the geographic distribution of local ant diversity.

    PubMed

    Kaspari, Michael; Ward, Philip S; Yuan, May

    2004-08-01

    Geographical diversity gradients, even among local communities, can ultimately arise from geographical differences in speciation and extinction rates. We evaluated three models--energy-speciation, energy-abundance, and area--that predict how geographic trends in net diversification rates generate trends in diversity. We sampled 96 litter ant communities from four provinces: Australia, Madagascar, North America, and South America. The energy-speciation hypothesis best predicted ant species richness by accurately predicting the slope of the temperature diversity curve, and accounting for most of the variation in diversity. The communities showed a strong latitudinal gradient in species richness as well as inter-province differences in diversity. The former vanished in the temperature-diversity residuals, suggesting that the latitudinal gradient arises primarily from higher diversification rates in the tropics. However, inter-province differences in diversity persisted in those residuals--South American communities remained more diverse than those in North America and Australia even after the effects of temperature were removed.

  2. Progenesis in Proctoeces lintoni (Fellodistomidae), a parasite of Fissurella crassa (Archaeogastropoda) in a latitudinal gradient in the Pacific Coast of South America.

    PubMed

    Oliva, M E; Huaquin, L G

    2000-08-01

    The fellodistomid Proctoeces lintoni is a common parasite of the gonads of key-hole limpets Fissurella spp. (Archaeogastropoda). It has also been found in the mantle of Octopus vulgaris and as an intestinal parasite of haemulid and gobiesocid fishes. Fissurella crassa, a host for progenetic P. lintoni, can be found from Huarmey, Peni (10 degrees S) to Chiloé, Chile (42 degrees S). Proctoeces lintoni has been found parasitizing fishes and molluscs from Callao, Peni (12 degrees S) to Valdivia, Chile (39 degrees S). Progenesis is thought to be a latitude-dependent phenomenon, and high progenesis is expected at higher latitude. In the present article, the association between latitude and progenesis was examined over a latitudinal gradient of about 3,000 km. Data suggest that progenesis of P. lintoni infecting F. crassa was not associated with latitude. Low levels of progenesis found in the Peruvian population could be a consequence of parasite-induced mortality rather than of low latitude, as would be predicted by the latitude dependence hypothesis.

  3. Adaptive Genetic Divergence along Narrow Environmental Gradients in Four Stream Insects

    PubMed Central

    Watanabe, Kozo; Kazama, So; Omura, Tatsuo; Monaghan, Michael T.

    2014-01-01

    A central question linking ecology with evolutionary biology is how environmental heterogeneity can drive adaptive genetic divergence among populations. We examined adaptive divergence of four stream insects from six adjacent catchments in Japan by combining field measures of habitat and resource components with genome scans of non-neutral Amplified Fragment Length Polymorphism (AFLP) loci. Neutral genetic variation was used to measure gene flow and non-neutral genetic variation was used to test for adaptive divergence. We identified the environmental characteristics contributing to divergence by comparing genetic distances at non-neutral loci between sites with Euclidean distances for each of 15 environmental variables. Comparisons were made using partial Mantel tests to control for geographic distance. In all four species, we found strong evidence for non-neutral divergence along environmental gradients at between 6 and 21 loci per species. The relative contribution of these environmental variables to each species' ecological niche was quantified as the specialization index, S, based on ecological data. In each species, the variable most significantly correlated with genetic distance at non-neutral loci was the same variable along which each species was most narrowly distributed (i.e., highest S). These were gradients of elevation (two species), chlorophyll-a, and ammonia-nitrogen. This adaptive divergence occurred in the face of ongoing gene flow (F st = 0.01–0.04), indicating that selection was strong enough to overcome homogenization at the landscape scale. Our results suggest that adaptive divergence is pronounced, occurs along different environmental gradients for different species, and may consistently occur along the narrowest components of species' niche. PMID:24681871

  4. The latitudinal diversity gradient in South American mammals revisited using a regional analysis approach: The importance of climate at extra-tropical latitudes and history towards the tropics

    PubMed Central

    Ruggiero, Adriana

    2017-01-01

    The latitudinal diversity gradient has been considered a consequence of a shift in the impact of abiotic and biotic factors that limit species distributions from the poles to the equator, thus influencing species richness variation. It has also been considered the outcome of evolutionary processes that vary over geographical space. We used six South American mammal groups to test the association of environmental and evolutionary factors and the ecological structuring of mammal assemblages with spatial variation in taxonomic richness (TR), at a spatial resolution of 110 km x 110 km, at tropical and extra-tropical latitudes. Based on attributes that represent what mammal species do in ecosystems, we estimated ecological diversity (ED) as a mean pairwise ecological distance between all co-occurring taxa. The mean pairwise phylogenetic distance between all co-occurring taxa (AvPD) was used as an estimation of phylogenetic diversity. Geographically Weighted Regression analyses performed separately for each mammal group identified tropical and extra-tropical high R2 areas where environmental and evolutionary factors strongly accounted for richness variation. Temperature was the most important predictor of TR in high R2 areas outside the tropics, as was AvPD within the tropics. The proportion of TR variation accounted for by environment (either independently or combined with AvPD) was higher in tropical areas of high richness and low ecological diversity than in tropical areas of high richness and high ecological diversity. In conclusion, we confirmed a shift in the impact of environmental factors, mainly temperature, that best account for mammal richness variation in extra-tropical regions, whereas phylogenetic diversity best accounts for richness variation within the tropics. Environment in combination with evolutionary history explained the coexistence of a high number of ecologically similar species within the tropics. Consideration of the influence of contemporary

  5. Genetic and phenotypic variation along an ecological gradient in lake trout Salvelinus namaycush

    USGS Publications Warehouse

    Baillie, Shauna M.; Muir, Andrew M.; Hansen, Michael J.; Krueger, Charles C.; Bentzen, Paul

    2016-01-01

    BackgroundAdaptive radiation involving a colonizing phenotype that rapidly evolves into at least one other ecological variant, or ecotype, has been observed in a variety of freshwater fishes in post-glacial environments. However, few studies consider how phenotypic traits vary with regard to neutral genetic partitioning along ecological gradients. Here, we present the first detailed investigation of lake trout Salvelinus namaycushthat considers variation as a cline rather than discriminatory among ecotypes. Genetic and phenotypic traits organized along common ecological gradients of water depth and geographic distance provide important insights into diversification processes in a lake with high levels of human disturbance from over-fishing.ResultsFour putative lake trout ecotypes could not be distinguished using population genetic methods, despite morphological differences. Neutral genetic partitioning in lake trout was stronger along a gradient of water depth, than by locality or ecotype. Contemporary genetic migration patterns were consistent with isolation-by-depth. Historical gene flow patterns indicated colonization from shallow to deep water. Comparison of phenotypic (Pst) and neutral genetic variation (Fst) revealed that morphological traits related to swimming performance (e.g., buoyancy, pelvic fin length) departed more strongly from neutral expectations along a depth gradient than craniofacial feeding traits. Elevated phenotypic variance with increasing water depth in pelvic fin length indicated possible ongoing character release and diversification. Finally, differences in early growth rate and asymptotic fish length across depth strata may be associated with limiting factors attributable to cold deep-water environments.ConclusionWe provide evidence of reductions in gene flow and divergent natural selection associated with water depth in Lake Superior. Such information is relevant for documenting intraspecific biodiversity in the largest freshwater lake

  6. Salix transect of Europe: latitudinal patterns in willow diversity from Greece to arctic Norway.

    PubMed

    Cronk, Quentin; Ruzzier, Enrico; Belyaeva, Irina; Percy, Diana

    2015-01-01

    Willows (Salix spp.) are ecosystem "foundation species" that are hosts to large numbers of associated insects. Determining their patterns of distribution across Europe is therefore of interest for understanding the spatial distribution of associated fauna. The aim of this study was to record species composition at multiple sites on a long latitudinal gradient (megatransect) across Europe as a baseline for the future detailed analysis of insect fauna at these sites. In this way we used willow stands as comparable mesocosms in which to study floristic and faunistic changes with latitude across Europe. To determine spatial patterning of  an ecologically important group on a latitudinal gradient across Europe, we sampled willows at the stand level in 42 sites, approximately 100 km apart, from the Aegean (38.8°N) to the Arctic Ocean (70.6°N), but at a similar longitude (21.2 to 26.1°E). The sites were predominantly lowland (elevations 1 to 556 metres amsl, median = 95 m) and wet (associated with rivers, lakes, drainage ditches or wet meadows). The median number of willow taxa (species and hybrids) per stand was four, and varied from one to nine. There is a progressive increase in willow diversity from south to north with the median number of taxa per stand in southern Europe being three, and in northern Europe six. A total of 20 willow species were recorded, along with 12 hybrids. The most widespread willow in the transect was Salix alba L. (occurring in 20 sites out of 42) followed by S. triandra L. (15 sites), S. caprea L., S. phylicifolia L. (14 sites) and S. myrsinifolia Salisb., Salix ×fragilis L. (13 sites). Voucher specimens from this study are deposited in the herbaria of the Natural History Museum (BM) and the Royal Botanic Gardens Kew (K). These samples provide a "snapshot" of willow diversity along a latitudinal gradient and an indication of the geographically changing taxonomic diversity that is presented to willow-feeding herbivores

  7. Salix transect of Europe: latitudinal patterns in willow diversity from Greece to arctic Norway

    PubMed Central

    Ruzzier, Enrico; Belyaeva, Irina; Percy, Diana

    2015-01-01

    Abstract Background Willows (Salix spp.) are ecosystem "foundation species" that are hosts to large numbers of associated insects. Determining their patterns of distribution across Europe is therefore of interest for understanding the spatial distribution of associated fauna. The aim of this study was to record species composition at multiple sites on a long latitudinal gradient (megatransect) across Europe as a baseline for the future detailed analysis of insect fauna at these sites. In this way we used willow stands as comparable mesocosms in which to study floristic and faunistic changes with latitude across Europe. New information To determine spatial patterning of  an ecologically important group on a latitudinal gradient across Europe, we sampled willows at the stand level in 42 sites, approximately 100 km apart, from the Aegean (38.8°N) to the Arctic Ocean (70.6°N), but at a similar longitude (21.2 to 26.1°E). The sites were predominantly lowland (elevations 1 to 556 metres amsl, median = 95 m) and wet (associated with rivers, lakes, drainage ditches or wet meadows). The median number of willow taxa (species and hybrids) per stand was four, and varied from one to nine. There is a progressive increase in willow diversity from south to north with the median number of taxa per stand in southern Europe being three, and in northern Europe six. A total of 20 willow species were recorded, along with 12 hybrids. The most widespread willow in the transect was Salix alba L. (occurring in 20 sites out of 42) followed by S. triandra L. (15 sites), S. caprea L., S. phylicifolia L. (14 sites) and S. myrsinifolia Salisb., Salix ×fragilis L. (13 sites). Voucher specimens from this study are deposited in the herbaria of the Natural History Museum (BM) and the Royal Botanic Gardens Kew (K). These samples provide a "snapshot" of willow diversity along a latitudinal gradient and an indication of the geographically changing taxonomic diversity that is

  8. A meridional structure of static stability and ozone vertical gradient around the tropopause in the Southern Hemisphere extratropics

    NASA Astrophysics Data System (ADS)

    Tomikawa, Y.; Yamanouchi, T.

    2010-08-01

    An analysis of the static stability and ozone vertical gradient in the ozone tropopause based (OTB) coordinate is applied to the ozonesonde data at 10 stations in the Southern Hemisphere (SH) extratropics. The tropopause inversion layer (TIL) with a static stability maximum just above the tropopause shows similar seasonal variations at two Antarctic stations, which are latitudinally far from each other. Since the sunshine hour varies with time in a quite different way between these two stations, it implies that the radiative heating due to solar ultraviolet absorption of ozone does not contribute to the seasonal variation of the TIL. A meridional section of the static stability in the OTB coordinate shows that the static stability just above the tropopause has a large latitudinal gradient between 60° S and 70° S in austral winter because of the absence of the TIL over the Antarctic. It is accompanied by an increase of westerly shear with height above the tropopause, so that the polar-night jet is formed above this latitude region. This result suggests a close relationship between the absence of the TIL and the stratospheric polar vortex in the Antarctic winter. A vertical gradient of ozone mixing ratio, referred to as ozone vertical gradient, around the tropopause shows similar latitudinal and seasonal variations with the static stability in the SH extratropics. In a height region above the TIL, a small ozone vertical gradient in the midlatitudes associated with the Antarctic ozone hole is observed in a height region of the subvortex but not around the polar vortex. This is a clear evidence of active latitudinal mixing between the midlatitudes and subvortex.

  9. Influence of changing surface temperature gradients on mid-latitudinal circulation and western hemispheric summer temperature extremes

    NASA Astrophysics Data System (ADS)

    Kornhuber, Kai; Hoffmann, Peter; Coumou, Dim

    2017-04-01

    Many recent summers in the Northern hemisphere (NH) mid-latitudes have seen severe heatwaves (2003, 2004, 2009, 2010, 2012, 2015, (Black et al. 2004; Diffenbaugh & Scherer 2013; Russo et al. 2014; Hoy et al. 2016)). During many of those extremes the mid-latitudinal tropospheric circulation was characterized by an amplified, quasi-stationary and hemispheric wave pattern with a dominant influence of wavenumber seven (Coumou et al. 2014; Petoukhov et al. 2016; Kornhuber et al. 2016). Analyzing NH summer reanalysis data we show that the position where these heat extremes occur is not arbitrary. If the amplitude of wave seven is large, the wave gets "locked" in a specific preferred phase position. As a consequence of this phase-locking behavior some regions are more likely to experience extreme weather during high-amplitude events. Meridional wind speeds associated with the preferred phase are particularly strong over longitudes of the western hemisphere (180°W - 40°E) leading to positive temperature anomalies over the US and Western Europe. Using a widely-used blocking-index we demonstrate that longitudes over these regions experience an increased probability of blocking during high amplitude wave seven events. We show that during the above mentioned extreme summers, amplified waves were locked in their preferred phase-position creating the right dynamical background condition for severe heatwaves to occur. Further, regression analyses reveal that a pronounced Ocean - Land temperature contrast (Tdiff) and weak poleward surface temperature gradient (dT/dy) are associated with an amplified wave seven in its preferred phase-position. Our study suggests that the observed positive trend in Tdiff and negative trend in dT/dy favors the occurrence of high-amplitude, quasi-stationary wave seven in its preferred phase position and therefore persistent heatwaves in the US and western Europe.

  10. Scope of Gradient and Genetic Algorithms in Multivariable Function Optimization

    NASA Technical Reports Server (NTRS)

    Shaykhian, Gholam Ali; Sen, S. K.

    2007-01-01

    Global optimization of a multivariable function - constrained by bounds specified on each variable and also unconstrained - is an important problem with several real world applications. Deterministic methods such as the gradient algorithms as well as the randomized methods such as the genetic algorithms may be employed to solve these problems. In fact, there are optimization problems where a genetic algorithm/an evolutionary approach is preferable at least from the quality (accuracy) of the results point of view. From cost (complexity) point of view, both gradient and genetic approaches are usually polynomial-time; there are no serious differences in this regard, i.e., the computational complexity point of view. However, for certain types of problems, such as those with unacceptably erroneous numerical partial derivatives and those with physically amplified analytical partial derivatives whose numerical evaluation involves undesirable errors and/or is messy, a genetic (stochastic) approach should be a better choice. We have presented here the pros and cons of both the approaches so that the concerned reader/user can decide which approach is most suited for the problem at hand. Also for the function which is known in a tabular form, instead of an analytical form, as is often the case in an experimental environment, we attempt to provide an insight into the approaches focusing our attention toward accuracy. Such an insight will help one to decide which method, out of several available methods, should be employed to obtain the best (least error) output. *

  11. Genetic diversity and population structure in contemporary house sparrow populations along an urbanization gradient

    PubMed Central

    Vangestel, C; Mergeay, J; Dawson, D A; Callens, T; Vandomme, V; Lens, L

    2012-01-01

    House sparrow (Passer domesticus) populations have suffered major declines in urban as well as rural areas, while remaining relatively stable in suburban ones. Yet, to date no exhaustive attempt has been made to examine how, and to what extent, spatial variation in population demography is reflected in genetic population structuring along contemporary urbanization gradients. Here we use putatively neutral microsatellite loci to study if and how genetic variation can be partitioned in a hierarchical way among different urbanization classes. Principal coordinate analyses did not support the hypothesis that urban/suburban and rural populations comprise two distinct genetic clusters. Comparison of FST values at different hierarchical scales revealed drift as an important force of population differentiation. Redundancy analyses revealed that genetic structure was strongly affected by both spatial variation and level of urbanization. The results shown here can be used as baseline information for future genetic monitoring programmes and provide additional insights into contemporary house sparrow dynamics along urbanization gradients. PMID:22588131

  12. Genetic diversity and population structure in contemporary house sparrow populations along an urbanization gradient.

    PubMed

    Vangestel, C; Mergeay, J; Dawson, D A; Callens, T; Vandomme, V; Lens, L

    2012-09-01

    House sparrow (Passer domesticus) populations have suffered major declines in urban as well as rural areas, while remaining relatively stable in suburban ones. Yet, to date no exhaustive attempt has been made to examine how, and to what extent, spatial variation in population demography is reflected in genetic population structuring along contemporary urbanization gradients. Here we use putatively neutral microsatellite loci to study if and how genetic variation can be partitioned in a hierarchical way among different urbanization classes. Principal coordinate analyses did not support the hypothesis that urban/suburban and rural populations comprise two distinct genetic clusters. Comparison of FST values at different hierarchical scales revealed drift as an important force of population differentiation. Redundancy analyses revealed that genetic structure was strongly affected by both spatial variation and level of urbanization. The results shown here can be used as baseline information for future genetic monitoring programmes and provide additional insights into contemporary house sparrow dynamics along urbanization gradients.

  13. Latitudinal Gradients in the Stable Carbon and Oxygen Isotopes of Tree-Ring Cellulose Reveal Differential Climate Influences of the North American Monsoon

    NASA Astrophysics Data System (ADS)

    Szejner, P.; Wright, W. E.; Babst, F.; Belmecheri, S.; Trouet, V.; Ehleringer, J. R.; Leavitt, S. W.; Monson, R. K.

    2015-12-01

    Summer rainfall plays an important role sustaining different types of ecosystems in the Southwestern US. The arrival of the monsoon breaks the early summer hyper-arid period in the region providing unique seasonal conditions for these ecosystems to thrive. It is unknown to what extent monsoon rainfall is used by Ponderosa pine forests, which occupy many mountain ecosystems in the Western US. While these forests clearly rely on winter snowpack to drive much of their annual net primary productivity, the extent to which they supplement winter moisture, with summer monsoon moisture needs to be clarified. It is likely that there are north-south gradients in the degree to which forests rely on monsoon moisture, as the summer monsoon system tends to become diminished as it moves progressively northward. We addressed these gaps in our knowledge about the monsoon by studying stable Carbon and Oxygen isotopes in earlywood and latewood α-cellulose from cores taken from trees in eleven sites along a latitudinal gradient extending from Southern Arizona and New Mexico toward Utah. Here we show evidence that Ponderosa pine trees from most of these sites use monsoon water to support growth during the late summer, and the fractional use of monsoon precipitation is strongest in the southernmost sites. This study provides new physiological evidence on the influence of the North American monsoon and winter precipitation on tree growth in montane ecosystems of the Western US. Using these results, we predict differences in the susceptibility of southern and northern montane forests to future climate change. ACKNOWLEDGMENTS: This work was funded by an NSF Macrosystems Grant #1065790

  14. Germination responses to current and future temperatures of four seeder shrubs across a latitudinal gradient in western Iberia.

    PubMed

    Chamorro, Daniel; Luna, Belén; Moreno, José M

    2017-01-01

    Species differ in their temperature germination niche. Populations of a species may similarly differ across the distribution range of the species. Anticipating the impacts of climate variability and change requires understanding the differential sensitivity to germination temperature among and within species. Here we studied the germination responses of four hard-seeded Cistaceae seeders to a range of current and future temperatures. Seeds were collected at sites across the Iberian Peninsula and exposed or not exposed to a heat shock to break dormancy, then set to germinate under four temperature regimes. Temperatures were varied daily and seasonally, simulating the temperature range across the gradient, plus an increased temperature simulating future climate. Time to germination onset and cumulative germination at the end of each season were analyzed for the effects of temperature treatments, seasons, and local climate (temperature of the germination period, T gp ) at each site. T gp was a significant covariate of germination in all species but Cistus populifolius. Temperature treatments significantly affected Cistus ladanifer, C. salviifolius, and Halimium ocymoides. Germination occurred in simulated autumn conditions, with little germination occurring at later seasons, except in unheated seeds of H. ocymoides. Exposure to a heat shock changed the sensitivity to temperature treatments and the relationships with T gp . Germination responses to temperature differ not only among species but also within species across their latitudinal range. The responses were idiosyncratic and related to the local climate of the population. This germination variability complicates generalizing the impacts of climate variability and climate change. © 2017 Botanical Society of America.

  15. Genetic and epigenetic differences associated with environmental gradients in replicate populations of two salt marsh perennials.

    PubMed

    Foust, C M; Preite, V; Schrey, A W; Alvarez, M; Robertson, M H; Verhoeven, K J F; Richards, C L

    2016-04-01

    While traits and trait plasticity are partly genetically based, investigating epigenetic mechanisms may provide more nuanced understanding of the mechanisms underlying response to environment. Using AFLP and methylation-sensitive AFLP, we tested the hypothesis that differentiation to habitats along natural salt marsh environmental gradients occurs at epigenetic, but not genetic loci in two salt marsh perennials. We detected significant genetic and epigenetic structure among populations and among subpopulations, but we found multilocus patterns of differentiation to habitat type only in epigenetic variation for both species. In addition, more epigenetic than genetic loci were correlated with habitat in both species. When we analysed genetic and epigenetic variation simultaneously with partial Mantel, we found no correlation between genetic variation and habitat and a significant correlation between epigenetic variation and habitat in Spartina alterniflora. In Borrichia frutescens, we found significant correlations between epigenetic and/or genetic variation and habitat in four of five populations when populations were analysed individually, but there was no significant correlation between genetic or epigenetic variation and habitat when analysed jointly across the five populations. These analyses suggest that epigenetic mechanisms are involved in the response to salt marsh habitats, but also that the relationships among genetic and epigenetic variation and habitat vary by species. Site-specific conditions may also cloud our ability to detect response in replicate populations with similar environmental gradients. Future studies analysing sequence data and the correlation between genetic variation and DNA methylation will be powerful to identify the contributions of genetic and epigenetic response to environmental gradients. © 2016 John Wiley & Sons Ltd.

  16. Short-range phenotypic divergence among genetically distinct parapatric populations of an Australian funnel-web spider.

    PubMed

    Wong, Mark K L; Woodman, James D; Rowell, David M

    2017-07-01

    Speciation involves divergence at genetic and phenotypic levels. Where substantial genetic differentiation exists among populations, examining variation in multiple phenotypic characters may elucidate the mechanisms by which divergence and speciation unfold. Previous work on the Australian funnel-web spider Atrax sutherlandi Gray (2010; Records of the Australian Museum 62 , 285-392; Mygalomorphae: Hexathelidae: Atracinae) has revealed a marked genetic structure along a 110-kilometer transect, with six genetically distinct, parapatric populations attributable to past glacial cycles. In the present study, we explore variation in three classes of phenotypic characters (metabolic rate, water loss, and morphological traits) within the context of this phylogeographic structuring. Variation in metabolic and water loss rates shows no detectable association with genetic structure; the little variation observed in these rates may be due to the spiders' behavioral adaptations (i.e., burrowing), which buffer the effects of climatic gradients across the landscape. However, of 17 morphological traits measured, 10 show significant variation among genetic populations, in a disjunct manner that is clearly not latitudinal. Moreover, patterns of variation observed for morphological traits serving different organismic functions (e.g., prey capture, burrowing, and locomotion) are dissimilar. In contrast, a previous study of an ecologically similar sympatric spider with little genetic structure indicated a strong latitudinal response in 10 traits over the same range. The congruence of morphological variation with deep phylogeographic structure in Tallaganda's A. sutherlandi populations, as well as the inconsistent patterns of variation across separate functional traits, suggest that the spiders are likely in early stages of speciation, with parapatric populations independently responding to local selective forces.

  17. Growth rate responses of Missouri and lower Yellowstone river fishes to a latitudinal gradient

    USGS Publications Warehouse

    Pegg, M.A.; Pierce, C.L.

    2001-01-01

    Growth rate coefficients estimated for channel catfish Ictalurus punctatus, emerald shiners Notropis atherinoides, freshwater drums Aplodinotus grunniens, river carpsuckers Carpiodes carpio and saugers Stizostedion canadense collected in 1996-1998 from nine river sections of the Missouri and lower Yellowstone rivers at two life-stages (young-of-the-year and age 1 + years) were significantly different among sections. However, they showed no river-wide latitudinal trend except for age 1 + years emerald shiners that did show a weak negative relation between growth and both latitude and length of growing season. The results suggest growth rates of fishes along the Missouri River system are complex and could be of significance in the management and conservation of fish communities in this altered system. ?? 2001 The Fisheries Society of the British Isles.

  18. Is the Success of Plant Invasions the Result of Rapid Adaptive Evolution in Seed Traits? Evidence from a Latitudinal Rainfall Gradient

    PubMed Central

    Molina-Montenegro, Marco A.; Acuña-Rodríguez, Ian S.; Flores, Tomás S. M.; Hereme, Rasme; Lafon, Alejandra; Atala, Cristian; Torres-Díaz, Cristian

    2018-01-01

    It has been widely suggested that invasion success along broad environmental gradients may be partially due to phenotypic plasticity, but rapid evolution could also be a relevant factor for invasions. Seed and fruit traits can be relevant for plant invasiveness since they are related to dispersal, germination, and fitness. Some seed traits vary along environmental gradients and can be heritable, with the potential to evolve by means of natural selection. Utilizing cross-latitude and reciprocal-transplant experiments, we evaluated the adaptive value of seed thickness as assessed by survival and biomass accumulation in Taraxacum officinale plants. In addition, thickness of a seed and Endosperm to Seed Coat Proportion (ESCP) in a second generation (F2) was measured to evaluate the heritability of this seed trait. On the other hand, we characterized the genetic variability of the sampled individuals with amplified fragment length polymorphism (AFLP) markers, analyzing its spatial distribution and population structure. Overall, thickness of seed coat (plus wall achene) decreases with latitude, indicating that individuals of T. officinale from northern populations have a thicker seed coat than those from southern populations. Germination increased with greater addition of water and seeds from southern localities germinated significantly more than those from the north. Additionally, reciprocal transplants showed significant differences in survival percentage and biomass accumulation among individuals from different localities and moreover, the high correlation between maternal plants and their offspring can be suggesting a high grade of heritability of this trait. Although genetic differentiation was found when was considered all populations, there was no significant differentiation when only was compared the northernmost populations which inhabit in the driest climate conditions. Our results suggest that climatic conditions could affect both, the ESCP and the genetic

  19. Use of a latitudinal gradient in bald cypress (Taxodium distichum) production to examine physiological controls of biotic boundaries and potential responses to environment change

    USGS Publications Warehouse

    Middleton, B.A.; McKee, K.L.

    2004-01-01

    Aim: Predictions of vegetation change with global warming require models that accurately reflect physiological processes underlying growth limitations and species distributions. However, information about environmental controls on physiology and consequent effects on species boundaries and ecosystem functions such as production is limited, especially for forested wetlands that are potentially important carbon sinks. Location: The bald cypress (Taxodium distichum) region of the south-eastern United States was studied to examine how production of an important forested wetland varies with latitude and temperature as well as local hydrology. Methods: We used published data to analyse litter production across a latitudinal gradient from 26.2 to 37.8?? N to determine how bald cypress swamps might respond to alternate climate conditions and what changes might occur throughout the distributional range. Results: Litterfall rates followed a bell shaped curve, indicating that production was more limited at the distributional boundaries (c. 225 g/m2 year-1) compared to the mid-range (795-1126 g/m2 year-1). This pattern suggests that conditions are sub-optimal near both boundaries and that the absence of populations outside this latitudinal range may be largely due to physiological constraints on the carbon balance of dominant species. While dispersal limitations cannot be totally discounted, competition with other wetland types at the extremes of the range does not seem likely to be important because the relative basal area of bald cypress does not decrease near the edges of the range. Impaired hydrology depressed production across the entire range, but more in the south than the north. Main conclusions: Our findings suggest that (1) physiological limitations constrain biotic boundaries of bald cypress swamps; (2) future changes in global temperature would affect litter production in a nonlinear manner across the distributional range; (3) local changes in hydrology may

  20. Environmental Factors Correlated with the Metabolite Profile of Vitis vinifera cv. Pinot Noir Berry Skins along a European Latitudinal Gradient.

    PubMed

    Del-Castillo-Alonso, María Ángeles; Castagna, Antonella; Csepregi, Kristóf; Hideg, Éva; Jakab, Gabor; Jansen, Marcel A K; Jug, Tjaša; Llorens, Laura; Mátai, Anikó; Martínez-Lüscher, Johann; Monforte, Laura; Neugart, Susanne; Olejnickova, Julie; Ranieri, Annamaria; Schödl-Hummel, Katharina; Schreiner, Monika; Soriano, Gonzalo; Teszlák, Péter; Tittmann, Susanne; Urban, Otmar; Verdaguer, Dolors; Zipoli, Gaetano; Martínez-Abaigar, Javier; Núñez-Olivera, Encarnación

    2016-11-23

    Mature berries of Pinot Noir grapevines were sampled across a latitudinal gradient in Europe, from southern Spain to central Germany. Our aim was to study the influence of latitude-dependent environmental factors on the metabolite composition (mainly phenolic compounds) of berry skins. Solar radiation variables were positively correlated with flavonols and flavanonols and, to a lesser extent, with stilbenes and cinnamic acids. The daily means of global and erythematic UV solar radiation over long periods (bud break-veraison, bud break-harvest, and veraison-harvest), and the doses and daily means in shorter development periods (5-10 days before veraison and harvest) were the variables best correlated with the phenolic profile. The ratio between trihydroxylated and monohydroxylated flavonols, which was positively correlated with antioxidant capacity, was the berry skin variable best correlated with those radiation variables. Total flavanols and total anthocyanins did not show any correlation with radiation variables. Air temperature, degree days, rainfall, and aridity indices showed fewer correlations with metabolite contents than radiation. Moreover, the latter correlations were restricted to the period veraison-harvest, where radiation, temperature, and water availability variables were correlated, making it difficult to separate the possible individual effects of each type of variable. The data show that managing environmental factors, in particular global and UV radiation, through cultural practices during specific development periods, can be useful to promote the synthesis of valuable nutraceuticals and metabolites that influence wine quality.

  1. Latitudinal patterns in the life-history traits of three isolated Atlantic populations of the deep-water shrimp Plesionika edwardsii (Decapoda, Pandalidae)

    NASA Astrophysics Data System (ADS)

    González, José A.; Pajuelo, José G.; Triay-Portella, Raül; Ruiz-Díaz, Raquel; Delgado, João; Góis, Ana R.; Martins, Albertino

    2016-11-01

    Patterns in the life-history traits of the pandalid shrimp Plesionika edwardsii are studied for the first time in three isolated Atlantic populations (Madeira, Canaries and Cape Verde Islands) to gain an understanding of their latitudinal variations. The maximum carapace size of the populations studied, as well as the maximum weight, showed clear latitudinal patterns. The patterns observed may be a consequence of the temperature experienced by shrimps during development, 1.37 ° C higher in the Canaries and 5.96 ° C higher in the Cape Verde Islands than in Madeira. These temperature differences among populations may have induced phenotypic plasticity because the observed final body size decreased as the temperature increased. A latitudinal north-south pattern was also observed in the maximum size of ovigerous females, with larger sizes found in the Madeira area and lower sizes observed in the Cape Verde Islands. A similar pattern was observed in the brood size and maximum egg size. Females of P. edwardsii produced smaller eggs in the Cape Verde Islands than did those at the higher latitude in Madeira. P. edwardsii was larger at sexual maturity in Madeira than in the Cape Verde Islands. The relative size at sexual maturity is not affected by latitude or environmental factors and is the same in the three areas studied, varying slightly between 0.568 and 0.585. P. edwardsii had a long reproductive season with ovigerous females observed all year round, although latitudinal variations were observed. Seasonally, there were more ovigerous females in spring and summer in Madeira and from winter to summer in the Cape Verde Islands. P. edwardsii showed a latitudinal pattern in size, with asymptotic size and growth rate showing a latitudinal compensation gradient as a result of an increased growth performance in the Madeira population compared to that of the Cape Verde Islands.

  2. Latitudinal patterns of leaf N, P stoichiometry and nutrient resorption of Metasequoia glyptostroboides along the eastern coastline of China.

    PubMed

    Zhang, Hui; Guo, Weihong; Yu, Mukui; Wang, G Geoff; Wu, Tonggui

    2018-03-15

    Latitudinal patterns of leaf stoichiometry and nutrient resorption were not consistent among published studies, likely due to confounding effects from taxonomy (e.g., plant distribution and community composition), and environment, which is also influenced by altitude and longitude. Thus, the latitudinal patterns and environmental mechanism could be best revealed by testing a given species along a latitude gradient with similar altitude and longitude. We determined nitrogen (N) and phosphorus (P) concentrations of green (leaf) and senesced leaves (litter) from eight Metasequoia glyptostroboides forests along the eastern coastline of China, with similar altitude and longitude. Leaf N, P concentrations increased along latitude, mainly driven by mean annual temperature (MAT), mean annual precipitation (MAP), annual evaporation (AE), aridity index (AI), and annual total solar radiation (ATSR); While leaf N:P ratio was stable with no latitudinal pattern. Nitrogen resorption efficiency (NRE) increased along latitude, and was also mainly influenced by MAT, MAP, AE, and AI. Phosphorus resorption efficiency (PRE) first increased and then decreased with latitude, which was impacted by soil available P. These results indicated that only climate (such as heat, water, and light) controlled the shift in leaf stoichiometry and NRE, while soil nutrient was likely responsible for the shift in PRE along eastern China. Our findings also suggested that leaf N, P stoichiometry and NRE displayed similar latitudinal patterns at regional scale when studied for a given species (this study) or multi-species (previous studies). Copyright © 2017. Published by Elsevier B.V.

  3. Lunar fingerprints in the modulated incoming solar radiation: In situ insolation and latitudinal insolation gradients as two important interpretative metrics for paleoclimatic data records and theoretical climate modeling

    NASA Astrophysics Data System (ADS)

    Cionco, Rodolfo Gustavo; Valentini, José Ernesto; Quaranta, Nancy Esther; Soon, Willie W.-H.

    2018-01-01

    We present a new set of solar radiation forcing that now incorporated not only the gravitational perturbation of the Sun-Earth-Moon geometrical orbits but also the intrinsic solar magnetic modulation of the total solar irradiance (TSI). This new dataset, covering the past 2000 years as well as a forward projection for about 100 years based on recent result by Velasco-Herrera et al. (2015), should provide a realistic basis to examine and evaluate the role of external solar forcing on Earth climate on decadal, multidecadal to multicentennial timescales. A second goal of this paper is to propose both in situ insolation forcing variable and the latitudinal insolation gradients (LIG) as two key metrics that are subjected to a deterministic modulation by lunar nodal cycle which are often confused with tidal forcing impacts as assumed and interpreted in previous studies of instrumental and paleoclimatic records. Our new results and datasets are made publicly available for all at PANGAEA site.

  4. Broad-scale latitudinal variation in female reproductive success contributes to the maintenance of a geographic range boundary in bagworms (Lepidoptera: Psychidae).

    PubMed

    Rhainds, Marc; Fagan, William F

    2010-11-30

    Geographic range limits and the factors structuring them are of great interest to biologists, in part because of concerns about how global change may shift range boundaries. However, scientists lack strong mechanistic understanding of the factors that set geographic range limits in empirical systems, especially in animals. Across dozens of populations spread over six degrees of latitude in the American Midwest, female mating success of the evergreen bagworm Thyridopteryx ephemeraeformis (Lepidoptera: Psychidae) declines from ∼100% to ∼0% near the edge of the species range. When coupled with additional latitudinal declines in fecundity and in egg and pupal survivorship, a spatial gradient of bagworm reproductive success emerges. This gradient is associated with a progressive decline in local abundance and an increased risk of local population extinction, up to a latitudinal threshold where extremely low female fitness meshes spatially with the species' geographic range boundary. The reduction in fitness of female bagworms near the geographic range limit, which concords with the abundant centre hypothesis from biogeography, provides a concrete, empirical example of how an Allee effect (increased pre-reproductive mortality of females in sparsely populated areas) may interact with other demographic factors to induce a geographic range limit.

  5. Moss stable isotopes (carbon-13, oxygen-18) and testate amoebae reflect environmental inputs and microclimate along a latitudinal gradient on the Antarctic Peninsula.

    PubMed

    Royles, Jessica; Amesbury, Matthew J; Roland, Thomas P; Jones, Glyn D; Convey, Peter; Griffiths, Howard; Hodgson, Dominic A; Charman, Dan J

    2016-07-01

    The stable isotope compositions of moss tissue water (δ(2)H and δ(18)O) and cellulose (δ(13)C and δ(18)O), and testate amoebae populations were sampled from 61 contemporary surface samples along a 600-km latitudinal gradient of the Antarctic Peninsula (AP) to provide a spatial record of environmental change. The isotopic composition of moss tissue water represented an annually integrated precipitation signal with the expected isotopic depletion with increasing latitude. There was a weak, but significant, relationship between cellulose δ(18)O and latitude, with predicted source water inputs isotopically enriched compared to measured precipitation. Cellulose δ(13)C values were dependent on moss species and water content, and may reflect site exposure to strong winds. Testate amoebae assemblages were characterised by low concentrations and taxonomic diversity, with Corythion dubium and Microcorycia radiata types the most cosmopolitan taxa. The similarity between the intra- and inter-site ranges measured in all proxies suggests that microclimate and micro-topographical conditions around the moss surface were important determinants of proxy values. Isotope and testate amoebae analyses have proven value as palaeoclimatic, temporal proxies of climate change, whereas this study demonstrates that variations in isotopic and amoeboid proxies between microsites can be beyond the bounds of the current spatial variability in AP climate.

  6. Tomato GOLDEN2-LIKE Transcription Factors Reveal Molecular Gradients That Function during Fruit Development and Ripening[W][OPEN

    PubMed Central

    Nguyen, Cuong V.; Vrebalov, Julia T.; Gapper, Nigel E.; Zheng, Yi; Zhong, Silin; Fei, Zhangjun; Giovannoni, James J.

    2014-01-01

    Fruit ripening is the summation of changes rendering fleshy fruit tissues attractive and palatable to seed dispersing organisms. For example, sugar content is influenced by plastid numbers and photosynthetic activity in unripe fruit and later by starch and sugar catabolism during ripening. Tomato fruit are sinks of photosynthate, yet unripe green fruit contribute significantly to the sugars that ultimately accumulate in the ripe fruit. Plastid numbers and chlorophyll content are influenced by numerous environmental and genetic factors and are positively correlated with photosynthesis and photosynthate accumulation. GOLDEN2-LIKE (GLK) transcription factors regulate plastid and chlorophyll levels. Tomato (Solanum lycopersicum), like most plants, contains two GLKs (i.e., GLK1 and GLK2/UNIFORM). Mutant and transgene analysis demonstrated that these genes encode functionally similar peptides, though differential expression renders GLK1 more important in leaves, while GLK2 is predominant in fruit. A latitudinal gradient of GLK2 expression influences the typical uneven coloration of green and ripe wild-type fruit. Transcriptome profiling revealed a broader fruit gene expression gradient throughout development. The gradient influenced general ripening activities beyond plastid development and was consistent with the easily observed yet poorly studied ripening gradient present in tomato and many fleshy fruits. PMID:24510723

  7. Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests.

    PubMed

    Ostonen, Ivika; Lõhmus, Krista; Helmisaari, Heljä-Sisko; Truu, Jaak; Meel, Signe

    2007-11-01

    Variability in short root morphology of the three main tree species of Europe's boreal forest (Norway spruce (Picea abies L. Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth)) was investigated in four stands along a latitudinal gradient from northern Finland to southern Estonia. Silver birch and Scots pine were present in three stands and Norway spruce was present in all stands. For three fertile Norway spruce stands, fine root biomass and number of root tips per stand area or unit basal area were assessed from north to south. Principal component analysis indicated that short root morphology was significantly affected by tree species and site, which together explained 34.7% of the total variability. The range of variation in mean specific root area (SRA) was 51-74, 60-70 and 84-124 m(2) kg(-1) for Norway spruce, Scots pine and silver birch, respectively, and the corresponding ranges for specific root length were 37-47, 40-48 and 87-97 m g(-1). The range of variation in root tissue density of Norway spruce, Scots pine and silver birch was 113-182, 127-158 and 81-156 kg m(-3), respectively. Sensitivity of short root morphology to site conditions decreased in the order: Norway spruce > silver birch > Scots pine. Short root SRA increased with site fertility in all species. In Norway spruce, fine root biomass and number of root tips per m(2) decreased from north to south. The differences in morphological parameters among sites were significant but smaller than the site differences in fine root biomass and number of root tips.

  8. Latitudinal migration of sunspots based on the ESAI database

    NASA Astrophysics Data System (ADS)

    Zhang, Juan; Li, Fu-Yu; Feng, Wen

    2018-01-01

    The latitudinal migration of sunspots toward the equator, which implies there is propagation of the toroidal magnetic flux wave at the base of the solar convection zone, is one of the crucial observational bases for the solar dynamo to generate a magnetic field by shearing of the pre-existing poloidal magnetic field through differential rotation. The Extended time series of Solar Activity Indices (ESAI) elongated the Greenwich observation record of sunspots by several decades in the past. In this study, ESAI’s yearly mean latitude of sunspots in the northern and southern hemispheres during the years 1854 to 1985 is utilized to statistically test whether hemispherical latitudinal migration of sunspots in a solar cycle is linear or nonlinear. It is found that a quadratic function is statistically significantly better at describing hemispherical latitudinal migration of sunspots in a solar cycle than a linear function. In addition, the latitude migration velocity of sunspots in a solar cycle decreases as the cycle progresses, providing a particular constraint for solar dynamo models. Indeed, the butterfly wing pattern with a faster latitudinal migration rate should present stronger solar activity with a shorter cycle period, and it is located at higher latitudinal position, giving evidence to support the Babcock-Leighton dynamo mechanism.

  9. Genetic diversity in natural populations of a soil bacterium across a landscape gradient

    PubMed Central

    McArthur, J. Vaun; Kovacic, David A.; Smith, Michael H.

    1988-01-01

    Genetic diversity in natural populations of the bacterium Pseudomonas cepacia was surveyed in 10 enzymes from 70 clones isolated along a landscape gradient. Estimates of genetic diversity, ranging from 0.54 to 0.70, were higher than any previously reported values of which we are aware and were positively correlated with habitat variability. Patterns of bacterial genetic diversity were correlated with habitat variability. Findings indicate that the source of strains used in genetic engineering will greatly affect the outcome of planned releases in variable environments. Selection of generalist strains may confer a large advantage to engineered populations, while selection of laboratory strains may result in quick elimination of the engineered strains. PMID:16594009

  10. Latitudinal discontinuity in thermal conditions along the nearshore of central-northern Chile.

    PubMed

    Tapia, Fabian J; Largier, John L; Castillo, Manuel; Wieters, Evie A; Navarrete, Sergio A

    2014-01-01

    Over the past decade, evidence of abrupt latitudinal changes in the dynamics, structure and genetic variability of intertidal and subtidal benthic communities along central-northern Chile has been found consistently at 30-32°S. Changes in the advective and thermal environment in nearshore waters have been inferred from ecological patterns, since analyses of in situ physical data have thus far been missing. Here we analyze a unique set of shoreline temperature data, gathered over 4-10 years at 15 sites between 28-35°S, and combine it with satellite-derived winds and sea surface temperatures to investigate the latitudinal transition in nearshore oceanographic conditions suggested by recent ecological studies. Our results show a marked transition in thermal conditions at 30-31°S, superimposed on a broad latitudinal trend, and small-scale structures associated with cape-and-bay topography. The seasonal cycle dominated temperature variability throughout the region, but its relative importance decreased abruptly south of 30-31°S, as variability at synoptic and intra-seasonal scales became more important. The response of shoreline temperatures to meridional wind stress also changed abruptly at the transition, leading to a sharp drop in the occurrence of low-temperature waters at northern sites, and a concurrent decrease in corticated algal biomass. Together, these results suggest a limitation of nitrate availability in nearshore waters north of the transition. The localized alongshore change results from the interaction of latitudinal trends (e.g., wind stress, surface warming, inertial period) with a major headland-bay system (Punta Lengua de Vaca at 30.25°S), which juxtaposes a southern stretch of coast characterized by upwelling with a northern stretch of coast characterized by warm surface waters and stratification. This transition likely generates a number of latitude-dependent controls on ecological processes in the nearshore that can explain species

  11. Latitudinal Discontinuity in Thermal Conditions along the Nearshore of Central-Northern Chile

    PubMed Central

    Tapia, Fabian J.; Largier, John L.; Castillo, Manuel; Wieters, Evie A.; Navarrete, Sergio A.

    2014-01-01

    Over the past decade, evidence of abrupt latitudinal changes in the dynamics, structure and genetic variability of intertidal and subtidal benthic communities along central-northern Chile has been found consistently at 30–32°S. Changes in the advective and thermal environment in nearshore waters have been inferred from ecological patterns, since analyses of in situ physical data have thus far been missing. Here we analyze a unique set of shoreline temperature data, gathered over 4–10 years at 15 sites between 28–35°S, and combine it with satellite-derived winds and sea surface temperatures to investigate the latitudinal transition in nearshore oceanographic conditions suggested by recent ecological studies. Our results show a marked transition in thermal conditions at 30–31°S, superimposed on a broad latitudinal trend, and small-scale structures associated with cape-and-bay topography. The seasonal cycle dominated temperature variability throughout the region, but its relative importance decreased abruptly south of 30–31°S, as variability at synoptic and intra-seasonal scales became more important. The response of shoreline temperatures to meridional wind stress also changed abruptly at the transition, leading to a sharp drop in the occurrence of low-temperature waters at northern sites, and a concurrent decrease in corticated algal biomass. Together, these results suggest a limitation of nitrate availability in nearshore waters north of the transition. The localized alongshore change results from the interaction of latitudinal trends (e.g., wind stress, surface warming, inertial period) with a major headland-bay system (Punta Lengua de Vaca at 30.25°S), which juxtaposes a southern stretch of coast characterized by upwelling with a northern stretch of coast characterized by warm surface waters and stratification. This transition likely generates a number of latitude-dependent controls on ecological processes in the nearshore that can explain species

  12. Geographical Gradients in Argentinean Terrestrial Mammal Species Richness and Their Environmental Correlates

    PubMed Central

    Márquez, Ana L.; Real, Raimundo; Kin, Marta S.; Guerrero, José Carlos; Galván, Betina; Barbosa, A. Márcia; Olivero, Jesús; Palomo, L. Javier; Vargas, J. Mario; Justo, Enrique

    2012-01-01

    We analysed the main geographical trends of terrestrial mammal species richness (SR) in Argentina, assessing how broad-scale environmental variation (defined by climatic and topographic variables) and the spatial form of the country (defined by spatial filters based on spatial eigenvector mapping (SEVM)) influence the kinds and the numbers of mammal species along these geographical trends. We also evaluated if there are pure geographical trends not accounted for by the environmental or spatial factors. The environmental variables and spatial filters that simultaneously correlated with the geographical variables and SR were considered potential causes of the geographic trends. We performed partial correlations between SR and the geographical variables, maintaining the selected explanatory variables statistically constant, to determine if SR was fully explained by them or if a significant residual geographic pattern remained. All groups and subgroups presented a latitudinal gradient not attributable to the spatial form of the country. Most of these trends were not explained by climate. We used a variation partitioning procedure to quantify the pure geographic trend (PGT) that remained unaccounted for. The PGT was larger for latitudinal than for longitudinal gradients. This suggests that historical or purely geographical causes may also be relevant drivers of these geographical gradients in mammal diversity. PMID:23028254

  13. Natural Genetic Variation and Candidate Genes for Morphological Traits in Drosophila melanogaster

    PubMed Central

    Carreira, Valeria Paula; Mensch, Julián; Hasson, Esteban; Fanara, Juan José

    2016-01-01

    Body size is a complex character associated to several fitness related traits that vary within and between species as a consequence of environmental and genetic factors. Latitudinal and altitudinal clines for different morphological traits have been described in several species of Drosophila and previous work identified genomic regions associated with such variation in D. melanogaster. However, the genetic factors that orchestrate morphological variation have been barely studied. Here, our main objective was to investigate genetic variation for different morphological traits associated to the second chromosome in natural populations of D. melanogaster along latitudinal and altitudinal gradients in Argentina. Our results revealed weak clinal signals and a strong population effect on morphological variation. Moreover, most pairwise comparisons between populations were significant. Our study also showed important within-population genetic variation, which must be associated to the second chromosome, as the lines are otherwise genetically identical. Next, we examined the contribution of different candidate genes to natural variation for these traits. We performed quantitative complementation tests using a battery of lines bearing mutated alleles at candidate genes located in the second chromosome and six second chromosome substitution lines derived from natural populations which exhibited divergent phenotypes. Results of complementation tests revealed that natural variation at all candidate genes studied, invected, Fasciclin 3, toucan, Reticulon-like1, jing and CG14478, affects the studied characters, suggesting that they are Quantitative Trait Genes for morphological traits. Finally, the phenotypic patterns observed suggest that different alleles of each gene might contribute to natural variation for morphological traits. However, non-additive effects cannot be ruled out, as wild-derived strains differ at myriads of second chromosome loci that may interact

  14. Latitudinal shifts of introduced species: possible causes and implications

    Treesearch

    Qinfeng Guo; Dov F. Sax; Hong Qian; Regan Early

    2012-01-01

    This study aims to document shifts in the latitudinal distributions of non-native species relative to their own native distributions and to discuss possible causes and implications of these shifts. We used published and newly compiled data on intercontinentally introduced birds, mammals and plants. We found strong correlations between the latitudinal distributions...

  15. Spatial analyses of benthic habitats to define coral reef ecosystem regions and potential biogeographic boundaries along a latitudinal gradient.

    PubMed

    Walker, Brian K

    2012-01-01

    Marine organism diversity typically attenuates latitudinally from tropical to colder climate regimes. Since the distribution of many marine species relates to certain habitats and depth regimes, mapping data provide valuable information in the absence of detailed ecological data that can be used to identify and spatially quantify smaller scale (10 s km) coral reef ecosystem regions and potential physical biogeographic barriers. This study focused on the southeast Florida coast due to a recognized, but understudied, tropical to subtropical biogeographic gradient. GIS spatial analyses were conducted on recent, accurate, shallow-water (0-30 m) benthic habitat maps to identify and quantify specific regions along the coast that were statistically distinct in the number and amount of major benthic habitat types. Habitat type and width were measured for 209 evenly-spaced cross-shelf transects. Evaluation of groupings from a cluster analysis at 75% similarity yielded five distinct regions. The number of benthic habitats and their area, width, distance from shore, distance from each other, and LIDAR depths were calculated in GIS and examined to determine regional statistical differences. The number of benthic habitats decreased with increasing latitude from 9 in the south to 4 in the north and many of the habitat metrics statistically differed between regions. Three potential biogeographic barriers were found at the Boca, Hillsboro, and Biscayne boundaries, where specific shallow-water habitats were absent further north; Middle Reef, Inner Reef, and oceanic seagrass beds respectively. The Bahamas Fault Zone boundary was also noted where changes in coastal morphologies occurred that could relate to subtle ecological changes. The analyses defined regions on a smaller scale more appropriate to regional management decisions, hence strengthening marine conservation planning with an objective, scientific foundation for decision making. They provide a framework for similar

  16. Spatial Analyses of Benthic Habitats to Define Coral Reef Ecosystem Regions and Potential Biogeographic Boundaries along a Latitudinal Gradient

    PubMed Central

    Walker, Brian K.

    2012-01-01

    Marine organism diversity typically attenuates latitudinally from tropical to colder climate regimes. Since the distribution of many marine species relates to certain habitats and depth regimes, mapping data provide valuable information in the absence of detailed ecological data that can be used to identify and spatially quantify smaller scale (10 s km) coral reef ecosystem regions and potential physical biogeographic barriers. This study focused on the southeast Florida coast due to a recognized, but understudied, tropical to subtropical biogeographic gradient. GIS spatial analyses were conducted on recent, accurate, shallow-water (0–30 m) benthic habitat maps to identify and quantify specific regions along the coast that were statistically distinct in the number and amount of major benthic habitat types. Habitat type and width were measured for 209 evenly-spaced cross-shelf transects. Evaluation of groupings from a cluster analysis at 75% similarity yielded five distinct regions. The number of benthic habitats and their area, width, distance from shore, distance from each other, and LIDAR depths were calculated in GIS and examined to determine regional statistical differences. The number of benthic habitats decreased with increasing latitude from 9 in the south to 4 in the north and many of the habitat metrics statistically differed between regions. Three potential biogeographic barriers were found at the Boca, Hillsboro, and Biscayne boundaries, where specific shallow-water habitats were absent further north; Middle Reef, Inner Reef, and oceanic seagrass beds respectively. The Bahamas Fault Zone boundary was also noted where changes in coastal morphologies occurred that could relate to subtle ecological changes. The analyses defined regions on a smaller scale more appropriate to regional management decisions, hence strengthening marine conservation planning with an objective, scientific foundation for decision making. They provide a framework for similar

  17. Relationships between climate, soil moisture and phenology of the woody cover in two sites located along the West African latitudinal gradient

    NASA Astrophysics Data System (ADS)

    Seghieri, Josiane; Vescovo, Aude; Padel, Karine; Soubie, Remy; Arjounin, Marc; Boulain, Nicolas; de Rosnay, Patricia; Galle, Sylvie; Gosset, Marielle; Mouctar, Abakar H.; Peugeot, Christophe; Timouk, Franck

    2009-08-01

    SummaryThe study quantifies the relationships at local scale between phenology and determinants of climate and soil water resources at two sites located along the latitudinal gradient of West Africa, one in the central Sahel (Mali), the other in the Sudanian bioclimatic zone (Benin). The aim is to improve our knowledge on possible vegetation response to possible climate change. Within the Sudanian site, average annual rainfall is 1200 mm, extending from April to October, while, in the Sahelian site, it is 370 mm, occurring from June to September. Physical data were collected from the African Monsoon Multidisciplinary Analysis research programme. The phenology of the dominant species was monitored in four types of vegetation cover at the wetter site, and in three types of vegetation cover at the drier site. For each sampled plant, leafing, flowering and fruiting were recorded as binary variables in terms of the presence/absence of phenophases. A small proportion of the variability of each phenophase occurrence is explained by the logit models. However, rainfall rise is significantly linked to leafing probability increase in the Sahelian site but not in the Sudanian site. Day length extension and temperature decrease are significantly correlated with an increase in leafing in the Sudanian site, but not in the Sahelian. On both sites, the increase in cumulative rainfall is not found to be linked to an increased probability of reproductive phenophases (negative or non-significant relationships). Air temperature is positively correlated with flowering rate in the Sudanian site, but, all other factors being constant, no climate factors are found to be highly significant of flowering occurrence in the Sahel. Fruiting probability is positively correlated mainly with temperature within the Sahelian site. Leafing occurrence is positively correlated with soil moisture in the 0-1 m layer for the Sudanian site, but not for the Sahelian site. Significant relationships between

  18. Shifting latitudinal clines in avian body size correlate with global warming in Australian passerines.

    PubMed

    Gardner, Janet L; Heinsohn, Robert; Joseph, Leo

    2009-11-07

    Intraspecific latitudinal clines in the body size of terrestrial vertebrates, where members of the same species are larger at higher latitudes, are widely interpreted as evidence for natural selection and adaptation to local climate. These clines are predicted to shift in response to climate change. We used museum specimens to measure changes in the body size of eight passerine bird species from south-eastern Australia over approximately the last 100 years. Four species showed significant decreases in body size (1.8-3.6% of wing length) and a shift in latitudinal cline over that period, and a meta-analysis demonstrated a consistent trend across all eight species. Southern high-latitude populations now display the body sizes typical of more northern populations pre-1950, equivalent to a 7 degrees shift in latitude. Using ptilochronology, we found no evidence that these morphological changes were a plastic response to changes in nutrition, a likely non-genetic mechanism for the pattern observed. Our results demonstrate a generalized response by eight avian species to some major environmental change over the last 100 years or so, probably global warming.

  19. Metabolic rate and climatic fluctuations shape continental wide pattern of genetic divergence and biodiversity in fishes.

    PubMed

    April, Julien; Hanner, Robert H; Mayden, Richard L; Bernatchez, Louis

    2013-01-01

    Taxonomically exhaustive and continent wide patterns of genetic divergence within and between species have rarely been described and the underlying evolutionary causes shaping biodiversity distribution remain contentious. Here, we show that geographic patterns of intraspecific and interspecific genetic divergence among nearly all of the North American freshwater fish species (>750 species) support a dual role involving both the late Pliocene-Pleistocene climatic fluctuations and metabolic rate in determining latitudinal gradients of genetic divergence and very likely influencing speciation rates. Results indicate that the recurrent glacial cycles caused global reduction in intraspecific diversity, interspecific genetic divergence, and species richness at higher latitudes. At the opposite, longer geographic isolation, higher metabolic rate increasing substitution rate and possibly the rapid accumulation of genetic incompatibilities, led to an increasing biodiversity towards lower latitudes. This indicates that both intrinsic and extrinsic factors similarly affect micro and macro evolutionary processes shaping global patterns of biodiversity distribution. These results also indicate that factors favouring allopatric speciation are the main drivers underlying the diversification of North American freshwater fishes.

  20. Metabolic Rate and Climatic Fluctuations Shape Continental Wide Pattern of Genetic Divergence and Biodiversity in Fishes

    PubMed Central

    April, Julien; Hanner, Robert H.; Mayden, Richard L.; Bernatchez, Louis

    2013-01-01

    Taxonomically exhaustive and continent wide patterns of genetic divergence within and between species have rarely been described and the underlying evolutionary causes shaping biodiversity distribution remain contentious. Here, we show that geographic patterns of intraspecific and interspecific genetic divergence among nearly all of the North American freshwater fish species (>750 species) support a dual role involving both the late Pliocene-Pleistocene climatic fluctuations and metabolic rate in determining latitudinal gradients of genetic divergence and very likely influencing speciation rates. Results indicate that the recurrent glacial cycles caused global reduction in intraspecific diversity, interspecific genetic divergence, and species richness at higher latitudes. At the opposite, longer geographic isolation, higher metabolic rate increasing substitution rate and possibly the rapid accumulation of genetic incompatibilities, led to an increasing biodiversity towards lower latitudes. This indicates that both intrinsic and extrinsic factors similarly affect micro and macro evolutionary processes shaping global patterns of biodiversity distribution. These results also indicate that factors favouring allopatric speciation are the main drivers underlying the diversification of North American freshwater fishes. PMID:23922969

  1. Relating Paleoclimate Data and Past Temperature Gradients: Some Suggestive Rules

    NASA Technical Reports Server (NTRS)

    Rind, David

    1999-01-01

    Understanding tropical sensitivity is perhaps the major concern confronting researchers, for both past and future climate change issues. Tropical data has been beset by contradictions, and many techniques applicable to the extratropics are either unavailable or fraught with uncertainty when applied at low latitudes. Paleoclimate data, if interpreted within the context of the latitudinal temperature gradient data they imply, can be used to estimate what happened to tropical temperatures in the past, and provide a first guess for what might happen in the future. The approach is made possible by the modeling result that atmospheric dynamical changes, and the climate impacts they produce, respond primarily to temperature gradient changes. Here we review some "rules" obtained from GCM (General Circulation Model) experiments with different sea surface temperature gradients and different forcing, that can be used to relate paleoclimate reconstructions to the likely temperature gradient changes they suggest.

  2. Latitudinal variation in diapause duration and post-winter development in two pierid butterflies in relation to phenological specialization.

    PubMed

    Posledovich, Diana; Toftegaard, Tenna; Wiklund, Christer; Ehrlén, Johan; Gotthard, Karl

    2015-01-01

    Diapause plays a central role in insect life cycles by allowing survival during adverse seasonal conditions as well as synchronizing life cycles with the period of mate and food availability. Seasonal timing is expected to be particularly important for species that are dependent on resources available during a short time window-so-called phenological specialists-and latitudinal clines in seasonality are expected to favor local adaptation in phenological timing. However, to what degree latitudinal variation in diapause dynamics and post-winter development due to such local adaptation is influenced by the degree of phenological specialization is not well known. We experimentally studied two pierid butterfly species and found that the phenological specialist Anthocharis cardamines had shorter diapause duration than the phenological generalist Pieris napi along a latitudinal gradient in Sweden. Moreover, diapause duration increased with latitude in P. napi but not in A. cardamines. Sensitivity of the two species to winter thermal conditions also differed; additional cold temperature during the winter period shortened diapause duration for P. napi pupae but not for A. cardamines pupae. In both species, post-winter pupal development was faster after longer periods of cold conditions, and more southern populations developed faster than northern populations. Post-winter development was also invariably faster at higher temperatures in both species. We argue that the observed differences in diapause dynamics between the two species might be explained by the difference in phenological specialization that influences the costs of breaking diapause too early in the season.

  3. Comparative population genomics of latitudinal variation in Drosophila simulans and Drosophila melanogaster

    PubMed Central

    MACHADO, HEATHER E.; BERGLAND, ALAN O.; O’BRIEN, KATHERINE R.; BEHRMAN, EMILY L.; SCHMIDT, PAUL S.; PETROV, DMITRI A.

    2016-01-01

    Examples of clinal variation in phenotypes and genotypes across latitudinal transects have served as important models for understanding how spatially varying selection and demographic forces shape variation within species. Here, we examine the selective and demographic contributions to latitudinal variation through the largest comparative genomic study to date of Drosophila simulans and Drosophila melanogaster, with genomic sequence data from 382 individual fruit flies, collected across a spatial transect of 19 degrees latitude and at multiple time points over 2 years. Consistent with phenotypic studies, we find less clinal variation in D. simulans than D. melanogaster, particularly for the autosomes. Moreover, we find that clinally varying loci in D. simulans are less stable over multiple years than comparable clines in D. melanogaster. D. simulans shows a significantly weaker pattern of isolation by distance than D. melanogaster and we find evidence for a stronger contribution of migration to D. simulans population genetic structure. While population bottlenecks and migration can plausibly explain the differences in stability of clinal variation between the two species, we also observe a significant enrichment of shared clinal genes, suggesting that the selective forces associated with climate are acting on the same genes and phenotypes in D. simulans and D. melanogaster. PMID:26523848

  4. Analysis of Hydrodynamic Stability of Solar Tachocline Latitudinal Differential Rotation using a Shallow-Water Model

    NASA Astrophysics Data System (ADS)

    Dikpati, Mausumi; Gilman, Peter A.

    2001-04-01

    We examine the global, hydrodynamic stability of solar latitudinal differential rotation in a ``shallow-water'' model of the tachocline. Charbonneau, Dikpati, & Gilman have recently shown that two-dimensional disturbances are stable in the tachocline (which contains a pole-to-equator differential rotation s<18%). In our model, the upper boundary of the thin shell is allowed to deform in latitude, longitude, and time, thus including simplified three-dimensional effects. We examine the stability of differential rotation as a function of the effective gravity of the stratification in the tachocline. High effective gravity corresponds to the radiative part of the tachocline; for this case, the instability is similar to the strictly two-dimensional case (appearing only for s>=18%), driven primarily by the kinetic energy of differential rotation extracted through the work of the Reynolds stress. For low effective gravity, which corresponds to the overshoot part of the tachocline, a second mode of instability occurs, fed again by the kinetic energy of differential rotation, which is primarily extracted by additional stresses and correlations of perturbations arising in the deformed shell. In this case, instability occurs for differential rotation as low as about 11% between equator and pole. If this mode occurs in the Sun, it should destabilize the latitudinal differential rotation in the overshoot part of the tachocline, even without a toroidal field. For the full range of effective gravity, the vorticity associated with the perturbations, coupled with radial motion due to horizontal divergence/convergence of the fluid, gives rise to a longitude-averaged, net kinetic helicity pattern, and hence a source of α-effect in the tachocline. Thus there could be a dynamo in the tachocline, driven by this α-effect and the latitudinal and radial gradients of rotation.

  5. Effects of climatic gradients on genetic differentiation of Caragana on the Ordos Plateau, China

    Treesearch

    Jiuyan Yang; Samuel A. Cushman; Jie Yang; Mingbo Yang; Tiejun Bao

    2013-01-01

    The genus Caragana (Fabr.) in the Ordos Plateau of Inner Mongolia, China, provides a strong opportunity to investigate patterns of genetic differentiation along steep climatic gradients, and to identify the environmental factors most likely to be responsible for driving the radiation. This study used a factorial, multi-model approach to evaluate alternative hypotheses...

  6. The genetic variance but not the genetic covariance of life-history traits changes towards the north in a time-constrained insect.

    PubMed

    Sniegula, Szymon; Golab, Maria J; Drobniak, Szymon M; Johansson, Frank

    2018-06-01

    Seasonal time constraints are usually stronger at higher than lower latitudes and can exert strong selection on life-history traits and the correlations among these traits. To predict the response of life-history traits to environmental change along a latitudinal gradient, information must be obtained about genetic variance in traits and also genetic correlation between traits, that is the genetic variance-covariance matrix, G. Here, we estimated G for key life-history traits in an obligate univoltine damselfly that faces seasonal time constraints. We exposed populations to simulated native temperatures and photoperiods and common garden environmental conditions in a laboratory set-up. Despite differences in genetic variance in these traits between populations (lower variance at northern latitudes), there was no evidence for latitude-specific covariance of the life-history traits. At simulated native conditions, all populations showed strong genetic and phenotypic correlations between traits that shaped growth and development. The variance-covariance matrix changed considerably when populations were exposed to common garden conditions compared with the simulated natural conditions, showing the importance of environmentally induced changes in multivariate genetic structure. Our results highlight the importance of estimating variance-covariance matrixes in environments that mimic selection pressures and not only trait variances or mean trait values in common garden conditions for understanding the trait evolution across populations and environments. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  7. The evolutionary stability of cross-sex, cross-trait genetic covariances.

    PubMed

    Gosden, Thomas P; Chenoweth, Stephen F

    2014-06-01

    Although knowledge of the selective agents behind the evolution of sexual dimorphism has advanced considerably in recent years, we still lack a clear understanding of the evolutionary durability of cross-sex genetic covariances that often constrain its evolution. We tested the relative stability of cross-sex genetic covariances for a suite of homologous contact pheromones of the fruit fly Drosophila serrata, along a latitudinal gradient where these traits have diverged in mean. Using a Bayesian framework, which allowed us to account for uncertainty in all parameter estimates, we compared divergence in the total amount and orientation of genetic variance across populations, finding divergence in orientation but not total variance. We then statistically compared orientation divergence of within-sex (G) to cross-sex (B) covariance matrices. In line with a previous theoretical prediction, we find that the cross-sex covariance matrix, B, is more variable than either within-sex G matrix. Decomposition of B matrices into their symmetrical and nonsymmetrical components revealed that instability is linked to the degree of asymmetry. We also find that the degree of asymmetry correlates with latitude suggesting a role for spatially varying natural selection in shaping genetic constraints on the evolution of sexual dimorphism. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  8. Geographical gradients in selection can reveal genetic constraints for evolutionary responses to ocean acidification.

    PubMed

    Gaitán-Espitia, Juan Diego; Marshall, Dustin; Dupont, Sam; Bacigalupe, Leonardo D; Bodrossy, Levente; Hobday, Alistair J

    2017-02-01

    Geographical gradients in selection can shape different genetic architectures in natural populations, reflecting potential genetic constraints for adaptive evolution under climate change. Investigation of natural pH/pCO 2 variation in upwelling regions reveals different spatio-temporal patterns of natural selection, generating genetic and phenotypic clines in populations, and potentially leading to local adaptation, relevant to understanding effects of ocean acidification (OA). Strong directional selection, associated with intense and continuous upwellings, may have depleted genetic variation in populations within these upwelling regions, favouring increased tolerances to low pH but with an associated cost in other traits. In contrast, diversifying or weak directional selection in populations with seasonal upwellings or outside major upwelling regions may have resulted in higher genetic variances and the lack of genetic correlations among traits. Testing this hypothesis in geographical regions with similar environmental conditions to those predicted under climate change will build insights into how selection may act in the future and how populations may respond to stressors such as OA. © 2017 The Author(s).

  9. Geographical gradients in selection can reveal genetic constraints for evolutionary responses to ocean acidification

    PubMed Central

    Gaitán-Espitia, Juan Diego; Marshall, Dustin; Dupont, Sam; Bacigalupe, Leonardo D.; Bodrossy, Levente; Hobday, Alistair J.

    2017-01-01

    Geographical gradients in selection can shape different genetic architectures in natural populations, reflecting potential genetic constraints for adaptive evolution under climate change. Investigation of natural pH/pCO2 variation in upwelling regions reveals different spatio-temporal patterns of natural selection, generating genetic and phenotypic clines in populations, and potentially leading to local adaptation, relevant to understanding effects of ocean acidification (OA). Strong directional selection, associated with intense and continuous upwellings, may have depleted genetic variation in populations within these upwelling regions, favouring increased tolerances to low pH but with an associated cost in other traits. In contrast, diversifying or weak directional selection in populations with seasonal upwellings or outside major upwelling regions may have resulted in higher genetic variances and the lack of genetic correlations among traits. Testing this hypothesis in geographical regions with similar environmental conditions to those predicted under climate change will build insights into how selection may act in the future and how populations may respond to stressors such as OA. PMID:28148831

  10. Optimal defense theory explains deviations from latitudinal herbivory defense hypothesis.

    PubMed

    Kooyers, Nicholas J; Blackman, Benjamin K; Holeski, Liza M

    2017-04-01

    The latitudinal herbivory defense hypothesis (LHDH) postulates that the prevalence of species interactions, including herbivory, is greater at lower latitudes, leading to selection for increased levels of plant defense. While latitudinal defense clines may be caused by spatial variation in herbivore pressure, optimal defense theory predicts that clines could also be caused by ecogeographic variation in the cost of defense. For instance, allocation of resources to defense may not increase plant fitness when growing seasons are short and plants must reproduce quickly. Here we use a common garden experiment to survey genetic variation for constitutive and induced phenylpropanoid glycoside (PPG) concentrations across 35 Mimulus guttatus populations over a ~13° latitudinal transect. Our sampling regime is unique among studies of the LHDH in that it allows us to disentangle the effects of growing season length from those of latitude, temperature, and elevation. For five of the seven PPGs surveyed, we find associations between latitude and plant defense that are robust to population structure. However, contrary to the LHDH, only two PPGs were found at higher levels in low latitude populations, and total PPG concentrations were higher at higher latitudes. PPG levels are strongly correlated with growing season length, with higher levels of PPGs in plants from areas with longer growing seasons. Further, flowering time is positively correlated with the concentration of nearly all PPGs, suggesting that there may be a strong trade-off between development time and defense production. Our results reveal that ecogeographic patterns in plant defense may reflect variation in the cost of producing defense compounds in addition to variation in herbivore pressure. Thus, the biogeographic pattern predicted by the LHDH may not be accurate because the underlying factors driving variation in defense, in this case, growing season length, are not always associated with latitude in the same

  11. Phenological models to predict the main flowering phases of olive ( Olea europaea L.) along a latitudinal and longitudinal gradient across the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Aguilera, Fátima; Fornaciari, Marco; Ruiz-Valenzuela, Luis; Galán, Carmen; Msallem, Monji; Dhiab, Ali Ben; la Guardia, Consuelo Díaz-de; del Mar Trigo, María; Bonofiglio, Tommaso; Orlandi, Fabio

    2015-05-01

    The aim of the present study was to develop pheno-meteorological models to explain and forecast the main olive flowering phenological phases within the Mediterranean basin, across a latitudinal and longitudinal gradient that includes Tunisia, Spain, and Italy. To analyze the aerobiological sampling points, study periods from 13 years (1999-2011) to 19 years (1993-2011) were used. The forecasting models were constructed using partial least-squares regression, considering both the flowering start and full-flowering dates as dependent variables. The percentages of variance explained by the full-flowering models (mean 84 %) were greater than those explained by the flowering start models (mean 77 %). Moreover, given the time lag from the North African areas to the central Mediterranean areas in the main olive flowering dates, the regional full-flowering predictive models are proposed as the most useful to improve the knowledge of the influence of climate on the olive tree floral phenology. The meteorological parameters related to the previous autumn and both the winter and the spring seasons, and above all the temperatures, regulate the reproductive phenology of olive trees in the Mediterranean area. The mean anticipation of flowering start and full flowering for the future period from 2081 to 2100 was estimated at 10 and 12 days, respectively. One question can be raised: Will the olive trees located in the warmest areas be northward displaced or will they be able to adapt their physiology in response to the higher temperatures? The present study can be considered as an approach to design more detailed future bioclimate research.

  12. Mitochondrial DNA Markers Reveal High Genetic Diversity but Low Genetic Differentiation in the Black Fly Simulium tani Takaoka & Davies along an Elevational Gradient in Malaysia

    PubMed Central

    Low, Van Lun; Adler, Peter H.; Takaoka, Hiroyuki; Ya’cob, Zubaidah; Lim, Phaik Eem; Tan, Tiong Kai; Lim, Yvonne A. L.; Chen, Chee Dhang; Norma-Rashid, Yusoff; Sofian-Azirun, Mohd

    2014-01-01

    The population genetic structure of Simulium tani was inferred from mitochondria-encoded sequences of cytochrome c oxidase subunits I (COI) and II (COII) along an elevational gradient in Cameron Highlands, Malaysia. A statistical parsimony network of 71 individuals revealed 71 haplotypes in the COI gene and 43 haplotypes in the COII gene; the concatenated sequences of the COI and COII genes revealed 71 haplotypes. High levels of genetic diversity but low levels of genetic differentiation were observed among populations of S. tani at five elevations. The degree of genetic diversity, however, was not in accordance with an altitudinal gradient, and a Mantel test indicated that elevation did not have a limiting effect on gene flow. No ancestral haplotype of S. tani was found among the populations. Pupae with unique structural characters at the highest elevation showed a tendency to form their own haplotype cluster, as revealed by the COII gene. Tajima’s D, Fu’s Fs, and mismatch distribution tests revealed population expansion of S. tani in Cameron Highlands. A strong correlation was found between nucleotide diversity and the levels of dissolved oxygen in the streams where S. tani was collected. PMID:24941043

  13. Mitochondrial DNA markers reveal high genetic diversity but low genetic differentiation in the black fly Simulium tani Takaoka & Davies along an elevational gradient in Malaysia.

    PubMed

    Low, Van Lun; Adler, Peter H; Takaoka, Hiroyuki; Ya'cob, Zubaidah; Lim, Phaik Eem; Tan, Tiong Kai; Lim, Yvonne A L; Chen, Chee Dhang; Norma-Rashid, Yusoff; Sofian-Azirun, Mohd

    2014-01-01

    The population genetic structure of Simulium tani was inferred from mitochondria-encoded sequences of cytochrome c oxidase subunits I (COI) and II (COII) along an elevational gradient in Cameron Highlands, Malaysia. A statistical parsimony network of 71 individuals revealed 71 haplotypes in the COI gene and 43 haplotypes in the COII gene; the concatenated sequences of the COI and COII genes revealed 71 haplotypes. High levels of genetic diversity but low levels of genetic differentiation were observed among populations of S. tani at five elevations. The degree of genetic diversity, however, was not in accordance with an altitudinal gradient, and a Mantel test indicated that elevation did not have a limiting effect on gene flow. No ancestral haplotype of S. tani was found among the populations. Pupae with unique structural characters at the highest elevation showed a tendency to form their own haplotype cluster, as revealed by the COII gene. Tajima's D, Fu's Fs, and mismatch distribution tests revealed population expansion of S. tani in Cameron Highlands. A strong correlation was found between nucleotide diversity and the levels of dissolved oxygen in the streams where S. tani was collected.

  14. Eocene high-latitude temperature gradients over time and space based on d18O values of fossil shark teeth

    NASA Astrophysics Data System (ADS)

    Zeichner, S. S.; Kim, S.; Colman, A. S.

    2015-12-01

    Early-Mid Eocene (56.0-33.9Mya) is characterized by a temperate Antarctic climate and shallower latitudinal temperature gradients than those in present day. The warmer waters off the coast of the Antarctic Peninsula provided suitable habitats for taxa (i.e., sharks) that live today at lower latitudes. Stable isotope analysis of Eocene shark teeth provides a proxy to understand high latitude temperature gradients. However, shark ecology, in particular migration and occupation of tidal versus pelagic habitats, must be considered in the interpretation of stable isotope data. In this study, we analyze d18OPO4 values from the enameloid of Striatolamia (synonymized with Carcharias) shark teeth from the La Meseta formation (Seymour Island, Antarctica) to estimate paleotemperature in Early-Mid Eocene Antarctica, and assess the impact of ecology versus environmental signals on d18OPO4 values. We compare the ranges and offsets between our measured shark tooth d18OPO4 and published bivalve d18OCO3 values to test whether shark teeth record signals of migration across latitudinal temperature gradients, or instead reflect seasonal and long-term temporal variation across La Meseta stratigraphic units.

  15. Significant geographic gradients in particulate sulfate over Japan determined from multiple-site measurements and a chemical transport model: Impacts of transboundary pollution from the Asian continent

    NASA Astrophysics Data System (ADS)

    Aikawa, Masahide; Ohara, Toshimasa; Hiraki, Takatoshi; Oishi, Okihiro; Tsuji, Akihiro; Yamagami, Makiko; Murano, Kentaro; Mukai, Hitoshi

    2010-01-01

    We found a significant geographic gradient (longitudinal and latitudinal) in the sulfate (SO 42-) concentrations measured at multiple sites over the East Asian Pacific Rim region. Furthermore, the observed gradient was well reproduced by a regional chemical transport model. The observed and modeled SO 42- concentrations were higher at the sites closer to the Asian continent. The concentrations of SO 42- from China as calculated by the model also showed the fundamental features of the longitudinal/latitudinal gradient. The proportional contribution of Chinese SO 42- to the total in Japan throughout the year was above 50-70% in the control case, using data for Chinese sulfur dioxide (SO 2) emission from the Regional Emission Inventory in Asia (40-60% in the low Chinese emissions case, using Chinese SO 2 emissions data from the State Environmental Protection Administration of China), with a winter maximum of approximately 65-80%, although the actual concentrations of SO 42- from China were highest in summer. The multiple-site measurements and the model analysis strongly suggest that the SO 42- concentrations in Japan were influenced by the outflow from the Asian continent, and this influence was greatest in the areas closer to the Asian continent. In contrast, we found no longitudinal/latitudinal gradient in SO 2 concentrations; instead SO 2 concentrations were significantly correlated with local SO 2 emissions. Our results show that large amounts of particulate sulfate are transported over long distances from the East Asian Pacific Rim region, and consequently the SO 42- concentrations in Japan are controlled by the transboundary outflow from the Asian continent.

  16. Local adaptations in bryophytes revisited: the genetic structure of the calcium-tolerant peatmoss Sphagnum warnstorfii along geographic and pH gradients

    PubMed Central

    Mikulášková, Eva; Hájek, Michal; Veleba, Adam; Johnson, Matthew G; Hájek, Tomáš; Shaw, Jonathan A

    2015-01-01

    Bryophytes dominate some ecosystems despite their extraordinary sensitivity to habitat quality. Nevertheless, some species behave differently across various regions. The existence of local adaptations is questioned by a high dispersal ability, which is thought to redistribute genetic variability among populations. Although Sphagnum warnstorfii is an important ecosystem engineer in fen peatlands, the causes of its rather wide niche along the pH/calcium gradient are poorly understood. Here, we studied the genetic variability of its global populations, with a detailed focus on the wide pH/calcium gradient in Central Europe. Principal coordinates analysis of 12 polymorphic microsatellite loci revealed a significant gradient coinciding with water pH, but independent of geography; even samples from the same fens were clearly separated along this gradient. However, most of the genetic variations remained unexplained, possibly because of the introgression from phylogenetically allied species. This explanation is supported by the small heterogeneous cluster of samples that appeared when populations morphologically transitional to S. subnites, S. rubellum, or S. russowii were included into the analysis. Alternatively, this unexplained variation might be attributed to a legacy of glacial refugia with recently dissolved ecological and biogeographic consequences. Isolation by distance appeared at the smallest scale only (up to 43 km). Negative spatial correlations occurred more frequently, mainly at long distances (up to 950 km), implying a genetic similarity among samples which are very distant geographically. Our results confirm the high dispersal ability of peatmosses, but simultaneously suggested that their ability to cope with a high pH/calcium level is at least partially determined genetically, perhaps via specific physiological mechanisms or a hummock-forming ability. PMID:25628880

  17. Latitudinal trends and temporal shifts in the catch composition of bottom trawls conducted on the eastern Bering Sea shelf

    NASA Astrophysics Data System (ADS)

    Stevenson, Duane E.; Lauth, Robert R.

    2012-06-01

    Latitudinal species diversity gradients are well known in both terrestrial and aquatic ecosystems throughout the world. However, trends in relative abundance and other shifts in community structure with latitude, which can be more sensitive to environmental shifts such as climate change, have received less attention. Here we investigate latitudinal trends in the seafloor community of the eastern Bering Sea using catches of fishes and epibenthic invertebrates in bottom trawl surveys conducted from 1982 to 2010. Our results indicate that the overall biomass of the epibenthic community declines with increasing latitude in the eastern Bering Sea. This latitudinal trend is primarily driven by declining fish catches in the northern Bering Sea, which in turn reflects changes in the structure of the fish community. The fish fauna in northern latitudes is increasingly dominated by gadids, though the species composition of the gadid fauna also changes with latitude, with smaller species becoming more common in the north. The biomass of the invertebrate megafauna remains relatively consistent throughout the eastern Bering Sea, but invertebrates make up a larger proportion of the catch in bottom trawls conducted at higher latitudes. The epibenthic invertebrate megafauna in the eastern Bering Sea is composed primarily of sea stars (Asteriidae) and oregoniid crabs (Chionoecetes and Hyas), though no clear latitudinal trends in the invertebrate community are evident. Limited trawl data from the eastern Chukchi Sea indicate that the fish community farther north is even more heavily dominated by gadids, and the epibenthic invertebrate community is dominated by asteriid sea stars. Temperature data from bottom trawl surveys in the southeastern Bering Sea over the past decade indicate that there was a distinct temperature shift around 2005, and the relatively warm years of 2001-2005 were followed by five relatively cold years. This shift in the summer temperature regime of the Bering

  18. High Density of Tree-Cavities and Snags in Tropical Dry Forest of Western Mexico Raises Questions for a Latitudinal Gradient

    PubMed Central

    Vázquez, Leopoldo; Renton, Katherine

    2015-01-01

    It has been suggested that a latitudinal gradient exists of a low density of snags and high density of naturally-formed tree-cavities in tropical vs. temperate forests, though few cavities may have characteristics suitable for nesting by birds. We determined snag and cavity density, characteristics, and suitability for birds in a tropical dry forest biome of western Mexico, and evaluated whether our data fits the trend of snag and cavity density typically found in tropical moist and wet forests. We established five 0.25-ha transects to survey and measure tree-cavities and snags in each of three vegetation types of deciduous, semi-deciduous, and mono-dominant Piranhea mexicana forest, comprising a total of 3.75 ha. We found a high density of 77 cavities/ha, with 37 cavities suitable for birds/ha, where density, and characteristics of cavities varied significantly among vegetation types. Lowest abundance of cavities occurred in deciduous forest, and these were in smaller trees, at a lower height, and with a narrower entrance diameter. Only 8.6% of cavities were excavated by woodpeckers, and only 11% of cavities were occupied, mainly by arthropods, though 52% of all cavities were unsuitable for birds. We also found a high density of 56 snags/ha, with greatest density in deciduous forest (70 snags/ha), though these were of significantly smaller diameter, and snags of larger diameter were more likely to contain cavities. The Chamela-Cuixmala tropical dry forest had the highest density of snags recorded for any tropical or temperate forest, and while snag density was significantly correlated with mean snag dbh, neither latitude nor mean dbh predicted snag density in ten forest sites. The high spatial aggregation of snag and cavity resources in tropical dry forest may limit their availability, particularly for large-bodied cavity adopters, and highlights the importance of habitat heterogeneity in providing resources for primary and secondary cavity-nesters. PMID:25615612

  19. High density of tree-cavities and snags in tropical dry forest of western Mexico raises questions for a latitudinal gradient.

    PubMed

    Vázquez, Leopoldo; Renton, Katherine

    2015-01-01

    It has been suggested that a latitudinal gradient exists of a low density of snags and high density of naturally-formed tree-cavities in tropical vs. temperate forests, though few cavities may have characteristics suitable for nesting by birds. We determined snag and cavity density, characteristics, and suitability for birds in a tropical dry forest biome of western Mexico, and evaluated whether our data fits the trend of snag and cavity density typically found in tropical moist and wet forests. We established five 0.25-ha transects to survey and measure tree-cavities and snags in each of three vegetation types of deciduous, semi-deciduous, and mono-dominant Piranhea mexicana forest, comprising a total of 3.75 ha. We found a high density of 77 cavities/ha, with 37 cavities suitable for birds/ha, where density, and characteristics of cavities varied significantly among vegetation types. Lowest abundance of cavities occurred in deciduous forest, and these were in smaller trees, at a lower height, and with a narrower entrance diameter. Only 8.6% of cavities were excavated by woodpeckers, and only 11% of cavities were occupied, mainly by arthropods, though 52% of all cavities were unsuitable for birds. We also found a high density of 56 snags/ha, with greatest density in deciduous forest (70 snags/ha), though these were of significantly smaller diameter, and snags of larger diameter were more likely to contain cavities. The Chamela-Cuixmala tropical dry forest had the highest density of snags recorded for any tropical or temperate forest, and while snag density was significantly correlated with mean snag dbh, neither latitude nor mean dbh predicted snag density in ten forest sites. The high spatial aggregation of snag and cavity resources in tropical dry forest may limit their availability, particularly for large-bodied cavity adopters, and highlights the importance of habitat heterogeneity in providing resources for primary and secondary cavity-nesters.

  20. Evidence of latitudinal fractionation of polychlorinated biphenyl congeners along the Baltic Sea region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrell, C.; Okla, L.; Larsson, P.

    Annual cycles of the atmospheric concentrations of PCBs were determined at 16 (mostly rural) stations around the Baltic Sea between 1990 and 1993. The concentration levels of individual congeners were found to be influenced by their physical-chemical properties, ambient temperature, and geographical location. Median levels of PCBs were similar at all stations except at one urban site near Riga. A latitudinal gradient with higher levels in the south was found for the sum of PCB as well as for individual congeners, and the gradient was more pronounced for the low volatility congeners. As a result, the high volatility congeners increasedmore » in relative importance with latitude. Generally, PCB concentrations increased with temperature, but slopes of the partial pressure in air versus reciprocal temperature were different between congeners and between stations. In general, the low volatility congeners were more temperature dependent than the high volatility PCB congeners. Steep slopes at a sampling location indicate that the concentration in air is largely determined by diffusive exchange with soils. Lack of a temperature dependence may be due to the influence of long-range transported air masses at remote sites and due to the episodic or random nature of PCB sources at urban sites.« less

  1. Latitudinal Variation of Germane in Jovian Atmosphere

    NASA Astrophysics Data System (ADS)

    Hyder, A.; Lunine, J. I.; Wang, D.

    2017-12-01

    Wang et al (2016) presented a chemical-dynamical model for Jupiter's atmosphere that predicted abundances of Germane and other disequilibrium species as a function of latitude, under the assumption that only vertical transport is relevant and no horizontal advection occurs. The model disagrees with the latitudinal distributions derived from high-resolution spectral data acquired from the CRIRES instrument at the VLT as described in Giles et al. 2017. Wang et al. 2016 predicts a maximum molar abundance of Germane at (0.7±0.2) ppb with depletion at higher latitudes, while Giles et al. 2017 predicts a constant molar abundance of Germane at 0.58 ppb with no depletion. We explore an empirical horizontal term for the diffusive transport coefficient as a function of latitude, which does not produce a satisfactory result unless highly arbitrary variations of the vertical eddy mixing term as a function of latitude are imposed. We therefore also explore a horizontal wind from the equator that produces a constant latitudinal profile by transporting Germane-rich gas to the poles, effectively producing a Hadley cell. References: Giles, R. S., Fletcher, L. N., & Irwin, P. G. (2017). Latitudinal variability in Jupiter's tropospheric disequilibrium species: GeH 4, AsH 3 and PH 3. Icarus, 289, 254-269. Wang, D., Lunine, J.I., Mousis, O., 2016. Modeling the disequilibrium species for Jupiter and Saturn: implications for Juno and Saturn entry probe. Icarus 276, 21-38.

  2. Preliminary Structural Design Using Topology Optimization with a Comparison of Results from Gradient and Genetic Algorithm Methods

    NASA Technical Reports Server (NTRS)

    Burt, Adam O.; Tinker, Michael L.

    2014-01-01

    In this paper, genetic algorithm based and gradient-based topology optimization is presented in application to a real hardware design problem. Preliminary design of a planetary lander mockup structure is accomplished using these methods that prove to provide major weight savings by addressing the structural efficiency during the design cycle. This paper presents two alternative formulations of the topology optimization problem. The first is the widely-used gradient-based implementation using commercially available algorithms. The second is formulated using genetic algorithms and internally developed capabilities. These two approaches are applied to a practical design problem for hardware that has been built, tested and proven to be functional. Both formulations converged on similar solutions and therefore were proven to be equally valid implementations of the process. This paper discusses both of these formulations at a high level.

  3. Co-Gradient Variation in Growth Rate and Development Time of a Broadly Distributed Butterfly

    PubMed Central

    Barton, Madeleine; Sunnucks, Paul; Norgate, Melanie; Murray, Neil; Kearney, Michael

    2014-01-01

    Widespread species often show geographic variation in thermally-sensitive traits, providing insight into how species respond to shifts in temperature through time. Such patterns may arise from phenotypic plasticity, genetic adaptation, or their interaction. In some cases, the effects of genotype and temperature may act together to reduce, or to exacerbate, phenotypic variation in fitness-related traits across varying thermal environments. We find evidence for such interactions in life-history traits of Heteronympha merope, a butterfly distributed across a broad latitudinal gradient in south-eastern Australia. We show that body size in this butterfly is negatively related to developmental temperature in the laboratory, in accordance with the temperature-size rule, but not in the field, despite very strong temperature gradients. A common garden experiment on larval thermal responses, spanning the environmental extremes of H. merope's distribution, revealed that butterflies from low latitude (warmer climate) populations have relatively fast intrinsic growth and development rates compared to those from cooler climates. These synergistic effects of genotype and temperature across the landscape (co-gradient variation) are likely to accentuate phenotypic variation in these traits, and this interaction must be accounted for when predicting how H. merope will respond to temperature change through time. These results highlight the importance of understanding how variation in life-history traits may arise in response to environmental change. Without this knowledge, we may fail to detect whether organisms are tracking environmental change, and if they are, whether it is by plasticity, adaptation or both. PMID:24743771

  4. Counter-Gradient Variation in Respiratory Performance of Coral Reef Fishes at Elevated Temperatures

    PubMed Central

    Gardiner, Naomi M.; Munday, Philip L.; Nilsson, Göran E.

    2010-01-01

    The response of species to global warming depends on how different populations are affected by increasing temperature throughout the species' geographic range. Local adaptation to thermal gradients could cause populations in different parts of the range to respond differently. In aquatic systems, keeping pace with increased oxygen demand is the key parameter affecting species' response to higher temperatures. Therefore, respiratory performance is expected to vary between populations at different latitudes because they experience different thermal environments. We tested for geographical variation in respiratory performance of tropical marine fishes by comparing thermal effects on resting and maximum rates of oxygen uptake for six species of coral reef fish at two locations on the Great Barrier Reef (GBR), Australia. The two locations, Heron Island and Lizard Island, are separated by approximately 1200 km along a latitudinal gradient. We found strong counter-gradient variation in aerobic scope between locations in four species from two families (Pomacentridae and Apogonidae). High-latitude populations (Heron Island, southern GBR) performed significantly better than low-latitude populations (Lizard Island, northern GBR) at temperatures up to 5°C above average summer surface-water temperature. The other two species showed no difference in aerobic scope between locations. Latitudinal variation in aerobic scope was primarily driven by up to 80% higher maximum rates of oxygen uptake in the higher latitude populations. Our findings suggest that compensatory mechanisms in high-latitude populations enhance their performance at extreme temperatures, and consequently, that high-latitude populations of reef fishes will be less impacted by ocean warming than will low-latitude populations. PMID:20949020

  5. Analysis of the Latitudinal Variability of Tropospheric Ozone in the Arctic Using the Large Number of Aircraft and Ozonesonde Observations in Early Summer 2008

    NASA Technical Reports Server (NTRS)

    Ancellet, Gerard; Daskalakis, Nikos; Raut, Jean Christophe; Quennehen, Boris; Ravetta, Francois; Hair, Jonathan; Tarasick, David; Schlager, Hans; Weinheimer, Andrew J.; Thompson, Anne M.; hide

    2016-01-01

    correlation (greater than 40%) and the higher 75th PV percentile. A weak negative latitudinal summer ozone gradient -6 to -8 ppbv is found over Canada in the mid troposphere between 4 and 8 km. This is attributed to an efficient O3 photochemical production due to the BB emissions at latitudes less than 65 deg N, while STE contribution is more homogeneous in the latitude range 55 deg N to 70 deg N. A positive ozone latitudinal gradient of 12 ppbv is 1 observed in the same altitude range over Greenland not because of an increasing latitudinal influence of STE, but because of different long range transport from multiple mid-latitude sources (North America, Europe and even Asia for latitudes higher than 77 deg N).

  6. Analysis of the Latitudinal Variability of Tropospheric Ozone in the Arctic Using the Large Number of Aircraft and Ozonesonde Observations in Early Summer 2008

    NASA Technical Reports Server (NTRS)

    Ancellet, Gerard; Daskalakis, Nikos; Raut, Jean Christophe; Tarasick, David; Hair, Jonathan; Quennehen, Boris; Ravetta, Francois; Schlager, Hans; Weinheimer, Andrew J.; Thompson, Anne M.; hide

    2016-01-01

    ( 40) and the higher 75th PV percentile. A weak negative latitudinal summer ozone gradient -6 to -8 ppbv is found over Canada in the mid troposphere between 4 and 8 km. This is attributed to an efficient O3 photochemical production due to the BB emissions at latitudes less than 65oN, while STE contribution is more homogeneous in the latitude range 55oN to 70oN. A positive ozone latitudinal gradient of 12 ppbv is observed in the same altitude range over Greenland not because of an increasing latitudinal influence of STE, but because of different long range transport from multiple mid-latitude sources (North America, Europe and even Asia for latitudes higher than 77oN).

  7. A latitudinal survey of mesospheric and upper stratospheric water vapor

    NASA Technical Reports Server (NTRS)

    Croskey, C. L.; Martone, J. P.; Olivero, J. J.; Puliafito, S. E.

    1994-01-01

    As part of the LAtitudinal DIstribution of Middle Atmosphere Structure (LADIMAS) campaign, measurements of mesospheric and upper stratospheric water vapor concentration were made over a latitudinal range from 53 N to 63 S. The 22-GHz emission line of water vapor was observed by a new, portable, cryogenically cooled microwave radiometer that was carried on board the German research vessel Polarstern as it sailed from Bremerhaven, Germany, to the Antarctic during November and December, 1991. Water vapor profiles were obtained at approximately 5 deg latitude intervals for an altitude range of 40 to 80 km.

  8. Impact of snow deposition on major and trace element concentrations and elementary fluxes in surface waters of the Western Siberian Lowland across a 1700 km latitudinal gradient

    NASA Astrophysics Data System (ADS)

    Shevchenko, Vladimir P.; Pokrovsky, Oleg S.; Vorobyev, Sergey N.; Krickov, Ivan V.; Manasypov, Rinat M.; Politova, Nadezhda V.; Kopysov, Sergey G.; Dara, Olga M.; Auda, Yves; Shirokova, Liudmila S.; Kolesnichenko, Larisa G.; Zemtsov, Valery A.; Kirpotin, Sergey N.

    2017-11-01

    In order to better understand the chemical composition of snow and its impact on surface water hydrochemistry in the poorly studied Western Siberia Lowland (WSL), the surface layer of snow was sampled in February 2014 across a 1700 km latitudinal gradient (ca. 56.5 to 68° N). We aimed at assessing the latitudinal effect on both dissolved and particulate forms of elements in snow and quantifying the impact of atmospheric input to element storage and export fluxes in inland waters of the WSL. The concentration of dissolved+colloidal (< 0.45 µm) Fe, Co, Cu, As and La increased by a factor of 2 to 5 north of 63° N compared to southern regions. The pH and dissolved Ca, Mg, Sr, Mo and U in snow water increased with the rise in concentrations of particulate fraction (PF). Principal component analyses of major and trace element concentrations in both dissolved and particulate fractions revealed two factors not linked to the latitude. A hierarchical cluster analysis yielded several groups of elements that originated from alumino-silicate mineral matrix, carbonate minerals and marine aerosols or belonging to volatile atmospheric heavy metals, labile elements from weatherable minerals and nutrients. The main sources of mineral components in PF are desert and semi-desert regions of central Asia. The snow water concentrations of DIC, Cl, SO4, Mg, Ca, Cr, Co, Ni, Cu, Mo, Cd, Sb, Cs, W, Pb and U exceeded or were comparable with springtime concentrations in thermokarst lakes of the permafrost-affected WSL zone. The springtime river fluxes of DIC, Cl, SO4, Na, Mg, Ca, Rb, Cs, metals (Cr, Co, Ni, Cu, Zn, Cd, Pb), metalloids (As, Sb), Mo and U in the discontinuous to continuous permafrost zone (64-68° N) can be explained solely by melting of accumulated snow. The impact of snow deposition on riverine fluxes of elements strongly increased northward, in discontinuous and continuous permafrost zones of frozen peat bogs. This was consistent with the decrease in the impact of rock

  9. Phylogenetic conservatism of thermal traits explains dispersal limitation and genomic differentiation of Streptomyces sister-taxa.

    PubMed

    Choudoir, Mallory J; Buckley, Daniel H

    2018-06-07

    The latitudinal diversity gradient is a pattern of biogeography observed broadly in plants and animals but largely undocumented in terrestrial microbial systems. Although patterns of microbial biogeography across broad taxonomic scales have been described in a range of contexts, the mechanisms that generate biogeographic patterns between closely related taxa remain incompletely characterized. Adaptive processes are a major driver of microbial biogeography, but there is less understanding of how microbial biogeography and diversification are shaped by dispersal limitation and drift. We recently described a latitudinal diversity gradient of species richness and intraspecific genetic diversity in Streptomyces by using a geographically explicit culture collection. Within this geographically explicit culture collection, we have identified Streptomyces sister-taxa whose geographic distribution is delimited by latitude. These sister-taxa differ in geographic distribution, genomic diversity, and ecological traits despite having nearly identical SSU rRNA gene sequences. Comparative genomic analysis reveals genomic differentiation of these sister-taxa consistent with restricted gene flow across latitude. Furthermore, we show phylogenetic conservatism of thermal traits between the sister-taxa suggesting that thermal trait adaptation limits dispersal and gene flow across climate regimes as defined by latitude. Such phylogenetic conservatism of thermal traits is commonly associated with latitudinal diversity gradients for plants and animals. These data provide further support for the hypothesis that the Streptomyces latitudinal diversity gradient was formed as a result of historical demographic processes defined by dispersal limitation and driven by paleoclimate dynamics.

  10. Contrasting latitudinal patterns of life-history divergence in two genera of new world thrushes (Turdinae)

    USGS Publications Warehouse

    Boyce, Andy J.; Martin, Thomas E.

    2017-01-01

    Several long-standing hypotheses have been proposed to explain latitudinal patterns of life-history strategies. Here, we test predictions of four such hypotheses (seasonality, food limitation, nest predation and adult survival probability) by examining life-history traits and age-specific mortality rates of several species of thrushes (Turdinae) based on field studies at temperate and tropical sites and data gathered from the literature. Thrushes in the genus Catharus showed the typical pattern of slower life-history strategies in the tropics while co-occuring Turdus thrushes differed much less across latitudes. Seasonality is a broadly accepted hypothesis for latitudinal patterns, but the lack of concordance in latitudinal patterns between co-existing genera that experience the same seasonal patterns suggests seasonality cannot fully explain latitudinal trait variation in thrushes. Nest-predation also could not explain patterns based on our field data and literature data for these two genera. Total feeding rates were similar, and per-nestling feeding rates were higher at tropical latitudes in both genera, suggesting food limitation does not explain trait differences in thrushes. Latitudinal patterns of life histories in these two genera were closely associated with adult survival probability. Thus, our data suggest that environmental influences on adult survival probability may play a particularly strong role in shaping latitudinal patterns of life-history traits.

  11. Genetic diversity and species diversity of stream fishes covary across a land-use gradient.

    PubMed

    Blum, Michael J; Bagley, Mark J; Walters, David M; Jackson, Suzanne A; Daniel, F Bernard; Chaloud, Deborah J; Cade, Brian S

    2012-01-01

    Genetic diversity and species diversity are expected to covary according to area and isolation, but may not always covary with environmental heterogeneity. In this study, we examined how patterns of genetic and species diversity in stream fishes correspond to local and regional environmental conditions. To do so, we compared population size, genetic diversity and divergence in central stonerollers (Campostoma anomalum) to measures of species diversity and turnover in stream fish assemblages among similarly sized watersheds across an agriculture-forest land-use gradient in the Little Miami River basin (Ohio, USA). Significant correlations were found in many, but not all, pair-wise comparisons. Allelic richness and species richness were strongly correlated, for example, but diversity measures based on allele frequencies and assemblage structure were not. In-stream conditions related to agricultural land use were identified as significant predictors of genetic diversity and species diversity. Comparisons to population size indicate, however, that genetic diversity and species diversity are not necessarily independent and that variation also corresponds to watershed location and glaciation history in the drainage basin. Our findings demonstrate that genetic diversity and species diversity can covary in stream fish assemblages, and illustrate the potential importance of scaling observations to capture responses to hierarchical environmental variation. More comparisons according to life history variation could further improve understanding of conditions that give rise to parallel variation in genetic diversity and species diversity, which in turn could improve diagnosis of anthropogenic influences on aquatic ecosystems.

  12. Genetic diversity and species diversity of stream fishes covary across a land-use gradient

    USGS Publications Warehouse

    Blum, M.J.; Bagley, M.J.; Walters, D.M.; Jackson, S.A.; Daniel, F.B.; Chaloud, D.J.; Cade, B.S.

    2012-01-01

    Genetic diversity and species diversity are expected to covary according to area and isolation, but may not always covary with environmental heterogeneity. In this study, we examined how patterns of genetic and species diversity in stream fishes correspond to local and regional environmental conditions. To do so, we compared population size, genetic diversity and divergence in central stonerollers (Campostoma anomalum) to measures of species diversity and turnover in stream fish assemblages among similarly sized watersheds across an agriculture-forest land-use gradient in the Little Miami River basin (Ohio, USA). Significant correlations were found in many, but not all, pair-wise comparisons. Allelic richness and species richness were strongly correlated, for example, but diversity measures based on allele frequencies and assemblage structure were not. In-stream conditions related to agricultural land use were identified as significant predictors of genetic diversity and species diversity. Comparisons to population size indicate, however, that genetic diversity and species diversity are not necessarily independent and that variation also corresponds to watershed location and glaciation history in the drainage basin. Our findings demonstrate that genetic diversity and species diversity can covary in stream fish assemblages, and illustrate the potential importance of scaling observations to capture responses to hierarchical environmental variation. More comparisons according to life history variation could further improve understanding of conditions that give rise to parallel variation in genetic diversity and species diversity, which in turn could improve diagnosis of anthropogenic influences on aquatic ecosystems. ?? 2011 Springer-Verlag.

  13. Can genetically based clines in plant defence explain greater herbivory at higher latitudes?

    PubMed

    Anstett, Daniel N; Ahern, Jeffrey R; Glinos, Julia; Nawar, Nabanita; Salminen, Juha-Pekka; Johnson, Marc T J

    2015-12-01

    Greater plant defence is predicted to evolve at lower latitudes in response to increased herbivore pressure. However, recent studies question the generality of this pattern. In this study, we tested for genetically based latitudinal clines in resistance to herbivores and underlying defence traits of Oenothera biennis. We grew plants from 137 populations from across the entire native range of O. biennis. Populations from lower latitudes showed greater resistance to multiple specialist and generalist herbivores. These patterns were associated with an increase in total phenolics at lower latitudes. A significant proportion of the phenolics were driven by the concentrations of two major ellagitannins, which exhibited opposing latitudinal clines. Our analyses suggest that these findings are unlikely to be explained by local adaptation of herbivore populations or genetic variation in phenology. Rather greater herbivory at high latitudes can be explained by latitudinal clines in the evolution of plant defences. © 2015 John Wiley & Sons Ltd/CNRS.

  14. Explaining geographic gradients in winter selection of landscapes by boreal caribou with implications under global changes in Eastern Canada.

    PubMed

    Beguin, Julien; McIntire, Eliot J B; Fortin, Daniel; Cumming, Steven G; Raulier, Frédéric; Racine, Pierre; Dussault, Claude

    2013-01-01

    Many animal species exhibit broad-scale latitudinal or longitudinal gradients in their response to biotic and abiotic components of their habitat. Although knowing the underlying mechanism of these patterns can be critical to the development of sound measures for the preservation or recovery of endangered species, few studies have yet identified which processes drive the existence of geographical gradients in habitat selection. Using extensive spatial data of broad latitudinal and longitudinal extent, we tested three hypotheses that could explain the presence of geographical gradients in landscape selection of the endangered boreal woodland caribou (Rangifer tarandus caribou) during winter in Eastern Canadian boreal forests: 1) climate-driven selection, which postulates that geographic gradients are surrogates for climatic gradients; 2) road-driven selection, which proposes that boreal caribou adjust their selection for certain habitat classes as a function of proximity to roads; and 3) an additive effect of both roads and climate. Our data strongly supported road-driven selection over climate influences. Thus, direct human alteration of landscapes drives boreal caribou distribution and should likely remain so until the climate changes sufficiently from present conditions. Boreal caribou avoided logged areas two-fold more strongly than burnt areas. Limiting the spread of road networks and accounting for the uneven impact of logging compared to wildfire should therefore be integral parts of any habitat management plan and conservation measures within the range of the endangered boreal caribou. The use of hierarchical spatial models allowed us to explore the distribution of spatially-structured errors in our models, which in turn provided valuable insights for generating alternative hypotheses about processes responsible for boreal caribou distribution.

  15. Woody plant encroachment effect on soil organic carbon dynamics: results from a latitudinal gradient in Italy

    NASA Astrophysics Data System (ADS)

    Pellis, Guido; Chiti, Tommaso; Moscatelli, Maria Cristina; Marinari, Sara; Papale, Dario

    2016-04-01

    Woody plant encroachment into pastures and grasslands represents a significant land cover change phenomenon, with a considerable impact on carbon dynamics at an ecosystem level. It was estimated that 7.64% of the Southern Europe land was subject to that process between 1950 to 2010. As a result of woody encroachment, changes in vegetation composition can produce substantial changes to the soil organic carbon (SOC) cycle. Despite the numerous papers published on land-use change, an evaluation of the IPCC terrestrial carbon pools changes occurring during woody encroachment on abandoned pastures and grasslands is still lacking, particularly for the Italian territory. Therefore, the aim of this study was to investigate the role of woody encroachment on carbon sequestration over abandoned pastures and grasslands in Alpine and Apennine ecosystems, with a particular focus on the SOC. We applied a chronosequence approach to seven selected sites located along a latitudinal gradient in Italy. Each chronosequence consisted of a pasture currently managed, three sites abandoned at different times in the past and, finally, a mature forest stand representing the last phase of the succession. The European Commission sampling protocols to certify SOC changes was adopted to estimate the variations following woody encroachment. Soil samples were collected at different depths in the topsoil (0-30 cm) and subsoil (30-70 cm), despite the original protocol formulation being limited to the topsoil only. In addition, aboveground living biomass (AGB), dead wood and litter were also measured following international protocols. Considering all C pools together, woody plant encroachment leads to a progressive C stock accumulation in all the chronosequences. The total C stock of mature forest stands ranges from 1.78±0.11 times (Eastern Alps) to 2.48±0.31 times (central Apennine) the initial value on pastures. Unsurprisingly, the C stocks of AGB, dead wood and litter all increase during the

  16. Decreased competitive interactions drive a reverse species richness latitudinal gradient in subarctic forests.

    PubMed

    Marshall, Katie E; Baltzer, Jennifer L

    2015-02-01

    The tendency for species richness to decrease toward the poles is one of the best-characterized patterns in biogeography. The mechanisms behind this pattern have received much attention, yet very few studies have investigated very high-latitude communities. Here, using data from 134 permanent sample plots from 60 degrees to 68 degrees N, we show that boreal forest plant communities in northwestern Canada increase in richness toward the poles, despite a strong increase in climatic harshness. We hypothesized three possible explanations for this pattern: (1) historical biogeography, (2) reduced competition for light at high latitudes (biotic interactions), and (3) changes in soil characteristics with latitude. We used multidimensional scaling to investigate the community composition at each site and found no clustering of communities by latitude, suggesting that historical biogeography was not constraining site diversity. We then investigated the mechanisms behind this gradient using both abiotic (climate and soil) and biotic (tree stand characteristics) variables in a multiple factor analysis. We found that the best predictor of species richness is an environmental gradient that describes an inverse relationship between temperature and tree-stand density, suggesting that reduced competition for light due to reduced tree growth at low temperatures at higher latitudes allows greater species richness. This study shows that low energy availability and climatic harshness may not be limiting species richness toward the poles, rather, abiotic effects act instead on the strength of biotic interactions.

  17. Can selection on nest size from nest predation explain the latitudinal gradient in clutch size?

    PubMed

    Biancucci, Luis; Martin, Thomas E

    2010-09-01

    1. Latitudinal variation in clutch sizes of birds is a well described, but poorly understood pattern. Many hypotheses have been proposed, but few have been experimentally tested, and none have been universally accepted by researchers. 2. The nest size hypothesis posits that higher nest predation in the tropics favours selection for smaller nests and thereby constrains clutch size by shrinking available space for eggs and/or nestlings in the nest. We tested this hypothesis with an experiment in a tropical forest and a comparative study between temperate and tropical field sites. 3. Specifically, we tested if: (i) predation increased with nest size; (ii) tropical birds had smaller nests controlled for body size; and (iii) clutch size was explained by nest size controlled for body size. 4. Experimental swapping of nests of different sizes showed that nest predation increased with nest size in the tropical site. Moreover, nest predation rates were higher in species with larger nests in both sites. However, nest size, corrected for body mass and phylogeny, did not differ between sites and was not related to clutch size between sites. 5. Hence, nest predation can exert selection on nest size as predicted by the hypothesis. Nest size increased with adult body mass, such that adult size might indirectly influence reproductive success through effects on nest size and nest predation risk. Ultimately, however, selection from nest predation on nest size does not explain the smaller clutch sizes typical of the tropics.

  18. Can selection on nest size from nest predation explain the latitudinal gradient in clutch size?

    USGS Publications Warehouse

    Biancucci, L.; Martin, T.E.

    2010-01-01

    1. Latitudinal variation in clutch sizes of birds is a well described, but poorly understood pattern. Many hypotheses have been proposed, but few have been experimentally tested, and none have been universally accepted by researchers. 2. The nest size hypothesis posits that higher nest predation in the tropics favours selection for smaller nests and thereby constrains clutch size by shrinking available space for eggs and/or nestlings in the nest. We tested this hypothesis with an experiment in a tropical forest and a comparative study between temperate and tropical field sites. 3. Specifically, we tested if: (i) predation increased with nest size; (ii) tropical birds had smaller nests controlled for body size; and (iii) clutch size was explained by nest size controlled for body size. 4. Experimental swapping of nests of different sizes showed that nest predation increased with nest size in the tropical site. Moreover, nest predation rates were higher in species with larger nests in both sites. However, nest size, corrected for body mass and phylogeny, did not differ between sites and was not related to clutch size between sites. 5. Hence, nest predation can exert selection on nest size as predicted by the hypothesis. Nest size increased with adult body mass, such that adult size might indirectly influence reproductive success through effects on nest size and nest predation risk. Ultimately, however, selection from nest predation on nest size does not explain the smaller clutch sizes typical of the tropics.

  19. Latitudinal and Longitudinal Basin-scale Surface Salinity Contrasts and Freshwater Transport by Ocean Thermohaline Circulation

    NASA Astrophysics Data System (ADS)

    Seidov, D.; Haupt, B. J.

    2003-12-01

    longitudinal variation in SSS, are less important than latitudinal thermal gradients and inter-basin salinity contrasts. Details of SSS also decrease in importance as soon as its inter-basin contrasts are retained. This is especially important for paleoclimate and future climate simulations, as only the large-scale inter-basin contrasts of the sea surface conditions really matter.

  20. Great influence of geographic isolation on the genetic differentiation of Myriophyllum spicatum under a steep environmental gradient

    PubMed Central

    Wu, Zhigang; Yu, Dan; Wang, Zhong; Li, Xing; Xu, Xinwei

    2015-01-01

    Understanding how natural processes affect population genetic structures is an important issue in evolutionary biology. One effective method is to assess the relative importance of environmental and geographical factors in the genetic structure of populations. In this study, we examined the spatial genetic variation of thirteen Myriophyllum spicatum populations from the Qinghai-Tibetan Plateau (QTP) and adjacent highlands (Yunnan-Guizhou Plateau, YGP) by using microsatellite loci and environmental and geographical factors. Bioclim layers, hydrological properties and elevation were considered as environmental variables and reduced by principal component analysis. The genetic isolation by geographic distance (IBD) was tested by Mantel tests and the relative importance of environmental variables on population genetic differentiation was determined by a partial Mantel test and multiple matrix regression with randomization (MMRR). Two genetic clusters corresponding to the QTP and YGP were identified. Both tests and MMRR revealed a significant and strong correlation between genetic divergence and geographic isolation under the influence of environmental heterogeneity at the overall and finer spatial scales. Our findings suggested the dominant role of geography on the evolution of M. spicatum under a steep environmental gradient in the alpine landscape as a result of dispersal limitation and genetic drift. PMID:26494202

  1. Latitudinal variation in reproductive strategies by the migratory Louisiana Waterthrush

    USGS Publications Warehouse

    Mattsson, B.J.; Latta, S.C.; Cooper, R.J.; Mulvihill, R.S.

    2011-01-01

    We evaluated hypotheses that seek to explain breeding strategies of the Louisiana Waterthrush (Parkesia motacilla) that vary across a latitudinal gradient. On the basis of data from 418 nests of color-banded individuals in southwestern Pennsylvania and 700 km south in the Georgia Piedmont, we found that clutch size in replacement nests and probability of renesting were significantly greater in Pennsylvania (clutch size 4.4; renesting probability 0.66) than in Georgia (clutch size 3.8; renesting probability 0.54). Contrasts of the remaining measures of breeding were not statistically significant, and, in particular, mean daily nest survival in the two study areas was nearly identical (0.974 in Pennsylvania; 0.975 in Georgia). An individual-based model of fecundity (i.e., number of fledged young per adult female), predicted that approximately half of the females in both Pennsylvania and Georgia fledge at least one young, and mean values for fecundity in Pennsylvania and Georgia were 2.28 and 1.91, respectively. On the basis of greater support for the food-limitation hypothesis than for the season-length hypothesis, the trade-off between breeding in a region with more food but making a longer migration may be greater for waterthrushes breeding farther north than for those breeding farther south. ?? The Cooper Ornithological Society 2011.

  2. Pleistocene climatic oscillations rather than recent human disturbance influence genetic diversity in one of the world's highest treeline species.

    PubMed

    Peng, Yanling; Lachmuth, Susanne; Gallegos, Silvia C; Kessler, Michael; Ramsay, Paul M; Renison, Daniel; Suarez, Ricardo; Hensen, Isabell

    2015-10-01

    Biological responses to climatic change usually leave imprints on the genetic diversity and structure of plants. Information on the current genetic diversity and structure of dominant tree species has facilitated our general understanding of phylogeographical patterns. Using amplified fragment length polymorphism (AFLPs), we compared genetic diversity and structure of 384 adults of P. tarapacana with those of 384 seedlings across 32 forest sites spanning a latitudinal gradient of 600 km occurring between 4100 m and 5000 m a.s.l. in Polylepis tarapacana (Rosaceae), one of the world's highest treeline species endemic to the central Andes. Moderate to high levels of genetic diversity and low genetic differentiation were detected in both adults and seedlings, with levels of genetic diversity and differentiation being almost identical. Four slightly genetically divergent clusters were identified that accorded to differing geographical regions. Genetic diversity decreased from south to north and with increasing precipitation for adults and seedlings, but there was no relationship to elevation. Our study shows that, unlike the case for other Andean treeline species, recent human activities have not affected the genetic structure of P. tarapacana, possibly because its inhospitable habitat is unsuitable for agriculture. The current genetic pattern of P. tarapacana points to a historically more widespread distribution at lower altitudes, which allowed considerable gene flow possibly during the glacial periods of the Pleistocene epoch, and also suggests that the northern Argentinean Andes may have served as a refugium for historical populations. © 2015 Botanical Society of America.

  3. Widespread range expansions shape latitudinal variation in insect thermal limits

    NASA Astrophysics Data System (ADS)

    Lancaster, Lesley T.

    2016-06-01

    Current anthropogenic impacts, including habitat modification and climate change, may contribute to a sixth mass extinction. To mitigate these impacts and slow further losses of biodiversity, we need to understand which species are most at risk and identify the factors contributing to current and future declines. Such information is often obtained through large-scale, comparative and biogeographic analysis of lineages or traits that are potentially sensitive to ongoing anthropogenic change--for instance to predict which regions are most susceptible to climate change-induced biodiversity loss. However, for this approach to be generally successful, the underlying causes of identified geographical trends need to be carefully considered. Here, I augment and reanalyse a global data set of insect thermal tolerances, evaluating the contribution of recent and contemporary range expansions to latitudinal variation in thermal niche breadth. Previous indications that high-latitude ectotherms exhibit broad thermal niches and high warming tolerances held only for species undergoing range expansions or invasions. In contrast, species with stable or declining geographic ranges exhibit latitudinally decreasing absolute thermal tolerances and no latitudinal variation in tolerance breadths. Thus, non-range-expanding species, particularly insular or endemic species, which are often of highest conservation priority, are unlikely to tolerate future climatic warming at high latitudes.

  4. Ecotypes of an ecologically dominant prairie grass (Andropogon gerardii) exhibit genetic divergence across the U.S. Midwest grasslands' environmental gradient.

    PubMed

    Gray, Miranda M; St Amand, Paul; Bello, Nora M; Galliart, Matthew B; Knapp, Mary; Garrett, Karen A; Morgan, Theodore J; Baer, Sara G; Maricle, Brian R; Akhunov, Eduard D; Johnson, Loretta C

    2014-12-01

    Big bluestem (Andropogon gerardii) is an ecologically dominant grass with wide distribution across the environmental gradient of U.S. Midwest grasslands. This system offers an ideal natural laboratory to study population divergence and adaptation in spatially varying climates. Objectives were to: (i) characterize neutral genetic diversity and structure within and among three regional ecotypes derived from 11 prairies across the U.S. Midwest environmental gradient, (ii) distinguish between the relative roles of isolation by distance (IBD) vs. isolation by environment (IBE) on ecotype divergence, (iii) identify outlier loci under selection and (iv) assess the association between outlier loci and climate. Using two primer sets, we genotyped 378 plants at 384 polymorphic AFLP loci across regional ecotypes from central and eastern Kansas and Illinois. Neighbour-joining tree and PCoA revealed strong genetic differentiation between Kansas and Illinois ecotypes, which was better explained by IBE than IBD. We found high genetic variability within prairies (80%) and even fragmented Illinois prairies, surprisingly, contained high within-prairie genetic diversity (92%). Using Bayenv2, 14 top-ranked outlier loci among ecotypes were associated with temperature and precipitation variables. Six of seven BayeScanFST outliers were in common with Bayenv2 outliers. High genetic diversity may enable big bluestem populations to better withstand changing climates; however, population divergence supports the use of local ecotypes in grassland restoration. Knowledge of genetic variation in this ecological dominant and other grassland species will be critical to understanding grassland response and restoration challenges in the face of a changing climate. © 2014 John Wiley & Sons Ltd.

  5. Population genetic structure, genetic diversity, and natural history of the South American species of Nothofagus subgenus Lophozonia (Nothofagaceae) inferred from nuclear microsatellite data

    PubMed Central

    Vergara, Rodrigo; Gitzendanner, Matthew A; Soltis, Douglas E; Soltis, Pamela S

    2014-01-01

    The effect of glaciation on the levels and patterns of genetic variation has been well studied in the Northern Hemisphere. However, although glaciation has undoubtedly shaped the genetic structure of plants in the Southern Hemisphere, fewer studies have characterized the effect, and almost none of them using microsatellites. Particularly, complex patterns of genetic structure might be expected in areas such as the Andes, where both latitudinal and altitudinal glacial advance and retreat have molded modern plant communities. We therefore studied the population genetics of three closely related, hybridizing species of Nothofagus (N. obliqua, N. alpina, and N. glauca, all of subgenus Lophozonia; Nothofagaceae) from Chile. To estimate population genetic parameters and infer the influence of the last ice age on the spatial and genetic distribution of these species, we examined and analyzed genetic variability at seven polymorphic microsatellite DNA loci in 640 individuals from 40 populations covering most of the ranges of these species in Chile. Populations showed no significant inbreeding and exhibited relatively high levels of genetic diversity (HE = 0.502–0.662) and slight, but significant, genetic structure (RST = 8.7–16.0%). However, in N. obliqua, the small amount of genetic structure was spatially organized into three well-defined latitudinal groups. Our data may also suggest some introgression of N. alpina genes into N. obliqua in the northern populations. These results allowed us to reconstruct the influence of the last ice age on the genetic structure of these species, suggesting several centers of genetic diversity for N. obliqua and N. alpina, in agreement with the multiple refugia hypothesis. PMID:25360279

  6. Unimodal Latitudinal Pattern of Land-Snail Species Richness across Northern Eurasian Lowlands

    PubMed Central

    Horsák, Michal; Chytrý, Milan

    2014-01-01

    Large-scale patterns of species richness and their causes are still poorly understood for most terrestrial invertebrates, although invertebrates can add important insights into the mechanisms that generate regional and global biodiversity patterns. Here we explore the general plausibility of the climate-based “water-energy dynamics” hypothesis using the latitudinal pattern of land-snail species richness across extensive topographically homogeneous lowlands of northern Eurasia. We established a 1480-km long latitudinal transect across the Western Siberian Plain (Russia) from the Russia-Kazakhstan border (54.5°N) to the Arctic Ocean (67.5°N), crossing eight latitudinal vegetation zones: steppe, forest-steppe, subtaiga, southern, middle and northern taiga, forest-tundra, and tundra. We sampled snails in forests and open habitats each half-degree of latitude and used generalized linear models to relate snail species richness to climatic variables and soil calcium content measured in situ. Contrary to the classical prediction of latitudinal biodiversity decrease, we found a striking unimodal pattern of snail species richness peaking in the subtaiga and southern-taiga zones between 57 and 59°N. The main south-to-north interchange of the two principal diversity constraints, i.e. drought stress vs. cold stress, explained most of the variance in the latitudinal diversity pattern. Water balance, calculated as annual precipitation minus potential evapotranspiration, was a single variable that could explain 81.7% of the variance in species richness. Our data suggest that the “water-energy dynamics” hypothesis can apply not only at the global scale but also at subcontinental scales of higher latitudes, as water availability was found to be the primary limiting factor also in this extratropical region with summer-warm and dry climate. A narrow zone with a sharp south-to-north switch in the two main diversity constraints seems to constitute the dominant and general

  7. Latitudinal variability of arsine, germane and phosphine in Jupiter's troposphere

    NASA Astrophysics Data System (ADS)

    Giles, Rohini Sara; Fletcher, Leigh N.; Irwin, Patrick Gerard Joseph

    2016-10-01

    High-resolution 5-μm observations of Jupiter from the CRIRES instrument at the Very Large Telescope are used to measure latitudinal variability in AsH3, GeH4 and PH3. The 5-micron region is a spectral window allowing us to probe down to Jupiter's middle troposphere (4-8 bar). CRIRES observations in 2012 and 2013 provide high-resolution (R=96,000) latitudinally-resolved spectra in the 4.7-5.2 μm region. In the middle troposphere, AsH3, GeH4and PH3 are disequilibrium species that are only present because of rapid upwelling from deeper regions of the planet. Their observed abundances depend on the chemical lifetimes, the strength of the vertical mixing and the rate of photolytic destruction, and are therefore likely to vary with latitude. We analyse the CRIRES observations using the NEMESIS radiative transfer code and retrieval algorithm in order to search for any latitudinal variability in the disequilibrium species. We find that there is a significant degeneracy between the retrieved gaseous abundances and the cloud structure - specifically, the scattering properties of the main tropospheric cloud deck, and the presence/absence of an additional deep cloud. Because of these degeneracies, there is no clear evidence for any variability in GeH4. However, for AsH3 and PH3, there are significant latitudinal differences in the observed lineshape that cannot be accounted for by clouds. We conclude that both of these gases show an enhancement at high latitudes. In the case of AsH3, the retrieved abundance varies from subsolar in the equatorial regions (as seen in previous studies) to supersolar in the polar regions. Our findings are in contrast with the theoretical simulations of Wang et al. (2016, doi:10.1016/j.icarus.2016.04.027), which predict that AsH3 and PH3 should not vary with latitude, and that GeH4 should decrease in abundance at high latitudes.

  8. Compensation and climate: Latitudinal variation in ecototherm response to environmental change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtin, C.G.

    1995-06-01

    Thermal preference measured in a laboratory thermal gradient, and field body temperatures in a field enclosure, contrast the fundamental and realized thermal niches of ornate box turtles (Terrapene ornata) from northern, central, and southern locations. The relatively warmer thermal preference of southern turtles appears to result in lower body temperatures and relatively shorter activity periods. Variation in thermal constraints are input into computer simulations of ectotherm response to climate to assess latitudinal variation in turtle response to microclimate cooling (4{degrees} C), current climate (1970-1990), and climatic warming (3-5{degrees} C). Climatic warming is calculated to lead to a northward shift inmore » turtle range and distribution with increases in northern and declines in southern populations. Microclimate cooling is estimated to result in declines in northern areas and in the core of the box turtle range. The local changes in microclimate, such as can result from shifts in land-use, can be greater than those resulting from large scale changes in climate. Suggesting that land managers and conservation biologists need to focus greater attention on the impact of changes in within patch structure of plant associations and its implications for alteration of microclimate and species life history.« less

  9. Concordance between genetic and species diversity in coral reef fishes across the Pacific Ocean biodiversity gradient.

    PubMed

    Messmer, Vanessa; Jones, Geoffrey P; Munday, Philip L; Planes, Serge

    2012-12-01

    The relationship between genetic diversity and species diversity provides insights into biogeography and historic patterns of evolution and is critical for developing contemporary strategies for biodiversity conservation. Although concordant large-scale clines in genetic and species diversity have been described for terrestrial organisms, whether these parameters co-vary in marine species remains largely unknown. We examined patterns of genetic diversity for 11 coral reef fish species sampled at three locations across the Pacific Ocean species diversity gradient (Australia: ∼1600 species; New Caledonia: ∼1400 species; French Polynesia: ∼800 species). Combined genetic diversity for all 11 species paralleled the decline in species diversity from West to East, with French Polynesia exhibiting lowest total haplotype and nucleotide diversities. Haplotype diversity consistently declined toward French Polynesia in all and nucleotide diversity in the majority of species. The French Polynesian population of most species also exhibited significant genetic differentiation from populations in the West Pacific. A number of factors may have contributed to the general positive correlation between genetic and species diversity, including location and time of species origin, vicariance events, reduced gene flow with increasing isolation, and decreasing habitat area from West to East. However, isolation and habitat area, resulting in reduced population size, are likely to be the most influential. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  10. Diverse elevational diversity gradients in Great Smoky Mountains National Park, U.S.A.: Chapter 10

    USGS Publications Warehouse

    Sanders, Nathan J.; Dunn, Robert R.; Fitzpatrick, Matthew C.; Carlton, Christopher E.; Pogue, Michael R.; Parker, Charles R.; Simons, Theodore R.

    2009-01-01

    Why does the number of species vary geographically? The earliest naturalists puzzled over this question, as do many biogeographers and macroecologists today. Over the last 200-plus years, the most striking geographic pattern in species richness – the decline in species richness with increasing latitude – has received the most attention. Thanks to many recent theoretical developments, coupled with global-scale databases and satellite technology, the number of candidate mechanisms that shape the latitudinal diversity gradient has been whittled down to a manageable number.

  11. Prolateness of the Solar Tachocline Inferred from Latitudinal Force Balance in a Magnetohydrodynamic Shallow-Water Model

    NASA Astrophysics Data System (ADS)

    Dikpati, Mausumi; Gilman, Peter A.

    2001-05-01

    Motivated by recent helioseismic observations concerning solar tachocline shape and thickness and by the theoretical development of MHD shallow-water equations for the tachocline, we compute the prolateness of the tachocline using an MHD shallow-water model, in which the shape and thickness are determined from the latitudinal force balance equation. We show that a strong toroidal magnetic field stored at or below the overshoot part of the tachocline leads to a pileup of fluid at high latitude, owing to the poleward magnetic curvature stress which has to be balanced by an equatorward latitudinal hydrostatic pressure gradient. For toroidal fields of solar amplitude (~100 kG), results for differentially rotating and uniformly rotating tachoclines are almost the same. In contrast, the unmagnetized differentially rotating tachocline would always be weakly oblate. We propose that a strong toroidal field in the overshoot part of the tachocline should tend to suppress the overshooting, thereby increasing the magnetic storage capacity of the layer since the stratification there should become more subadiabatic. We illustrate the effect of this process on the shape and thickness of the layer by assuming its effective gravity is a function of field strength. If toroidal fields are concentrated in relatively narrow bands which migrate toward the equator with the advance of the sunspot cycle, then they should be accompanied by a ``thickness front'' advancing at the same rate. Applying our model to the prolateness estimate of Charbonneau et al. yields toroidal fields of 60-150 kG in the overshoot layer, consistent with other considerations. Their prolateness in the radiative part of the tachocline would require ~600 kG fields to be present.

  12. Local adaptation and oceanographic connectivity patterns explain genetic differentiation of a marine diatom across the North Sea–Baltic Sea salinity gradient

    PubMed Central

    Sjöqvist, C; Godhe, A; Jonsson, P R; Sundqvist, L; Kremp, A

    2015-01-01

    Drivers of population genetic structure are still poorly understood in marine micro-organisms. We exploited the North Sea–Baltic Sea transition for investigating the seascape genetics of a marine diatom, Skeletonema marinoi. Eight polymorphic microsatellite loci were analysed in 354 individuals from ten locations to analyse population structure of the species along a 1500-km-long salinity gradient ranging from 3 to 30 psu. To test for salinity adaptation, salinity reaction norms were determined for sets of strains originating from three different salinity regimes of the gradient. Modelled oceanographic connectivity was compared to directional relative migration by correlation analyses to examine oceanographic drivers. Population genetic analyses showed distinct genetic divergence of a low-salinity Baltic Sea population and a high-salinity North Sea population, coinciding with the most evident physical dispersal barrier in the area, the Danish Straits. Baltic Sea populations displayed reduced genetic diversity compared to North Sea populations. Growth optima of low salinity isolates were significantly lower than those of strains from higher native salinities, indicating local salinity adaptation. Although the North Sea–Baltic Sea transition was identified as a barrier to gene flow, migration between Baltic Sea and North Sea populations occurred. However, the presence of differentiated neutral markers on each side of the transition zone suggests that migrants are maladapted. It is concluded that local salinity adaptation, supported by oceanographic connectivity patterns creating an asymmetric migration pattern between the Baltic Sea and the North Sea, determines genetic differentiation patterns in the transition zone. PMID:25892181

  13. Higher speciation and lower extinction rates influence mammal diversity gradients in Asia.

    PubMed

    Tamma, Krishnapriya; Ramakrishnan, Uma

    2015-02-04

    Little is known about the patterns and correlates of mammal diversity gradients in Asia. In this study, we examine patterns of species distributions and phylogenetic diversity in Asia and investigate if the observed diversity patterns are associated with differences in diversification rates between the tropical and non-tropical regions. We used species distribution maps and phylogenetic trees to generate species and phylogenetic diversity measures for 1° × 1° cells across mainland Asia. We constructed lineage-through-time plots and estimated diversification shift-times to examine the temporal patterns of diversifications across orders. Finally, we tested if the observed gradients in Asia could be associated with geographical differences in diversification rates across the tropical and non-tropical biomes. We estimated speciation, extinction and dispersal rates across these two regions for mammals, both globally and for Asian mammals. Our results demonstrate strong latitudinal and longitudinal gradients of species and phylogenetic diversity with Southeast Asia and the Himalayas showing highest diversity. Importantly, our results demonstrate that differences in diversification (speciation, extinction and dispersal) rates between the tropical and the non-tropical biomes influence the observed diversity gradients globally and in Asia. For the first time, we demonstrate that Asian tropics act as both cradles and museums of mammalian diversity. Temporal and spatial variation in diversification rates across different lineages of mammals is an important correlate of species diversity gradients observed in Asia.

  14. An isotopic comparison of cross-latitudinal horse hair data

    NASA Astrophysics Data System (ADS)

    Thompson, Elisabeth; Ramsey, Christopher

    2017-04-01

    This study explores whether the Rayleigh distillation process latitude effect, of depleted δ18O in precipitation toward the poles, can be observed in horse hair. This study specifically compares δ18O values in horse hair with meteorological variables, and examines whether regional changes in global climate can be observed. The sampling sites and the pony breeds used in this study will add to the increasing network of isotopic horse hair data and will create an even better understanding of the intra-species variation within the δ18O values of horse hair. By directly correlating the meteorological variables to δ18O variations, the effects of specific weather events at different latitudes can also be explored at a very high resolution. 24 horses were sampled within approximately 24 hours on the 7th March 2016 from Thordale Stud in Shetland; the Icelandic Food And Veterinary Authority in Iceland; the Exmoor Pony Centre in Exmoor; and the Pigeon House Equestrian Centre in Oxfordshire. Starting the sampling process from the most recent growth at the follicle, the sampling date becomes a chronological marker, temporally fixing the first sample within a sequential set of data points extending for one year or longer, depending on the length of each individual hair. Preliminary results confirm the hypothesis, demonstrating that a study of oxygen isotope ratios in horse hair from Oxfordshire to Iceland shows a latitudinal depletion gradient, consistent with a depletion of oxygen isotope ratios due to decreasing temperatures.

  15. Toxic hydrogen sulfide and dark caves: phenotypic and genetic divergence across two abiotic environmental gradients in Poecilia mexicana.

    PubMed

    Tobler, Michael; Dewitt, Thomas J; Schlupp, Ingo; García de León, Francisco J; Herrmann, Roger; Feulner, Philine G D; Tiedemann, Ralph; Plath, Martin

    2008-10-01

    Divergent natural selection drives evolutionary diversification. It creates phenotypic diversity by favoring developmental plasticity within populations or genetic differentiation and local adaptation among populations. We investigated phenotypic and genetic divergence in the livebearing fish Poecilia mexicana along two abiotic environmental gradients. These fish typically inhabit nonsulfidic surface rivers, but also colonized sulfidic and cave habitats. We assessed phenotypic variation among a factorial combination of habitat types using geometric and traditional morphometrics, and genetic divergence using quantitative and molecular genetic analyses. Fish in caves (sulfidic or not) exhibited reduced eyes and slender bodies. Fish from sulfidic habitats (surface or cave) exhibited larger heads and longer gill filaments. Common-garden rearing suggested that these morphological differences are partly heritable. Population genetic analyses using microsatellites as well as cytochrome b gene sequences indicate high population differentiation over small spatial scale and very low rates of gene flow, especially among different habitat types. This suggests that divergent environmental conditions constitute barriers to gene flow. Strong molecular divergence over short distances as well as phenotypic and quantitative genetic divergence across habitats in directions classic to fish ecomorphology suggest that divergent selection is structuring phenotypic variation in this system.

  16. Genetic Adaptation vs. Ecophysiological Plasticity of Photosynthetic-Related Traits in Young Picea glauca Trees along a Regional Climatic Gradient

    PubMed Central

    Benomar, Lahcen; Lamhamedi, Mohammed S.; Rainville, André; Beaulieu, Jean; Bousquet, Jean; Margolis, Hank A.

    2016-01-01

    Assisted population migration (APM) is the intentional movement of populations within a species range to sites where future environmental conditions are projected to be more conducive to growth. APM has been proposed as a proactive adaptation strategy to maintain forest productivity and to reduce the vulnerability of forest ecosystems to projected climate change. The validity of such a strategy will depend on the adaptation capacity of populations, which can partially be evaluated by the ecophysiological response of different genetic sources along a climatic gradient. This adaptation capacity results from the compromise between (i) the degree of genetic adaptation of seed sources to their environment of origin and (ii) the phenotypic plasticity of functional trait which can make it possible for transferred seed sources to positively respond to new growing conditions. We examined phenotypic variation in morphophysiological traits of six seed sources of white spruce (Picea glauca [Moench] Voss) along a regional climatic gradient in Québec, Canada. Seedlings from the seed sources were planted at three forest sites representing a mean annual temperature (MAT) gradient of 2.2°C. During the second growing season, we measured height growth (H2014) and traits related to resources use efficiency and photosynthetic rate (Amax). All functional traits showed an adaptive response to the climatic gradient. Traits such as H2014, Amax, stomatal conductance (gs), the ratio of mesophyll to stomatal conductance, water use efficiency, and photosynthetic nitrogen-use efficiency showed significant variation in both physiological plasticity due to the planting site and seed source variation related to local genetic adaptation. However, the amplitude of seed source variation was much less than that related to plantation sites in the area investigated. The six seed sources showed a similar level of physiological plasticity. H2014, Amax and gs, but not carboxylation capacity (Vcmax), were

  17. Seabird satellite tracking validates the use of latitudinal isoscapes to depict predators' foraging areas in the Southern Ocean.

    PubMed

    Jaeger, Audrey; Lecomte, Vincent J; Weimerskirch, Henri; Richard, Pierre; Cherel, Yves

    2010-12-15

    Stable isotopes are increasingly being used to trace wildlife movements. A fundamental prerequisite of animal isotopic tracking is a good knowledge of spatial isotopic variations in the environment. Few accessible reference maps of the isotopic landscape ("isoscapes") are available for marine predators. Here, we validate for the first time an isotopic gradient for higher trophic levels by using a unique combination of a large number of satellite-tracks and subsequent blood plasma isotopic signatures from a wide-ranging oceanic predator. The plasma δ(13)C and δ(15)N values of wandering albatrosses (n = 45) were highly and positively correlated to the Southern Ocean latitudes at which the satellite-tracked individuals foraged. The well-defined latitudinal baseline carbon isoscapes in the Southern Ocean is thus reflected in the tissue of consumers, but with a positive shift due to the cumulative effect of a slight (13)C-enrichment at each trophic level. The data allowed us to estimate the carbon isotopic position of the main oceanic fronts in the area, and thus to delineate robust isoscapes of the main foraging zones for top predators. The plasma δ(13)C and δ(15)N values were positively and linearly correlated, thus suggesting that latitudinal isoscapes also occur for δ(15)N at the base of the food web in oceanic waters of the Southern Ocean. The combination of device deployments with sampling of relevant tissues for isotopic analysis appears to be a powerful tool for investigating consumers' isoscapes at various spatio-temporal scales. Copyright © 2010 John Wiley & Sons, Ltd.

  18. Genetic effects on life-history traits in the Glanville fritillary butterfly.

    PubMed

    Duplouy, Anne; Wong, Swee C; Corander, Jukka; Lehtonen, Rainer; Hanski, Ilkka

    2017-01-01

    Adaptation to local habitat conditions may lead to the natural divergence of populations in life-history traits such as body size, time of reproduction, mate signaling or dispersal capacity. Given enough time and strong enough selection pressures, populations may experience local genetic differentiation. The genetic basis of many life-history traits, and their evolution according to different environmental conditions remain however poorly understood. We conducted an association study on the Glanville fritillary butterfly, using material from five populations along a latitudinal gradient within the Baltic Sea region, which show different degrees of habitat fragmentation. We investigated variation in 10 principal components, cofounding in total 21 life-history traits, according to two environmental types, and 33 genetic SNP markers from 15 candidate genes. We found that nine SNPs from five genes showed strong trend for trait associations ( p -values under 0.001 before correction). These associations, yet non-significant after multiple test corrections, with a total number of 1,086 tests, were consistent across the study populations. Additionally, these nine genes also showed an allele frequency difference between the populations from the northern fragmented versus the southern continuous landscape. Our study provides further support for previously described trait associations within the Glanville fritillary butterfly species across different spatial scales. Although our results alone are inconclusive, they are concordant with previous studies that identified these associations to be related to climatic changes or habitat fragmentation within the Åland population.

  19. Genetic effects on life-history traits in the Glanville fritillary butterfly

    PubMed Central

    Corander, Jukka

    2017-01-01

    Background Adaptation to local habitat conditions may lead to the natural divergence of populations in life-history traits such as body size, time of reproduction, mate signaling or dispersal capacity. Given enough time and strong enough selection pressures, populations may experience local genetic differentiation. The genetic basis of many life-history traits, and their evolution according to different environmental conditions remain however poorly understood. Methods We conducted an association study on the Glanville fritillary butterfly, using material from five populations along a latitudinal gradient within the Baltic Sea region, which show different degrees of habitat fragmentation. We investigated variation in 10 principal components, cofounding in total 21 life-history traits, according to two environmental types, and 33 genetic SNP markers from 15 candidate genes. Results We found that nine SNPs from five genes showed strong trend for trait associations (p-values under 0.001 before correction). These associations, yet non-significant after multiple test corrections, with a total number of 1,086 tests, were consistent across the study populations. Additionally, these nine genes also showed an allele frequency difference between the populations from the northern fragmented versus the southern continuous landscape. Discussion Our study provides further support for previously described trait associations within the Glanville fritillary butterfly species across different spatial scales. Although our results alone are inconclusive, they are concordant with previous studies that identified these associations to be related to climatic changes or habitat fragmentation within the Åland population. PMID:28560112

  20. Latitude delineates patterns of biogeography in terrestrial Streptomyces.

    PubMed

    Choudoir, Mallory J; Doroghazi, James R; Buckley, Daniel H

    2016-12-01

    The biogeography of Streptomyces was examined at regional spatial scales to identify factors that govern patterns of microbial diversity. Streptomyces are spore forming filamentous bacteria which are widespread in soil. Streptomyces strains were isolated from perennial grass habitats sampled across a spatial scale of more than 6000 km. Previous analysis of this geographically explicit culture collection provided evidence for a latitudinal diversity gradient in Streptomyces species. Here the hypothesis that this latitudinal diversity gradient is a result of evolutionary dynamics associated with historical demographic processes was evaluated. Historical demographic phenomena have genetic consequences that can be evaluated through analysis of population genetics. Population genetic approaches were applied to analyze population structure in six of the most numerically abundant and geographically widespread Streptomyces phylogroups from our culture collection. Streptomyces population structure varied at regional spatial scales, and allelic diversity correlated with geographic distance. In addition, allelic diversity and gene flow are partitioned by latitude. Finally, it was found that nucleotide diversity within phylogroups was negatively correlated with latitude. These results indicate that phylogroup diversification is constrained by dispersal limitation at regional spatial scales, and they are consistent with the hypothesis that historical demographic processes have influenced the contemporary biogeography of Streptomyces. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Latitudinal Patterns in European Seagrass Carbon Reserves: Influence of Seasonal Fluctuations versus Short-Term Stress and Disturbance Events

    PubMed Central

    Soissons, Laura M.; Haanstra, Eeke P.; van Katwijk, Marieke M.; Asmus, Ragnhild; Auby, Isabelle; Barillé, Laurent; Brun, Fernando G.; Cardoso, Patricia G.; Desroy, Nicolas; Fournier, Jerome; Ganthy, Florian; Garmendia, Joxe-Mikel; Godet, Laurent; Grilo, Tiago F.; Kadel, Petra; Ondiviela, Barbara; Peralta, Gloria; Puente, Araceli; Recio, Maria; Rigouin, Loic; Valle, Mireia; Herman, Peter M. J.; Bouma, Tjeerd J.

    2018-01-01

    Seagrass meadows form highly productive and valuable ecosystems in the marine environment. Throughout the year, seagrass meadows are exposed to abiotic and biotic variations linked to (i) seasonal fluctuations, (ii) short-term stress events such as, e.g., local nutrient enrichment, and (iii) small-scale disturbances such as, e.g., biomass removal by grazing. We hypothesized that short-term stress events and small-scale disturbances may affect seagrass chance for survival in temperate latitudes. To test this hypothesis we focused on seagrass carbon reserves in the form of starch stored seasonally in rhizomes, as these have been defined as a good indicator for winter survival. Twelve Zostera noltei meadows were monitored along a latitudinal gradient in Western Europe to firstly assess the seasonal change of their rhizomal starch content. Secondly, we tested the effects of nutrient enrichment and/or biomass removal on the corresponding starch content by using a short-term manipulative field experiment at a single latitude in the Netherlands. At the end of the growing season, we observed a weak but significant linear increase of starch content along the latitudinal gradient from south to north. This agrees with the contention that such reserves are essential for regrowth after winter, which is more severe in the north. In addition, we also observed a weak but significant positive relationship between starch content at the beginning of the growing season and past winter temperatures. This implies a lower regrowth potential after severe winters, due to diminished starch content at the beginning of the growing season. Short-term stress and disturbances may intensify these patterns, because our manipulative experiments show that when nutrient enrichment and biomass loss co-occurred at the end of the growing season, Z. noltei starch content declined. In temperate zones, the capacity of seagrasses to accumulate carbon reserves is expected to determine carbon-based regrowth

  2. Latitudinal Patterns in European Seagrass Carbon Reserves: Influence of Seasonal Fluctuations versus Short-Term Stress and Disturbance Events.

    PubMed

    Soissons, Laura M; Haanstra, Eeke P; van Katwijk, Marieke M; Asmus, Ragnhild; Auby, Isabelle; Barillé, Laurent; Brun, Fernando G; Cardoso, Patricia G; Desroy, Nicolas; Fournier, Jerome; Ganthy, Florian; Garmendia, Joxe-Mikel; Godet, Laurent; Grilo, Tiago F; Kadel, Petra; Ondiviela, Barbara; Peralta, Gloria; Puente, Araceli; Recio, Maria; Rigouin, Loic; Valle, Mireia; Herman, Peter M J; Bouma, Tjeerd J

    2018-01-01

    Seagrass meadows form highly productive and valuable ecosystems in the marine environment. Throughout the year, seagrass meadows are exposed to abiotic and biotic variations linked to (i) seasonal fluctuations, (ii) short-term stress events such as, e.g., local nutrient enrichment, and (iii) small-scale disturbances such as, e.g., biomass removal by grazing. We hypothesized that short-term stress events and small-scale disturbances may affect seagrass chance for survival in temperate latitudes. To test this hypothesis we focused on seagrass carbon reserves in the form of starch stored seasonally in rhizomes, as these have been defined as a good indicator for winter survival. Twelve Zostera noltei meadows were monitored along a latitudinal gradient in Western Europe to firstly assess the seasonal change of their rhizomal starch content. Secondly, we tested the effects of nutrient enrichment and/or biomass removal on the corresponding starch content by using a short-term manipulative field experiment at a single latitude in the Netherlands. At the end of the growing season, we observed a weak but significant linear increase of starch content along the latitudinal gradient from south to north. This agrees with the contention that such reserves are essential for regrowth after winter, which is more severe in the north. In addition, we also observed a weak but significant positive relationship between starch content at the beginning of the growing season and past winter temperatures. This implies a lower regrowth potential after severe winters, due to diminished starch content at the beginning of the growing season. Short-term stress and disturbances may intensify these patterns, because our manipulative experiments show that when nutrient enrichment and biomass loss co-occurred at the end of the growing season, Z. noltei starch content declined. In temperate zones, the capacity of seagrasses to accumulate carbon reserves is expected to determine carbon-based regrowth

  3. Local versus Generalized Phenotypes in Two Sympatric Aurelia Species: Understanding Jellyfish Ecology Using Genetics and Morphometrics

    PubMed Central

    Chiaverano, Luciano M.; Bayha, Keith W.; Graham, William M.

    2016-01-01

    For individuals living in environmentally heterogeneous environments, a key component for adaptation and persistence is the extent of phenotypic differentiation in response to local environmental conditions. In order to determine the extent of environmentally induced morphological variation in a natural population distributed along environmental gradients, it is necessary to account for potential genetic differences contributing to morphological differentiation. In this study, we set out to quantify geographic morphological variation in the moon jellyfish Aurelia exposed at the extremes of a latitudinal environmental gradient in the Gulf of Mexico (GoM). We used morphological data based on 28 characters, and genetic data taken from mitochondrial cytochrome oxidase I (COI) and nuclear internal transcribed spacer 1 (ITS-1). Molecular analyses revealed the presence of two genetically distinct species of Aurelia co-occurring in the GoM: Aurelia sp. 9 and Aurelia c.f. sp. 2, named for its divergence from (for COI) and similarity to (for ITS-1) Aurelia sp. 2 (Brazil). Neither species exhibited significant population genetic structure between the Northern and the Southeastern Gulf of Mexico; however, they differed greatly in the degree of geographic morphological variation. The morphology of Aurelia sp. 9 exhibited ecophenotypic plasticity and varied significantly between locations, while morphology of Aurelia c.f. sp. 2 was geographically invariant (i.e., canalized). The plastic, generalist medusae of Aurelia sp. 9 are likely able to produce environmentally-induced, “optimal” phenotypes that confer high relative fitness in different environments. In contrast, the non-plastic generalist individuals of Aurelia c.f. sp. 2 likely produce environmentally-independent phenotypes that provide the highest fitness across environments. These findings suggest the two Aurelia lineages co-occurring in the GoM were likely exposed to different past environmental conditions (i

  4. Local versus Generalized Phenotypes in Two Sympatric Aurelia Species: Understanding Jellyfish Ecology Using Genetics and Morphometrics.

    PubMed

    Chiaverano, Luciano M; Bayha, Keith W; Graham, William M

    2016-01-01

    For individuals living in environmentally heterogeneous environments, a key component for adaptation and persistence is the extent of phenotypic differentiation in response to local environmental conditions. In order to determine the extent of environmentally induced morphological variation in a natural population distributed along environmental gradients, it is necessary to account for potential genetic differences contributing to morphological differentiation. In this study, we set out to quantify geographic morphological variation in the moon jellyfish Aurelia exposed at the extremes of a latitudinal environmental gradient in the Gulf of Mexico (GoM). We used morphological data based on 28 characters, and genetic data taken from mitochondrial cytochrome oxidase I (COI) and nuclear internal transcribed spacer 1 (ITS-1). Molecular analyses revealed the presence of two genetically distinct species of Aurelia co-occurring in the GoM: Aurelia sp. 9 and Aurelia c.f. sp. 2, named for its divergence from (for COI) and similarity to (for ITS-1) Aurelia sp. 2 (Brazil). Neither species exhibited significant population genetic structure between the Northern and the Southeastern Gulf of Mexico; however, they differed greatly in the degree of geographic morphological variation. The morphology of Aurelia sp. 9 exhibited ecophenotypic plasticity and varied significantly between locations, while morphology of Aurelia c.f. sp. 2 was geographically invariant (i.e., canalized). The plastic, generalist medusae of Aurelia sp. 9 are likely able to produce environmentally-induced, "optimal" phenotypes that confer high relative fitness in different environments. In contrast, the non-plastic generalist individuals of Aurelia c.f. sp. 2 likely produce environmentally-independent phenotypes that provide the highest fitness across environments. These findings suggest the two Aurelia lineages co-occurring in the GoM were likely exposed to different past environmental conditions (i

  5. A Single-Lap Joint Adhesive Bonding Optimization Method Using Gradient and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Finckenor, Jeffrey L.

    1999-01-01

    A natural process for any engineer, scientist, educator, etc. is to seek the most efficient method for accomplishing a given task. In the case of structural design, an area that has a significant impact on the structural efficiency is joint design. Unless the structure is machined from a solid block of material, the individual components which compose the overall structure must be joined together. The method for joining a structure varies depending on the applied loads, material, assembly and disassembly requirements, service life, environment, etc. Using both metallic and fiber reinforced plastic materials limits the user to two methods or a combination of these methods for joining the components into one structure. The first is mechanical fastening and the second is adhesive bonding. Mechanical fastening is by far the most popular joining technique; however, in terms of structural efficiency, adhesive bonding provides a superior joint since the load is distributed uniformly across the joint. The purpose of this paper is to develop a method for optimizing single-lap joint adhesive bonded structures using both gradient and genetic algorithms and comparing the solution process for each method. The goal of the single-lap joint optimization is to find the most efficient structure that meets the imposed requirements while still remaining as lightweight, economical, and reliable as possible. For the single-lap joint, an optimum joint is determined by minimizing the weight of the overall joint based on constraints from adhesive strengths as well as empirically derived rules. The analytical solution of the sin-le-lap joint is determined using the classical Goland-Reissner technique for case 2 type adhesive joints. Joint weight minimization is achieved using a commercially available routine, Design Optimization Tool (DOT), for the gradient solution while an author developed method is used for the genetic algorithm solution. Results illustrate the critical design variables

  6. Ionosphere total electron content and its horizontal gradients, measured on the basis of satellite signal recordings at scattered points

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misyura, V.A.; Podnos, V.A.; Kapanin, I.I.

    1973-01-01

    Translated from Kosm. Issled.; 11: No. 4, 581-585(1973). The integrated electron content of the ionosphere up to the level of the recording satellite, and the horizontal gradients of the integrated electron content (total, latitudinal, and longitudinal components), was obtained at scattered observation points located at medium and high latitudes, on the basis of recordings made of Doppler and Faraday effects on coherent signals from the satellites Explorer-22, Explorer-27, Interkosmos-2, Kosmos321, Kosmos-356, and Kosmos-381. (auth)

  7. Latitudinal and Energy Dependence of Energetic Neutral Atom Spectral Indices Measured by the Interstellar Boundary Explorer

    NASA Astrophysics Data System (ADS)

    Desai, M. I.; Allegrini, F.; Dayeh, M. A.; Funsten, H.; Heerikhuisen, J.; McComas, D. J.; Fuselier, S. A.; Pogorelov, N.; Schwadron, N. A.; Zank, G. P.; Zirnstein, E. J.

    2015-04-01

    We investigate the latitudinal and energy dependence of the globally distributed 0.5-6 keV energetic neutral atom (ENA) spectra measured by the Interstellar Boundary Explorer (IBEX) during the first 3 yrs of the mission. Our results are: (1) the ENA spectral indices at the two lowest energies (0.89 and 1.47 keV) exhibit no clear trend with ecliptic latitude θ, while those at ˜2.29 and ˜3.41 keV exhibit a clear latitudinal pattern; flatter spectra occur above 60° latitude and steeper spectra occur ±30° of the equator. (2) The latitudinal dependence of the spectral indices at different energies can be represented by the cosine function γ ={{a}0}+{{a}1}cos ({{a}2}θ ) with unique offsets, amplitudes, and phase angles; the higher energy ENA indices transition to successively larger amplitudes within ±45° of the equator. Our results confirm the previously reported latitudinal organization of the ENA spectra and their remarkable similarity to that of the solar wind (SW) speed observed by Ulysses in the inner heliosphere. While earlier studies showed that the ˜0.5-6 keV globally distributed ENA spectral indices could be represented as single power laws over much of the sky, our new results indicate that this is an over-simplification because the spectral indices have an energy and latitude dependence. This dependence is an important factor that must be taken into consideration by models and simulations that seek to map the IBEX ENA observations back to the latitudinal profile of the SW speed structure observed in the inner heliosphere.

  8. Co-variation between seed dormancy, growth rate and flowering time changes with latitude in Arabidopsis thaliana.

    PubMed

    Debieu, Marilyne; Tang, Chunlao; Stich, Benjamin; Sikosek, Tobias; Effgen, Sigi; Josephs, Emily; Schmitt, Johanna; Nordborg, Magnus; Koornneef, Maarten; de Meaux, Juliette

    2013-01-01

    Life-history traits controlling the duration and timing of developmental phases in the life cycle jointly determine fitness. Therefore, life-history traits studied in isolation provide an incomplete view on the relevance of life-cycle variation for adaptation. In this study, we examine genetic variation in traits covering the major life history events of the annual species Arabidopsis thaliana: seed dormancy, vegetative growth rate and flowering time. In a sample of 112 genotypes collected throughout the European range of the species, both seed dormancy and flowering time follow a latitudinal gradient independent of the major population structure gradient. This finding confirms previous studies reporting the adaptive evolution of these two traits. Here, however, we further analyze patterns of co-variation among traits. We observe that co-variation between primary dormancy, vegetative growth rate and flowering time also follows a latitudinal cline. At higher latitudes, vegetative growth rate is positively correlated with primary dormancy and negatively with flowering time. In the South, this trend disappears. Patterns of trait co-variation change, presumably because major environmental gradients shift with latitude. This pattern appears unrelated to population structure, suggesting that changes in the coordinated evolution of major life history traits is adaptive. Our data suggest that A. thaliana provides a good model for the evolution of trade-offs and their genetic basis.

  9. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming.

    PubMed

    Sawall, Yvonne; Al-Sofyani, Abdulmoshin; Hohn, Sönke; Banguera-Hinestroza, Eulalia; Voolstra, Christian R; Wahl, Martin

    2015-03-10

    Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12° latitudes featuring a steep temperature gradient between the northern (28.5°N, 21-27°C) and southern (16.5°N, 28-33°C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29°C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals.

  10. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming

    PubMed Central

    Sawall, Yvonne; Al-Sofyani, Abdulmoshin; Hohn, Sönke; Banguera-Hinestroza, Eulalia; Voolstra, Christian R.; Wahl, Martin

    2015-01-01

    Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12° latitudes featuring a steep temperature gradient between the northern (28.5°N, 21–27°C) and southern (16.5°N, 28–33°C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28–29°C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals. PMID:25754672

  11. Latitudinal Clines of the Human Vitamin D Receptor and Skin Color Genes.

    PubMed

    Tiosano, Dov; Audi, Laura; Climer, Sharlee; Zhang, Weixiong; Templeton, Alan R; Fernández-Cancio, Monica; Gershoni-Baruch, Ruth; Sánchez-Muro, José Miguel; El Kholy, Mohamed; Hochberg, Zèev

    2016-05-03

    The well-documented latitudinal clines of genes affecting human skin color presumably arise from the need for protection from intense ultraviolet radiation (UVR) vs. the need to use UVR for vitamin D synthesis. Sampling 751 subjects from a broad range of latitudes and skin colors, we investigated possible multilocus correlated adaptation of skin color genes with the vitamin D receptor gene (VDR), using a vector correlation metric and network method called BlocBuster. We discovered two multilocus networks involving VDR promoter and skin color genes that display strong latitudinal clines as multilocus networks, even though many of their single gene components do not. Considered one by one, the VDR components of these networks show diverse patterns: no cline, a weak declining latitudinal cline outside of Africa, and a strong in- vs. out-of-Africa frequency pattern. We confirmed these results with independent data from HapMap. Standard linkage disequilibrium analyses did not detect these networks. We applied BlocBuster across the entire genome, showing that our networks are significant outliers for interchromosomal disequilibrium that overlap with environmental variation relevant to the genes' functions. These results suggest that these multilocus correlations most likely arose from a combination of parallel selective responses to a common environmental variable and coadaptation, given the known Mendelian epistasis among VDR and the skin color genes. Copyright © 2016 Tiosano et al.

  12. Latitudinal Clines of the Human Vitamin D Receptor and Skin Color Genes

    PubMed Central

    Tiosano, Dov; Audi, Laura; Climer, Sharlee; Zhang, Weixiong; Templeton, Alan R.; Fernández-Cancio, Monica; Gershoni-Baruch, Ruth; Sánchez-Muro, José Miguel; El Kholy, Mohamed; Hochberg, Zèev

    2016-01-01

    The well-documented latitudinal clines of genes affecting human skin color presumably arise from the need for protection from intense ultraviolet radiation (UVR) vs. the need to use UVR for vitamin D synthesis. Sampling 751 subjects from a broad range of latitudes and skin colors, we investigated possible multilocus correlated adaptation of skin color genes with the vitamin D receptor gene (VDR), using a vector correlation metric and network method called BlocBuster. We discovered two multilocus networks involving VDR promoter and skin color genes that display strong latitudinal clines as multilocus networks, even though many of their single gene components do not. Considered one by one, the VDR components of these networks show diverse patterns: no cline, a weak declining latitudinal cline outside of Africa, and a strong in- vs. out-of-Africa frequency pattern. We confirmed these results with independent data from HapMap. Standard linkage disequilibrium analyses did not detect these networks. We applied BlocBuster across the entire genome, showing that our networks are significant outliers for interchromosomal disequilibrium that overlap with environmental variation relevant to the genes’ functions. These results suggest that these multilocus correlations most likely arose from a combination of parallel selective responses to a common environmental variable and coadaptation, given the known Mendelian epistasis among VDR and the skin color genes. PMID:26921301

  13. Average latitudinal variation in ultraviolet radiation at the earth's surface. [biological sensitivity and dosage

    NASA Technical Reports Server (NTRS)

    Johnson, F. S.; Mo, T.; Green, A. E. S.

    1976-01-01

    Tabulated values are presented for ultraviolet radiation at the earth's surface as a function of wavelength, latitude, and season, for clear sky and seasonally and latitudinally averaged ozone amounts. These tabulations can be combined with any biological sensitivity function in order to obtain the seasonal and latitudinal variation of the corresponding effective doses. The integrated dosages, based on the erythemal sensitivity curve and on the Robertson-Berger sunburn-meter sensitivity curve, have also been calculated, and these are found to vary with latitude and season in very nearly the same way as 307 and 314 nm radiation, respectively.

  14. Limited Genetic Connectivity between Gorgonian Morphotypes along a Depth Gradient

    PubMed Central

    Gori, Andrea; Lopez-González, Pablo; Bramanti, Lorenzo; Rossi, Sergio; Gili, Josep-Maria; Abbiati, Marco

    2016-01-01

    Gorgonian species show a high morphological variability in relation to the environment in which they live. In coastal areas, parameters such as temperature, light, currents, and food availability vary significantly with depth, potentially affecting morphology of the colonies and the structure of the populations, as well as their connectivity patterns. In tropical seas, the existence of connectivity between shallow and deep populations supported the hypothesis that the deep coral reefs could potentially act as (reproductive) refugia fostering re-colonization of shallow areas after mortality events. Moreover, this hypothesis is not so clear accepted in temperate seas. Eunicella singularis is one of the most common gorgonian species in Northwestern Mediterranean Sea, playing an important role as ecosystem engineer by providing biomass and complexity to the coralligenous habitats. It has a wide bathymetric distribution ranging from about 10 m to 100 m. Two depth-related morphotypes have been identified, differing in colony morphology, sclerite size and shape, and occurrence of symbiotic algae, but not in mitochondrial DNA haplotypes. In the present study the genetic structure of E. singularis populations along a horizontal and bathymetric gradient was assessed using microsatellites and ITS1 sequences. Restricted gene flow was found at 30–40 m depth between the two Eunicella morphotypes. Conversely, no genetic structuring has been found among shallow water populations within a spatial scale of ten kilometers. The break in gene flow between shallow and deep populations contributes to explain the morphological variability observed at different depths. Moreover, the limited vertical connectivity hinted that the refugia hypothesis does not apply to E. singularis. Re-colonization of shallow water populations, occasionally affected by mass mortality events, should then be mainly fueled by larvae from other shallow water populations. PMID:27490900

  15. Spatio-Temporal Analyses of Symbiodinium Physiology of the Coral Pocillopora verrucosa along Large-Scale Nutrient and Temperature Gradients in the Red Sea

    PubMed Central

    Sawall, Yvonne; Al-Sofyani, Abdulmohsin; Banguera-Hinestroza, Eulalia; Voolstra, Christian R.

    2014-01-01

    Algal symbionts (zooxanthellae, genus Symbiodinium) of scleractinian corals respond strongly to temperature, nutrient and light changes. These factors vary greatly along the north-south gradient in the Red Sea and include conditions, which are outside of those typically considered optimal for coral growth. Nevertheless, coral communities thrive throughout the Red Sea, suggesting that zooxanthellae have successfully acclimatized or adapted to the harsh conditions they experience particularly in the south (high temperatures and high nutrient supply). As such, the Red Sea is a region, which may help to better understand how zooxanthellae and their coral hosts successfully acclimatize or adapt to environmental change (e.g. increased temperatures and localized eutrophication). To gain further insight into the physiology of coral symbionts in the Red Sea, we examined the abundance of dominant Symbiodinium types associated with the coral Pocillopora verrucosa, and measured Symbiodinium physiological characteristics (i.e. photosynthetic processes, cell density, pigmentation, and protein composition) along the latitudinal gradient of the Red Sea in summer and winter. Despite the strong environmental gradients from north to south, our results demonstrate that Symbiodinium microadriaticum (type A1) was the predominant species in P. verrucosa along the latitudinal gradient. Furthermore, measured physiological characteristics were found to vary more with prevailing seasonal environmental conditions than with region-specific differences, although the measured environmental parameters displayed much higher spatial than temporal variability. We conclude that our findings might present the result of long-term acclimatization or adaptation of S. microadriaticum to regionally specific conditions within the Red Sea. Of additional note, high nutrients in the South correlated with high zooxanthellae density indicating a compensation for a temperature-driven loss of photosynthetic

  16. Spatio-temporal analyses of Symbiodinium physiology of the coral Pocillopora verrucosa along large-scale nutrient and temperature gradients in the Red Sea.

    PubMed

    Sawall, Yvonne; Al-Sofyani, Abdulmohsin; Banguera-Hinestroza, Eulalia; Voolstra, Christian R

    2014-01-01

    Algal symbionts (zooxanthellae, genus Symbiodinium) of scleractinian corals respond strongly to temperature, nutrient and light changes. These factors vary greatly along the north-south gradient in the Red Sea and include conditions, which are outside of those typically considered optimal for coral growth. Nevertheless, coral communities thrive throughout the Red Sea, suggesting that zooxanthellae have successfully acclimatized or adapted to the harsh conditions they experience particularly in the south (high temperatures and high nutrient supply). As such, the Red Sea is a region, which may help to better understand how zooxanthellae and their coral hosts successfully acclimatize or adapt to environmental change (e.g. increased temperatures and localized eutrophication). To gain further insight into the physiology of coral symbionts in the Red Sea, we examined the abundance of dominant Symbiodinium types associated with the coral Pocillopora verrucosa, and measured Symbiodinium physiological characteristics (i.e. photosynthetic processes, cell density, pigmentation, and protein composition) along the latitudinal gradient of the Red Sea in summer and winter. Despite the strong environmental gradients from north to south, our results demonstrate that Symbiodinium microadriaticum (type A1) was the predominant species in P. verrucosa along the latitudinal gradient. Furthermore, measured physiological characteristics were found to vary more with prevailing seasonal environmental conditions than with region-specific differences, although the measured environmental parameters displayed much higher spatial than temporal variability. We conclude that our findings might present the result of long-term acclimatization or adaptation of S. microadriaticum to regionally specific conditions within the Red Sea. Of additional note, high nutrients in the South correlated with high zooxanthellae density indicating a compensation for a temperature-driven loss of photosynthetic

  17. Genetic differences in human circadian clock genes among worldwide populations.

    PubMed

    Ciarleglio, Christopher M; Ryckman, Kelli K; Servick, Stein V; Hida, Akiko; Robbins, Sam; Wells, Nancy; Hicks, Jennifer; Larson, Sydney A; Wiedermann, Joshua P; Carver, Krista; Hamilton, Nalo; Kidd, Kenneth K; Kidd, Judith R; Smith, Jeffrey R; Friedlaender, Jonathan; McMahon, Douglas G; Williams, Scott M; Summar, Marshall L; Johnson, Carl Hirschie

    2008-08-01

    The daily biological clock regulates the timing of sleep and physiological processes that are of fundamental importance to human health, performance, and well-being. Environmental parameters of relevance to biological clocks include (1) daily fluctuations in light intensity and temperature, and (2) seasonal changes in photoperiod (day length) and temperature; these parameters vary dramatically as a function of latitude and locale. In wide-ranging species other than humans, natural selection has genetically optimized adaptiveness along latitudinal clines. Is there evidence for selection of clock gene alleles along latitudinal/photoperiod clines in humans? A number of polymorphisms in the human clock genes Per2, Per3, Clock, and AANAT have been reported as alleles that could be subject to selection. In addition, this investigation discovered several novel polymorphisms in the human Arntl and Arntl2 genes that may have functional impact upon the expression of these clock transcriptional factors. The frequency distribution of these clock gene polymorphisms is reported for diverse populations of African Americans, European Americans, Ghanaians, Han Chinese, and Papua New Guineans (including 5 subpopulations within Papua New Guinea). There are significant differences in the frequency distribution of clock gene alleles among these populations. Population genetic analyses indicate that these differences are likely to arise from genetic drift rather than from natural selection.

  18. Incorporating latitudinal and central–marginal trends in assessing genetic variation across species ranges

    Treesearch

    Qinfeng Guo

    2012-01-01

    The genetic variation across a species’ range is an important factor in speciation and conservation, yet searching for general patterns and underlying causes remains challenging. While the majority of comparisons between central and marginal populations have revealed a general central–marginal (C-M) decline in genetic diversity, others show no clear pattern. Similarly...

  19. Latitudinal variation in seasonal activity and mortality in ratsnakes (Elaphe obsoleta).

    PubMed

    Sperry, Jinelle H; Blouin-Demers, Gabriel; Carfagno, Gerardo L F; Weatherhead, Patrick J

    2010-06-01

    The ecology of ectotherms should be particularly affected by latitude because so much of their biology is temperature dependent. Current latitudinal patterns should also be informative about how ectotherms will have to modify their behavior in response to climate change. We used data from a total of 175 adult black ratsnakes (Elaphe obsoleta) radio-tracked in Ontario, Illinois, and Texas, a latitudinal distance of >1500 km, to test predictions about how seasonal patterns of activity and mortality should vary with latitude. Despite pronounced differences in temperatures among study locations, and despite ratsnakes in Texas not hibernating and switching from diurnal to nocturnal activity in the summer, seasonal patterns of snake activity were remarkably similar during the months that snakes in all populations were active. Rather than being a function of temperature, activity may be driven by the timing of reproduction, which appears similar among populations. Contrary to the prediction that mortality should be highest in the most active population, overall mortality did not follow a clinal pattern. Winter mortality did increase with latitude, however, consistent with temperature limiting the northern distribution of ratsnakes. This result was opposite that found in the only previous study of latitudinal variation in winter mortality in reptiles, which may be a consequence of whether or not the animals exhibit true hibernation. Collectively, these results suggest that, at least in the northern part of their range, ratsnakes should be able to adjust easily to, and may benefit from, a warmer climate, although climate-based changes to the snakes' prey or habitat, for example, could alter that prediction.

  20. Genetic structure along an altitudinal gradient in Lippia origanoides, a promising aromatic plant species restricted to semiarid areas in northern South America

    PubMed Central

    Vega-Vela, Nelson Enrique; Sánchez, María Isabel Chacón

    2012-01-01

    The genetic diversity and population structure of Lippia origanoides, a species of the Verbenaceae family that shows promise as a crop plant, was investigated along an altitudinal gradient in the basin of the Chicamocha River in northeastern Colombia. The economic importance of the species, quality of its essential oils, and the fact that it is restricted to some few semiarid areas in northern South America may put the species at risk in a scenario of uncontrolled harvest of natural populations. Lippia origanoides was sampled along an altitudinal gradient from 365 to 2595 m.a.s.l. throughout Chicamocha River Canyon, a semiarid area in northeastern Colombia. Genetic diversity was assessed by means of AFLP markers. The number of AFLP loci (355) and the number of individuals sampled (173) were sufficient to reliably identify four populations at contrasting altitudes (FST = 0.18, P-value < 0.0000), two populations in the lower basin, one population in the medium basin, and one population in the upper basin, with a low level of admixture between them. In average, genetic diversity within populations was relatively high (Ht = 0.32; I = 0.48); nevertheless, diversity was significantly reduced at higher altitude, a pattern that may be consistent with a scenario of range expansion toward higher elevations in an environment with more extreme conditions. The differences in altitude among the basins in the Chicamocha River seem to be relevant in determining the genetic structure of this species. PMID:23170204

  1. Genetic structure along an altitudinal gradient in Lippia origanoides, a promising aromatic plant species restricted to semiarid areas in northern South America.

    PubMed

    Vega-Vela, Nelson Enrique; Sánchez, María Isabel Chacón

    2012-11-01

    The genetic diversity and population structure of Lippia origanoides, a species of the Verbenaceae family that shows promise as a crop plant, was investigated along an altitudinal gradient in the basin of the Chicamocha River in northeastern Colombia. The economic importance of the species, quality of its essential oils, and the fact that it is restricted to some few semiarid areas in northern South America may put the species at risk in a scenario of uncontrolled harvest of natural populations. Lippia origanoides was sampled along an altitudinal gradient from 365 to 2595 m.a.s.l. throughout Chicamocha River Canyon, a semiarid area in northeastern Colombia. Genetic diversity was assessed by means of AFLP markers. The number of AFLP loci (355) and the number of individuals sampled (173) were sufficient to reliably identify four populations at contrasting altitudes (F(ST) = 0.18, P-value < 0.0000), two populations in the lower basin, one population in the medium basin, and one population in the upper basin, with a low level of admixture between them. In average, genetic diversity within populations was relatively high (Ht = 0.32; I = 0.48); nevertheless, diversity was significantly reduced at higher altitude, a pattern that may be consistent with a scenario of range expansion toward higher elevations in an environment with more extreme conditions. The differences in altitude among the basins in the Chicamocha River seem to be relevant in determining the genetic structure of this species.

  2. Ice-age survival of Atlantic cod: agreement between palaeoecology models and genetics

    PubMed Central

    Bigg, Grant R; Cunningham, Clifford W; Ottersen, Geir; Pogson, Grant H; Wadley, Martin R; Williamson, Phillip

    2007-01-01

    Scant scientific attention has been given to the abundance and distribution of marine biota in the face of the lower sea level, and steeper latitudinal gradient in climate, during the ice-age conditions that have dominated the past million years. Here we examine the glacial persistence of Atlantic cod (Gadus morhua) populations using two ecological-niche-models (ENM) and the first broad synthesis of multi-locus gene sequence data for this species. One ENM uses a maximum entropy approach (Maxent); the other is a new ENM for Atlantic cod, using ecophysiological parameters based on observed reproductive events rather than adult distribution. Both the ENMs were tested for present-day conditions, then used to hindcast ranges at the last glacial maximum (LGM) ca 21 kyr ago, employing climate model data. Although the LGM range of Atlantic cod was much smaller, and fragmented, both the ENMs agreed that populations should have been able to persist in suitable habitat on both sides of the Atlantic. The genetic results showed a degree of trans-Atlantic divergence consistent with genealogically continuous populations on both sides of the North Atlantic since long before the LGM, confirming the ENM results. In contrast, both the ENMs and the genetic data suggest that the Greenland G. morhua population post-dates the LGM. PMID:17999951

  3. Low genetic diversity despite multiple introductions of the invasive plant species Impatiens glandulifera in Europe.

    PubMed

    Hagenblad, Jenny; Hülskötter, Jennifer; Acharya, Kamal Prasad; Brunet, Jörg; Chabrerie, Olivier; Cousins, Sara A O; Dar, Pervaiz A; Diekmann, Martin; De Frenne, Pieter; Hermy, Martin; Jamoneau, Aurélien; Kolb, Annette; Lemke, Isgard; Plue, Jan; Reshi, Zafar A; Graae, Bente Jessen

    2015-08-20

    Invasive species can be a major threat to native biodiversity and the number of invasive plant species is increasing across the globe. Population genetic studies of invasive species can provide key insights into their invasion history and ensuing evolution, but also for their control. Here we genetically characterise populations of Impatiens glandulifera, an invasive plant in Europe that can have a major impact on native plant communities. We compared populations from the species' native range in Kashmir, India, to those in its invaded range, along a latitudinal gradient in Europe. For comparison, the results from 39 other studies of genetic diversity in invasive species were collated. Our results suggest that I. glandulifera was established in the wild in Europe at least twice, from an area outside of our Kashmir study area. Our results further revealed that the genetic diversity in invasive populations of I. glandulifera is unusually low compared to native populations, in particular when compared to other invasive species. Genetic drift rather than mutation seems to have played a role in differentiating populations in Europe. We find evidence of limitations to local gene flow after introduction to Europe, but somewhat less restrictions in the native range. I. glandulifera populations with significant inbreeding were only found in the species' native range and invasive species in general showed no increase in inbreeding upon leaving their native ranges. In Europe we detect cases of migration between distantly located populations. Human activities therefore seem to, at least partially, have facilitated not only introductions, but also further spread of I. glandulifera across Europe. Although multiple introductions will facilitate the retention of genetic diversity in invasive ranges, widespread invasive species can remain genetically relatively invariant also after multiple introductions. Phenotypic plasticity may therefore be an important component of the

  4. Enlarging the gene-geography of Europe and the Mediterranean area to STR loci of common forensic use: longitudinal and latitudinal frequency gradients.

    PubMed

    Messina, Francesco; Finocchio, Andrea; Akar, Nejat; Loutradis, Aphrodite; Michalodimitrakis, Emmanuel I; Brdicka, Radim; Jodice, Carla; Novelletto, Andrea

    2018-02-01

    Tetranucleotide Short Tandem Repeats (STRs) for human identification and common use in forensic cases have recently been used to address the population genetics of the North-Eastern Mediterranean area. However, to gain confidence in the inferences made using STRs, this kind of analysis should be challenged with changes in three main aspects of the data, i.e. the sizes of the samples, their distance across space and the genetic background from which they are drawn. To test the resilience of the gradients previously detected in the North-Eastern Mediterranean to the enlargement of the surveyed area and population set, using revised data. STR genotype profiles were obtained from a publicly available database (PopAffilietor databank) and a dataset was assembled including >7000 subjects from the Arabian Peninsula to Scandinavia, genotyped at eight loci. Spatial principal component analysis (sPCA) was applied and the frequency maps of the nine alleles which contributed most strongly to sPC1 were examined in detail. By far the greatest part of diversity was summarised by a single spatial principal component (sPC1), oriented along a SouthEast-to-NorthWest axis. The alleles with the top 5% squared loadings were TH01(9.3), D19S433(14), TH01(6), D19S433(15.2), FGA(20), FGA(24), D3S1358(14), FGA(21) and D2S1338(19). These results confirm a clinal pattern over the whole range for at least four loci (TH01, D19S433, FGA, D3S1358). Four of the eight STR loci (or even alleles) considered here can reproducibly capture continental arrangements of diversity. This would, in principle, allow for the exploitation of forensic data to clarify important aspects in the formation of local gene pools.

  5. Latitudinal variation in nematode diversity and ecological roles along the Chinese coast.

    PubMed

    Wu, Jihua; Chen, Huili; Zhang, Youzheng

    2016-11-01

    To test changes in the phylogenetic relatedness, niche breadth, and life-history strategies of nematodes along a latitudinal gradient. Sixteen wetland locations along the Pacific coast of China, from 20°N to 40°N. Linear regression was used to relate nematode phylogenetic relatedness (average taxonomic distinctness (AvTD) and average phylogenetic diversity [AvPD]), life-history group (based on " c - p " colonizer-persister group classification), and dietary specificity (based on guild classification of feeding selectivity) to latitude. Wetland nematode taxonomic diversity (richness and Shannon diversity indices) decreased with increasing latitude along the Chinese coast. Phylogenetic diversity indices (AvTD and AvPD) significantly increased with increasing latitude. This indicates that at lower latitudes, species within the nematode community were more closely related. With increasing latitude, the nematode relative richness and abundance decreased for selective deposit feeders but increased for nonselective deposit feeders. The proportion of general opportunists decreased with increasing latitude, but persisters showed the opposite trend. The annual temperature range and the pH of sediments were more important than vegetation type in structuring nematode communities. Nematode niche breadth was narrower at lower latitudes with respect to dietary specificity. Higher latitudes with a more variable climate favor r over K life-history strategists. Nematode communities at lower latitudes contained more closely related species.

  6. Latitudinal exposure to DDTs, HCB, PCBs, PBDEs and DP in giant petrels (Macronectes spp.) across the Southern Ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roscales, Jose L., E-mail: jlroscales@iqog.csic.es; González-Solís, Jacob; Zango, Laura

    Studies on Persistent Organic Pollutants (POPs) in Antarctic wildlife are scarce, and usually limited to a single locality. As a result, wildlife exposure to POPs across the Southern Ocean is poorly understood. In this study, we report the differential exposure of the major southern ocean scavengers, the giant petrels, to POPs across a wide latitudinal gradient. Selected POPs (PCBs, HCB, DDTs, PBDEs) and related compounds, such as Dechlorane Plus (DP), were analyzed in plasma of southern giant petrels (Macronectes giganteus) breeding on Livingston (62°S 61°W, Antarctica), Marion (46°S 37°E, sub-Antarctic), and Gough (40°S 10°W, cool temperate) islands. Northern giant petrelsmore » (Macronectes halli) from Marion Island were also studied. Stable isotope ratios of C and N (δ{sup 13}C and δ{sup 15}N) were used as dietary tracers of the marine habitat and trophic level, respectively. Breeding locality was a major factor explaining petrel exposure to POPs compared with species and sex. Significant relationships between δ{sup 13}C values and POP burdens, at both inter- and intra-population levels, support latitudinal variations in feeding grounds as a key factor in explaining petrel pollutant burdens. Overall, pollutant levels in giant petrels decreased significantly with latitude, but the relative abundance (%) of the more volatile POPs increased towards Antarctica. DP was found at negligible levels compared with legacy POPs in Antarctic seabirds. Spatial POP patterns found in giant petrels match those predicted by global distribution models, and reinforce the hypothesis of atmospheric long-range transport as the main source of POPs in Antarctica. Our results confirm that wildlife movements out of the polar region markedly increase their exposure to POPs. Therefore, strategies for Antarctic wildlife conservation should consider spatial heterogeneity in exposure to marine pollution. Of particular relevance is the need to clarify the exposure of Antarctic

  7. Metagenomic covariation along densely sampled environmental gradients in the Red Sea

    PubMed Central

    Thompson, Luke R; Williams, Gareth J; Haroon, Mohamed F; Shibl, Ahmed; Larsen, Peter; Shorenstein, Joshua; Knight, Rob; Stingl, Ulrich

    2017-01-01

    Oceanic microbial diversity covaries with physicochemical parameters. Temperature, for example, explains approximately half of global variation in surface taxonomic abundance. It is unknown, however, whether covariation patterns hold over narrower parameter gradients and spatial scales, and extending to mesopelagic depths. We collected and sequenced 45 epipelagic and mesopelagic microbial metagenomes on a meridional transect through the eastern Red Sea. We asked which environmental parameters explain the most variation in relative abundances of taxonomic groups, gene ortholog groups, and pathways—at a spatial scale of <2000 km, along narrow but well-defined latitudinal and depth-dependent gradients. We also asked how microbes are adapted to gradients and extremes in irradiance, temperature, salinity, and nutrients, examining the responses of individual gene ortholog groups to these parameters. Functional and taxonomic metrics were equally well explained (75–79%) by environmental parameters. However, only functional and not taxonomic covariation patterns were conserved when comparing with an intruding water mass with different physicochemical properties. Temperature explained the most variation in each metric, followed by nitrate, chlorophyll, phosphate, and salinity. That nitrate explained more variation than phosphate suggested nitrogen limitation, consistent with low surface N:P ratios. Covariation of gene ortholog groups with environmental parameters revealed patterns of functional adaptation to the challenging Red Sea environment: high irradiance, temperature, salinity, and low nutrients. Nutrient-acquisition gene ortholog groups were anti-correlated with concentrations of their respective nutrient species, recapturing trends previously observed across much larger distances and environmental gradients. This dataset of metagenomic covariation along densely sampled environmental gradients includes online data exploration supplements, serving as a community

  8. Genetic and morphological structure of a spruce hybrid (Picea sitchensis x P. glauca) zone along a climatic gradient.

    PubMed

    Hamilton, Jill A; Aitken, Sally N

    2013-08-01

    Historic colonization and contemporary evolutionary processes contribute to patterns of genetic variation and differentiation among populations. However, separating the respective influences of these processes remains a challenge, particularly for natural hybrid zones, where standing genetic variation may result from evolutionary processes both preceding and following contact, influencing the evolutionary trajectory of hybrid populations. Where adaptation to novel environments may be facilitated by interspecific hybridization, teasing apart these processes will have practical implications for forest management in changing environments. We evaluated the neutral genetic architecture of the Picea sitchensis (Sitka spruce) × P. glauca (white spruce) hybrid zone along the Nass and Skeena river valleys in northwestern British Columbia using chloroplast, mitochondrial, and nuclear microsatellite markers, in combination with cone morphological traits. Sitka spruce mitotype "capture", evidenced by this species dominating the maternal lineage, is consistent with earlier colonization of the region by Sitka spruce. This "capture" differs from the spatial distribution of chloroplast haplotypes, indicating pollen dispersal and its contribution to geographic structure. Genetic ancestry, based on nuclear markers, was strongly influenced by climate and geography. Highly parallel results for replicate transects along environmental gradients provide support for the bounded hybrid superiority model of hybrid zone maintenance. • This broad-scale analysis of neutral genetic structure indicates the importance of historic and contemporary gene flow, environmental selection, and their interaction in shaping neutral genetic variation within this hybrid zone, informative to seed transfer development and reforestation for future climates.

  9. Factors Affecting the Latitudinal Location of the Intertropical Convergence Zone in a GCM

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Chen, Baode

    2002-01-01

    The dominant role of the latitudinal peak of the sea surface temperature (SST) in determining the latitudinal location of the intertropical convergence zone (ITCZ) is well-known. However, the roles of the other factors are less well-known and are the topic of this study. These other factors include the inertial stability, the interaction between convection and surface fluxes and the interaction between convection and radiation. Since these interactions involve convection, in a model they involve the cumulus parameterization scheme. These factors are studied with a general circulation model with uniform SST and solar angle. Under the aforementioned model settings, the latitudinal location of the ITCZ is the latitude where the balance of two types of attraction on the ITCZ, both due to earth's rotation, exists. Directly related to the Coriolis parameter, the first type pulls the ITCZ toward the equator and is not sensitive to model design changes. Related to the convective circulation, the second type pulls the ITCZ poleward and is sensitive to model design changes. Due to the shape and the magnitude of the attractors, the balance of the two types of attractions is reached either at the equator or more than 10 degrees away from the equator. The former case results in a single ITCZ over the equator and the latter case a double ITCZ straddling the equator.

  10. Latitudinal variations in Titan's methane and haze from Cassini VIMS observations

    USGS Publications Warehouse

    Penteado, P.F.; Griffith, C.A.; Tomasko, M.G.; Engel, S.; See, C.; Doose, L.; Baines, K.H.; Brown, R.H.; Buratti, B.J.; Clark, R.; Nicholson, P.; Sotin, Christophe

    2010-01-01

    We analyze observations taken with Cassini's Visual and Infrared Mapping Spectrometer (VIMS), to determine the current methane and haze latitudinal distribution between 60??S and 40??N. The methane variation was measured primarily from its absorption band at 0.61 ??m, which is optically thin enough to be sensitive to the methane abundance at 20-50 km altitude. Haze characteristics were determined from Titan's 0.4-1.6 ??m spectra, which sample Titan's atmosphere from the surface to 200 km altitude. Radiative transfer models based on the haze properties and methane absorption profiles at the Huygens site reproduced the observed VIMS spectra and allowed us to retrieve latitude variations in the methane abundance and haze. We find the haze variations can be reproduced by varying only the density and single scattering albedo above 80 km altitude. There is an ambiguity between methane abundance and haze optical depth, because higher haze optical depth causes shallower methane bands; thus a family of solutions is allowed by the data. We find that haze variations alone, with a constant methane abundance, can reproduce the spatial variation in the methane bands if the haze density increases by 60% between 20??S and 10??S (roughly the sub-solar latitude) and single scattering absorption increases by 20% between 60??S and 40??N. On the other hand, a higher abundance of methane between 20 and 50 km in the summer hemisphere, as much as two times that of the winter hemisphere, is also possible, if the haze variations are minimized. The range of possible methane variations between 27??S and 19??N is consistent with condensation as a result of temperature variations of 0-1.5 K at 20-30 km. Our analysis indicates that the latitudinal variations in Titan's visible to near-IR albedo, the north/south asymmetry (NSA), result primarily from variations in the thickness of the darker haze layer, detected by Huygens DISR, above 80 km altitude. If we assume little to no latitudinal methane

  11. New Predictions of the Jovian Aurora: Location, Latitudinal Width, and Intensity

    NASA Technical Reports Server (NTRS)

    Tsurutani, B. T.; Arballo, J. K.; Ho, C. M.; Lin, N. G.; Kellogg, P. J.; Cornileau-Wehrlin, N.; Krupp, N.

    1995-01-01

    A model/theory for the Jovian aurora is formed based on a similar model for the dayside aurora at Earth and recent Ulysses field and particle measurements at Jupiter. Items discussed are plasma boundary layer, wave-particle resonant interactions, and the model's prediction of the aurora's location, latitudinal width, and intensity.

  12. Stronger tests of mechanisms underlying geographic gradients of biodiversity: insights from the dimensionality of biodiversity.

    PubMed

    Stevens, Richard D; Tello, J Sebastián; Gavilanez, María Mercedes

    2013-01-01

    Inference involving diversity gradients typically is gathered by mechanistic tests involving single dimensions of biodiversity such as species richness. Nonetheless, because traits such as geographic range size, trophic status or phenotypic characteristics are tied to a particular species, mechanistic effects driving broad diversity patterns should manifest across numerous dimensions of biodiversity. We develop an approach of stronger inference based on numerous dimensions of biodiversity and apply it to evaluate one such putative mechanism: the mid-domain effect (MDE). Species composition of 10,000-km(2) grid cells was determined by overlaying geographic range maps of 133 noctilionoid bat taxa. We determined empirical diversity gradients in the Neotropics by calculating species richness and three indices each of phylogenetic, functional and phenetic diversity for each grid cell. We also created 1,000 simulated gradients of each examined metric of biodiversity based on a MDE model to estimate patterns expected if species distributions were randomly placed within the Neotropics. For each simulation run, we regressed the observed gradient onto the MDE-expected gradient. If a MDE drives empirical gradients, then coefficients of determination from such an analysis should be high, the intercept no different from zero and the slope no different than unity. Species richness gradients predicted by the MDE fit empirical patterns. The MDE produced strong spatially structured gradients of taxonomic, phylogenetic, functional and phenetic diversity. Nonetheless, expected values generated from the MDE for most dimensions of biodiversity exhibited poor fit to most empirical patterns. The MDE cannot account for most empirical patterns of biodiversity. Fuller understanding of latitudinal gradients will come from simultaneous examination of relative effects of random, environmental and historical mechanisms to better understand distribution and abundance of the current biota.

  13. Stronger Tests of Mechanisms Underlying Geographic Gradients of Biodiversity: Insights from the Dimensionality of Biodiversity

    PubMed Central

    Stevens, Richard D.; Tello, J. Sebastián; Gavilanez, María Mercedes

    2013-01-01

    Inference involving diversity gradients typically is gathered by mechanistic tests involving single dimensions of biodiversity such as species richness. Nonetheless, because traits such as geographic range size, trophic status or phenotypic characteristics are tied to a particular species, mechanistic effects driving broad diversity patterns should manifest across numerous dimensions of biodiversity. We develop an approach of stronger inference based on numerous dimensions of biodiversity and apply it to evaluate one such putative mechanism: the mid-domain effect (MDE). Species composition of 10,000-km2 grid cells was determined by overlaying geographic range maps of 133 noctilionoid bat taxa. We determined empirical diversity gradients in the Neotropics by calculating species richness and three indices each of phylogenetic, functional and phenetic diversity for each grid cell. We also created 1,000 simulated gradients of each examined metric of biodiversity based on a MDE model to estimate patterns expected if species distributions were randomly placed within the Neotropics. For each simulation run, we regressed the observed gradient onto the MDE-expected gradient. If a MDE drives empirical gradients, then coefficients of determination from such an analysis should be high, the intercept no different from zero and the slope no different than unity. Species richness gradients predicted by the MDE fit empirical patterns. The MDE produced strong spatially structured gradients of taxonomic, phylogenetic, functional and phenetic diversity. Nonetheless, expected values generated from the MDE for most dimensions of biodiversity exhibited poor fit to most empirical patterns. The MDE cannot account for most empirical patterns of biodiversity. Fuller understanding of latitudinal gradients will come from simultaneous examination of relative effects of random, environmental and historical mechanisms to better understand distribution and abundance of the current biota. PMID

  14. Convergence of soil nitrogen isotopes across global climate gradients

    USGS Publications Warehouse

    Craine, Joseph M.; Elmore, Andrew J.; Wang, Lixin; Augusto, Laurent; Baisden, W. Troy; Brookshire, E. N. J.; Cramer, Michael D.; Hasselquist, Niles J.; Hobbie, Erik A.; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J. Marty; Mack, Michelle C.; Marin-Spiotta, Erika; Mayor, Jordan R.; McLauchlan, Kendra K.; Michelsen, Anders; Nardoto, Gabriela B.; Oliveira, Rafael S.; Perakis, Steven S.; Peri, Pablo L.; Quesada, Carlos A.; Richter, Andreas; Schipper, Louis A.; Stevenson, Bryan A.; Turner, Benjamin L.; Viani, Ricardo A. G.; Wanek, Wolfgang; Zeller, Bernd

    2015-01-01

    Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15 N: 14 N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15 N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.

  15. Convergence of soil nitrogen isotopes across global climate gradients.

    PubMed

    Craine, Joseph M; Elmore, Andrew J; Wang, Lixin; Augusto, Laurent; Baisden, W Troy; Brookshire, E N J; Cramer, Michael D; Hasselquist, Niles J; Hobbie, Erik A; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J Marty; Mack, Michelle C; Marin-Spiotta, Erika; Mayor, Jordan R; McLauchlan, Kendra K; Michelsen, Anders; Nardoto, Gabriela B; Oliveira, Rafael S; Perakis, Steven S; Peri, Pablo L; Quesada, Carlos A; Richter, Andreas; Schipper, Louis A; Stevenson, Bryan A; Turner, Benjamin L; Viani, Ricardo A G; Wanek, Wolfgang; Zeller, Bernd

    2015-02-06

    Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the (15)N:(14)N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in (15)N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ(15)N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ(15)N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.

  16. Visualization of an endogenous retinoic acid gradient across embryonic development.

    PubMed

    Shimozono, Satoshi; Iimura, Tadahiro; Kitaguchi, Tetsuya; Higashijima, Shin-Ichi; Miyawaki, Atsushi

    2013-04-18

    In vertebrate development, the body plan is determined by primordial morphogen gradients that suffuse the embryo. Retinoic acid (RA) is an important morphogen involved in patterning the anterior-posterior axis of structures, including the hindbrain and paraxial mesoderm. RA diffuses over long distances, and its activity is spatially restricted by synthesizing and degrading enzymes. However, gradients of endogenous morphogens in live embryos have not been directly observed; indeed, their existence, distribution and requirement for correct patterning remain controversial. Here we report a family of genetically encoded indicators for RA that we have termed GEPRAs (genetically encoded probes for RA). Using the principle of fluorescence resonance energy transfer we engineered the ligand-binding domains of RA receptors to incorporate cyan-emitting and yellow-emitting fluorescent proteins as fluorescence resonance energy transfer donor and acceptor, respectively, for the reliable detection of ambient free RA. We created three GEPRAs with different affinities for RA, enabling the quantitative measurement of physiological RA concentrations. Live imaging of zebrafish embryos at the gastrula and somitogenesis stages revealed a linear concentration gradient of endogenous RA in a two-tailed source-sink arrangement across the embryo. Modelling of the observed linear RA gradient suggests that the rate of RA diffusion exceeds the spatiotemporal dynamics of embryogenesis, resulting in stability to perturbation. Furthermore, we used GEPRAs in combination with genetic and pharmacological perturbations to resolve competing hypotheses on the structure of the RA gradient during hindbrain formation and somitogenesis. Live imaging of endogenous concentration gradients across embryonic development will allow the precise assignment of molecular mechanisms to developmental dynamics and will accelerate the application of approaches based on morphogen gradients to tissue engineering and

  17. Different Planctomycetes diversity patterns in latitudinal surface seawater of the open sea and in sediment.

    PubMed

    Shu, Qinglong; Jiao, Nianzhi

    2008-04-01

    The 16S rRNA gene approach was applied to investigate the diversity of Planctomycetes in latitudinal surface seawater of the Western Pacific Ocean. The results revealed that the Pirellula-Rhodopirellula-Blastopirellula clade dominated the Planctomycetes community at all surface seawater sites while the minority genera Gemmata and Planctomyces were only found at sites H5 and H2 respectively. Although the clone frequency of the PRB clade seemed stable (between 83.3% and 94.1%) for all surface seawater sites, the retrieved Pirellula-Rhodopirellula-Blastopirellula clade presented unexpected diversity. Interestingly, low latitude seawater appeared to have higher diversity than mid-latitudes. integral-LIBSHUFF software analysis revealed significantly different diversity patterns between in latitudinal surface seawater and in the sediment of South China Sea station M2896. Our data suggested that different hydrological and geographic features contributed to the shift of Planctomycetes diversity in marine environments. This is, to our knowledge, the first systematic assessment of Planctomycetes in latitudinal surface seawater of the open sea and the first comparison of diversity pattern between surface seawater and sediments and has broadened our understanding of Planctomycetes diversity in marine environments.

  18. Temperature sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal gradient on Mount Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Khomyakov, Nikita; Myachina, Olga; Kuzyakov, Yakov

    2016-02-01

    Short-term acceleration of soil organic matter decomposition by increasing temperature conflicts with the thermal adaptation observed in long-term studies. Here we used the altitudinal gradient on Mt. Kilimanjaro to demonstrate the mechanisms of thermal adaptation of extra- and intracellular enzymes that hydrolyze cellulose, chitin and phytate and oxidize monomers (14C-glucose) in warm- and cold-climate soils. We revealed that no response of decomposition rate to temperature occurs because of a cancelling effect consisting in an increase in half-saturation constants (Km), which counteracts the increase in maximal reaction rates (Vmax with temperature). We used the parameters of enzyme kinetics to predict thresholds of substrate concentration (Scrit) below which decomposition rates will be insensitive to global warming. Increasing values of Scrit, and hence stronger canceling effects with increasing altitude on Mt. Kilimanjaro, explained the thermal adaptation of polymer decomposition. The reduction of the temperature sensitivity of Vmax along the altitudinal gradient contributed to thermal adaptation of both polymer and monomer degradation. Extrapolating the altitudinal gradient to the large-scale latitudinal gradient, these results show that the soils of cold climates with stronger and more frequent temperature variation are less sensitive to global warming than soils adapted to high temperatures.

  19. Genetic structure along an elevational gradient in Hawaiian honeycreepers reveals contrasting evolutionary responses to avian malaria.

    PubMed

    Eggert, Lori S; Terwilliger, Lauren A; Woodworth, Bethany L; Hart, Patrick J; Palmer, Danielle; Fleischer, Robert C

    2008-11-14

    The Hawaiian honeycreepers (Drepanidinae) are one of the best-known examples of an adaptive radiation, but their persistence today is threatened by the introduction of exotic pathogens and their vector, the mosquito Culex quinquefasciatus. Historically, species such as the amakihi (Hemignathus virens), the apapane (Himatione sanguinea), and the iiwi (Vestiaria coccinea) were found from the coastal lowlands to the high elevation forests, but by the late 1800's they had become extremely rare in habitats below 900 m. Recently, however, populations of amakihi and apapane have been observed in low elevation habitats. We used twelve polymorphic microsatellite loci to investigate patterns of genetic structure, and to infer responses of these species to introduced avian malaria along an elevational gradient on the eastern flanks of Mauna Loa and Kilauea volcanoes on the island of Hawaii. Our results indicate that amakihi have genetically distinct, spatially structured populations that correspond with altitude. We detected very few apapane and no iiwi in low-elevation habitats, and genetic results reveal only minimal differentiation between populations at different altitudes in either of these species. Our results suggest that amakihi populations in low elevation habitats have not been recolonized by individuals from mid or high elevation refuges. After generations of strong selection for pathogen resistance, these populations have rebounded and amakihi have become common in regions in which they were previously rare or absent.

  20. Environmental and genetic variation in leaf anatomy among populations of Andropogon gerardii (Poaceae) along a precipitation gradient.

    PubMed

    Olsen, Jacob T; Caudle, Keri L; Johnson, Loretta C; Baer, Sara G; Maricle, Brian R

    2013-10-01

    Phenotypes of two Andropogon gerardii subspecies, big bluestem and sand bluestem, vary throughout the prairie ecosystem of North America. This study sought to determine the role of genetics and environment in driving adaptive variation of leaf structure in big bluestem and sand bluestem. • Four populations of big bluestem and one population of sand bluestem were planted in common gardens at four sites across a precipitation gradient from western Kansas to southern Illinois. Internal leaf structure and trichome density of A. gerardii were examined by light microscopy to separate genetic and environmentally controlled traits. Leaf thickness, midrib thickness, bulliform cells, interveinal distance, vein size, and trichome density were quantified. • At all planting sites, sand bluestem and the xeric population of A. gerardii had thicker leaves and fewer bulliform cells compared with mesic populations. Environment and genetic source population were both influential for leaf anatomy. Leaves from plants grown in mesic sites (Carbondale, Illinois and Manhattan, Kansas) had thicker midribs, larger veins, fewer trichomes, and a greater proportion of bulliform cells compared to plants grown in drier sites (Colby and Hays, Kansas). • Water availability has driven adaptive variation in leaf structure in populations of A. gerardii, particularly between sand bluestem and big bluestem. Genetically based differences in leaves of A. gerardii indicate adaptive variation and evolutionary forces differentiating sand bluestem from big bluestem. Environmental responses of A. gerardii leaves suggest an ability to adjust to drought, even in populations adapted to mesic home environments.

  1. HLA-DQ genetic risk gradient for type 1 diabetes and celiac disease in northwestern Mexico.

    PubMed

    Mejía-León, M E; Ruiz-Dyck, K M; Calderón de la Barca, A M

    2015-01-01

    Type 1 diabetes (T1D) and celiac disease (CD) are the 2 most common autoimmune childhood diseases that share their HLA-DQ2 and DQ8 genetic origin. There has currently been an increase in both diseases worldwide. In children from the low-population State of Sonora (15 inhabitants/km(2)) in north-western Mexico, there is no information on their genetic risk or the distribution of the related alleles in the general population. To compare the HLA-DQ allele frequency in a representative sample of newborns from Sonora with that of T1D and CD patients to determine the risk gradient, and to identify the presence of celiac autoimmunity in the T1D group. The study included 397 Sonoran newborns, with 44 cases of T1D, and 25 CD cases. The CD and T1D cases were clinically diagnosed by specialists at the Hospital Infantil del Estado de Sonora, and the autoantibodies were determined by ELISA. Whole blood was collected, gDNA was extracted, and HLA-DQ2 and DQ8 were typed by PCR-SSP. The risk gradient was calculated by comparing the allele frequencies of the cases with those of the newborns. The Sonoran HLA-DQ risk heterodimer proportion was 16.1% for HLA-DQ2 and 13.6% for HLA-DQ8, with an HLA-DQ2:HLA-DQ8 ratio of 1.2:1. The DQ8/DQ2 genotype represented a 1:14 risk for T1D, whereas the DQ8/DQB1*0201 combination showed a 1:6 risk for CD. The prevalence of CD autoimmunity in T1D children was 7%. The Sonoran population has a distinctive HLA-DQ allele distribution due to its ancestry. The HLA-DQ8 combinations with DQ2 or one of its alleles conferred the highest risk for both diseases, and T1D and CD frequently appear together. Copyright © 2015 Asociación Mexicana de Gastroenterología. Published by Masson Doyma México S.A. All rights reserved.

  2. Variation of Synechococcus Pigment Genetic Diversity Along Two Turbidity Gradients in the China Seas.

    PubMed

    Xia, Xiaomin; Liu, Hongbin; Choi, Donghan; Noh, Jae Hoon

    2018-01-01

    Synechococcus are important and widely distributed picocyanobacteria that encompass a high pigment diversity. In this study, we developed a primer set (peBF/peAR) for amplifying the cpeBA operon sequence from Synechococcus genomic DNA to study Synechococcus pigment diversity along two turbidity gradients in the China seas. Our data revealed that all previously reported pigment types occurred in the South (SCS) and East (ECS) China Seas. In addition, a novel pigment genetic type (type 3f), represented by the high phycourobilin Synechococcus sp. strain KORDI-100 (Exc495:545 = 2.35), was detected. This pigment genetic type differs from the 3c/3d types not only for a very high PUB/PEB ratio but also for a different intergenic spacer sequence and gene organization of the phycobilisome. Synechococcus of different pigment types exhibited clear niche differentiation. Type 2 dominated in the coastal waters, whereas type 3c/3d and 3f were predominant in oceanic waters of the SCS in summer. In the ECS, however, type 3a was the major pigment type throughout the transect. We suggest that in marine environment, various pigment types often co-occur but with one type dominant and PUB/PEB ratio is related to geographic distribution of Synechococcus pigment types. The two marginal seas of China have markedly different Synechococcus pigment compositions.

  3. Darwin's wind hypothesis: does it work for plant dispersal in fragmented habitats?

    PubMed

    Riba, Miquel; Mayol, Maria; Giles, Barbara E; Ronce, Ophélie; Imbert, Eric; van der Velde, Marco; Chauvet, Stéphanie; Ericson, Lars; Bijlsma, R; Vosman, Ben; Smulders, M J M; Olivieri, Isabelle

    2009-08-01

    Using the wind-dispersed plant Mycelis muralis, we examined how landscape fragmentation affects variation in seed traits contributing to dispersal. Inverse terminal velocity (Vt(-1)) of field-collected achenes was used as a proxy for individual seed dispersal ability. We related this measure to different metrics of landscape connectivity, at two spatial scales: in a detailed analysis of eight landscapes in Spain and along a latitudinal gradient using 29 landscapes across three European regions. In the highly patchy Spanish landscapes, seed Vt(-1)increased significantly with increasing connectivity. A common garden experiment suggested that differences in Vt(-1) may be in part genetically based. The Vt(-1) was also found to increase with landscape occupancy, a coarser measure of connectivity, on a much broader (European) scale. Finally, Vt(-1)was found to increase along a south-north latitudinal gradient. Our results for M. muralis are consistent with 'Darwin's wind dispersal hypothesis' that high cost of dispersal may select for lower dispersal ability in fragmented landscapes, as well as with the 'leading edge hypothesis' that most recently colonized populations harbour more dispersive phenotypes.

  4. Physiological Limits along an Elevational Gradient in a Radiation of Montane Ground Beetles

    PubMed Central

    Slatyer, Rachel A.; Schoville, Sean D.

    2016-01-01

    A central challenge in ecology and biogeography is to determine the extent to which physiological constraints govern the geographic ranges of species along environmental gradients. This study tests the hypothesis that temperature and desiccation tolerance are associated with the elevational ranges of 12 ground beetle species (genus Nebria) occurring on Mt. Rainier, Washington, U.S.A. Species from higher elevations did not have greater cold tolerance limits than lower-elevation species (all species ranged from -3.5 to -4.1°C), despite a steep decline in minimum temperature with elevation. Although heat tolerance limits varied among species (from 32.0 to 37.0°C), this variation was not generally associated with the relative elevational range of a species. Temperature gradients and acute thermal tolerance do not support the hypothesis that physiological constraints drive species turnover with elevation. Measurements of intraspecific variation in thermal tolerance limits were not significant for individuals taken at different elevations on Mt. Rainier, or from other mountains in Washington and Oregon. Desiccation resistance was also not associated with a species’ elevational distribution. Our combined results contrast with previously-detected latitudinal gradients in acute physiological limits among insects and suggest that other processes such as chronic thermal stress or biotic interactions might be more important in constraining elevational distributions in this system. PMID:27043311

  5. Seasonal body size reductions with warming covary with major body size gradients in arthropod species.

    PubMed

    Horne, Curtis R; Hirst, Andrew G; Atkinson, David

    2017-03-29

    Major biological and biogeographical rules link body size variation with latitude or environmental temperature, and these rules are often studied in isolation. Within multivoltine species, seasonal temperature variation can cause substantial changes in adult body size, as subsequent generations experience different developmental conditions. Yet, unlike other size patterns, these common seasonal temperature-size gradients have never been collectively analysed. We undertake the largest analysis to date of seasonal temperature-size gradients in multivoltine arthropods, including 102 aquatic and terrestrial species from 71 global locations. Adult size declines in warmer seasons in 86% of the species examined. Aquatic species show approximately 2.5-fold greater reduction in size per °C of warming than terrestrial species, supporting the hypothesis that greater oxygen limitation in water than in air forces aquatic species to exhibit greater plasticity in body size with temperature. Total percentage change in size over the annual cycle appears relatively constant with annual temperature range but varies between environments, such that the overall size reduction in aquatic-developing species (approx. 31%) is almost threefold greater than in terrestrial species (approx. 11%). For the first time, we show that strong correlations exist between seasonal temperature-size gradients, laboratory responses and latitudinal-size clines, suggesting that these patterns share common drivers. © 2017 The Author(s).

  6. Genetic structure along an elevational gradient in Hawaiian honeycreepers reveals contrasting evolutionary responses to avian malaria

    USGS Publications Warehouse

    Eggert, L.S.; Terwilliger, L.A.; Woodworth, B.L.; Hart, P.J.; Palmer, D.; Fleischer, R.C.

    2008-01-01

    Background. The Hawaiian honeycreepers (Drepanidinae) are one of the best-known examples of an adaptive radiation, but their persistence today is threatened by the introduction of exotic pathogens and their vector, the mosquito Culex quinquefasciatus. Historically, species such as the amakihi (Hemignathus virens), the apapane (Himatione sanguinea), and the iiwi (Vestiaria coccinea) were found from the coastal lowlands to the high elevation forests, but by the late 1800's they had become extremely rare in habitats below 900 m. Recently, however, populations of amakihi and apapane have been observed in low elevation habitats. We used twelve polymorphic microsatellite loci to investigate patterns of genetic structure, and to infer responses of these species to introduced avian malaria along an elevational gradient on the eastern flanks of Mauna Loa and Kilauea volcanoes on the island of Hawaii. Results. Our results indicate that amakihi have genetically distinct, spatially structured populations that correspond with altitude. We detected very few apapane and no iiwi in low-elevation habitats, and genetic results reveal only minimal differentiation between populations at different altitudes in either of these species. Conclusion. Our results suggest that amakihi populations in low elevation habitats have not been recolonized by individuals from mid or high elevation refuges. After generations of strong selection for pathogen resistance, these populations have rebounded and amakihi have become common in regions in which they were previously rare or absent. ?? 2008 Eggert et al; licensee BioMed Central Ltd.

  7. Genetic structure along an elevational gradient in Hawaiian honeycreepers reveals contrasting evolutionary responses to avian malaria

    PubMed Central

    2008-01-01

    Background The Hawaiian honeycreepers (Drepanidinae) are one of the best-known examples of an adaptive radiation, but their persistence today is threatened by the introduction of exotic pathogens and their vector, the mosquito Culex quinquefasciatus. Historically, species such as the amakihi (Hemignathus virens), the apapane (Himatione sanguinea), and the iiwi (Vestiaria coccinea) were found from the coastal lowlands to the high elevation forests, but by the late 1800's they had become extremely rare in habitats below 900 m. Recently, however, populations of amakihi and apapane have been observed in low elevation habitats. We used twelve polymorphic microsatellite loci to investigate patterns of genetic structure, and to infer responses of these species to introduced avian malaria along an elevational gradient on the eastern flanks of Mauna Loa and Kilauea volcanoes on the island of Hawaii. Results Our results indicate that amakihi have genetically distinct, spatially structured populations that correspond with altitude. We detected very few apapane and no iiwi in low-elevation habitats, and genetic results reveal only minimal differentiation between populations at different altitudes in either of these species. Conclusion Our results suggest that amakihi populations in low elevation habitats have not been recolonized by individuals from mid or high elevation refuges. After generations of strong selection for pathogen resistance, these populations have rebounded and amakihi have become common in regions in which they were previously rare or absent. PMID:19014596

  8. Seasonal/Latitudinal Models of Stratospheric Photochemistry on Saturn

    NASA Astrophysics Data System (ADS)

    Moses, J. I.; Greathouse, T. K.

    2004-11-01

    To date, most investigations of stratospheric photochemistry on the outer planets have involved one-dimensional (1-D) ``global-average'' or single-latitude models for a single season. With Cassini CIRS poised to map hydrocarbon distributions across Saturn, and with advances in detector technology and telescope size for Earth-based observations allowing composition and temperatures to be derived as a function of latitude, we are now in a position to evaluate the effectiveness of 1-D models in describing the stratospheric composition. Are 2-D models that include meridional transport necessary to reproduce the observed hydrocarbon latitudinal distributions, or can 1-D seasonal models provide an accurate description? In order to evaluate these questions, we have developed a realistic, time-variable, 1-D seasonal model for stratospheric photochemistry on Saturn. The model accounts for variations in orbital position and in ultraviolet flux due to solar-cycle variations and ring-shadow effects. The results for one Saturnian year, starting at Ls = 0o in 1980 and running until the next vernal equinox in 2009, are presented for numerous latitudes. Due to the long vertical diffusion time scale at pressures greater than ˜1 mbar, we find that seasonal effects are more pronounced at high altitudes. In addition, a phase lag between insolation and chemical response increases with increasing pressure. In the summer hemisphere, hydrocarbon abundances do not exhibit much variation with latitude because the increase in the length of the day with increasing latitude counterbalances the increasing solar zenith angle, causing the daily-averaged insolation to remain nearly constant over a wide range of latitudes. Latitudinal variations are more pronounced during other seasons. We compare our model results with various observations.

  9. The origin of soil organic matter controls its composition and bioreactivity across a mesic boreal forest latitudinal gradient

    NASA Astrophysics Data System (ADS)

    Kohl, L.; Philben, M. J.; Edwards, K. A.; Podrebarac, F. A.; Jamie, W.; Ziegler, S. E.

    2017-12-01

    Warmer climates have been associated with reduced soil organic matter (SOM) bioreactivity, lower respiration rates at a given temperature, which is typically attributed to the presence of more decomposed SOM. Cross site studies, however, indicate that ecosystem regime shifts associated with long-term climate warming can affect SOM properties through changes in vegetation and plant litter inputs to soils. The relative importance of these two controls, diagenesis and inputs, on SOM properties as ecosystems experience climate warming remains poorly understood. To address this, we characterized the elemental, chemical (nuclear magnetic resonance spectroscopy and total hydrolysable amino acids), and isotopic composition of plant litter and SOM across a well-constrained mesic boreal forest latitudinal transect in Atlantic Canada. Results across forest sites within each of three climate regions indicated that (1) climate history and diagenesis affect distinct parameters of SOM chemistry, (2) increases in SOM bioreactivity with latitude were associated with elevated proportions of carbohydrates relative to plant waxes and lignin, and (3) despite the common forest type across regions, differences in SOM chemistry by climate region were associated with chemically distinct litter inputs and not different degrees of diagenesis. Climate effects on vascular plant litter chemistry explained only part of the regional differences in SOM chemistry, most notably the higher protein content of SOM from warmer regions. Greater proportions of lignin and aliphatic compounds and smaller proportions of carbohydrates in warmer sites' soils were explained by the higher proportion of vascular plant relative to moss litter in the warmer forests. These results indicate that a climate induced decrease in the proportion of moss inputs will not only impact SOM chemistry but also increase the resistance of SOM to decomposition, thus significantly altering SOM cycling in these boreal forest soils.

  10. The origin of soil organic matter controls its composition and bioreactivity across a mesic boreal forest latitudinal gradient.

    PubMed

    Kohl, Lukas; Philben, Michael; Edwards, Kate A; Podrebarac, Frances A; Warren, Jamie; Ziegler, Susan E

    2018-02-01

    Warmer climates have been associated with reduced bioreactivity of soil organic matter (SOM) typically attributed to increased diagenesis; the combined biological and physiochemical transformation of SOM. In addition, cross-site studies have indicated that ecosystem regime shifts, associated with long-term climate warming, can affect SOM properties through changes in vegetation and plant litter production thereby altering the composition of soil inputs. The relative importance of these two controls, diagenesis and inputs, on SOM properties as ecosystems experience climate warming, however, remains poorly understood. To address this issue we characterized the elemental, chemical (nuclear magnetic resonance spectroscopy and total hydrolysable amino acids analysis), and isotopic composition of plant litter and SOM across a well-constrained mesic boreal forest latitudinal transect in Atlantic Canada. Results across forest sites within each of three climate regions indicated that (1) climate history and diagenesis affect distinct parameters of SOM chemistry, (2) increases in SOM bioreactivity with latitude were associated with elevated proportions of carbohydrates relative to plant waxes and lignin, and (3) despite the common forest type across regions, differences in SOM chemistry by climate region were associated with chemically distinct litter inputs and not different degrees of diagenesis. The observed climate effects on vascular plant litter chemistry, however, explained only part of the regional differences in SOM chemistry, most notably the higher protein content of SOM from warmer regions. Greater proportions of lignin and aliphatic compounds and smaller proportions of carbohydrates in warmer sites' soils were explained by the higher proportion of vascular plant relative to moss litter in the warmer relative to cooler forests. These results indicate that climate change induced decreases in the proportion of moss inputs not only impacts SOM chemistry but also

  11. Latitudinal environmental niches and riverine barriers shaped the phylogeography of the Central Chilean endemic Dioscorea humilis (Dioscoreaceae).

    PubMed

    Viruel, Juan; Catalán, Pilar; Segarra-Moragues, José Gabriel

    2014-01-01

    The effects of Pleistocene glaciations and geographical barriers on the phylogeographic patterns of lowland plant species in Mediterranean-climate areas of Central Chile are poorly understood. We used Dioscorea humilis (Dioscoreaceae), a dioecious geophyte extending 530 km from the Valparaíso to the Bío-Bío Regions, as a case study to disentangle the spatio-temporal evolution of populations in conjunction with latitudinal environmental changes since the Last Inter-Glacial (LIG) to the present. We used nuclear microsatellite loci, chloroplast (cpDNA) sequences and environmental niche modelling (ENM) to construct current and past scenarios from bioclimatic and geographical variables and to infer the evolutionary history of the taxa. We found strong genetic differentiation at nuclear microsatellite loci between the two subspecies of D. humilis, probably predating the LIG. Bayesian analyses of population structure revealed strong genetic differentiation of the widespread D. humilis subsp. humilis into northern and southern population groups, separated by the Maipo river. ENM revealed that the ecological niche differentiation of both groups have been maintained up to present times although their respective geographical distributions apparently fluctuated in concert with the climatic oscillations of the Last Glacial Maximum (LGM) and the Holocene. Genetic data revealed signatures of eastern and western postglacial expansion of the northern populations from the central Chilean depression, whereas the southern ones experienced a rapid southward expansion after the LGM. This study describes the complex evolutionary histories of lowland Mediterranean Chilean plants mediated by the summed effects of spatial isolation caused by riverine geographical barriers and the climatic changes of the Quaternary.

  12. Latitudinal Environmental Niches and Riverine Barriers Shaped the Phylogeography of the Central Chilean Endemic Dioscorea humilis (Dioscoreaceae)

    PubMed Central

    Viruel, Juan; Catalán, Pilar; Segarra-Moragues, José Gabriel

    2014-01-01

    The effects of Pleistocene glaciations and geographical barriers on the phylogeographic patterns of lowland plant species in Mediterranean-climate areas of Central Chile are poorly understood. We used Dioscorea humilis (Dioscoreaceae), a dioecious geophyte extending 530 km from the Valparaíso to the Bío-Bío Regions, as a case study to disentangle the spatio-temporal evolution of populations in conjunction with latitudinal environmental changes since the Last Inter-Glacial (LIG) to the present. We used nuclear microsatellite loci, chloroplast (cpDNA) sequences and environmental niche modelling (ENM) to construct current and past scenarios from bioclimatic and geographical variables and to infer the evolutionary history of the taxa. We found strong genetic differentiation at nuclear microsatellite loci between the two subspecies of D. humilis, probably predating the LIG. Bayesian analyses of population structure revealed strong genetic differentiation of the widespread D. humilis subsp. humilis into northern and southern population groups, separated by the Maipo river. ENM revealed that the ecological niche differentiation of both groups have been maintained up to present times although their respective geographical distributions apparently fluctuated in concert with the climatic oscillations of the Last Glacial Maximum (LGM) and the Holocene. Genetic data revealed signatures of eastern and western postglacial expansion of the northern populations from the central Chilean depression, whereas the southern ones experienced a rapid southward expansion after the LGM. This study describes the complex evolutionary histories of lowland Mediterranean Chilean plants mediated by the summed effects of spatial isolation caused by riverine geographical barriers and the climatic changes of the Quaternary. PMID:25295517

  13. Genetic variation in heat-stress tolerance among South American Drosophila populations.

    PubMed

    Fallis, Lindsey C; Fanara, Juan Jose; Morgan, Theodore J

    2011-10-01

    Spatial or temporal differences in environmental variables, such as temperature, are ubiquitous in nature and impose stress on organisms. This is especially true for organisms that are isothermal with the environment, such as insects. Understanding the means by which insects respond to temperature and how they will react to novel changes in environmental temperature is important for understanding the adaptive capacity of populations and to predict future trajectories of evolutionary change. The organismal response to heat has been identified as an important environmental variable for insects that can dramatically influence life history characters and geographic range. In the current study we surveyed the amount of variation in heat tolerance among Drosophila melanogaster populations collected at diverse sites along a latitudinal gradient in Argentina (24°-38°S). This is the first study to quantify heat tolerance in South American populations and our work demonstrates that most of the populations surveyed have abundant within-population phenotypic variation, while still exhibiting significant variation among populations. The one exception was the most heat tolerant population that comes from a climate exhibiting the warmest annual mean temperature. All together our results suggest there is abundant genetic variation for heat-tolerance phenotypes within and among natural populations of Drosophila and this variation has likely been shaped by environmental temperature.

  14. The Latitudinal Analysis of Secondary School Students' Motivations towards Science Course

    ERIC Educational Resources Information Center

    Aydin, Suleyman; Keles, Pinar Ural

    2017-01-01

    The aim of this research was to investigate the comparison of different categories of secondary schools students' motivations for science lessons. In this research, the case study method was used latitudinally and it was carried out in the center schools of Agri in 2015-2016 academic years. The sample of the study was composed of totally 649…

  15. Genetic and Psychosocial Predictors of Aggression: Variable Selection and Model Building With Component-Wise Gradient Boosting.

    PubMed

    Suchting, Robert; Gowin, Joshua L; Green, Charles E; Walss-Bass, Consuelo; Lane, Scott D

    2018-01-01

    Rationale : Given datasets with a large or diverse set of predictors of aggression, machine learning (ML) provides efficient tools for identifying the most salient variables and building a parsimonious statistical model. ML techniques permit efficient exploration of data, have not been widely used in aggression research, and may have utility for those seeking prediction of aggressive behavior. Objectives : The present study examined predictors of aggression and constructed an optimized model using ML techniques. Predictors were derived from a dataset that included demographic, psychometric and genetic predictors, specifically FK506 binding protein 5 (FKBP5) polymorphisms, which have been shown to alter response to threatening stimuli, but have not been tested as predictors of aggressive behavior in adults. Methods : The data analysis approach utilized component-wise gradient boosting and model reduction via backward elimination to: (a) select variables from an initial set of 20 to build a model of trait aggression; and then (b) reduce that model to maximize parsimony and generalizability. Results : From a dataset of N = 47 participants, component-wise gradient boosting selected 8 of 20 possible predictors to model Buss-Perry Aggression Questionnaire (BPAQ) total score, with R 2 = 0.66. This model was simplified using backward elimination, retaining six predictors: smoking status, psychopathy (interpersonal manipulation and callous affect), childhood trauma (physical abuse and neglect), and the FKBP5_13 gene (rs1360780). The six-factor model approximated the initial eight-factor model at 99.4% of R 2 . Conclusions : Using an inductive data science approach, the gradient boosting model identified predictors consistent with previous experimental work in aggression; specifically psychopathy and trauma exposure. Additionally, allelic variants in FKBP5 were identified for the first time, but the relatively small sample size limits generality of results and calls for

  16. Population Genetics of the São Tomé Caecilian (Gymnophiona: Dermophiidae: Schistometopum thomense) Reveals Strong Geographic Structuring

    PubMed Central

    Stoelting, Ricka E.; Measey, G. John; Drewes, Robert C.

    2014-01-01

    Islands provide exciting opportunities for exploring ecological and evolutionary mechanisms. The oceanic island of São Tomé in the Gulf of Guinea exhibits high diversity of fauna including the endemic caecilian amphibian, Schistometopum thomense. Variation in pigmentation, morphology and size of this taxon over its c. 45 km island range is extreme, motivating a number of taxonomic, ecological, and evolutionary hypotheses to explain the observed diversity. We conducted a population genetic study of S. thomense using partial sequences of two mitochondrial DNA genes (ND4 and 16S), together with morphological examination, to address competing hypotheses of taxonomic or clinal variation. Using Bayesian phylogenetic analysis and Spatial Analysis of Molecular Variance, we found evidence of four geographic clades, whose range and approximated age (c. 253 Kya – 27 Kya) are consistent with the spread and age of recent volcanic flows. These clades explained 90% of variation in ND4 (φCT = 0.892), and diverged by 4.3% minimum pairwise distance at the deepest node. Most notably, using Mismatch Distributions and Mantel Tests, we identified a zone of population admixture that dissected the island. In the northern clade, we found evidence of recent population expansion (Fu's Fs = −13.08 and Tajima's D = −1.80) and limited dispersal (Mantel correlation coefficient = 0.36, p = 0.01). Color assignment to clades was not absolute. Paired with multinomial regression of chromatic data, our analyses suggested that the genetic groups and a latitudinal gradient together describe variation in color of S. thomense. We propose that volcanism and limited dispersal ability are the likely proximal causes of the observed genetic structure. This is the first population genetic study of any caecilian and demonstrates that these animals have deep genetic divisions over very small areas in accordance with previous speculations of low dispersal abilities. PMID:25171066

  17. Latitudinal variation of life-history traits of an exotic and a native impatiens species in Europe

    NASA Astrophysics Data System (ADS)

    Acharya, Kamal Prasad; De Frenne, Pieter; Brunet, Jörg; Chabrerie, Olivier; Cousins, Sara A. O.; Diekmann, Martin; Hermy, Martin; Kolb, Annette; Lemke, Isgard; Plue, Jan; Verheyen, Kris; Graae, Bente Jessen

    2017-05-01

    Understanding the responses of invasive and native populations to environmental change is crucial for reliable predictions of invasions in the face of global change. While comparisons of responses across invasive species with different life histories have been performed before, comparing functional traits of congeneric native and invasive species may help to reveal driving factors associated with invasion. Here we compared morphological functional trait patterns of an invasive species (Impatiens parviflora) with its congeneric native species (I. noli-tangere) along an approximately 1600 km European latitudinal gradient from France (49°34‧N) to Norway (63°40‧N). Soil nitrogen was recorded during six weeks of the growing season, and light, soil moisture, and nutrient availability were estimated for each sampled population using community weighted means of indicator values for co-occurring species. Temperature data were gathered from nearby weather stations. Both the native and invasive species are taller at higher latitudes and this response is strongest in the invasive species. Seed mass and number of seeds per capsule increase in I. noli-tangere but decrease in I. parviflora towards higher latitudes. Surprisingly, plant height in the invasive I. parviflora decreases with increasing soil nitrogen availability. The latitudinal pattern in seed mass is positively related to temperature in I. noli-tangere and negatively in I. parviflora. Leaf area of both species decreases with increasing Ellenberg indicator values for nitrogen and light but increases with increasing soil moisture. Soil nitrogen concentrations and Ellenberg indicator values for nitrogen have significant positive (I. noli-tangere) and negative (I. parviflora) effects on the number of seeds per capsule. Our results show that the native I. noli-tangere has efficient reproduction at its range edge while the invasive I. parviflora shows a marked decrease in seed size and seed number per capsule. These

  18. Geographic variation in the Pine Barrens Treefrog (Hyla andersonii): concordance of genetic, morphometric and acoustic signal data.

    PubMed

    Warwick, Alexa R; Travis, Joseph; Lemmon, Emily Moriarty

    2015-07-01

    Delimiting species is important to every subfield in biology. Templeton's cohesion species concept uses genetic and ecological exchangeability to identify sets of populations that ought to be considered as the same species, and the lack of exchangeability helps determine which populations can be grouped as evolutionarily significant units (ESU) in conservation science. However, previous work assessing genetic and ecological interchangeability among populations has been limited in scope. Here, we provide a method for assessing exchangeability that incorporates multiple, independent lines of multivariate evidence in genetic, behavioural and morphological data. We use this approach to assess exchangeability across three disjunct groups of populations of the Pine Barrens Treefrog (Hyla andersonii) from the eastern United States. This species is considered threatened by each state in which it occurs and conservation management of this taxon requires a clearer understanding of how populations in these three regions may differ from one another. We find a strikingly concordant pattern in which the first axis of variation for each of the three types of data distinguishes populations along a latitudinal gradient and the second axis distinguishes the set of populations occurring in the Carolinas from those occurring in the New Jersey and Florida/Alabama regions. We know of no comparable data set that displays such concordance among different types of data across so large a geographic range. The overlap in trait values (i.e. exchangeability) between neighbouring regions, however, is substantial in all three types of data, which supports continued consideration of this taxon as a single species. © 2015 John Wiley & Sons Ltd.

  19. Links between viruses and prokaryotes throughout the water column along a North Atlantic latitudinal transect

    PubMed Central

    De Corte, Daniele; Sintes, Eva; Yokokawa, Taichi; Reinthaler, Thomas; Herndl, Gerhard J

    2012-01-01

    Viruses are an abundant, diverse and dynamic component of marine ecosystems and have a key role in the biogeochemical processes of the ocean by controlling prokaryotic and phytoplankton abundance and diversity. However, most of the studies on virus–prokaryote interactions in marine environments have been performed in nearshore waters. To assess potential variations in the relation between viruses and prokaryotes in different oceanographic provinces, we determined viral and prokaryotic abundance and production throughout the water column along a latitudinal transect in the North Atlantic. Depth-related trends in prokaryotic and viral abundance (both decreasing by one order of magnitude from epi- to abyssopelagic waters), and prokaryotic production (decreasing by three orders of magnitude) were observed along the latitudinal transect. The virus-to-prokaryote ratio (VPR) increased from ∼19 in epipelagic to ∼53 in the bathy- and abyssopelagic waters. Although the lytic viral production decreased significantly with depth, the lysogenic viral production did not vary with depth. In bathypelagic waters, pronounced differences in prokaryotic and viral abundance were found among different oceanic provinces with lower leucine incorporation rates and higher VPRs in the North Atlantic Gyre province than in the provinces further north and south. The percentage of lysogeny increased from subpolar regions toward the more oligotrophic lower latitudes. Based on the observed trends over this latitudinal transect, we conclude that the viral–host interactions significantly change among different oceanic provinces in response to changes in the biotic and abiotic variables. PMID:22258100

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andam, Cheryl P.; Doroghazi, James R.; Campbell, Ashley N.

    We show that Streptomyces biogeography in soils across North America is influenced by the regional diversification of microorganisms due to dispersal limitation and genetic drift. Streptomyces spp. form desiccation-resistant spores, which can be dispersed on the wind, allowing for a strong test of whether dispersal limitation governs patterns of terrestrial microbial diversity. We employed an approach that has high sensitivity for determining the effects of genetic drift. Specifically, we examined the genetic diversity and phylogeography of physiologically similar Streptomyces strains isolated from geographically distributed yet ecologically similar habitats. We found that Streptomyces beta diversity scales with geographic distance and bothmore » beta diversity and phylogenetic diversity manifest in a latitudinal diversity gradient. This pattern of Streptomyces biogeography resembles patterns seen for diverse species of plants and animals, and we therefore evaluated these data in the context of ecological and evolutionary hypotheses proposed to explain latitudinal diversity gradients. The data are consistent with the hypothesis that niche conservatism limits dispersal, and historical patterns of glaciation have limited the time for speciation in higher-latitude sites. Most notably, higher-latitude sites have lower phylogenetic diversity, higher phylogenetic clustering, and evidence of range expansion from lower latitudes. In addition, patterns of beta diversity partition with respect to the glacial history of sites. Furthermore, the data support the hypothesis that extant patterns of Streptomyces biogeography have been driven by historical patterns of glaciation and are the result of demographic range expansion, dispersal limitation, and regional diversification due to drift.« less

  1. Genetic evidence for restricted dispersal along continuous altitudinal gradients in a climate change-sensitive mammal: the American Pika.

    PubMed

    Henry, Philippe; Sim, Zijian; Russello, Michael A

    2012-01-01

    When faced with rapidly changing environments, wildlife species are left to adapt, disperse or disappear. Consequently, there is value in investigating the connectivity of populations of species inhabiting different environments in order to evaluate dispersal as a potential strategy for persistence in the face of climate change. Here, we begin to investigate the processes that shape genetic variation within American pika populations from the northern periphery of their range, the central Coast Mountains of British Columbia, Canada. At these latitudes, pikas inhabit sharp elevation gradients ranging from sea level to 1500 m, providing an excellent system for studying the effects of local environmental conditions on pika population genetic structure and gene flow. We found low levels of neutral genetic variation compared to previous studies from more southerly latitudes, consistent with the relatively recent post-glacial colonization of the study location. Moreover, significant levels of inbreeding and marked genetic structure were detected within and among sites. Although low levels of recent gene flow were revealed among elevations within a transect, potentially admixed individuals and first generation migrants were identified using discriminant analysis of principal components between populations separated by less than five kilometers at the same elevations. There was no evidence for historical population decline, yet there was signal for recent demographic contractions, possibly resulting from environmental stochasticity. Correlative analyses revealed an association between patterns of genetic variation and annual heat-to-moisture ratio, mean annual precipitation, precipitation as snow and mean maximum summer temperature. Changes in climatic regimes forecasted for the region may thus potentially increase the rate of population extirpation by further reducing dispersal between sites. Consequently, American pika may have to rely on local adaptations or phenotypic

  2. Latitudinal variation of speed and mass flux in the acceleration region of the solar wind inferred from spectral broadening measurements

    NASA Technical Reports Server (NTRS)

    Woo, Richard; Goldstein, Richard M.

    1994-01-01

    Spectral broadening measurements conducted at S-band (13-cm wavelength) during solar minimum conditions in the heliocentric distance range of 3-8 R(sub O) by Mariner 4, Pioneer 10, Mariner 10, Helios 1, Helios 2, and Viking have been combined to reveal a factor of 2.6 reduction in bandwidth from equator to pole. Since spectral broadening bandwidth depends on electron density fluctuation and solar wind speed, and latitudinal variation of the former is available from coherence bandwidth measurements, the remote sensing spectral broadening measurements provide the first determination of the latitudinal variation of solar wind speed in the acceleration region. When combined with electron density measurements deduced from white-light coronagraphs, this result also leads to the first determination of the latitudinal variation of mass flux in the acceleration region. From equator to pole, solar wind speed increases by a factor of 2.2, while mass flux decreases by a factor of 2.3. These results are consistent with measurements of solar wind speed by multi-station intensity scintillation measurements, as well as measurements of mass flux inferred from Lyman alpha observations, both of which pertain to the solar wind beyond 0.5 AU. The spectral broadening observations, therefore, strengthen earlier conclusions about the latitudinal variation of solar wind speed and mass flux, and reinforce current solar coronal models and their implications for solar wind acceleration and solar wind modeling.

  3. Using Stable Isotopes to Assess Connectivity: the Importance ...

    EPA Pesticide Factsheets

    Estuaries located at the interface of terrestrial and oceanic ecosystems receive nutrients from both ecosystems. Stable isotopes of primary producers and consumers are often used as an indicator of nutrient sources. We assembled natural abundance nitrogen stable isotope (δ15N) data for dissolved inorganic nitrate, green macroalgae, seagrass (Zostera marina) and mussels in the nearshore and in estuaries along the west coast of North America to assess the relative importance of terrestrial and oceanic nutrient sources in these systems. We found a latitudinal gradient in nearshore δ15N of nitrate of -0.2 ‰ per degree latitude from Mexico to British Columbia with more depleted isotope ratio to the north. Primary producers (green macroalgae and Zostera marina) located in the nearshore and the marine dominated portion of Pacific Coast estuaries exhibited a similar latitudinal gradient in δ15N of -0.3 ‰ per degree latitude. This latitudinal gradient is similar to δ15N observed for intertidal mussels (Mytilus californianus), which are known to reflect the isotope ratio of the phytoplankton they feed on. The consistent latitudinal gradient for multiple primary producers and a consumer, and the agreement with the gradient in nearshore δ15N of nitrate, suggests that it is a result of oceanic source waters. On the watershed side, there is a gradient in the δ15N of nitrate with southern California systems receiving nitrate with a δ15N-NO3 of about +12 ‰,

  4. Latitudinal Transport of Angular Momentum by Cellular Flows Observed with MDI

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Gilman, Peter A.; Beck, John G.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    We have analyzed Doppler velocity images from the MDI instrument on SOHO to determine the latitudinal transport of angular momentum by the cellular photospheric flows. Doppler velocity images from 60-days in May to July of 1996 were processed to remove the p-mode oscillations, the convective blue shift, the axisymmetric flows, and any instrumental artifacts. The remaining cellular flows were examined for evidence of latitudinal angular momentum transport. Small cells show no evidence of any such transport. Cells the size of supergranules (30,000 km in diameter) show strong evidence for a poleward transport of angular momentum. This would be expected if supergranules are influenced by the Coriolis force, and if the cells are elongated in an east-west direction. We find good evidence for just such an east-west elongation of the supergranules. This elongation may be the result of differential rotation shearing the cellular structures. Data simulations of this effect support the conclusion that elongated supergranules transport angular momentum from the equator toward the poles, Cells somewhat larger than supergranules do not show evidence for this poleward transport. Further analysis of the data is planned to determine if the direction of angular momentum transport reverses for even larger cellular structures. The Sun's rapidly rotating equator must be maintained by such transport somewhere within the convection zone.

  5. The role of selection and historical factors in driving population differentiation along an elevational gradient in an island bird.

    PubMed

    Bertrand, J A M; Delahaie, B; Bourgeois, Y X C; Duval, T; García-Jiménez, R; Cornuault, J; Pujol, B; Thébaud, C; Milá, B

    2016-04-01

    Adaptation to local environmental conditions and the range dynamics of populations can influence evolutionary divergence along environmental gradients. Thus, it is important to investigate patterns of both phenotypic and genetic variations among populations to reveal the respective roles of these two types of factors in driving population differentiation. Here, we test for evidence of phenotypic and genetic structure across populations of a passerine bird (Zosterops borbonicus) distributed along a steep elevational gradient on the island of Réunion. Using 11 microsatellite loci screened in 401 individuals from 18 localities distributed along the gradient, we found that genetic differentiation occurred at two spatial levels: (i) between two main population groups corresponding to highland and lowland areas, respectively, and (ii) within each of these two groups. In contrast, several morphological traits varied gradually along the gradient. Comparison of neutral genetic differentiation (FST ) and phenotypic differentiation (PST ) showed that PST largely exceeds FST at several morphological traits, which is consistent with a role for local adaptation in driving morphological divergence along the gradient. Overall, our results revealed an area of secondary contact midway up the gradient between two major, cryptic, population groups likely diverged in allopatry. Remarkably, local adaptation has shaped phenotypic differentiation irrespective of population history, resulting in different patterns of variation along the elevational gradient. Our findings underscore the importance of understanding both historical and selective factors when trying to explain variation along environmental gradients. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  6. Large-scale pattern of genetic differentiation within African rainforest trees: insights on the roles of ecological gradients and past climate changes on the evolution of Erythrophleum spp (Fabaceae).

    PubMed

    Duminil, Jerome; Brown, Richard P; Ewédjè, Eben-Ezer B K; Mardulyn, Patrick; Doucet, Jean-Louis; Hardy, Olivier J

    2013-09-12

    The evolutionary events that have shaped biodiversity patterns in the African rainforests are still poorly documented. Past forest fragmentation and ecological gradients have been advocated as important drivers of genetic differentiation but their respective roles remain unclear. Using nuclear microsatellites (nSSRs) and chloroplast non-coding sequences (pDNA), we characterised the spatial genetic structure of Erythrophleum (Fabaceae) forest trees in West and Central Africa (Guinea Region, GR). This widespread genus displays a wide ecological amplitude and taxonomists recognize two forest tree species, E. ivorense and E. suaveolens, which are difficult to distinguish in the field and often confused. Bayesian-clustering applied on nSSRs of a blind sample of 648 specimens identified three major gene pools showing no or very limited introgression. They present parapatric distributions correlated to rainfall gradients and forest types. One gene pool is restricted to coastal evergreen forests and corresponds to E. ivorense; a second one is found in gallery forests from the dry forest zone of West Africa and North-West Cameroon and corresponds to West-African E. suaveolens; the third gene pool occurs in semi-evergreen forests and corresponds to Central African E. suaveolens. These gene pools have mostly unique pDNA haplotypes but they do not form reciprocally monophyletic clades. Nevertheless, pDNA molecular dating indicates that the divergence between E. ivorense and Central African E. suaveolens predates the Pleistocene. Further Bayesian-clustering applied within each major gene pool identified diffuse genetic discontinuities (minor gene pools displaying substantial introgression) at a latitude between 0 and 2°N in Central Africa for both species, and at a longitude between 5° and 8°E for E. ivorense. Moreover, we detected evidence of past population declines which are consistent with historical habitat fragmentation induced by Pleistocene climate changes. Overall

  7. Large-scale pattern of genetic differentiation within African rainforest trees: insights on the roles of ecological gradients and past climate changes on the evolution of Erythrophleum spp (Fabaceae)

    PubMed Central

    2013-01-01

    Background The evolutionary events that have shaped biodiversity patterns in the African rainforests are still poorly documented. Past forest fragmentation and ecological gradients have been advocated as important drivers of genetic differentiation but their respective roles remain unclear. Using nuclear microsatellites (nSSRs) and chloroplast non-coding sequences (pDNA), we characterised the spatial genetic structure of Erythrophleum (Fabaceae) forest trees in West and Central Africa (Guinea Region, GR). This widespread genus displays a wide ecological amplitude and taxonomists recognize two forest tree species, E. ivorense and E. suaveolens, which are difficult to distinguish in the field and often confused. Results Bayesian-clustering applied on nSSRs of a blind sample of 648 specimens identified three major gene pools showing no or very limited introgression. They present parapatric distributions correlated to rainfall gradients and forest types. One gene pool is restricted to coastal evergreen forests and corresponds to E. ivorense; a second one is found in gallery forests from the dry forest zone of West Africa and North-West Cameroon and corresponds to West-African E. suaveolens; the third gene pool occurs in semi-evergreen forests and corresponds to Central African E. suaveolens. These gene pools have mostly unique pDNA haplotypes but they do not form reciprocally monophyletic clades. Nevertheless, pDNA molecular dating indicates that the divergence between E. ivorense and Central African E. suaveolens predates the Pleistocene. Further Bayesian-clustering applied within each major gene pool identified diffuse genetic discontinuities (minor gene pools displaying substantial introgression) at a latitude between 0 and 2°N in Central Africa for both species, and at a longitude between 5° and 8°E for E. ivorense. Moreover, we detected evidence of past population declines which are consistent with historical habitat fragmentation induced by Pleistocene climate

  8. Genetic diversity of armored scales (Hemiptera: Diaspididae) and soft scales (Hemiptera: Coccidae) in Chile.

    PubMed

    Amouroux, P; Crochard, D; Germain, J-F; Correa, M; Ampuero, J; Groussier, G; Kreiter, P; Malausa, T; Zaviezo, T

    2017-05-17

    Scale insects (Sternorrhyncha: Coccoidea) are one of the most invasive and agriculturally damaging insect groups. Their management and the development of new control methods are currently jeopardized by the scarcity of identification data, in particular in regions where no large survey coupling morphological and DNA analyses have been performed. In this study, we sampled 116 populations of armored scales (Hemiptera: Diaspididae) and 112 populations of soft scales (Hemiptera: Coccidae) in Chile, over a latitudinal gradient ranging from 18°S to 41°S, on fruit crops, ornamental plants and trees. We sequenced the COI and 28S genes in each population. In total, 19 Diaspididae species and 11 Coccidae species were identified morphologically. From the 63 COI haplotypes and the 54 28S haplotypes uncovered, and using several DNA data analysis methods (Automatic Barcode Gap Discovery, K2P distance, NJ trees), up to 36 genetic clusters were detected. Morphological and DNA data were congruent, except for three species (Aspidiotus nerii, Hemiberlesia rapax and Coccus hesperidum) in which DNA data revealed highly differentiated lineages. More than 50% of the haplotypes obtained had no high-scoring matches with any of the sequences in the GenBank database. This study provides 63 COI and 54 28S barcode sequences for the identification of Coccoidea from Chile.

  9. Evaluating population expansion of black bears using spatial capture-recapture

    USGS Publications Warehouse

    Sun, Catherine C.; Fuller, Angela K.; Hare, Matthew P.; Hurst, Jeremy E.

    2017-01-01

    The population of American black bears (Ursus americanus) in southern New York, USA has been growing and expanding in range since the 1990s. This has motivated a need to anticipate future patterns of range expansion. We conducted a non-invasive, genetic, spatial capture-recapture (SCR) study to estimate black bear density and identify spatial patterns of population density that are potentially associated with range expansion. We collected hair samples in a 2,519-km2 study area in southern New York with barbed-wire hair snares and identified individuals and measured genetic diversity using 7 microsatellite loci and 1 sex-linked marker. We estimated a mean density of black bears in the region of 13.7 bears/100 km2, and detected a slight latitudinal gradient in density consistent with the documented range expansion. However, elevation and the amounts of forest, crop, and developed landcover types did not influence density, suggesting that bears are using a diversity of resources in this heterogeneous landscape outside their previously described distribution. These results provide the first robust baseline estimates for population density and distribution associated with different landcover types in the expanded bear range. Further, genetic diversity was comparable to that of non-expanding black bear populations in the eastern United States, and in combination with the latitudinal density gradient, suggest that the study area is not at the colonizing front of the range expansion. In addition, the diversity of landcover types used by bears in the study area implies a possible lack of constraints for further northern expansion of the black bear range. Our non-invasive, genetic, spatial capture-recapture approach has utility for studying populations of other species that may be expanding in range because SCR allows for the testing of explicit, spatial ecological hypotheses. 

  10. Latitudinal oscillations of plasma within the Io torus

    NASA Technical Reports Server (NTRS)

    Cummings, W. D.; Dessler, A. J.; Hill, T. W.

    1980-01-01

    The equilibrium latitude and the period of oscillations about this equilibrium latitude are calculated for a plasma in a centrifugally dominated tilted dipole magnetic field representing Jupiter's inner magnetosphere. It is found that for a hot plasma the equilibrium latitude in the magnetic equator, for a cold plasma it is the centrifugal equator, and for a warm plasma it is somewhere in between. An illustrative model is adopted in which atoms are sputtered from the Jupiter-facing hemisphere of Io and escape Io's gravity to be subsequently ionized some distance from Io. Finally, it is shown that ionization generally does not occur at the equilibrium altitude, and that the resulting latitudinal oscillations provide an explanation for the irregularities in electron concentration within the torus, as reported by the radioastronomy experiment aboard Voyager I.

  11. The latitudinal variation of geoelectromagnetic disturbances during large ( Dst ≤ ₋100 nT) geomagnetic storms

    DOE PAGES

    Woodroffe, Jesse Richard; Morley, S. K.; Jordanova, V. K.; ...

    2016-09-20

    Geoelectromagnetic disturbances (GMDs) are an important consequence of space weather that can directly impact many types of terrestrial infrastructure. In this paper, we analyze 30 years of SuperMAG magnetometer data from the range of magnetic latitudes 20°≤λ≤75° to derive characteristic latitudinal profiles for median GMD amplitudes. Based on this data, we obtain a parameterization of these latitudinal profiles of different types of GMDs, providing an analytical fit with Dst-dependent parameters. Finally, we also obtain probabilistic estimates for the magnitudes of “100 year” GMDs, finding thatmore » $$\\dot{_B}$$ = 6.9 (3.60–12.9) nT/s should be expected at 45°≤λ< 50°, exceeding the 5 nT/s threshold for dangerous inductive heating.« less

  12. North-South Gradients in Carbon Isotopic Compositions of Atlantic Ocean Black Shales: Evidence for Paleohydrologic Influences on Mid-Cretaceous Black Shale Deposition

    NASA Astrophysics Data System (ADS)

    Meyers, P. A.

    2013-12-01

    Organic del13C values of organic-carbon-rich Albian-Cenomanian-Turonian black shales from a north-south transect of the Atlantic Ocean have been compiled to explore for possible existence of latitudinal patterns. Black shales at equatorial sites have mean del13C values of -28 per mil, whereas black shales at mid-latitude sites have mean del13C values around -25 per mil. The mid-Cretaceous del13C values are routinely lower than those of modern marine sediments. The more negative Cretaceous del13C values generally reflect concentrations of atmospheric CO2 that were four to six times higher than today, but the geographic differences imply a regional overprint on this global feature. Latitudinal differences in oceanic temperature might be a factor, but a low thermal gradient from the poles to the equator during the mid-Cretaceous makes this factor not likely to be significant. Instead, a correspondence between the geographic differences in the organic del13C values of black shales with the modern latitudinal precipitation pattern suggests that differences in precipitation are a more likely factor. Establishment of a strongly salinity-stratified near-surface ocean and magnified delivery of land-derived phosphorus by continental runoff during this time of a magnified hydrologic cycle were evidently significant to deposition of marine black shales. A likely scenario is that the stratification resulted in blooms of nitrogen-fixing bacteria that become the dominant photoautotrophs and thereby stimulated primary production of organic matter. Regional differences in precipitation resulted in different amounts of runoff, consequent stratification, enhancement of primary production, and therefore the different carbon isotopic compositions of the black shales.

  13. Leaf Caloric Value from Tropical to Cold-Temperate Forests: Latitudinal Patterns and Linkage to Productivity

    PubMed Central

    Song, Guangyan; Hou, Jihua; Li, Ying; Zhang, Jiahui; He, Nianpeng

    2016-01-01

    Leaf caloric value (LCV) reflects the capacity of a leaf to fix and accumulate solar energy through photosynthesis. We systematically investigated the LCV of 745 plant species in 9 forests, representing a range of tropical to cold-temperate forests along the 4700-km North-South Transect of Eastern China. The goals were to explore the latitudinal patterns of LCV at the levels of species, plant functional group, and community and to establish the relationship between LCV and gross primary productivity (GPP). Our results showed that LCV for all species ranged from 12.85 to 22.15 KJ g–1 with an average of 18.46 KJ g–1. Plant functional groups had a significant influence on LCV, with trees > shrubs > herbs, conifers > broadleaved trees, and evergreens > deciduous trees. The different values of LCV represented the long-term evolution and adaptation of plant species to different environments. Unexpectedly, no apparent latitudinal trends of LCV at community level were observed, although LCV at the species level clearly decreased with increasing latitude. Use efficiency of LCV (CUE, gC KJ–1), defined as the ratio of GPP to total LCV at the community level, varied quadratic with latitude and was lower in the middle latitudes. Climate (temperature and precipitation) may explain 52.9% of the variation in spatial patterns of CUE, which was positively correlated with aridity. Our findings are the first large-scale report of the latitudinal patterns of LCV in forests at the species, plant functional group, and community levels and provide new insights into the relationship between LCV and ecosystem functions in forest communities. PMID:27341474

  14. Local Adaptation Enhances Seedling Recruitment Along an Altitudinal Gradient in a High Mountain Mediterranean Plant

    PubMed Central

    Giménez-Benavides, Luis; Escudero, Adrián; Iriondo, José M.

    2007-01-01

    Background and Aims Germination and seedling establishment, which are critical stages in the regeneration process of plant populations, may be subjected to natural selection and adaptive evolution. The aims of this work were to assess the main limitations on offspring performance of Silene ciliata, a high mountain Mediterranean plant, and to test whether local adaptation at small spatial scales has a significant effect on the success of establishment. Methods Reciprocal sowing experiments were carried out among three populations of the species to test for evidence of local adaptation on seedling emergence, survival and size. Studied populations were located at the southernmost margin of the species' range, along the local elevation gradient that leads to a drought stress gradient. Key Results Drought stress in summer was the main cause of seedling mortality even though germination mainly occurred immediately after snowmelt to make the best use of soil moisture. The results support the hypothesis that species perform better at the centre of their altitudinal range than at the boundaries. Evidence was also found of local adaptation in seedling survival and growth along the whole gradient. Conclusions The local adaptation acting on seedling emergence and survival favours the persistence of remnant populations on the altitudinal and latitudinal margins of mountain species. In a global warming context, such processes may help to counteract the contraction of this species' ranges and the consequent loss of habitat area. PMID:17307775

  15. Recurrent Cosmic-ray Variations as a Probe of the Heliospheric Magnetic Field

    NASA Astrophysics Data System (ADS)

    Burger, R. A.; Engelbrecht, E. E.

    2006-12-01

    A linear relationship between the observed 26-day recurrent cosmic-ray intensity variations and the global latitudinal gradient was first reported by Zhang (1997, ApJ, 488), who made extensive use of Ulysses data. This relationship is seen for all species considered and at all latitudes covered by the spacecraft. Burger and Hitge (2004, ApJL, 617) used a three-dimensional steady-state numerical modulation model and showed that a Fisk-type (Fisk 1996, JGR, 101) heliospheric magnetic field (HMF) can in principle explain these observations, at least at high latitudes. In this progress report we use a refinement of the Fisk-Parker hybrid HMF model of Burger and Hitge (2004) by Kruger (2006, MSc dissertation, NWU University) (see also Kruger, Burger and Hitge 2005, AGU Fall meeting abstracts SH23B-0341) to study these 26-day recurrent variations in more detail with the same modulation code. In Kruger's model the HMF is Parker-like at the highest latitudes, becomes Fisk- like at intermediate latitudes, and becomes Parker-like again in the region swept out by the wavy current sheet. By using an almost continuous range of latitudinal gradients for both solar magnetic polarity cycles and for both protons and electrons - in contrast to the limited number of values used by Burger and Hitge (2004) - the structure of the graphs of amplitude of the recurrent cosmic-ray intensity variations as function of global latitudinal gradient can be studied in detail. This was performed in a 100 AU model heliosphere for solar minimum conditions with the tilt angle of the heliospheric current sheet at 10 degrees. In all cases drift effects are included. We find that these curves for amplitude vs. latitudinal gradient are similar for protons and for electrons. By switching the sign of the modeled amplitudes when the latitudinal gradient becomes negative, the existence of a single relationship between the two quantities can be studied for the whole range of modeled latitudinal gradients. This

  16. Conserving threatened riparian ecosystems in the American West: Precipitation gradients and river networks drive genetic connectivity and diversity in a foundation riparian tree (Populus angustifolia).

    PubMed

    Bothwell, Helen M; Cushman, Samuel A; Woolbright, Scott A; Hersch-Green, Erika I; Evans, Luke M; Whitham, Thomas G; Allan, Gerard J

    2017-10-01

    Gene flow is an evolutionary process that supports genetic connectivity and contributes to the capacity of species to adapt to environmental change. Yet, for most species, little is known about the specific environmental factors that influence genetic connectivity, or their effects on genetic diversity and differentiation. We used a landscape genetic approach to understand how geography and climate influence genetic connectivity in a foundation riparian tree (Populus angustifolia), and their relationships with specieswide patterns of genetic diversity and differentiation. Using multivariate restricted optimization in a reciprocal causal modelling framework, we quantified the relative contributions of riparian network connectivity, terrestrial upland resistance and climate gradients on genetic connectivity. We found that (i) all riparian corridors, regardless of river order, equally facilitated connectivity, while terrestrial uplands provided 2.5× more resistance to gene flow than riparian corridors. (ii) Cumulative differences in precipitation seasonality and precipitation of the warmest quarter were the primary climatic factors driving genetic differentiation; furthermore, maximum climate resistance was 45× greater than riparian resistance. (iii) Genetic diversity was positively correlated with connectivity (R 2  = 0.3744, p = .0019), illustrating the utility of resistance models for identifying landscape conditions that can support a species' ability to adapt to environmental change. From these results, we present a map highlighting key genetic connectivity corridors across P. angustifolia's range that if disrupted could have long-term ecological and evolutionary consequences. Our findings provide recommendations for conservation and restoration management of threatened riparian ecosystems throughout the western USA and the high biodiversity they support. © 2017 John Wiley & Sons Ltd.

  17. Toward Spectroscopically Detecting the Global Latitudinal Temperature Variation on the Solar Surface

    NASA Astrophysics Data System (ADS)

    Takeda, Y.; UeNo, S.

    2017-09-01

    A very slight rotation-induced latitudinal temperature variation (presumably on the order of several kelvin) on the solar surface is theoretically expected. While recent high-precision solar brightness observations reported its detection, confirmation by an alternative approach using the strengths of spectral lines is desirable, for which reducing the noise due to random fluctuation caused by atmospheric inhomogeneity is critical. Toward this difficult task, we carried out a pilot study of spectroscopically investigating the relative variation of temperature (T) at a number of points in the solar circumference region near to the limb (where latitude dependence should be detectable, if any exists) based on the equivalent widths (W) of 28 selected lines in the 5367 - 5393 Å and 6075 - 6100 Å regions. We paid special attention to i) clarifying which types of lines should be employed and ii) how much precision is attainable in practice. We found that lines with strong T-sensitivity (|log W/log T|) should be used and that very weak lines should be avoided because they inevitably suffer strong relative fluctuations (Δ W/W). Our analysis revealed that a precision of Δ T/T ≈ 0.003 (corresponding to ≈ 15 K) can be achieved at best by a spectral line with comparatively large |log W/log T|, although this can possibly be further improved When a number of lines are used all together. Accordingly, if many such favorable lines could be measured with subpercent precision of Δ W/W and by averaging the resulting Δ T/T from each line, the random noise would eventually be reduced to ≲ 1 K and detection of a very subtle amount of global T-gradient might be possible.

  18. Cell-Surface Bound Nonreceptors and Signaling Morphogen Gradients

    PubMed Central

    Wan, Frederic Y.M.

    2013-01-01

    The patterning of many developing tissues is orchestrated by gradients of signaling morphogens. Included among the molecular events that drive the formation of morphogen gradients are a variety of elaborate regulatory interactions. Such interactions are thought to make gradients robust, i.e. insensitive to change in the face of genetic or environmental perturbations. But just how this is accomplished is a major unanswered question. Recently extensive numerical simulations suggest that robustness of signaling gradients can be achieved through morphogen degradation mediated by cell surface bound non-signaling receptor molecules (or nonreceptors for short) such as heparan sulfate proteoglycans (HSPG). The present paper provides a mathematical validation of the results from the aforementioned numerical experiments. Extension of a basic extracellular model to include reversible binding with nonreceptors synthesized at a prescribed rate and mediated morphogen degradation shows that the signaling gradient diminishes with increasing concentration of cell-surface nonreceptors. Perturbation and asymptotic solutions obtained for i) low (receptor and nonreceptor) occupancy, and ii) high nonreceptor concntration permit more explicit delineation of the effects of nonreceptors on signaling gradients and facilitate the identification of scenarios in which the presence of nonreceptors may or may not be effective in promoting robustness. PMID:25232201

  19. Regional and latitudinal patterns of soft-bottom macrobenthic invertebrates along French coasts: Results from the RESOMAR database

    NASA Astrophysics Data System (ADS)

    Gallon, Régis K.; Lavesque, Nicolas; Grall, Jacques; Labrune, Céline; Gremare, Antoine; Bachelet, Guy; Blanchet, Hugues; Bonifácio, Paulo; Bouchet, Vincent M. P.; Dauvin, Jean-Claude; Desroy, Nicolas; Gentil, Franck; Guerin, Laurent; Houbin, Céline; Jourde, Jérôme; Laurand, Sandrine; Le Duff, Michel; Le Garrec, Vincent; de Montaudouin, Xavier; Olivier, Frédéric; Orvain, Francis; Sauriau, Pierre-Guy; Thiebaut, Éric; Gauthier, Olivier

    2017-12-01

    This study aims to describe the patterns of soft bottom macrozoobenthic richness along French coasts. It is based on a collaborative database developed by the "Réseau des Stations et Observatoires Marins" (RESOMAR). We investigated patterns of species richness in sublittoral soft bottom habitats (EUNIS level 3) at two different spatial scales: 1) seaboards: English Channel, Bay of Biscay and Mediterranean Sea and 2) 0.5° latitudinal and longitudinal grid. Total observed richness, rarefaction curves and three incidence-based richness estimators (Chao2, ICE and Jacknife1) were used to compare soft bottom habitats species richness in each seaboard. Overall, the Mediterranean Sea has the highest richness and despite higher sampling effort, the English Channel hosts the lowest number of species. The distribution of species occurrence within and between seaboards was assessed for each major phylum using constrained rarefaction curves. The Mediterranean Sea hosts the highest number of exclusive species. In pairwise comparisons, it also shares a lower proportion of taxa with the Bay of Biscay (34.1%) or the English Channel (27.6%) than that shared between these two seaboards (49.7%). Latitudinal species richness patterns along the Atlantic and English Channel coasts were investigated for each major phylum using partial LOESS regression controlling for sampling effort. This showed the existence of a bell-shaped latitudinal pattern, highlighting Brittany as a hotspot for macrobenthic richness at the confluence of two biogeographic provinces.

  20. Simulations of Flame Acceleration and DDT in Mixture Composition Gradients

    NASA Astrophysics Data System (ADS)

    Zheng, Weilin; Kaplan, Carolyn; Houim, Ryan; Oran, Elaine

    2017-11-01

    Unsteady, multidimensional, fully compressible numerical simulations of methane-air in an obstructed channel with spatial gradients in equivalence ratios have been carried to determine the effects of the gradients on flame acceleration and transition to detonation. Results for gradients perpendicular to the propagation direction were considered here. A calibrated, optimized chemical-diffusive model that reproduces correct flame and detonation properties for methane-air over a range of equivalence ratios was derived from a combination of a genetic algorithm with a Nelder-Mead optimization scheme. Inhomogeneous mixtures of methane-air resulted in slower flame acceleration and longer distance to DDT. Detonations were more likely to decouple into a flame and a shock under sharper concentration gradients. Detailed analyses of temperature and equivalence ratio illustrated that vertical gradients can greatly affect the formation of hot spots that initiate detonation by changing the strength of leading shock wave and local equivalence ratio near the base of obstacles. This work is supported by the Alpha Foundation (Grant No. AFC215-20).

  1. Mountain pine beetle voltinism and life history characteristics across latitudinal and elevational gradients in the western United States

    Treesearch

    Barbara Bentz; James Vandygriff; Camille Jensen; Tom Coleman; Patricia Maloney; Sheri Smith; Amanda Grady; Greta Schen-Langenheim

    2014-01-01

    Substantial genetic variation in development time is known to exist among mountain pine beetle (Dendroctonus ponderosae Hopkins) populations across the western United States. The effect of this variation on geographic patterns in voltinism (generation time) and thermal requirements to produce specific voltinism pathways have not been investigated. The influence of...

  2. CO2 and CH4 fluxes along a latitudinal transect in Northern Alaska using eddy covariance technique in challenging conditions: first results of a long term experiment in the Arctic tundra

    NASA Astrophysics Data System (ADS)

    Moreaux, V.; Oechel, W. C.; Losacco, S.; McEwing, R.; Murphy, P.; Zona, D.

    2013-12-01

    Being one of the most sensitive regions on earth, the Arctic is likely to be one of the most affected by global change. Physical changes (drying, snow cover, active layer depth, permafrost thawing, etc.) could create feedbacks in the release of greenhouse gas to the atmosphere. Correlated to the significant increase in air temperature, changes in trace gas balance have already been reported (Oechel et al. 1998). Carbon (C) is currently trapped as organic matter in the permafrost that underlies much of the Arctic. C represents about 30-50% of the global belowground organic carbon pool (Tarnocai et al.2009, Zona et al. 2012). Stored organic matter can form the substrate for significant release of carbon dioxide (CO2) and methane (CH4) to the atmosphere. Ubiquitous arctic wetlands are additional sources of CH4 and CO2 to the atmosphere (Melton et al. 2013). CO2 is important because of the magnitude of its fluxes, and CH4 is of interest since its global warming potential is 23 times higher than the CO2 over a 100-year time horizon. CH4 is produced by the decomposition of dead plant material in anaerobic soils, especially in tundra ponds. Methane release is mostly influenced by temperature, water table, and active layer depth. The spatial and temporal variability results in very large uncertainties of current CH4 fluxes from the Arctic. The sporadic studies available create a generally inadequate baseline from which to determine a change in emissions from this critical and sensitive environment. Here we initiate a large scale, continuously monitored, study of CO2 and CH4 budgets from tundra ecosystems across a latitudinal gradient of more than 400 km. Our main questions for this study are: (i) does the release of CO2 and CH4 from biological and geothermal processes exceed the sink of greenhouse gases from active vegetation and surface organisms? (ii) How does this balance behave over latitudinal and environmental gradients? The observations presented are the result of

  3. A test of the hypothesis that correlational selection generates genetic correlations.

    PubMed

    Roff, Derek A; Fairbairn, Daphne J

    2012-09-01

    Theory predicts that correlational selection on two traits will cause the major axis of the bivariate G matrix to orient itself in the same direction as the correlational selection gradient. Two testable predictions follow from this: for a given pair of traits, (1) the sign of correlational selection gradient should be the same as that of the genetic correlation, and (2) the correlational selection gradient should be positively correlated with the value of the genetic correlation. We test this hypothesis with a meta-analysis utilizing empirical estimates of correlational selection gradients and measures of the correlation between the two focal traits. Our results are consistent with both predictions and hence support the underlying hypothesis that correlational selection generates a genetic correlation between the two traits and hence orients the bivariate G matrix. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  4. Genetic insights into dispersal distance and disperser fitness of African lions (Panthera leo) from the latitudinal extremes of the Kruger National Park, South Africa.

    PubMed

    van Hooft, Pim; Keet, Dewald F; Brebner, Diana K; Bastos, Armanda D S

    2018-04-03

    Female lions generally do not disperse far beyond their natal range, while males can disperse distances of over 200 km. However, in bush-like ecosystems dispersal distances less than 25 km are reported. Here, we investigate dispersal in lions sampled from the northern and southern extremes of Kruger National Park, a bush-like ecosystem in South Africa where bovine tuberculosis prevalence ranges from low to high across a north-south gradient. A total of 109 individuals sampled from 1998 to 2004 were typed using 11 microsatellite markers, and mitochondrial RS-3 gene sequences were generated for 28 of these individuals. Considerable north-south genetic differentiation was observed in both datasets. Dispersal was male-biased and generally further than 25 km, with long-distance male gene flow (75-200 km, detected for two individuals) confirming that male lions can travel large distances, even in bush-like ecosystems. In contrast, females generally did not disperse further than 20 km, with two distinctive RS-3 gene clusters for northern and southern females indicating no or rare long-distance female dispersal. However, dispersal rate for the predominantly non-territorial females from southern Kruger (fraction dispersers ≥0.68) was higher than previously reported. Of relevance was the below-average body condition of dispersers and their low presence in prides, suggesting low fitness. Large genetic differences between the two sampling localities, and low relatedness among males and high dispersal rates among females in the south, suggestive of unstable territory structure and high pride turnover, have potential implications for spread of diseases and the management of the Kruger lion population.

  5. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean

    PubMed Central

    Mojica, Kristina D A; Huisman, Jef; Wilhelm, Steven W; Brussaard, Corina P D

    2016-01-01

    Viral lysis of phytoplankton constrains marine primary production, food web dynamics and biogeochemical cycles in the ocean. Yet, little is known about the biogeographical distribution of viral lysis rates across the global ocean. To address this, we investigated phytoplankton group-specific viral lysis rates along a latitudinal gradient within the North Atlantic Ocean. The data show large-scale distribution patterns of different virus groups across the North Atlantic that are associated with the biogeographical distributions of their potential microbial hosts. Average virus-mediated lysis rates of the picocyanobacteria Prochlorococcus and Synechococcus were lower than those of the picoeukaryotic and nanoeukaryotic phytoplankton (that is, 0.14 per day compared with 0.19 and 0.23 per day, respectively). Total phytoplankton mortality (virus plus grazer-mediated) was comparable to the gross growth rate, demonstrating high turnover rates of phytoplankton populations. Virus-induced mortality was an important loss process at low and mid latitudes, whereas phytoplankton mortality was dominated by microzooplankton grazing at higher latitudes (>56°N). This shift from a viral-lysis-dominated to a grazing-dominated phytoplankton community was associated with a decrease in temperature and salinity, and the decrease in viral lysis rates was also associated with increased vertical mixing at higher latitudes. Ocean-climate models predict that surface warming will lead to an expansion of the stratified and oligotrophic regions of the world's oceans. Our findings suggest that these future shifts in the regional climate of the ocean surface layer are likely to increase the contribution of viral lysis to phytoplankton mortality in the higher-latitude waters of the North Atlantic, which may potentially reduce transfer of matter and energy up the food chain and thus affect the capacity of the northern North Atlantic to act as a long-term sink for CO2. PMID:26262815

  6. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean.

    PubMed

    Mojica, Kristina D A; Huisman, Jef; Wilhelm, Steven W; Brussaard, Corina P D

    2016-02-01

    Viral lysis of phytoplankton constrains marine primary production, food web dynamics and biogeochemical cycles in the ocean. Yet, little is known about the biogeographical distribution of viral lysis rates across the global ocean. To address this, we investigated phytoplankton group-specific viral lysis rates along a latitudinal gradient within the North Atlantic Ocean. The data show large-scale distribution patterns of different virus groups across the North Atlantic that are associated with the biogeographical distributions of their potential microbial hosts. Average virus-mediated lysis rates of the picocyanobacteria Prochlorococcus and Synechococcus were lower than those of the picoeukaryotic and nanoeukaryotic phytoplankton (that is, 0.14 per day compared with 0.19 and 0.23 per day, respectively). Total phytoplankton mortality (virus plus grazer-mediated) was comparable to the gross growth rate, demonstrating high turnover rates of phytoplankton populations. Virus-induced mortality was an important loss process at low and mid latitudes, whereas phytoplankton mortality was dominated by microzooplankton grazing at higher latitudes (>56°N). This shift from a viral-lysis-dominated to a grazing-dominated phytoplankton community was associated with a decrease in temperature and salinity, and the decrease in viral lysis rates was also associated with increased vertical mixing at higher latitudes. Ocean-climate models predict that surface warming will lead to an expansion of the stratified and oligotrophic regions of the world's oceans. Our findings suggest that these future shifts in the regional climate of the ocean surface layer are likely to increase the contribution of viral lysis to phytoplankton mortality in the higher-latitude waters of the North Atlantic, which may potentially reduce transfer of matter and energy up the food chain and thus affect the capacity of the northern North Atlantic to act as a long-term sink for CO2.

  7. A continuous latitudinal energy balance model to explore non-uniform climate engineering strategies

    NASA Astrophysics Data System (ADS)

    Bonetti, F.; McInnes, C. R.

    2016-12-01

    Current concentrations of atmospheric CO2 exceed measured historical levels in modern times, largely attributed to anthropogenic forcing since the industrial revolution. The required decline in emissions rates has never been achieved leading to recent interest in climate engineering for future risk-mitigation strategies. Climate engineering aims to offset human-driven climate change. It involves techniques developed both to reduce the concentration of CO2 in the atmosphere (Carbon Dioxide Removal (CDR) methods) and to counteract the radiative forcing that it generates (Solar Radiation Management (SRM) methods). In order to investigate effects of SRM technologies for climate engineering, an analytical model describing the main dynamics of the Earth's climate has been developed. The model is a time-dependent Energy Balance Model (EBM) with latitudinal resolution and allows for the evaluation of non-uniform climate engineering strategies. A significant disadvantage of climate engineering techniques involving the management of solar radiation is regional disparities in cooling. This model offers an analytical approach to design multi-objective strategies that counteract climate change on a regional basis: for example, to cool the Artic and restrict undesired impacts at mid-latitudes, or to control the equator-to-pole temperature gradient. Using the Green's function approach the resulting partial differential equation allows for the computation of the surface temperature as a function of time and latitude when a 1% per year increase in the CO2 concentration is considered. After the validation of the model through comparisons with high fidelity numerical models, it will be used to explore strategies for the injection of the aerosol precursors in the stratosphere. In particular, the model involves detailed description of the optical properties of the particles, the wash-out dynamics and the estimation of the radiative cooling they can generate.

  8. Further blood genetic studies on Amazonian diversity--data from four Indian groups.

    PubMed

    Callegari-Jacques, S M; Salzano, F M; Weimer, T A; Hutz, M H; Black, F L; Santos, S E; Guerreiro, J F; Mestriner, M A; Pandey, J P

    1994-01-01

    Information related to 31 protein genetic systems was obtained for 307 individuals affiliated with the Cinta Larga, Karitiana, Surui and Kararaô Indians of northern Brazil. In terms of genetic distances the Cinta Larga showed more similarities with the Karitiana (both are Tupi-speaking tribes), while at a more distant level the Surui clustered with the Kararaô. The latter, a Cayapo subgroup, showed a completely different genetic constitution from the other subgroups of this same tribe. Both the Kararaô and Karitiana are small, remnant populations, and their gene pools have presumably been severely affected by random and founder effects. These results were incorporated with those of 25 other Amazonian Indian tribes, and analysis by two multivariate techniques confirmed a previously observed geographical dichotomy, suggesting either that the Amazon river constitutes a barrier to north-south gene flow or that latitudinally different past migrations entered the region from the west.

  9. The roles of genetic drift and natural selection in quantitative trait divergence along an altitudinal gradient in Arabidopsis thaliana

    PubMed Central

    Luo, Y; Widmer, A; Karrenberg, S

    2015-01-01

    Understanding how natural selection and genetic drift shape biological variation is a central topic in biology, yet our understanding of the agents of natural selection and their target traits is limited. We investigated to what extent selection along an altitudinal gradient or genetic drift contributed to variation in ecologically relevant traits in Arabidopsis thaliana. We collected seeds from 8 to 14 individuals from each of 14 A. thaliana populations originating from sites between 800 and 2700 m above sea level in the Swiss Alps. Seed families were grown with and without vernalization, corresponding to winter-annual and summer-annual life histories, respectively. We analyzed putatively neutral genetic divergence between these populations using 24 simple sequence repeat markers. We measured seven traits related to growth, phenology and leaf morphology that are rarely reported in A. thaliana and performed analyses of altitudinal clines, as well as overall QST-FST comparisons and correlation analyses among pair-wise QST, FST and altitude of origin differences. Multivariate analyses suggested adaptive differentiation along altitude in the entire suite of traits, particularly when expressed in the summer-annual life history. Of the individual traits, a decrease in rosette leaf number in the vegetative state and an increase in leaf succulence with increasing altitude could be attributed to adaptive divergence. Interestingly, these patterns relate well to common within- and between-species trends of smaller plant size and thicker leaves at high altitude. Our results thus offer exciting possibilities to unravel the underlying mechanisms for these conspicuous trends using the model species A. thaliana. PMID:25293874

  10. The mid-cretaceous water bearer: Isotope mass balance quantification of the Albian hydrologic cycle

    USGS Publications Warehouse

    Ufnar, David F.; Gonzalez, Luis A.; Ludvigson, Greg A.; Brenner, Richard L.; Witzke, B.J.

    2002-01-01

    A latitudinal gradient in meteoric ??18O compositions compiled from paleosol sphaerosiderites throughout the Cretaceous Western Interior Basin (KWIB) (34-75??N paleolatitude) exhibits a steeper, more depleted trend than modern (predicted) values (3.0??? [34??N latitude] to 9.7??? [75??N] lighter). Furthermore, the sphaerosiderite meteoric ??18O latitudinal gradient is significantly steeper and more depleted (5.8??? [34??N] to 13.8??? [75??N] lighter) than a predicted gradient for the warm mid-Cretaceous using modern empirical temperature-??18O precipitation relationships. We have suggested that the steeper and more depleted (relative to the modern theoretical gradient) meteoric sphaerosiderite ??18O latitudinal gradient resulted from increased air mass rainout effects in coastal areas of the KWIB during the mid-Cretaceous. The sphaerosiderite isotopic data have been used to constrain a mass balance model of the hydrologic cycle in the northern hemisphere and to quantify precipitation rates of the equable 'greenhouse' Albian Stage in the KWIB. The mass balance model tracks the evolving isotopic composition of an air mass and its precipitation, and is driven by latitudinal temperature gradients. Our simulations indicate that significant increases in Albian precipitation (34-52%) and evaporation fluxes (76-96%) are required to reproduce the difference between modern and Albian meteoric siderite ??18O latitudinal gradients. Calculations of precipitation rates from model outputs suggest mid-high latitude precipitation rates greatly exceeded modern rates (156-220% greater in mid latitudes [2600-3300 mm/yr], 99% greater at high latitudes [550 mm/yr]). The calculated precipitation rates are significantly different from the precipitation rates predicted by some recent general circulation models (GCMs) for the warm Cretaceous, particularly in the mid to high latitudes. Our mass balance model by no means replaces GCMs. However, it is a simple and effective means of obtaining

  11. Uniparental Genetic Heritage of Belarusians: Encounter of Rare Middle Eastern Matrilineages with a Central European Mitochondrial DNA Pool

    PubMed Central

    Kushniarevich, Alena; Sivitskaya, Larysa; Danilenko, Nina; Novogrodskii, Tadeush; Tsybovsky, Iosif; Kiseleva, Anna; Kotova, Svetlana; Chaubey, Gyaneshwer; Metspalu, Ene; Sahakyan, Hovhannes; Bahmanimehr, Ardeshir; Reidla, Maere; Rootsi, Siiri; Parik, Jüri; Reisberg, Tuuli; Achilli, Alessandro; Hooshiar Kashani, Baharak; Gandini, Francesca; Olivieri, Anna; Behar, Doron M.; Torroni, Antonio; Davydenko, Oleg; Villems, Richard

    2013-01-01

    Ethnic Belarusians make up more than 80% of the nine and half million people inhabiting the Republic of Belarus. Belarusians together with Ukrainians and Russians represent the East Slavic linguistic group, largest both in numbers and territory, inhabiting East Europe alongside Baltic-, Finno-Permic- and Turkic-speaking people. Till date, only a limited number of low resolution genetic studies have been performed on this population. Therefore, with the phylogeographic analysis of 565 Y-chromosomes and 267 mitochondrial DNAs from six well covered geographic sub-regions of Belarus we strove to complement the existing genetic profile of eastern Europeans. Our results reveal that around 80% of the paternal Belarusian gene pool is composed of R1a, I2a and N1c Y-chromosome haplogroups – a profile which is very similar to the two other eastern European populations – Ukrainians and Russians. The maternal Belarusian gene pool encompasses a full range of West Eurasian haplogroups and agrees well with the genetic structure of central-east European populations. Our data attest that latitudinal gradients characterize the variation of the uniparentally transmitted gene pools of modern Belarusians. In particular, the Y-chromosome reflects movements of people in central-east Europe, starting probably as early as the beginning of the Holocene. Furthermore, the matrilineal legacy of Belarusians retains two rare mitochondrial DNA haplogroups, N1a3 and N3, whose phylogeographies were explored in detail after de novo sequencing of 20 and 13 complete mitogenomes, respectively, from all over Eurasia. Our phylogeographic analyses reveal that two mitochondrial DNA lineages, N3 and N1a3, both of Middle Eastern origin, might mark distinct events of matrilineal gene flow to Europe: during the mid-Holocene period and around the Pleistocene-Holocene transition, respectively. PMID:23785503

  12. Uniparental genetic heritage of belarusians: encounter of rare middle eastern matrilineages with a central European mitochondrial DNA pool.

    PubMed

    Kushniarevich, Alena; Sivitskaya, Larysa; Danilenko, Nina; Novogrodskii, Tadeush; Tsybovsky, Iosif; Kiseleva, Anna; Kotova, Svetlana; Chaubey, Gyaneshwer; Metspalu, Ene; Sahakyan, Hovhannes; Bahmanimehr, Ardeshir; Reidla, Maere; Rootsi, Siiri; Parik, Jüri; Reisberg, Tuuli; Achilli, Alessandro; Hooshiar Kashani, Baharak; Gandini, Francesca; Olivieri, Anna; Behar, Doron M; Torroni, Antonio; Davydenko, Oleg; Villems, Richard

    2013-01-01

    Ethnic Belarusians make up more than 80% of the nine and half million people inhabiting the Republic of Belarus. Belarusians together with Ukrainians and Russians represent the East Slavic linguistic group, largest both in numbers and territory, inhabiting East Europe alongside Baltic-, Finno-Permic- and Turkic-speaking people. Till date, only a limited number of low resolution genetic studies have been performed on this population. Therefore, with the phylogeographic analysis of 565 Y-chromosomes and 267 mitochondrial DNAs from six well covered geographic sub-regions of Belarus we strove to complement the existing genetic profile of eastern Europeans. Our results reveal that around 80% of the paternal Belarusian gene pool is composed of R1a, I2a and N1c Y-chromosome haplogroups - a profile which is very similar to the two other eastern European populations - Ukrainians and Russians. The maternal Belarusian gene pool encompasses a full range of West Eurasian haplogroups and agrees well with the genetic structure of central-east European populations. Our data attest that latitudinal gradients characterize the variation of the uniparentally transmitted gene pools of modern Belarusians. In particular, the Y-chromosome reflects movements of people in central-east Europe, starting probably as early as the beginning of the Holocene. Furthermore, the matrilineal legacy of Belarusians retains two rare mitochondrial DNA haplogroups, N1a3 and N3, whose phylogeographies were explored in detail after de novo sequencing of 20 and 13 complete mitogenomes, respectively, from all over Eurasia. Our phylogeographic analyses reveal that two mitochondrial DNA lineages, N3 and N1a3, both of Middle Eastern origin, might mark distinct events of matrilineal gene flow to Europe: during the mid-Holocene period and around the Pleistocene-Holocene transition, respectively.

  13. Climatic controls of aboveground net primary production in semi-arid grasslands along a latitudinal gradient portend low sensitivity to warming

    USGS Publications Warehouse

    Mowll, Whitney; Blumenthal, Dana M.; Cherwin, Karie; Smith, Anine; Symstad, Amy J.; Vermeire, Lance; Collins, Scott L.; Smith, Melinda D.; Knapp, Alan K.

    2015-01-01

    Although climate models forecast warmer temperatures with a high degree of certainty, precipitation is the primary driver of aboveground net primary production (ANPP) in most grasslands. Conversely, variations in temperature seldom are related to patterns of ANPP. Thus forecasting responses to warming is a challenge, and raises the question: how sensitive will grassland ANPP be to warming? We evaluated climate and multi-year ANPP data (67 years) from eight western US grasslands arrayed along mean annual temperature (MAT; ~7-14 °C) and mean annual precipitation (MAP; ~250-500 mm) gradients. Weused regression and analysis of covariance to assess relationships between ANPP and temperature, as well as precipitation (annual and growing season) to evaluate temperature sensitivity of ANPP. We also related ANPP to the standardized precipitation evaporation index (SPEI), which combines precipitation and evapotranspiration to better represent moisture available for plant growth. Regression models indicated that variation in growing season temperature was negatively related to total and graminoid ANPP, but precipitation was a stronger predictor than temperature. Growing season temperature was also a significant parameter in more complex models, but again precipitation was consistently a stronger predictor of ANPP. Surprisingly, neither annual nor growing season SPEI were as strongly related to ANPP as precipitation. We conclude that forecasted warming likely will affect ANPP in these grasslands, but that predicting temperature effects from natural climatic gradients is difficult. This is because, unlike precipitation, warming effects can be positive or negative and moderated by shifts in the C3/C4 ratios of plant communities.

  14. [Latitudinal Changes in Plant Stoichiometric and Soil C, N, P Stoichiometry in Loess Plateau].

    PubMed

    Li, Ting; Deng, Qiang; Yuan, Zhi-you; Jiao, Feng

    2015-08-01

    Field investigations and sampling were conducted in Loess Plateau, including Fu County, Ganquan County, Ansai County, Jingbian County and Hengshan County and Yuyang District. Our objective was to examine changes of leaf and soil stoichiometry characteristics along latitudinal gradient in Loess Plateau, and to provide references for the prediction of soil nutrient status of the ecosystem and constraints of plant nutrition elements in Loess Plateau. The results showed that (1) Across the 35.95 degrees-38.36 degrees N latitude gradient, leaf C, N and P stoichiometry were ranging from 336.95 to 477.38 mg x g(-1) for C, from 18.09 to 33.173 mg x g(-1) for N and from 1.07 to 1.73 mg x g(-1) for P, the arithmetic means were 442.9 mg x g(-1), 25.79 mg x g(-1) and 1.37 mg x g(-1), separately, the variation coefficients were 11.9%, 17.4% and 13.3%. There were obvious correlation between leaf C, N, P and latitude, leaf C, C : N ratio and C: P ratio significantly decreased with the increasing latitude, while leaf N and P significantly increased with the increasing latitude. The relationship between N: P ratio and latitude was not significant. (2) The content of soil organic C and soil total N decreased with increasing latitude and soil layer. In contrast, with the increase of latitude, soil P increased and then decreased. In the 0-10 cm, 10-20 cm soil layers, soil C: N ratio did not change significantly with latitude, while in the 20-40 cm layer, C: N ratio decreased obviously, but soil C: P and N: P ratios decreased with the increasing latitude in all soil layers. (3) Leaf C, C: N and C: P ratios were correlated to soil organic C, soil total N and soil total P in all soil layers, leaf N and P were correlated to soil organic C and soil total N, while leaf N: P ratio was not correlated to soil organic C, soil total N and soil total P. There was a certain correlation between the leaf C, N, P and latitude, however, the correlations between leaf and soil C, N, P were inconsistent

  15. Temperature-dependent behaviours are genetically variable in the nematode Caenorhabditis briggsae.

    PubMed

    Stegeman, Gregory W; de Mesquita, Matthew Bueno; Ryu, William S; Cutter, Asher D

    2013-03-01

    Temperature-dependent behaviours in Caenorhabditis elegans, such as thermotaxis and isothermal tracking, are complex behavioural responses that integrate sensation, foraging and learning, and have driven investigations to discover many essential genetic and neural pathways. The ease of manipulation of the Caenorhabditis model system also has encouraged its application to comparative analyses of phenotypic evolution, particularly contrasts of the classic model C. elegans with C. briggsae. And yet few studies have investigated natural genetic variation in behaviour in any nematode. Here we measure thermotaxis and isothermal tracking behaviour in genetically distinct strains of C. briggsae, further motivated by the latitudinal differentiation in C. briggsae that is associated with temperature-dependent fitness differences in this species. We demonstrate that C. briggsae performs thermotaxis and isothermal tracking largely similar to that of C. elegans, with a tendency to prefer its rearing temperature. Comparisons of these behaviours among strains reveal substantial heritable natural variation within each species that corresponds to three general patterns of behavioural response. However, intraspecific genetic differences in thermal behaviour often exceed interspecific differences. These patterns of temperature-dependent behaviour motivate further development of C. briggsae as a model system for dissecting the genetic underpinnings of complex behavioural traits.

  16. Altitudinal gradients, biogeographic history and microhabitat adaptation affect fine-scale spatial genetic structure in African and Neotropical populations of an ancient tropical tree species.

    PubMed

    Torroba-Balmori, Paloma; Budde, Katharina B; Heer, Katrin; González-Martínez, Santiago C; Olsson, Sanna; Scotti-Saintagne, Caroline; Casalis, Maxime; Sonké, Bonaventure; Dick, Christopher W; Heuertz, Myriam

    2017-01-01

    The analysis of fine-scale spatial genetic structure (FSGS) within populations can provide insights into eco-evolutionary processes. Restricted dispersal and locally occurring genetic drift are the primary causes for FSGS at equilibrium, as described in the isolation by distance (IBD) model. Beyond IBD expectations, spatial, environmental or historical factors can affect FSGS. We examined FSGS in seven African and Neotropical populations of the late-successional rain forest tree Symphonia globulifera L. f. (Clusiaceae) to discriminate the influence of drift-dispersal vs. landscape/ecological features and historical processes on FSGS. We used spatial principal component analysis and Bayesian clustering to assess spatial genetic heterogeneity at SSRs and examined its association with plastid DNA and habitat features. African populations (from Cameroon and São Tomé) displayed a stronger FSGS than Neotropical populations at both marker types (mean Sp = 0.025 vs. Sp = 0.008 at SSRs) and had a stronger spatial genetic heterogeneity. All three African populations occurred in pronounced altitudinal gradients, possibly restricting animal-mediated seed dispersal. Cyto-nuclear disequilibria in Cameroonian populations also suggested a legacy of biogeographic history to explain these genetic patterns. Conversely, Neotropical populations exhibited a weaker FSGS, which may reflect more efficient wide-ranging seed dispersal by Neotropical bats and other dispersers. The population from French Guiana displayed an association of plastid haplotypes with two morphotypes characterized by differential habitat preferences. Our results highlight the importance of the microenvironment for eco-evolutionary processes within persistent tropical tree populations.

  17. Altitudinal gradients, biogeographic history and microhabitat adaptation affect fine-scale spatial genetic structure in African and Neotropical populations of an ancient tropical tree species

    PubMed Central

    Torroba-Balmori, Paloma; Budde, Katharina B.; Heer, Katrin; González-Martínez, Santiago C.; Olsson, Sanna; Scotti-Saintagne, Caroline; Sonké, Bonaventure; Dick, Christopher W.

    2017-01-01

    The analysis of fine-scale spatial genetic structure (FSGS) within populations can provide insights into eco-evolutionary processes. Restricted dispersal and locally occurring genetic drift are the primary causes for FSGS at equilibrium, as described in the isolation by distance (IBD) model. Beyond IBD expectations, spatial, environmental or historical factors can affect FSGS. We examined FSGS in seven African and Neotropical populations of the late-successional rain forest tree Symphonia globulifera L. f. (Clusiaceae) to discriminate the influence of drift-dispersal vs. landscape/ecological features and historical processes on FSGS. We used spatial principal component analysis and Bayesian clustering to assess spatial genetic heterogeneity at SSRs and examined its association with plastid DNA and habitat features. African populations (from Cameroon and São Tomé) displayed a stronger FSGS than Neotropical populations at both marker types (mean Sp = 0.025 vs. Sp = 0.008 at SSRs) and had a stronger spatial genetic heterogeneity. All three African populations occurred in pronounced altitudinal gradients, possibly restricting animal-mediated seed dispersal. Cyto-nuclear disequilibria in Cameroonian populations also suggested a legacy of biogeographic history to explain these genetic patterns. Conversely, Neotropical populations exhibited a weaker FSGS, which may reflect more efficient wide-ranging seed dispersal by Neotropical bats and other dispersers. The population from French Guiana displayed an association of plastid haplotypes with two morphotypes characterized by differential habitat preferences. Our results highlight the importance of the microenvironment for eco-evolutionary processes within persistent tropical tree populations. PMID:28771629

  18. Response to Comment on "Plant diversity increases with the strength of negative density dependence at the global scale".

    PubMed

    LaManna, Joseph A; Mangan, Scott A; Alonso, Alfonso; Bourg, Norman A; Brockelman, Warren Y; Bunyavejchewin, Sarayudh; Chang, Li-Wan; Chiang, Jyh-Min; Chuyong, George B; Clay, Keith; Cordell, Susan; Davies, Stuart J; Furniss, Tucker J; Giardina, Christian P; Gunatilleke, I A U Nimal; Gunatilleke, C V Savitri; He, Fangliang; Howe, Robert W; Hubbell, Stephen P; Hsieh, Chang-Fu; Inman-Narahari, Faith M; Janík, David; Johnson, Daniel J; Kenfack, David; Korte, Lisa; Král, Kamil; Larson, Andrew J; Lutz, James A; McMahon, Sean M; McShea, William J; Memiaghe, Hervé R; Nathalang, Anuttara; Novotny, Vojtech; Ong, Perry S; Orwig, David A; Ostertag, Rebecca; Parker, Geoffrey G; Phillips, Richard P; Sack, Lawren; Sun, I-Fang; Tello, J Sebastián; Thomas, Duncan W; Turner, Benjamin L; Vela Díaz, Dilys M; Vrška, Tomáš; Weiblen, George D; Wolf, Amy; Yap, Sandra; Myers, Jonathan A

    2018-05-25

    Chisholm and Fung claim that our method of estimating conspecific negative density dependence (CNDD) in recruitment is systematically biased, and present an alternative method that shows no latitudinal pattern in CNDD. We demonstrate that their approach produces strongly biased estimates of CNDD, explaining why they do not detect a latitudinal pattern. We also address their methodological concerns using an alternative distance-weighted approach, which supports our original findings of a latitudinal gradient in CNDD and a latitudinal shift in the relationship between CNDD and species abundance. Copyright © 2018, American Association for the Advancement of Science.

  19. Average niche breadths of species in lake macrophyte communities respond to ecological gradients variably in four regions on two continents.

    PubMed

    Alahuhta, Janne; Virtala, Antti; Hjort, Jan; Ecke, Frauke; Johnson, Lucinda B; Sass, Laura; Heino, Jani

    2017-05-01

    Different species' niche breadths in relation to ecological gradients are infrequently examined within the same study and, moreover, species niche breadths have rarely been averaged to account for variation in entire ecological communities. We investigated how average environmental niche breadths (climate, water quality and climate-water quality niches) in aquatic macrophyte communities are related to ecological gradients (latitude, longitude, altitude, species richness and lake area) among four distinct regions (Finland, Sweden and US states of Minnesota and Wisconsin) on two continents. We found that correlations between the three different measures of average niche breadths and ecological gradients varied considerably among the study regions, with average climate and average water quality niche breadth models often showing opposite trends. However, consistent patterns were also found, such as widening of average climate niche breadths and narrowing of average water quality niche breadths of aquatic macrophytes along increasing latitudinal and altitudinal gradients. This result suggests that macrophyte species are generalists in relation to temperature variations at higher latitudes and altitudes, whereas species in southern, lowland lakes are more specialised. In contrast, aquatic macrophytes growing in more southern nutrient-rich lakes were generalists in relation to water quality, while specialist species are adapted to low-productivity conditions and are found in highland lakes. Our results emphasise that species niche breadths should not be studied using only coarse-scale data of species distributions and corresponding environmental conditions, but that investigations on different kinds of niche breadths (e.g., climate vs. local niches) also require finer resolution data at broad spatial extents.

  20. Caught in the act: Incipient speciation across a latitudinal gradient in a semifossorial mammal from Madagascar, the mole tenrec Oryzorictes hova (Tenrecidae).

    PubMed

    Everson, Kathryn M; Hildebrandt, Kyndall B P; Goodman, Steven M; Olson, Link E

    2018-02-28

    Madagascar is one of the world's foremost biodiversity hotspots, yet a large portion of its flora and fauna remains undescribed and the driving forces of in situ diversification are not well understood. Recent studies have identified a widespread, latitudinally structured phylogeographic pattern in Madagascar's humid-forest mammals, amphibians, reptiles, and insects. Several factors may be driving this pattern, namely biogeographic barriers (i.e., rivers or valleys) or past episodes of forest contraction and expansion. In this study, we describe the phylogeographic structure of the small, semifossorial mammal Oryzorictes hova, one of Madagascar's two species of mole tenrec, found throughout Madagascar's eastern humid forest belt, from high-elevation montane forest to low-elevation forests, as well as disturbed habitat such as rice fields. Using one mitochondrial locus, four nuclear loci, and 31 craniomandibular measurements, we identified three distinct populations of O. hova associated with the northern, central, and southern regions of the island. We found little evidence of gene flow among these populations, so we treated each population as a potential species. We validated species limits using two Bayesian methods: BP&P, employing only DNA sequence data, and iBPP using both DNA and morphological data, and we assessed whether these methods are susceptible to producing false positive errors. Molecular and morphological data support the recognition of each of the three populations of O. hova as distinct species, but formal species descriptions will require additional data from type specimens. This study illustrates the importance of using integrative datasets, multiple methodological approaches, and extensive geographic sampling for species delimitation and adds evidence for a widespread phylogeographic pattern in Madagascar's humid forest taxa. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Insight into the latitudinal distribution of methane emissions throughout the Holocene from ice core methane records.

    NASA Astrophysics Data System (ADS)

    Sowers, T. A.; Vladimirova, D.; Blunier, T.

    2017-12-01

    During the preAnthropogenic era (prior to 1600AD) the interpolar CH4 gradient (IPG) is effectively dictated by the ratio of tropical to Pan Arctic CH4 emissions. IPG records from ice cores in Greenland and Antarctica provide fundamental information for assessing the latitudinal distribution of CH4 emissions and their relation to global climate change. We recently constructed a high-resolution (100yr) record of IPG changes throughout the Holocene using the ReCAP (E. Greenland) and WAIS (W. Antarctica) ice cores. Contemporaneous samples from both cores were analyzed on the same day to minimize analytical uncertainties associated with IPG reconstructions. CH4results from the WAIS core were indistinguishable from previous results suggesting our analytical scheme was intact (± 3ppb). Our reconstructed IPG showed early Holocene IPG values of 65ppb declining throughout the Holocene to values approximating 45 ppb during the latest portion of the Holocene (preAnthropogenic). We then utilized an eight box atmospheric methane box model (EBAMM) to quantify emission scenarios that agree with ice core CH4 records (concentration, IPG and isotopic composition). Our results are consistent with the idea that early Holocene peatland development in the PanArctic regions followed glacier retreat near the end of the last glacial termination contributing an additional 20Tg of CH4/yr relative to the late Holocene. In addition, we had to invoke elevated biomass burning emissions (40Tg/yr) during the early Holocene to account for the elevated d13CH4 values.

  2. Intra-population trends in the maturation and reproduction of a temperate marine herbivore Girella elevata across latitudinal clines.

    PubMed

    Stocks, J R; Gray, C A; Taylor, M D

    2015-01-23

    Latitudinal variation in the reproductive characteristics of a temperate marine herbivore, rock blackfish Girella elevata, was examined from three regions of the south-eastern Australian coast. Biological sampling covered 780 km of coastline, including the majority of the species distribution. The sampling range incorporated three distinct oceanographic regions of the East Australian Current, a poleward-flowing western boundary current of the Southern Pacific Gyre and climate-change hotspot. Girella elevata are a highly fecund, group synchronous (multiple batch)-spawner. Mean fork length (L F ) and age at maturity were greater for females than males within all regions, with both male and female G. elevata of the southern region maturing at a greater size and age than those from the central region. Estimates of batch fecundity (F B ) were greatest in the northern and southern regions, relative to the central region where growth rates were greatest. Significant positive relationships were observed between F B and L F , and F B and total fish mass. Gonado-somatic indices indicated latitudinal synchrony in spawning seasonality between G. elevata at higher latitudes, spawning in the late austral spring and summer. A late or prolonged spawning period is evident for G. elevata from the northern region. Juvenile recruitment to intertidal rock pools within the central and southern regions was synchronous with the spawning season, however, no juveniles were found within the northern region. The implications of latitudinal variation in reproductive characteristics are discussed in the context of climate and oceanographic conditions of south-east Australia. © 2015 The Fisheries Society of the British Isles.

  3. Latitudinal and photic effects on diel foraging and predation risk in freshwater pelagic ecosystems

    USGS Publications Warehouse

    Hansen, Adam G.; Beauchamp, David A.

    2014-01-01

    1. Clark & Levy (American Naturalist, 131, 1988, 271–290) described an antipredation window for smaller planktivorous fish during crepuscular periods when light permits feeding on zooplankton, but limits visual detection by piscivores. Yet, how the window is influenced by the interaction between light regime, turbidity and cloud cover over a broad latitudinal gradi- ent remains unexplored. 2. We evaluated how latitudinal and seasonal shifts in diel light regimes alter the foraging- risk environment for visually feeding planktivores and piscivores across a natural range of turbidities and cloud covers. Pairing a model of aquatic visual feeding with a model of sun and moon illuminance, we estimated foraging rates of an idealized planktivore and piscivore over depth and time across factorial combinations of latitude (0–70°), turbidity (01–5 NTU) and cloud cover (clear to overcast skies) during the summer solstice and autumnal equinox. We evaluated the foraging-risk environment based on changes in the magnitude, duration and peak timing of the antipredation window. 3. The model scenarios generated up to 10-fold shifts in magnitude, 24-fold shifts in duration and 55-h shifts in timing of the peak antipredation window. The size of the window increased with latitude. This pattern was strongest during the solstice. In clear water at low turbidity (01–05 NTU), peaks in the magnitude and duration of the window formed at 57–60° latitude, before falling to near zero as surface waters became saturated with light under a midnight sun and clear skies at latitudes near 70°. Overcast dampened the midnight sun enough to allow larger windows to form in clear water at high latitudes. Conversely, at turbidities ≥2 NTU, greater reductions in the visual range of piscivores than planktivores created a window for long periods at high latitudes. Latitudinal dependencies were essentially lost during the equinox, indicating a progressive compression of the window from early

  4. Latitudinal variation in carbon storage can help predict changes in swamps affected by global warming

    USGS Publications Warehouse

    Middleton, Beth A.; McKee, Karen

    2004-01-01

    Plants may offer our best hope of removing greenhouse gases (gases that contribute to global warming) emitted to the atmosphere from the burning of fossil fuels. At the same time, global warming could change environments so that natural plant communities will either need to shift into cooler climate zones, or become extirpated (Prasad and Iverson, 1999; Crumpacker and others, 2001; Davis and Shaw, 2001). It is impossible to know the future, but studies combining field observation of production and modeling can help us make predictions about what may happen to these wetland communities in the future. Widespread wetland types such as baldcypress (Taxodium distichum) swamps in the southeastern portion of the United States could be especially good at carbon sequestration (amount of CO2 stored by forests) from the atmosphere. They have high levels of production and sometimes store undecomposed dead plant material in wet conditions with low oxygen, thus keeping gases stored that would otherwise be released into the atmosphere (fig. 1). To study the ability of baldcypress swamps to store carbon, our project has taken two approaches. The first analysis looked at published data to develop an idea (hypothesis) of how production levels change across a temperature gradient in the baldcypress region (published data study). The second study tested this idea by comparing production levels across a latitudinal range by using swamps in similar field conditions (ongoing carbon storage study). These studies will help us make predictions about the future ability of baldcypress swamps to store carbon in soil and plant biomass, as well as the ability of these forests to shift northward with global warming.

  5. Spatial patterns of distribution, abundance, and species diversity of small odontocetes estimated using density surface modeling with line transect sampling

    NASA Astrophysics Data System (ADS)

    Kanaji, Yu; Okazaki, Makoto; Miyashita, Tomio

    2017-06-01

    Spatial patterns of distribution, abundance, and species diversity of small odontocetes including species in the Delphinidae and Phocoenidae families were investigated using long-term dedicated sighting survey data collected between 1983 and 2006 in the North Pacific. Species diversity indices were calculated from abundance estimated using density surface modeling of line-transect data. The estimated abundance ranged from 19,521 individuals in killer whale to 1,886,022 in pantropical spotted dolphin. The predicted density maps showed that the habitats of small odontocetes corresponded well with distinct oceanic domains. Species richness was estimated to be highest between 30 and 40°N where warm- and cold-water currents converge. Simpson's Diversity Index showed latitudinal diversity gradients of decreasing species numbers toward the poles. Higher diversity was also estimated in the coastal areas and the zonal areas around 35-42°N. Coastal-offshore gradients and latitudinal gradients are known for many taxa. The zonal areas around 35°N and 40°N coincide with the Kuroshio Current and its extension and the subarctic boundary, respectively. These results suggest that the species diversity of small odontocetes primarily follows general patterns of latitudinal and longitudinal gradients, while the confluence of faunas originating in distinct water masses increases species diversify in frontal waters around 30-40°N. Population densities tended to be higher for the species inhabiting higher latitudes, but were highest for intermediate latitudes at approximately 35-40°N. According to latitudinal gradients in water temperature and biological productivity, the costs for thermoregulation will decrease in warmer low latitudes, while feeding efficiency will increase in colder high latitudes. These trade-offs could optimize population density in intermediate latitudes.

  6. Paleolatitudinal Gradients in Marine Phytoplankton Composition and Cell Size

    NASA Astrophysics Data System (ADS)

    Henderiks, J.; Bordiga, M.; Bartol, M.; Šupraha, L.

    2014-12-01

    Coccolithophores, a prominent group of marine calcifying unicellular algae, are widely studied in context of current and past climate change. We know that marine phytoplankton are sensitive to climatic changes, but the complex interplay of several processes such as warming, changes in nutrient content, and ocean acidification, makes future scenarios difficult to predict. Some taxa may be more susceptible to environmental perturbations than others, as evidenced by significantly different species-specific sensitivities observed in laboratory experiments. However, short-term plastic responses may not translate into longer-term climatic adaptation, nor should we readily extrapolate the behavior of single strains in the laboratory to natural, multi-species assemblages and their interactions in the ocean. The extensive fossil record of coccolithophores (in the form of coccoliths) reveals high morphological and taxonomic diversity and allows reconstructing the cell size of individual taxonomic groups. In a suite of deep-sea drilling sites from the Atlantic Ocean, we document distinct latitudinal gradients in phytoplankton composition and cell size across major climate transitions of the late Eocene - earliest Oligocene, and the middle - late Miocene. With these data we test hypotheses of species migration, phenotypic evolution, as well as the rates of species extinction and speciation in relation to concurrent paleoenvironmental changes during the Cenozoic.

  7. Global latitudinal trends in peat recalcitrance quantified with calibrated FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hodgkins, S. B.; Richardson, C. J.; Dommain, R.; Wang, H.; Glaser, P. H.; Verbeke, B. A.; Rogers, K.; Winkler, B. R.; Missilmani, M.; Flanagan, N. E.; Ho, M.; Hoyt, A.; Harvey, C. F.; Cobb, A.; Rich, V. I.; Vining, S. R.; Hough, M.; Saleska, S. R.; Podgorski, D. C.; Tfaily, M. M.; Wilson, R.; Holmes, B.; de La Cruz, F.; Toufaily, J.; Hamdan, R.; Cooper, W. T.; Chanton, J.

    2017-12-01

    Peatlands are a major global carbon reservoir (528-600 Pg). Most peat is found at high latitudes, where organic matter decomposition is slowed by cold temperatures and water-saturated conditions. Nonetheless, a significant portion of global peatland carbon (10-30%) is in tropical peatlands. The factors that allow peat accumulation in warm climates remain uncertain, raising the question of whether these factors may preserve peat in boreal regions as they warm. In this study, we examined peat and plant chemistry across a latitudinal transect from the Arctic to the tropics. Carbohydrate and aromatic contents were estimated based on a newly-developed analysis method for Fourier transform infrared (FTIR) spectra. In this method, peaks are baseline-corrected and normalized to the integrated spectral area using an automated R script, then calibrated to known concentrations using standards. This technique showed trends that were in agreement with those seen with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and 13C-NMR spectroscopy. Along the latitudinal transect, we found that near-surface (sub)tropical peat has lower carbohydrate and greater aromatic content than near-surface high-latitude peat, leading to recalcitrance that allows (sub)tropical peat to persist despite warm temperatures. The chemistry of (sub)tropical peat reflects a combination of recalcitrant plant inputs, and more extensive humification driven by higher temperatures. Because we observed similar declines in carbohydrate content with depth in high-latitude peat deposits, our data explain recent field-scale deep peat warming experiments in which catotelm (deeper) peat remained stable in the face of temperature increases up to 9 °C. We suggest that high-latitude deep peat reservoirs may be stabilized in the face of climate change by their ultimately lower carbohydrate and higher aromatic composition, similar to tropical peats.

  8. Multidisciplinary design optimization using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1994-01-01

    Multidisciplinary design optimization (MDO) is an important step in the conceptual design and evaluation of launch vehicles since it can have a significant impact on performance and life cycle cost. The objective is to search the system design space to determine values of design variables that optimize the performance characteristic subject to system constraints. Gradient-based optimization routines have been used extensively for aerospace design optimization. However, one limitation of gradient based optimizers is their need for gradient information. Therefore, design problems which include discrete variables can not be studied. Such problems are common in launch vehicle design. For example, the number of engines and material choices must be integer values or assume only a few discrete values. In this study, genetic algorithms are investigated as an approach to MDO problems involving discrete variables and discontinuous domains. Optimization by genetic algorithms (GA) uses a search procedure which is fundamentally different from those gradient based methods. Genetic algorithms seek to find good solutions in an efficient and timely manner rather than finding the best solution. GA are designed to mimic evolutionary selection. A population of candidate designs is evaluated at each iteration, and each individual's probability of reproduction (existence in the next generation) depends on its fitness value (related to the value of the objective function). Progress toward the optimum is achieved by the crossover and mutation operations. GA is attractive since it uses only objective function values in the search process, so gradient calculations are avoided. Hence, GA are able to deal with discrete variables. Studies report success in the use of GA for aircraft design optimization studies, trajectory analysis, space structure design and control systems design. In these studies reliable convergence was achieved, but the number of function evaluations was large compared

  9. Adaptive Traits Are Maintained on Steep Selective Gradients despite Gene Flow and Hybridization in the Intertidal Zone

    PubMed Central

    Canovas, Fernando; Ferreira Costa, Joana; Serrão, Ester A.; Pearson, Gareth A.

    2011-01-01

    Gene flow among hybridizing species with incomplete reproductive barriers blurs species boundaries, while selection under heterogeneous local ecological conditions or along strong gradients may counteract this tendency. Congeneric, externally-fertilizing fucoid brown algae occur as distinct morphotypes along intertidal exposure gradients despite gene flow. Combining analyses of genetic and phenotypic traits, we investigate the potential for physiological resilience to emersion stressors to act as an isolating mechanism in the face of gene flow. Along vertical exposure gradients in the intertidal zone of Northern Portugal and Northwest France, the mid-low shore species Fucus vesiculosus, the upper shore species Fucus spiralis, and an intermediate distinctive morphotype of F. spiralis var. platycarpus were morphologically characterized. Two diagnostic microsatellite loci recovered 3 genetic clusters consistent with prior morphological assignment. Phylogenetic analysis based on single nucleotide polymorphisms in 14 protein coding regions unambiguously resolved 3 clades; sympatric F. vesiculosus, F. spiralis, and the allopatric (in southern Iberia) population of F. spiralis var. platycarpus. In contrast, the sympatric F. spiralis var. platycarpus (from Northern Portugal) was distributed across the 3 clades, strongly suggesting hybridization/introgression with both other entities. Common garden experiments showed that physiological resilience following exposure to desiccation/heat stress differed significantly between the 3 sympatric genetic taxa; consistent with their respective vertical distribution on steep environmental clines in exposure time. Phylogenetic analyses indicate that F. spiralis var. platycarpus is a distinct entity in allopatry, but that extensive gene flow occurs with both higher and lower shore species in sympatry. Experimental results suggest that strong selection on physiological traits across steep intertidal exposure gradients acts to maintain

  10. Latitudinal variation of leaf stomatal traits from species to community level in forests: linkage with ecosystem productivity

    PubMed Central

    Wang, Ruili; Yu, Guirui; He, Nianpeng; Wang, Qiufeng; Zhao, Ning; Xu, Zhiwei; Ge, Jianping

    2015-01-01

    To explore the latitudinal variation of stomatal traits from species to community level and their linkage with net primary productivity (NPP), we investigated leaf stomatal density (SDL) and stomatal length (SLL) across 760 species from nine forest ecosystems in eastern China, and calculated the community-level SD (SDC) and SL (SLC) through species-specific leaf area index (LAI). Our results showed that latitudinal variation in species-level SDL and SLL was minimal, but community-level SDC and SLC decreased clearly with increasing latitude. The relationship between SD and SL was negative across species and different plant functional types (PFTs), but positive at the community level. Furthermore, community-level SDC correlated positively with forest NPP, and explained 51% of the variation in NPP. These findings indicate that the trade-off by regulating SDL and SLL may be an important strategy for plant individuals to adapt to environmental changes, and temperature acts as the main factor influencing community-level stomatal traits through alteration of species composition. Importantly, our findings provide new insight into the relationship between plant traits and ecosystem function. PMID:26403303

  11. Polychaete functional diversity in shallow habitats: Shelter from the storm

    NASA Astrophysics Data System (ADS)

    Wouters, Julia M.; Gusmao, Joao B.; Mattos, Gustavo; Lana, Paulo

    2018-05-01

    Innovative approaches are needed to help understanding how species diversity is related to the latitudinal gradient at large or small scales. We have applied a novel approach, by combining morphological and biological traits, to assess the relative importance of the large scale latitudinal gradient and regional morphodynamic drivers in shaping the functional diversity of polychaete assemblages in shallow water habitats, from exposed to estuarine sandy beaches. We used literature data on polychaetes from beaches along the southern and southeastern Brazilian coast together with data on beach types, slope, grain size, temperature, salinity, and chlorophyll a concentration. Generalized linear models on the FDis index for functional diversity calculated for each site and a combined RLQ and fourth-corner analysis were used to investigate relationships between functional traits and environmental variables. Functional diversity was not related to the latitudinal gradient but negatively correlated with grain size and beach slope. Functional diversity was highest in flat beaches with small grain size, little wave exposure and enhanced primary production, indicating that small scale morphodynamic conditions are the primary drivers of polychaete functional diversity.

  12. Latitudinal transects in the southeastern Pacific Ocean reveal a diverse but patchy distribution of phycotoxins.

    PubMed

    Trefault, N; Krock, B; Delherbe, N; Cembella, A; Vásquez, M

    2011-10-01

    Phycotoxin distribution and abundance was determined during an oceanographic expedition along a latitudinal transect of 27° extent in the southeastern Pacific Ocean, from the fjords of Tierra del Fuego Island to offshore Copiapó in the Atacama region along the Chilean coast. Plankton samples were harvested at regular intervals during the entire cruise and later analyzed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) for domoic acid (DA) and lipophilic toxins. Although no evident toxic algal bloom was encountered during this transect, several phycotoxin analogues from distinct toxin groups were detected. These phycotoxins included DA, the pectenotoxins PTX-2, PTX-2sa and PTX-11, dinophystoxin-1 (DTX-1) and gymnodimine (GYM), which is the first report of this latter toxin in the southeast Pacific. A region-specific and rather disjunct distribution of GYM, DA and DTX-1 was observed, whereas PTX-2, PTX-2sa and PTX-11 were more widely distributed over almost the entire transect. This work represents the first assessment of lipophilic toxins through a wide latitudinal transect of the southeastern Pacific, revealing a patchy distribution of several phycotoxins and pointing out the specific geographical distribution of the putative toxigenic organisms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Patterns of Spatial Variation of Assemblages Associated with Intertidal Rocky Shores: A Global Perspective

    PubMed Central

    Cruz-Motta, Juan José; Miloslavich, Patricia; Palomo, Gabriela; Iken, Katrin; Konar, Brenda; Pohle, Gerhard; Trott, Tom; Benedetti-Cecchi, Lisandro; Herrera, César; Hernández, Alejandra; Sardi, Adriana; Bueno, Andrea; Castillo, Julio; Klein, Eduardo; Guerra-Castro, Edlin; Gobin, Judith; Gómez, Diana Isabel; Riosmena-Rodríguez, Rafael; Mead, Angela; Bigatti, Gregorio; Knowlton, Ann; Shirayama, Yoshihisa

    2010-01-01

    Assemblages associated with intertidal rocky shores were examined for large scale distribution patterns with specific emphasis on identifying latitudinal trends of species richness and taxonomic distinctiveness. Seventy-two sites distributed around the globe were evaluated following the standardized sampling protocol of the Census of Marine Life NaGISA project (www.nagisa.coml.org). There were no clear patterns of standardized estimators of species richness along latitudinal gradients or among Large Marine Ecosystems (LMEs); however, a strong latitudinal gradient in taxonomic composition (i.e., proportion of different taxonomic groups in a given sample) was observed. Environmental variables related to natural influences were strongly related to the distribution patterns of the assemblages on the LME scale, particularly photoperiod, sea surface temperature (SST) and rainfall. In contrast, no environmental variables directly associated with human influences (with the exception of the inorganic pollution index) were related to assemblage patterns among LMEs. Correlations of the natural assemblages with either latitudinal gradients or environmental variables were equally strong suggesting that neither neutral models nor models based solely on environmental variables sufficiently explain spatial variation of these assemblages at a global scale. Despite the data shortcomings in this study (e.g., unbalanced sample distribution), we show the importance of generating biological global databases for the use in large-scale diversity comparisons of rocky intertidal assemblages to stimulate continued sampling and analyses. PMID:21179546

  14. Characterizing the genetic influences on risk aversion.

    PubMed

    Harrati, Amal

    2014-01-01

    Risk aversion has long been cited as an important factor in retirement decisions, investment behavior, and health. Some of the heterogeneity in individual risk tolerance is well understood, reflecting age gradients, wealth gradients, and similar effects, but much remains unexplained. This study explores genetic contributions to heterogeneity in risk aversion among older Americans. Using over 2 million genetic markers per individual from the U.S. Health and Retirement Study, I report results from a genome-wide association study (GWAS) on risk preferences using a sample of 10,455 adults. None of the single-nucleotide polymorphisms (SNPs) are found to be statistically significant determinants of risk preferences at levels stricter than 5 × 10(-8). These results suggest that risk aversion is a complex trait that is highly polygenic. The analysis leads to upper bounds on the number of genetic effects that could exceed certain thresholds of significance and still remain undetected at the current sample size. The findings suggest that the known heritability in risk aversion is likely to be driven by large numbers of genetic variants, each with a small effect size.

  15. A Latitudinal Metabolome of the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Johnson, W.; Kido Soule, M. C.; Longnecker, K.; Kujawinski, E. B.

    2016-02-01

    Microbial consortia function via the exchange and transformation of small organic molecules or metabolites. These metabolites make up a pool of rapidly cycling organic matter in the ocean that is challenging to characterize due to its low concentrations. We seek to determine the distribution of these molecules and the factors that shape their abundance and flux. Through measurements of the abundance of a core set of metabolites, including nucleic acids, amino acids, sugars, vitamins, and signaling molecules, we gain a real-time snapshot of microbial activity. We used a targeted metabolomics technique to profile metabolite abundance in particulate and dissolved organic matter extracts collected from a 14,000 km transect running from 38˚S to 55˚N in the Western Atlantic Ocean. This extensive dataset is the first of its kind in the Atlantic Ocean and allows us to explore connections among metabolites as well as latitudinal trends in metabolite abundance. We found changes in the intracellular abundance of certain metabolites between low and high nutrient regions and a wide distribution of certain dissolved vitamins in the surface ocean. These measurements give us baseline data on the distribution of these metabolites and allow us to extend our understanding of microbial community activity in different regions of the ocean.

  16. Latitudinal variation in ambient UV-B radiation is an important determinant of Lolium perenne forage production, quality, and digestibility

    PubMed Central

    Comont, David; Winters, Ana; Gomez, Leonardo D; McQueen-Mason, Simon J; Gwynn-Jones, Dylan

    2013-01-01

    Few studies to date have considered the responses of agriculturally important forage grasses to UV-B radiation. Yet grasses such as Lolium perenne have a wide current distribution, representing exposure to a significant variation in ambient UV-B. The current study investigated the responses of L. perenne (cv. AberDart) to a simulated latitudinal gradient of UV-B exposure, representing biologically effective UV-B doses at simulated 70, 60, 50, 40, and 30° N latitudes. Aspects of growth, soluble compounds, and digestibility were assessed, and results are discussed in relation to UV-B effects on forage properties and the implications for livestock and bio-ethanol production. Aboveground biomass production was reduced by approximately 12.67% with every 1 kJ m–2 day–1 increase in biologically weighted UV-B. As a result, plants grown in the highest UV-B treatment had a total biomass of just 13.7% of controls. Total flavonoids were increased by approximately 76% by all UV-B treatments, while hydroxycinnamic acids increased in proportion to the UV-B dose. Conversely, the digestibility of the aboveground biomass and concentrations of soluble fructans were reduced by UV-B exposure, although soluble sucrose, glucose, and fructose concentrations were unaffected. These results highlight the capacity for UV-B to directly affect forage productivity and chemistry, with negative consequences for digestibility and bioethanol production. Results emphasize the need for future development and distribution of L. perenne varieties to take UV-B irradiance into consideration. PMID:23580749

  17. Abundance and local-scale processes contribute to multi-phyla gradients in global marine diversity

    PubMed Central

    Edgar, Graham J.; Alexander, Timothy J.; Lefcheck, Jonathan S.; Bates, Amanda E.; Kininmonth, Stuart J.; Thomson, Russell J.; Duffy, J. Emmett; Costello, Mark J.; Stuart-Smith, Rick D.

    2017-01-01

    Among the most enduring ecological challenges is an integrated theory explaining the latitudinal biodiversity gradient, including discrepancies observed at different spatial scales. Analysis of Reef Life Survey data for 4127 marine species at 2406 coral and rocky sites worldwide confirms that the total ecoregion richness peaks in low latitudes, near +15°N and −15°S. However, although richness at survey sites is maximal near the equator for vertebrates, it peaks at high latitudes for large mobile invertebrates. Site richness for different groups is dependent on abundance, which is in turn correlated with temperature for fishes and nutrients for macroinvertebrates. We suggest that temperature-mediated fish predation and herbivory have constrained mobile macroinvertebrate diversity at the site scale across the tropics. Conversely, at the ecoregion scale, richness responds positively to coral reef area, highlighting potentially huge global biodiversity losses with coral decline. Improved conservation outcomes require management frameworks, informed by hierarchical monitoring, that cover differing site- and regional-scale processes across diverse taxa, including attention to invertebrate species, which appear disproportionately threatened by warming seas. PMID:29057321

  18. Abundance and local-scale processes contribute to multi-phyla gradients in global marine diversity.

    PubMed

    Edgar, Graham J; Alexander, Timothy J; Lefcheck, Jonathan S; Bates, Amanda E; Kininmonth, Stuart J; Thomson, Russell J; Duffy, J Emmett; Costello, Mark J; Stuart-Smith, Rick D

    2017-10-01

    Among the most enduring ecological challenges is an integrated theory explaining the latitudinal biodiversity gradient, including discrepancies observed at different spatial scales. Analysis of Reef Life Survey data for 4127 marine species at 2406 coral and rocky sites worldwide confirms that the total ecoregion richness peaks in low latitudes, near +15°N and -15°S. However, although richness at survey sites is maximal near the equator for vertebrates, it peaks at high latitudes for large mobile invertebrates. Site richness for different groups is dependent on abundance, which is in turn correlated with temperature for fishes and nutrients for macroinvertebrates. We suggest that temperature-mediated fish predation and herbivory have constrained mobile macroinvertebrate diversity at the site scale across the tropics. Conversely, at the ecoregion scale, richness responds positively to coral reef area, highlighting potentially huge global biodiversity losses with coral decline. Improved conservation outcomes require management frameworks, informed by hierarchical monitoring, that cover differing site- and regional-scale processes across diverse taxa, including attention to invertebrate species, which appear disproportionately threatened by warming seas.

  19. Trophic diversity, size and biomass spectrum of Bay of Bengal nematodes: A study case on depth and latitudinal patterns

    NASA Astrophysics Data System (ADS)

    Ansari, Kapuli Gani Mohamed Thameemul; Lyla, Somasundharanair; Khan, Syed Ajmal; Bhadury, Punyasloke

    2017-09-01

    Depth and latitudinal patterns of nematode functional attributes were investigated from 35 stations of Bay of Bengal (BoB) continental shelf. We aim to address whether depth and latitudinal variations can modify nematode community structure and their functional attributes (trophic diversity, size and biomass spectra). Global trend of depth and latitudinal related variations have also been noticed from BoB shelf in terms of nematode abundance and species richness, albeit heterogeneity patterns were encountered in functional attributes. Index of trophic diversity values revealed higher trophic diversity across the BoB shelf and suggested variety of food resource availability. However, downstream analysis of trophic status showed depth and latitude specific patterns but not reflected in terms of size and biomass spectrum. The peaks at different positions clearly visualized heterogeneity in distribution patterns for both size and biomass spectrum and also there was evidence of availability of diversified food resources. Nematode biomass spectra (NBS) constructed for nematode communities showed shift in peak biomass values towards lower to moderate size classes particularly in shallower depth but did not get reflected in latitudes. However, Chennai and Parangipettai transects demonstrated shift in peak biomass values towards higher biomass classes explaining the representation of higher nematode abundance. Our findings concluded that depth and latitudes are physical variables; they may not directly affect nematode community structure and functional attributes but they might influence the other factors such as food availability, sediment deposition and settlement rate. Our observations suggest that the local factors (seasonal character) of phytodetrital food flux can be very important for shaping the nematode community structure and success of nematode functional heterogeneity patterns across the Bay of Bengal shelf.

  20. Investigation of Seasonal and Latitudinal Effects on the Expression of Clock Genes in Drosophila

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyede Sanaz; Nazarimehr, Fahimeh; Jafari, Sajad

    The primary goal in this work is to develop a dynamical model capturing the influence of seasonal and latitudinal variations on the expression of Drosophila clock genes. To this end, we study a specific dynamical system with strange attractors that exhibit changes of Drosophila activity in a range of latitudes and across different seasons. Bifurcations of this system are analyzed to peruse the effect of season and latitude on the behavior of clock genes. Existing experimental data collected from the activity of Drosophila melanogaster corroborate the dynamical model.

  1. Bacterial assemblages of the eastern Atlantic Ocean reveal both vertical and latitudinal biogeographic signatures

    NASA Astrophysics Data System (ADS)

    Friedline, C. J.; Franklin, R. B.; McCallister, S. L.; Rivera, M. C.

    2012-06-01

    Microbial communities are recognized as major drivers of the biogeochemical processes in the oceans. However, the genetic diversity and composition of those communities is poorly understood. The aim of this study is to investigate the composition of bacterial assemblages in three different water layer habitats: surface (2-20 m), deep chlorophyll maximum (DCM; 28-90 m), and deep (100-4600 m) at nine stations along the eastern Atlantic Ocean from 42.8° N to 23.7° S. The sampling of three discrete, predefined habitat types from different depths, Longhurstian provinces, and geographical locations allowed us to investigate whether marine bacterial assemblages show spatial variation and to determine if the observed spatial variation is influenced by current environmental conditions, historical/geographical contingencies, or both. The PCR amplicons of the V6 region of the 16S rRNA from 16 microbial assemblages were pyrosequenced, generating a total of 352 029 sequences; after quality filtering and processing, 257 260 sequences were clustered into 2871 normalized operational taxonomic units (OTU) using a definition of 97% sequence identity. Community ecology statistical analyses demonstrate that the eastern Atlantic Ocean bacterial assemblages are vertically stratified and associated with water layers characterized by unique environmental signals (e.g., temperature, salinity, and nutrients). Genetic compositions of bacterial assemblages from the same water layer are more similar to each other than to assemblages from different water layers. The observed clustering of samples by water layer allows us to conclude that contemporary environments are influencing the observed biogeographic patterns. Moreover, the implementation of a novel Bayesian inference approach that allows a more efficient and explicit use of all the OTU abundance data shows a distance effect suggesting the influence of historical contingencies on the composition of bacterial assemblages. Surface

  2. Formation of the long range Dpp morphogen gradient.

    PubMed

    Schwank, Gerald; Dalessi, Sascha; Yang, Schu-Fee; Yagi, Ryohei; de Lachapelle, Aitana Morton; Affolter, Markus; Bergmann, Sven; Basler, Konrad

    2011-07-01

    The TGF-β homolog Decapentaplegic (Dpp) acts as a secreted morphogen in the Drosophila wing disc, and spreads through the target tissue in order to form a long range concentration gradient. Despite extensive studies, the mechanism by which the Dpp gradient is formed remains controversial. Two opposing mechanisms have been proposed: receptor-mediated transcytosis (RMT) and restricted extracellular diffusion (RED). In these scenarios the receptor for Dpp plays different roles. In the RMT model it is essential for endocytosis, re-secretion, and thus transport of Dpp, whereas in the RED model it merely modulates Dpp distribution by binding it at the cell surface for internalization and subsequent degradation. Here we analyzed the effect of receptor mutant clones on the Dpp profile in quantitative mathematical models representing transport by either RMT or RED. We then, using novel genetic tools, experimentally monitored the actual Dpp gradient in wing discs containing receptor gain-of-function and loss-of-function clones. Gain-of-function clones reveal that Dpp binds in vivo strongly to the type I receptor Thick veins, but not to the type II receptor Punt. Importantly, results with the loss-of-function clones then refute the RMT model for Dpp gradient formation, while supporting the RED model in which the majority of Dpp is not bound to Thick veins. Together our results show that receptor-mediated transcytosis cannot account for Dpp gradient formation, and support restricted extracellular diffusion as the main mechanism for Dpp dispersal. The properties of this mechanism, in which only a minority of Dpp is receptor-bound, may facilitate long-range distribution.

  3. Comparing Ecological and Genetic Diversity Within the Marine Diatom Genus Pseudo-nitzschia: A Multiregional Synthesis

    NASA Astrophysics Data System (ADS)

    Hubbard, K.; Bruzek, S.

    2016-02-01

    The globally distributed marine diatom genus Pseudo-nitzschia consists of approximately 40 species, more than half of which occur in US coastal waters. Here, sensitive genetic tools targeting a variable portion of the internal transcribed spacer 1 (ITS1) region of the rRNA gene were used to assess Pseudo-nitzschia spp. diversity in more than 600 environmental DNA samples collected from US Atlantic, Pacific, and Gulf of Mexico waters. Community-based approaches employed genus-specific primers for environmental DNA fingerprinting and targeted sequencing. For the Gulf of Mexico samples especially, a nested PCR approach (with or without degenerate primers) improved resolution of species diversity. To date, more than 40 unique ITS1 amplicon sizes have been repeatedly observed in ITS1 fingerprints. Targeted sequencing of environmental DNA as well as single chains isolated from live samples indicate that many of these represent novel and known inter- and intra-specific Pseudo-nitzschia diversity. A few species (e.g., P. pungens, P. cuspidata) occur across all three regions, whereas other species and intraspecific variants occurred at local to regional spatial scales only. Generally, species frequently co-occur in complex assemblages, and transitions in Pseudo-nitzschia community composition occur seasonally, prior to bloom initiation, and across (cross-shelf, latitudinal, and vertical) environmental gradients. These observations highlight the dynamic nature of diatom community composition in the marine environment and the importance of classifying diversity at relevant ecological and/or taxonomic scales.

  4. Soil organic nitrogen mineralization across a global latitudinal gradient

    Treesearch

    D.L. Jones; K. Kielland; F.L. Sinclair; R.A. Dahlgren; K.K. Newsham; J.F. Farrar; D.V. Murphy

    2009-01-01

    Understanding and accurately predicting the fate of carbon and nitrogen in the terrestrial biosphere remains a central goal in ecosystem science. Amino acids represent a key pool of C and N in soil, and their availability to plants and microorganisms has been implicated as a major driver in regulating ecosystem functioning. Because of potential differences in...

  5. Latitudinal change in precipitation and water vapor isotopes over Southern ocean

    NASA Astrophysics Data System (ADS)

    Rahul, P.

    2015-12-01

    The evaporation process over ocean is primary source of water vapor in the hydrological cycle. The Global Network of Isotopes in Precipitation (GNIP) dataset of rainwater and water vapor isotopes are predominantly based on continental observations, with very limited observation available from the oceanic area. Stable isotope ratios in precipitation provide valuable means to understand the process of evaporation and transport of water vapor. This is further extended in the study of past changes in climate from the isotopic composition of ice core. In this study we present latitudinal variability of water vapor and rainwater isotopic composition and compared it with factors like physical condition of sea surface water from near equator (1°S) to the polar front (56°S) during the summer time expedition of the year 2013. The water vapor and rainwater isotopes showed a sharp depletion in isotopes while progressively move southward from the tropical regions (i.e. >30°S), which follows the pattern recorded in the surface ocean water isotopic composition. From the tropics to the southern latitudes, the water vapor d18O varied between -11.8‰ to -14.7‰ while dD variation ranges between -77.7‰ to -122.2‰. Using the data we estimated the expected water vapor isotopic composition under kinetic as well as equilibrium process. Our observation suggests that the water vapor isotopic compositions are in equilibrium with the sea water in majority of cases. At one point of observation, where trajectory of air parcel originated from the continental region, we observed a large deviation from the existing trend of latitudinal variability. The deduced rainwater composition adopting equilibrium model showed a consistent pattern with observed values at the tropical region, while role of kinetic process become dominant on progressive shift towards the southern latitudes. We will draw comparison of our observation with other data available in the literature together with isotope

  6. Ecology has contrasting effects on genetic variation within species versus rates of molecular evolution across species in water beetles.

    PubMed

    Fujisawa, Tomochika; Vogler, Alfried P; Barraclough, Timothy G

    2015-01-22

    Comparative analysis is a potentially powerful approach to study the effects of ecological traits on genetic variation and rate of evolution across species. However, the lack of suitable datasets means that comparative studies of correlates of genetic traits across an entire clade have been rare. Here, we use a large DNA-barcode dataset (5062 sequences) of water beetles to test the effects of species ecology and geographical distribution on genetic variation within species and rates of molecular evolution across species. We investigated species traits predicted to influence their genetic characteristics, such as surrogate measures of species population size, latitudinal distribution and habitat types, taking phylogeny into account. Genetic variation of cytochrome oxidase I in water beetles was positively correlated with occupancy (numbers of sites of species presence) and negatively with latitude, whereas substitution rates across species depended mainly on habitat types, and running water specialists had the highest rate. These results are consistent with theoretical predictions from nearly-neutral theories of evolution, and suggest that the comparative analysis using large databases can give insights into correlates of genetic variation and molecular evolution.

  7. Latitudinal beaming of Jupiter's low frequency radio emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, J.K.; Desch, M.D.; Kaiser, M.L.

    1979-09-01

    By comparing Rae 1 and Imp 6 satelite measurements of Jupiter's radio emissions near 1 MHz with recent Voyager 1 and 2 observations in the same frequency range it is now possible to study the properties of the low frequency radiation pattern over a 10/sup 0/ range of latitudes with respect to the Jovian rotation equator. These observations, which cover a wider latitudinal range than is possible from the earth, are consistent with many aspect of earlier ground-based measurements that have been used to infer a sharp beaming pattern for the decameter wavelength emissions. We find marked, systematic changes inmore » the statistical occurrence probability distributions with system III central meridian longitude as the Jovigraphic latitude of the observer changes over this range. Moreover, simultaneous observations by the two Voyager spacecraft, which are separated by up to 3/sup 0/ in Jovigraphic latitude, suggest that the instantaneous beam width may be no more than a few degrees at times. The new hectometer wave results can be interpreted in terms of a narrow, curved sheet at a fixed magnetic latitude into which the emission is beamed to escape the planet.« less

  8. Sequential pattern formation governed by signaling gradients

    NASA Astrophysics Data System (ADS)

    Jörg, David J.; Oates, Andrew C.; Jülicher, Frank

    2016-10-01

    Rhythmic and sequential segmentation of the embryonic body plan is a vital developmental patterning process in all vertebrate species. However, a theoretical framework capturing the emergence of dynamic patterns of gene expression from the interplay of cell oscillations with tissue elongation and shortening and with signaling gradients, is still missing. Here we show that a set of coupled genetic oscillators in an elongating tissue that is regulated by diffusing and advected signaling molecules can account for segmentation as a self-organized patterning process. This system can form a finite number of segments and the dynamics of segmentation and the total number of segments formed depend strongly on kinetic parameters describing tissue elongation and signaling molecules. The model accounts for existing experimental perturbations to signaling gradients, and makes testable predictions about novel perturbations. The variety of different patterns formed in our model can account for the variability of segmentation between different animal species.

  9. Human local adaptation of the TRPM8 cold receptor along a latitudinal cline.

    PubMed

    Key, Felix M; Abdul-Aziz, Muslihudeen A; Mundry, Roger; Peter, Benjamin M; Sekar, Aarthi; D'Amato, Mauro; Dennis, Megan Y; Schmidt, Joshua M; Andrés, Aida M

    2018-05-01

    Ambient temperature is a critical environmental factor for all living organisms. It was likely an important selective force as modern humans recently colonized temperate and cold Eurasian environments. Nevertheless, as of yet we have limited evidence of local adaptation to ambient temperature in populations from those environments. To shed light on this question, we exploit the fact that humans are a cosmopolitan species that inhabit territories under a wide range of temperatures. Focusing on cold perception-which is central to thermoregulation and survival in cold environments-we show evidence of recent local adaptation on TRPM8. This gene encodes for a cation channel that is, to date, the only temperature receptor known to mediate an endogenous response to moderate cold. The upstream variant rs10166942 shows extreme population differentiation, with frequencies that range from 5% in Nigeria to 88% in Finland (placing this SNP in the 0.02% tail of the FST empirical distribution). When all populations are jointly analyzed, allele frequencies correlate with latitude and temperature beyond what can be explained by shared ancestry and population substructure. Using a Bayesian approach, we infer that the allele originated and evolved neutrally in Africa, while positive selection raised its frequency to different degrees in Eurasian populations, resulting in allele frequencies that follow a latitudinal cline. We infer strong positive selection, in agreement with ancient DNA showing high frequency of the allele in Europe 3,000 to 8,000 years ago. rs10166942 is important phenotypically because its ancestral allele is protective of migraine. This debilitating disorder varies in prevalence across human populations, with highest prevalence in individuals of European descent-precisely the population with the highest frequency of rs10166942 derived allele. We thus hypothesize that local adaptation on previously neutral standing variation may have contributed to the genetic

  10. Baroclinic instability in the solar tachocline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilman, Peter; Dikpati, Mausumi, E-mail: gilman@ucar.edu, E-mail: dikpati@ucar.edu

    2014-05-20

    The solar tachocline is likely to be close to a geostrophic 'thermal wind', for which the Coriolis force associated with differential rotation is closely balanced by a latitudinal pressure gradient, leading to a tight relation between the vertical gradient of rotation and the latitudinal entropy gradient. Using a hydrostatic but nongeostrophic spherical shell model, we examine baroclinic instability of the tachocline thermal wind. We find that both the overshoot and radiative parts of the tachocline should be baroclinicly unstable at most latitudes. Growth rates are roughly five times higher in middle and high latitudes compared to low latitudes, and muchmore » higher in the overshoot than in the radiative tachocline. They range in e-folding amplification from 10 days in the high latitude overshoot tachocline, down to 20 yr for the low latitude radiative tachocline. In the radiative tachocline only, longitudinal wavenumbers m = 1, 2 are unstable, while in the overshoot tachocline a much broader range of m are unstable. At all latitudes and with all stratifications, the longitudinal scale of the most unstable mode is comparable to the Rossby deformation radius, while the growth rate is set by the local latitudinal entropy gradient. Baroclinic instability in the tachocline competing with instability of the latitude rotation gradient established in earlier studies should be important for the workings of the solar dynamo and should be expected to be found in most stars that contain an interface between radiative and convective domains.« less

  11. DISPERSAL AS A MECHANISM LIMITING DIVERSITY OF HIGH LATITUDES

    EPA Science Inventory

    The pervasiveness acress taxa, space, and time of the latitudinal gradient in species diversity is conventionally thought to suggest a common cause that is not yet identified. Conventionally, the cause of the gradient is thought to originate in the tropics where diversity is hig...

  12. Low Variation in the Polymorphic Clock Gene Poly-Q Region Despite Population Genetic Structure across Barn Swallow (Hirundo rustica) Populations

    PubMed Central

    Dor, Roi; Lovette, Irby J.; Safran, Rebecca J.; Billerman, Shawn M.; Huber, Gernot H.; Vortman, Yoni; Lotem, Arnon; McGowan, Andrew; Evans, Matthew R.; Cooper, Caren B.; Winkler, David W.

    2011-01-01

    Recent studies of several species have reported a latitudinal cline in the circadian clock gene, Clock, which influences rhythms in both physiology and behavior. Latitudinal variation in this gene may hence reflect local adaptation to seasonal variation. In some bird populations, there is also an among-individual association between Clock poly-Q genotype and clutch initiation date and incubation period. We examined Clock poly-Q allele variation in the Barn Swallow (Hirundo rustica), a species with a cosmopolitan geographic distribution and considerable variation in life-history traits that may be influenced by the circadian clock. We genotyped Barn Swallows from five populations (from three subspecies) and compared variation at the Clock locus to that at microsatellite loci and mitochondrial DNA (mtDNA). We found very low variation in the Clock poly-Q region, as >96% of individuals were homozygous, and the two other alleles at this locus were globally rare. Genetic differentiation based on the Clock poly-Q locus was not correlated with genetic differentiation based on either microsatellite loci or mtDNA sequences. Our results show that high diversity in Clock poly-Q is not general across avian species. The low Clock variation in the background of heterogeneity in microsatellite and mtDNA loci in Barn Swallows may be an outcome of stabilizing selection on the Clock locus. PMID:22216124

  13. Latitudinally dependent Trimpi effects: Modeling and observations

    NASA Astrophysics Data System (ADS)

    Clilverd, Mark A.; Yeo, Richard F.; Nunn, David; Smith, Andy J.

    1999-09-01

    Modeling studies show that the exclusion of the propagating VLF wave from the ionospheric region results in the decline of Trimpi magnitude with patch altitude. In large models such as Long Wave Propagation Capability (LWPC) this exclusion does not occur inherently in the code, and high-altitude precipitation modeling can produce results that are not consistent with observations from ground-based experiments. The introduction to LWPC of realistic wave attenuation of the height gain functions in the ionosphere solves these computational problems. This work presents the first modeling of (Born) Trimpi scattering at long ranges, taking into account global inhomogeneities and continuous mode conversion along all paths, by employing the full conductivity perturbation matrix. The application of the more realistic height gain functions allows the prediction of decreasing Trimpi activity with increasing latitude, primarily through the mechanism of excluding the VLF wave from regions of high conductivity and scattering efficiency. Ground-based observations from Faraday and Rothera, Antarctica, in September and October 1995 of Trimpi occurring on the NPM (Hawaii) path provide data that are consistent with these predictions. Latitudinal variations in Trimpi occurrence near L=2.5, with a significant decrease of about 70% occurrence between L=2.4 and L=2.8, have been observed at higher L shell resolution than in previous studies (i.e., 2

  14. DNA sequence variation of wild barley Hordeum spontaneum (L.) across environmental gradients in Israel

    PubMed Central

    Bedada, G; Westerbergh, A; Nevo, E; Korol, A; Schmid, K J

    2014-01-01

    Wild barley Hordeum spontaneum (L.) shows a wide geographic distribution and ecological diversity. A key question concerns the spatial scale at which genetic differentiation occurs and to what extent it is driven by natural selection. The Levant region exhibits a strong ecological gradient along the North–South axis, with numerous small canyons in an East–West direction and with small-scale environmental gradients on the opposing North- and South-facing slopes. We sequenced 34 short genomic regions in 54 accessions of wild barley collected throughout Israel and from the opposing slopes of two canyons. The nucleotide diversity of the total sample is 0.0042, which is about two-thirds of a sample from the whole species range (0.0060). Thirty accessions collected at ‘Evolution Canyon' (EC) at Nahal Oren, close to Haifa, have a nucleotide diversity of 0.0036, and therefore harbor a large proportion of the genetic diversity. There is a high level of genetic clustering throughout Israel and within EC, which roughly differentiates the slopes. Accessions from the hot and dry South-facing slope have significantly reduced genetic diversity and are genetically more distinct from accessions from the North-facing slope, which are more similar to accessions from other regions in Northern Israel. Statistical population models indicate that wild barley within the EC consist of three separate genetic clusters with substantial gene flow. The data indicate a high level of population structure at large and small geographic scales that shows isolation-by-distance, and is also consistent with ongoing natural selection contributing to genetic differentiation at a small geographic scale. PMID:24619177

  15. Microchip capillary gel electrophoresis using programmed field strength gradients for the ultra-fast analysis of genetically modified organisms in soybeans.

    PubMed

    Kim, Yun-Jeong; Chae, Joon-Seok; Chang, Jun Keun; Kang, Seong Ho

    2005-08-12

    We have developed a novel method for the ultra-fast analysis of genetically modified organisms (GMOs) in soybeans by microchip capillary gel electrophoresis (MCGE) using programmed field strength gradients (PFSG) in a conventional glass double-T microchip. Under the programmed electric field strength and 0.3% poly(ethylene oxide) sieving matrix, the GMO in soybeans was analyzed within only 11 s of the microchip. The MCGE-PFSG method was a program that changes the electric field strength during GMO analysis, and was also applied to the ultra-fast analysis of PCR products. Compared to MCGE using a conventional and constantly applied electric field, the MCGE-PFSG analysis generated faster results without the loss of resolving power and reproducibility for specific DNA fragments (100- and 250-bp DNA) of GM-soybeans. The MCGE-PFSG technique may prove to be a new tool in the GMO analysis due to its speed, simplicity, and high efficiency.

  16. [Variability of vegetation growth season in different latitudinal zones of North China: a monitoring by NOAA NDVI and MSAVI].

    PubMed

    Wang, Hong; Li, Xiaobing; Han, Ruibo; Ge, Yongqin

    2006-12-01

    In this study, North China was latitudinally divided into five zones, i.e., 32 degrees - 36 degrees N (Zone I), 36 degrees - 40 degrees N (Zone II), 40 degrees - 44 degrees N (Zone III), 44 degrees - 48 degrees N (Zone IV) and 48 degrees - 52 degrees N (Zone V), and the NOAA/ AVHRR NDVI and MSAVI time-series images from 1982 to 1999 were smoothed with Savitzky-Golay filter algorithm. Based on the EOF analysis, the principal components of NDVI and MSAVI for the vegetations in different latitudinal zones of North China were extracted, the annual beginning and ending dates and the length of growth season in 1982 - 1999 were estimated, and the related parameters were linearly fitted, aimed to analyze the variability of vegetation growth season. The results showed that the beginning date of the growth season in different zones tended to be advanced, while the ending date tended to be postponed with increasing latitude. The length of the growth season was also prolonged, with the prolonging time exceeded 10 days.

  17. Leaf morphology shift linked to climate change.

    PubMed

    Guerin, Greg R; Wen, Haixia; Lowe, Andrew J

    2012-10-23

    Climate change is driving adaptive shifts within species, but research on plants has been focused on phenology. Leaf morphology has demonstrated links with climate and varies within species along climate gradients. We predicted that, given within-species variation along a climate gradient, a morphological shift should have occurred over time due to climate change. We tested this prediction, taking advantage of latitudinal and altitudinal variations within the Adelaide Geosyncline region, South Australia, historical herbarium specimens (n = 255) and field sampling (n = 274). Leaf width in the study taxon, Dodonaea viscosa subsp. angustissima, was negatively correlated with latitude regionally, and leaf area was negatively correlated with altitude locally. Analysis of herbarium specimens revealed a 2 mm decrease in leaf width (total range 1-9 mm) over 127 years across the region. The results are consistent with a morphological response to contemporary climate change. We conclude that leaf width is linked to maximum temperature regionally (latitude gradient) and leaf area to minimum temperature locally (altitude gradient). These data indicate a morphological shift consistent with a direct response to climate change and could inform provenance selection for restoration with further investigation of the genetic basis and adaptive significance of observed variation.

  18. Genomic and Resistance Gene Homolog Diversity of the Dominant Tallgrass Prairie Species across the U.S. Great Plains Precipitation Gradient

    PubMed Central

    Rouse, Matthew N.; Saleh, Amgad A.; Seck, Amadou; Keeler, Kathleen H.; Travers, Steven E.; Hulbert, Scot H.; Garrett, Karen A.

    2011-01-01

    Background Environmental variables such as moisture availability are often important in determining species prevalence and intraspecific diversity. The population genetic structure of dominant plant species in response to a cline of these variables has rarely been addressed. We evaluated the spatial genetic structure and diversity of Andropogon gerardii populations across the U.S. Great Plains precipitation gradient, ranging from approximately 48 cm/year to 105 cm/year. Methodology/Principal Findings Genomic diversity was evaluated with AFLP markers and diversity of a disease resistance gene homolog was evaluated by PCR-amplification and digestion with restriction enzymes. We determined the degree of spatial genetic structure using Mantel tests. Genomic and resistance gene homolog diversity were evaluated across prairies using Shannon's index and by averaging haplotype dissimilarity. Trends in diversity across prairies were determined using linear regression of diversity on average precipitation for each prairie. We identified significant spatial genetic structure, with genomic similarity decreasing as a function of distance between samples. However, our data indicated that genome-wide diversity did not vary consistently across the precipitation gradient. In contrast, we found that disease resistance gene homolog diversity was positively correlated with precipitation. Significance Prairie remnants differ in the genetic resources they maintain. Selection and evolution in this disease resistance homolog is environmentally dependent. Overall, we found that, though this environmental gradient may not predict genomic diversity, individual traits such as disease resistance genes may vary significantly. PMID:21532756

  19. Latitudinal distribution of zooplankton communities in the Western Pacific along 160°E during summer 2014

    NASA Astrophysics Data System (ADS)

    Sun, Dong; Wang, Chunsheng

    2017-05-01

    A total of 51 mesozooplankton samples collected with a WP2 net from 0 to 200 m depth along 160°E (4°S-46°N) in the Western Pacific from June to July 2014 were analyzed. The latitudinal distribution of mesozooplankton community structure was analyzed. The average biomass and abundance in different provinces generally increased with latitude: the biomass of zooplankton ranged from 1.18 mg DW m- 3 (11°N) to 97.81 mg DW m- 3 (45°N), and the abundance of zooplankton ranged from 45.11 ind. m- 3 (3°S) to 439.84 ind. m- 3 (41°N). The community structure of zooplankton also showed a significant latitudinal variation. At lower latitudes, calanoid copepods were the most abundant group, while cyclopoid copepods were the most abundant group at higher latitudes. Multidimensional scaling analysis of community structure and other physical/chemical/biological characteristics supported five ecological provinces in the northwestern Pacific: the Western Pacific Warm Pool Province (WARM), the North Pacific Tropical Gyre (NPTG), the North Pacific Subtropical Gyre (NPST), the Kuroshio Current Province (KURO) and the Pacific Subarctic Gyres Province (PSAG). The Kuroshio Current Province can be regarded as a transitional zone between the subarctic and northern subtropical area, and this transitional zone corresponds much more closely to the ecocline concept, rather than the ecotone concept.

  20. Global correlation between surface heat fluxes and insolation in the 11-year solar cycle: The latitudinal effect

    NASA Astrophysics Data System (ADS)

    Volobuev, D. M.; Makarenko, N. G.

    2014-12-01

    Because of the small amplitude of insolation variations (1365.2-1366.6 W m-2 or 0.1%) from the 11-year solar cycle minimum to the cycle maximum and the structural complexity of the climatic dynamics, it is difficult to directly observe a solar signal in the surface temperature. The main difficulty is reduced to two factors: (1) a delay in the temperature response to external action due to thermal inertia, and (2) powerful internal fluctuations of the climatic dynamics suppressing the solar-driven component. In this work we take into account the first factor, solving the inverse problem of thermal conductivity in order to calculate the vertical heat flux from the measured temperature near the Earth's surface. The main model parameter—apparent thermal inertia—is calculated from the local seasonal extremums of temperature and albedo. We level the second factor by averaging mean annual heat fluxes in a latitudinal belt. The obtained mean heat fluxes significantly correlate with a difference between the insolation and optical depth of volcanic aerosol in the atmosphere, converted into a hindered heat flux. The calculated correlation smoothly increases with increasing latitude to 0.4-0.6, and the revealed latitudinal dependence is explained by the known effect of polar amplification.

  1. Combining Step Gradients and Linear Gradients in Density.

    PubMed

    Kumar, Ashok A; Walz, Jenna A; Gonidec, Mathieu; Mace, Charles R; Whitesides, George M

    2015-06-16

    Combining aqueous multiphase systems (AMPS) and magnetic levitation (MagLev) provides a method to produce hybrid gradients in apparent density. AMPS—solutions of different polymers, salts, or surfactants that spontaneously separate into immiscible but predominantly aqueous phases—offer thermodynamically stable steps in density that can be tuned by the concentration of solutes. MagLev—the levitation of diamagnetic objects in a paramagnetic fluid within a magnetic field gradient—can be arranged to provide a near-linear gradient in effective density where the height of a levitating object above the surface of the magnet corresponds to its density; the strength of the gradient in effective density can be tuned by the choice of paramagnetic salt and its concentrations and by the strength and gradient in the magnetic field. Including paramagnetic salts (e.g., MnSO4 or MnCl2) in AMPS, and placing them in a magnetic field gradient, enables their use as media for MagLev. The potential to create large steps in density with AMPS allows separations of objects across a range of densities. The gradients produced by MagLev provide resolution over a continuous range of densities. By combining these approaches, mixtures of objects with large differences in density can be separated and analyzed simultaneously. Using MagLev to add an effective gradient in density also enables tuning the range of densities captured at an interface of an AMPS by simply changing the position of the container in the magnetic field. Further, by creating AMPS in which phases have different concentrations of paramagnetic ions, the phases can provide different resolutions in density. These results suggest that combining steps in density with gradients in density can enable new classes of separations based on density.

  2. Spatially Different Tissue-Scale Diffusivity Shapes ANGUSTIFOLIA3 Gradient in Growing Leaves.

    PubMed

    Kawade, Kensuke; Tanimoto, Hirokazu; Horiguchi, Gorou; Tsukaya, Hirokazu

    2017-09-05

    The spatial gradient of signaling molecules is pivotal for establishing developmental patterns of multicellular organisms. It has long been proposed that these gradients could arise from the pure diffusion process of signaling molecules between cells, but whether this simplest mechanism establishes the formation of the tissue-scale gradient remains unclear. Plasmodesmata are unique channel structures in plants that connect neighboring cells for molecular transport. In this study, we measured cellular- and tissue-scale kinetics of molecular transport through plasmodesmata in Arabidopsis thaliana developing leaf primordia by fluorescence recovery assays. These trans-scale measurements revealed biophysical properties of diffusive molecular transport through plasmodesmata and revealed that the tissue-scale diffusivity, but not the cellular-scale diffusivity, is spatially different along the leaf proximal-to-distal axis. We found that the gradient in cell size along the developmental axis underlies this spatially different tissue-scale diffusivity. We then asked how this diffusion-based framework functions in establishing a signaling gradient of endogenous molecules. ANGUSTIFOLIA3 (AN3) is a transcriptional co-activator, and as we have shown here, it forms a long-range signaling gradient along the leaf proximal-to-distal axis to determine a cell-proliferation domain. By genetically engineering AN3 mobility, we assessed each contribution of cell-to-cell movement and tissue growth to the distribution of the AN3 gradient. We constructed a diffusion-based theoretical model using these quantitative data to analyze the AN3 gradient formation and demonstrated that it could be achieved solely by the diffusive molecular transport in a growing tissue. Our results indicate that the spatially different tissue-scale diffusivity is a core mechanism for AN3 gradient formation. This provides evidence that the pure diffusion process establishes the formation of the long-range signaling

  3. pH Gradient Reversal: An Emerging Hallmark of Cancers.

    PubMed

    Sharma, Mohit; Astekar, Madhusudan; Soi, Sonal; Manjunatha, Bhari S; Shetty, Devi C; Radhakrishnan, Raghu

    2015-01-01

    Several tumors exhibit pH gradient reversal, with acidification of extracellular pH (pHe) and alkalinization of intracellular pH (pHi). The pH gradient reversal is evident even during the preliminary stages of tumorigenesis and is crucial for survival and propagation of tumors, irrespective of their pathology, genetics and origins. Moreover, this hallmark seems to be present ubiquitously in all malignant tumors. Based on these facts, we propose a new emerging hallmark of cancer "pH gradient reversal". Normalizing pH gradient reversal through inhibition of various proton transporters such as Na(+)-H(+) exchanger (NHE), Vacuolar-type H(+)-ATPase (V-ATPase), H(+)/K(+)-ATPases and carbonic anhydrases (CAs) has demonstrated substantial therapeutic benefits. Indeed, inhibition of NHE1 is now being regarded as the latest concept in cancer treatment. A recent patent deals with the utilization of cis-Urocanic acid to acidify the pHi and induce apoptosis in tumors. Another patent reports therapeutic benefit by inhibiting Lactate Dehydrogenase - 5 (LDH-5) in various cancers. Several patents have been formulated by designing drugs activated through acidic pHe providing a cancer specific action. The purpose of this review is to analyze the available literature and help design selective therapies that could be a valuable adjunct to the conventional therapies or even replace them.

  4. Momentum-weighted conjugate gradient descent algorithm for gradient coil optimization.

    PubMed

    Lu, Hanbing; Jesmanowicz, Andrzej; Li, Shi-Jiang; Hyde, James S

    2004-01-01

    MRI gradient coil design is a type of nonlinear constrained optimization. A practical problem in transverse gradient coil design using the conjugate gradient descent (CGD) method is that wire elements move at different rates along orthogonal directions (r, phi, z), and tend to cross, breaking the constraints. A momentum-weighted conjugate gradient descent (MW-CGD) method is presented to overcome this problem. This method takes advantage of the efficiency of the CGD method combined with momentum weighting, which is also an intrinsic property of the Levenberg-Marquardt algorithm, to adjust step sizes along the three orthogonal directions. A water-cooled, 12.8 cm inner diameter, three axis torque-balanced gradient coil for rat imaging was developed based on this method, with an efficiency of 2.13, 2.08, and 4.12 mT.m(-1).A(-1) along X, Y, and Z, respectively. Experimental data demonstrate that this method can improve efficiency by 40% and field uniformity by 27%. This method has also been applied to the design of a gradient coil for the human brain, employing remote current return paths. The benefits of this design include improved gradient field uniformity and efficiency, with a shorter length than gradient coil designs using coaxial return paths. Copyright 2003 Wiley-Liss, Inc.

  5. Integrating the effects of latitude and altitude on the spatial differentiation of plant community diversity in a mountainous ecosystem in China

    PubMed Central

    Xu, Manhou; Ma, Li; Jia, Yanyan; Liu, Min

    2017-01-01

    Varying patterns of plant community diversity along geographical gradients are a significant topic in biodiversity research. Here, to explore the integrated effects of latitude and altitude on the plant community diversity in a mountainous ecosystem, we set Guancen Mountain in the northern section, Guandi Mountain in the middle section, and Wulu Mountain in the southern section of the Lvliang Mountains as study areas, and the plant community diversity (basal diameter and height of tree and species diversity indices of shrub and herb) was measured horizontally at different latitude gradients and vertically at different altitude gradients in late July 2015. The results showed that (1) the trees were taller and wider at the middle latitude and higher altitude with a stronger spatial heterogeneity in the structures along the latitudinal and altitudinal gradients. The evergreen tree growth preceded that of the deciduous trees in the higher latitude and lower altitude regions, whereas the deciduous tree growth preceded that of the evergreen trees in the middle latitude and higher altitude regions. (2) Shrubs and herbs tended to grow well in the lower latitude and middle-lower altitude regions. The shrubs had a larger species diversity at lower latitude and lower altitude, but the species diversity of the herbs was not sensitive to the influences of the latitudinal and altitudinal gradients. With the latitude and altitude increasing, perennial herbs tended to grow well at higher latitude and higher altitude, while annual herbs tended to thrive at the middle latitude and lower altitude. In conclusion, environmental deviations caused by latitudinal and altitudinal gradients had great influences on the spatial distributions of the plant community diversity in the Lvliang Mountains. PMID:28323909

  6. Integrating the effects of latitude and altitude on the spatial differentiation of plant community diversity in a mountainous ecosystem in China.

    PubMed

    Xu, Manhou; Ma, Li; Jia, Yanyan; Liu, Min

    2017-01-01

    Varying patterns of plant community diversity along geographical gradients are a significant topic in biodiversity research. Here, to explore the integrated effects of latitude and altitude on the plant community diversity in a mountainous ecosystem, we set Guancen Mountain in the northern section, Guandi Mountain in the middle section, and Wulu Mountain in the southern section of the Lvliang Mountains as study areas, and the plant community diversity (basal diameter and height of tree and species diversity indices of shrub and herb) was measured horizontally at different latitude gradients and vertically at different altitude gradients in late July 2015. The results showed that (1) the trees were taller and wider at the middle latitude and higher altitude with a stronger spatial heterogeneity in the structures along the latitudinal and altitudinal gradients. The evergreen tree growth preceded that of the deciduous trees in the higher latitude and lower altitude regions, whereas the deciduous tree growth preceded that of the evergreen trees in the middle latitude and higher altitude regions. (2) Shrubs and herbs tended to grow well in the lower latitude and middle-lower altitude regions. The shrubs had a larger species diversity at lower latitude and lower altitude, but the species diversity of the herbs was not sensitive to the influences of the latitudinal and altitudinal gradients. With the latitude and altitude increasing, perennial herbs tended to grow well at higher latitude and higher altitude, while annual herbs tended to thrive at the middle latitude and lower altitude. In conclusion, environmental deviations caused by latitudinal and altitudinal gradients had great influences on the spatial distributions of the plant community diversity in the Lvliang Mountains.

  7. Latitudinal and interhemispheric variation of stratospheric effects on mesospheric ice layer trends

    NASA Astrophysics Data System (ADS)

    Lübken, F.-J.; Berger, U.

    2011-02-01

    Latitudinal and interhemispheric differences of model results on trends in mesospheric ice layers and background conditions are analyzed. The model nudges to European Centre for Medium-Range Weather Forecasts data below ˜45 km. Greenhouse gas concentrations in the mesosphere are kept constant. Temperature trends in the mesosphere mainly come from shrinking of the stratosphere and from dynamical effects. Water vapor increases at noctilucent cloud (NLC) heights and decreases above due to increased freeze drying caused by temperature trends. There is no tendency for ice clouds in the Northern Hemisphere for extending farther southward with time. Trends of NLC albedo are similar to satellite measurements, but only if a time period longer than observations is considered. Ice cloud trends get smaller if albedo thresholds relevant to satellite instruments are applied, in particular at high polar latitudes. This implies that weak and moderate NLC is favored when background conditions improve for NLC formation, whereas strong NLC benefits less. Trends of ice cloud parameters are generally smaller in the Southern Hemisphere (SH) compared to the Northern Hemisphere (NH), consistent with observations. Trends in background conditions have counteracting effects on NLC: temperature trends would suggest stronger ice increase in the SH, and water vapor trends would suggest a weaker increase. Larger trends in NLC brightness or occurrence rates are not necessarily associated with larger (more negative) temperature trends. They can also be caused by larger trends of water vapor caused by larger freeze drying, which in turn can be caused by generally lower temperatures and/or more background water. Trends of NLC brightness and occurrence rates decrease with decreasing latitude in both hemispheres. The latitudinal variation of these trends is primarily determined by induced water vapor trends. Trends in NLC altitudes are generally small. Stratospheric temperature trends vary

  8. Untangling interactions: do temperature and habitat fragmentation gradients simultaneously impact biotic relationships?

    PubMed Central

    Lakeman-Fraser, Poppy; Ewers, Robert M.

    2014-01-01

    Gaining insight into the impact of anthropogenic change on ecosystems requires investigation into interdependencies between multiple drivers of ecological change and multiple biotic responses. Global environmental change drivers can act simultaneously to impact the abundance and diversity of biota, but few studies have also measured the impact across trophic levels. We firstly investigated whether climate (using temperature differences across a latitudinal gradient as a surrogate) interacts with habitat fragmentation (measured according to fragment area and distance to habitat edges) to impact a New Zealand tri-trophic food chain (plant, herbivore and natural enemy). Secondly, we examined how these interactions might differentially impact both the density and biotic processes of species at each of the three trophic levels. We found evidence to suggest that these drivers act non-additively across trophic levels. The nature of these interactions however varied: location synergistically interacted with fragmentation measures to exacerbate the detrimental effects on consumer density; and antagonistically interacted to ameliorate the impact on plant density and on the interactions between trophic levels (herbivory and parasitoid attack rate). Our findings indicate that the ecological consequences of multiple global change drivers are strongly interactive and vary according to the trophic level studied and whether density or ecological processes are investigated. PMID:24898374

  9. Genetic diversity patterns of arbuscular mycorrhizal fungi associated with the mycoheterotroph Arachnitis uniflora Phil. (Corsiaceae)

    PubMed Central

    Acosta, M. Cristina; Cofré, Noelia; Domínguez, Laura S.; Bidartondo, Martin I.; Sérsic, Alicia N.

    2017-01-01

    Abstract Background and Aims Arachnitis uniflora is a mycoheterotrophic plant that exploits arbuscular mycorrhizal fungi of neighbouring plants. We tested A. uniflora's specificity towards fungi across its large latitudinal range, as well as the role of historical events and current environmental, geographical and altitudinal variables on fungal genetic diversity. Methods Arachnitis uniflora mycorrhizas were sampled at 25 sites. Fungal phylogenetic relationships were reconstructed, genetic diversity was calculated and the main divergent lineages were dated. Phylogeographical analysis was performed with the main fungal clade. Fungal diversity correlations with environmental factors were investigated. Key Results Glomeraceae fungi dominated, with a main clade that likely originated in the Upper Cretaceous and diversified in the Miocene. Two other arbuscular mycorrhizal fungal families not previously known to be targeted by A. uniflora were detected rarely and appear to be facultative associations. High genetic diversity, found in Bolivia and both northern and southern Patagonia, was correlated with temperature, rainfall and soil features. Conclusions Fungal genetic diversity and its distribution can be explained by the ancient evolutionary history of the target fungi and by micro-scale environmental conditions with a geographical mosaic pattern. PMID:28398457

  10. Divergent selection along climatic gradients in a rare central European endemic species, Saxifraga sponhemica

    PubMed Central

    Walisch, Tania J.; Colling, Guy; Bodenseh, Melanie; Matthies, Diethart

    2015-01-01

    Background and Aims The effects of habitat fragmentation on quantitative genetic variation in plant populations are still poorly known. Saxifraga sponhemica is a rare endemic of Central Europe with a disjunct distribution, and a stable and specialized habitat of treeless screes and cliffs. This study therefore used S. sponhemica as a model species to compare quantitative and molecular variation in order to explore (1) the relative importance of drift and selection in shaping the distribution of quantitative genetic variation along climatic gradients; (2) the relationship between plant fitness, quantitative genetic variation, molecular genetic variation and population size; and (3) the relationship between the differentiation of a trait among populations and its evolvability. Methods Genetic variation within and among 22 populations from the whole distribution area of S. sponhemica was studied using RAPD (random amplified polymorphic DNA) markers, and climatic variables were obtained for each site. Seeds were collected from each population and germinated, and seedlings were transplanted into a common garden for determination of variation in plant traits. Key Results In contrast to previous results from rare plant species, strong evidence was found for divergent selection. Most population trait means of S. sponhemica were significantly related to climate gradients, indicating adaptation. Quantitative genetic differentiation increased with geographical distance, even when neutral molecular divergence was controlled for, and QST exceeded FST for some traits. The evolvability of traits was negatively correlated with the degree of differentiation among populations (QST), i.e. traits under strong selection showed little genetic variation within populations. The evolutionary potential of a population was not related to its size, the performance of the population or its neutral genetic diversity. However, performance in the common garden was lower for plants from

  11. Tropopause inversion layer: Seasonal and latitudinal variations and representation in standard radiosonde data and global models

    NASA Astrophysics Data System (ADS)

    Bell, Shaun W.; Geller, Marvin A.

    2008-03-01

    Previous publications have given information on the seasonal and latitudinal variations of the tropopause inversion layer (TIL), as seen in high-resolution radiosonde data sets, when soundings are averaged using the tropopause as a reference level. This paper presents a more quantitative analysis of the latitudinal and seasonal structure of the TIL than has been given previously. To do this, we define the region over which the static stability relaxes from its overshoot value at the tropopause to its local minimum in the stratosphere. This region is seen to increase monotonically in thickness from about 1 km at low latitudes to about 4 to 5 km at high latitudes. When the seasons are defined as winter (DJF), spring (MAM), summer (JJA), and fall (SON), the transition from tropical behavior occurs a little poleward of 20°N in both DJF and MAM and moves to a little poleward of 30°N in JJA and SON. Somewhat surprisingly, it is also shown that almost identical information about the TIL can be derived from standard radiosonde data for our period of analysis because of their reporting of the tropopause and other "significant levels," but caution needs to be used in doing this since the number of reported significant levels has varied significantly over the long term and with some distinct discontinuities. Finally, we discuss what sort of information on the TIL can be obtained from global models given their relatively coarse vertical resolution.

  12. Opposite Latitudinal Dependence of the Premidnight and Postmidnight Oscillations in the Electron Density of Midlatitude F Layer

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Wang, Jin; Zhang, Shaodong; Deng, Zhongxin; Zhong, Dingkun; Wu, Chen; Jin, Han; Li, Yaxian

    2018-01-01

    The dense observation points of the oblique-incidence ionosonde network in North China make it possible to discover the ionospheric regional variations with relatively high spatial resolution. The ionosonde network and the Beijing digisonde are used to investigate the ionospheric nighttime oscillations in January and February 2011. The electron density enhancements occurring before and after midnight present the obvious opposite latitudinal dependence in the time-latitude maps, which are composed by the differential critical frequency of F2 layer. The premidnight enhancements (PRMEs) appeared earlier in the north and then moved to south. The postmidnight enhancements (POMEs) did the opposite. The data analysis shows that the PRME was a part of the large-scale traveling ionospheric disturbance (LSTID), which may be produced by gravity waves. The southward propagation of the LSTIDs is considered to form the positive latitudinal dependence of the wave peaks and troughs. The postmidnight F layer oscillation was composed by a single enhancement and a single decline following it. The westward electric field-induced E × B drift, which pushed the F layer to lower altitudes with higher recombination loss, was most likely to compress the plasma and produce the POMEs. Along with the continuously dropping of the layer, the recombination loss exceeded the density increase due to the compression effect and then the electron density decline appeared.

  13. Soil respiration response to climate change in Pacific Northwest prairies is mediated by a regional Mediterranean climate gradient.

    PubMed

    Reynolds, Lorien L; Johnson, Bart R; Pfeifer-Meister, Laurel; Bridgham, Scott D

    2015-01-01

    Soil respiration is expected to increase with rising global temperatures but the degree of response may depend on soil moisture and other local factors. Experimental climate change studies from single sites cannot discern whether an observed response is site-dependent or generalizable. To deconvolve site-specific vs. regional climatic controls, we examined soil respiration for 18 months along a 520 km climate gradient in three Pacific Northwest, USA prairies that represents increasingly severe Mediterranean conditions from north to south. At each site we implemented a fully factorial combination of 2.5-3 °C warming and 20% added precipitation intensity. The response of soil respiration to warming was driven primarily by the latitudinal climate gradient and not site-specific factors. Warming increased respiration at all sites during months when soil moisture was not limiting. However, these gains were offset by reductions in respiration during seasonal transitions and summer drought due to lengthened periods of soil moisture limitation. The degree of this offset varied along the north-south climate gradient such that in 2011 warming increased cumulative annual soil respiration 28.6% in the northern site, 13.5% in the central site, and not at all in the southern site. Precipitation also stimulated soil respiration more frequently in the south, consistent with an increased duration of moisture limitation. The best predictors of soil respiration in nonlinear models were the Normalized Difference Vegetation Index (NDVI), antecedent soil moisture, and temperature but these models provided biased results at high and low soil respiration. NDVI was an effective integrator of climate and site differences in plant productivity in terms of their combined effects on soil respiration. Our results suggest that soil moisture limitation can offset the effect of warming on soil respiration, and that greater growing-season moisture limitation would constrain cumulative annual

  14. Microsatellite variation and genetic structuring in Mugil liza (Teleostei: Mugilidae) populations from Argentina and Brazil

    NASA Astrophysics Data System (ADS)

    Mai, Ana C. G.; Miño, Carolina I.; Marins, Luis F. F.; Monteiro-Neto, Cassiano; Miranda, Laura; Schwingel, Paulo R.; Lemos, Valéria M.; Gonzalez-Castro, Mariano; Castello, Jorge P.; Vieira, João P.

    2014-08-01

    The mullet Mugil liza is distributed along the Atlantic coast of South America, from Argentina to Venezuela, and it is heavily exploited in Brazil. We assessed patterns of distribution of neutral nuclear genetic variation in 250 samples from the Brazilian states of Rio de Janeiro, São Paulo, Santa Catarina and Rio Grande do Sul (latitudinal range of 23-31°S) and from Buenos Aires Province in Argentina (36°S). Nine microsatellite loci revealed 131 total alleles, 3-23 alleles per locus, He: 0.69 and Ho: 0.67. Significant genetic differentiation was observed between Rio de Janeiro samples (23°S) and those from all other locations, as indicated by FST, hierarchical analyses of genetic structure, Bayesian cluster analyses and assignment tests. The presence of two different demographic clusters better explains the allelic diversity observed in mullets from the southernmost portion of the Atlantic coast of Brazil and from Argentina. This may be taken into account when designing fisheries management plans involving Brazilian, Uruguayan and Argentinean M. liza populations.

  15. Landscape genetics of a pollinator longhorn beetle [Typocerus v. velutinus (Olivier)] on a continuous habitat surface.

    PubMed

    Abdel Moniem, H E M; Schemerhorn, B J; DeWoody, J A; Holland, J D

    2016-10-01

    Landscape connectivity, the degree to which the landscape structure facilitates or impedes organismal movement and gene flow, is increasingly important to conservationists and land managers. Metrics for describing the undulating shape of continuous habitat surfaces can expand the usefulness of continuous gradient surfaces that describe habitat and predict the flow of organisms and genes. We adopted a landscape gradient model of habitat and used surface metrics of connectivity to model the genetic continuity between populations of the banded longhorn beetle [Typocerus v. velutinus (Olivier)] collected at 17 sites across a fragmentation gradient in Indiana, USA. We tested the hypothesis that greater habitat connectivity facilitates gene flow between beetle populations against a null model of isolation by distance (IBD). We used next-generation sequencing to develop 10 polymorphic microsatellite loci and genotype the individual beetles to assess the population genetic structure. Isolation by distance did not explain the population genetic structure. The surface metrics model of habitat connectivity explained the variance in genetic dissimilarities 30 times better than the IBD model. We conclude that surface metrology of habitat maps is a powerful extension of landscape genetics in heterogeneous landscapes. © 2016 John Wiley & Sons Ltd.

  16. Full magnetic gradient tensor from triaxial aeromagnetic gradient measurements: Calculation and application

    NASA Astrophysics Data System (ADS)

    Luo, Yao; Wu, Mei-Ping; Wang, Ping; Duan, Shu-Ling; Liu, Hao-Jun; Wang, Jin-Long; An, Zhan-Feng

    2015-09-01

    The full magnetic gradient tensor (MGT) refers to the spatial change rate of the three field components of the geomagnetic field vector along three mutually orthogonal axes. The tensor is of use to geological mapping, resources exploration, magnetic navigation, and others. However, it is very difficult to measure the full magnetic tensor gradient using existing engineering technology. We present a method to use triaxial aeromagnetic gradient measurements for deriving the full MGT. The method uses the triaxial gradient data and makes full use of the variation of the magnetic anomaly modulus in three dimensions to obtain a self-consistent magnetic tensor gradient. Numerical simulations show that the full MGT data obtained with the proposed method are of high precision and satisfy the requirements of data processing. We selected triaxial aeromagnetic gradient data from the Hebei Province for calculating the full MGT. Data processing shows that using triaxial tensor gradient data allows to take advantage of the spatial rate of change of the total field in three dimensions and suppresses part of the independent noise in the aeromagnetic gradient. The calculated tensor components have improved resolution, and the transformed full tensor gradient satisfies the requirement of geological mapping and interpretation.

  17. The impact of seasonality on niche breadth, distribution range and species richness: a theoretical exploration of Janzen's hypothesis.

    PubMed

    Hua, Xia

    2016-07-27

    Being invoked as one of the candidate mechanisms for the latitudinal patterns in biodiversity, Janzen's hypothesis states that the limited seasonal temperature variation in the tropics generates greater temperature stratification across elevations, which makes tropical species adapted to narrower ranges of temperatures and have lower effective dispersal across elevations than species in temperate regions. Numerous empirical studies have documented latitudinal patterns in species elevational ranges and thermal niche breadths that are consistent with the hypothesis, but the theoretical underpinnings remain unclear. This study presents the first mathematical model to examine the evolutionary processes that could back up Janzen's hypothesis and assess the effectiveness of limited seasonal temperature variation to promote speciation along elevation in the tropics. Results suggest that trade-offs in thermal tolerances provide a mechanism for Janzen's hypothesis. Limited seasonal temperature variation promotes gradient speciation not due to the reduction in gene flow that is associated with narrow thermal niche, but due to the pleiotropic effects of more stable divergent selection of thermal tolerance on the evolution of reproductive incompatibility. The proposed modelling approach also provides a potential way to test a speciation model against genetic data. © 2016 The Author(s).

  18. Reticulate Pleistocene evolution of Ethiopian rodent genus along remarkable altitudinal gradient.

    PubMed

    Bryja, Josef; Kostin, Danila; Meheretu, Yonas; Šumbera, Radim; Bryjová, Anna; Kasso, Mohammed; Mikula, Ondřej; Lavrenchenko, Leonid A

    2018-01-01

    The Ethiopian highlands are the most extensive complex of mountainous habitats in Africa. The presence of the Great Rift Valley (GRV) and the striking elevational ecological gradients inhabited by recently radiated Ethiopian endemics, provide a wide spectrum of model situations for evolutionary studies. The extant species of endemic rodents, often markedly phenotypically differentiated, are expected to possess complex genetic features which evolved asa consequence of the interplay between geomorphology and past climatic changes. In this study, we used the largest available multi-locus genetic dataset of the murid genus Stenocephalemys (347 specimens from ca 40 localities across the known distributional area of all taxa) to investigate the relative importance of disruptive selection, temporary geographic isolation and introgression in their adaptive radiations in the Pleistocene. We confirmed the four main highly supported mitochondrial (mtDNA) clades that were proposed as four species in a previous pilot study: S. albipes is a sister species of S. griseicauda (both lineages are present on both sides of the GRV), while the second clade is formed by two Afro-alpine species, S. albocaudata (east of GRV) and the undescribed Stenocephalemys sp. A (west of GRV). There is a clear elevational gradient in the distribution of the Stenocephalemys taxa with two to three species present at different elevations of the same mountain range. Surprisingly, the nuclear species tree corresponded only a little to the mtDNA tree. Multispecies coalescent models based on six nuclear markers revealed the presence of six separate gene pools (i.e. candidate species), with different topology. Phylogenetic analysis, together with the geographic distribution of the genetic groups, suggests a complex reticulate evolution. We propose a scenario that involves (besides classical allopatric speciation) two cases of disruptive selection along the elevational ecological gradient, multiple crosses of

  19. Human local adaptation of the TRPM8 cold receptor along a latitudinal cline

    PubMed Central

    Mundry, Roger; Peter, Benjamin M.; Sekar, Aarthi; D’Amato, Mauro; Dennis, Megan Y.; Andrés, Aida M.

    2018-01-01

    Ambient temperature is a critical environmental factor for all living organisms. It was likely an important selective force as modern humans recently colonized temperate and cold Eurasian environments. Nevertheless, as of yet we have limited evidence of local adaptation to ambient temperature in populations from those environments. To shed light on this question, we exploit the fact that humans are a cosmopolitan species that inhabit territories under a wide range of temperatures. Focusing on cold perception–which is central to thermoregulation and survival in cold environments–we show evidence of recent local adaptation on TRPM8. This gene encodes for a cation channel that is, to date, the only temperature receptor known to mediate an endogenous response to moderate cold. The upstream variant rs10166942 shows extreme population differentiation, with frequencies that range from 5% in Nigeria to 88% in Finland (placing this SNP in the 0.02% tail of the FST empirical distribution). When all populations are jointly analyzed, allele frequencies correlate with latitude and temperature beyond what can be explained by shared ancestry and population substructure. Using a Bayesian approach, we infer that the allele originated and evolved neutrally in Africa, while positive selection raised its frequency to different degrees in Eurasian populations, resulting in allele frequencies that follow a latitudinal cline. We infer strong positive selection, in agreement with ancient DNA showing high frequency of the allele in Europe 3,000 to 8,000 years ago. rs10166942 is important phenotypically because its ancestral allele is protective of migraine. This debilitating disorder varies in prevalence across human populations, with highest prevalence in individuals of European descent–precisely the population with the highest frequency of rs10166942 derived allele. We thus hypothesize that local adaptation on previously neutral standing variation may have contributed to the

  20. The adaptation rate of a quantitative trait in an environmental gradient

    NASA Astrophysics Data System (ADS)

    Hermsen, R.

    2016-12-01

    The spatial range of a species habitat is generally determined by the ability of the species to cope with biotic and abiotic variables that vary in space. Therefore, the species range is itself an evolvable property. Indeed, environmental gradients permit a mode of evolution in which range expansion and adaptation go hand in hand. This process can contribute to rapid evolution of drug resistant bacteria and viruses, because drug concentrations in humans and livestock treated with antibiotics are far from uniform. Here, we use a minimal stochastic model of discrete, interacting organisms evolving in continuous space to study how the rate of adaptation of a quantitative trait depends on the steepness of the gradient and various population parameters. We discuss analytical results for the mean-field limit as well as extensive stochastic simulations. These simulations were performed using an exact, event-driven simulation scheme that can deal with continuous time-, density- and coordinate-dependent reaction rates and could be used for a wide variety of stochastic systems. The results reveal two qualitative regimes. If the gradient is shallow, the rate of adaptation is limited by dispersion and increases linearly with the gradient slope. If the gradient is steep, the adaptation rate is limited by mutation. In this regime, the mean-field result is highly misleading: it predicts that the adaptation rate continues to increase with the gradient slope, whereas stochastic simulations show that it in fact decreases with the square root of the slope. This discrepancy underscores the importance of discreteness and stochasticity even at high population densities; mean-field results, including those routinely used in quantitative genetics, should be interpreted with care.

  1. The adaptation rate of a quantitative trait in an environmental gradient.

    PubMed

    Hermsen, R

    2016-11-30

    The spatial range of a species habitat is generally determined by the ability of the species to cope with biotic and abiotic variables that vary in space. Therefore, the species range is itself an evolvable property. Indeed, environmental gradients permit a mode of evolution in which range expansion and adaptation go hand in hand. This process can contribute to rapid evolution of drug resistant bacteria and viruses, because drug concentrations in humans and livestock treated with antibiotics are far from uniform. Here, we use a minimal stochastic model of discrete, interacting organisms evolving in continuous space to study how the rate of adaptation of a quantitative trait depends on the steepness of the gradient and various population parameters. We discuss analytical results for the mean-field limit as well as extensive stochastic simulations. These simulations were performed using an exact, event-driven simulation scheme that can deal with continuous time-, density- and coordinate-dependent reaction rates and could be used for a wide variety of stochastic systems. The results reveal two qualitative regimes. If the gradient is shallow, the rate of adaptation is limited by dispersion and increases linearly with the gradient slope. If the gradient is steep, the adaptation rate is limited by mutation. In this regime, the mean-field result is highly misleading: it predicts that the adaptation rate continues to increase with the gradient slope, whereas stochastic simulations show that it in fact decreases with the square root of the slope. This discrepancy underscores the importance of discreteness and stochasticity even at high population densities; mean-field results, including those routinely used in quantitative genetics, should be interpreted with care.

  2. Genetic Population Structure Accounts for Contemporary Ecogeographic Patterns in Tropic and Subtropic-Dwelling Humans

    PubMed Central

    Hruschka, Daniel J.; Hadley, Craig; Brewis, Alexandra A.; Stojanowski, Christopher M.

    2015-01-01

    Contemporary human populations conform to ecogeographic predictions that animals will become more compact in cooler climates and less compact in warmer ones. However, it remains unclear to what extent this pattern reflects plastic responses to current environments or genetic differences among populations. Analyzing anthropometric surveys of 232,684 children and adults from across 80 ethnolinguistic groups in sub-Saharan Africa, Asia and the Americas, we confirm that body surface-to-volume correlates with contemporary temperature at magnitudes found in more latitudinally diverse samples (Adj. R2 = 0.14-0.28). However, far more variation in body surface-to-volume is attributable to genetic population structure (Adj. R2 = 0.50-0.74). Moreover, genetic population structure accounts for nearly all of the observed relationship between contemporary temperature and body surface-to-volume among children and adults. Indeed, after controlling for population structure, contemporary temperature accounts for no more than 4% of the variance in body form in these groups. This effect of genetic affinity on body form is also independent of other ecological variables, such as dominant mode of subsistence and household wealth per capita. These findings suggest that the observed fit of human body surface-to-volume with current climate in this sample reflects relatively large effects of existing genetic population structure of contemporary humans compared to plastic response to current environments. PMID:25816235

  3. Genetic population structure accounts for contemporary ecogeographic patterns in tropic and subtropic-dwelling humans.

    PubMed

    Hruschka, Daniel J; Hadley, Craig; Brewis, Alexandra A; Stojanowski, Christopher M

    2015-01-01

    Contemporary human populations conform to ecogeographic predictions that animals will become more compact in cooler climates and less compact in warmer ones. However, it remains unclear to what extent this pattern reflects plastic responses to current environments or genetic differences among populations. Analyzing anthropometric surveys of 232,684 children and adults from across 80 ethnolinguistic groups in sub-Saharan Africa, Asia and the Americas, we confirm that body surface-to-volume correlates with contemporary temperature at magnitudes found in more latitudinally diverse samples (Adj. R2 = 0.14-0.28). However, far more variation in body surface-to-volume is attributable to genetic population structure (Adj. R2 = 0.50-0.74). Moreover, genetic population structure accounts for nearly all of the observed relationship between contemporary temperature and body surface-to-volume among children and adults. Indeed, after controlling for population structure, contemporary temperature accounts for no more than 4% of the variance in body form in these groups. This effect of genetic affinity on body form is also independent of other ecological variables, such as dominant mode of subsistence and household wealth per capita. These findings suggest that the observed fit of human body surface-to-volume with current climate in this sample reflects relatively large effects of existing genetic population structure of contemporary humans compared to plastic response to current environments.

  4. LATITUDINAL GRADIENTS IN BENTHIC COMMUNITY COMPOSITION IN WESTERN ATLANTIC ESTUARIES

    EPA Science Inventory

    The community structure of benthic macroinvertebrates from estuaries along the Atlantic coast of North America from Cape Cod, MA, to Biscayne Bay, FL, were compared. Benthic data were collected over a 5 year period (1990 to 1995) by the U.S. Environmental Protection Agency's Envi...

  5. Latitudinal gradients in O3 and CO during INDOEX 1999

    NASA Astrophysics Data System (ADS)

    Stehr, J. W.; Ball, W. P.; Dickerson, R. R.; Doddridge, B. G.; Piety, C. A.; Johnson, J. E.

    2002-10-01

    Measurements of ozone and carbon monoxide (CO) from the INDOEX 1999 experiment show large differences in concentrations of ozone and CO between the Northern Hemisphere and the Southern Hemisphere. These measurements confirm the theory that the Intertropical Convergence Zone (ITCZ) serves as a barrier to mixing over the Indian Ocean, effectively separating the polluted air in the Northern Hemisphere from cleaner air in the Southern Hemisphere. In spite of CO levels similar to those observed off the coast of North America, there is relatively little ozone off the coast of India. The ozone-to-CO ratio in air coming from India is 0.14, lower than 0.3 or 0.4 in air being transported to Bermuda from North America. Diurnal cycles are observed in both CO and ozone. INDOEX data taken onboard the R/V Ronald H. Brown show an average diurnal cycle in ozone of 20%, while data from the island of Kaashidhoo in the Republic of Maldives indicate a diurnal variation of 19%, consistent with our analyses of other experiments. Diurnal variations of this magnitude are larger than expected from ozone destruction by conventional HOx chemistry alone, implying that the sink of ozone in the remote marine boundary layer is likely considerably larger than had been assumed. Additional chemical cycles must be fairly substantial—large enough to rival HOx chemistry in ozone destruction.

  6. Latitudinal Trends in Abundant and Rare Bacterioplankton Community Structure and Diversity in Surface Waters of the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Jeffrey, W. H.; Moss, J. A.; Snyder, R.; Pakulski, J. D.

    2016-02-01

    To fully comprehend planktonic diversity and the roles of microorganisms in global biogeochemical cycling, we must recognize the distribution patterns of planktonic taxa and phylotypes and their controlling environmental factors. To advance this understanding, Illumina sequencing targeting the 16S rRNA gene was used to evaluate latitudinal patterns of bacterial taxa as well as diversity in surface waters in the Pacific Ocean. Surface water was collected at 37 stations at 370 km intervals in a 16,200 km transect from 71 N to 68 S in the Pacific Ocean from August to November 2003. These samples were collected on Sterivex filters and kept continuously at -80 C until recent processing which produced over 200k reads per site, half of which were discernible down to the genus level. Bray-Curtis analysis of known genera produced 4 major clusters—sub-Arctic/Arctic, tropical, temperate, and sub-Antarctic/Antarctic. Analysis of only the rare (< 1%) genera produced the same 4 major clusters, although the clusters were most congruent in their geographic distribution when only the abundant taxa were included. Key phyla responsible for these groupings include genera of the Proteobacteria and Cyanobacteria, and as expected, include the pronounced presence of Prochlorococcus in the temperate and equatorial regions. However, many robust trends such as unipolar and bipolar distribution in both the abundant (≥1%) and rare (< 1%) genera within phyla Verrucomicrobia, Actinobacteria, and Barteriodetes, were also apparent. The data sheds light on distribution patterns of the Oleibacter, Thalassobius, Olleya, Salegentibacter, Ulvibacter, Bizionia, Pirellula, and many other additional, understudied genera. Of the 655 identified genera, no significant gradients in gamma diversity were apparent when 12 commonly used species and phylogenetic indices were applied.

  7. Gradient Driven Fluctuations

    NASA Technical Reports Server (NTRS)

    Cannell, David

    2005-01-01

    We have worked with our collaborators at the University of Milan (Professor Marzio Giglio and his group-supported by ASI) to define the science required to measure gradient driven fluctuations in the microgravity environment. Such a study would provide an accurate test of the extent to which the theory of fluctuating hydrodynamics can be used to predict the properties of fluids maintained in a stressed, non-equilibrium state. As mentioned above, the results should also provide direct visual insight into the behavior of a variety of fluid systems containing gradients or interfaces, when placed in the microgravity environment. With support from the current grant, we have identified three key systems for detailed investigation. These three systems are: 1) A single-component fluid to be studied in the presence of a temperature gradient; 2) A mixture of two organic liquids to be studied both in the presence of a temperature gradient, which induces a steady-state concentration gradient, and with the temperature gradient removed, but while the concentration gradient is dying by means of diffusion; 3) Various pairs of liquids undergoing free diffusion, including a proteidbuffer solution and pairs of mixtures having different concentrations, to allow us to vary the differences in fluid properties in a controlled manner.

  8. Study of genetic direct search algorithms for function optimization

    NASA Technical Reports Server (NTRS)

    Zeigler, B. P.

    1974-01-01

    The results are presented of a study to determine the performance of genetic direct search algorithms in solving function optimization problems arising in the optimal and adaptive control areas. The findings indicate that: (1) genetic algorithms can outperform standard algorithms in multimodal and/or noisy optimization situations, but suffer from lack of gradient exploitation facilities when gradient information can be utilized to guide the search. (2) For large populations, or low dimensional function spaces, mutation is a sufficient operator. However for small populations or high dimensional functions, crossover applied in about equal frequency with mutation is an optimum combination. (3) Complexity, in terms of storage space and running time, is significantly increased when population size is increased or the inversion operator, or the second level adaptation routine is added to the basic structure.

  9. Mechanisms and seasonal drivers of calcification in the temperate coral Turbinaria reniformis at its latitudinal limits.

    PubMed

    Ross, Claire L; Schoepf, Verena; DeCarlo, Thomas M; McCulloch, Malcolm T

    2018-05-30

    High-latitude coral reefs provide natural laboratories for investigating the mechanisms and limits of coral calcification. While the calcification processes of tropical corals have been studied intensively, little is known about how their temperate counterparts grow under much lower temperature and light conditions. Here, we report the results of a long-term (2-year) study of seasonal changes in calcification rates, photo-physiology and calcifying fluid (cf) chemistry (using boron isotope systematics and Raman spectroscopy) for the coral Turbinaria reniformis growing near its latitudinal limits (34.5° S) along the southern coast of Western Australia. In contrast with tropical corals, calcification rates were found to be threefold higher during winter (16 to 17° C) compared with summer (approx. 21° C), and negatively correlated with light, but lacking any correlation with temperature. These unexpected findings are attributed to a combination of higher chlorophyll a, and hence increased heterotrophy during winter compared with summer, together with the corals' ability to seasonally modulate pH cf , with carbonate ion concentration [Formula: see text] being the main controller of calcification rates. Conversely, calcium ion concentration [Ca 2+ ] cf declined with increasing calcification rates, resulting in aragonite saturation states Ω cf that were stable yet elevated fourfold above seawater values. Our results show that corals growing near their latitudinal limits exert strong physiological control over their cf in order to maintain year-round calcification rates that are insensitive to the unfavourable temperature regimes typical of high-latitude reefs. © 2018 The Author(s).

  10. Prevalence of Clonorchis sinensis Metacercariae in Freshwater Fish from Three Latitudinal Regions of the Korean Peninsula

    PubMed Central

    Cho, Shin-Hyeong; Na, Byoung-Kuk; Kim, Tong-Soo; Kong, Yoon; Eom, Keeseon; Seok, Won-Seok; Lee, Taejoon

    2011-01-01

    A large-scale survey was conducted to investigate the infection status of fresh water fishes with Clonorchis sinensis metacercariae (CsMc) in 3 wide regions, which were tentatively divided by latitudinal levels of the Korean peninsula. A total of 4,071 freshwater fishes were collected from 3 regions, i.e., northern (Gangwon-do: 1,543 fish), middle (Chungcheongbuk-do and Gyeongsangbuk-do: 1,167 fish), and southern areas (Jeollanam-do, Ulsan-si, and Gyeongsangnam-do: 1,361 fish). Each fish was examined by the artificial digestion method from 2003 to 2010. In northern areas, only 11 (0.7%) fish of 2 species, Pungtungia herzi and Squalidus japonicus coreanus from Hantan-gang, Cheolwon-gun, Gangwon-do were infected with av. 2.6 CsMc. In middle areas, 149 (12.8%) fish were infected with av. 164 CsMc. In southern areas, 538 (39.5%) fish were infected with av. 159 CsMc. In the analysis of endemicity in 3 regions with an index fish, P. herzi, 9 (6.2%) of 146 P. herzi from northern areas were infected with av. 2.8 CsMc. In middle areas, 34 (31.8%) of 107 P. herzi were infected with av. 215 CsMc, and in southern areas, 158 (92.9%) of 170 P. herzi were infected with av. 409 CsMc. From these results, it has been confirmed that the infection status of fish with CsMc is obviously different among the 3 latitudinal regions of the Korean peninsula with higher prevalence and burden in southern regions. PMID:22355206

  11. Physiological constraints and latitudinal breeding season in the Canidae.

    PubMed

    Valdespino, Carolina

    2007-01-01

    Physiological strategies that maximize reproductive success may be phylogenetically constrained or might have a plastic response to different environmental conditions. Among mammals, Canidae lend themselves to the study of these two influences on reproductive physiology because all the species studied to date have been characterized as monestrous (i.e., a single ovulatory event per breeding season), suggesting a phylogenetic effect. Greater flexibility could be associated with environments that are less seasonal, such as the tropics; however, little is known for many of the species from this region. To compensate for this lack of data, two regressions were done on the length of the reproductive season relative to the latitudinal distribution of a species: one with raw data and another with phylogenetically independent contrasts. There was a significant negative relationship, independent of phylogeny, with canids that have longer breeding seasons occurring at lower latitudes. In contrast, the pervasiveness of monestrus within Canidae appears to be phylogenetically constrained by their pairing/packing life and is most likely associated with monogamy. The persistence of the monestrous condition is supported by a captive study where a tropical canid, the fennec fox, Vulpes zerda, never exhibited polyestrous cycles despite a constant photoperiod (12L : 12D).

  12. Latitudinal Variations Of The F3 Layer Observed From The SEALION Ionosonde Network

    NASA Astrophysics Data System (ADS)

    Uemoto, J.; Ono, T.; Maruyama, T.; Saito, S.; Iizima, M.; Kumamoto, A.

    2006-12-01

    [INTRODUCTION] The occurrence probability, local time, solar and magnetic activity dependences of the F3 layer have been clarified experimentally from ionosonde observations as well as model calculation, whereas some unexplained problems have remained; It has been reported that the F3 layer was frequently obrved in June solstice season at Fortaleza in Brazil (geographic latitude -4 deg, geographic longitude 322 deg, and dip latitude -5.4 deg) though in this season (local winter season), frequently occurrences of the F3 layer were not predicted from the model calculation with normal values of the E x B drift and meridional neutral wind and seasonal dependence of occurrences at Waltair (17.7 deg, 83.3 deg, 11.5 deg) shows a different tendency from that at Fortaleza. The latter problem seems to result from geographic control or differences of dip latitude between two observation locations, however, its physical mechanism has not been clarified. Then conjugate observations in a magnetic meridional plane are needed. For the purpose of clarifying the mechanism of the F3 layer in more detail, we are analyzing the ionosonde data of the South East Asian Low-latitude IOnosonde Network [SEALION] mainly provided by NiCT which consists of 4 ionosonde stations. In this study, we analyzed ionosonde data observed at Chiang Mai (CMU [18.8 deg, 98.9 deg, 13.0 deg]), Chumphon(CPN [10.7 deg, 99.4 deg, 3.3 deg]) and Kototabang (KTB [-0.2 deg, 100.3 deg, -10.0 deg]). [ANALYSIS] As a result from analyzing ionosonde data on 31st March, 2005, following dip latitudinal differences have been found; At CPN, in the vicinity of the dip equator, the F3 layer moved upward rapidly and disappeared in earlier local time, while at CMU and KTB, in the low dip latitude region, the F3 layer stayed at almost the same altitude and remained to be detectable with longer time duration. [CONCLUSION] From comparing between observation results and the model calculation, it is suggested that such a dip

  13. Biodiversity and distribution of polar freshwater DNA viruses

    PubMed Central

    Aguirre de Cárcer, Daniel; López-Bueno, Alberto; Pearce, David A.; Alcamí, Antonio

    2015-01-01

    Viruses constitute the most abundant biological entities and a large reservoir of genetic diversity on Earth. Despite the recent surge in their study, our knowledge on their actual biodiversity and distribution remains sparse. We report the first metagenomic analysis of Arctic freshwater viral DNA communities and a comparative analysis with other freshwater environments. Arctic viromes are dominated by unknown and single-stranded DNA viruses with no close relatives in the database. These unique viral DNA communities mostly relate to each other and present some minor genetic overlap with other environments studied, including an Arctic Ocean virome. Despite common environmental conditions in polar ecosystems, the Arctic and Antarctic DNA viromes differ at the fine-grain genetic level while sharing a similar taxonomic composition. The study uncovers some viral lineages with a bipolar distribution, suggesting a global dispersal capacity for viruses, and seemingly indicates that viruses do not follow the latitudinal diversity gradient known for macroorganisms. Our study sheds light into the global biogeography and connectivity of viral communities. PMID:26601189

  14. Variations in the structural and functional diversity of zooplankton over vertical and horizontal environmental gradients en route to the Arctic Ocean through the Fram Strait.

    PubMed

    Gluchowska, Marta; Trudnowska, Emilia; Goszczko, Ilona; Kubiszyn, Anna Maria; Blachowiak-Samolyk, Katarzyna; Walczowski, Waldemar; Kwasniewski, Slawomir

    2017-01-01

    A multi-scale approach was used to evaluate which spatial gradient of environmental variability is the most important in structuring zooplankton diversity in the West Spitsbergen Current (WSC). The WSC is the main conveyor of warm and biologically rich Atlantic water to the Arctic Ocean through the Fram Strait. The data set included 85 stratified vertical zooplankton samples (obtained from depths up to 1000 metres) covering two latitudinal sections (76°30'N and 79°N) located across the multi-path WSC system. The results indicate that the most important environmental variables shaping the zooplankton structural and functional diversity and standing stock variability are those associated with depth, whereas variables acting in the horizontal dimension are of lesser importance. Multivariate analysis of the zooplankton assemblages, together with different univariate descriptors of zooplankton diversity, clearly illustrated the segregation of zooplankton taxa in the vertical plane. The epipelagic zone (upper 200 m) hosted plentiful, Oithona similis-dominated assemblages with a high proportion of filter-feeding zooplankton. Although total zooplankton abundance declined in the mesopelagic zone (200-1000 m), zooplankton assemblages in that zone were more diverse and more evenly distributed, with high contributions from both herbivorous and carnivorous taxa. The vertical distribution of integrated biomass (mg DW m-2) indicated that the total zooplankton biomass in the epipelagic and mesopelagic zones was comparable. Environmental gradients acting in the horizontal plane, such as the ones associated with different ice cover and timing of the spring bloom, were reflected in the latitudinal variability in protist community structure and probably caused differences in succession in the zooplankton community. High abundances of Calanus finmarchicus in the WSC core branch suggest the existence of mechanisms advantageous for higher productivity or/and responsible for physical

  15. Evidence of high-elevation amplification versus Arctic amplification

    NASA Astrophysics Data System (ADS)

    Wang, Qixiang; Fan, Xiaohui; Wang, Mengben

    2016-01-01

    Elevation-dependent warming in high-elevation regions and Arctic amplification are of tremendous interest to many scientists who are engaged in studies in climate change. Here, using annual mean temperatures from 2781 global stations for the 1961-2010 period, we find that the warming for the world’s high-elevation stations (>500 m above sea level) is clearly stronger than their low-elevation counterparts; and the high-elevation amplification consists of not only an altitudinal amplification but also a latitudinal amplification. The warming for the high-elevation stations is linearly proportional to the temperature lapse rates along altitudinal and latitudinal gradients, as a result of the functional shape of Stefan-Boltzmann law in both vertical and latitudinal directions. In contrast, neither altitudinal amplification nor latitudinal amplification is found within the Arctic region despite its greater warming than lower latitudes. Further analysis shows that the Arctic amplification is an integrated part of the latitudinal amplification trend for the low-elevation stations (≤500 m above sea level) across the entire low- to high-latitude Northern Hemisphere, also a result of the mathematical shape of Stefan-Boltzmann law but only in latitudinal direction.

  16. Evidence of high-elevation amplification versus Arctic amplification

    PubMed Central

    Wang, Qixiang; Fan, Xiaohui; Wang, Mengben

    2016-01-01

    Elevation-dependent warming in high-elevation regions and Arctic amplification are of tremendous interest to many scientists who are engaged in studies in climate change. Here, using annual mean temperatures from 2781 global stations for the 1961–2010 period, we find that the warming for the world’s high-elevation stations (>500 m above sea level) is clearly stronger than their low-elevation counterparts; and the high-elevation amplification consists of not only an altitudinal amplification but also a latitudinal amplification. The warming for the high-elevation stations is linearly proportional to the temperature lapse rates along altitudinal and latitudinal gradients, as a result of the functional shape of Stefan-Boltzmann law in both vertical and latitudinal directions. In contrast, neither altitudinal amplification nor latitudinal amplification is found within the Arctic region despite its greater warming than lower latitudes. Further analysis shows that the Arctic amplification is an integrated part of the latitudinal amplification trend for the low-elevation stations (≤500 m above sea level) across the entire low- to high-latitude Northern Hemisphere, also a result of the mathematical shape of Stefan-Boltzmann law but only in latitudinal direction. PMID:26753547

  17. Validation of measured poleward TEC gradient using multi-station GPS with Artificial Neural Network based TEC model in low latitude region for developing predictive capability of ionospheric scintillation

    NASA Astrophysics Data System (ADS)

    Sur, D.; Paul, A.

    2017-12-01

    The equatorial ionosphere shows sharp diurnal and latitudinal Total Electron Content (TEC) variations over a major part of the day. Equatorial ionosphere also exhibits intense post-sunset ionospheric irregularities. Accurate prediction of TEC in these low latitudes is not possible from standard ionospheric models. An Artificial Neural Network (ANN) based Vertical TEC (VTEC) model has been designed using TEC data in low latitude Indian longitude sector for accurate prediction of VTEC. GPS TEC data from the stations Calcutta (22.58°N, 88.38°E geographic, magnetic dip 32°), Baharampore (24.09°N, 88.25°E geographic, magnetic dip 35°) and Siliguri (26.72°N, 88.39°E geographic; magnetic dip 40°) are used as training dataset for the duration of January 2007-September 2011. Poleward VTEC gradients from northern EIA crest to region beyond EIA crest have been calculated from measured VTEC and compared with that obtained from ANN based VTEC model. TEC data from Calcutta and Siliguri are used to compute VTEC gradients during April 2013 and August-September 2013. It has been observed that poleward VTEC gradient computed from ANN based TEC model has shown good correlation with measured values during vernal and autumnal equinoxes of high solar activity periods of 2013. Possible correlation between measured poleward TEC gradients and post-sunset scintillations (S4 ≥ 0.4) from northern crest of EIA has been observed in this paper. From the observation, a suitable threshold poleward VTEC gradient has been proposed for possible occurrence of post-sunset scintillations at northern crest of EIA along 88°E longitude. Poleward VTEC gradients obtained from ANN based VTEC model are used to forecast possible ionospheric scintillation after post-sunset period using the threshold value. It has been observed that these predicted VTEC gradients obtained from ANN based VTEC model can forecast post-sunset L-band scintillation with an accuracy of 67% to 82% in this dynamic low latitude

  18. Theoretical predictions of latitude dependencies in the solar wind

    NASA Technical Reports Server (NTRS)

    Winge, C. R., Jr.; Coleman, P. J., Jr.

    1974-01-01

    Results are presented which were obtained with the Winge-Coleman model for theoretical predictions of latitudinal dependencies in the solar wind. A first-order expansion is described which allows analysis of first-order latitudinal variations in the coronal boundary conditions and results in a second-order partial differential equation for the perturbation stream function. Latitudinal dependencies are analytically separated out in the form of Legendre polynomials and their derivative, and are reduced to the solution of radial differential equations. This analysis is shown to supply an estimate of how large the coronal variation in latitude must be to produce an 11 km/sec/deg gradient in the radial velocity of the solar wind, assuming steady-state processes.

  19. Soil Carbon Stocks in a Shifting Ecosystem; Climate Induced Migration of Mangroves into Salt Marsh

    NASA Astrophysics Data System (ADS)

    Simpson, L.; Osborne, T.; Feller, I. C.

    2015-12-01

    Across the globe, coastal wetland vegetation distributions are changing in response to climate change. The increase in global average surface temperature has already caused shifts in the structure and distribution of many ecological communities. In parts of the southeastern United States, increased winter temperatures have resulted in the poleward range expansion of mangroves at the expense of salt marsh habitat. Our work aims to document carbon storage in the salt marsh - mangrove ecotone and any potential changes in this reservoir that may ensue due to the shifting range of this habitat. Differences in SOM and C stocks along a latitudinal gradient on the east coast of Florida will be presented. The gradient studied spans 342 km and includes pure mangrove habitat, the salt marsh - mangrove ecotone, and pure salt marsh habitat.This latitudinal gradient gives us an exceptional opportunity to document and investigate ecosystem soil C modifications as mangroves transgress into salt marsh habitat due to climatic change.

  20. Genetic diversity patterns of arbuscular mycorrhizal fungi associated with the mycoheterotroph Arachnitis uniflora Phil. (Corsiaceae).

    PubMed

    Renny, Mauricio; Acosta, M Cristina; Cofré, Noelia; Domínguez, Laura S; Bidartondo, Martin I; Sérsic, Alicia N

    2017-06-01

    Arachnitis uniflora is a mycoheterotrophic plant that exploits arbuscular mycorrhizal fungi of neighbouring plants. We tested A. uniflora 's specificity towards fungi across its large latitudinal range, as well as the role of historical events and current environmental, geographical and altitudinal variables on fungal genetic diversity. Arachnitis uniflora mycorrhizas were sampled at 25 sites. Fungal phylogenetic relationships were reconstructed, genetic diversity was calculated and the main divergent lineages were dated. Phylogeographical analysis was performed with the main fungal clade. Fungal diversity correlations with environmental factors were investigated. Glomeraceae fungi dominated, with a main clade that likely originated in the Upper Cretaceous and diversified in the Miocene. Two other arbuscular mycorrhizal fungal families not previously known to be targeted by A. uniflora were detected rarely and appear to be facultative associations. High genetic diversity, found in Bolivia and both northern and southern Patagonia, was correlated with temperature, rainfall and soil features. Fungal genetic diversity and its distribution can be explained by the ancient evolutionary history of the target fungi and by micro-scale environmental conditions with a geographical mosaic pattern. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  1. Gradient zone boundary control in salt gradient solar ponds

    DOEpatents

    Hull, John R.

    1984-01-01

    A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.

  2. Gradient zone-boundary control in salt-gradient solar ponds

    DOEpatents

    Hull, J.R.

    1982-09-29

    A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizeable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.

  3. Evolutionary and plastic responses of freshwater invertebrates to climate change: realized patterns and future potential

    PubMed Central

    Stoks, Robby; Geerts, Aurora N; De Meester, Luc

    2014-01-01

    We integrated the evidence for evolutionary and plastic trait changes in situ in response to climate change in freshwater invertebrates (aquatic insects and zooplankton). The synthesis on the trait changes in response to the expected reductions in hydroperiod and increases in salinity indicated little evidence for adaptive, plastic, and genetic trait changes and for local adaptation. With respect to responses to temperature, there are many studies on temporal trait changes in phenology and body size in the wild that are believed to be driven by temperature increases, but there is a general lack of rigorous demonstration whether these trait changes are genetically based, adaptive, and causally driven by climate change. Current proof for genetic trait changes under climate change in freshwater invertebrates stems from a limited set of common garden experiments replicated in time. Experimental thermal evolution experiments and common garden warming experiments associated with space-for-time substitutions along latitudinal gradients indicate that besides genetic changes, also phenotypic plasticity and evolution of plasticity are likely to contribute to the observed phenotypic changes under climate change in aquatic invertebrates. Apart from plastic and genetic thermal adjustments, also genetic photoperiod adjustments are widespread and may even dominate the observed phenological shifts. PMID:24454547

  4. Evolutionary and plastic responses of freshwater invertebrates to climate change: realized patterns and future potential.

    PubMed

    Stoks, Robby; Geerts, Aurora N; De Meester, Luc

    2014-01-01

    We integrated the evidence for evolutionary and plastic trait changes in situ in response to climate change in freshwater invertebrates (aquatic insects and zooplankton). The synthesis on the trait changes in response to the expected reductions in hydroperiod and increases in salinity indicated little evidence for adaptive, plastic, and genetic trait changes and for local adaptation. With respect to responses to temperature, there are many studies on temporal trait changes in phenology and body size in the wild that are believed to be driven by temperature increases, but there is a general lack of rigorous demonstration whether these trait changes are genetically based, adaptive, and causally driven by climate change. Current proof for genetic trait changes under climate change in freshwater invertebrates stems from a limited set of common garden experiments replicated in time. Experimental thermal evolution experiments and common garden warming experiments associated with space-for-time substitutions along latitudinal gradients indicate that besides genetic changes, also phenotypic plasticity and evolution of plasticity are likely to contribute to the observed phenotypic changes under climate change in aquatic invertebrates. Apart from plastic and genetic thermal adjustments, also genetic photoperiod adjustments are widespread and may even dominate the observed phenological shifts.

  5. Dai-Kou type conjugate gradient methods with a line search only using gradient.

    PubMed

    Huang, Yuanyuan; Liu, Changhe

    2017-01-01

    In this paper, the Dai-Kou type conjugate gradient methods are developed to solve the optimality condition of an unconstrained optimization, they only utilize gradient information and have broader application scope. Under suitable conditions, the developed methods are globally convergent. Numerical tests and comparisons with the PRP+ conjugate gradient method only using gradient show that the methods are efficient.

  6. Dose gradient curve: A new tool for evaluating dose gradient.

    PubMed

    Sung, KiHoon; Choi, Young Eun

    2018-01-01

    Stereotactic radiotherapy, which delivers an ablative high radiation dose to a target volume for maximum local tumor control, requires a rapid dose fall-off outside the target volume to prevent extensive damage to nearby normal tissue. Currently, there is no tool to comprehensively evaluate the dose gradient near the target volume. We propose the dose gradient curve (DGC) as a new tool to evaluate the quality of a treatment plan with respect to the dose fall-off characteristics. The average distance between two isodose surfaces was represented by the dose gradient index (DGI) estimated by a simple equation using the volume and surface area of isodose levels. The surface area was calculated by mesh generation and surface triangulation. The DGC was defined as a plot of the DGI of each dose interval as a function of the dose. Two types of DGCs, differential and cumulative, were generated. The performance of the DGC was evaluated using stereotactic radiosurgery plans for virtual targets. Over the range of dose distributions, the dose gradient of each dose interval was well-characterized by the DGC in an easily understandable graph format. Significant changes in the DGC were observed reflecting the differences in planning situations and various prescription doses. The DGC is a rational method for visualizing the dose gradient as the average distance between two isodose surfaces; the shorter the distance, the steeper the dose gradient. By combining the DGC with the dose-volume histogram (DVH) in a single plot, the DGC can be utilized to evaluate not only the dose gradient but also the target coverage in routine clinical practice.

  7. Dose gradient curve: A new tool for evaluating dose gradient

    PubMed Central

    Choi, Young Eun

    2018-01-01

    Purpose Stereotactic radiotherapy, which delivers an ablative high radiation dose to a target volume for maximum local tumor control, requires a rapid dose fall-off outside the target volume to prevent extensive damage to nearby normal tissue. Currently, there is no tool to comprehensively evaluate the dose gradient near the target volume. We propose the dose gradient curve (DGC) as a new tool to evaluate the quality of a treatment plan with respect to the dose fall-off characteristics. Methods The average distance between two isodose surfaces was represented by the dose gradient index (DGI) estimated by a simple equation using the volume and surface area of isodose levels. The surface area was calculated by mesh generation and surface triangulation. The DGC was defined as a plot of the DGI of each dose interval as a function of the dose. Two types of DGCs, differential and cumulative, were generated. The performance of the DGC was evaluated using stereotactic radiosurgery plans for virtual targets. Results Over the range of dose distributions, the dose gradient of each dose interval was well-characterized by the DGC in an easily understandable graph format. Significant changes in the DGC were observed reflecting the differences in planning situations and various prescription doses. Conclusions The DGC is a rational method for visualizing the dose gradient as the average distance between two isodose surfaces; the shorter the distance, the steeper the dose gradient. By combining the DGC with the dose-volume histogram (DVH) in a single plot, the DGC can be utilized to evaluate not only the dose gradient but also the target coverage in routine clinical practice. PMID:29698471

  8. Adaptations to "Thermal Time" Constraints in Papilio: Latitudinal and Local Size Clines Differ in Response to Regional Climate Change.

    PubMed

    Scriber, J Mark; Elliot, Ben; Maher, Emily; McGuire, Molly; Niblack, Marjie

    2014-01-21

    Adaptations to "thermal time" (=Degree-day) constraints on developmental rates and voltinism for North American tiger swallowtail butterflies involve most life stages, and at higher latitudes include: smaller pupae/adults; larger eggs; oviposition on most nutritious larval host plants; earlier spring adult emergences; faster larval growth and shorter molting durations at lower temperatures. Here we report on forewing sizes through 30 years for both the northern univoltine P. canadensis (with obligate diapause) from the Great Lakes historical hybrid zone northward to central Alaska (65° N latitude), and the multivoltine, P. glaucus from this hybrid zone southward to central Florida (27° N latitude). Despite recent climate warming, no increases in mean forewing lengths of P. glaucus were observed at any major collection location (FL to MI) from the 1980s to 2013 across this long latitudinal transect (which reflects the "converse of Bergmann's size Rule", with smaller females at higher latitudes). Unlike lower latitudes, the Alaska, Ontonogon, and Chippewa/Mackinac locations (for P. canadensis) showed no significant increases in D-day accumulations, which could explain lack of size change in these northernmost locations. As a result of 3-4 decades of empirical data from major collection sites across these latitudinal clines of North America, a general "voltinism/size/D-day" model is presented, which more closely predicts female size based on D-day accumulations, than does latitude. However, local "climatic cold pockets" in northern Michigan and Wisconsin historically appeared to exert especially strong size constraints on female forewing lengths, but forewing lengths quickly increased with local summer warming during the recent decade, especially near the warming edges of the cold pockets. Results of fine-scale analyses of these "cold pockets" are in contrast to non-significant changes for other Papilio populations seen across the latitudinal transect for P. glaucus

  9. Gradient Pre-Emphasis to Counteract First-Order Concomitant Fields on Asymmetric MRI Gradient Systems

    PubMed Central

    Tao, Shengzhen; Weavers, Paul T.; Trzasko, Joshua D.; Shu, Yunhong; Huston, John; Lee, Seung-Kyun; Frigo, Louis M.; Bernstein, Matt A.

    2016-01-01

    PURPOSE To develop a gradient pre-emphasis scheme that prospectively counteracts the effects of the first-order concomitant fields for any arbitrary gradient waveform played on asymmetric gradient systems, and to demonstrate the effectiveness of this approach using a real-time implementation on a compact gradient system. METHODS After reviewing the first-order concomitant fields that are present on asymmetric gradients, a generalized gradient pre-emphasis model assuming arbitrary gradient waveforms is developed to counteract their effects. A numerically straightforward, simple to implement approximate solution to this pre-emphasis problem is derived, which is compatible with the current hardware infrastructure used on conventional MRI scanners for eddy current compensation. The proposed method was implemented on the gradient driver sub-system, and its real-time use was tested using a series of phantom and in vivo data acquired from 2D Cartesian phase-difference, echo-planar imaging (EPI) and spiral acquisitions. RESULTS The phantom and in vivo results demonstrate that unless accounted for, first-order concomitant fields introduce considerable phase estimation error into the measured data and result in images exhibiting spatially dependent blurring/distortion. The resulting artifacts are effectively prevented using the proposed gradient pre-emphasis. CONCLUSION An efficient and effective gradient pre-emphasis framework is developed to counteract the effects of first-order concomitant fields of asymmetric gradient systems. PMID:27373901

  10. Ternary gradient metal-organic frameworks.

    PubMed

    Liu, Chong; Rosi, Nathaniel L

    2017-09-08

    Gradient MOFs contain directional gradients of either structure or functionality. We have successfully prepared two ternary gradient MOFs based on bMOF-100 analogues, namely bMOF-100/102/106 and bMOF-110/100/102, via cascade ligand exchange reactions. The cubic unit cell parameter discrepancy within an individual ternary gradient MOF crystal is as large as ∼1 nm, demonstrating the impressive compatibility and flexibility of the component MOF materials. Because of the presence of a continuum of unit cells, the pore diameters within individual crystals also change in a gradient fashion from ∼2.5 nm to ∼3.0 nm for bMOF-100/102/106, and from ∼2.2 nm to ∼2.7 nm for bMOF-110/100/102, indicating significant porosity gradients. Like previously reported binary gradient MOFs, the composition of the ternary gradient MOFs can be easily controlled by adjusting the reaction conditions. Finally, X-ray diffraction and microspectrophotometry were used to analyse fractured gradient MOF crystals by comparing unit cell parameters and absorbance spectra at different locations, thus revealing the profile of heterogeneity (i.e. gradient distribution of properties) and further confirming the formation of ternary gradient MOFs.

  11. Shrub type dominates the vertical distribution of leaf C : N : P stoichiometry across an extensive altitudinal gradient

    NASA Astrophysics Data System (ADS)

    Zhao, Wenqiang; Reich, Peter B.; Yu, Qiannan; Zhao, Ning; Yin, Chunying; Zhao, Chunzhang; Li, Dandan; Hu, Jun; Li, Ting; Yin, Huajun; Liu, Qing

    2018-04-01

    Understanding leaf stoichiometric patterns is crucial for improving predictions of plant responses to environmental changes. Leaf stoichiometry of terrestrial ecosystems has been widely investigated along latitudinal and longitudinal gradients. However, very little is known about the vertical distribution of leaf C : N : P and the relative effects of environmental parameters, especially for shrubs. Here, we analyzed the shrub leaf C, N and P patterns in 125 mountainous sites over an extensive altitudinal gradient (523-4685 m) on the Tibetan Plateau. Results showed that the shrub leaf C and C : N were 7.3-47.5 % higher than those of other regional and global flora, whereas the leaf N and N : P were 10.2-75.8 % lower. Leaf C increased with rising altitude and decreasing temperature, supporting the physiological acclimation mechanism that high leaf C (e.g., alpine or evergreen shrub) could balance the cell osmotic pressure and resist freezing. The largest leaf N and high leaf P occurred in valley region (altitude 1500 m), likely due to the large nutrient leaching from higher elevations, faster litter decomposition and nutrient resorption ability of deciduous broadleaf shrub. Leaf N : P ratio further indicated increasing N limitation at higher altitudes. Interestingly, drought severity was the only climatic factor positively correlated with leaf N and P, which was more appropriate for evaluating the impact of water status than precipitation. Among the shrub ecosystem and functional types (alpine, subalpine, montane, valley, evergreen, deciduous, broadleaf, and conifer), their leaf element contents and responses to environments were remarkably different. Shrub type was the largest contributor to the total variations in leaf stoichiometry, while climate indirectly affected the leaf C : N : P via its interactive effects on shrub type or soil. Collectively, the large heterogeneity in shrub type was the most important factor explaining the overall leaf C : N : P variations

  12. Genetic Risk, Coronary Heart Disease Events, and the Clinical Benefit of Statin Therapy

    PubMed Central

    Smith, JG; Chasman, DI; Caulfield, M; Devlin, JJ; Nordio, F; Hyde, C; Cannon, CP; Sacks, F; Poulter, N; Sever, P; Ridker, PM; Braunwald, E; Melander, O

    2015-01-01

    Background Genetic variants have been associated with the risk of coronary heart disease (CHD). We tested whether a composite of these variants could identify the risk of both incident as well as recurrent CHD events and distinguish individuals who derived greater clinical benefit from statin therapy. Methods A community-based cohort and four randomized controlled trials of both primary (JUPITER and ASCOT) and secondary (CARE and PROVE IT-TIMI 22) prevention with statin therapy totaling 48,421 individuals and 3,477 events were included in these analyses. We examined the association of a genetic risk score based on 27 genetic variants with incident or recurrent CHD, adjusting for established clinical predictors. We then investigated the relative and absolute risk reductions in CHD events with statin therapy stratified by genetic risk. Data from studies were combined using meta-analysis. Findings When individuals were divided into low (quintile 1), intermediate (quintiles 2-4), and high (quintile 5) genetic risk categories, a significant gradient of risk for incident or recurrent CHD was demonstrated with the multivariable-adjusted HRs (95% CI) for CHD for the intermediate and high genetic risk categories vs. low genetic risk category being 1.32 (1.20-1.46, P<0.0001) and 1.71 (1.54-1.91, P<0.0001), respectively. In terms of the benefit of statin therapy in the four randomized trials, there was a significant gradient of increasing relative risk reduction across the low, intermediate, and high genetic risk categories (13%, 29%, and 48%, P=0.0277). Similarly, greater absolute risk reductions were seen in those individuals in higher genetic risk categories (P=0.0101), resulting in an approximate three-fold gradient in the number needed to treat (NNT) in the primary prevention trials. Specifically, in the primary prevention trials, the NNT to prevent one MACE over 10 years for the low, intermediate, and high GRS individuals was 66, 42, and 25 in JUPITER and 57, 47, and 20

  13. Apparatus for investigating the reactions of soft-bodied invertebrates to controlled humidity gradients

    PubMed Central

    Russell, Joshua; Pierce-Shimomura, Jonathan T.

    2015-01-01

    Background While many studies have assayed behavioral responses of animals to chemical, temperature and light gradients, fewer studies have assayed how animals respond to humidity gradients. Our novel humidity chamber has allowed us to study the neuromolecular basis of humidity sensation in the nematode Caenorhabditis elegans (Russell et al. 2014). New Method We describe an easy-to-construct, low-cost humidity chamber to assay the behavior of small animals, including soft-bodied invertebrates, in controlled humidity gradients. Results We show that our humidity-chamber design is amenable to soft-bodied invertebrates and can produce reliable gradients ranging 0.3–8% RH/cm across a 9-cm long x 7.5-cm wide gel-covered arena. Comparison with Existing Method(s) Previous humidity chambers relied on circulating dry and moist air to produce a steep humidity gradient in a small arena (e.g. Sayeed & Benzer, 1996). To remove the confound of moving air that may elicit mechanical responses independent of humidity responses, our chamber controlled the humidity gradient using reservoirs of hygroscopic materials. Additionally, to better observe the behavioral mechanisms for humidity responses, our chamber provided a larger arena. Although similar chambers have been described previously, these approaches were not suitable for soft-bodied invertebrates or for easy imaging of behavior because they required that animals move across wire or fabric mesh. Conclusion The general applicability of our humidity chamber overcomes limitations of previous designs and opens the door to observe the behavioral responses of soft-bodied invertebrates, including genetically powerful C. elegans and Drosophila larvae. PMID:25176025

  14. $L_{0}$ Gradient Projection.

    PubMed

    Ono, Shunsuke

    2017-04-01

    Minimizing L 0 gradient, the number of the non-zero gradients of an image, together with a quadratic data-fidelity to an input image has been recognized as a powerful edge-preserving filtering method. However, the L 0 gradient minimization has an inherent difficulty: a user-given parameter controlling the degree of flatness does not have a physical meaning since the parameter just balances the relative importance of the L 0 gradient term to the quadratic data-fidelity term. As a result, the setting of the parameter is a troublesome work in the L 0 gradient minimization. To circumvent the difficulty, we propose a new edge-preserving filtering method with a novel use of the L 0 gradient. Our method is formulated as the minimization of the quadratic data-fidelity subject to the hard constraint that the L 0 gradient is less than a user-given parameter α . This strategy is much more intuitive than the L 0 gradient minimization because the parameter α has a clear meaning: the L 0 gradient value of the output image itself, so that one can directly impose a desired degree of flatness by α . We also provide an efficient algorithm based on the so-called alternating direction method of multipliers for computing an approximate solution of the nonconvex problem, where we decompose it into two subproblems and derive closed-form solutions to them. The advantages of our method are demonstrated through extensive experiments.

  15. Gradient pre-emphasis to counteract first-order concomitant fields on asymmetric MRI gradient systems.

    PubMed

    Tao, Shengzhen; Weavers, Paul T; Trzasko, Joshua D; Shu, Yunhong; Huston, John; Lee, Seung-Kyun; Frigo, Louis M; Bernstein, Matt A

    2017-06-01

    To develop a gradient pre-emphasis scheme that prospectively counteracts the effects of the first-order concomitant fields for any arbitrary gradient waveform played on asymmetric gradient systems, and to demonstrate the effectiveness of this approach using a real-time implementation on a compact gradient system. After reviewing the first-order concomitant fields that are present on asymmetric gradients, we developed a generalized gradient pre-emphasis model assuming arbitrary gradient waveforms to counteract their effects. A numerically straightforward, easily implemented approximate solution to this pre-emphasis problem was derived that was compatible with the current hardware infrastructure of conventional MRI scanners for eddy current compensation. The proposed method was implemented on the gradient driver subsystem, and its real-time use was tested using a series of phantom and in vivo data acquired from two-dimensional Cartesian phase-difference, echo-planar imaging, and spiral acquisitions. The phantom and in vivo results demonstrated that unless accounted for, first-order concomitant fields introduce considerable phase estimation error into the measured data and result in images with spatially dependent blurring/distortion. The resulting artifacts were effectively prevented using the proposed gradient pre-emphasis. We have developed an efficient and effective gradient pre-emphasis framework to counteract the effects of first-order concomitant fields of asymmetric gradient systems. Magn Reson Med 77:2250-2262, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  16. The Price Equation, Gradient Dynamics, and Continuous Trait Game Theory.

    PubMed

    Lehtonen, Jussi

    2018-01-01

    A recent article convincingly nominated the Price equation as the fundamental theorem of evolution and used it as a foundation to derive several other theorems. A major section of evolutionary theory that was not addressed is that of game theory and gradient dynamics of continuous traits with frequency-dependent fitness. Deriving fundamental results in these fields under the unifying framework of the Price equation illuminates similarities and differences between approaches and allows a simple, unified view of game-theoretical and dynamic concepts. Using Taylor polynomials and the Price equation, I derive a dynamic measure of evolutionary change, a condition for singular points, the convergence stability criterion, and an alternative interpretation of evolutionary stability. Furthermore, by applying the Price equation to a multivariable Taylor polynomial, the direct fitness approach to kin selection emerges. Finally, I compare these results to the mean gradient equation of quantitative genetics and the canonical equation of adaptive dynamics.

  17. Gradient waveform pre-emphasis based on the gradient system transfer function.

    PubMed

    Stich, Manuel; Wech, Tobias; Slawig, Anne; Ringler, Ralf; Dewdney, Andrew; Greiser, Andreas; Ruyters, Gudrun; Bley, Thorsten A; Köstler, Herbert

    2018-02-25

    The gradient system transfer function (GSTF) has been used to describe the distorted k-space trajectory for image reconstruction. The purpose of this work was to use the GSTF to determine the pre-emphasis for an undistorted gradient output and intended k-space trajectory. The GSTF of the MR system was determined using only standard MR hardware without special equipment such as field probes or a field camera. The GSTF was used for trajectory prediction in image reconstruction and for a gradient waveform pre-emphasis. As test sequences, a gradient-echo sequence with phase-encoding gradient modulation and a gradient-echo sequence with a spiral read-out trajectory were implemented and subsequently applied on a structural phantom and in vivo head measurements. Image artifacts were successfully suppressed by applying the GSTF-based pre-emphasis. Equivalent results are achieved with images acquired using GSTF-based post-correction of the trajectory as a part of image reconstruction. In contrast, the pre-emphasis approach allows reconstruction using the initially intended trajectory. The artifact suppression shown for two sequences demonstrates that the GSTF can serve for a novel pre-emphasis. A pre-emphasis based on the GSTF information can be applied to any arbitrary sequence type. © 2018 International Society for Magnetic Resonance in Medicine.

  18. Latitudinal and Seasonal Investigations of Storm-Time TEC Variation

    NASA Astrophysics Data System (ADS)

    Adimula, I. A.; Oladipo, O. A.; Adebiyi, S. J.

    2016-07-01

    The ionosphere responds markedly and unpredictably to varying magnetospheric energy inputs caused by solar disturbances on the geospace. Knowledge of the impact of the space weather events on the ionosphere is important to assess the environmental effect on the operations of ground- and space-based technologies. Thus, global positioning system (GPS) measurements from the international GNSS service (IGS) database were used to investigate the ionospheric response to 56 geomagnetic storm events at six different latitudes comprising the northern and southern hemispheres in the Afro-European sector. Statistical distributions of total electron content (TEC) response show that during the main phase of the storms, enhancement of TEC is more pronounced in most of the seasons, regardless of the latitude and hemisphere. However, a strong seasonal dependence appears in the TEC response during the recovery phase. Depletion of TEC is majorly observed at the high latitude stations, and its appearance at lower latitudes is seasonally dependent. In summer hemisphere, the depletion of TEC is more pronounced in nearly all the latitudinal bands. In winter hemisphere, enhancement as well as depletion of TEC is observed over the high latitude, while enhancement is majorly observed over the mid and low latitudes. In equinoxes, the storm-time TEC distribution shows a fairly consistent characteristic with the summer distribution, particularly in the northern hemisphere.

  19. Latitudinal dependence of variations in stratospheric NO2 content

    NASA Astrophysics Data System (ADS)

    Gruzdev, A. N.

    2008-06-01

    Diurnal and annual variations in the NO2 total content (TC), the effect of its decrease owing to the products of the eruption of Mt. Pinatubo, its variations during an 11-year cycle of solar activity, and its linear trends are analyzed on the basis of data obtained from the ground-based spectrometric measurements of the NO2 TC in stratospheric vertical columns over the stations of the Network for the Detection of Atmospheric Composition Change. Latitudinal dependence of the indicated variations and trends is revealed. The annual estimates of the linear trends of the NO2 TC are found to be mostly positive for the middle and low latitudes of the Southern Hemisphere and negative for the middle and low latitudes of the Northern Hemisphere. The maximum values of the positive and negative trends amount to ˜10% per ten years. In the high and polar latitudes of both hemispheres, the annual trend estimates are statistically insignificant. Seasonal estimates of the trends may differ from their annual estimates. The trends and solar-activity effect in the NO2 TC, which were estimated by using the two-dimensional model SOCRATES, as well as the analytical estimates of a zonal mean trend of the NO2 TC, on the whole, significantly differ from the estimates obtained from the measurements.

  20. Oceanographic variation influences spatial genomic structure in the sea scallop, Placopecten magellanicus.

    PubMed

    Van Wyngaarden, Mallory; Snelgrove, Paul V R; DiBacco, Claudio; Hamilton, Lorraine C; Rodríguez-Ezpeleta, Naiara; Zhan, Luyao; Beiko, Robert G; Bradbury, Ian R

    2018-03-01

    Environmental factors can influence diversity and population structure in marine species and accurate understanding of this influence can both improve fisheries management and help predict responses to environmental change. We used 7163 SNPs derived from restriction site-associated DNA sequencing genotyped in 245 individuals of the economically important sea scallop, Placopecten magellanicus , to evaluate the correlations between oceanographic variation and a previously identified latitudinal genomic cline. Sea scallops span a broad latitudinal area (>10 degrees), and we hypothesized that climatic variation significantly drives clinal trends in allele frequency. Using a large environmental dataset, including temperature, salinity, chlorophyll a, and nutrient concentrations, we identified a suite of SNPs (285-621, depending on analysis and environmental dataset) potentially under selection through correlations with environmental variation. Principal components analysis of different outlier SNPs and environmental datasets revealed similar northern and southern clusters, with significant associations between the first axes of each ( R 2 adj  = .66-.79). Multivariate redundancy analysis of outlier SNPs and the environmental principal components indicated that environmental factors explained more than 32% of the variance. Similarly, multiple linear regressions and random-forest analysis identified winter average and minimum ocean temperatures as significant parameters in the link between genetic and environmental variation. This work indicates that oceanographic variation is associated with the observed genomic cline in this species and that seasonal periods of extreme cold may restrict gene flow along a latitudinal gradient in this marine benthic bivalve. Incorporating this finding into management may improve accuracy of management strategies and future predictions.

  1. Elevational ranges of birds on a tropical montane gradient lag behind warming temperatures.

    PubMed

    Forero-Medina, German; Terborgh, John; Socolar, S Jacob; Pimm, Stuart L

    2011-01-01

    Species may respond to a warming climate by moving to higher latitudes or elevations. Shifts in geographic ranges are common responses in temperate regions. For the tropics, latitudinal temperature gradients are shallow; the only escape for species may be to move to higher elevations. There are few data to suggest that they do. Yet, the greatest loss of species from climate disruption may be for tropical montane species. We repeat a historical transect in Peru and find an average upward shift of 49 m for 55 bird species over a 41 year interval. This shift is significantly upward, but also significantly smaller than the 152 m one expects from warming in the region. To estimate the expected shift in elevation we first determined the magnitude of warming in the locality from historical data. Then we used the temperature lapse rate to infer the required shift in altitude to compensate for warming. The range shifts in elevation were similar across different trophic guilds. Endothermy may provide birds with some flexibility to temperature changes and allow them to move less than expected. Instead of being directly dependent on temperature, birds may be responding to gradual changes in the nature of the habitat or availability of food resources, and presence of competitors. If so, this has important implications for estimates of mountaintop extinctions from climate change.

  2. Highly efficient intracellular transduction in three-dimensional gradients for programming cell fate.

    PubMed

    Eltaher, Hoda M; Yang, Jing; Shakesheff, Kevin M; Dixon, James E

    2016-09-01

    Fundamental behaviour such as cell fate, growth and death are mediated through the control of key genetic transcriptional regulators. These regulators are activated or repressed by the integration of multiple signalling molecules in spatio-temporal gradients. Engineering these gradients is complex but considered key in controlling tissue formation in regenerative medicine approaches. Direct programming of cells using exogenously delivered transcription factors can by-pass growth factor complexity but there is still a requirement to deliver such activity spatio-temporally. We previously developed a technology termed GAG-binding enhanced transduction (GET) to efficiently deliver a variety of cargoes intracellularly using GAG-binding domains to promote cell targeting, and cell penetrating peptides (CPPs) to allow cell entry. Herein we demonstrate that GET can be used in a three dimensional (3D) hydrogel matrix to produce gradients of intracellular transduction of mammalian cells. Using a compartmentalised diffusion model with a source-gel-sink (So-G-Si) assembly, we created gradients of reporter proteins (mRFP1-tagged) and a transcription factor (TF, myogenic master regulator MyoD) and showed that GET can be used to deliver molecules into cells spatio-temporally by monitoring intracellular transduction and gene expression programming as a function of location and time. The ability to spatio-temporally control the intracellular delivery of functional proteins will allow the establishment of gradients of cell programming in hydrogels and approaches to direct cellular behaviour for many regenerative medicine applications. Regenerative medicine aims to reform functional biological tissues by controlling cell behaviour. Growth factors (GFs) are soluble cues presented to cells in spatio-temporal gradients and play important roles programming cell fate and gene expression. The efficient transduction of cells by GET (Glycosaminoglycan-enhanced transducing

  3. Intraspecific morphological and genetic variation of common species predicts ranges of threatened ones

    PubMed Central

    Fuller, Trevon L.; Thomassen, Henri A.; Peralvo, Manuel; Buermann, Wolfgang; Milá, Borja; Kieswetter, Charles M.; Jarrín-V, Pablo; Devitt, Susan E. Cameron; Mason, Eliza; Schweizer, Rena M.; Schlunegger, Jasmin; Chan, Janice; Wang, Ophelia; Schneider, Christopher J.; Pollinger, John P.; Saatchi, Sassan; Graham, Catherine H.; Wayne, Robert K.; Smith, Thomas B.

    2013-01-01

    Predicting where threatened species occur is useful for making informed conservation decisions. However, because they are usually rare, surveying threatened species is often expensive and time intensive. Here, we show how regions where common species exhibit high genetic and morphological divergence among populations can be used to predict the occurrence of species of conservation concern. Intraspecific variation of common species of birds, bats and frogs from Ecuador were found to be a significantly better predictor for the occurrence of threatened species than suites of environmental variables or the occurrence of amphibians and birds. Fully 93 per cent of the threatened species analysed had their range adequately represented by the geographical distribution of the morphological and genetic variation found in seven common species. Both higher numbers of threatened species and greater genetic and morphological variation of common species occurred along elevation gradients. Higher levels of intraspecific divergence may be the result of disruptive selection and/or introgression along gradients. We suggest that collecting data on genetic and morphological variation in common species can be a cost effective tool for conservation planning, and that future biodiversity inventories include surveying genetic and morphological data of common species whenever feasible. PMID:23595273

  4. Using geometric morphometric visualizations of directional selection gradients to investigate morphological differentiation.

    PubMed

    Weaver, Timothy D; Gunz, Philipp

    2018-04-01

    Researchers studying extant and extinct taxa are often interested in identifying the evolutionary processes that have lead to the morphological differences among the taxa. Ideally, one could distinguish the influences of neutral evolutionary processes (genetic drift, mutation) from natural selection, and in situations for which selection is implicated, identify the targets of selection. The directional selection gradient is an effective tool for investigating evolutionary process, because it can relate form (size and shape) differences between taxa to the variation and covariation found within taxa. However, although most modern morphometric analyses use the tools of geometric morphometrics (GM) to analyze landmark data, to date, selection gradients have mainly been calculated from linear measurements. To address this methodological gap, here we present a GM approach for visualizing and comparing between-taxon selection gradients with each other, associated difference vectors, and "selection" gradients from neutral simulations. To exemplify our approach, we use a dataset of 347 three-dimensional landmarks and semilandmarks recorded on the crania of 260 primate specimens (112 humans, 67 common chimpanzees, 36 bonobos, 45 gorillas). Results on this example dataset show how incorporating geometric information can provide important insights into the evolution of the human braincase, and serve to demonstrate the utility of our approach for understanding morphological evolution. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  5. Yeast G-proteins mediate directional sensing and polarization behaviors in response to changes in pheromone gradient direction

    PubMed Central

    Moore, Travis I.; Tanaka, Hiromasa; Kim, Hyung Joon; Jeon, Noo Li; Yi, Tau-Mu

    2013-01-01

    Yeast cells polarize by projecting up mating pheromone gradients, a classic cell polarity behavior. However, these chemical gradients may shift direction. We examine how yeast cells sense and respond to a 180o switch in the direction of microfluidically generated pheromone gradients. We identify two behaviors: at low concentrations of α-factor, the initial projection grows by bending, whereas at high concentrations, cells form a second projection toward the new source. Mutations that increase heterotrimeric G-protein activity expand the bending-growth morphology to high concentrations; mutations that increase Cdc42 activity result in second projections at low concentrations. Gradient-sensing projection bending requires interaction between Gβγ and Cdc24, whereas gradient-nonsensing projection extension is stimulated by Bem1 and hyperactivated Cdc42. Of interest, a mutation in Gα affects both bending and extension. Finally, we find a genetic perturbation that exhibits both behaviors. Overexpression of the formin Bni1, a component of the polarisome, makes both bending-growth projections and second projections at low and high α-factor concentrations, suggesting a role for Bni1 downstream of the heterotrimeric G-protein and Cdc42 during gradient sensing and response. Thus we demonstrate that G-proteins modulate in a ligand-dependent manner two fundamental cell-polarity behaviors in response to gradient directional change. PMID:23242998

  6. Comparing Past and Future Elevational vs. Latitudinal Migrations in Mountains of the Western U.S

    NASA Astrophysics Data System (ADS)

    Cole, K. L.; Ironside, K.; Cobb, N.

    2009-12-01

    During the early Holocene, plant species of the western United States responded to the warming post-glacial temperatures by migrating to higher elevations and to more northerly latitudes. Models of species response to warmer climates assume similar processes will occur in the future but the rates and extent of these future migrations are unknown. Hypothetically, the rates of elevational and latitudinal migrations should differ depending upon the importance of spatial distance in determining the resulting migration rate. The diverse topography of the western United States presents an ideal laboratory for comparing these past elevational vs. latitudinal species movements. Abundant fossil records allow comparisons between these rates following rapidly warming periods in the past such as occurred in the early Holocene. At that time, species often equilibrated to the new temperature regime rapidly where they were only required to migrate a short distance uphill. But the same species required many thousands of years to subsequently approach their northern latitudinal boundaries. Further, the upper limits and lower limits for a species often did not move synchronously, yielding additional information on the dynamics of response to rapid warming for that particular species. We calibrated the available temperature space for several dominant forest tree species of the mountains of the interior western U.S. and then calculated their early Holocene rates of migration relative to geographic space. Next we were able to compare these estimations to the observations of each species recent historical autecological response to disturbances. For many species their paleoecological rates of change were consistent with observations of their dynamics over the last century. A few species, such as the wind dispersed Populus tremuloides, re-populate disturbed areas so rapidly that they have no discernable migration delay. Other species, such as Pinus ponderosa, can expand rapidly at a rate

  7. Examining the relationship between mercury and organic matter in lake sediments along a latitudinal transect in subarctic Canada

    NASA Astrophysics Data System (ADS)

    Galloway, Jennifer M.; Sanei, Hamed; Parsons, Michael; Swindles, Graeme T.; Macumber, Andrew L.; Patterson, R. Timothy; Palmer, Michael; Falck, Hendrik

    2016-04-01

    The accumulation of Hg in aquatic environments at both high and low latitudes can be controlled by organic matter through algal scavenging, thus complicating the interpretation of historical Hg profiles in lake sediments1,2,3. However, other recent studies suggest that algal scavenging is not important in governing Hg flux to sediments4, in some cases because of dilution by inorganic materials5. This study examines relationships between Hg and organic matter (OM) in over 100 lakes located between 60.5 and 65.4 °N and crossing the latitudinal tree-line in subarctic Canada. The latitudinal gradient approach in our study offers an opportunity to better understand climate and environmental controls on OM accumulation and its role in influencing Hg deposition in subarctic lacustrine environments. We used Rock Eval 6 pyrolysis to determine total organic carbon (TOC%), S1 (soluble OM consisting of degradable lipids and algal pigments), S2 (OM derived from highly aliphatic biomacromolecule structure of algal cell walls), and S3 (OM dominated by carbohydrates, lignins, and plant materials). Total Hg in sediments was measured using thermal decomposition, amalgamation, and atomic absorption spectrophotometry. In these lake sediments, S2 composes the majority of TOC (Pearson's r = 0.978, p<0.01) and is negatively correlated with latitude (r = -0.475, p<0.01). S1 and TOC are also negatively correlated with latitude (r = -0.237 and -0.452, respectively, p<0.01). These associations are interpreted to reflect less autochthonous OM production and proportionally higher allochthonous OM input to more northern lakes (oxygen index vs. latitude r = 0.371, p<0.01). Similar to previous studies1,2,3 Mercury displays a significant positive association with S1 (r = 0.556, p<0.01), S2 (r = 0.518, p<0.01), and TOC (r = 0.504, p<0.01),supporting the hypothesis that OM influences Hg accumulation in subarctic lake sediments. References 1Sanei, H., Goodarzi, F. 2006. Relationship between organic

  8. Adaptations to “Thermal Time” Constraints in Papilio: Latitudinal and Local Size Clines Differ in Response to Regional Climate Change

    PubMed Central

    Scriber, J. Mark; Elliot, Ben; Maher, Emily; McGuire, Molly; Niblack, Marjie

    2014-01-01

    Adaptations to “thermal time” (=Degree-day) constraints on developmental rates and voltinism for North American tiger swallowtail butterflies involve most life stages, and at higher latitudes include: smaller pupae/adults; larger eggs; oviposition on most nutritious larval host plants; earlier spring adult emergences; faster larval growth and shorter molting durations at lower temperatures. Here we report on forewing sizes through 30 years for both the northern univoltine P. canadensis (with obligate diapause) from the Great Lakes historical hybrid zone northward to central Alaska (65° N latitude), and the multivoltine, P. glaucus from this hybrid zone southward to central Florida (27° N latitude). Despite recent climate warming, no increases in mean forewing lengths of P. glaucus were observed at any major collection location (FL to MI) from the 1980s to 2013 across this long latitudinal transect (which reflects the “converse of Bergmann’s size Rule”, with smaller females at higher latitudes). Unlike lower latitudes, the Alaska, Ontonogon, and Chippewa/Mackinac locations (for P. canadensis) showed no significant increases in D-day accumulations, which could explain lack of size change in these northernmost locations. As a result of 3–4 decades of empirical data from major collection sites across these latitudinal clines of North America, a general “voltinism/size/D-day” model is presented, which more closely predicts female size based on D-day accumulations, than does latitude. However, local “climatic cold pockets” in northern Michigan and Wisconsin historically appeared to exert especially strong size constraints on female forewing lengths, but forewing lengths quickly increased with local summer warming during the recent decade, especially near the warming edges of the cold pockets. Results of fine-scale analyses of these “cold pockets” are in contrast to non-significant changes for other Papilio populations seen across the latitudinal

  9. Metapopulations in temporary streams - the role of drought-flood cycles in promoting high genetic diversity in a critically endangered freshwater fish and its consequences for the future.

    PubMed

    Sousa-Santos, Carla; Robalo, Joana I; Francisco, Sara M; Carrapato, Carlos; Cardoso, Ana Cristina; Doadrio, Ignacio

    2014-11-01

    Genetic factors have direct and indirect impacts in the viability of endangered species. Assessing their genetic diversity levels and population structure is thus fundamental for conservation and management. In this paper we use mitochondrial and nuclear markers to address phylogeographic and demographic data on the critically endangered Anaecypris hispanica, using a broad sampling set which covered its known distribution area in the Iberian Peninsula. Our results showed that the populations of A. hispanica are strongly differentiated (high and significant ФST and FST values, corroborated by the results from AMOVA and SAMOVA) and genetically diversified. We suggest that the restricted gene flow between populations may have been potentiated by ecological, hydrological and anthropogenic causes. Bayesian skyline plots revealed a signal for expansion for all populations (tMRCA between 68kya and 1.33Mya) and a genetic diversity latitudinal gradient was detected between the populations from the Upper (more diversified) and the Lower (less diversified) Guadiana river basin. We postulate a Pleistocenic westwards colonization route for A. hispanica in the Guadiana river basin, which is in agreement with the tempo and mode of paleoevolution of this drainage. The colonization of River Guadalquivir around 60kya with migrants from the Upper Guadiana, most likely by stream capture, is also suggested. This study highlights the view that critically endangered species facing range retreats (about 47% of its known populations have disappeared in the last 15years) are not necessarily small and genetically depleted. However, the extinction risk is not negligible since A. hispanica faces the combined effect of several deterministic and stochastic negative factors and, moreover, recolonization events after localized extinctions are very unlikely to occur due to the strong isolation of populations and to the patchily ecologically-conditioned distribution of fish. The inferred species

  10. Wetting of flat gradient surfaces.

    PubMed

    Bormashenko, Edward

    2018-04-01

    Gradient, chemically modified, flat surfaces enable directed transport of droplets. Calculation of apparent contact angles inherent for gradient surfaces is challenging even for atomically flat ones. Wetting of gradient, flat solid surfaces is treated within the variational approach, under which the contact line is free to move along the substrate. Transversality conditions of the variational problem give rise to the generalized Young equation valid for gradient solid surfaces. The apparent (equilibrium) contact angle of a droplet, placed on a gradient surface depends on the radius of the contact line and the values of derivatives of interfacial tensions. The linear approximation of the problem is considered. It is demonstrated that the contact angle hysteresis is inevitable on gradient surfaces. Electrowetting of gradient surfaces is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Multicollinearity in spatial genetics: separating the wheat from the chaff using commonality analyses.

    PubMed

    Prunier, J G; Colyn, M; Legendre, X; Nimon, K F; Flamand, M C

    2015-01-01

    Direct gradient analyses in spatial genetics provide unique opportunities to describe the inherent complexity of genetic variation in wildlife species and are the object of many methodological developments. However, multicollinearity among explanatory variables is a systemic issue in multivariate regression analyses and is likely to cause serious difficulties in properly interpreting results of direct gradient analyses, with the risk of erroneous conclusions, misdirected research and inefficient or counterproductive conservation measures. Using simulated data sets along with linear and logistic regressions on distance matrices, we illustrate how commonality analysis (CA), a detailed variance-partitioning procedure that was recently introduced in the field of ecology, can be used to deal with nonindependence among spatial predictors. By decomposing model fit indices into unique and common (or shared) variance components, CA allows identifying the location and magnitude of multicollinearity, revealing spurious correlations and thus thoroughly improving the interpretation of multivariate regressions. Despite a few inherent limitations, especially in the case of resistance model optimization, this review highlights the great potential of CA to account for complex multicollinearity patterns in spatial genetics and identifies future applications and lines of research. We strongly urge spatial geneticists to systematically investigate commonalities when performing direct gradient analyses. © 2014 John Wiley & Sons Ltd.

  12. Magnetoelectric Transverse Gradient Sensor with High Detection Sensitivity and Low Gradient Noise

    PubMed Central

    2017-01-01

    We report, theoretically and experimentally, the realization of a high detection performance in a novel magnetoelectric (ME) transverse gradient sensor based on the large ME effect and the magnetic field gradient (MFG) technique in a pair of magnetically-biased, electrically-shielded, and mechanically-enclosed ME composites having a transverse orientation and an axial separation. The output voltage of the gradient sensor is directly obtained from the transverse MFG-induced difference in ME voltage between the two ME composites and is calibrated against transverse MFGs to give a high detection sensitivity of 0.4–30.6 V/(T/m), a strong common-mode magnetic field noise rejection rate of <−14.5 dB, a small input-output nonlinearity of <10 ppm, and a low gradient noise of 0.16–620 nT/m/Hz in a broad frequency range of 1 Hz–170 kHz under a small baseline of 35 mm. An analysis of experimental gradient noise spectra obtained in a magnetically-unshielded laboratory environment reveals the domination of the pink (1/f) noise, dielectric loss noise, and power-frequency noise below 3 kHz, in addition to the circuit noise above 3 kHz, in the gradient sensor. The high detection performance, together with the added merit of passive and direct ME conversion by the large ME effect in the ME composites, makes the gradient sensor suitable for the passive, direct, and broadband detection of transverse MFGs. PMID:29068428

  13. Magnetoelectric Transverse Gradient Sensor with High Detection Sensitivity and Low Gradient Noise.

    PubMed

    Zhang, Mingji; Or, Siu Wing

    2017-10-25

    We report, theoretically and experimentally, the realization of a high detection performance in a novel magnetoelectric (ME) transverse gradient sensor based on the large ME effect and the magnetic field gradient (MFG) technique in a pair of magnetically-biased, electrically-shielded, and mechanically-enclosed ME composites having a transverse orientation and an axial separation. The output voltage of the gradient sensor is directly obtained from the transverse MFG-induced difference in ME voltage between the two ME composites and is calibrated against transverse MFGs to give a high detection sensitivity of 0.4-30.6 V/(T/m), a strong common-mode magnetic field noise rejection rate of <-14.5 dB, a small input-output nonlinearity of <10 ppm, and a low gradient noise of 0.16-620 nT/m/ Hz in a broad frequency range of 1 Hz-170 kHz under a small baseline of 35 mm. An analysis of experimental gradient noise spectra obtained in a magnetically-unshielded laboratory environment reveals the domination of the pink (1/ f ) noise, dielectric loss noise, and power-frequency noise below 3 kHz, in addition to the circuit noise above 3 kHz, in the gradient sensor. The high detection performance, together with the added merit of passive and direct ME conversion by the large ME effect in the ME composites, makes the gradient sensor suitable for the passive, direct, and broadband detection of transverse MFGs.

  14. Microbial nitrogen dynamics in organic and mineral soil horizons along a latitudinal transect in western Siberia

    PubMed Central

    Wild, Birgit; Schnecker, Jörg; Knoltsch, Anna; Takriti, Mounir; Mooshammer, Maria; Gentsch, Norman; Mikutta, Robert; Alves, Ricardo J Eloy; Gittel, Antje; Lashchinskiy, Nikolay; Richter, Andreas

    2015-01-01

    Soil N availability is constrained by the breakdown of N-containing polymers such as proteins to oligopeptides and amino acids that can be taken up by plants and microorganisms. Excess N is released from microbial cells as ammonium (N mineralization), which in turn can serve as substrate for nitrification. According to stoichiometric theory, N mineralization and nitrification are expected to increase in relation to protein depolymerization with decreasing N limitation, and thus from higher to lower latitudes and from topsoils to subsoils. To test these hypotheses, we compared gross rates of protein depolymerization, N mineralization and nitrification (determined using 15N pool dilution assays) in organic topsoil, mineral topsoil, and mineral subsoil of seven ecosystems along a latitudinal transect in western Siberia, from tundra (67°N) to steppe (54°N). The investigated ecosystems differed strongly in N transformation rates, with highest protein depolymerization and N mineralization rates in middle and southern taiga. All N transformation rates decreased with soil depth following the decrease in organic matter content. Related to protein depolymerization, N mineralization and nitrification were significantly higher in mineral than in organic horizons, supporting a decrease in microbial N limitation with depth. In contrast, we did not find indications for a decrease in microbial N limitation from arctic to temperate ecosystems along the transect. Our findings thus challenge the perception of ubiquitous N limitation at high latitudes, but suggest a transition from N to C limitation of microorganisms with soil depth, even in high-latitude systems such as tundra and boreal forest. Key Points We compared soil N dynamics of seven ecosystems along a latitudinal transectShifts in N dynamics suggest a decrease in microbial N limitation with depthWe found no decrease in microbial N limitation from arctic to temperate zones PMID:26693204

  15. Analysis Of Irtf Spex Near-infrared Observations Of Uranus: Aerosol Optical Properties And Latitudinally Variable Methane

    NASA Astrophysics Data System (ADS)

    Tice, Dane; Irwin, P. G. J.; Fletcher, L. N.; Teanby, N. A.; Hurley, J.; Orton, G. S.; Davis, G. R.

    2012-10-01

    We present results from the analysis of near-infrared spectra of Uranus observed in August 2009 with the SpeX spectrograph at the NASA Infrared Telescope Facility (IRTF). Spectra range from 0.8 to 1.8 μm at a spatial resolution of 0.5” and a spectral resolution of R = 1,200. This data is particularly well-suited to characterize the optical properties of aerosols in the Uranian stratosphere and upper troposphere. This is in part due to its coverage shortward of 1.0 μm where methane absorption, which dominates the features in the Uranian near-infrared spectrum, weakens slightly. Another particularly useful aspect of the data is it’s specific, highly spectrally resolved (R > 4,000) coverage of the collision-induced hydrogen quadrupole absorption band at 825 nm, enabling us to differentiate between methane abundance and cloud opacity. An optimal-estimation retrieval code, NEMESIS, is used to analyze the spectra, and atmospheric models are developed that represent good agreement with data in the full spectral range analyzed. Aerosol single-scattering albedos that reveal a strong wavelength dependence will be discussed. Additionally, an analysis of latitudinal methane variability is undertaken, utilizing two methods of analysis. First, a reflectance study from locations along the central meridian is undertaken. The spectra from these locations are centered around 825 nm, where the collision-induced absorption feature of hydrogen is utilized to distinguish between latitudinal changes in the spectrum due to aerosol opacity and those due to methane variability. Secondly, high resolution retrievals from 0.8 - 0.9 μm portion of the spectrum and spectral resolutions between R = 4,000 and 4,500 are used to make the same distinction. Both methods will be compared and discussed, as will their indications supporting a methane enrichment in the equatorial region of the planet.

  16. Parasites as biological tags for stock discrimination in marine fish from South American Atlantic waters.

    PubMed

    Timi, Juan T

    2007-06-01

    The use of parasites as biological tags in population studies of marine fish in the south-western Atlantic has proved to be a successful tool for discriminating stocks for all species to which it has been applied, namely: Scomber japonicus, Engraulis anchoita, Merluccius hubbsi and Cynoscion guatucupa, the latter studied on a broader geographic scale, including samples from Uruguayan and Brazilian waters. The distribution patterns of marine parasites are determined mainly by temperature-salinity profiles and by their association with specific masses of water. Analyses of distribution patterns of some parasite species in relation to gradients in environmental (oceanographic) conditions showed that latitudinal gradients in parasite distribution are common in the study area, and are probably directly related to water temperature. Indeed, temperature, which is a good predictor of latitudinal gradients of richness and diversity of species, shows a latitudinal pattern in south-western Atlantic coasts, decreasing southwards, due to the influence of subtropical and subantarctic marine currents flowing along the edge of the continental slope. This pattern also determines the distribution of zooplankton, with a characteristic specific composition in different water masses. The gradient in the distribution of parasites determines differential compositions of their communities at different latitudes, which makes possible the identification of different stocks of their fish hosts. Other features of the host-parasite systems contributing to the success of the parasitological method are: (1) parasites identified as good biological tags (i.e. anisakids) are widely distributed in the local fauna; (2) many of these species show low specificity and use paratenic hosts; and (3) the structure of parasite communities are, to a certain degree, predictable in time and space.

  17. Testing for local adaptation and evolutionary potential along altitudinal gradients in rainforest Drosophila: beyond laboratory estimates.

    PubMed

    O'Brien, Eleanor K; Higgie, Megan; Reynolds, Alan; Hoffmann, Ary A; Bridle, Jon R

    2017-05-01

    Predicting how species will respond to the rapid climatic changes predicted this century is an urgent task. Species distribution models (SDMs) use the current relationship between environmental variation and species' abundances to predict the effect of future environmental change on their distributions. However, two common assumptions of SDMs are likely to be violated in many cases: (i) that the relationship of environment with abundance or fitness is constant throughout a species' range and will remain so in future and (ii) that abiotic factors (e.g. temperature, humidity) determine species' distributions. We test these assumptions by relating field abundance of the rainforest fruit fly Drosophila birchii to ecological change across gradients that include its low and high altitudinal limits. We then test how such ecological variation affects the fitness of 35 D. birchii families transplanted in 591 cages to sites along two altitudinal gradients, to determine whether genetic variation in fitness responses could facilitate future adaptation to environmental change. Overall, field abundance was highest at cooler, high-altitude sites, and declined towards warmer, low-altitude sites. By contrast, cage fitness (productivity) increased towards warmer, lower-altitude sites, suggesting that biotic interactions (absent from cages) drive ecological limits at warmer margins. In addition, the relationship between environmental variation and abundance varied significantly among gradients, indicating divergence in ecological niche across the species' range. However, there was no evidence for local adaptation within gradients, despite greater productivity of high-altitude than low-altitude populations when families were reared under laboratory conditions. Families also responded similarly to transplantation along gradients, providing no evidence for fitness trade-offs that would favour local adaptation. These findings highlight the importance of (i) measuring genetic variation

  18. Depth as an Organizing Force in Pocillopora damicornis: Intra-Reef Genetic Architecture

    PubMed Central

    Gorospe, Kelvin D.; Karl, Stephen A.

    2015-01-01

    Relative to terrestrial plants, and despite similarities in life history characteristics, the potential for corals to exhibit intra-reef local adaptation in the form of genetic differentiation along an environmental gradient has received little attention. The potential for natural selection to act on such small scales is likely increased by the ability of coral larval dispersal and settlement to be influenced by environmental cues. Here, we combine genetic, spatial, and environmental data for a single patch reef in Kāne‘ohe Bay, O‘ahu, Hawai‘i, USA in a landscape genetics framework to uncover environmental drivers of intra-reef genetic structuring. The genetic dataset consists of near-exhaustive sampling (n = 2352) of the coral, Pocillopora damicornis at our study site and six microsatellite genotypes. In addition, three environmental parameters – depth and two depth-independent temperature indices – were collected on a 4 m grid across 85 locations throughout the reef. We use ordinary kriging to spatially interpolate our environmental data and estimate the three environmental parameters for each colony. Partial Mantel tests indicate a significant correlation between genetic relatedness and depth while controlling for space. These results are also supported by multi-model inference. Furthermore, spatial Principle Component Analysis indicates a statistically significant genetic cline along a depth gradient. Binning the genetic dataset based on size-class revealed that the correlation between genetic relatedness and depth was significant for new recruits and increased for larger size classes, suggesting a possible role of larval habitat selection as well as selective mortality in structuring intra-reef genetic diversity. That both pre- and post-recruitment processes may be involved points to the adaptive role of larval habitat selection in increasing adult survival. The conservation importance of uncovering intra-reef patterns of genetic diversity is

  19. Train-borne Measurements of Enhanced Wet Season Methane Emissions in Northern Australia - Implications for Australian Tropical Wetland Emissions

    NASA Astrophysics Data System (ADS)

    Deutscher, N. M.; Griffith, D. W.; Paton-Walsh, C.

    2008-12-01

    We present the first transect measurements of CH4, CO2, CO and N2O taken on the Ghan railway travelling on a N-S transect of the Australian continent between Adelaide (34.9°S, 138.6°E) and Darwin (12.5°S, 130.9°E). The Ghan crosses Australia from the mainly agricultural mid-latitude south through the arid interior to the wet-dry tropical savannah south of and around Darwin. In the 2008 wet season (February) we observed a significant latitudinal gradient of CH4 increasing towards the north. The same pattern was observed in the late 2008 wet season (March-April), with a smaller latitudinal gradient. These will be compared with a dry season transect, to be undertaken in September/October 2008. The Air Pollution Model (TAPM), a regional scale prognostic meteorological model, is used to estimate the surface methane source strength required to explain the observed latitudinal gradient in CH4 in the wet season, and investigate the source type. Fluxes from cattle and termites together contribute up to 25% of the enhancements seen, leaving wetlands as the major source of wet season methane in the Australian tropics. Wetlands are the largest natural source of methane to the atmosphere, and tropical wetlands are responsible for the majority of the interannual variation in methane source strength. We attempt to quantify the annual methane flux contributed by anaerobic organic breakdown due to wet- season flooding in tropical Northern Territory.

  20. Large Airborne Full Tensor Gradient Data Inversion Based on a Non-Monotone Gradient Method

    NASA Astrophysics Data System (ADS)

    Sun, Yong; Meng, Zhaohai; Li, Fengting

    2018-03-01

    Following the development of gravity gradiometer instrument technology, the full tensor gravity (FTG) data can be acquired on airborne and marine platforms. Large-scale geophysical data can be obtained using these methods, making such data sets a number of the "big data" category. Therefore, a fast and effective inversion method is developed to solve the large-scale FTG data inversion problem. Many algorithms are available to accelerate the FTG data inversion, such as conjugate gradient method. However, the conventional conjugate gradient method takes a long time to complete data processing. Thus, a fast and effective iterative algorithm is necessary to improve the utilization of FTG data. Generally, inversion processing is formulated by incorporating regularizing constraints, followed by the introduction of a non-monotone gradient-descent method to accelerate the convergence rate of FTG data inversion. Compared with the conventional gradient method, the steepest descent gradient algorithm, and the conjugate gradient algorithm, there are clear advantages of the non-monotone iterative gradient-descent algorithm. Simulated and field FTG data were applied to show the application value of this new fast inversion method.

  1. In Vivo Evidence for a Lactate Gradient from Astrocytes to Neurons.

    PubMed

    Mächler, Philipp; Wyss, Matthias T; Elsayed, Maha; Stobart, Jillian; Gutierrez, Robin; von Faber-Castell, Alexandra; Kaelin, Vincens; Zuend, Marc; San Martín, Alejandro; Romero-Gómez, Ignacio; Baeza-Lehnert, Felipe; Lengacher, Sylvain; Schneider, Bernard L; Aebischer, Patrick; Magistretti, Pierre J; Barros, L Felipe; Weber, Bruno

    2016-01-12

    Investigating lactate dynamics in brain tissue is challenging, partly because in vivo data at cellular resolution are not available. We monitored lactate in cortical astrocytes and neurons of mice using the genetically encoded FRET sensor Laconic in combination with two-photon microscopy. An intravenous lactate injection rapidly increased the Laconic signal in both astrocytes and neurons, demonstrating high lactate permeability across tissue. The signal increase was significantly smaller in astrocytes, pointing to higher basal lactate levels in these cells, confirmed by a one-point calibration protocol. Trans-acceleration of the monocarboxylate transporter with pyruvate was able to reduce intracellular lactate in astrocytes but not in neurons. Collectively, these data provide in vivo evidence for a lactate gradient from astrocytes to neurons. This gradient is a prerequisite for a carrier-mediated lactate flux from astrocytes to neurons and thus supports the astrocyte-neuron lactate shuttle model, in which astrocyte-derived lactate acts as an energy substrate for neurons. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Evolution and ecology meet molecular genetics: adaptive phenotypic plasticity in two isolated Negev desert populations of Acacia raddiana at either end of a rainfall gradient

    PubMed Central

    Ward, David; Shrestha, Madan K.; Golan-Goldhirsh, Avi

    2012-01-01

    Background and Aims The ecological, evolutionary and genetic bases of population differentiation in a variable environment are often related to the selection pressures that plants experience. We compared differences in several growth- and defence-related traits in two isolated populations of Acacia raddiana trees from sites at either end of an extreme environmental gradient in the Negev desert. Methods We used random amplified polymorphic DNA (RAPD) to determine the molecular differences between populations. We grew plants under two levels of water, three levels of nutrients and three levels of herbivory to test for phenotypic plasticity and adaptive phenotypic plasticity. Key Results The RAPD analyses showed that these populations are highly genetically differentiated. Phenotypic plasticity in various morphological traits in A. raddiana was related to patterns of population genetic differentiation between the two study sites. Although we did not test for maternal effects in these long-lived trees, significant genotype × environment (G × E) interactions in some of these traits indicated that such plasticity may be adaptive. Conclusions The main selection pressure in this desert environment, perhaps unsurprisingly, is water. Increased water availability resulted in greater growth in the southern population, which normally receives far less rain than the northern population. Even under the conditions that we defined as low water and/or nutrients, the performance of the seedlings from the southern population was significantly better, perhaps reflecting selection for these traits. Consistent with previous studies of this genus, there was no evidence of trade-offs between physical and chemical defences and plant growth parameters in this study. Rather, there appeared to be positive correlations between plant size and defence parameters. The great variation in several traits in both populations may result in a diverse potential for responding to selection pressures in

  3. The cosmic radiation in the heliosphere at successive solar minima

    NASA Technical Reports Server (NTRS)

    Mcdonald, Frank B.; Moraal, Harm; Reinecke, J. P. L.; Lal, Nand; Mcguire, Robert E.

    1992-01-01

    Cosmic ray observations at 1 AU are compared for the last three solar minimum periods along with the 1977/1989 and 1987 Pioneer 10 and Voyager 1 and 2 data from the outer heliosphere. There is good agreement between the 1965 and 1987 Galactic cosmic ray H and He spectra at 1 AU. Significant and complex differences are found between the 1977/1978 and 1987 measurements of the Galactic and anomalous cosmic ray components at 1 and 15 AU. In the outer heliosphere there are negative latitudinal gradients that reach their maximum magnitude when the inclination of the outer heliosphere current sheet is at a minimum. The radial gradients decrease with heliocentric distance as about 1/r exp 0.7 and do not differ significantly at the successive solar minima. The measured radial and latitudinal gradients are used to estimate the particle transport parameters in the outer heliosphere. Using the local interstellar He spectrum of Webber et al. (1987), it is estimated that the modulation boundary is of the order of 160 AU.

  4. Cell-to-cell variation sets a tissue-rheology–dependent bound on collective gradient sensing

    PubMed Central

    Camley, Brian A.; Rappel, Wouter-Jan

    2017-01-01

    When a single cell senses a chemical gradient and chemotaxes, stochastic receptor–ligand binding can be a fundamental limit to the cell’s accuracy. For clusters of cells responding to gradients, however, there is a critical difference: Even genetically identical cells have differing responses to chemical signals. With theory and simulation, we show collective chemotaxis is limited by cell-to-cell variation in signaling. We find that when different cells cooperate, the resulting bias can be much larger than the effects of ligand–receptor binding. Specifically, when a strongly responding cell is at one end of a cell cluster, cluster motion is biased toward that cell. These errors are mitigated if clusters average measurements over times long enough for cells to rearrange. In consequence, fluid clusters are better able to sense gradients: We derive a link between cluster accuracy, cell-to-cell variation, and the cluster rheology. Because of this connection, increasing the noisiness of individual cell motion can actually increase the collective accuracy of a cluster by improving fluidity. PMID:29114053

  5. DENSITY-DEPENDENT SELECTION ON CONTINUOUS CHARACTERS: A QUANTITATIVE GENETIC MODEL.

    PubMed

    Tanaka, Yoshinari

    1996-10-01

    A quantitative genetic model of density-dependent selection is presented and analysed with parameter values obtained from laboratory selection experiments conducted by Mueller and his coworkers. The ecological concept of r- and K-selection is formulated in terms of selection gradients on underlying phenotypic characters that influence the density-dependent measure of fitness. Hence the selection gradients on traits are decomposed into two components, one that changes in the direction to increase r, and one that changes in the direction to increase K. The relative importance of the two components is determined by temporal fluctuations in population density. The evolutionary rate of r and K (per-generation changes in r and K due to the genetic responses of the underlying traits) is also formulated. Numerical simulation has shown that with moderate genetic variances of the underlying characters, r and K can evolve rapidly and the evolutionary rate is influenced by synergistic interaction between characters that contribute to r and K. But strong r-selection can occur only with severe and continuous disturbances of populations so that the population density is kept low enough to prevent K-selection. © 1996 The Society for the Study of Evolution.

  6. Plant species invasions along the latitudinal gradient in the United States

    Treesearch

    Thomas J. Stohlgren; David Barnett; Curtis Flather; John Kartesz; Bruce Peterjohn

    2005-01-01

    It has been long established that the richness of vascular plant species and many animal taxa decreases with increasing latitude, a pattern that very generally follows declines in actual and potential evapotranspiration, solar radiation, temperature, and thus, total productivity. Using county-level data on vascular plants from the United States (3000 counties in the...

  7. Marked genetic divergence among sky island populations of Sedum lanceolatum (Crassulaceae) in the Rocky Mountains.

    PubMed

    Dechaine, Eric G; Martin, Andrew P

    2005-03-01

    Climate change during the Quaternary played an important role in the differentiation and evolution of plants. A prevailing hypothesis is that alpine and arctic species survived glacial periods in refugia at the periphery of glaciers. Though the Rocky Mountains, south of the southernmost extent of continental ice, served as an important glacial refuge, little is known about how climate cycles influenced populations within this region. We inferred the phylogeography of Sedum lanceolatum (Crassulaceae) within the Rocky Mountain refugium to assess how this high-elevation plant responded to glacial cycles. We sequenced 884 base pairs (bp) of cpDNA intergenic spacers (tRNA-L to tRNA-F and tRNA-S to tRNA-G) for 333 individuals from 18 alpine populations. Our highly variable markers allowed us to infer that populations persisted across the latitudinal range throughout the climate cycles, exhibited significant genetic structure, and experienced cycles of range expansion and fragmentation. Genetic differentiation in S. lanceolatum was most likely a product of short-distance elevational migration in response to climate change, low seed dispersal, and vegetative reproduction. To the extent that Sedum is a good model system, paleoclimatic cycles were probably a major factor preserving genetic variation and promoting divergence in high-elevation flora of the Rocky Mountains.

  8. Rapid Gradient-Echo Imaging

    PubMed Central

    Hargreaves, Brian

    2012-01-01

    Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185

  9. The Pleistocene history of the sheepshead minnow (Cyprinodon variegatus): Non-equilibrium evolutionary dynamics within a diversifying species complex.

    PubMed

    Haney, Robert A; Silliman, Brian R; Fry, Adam J; Layman, Craig A; Rand, David M

    2007-06-01

    The sheepshead minnow, Cyprinodon variegatus, is a widespread fish species that typically inhabits coastal tidal marsh and mangrove swamp environments, ranging from Cape Cod, Massaschusetts to northern Mexico and into the Caribbean. This wide range crosses several biogeographic boundaries which are coincident with genetic structuring within numerous species originating in the Pleistocene. In addition, the more northerly reaches of this species range have been further subject to the evolutionary consequences of Pleistocene glaciation due to local extinction and recolonization of formerly glaciated sites. C. variegatus thus provides an excellent vertebrate model system within which to test the extent of genetic differentiation among populations in a dominant coastal ecosystem and examine patterns of historical demography in populations distributed along a latitudinal gradient. Using mitochondrial control region and ND2 sequence data, we discovered monophyletic clades within C. variegatus with divergence times within the Pleistocene, and very low gene flow between most sites. Intraspecific genetic breaks appear to correspond broadly to biogeographic or oceanic boundaries. Pleistocene climate change appears to have had dramatic impacts on the size and distribution of populations within and near the glacial margins, but has also affected populations far from formerly glaciated regions.

  10. Coupling functions for lead and lead-free neutron monitors from the latitudinal measurements performed in 1982 in the research station Academician Kurchatov

    NASA Technical Reports Server (NTRS)

    Alekanyan, T. M.; Dorman, L. I.; Yanke, V. G.; Korotkov, V. K.

    1985-01-01

    The latitudinal behavior of intensities and multiplicities was registered by the neutron monitor 2 NM and the lead-free neutron monitor 3 SND (slow-neuron detector) in the equator-Kaliningrad line in the Atlantic Ocean. Coupling coefficients for 3 SND show the sensitivity of this detector to primary particles of cosmic rays of energies on the average lower than for 2 NM. As multiplicities increase, the coupling coefficients shift towards higher energies.

  11. Population genetics and adaptation to climate along elevation gradients in invasive Solidago canadensis.

    PubMed

    Moran, Emily V; Reid, Andrea; Levine, Jonathan M

    2017-01-01

    Gene flow between populations may either support local adaptation by supplying genetic variation on which selection may act, or counteract it if maladapted alleles arrive faster than can be purged by selection. Although both such effects have been documented within plant species' native ranges, how the balance of these forces influences local adaptation in invasive plant populations is less clear, in part because introduced species often have lower genetic variation initially but also tend to have good dispersal abilities. To evaluate the extent of gene flow and adaptation to local climate in invasive populations of Solidago canadensis, and the implications of this for range expansion, we compared population differentiation at microsatellite and chloroplast loci for populations across Switzerland and assessed the effect of environmental transfer distance using common gardens. We found that while patterns of differentiation at neutral genetic markers suggested that populations are connected through extensive pollen and seed movement, common-garden plants nonetheless exhibited modest adaptation to local climate conditions. Growth rate and flower production declined with climatic distance from a plant's home site, with clones from colder home sites performing better at or above the range limit. Such adaptation in invasive species is likely to promote further spread, particularly under climate change, as the genotypes positioned near the range edge may be best able to take advantage of lengthening growing seasons to expand the range.

  12. Gradient structure-induced temperature responsiveness in styrene/methyl methacrylate gradient copolymers micelles.

    PubMed

    Zheng, Chao; Huang, Haiying; He, Tianbai

    2014-02-01

    In this work, micelles are formed by gradient copolymer of styrene and methyl methacrylate in acetone-water mixture and their temperature responsiveness is investigated in a narrow range near room temperature. Three different kinds of structural transitions could be induced by temperature: unimers to micelle transition, shrinkage/stretching of micelles, and morphological transition from spherical micelles to vesicles. In addition, a model analysis on the interface of gradient copolymer micelle is made to better understand these phenomena. It is found that both position and composition of the interface could alter in response to the change in temperature. According to the experiments and model analysis, it is proposed that temperature responsiveness might be an intrinsic and universal property of gradient copolymer micelles, which only originates from the gradient structure. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Testing the limits of gradient sensing

    PubMed Central

    Lakhani, Vinal

    2017-01-01

    The ability to detect a chemical gradient is fundamental to many cellular processes. In multicellular organisms gradient sensing plays an important role in many physiological processes such as wound healing and development. Unicellular organisms use gradient sensing to move (chemotaxis) or grow (chemotropism) towards a favorable environment. Some cells are capable of detecting extremely shallow gradients, even in the presence of significant molecular-level noise. For example, yeast have been reported to detect pheromone gradients as shallow as 0.1 nM/μm. Noise reduction mechanisms, such as time-averaging and the internalization of pheromone molecules, have been proposed to explain how yeast cells filter fluctuations and detect shallow gradients. Here, we use a Particle-Based Reaction-Diffusion model of ligand-receptor dynamics to test the effectiveness of these mechanisms and to determine the limits of gradient sensing. In particular, we develop novel simulation methods for establishing chemical gradients that not only allow us to study gradient sensing under steady-state conditions, but also take into account transient effects as the gradient forms. Based on reported measurements of reaction rates, our results indicate neither time-averaging nor receptor endocytosis significantly improves the cell’s accuracy in detecting gradients over time scales associated with the initiation of polarized growth. Additionally, our results demonstrate the physical barrier of the cell membrane sharpens chemical gradients across the cell. While our studies are motivated by the mating response of yeast, we believe our results and simulation methods will find applications in many different contexts. PMID:28207738

  14. Air data system optimization using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    Deshpande, Samir M.; Kumar, Renjith R.; Seywald, Hans; Siemers, Paul M., III

    1992-01-01

    An optimization method for flush-orifice air data system design has been developed using the Genetic Algorithm approach. The optimization of the orifice array minimizes the effect of normally distributed random noise in the pressure readings on the calculation of air data parameters, namely, angle of attack, sideslip angle and freestream dynamic pressure. The optimization method is applied to the design of Pressure Distribution/Air Data System experiment (PD/ADS) proposed for inclusion in the Aeroassist Flight Experiment (AFE). Results obtained by the Genetic Algorithm method are compared to the results obtained by conventional gradient search method.

  15. Optimum gradient of mountain paths.

    PubMed

    Minetti, A E

    1995-11-01

    By combining the experiment results of R. Margaria (Atti Accad. Naz. Lincei Memorie 7: 299-368, 1938), regarding the metabolic cost of gradient locomotion, together with recent insights on gait biomechanics, a prediction about the most economical gradient of mountain paths (approximately 25%) is obtained and interpreted. The pendulum-like mechanism of walking produces a waste of mechanical work against gravity within the gradient range of up to 15% (the overall efficiency is dominated by the low transmission efficiency), whereas for steeper values only the muscular efficiency is responsible for the (slight) metabolic change (per meter of vertical displacement) with respect to gradient. The speeds at the optimum gradient turned out to be approximately 0.65 m/s (+0.16 m/s vertical) and 1.50 m/s (-0.36 m/s vertical), for uphill and downhill walking, respectively, and the ascensional energy expenditure was 0.4 and 2.0 ml O2.kg body mass-1.vertical m-1 climbed or descended. When the metabolic power becomes a burden, as in high-altitude mountaineering, the optimum gradient should be reduced. A sample of real mountain path gradients, experimentally measured, mimics the obtained predictions.

  16. A motor-driven syringe-type gradient maker for forming immobilized pH gradient gels.

    PubMed

    Fawcett, J S; Sullivan, J V; Chidakel, B E; Chrambach, A

    1988-05-01

    A motor driven gradient maker based on the commercial model (Jule Inc., Trumbull, CT) was designed for immobilized pH gradient gels to provide small volumes, rapid stirring and delivery, strict volume and temperature control and air exclusion. The device was constructed and by a convenient procedure yields highly reproducible gradients either in solution or on polyacrylamide gels.

  17. Gradient Sun [still

    NASA Image and Video Library

    2017-12-08

    To view a video of the Gradient Sun go to: www.flickr.com/photos/gsfc/8103212817 Looking at a particularly beautiful image of the sun helps show how the lines between science and art can sometimes blur. But there is more to the connection between the two disciplines: science and art techniques are often quite similar, indeed one may inform the other or be improved based on lessons from the other arena. One such case is a technique known as a "gradient filter" – recognizable to many people as an option available on a photo-editing program. Gradients are, in fact, a mathematical description that highlights the places of greatest physical change in space. A gradient filter, in turn, enhances places of contrast, making them all the more obviously different, a useful tool when adjusting photos. Scientists, too, use gradient filters to enhance contrast, using them to accentuate fine structures that might otherwise be lost in the background noise. On the sun, for example, scientists wish to study a phenomenon known as coronal loops, which are giant arcs of solar material constrained to travel along that particular path by the magnetic fields in the sun's atmosphere. Observations of the loops, which can be more or less tangled and complex during different phases of the sun's 11-year activity cycle, can help researchers understand what's happening with the sun's complex magnetic fields, fields that can also power great eruptions on the sun such as solar flares or coronal mass ejections. The still here shows an unfiltered image from the sun next to one that has been processed using a gradient filter. Note how the coronal loops are sharp and defined, making them all the more easy to study. On the other hand, gradients also make great art. NASA/Goddard Space Flight Center To download this video go to: svs.gsfc.nasa.gov/goto?11112 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics

  18. Environmental change, phenotypic plasticity, and genetic compensation.

    PubMed

    Grether, Gregory F

    2005-10-01

    When a species encounters novel environmental conditions, some phenotypic characters may develop differently than in the ancestral environment. Most environmental perturbations of development are likely to reduce fitness, and thus selection would usually be expected to favor genetic changes that restore the ancestral phenotype. I propose the term "genetic compensation" to refer to this form of adaptive evolution. Genetic compensation is a subset of genetic accommodation and the reverse of genetic assimilation. When genetic compensation has occurred along a spatial environmental gradient, the mean trait values of populations in different environments may be more similar in the field than when representatives of the same populations are raised in a common environment (i.e., countergradient variation). If compensation is complete, genetic divergence between populations may be cryptic, that is, not detectable in the field. Here I apply the concept of genetic compensation to three examples involving carotenoid-based sexual coloration and then use these and other examples to discuss the concept in a broader context. I show that genetic compensation may lead to a cryptic form of reproductive isolation between populations evolving in different environments, may explain some puzzling cases in which heritable traits exposed to strong directional selection fail to show the expected evolutionary response, and may complicate efforts to monitor populations for signs of environmental deterioration.

  19. Whooping cough dynamics in Chile (1932-2010): disease temporal fluctuations across a north-south gradient.

    PubMed

    Lima, Mauricio; Estay, Sergio A; Fuentes, Rodrigo; Rubilar, Paola; Broutin, Hélène; Chowell-Puente, Gerardo

    2015-12-30

    The spatial-temporal dynamics of Bordetella pertussis remains as a highly interesting case in infectious disease epidemiology. Despite large-scale vaccination programs in place for over 50 years around the world, frequent outbreaks are still reported in many countries. Here, we use annual time series of pertussis incidence from the thirteen different regions of Chile (1952-2010) to study the spatial-temporal dynamics of Pertussis. The period 1975-1995 was characterized by a strong 4 year cycle, while the last two decades of the study period (1990-2010) were characterized by disease resurgence without significant periodic patterns. During the first decades, differences in periodic patterns across regions can be explained by the differences in susceptible recruitment. The observed shift in periodicity from the period 1952-1974 to the period 1975-1995 across regions was relatively well predicted by the susceptible recruitment and population size. However, data on vaccination rates was not taken into account in this study. Our findings highlight how demography and population size have interacted with the immunization program in shaping periodicity along a unique latitudinal gradient. Widespread B. pertussis vaccination appears to lead to longer periodic dynamics, which is line with a reduction in B. pertussis transmission, but our findings indicate that regions characterized by both low birth rate and population size decreased in periodicity following immunization efforts.

  20. An Attractive Reelin Gradient Establishes Synaptic Lamination in the Vertebrate Visual System.

    PubMed

    Di Donato, Vincenzo; De Santis, Flavia; Albadri, Shahad; Auer, Thomas Oliver; Duroure, Karine; Charpentier, Marine; Concordet, Jean-Paul; Gebhardt, Christoph; Del Bene, Filippo

    2018-03-07

    A conserved organizational and functional principle of neural networks is the segregation of axon-dendritic synaptic connections into laminae. Here we report that targeting of synaptic laminae by retinal ganglion cell (RGC) arbors in the vertebrate visual system is regulated by a signaling system relying on target-derived Reelin and VLDLR/Dab1a on the projecting neurons. Furthermore, we find that Reelin is distributed as a gradient on the target tissue and stabilized by heparan sulfate proteoglycans (HSPGs) in the extracellular matrix (ECM). Through genetic manipulations, we show that this Reelin gradient is important for laminar targeting and that it is attractive for RGC axons. Finally, we suggest a comprehensive model of synaptic lamina formation in which attractive Reelin counter-balances repulsive Slit1, thereby guiding RGC axons toward single synaptic laminae. We establish a mechanism that may represent a general principle for neural network assembly in vertebrate species and across different brain areas. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. The Origins of UV-optical Color Gradients in Star-forming Galaxies at z ˜ 2: Predominant Dust Gradients but Negligible sSFR Gradients

    NASA Astrophysics Data System (ADS)

    Liu, F. S.; Jiang, Dongfei; Faber, S. M.; Koo, David C.; Yesuf, Hassen M.; Tacchella, Sandro; Mao, Shude; Wang, Weichen; Guo, Yicheng; Fang, Jerome J.; Barro, Guillermo; Zheng, Xianzhong; Jia, Meng; Tong, Wei; Liu, Lu; Meng, Xianmin

    2017-07-01

    The rest-frame UV-optical (I.e., NUV - B) color is sensitive to both low-level recent star formation (specific star formation rate—sSFR) and dust. In this Letter, we extend our previous work on the origins of NUV - B color gradients in star-forming galaxies (SFGs) at z˜ 1 to those at z˜ 2. We use a sample of 1335 large (semimajor axis radius {R}{SMA}> 0\\buildrel{\\prime\\prime}\\over{.} 18) SFGs with extended UV emission out to 2{R}{SMA} in the mass range {M}* ={10}9{--}{10}11 {M}⊙ at 1.5< z< 2.8 in the CANDELS/GOODS-S and UDS fields. We show that these SFGs generally have negative NUV - B color gradients (redder centers), and their color gradients strongly increase with galaxy mass. We also show that the global rest-frame FUV - NUV color is approximately linear with {A}{{V}}, which is derived by modeling the observed integrated FUV to NIR spectral energy distributions of the galaxies. Applying this integrated calibration to our spatially resolved data, we find a negative dust gradient (more dust extinguished in the centers), which steadily becomes steeper with galaxy mass. We further find that the NUV - B color gradients become nearly zero after correcting for dust gradients regardless of galaxy mass. This indicates that the sSFR gradients are negligible and dust reddening is likely the principal cause of negative UV-optical color gradients in these SFGs. Our findings support that the buildup of the stellar mass in SFGs at Cosmic Noon is self-similar inside 2{R}{SMA}.

  2. EVIDENCE FOR FIRST YEAR METAMORPHOSIS OF BULLFROGS IN AN EPHEMERAL POND

    EPA Science Inventory

    It is widely accepted that bullfrog ( R catesbeiana) tadpoles in the Pacific Northwest require more than one year for metamorphosis. Often time to metamorphosis increases along a latitudinal gradient. During our pond surveys at the EE Wilson Reserve, we found evidence of first ...

  3. A view of Antarctic ice-sheet evolution from sea-level and deep-sea Isotope Changes During the Late Cretaceous-Cenozoic

    USGS Publications Warehouse

    Miller, K.G.; Wright, J.D.; Katz, M.E.; Browning, J.V.; Cramer, B.S.; Wade, B.S.; Mizintseva, S.F.

    2007-01-01

    18O increase. This large ice sheet became a driver of climate change, not just a response to it, causing increased latitudinal thermal gradients and a spinning up of the oceans that, in turn, caused a dramatic reorganization of ocean circulation and chemistry.

  4. Model of separation performance of bilinear gradients in scanning format counter-flow gradient electrofocusing techniques.

    PubMed

    Shameli, Seyed Mostafa; Glawdel, Tomasz; Ren, Carolyn L

    2015-03-01

    Counter-flow gradient electrofocusing allows the simultaneous concentration and separation of analytes by generating a gradient in the total velocity of each analyte that is the sum of its electrophoretic velocity and the bulk counter-flow velocity. In the scanning format, the bulk counter-flow velocity is varying with time so that a number of analytes with large differences in electrophoretic mobility can be sequentially focused and passed by a single detection point. Studies have shown that nonlinear (such as a bilinear) velocity gradients along the separation channel can improve both peak capacity and separation resolution simultaneously, which cannot be realized by using a single linear gradient. Developing an effective separation system based on the scanning counter-flow nonlinear gradient electrofocusing technique usually requires extensive experimental and numerical efforts, which can be reduced significantly with the help of analytical models for design optimization and guiding experimental studies. Therefore, this study focuses on developing an analytical model to evaluate the separation performance of scanning counter-flow bilinear gradient electrofocusing methods. In particular, this model allows a bilinear gradient and a scanning rate to be optimized for the desired separation performance. The results based on this model indicate that any bilinear gradient provides a higher separation resolution (up to 100%) compared to the linear case. This model is validated by numerical studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Low-gradient aortic stenosis.

    PubMed

    Clavel, Marie-Annick; Magne, Julien; Pibarot, Philippe

    2016-09-07

    An important proportion of patients with aortic stenosis (AS) have a 'low-gradient' AS, i.e. a small aortic valve area (AVA <1.0 cm(2)) consistent with severe AS but a low mean transvalvular gradient (<40 mmHg) consistent with non-severe AS. The management of this subset of patients is particularly challenging because the AVA-gradient discrepancy raises uncertainty about the actual stenosis severity and thus about the indication for aortic valve replacement (AVR) if the patient has symptoms and/or left ventricular (LV) systolic dysfunction. The most frequent cause of low-gradient (LG) AS is the presence of a low LV outflow state, which may occur with reduced left ventricular ejection fraction (LVEF), i.e. classical low-flow, low-gradient (LF-LG), or preserved LVEF, i.e. paradoxical LF-LG. Furthermore, a substantial proportion of patients with AS may have a normal-flow, low-gradient (NF-LG) AS: i.e. a small AVA-low-gradient combination but with a normal flow. One of the most important clinical challenges in these three categories of patients with LG AS (classical LF-LG, paradoxical LF-LG, and NF-LG) is to differentiate a true-severe AS that generally benefits from AVR vs. a pseudo-severe AS that should be managed conservatively. A low-dose dobutamine stress echocardiography may be used for this purpose in patients with classical LF-LG AS, whereas aortic valve calcium scoring by multi-detector computed tomography is the preferred modality in those with paradoxical LF-LG or NF-LG AS. Although patients with LF-LG severe AS have worse outcomes than those with high-gradient AS following AVR, they nonetheless display an important survival benefit with this intervention. Some studies suggest that transcatheter AVR may be superior to surgical AVR in patients with LF-LG AS. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  6. Environmental harshness is positively correlated with intraspecific divergence in mammals and birds.

    PubMed

    Botero, Carlos A; Dor, Roi; McCain, Christy M; Safran, Rebecca J

    2014-02-01

    Life on Earth is conspicuously more diverse in the tropics. Although this intriguing geographical pattern has been linked to many biotic and abiotic factors, their relative importance and potential interactions are still poorly understood. The way in which latitudinal changes in ecological conditions influence evolutionary processes is particularly controversial, as there is evidence for both a positive and a negative latitudinal gradient in speciation rates. Here, we identify and address some methodological issues (how patterns are analysed and how latitude is quantified) that could lead to such conflicting results. To address these issues, we assemble a comprehensive data set of the environmental correlates of latitude (including climate, net primary productivity and habitat heterogeneity) and combine it with biological, historical and molecular data to explore global patterns in recent divergence events (subspeciation). Surprisingly, we find that the harsher conditions that typify temperate habitats (lower primary productivity, decreased rainfall and more variable and unpredictable temperatures) are positively correlated with greater subspecies richness in terrestrial mammals and birds. Thus, our findings indicate that intraspecific divergence is greater in regions with lower biodiversity, a pattern that is robust to both sampling variation and latitudinal biases in taxonomic knowledge. We discuss possible causal mechanisms for the link between environmental harshness and subspecies richness (faster rates of evolution, greater likelihood of range discontinuities and more opportunities for divergence) and conclude that this pattern supports recent indications that latitudinal gradients of diversity are maintained by simultaneously higher potentials for both speciation and extinction in temperate than tropical regions. © 2013 John Wiley & Sons Ltd.

  7. Elevation as a barrier: genetic structure for an Atlantic rain forest tree (Bathysa australis) in the Serra do Mar mountain range, SE Brazil.

    PubMed

    Reis, Talita Soares; Ciampi-Guillardi, Maísa; Bajay, Miklos Maximiliano; de Souza, Anete Pereira; Dos Santos, Flavio Antonio Maës

    2015-05-01

    Distance and discrete geographic barriers play a role in isolating populations, as seed and pollen dispersal become limited. Nearby populations without any geographic barrier between them may also suffer from ecological isolation driven by habitat heterogeneity, which may promote divergence by local adaptation and drift. Likewise, elevation gradients may influence the genetic structure and diversity of populations, particularly those marginally distributed. Bathysa australis (Rubiaceae) is a widespread tree along the elevation gradient of the Serra do Mar, SE Brazil. This self-compatible species is pollinated by bees and wasps and has autochoric seeds, suggesting restricted gene dispersal. We investigated the distribution of genetic diversity in six B. australis populations at two extreme sites along an elevation gradient: a lowland site (80-216 m) and an upland site (1010-1100 m.a.s.l.). Nine microsatellite loci were used to test for genetic structure and to verify differences in genetic diversity between sites. We found a marked genetic structure on a scale as small as 6 km (F ST = 0.21), and two distinct clusters were identified, each corresponding to a site. Although B. australis is continuously distributed along the elevation gradient, we have not observed a gene flow between the extreme populations. This might be related to B. australis biological features and creates a potential scenario for adaptation to the different conditions imposed by the elevation gradient. We failed to find an isolation-by-distance pattern; although on the fine scale, all populations showed spatial autocorrelation until ∼10-20 m. Elevation difference was a relevant factor though, but we need further sampling effort to check its correlation with genetic distance. The lowland populations had a higher allelic richness and showed higher rare allele counts than the upland ones. The upland site may be more selective, eliminating rare alleles, as we did not find any evidence for

  8. Gradient optimization and nonlinear control

    NASA Technical Reports Server (NTRS)

    Hasdorff, L.

    1976-01-01

    The book represents an introduction to computation in control by an iterative, gradient, numerical method, where linearity is not assumed. The general language and approach used are those of elementary functional analysis. The particular gradient method that is emphasized and used is conjugate gradient descent, a well known method exhibiting quadratic convergence while requiring very little more computation than simple steepest descent. Constraints are not dealt with directly, but rather the approach is to introduce them as penalty terms in the criterion. General conjugate gradient descent methods are developed and applied to problems in control.

  9. Potential and limits for rapid genetic adaptation to warming in a Great Barrier Reef coral.

    PubMed

    Matz, Mikhail V; Treml, Eric A; Aglyamova, Galina V; Bay, Line K

    2018-04-01

    Can genetic adaptation in reef-building corals keep pace with the current rate of sea surface warming? Here we combine population genomics, biophysical modeling, and evolutionary simulations to predict future adaptation of the common coral Acropora millepora on the Great Barrier Reef (GBR). Genomics-derived migration rates were high (0.1-1% of immigrants per generation across half the latitudinal range of the GBR) and closely matched the biophysical model of larval dispersal. Both genetic and biophysical models indicated the prevalence of southward migration along the GBR that would facilitate the spread of heat-tolerant alleles to higher latitudes as the climate warms. We developed an individual-based metapopulation model of polygenic adaptation and parameterized it with population sizes and migration rates derived from the genomic analysis. We find that high migration rates do not disrupt local thermal adaptation, and that the resulting standing genetic variation should be sufficient to fuel rapid region-wide adaptation of A. millepora populations to gradual warming over the next 20-50 coral generations (100-250 years). Further adaptation based on novel mutations might also be possible, but this depends on the currently unknown genetic parameters underlying coral thermal tolerance and the rate of warming realized. Despite this capacity for adaptation, our model predicts that coral populations would become increasingly sensitive to random thermal fluctuations such as ENSO cycles or heat waves, which corresponds well with the recent increase in frequency of catastrophic coral bleaching events.

  10. Large-Scale Ichthyoplankton and Water Mass Distribution along the South Brazil Shelf

    PubMed Central

    de Macedo-Soares, Luis Carlos Pinto; Garcia, Carlos Alberto Eiras; Freire, Andrea Santarosa; Muelbert, José Henrique

    2014-01-01

    Ichthyoplankton is an essential component of pelagic ecosystems, and environmental factors play an important role in determining its distribution. We have investigated simultaneous latitudinal and cross-shelf gradients in ichthyoplankton abundance to test the hypothesis that the large-scale distribution of fish larvae in the South Brazil Shelf is associated with water mass composition. Vertical plankton tows were collected between 21°27′ and 34°51′S at 107 stations, in austral late spring and early summer seasons. Samples were taken with a conical-cylindrical plankton net from the depth of chlorophyll maxima to the surface in deep stations, or from 10 m from the bottom to the surface in shallow waters. Salinity and temperature were obtained with a CTD/rosette system, which provided seawater for chlorophyll-a and nutrient concentrations. The influence of water mass on larval fish species was studied using Indicator Species Analysis, whereas environmental effects on the distribution of larval fish species were analyzed by Distance-based Redundancy Analysis. Larval fish species were associated with specific water masses: in the north, Sardinella brasiliensis was found in Shelf Water; whereas in the south, Engraulis anchoita inhabited the Plata Plume Water. At the slope, Tropical Water was characterized by the bristlemouth Cyclothone acclinidens. The concurrent analysis showed the importance of both cross-shelf and latitudinal gradients on the large-scale distribution of larval fish species. Our findings reveal that ichthyoplankton composition and large-scale spatial distribution are determined by water mass composition in both latitudinal and cross-shelf gradients. PMID:24614798

  11. Characteristics of equatorial plasma bubbles observed by TEC map based on ground-based GNSS receivers over South America

    NASA Astrophysics Data System (ADS)

    Barros, Diego; Takahashi, Hisao; Wrasse, Cristiano M.; Figueiredo, Cosme Alexandre O. B.

    2018-01-01

    A ground-based network of GNSS receivers has been used to monitor equatorial plasma bubbles (EPBs) by mapping the total electron content (TEC map). The large coverage of the TEC map allowed us to monitor several EPBs simultaneously and get characteristics of the dynamics, extension and longitudinal distributions of the EPBs from the onset time until their disappearance. These characteristics were obtained by using TEC map analysis and the keogram technique. TEC map databases analyzed were for the period between November 2012 and January 2016. The zonal drift velocities of the EPBs showed a clear latitudinal gradient varying from 123 m s-1 at the Equator to 65 m s-1 for 35° S latitude. Consequently, observed EPBs are inclined against the geomagnetic field lines. Both zonal drift velocity and the inclination of the EPBs were compared to the thermospheric neutral wind, which showed good agreement. Moreover, the large two-dimensional coverage of TEC maps allowed us to study periodic EPBs with a wide longitudinal distance. The averaged values observed for the inter-bubble distances also presented a clear latitudinal gradient varying from 920 km at the Equator to 640 km at 30° S. The latitudinal gradient in the inter-bubble distances seems to be related to the difference in the zonal drift velocity of the EPB from the Equator to middle latitudes and to the difference in the westward movement of the terminator. On several occasions, the distances reached more than 2000 km. Inter-bubble distances greater than 1000 km have not been reported in the literature.

  12. Large-scale ichthyoplankton and water mass distribution along the South Brazil Shelf.

    PubMed

    de Macedo-Soares, Luis Carlos Pinto; Garcia, Carlos Alberto Eiras; Freire, Andrea Santarosa; Muelbert, José Henrique

    2014-01-01

    Ichthyoplankton is an essential component of pelagic ecosystems, and environmental factors play an important role in determining its distribution. We have investigated simultaneous latitudinal and cross-shelf gradients in ichthyoplankton abundance to test the hypothesis that the large-scale distribution of fish larvae in the South Brazil Shelf is associated with water mass composition. Vertical plankton tows were collected between 21°27' and 34°51'S at 107 stations, in austral late spring and early summer seasons. Samples were taken with a conical-cylindrical plankton net from the depth of chlorophyll maxima to the surface in deep stations, or from 10 m from the bottom to the surface in shallow waters. Salinity and temperature were obtained with a CTD/rosette system, which provided seawater for chlorophyll-a and nutrient concentrations. The influence of water mass on larval fish species was studied using Indicator Species Analysis, whereas environmental effects on the distribution of larval fish species were analyzed by Distance-based Redundancy Analysis. Larval fish species were associated with specific water masses: in the north, Sardinella brasiliensis was found in Shelf Water; whereas in the south, Engraulis anchoita inhabited the Plata Plume Water. At the slope, Tropical Water was characterized by the bristlemouth Cyclothone acclinidens. The concurrent analysis showed the importance of both cross-shelf and latitudinal gradients on the large-scale distribution of larval fish species. Our findings reveal that ichthyoplankton composition and large-scale spatial distribution are determined by water mass composition in both latitudinal and cross-shelf gradients.

  13. Low-gradient aortic stenosis

    PubMed Central

    Clavel, Marie-Annick; Magne, Julien; Pibarot, Philippe

    2016-01-01

    Abstract An important proportion of patients with aortic stenosis (AS) have a ‘low-gradient’ AS, i.e. a small aortic valve area (AVA <1.0 cm2) consistent with severe AS but a low mean transvalvular gradient (<40 mmHg) consistent with non-severe AS. The management of this subset of patients is particularly challenging because the AVA-gradient discrepancy raises uncertainty about the actual stenosis severity and thus about the indication for aortic valve replacement (AVR) if the patient has symptoms and/or left ventricular (LV) systolic dysfunction. The most frequent cause of low-gradient (LG) AS is the presence of a low LV outflow state, which may occur with reduced left ventricular ejection fraction (LVEF), i.e. classical low-flow, low-gradient (LF-LG), or preserved LVEF, i.e. paradoxical LF-LG. Furthermore, a substantial proportion of patients with AS may have a normal-flow, low-gradient (NF-LG) AS: i.e. a small AVA—low-gradient combination but with a normal flow. One of the most important clinical challenges in these three categories of patients with LG AS (classical LF-LG, paradoxical LF-LG, and NF-LG) is to differentiate a true-severe AS that generally benefits from AVR vs. a pseudo-severe AS that should be managed conservatively. A low-dose dobutamine stress echocardiography may be used for this purpose in patients with classical LF-LG AS, whereas aortic valve calcium scoring by multi-detector computed tomography is the preferred modality in those with paradoxical LF-LG or NF-LG AS. Although patients with LF-LG severe AS have worse outcomes than those with high-gradient AS following AVR, they nonetheless display an important survival benefit with this intervention. Some studies suggest that transcatheter AVR may be superior to surgical AVR in patients with LF-LG AS. PMID:27190103

  14. Strength gradient enhances fatigue resistance of steels

    NASA Astrophysics Data System (ADS)

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-02-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility.

  15. Strength gradient enhances fatigue resistance of steels

    PubMed Central

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-01-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility. PMID:26907708

  16. Use of the preconditioned conjugate gradient algorithm as a generic solver for mixed-model equations in animal breeding applications.

    PubMed

    Tsuruta, S; Misztal, I; Strandén, I

    2001-05-01

    Utility of the preconditioned conjugate gradient algorithm with a diagonal preconditioner for solving mixed-model equations in animal breeding applications was evaluated with 16 test problems. The problems included single- and multiple-trait analyses, with data on beef, dairy, and swine ranging from small examples to national data sets. Multiple-trait models considered low and high genetic correlations. Convergence was based on relative differences between left- and right-hand sides. The ordering of equations was fixed effects followed by random effects, with no special ordering within random effects. The preconditioned conjugate gradient program implemented with double precision converged for all models. However, when implemented in single precision, the preconditioned conjugate gradient algorithm did not converge for seven large models. The preconditioned conjugate gradient and successive overrelaxation algorithms were subsequently compared for 13 of the test problems. The preconditioned conjugate gradient algorithm was easy to implement with the iteration on data for general models. However, successive overrelaxation requires specific programming for each set of models. On average, the preconditioned conjugate gradient algorithm converged in three times fewer rounds of iteration than successive overrelaxation. With straightforward implementations, programs using the preconditioned conjugate gradient algorithm may be two or more times faster than those using successive overrelaxation. However, programs using the preconditioned conjugate gradient algorithm would use more memory than would comparable implementations using successive overrelaxation. Extensive optimization of either algorithm can influence rankings. The preconditioned conjugate gradient implemented with iteration on data, a diagonal preconditioner, and in double precision may be the algorithm of choice for solving mixed-model equations when sufficient memory is available and ease of implementation is

  17. Genetic Risk Score of NOS Gene Variants Associated with Myocardial Infarction Correlates with Coronary Incidence across Europe

    PubMed Central

    Carreras-Torres, Robert; Kundu, Suman; Zanetti, Daniela; Esteban, Esther

    2014-01-01

    Coronary artery disease (CAD) mortality and morbidity is present in the European continent in a four-fold gradient across populations, from the South (Spain and France) with the lowest CAD mortality, towards the North (Finland and UK). This observed gradient has not been fully explained by classical or single genetic risk factors, resulting in some cases in the so called Southern European or Mediterranean paradox. Here we approached population genetic risk estimates using genetic risk scores (GRS) constructed with single nucleotide polymorphisms (SNP) from nitric oxide synthases (NOS) genes. These SNPs appeared to be associated with myocardial infarction (MI) in 2165 cases and 2153 controls. The GRSs were computed in 34 general European populations. Although the contribution of these GRS was lower than 1% between cases and controls, the mean GRS per population was positively correlated with coronary incidence explaining 65–85% of the variation among populations (67% in women and 86% in men). This large contribution to CAD incidence variation among populations might be a result of colinearity with several other common genetic and environmental factors. These results are not consistent with the cardiovascular Mediterranean paradox for genetics and support a CAD genetic architecture mainly based on combinations of common genetic polymorphisms. Population genetic risk scores is a promising approach in public health interventions to develop lifestyle programs and prevent intermediate risk factors in certain subpopulations with specific genetic predisposition. PMID:24806096

  18. Gradient-based multiresolution image fusion.

    PubMed

    Petrović, Valdimir S; Xydeas, Costas S

    2004-02-01

    A novel approach to multiresolution signal-level image fusion is presented for accurately transferring visual information from any number of input image signals, into a single fused image without loss of information or the introduction of distortion. The proposed system uses a "fuse-then-decompose" technique realized through a novel, fusion/decomposition system architecture. In particular, information fusion is performed on a multiresolution gradient map representation domain of image signal information. At each resolution, input images are represented as gradient maps and combined to produce new, fused gradient maps. Fused gradient map signals are processed, using gradient filters derived from high-pass quadrature mirror filters to yield a fused multiresolution pyramid representation. The fused output image is obtained by applying, on the fused pyramid, a reconstruction process that is analogous to that of conventional discrete wavelet transform. This new gradient fusion significantly reduces the amount of distortion artefacts and the loss of contrast information usually observed in fused images obtained from conventional multiresolution fusion schemes. This is because fusion in the gradient map domain significantly improves the reliability of the feature selection and information fusion processes. Fusion performance is evaluated through informal visual inspection and subjective psychometric preference tests, as well as objective fusion performance measurements. Results clearly demonstrate the superiority of this new approach when compared to conventional fusion systems.

  19. Patterns and Variation in Benthic Biodiversity in a Large Marine Ecosystem

    PubMed Central

    Lee, Jonathan D.

    2015-01-01

    While there is a persistent inverse relationship between latitude and species diversity across many taxa and ecosystems, deviations from this norm offer an opportunity to understand the conditions that contribute to large-scale diversity patterns. Marine systems, in particular, provide such an opportunity, as marine diversity does not always follow a strict latitudinal gradient, perhaps because several hypothesized drivers of the latitudinal diversity gradient are uncorrelated in marine systems. We used a large scale public monitoring dataset collected over an eight year period to examine benthic marine faunal biodiversity patterns for the continental shelf (55–183 m depth) and slope habitats (184–1280 m depth) off the US West Coast (47°20′N—32°40′N). We specifically asked whether marine biodiversity followed a strict latitudinal gradient, and if these latitudinal patterns varied across depth, in different benthic substrates, and over ecological time scales. Further, we subdivided our study area into three smaller regions to test whether coast-wide patterns of biodiversity held at regional scales, where local oceanographic processes tend to influence community structure and function. Overall, we found complex patterns of biodiversity on both the coast-wide and regional scales that differed by taxonomic group. Importantly, marine biodiversity was not always highest at low latitudes. We found that latitude, depth, substrate, and year were all important descriptors of fish and invertebrate diversity. Invertebrate richness and taxonomic diversity were highest at high latitudes and in deeper waters. Fish richness also increased with latitude, but exhibited a hump-shaped relationship with depth, increasing with depth up to the continental shelf break, ~200 m depth, and then decreasing in deeper waters. We found relationships between fish taxonomic and functional diversity and latitude, depth, substrate, and time at the regional scale, but not at the coast

  20. Patterns and Variation in Benthic Biodiversity in a Large Marine Ecosystem.

    PubMed

    Piacenza, Susan E; Barner, Allison K; Benkwitt, Cassandra E; Boersma, Kate S; Cerny-Chipman, Elizabeth B; Ingeman, Kurt E; Kindinger, Tye L; Lee, Jonathan D; Lindsley, Amy J; Reimer, Jessica N; Rowe, Jennifer C; Shen, Chenchen; Thompson, Kevin A; Thurman, Lindsey L; Heppell, Selina S

    2015-01-01

    While there is a persistent inverse relationship between latitude and species diversity across many taxa and ecosystems, deviations from this norm offer an opportunity to understand the conditions that contribute to large-scale diversity patterns. Marine systems, in particular, provide such an opportunity, as marine diversity does not always follow a strict latitudinal gradient, perhaps because several hypothesized drivers of the latitudinal diversity gradient are uncorrelated in marine systems. We used a large scale public monitoring dataset collected over an eight year period to examine benthic marine faunal biodiversity patterns for the continental shelf (55-183 m depth) and slope habitats (184-1280 m depth) off the US West Coast (47°20'N-32°40'N). We specifically asked whether marine biodiversity followed a strict latitudinal gradient, and if these latitudinal patterns varied across depth, in different benthic substrates, and over ecological time scales. Further, we subdivided our study area into three smaller regions to test whether coast-wide patterns of biodiversity held at regional scales, where local oceanographic processes tend to influence community structure and function. Overall, we found complex patterns of biodiversity on both the coast-wide and regional scales that differed by taxonomic group. Importantly, marine biodiversity was not always highest at low latitudes. We found that latitude, depth, substrate, and year were all important descriptors of fish and invertebrate diversity. Invertebrate richness and taxonomic diversity were highest at high latitudes and in deeper waters. Fish richness also increased with latitude, but exhibited a hump-shaped relationship with depth, increasing with depth up to the continental shelf break, ~200 m depth, and then decreasing in deeper waters. We found relationships between fish taxonomic and functional diversity and latitude, depth, substrate, and time at the regional scale, but not at the coast-wide scale

  1. Patterns of Genetic Variation across Altitude in Three Plant Species of Semi-Dry Grasslands

    PubMed Central

    Hahn, Thomas; Kettle, Chris J.; Ghazoul, Jaboury; Frei, Esther R.; Matter, Philippe; Pluess, Andrea R.

    2012-01-01

    Background Environmental gradients caused by altitudinal gradients may affect genetic variation within and among plant populations and inbreeding within populations. Populations in the upper range periphery of a species may be important source populations for range shifts to higher altitude in response to climate change. In this study we investigate patterns of population genetic variation at upper peripheral and lower more central altitudes in three common plant species of semi-dry grasslands in montane landscapes. Methodology/Principal Findings In Briza media, Trifolium montanum and Ranunculus bulbosus genetic diversity, inbreeding and genetic relatedness of individuals within populations and genetic differentiation among populations was characterized using AFLP markers. Populations were sampled in the Swiss Alps at 1800 (upper periphery of the study organisms) and at 1200 m a.s.l. Genetic diversity was not affected by altitude and only in B. media inbreeding was greater at higher altitudes. Genetic differentiation was slightly greater among populations at higher altitudes in B. media and individuals within populations were more related to each other compared to individuals in lower altitude populations. A similar but less strong pattern of differentiation and relatedness was observed in T. montanum, while in R. bulbosus there was no effect of altitude. Estimations of population size and isolation of populations were similar, both at higher and lower altitudes. Conclusions/Significance Our results suggest that altitude does not affect genetic diversity in the grassland species under study. Genetic differentiation of populations increased only slightly at higher elevation, probably due to extensive (historic) gene flow among altitudes. Potentially pre-adapted genes might therefore spread easily across altitudes. Our study indicates that populations at the upper periphery are not genetically depauperate or isolated and thus may be important source populations for

  2. Regularized GRACE monthly solutions by constraining the difference between the longitudinal and latitudinal gravity variations

    NASA Astrophysics Data System (ADS)

    Chen, Qiujie; Chen, Wu; Shen, Yunzhong; Zhang, Xingfu; Hsu, Houze

    2016-04-01

    The existing unconstrained Gravity Recovery and Climate Experiment (GRACE) monthly solutions i.e. CSR RL05 from Center for Space Research (CSR), GFZ RL05a from GeoForschungsZentrum (GFZ), JPL RL05 from Jet Propulsion Laboratory (JPL), DMT-1 from Delft Institute of Earth Observation and Space Systems (DEOS), AIUB from Bern University, and Tongji-GRACE01 as well as Tongji-GRACE02 from Tongji University, are dominated by correlated noise (such as north-south stripe errors) in high degree coefficients. To suppress the correlated noise of the unconstrained GRACE solutions, one typical option is to use post-processing filters such as decorrelation filtering and Gaussian smoothing , which are quite effective to reduce the noise and convenient to be implemented. Unlike these post-processing methods, the CNES/GRGS monthly GRACE solutions from Centre National d'Etudes Spatiales (CNES) were developed by using regularization with Kaula rule, whose correlated noise are reduced to such a great extent that no decorrelation filtering is required. Actually, the previous studies demonstrated that the north-south stripes in the GRACE solutions are due to the poor sensitivity of gravity variation in east-west direction. In other words, the longitudinal sampling of GRACE mission is very sparse but the latitudinal sampling of GRACE mission is quite dense, indicating that the recoverability of the longitudinal gravity variation is poor or unstable, leading to the ill-conditioned monthly GRACE solutions. To stabilize the monthly solutions, we constructed the regularization matrices by minimizing the difference between the longitudinal and latitudinal gravity variations and applied them to derive a time series of regularized GRACE monthly solutions named RegTongji RL01 for the period Jan. 2003 to Aug. 2011 in this paper. The signal powers and noise level of RegTongji RL01 were analyzed in this paper, which shows that: (1) No smoothing or decorrelation filtering is required for RegTongji RL

  3. Within and between species variation in response to environmental gradients in Polygonum pensylvanicum and Polygonum virginianum.

    PubMed

    Lee, Hee Sun; Zangerl, A R; Garbutt, K; Bazzaz, F A

    1986-03-01

    The responses of Polygonum pensylvanicum L., an early successional annual, and of Polygonum virginianum L., a late successional perennial, were examined along discontinuous gradients of soil moisture, light and nutrient availability. In the case of P. virginianum both individuals grown from seed and individuals grown from rhizomes were examined. The results show that variation in the response of individuals of a species of different age to environmental variation is as great as that found between the two congeneric species of different successional habitats. In general, individuals of the two species were more similar to one another in response to the resource gradients when both were started from seed, than were individuals of P. virginianum grown from seed and from rhizomes. Potential differences in stored reserves (starting capital) between rhizomes and seeds appeared to have little effect upon responses to resource availability. A number of plant characters were found to vary along the gradients in ways that were unique to the character, the gradient, and the age of the individual. These characters included aspects of leaf size, shape, and orientation, as well as whole plant architecture. Many if not all of these characters are likely to have significant effects upon the functioning of plants. The origin of this difference in response to the gradients of individuals of P. virginianum of differing age may be ontogenetic or may reflect differences in genetic composition created by recombination.

  4. Genomic divergence across ecological gradients in the Central African rainforest songbird (Andropadus virens).

    PubMed

    Zhen, Ying; Harrigan, Ryan J; Ruegg, Kristen C; Anderson, Eric C; Ng, Thomas C; Lao, Sirena; Lohmueller, Kirk E; Smith, Thomas B

    2017-10-01

    The little greenbul, a common rainforest passerine from sub-Saharan Africa, has been the subject of long-term evolutionary studies to understand the mechanisms leading to rainforest speciation. Previous research found morphological and behavioural divergence across rainforest-savannah transition zones (ecotones), and a pattern of divergence with gene flow suggesting divergent natural selection has contributed to adaptive divergence and ecotones could be important areas for rainforests speciation. Recent advances in genomics and environmental modelling make it possible to examine patterns of genetic divergence in a more comprehensive fashion. To assess the extent to which natural selection may drive patterns of differentiation, here we investigate patterns of genomic differentiation among populations across environmental gradients and regions. We find compelling evidence that individuals form discrete genetic clusters corresponding to distinctive environmental characteristics and habitat types. Pairwise F ST between populations in different habitats is significantly higher than within habitats, and this differentiation is greater than what is expected from geographic distance alone. Moreover, we identified 140 SNPs that showed extreme differentiation among populations through a genomewide selection scan. These outliers were significantly enriched in exonic and coding regions, suggesting their functional importance. Environmental association analysis of SNP variation indicates that several environmental variables, including temperature and elevation, play important roles in driving the pattern of genomic diversification. Results lend important new genomic evidence for environmental gradients being important in population differentiation. © 2017 John Wiley & Sons Ltd.

  5. Dew Worms in the White Nights

    USDA-ARS?s Scientific Manuscript database

    Lumbricus terrestris L. (the dew worm) forages, mates and migrates on the soil surface during the night. Its distribution covers a broad latitudinal gradient and variation in day length conditions. Since soil-surface activity is crucial for the survival and reproduction of dew worms, it is conceivab...

  6. River network architecture, genetic effective size and distributional patterns predict differences in genetic structure across species in a dryland stream fish community.

    PubMed

    Pilger, Tyler J; Gido, Keith B; Propst, David L; Whitney, James E; Turner, Thomas F

    2017-05-01

    Dendritic ecological network (DEN) architecture can be a strong predictor of spatial genetic patterns in theoretical and simulation studies. Yet, interspecific differences in dispersal capabilities and distribution within the network may equally affect species' genetic structuring. We characterized patterns of genetic variation from up to ten microsatellite loci for nine numerically dominant members of the upper Gila River fish community, New Mexico, USA. Using comparative landscape genetics, we evaluated the role of network architecture for structuring populations within species (pairwise F ST ) while explicitly accounting for intraspecific demographic influences on effective population size (N e ). Five species exhibited patterns of connectivity and/or genetic diversity gradients that were predicted by network structure. These species were generally considered to be small-bodied or habitat specialists. Spatial variation of N e was a strong predictor of pairwise F ST for two species, suggesting patterns of connectivity may also be influenced by genetic drift independent of network properties. Finally, two study species exhibited genetic patterns that were unexplained by network properties and appeared to be related to nonequilibrium processes. Properties of DENs shape community-wide genetic structure but effects are modified by intrinsic traits and nonequilibrium processes. Further theoretical development of the DEN framework should account for such cases. © 2017 John Wiley & Sons Ltd.

  7. Gradient nonlinearity calibration and correction for a compact, asymmetric magnetic resonance imaging gradient system.

    PubMed

    Tao, S; Trzasko, J D; Gunter, J L; Weavers, P T; Shu, Y; Huston, J; Lee, S K; Tan, E T; Bernstein, M A

    2017-01-21

    Due to engineering limitations, the spatial encoding gradient fields in conventional magnetic resonance imaging cannot be perfectly linear and always contain higher-order, nonlinear components. If ignored during image reconstruction, gradient nonlinearity (GNL) manifests as image geometric distortion. Given an estimate of the GNL field, this distortion can be corrected to a degree proportional to the accuracy of the field estimate. The GNL of a gradient system is typically characterized using a spherical harmonic polynomial model with model coefficients obtained from electromagnetic simulation. Conventional whole-body gradient systems are symmetric in design; typically, only odd-order terms up to the 5th-order are required for GNL modeling. Recently, a high-performance, asymmetric gradient system was developed, which exhibits more complex GNL that requires higher-order terms including both odd- and even-orders for accurate modeling. This work characterizes the GNL of this system using an iterative calibration method and a fiducial phantom used in ADNI (Alzheimer's Disease Neuroimaging Initiative). The phantom was scanned at different locations inside the 26 cm diameter-spherical-volume of this gradient, and the positions of fiducials in the phantom were estimated. An iterative calibration procedure was utilized to identify the model coefficients that minimize the mean-squared-error between the true fiducial positions and the positions estimated from images corrected using these coefficients. To examine the effect of higher-order and even-order terms, this calibration was performed using spherical harmonic polynomial of different orders up to the 10th-order including even- and odd-order terms, or odd-order only. The results showed that the model coefficients of this gradient can be successfully estimated. The residual root-mean-squared-error after correction using up to the 10th-order coefficients was reduced to 0.36 mm, yielding spatial accuracy comparable to

  8. Gradient nonlinearity calibration and correction for a compact, asymmetric magnetic resonance imaging gradient system

    PubMed Central

    Tao, S; Trzasko, J D; Gunter, J L; Weavers, P T; Shu, Y; Huston, J; Lee, S K; Tan, E T; Bernstein, M A

    2017-01-01

    Due to engineering limitations, the spatial encoding gradient fields in conventional magnetic resonance imaging cannot be perfectly linear and always contain higher-order, nonlinear components. If ignored during image reconstruction, gradient nonlinearity (GNL) manifests as image geometric distortion. Given an estimate of the GNL field, this distortion can be corrected to a degree proportional to the accuracy of the field estimate. The GNL of a gradient system is typically characterized using a spherical harmonic polynomial model with model coefficients obtained from electromagnetic simulation. Conventional whole-body gradient systems are symmetric in design; typically, only odd-order terms up to the 5th-order are required for GNL modeling. Recently, a high-performance, asymmetric gradient system was developed, which exhibits more complex GNL that requires higher-order terms including both odd- and even-orders for accurate modeling. This work characterizes the GNL of this system using an iterative calibration method and a fiducial phantom used in ADNI (Alzheimer’s Disease Neuroimaging Initiative). The phantom was scanned at different locations inside the 26-cm diameter-spherical-volume of this gradient, and the positions of fiducials in the phantom were estimated. An iterative calibration procedure was utilized to identify the model coefficients that minimize the mean-squared-error between the true fiducial positions and the positions estimated from images corrected using these coefficients. To examine the effect of higher-order and even-order terms, this calibration was performed using spherical harmonic polynomial of different orders up to the 10th-order including even- and odd-order terms, or odd-order only. The results showed that the model coefficients of this gradient can be successfully estimated. The residual root-mean-squared-error after correction using up to the 10th-order coefficients was reduced to 0.36 mm, yielding spatial accuracy comparable to

  9. Eco-evolutionary dynamics in urbanized landscapes: evolution, species sorting and the change in zooplankton body size along urbanization gradients.

    PubMed

    Brans, Kristien I; Govaert, Lynn; Engelen, Jessie M T; Gianuca, Andros T; Souffreau, Caroline; De Meester, Luc

    2017-01-19

    Urbanization causes both changes in community composition and evolutionary responses, but most studies focus on these responses in isolation. We performed an integrated analysis assessing the relative contribution of intra- and interspecific trait turnover to the observed change in zooplankton community body size in 83 cladoceran communities along urbanization gradients quantified at seven spatial scales (50-3200 m radii). We also performed a quantitative genetic analysis on 12 Daphnia magna populations along the same urbanization gradient. Body size in zooplankton communities generally declined with increasing urbanization, but the opposite was observed for communities dominated by large species. The contribution of intraspecific trait variation to community body size turnover with urbanization strongly varied with the spatial scale considered, and was highest for communities dominated by large cladoceran species and at intermediate spatial scales. Genotypic size at maturity was smaller for urban than for rural D. magna populations and for animals cultured at 24°C compared with 20°C. While local genetic adaptation likely contributed to the persistence of D. magna in the urban heat islands, buffering for the phenotypic shift to larger body sizes with increasing urbanization, community body size turnover was mainly driven by non-genetic intraspecific trait change.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Author(s).

  10. Eco-evolutionary dynamics in urbanized landscapes: evolution, species sorting and the change in zooplankton body size along urbanization gradients

    PubMed Central

    Souffreau, Caroline

    2017-01-01

    Urbanization causes both changes in community composition and evolutionary responses, but most studies focus on these responses in isolation. We performed an integrated analysis assessing the relative contribution of intra- and interspecific trait turnover to the observed change in zooplankton community body size in 83 cladoceran communities along urbanization gradients quantified at seven spatial scales (50–3200 m radii). We also performed a quantitative genetic analysis on 12 Daphnia magna populations along the same urbanization gradient. Body size in zooplankton communities generally declined with increasing urbanization, but the opposite was observed for communities dominated by large species. The contribution of intraspecific trait variation to community body size turnover with urbanization strongly varied with the spatial scale considered, and was highest for communities dominated by large cladoceran species and at intermediate spatial scales. Genotypic size at maturity was smaller for urban than for rural D. magna populations and for animals cultured at 24°C compared with 20°C. While local genetic adaptation likely contributed to the persistence of D. magna in the urban heat islands, buffering for the phenotypic shift to larger body sizes with increasing urbanization, community body size turnover was mainly driven by non-genetic intraspecific trait change. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences’. PMID:27920375

  11. Biotic and abiotic drivers of intraspecific trait variation within plant populations of three herbaceous plant species along a latitudinal gradient.

    PubMed

    Helsen, Kenny; Acharya, Kamal P; Brunet, Jörg; Cousins, Sara A O; Decocq, Guillaume; Hermy, Martin; Kolb, Annette; Lemke, Isgard H; Lenoir, Jonathan; Plue, Jan; Verheyen, Kris; De Frenne, Pieter; Graae, Bente J

    2017-12-12

    The importance of intraspecific trait variation (ITV) is increasingly acknowledged among plant ecologists. However, our understanding of what drives ITV between individual plants (ITV BI ) at the population level is still limited. Contrasting theoretical hypotheses state that ITV BI can be either suppressed (stress-reduced plasticity hypothesis) or enhanced (stress-induced variability hypothesis) under high abiotic stress. Similarly, other hypotheses predict either suppressed (niche packing hypothesis) or enhanced ITV BI (individual variation hypothesis) under high niche packing in species rich communities. In this study we assess the relative effects of both abiotic and biotic niche effects on ITV BI of four functional traits (leaf area, specific leaf area, plant height and seed mass), for three herbaceous plant species across a 2300 km long gradient in Europe. The study species were the slow colonizing Anemone nemorosa, a species with intermediate colonization rates, Milium effusum, and the fast colonizing, non-native Impatiens glandulifera. Climatic stress consistently increased ITV BI across species and traits. Soil nutrient stress, on the other hand, reduced ITV BI for A. nemorosa and I. glandulifera, but had a reversed effect for M. effusum. We furthermore observed a reversed effect of high niche packing on ITV BI for the fast colonizing non-native I. glandulifera (increased ITV BI ), as compared to the slow colonizing native A. nemorosa and M. effusum (reduced ITV BI ). Additionally, ITV BI in the fast colonizing species tended to be highest for the vegetative traits plant height and leaf area, but lowest for the measured generative trait seed mass. This study shows that stress can both reduce and increase ITV BI , seemingly supporting both the stress-reduced plasticity and stress-induced variability hypotheses. Similarly, niche packing effects on ITV BI supported both the niche packing hypothesis and the individual variation hypothesis. These results

  12. Combinational concentration gradient confinement through stagnation flow.

    PubMed

    Alicia, Toh G G; Yang, Chun; Wang, Zhiping; Nguyen, Nam-Trung

    2016-01-21

    Concentration gradient generation in microfluidics is typically constrained by two conflicting mass transport requirements: short characteristic times (τ) for precise temporal control of concentration gradients but at the expense of high flow rates and hence, high flow shear stresses (σ). To decouple the limitations from these parameters, here we propose the use of stagnation flows to confine concentration gradients within large velocity gradients that surround the stagnation point. We developed a modified cross-slot (MCS) device capable of feeding binary and combinational concentration sources in stagnation flows. We show that across the velocity well, source-sink pairs can form permanent concentration gradients. As source-sink concentration pairs are continuously supplied to the MCS, a permanently stable concentration gradient can be generated. Tuning the flow rates directly controls the velocity gradients, and hence the stagnation point location, allowing the confined concentration gradient to be focused. In addition, the flow rate ratio within the MCS rapidly controls (τ ∼ 50 ms) the location of the stagnation point and the confined combinational concentration gradients at low flow shear (0.2 Pa < σ < 2.9 Pa). The MCS device described in this study establishes the method for using stagnation flows to rapidly generate and position low shear combinational concentration gradients for shear sensitive biological assays.

  13. Size exclusion chromatography-gradients, an alternative approach to polymer gradient chromatography: 2. Separation of poly(meth)acrylates using a size exclusion chromatography-solvent/non-solvent gradient.

    PubMed

    Schollenberger, Martin; Radke, Wolfgang

    2011-10-28

    A gradient ranging from methanol to tetrahydrofuran (THF) was applied to a series of poly(methyl methacrylate) (PMMA) standards, using the recently developed concept of SEC-gradients. Contrasting to conventional gradients the samples eluted before the solvent, i.e. within the elution range typical for separations by SEC, however, the high molar mass PMMAs were retarded as compared to experiments on the same column using pure THF as the eluent. The molar mass dependence on retention volume showed a complex behaviour with a nearly molar mass independent elution for high molar masses. This molar mass dependence was explained in terms of solubility and size exclusion effects. The solubility based SEC-gradient was proven to be useful to separate PMMA and poly(n-butyl crylate) (PnBuA) from a poly(t-butyl crylate) (PtBuA) sample. These samples could be separated neither by SEC in THF, due to their very similar hydrodynamic volumes, nor by an SEC-gradient at adsorbing conditions, due to a too low selectivity. The example shows that SEC-gradients can be applied not only in adsorption/desorption mode, but also in precipitation/dissolution mode without risking blocking capillaries or breakthrough peaks. Thus, the new approach is a valuable alternative to conventional gradient chromatography. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Latitude is significantly associated with the prevalence of multiple sclerosis: a meta-analysis.

    PubMed

    Simpson, Steve; Blizzard, Leigh; Otahal, Petr; Van der Mei, Ingrid; Taylor, Bruce

    2011-10-01

    There is a striking latitudinal gradient in multiple sclerosis (MS) prevalence, but exceptions in Mediterranean Europe and northern Scandinavia, and some systematic reviews, have suggested that the gradient may be an artefact. The authors sought to evaluate the association between MS prevalence and latitude by meta-regression. Studies were sourced from online databases, reference mining and author referral. Prevalence estimates were age-standardised to the 2009 European population. Analyses were carried out by means of random-effects meta-regression, weighted with the inverse of within-study variance. The authors included 650 prevalence estimates from 321 peer-reviewed studies; 239 were age-standardised, and 159 provided sex-specific data. The authors found a significant positive association (change in prevalence per degree-latitude) between age-standardised prevalence (1.04, p<0.001) and latitude that diminished at high latitudes. Adjustment for prevalence year strengthened the association with latitude (2.60, p<0.001). An inverse gradient in the Italian region reversed on adjustment for MS-associated HLA-DRB1 allele distributions. Adjustment for HLA-DRB1 allele frequencies did not appreciably alter the gradient in Europe. Adjustment for some potential sources of bias did not affect the observed associations. This, the most comprehensive review of MS prevalence to date, has confirmed a statistically significant positive association between MS prevalence and latitude globally. Exceptions to the gradient in the Italian region and northern Scandinavia are likely a result of genetic and behavioural-cultural variations. The persistence of a positive gradient in Europe after adjustment for HLA-DRB1 allele frequencies strongly supports a role for environmental factors which vary with latitude, the most prominent candidates being ultraviolet radiation (UVR)/vitamin D.

  15. Patterns of macromycete community assemblage along an elevation gradient: options for fungal gradient and metacommunity analyse

    Treesearch

    Marko Gómez-Hernández; Guadalupe Williams-Linera; Roger Guevara; D. Jean Lodge

    2012-01-01

    Gradient analysis is rarely used in studies of fungal communities. Data on macromycetes from eight sites along an elevation gradient in central Veracruz, Mexico, were used to demonstrate methods for gradient analysis that can be applied to studies of communities of fungi. Selected sites from 100 to 3,500 m altitude represent tropical dry forest, tropical montane cloud...

  16. Large-scale longitudinal gradients of genetic diversity: a meta-analysis across six phyla in the Mediterranean basin

    PubMed Central

    Conord, Cyrille; Gurevitch, Jessica; Fady, Bruno

    2012-01-01

    Biodiversity is the diversity of life at all scales, from genes to ecosystems. Predicting its patterns of variation across the globe is a fundamental issue in ecology and evolution. Diversity within species, that is, genetic diversity, is of prime importance for understanding past and present evolutionary patterns, and highlighting areas where conservation might be a priority. Using published data on the genetic diversity of species whose populations occur in the Mediterranean basin, we calculated a coefficient of correlation between within-population genetic diversity indices and longitude. Using a meta-analysis framework, we estimated the role of biological, ecological, biogeographic, and marker type factors on the strength and magnitude of this correlation in six phylla. Overall, genetic diversity increases from west to east in the Mediterranean basin. This correlation is significant for both animals and plants, but is not uniformly expressed for all groups. It is stronger in the southern than in the northern Mediterranean, in true Mediterranean plants than in plants found at higher elevations, in trees than in other plants, and in bi-parentally and paternally than in maternally inherited DNA makers. Overall, this correlation between genetic diversity and longitude, and its patterns across biological and ecological traits, suggests the role of two non-mutually exclusive major processes that shaped the genetic diversity in the Mediterranean during and after the cold periods of the Pleistocene: east-west recolonization during the Holocene and population size contraction under local Last Glacial Maximum climate in resident western and low elevation Mediterranean populations. PMID:23145344

  17. The mountain pine beetle and whitebark pine waltz: Has the music changed?

    Treesearch

    Barbara J. Bentz; Greta Schen-Langenheim

    2007-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae) (MPB), is a bark beetle native to western North American forests, spanning wide latitudinal and elevational gradients. MPB infest and reproduce within the phloem of most Pinus species from northern Baja California in Mexico to central British Columbia in...

  18. The latitudinal distribution of ozone to 35 km altitude from ECC ozonesonde observations, 1982-1990

    NASA Technical Reports Server (NTRS)

    Komhyr, W. D.; Oltmans, S. J.; Lathrop, J. A.; Kerr, J. B.; Matthews, W. A.

    1994-01-01

    Electrochemical concentration cell (ECC) ozone-sonde observations, made in recent years at ten stations whose locations range from the Arctic to Antarctica, have yielded a self-consistent ozone data base from which mean seasonal and annual latitudinal ozone vertical distributions to 35 km have been derived. Ozone measurement uncertainties are estimated, and results are presented in the Bass-Paur (1985) ozone absorption coefficient scale adopted for use with Dobson ozone spectrophotometers January 1, 1992. The data should be useful for comparison with model calculations of the global distribution of atmospheric ozone, for serving as apriori statistical information in deriving ozone vertical distributions from satellite and Umkehr observations, and for improving the satellite and Umkehr ozone inversion algorithms. Attention is drawn to similar results based on a less comprehensive data set published in Ozone in the Atmosphere, Proceedings of the 1988 Quadrennial Ozone Symposium where errors in data tabulations occurred for three of the stations due to inadvertent transposition of ozone partial pressure and air temperature values.

  19. Latitudinal variation of freeze tolerance in intertidal marine snails of the genus Melampus (Gastropoda: Ellobiidae).

    PubMed

    Dennis, A B; Loomis, S H; Hellberg, M E

    2014-01-01

    Abstract Low temperatures limit the poleward distribution of many species such that the expansion of geographic range can only be accomplished via evolutionary innovation. We have tested for physiological differences among closely related species to determine whether their poleward latitudinal ranges are limited by tolerance to cold. We measured lower temperature tolerance (LT50) among a group of intertidal pulmonate snails from six congeneric species and nine locales. Differences in tolerance are placed in the context of a molecular phylogeny based on one mitochondrial (cytochrome oxidase subunit I) and two nuclear (histone 3 and a mitochondrial phosphate carrier protein) markers. Temperate species from two separate lineages had significantly lower measures of LT50 than related tropical species. Range differences within the temperate zone, however, were not explained by LT50. These results show that multiple adaptations to cold and freezing may have enabled range expansions out of the tropics in Melampus. However, northern range limits within temperate species are not governed by cold tolerance alone.

  20. Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic-xeric gradient in Europe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Kauwe, M. G.; Zhou, S. -X.; Medlyn, B. E.

    Future climate change has the potential to increase drought in many regions of the globe, making it essential that land surface models (LSMs) used in coupled climate models realistically capture the drought responses of vegetation. Recent data syntheses show that drought sensitivity varies considerably among plants from different climate zones, but state-of-the-art LSMs currently assume the same drought sensitivity for all vegetation. We tested whether variable drought sensitivities are needed to explain the observed large-scale patterns of drought impact on the carbon, water and energy fluxes. We implemented data-driven drought sensitivities in the Community Atmosphere Biosphere Land Exchange (CABLE) LSMmore » and evaluated alternative sensitivities across a latitudinal gradient in Europe during the 2003 heatwave. The model predicted an overly abrupt onset of drought unless average soil water potential was calculated with dynamic weighting across soil layers. We found that high drought sensitivity at the most mesic sites, and low drought sensitivity at the most xeric sites, was necessary to accurately model responses during drought. Furthermore, our results indicate that LSMs will over-estimate drought impacts in drier climates unless different sensitivity of vegetation to drought is taken into account.« less