Science.gov

Sample records for launched test rockets

  1. Rocket Launch Trajectory Simulations Mechanism

    NASA Technical Reports Server (NTRS)

    Margasahayam, Ravi; Caimi, Raoul E.; Hauss, Sharon; Voska, N. (Technical Monitor)

    2002-01-01

    The design and development of a Trajectory Simulation Mechanism (TSM) for the Launch Systems Testbed (LST) is outlined. In addition to being one-of-a-kind facility in the world, TSM serves as a platform to study the interaction of rocket launch-induced environments and subsequent dynamic effects on the equipment and structures in the close vicinity of the launch pad. For the first time, researchers and academicians alike will be able to perform tests in a laboratory environment and assess the impact of vibroacoustic behavior of structures in a moving rocket scenario on ground equipment, launch vehicle, and its valuable payload or spacecraft.

  2. The Launch Test of the Hybrid Rocket and Its Range Safety

    NASA Astrophysics Data System (ADS)

    Habu, Hiroto; Wada, Eiichi; Niwa, Takahiro; Kondo, Yasuo; Kawamura, Takafumi; Maruyama, Shinya; Okamura, Ayano; Yamashina, Saera; Nagai, Yasuhito; Nakamichi, Tatsuya; Uemichi, Akane; Tanaka, Naruaki; Kobayashi, Naoki; Kasahara, Jiro; Morita, Yasuhiro

    The educational hybrid-rocket was successfully launched and it also landed within the predicted area. Aerodynamic characteristics of the rocket designed by students of Tsukuba University were evaluated by the wind tunnel testing with the support of Tokai University. The flight path affected by the environmental condition, especially wind direction and velocity, was simulated with the original calculation program. The altitude of the rocket was measured with the optical equipment and the apex was 123 m although the calculation indicated 198 m. We expected that the insufficient filling or the volatilization of Nitrous oxide as an oxidizer led to this result. And then, the apex was verified with a function of the oxidizer filling ratio. The results showed that 81.2 % of the oxidizer volume in comparison with the firing test condition was accumulated in the tank at the launch.

  3. Identification of Noise Sources During Rocket Engine Test Firings and a Rocket Launch Using a Microphone Phased-Array

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; Mosher, Robert N.; Porter, Barry J.

    2013-01-01

    A 70 microphone, 10-foot by 10-foot, microphone phased array was built for use in the harsh environment of rocket launches. The array was setup at NASA Wallops launch pad 0A during a static test firing of Orbital Sciences' Antares engines, and again during the first launch of the Antares vehicle. It was placed 400 feet away from the pad, and was hoisted on a scissor lift 40 feet above ground. The data sets provided unprecedented insight into rocket noise sources. The duct exit was found to be the primary source during the static test firing; the large amount of water injected beneath the nozzle exit and inside the plume duct quenched all other sources. The maps of the noise sources during launch were found to be time-dependent. As the engines came to full power and became louder, the primary source switched from the duct inlet to the duct exit. Further elevation of the vehicle caused spilling of the hot plume, resulting in a distributed noise map covering most of the pad. As the entire plume emerged from the duct, and the ondeck water system came to full power, the plume itself became the loudest noise source. These maps of the noise sources provide vital insight for optimization of sound suppression systems for future Antares launches.

  4. Static firing test of the H-2 launch vehicle solid rocket booster

    NASA Astrophysics Data System (ADS)

    Fukushima, Yukio

    1988-06-01

    The National Space Development Agency of Japan (NASDA) conducted the first static firing test of the H-2 Launch Vehicle solid rocket booster (SRB) on April 15, 1988 at the static firing test facility for solid motors in the Tanegashima Space Center using a full-size SRB. The firing test was intended to verify the basic firing characteristics of the solid motor and the heat resistance of the nozzle, to obtain data of the dynamic characteristics of the movable nozzle and to measure the environmental conditions (acoustics, vibration, heat, etc.) during motor firing. The SRB was set horizontally and was ignited. The SRB was fired normally for approx. 93 seconds, during which time an operational test to drive the movable nozzle to its maximum rudder angle of 5 degrees was performed. Roughly 290 pieces of data were obtained, such as thrust, motor internal pressure, distortion and heat radiation. The test was successful in that motor firing performance almost reached the forecasted values. The movable nozzle was operated smoothly during firing and the thrust vector control (TVC) system functions presented no problems. The nozzle errosion value was less than the design value, indicating that the design value has a sufficient error margin.

  5. Students Participate in Rocket Launch Project

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Filled with anticipation, students from three Huntsville area high schools: Randolph, Sparkman, and Johnson High Schools, counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides hands-on, practical aerospace experience. In this picture, Randolph High School students are assembling their rocket in preparation for launch.

  6. Students Participate in Rocket Launch Project

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Filled with anticipation, students from three Huntsville area high schools: Randolph, Sparkman, and Johnson High Schools, counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides them with hands-on, practical aerospace experience. In this picture, three Sparkman High School students pose with their rocket.

  7. Students Participate in Rocket Launch Project

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Filled with anticipation, students from three Huntsville area high schools: Randolph, Sparkman and Johnson High Schools, counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides them with hands-on, practical aerospace experience. In this picture, two Johnson High School students pose with their rocket.

  8. Students Participate in Rocket Launch Project

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Filled with anticipation, students from three Huntsville area high schools: Randolph, Sparkman, and Johnson High Schools, counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides hands-on, practical aerospace experience. In this picture, a rocket built by Johnson High School students soars to it projected designation.

  9. 17. HISTORIC VIEW OF ROCKET & LAUNCH STAND DESIGNED BY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. HISTORIC VIEW OF ROCKET & LAUNCH STAND DESIGNED BY HERMANN OBERTH AND RUDOLF NEBEL FOR THE MOVIE DIE FRAU IM MOND (THE WOMAN ON THE MOON). THE LAUNCH STAND WAS MODIFIED BY THE VFR FOR THE FIRST TEST STAND AT RAKETENFLUGPLATZ NEAR BERLIN. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  10. Students Participate in Rocket Launch Project

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) Program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, the university students prepare their rocket for flight on the launch pad. Students at UAH built the rocket and AM students developed its scientific payload, an experiment that measures the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.

  11. Students Participate in Rocket Launch Project

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, the University students prepare their rocket for launch. Students at UAH built the rocket and AM students developed its scientific payload, an experiment that measures the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.

  12. Students Participate in Rocket Launch Project

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, the combined efforts of students from UAH and AM sent this rocket soaring into flight. Students at UAH built the rocket and AM students developed its scientific payload, an experiment that measures the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.

  13. Students Participate in Rocket Launch Project

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. UAH students designed and built the rocket and AM students designed the payload. In this picture, AM students prepare their payload, an experiment that measures the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity, prior to launch.

  14. Liquid Rocket Engine Testing Overview

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim

    2005-01-01

    Contents include the following: Objectives and motivation for testing. Technology, Research and Development Test and Evaluation (RDT&E), evolutionary. Representative Liquid Rocket Engine (LRE) test compaigns. Apollo, shuttle, Expandable Launch Vehicles (ELV) propulsion. Overview of test facilities for liquid rocket engines. Boost, upper stage (sea-level and altitude). Statistics (historical) of Liquid Rocket Engine Testing. LOX/LH, LOX/RP, other development. Test project enablers: engineering tools, operations, processes, infrastructure.

  15. Ceremony celebrates 50 years of rocket launches

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Ceremony celebrates 50 years of rocket launches PL00C-10364.12 At the 50th anniversary ceremony celebrating the first rocket launch from pad 3 on what is now Cape Canaveral Air Force Station, Norris Gray waves to the audience. Gray was part of the team who successfully launched the first rocket, known as Bumper 8. The ceremony was hosted by the Air Force Space & Missile Museum Foundation, Inc. , and included launch of a Bumper 8 model rocket, presentation of a Bumper Award to Florida Sen. George Kirkpatrick by the National Space Club; plus remarks by Sen. Kirkpatrick, KSC's Center Director Roy Bridges, and the Commander of the 45th Space Wing, Brig. Gen. Donald Pettit. Also attending the ceremony were other members of the original Bumper 8 team. A reception followed at Hangar C. Since 1950 there have been a total of 3,245 launches from Cape Canaveral.

  16. Solid Rocket Launch Vehicle Explosion Environments

    NASA Technical Reports Server (NTRS)

    Richardson, E. H.; Blackwood, J. M.; Hays, M. J.; Skinner, T.

    2014-01-01

    Empirical explosion data from full scale solid rocket launch vehicle accidents and tests were collected from all available literature from the 1950s to the present. In general data included peak blast overpressure, blast impulse, fragment size, fragment speed, and fragment dispersion. Most propellants were 1.1 explosives but a few were 1.3. Oftentimes the data from a single accident was disjointed and/or missing key aspects. Despite this fact, once the data as a whole was digitized, categorized, and plotted clear trends appeared. Particular emphasis was placed on tests or accidents that would be applicable to scenarios from which a crew might need to escape. Therefore, such tests where a large quantity of high explosive was used to initiate the solid rocket explosion were differentiated. Also, high speed ground impacts or tests used to simulate such were also culled. It was found that the explosions from all accidents and applicable tests could be described using only the pressurized gas energy stored in the chamber at the time of failure. Additionally, fragmentation trends were produced. Only one accident mentioned the elusive "small" propellant fragments, but upon further analysis it was found that these were most likely produced as secondary fragments when larger primary fragments impacted the ground. Finally, a brief discussion of how this data is used in a new launch vehicle explosion model for improving crew/payload survival is presented.

  17. Pressure And Thermal Modeling Of Rocket Launches

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon D.; Myruski, Brian L.; Farmer, Richard C.; Freeman, Jon A.

    1995-01-01

    Report presents mathematical model for use in designing rocket-launching stand. Predicts pressure and thermal environment, as well as thermal responses of structures to impinging rocket-exhaust plumes. Enables relatively inexperienced analyst to determine time-varying distributions and absolute levels of pressure and heat loads on structures.

  18. Students Participate in Rocket Launch Project

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, a student from AM and his mentor install their payload into the launch vehicle which was built by the team of UAH students. The scientific payload, developed and built by the team of AM students, measured the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.

  19. Program Computes Sound Pressures at Rocket Launches

    NASA Technical Reports Server (NTRS)

    Ogg, Gary; Heyman, Roy; White, Michael; Edquist, Karl

    2005-01-01

    Launch Vehicle External Sound Pressure is a computer program that predicts the ignition overpressure and the acoustic pressure on the surfaces and in the vicinity of a rocket and launch pad during launch. The program generates a graphical user interface (GUI) that gathers input data from the user. These data include the critical dimensions of the rocket and of any launch-pad structures that may act as acoustic reflectors, the size and shape of the exhaust duct or flame deflector, and geometrical and operational parameters of the rocket engine. For the ignition-overpressure calculations, histories of the chamber pressure and mass flow rate also are required. Once the GUI has gathered the input data, it feeds them to ignition-overpressure and launch-acoustics routines, which are based on several approximate mathematical models of distributed sources, transmission, and reflection of acoustic waves. The output of the program includes ignition overpressures and acoustic pressures at specified locations.

  20. Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development and Performance Analysis

    NASA Technical Reports Server (NTRS)

    Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan; Kirchner, Robert; Engel, Carl D.

    2014-01-01

    The Space Launch System (SLS) base heating test is broken down into two test programs: (1) Pathfinder and (2) Main Test. The Pathfinder Test Program focuses on the design, development, hot-fire test and performance analyses of the 2% sub-scale SLS core-stage and booster element propulsion systems. The core-stage propulsion system is composed of four gaseous oxygen/hydrogen RS-25D model engines and the booster element is composed of two aluminum-based model solid rocket motors (SRMs). The first section of the paper discusses the motivation and test facility specifications for the test program. The second section briefly investigates the internal flow path of the design. The third section briefly shows the performance of the model RS-25D engines and SRMs for the conducted short duration hot-fire tests. Good agreement is observed based on design prediction analysis and test data. This program is a challenging research and development effort that has not been attempted in 40+ years for a NASA vehicle.

  1. Launch Excitement with Water Rockets

    ERIC Educational Resources Information Center

    Sanchez, Juan Carlos; Penick, John

    2007-01-01

    Explosions and fires--these are what many students are waiting for in science classes. And when they do occur, students pay attention. While we can't entertain our students with continual mayhem, we can catch their attention and cater to their desires for excitement by saying, "Let's make rockets." In this activity, students make simple, reusable…

  2. Solid Rocket Motor Acoustic Testing

    SciTech Connect

    Rogers, J.D.

    1999-03-31

    Acoustic data are often required for the determination of launch and powered flight loads for rocket systems and payloads. Such data are usually acquired during test firings of the solid rocket motors. In the current work, these data were obtained for two tests at a remote test facility where we were visitors. This paper describes the data acquisition and the requirements for working at a remote site, interfacing with the test hosts.

  3. Aerial Videography From Locally Launched Rockets

    NASA Technical Reports Server (NTRS)

    Lyle, Stacey D.

    2007-01-01

    A method of quickly collecting digital imagery of ground areas from video cameras carried aboard locally launched rockets has been developed. The method can be used, for example, to record rare or episodic events or to gather image data to guide decisions regarding treatment of agricultural fields or fighting wildfires. The method involves acquisition and digitization of a video frame at a known time along with information on the position and orientation of the rocket and camera at that time. The position and orientation data are obtained by use of a Global Positioning System receiver and a digital magnetic compass carried aboard the rocket. These data are radioed to a ground station, where they are processed, by a real-time algorithm, into georeferenced position and orientation data. The algorithm also generates a file of transformation parameters that account for the variation of image magnification and distortion associated with the position and orientation of the camera relative to the ground scene depicted in the image. As the altitude, horizontal position, and orientation of the rocket change between image frames, the algorithm calculates the corresponding new georeferenced position and orientation data and the associated transformation parameters. The output imagery can be rendered in any of a variety of formats. The figure presents an example of one such format.

  4. Artist's Concept of Magnetic Launch Assisted Air-Breathing Rocket

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This artist's concept depicts a Magnetic Launch Assist vehicle in orbit. Formerly referred to as the Magnetic Levitation (Maglev) system, the Magnetic Launch Assist system is a launch system developed and tested by engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  5. Cape Canaveral Air Force Station, Launch Complex 39, Solid Rocket ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cape Canaveral Air Force Station, Launch Complex 39, Solid Rocket Booster Disassembly & Refurbishment Complex, Thrust Vector Control Deservicing Facility, Hangar Road, Cape Canaveral, Brevard County, FL

  6. Quick Access Rocket Exhaust Rig Testing of Coated GRCop-84 Sheets Used to Aid Coating Selection for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.; Robinson, Raymond C.; Ghosn, Louis J.

    2005-01-01

    The design of the next generation of reusable launch vehicles calls for using GRCop-84 copper alloy liners based on a composition1 invented at the NASA Glenn Research Center: Cu-8(at.%)Cr-4%Nb. Many of the properties of this alloy have been shown to be far superior to those of other conventional copper alloys, such as NARloy-Z. Despite this considerable advantage, it is expected that GRCop-84 will suffer from some type of environmental degradation depending on the type of rocket fuel utilized. In a liquid hydrogen (LH2), liquid oxygen (LO2) booster engine, copper alloys undergo repeated cycles of oxidation of the copper matrix and subsequent reduction of the copper oxide, a process termed "blanching". Blanching results in increased surface roughness and poor heat-transfer capabilities, local hot spots, decreased engine performance, and premature failure of the liner material. This environmental degradation coupled with the effects of thermomechanical stresses, creep, and high thermal gradients can distort the cooling channel severely, ultimately leading to its failure.

  7. Software for Collaborative Engineering of Launch Rockets

    NASA Technical Reports Server (NTRS)

    Stanley, Thomas Troy

    2003-01-01

    The Rocket Evaluation and Cost Integration for Propulsion and Engineering software enables collaborative computing with automated exchange of information in the design and analysis of launch rockets and other complex systems. RECIPE can interact with and incorporate a variety of programs, including legacy codes, that model aspects of a system from the perspectives of different technological disciplines (e.g., aerodynamics, structures, propulsion, trajectory, aeroheating, controls, and operations) and that are used by different engineers on different computers running different operating systems. RECIPE consists mainly of (1) ISCRM a file-transfer subprogram that makes it possible for legacy codes executed in their original operating systems on their original computers to exchange data and (2) CONES an easy-to-use filewrapper subprogram that enables the integration of legacy codes. RECIPE provides a tightly integrated conceptual framework that emphasizes connectivity among the programs used by the collaborators, linking these programs in a manner that provides some configuration control while facilitating collaborative engineering tradeoff studies, including design to cost studies. In comparison with prior collaborative-engineering schemes, one based on the use of RECIPE enables fewer engineers to do more in less time.

  8. Russian Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA engineers successfully tested a Russian-built rocket engine on November 4, 1998 at the Marshall Space Flight Center (MSFC) Advanced Engine Test Facility, which had been used for testing the Saturn V F-1 engines and Space Shuttle Main engines. The MSFC was under a Space Act Agreement with Lockheed Martin Astronautics of Denver to provide a series of test firings of the Atlas III propulsion system configured with the Russian-designed RD-180 engine. The tests were designed to measure the performance of the Atlas III propulsion system, which included avionics and propellant tanks and lines, and how these components interacted with the RD-180 engine. The RD-180 is powered by kerosene and liquid oxygen, the same fuel mix used in Saturn rockets. The RD-180, the most powerful rocket engine tested at the MSFC since Saturn rocket tests in the 1960s, generated 860,000 pounds of thrust.

  9. ASTRID rocket flight test

    SciTech Connect

    Whitehead, J.C.; Pittenger, L.C.; Colella, N.J.

    1994-07-01

    On February 4, 1994, we successfully flight tested the ASTRID rocket from Vandenberg Air Force Base. The technology for this rocket originated in the Brilliant Pebbles program and represents a five-year development effort. This rocket demonstrated how our new pumped-propulsion technology-which reduced the total effective engine mass by more than one half and cut the tank mass to one fifth previous requirements-would perform in atmospheric flight. This demonstration paves the way for potential cost-effective uses of the new propulsion system in commercial aerospace vehicles, exploration of the planets, and defense applications.

  10. Liquid Rocket Engine Testing

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim

    2005-01-01

    Comprehensive Liquid Rocket Engine testing is essential to risk reduction for Space Flight. Test capability represents significant national investments in expertise and infrastructure. Historical experience underpins current test capabilities. Test facilities continually seek proactive alignment with national space development goals and objectives including government and commercial sectors.

  11. Problem of intensity reduction of acoustic fields generated by gas-dynamic jets of motors of the rocket-launch vehicles at launch

    NASA Astrophysics Data System (ADS)

    Vorobyov, A. M.; Abdurashidov, T. O.; Bakulev, V. L.; But, A. B.; Kuznetsov, A. B.; Makaveev, A. T.

    2015-04-01

    The present work experimentally investigates suppression of acoustic fields generated by supersonic jets of the rocket-launch vehicles at the initial period of launch by water injection. Water jets are injected to the combined jet along its perimeter at an angle of 0° and 60°. The solid rocket motor with the rocket-launch vehicles simulator case is used at tests. Effectiveness of reduction of acoustic loads on the rocket-launch vehicles surface by way of creation of water barrier was proved. It was determined that injection angle of 60° has greater effectiveness to reduce pressure pulsation levels.

  12. Rocket Launch-Induced Vibration and Ignition Overpressure Response

    NASA Technical Reports Server (NTRS)

    Caimi, Raoul E.; Margashayam, Ravi N.; Nayfeh, Jamal F.; Thompson, Karen (Technical Monitor)

    2001-01-01

    Rocket-induced vibration and ignition overpressure response environments are predicted in the low-frequency (5 to 200 hertz) range. The predictions are necessary to evaluate their impact on critical components, structures, and facilities in the immediate vicinity of the rocket launch pad.

  13. Russian Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA engineers successfully tested a Russian-built rocket engine on November 4, 1998 at the Marshall Space Flight Center (MSFC) Advanced Engine Test Facility, which had been used for testing the Saturn V F-1 engines and Space Shuttle Main engines. The MSFC was under a Space Act Agreement with Lockheed Martin Astronautics of Denver to provide a series of test firings of the Atlas III propulsion system configured with the Russian-designed RD-180 engine. The tests were designed to measure the performance of the Atlas III propulsion system, which included avionics and propellant tanks and lines, and how these components interacted with the RD-180 engine. The RD-180 is powered by kerosene and liquid oxygen, the same fuel mix used in Saturn rockets. The RD-180, the most powerful rocket engine tested at the MSFC since Saturn rocket tests in the 1960s, generated 860,000 pounds of thrust. The test was the first test ever anywhere outside Russia of a Russian designed and built engine.

  14. Delta II rocket prepared for launch of Deep Space 1

    NASA Technical Reports Server (NTRS)

    1998-01-01

    (Left) A solid rocket booster is lifted for installation onto the Boeing Delta 7326 rocket that will launch Deep Space 1 at Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. Delta's origins go back to the Thor intermediate-range ballistic missile, which was developed in the mid-1950s for the U.S. Air Force. The Thor -- a single-stage, liquid-fueled rocket -- later was modified to become the Delta launch vehicle. The Delta 7236 has three solid rocket boosters and a Star 37 upper stage. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Final assembly takes place at the Boeing facility in Pueblo, Colo. Deep Space 1, the first flight in NASA's New Millennium Program, is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  15. Delta II rocket prepared for launch of Deep Space 1

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A solid rocket booster (left) is raised for installation onto the Boeing Delta 7326 rocket that will launch Deep Space 1 at Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. Delta's origins go back to the Thor intermediate-range ballistic missile, which was developed in the mid-1950s for the U.S. Air Force. The Thor -- a single-stage, liquid-fueled rocket -- later was modified to become the Delta launch vehicle. The Delta 7236 has three solid rocket boosters and a Star 37 upper stage. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Final assembly takes place at the Boeing facility in Pueblo, Colo. Deep Space 1, the first flight in NASA's New Millennium Program, is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  16. Delta II rocket prepared for launch of Deep Space 1

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A Boeing Delta 7326 rocket with two solid rocket boosters attached sits on Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. Delta's origins go back to the Thor intermediate-range ballistic missile, which was developed in the mid-1950s for the U.S. Air Force. The Thor -- a single-stage, liquid-fueled rocket -- later was modified to become the Delta launch vehicle. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Final assembly takes place at the Boeing facility in Pueblo, Colo. The Delta 7236, which has three solid rocket boosters and a Star 37 upper stage, will launch Deep Space 1, the first flight in NASA's New Millennium Program. It is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  17. Delta II rocket prepared for launch of Deep Space 1

    NASA Technical Reports Server (NTRS)

    1998-01-01

    - A solid rocket booster is maneuvered into place for installation on the Boeing Delta 7326 rocket that will launch Deep Space 1 at Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. Delta's origins go back to the Thor intermediate-range ballistic missile, which was developed in the mid-1950s for the U.S. Air Force. The Thor -- a single-stage, liquid-fueled rocket -- later was modified to become the Delta launch vehicle. The Delta 7236 has three solid rocket boosters and a Star 37 upper stage. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Final assembly takes place at the Boeing facility in Pueblo, Colo. Deep Space 1, the first flight in NASA's New Millennium Program, is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  18. Solid Rocket Motor Test

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Shown is a test of the TEM-13 solid rocket motor at the ATK test facility in Utah in support of the Ares/CLV first stage. This image is extracted from high definition video and is the highest resolution available.

  19. Deep Space 1 is launched aboard a Delta II rocket

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Lighting up the launch pad, a Boeing Delta II (7326) rocket propels Deep Space 1 through the morning clouds after liftoff from Launch Complex 17A, Cape Canaveral Air Station. The first flight in NASA's New Millennium Program, the spacecraft is designed to validate 12 new technologies for scientific space missions of the next century, including the ion propulsion engine. Propelled by the gas xenon, the engine is being flight- tested for future deep space and Earth-orbiting missions. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  20. Deep Space 1 is launched aboard a Delta II rocket

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Photographed at Launch Complex 17, Cape Canaveral Station, just after midnight on launch day, Boeing's Delta II rocket is bathed in light as it awaits its destiny, hurling NASA's Deep Space 1 into space. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the ion propulsion engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  1. Deep Space 1 is launched aboard a Delta II rocket

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Lighting up the launch pad below, a Boeing Delta II (7326) rocket is silhouetted in the morning light as it propels Deep Space 1 into the sky after liftoff from Launch Complex 17A, Cape Canaveral Air Station. The first flight in NASA's New Millennium Program, the spacecraft is designed to validate 12 new technologies for scientific space missions of the next century, including the ion propulsion engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  2. Solid Rocket Motor Test

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Shown is a test of the TEM-13 Solid Rocket Motor in support of the Ares/CLV first stage at ATK, Utah . Constellation/Ares project. This image is extracted from a high definition video file and is the highest resolution available.

  3. Solid Rocket Motor Test

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Shown is a test of the TEM-13 Solid Rocket Motor in support of the Ares/CLV first stage at ATK, Utah . Constellaton/Ares project. This image is extracted from a high definition video file and is the highest resolution available.

  4. Collaborative Sounding Rocket launch in Alaska and Development of Hybrid Rockets

    NASA Astrophysics Data System (ADS)

    Ono, Tomohisa; Tsutsumi, Akimasa; Ito, Toshiyuki; Kan, Yuji; Tohyama, Fumio; Nakashino, Kyouichi; Hawkins, Joseph

    Tokai University student rocket project (TSRP) was established in 1995 for a purpose of the space science and engineering hands-on education, consisting of two space programs; the one is sounding rocket experiment collaboration with University of Alaska Fairbanks and the other is development and launch of small hybrid rockets. In January of 2000 and March 2002, two collaborative sounding rockets were successfully launched at Poker Flat Research Range in Alaska. In 2001, the first Tokai hybrid rocket was successfully launched at Alaska. After that, 11 hybrid rockets were launched to the level of 180-1,000 m high at Hokkaido and Akita in Japan. Currently, Tokai students design and build all parts of the rockets. In addition, they are running the organization and development of the project under the tight budget control. This program has proven to be very effective in providing students with practical, real-engineering design experience and this program also allows students to participate in all phases of a sounding rocket mission. Also students learn scientific, engineering subjects, public affairs and system management through experiences of cooperative teamwork. In this report, we summarize the TSRP's hybrid rocket program and discuss the effectiveness of the program in terms of educational aspects.

  5. Viking balloon launched decelerator tests

    NASA Technical Reports Server (NTRS)

    Timmons, J. D.

    1976-01-01

    The Viking Project utilized a 16.2M diameter disk-gap-band parachute to successfully land two research spacecraft on the surface of Mars during the summer of 1976. Unique specifications were imposed upon both the decelerator system and the balloon systems which were employed to provide a high altitude launch platform for a rocket powered test vehicle. The performance and stability of the balloon system and the predictability of the test vehicle trajectory offered interesting challenges. Descriptions of the development work for suitable materials, fabrication techniques and peculiarities, and testing requirements for both the decelerator and balloon systems will be presented.

  6. Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development & Performance Analysis

    NASA Technical Reports Server (NTRS)

    Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan

    2014-01-01

    ATA-002 Technical Team has successfully designed, developed, tested and assessed the SLS Pathfinder propulsion systems for the Main Base Heating Test Program. Major Outcomes of the Pathfinder Test Program: Reach 90% of full-scale chamber pressure Achieved all engine/motor design parameter requirements Reach steady plume flow behavior in less than 35 msec Steady chamber pressure for 60 to 100 msec during engine/motor operation Similar model engine/motor performance to full-scale SLS system Mitigated nozzle throat and combustor thermal erosion Test data shows good agreement with numerical prediction codes Next phase of the ATA-002 Test Program Design & development of the SLS OML for the Main Base Heating Test Tweak BSRM design to optimize performance Tweak CS-REM design to increase robustness MSFC Aerosciences and CUBRC have the capability to develop sub-scale propulsion systems to meet desired performance requirements for short-duration testing.

  7. Delta II rocket prepared for launch of Deep Space 1

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A booster is raised off a truck bed and prepared for lifting to the Boeing Delta 7326 rocket that will launch Deep Space 1 at Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. The Delta 7236 has three solid rocket boosters and a Star 37 upper stage. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Deep Space 1, the first flight in NASA's New Millennium Program, is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  8. Delta II rocket prepared for launch of Deep Space 1

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A booster is lifted off a truck for installation onto the Boeing Delta 7326 rocket that will launch Deep Space 1 at Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. The Delta 7236 has three solid rocket boosters and a Star 37 upper stage. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Deep Space 1, the first flight in NASA's New Millennium Program, is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  9. Deep Space 1 is launched aboard a Delta II rocket

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A Boeing Delta II (7326) rocket hurls Deep Space 1 through the morning clouds after liftoff, creating sun-challenging light with its exhaust, from Launch Complex 17A, Cape Canaveral Air Station. The first flight in NASA's New Millennium Program, the spacecraft is designed to validate 12 new technologies for scientific space missions of the next century, including the ion propulsion engine. Propelled by the gas xenon, the engine is being flight- tested for future deep space and Earth-orbiting missions. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  10. Deep Space 1 is launched aboard a Delta II rocket

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In a view from Press Site 1 at Cape Canaveral Air Station, a Boeing Delta II (7326) rocket lights up the ground as it propels Deep Space 1 into the sky after liftoff from Launch Complex 17A. The first flight in NASA's New Millennium Program, the spacecraft is designed to validate 12 new technologies for scientific space missions of the next century, including the ion propulsion engine. Propelled by the gas xenon, the engine is being flight- tested for future deep space and Earth-orbiting missions. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  11. Deep Space 1 is launched aboard a Delta II rocket

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A Boeing Delta II (7326) rocket lights up the clouds of exhaust below as it propels Deep Space 1 into the sky after liftoff from Launch Complex 17A, Cape Canaveral Air Station. The first flight in NASA's New Millennium Program, the spacecraft is designed to validate 12 new technologies for scientific space missions of the next century, including the ion propulsion engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  12. Air-breathing Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Quick Time movie depicts the Rocketdyne static test of an air-breathing rocket. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's advanced Transportation Program at the Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  13. Small Solid Rocket Motor Test - Duration: 87 seconds.

    NASA Video Gallery

    It was three-two-one to brilliant fire as NASA's Marshall Space Flight Center tested a small solid rocket motor designed to mimic NASA's Space Launch System booster. The Mar. 14 test provides a qui...

  14. State Machine Modeling of the Space Launch System Solid Rocket Boosters

    NASA Technical Reports Server (NTRS)

    Harris, Joshua A.; Patterson-Hine, Ann

    2013-01-01

    The Space Launch System is a Shuttle-derived heavy-lift vehicle currently in development to serve as NASA's premiere launch vehicle for space exploration. The Space Launch System is a multistage rocket with two Solid Rocket Boosters and multiple payloads, including the Multi-Purpose Crew Vehicle. Planned Space Launch System destinations include near-Earth asteroids, the Moon, Mars, and Lagrange points. The Space Launch System is a complex system with many subsystems, requiring considerable systems engineering and integration. To this end, state machine analysis offers a method to support engineering and operational e orts, identify and avert undesirable or potentially hazardous system states, and evaluate system requirements. Finite State Machines model a system as a finite number of states, with transitions between states controlled by state-based and event-based logic. State machines are a useful tool for understanding complex system behaviors and evaluating "what-if" scenarios. This work contributes to a state machine model of the Space Launch System developed at NASA Ames Research Center. The Space Launch System Solid Rocket Booster avionics and ignition subsystems are modeled using MATLAB/Stateflow software. This model is integrated into a larger model of Space Launch System avionics used for verification and validation of Space Launch System operating procedures and design requirements. This includes testing both nominal and o -nominal system states and command sequences.

  15. Modeling the near acoustic field of a rocket during launch

    NASA Technical Reports Server (NTRS)

    Mauritzen, David W.

    1989-01-01

    The design of launch pad structures is critically dependent upon the stresses imposed by the acoustical pressure field generated by the rocket engines during launch. The purpose of this effort is to better describe the acoustical field in the immediate launch area. Since the problem is not analytically tractable, empirical modeling will be employed so that useful results may be obtained for structural design purposes. The plume of the rocket is considered to be a volumetric acoustic source, and is broken down into incremental contributing volumes. A computer program has been written to sum all the contributions to find the total sound pressure level at an arbitrary point. A constant density source is initially assumed and the acoustic field evaluated for several cases to verify the correct operation of the program.

  16. NSSDC index of international scientific rocket launches ordered by sponsering country/agency

    NASA Technical Reports Server (NTRS)

    1972-01-01

    International scientific rocket launches are listed by discipline codes and by sponsoring country/agencies identifications. Launch sites, experiments, approximate apogee, success and principle experimenters are also shown.

  17. 24 Inch Reusable Solid Rocket Motor Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A scaled-down 24-inch version of the Space Shuttle's Reusable Solid Rocket Motor was successfully fired for 21 seconds at a Marshall Space Flight Center (MSFC) Test Stand. The motor was tested to ensure a replacement material called Lycocel would meet the criteria set by the Shuttle's Solid Motor Project Office. The current material is a heat-resistant, rayon-based, carbon-cloth phenolic used as an insulating material for the motor's nozzle. Lycocel, a brand name for Tencel, is a cousin to rayon and is an exceptionally strong fiber made of wood pulp produced by a special 'solvent-spirning' process using a nontoxic solvent. It will also be impregnated with a phenolic resin. This new material is expected to perform better under the high temperatures experienced during launch. The next step will be to test the material on a 48-inch solid rocket motor. The test, which replicates launch conditions, is part of Shuttle's ongoing verification of components, materials, and manufacturing processes required by MSFC, which oversees the Reusable Solid Rocket Motor project. Manufactured by the ATK Thiokol Propulsion Division in Promontory, California, the Reusable Solid Rocket Motor measures 126 feet (38.4 meters) long and 12 feet (3.6 meters) in diameter. It is the largest solid rocket motor ever flown and the first designed for reuse. During its two-minute burn at liftoff, each motor generates an average thrust of 2.6 million pounds (1.2 million kilograms).

  18. Two Amazing Rocket Launches That Began My Career

    NASA Astrophysics Data System (ADS)

    Rothschild, Richard E.

    2013-01-01

    I began my X-ray astronomy career by being given the responsibility for the Goddard rocket program by Frank MacDonald in the early 70's. I am forever grateful to him and Elihu Boldt for the opportunity. The rocket's observing program was three compact binary X-ray sources that could not have been more different: Cyg X-1, Cyg X-3, and Her X-1. A sounding rocket launch is nothing like a satellite launch with its large booster, Cape Canaveral experience, and lots of procedures and no touching of the hardware. First of all, one can walk up to the sounding rocket tower (at least you used to be able to) and go up in it to fix or adjust something with the yet-to-be-fueled rocket, booster, and payload just sitting there. At launch, you can see it up close 100 m) and personal, and it is spectacular. There is an explosion (the Nike booster igniting), a bright flash of light, and it is gone in a second or two. And back in the block house, I watched Her X-1 pulse in real time, after Chuck Glasser calmed me down and explained that the detectors were not arcing but it was Her X-1. The Cyg X-1 observations resulted in the discovery of millisecond temporal structure in the flux from a cosmic source -- 13 1-ms bursts over a total of two minutes of observing in the 2 flights. Cyg X-3 was seen in a high state in the first flight and in a lower harder state in the second, where we detected the iron line for the first time in a Galactic source. The Her X-1 observation clearly showed the high energy roll-over of the spectrum for the first time. The light curves of the first flight found their way into many presentations, including Ricardo Giacconi's Nobel lecture. The Goddard rocket program was an amazing beginning to my career.

  19. Launch summary for 1978 - 1982. [sounding rockets, space probes, and satellites

    NASA Technical Reports Server (NTRS)

    Hills, H. K.

    1984-01-01

    Data pertinent to the launching of space probes, soundings rockets, and satellites presented in tables include launch date, time, and site; agency rocket identification; sponsoring country or countries; instruments carried for experiments; the peak altitude achieved by the rockets; and the apoapsis and periapsis for satellites. The experimenter or institution involved in the launching is also cited.

  20. Comparison of vibrations of a combination of solid-rocket launch vehicle and payload during a ground firing and launching

    NASA Technical Reports Server (NTRS)

    Schoenster, J. A.; Pierce, H. B.

    1975-01-01

    The results of a study into the environmental vibrations of a payload mounted on the Nike rocket launch vehicle were presented. Data were obtained during the flight acceptance test of the payload, the firing of the total vehicle in a special test stand, and the powered and unpowered flights of the vehicle. The vibrational response of the structure was measured. Data were also obtained on the fluctuating pressure on the outside surface of the vehicle and inside the forward and after ends of the rocket chamber. A comparison of the data from the three test conditions indicated that external pressure fluctuations were the major source of vibrations in the payload area, and pressure fluctuations within the rocket motor were the major source of vibrations contiguous to the payload area.

  1. Worldwide Space Launch Vehicles and Their Mainstage Liquid Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim A.

    2010-01-01

    Space launch vehicle begins with a basic propulsion stage, and serves as a missile or small launch vehicle; many are traceable to the 1945 German A-4. Increasing stage size, and increasingly energetic propulsion allows for heavier payloads and greater. Earth to Orbit lift capability. Liquid rocket propulsion began with use of storable (UDMH/N2O4) and evolved to high performing cryogenics (LOX/RP, and LOX/LH). Growth versions of SLV's rely on strap-on propulsive stages of either solid propellants or liquid propellants.

  2. 5. TETHERED MINUTEMAN MISSILE LAUNCH, TEST AREA 1100. Original is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. TETHERED MINUTEMAN MISSILE LAUNCH, TEST AREA 1-100. Original is a color print. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA

  3. Technology Requirements for Affordable Single-Stage Rocket Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Stanley, Douglas O.; Piland, William M.

    2004-01-01

    A number of manned Earth-to-orbit (ETO) vehicle options for replacing or complementing the current Space Transportation System are being examined under the Advanced Manned Launch System (AMLS) study. The introduction of a reusable single-stage vehicle (SSV) into the U.S. launch vehicle fleet early in the next century could greatly reduce ETO launch costs. As a part of the AMLS study, the conceptual design of an SSV using a wide variety of enhancing technologies has recently been completed and is described in this paper. This paper also identifies the major enabling and enhancing technologies for a reusable rocket-powered SSV and provides examples of the mission payoff potential of a variety of important technologies. This paper also discusses the impact of technology advancements on vehicle margins, complexity, and risk, all of which influence the total system cost.

  4. Technology requirements for affordable single-stage rocket launch vehicles

    NASA Astrophysics Data System (ADS)

    Stanley, Douglas O.; Piland, William M.

    1993-10-01

    A number of manned Earth-to-orbit (ETO) vehicle options for replacing or complementing the current Space Transportation System are being examined under the Advanced Manned Launch System (AMLS) study. The introduction of a reusable single-stage vehicle (SSV) into the U.S. launch vehicle fleet early in the next century could greatly reduce ETO launch costs. As a part of the AMLS study, the conceptual design of an SSV using a wide variety of enhancing technologies has recently been completed and is described in this paper. This paper also identifies the major enabling and enhancing technologies for a reusable rocket-powered SSV and provides examples of the mission payoff potential of a variety of important technologies. This paper also discusses the impact of technology advancements on vehicle margins, complexity, and risk, all of which influence the total system cost.

  5. Air-Breathing Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This photograph depicts an air-breathing rocket engine that completed an hour or 3,600 seconds of testing at the General Applied Sciences Laboratory in Ronkonkoma, New York. Referred to as ARGO by its design team, the engine is named after the mythological Greek ship that bore Jason and the Argonauts on their epic voyage of discovery. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced SpaceTransportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  6. Ablative Material Testing at Lewis Rocket Lab

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The increasing demand for a low-cost, reliable way to launch commercial payloads to low- Earth orbit has led to the need for inexpensive, expendable propulsion systems for new launch vehicles. This, in turn, has renewed interest in less complex, uncooled rocket engines that have combustion chambers and exhaust nozzles fabricated from ablative materials. A number of aerospace propulsion system manufacturers have utilized NASA Lewis Research Center's test facilities with a high degree of success to evaluate candidate materials for application to new propulsion devices.

  7. Scaled Rocket Testing in Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    Dufrene, Aaron; MacLean, Matthew; Carr, Zakary; Parker, Ron; Holden, Michael; Mehta, Manish

    2015-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was strongly based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Detailed base heating results are outside of the scope of the current work, rather test methodology and techniques are presented along with broader applicability toward scaled rocket testing in supersonic and hypersonic flow.

  8. Apollo 11 Launched Via Saturn V Rocket - High Angle View

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle produced a holocaust of flames as it rose from its pad at Launch complex 39. The 363 foot tall, 6,400,000 pound rocket hurled the spacecraft into Earth parking orbit and then placed it on the trajectory to the moon. This high angle view of the launch was provided by a `fisheye' camera mounted on the launch tower. The Saturn V was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard the spacecraft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  9. Safe testing nuclear rockets economically

    SciTech Connect

    Howe, S. D.; Travis, B. J.; Zerkle, D. K.

    2002-01-01

    Several studies over the past few decades have recognized the need for advanced propulsion to explore the solar system. As early as the 1960s, Werner Von Braun and others recognized the need for a nuclear rocket for sending humans to Mars. The great distances, the intense radiation levels, and the physiological response to zero-gravity all supported the concept of using a nuclear rocket to decrease mission time. These same needs have been recognized in later studies, especially in the Space Exploration Initiative in 1989. One of the key questions that has arisen in later studies, however, is the ability to test a nuclear rocket engine in the current societal environment. Unlike the RoverMERVA programs in the 1960s, the rocket exhaust can no longer be vented to the open atmosphere. As a consequence, previous studies have examined the feasibility of building a large-scale version of the Nuclear Furnace Scrubber that was demonstrated in 1971. We have investigated an alternative that would deposit the rocket exhaust along with any entrained fission products directly into the ground. The Subsurface Active Filtering of Exhaust, or SAFE, concept would allow variable sized engines to be tested for long times at a modest expense. A system overview, results of preliminary calculations, and cost estimates of proof of concept demonstrations are presented. The results indicate that a nuclear rocket could be tested at the Nevada Test Site for under $20 M.

  10. Atmospheric Ascent Guidance for Rocket-Powered Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Dukeman, Greg A.

    2002-01-01

    An advanced ascent guidance algorithm for rocket- powered launch vehicles is developed. This algorithm cyclically solves the calculus-of-variations two-point boundary-value problem starting at vertical rise completion through main engine cutoff. This is different from traditional ascent guidance algorithms which operate in a simple open-loop mode until high dynamic pressure (including the critical max-Q) portion of the trajectory is over, at which time guidance operates under the assumption of negligible aerodynamic acceleration (i.e., vacuum dynamics). The initial costate guess is corrected based on errors in the terminal state constraints and the transversality conditions. Judicious approximations are made to reduce the order and complexity of the state/costate system. Results comparing guided launch vehicle trajectories with POST open-loop trajectories are given verifying the basic formulation of the algorithm. Multiple shooting is shown to be a very effective numerical technique for this application. In particular, just one intermediate shooting point, in addition to the initial shooting point, is sufficient to significantly reduce sensitivity to the guessed initial costates. Simulation results from a high-fidelity trajectory simulation are given for the case of launch to sub-orbital cutoff conditions as well as launch to orbit conditions. An abort to downrange landing site formulation of the algorithm is presented.

  11. Automated Rocket Propulsion Test Management

    NASA Technical Reports Server (NTRS)

    Walters, Ian; Nelson, Cheryl; Jones, Helene

    2007-01-01

    The Rocket Propulsion Test-Automated Management System provides a central location for managing activities associated with Rocket Propulsion Test Management Board, National Rocket Propulsion Test Alliance, and the Senior Steering Group business management activities. A set of authorized users, both on-site and off-site with regard to Stennis Space Center (SSC), can access the system through a Web interface. Web-based forms are used for user input with generation and electronic distribution of reports easily accessible. Major functions managed by this software include meeting agenda management, meeting minutes, action requests, action items, directives, and recommendations. Additional functions include electronic review, approval, and signatures. A repository/library of documents is available for users, and all items are tracked in the system by unique identification numbers and status (open, closed, percent complete, etc.). The system also provides queries and version control for input of all items.

  12. Solid rocket motor witness test

    NASA Technical Reports Server (NTRS)

    Welch, Christopher S.

    1991-01-01

    The Solid Rocket Motor Witness Test was undertaken to examine the potential for using thermal infrared imagery as a tool for monitoring static tests of solid rocket motors. The project consisted of several parts: data acquisition, data analysis, and interpretation. For data acquisition, thermal infrared data were obtained of the DM-9 test of the Space Shuttle Solid Rocket Motor on December 23, 1987, at Thiokol, Inc. test facility near Brigham City, Utah. The data analysis portion consisted of processing the video tapes of the test to produce values of temperature at representative test points on the rocket motor surface as the motor cooled down following the test. Interpretation included formulation of a numerical model and evaluation of some of the conditions of the motor which could be extracted from the data. These parameters included estimates of the insulation remaining following the tests and the thickness of the charred layer of insulation at the end of the test. Also visible was a temperature signature of the star grain pattern in the forward motor segment.

  13. Feasibility study for an AFGL fiber optic data link at WSMR sounding rocket launch area

    NASA Astrophysics Data System (ADS)

    Shaw, H. L.; Terwilliger, D. F.

    1984-10-01

    A study was performed to determine the feasibility of installing a fiber optic data link at the White Sands Missile Range (WSMR) to enhance support of sounding rocket launches for the Air Force Geophysics Laboratory. Fiber optic cable and associated hardware were purchased and tested with sample video and telemetry signals. Cost estimates were prepared for the installation of a six-fiber optical cable along various routes between three buildings in the WSMR Sounding Rocket Launch Area. Advantages of the various alternatives are described in sufficient detail so that the most cost-effective alternative can be selected in terms of available funds and mission requirements. The estimated costs for the installation of either a simplex or duplex microwave data link are also provided for comparison with the cost of installing fiber optic links.

  14. A Russian Proton rocket launches with the Zvezda module

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A Russian 3-stage Proton rocket blasts into the sky at 12:56 a.m. EDT with the Russian-built Zvezda module in a successful launch from Baikonur Cosmodrome, Kazakhstan. Zvezda is the primary Russian contribution to the International Space Station, serving as the early Station living quarters. It will also provide early propulsive attitude control and reboost capabilities and be the main docking port for Russian Progress cargo resupply vehicles. The third Station component, Zvezda will dock by remote control with the already orbiting Zarya and Unity modules at an altitude of about 245 by 230 statute miles. (Image taken with Nikon D1 digital camera.) Low thrust rocket test facility

    NASA Technical Reports Server (NTRS)

    Arrington, Lynn A.; Schneider, Steven J.

    1990-01-01

    A low thrust chemical rocket test facility has recently become operational at the NASA-Lewis. The new facility is used to conduct both long duration and performance tests at altitude over a thruster's operating envelope using hydrogen and oxygen gas for propellants. The facility provides experimental support for a broad range of objectives, including fundamental modeling of fluids and combustion phenomena, the evaluation of thruster components, and life testing of full rocket designs. The major mechanical and electrical systems are described along with aspects of the various optical diagnostics available in the test cell. The electrical and mechanical systems are designed for low down time between tests and low staffing requirements for test operations. Initial results are also presented which illustrate the various capabilities of the cell.

  15. 33 CFR 334.1290 - In Bering Sea, Shemya Island Area, Alaska; meteorological rocket launching facility, Alaskan Air...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Alaska; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. 334.1290 Section...; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. (a) The danger zone. An arc of a...) Rockets will normally be launched one each day Monday through Friday between 9 a.m. and 3 p.m....

  16. 33 CFR 334.1290 - In Bering Sea, Shemya Island Area, Alaska; meteorological rocket launching facility, Alaskan Air...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Alaska; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. 334.1290 Section...; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. (a) The danger zone. An arc of a...) Rockets will normally be launched one each day Monday through Friday between 9 a.m. and 3 p.m....

  17. 33 CFR 334.1290 - In Bering Sea, Shemya Island Area, Alaska; meteorological rocket launching facility, Alaskan Air...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Alaska; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. 334.1290 Section...; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. (a) The danger zone. An arc of a...) Rockets will normally be launched one each day Monday through Friday between 9 a.m. and 3 p.m....

  18. 33 CFR 334.1290 - In Bering Sea, Shemya Island Area, Alaska; meteorological rocket launching facility, Alaskan Air...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Alaska; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. 334.1290 Section...; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. (a) The danger zone. An arc of a...) Rockets will normally be launched one each day Monday through Friday between 9 a.m. and 3 p.m....

  19. 33 CFR 334.1290 - In Bering Sea, Shemya Island Area, Alaska; meteorological rocket launching facility, Alaskan Air...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Alaska; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. 334.1290 Section...; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. (a) The danger zone. An arc of a...) Rockets will normally be launched one each day Monday through Friday between 9 a.m. and 3 p.m....

  1. Modernization of the multiple launch rocket system embedded system software

    NASA Astrophysics Data System (ADS)

    Mockensturm, Jeffrey J.

    1995-03-01

    Weapon systems in the Department of Defense (DOD) are becoming increasingly reliant on embedded software. As the size and level of complexity of these software development efforts have increased, the management of these programs has become more challenging. Additionally, as the Army strives to digitize the future battlefield, the demand for software will only increase. This thesis reviews the software development efforts associated with modernizing the Army's Multiple Launch Rocket System (MLRS). The thesis begins by presenting a background discussion of the Army's Fire Direction Data Manager (FDDM) development. After the FDDM background discussion, a case study of the troubled FDDM software development effort is presented. The FDDM case study follows the general format presented in the May 1992 General Accounting Office report on the FDDM software development difficulties. Following the FDDM review, the current MLRS software development effort, the Improved Fire Control System (IFCS), is presented. Next, the FDDM case study is reviewed to determine the software development lessons learned. Using the FDDM software lessons learned, the IFCS program is analyzed to determine the software risks, and to review the risk mitigation strategies of that program. The objective of the thesis is to provide insight into the use of modern software management methods in reducing software development program risk.

  2. Magnetic Launch Assist Demonstration Test

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image shows a 1/9 subscale model vehicle clearing the Magnetic Launch Assist System, formerly referred to as the Magnetic Levitation (MagLev), test track during a demonstration test conducted at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies. To launch spacecraft into orbit, a Magnetic Launch Assist System would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  3. Balloon launched decelerator test program: Post-test test report

    NASA Technical Reports Server (NTRS)

    Dickinson, D.; Schlemmer, J.; Hicks, F.; Michel, F.; Moog, R. D.

    1972-01-01

    Balloon Launched Decelerator Test (BLDT) flights were conducted during the summer of 1972 over the White Sands Missile Range. The purpose of these tests was to qualify the Viking disk-gap band parachute system behind a full-scale simulator of the Viking Entry Vehicle over the maximum range of entry conditions anticipated in the Viking '75 soft landing on Mars. Test concerns centered on the ability of a minimum weight parachute system to operate without structural damage in the turbulent wake of the blunt-body entry vehicle (140 deg, 11.5 diameter cone). This is the first known instance of parachute operation at supersonic speeds in the wake of such a large blunt body. The flight tests utilized the largest successful balloon-payload weight combination known to get to high altitude (120kft) where rocket engines were employed to boost the test vehicle to supersonic speeds and dynamic pressures simulating the range of conditions on Mars.

  4. Launch of 2014 RockOn Sounding Rocket - Duration: 36 seconds.

    NASA Video Gallery

    Students and teachers designed experiments which were included in the payload of the RockOn sounding rocket, seen here launching from NASA Wallops Flight Facility on June 26, 2014, at 7:21 a.m. EDT...

  5. Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology. Volume 1

    NASA Technical Reports Server (NTRS)

    Williams, R. W. (Compiler)

    1996-01-01

    The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  6. Improved airbreathing launch vehicle performance with the use of rocket propulsion

    NASA Astrophysics Data System (ADS)

    Kauffman, H. G.; Grandhi, R. V.; Hankey, W. L.; Belcher, P. J.

    1991-04-01

    An efficient performance analysis method is developed to evaluate potential airbreathing/rocket propulsion systems for advanced technology single-stage-to-orbit launch vehicles. Evaluated are tradeoffs between airbreathing, rocket, and concurrent airbreathing/rocket propulsion in maximizing payload delivery to orbit for a given ascent flight trajectory. With the analysis method, several modes of airbreathing/rocket propulsion are compared to a baseline 'airbreather alone' propulsion system in terms of fuel/propellant required to attain orbital velocity. Concurrent airbreathing/rocket propulsion shows a reduction in fuel/propellant consumption over straight airbreather to rocket propulsion transition. The optimal switch point (staging) is identified for the transition from airbreathing to rocket propulsion.

  7. Subsonic Glideback Rocket Demonstrator Flight Testing

    NASA Technical Reports Server (NTRS)

    DeTurris, Dianne J.; Foster, Trevor J.; Barthel, Paul E.; Macy, Daniel J.; Droney, Christopher K.; Talay, Theodore A. (Technical Monitor)

    2001-01-01

    For the past two years, Cal Poly's rocket program has been aggressively exploring the concept of remotely controlled, fixed wing, flyable rocket boosters. This program, embodied by a group of student engineers known as Cal Poly Space Systems, has successfully demonstrated the idea of a rocket design that incorporates a vertical launch pattern followed by a horizontal return flight and landing. Though the design is meant for supersonic flight, CPSS demonstrators are deployed at a subsonic speed. Many steps have been taken by the club that allowed the evolution of the StarBooster prototype to reach its current size: a ten-foot tall, one-foot diameter, composite material rocket. Progress is currently being made that involves multiple boosters along with a second stage, third rocket.

  8. J-2X Rocket Engine, 40-Second Test - Duration: 61 seconds.

    NASA Video Gallery

    NASA conducted a 40-second test of the J-2X rocket engine Sept. 28, the most recent in a series of tests of the next-generation engine selected as part of the Space Launch System architecture that ...

  9. Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology. Volume 2

    NASA Technical Reports Server (NTRS)

    Williams, R. W. (Compiler)

    1996-01-01

    This conference publication includes various abstracts and presentations given at the 13th Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology held at the George C. Marshall Space Flight Center April 25-27 1995. The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  10. Application of boost guidance to NASA sounding rocket launch operations at the White Sands Missile Range

    NASA Technical Reports Server (NTRS)

    Montag, W. H.; Detwiler, D. F., Jr.; Hall, L.

    1986-01-01

    This paper addresses the unique problems associated with launching the Black Brant V, VIII, and IX sounding rocket vehicles at White Sands Missile Range (WSMR) and the significance of the introduction of the S19 to the NASA Goddard Space Flight Center Wallops Flight Facility sounding rocket program in terms of launch flexibility, improved impact dispersion, higher flight reliability, and reduced program costs. This paper also discusses salient flight results from NASA 36.011UL (the first S19 guided Black Brant launched at WSMR) and the NASA Comet Halley missions (36.010DL and 36.017DL).

  11. Numerical Simulations of an Unsteady Rocket Launch from the AH-64D Apache Longbow Helicopter

    NASA Technical Reports Server (NTRS)

    Okamoto, Kevin; Dugue, Earl P. N.; Ahmad, Jasim; Rutkowski, Michael (Technical Monitor)

    1998-01-01

    Rocket and missile firings from attack helicopters can cause main engine compressor stall. Studies of this phenomenon suggest that the main engine ingests either the plume from the rockets or the rocket blast waves. This creates surges at the inlet face, causing a loss of power in the main engine. The objective of this project is to set-up a computational fluid dynamics (CFD) simulation of the AH-64D Apache Longbow helicopter during a rocket launch, in order to qualitatively study the fluid dynamics of the problem. This project presents a progression of three unsteady Navier-Stokes solutions. The first unsteady solution involves only a rocket launch from its launch canister. The second solution is a launch from a canister mounted on the Apache's wing-pylon assembly. The last solution includes the Apache main engine and fuselage. The computations use a series of structured, overset grid systems, which allow for a rocket moving in a prescribed path. The method implements a Roe upwind scheme with LU-SGS (lower-upper factored symmetric Gauss-Seidel). A rotor pressure disk model approximates the helicopter rotor, while the rocket engine exit properties are applied as a prescribed boundary condition. Although the project is only at the half-way point, the first and second CFD simulations suggest the possibility of pressure wave interference. Sudden surges in pressure occur from two sources: at rocket start-up, and as the rocket leaves the canister. Wave patterns set-up by these sources appear to propagate to the location of the engine inlet. However the simplified geometry simulation with the main engine needs to be performed before coming to a conclusion.

  12. Rocket Plume Scaling for Orion Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Brauckmann, Gregory J.; Greathouse, James S.; White, Molly E.

    2011-01-01

    A wind tunnel test program was undertaken to assess the jet interaction effects caused by the various solid rocket motors used on the Orion Launch Abort Vehicle (LAV). These interactions of the external flowfield and the various rocket plumes can cause localized aerodynamic disturbances yielding significant and highly non-linear control amplifications and attenuations. This paper discusses the scaling methodologies used to model the flight plumes in the wind tunnel using cold air as the simulant gas. Comparisons of predicted flight, predicted wind tunnel, and measured wind tunnel forces-and-moments and plume flowfields are made to assess the effectiveness of the selected scaling methodologies.

  13. Parametric Testing of Launch Vehicle FDDR Models

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Bajwa, Anupa; Berg, Peter; Thirumalainambi, Rajkumar

    2011-01-01

    For the safe operation of a complex system like a (manned) launch vehicle, real-time information about the state of the system and potential faults is extremely important. The on-board FDDR (Failure Detection, Diagnostics, and Response) system is a software system to detect and identify failures, provide real-time diagnostics, and to initiate fault recovery and mitigation. The ERIS (Evaluation of Rocket Integrated Subsystems) failure simulation is a unified Matlab/Simulink model of the Ares I Launch Vehicle with modular, hierarchical subsystems and components. With this model, the nominal flight performance characteristics can be studied. Additionally, failures can be injected to see their effects on vehicle state and on vehicle behavior. A comprehensive test and analysis of such a complicated model is virtually impossible. In this paper, we will describe, how parametric testing (PT) can be used to support testing and analysis of the ERIS failure simulation. PT uses a combination of Monte Carlo techniques with n-factor combinatorial exploration to generate a small, yet comprehensive set of parameters for the test runs. For the analysis of the high-dimensional simulation data, we are using multivariate clustering to automatically find structure in this high-dimensional data space. Our tools can generate detailed HTML reports that facilitate the analysis.

  14. Atmospheric Manmade Glowings Phenomena Observed During the Launches of Solid Propellant Rockets

    NASA Astrophysics Data System (ADS)

    Chernouss, S. A.; Platov, V. V.; Upspensky, M. V.; Alpatov, V. V.; Kirillov, A. S.

    2015-09-01

    Exotic types of luminosities observed in the upper atmosphere always take place during the launch and flight of solid-propellant rockets We consider a large-scale geometry and dynamic features of such phenomena also physics of the intense turquoise (blue-green) glow observed in twilight conditions in the region of missile flight. This study has been based on numerous observations of different rocket flights in the atmosphere over Russia and Scandinavia. Formation of the monoxide aluminum clouds observed in the upper atmosphere is a result of interaction of the exhausted propellant products with the atomic oxygen. The sunlight excited the monoxide aluminum EA1O*) resonance emissions in the atmosphere. Careful studies of spectra of the manmade luminosities during rocket launch/flight permit us to know chemical, thermal and mechanical processes in the atmosphere similar as it is doing in experiments with the artificial cloud release from sounding rockets in the high latitude atmosphere.

  15. Qualitative risk assessment of Sandia`s rocket preparation and launch facility at Barking Sands, Kauai

    SciTech Connect

    Mahn, J.A.

    1997-12-31

    This paper demonstrates the application of a qualitative methodology for performing risk assessments using the consequence and probability binning criteria of DOE Order 5481.1B. The particular application that is the subject of this paper is a facility risk assessment conducted for Sandia National Laboratories` Kauai Test Facility (KTF). The KTF is a rocket preparation and launch facility operated by Sandia National Laboratories for the Department of Energy and is located on the US Navy`s Pacific Missile Range Facility (PMRF) at Barking Sands on the western side of the island of Kauai, Hawaii. The KTF consists of an administrative compound and main launch facility located on the north end of the PMRF, as well as the small Kokole Point launch facility located on the south end of the PMRF. It is classified as a moderate hazard facility in accordance with DOE Order 5481.1B. As such, its authorization basis for operations necessitates a safety/risk assessment. This paper briefly addresses the hazards associated with KTF operations and the accidents selected for evaluation, introduces the principal elements of the accident assessment methodology, presents analysis details for two of the selected accidents, and provides a summary of results for all of the accidents evaluated.

  16. Detailed modal testing of a solid rocket motor using a portable test system

    NASA Technical Reports Server (NTRS)

    Glozman, Vladimir; Brillhart, Ralph D.

    1990-01-01

    Modern analytical techniques have expended the ability to evaluate solid rocket motors used in launch vehicles. As more detailed models of solid rocket motors were developed, testing methods were required to verify the models. Experimental modal analysis (modal testing) of space structures and launch vehicles has been a requirement for model validation for many years. However, previous testing of solid rocket motors has not typically involved dynamic modal testing of full scale motors for verification of solid propellant or system assembly properties. Innovative approaches to the testing of solid rocket motors were developed and modal testing of a full scale, two segment Titan 34D Solid Rocket Motor (SRM) was performed to validate detailed computer modeling. Special modifications were made to convert an existing facility into a temporary modal test facility which would accommodate the test article. The assembly of conventional data acquisition equipment into a multiple channel count portable system has made modal testing in the field feasible. Special purpose hydraulic exciters were configured to apply the dynamic driving forces required. All instrumentation and data collection equipment were installed at the test site for the duration of the test program and removed upon completion. Conversion of an existing test facility into a temporary modal test facility, and use of a multiple channel count portable test data acquisition system allowed all test objectives to be met and resulted in validation of the computer model in a minimum time.

  17. Solid rocket motor integration on the Atlas/Centaur launch vehicle

    NASA Astrophysics Data System (ADS)

    Arnett, Stephen E.

    1993-06-01

    The structural design, development, and verification testing required to integrate solid rocket motors (SRM) on the Atlas IIAS launch vehicle is described. It is concluded that the next generation Atlas Centaur based on four strap-on Castor IVA SRMs and capable of lifting 7700 pounds to geosynchronous orbit has undergone a rigorous development program. A new system intended to mount and jettison the SRMs from the core vehicle is characterized by robustness and ease of installation. To insulate the aft end of the vehicle against increased SRM-induced heat fluxes and to seal against ingress of potentially hazardous base gases extensive measures were undertaken. They include nonporous engine boots and a thrust section compartment passive pressurization system.

  18. 15 CFR 744.3 - Restrictions on Certain Rocket Systems (including ballistic missile systems and space launch...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 2 2014-01-01 2014-01-01 false Restrictions on Certain Rocket Systems (including ballistic missile systems and space launch vehicles and sounding rockets) and Unmanned Air...: END-USER AND END-USE BASED § 744.3 Restrictions on Certain Rocket Systems (including ballistic...

  19. 15 CFR 744.3 - Restrictions on Certain Rocket Systems (including ballistic missile systems and space launch...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 2 2012-01-01 2012-01-01 false Restrictions on Certain Rocket Systems (including ballistic missile systems and space launch vehicles and sounding rockets) and Unmanned Air...: END-USER AND END-USE BASED § 744.3 Restrictions on Certain Rocket Systems (including ballistic...

  20. 15 CFR 744.3 - Restrictions on Certain Rocket Systems (including ballistic missile systems and space launch...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 2 2013-01-01 2013-01-01 false Restrictions on Certain Rocket Systems (including ballistic missile systems and space launch vehicles and sounding rockets) and Unmanned Air...: END-USER AND END-USE BASED § 744.3 Restrictions on Certain Rocket Systems (including ballistic...

  1. A3 Subscale Rocket Hot Fire Testing

    NASA Technical Reports Server (NTRS)

    Saunders, G. P.; Yen, J.

    2009-01-01

    This paper gives a description of the methodology and results of J2-X Subscale Simulator (JSS) hot fire testing supporting the A3 Subscale Diffuser Test (SDT) project at the E3 test facility at Stennis Space Center, MS (SSC). The A3 subscale diffuser is a geometrically accurate scale model of the A3 altitude simulating rocket test facility. This paper focuses on the methods used to operate the facility and obtain the data to support the aerodynamic verification of the A3 rocket diffuser design and experimental data quantifying the heat flux throughout the facility. The JSS was operated at both 80% and 100% power levels and at gimbal angle from 0 to 7 degrees to verify the simulated altitude produced by the rocket-rocket diffuser combination. This was done with various secondary GN purge loads to quantify the pumping performance of the rocket diffuser. Also, special tests were conducted to obtain detailed heat flux measurements in the rocket diffuser at various gimbal angles and in the facility elbow where the flow turns from vertical to horizontal upstream of the 2nd stage steam ejector.

  2. First Titan-Centaur Launch Test

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The first Titan/Centaur lifted off from Complex 41 at Cape Kennedy Air Force Station at 9:48 AM EDT. The Titan stages burned as programmed, but when the Centaur stage failed to ignite, the Range Safety Officer destroyed it. The new NASA rocket was launched on a proof of concept flight designed to prepare it for twin Viking launches to Mars in 1975 and other missions involving heavy payloads. The 160-foot-tall rocket combines the Air Force Titan III with the NASA high-energy Centaur final stage. The twin solid rocket boosters have a combined liftoff thrust of 2.4 million pounds. Aboard Titan/ Centaur on its proof of concept flight were a dynamic simulator of the Viking spacecraft and a small scientific satellite (SPHINX) designed to determine how high voltage solar cells, insulators, and conductors are affected by the charges particles in space. KSC's Unmanned Launch Operations Directorate conducted the launch. For more information about Titan and Centaur, please see Chapters 4 and 8, respectively, in Roger Launius and Dennis Jenkins' book To Reach the High Frontier published by The University Press of Kentucky in 2002.

  3. Orion Launch Abort System Performance During Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McCauley, Rachel; Davidson, John; Gonzalez, Guillo

    2015-01-01

    The Orion Launch Abort System Office is taking part in flight testing to enable certification that the system is capable of delivering the astronauts aboard the Orion Crew Module to a safe environment during both nominal and abort conditions. Orion is a NASA program, Exploration Flight Test 1 is managed and led by the Orion prime contractor, Lockheed Martin, and launched on a United Launch Alliance Delta IV Heavy rocket. Although the Launch Abort System Office has tested the critical systems to the Launch Abort System jettison event on the ground, the launch environment cannot be replicated completely on Earth. During Exploration Flight Test 1, the Launch Abort System was to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. Exploration Flight Test 1 was successfully flown on December 5, 2014 from Cape Canaveral Air Force Station's Space Launch Complex 37. This was the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. The abort motor and attitude control motors were inert for Exploration Flight Test 1, since the mission did not require abort capabilities. Exploration Flight Test 1 provides critical data that enable engineering to improve Orion's design and reduce risk for the astronauts it will protect as NASA continues to move forward on its human journey to Mars. The Exploration Flight Test 1 separation event occurred at six minutes and twenty seconds after liftoff. The separation of the Launch Abort System jettison occurs once Orion is safely through the most dynamic portion of the launch. This paper will present a brief overview of the objectives of the Launch Abort System during a nominal Orion flight. Secondly, the paper will present the performance of the Launch Abort System at it fulfilled those objectives. The lessons learned from Exploration Flight Test 1 and the other Flight Test Vehicles will certainly contribute to the vehicle architecture of a human-rated space launch vehicle.

  4. An Analysis of Rocket Propulsion Testing Costs

    NASA Technical Reports Server (NTRS)

    Ramirez, Carmen; Rahman, Shamim

    2010-01-01

    The primary mission at NASA Stennis Space Center (SSC) is rocket propulsion testing. Such testing is commonly characterized as one of two types: production testing for certification and acceptance of engine hardware, and developmental testing for prototype evaluation or research and development (R&D) purposes. For programmatic reasons there is a continuing need to assess and evaluate the test costs for the various types of test campaigns that involve liquid rocket propellant test articles. Presently, in fact, there is a critical need to provide guidance on what represents a best value for testing and provide some key economic insights for decision-makers within NASA and the test customers outside the Agency. Hence, selected rocket propulsion test databases and references have been evaluated and analyzed with the intent to discover correlations of technical information and test costs that could help produce more reliable and accurate cost projections in the future. The process of searching, collecting, and validating propulsion test cost information presented some unique obstacles which then led to a set of recommendations for improvement in order to facilitate future cost information gathering and analysis. In summary, this historical account and evaluation of rocket propulsion test cost information will enhance understanding of the various kinds of project cost information; identify certain trends of interest to the aerospace testing community.

  5. Large Liquid Rocket Testing: Strategies and Challenges

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim A.; Hebert, Bartt J.

    2005-01-01

    Rocket propulsion development is enabled by rigorous ground testing in order to mitigate the propulsion systems risks that are inherent in space flight. This is true for virtually all propulsive devices of a space vehicle including liquid and solid rocket propulsion, chemical and non-chemical propulsion, boost stage and in-space propulsion and so forth. In particular, large liquid rocket propulsion development and testing over the past five decades of human and robotic space flight has involved a combination of component-level testing and engine-level testing to first demonstrate that the propulsion devices were designed to meet the specified requirements for the Earth to Orbit launchers that they powered. This was followed by a vigorous test campaign to demonstrate the designed propulsion articles over the required operational envelope, and over robust margins, such that a sufficiently reliable propulsion system is delivered prior to first flight. It is possible that hundreds of tests, and on the order of a hundred thousand test seconds, are needed to achieve a high-reliability, flight-ready, liquid rocket engine system. This paper overviews aspects of earlier and recent experience of liquid rocket propulsion testing at NASA Stennis Space Center, where full scale flight engines and flight stages, as well as a significant amount of development testing has taken place in the past decade. The liquid rocket testing experience discussed includes testing of engine components (gas generators, preburners, thrust chambers, pumps, powerheads), as well as engine systems and complete stages. The number of tests, accumulated test seconds, and years of test stand occupancy needed to meet varying test objectives, will be selectively discussed and compared for the wide variety of ground test work that has been conducted at Stennis for subscale and full scale liquid rocket devices. Since rocket propulsion is a crucial long-lead element of any space system acquisition or development, the appropriate plan and strategy must be put in place at the outset of the development effort. A deferment of this test planning, or inattention to strategy, will compromise the ability of the development program to achieve its systems reliability requirements and/or its development milestones. It is important for the government leadership and support team, as well as the vehicle and propulsion development team, to give early consideration to this aspect of space propulsion and space transportation work.

  6. Infrasound and seismic signals from Baikonur spaceport rocket launches recorded by Kazakh stations

    NASA Astrophysics Data System (ADS)

    Smirnov, Alexandr; Sokolova, Inna; Mikhailova, Natalya

    2015-04-01

    The monitoring network of the Institute of Geophysical Researches, Kazakhstan consists of 2 infrasound arrays, 8 seismic arrays and 7 3C stations. 5 of these stations are a part of IMS CTBTO. The Institute of Geophysical Researches monitors round-the-clock many sorts of seismoacoustic events. Tens of rockets are launched every year from Baikonur spaceport located in Central Kazakhstan. Baikonur rockets fly over several regions of Kazakhstan. Kazakh monitoring stations record launches, rocket stage falls, satellite recovery and sometimes accidents. A catalog of events associated with such activity is built. Some waveform features are collected. The catalog also contains some kinematic and dynamic parameters of the events sources. The signals from accidents of Dnepr rocket of July 26, 2006 and Proton rocket of September 5, 2007 and of July 2, 2013 were studied in details. Discrimination of the events associated with spaceport activity and its exclusion from seismic bulletins allows improving the bulletins quality. And in case of accident this information helps to estimate the event parameters and to start recovery procedures in proper time.

  7. Squid rocket science: How squid launch into air

    NASA Astrophysics Data System (ADS)

    O'Dor, Ron; Stewart, Julia; Gilly, William; Payne, John; Borges, Teresa Cerveira; Thys, Tierney

    2013-10-01

    Squid not only swim, they can also fly like rockets, accelerating through the air by forcefully expelling water out of their mantles. Using available lab and field data from four squid species, Sthenoteuthis pteropus, Dosidicus gigas, Illex illecebrosus and Loligo opalescens, including sixteen remarkable photographs of flying S. pteropus off the coast of Brazil, we compared the cost of transport in both water and air and discussed methods of maximizing power output through funnel and mantle constriction. Additionally we found that fin flaps develop at approximately the same size range as flight behaviors in these squids, consistent with previous hypotheses that flaps could function as ailerons whilst aloft. S. pteropus acceleration in air (265 body lengths [BL]/s2; 24.5m/s2) was found to exceed that in water (79BL/s2) three-fold based on estimated mantle length from still photos. Velocities in air (37BL/s; 3.4m/s) exceed those in water (11BL/s) almost four-fold. Given the obvious advantages of this extreme mode of transport, squid flight may in fact be more common than previously thought and potentially employed to reduce migration cost in addition to predation avoidance. Clearly squid flight, the role of fin flaps and funnel, and the energetic benefits are worthy of extended investigation.

  8. Apollo 11 Launched Via the Saturn V Rocket-High Angle View

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first lunar landing mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle produced a holocaust of flames as it rose from its pad at Launch complex 39. The 363 foot tall, 6,400,000 pound rocket hurled the spacecraft into Earth parking orbit and then placed it on the trajectory to the moon for man's first lunar landing. This high angle view of the launch was provided by a `fisheye' camera mounted on the launch tower. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module pilot; and Edwin E. Aldrin Jr., Lunar Module pilot. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  9. Multidisciplinary design of a rocket-based combined cycle SSTO launch vehicle using Taguchi methods

    NASA Technical Reports Server (NTRS)

    Olds, John R.; Walberg, Gerald D.

    1993-01-01

    Results are presented from the optimization process of a winged-cone configuration SSTO launch vehicle that employs a rocket-based ejector/ramjet/scramjet/rocket operational mode variable-cycle engine. The Taguchi multidisciplinary parametric-design method was used to evaluate the effects of simultaneously changing a total of eight design variables, rather than changing them one at a time as in conventional tradeoff studies. A combination of design variables was in this way identified which yields very attractive vehicle dry and gross weights.

  10. Test of Re-Entry Systems at Estrange Using Sounding Rockets and Stratospheric Balloons

    NASA Astrophysics Data System (ADS)

    Lockowandt, C.; Abrahamsson, M.; Florin, G.

    2015-09-01

    Stratospheric balloons and sounding rockets can provide an ideal in-flight platform for performing re-entry and other high speed tests off different types of vehicles and techniques. They are also ideal platforms for testing different types of recovery systems such as airbrakes and parachutes. This paper expands on some examples of platforms and missions for drop tests from balloons as well as sounding rockets launched from Esrange Space Center, a facility run by Swedish Space Corporation SSC in northern Sweden.

  11. AJ26 rocket engine testing news briefing

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Operators at NASA's John C. Stennis Space Center are completing modifications to the E-1 Test Stand to begin testing Aerojet AJ26 rocket engines in early summer of 2010. Modifications include construction of a 27-foot-deep flame deflector trench. The AJ26 rocket engines will be used to power Orbital Sciences Corp.'s Taurus II space vehicles to provide commercial cargo transportation missions to the International Space Station for NASA. Stennis has partnered with Orbital to test all engines for the transport missions.

  12. Features of optical phenomena connected with launches of solid-propellant ballistic rockets

    NASA Astrophysics Data System (ADS)

    Platov, Yu. V.; Chernouss, S. A.; Alpatov, V. V.

    2013-04-01

    Specific optical phenomena observed in the upper atmosphere layers and connected with launches of powerful solid-propellant rockets are considered: the development of spherically symmetric gas-dust formations having the shape of an extending torus in the image plane and the formation of regions with intense blue-green (turquoise) glow observed under twilight conditions along a rocket's flight path. The development of clouds can be represented by the model of a strong explosion occurring at the stage separation of solid-propellant rockets in the upper atmosphere. A turquoise glow arises as a result of resonance scattering of solar radiation on AlO molecules that are formed when metallic aluminum in the composition of fuel interacts with atmosphere components and combustion products.

  13. 20. Building 202, detail of stand A, rocket test stand ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Building 202, detail of stand A, rocket test stand in test cell. View looking southeast. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  14. Crew Launch Vehicle Mobile Launcher Solid Rocket Motor Plume Induced Environment

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Sulyma, Peter

    2008-01-01

    The plume-induced environment created by the Ares 1 first stage, five-segment reusable solid rocket motor (RSRMV) will impose high heating rates and impact pressures on Launch Complex 39. The extremes of these environments pose a potential threat to weaken or even cause structural components to fail if insufficiently designed. Therefore the ability to accurately predict these environments is critical to assist in specifying structural design requirements to insure overall structural integrity and flight safety. This paper presents the predicted thermal and pressure environments induced by the launch of the Crew Launch Vehicle (CLV) from Launch Complex (LC) 39. Once the environments are predicted, a follow-on thermal analysis is required to determine the surface temperature response and the degradation rate of the materials. An example of structures responding to the plume-induced environment will be provided.

  15. Seal testing of large diameter rocket motors

    NASA Technical Reports Server (NTRS)

    Moore, N. B.; Hellums, John W.; Bechtel, Thomas; Kittredge, Ken; Crossfield, Craig

    1991-01-01

    This investigative program examines leakage testing of elastomeric O-ring seals for a solid rocket casing and provides direction towards an improved nondestructive postassembly test. It also details test equipment for the Space Shuttle systems solid rocket boosters (SRB). The results are useful to designers of hardware for pressure containment vessels which use O-ring seals. Using several subscale seal and groove configuration test fixtures equipped with either two or three O-ring seals in series, seal integrity is investigated with both a pressure decay and flowmeter methods. Both types of test equipment adequately detect the practical range of expected seal leak rates of 1 to 0.0001 sccs. The flowmeter leak test equipment appears to reduce testing time substantially. Limited seal leakage testing is performed on full-sized rocket motor segment seals, a pre-Challenger short stack, providing comparison of bore seals to test specimen bore and face seals. The conclusions are that seal reliability, verified via a performance pressure test, can be affected by temperature, quantity of grease, test pressure, and seal pressure load direction. Potential seal failure scenarios including contamination, seal damage, and sealing surface damage are discussed. Recommendations are made for an improved test procedure.

  16. Ares I-X Launch Vehicle Modal Test Overview

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Bartolotta, Paul A.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Parks, Russell A.; Lazor, Daniel R.

    2010-01-01

    The first test flight of NASA's Ares I crew launch vehicle, called Ares I-X, is scheduled for launch in 2009. Ares IX will use a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Flight test data will provide important information on ascent loads, vehicle control, separation, and first stage reentry dynamics. As part of hardware verification, a series of modal tests were designed to verify the dynamic finite element model (FEM) used in loads assessments and flight control evaluations. Based on flight control system studies, the critical modes were the first three free-free bending mode pairs. Since a test of the free-free vehicle is not practical within project constraints, modal tests for several configurations in the nominal integration flow were defined to calibrate the FEM. A traceability study by Aerospace Corporation was used to identify the critical modes for the tested configurations. Test configurations included two partial stacks and the full Ares I-X launch vehicle on the Mobile Launcher Platform. This paper provides an overview for companion papers in the Ares I-X Modal Test Session. The requirements flow down, pre-test analysis, constraints and overall test planning are described.

  17. Small-Scale Rocket Motor Test - Duration: 29 seconds.

    NASA Video Gallery

    Engineers at NASA's Marshall Space Flight Center in Huntsville, Ala. successfully tested a sub-scale solid rocket motor on May 27. Testing a sub-scale version of a rocket motor is a cost-effective ...

  18. 7. Historic aerial photo of rocket engine test facility complex, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Historic aerial photo of rocket engine test facility complex, June 1962. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-60674. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  19. Spacely's rockets: Personnel launch system/family of heavy lift launch vehicles

    NASA Technical Reports Server (NTRS)

    1991-01-01

    During 1990, numerous questions were raised regarding the ability of the current shuttle orbiter to provide reliable, on demand support of the planned space station. Besides being plagued by reliability problems, the shuttle lacks the ability to launch some of the heavy payloads required for future space exploration, and is too expensive to operate as a mere passenger ferry to orbit. Therefore, additional launch systems are required to complement the shuttle in a more robust and capable Space Transportation System. In December 1990, the Report of the Advisory Committee on the Future of the U.S. Space Program, advised NASA of the risks of becoming too dependent on the space shuttle as an all-purpose vehicle. Furthermore, the committee felt that reducing the number of shuttle missions would prolong the life of the existing fleet. In their suggestions, the board members strongly advocated the establishment of a fleet of unmanned, heavy lift launch vehicles (HLLV's) to support the space station and other payload-intensive enterprises. Another committee recommendation was that a space station crew rotation/rescue vehicle be developed as an alternative to the shuttle, or as a contingency if the shuttle is not available. The committee emphasized that this vehicle be designed for use as a personnel carrier, not a cargo carrier. This recommendation was made to avoid building another version of the existing shuttle, which is not ideally suited as a passenger vehicle only. The objective of this project was to design both a Personnel Launch System (PLS) and a family of HLLV's that provide low cost and efficient operation in missions not suited for the shuttle.

  20. Measurements of Cloud Nuclei in the Effluents from Launches of Liquid- and Solid-Fueled Rockets.

    NASA Astrophysics Data System (ADS)

    Hindman, Edward E.; Radke, Lawrence F.; Eltgroth, Mark W.

    1982-09-01

    Airborne measurements of cloud nuclei [cloud condensation nuclei (CCN) and ice nuclei (IN)] were made in the stabilized ground clouds resulting from the launches of a liquid-fueled ATLAS/Centaur rocket and a solid-fueled TITAN III rocket. Concentrations of CCN in both types of clouds were greater than ambient values for the 2 h duration of the measurements. The initial production of CCN active at 0.5% supersaturation in the ATLAS and TITAN clouds was equivalent to a 20 and 700 s emission, respectively, by the city of Denver, Colorado. Thereafter, the clouds continued to generate CCN at a rate of 1 cm3 s1. Concentrations of IN in the ATLAS cloud were greater than ambient values for only a short period after launch; the nuclei were probably from entrained launch pad and ground debris. The concentrations of IN in the TITAN cloud were mainly at or below ambient values (possibly due to the presence of high concentrations of HCI) until 2 h after launch when they increased substantially above ambient values. Estimates of the IN activity of the ground cloud material have large uncertainties due to unresolved discrepancies with previous laboratory measurements.

  1. Technology developments for thrust chambers of future launch vehicle liquid rocket engines

    NASA Astrophysics Data System (ADS)

    Immich, H.; Alting, J.; Kretschmer, J.; Preclik, D.

    2003-08-01

    In this paper an overview of recent technology developments for thrust chambers of future launch vehicle liquid rocket engines at Astrium, Space Infrastructure Division (SI), is shown. The main technology. developments shown in this paper are: Technologies Technologies for enhanced heat transfer to the coolant for expander cycle engines Advanced injector head technologies Advanced combustion chamber manufacturing technologies. The main technologies for enhanced heat transfer investigated by subscale chamber hot-firing tests are: Increase of chamber length Hot gas side ribs in the chamber Artificially increased surface roughness. The developments for advanced injector head technologies were focused on the design of a new modular subscale chamber injector head. This injector head allows for an easy exchange of different injection elements: By this, cost effective hot-fire tests with different injection element concepts can be performed. The developments for advanced combustion chamber manufacturing technologies are based on subscale chamber tests with a new design of the Astrium subscale chamber. The subscale chamber has been modified by introduction of a segmented cooled cylindrical section which gives the possibility to test different manufacturing concepts for cooled chamber technologies by exchanging the individual segments. The main technology efforts versus advanced manufacturing technologies shown in this paper are: Soldering techniques Thermal barrier coatings for increased chamber life. A new technology effort is dedicated especially to LOX/Hydrocarbon propellant combinations. Recent hot fire tests on the subscale chamber with Kerosene and Methane as fuel have already been performed. A comprehensive engine system trade-off between the both propellant combinations (Kerosene vs. Methane) is presently under preparation.

  2. Experimental measurements of the ground cloud growth during the 11 February 1974, Titan-Centaur launch at Kennedy Space Center. [(measurement of rocket exhaust from rocket launching)

    NASA Technical Reports Server (NTRS)

    Stewart, R. B.; Sentell, R. J.; Gregory, G. L.

    1976-01-01

    The Titan-Centaur was launched from Kennedy Space Center on February 11, 1974 at 0948 eastern daylight time. Ground level effluent measurements were obtained from the solid rocket motors for comparison with NASA diffusion models for predicting effluent ground level concentrations and cloud behavior. The results obtained provide a basis for an evaluation of such key model inputs such as cloud rise rate, stabilization altitude, crosswind growth, volume expansion, and cloud trajectory. Ground level effluent measurements were limited because of changing meteorological conditions, incorrect instrument location, and operational problems. Based on the measurement results, operational changes are defined. Photographs of the ground exhaust clouds are shown. The chemical composition of the exhaust gases was analyzed and is given.

  3. A Framework for Intelligent Rocket Test Facilities with Smart Sensors

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Solano, Wanda; Morris, Jon; Mandayam, Shreekanth; Polikar, Robi

    2003-01-01

    A long-term center goal at the John C. Stennis Space Center (SSC) is the formulation and implementation of a framework for an Intelligent Rocket Test Facility (IRTF), which incorporates distributed smart sensor elements. The IRTF is to provide reliable, high-confident measurements. Specific objectives include: 1. Definition of a framework and architecture that supports implementation of highly autonomous methodologies founded on basic physical principles and embedded knowledge. 2. Modeling of autonomous sensors and processes as self-sufficient, evolutionary elements. 3. Development of appropriate communications protocols to enable the complex interactions that must take place to allow timely and high-quality flow of of information among all the autonomous elements of the system. 4. Development of lab-scale prototypes of key system elements. Though our application is next-generation rocket test facilities, applications for the approach are much wider and include monitoring of shuttle launch operations, air and spacecraft operations and health monitoring, and other large-scale industrial system operations such as found in processing and manufacturing plans. Elements of prototype IRTF have been implemented in preparation for advanced development and validation using rocket test stand facilities as SSC. This work has identified issues that are important to further development of complex network and should be of interest to other working with sensor networks.

  4. Rocket engine exhaust plume diagnostics and health monitoring/management during ground testing

    NASA Technical Reports Server (NTRS)

    Chenevert, D. J.; Meeks, G. R.; Woods, E. G.; Huseonica, H. F.

    1992-01-01

    The current status of a rocket exhaust plume diagnostics program sponsored by NASA is reviewed. The near-term objective of the program is to enhance test operation efficiency and to provide for safe cutoff of rocket engines prior to incipient failure, thereby avoiding the destruction of the engine and the test complex and preventing delays in the national space program. NASA programs that will benefit from the nonintrusive remote sensed rocket plume diagnostics and related vehicle health management and nonintrusive measurement program are Space Shuttle Main Engine, National Launch System, National Aero-Space Plane, Space Exploration Initiative, Advanced Solid Rocket Motor, and Space Station Freedom. The role of emission spectrometry and other types of remote sensing in rocket plume diagnostics is discussed.

  5. Space Launch System Base Heating Test: Experimental Operations & Results

    NASA Technical Reports Server (NTRS)

    Dufrene, Aaron; Mehta, Manish; MacLean, Matthew; Seaford, Mark; Holden, Michael

    2016-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Test methodology and conditions are presented, and base heating results from 76 runs are reported in non-dimensional form. Regions of high heating are identified and comparisons of various configuration and conditions are highlighted. Base pressure and radiometer results are also reported.

  6. Multi-Stage Hybrid Rocket Conceptual Design for Micro-Satellites Launch using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Kitagawa, Yosuke; Kitagawa, Koki; Nakamiya, Masaki; Kanazaki, Masahiro; Shimada, Toru

    The multi-objective genetic algorithm (MOGA) is applied to the multi-disciplinary conceptual design problem for a three-stage launch vehicle (LV) with a hybrid rocket engine (HRE). MOGA is an optimization tool used for multi-objective problems. The parallel coordinate plot (PCP), which is a data mining method, is employed in the post-process in MOGA for design knowledge discovery. A rocket that can deliver observing micro-satellites to the sun-synchronous orbit (SSO) is designed. It consists of an oxidizer tank containing liquid oxidizer, a combustion chamber containing solid fuel, a pressurizing tank and a nozzle. The objective functions considered in this study are to minimize the total mass of the rocket and to maximize the ratio of the payload mass to the total mass. To calculate the thrust and the engine size, the regression rate is estimated based on an empirical model for a paraffin (FT-0070) propellant. Several non-dominated solutions are obtained using MOGA, and design knowledge is discovered for the present hybrid rocket design problem using a PCP analysis. As a result, substantial knowledge on the design of an LV with an HRE is obtained for use in space transportation.

  7. Tracking the Relative Motion of Four Space Payloads Launched from a Sub-Orbital NASA Rocket

    NASA Technical Reports Server (NTRS)

    Bull, Barton; Martell, Hugh

    1999-01-01

    One problem, which is comparatively new in the field of GPS (Global Positioning System) applications, is the determination of the relative trajectories of space vehicles. Applications include the docking of spacecraft, collision avoidance in the area of space stations, and trajectory reconstruction of multiple payloads. The required precision in any of these applications will vary, according to the requirements of the task and abilities of GPS to cope with the environment and the dynamics. This paper describes the post-mission reconstruction of the relative trajectories of four GPS receivers attached to four payloads jettisoned from a Black Brant XII rocket. This vehicle was launched by the National Aeronautics and Space Administration (NASA) in January 1999 from the Poker Flats Research Range near Fairbanks, Alaska. The Black Brant XII is a sub-orbital rocket designed to carry payloads of 100 to 500 kg into the upper atmosphere. Flight time is generally in the order of 10 - 20 minutes.

  8. Solid Rocket Booster Structural Test Article

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The structural test article to be used in the solid rocket booster (SRB) structural and load verification tests is being assembled in a high bay building of the Marshall Space Flight Center (MSFC). The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment.

  9. Los Alamos Novel Rocket Design Flight Tested

    SciTech Connect

    Tappan, Bryce

    2014-10-23

    Los Alamos National Laboratory scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that also delivers a high degree of safety. Researchers will now work to scale-up the design, as well as explore miniaturization of the system, in order to exploit all potential applications that would require high-energy, high-velocity, and correspondingly high safety margins.

  10. Los Alamos Novel Rocket Design Flight Tested

    ScienceCinema

    Tappan, Bryce

    2015-01-05

    Los Alamos National Laboratory scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that also delivers a high degree of safety. Researchers will now work to scale-up the design, as well as explore miniaturization of the system, in order to exploit all potential applications that would require high-energy, high-velocity, and correspondingly high safety margins.

  11. Space Launch System Scale Model Acoustic Test Ignition Overpressure Testing

    NASA Technical Reports Server (NTRS)

    Nance, Donald K.; Liever, Peter A.

    2015-01-01

    The overpressure phenomenon is a transient fluid dynamic event occurring during rocket propulsion system ignition. This phenomenon results from fluid compression of the accelerating plume gas, subsequent rarefaction, and subsequent propagation from the exhaust trench and duct holes. The high-amplitude unsteady fluid-dynamic perturbations can adversely affect the vehicle and surrounding structure. Commonly known as ignition overpressure (IOP), this is an important design-to environment for the Space Launch System (SLS) that NASA is currently developing. Subscale testing is useful in validating and verifying the IOP environment. This was one of the objectives of the Scale Model Acoustic Test (SMAT), conducted at Marshall Space Flight Center (MSFC). The test data quantifies the effectiveness of the SLS IOP suppression system and improves the analytical models used to predict the SLS IOP environments. The reduction and analysis of the data gathered during the SMAT IOP test series requires identification and characterization of multiple dynamic events and scaling of the event waveforms to provide the most accurate comparisons to determine the effectiveness of the IOP suppression systems. The identification and characterization of the overpressure events, the waveform scaling, the computation of the IOP suppression system knockdown factors, and preliminary comparisons to the analytical models are discussed.

  12. Space Launch System Scale Model Acoustic Test Ignition Overpressure Testing

    NASA Technical Reports Server (NTRS)

    Nance, Donald; Liever, Peter; Nielsen, Tanner

    2015-01-01

    The overpressure phenomenon is a transient fluid dynamic event occurring during rocket propulsion system ignition. This phenomenon results from fluid compression of the accelerating plume gas, subsequent rarefaction, and subsequent propagation from the exhaust trench and duct holes. The high-amplitude unsteady fluid-dynamic perturbations can adversely affect the vehicle and surrounding structure. Commonly known as ignition overpressure (IOP), this is an important design-to environment for the Space Launch System (SLS) that NASA is currently developing. Subscale testing is useful in validating and verifying the IOP environment. This was one of the objectives of the Scale Model Acoustic Test, conducted at Marshall Space Flight Center. The test data quantifies the effectiveness of the SLS IOP suppression system and improves the analytical models used to predict the SLS IOP environments. The reduction and analysis of the data gathered during the SMAT IOP test series requires identification and characterization of multiple dynamic events and scaling of the event waveforms to provide the most accurate comparisons to determine the effectiveness of the IOP suppression systems. The identification and characterization of the overpressure events, the waveform scaling, the computation of the IOP suppression system knockdown factors, and preliminary comparisons to the analytical models are discussed.

  13. Preliminary Sizing of Vertical Take-off Rocket-based Combined-cycle Powered Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Roche, Joseph M.; McCurdy, David R.

    2001-01-01

    The task of single-stage-to-orbit has been an elusive goal due to propulsion performance, materials limitations, and complex system integration. Glenn Research Center has begun to assemble a suite of relationships that tie Rocket-Based Combined-Cycle (RBCC) performance and advanced material data into a database for the purpose of preliminary sizing of RBCC-powered launch vehicles. To accomplish this, a near optimum aerodynamic and structural shape was established as a baseline. The program synthesizes a vehicle to meet the mission requirements, tabulates the results, and plots the derived shape. A discussion of the program architecture and an example application is discussed herein.

  14. AJ26 rocket engine testing news briefing

    NASA Technical Reports Server (NTRS)

    2010-01-01

    NASA's John C. Stennis Space Center Director Gene Goldman (center) stands in front of a 'pathfinder' rocket engine with Orbital Sciences Corp. President and Chief Operating Officer J.R. Thompson (left) and Aerojet President Scott Seymour during a Feb. 24 news briefing at the south Mississippi facility. The leaders appeared together to announce a partnership for testing Aerojet AJ26 rocket engines at Stennis. The engines will be used to power Orbital's Taurus II space vehicles to provide commercial cargo transportation missions to the International Space Station for NASA. During the event, the Stennis partnership with Orbital was cited as an example of the new direction of NASA to work with commercial interests for space travel and transport.

  15. Assemby, test, and launch operations for the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Wallace, Matthew T.; Hardy, Paul V.; Romero, Raul A.; Salvo, Christopher G.; Shain, Thomas W.; Thompson, Arthur D.; Wirth, John W.

    2005-01-01

    In January of 2004, NASA's twin Mars rovers, Spirit and Opportunity, successfully landed on opposite sides of the Red Planet after a seven month Earth to Mars cruise period. Both vehicles have operated well beyond their 90 day primary mission design life requirements. The Assembly, Test, and Launch Operations (ATLO) program for these missions presented unique technical and schedule challenges to the team at the Jet Propulsion Laboratory (JPL). Among these challenges were a highly compressed schedule and late deliveries leading to extended double shift staffing, dual spacecraft operations requiring test program diversification and resource arbitration, multiple atypical test configurations for airbag/rocket landings and surface mobility testing, and verification of an exceptionally large number of separations, deployments, and mechanisms. This paper discusses the flight system test philosophies and approach, and presents lessons learned.

  16. ISHM Anomaly Lexicon for Rocket Test

    NASA Technical Reports Server (NTRS)

    Schmalzel, John L.; Buchanan, Aubri; Hensarling, Paula L.; Morris, Jonathan; Turowski, Mark; Figueroa, Jorge F.

    2007-01-01

    Integrated Systems Health Management (ISHM) is a comprehensive capability. An ISHM system must detect anomalies, identify causes of such anomalies, predict future anomalies, help identify consequences of anomalies for example, suggested mitigation steps. The system should also provide users with appropriate navigation tools to facilitate the flow of information into and out of the ISHM system. Central to the ability of the ISHM to detect anomalies is a clearly defined catalog of anomalies. Further, this lexicon of anomalies must be organized in ways that make it accessible to a suite of tools used to manage the data, information and knowledge (DIaK) associated with a system. In particular, it is critical to ensure that there is optimal mapping between target anomalies and the algorithms associated with their detection. During the early development of our ISHM architecture and approach, it became clear that a lexicon of anomalies would be important to the development of critical anomaly detection algorithms. In our work in the rocket engine test environment at John C. Stennis Space Center, we have access to a repository of discrepancy reports (DRs) that are generated in response to squawks identified during post-test data analysis. The DR is the tool used to document anomalies and the methods used to resolve the issue. These DRs have been generated for many different tests and for all test stands. The result is that they represent a comprehensive summary of the anomalies associated with rocket engine testing. Fig. 1 illustrates some of the data that can be extracted from a DR. Such information includes affected transducer channels, narrative description of the observed anomaly, and the steps used to correct the problem. The primary goal of the anomaly lexicon development efforts we have undertaken is to create a lexicon that could be used in support of an associated health assessment database system (HADS) co-development effort. There are a number of significant byproducts of the anomaly lexicon compilation effort. For example, (1) Allows determination of the frequency distribution of anomalies to help identify those with the potential for high return on investment if included in automated detection as part of an ISHM system, (2) Availability of a regular lexicon could provide the base anomaly name choices to help maintain consistency in the DR collection process, and (3) Although developed for the rocket engine test environment, most of the anomalies are not specific to rocket testing, and thus can be reused in other applications.

  17. Ascent performance issues of a vertical-takeoff rocket launch vehicle

    NASA Technical Reports Server (NTRS)

    Powell, Richard W.; Naftel, J. C.; Cruz, Christopher I.

    1991-01-01

    Advanced manned launch systems studies under way at the NASA Langley Research Center are part of a broader effort that is examining options for the next manned space transportation system to be developed by the United States. One promising concept that uses near-term technologies is a fully reusable, two-stage vertical-takeoff rocket vehicle. This vehicle features parallel thrusting of the booster and orbiter with the booster cross-feeding the propellant to the orbiter until staging. In addition, after staging, the booster glides back unpowered to the launch site. This study concentrated on two issues that could affect the ascent performance of this vehicle. The first is the large gimbal angle range required for pitch trim until staging because of the propellant cross-feed. Results from this analysis show that if control is provided by gimballing of the rocket engines, they must gimbal greater than 20 deg, which is excessive when compared with current vehicles. However, this analysis also showed that this limit could be reduced to 10 deg if gimballing were augmented by throttling the booster engines. The second issue is the potential influence of off-nominal atmospheric conditions (density and winds) on the ascent performance. This study showed that a robust guidance algorithm could be developed that would insure accurate insertion, without prelaunch atmospheric knowledge.

  18. Cooled Ceramic Matrix Composite Panel Successfully Tested in Rocket Exhaust

    NASA Technical Reports Server (NTRS)

    Eckel, Andrew J.

    2001-01-01

    Actively cooled ceramic matrix composite (CMC) components are enabling or enhancing for a broad range of hypersonic and reusable launch vehicle propulsion systems. Teaming with other NASA centers, the Air Force, and industry, the Glenn Ceramics Branch has successfully tested multiple cooled CMC panel concepts in high-heat-flux, high-pressure, flowing rocket engine combustion gas environments. Sub-element components survived multiple cycles and the severe thermal gradients imposed by combustion gas temperatures in excess of 5500 F and cryogenic hydrogen or ambient temperature water internal coolants. These demonstrations are critical for the continued development of this class of materials, and the research is expected to continue with additional concepts and increasingly larger and more complex geometries being fabricated and tested in a broad range of engine operating conditions.

  19. Magnetic Launch Assist System Demonstration Test

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Engineers at the Marshall Space Flight Center (MSFC) have been testing Magnetic Launch Assist Systems, formerly known as Magnetic Levitation (MagLev) technologies. To launch spacecraft into orbit, a Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at a very high speed. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, the launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This photograph shows a subscale model of an airplane running on the experimental track at MSFC during the demonstration test. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5- feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  20. Coupled Solid Rocket Motor Ballistics and Trajectory Modeling for Higher Fidelity Launch Vehicle Design

    NASA Technical Reports Server (NTRS)

    Ables, Brett

    2014-01-01

    Multi-stage launch vehicles with solid rocket motors (SRMs) face design optimization challenges, especially when the mission scope changes frequently. Significant performance benefits can be realized if the solid rocket motors are optimized to the changing requirements. While SRMs represent a fixed performance at launch, rapid design iterations enable flexibility at design time, yielding significant performance gains. The streamlining and integration of SRM design and analysis can be achieved with improved analysis tools. While powerful and versatile, the Solid Performance Program (SPP) is not conducive to rapid design iteration. Performing a design iteration with SPP and a trajectory solver is a labor intensive process. To enable a better workflow, SPP, the Program to Optimize Simulated Trajectories (POST), and the interfaces between them have been improved and automated, and a graphical user interface (GUI) has been developed. The GUI enables real-time visual feedback of grain and nozzle design inputs, enforces parameter dependencies, removes redundancies, and simplifies manipulation of SPP and POST's numerous options. Automating the analysis also simplifies batch analyses and trade studies. Finally, the GUI provides post-processing, visualization, and comparison of results. Wrapping legacy high-fidelity analysis codes with modern software provides the improved interface necessary to enable rapid coupled SRM ballistics and vehicle trajectory analysis. Low cost trade studies demonstrate the sensitivities of flight performance metrics to propulsion characteristics. Incorporating high fidelity analysis from SPP into vehicle design reduces performance margins and improves reliability. By flying an SRM designed with the same assumptions as the rest of the vehicle, accurate comparisons can be made between competing architectures. In summary, this flexible workflow is a critical component to designing a versatile launch vehicle model that can accommodate a volatile mission scope.

  1. System Development of an Experimental Rocket for a Launch Campaign Organized by The Association of Planete Sciences, France

    NASA Astrophysics Data System (ADS)

    Sasaki, Minoru; Nakano, Noriaki; Ohmayu, Satoru; Ogushi, Naoki

    This paper presents the system development of an experimental rocket for a launch campaign organized by the Association of Planete Sciences in France (http://www.planete-sciences.org). A two-stage experimental rocket was developed by 'Space Club Gifu' and the principal author's laboratory at Gifu University. It incorporates GPS, acceleration and pressure sensors as well as two cameras, one omni-directional. The goals of our experiment are as follows: 1. Constant video monitoring of motor combustion and activity during launch and flight. 2. Acquisition of accelerometer, pressure and GPS data for comparison with simulated results. 3. Developing a new mechanism for stage separation in order to build a future vehicle with two rocket motors. 4. The launch and return of a quasi-satellite to a pre-selected location using GPS data. The rocket launched successfully at La Courtine, France in 1st August of 2007, but unfortunately, the first stage could not be recovered. It along with the video footage of the rocket motor burn was lost. However, the second stage and the quasi-satellite were safely found. This project provides excellent training for engineering students in the fundamentals of engineering design and manufacturing.

  2. 1. ROCKET ENGINE TEST STAND, LOCATED IN THE NORTHEAST ¼ ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. ROCKET ENGINE TEST STAND, LOCATED IN THE NORTHEAST ¼ OF THE X-15 ENGINE TEST COMPLEX. Looking northeast. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  3. Low-Cost Phased Array Antenna for Sounding Rockets, Missiles, and Expendable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Mullinix, Daniel; Hall, Kenneth; Smith, Bruce; Corbin, Brian

    2012-01-01

    A low-cost beamformer phased array antenna has been developed for expendable launch vehicles, rockets, and missiles. It utilizes a conformal array antenna of ring or individual radiators (design varies depending on application) that is designed to be fed by the recently developed hybrid electrical/mechanical (vendor-supplied) phased array beamformer. The combination of these new array antennas and the hybrid beamformer results in a conformal phased array antenna that has significantly higher gain than traditional omni antennas, and costs an order of magnitude or more less than traditional phased array designs. Existing omnidirectional antennas for sounding rockets, missiles, and expendable launch vehicles (ELVs) do not have sufficient gain to support the required communication data rates via the space network. Missiles and smaller ELVs are often stabilized in flight by a fast (i.e. 4 Hz) roll rate. This fast roll rate, combined with vehicle attitude changes, greatly increases the complexity of the high-gain antenna beam-tracking problem. Phased arrays for larger ELVs with roll control are prohibitively expensive. Prior techniques involved a traditional fully electronic phased array solution, combined with highly complex and very fast inertial measurement unit phased array beamformers. The functional operation of this phased array is substantially different from traditional phased arrays in that it uses a hybrid electrical/mechanical beamformer that creates the relative time delays for steering the antenna beam via a small physical movement of variable delay lines. This movement is controlled via an innovative antenna control unit that accesses an internal measurement unit for vehicle attitude information, computes a beam-pointing angle to the target, then points the beam via a stepper motor controller. The stepper motor on the beamformer controls the beamformer variable delay lines that apply the appropriate time delays to the individual array elements to properly steer the beam. The array of phased ring radiators is unique in that it provides improved gain for a small rocket or missile that uses spin stabilization for stability. The antenna pattern created is symmetric about the roll axis (like an omnidirectional wraparound), and is thus capable of providing continuous coverage that is compatible with very fast spinning rockets. For larger ELVs with roll control, a linear array of elements can be used for the 1D scanned beamformer and phased array, or a 2D scanned beamformer can be used with an NxN element array.

  4. After 24-hour scrub, the Boeing Delta II rocket carrying Stardust waits for launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    After a 24-hour postponement, the Boeing Delta II rocket carrying the Stardust spacecraft waits on Launch Pad 17-A, Cape Canaveral Air Station, for its scheduled launch at 4:04 p.m. EST. Umbilical lines (at top) still attached to the fixed utility tower (at right) feed electricity, air conditioning and coolants for the Stardust spacecraft inside the fairing (enclosing the upper stage) before launch. Stardust is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006.

  5. At Launch Pad 17-A, CCAS, tower rollback reveals the Boeing Delta II rocket carrying Stardust

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At Launch Pad 17-A, Cape Canaveral Air Station, a Boeing Delta II rocket is poised for liftoff after tower rollback. Umbilical lines (at top) still attached to the fixed utility tower (at right) feed electricity, air conditioning and coolants for the Stardust spacecraft inside the fairing (enclosing the upper stage) before launch. The targeted launch time is 4:06 p.m. EST. Stardust is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006.

  6. Nitric acid oxide mixing ratio measurements using a rocket launched chemiluminescent instrument

    NASA Technical Reports Server (NTRS)

    Horvath, Jack J.

    1989-01-01

    A total of 18 rocket launched parachute borne nitric oxide instruments were launched from 1977 to 1985. A very precise instrument for the measurement of the nitric oxide mixing ratio was fabricated. No changes were made in the main body of the instruments, i.e., things associated with the reaction volume. Except for the last 4 launches, however, it did not yield the required absolute values that was hoped for. Two major problems were encountered. First, the wrong choice of the background calibration gas, nitrogen, caused the first 10 data sets to be too low in the absolute mixing ratio by nearly the order of 2 to 5 ppbv. The error was realized, and air was substituted for the bias gas measurement. Second, in the desire to extend the measurement to higher altitudes, the problem of contaminating the inlet flow tube with ozone from the reagent gas was encountered. The ozone valve was opened too early in the flight and this caused the pressure in the reaction volume to exceed the pressure at the flow tube entrance, permitting the ozone to migrate backwards. This problem was restricted to an altitude above 45 km.

  7. 2. ROCKET ENGINE TEST STAND, SHOWING TANK (BUILDING 1929) AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. ROCKET ENGINE TEST STAND, SHOWING TANK (BUILDING 1929) AND GARAGE (BUILDING 1930) AT LEFT REAR. Looking to west. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  8. 7. ROCKET SLED ON DECK OF TEST STAND 15. Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. ROCKET SLED ON DECK OF TEST STAND 1-5. Photo no. "6085, G-EAFB-16 SEP 52." Looking south to machine shop. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  9. 30. Historic view of twentythousandpound rocket test stand with engine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Historic view of twenty-thousand-pound rocket test stand with engine installation in test cell of Building 202, looking down from elevated location, September 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45872. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  10. 29. Historic view of twentythousandpound rocket test stand with engine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Historic view of twenty-thousand-pound rocket test stand with engine installation in test cell of Building 202, September 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45870. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  11. Development and Short-Range Testing of a 100 kW Side-Illuminated Millimeter-Wave Thermal Rocket

    NASA Technical Reports Server (NTRS)

    Bruccoleri, Alexander; Eilers, James A.; Lambot, Thomas; Parkin, Kevin

    2015-01-01

    The objective of the phase described here of the Millimeter-Wave Thermal Launch System (MTLS) Project was to launch a small thermal rocket into the air using millimeter waves. The preliminary results of the first MTLS flight vehicle launches are presented in this work. The design and construction of a small thermal rocket with a planar ceramic heat exchanger mounted along the axis of the rocket is described. The heat exchanger was illuminated from the side by a millimeter-wave beam and fed propellant from above via a small tank containing high pressure argon or nitrogen. Short-range tests where the rocket was launched, tracked, and heated with the beam are described. The rockets were approximately 1.5 meters in length and 65 millimeters in diameter, with a liftoff mass of 1.8 kilograms. The rocket airframes were coated in aluminum and had a parachute recovery system activated via a timer and Pyrodex. At the rocket heat exchanger, the beam distance was 40 meters with a peak power intensity of 77 watts per square centimeter. and a total power of 32 kilowatts in a 30 centimeter diameter circle. An altitude of approximately 10 meters was achieved. Recommendations for improvements are discussed.

  12. Alternate propellants for the space shuttle solid rocket booster motors. [for reducing environmental impact of launches

    NASA Technical Reports Server (NTRS)

    1973-01-01

    As part of the Shuttle Exhaust Effects Panel (SEEP) program for fiscal year 1973, a limited study was performed to determine the feasibility of minimizing the environmental impact associated with the operation of the solid rocket booster motors (SRBMs) in projected space shuttle launches. Eleven hypothetical and two existing limited-experience propellants were evaluated as possible alternates to a well-proven state-of-the-art reference propellant with respect to reducing emissions of primary concern: namely, hydrogen chloride (HCl) and aluminum oxide (Al2O3). The study showed that it would be possible to develop a new propellant to effect a considerable reduction of HCl or Al2O3 emissions. At the one extreme, a 23% reduction of HCl is possible along with a ll% reduction in Al2O3, whereas, at the other extreme, a 75% reduction of Al2O3 is possible, but with a resultant 5% increase in HCl.

  13. Stardust is lifted in the launch tower for mating with a Boeing Delta II rocket

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Workers inside the launch tower at Pad 17-A, Cape Canaveral Air Station, watch as the third stage of a Boeing Delta II rocket is lowered for mating with the second stage below it. The Stardust spacecraft, above it out of sight, is connected to the rocket's third stage. Stardust, targeted for liftoff on Feb. 6, is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006.

  14. Rocket Testing and Integrated System Health Management

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Schmalzel, John

    2005-01-01

    Integrated System Health Management (ISHM) describes a set of system capabilities that in aggregate perform: determination of condition for each system element, detection of anomalies, diagnosis of causes for anomalies, and prognostics for future anomalies and system behavior. The ISHM should also provide operators with situational awareness of the system by integrating contextual and timely data, information, and knowledge (DIaK) as needed. ISHM capabilities can be implemented using a variety of technologies and tools. This chapter provides an overview of ISHM contributing technologies and describes in further detail a novel implementation architecture along with associated taxonomy, ontology, and standards. The operational ISHM testbed is based on a subsystem of a rocket engine test stand. Such test stands contain many elements that are common to manufacturing systems, and thereby serve to illustrate the potential benefits and methodologies of the ISHM approach for intelligent manufacturing.

  15. Facility for cold flow testing of solid rocket motor models

    NASA Astrophysics Data System (ADS)

    Bacchus, D. L.; Hill, O. E.; Whitesides, R. Harold

    1992-02-01

    A new cold flow test facility was designed and constructed at NASA Marshall Space Flight Center for the purpose of characterizing the flow field in the port and nozzle of solid propellant rocket motors (SRM's). A National Advisory Committee was established to include representatives from industry, government agencies, and universities to guide the establishment of design and instrumentation requirements for the new facility. This facility design includes the basic components of air storage tanks, heater, submicron filter, quiet control valve, venturi, model inlet plenum chamber, solid rocket motor (SRM) model, exhaust diffuser, and exhaust silencer. The facility was designed to accommodate a wide range of motor types and sizes from small tactical motors to large space launch boosters. This facility has the unique capability of testing ten percent scale models of large boosters such as the new Advanced Solid Rocket Motor (ASRM), at full scale motor Reynolds numbers. Previous investigators have established the validity of studying basic features of solid rocket motor development programs include the acquisition of data to (1) directly evaluate and optimize the design configuration of the propellant grain, insulation, and nozzle; and (2) provide data for validation of the computational fluid dynamics, (CFD), analysis codes and the performance analysis codes. A facility checkout model was designed, constructed, and utilized to evaluate the performance characteristics of the new facility. This model consists of a cylindrical chamber and converging/diverging nozzle with appropriate manifolding to connect it to the facility air supply. It was designed using chamber and nozzle dimensions to simulate the flow in a 10 percent scale model of the ASRM. The checkout model was recently tested over the entire range of facility flow conditions which include flow rates from 9.07 to 145 kg/sec (20 to 320 Ibm/sec) and supply pressure from 5.17 x 10 exp 5 to 8.27 x 10 exp 6 Pa. The performance of the self-pumping exhaust diffuser was verified down to exhaust pressures of 1.379 x 10 exp 4 Pa. The facility was successfully operated over the entire range of design pressures and flowrates and is available for national use by industry and government agencies requiring facilities capable of testing SRM cold flow models to support development programs or resolve problems arising on operational flight systems.

  16. Ablative Rocket Deflector Testing and Computational Modeling

    NASA Technical Reports Server (NTRS)

    Allgood, Daniel C.; Lott, Jeffrey W.; Raines, Nickey

    2010-01-01

    A deflector risk mitigation program was recently conducted at the NASA Stennis Space Center. The primary objective was to develop a database that characterizes the behavior of industry-grade refractory materials subjected to rocket plume impingement conditions commonly experienced on static test stands. The program consisted of short and long duration engine tests where the supersonic exhaust flow from the engine impinged on an ablative panel. Quasi time-dependent erosion depths and patterns generated by the plume impingement were recorded for a variety of different ablative materials. The erosion behavior was found to be highly dependent on the material s composition and corresponding thermal properties. For example, in the case of the HP CAST 93Z ablative material, the erosion rate actually decreased under continued thermal heating conditions due to the formation of a low thermal conductivity "crystallization" layer. The "crystallization" layer produced near the surface of the material provided an effective insulation from the hot rocket exhaust plume. To gain further insight into the complex interaction of the plume with the ablative deflector, computational fluid dynamic modeling was performed in parallel to the ablative panel testing. The results from the current study demonstrated that locally high heating occurred due to shock reflections. These localized regions of shock-induced heat flux resulted in non-uniform erosion of the ablative panels. In turn, it was observed that the non-uniform erosion exacerbated the localized shock heating causing eventual plume separation and reversed flow for long duration tests under certain conditions. Overall, the flow simulations compared very well with the available experimental data obtained during this project.

  17. Hyper-X Research Vehicle - Artist Concept Mounted on Pegasus Rocket Attached to B-52 Launch Aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This artist's concept depicts the Hyper-X research vehicle riding on a booster rocket prior to being launched by the Dryden Flight Research Center's B-52 at about 40,000 feet. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.

  18. NASA Crew Launch Vehicle Flight Test Options

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Davis, Stephan R.; Robonson, Kimberly; Tuma, Margaret L.; Sullivan, Greg

    2006-01-01

    Options for development flight testing (DFT) of the Ares I Crew Launch Vehicle (CLV) are discussed. The Ares-I Crew Launch Vehicle (CLV) is being developed by the U.S. National Aeronautics and Space Administration (NASA) to launch the Crew Exploration Vehicle (CEV) into low Earth Orbit (LEO). The Ares-I implements one of the components of the Vision for Space Exploration (VSE), providing crew and cargo access to the International Space Station (ISS) after retirement of the Space Shuttle and, eventually, forming part of the launch capability needed for lunar exploration. The role of development flight testing is to demonstrate key sub-systems, address key technical risks, and provide flight data to validate engineering models in representative flight environments. This is distinguished from certification flight testing, which is designed to formally validate system functionality and achieve flight readiness. Lessons learned from Saturn V, Space Shuttle, and other flight programs are examined along with key Ares-I technical risks in order to provide insight into possible development flight test strategies. A strategy for the first test flight of the Ares I, known as Ares I-1, is presented.

  19. Rocket motor exhaust products generated by the space shuttle vehicle during its launch phase (1976 design data)

    NASA Technical Reports Server (NTRS)

    Bowyer, J. M.

    1977-01-01

    The principal chemical species emitted and/or entrained by the rocket motors of the space shuttle vehicle during the launch phase of its trajectory are considered. Results are presented for two extreme trajectories, both of which were calculated in 1976.

  20. Software Estimates Costs of Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    Smith, C. L.

    2003-01-01

    Simulation-Based Cost Model (SiCM), a discrete event simulation developed in Extend , simulates pertinent aspects of the testing of rocket propulsion test articles for the purpose of estimating the costs of such testing during time intervals specified by its users. A user enters input data for control of simulations; information on the nature of, and activity in, a given testing project; and information on resources. Simulation objects are created on the basis of this input. Costs of the engineering-design, construction, and testing phases of a given project are estimated from numbers and labor rates of engineers and technicians employed in each phase, the duration of each phase; costs of materials used in each phase; and, for the testing phase, the rate of maintenance of the testing facility. The three main outputs of SiCM are (1) a curve, updated at each iteration of the simulation, that shows overall expenditures vs. time during the interval specified by the user; (2) a histogram of the total costs from all iterations of the simulation; and (3) table displaying means and variances of cumulative costs for each phase from all iterations. Other outputs include spending curves for each phase.

  1. 11. Historic photo of cutaway rendering of rocket engine test ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Historic photo of cutaway rendering of rocket engine test facility complex, June 11, 1965. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-74433. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  2. 6. Historic photo of rocket engine test facility Building 202 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Historic photo of rocket engine test facility Building 202 complex in operation at night, September 12, 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45924. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  3. 8. Historic aerial photo of rocket engine test facility complex, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Historic aerial photo of rocket engine test facility complex, June 11, 1965. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-65-1271. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  4. 10. Historic photo of rendering of rocket engine test facility ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Historic photo of rendering of rocket engine test facility complex, April 28, 1964. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-69472. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  5. 5. Historic photo of scale model of rocket engine test ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic photo of scale model of rocket engine test facility, June 18, 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45264. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  6. 9. Historic aerial photo of rocket engine test facility complex, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Historic aerial photo of rocket engine test facility complex, June 11, 1965. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-65-1270. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  7. 13. Historic drawing of rocket engine test facility layout, including ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Historic drawing of rocket engine test facility layout, including Buildings 202, 205, 206, and 206A, February 3, 1984. NASA GRC drawing number CF-101539. On file at NASA Glenn Research Center. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  8. Orion Launch Abort System Jettison Motor Performance During Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McCauley, Rachel J.; Davidson, John B.; Winski, Richard G.

    2015-01-01

    This paper presents an overview of the flight test objectives and performance of the Orion Launch Abort System during Exploration Flight Test-1. Exploration Flight Test-1, the first flight test of the Orion spacecraft, was managed and led by the Orion prime contractor, Lockheed Martin, and launched atop a United Launch Alliance Delta IV Heavy rocket. This flight test was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety. This test included the first flight test of the Launch Abort System performing Orion nominal flight mission critical objectives. Although the Orion Program has tested a number of the critical systems of the Orion spacecraft on the ground, the launch environment cannot be replicated completely on Earth. Data from this flight will be used to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. Selected Launch Abort System flight test data is presented and discussed in the paper. Through flight test data, Launch Abort System performance trends have been derived that will prove valuable to future flights as well as the manned space program.

  9. Baking Soda and Vinegar Rockets

    NASA Astrophysics Data System (ADS)

    Claycomb, James R.; Zachary, Christopher; Tran, Quoc

    2009-02-01

    Rocket experiments demonstrating conservation of momentum will never fail to generate enthusiasm in undergraduate physics laboratories. In this paper, we describe tests on rockets from two vendors1,2 that combine baking soda and vinegar for propulsion. The experiment compared two analytical approximations for the maximum rocket height to the experimentally measured rocket height. Baking soda and vinegar rockets present fewer safety concerns and require a smaller launch area than rapid combustion chemical rockets. Both kits were of nearly identical design, costing ˜20. The rockets required roughly 30 minutes of assembly time consisting of mostly taping the soft plastic fuselage to the Styrofoam nose cone.

  10. Tracking the Relative Motion of Four Space Payloads Launched from a Sub-Orbital NASA Rocket

    NASA Technical Reports Server (NTRS)

    Martell, Hugh; Bull, Barton

    1999-01-01

    One problem, which is comparatively new in the field of GPS applications, is the determination of the relative trajectories of space vehicles. Applications include the docking of spacecraft, collision avoidance in the area of space stations, and trajectory reconstruction of multiple payloads. The required precision in any of these applications will vary, according to the requirements of the task and abilities of GPS to cope with the environment and the dynamics. This paper describes the post-mission reconstruction of the relative trajectories of four GPS receivers attached to four payloads jettisoned from a Black Brant XII rocket. This vehicle was launched by the National Aeronautics and Space Administration (NASA) in January 1999 from the Poker Flats Research Range near Fairbanks, Alaska. The Black Brant XII is a sub-orbital rocket designed to carry payloads of 100 to 500 kg into the upper atmosphere. Flight time is generally in the order of 10-20 minutes. In this experiment, a GPS receiver and antenna was attached to each of the four payloads. One of the GPS receivers was assigned as the "base station", while the other 3 receivers were designated as remotes. GPS time, code and phase measurements were telemetered to a ground station for real-time processing and storage. The object of the mission was to re-compute the position and velocity of the remote units with respect to the base station during the launch phase and after the payloads separated. During the launch segment the 3 baseling distances between the 4 antennas are known from plans and are constant values until each payload is released. On the fly ambiguity determination was used to establish local coordinates from the base antenna to each of the other 3 GPS units during flight. Distance computations were made from the GPS-derived coordinates and compared to plan distances. Using this methodology an error analysis of the relative GPS accuracies has been presented and in addition a description given of the respective payload behaviour following separation from the vehicle.

  11. Pegasus Rocket Wing and PHYSX Glove Undergoes Stress Loads Testing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Pegasus Hypersonic Experiment (PHYSX) Project's Pegasus rocket wing with attached PHYSX glove rests after load-tests at Scaled Composites, Inc., in Mojave, California, in January 1997. Technicians slowly filled water bags beneath the wing, to create the pressure, or 'wing-loading,' required to determine whether the wing could withstand its design limit for stress. The wing sits in a wooden triangular frame which serves as the test-rig, mounted to the floor atop the waterbags. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially; later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California; Goddard Space Flight Center, Greenbelt, Maryland; and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.)

  12. Closed-loop nominal and abort atmospheric ascent guidance for rocket-powered launch vehicles

    NASA Astrophysics Data System (ADS)

    Dukeman, Greg A.

    2005-07-01

    An advanced ascent guidance algorithm for rocket-powered launch vehicles is developed. The ascent guidance function is responsible for commanding attitude, throttle and setting during the powered ascent phase of flight so that the vehicle attains target cutoff conditions in a near optimal manner while satisfying path constraints such as maximum allowed bending moment and maximum allowed axial acceleration. This algorithm cyclically solves the calculus-of-variations two-point boundary-value problem starting at vertical rise completion through orbit insertion. This is different from traditional ascent guidance algorithms which operate in an open-loop mode until the high dynamic pressure portion of the trajectory is over, at which time there is a switch to a closed loop guidance mode that operates under the assumption of negligible aerodynamic forces. The main contribution of this research is an algorithm of the predictor-corrector type wherein the state/costate system is propagated with known (navigated) initial state and guessed initial costate to predict the state/costate at engine cutoff. The initial costate guess is corrected, using a multi-dimensional Newton's method, based on errors in the terminal state constraints and the transversality conditions. Path constraints are enforced within the propagation process. A modified multiple shooting method is shown to be a very effective numerical technique for this application. Results for a single stage to orbit launch vehicle are given. In addition, the formulation for the free final time multi-arc trajectory optimization problem is given. Results for a two-stage launch vehicle burn-coast-burn ascent to orbit in a closed-loop guidance mode are shown. An abort to landing site formulation of the algorithm and numerical results are presented. A technique for numerically treating the transversality conditions is discussed that eliminates part of the analytical and coding burden associated with optimal control theory.

  13. Rocket nozzle thermal shock tests in an arc heater facility

    NASA Technical Reports Server (NTRS)

    Painter, James H.; Williamson, Ronald A.

    1986-01-01

    A rocket motor nozzle thermal structural test technique that utilizes arc heated nitrogen to simulate a motor burn was developed. The technique was used to test four heavily instrumented full-scale Star 48 rocket motor 2D carbon/carbon segments at conditions simulating the predicted thermal-structural environment. All four nozzles survived the tests without catastrophic or other structural failures. The test technique demonstrated promise as a low cost, controllable alternative to rocket motor firing. The technique includes the capability of rapid termination in the event of failure, allowing post-test analysis.

  14. Orion Launch Abort System Performance on Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McCauley, R.; Davidson, J.; Gonzalez, Guillermo

    2015-01-01

    This paper will present an overview of the flight test objectives and performance of the Orion Launch Abort System during Exploration Flight Test-1. Exploration Flight Test-1, the first flight test of the Orion spacecraft, was managed and led by the Orion prime contractor, Lockheed Martin, and launched atop a United Launch Alliance Delta IV Heavy rocket. This flight test was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety. This test included the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. NASA is currently designing and testing the Orion Multi-Purpose Crew Vehicle (MPCV). Orion will serve as NASA's new exploration vehicle to carry astronauts to deep space destinations and safely return them to earth. The Orion spacecraft is composed of four main elements: the Launch Abort System, the Crew Module, the Service Module, and the Spacecraft Adapter (Fig. 1). The Launch Abort System (LAS) provides two functions; during nominal launches, the LAS provides protection for the Crew Module from atmospheric loads and heating during first stage flight and during emergencies provides a reliable abort capability for aborts that occur within the atmosphere. The Orion Launch Abort System (LAS) consists of an Abort Motor to provide the abort separation from the Launch Vehicle, an Attitude Control Motor to provide attitude and rate control, and a Jettison Motor for crew module to LAS separation (Fig. 2). The jettison motor is used during a nominal launch to separate the LAS from the Launch Vehicle (LV) early in the flight of the second stage when it is no longer needed for aborts and at the end of an LAS abort sequence to enable deployment of the crew module's Landing Recovery System. The LAS also provides a Boost Protective Cover fairing that shields the crew module from debris and the aero-thermal environment during ascent. Although the Orion Program has tested a number of the critical systems of the Orion spacecraft on the ground, the launch environment cannot be replicated completely on Earth. A number of flight tests have been conducted and are planned to demonstrate the performance and enable certification of the Orion Spacecraft. Exploration Flight Test 1, the first flight test of the Orion spacecraft, was successfully flown on December 5, 2014 from Cape Canaveral Air Force Station's Space Launch Complex 37. Orion's first flight was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety, such as heat shield performance, separation events, avionics and software performance, attitude control and guidance, parachute deployment and recovery operations. One of the key separation events tested during this flight was the nominal jettison of the LAS. Data from this flight will be used to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. The LAS nominal jettison event on Exploration Flight Test 1 occurred at six minutes and twenty seconds after liftoff (See Fig. 3). The abort motor and attitude control motors were inert for Exploration Flight Test 1, since the mission did not require abort capabilities. A suite of developmental flight instrumentation was included on the flight test to provide data on spacecraft subsystems and separation events. This paper will focus on the flight test objectives and performance of the LAS during ascent and nominal jettison. Selected LAS subsystem flight test data will be presented and discussed in the paper. Exploration Flight Test -1 will provide critical data that will enable engineering to improve Orion's design and reduce risk for the astronauts it will protect as NASA continues to move forward on its human journey to Mars. The lessons learned from Exploration Flight Test 1 and the other Flight Test Vehicles will certainly contribute to the vehicle architecture of a human-rated space launch vehicle.

  15. 6. "EXPERIMENTAL ROCKET ENGINE TEST STATION AT AFFTC." A low ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. "EXPERIMENTAL ROCKET ENGINE TEST STATION AT AFFTC." A low oblique aerial view of Test Area 1-115, looking south, showing Test Stand 1-3 at left, Instrumentation and Control building 8668 at center, and Test Stand 15 at right. The test area is under construction; no evidence of railroad line in photo. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA

  16. Options for flight testing rocket-based combined-cycle (RBCC) engines

    NASA Technical Reports Server (NTRS)

    Olds, John

    1996-01-01

    While NASA's current next-generation launch vehicle research has largely focused on advanced all-rocket single-stage-to-orbit vehicles (i.e. the X-33 and it's RLV operational follow-on), some attention is being given to advanced propulsion concepts suitable for 'next-generation-and-a-half' vehicles. Rocket-based combined-cycle (RBCC) engines combining rocket and airbreathing elements are one candidate concept. Preliminary RBCC engine development was undertaken by the United States in the 1960's. However, additional ground and flight research is required to bring the engine to technological maturity. This paper presents two options for flight testing early versions of the RBCC ejector scramjet engine. The first option mounts a single RBCC engine module to the X-34 air-launched technology testbed for test flights up to about Mach 6.4. The second option links RBCC engine testing to the simultaneous development of a small-payload (220 lb.) two-stage-to-orbit operational vehicle in the Bantam payload class. This launcher/testbed concept has been dubbed the W vehicle. The W vehicle can also serve as an early ejector ramjet RBCC launcher (albeit at a lower payload). To complement current RBCC ground testing efforts, both flight test engines will use earth-storable propellants for their RBCC rocket primaries and hydrocarbon fuel for their airbreathing modes. Performance and vehicle sizing results are presented for both options.

  17. The acceleration and the deceleration of the tumbling period of Rocket Intercosmos 11 during the first two years after launch

    NASA Astrophysics Data System (ADS)

    Boehnhardt, H.; Koehnhke, H.; Seidel, A.

    1989-12-01

    The development of the tumbling period of Rocket Intercosmos 11 (1974-34-B) during the first two years after launch is analyzed. It is shown that the period increase observed from August 1974 to June 1976 can be interpreted to be due to torque moments caused by eddy currents induced in the hollow cylinder by the magnetic field of the earth. The tumbling acceleration that was observed in June 1974 is interpreted as an outgassing effect of the rest propellant which remained inside the rocket after burn-off. A model of the outgassing acceleration is developed, showing reasonably good agreement of calculated periods with observed ones.

  18. Development and Implementation of NASA's Lead Center for Rocket Propulsion Testing

    NASA Technical Reports Server (NTRS)

    Dawson, Michael C.

    2001-01-01

    With the new millennium, NASA's John C. Stennis Space Center (SSC) continues to develop and refine its role as rocket test service provider for NASA and the Nation. As Lead Center for Rocket Propulsion Testing (LCRPT), significant progress has been made under SSC's leadership to consolidate and streamline NASA's rocket test infrastructure and make this vital capability truly world class. NASA's Rocket Propulsion Test (RPT) capability consists of 32 test positions with a replacement value in excess of $2B. It is dispersed at Marshall Space Flight Center (MSFC), Johnson Space Center (JSC)-White Sands Test Facility (WSTF), Glenn Research Center (GRC)-Plum Brook (PB), and SSC and is sized appropriately to minimize duplication and infrastructure costs. The LCRPT also provides a single integrated point of entry into NASA's rocket test services. The RPT capability is managed through the Rocket Propulsion Test Management Board (RPTMB), chaired by SSC with representatives from each center identified above. The Board is highly active, meeting weekly, and is key to providing responsive test services for ongoing operational and developmental NASA and commercial programs including Shuttle, Evolved Expendable Launch Vehicle, and 2nd and 3rd Generation Reusable Launch Vehicles. The relationship between SSC, the test provider, and the hardware developers, like MSFC, is critical to the implementation of the LCRPT. Much effort has been expended to develop and refine these relationships with SSC customers. These efforts have met with success and will continue to be a high priority to SSC for the future. To data in the exercise of its role, the LCRPT has made 22 test assignments and saved or avoided approximately $51M. The LCRPT directly manages approximately $30M annually in test infrastructure costs including facility maintenance and upgrades, direct test support, and test technology development. This annual budges supports rocket propulsion test programs which have an annual budget in excess of $150M. As the LCRPT continues to develop, customer responsiveness and lower cost test services will be major themes. In that light, SSC is embarking on major test technology development activities ensuring long range goals of safer, more responsive, and more cost effective test services are realized. The LCRPT is also focusing on the testing requirements for advanced propulsion systems. This future planning is key to defining and fielding the ability to test these new technologies in support of the hardware developers.

  19. An Analysis of Rocket Propulsion Testing Costs

    NASA Technical Reports Server (NTRS)

    Ramirez-Pagan, Carmen P.; Rahman, Shamim A.

    2009-01-01

    The primary mission at NASA Stennis Space Center (SSC) is rocket propulsion testing. Such testing is generally performed within two arenas: (1) Production testing for certification and acceptance, and (2) Developmental testing for prototype or experimental purposes. The customer base consists of NASA programs, DOD programs, and commercial programs. Resources in place to perform on-site testing include both civil servants and contractor personnel, hardware and software including data acquisition and control, and 6 test stands with a total of 14 test positions/cells. For several business reasons there is the need to augment understanding of the test costs for all the various types of test campaigns. Historical propulsion test data was evaluated and analyzed in many different ways with the intent to find any correlation or statistics that could help produce more reliable and accurate cost estimates and projections. The analytical efforts included timeline trends, statistical curve fitting, average cost per test, cost per test second, test cost timeline, and test cost envelopes. Further, the analytical effort includes examining the test cost from the perspective of thrust level and test article characteristics. Some of the analytical approaches did not produce evidence strong enough for further analysis. Some other analytical approaches yield promising results and are candidates for further development and focused study. Information was organized for into its elements: a Project Profile, Test Cost Timeline, and Cost Envelope. The Project Profile is a snap shot of the project life cycle on a timeline fashion, which includes various statistical analyses. The Test Cost Timeline shows the cumulative average test cost, for each project, at each month where there was test activity. The Test Cost Envelope shows a range of cost for a given number of test(s). The supporting information upon which this study was performed came from diverse sources and thus it was necessary to build several intermediate databases in order to understand, validate, and manipulate data. These intermediate databases (validated historical account of schedule, test activity, and cost) by themselves are of great value and utility. For example, for the Project Profile, we were able to merged schedule, cost, and test activity. This kind of historical account conveys important information about sequence of events, lead time, and opportunities for improvement in future propulsion test projects. The Product Requirement Document (PRD) file is a collection of data extracted from each project PRD (technical characteristics, test requirements, and projection of cost, schedule, and test activity). This information could help expedite the development of future PRD (or equivalent document) on similar projects, and could also, when compared to the actual results, help improve projections around cost and schedule. Also, this file can be sorted by the parameter of interest to perform a visual review of potential common themes or trends. The process of searching, collecting, and validating propulsion test data encountered a lot of difficulties which then led to a set of recommendations for improvement in order to facilitate future data gathering and analysis.

  20. The TEST Pilot Sounding Rocket Payload

    NASA Astrophysics Data System (ADS)

    Zeiger, Benjamin R.; Cash, W. C.; Swetz, D.

    2013-04-01

    The Transition Edge Sensor Telescope Pilot project (TEST Pilot) is a soft x-ray (0.15-2.0 keV) imaging spectrograph that is a suborbital testbed for the next generation of x-ray detectors. A simple Kirkpatrick-Baez telescope composed of flat silicon mirrors defines a 3‧x3‧ focus and a 6‧x6‧ field of view, while the detector array of 1,024 microcalorimeters with sub-eV resolution is the first flight demonstration of a kilopixel x-ray microcalorimeter array and of the code-domain multiplexing readout. The configuration provides an effective area of 400 cm2 and a spectral resolution (R=E/ΔE) of 800 at the oxygen K lines even from extended sources -- and over 500 cm2 and R=1,000 at 1 keV -- in a low-cost sounding rocket program. Scientific targets for TEST Pilot include galaxy clusters, ISM absorption lines toward the Crab nebula, solar wind charge exchange in comet tails, and historical supernova remnants or SNRs in the Large Magellanic Cloud.

  1. Educating Tomorrow's Aerrospace Engineers by Developing and Launching Liquid-Propelled Rockets

    NASA Astrophysics Data System (ADS)

    Besnard, Eric; Garvey, John; Holleman, Tom; Mueller, Tom

    2002-01-01

    conducted at California State University, Long Beach (CSULB), in which engineering students develop and launch liquid propelled rockets. The program is articulated around two main activities, each with specific objectives. The first component of CALVEIN is a systems integration laboratory where students develop/improve vehicle subsystems and integrate them into a vehicle (Prospector-2 - P-2 - for the 2001-02 academic year - AY). This component has three main objectives: (1) Develop hands- on skills for incoming students and expose them to aerospace hardware; (2) allow for upper division students who have been involved in the program to mentor incoming students and manage small teams; and (3) provide students from various disciplines within the College of Engineering - and other universities - with the chance to develop/improve subsystems on the vehicle. Among recent student projects conducted as part of this component are: a new 1000 lbf thrust engine using pintle injector technology, which was successfully tested on Dec. 1, 2001 and flown on Prospector-2 in Feb. 2002 (developed by CSULB Mechanical and Aerospace Engineering students); a digital flight telemetry package (developed by CSULB Electrical Engineering students); a new recovery system where a mechanical system replaces pyrotechnics for parachute release (developed by CSULB Mechanical and Aerospace Engineering students); and a 1-ft payload bay to accommodate experimental payloads (e.g. "CANSATS" developed by Stanford University students). The second component of CALVEIN is a formal Aerospace System Design curriculum. In the first-semester, from top-level system requirements, the students perform functional analysis, define the various subsystems and derive their requirements. These are presented at the Systems Functional and Requirement Reviews (SFR &SRR). The methods used for validation and verification are determined. Specifications and Interface Control Documents (ICD) are generated by the student team(s). Trade studies are identified and conducted, leading to a Preliminary Design Review (PDR) at the end of the first semester. A detailed design follows, culminating in a Critical Design Review (CDR), etc. A general process suitable for a two-semester course sequence will be outlined. The project is conducted in an Integrated Product Team (IPT) environment, which includes a project manager, a systems engineer, and the various disciplines needed for the project (propulsion, aerodynamics, structures and materials, mass, CAD, thermal, fluids, etc.). Each student works with a Faculty member or industry advisor who is a specialist in his/her area. This design curriculum enhances the education of the graduates and provides future employers with engineers cognizant of and experienced in the application of Systems Engineering to a full-scale project over the entire product development cycle. For the AY01-02, the curriculum is being applied to the development of a gimbaled aerospike engine and its integration into P-3, scheduled to fly in May 2002. The paper ends with a summary of "lessons learned" from this experience. Budget issues are also addressed to demonstrate the ability to replicate such projects at other institutions with minimal costs, provided that it can be taken advantages of possible synergies between existing programs, in-house resources, and cooperation with other institutions or organizations.

  2. The Space Launch System -The Biggest, Most Capable Rocket Ever Built, for Entirely New Human Exploration Missions Beyond Earth's Orbit

    NASA Technical Reports Server (NTRS)

    Shivers, C. Herb

    2012-01-01

    NASA is developing the Space Launch System -- an advanced heavy-lift launch vehicle that will provide an entirely new capability for human exploration beyond Earth's orbit. The Space Launch System will provide a safe, affordable and sustainable means of reaching beyond our current limits and opening up new discoveries from the unique vantage point of space. The first developmental flight, or mission, is targeted for the end of 2017. The Space Launch System, or SLS, will be designed to carry the Orion Multi-Purpose Crew Vehicle, as well as important cargo, equipment and science experiments to Earth's orbit and destinations beyond. Additionally, the SLS will serve as a backup for commercial and international partner transportation services to the International Space Station. The SLS rocket will incorporate technological investments from the Space Shuttle Program and the Constellation Program in order to take advantage of proven hardware and cutting-edge tooling and manufacturing technology that will significantly reduce development and operations costs. The rocket will use a liquid hydrogen and liquid oxygen propulsion system, which will include the RS-25D/E from the Space Shuttle Program for the core stage and the J-2X engine for the upper stage. SLS will also use solid rocket boosters for the initial development flights, while follow-on boosters will be competed based on performance requirements and affordability considerations.

  3. Past and Present Large Solid Rocket Motor Test Capabilities

    NASA Technical Reports Server (NTRS)

    Kowalski, Robert R.; Owen, David B., II

    2011-01-01

    A study was performed to identify the current and historical trends in the capability of solid rocket motor testing in the United States. The study focused on test positions capable of testing solid rocket motors of at least 10,000 lbf thrust. Top-level information was collected for two distinct data points plus/minus a few years: 2000 (Y2K) and 2010 (Present). Data was combined from many sources, but primarily focused on data from the Chemical Propulsion Information Analysis Center s Rocket Propulsion Test Facilities Database, and heritage Chemical Propulsion Information Agency/M8 Solid Rocket Motor Static Test Facilities Manual. Data for the Rocket Propulsion Test Facilities Database and heritage M8 Solid Rocket Motor Static Test Facilities Manual is provided to the Chemical Propulsion Information Analysis Center directly from the test facilities. Information for each test cell for each time period was compiled and plotted to produce a graphical display of the changes for the nation, NASA, Department of Defense, and commercial organizations during the past ten years. Major groups of plots include test facility by geographic location, test cells by status/utilization, and test cells by maximum thrust capability. The results are discussed.

  4. Space Launch System Base Heating Test: Environments and Base Flow Physics

    NASA Technical Reports Server (NTRS)

    Mehta, Manish; Knox, Kyle S.; Seaford, C. Mark; Dufrene, Aaron T.

    2016-01-01

    The NASA Space Launch System (SLS) vehicle is composed of four RS-25 liquid oxygen-hydrogen rocket engines in the core-stage and two 5-segment solid rocket boosters and as a result six hot supersonic plumes interact within the aft section of the vehicle during flight. Due to the complex nature of rocket plume-induced flows within the launch vehicle base during ascent and a new vehicle configuration, sub-scale wind tunnel testing is required to reduce SLS base convective environment uncertainty and design risk levels. This hot-fire test program was conducted at the CUBRC Large Energy National Shock (LENS) II short-duration test facility to simulate flight from altitudes of 50 kft to 210 kft. The test program is a challenging and innovative effort that has not been attempted in 40+ years for a NASA vehicle. This paper discusses the various trends of base convective heat flux and pressure as a function of altitude at various locations within the core-stage and booster base regions of the two-percent SLS wind tunnel model. In-depth understanding of the base flow physics is presented using the test data, infrared high-speed imaging and theory. The normalized test design environments are compared to various NASA semi-empirical numerical models to determine exceedance and conservatism of the flight scaled test-derived base design environments. Brief discussion of thermal impact to the launch vehicle base components is also presented.

  5. Chemical rocket propulsion and the environment

    SciTech Connect

    Mcdonald, A.J. )

    1992-03-01

    Results are presented from the examination by the Chemical Rocket Propulsion and the Environment Workshop conducted by AIAA in June 1991 of the impact of rocket launches and ground testing on the earth's environment. The major conclusions of this workshop were: (1) at projected rocket launch rates, neither the liquid- nor the solid-rocket motors will significantly impact stratospheric ozone; (2) there is no global acid rain problem associated with rocket exhaust; and (3) the local launch site and static test site acidification is a minor problem and can be managed.

  6. Commercial Rocket Engine Readied for Test - Duration: 97 seconds.

    NASA Video Gallery

    Engineers at NASA’s John C. Stennis Space Center recently installed an Aerojet AJ26 rocket engine for qualification testing as part of a partnership that highlights the space agency’s commitment to...

  7. Monitoring thermal impact resulting from solid rocket motor test operations

    NASA Technical Reports Server (NTRS)

    Davis, Bruce A.; Thurman, Charles; Carr, Hugh V.

    1990-01-01

    The use of remote sensing is discussed with respect to determining the thermal conditions and the immediate environmental effects of large-scale rocket propulsion tests. Data acquired during a test firing of a solid rocket motor are presented including thermal data and surface temperatures from before, during, and after the firing. Thermal impact directly behind the nozzle is assessed, temperature values within the plume are determined, and data are generated for use in an environmental monitoring system which can analyze and forecast impact. The airborne multispectral scanner and thermocouples behind the solid rocket motor discerned that radiant temperatures are higher than predictions indicate and that the testing affects 34 acres of ground. The results are of use in determining the design and area required for developing testing facilities for rocket motors.

  8. Recommended launch-hold criteria for protecting public health from hydrogen chloride (HC1) gas produced by rocket exhaust

    SciTech Connect

    Daniels, J.I.; Baskett, R.L.

    1995-11-01

    Solid-fuel rocket motors used by the United States Air Force (USAF) to launch missiles and spacecraft can produce ambient-air concentrations of hydrogen chloride (HCI) gas. The HCI gas is a reaction product exhausted from the rocket motor during normal launch or emitted as a result of a catastrophic abort destroying the launch vehicle. Depending on the concentration in ambient air, the HCI gas can be irritating or toxic to humans. The diagnostic and complex-terrain wind field and particle dispersion model used by the Lawrence Livermore National Laboratory`s (LLNL`s) Atmospheric Release Advisory Capability (ARAC) Program was applied to the launch of a Peacekeeper missile from Vandenberg Air Force Base (VAFB) in California. Results from this deterministic model revealed that under specific meteorological conditions, cloud passage from normal-launch and catastropic-abort situations can yield measureable ground-level air concentrations of HCI where the general public is located. To protect public health in the event of such cloud passage, scientifically defensible, emergency ambient-air concentration limits for HCI were developed and recommended to the USAF for use as launch-hold criteria. Such launch-hold criteria are used to postpone a launch unless the forecasted meteorological conditions favor the prediction of safe ground-level concentrations of HCl for the general public. The recommended concentration limits are a 2 ppM 1-h time-weighted average (TWA) concentration constrained by a 1-min 10-ppM average concentration. This recommended criteria is supported by human dose-response information, including data for sensitive humans (e.g., asthmatics), and the dose response exhibited experimentally by animal models with respiratory physiology or responses considered similar to humans.

  9. Workers in the VAB test SRB cables on STS-98 solid rocket boosters

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Working near the top of a solid rocket booster, NASA and United Space Alliance SRB technicians hook up SRB cables to a CIRRUS computer for testing. From left are Jim Glass, with USA, performing a Flex test on the cable; Steve Swichkow, with NASA, and Jim Silviano, with USA, check the results on a computer. The SRB is part of Space Shuttle Atlantis, rolled back from Launch Pad 39A in order to conduct tests on the cables. A prior extensive evaluation of NASA'''s SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. Workers are conducting inspections, making continuity checks and conducting X-ray analysis on the cables. The launch has been rescheduled no earlier than Feb. 6.

  10. Workers in the VAB test SRB cables on STS-98 solid rocket boosters

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- United Space Alliance SRB technician Jim Glass conducts a Flex test on a cable on the solid rocket booster at left. The SRB is part of Space Shuttle Atlantis, rolled back from Launch Pad 39A in order to conduct tests on the cables. A prior extensive evaluation of NASA'''s SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. Workers are conducting inspections, making continuity checks and conducting X-ray analysis on the cables. The launch has been rescheduled no earlier than Feb. 6.

  11. Rocket Flight.

    ERIC Educational Resources Information Center

    Van Evera, Bill; Sterling, Donna R.

    2002-01-01

    Describes an activity for designing, building, and launching rockets that provides students with an intrinsically motivating and real-life application of what could have been classroom-only concepts. Includes rocket design guidelines and a sample grading rubric. (KHR)

  12. Development and Test of a Rocket Engine Using Environmentally Friendly Propellants

    NASA Technical Reports Server (NTRS)

    Webster, Kristi

    2009-01-01

    Develop and test a rocket engine that operates on environmentally friendly propellants; Liquid Oxygen (LOX) and Liquid Methane (LCH4). Due to modifications the rocket engine designed last summer (KJ_REX) is not the same rocket thruster tested this summer, but very similar. The new modified rocket thruster was built for NASA by Orion Propulsion Inc. (OPI), Huntsville, AL.

  13. Integrated System Test of an Airbreathing Rocket (ISTAR)

    NASA Technical Reports Server (NTRS)

    Faulkner, Robert F.; Lyles, Garry (Technical Monitor)

    2001-01-01

    Rocket Based Combined Cycle (RBCC) propulsion system development and ground test is being conducted as part of the NASA Marshall Space Flight Center Integrated System Test of an Airbreathing Rocket (ISTAR) program. Rocketdyne, Aerojet and Pratt & Whitney have teamed as the Rocket Based Combined Cycle Consortium (RBC3) to work the propulsion system development. Each company offered unique RBCC propulsion concepts as candidates for the ISTAR propulsion system. A team of engine contractor, vehicle contractor and NASA representatives reviewed the concepts proposed by each company, reviewed the available data and selected the Aerojet RBCC propulsion system concept as the team propulsion system baseline for the ISTAR program. The ISTAR program is currently in a "Jumpstart" phase for development of the engine system leading to ground test of a thermally and power balanced RBCC propulsion system at Stennis Space Center in 2005. A parallel flight test demonstration of this propulsion system is anticipated to lead to first flight in the 2007 timeframe.

  14. Testing the TPF Interferometry Approach before Launch

    NASA Technical Reports Server (NTRS)

    Serabyn, Eugene; Mennesson, Bertrand

    2006-01-01

    One way to directly detect nearby extra-solar planets is via their thermal infrared emission, and with this goal in mind, both NASA and ESA are investigating cryogenic infrared interferometers. Common to both agencies' approaches to faint off-axis source detection near bright stars is the use of a rotating nulling interferometer, such as the Terrestrial Planet Finder interferometer (TPF-I), or Darwin. In this approach, the central star is nulled, while the emission from off-axis sources is transmitted and modulated by the rotation of the off-axis fringes. Because of the high contrasts involved, and the novelty of the measurement technique, it is essential to gain experience with this technique before launch. Here we describe a simple ground-based experiment that can test the essential aspects of the TPF signal measurement and image reconstruction approaches by generating a rotating interferometric baseline within the pupil of a large singleaperture telescope. This approach can mimic potential space-based interferometric configurations, and allow the extraction of signals from off-axis sources using the same algorithms proposed for the space-based missions. This approach should thus allow for testing of the applicability of proposed signal extraction algorithms for the detection of single and multiple near-neighbor companions...

  15. Workers in the VAB test SRB cables on STS-98 solid rocket boosters

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Working near the top of a solid rocket booster, NASA and United Space Alliance SRB technicians hook up SRB cables to a Cirris Signature Touch 1 cable tester. From left are Steve Swichkow, with NASA, and Jim Silviano (back to camera) and Jeff Suter, with USA. The SRB is part of Space Shuttle Atlantis, rolled back from Launch Pad 39A in order to conduct tests on the cables. A prior extensive evaluation of NASA'''s SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. Workers are conducting inspections, making continuity checks and conducting X-ray analysis on the cables. The launch has been rescheduled no earlier than Feb. 6.

  16. Workers in the VAB test SRB cables on STS-98 solid rocket boosters

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Vehicle Assembly Building, United Space Alliance SRB technician Frank Meyer pulls cables out of the solid rocket booster system tunnel. Cable end covers are in a box near his feet. The SRB is part of Space Shuttle Atlantis, rolled back from Launch Pad 39A in order to conduct tests on the cables. A prior extensive evaluation of NASA'''s SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. Workers are conducting inspections, making continuity checks and conducting X-ray analysis on the cables. The launch has been rescheduled no earlier than Feb. 6.

  17. Workers in the VAB test SRB cables on STS-98 solid rocket boosters

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- NASA and United Space Alliance SRB technicians hook up solid rocket booster cables to a Cirris Signature Touch 1 cable tester. From left are Loren Atkinson and Steve Swichkow, with NASA, and Jeff Suter, with USA. The SRB is part of Space Shuttle Atlantis, rolled back from Launch Pad 39A in order to conduct tests on the cables. A prior extensive evaluation of NASA'''s SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. Workers are conducting inspections, making continuity checks and conducting X-ray analysis on the cables. The launch has been rescheduled no earlier than Feb. 6.

  18. Workers in the VAB test SRB cables on STS-98 solid rocket boosters

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- United Space Alliance SRB technician Richard Bruns attaches a cable end cover to a cable pulled from the solid rocket booster on Space Shuttle Atlantis. The Shuttle was rolled back from Launch Pad 39A in order to conduct tests on the SRB cables. A prior extensive evaluation of NASA'''s SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. Workers are conducting inspections, making continuity checks and conducting X-ray analysis on the cables. The launch has been rescheduled no earlier than Feb. 6.

  19. Reverse engineering of the multiple launch rocket system. Human factors, manpower, personnel, and training in the weapons system acquisition process

    NASA Astrophysics Data System (ADS)

    Arabian, J. M.; Hartel, C. R.; Kaplan, J. D.; Marcus, A.; Promisel, D. M.

    1984-06-01

    In a briefing format, this report on the Multiple Launch Rocket System summarizes an examination of human factors, manpower, personnel and training (HMPT) issues during the systems acquisition process. The report is one of four reverse engineering studies prepared at the request of Gen. M. R. Thurman, Army Vice Chief of Staff. The four systems were studied as a representative sample of Army weapons systems. They serve as the basis for drawing conclusions about aspects of the weapons system acquisition process which most affect HMPT considerations. A synthesis of the four system studies appears in the final report of the Reverse Engineering Task Force U.S. Army Research Institute.

  20. Pretest uncertainty analysis for chemical rocket engine tests

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth J.

    1987-01-01

    A parametric pretest uncertainty analysis has been performed for a chemical rocket engine test at a unique 1000:1 area ratio altitude test facility. Results from the parametric study provide the error limits required in order to maintain a maximum uncertainty of 1 percent on specific impulse. Equations used in the uncertainty analysis are presented.

  1. 40 CFR 61.43 - Emission testing-rocket firing or propellant disposal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Emission testing-rocket firing or... Standard for Beryllium Rocket Motor Firing § 61.43 Emission testing—rocket firing or propellant disposal. (a) Ambient air concentrations shall be measured during and after firing of a rocket motor...

  2. Research in the use of electrets in measuring effluents from rocket exhaust of the space shuttle (6.4 percent scaled model) and Viking 1 launch

    NASA Technical Reports Server (NTRS)

    Susko, M.

    1977-01-01

    Electrets used to detect the chemical composition of rocket exhaust effluents were investigated. The effectiveness of electrets was assessed while comparisons were made with hydrogen chloride measuring devices from chamber and field tests, and computed results from a multilayer diffusion model. The experimental data used were obtained from 18 static test firings, chamber tests, and the Viking 1 launch to Mars. Results show that electrets have multipollutant measuring capabilities, simplicity of deployment, and speed of assessment. The electrets compared favorably with other hydrogen chloride measuring devices. The summary of the measured data from the electrets and the hydrogen chloride detectors was within the upper and lower bounds of the computed hydrogen chloride concentrations from the multilayer diffusion model.

  3. Test of a life support system with Hirudo medicinalis in a sounding rocket.

    PubMed

    Lotz, R G; Baum, P; Bowman, G H; Klein, K D; von Lohr, R; Schrotter, L

    1972-01-01

    Two Nike-Tomahawk rockets each carrying two Biosondes were launched from Wallops Island, Virginia, the first on 10 December 1970 and the second on 16 December 1970. The primary objective of both flights was to test the Biosonde life support system under a near weightless environment and secondarily to subject the Hirudo medicinalis to the combined stresses of a rocket flight. The duration of the weightless environment was approximately 6.5 minutes. Data obtained during the flight by telemetry was used to ascertain the operation of the system and the movements of the leeches during flight. Based on the information obtained, it has been concluded that the operation of the Biosondes during the flight was similar to that observed in the laboratory. The experiment and equipment are described briefly and the flight results presented. PMID:11898833

  4. Nuclear thermal rocket nozzle testing and evaluation program

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth O.; Kacynski, Kenneth J.

    1993-01-01

    Performance characteristics of the Nuclear Thermal Rocket can be enhanced through the use of unconventional nozzles as part of the propulsion system. The Nuclear Thermal Rocket nozzle testing and evaluation program being conducted at the NASA Lewis is outlined and the advantages of a plug nozzle are described. A facility description, experimental designs and schematics are given. Results of pretest performance analyses show that high nozzle performance can be attained despite substantial nozzle length reduction through the use of plug nozzles as compared to a convergent-divergent nozzle. Pretest measurement uncertainty analyses indicate that specific impulse values are expected to be within + or - 1.17 pct.

  5. Solid rocket motor fire tests: Phases 1 and 2

    NASA Astrophysics Data System (ADS)

    Chang, Yale; Hunter, Lawrence W.; Han, David K.; Thomas, Michael E.; Cain, Russell P.; Lennon, Andrew M.

    2002-01-01

    JHU/APL conducted a series of open-air burns of small blocks (3 to 10 kg) of solid rocket motor (SRM) propellant at the Thiokol Elkton MD facility to elucidate the thermal environment under burning propellant. The propellant was TP-H-3340A for the STAR 48 motor, with a weight ratio of 71/18/11 for the ammonium perchlorate, aluminum, and HTPB binder. Combustion inhibitor applied on the blocks allowed burning on the bottom and/or sides only. Burns were conducted on sand and concrete to simulate near-launch pad surfaces, and on graphite to simulate a low-recession surface. Unique test fixturing allowed propellant self-levitation while constraining lateral motion. Optics instrumentation consisted of a longwave infrared imaging pyrometer, a midwave spectroradiometer, and a UV/visible spectroradiometer. In-situ instrumentation consisted of rod calorimeters, Gardon gauges, elevated thermocouples, flush thermocouples, a two-color pyrometer, and Knudsen cells. Witness materials consisted of yttria, ceria, alumina, tungsten, iridium, and platinum/rhodium. Objectives of the tests were to determine propellant burn characteristics such as burn rate and self-levitation, to determine heat fluxes and temperatures, and to carry out materials analyses. A summary of qualitative results: alumina coated almost all surfaces, the concrete spalled, sand moisture content matters, the propellant self-levitated, the test fixtures worked as designed, and bottom-burning propellant does not self-extinguish. A summary of quantitative results: burn rate averaged 1.15 mm/s, thermocouples peaked at 2070 C, pyrometer readings matched MWIR data at about 2400 C, the volume-averaged plume temperatures were 2300-2400 C with peaks of 2400-2600 C, and the heat fluxes peaked at 125 W/cm2. These results are higher than other researchers' measurements of top-burning propellant in chimneys, and will be used, along with Phase 3 test results, to analyze hardware response to these environments, including General Purpose Heat Sources (GPHS) and Radioisotope Heater Units (RHU). Follow-on Phase 3 tests burning propellant blocks up to 90 kg will be briefly described. .

  6. Los Alamos studies of the Nevada test site facilities for the testing of nuclear rockets

    NASA Technical Reports Server (NTRS)

    Hynes, Michael V.

    1993-01-01

    The topics are presented in viewgraph form and include the following: Nevada test site geographic location; location of NRDA facilities, area 25; assessment program plan; program goal, scope, and process -- the New Nuclear Rocket Program; nuclear rocket engine test facilities; EMAD Facility; summary of final assessment results; ETS-1 Facility; and facilities cost summary.

  7. Commercial Rocket Test Helps Prep for Journey to Mars - Duration: 2 minutes, 38 seconds.

    NASA Video Gallery

    NASA successfully captured thermal images of a SpaceX Falcon 9 rocket on its descent after it launched in September from Cape Canaveral Air Force Station in Florida. The data from these thermal ima...

  8. Space Shuttle solid rocket motor testing for return to flight - Transient Pressure Test Article test program

    NASA Technical Reports Server (NTRS)

    Vibbart, Charles M.

    1988-01-01

    The Transient Pressure Test Article (TPTA) test program, which is being conducted at a new facility at NASA-Marshall, is described. The facility is designed to test and verify the sealing capability of the redesigned solid rocket motor's (RSRM) field, igniter, and nozzle joints. The test article consists of full-scale RSRM hardware loaded with inert propellant and assembled in a short stack configuration. The test facility is described as well as test implementation, test effectiveness, and test results.

  9. Rocket Motor Microphone Investigation

    NASA Technical Reports Server (NTRS)

    Pilkey, Debbie; Herrera, Eric; Gee, Kent L.; Giraud, Jerom H.; Young, Devin J.

    2010-01-01

    At ATK's facility in Utah, large full-scale solid rocket motors are tested. The largest is a five-segment version of the reusable solid rocket motor, which is for use on the Ares I launch vehicle. As a continuous improvement project, ATK and BYU investigated the use of microphones on these static tests, the vibration and temperature to which the instruments are subjected, and in particular the use of vent tubes and the effects these vents have at low frequencies.

  10. Liquid Rocket Engine Testing - Historical Lecture: Simulated Altitude Testing at AEDC

    NASA Technical Reports Server (NTRS)

    Dougherty, N. S.

    2010-01-01

    The span of history covered is from 1958 to the present. The outline of this lecture draws from historical examples of liquid propulsion testing done at AEDC primarily for NASA's Marshall Space Flight Center (NASA/MSFC) in the Saturn/Apollo Program and for USAF Space and Missile Systems dual-use customers. NASA has made dual use of Air Force launch vehicles, Test Ranges and Tracking Systems, and liquid rocket altitude test chambers / facilities. Examples are drawn from the Apollo/ Saturn vehicles and the testing of their liquid propulsion systems. Other examples are given to extend to the family of the current ELVs and Evolved ELVs (EELVs), in this case, primarily to their Upper Stages. The outline begins with tests of the XLR 99 Engine for the X-15 aircraft, tests for vehicle / engine induced environments during flight in the atmosphere and in Space, and vehicle staging at high altitude. The discussion is from the author's perspective and background in developmental testing.

  11. Ground test facility for SEI nuclear rocket engines

    SciTech Connect

    Harmon, C.D.; Ottinger, C.A.; Sanchez, L.C.; Shipers, L.R.

    1992-08-01

    Nuclear Thermal Propulsion (NTP) has been identified as a critical technology in support of the NASA Space Exploration Initiative (SEI). In order to safely develop a reliable, reusable, long-lived flight engine, facilities are required that will support ground tests to qualify the nuclear rocket engine design. Initial nuclear fuel element testing will need to be performed in a facility that supports a realistic thermal and neutronic environment in which the fuel elements will operate at a fraction of the power of a flight weight reactor/engine. Ground testing of nuclear rocket engines is not new. New restrictions mandated by the National Environmental Protection Act of 1970, however, now require major changes to be made in the manner in which reactor engines are now tested. These new restrictions now preclude the types of nuclear rocket engine tests that were performed in the past from being done today. A major attribute of a safely operating ground test facility is its ability to prevent fission products from being released in appreciable amounts to the environment. Details of the intricacies and complications involved with the design of a fuel element ground test facility are presented in this report with a strong emphasis on safety and economy.

  12. The behavior of fission products during nuclear rocket reactor tests

    SciTech Connect

    Bokor, P.C.; Kirk, W.L.; Bohl, R.J.

    1991-01-01

    The experience base regarding fission product behavior developed during the Rover program, the nuclear rocket development program of 1955--1972, will be useful in planning a renewed nuclear rocket program. During the Rover program, 20 reactors were tested at the Nuclear Rocket Development Station in Nevada. Nineteen of these discharged effluent directly into the atmosphere; the last reactor tested, a non-flight-prototypic, fuel-element-testing reactor called the Nuclear Furnace (NF-1) was connected to an effluent cleanup system that removed fission products before the hydrogen coolant (propellant) was discharged to the atmosphere. In general, we are able to increase both test duration and fuel temperature during the test series. Therefore fission product data from the later part of the program are more interesting and more applicable to future reactors. We have collected fission product retention (and release) data reported in both formal and informal publications for six of the later reactor tests; five of these were Los Alamos reactors that were firsts of a kind in configuration or operating conditions. We have also, with the cooperation of Westinghouse, included fission product data from the NRX-A6 reactor, the final member of series of developmental reactors with the same basic geometry, but with significant design and fabrication improvements as the series continued. Table 1 lists the six selected reactors and the test parameters for each.

  13. The behavior of fission products during nuclear rocket reactor tests

    NASA Astrophysics Data System (ADS)

    Bokor, Peter C.; Kirk, William L.; Bohl, Richard J.

    The experience base regarding fission product behavior developed during the Rover program, the nuclear rocket development program of 1955 to 1972 will be useful in planning a renewed nuclear rocket program. During the Rover program, 20 reactors were tested at the Nuclear Rocket Development Station in Nevada. Nineteen of these discharged effluent directly into the atmosphere; the last reactor tested, a non-flight-prototypic, fuel-element-testing reactor called the Nuclear Furnace (NF-1) was connected to an effluent cleanup system that removed fission products before the hydrogen coolant (propellant) was discharged to the atmosphere. In general, we are able to increase both test duration and fuel temperature during the test series. Therefore fission product data from the later part of the program are more interesting and more applicable to future reactors. We have collected fission product retention (and release) data reported in both formal and informal publications for six of the later reactor tests; five of these were Los Alamos reactors that were firsts of a kind in configuration or operating conditions. We have also, with the cooperation of Westinghouse, included fission product data from the NRX-A6 reactor, the final member of a series of developmental reactors with the same basic geometry, but with significant design and fabrication improvements as the series continued. Table 1 lists the six selected reactors and the test parameters for each.

  14. Nitric acid oxide mixing ratio measurements using a rocket launched chemiluminescent instrument. Final technical report, September 1986-October 1987

    SciTech Connect

    Horvath, J.J.

    1989-01-01

    A total of 18 rocket launched parachute borne nitric oxide instruments were launched from 1977 to 1985. A very precise instrument for the measurement of the nitric oxide mixing ratio was fabricated. No changes were made in the main body of the instruments, i.e., things associated with the reaction volume. Except for the last 4 launches, however, it did not yield the required absolute values that was hoped for. Two major problems were encountered. First, the wrong choice of the background calibration gas, nitrogen, caused the first 10 data sets to be too low in the absolute mixing ratio by nearly the order of 2 to 5 ppbv. The error was realized, and air was substituted for the bias gas measurement. Second, in the desire to extend the measurement to higher altitudes, the problem of contaminating the inlet flow tube with ozone from the reagent gas was encountered. The ozone valve was opened too early in the flight and this caused the pressure in the reaction volume to exceed the pressure at the flow tube entrance, permitting the ozone to migrate backwards. This problem was restricted to an altitude above 45 km.

  15. Common Data Acquisition Systems (DAS) Software Development for Rocket Propulsion Test (RPT) Test Facilities

    NASA Technical Reports Server (NTRS)

    Hebert, Phillip W., Sr.; Davis, Dawn M.; Turowski, Mark P.; Holladay, Wendy T.; Hughes, Mark S.

    2012-01-01

    The advent of the commercial space launch industry and NASA's more recent resumption of operation of Stennis Space Center's large test facilities after thirty years of contractor control resulted in a need for a non-proprietary data acquisition systems (DAS) software to support government and commercial testing. The software is designed for modularity and adaptability to minimize the software development effort for current and future data systems. An additional benefit of the software's architecture is its ability to easily migrate to other testing facilities thus providing future commonality across Stennis. Adapting the software to other Rocket Propulsion Test (RPT) Centers such as MSFC, White Sands, and Plumbrook Station would provide additional commonality and help reduce testing costs for NASA. Ultimately, the software provides the government with unlimited rights and guarantees privacy of data to commercial entities. The project engaged all RPT Centers and NASA's Independent Verification & Validation facility to enhance product quality. The design consists of a translation layer which provides the transparency of the software application layers to underlying hardware regardless of test facility location and a flexible and easily accessible database. This presentation addresses system technical design, issues encountered, and the status of Stennis development and deployment.

  16. Rocket Sled Propelled Testing of a Supersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Meacham, Michael B.; Kennett, Andrew; Townsend, Derik J.; Marti, Benjamin

    2013-01-01

    Decelerators (IADs) have traditionally been tested in wind tunnels. As the limitations of these test facilities are reached, other avenues must be pursued. The IAD being tested is a Supersonic IAD (SIAD), which attaches just aft of the heatshield around the perimeter of an entry body. This 'attached torus' SIAD is meant to improve the accuracy of landing for robotic class missions to Mars and allow for potentially increased payloads. The SIAD Design Verification (SDV) test aims to qualify the SIAD by applying a targeted aerodynamic load to the vehicle. While many test architectures were researched, a rocket sled track was ultimately chosen to be the most cost effective way to achieve the desired dynamic pressures. The Supersonic Naval Ordnance Research Track (SNORT) at the Naval Air Warfare Center Weapons Division (NAWCWD) China Lake is a four mile test track, traditionally used for warhead and ejection seat testing. Prior to SDV, inflatable drag bodies have been tested on this particular track. Teams at Jet Propulsion Laboratory (JPL) and NAWCWD collaborate together to design and fabricate one of the largest sleds ever built. The SDV sled is comprised of three individual sleds: a Pusher Sled which holds the solid booster rockets, an Item Sled which supports the test vehicle, and a Camera Sled that is pushed in front for in-situ footage and measurements. The JPL-designed Test Vehicle has a full-scale heatshield shape and contains all instrumentation and inflation systems necessary to inflate and test a SIAD. The first campaign that is run at SNORT tested all hardware and instrumentation before the SIAD was ready to be tested. For each of the three tests in this campaign, the number of rockets and top speed was increased and the data analyzed to ensure the hardware is safe at the necessary accelerations and aerodynamic loads.

  17. Longitudinal and lateral-directional static aerodynamic characteristics of an unpowered escape system extraction rocket model with attached launch tubes

    NASA Technical Reports Server (NTRS)

    Huffman, J. K.; Fox, C. H., Jr.; Satterthwaite, R. E.

    1977-01-01

    An escape system extraction rocket proposed for use on the Rotor Systems Research Aircraft was tested at Mach numbers of 0.1 and 0.3 through an angle of attack range from -2 deg to 102 deg and an angle of sideslip range from 0 deg to 15 deg in the Langley 7- by 10-foot high speed tunnel. The data are presented without analysis.

  18. High altitude research rocket program astronomy: Payload Inter-Zodiak. Report on system development, integration, testing, and flight

    NASA Astrophysics Data System (ADS)

    Boison, M.; Neumann, G.; Schnattinger, W.

    1985-12-01

    A rocket program to investigate H and He-atoms excited by extreme ultraviolet (EUV) radiation, with emphasis on the analysis of the zodiacal EUV resonance fluorescence is introduced. Requirements, mechanical construction, attitude control and measurement, and qualification of the payload are described. The procedure of the project, and the launching campaign are presented. The evolution of the mission and the test data evaluation are discussed.

  19. GPS Sounding Rocket Developments

    NASA Technical Reports Server (NTRS)

    Bull, Barton

    1999-01-01

    Sounding rockets are suborbital launch vehicles capable of carrying scientific payloads several hundred miles in altitude. These missions return a variety of scientific data including; chemical makeup and physical processes taking place In the atmosphere, natural radiation surrounding the Earth, data on the Sun, stars, galaxies and many other phenomena. In addition, sounding rockets provide a reasonably economical means of conducting engineering tests for instruments and devices used on satellites and other spacecraft prior to their use in more expensive activities. The NASA Sounding Rocket Program is managed by personnel from Goddard Space Flight Center Wallops Flight Facility (GSFC/WFF) in Virginia. Typically around thirty of these rockets are launched each year, either from established ranges at Wallops Island, Virginia, Poker Flat Research Range, Alaska; White Sands Missile Range, New Mexico or from Canada, Norway and Sweden. Many times launches are conducted from temporary launch ranges in remote parts of the world requi6ng considerable expense to transport and operate tracking radars. An inverse differential GPS system has been developed for Sounding Rocket. This paper addresses the NASA Wallops Island history of GPS Sounding Rocket experience since 1994 and the development of a high accurate and useful system.

  20. Buckling Testing and Analysis of Space Shuttle Solid Rocket Motor Cylinders

    NASA Technical Reports Server (NTRS)

    Weidner, Thomas J.; Larsen, David V.; McCool, Alex (Technical Monitor)

    2002-01-01

    A series of full-scale buckling tests were performed on the space shuttle Reusable Solid Rocket Motor (RSRM) cylinders. The tests were performed to determine the buckling capability of the cylinders and to provide data for analytical comparison. A nonlinear ANSYS Finite Element Analysis (FEA) model was used to represent and evaluate the testing. Analytical results demonstrated excellent correlation to test results, predicting the failure load within 5%. The analytical value was on the conservative side, predicting a lower failure load than was applied to the test. The resulting study and analysis indicated the important parameters for FEA to accurately predict buckling failure. The resulting method was subsequently used to establish the pre-launch buckling capability of the space shuttle system.

  1. Temperature measurement. [liquid monopropellant rocket engine performance tests

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The design, installation, checkout, calibration, and operation of a temperature measuring system to be used during tests of a liquid monopropellant rocket engine are discussed. Appendixes include: (1) temperature measurement system elemental uncertainties, and (2) tables and equations for use with thermocouples and resistance thermometers. Design guidelines are given for the critical components of each portion of the system to provide an optimum temperature measurement system which meets the performance criteria specified.

  2. Rover nuclear rocket engine program: Overview of rover engine tests

    NASA Technical Reports Server (NTRS)

    Finseth, J. L.

    1991-01-01

    The results of nuclear rocket development activities from the inception of the ROVER program in 1955 through the termination of activities on January 5, 1973 are summarized. This report discusses the nuclear reactor test configurations (non cold flow) along with the nuclear furnace demonstrated during this time frame. Included in the report are brief descriptions of the propulsion systems, test objectives, accomplishments, technical issues, and relevant test results for the various reactor tests. Additionally, this document is specifically aimed at reporting performance data and their relationship to fuel element development with little or no emphasis on other (important) items.

  3. Crew Exploration Vehicle Launch Abort System Flight Test Overview

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2007-01-01

    The Constellation program is an organization within NASA whose mission is to create the new generation of spacecraft that will replace the Space Shuttle after its planned retirement in 2010. In the event of a catastrophic failure on the launch pad or launch vehicle during ascent, the successful use of the launch abort system will allow crew members to escape harm. The Flight Test Office is the organization within the Constellation project that will flight-test the launch abort system on the Orion crew exploration vehicle. The Flight Test Office has proposed six tests that will demonstrate the use of the launch abort system. These flight tests will be performed at the White Sands Missile Range in New Mexico and are similar in nature to the Apollo Little Joe II tests performed in the 1960s. An overview of the launch abort system flight tests for the Orion crew exploration vehicle is given. Details on the configuration of the first pad abort flight test are discussed. Sample flight trajectories for two of the six flight tests are shown.

  4. Aerodynamic Testing of the Orion Launch Abort Tower Separation with Jettison Motor Jet Interactions

    NASA Technical Reports Server (NTRS)

    Rhode, Matthew N.; Chan, David T.; Niskey, Charles J.; Wilson, Thomas M.

    2011-01-01

    The aerodynamic database for the Orion Launch Abort System (LAS) was developed largely from wind tunnel tests involving powered jet simulations of the rocket exhaust plumes, supported by computational fluid dynamics (CFD) simulations. The LAS contains three solid rocket motors used in various phases of an abort to provide propulsion, steering, and Launch Abort Tower (LAT) jettison from the Crew Module (CM). This paper describes a pair of wind tunnel experiments performed at transonic and supersonic speeds to determine the aerodynamic effects due to proximity and jet interactions during LAT jettison from the CM at the end of an abort. The tests were run using two different scale models at angles of attack from 150deg to 200deg , sideslip angles from -10deg to +10deg , and a range of powered thrust levels from the jettison motors to match various jet simulation parameters with flight values. Separation movements between the CM and LAT included axial and vertical translations as well as relative pitch angle between the two bodies. The paper details aspects of the model design, nozzle scaling methodology, instrumentation, testing procedures, and data reduction. Sample data are shown to highlight trends seen in the results.

  5. ASRM subscale plume deflector testing. [advanced solid rocket motor

    NASA Technical Reports Server (NTRS)

    Douglas, Freddie, III; Dawson, Michael C.; Orlin, Peter A.

    1992-01-01

    This paper reports the results of the scale model (1/22) testing of candidate refractory materials to be used as surface coatings for a solid rocket motor plume deflector structure. Five ROM tests were conducted to acquire data to support the selection, thickness determination, and placement of the materials. All data acquisition was achieved through nonintrusive methods. The tests demonstrated that little or no reductions in performance of the full-scale deflector would be experienced if the most economical materials were selected for construction.

  6. Tracking the Relative Motion of Four Space Payloads Launched From a Sub-Orbital NASA Rocket

    NASA Technical Reports Server (NTRS)

    Martel, Hugh; Bull, Barton

    1999-01-01

    One problem, which is comparatively new in the field of GPS applications, is the determination of the relative trajectories of space vehicles. Applications include the docking of spacecraft, collision avoidance in the area of space stations, and trajectory reconstruction of multiple payloads. The required precision in any of these applications will vary, according to the requirements of the task and abilities of GPS to cope with the environment and the dynamics. This paper describes the post-mission reconstruction of the relative trajectories of four GPS receivers attached to four payloads jettisoned from a rocket in a sub-orbital NASA science mission. It is shown that the sub-decimetre level were achieved with single frequency GPS receivers.

  7. 40 CFR 61.43 - Emission testing-rocket firing or propellant disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standard for Beryllium Rocket Motor Firing § 61.43 Emission testing—rocket firing or propellant disposal... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Emission testing-rocket firing or propellant disposal. 61.43 Section 61.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  8. 40 CFR 61.43 - Emission testing-rocket firing or propellant disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standard for Beryllium Rocket Motor Firing § 61.43 Emission testing—rocket firing or propellant disposal... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Emission testing-rocket firing or propellant disposal. 61.43 Section 61.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  9. Pegasus Rocket Wing and PHYSX Glove Being Prepared for Stress Loads Testing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A technician adjusts the Pegasus Hypersonic Experiment (PHYSX) Project's Pegasus rocket wing with attached PHYSX glove before a loads-test at Scaled Composites, Inc., in Mojave, California, in January 1997. For the test, technicians slowly filled water bags beneath the wing to create the pressure, or 'wing-loading,' required to determine whether the wing could withstand its design limit for stress. The wing sits in a wooden triangular frame which serves as the test-rig, mounted to the floor atop the waterbags. PHYSX was launched aboard a Pegasus rocket on October 22, 1998. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially; later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California; Goddard Space Flight Center, Greenbelt, Maryland; and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.)

  10. Evaluation of Geopolymer Concrete for Rocket Test Facility Flame Deflectors

    NASA Technical Reports Server (NTRS)

    Allgood, Daniel C.; Montes, Carlos; Islam, Rashedul; Allouche, Erez

    2014-01-01

    The current paper presents results from a combined research effort by Louisiana Tech University (LTU) and NASA Stennis Space Center (SSC) to develop a new alumina-silicate based cementitious binder capable of acting as a high performance refractory material with low heat ablation rate and high early mechanical strength. Such a binder would represent a significant contribution to NASA's efforts to develop a new generation of refractory 'hot face' liners for liquid or solid rocket plume environments. This project was developed as a continuation of on-going collaborations between LTU and SSC, where test sections of a formulation of high temperature geopolymer binder were cast in the floor and walls of Test Stand E-1 Cell 3, an active rocket engine test stand flame trench. Additionally, geopolymer concrete panels were tested using the NASA-SSC Diagnostic Test Facility (DTF) thruster, where supersonic plume environments were generated on a 1ft wide x 2ft long x 6 inch deep refractory panel. The DTF operates on LOX/GH2 propellants producing a nominal thrust of 1,200 lbf and the combustion chamber conditions are Pc=625psig, O/F=6.0. Data collected included high speed video of plume/panel area and surface profiles (depth) of the test panels measured on a 1-inch by 1-inch giving localized erosion rates during the test. Louisiana Tech conducted a microstructure analysis of the geopolymer binder after the testing program to identify phase changes in the material.

  11. GPS Sounding Rocket Developments

    NASA Technical Reports Server (NTRS)

    Bull, Barton

    1999-01-01

    Sounding rockets are suborbital launch vehicles capable of carrying scientific payloads several hundred miles in altitude. These missions return a variety of scientific data including; chemical makeup and physical processes taking place in the atmosphere, natural radiation surrounding the Earth, data on the Sun, stars, galaxies and many other phenomena. In addition, sounding rockets provide a reasonably economical means of conducting engineering tests for instruments and devices used on satellites and other spacecraft prior to their use in more expensive activities. This paper addresses the NASA Wallops Island history of GPS Sounding Rocket experience since 1994 and the development of highly accurate and useful system.

  12. Disturbance Rejection Based Test Rocket Control System Design and Validation

    NASA Astrophysics Data System (ADS)

    Yang, H.; Zhang, S.; Li, T.; Zhang, Y.

    2015-09-01

    This paper presents a novel design and validation for the three-channel attitude controller of a STT test rocket based on the extended state observer approach. The uniform second order integral-chain state space model is firstly established for the control variable of the angle of attack, angle of sideslip and roll angle. Combined with the pole placement, the extended state observer is applied to the disturbance rejection design of the attitude controller. Through numerical and hardware-in-the-loop simulation with uncertainties considered, the effectiveness and robustness of the controller are illustrated and verified. Finally, the performance of the controller is validated by flight-test with satisfactory results.

  13. Mars Sample Return and Flight Test of a Small Bimodal Nuclear Rocket and ISRU Plant

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.; Wolinsky, Jason J.; Bilyeu, Michael B.; Scott, John H.

    2014-01-01

    A combined Nuclear Thermal Rocket (NTR) flight test and Mars Sample Return mission (MSR) is explored as a means of "jump-starting" NTR development. Development of a small-scale engine with relevant fuel and performance could more affordably and quickly "pathfind" the way to larger scale engines. A flight test with subsequent inflight postirradiation evaluation may also be more affordable and expedient compared to ground testing and associated facilities and approvals. Mission trades and a reference scenario based upon a single expendable launch vehicle (ELV) are discussed. A novel "single stack" spacecraft/lander/ascent vehicle concept is described configured around a "top-mounted" downward firing NTR, reusable common tank, and "bottom-mount" bus, payload and landing gear. Requirements for a hypothetical NTR engine are described that would be capable of direct thermal propulsion with either hydrogen or methane propellant, and modest electrical power generation during cruise and Mars surface insitu resource utilization (ISRU) propellant production.

  14. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    NASA Technical Reports Server (NTRS)

    Bradley, D. E.; Mireles, O. R.; Hickman, R. R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames.1,2 Conventional storable propellants produce average specific impulse. Nuclear thermal rockets capable of producing high specific impulse are proposed. Nuclear thermal rockets employ heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K), and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited.3 The primary concern is the mechanical failure of fuel elements that employ high-melting-point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. The purpose of the testing is to obtain data to assess the properties of the non-nuclear support materials, as-fabricated, and determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures. The fission process of the planned fissile material and the resulting heating performance is well known and does not therefore require that active fissile material be integrated in this testing. A small-scale test bed designed to heat fuel element samples via non-contact radio frequency heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  15. Software for Estimating Costs of Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    Hines, Merion M.

    2002-01-01

    A high-level parametric mathematical model for estimating the costs of testing rocket engines and components at Stennis Space Center has been implemented as a Microsoft Excel program that generates multiple spreadsheets. The model and the program are both denoted, simply, the Cost Estimating Model (CEM). The inputs to the CEM are the parameters that describe particular tests, including test types (component or engine test), numbers and duration of tests, thrust levels, and other parameters. The CEM estimates anticipated total project costs for a specific test. Estimates are broken down into testing categories based on a work-breakdown structure and a cost-element structure. A notable historical assumption incorporated into the CEM is that total labor times depend mainly on thrust levels. As a result of a recent modification of the CEM to increase the accuracy of predicted labor times, the dependence of labor time on thrust level is now embodied in third- and fourth-order polynomials.

  16. Software for Estimating Costs of Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    Hines, Merlon M.

    2004-01-01

    A high-level parametric mathematical model for estimating the costs of testing rocket engines and components at Stennis Space Center has been implemented as a Microsoft Excel program that generates multiple spreadsheets. The model and the program are both denoted, simply, the Cost Estimating Model (CEM). The inputs to the CEM are the parameters that describe particular tests, including test types (component or engine test), numbers and duration of tests, thrust levels, and other parameters. The CEM estimates anticipated total project costs for a specific test. Estimates are broken down into testing categories based on a work-breakdown structure and a cost-element structure. A notable historical assumption incorporated into the CEM is that total labor times depend mainly on thrust levels. As a result of a recent modification of the CEM to increase the accuracy of predicted labor times, the dependence of labor time on thrust level is now embodied in third- and fourth-order polynomials.

  17. Software for Estimating Costs of Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    Hines, Merlon M.

    2003-01-01

    A high-level parametric mathematical model for estimating the costs of testing rocket engines and components at Stennis Space Center has been implemented as a Microsoft Excel program that generates multiple spreadsheets. The model and the program are both denoted, simply, the Cost Estimating Model (CEM). The inputs to the CEM are the parameters that describe particular tests, including test types (component or engine test), numbers and duration of tests, thrust levels, and other parameters. The CEM estimates anticipated total project costs for a specific test. Estimates are broken down into testing categories based on a work-breakdown structure and a cost-element structure. A notable historical assumption incorporated into the CEM is that total labor times depend mainly on thrust levels. As a result of a recent modification of the CEM to increase the accuracy of predicted labor times, the dependence of labor time on thrust level is now embodied in third- and fourth-order polynomials.

  18. ROCOZ-A (improved rocket launched ozone sensor) for middle atmosphere ozone measurements

    NASA Technical Reports Server (NTRS)

    Lee, H. S.; Parsons, C. L.

    1987-01-01

    An improved interference filter based ultraviolet photometer (ROCOZ-A) for measuring stratospheric ozone is discussed. The payload is launched aboard a Super-Loki to a typical apogee of 70 km. The instrument measures the solar ultraviolet irradiance as it descends on a parachute. The total cumulative ozone is then calculated based on the Beer-Lambert law. The cumulative ozone precision measured in this way is 2.0% to 2.5% over an altitude range of 20 and 55 km. Results of the intercomparison with the SBUV overpass data and ROCOZ-A data are also discussed.

  19. High-End Concept Based on Hypersonic Two-Stage Rocket and Electro-Magnetic Railgun to Launch Micro-Satellites Into Low-Earth

    NASA Astrophysics Data System (ADS)

    Bozic, O.; Longo, J. M.; Giese, P.; Behren, J.

    2005-02-01

    The electromagnetic railgun technology appears to be an interesting alternative to launch small payloads into Low Earth Orbit (LEO), as this may introduce lower launch costs. A high-end solution, based upon present state of the art technology, has been investigated to derive the technical boundary conditions for the application of such a new system. This paper presents the main concept and the design aspects of such propelled projectile with special emphasis on flight mechanics, aero-/thermodynamics, materials and propulsion characteristics. Launch angles and trajectory optimisation analyses are carried out by means of 3 degree of freedom simulations (3DOF). The aerodynamic form of the projectile is optimised to provoke minimum drag and low heat loads. The surface temperature distribution for critical zones is calculated with DLR developed Navier-Stokes codes TAU, HOTSOSE, whereas the engineering tool HF3T is used for time dependent calculations of heat loads and temperatures on project surface and inner structures. Furthermore, competing propulsions systems are considered for the rocket engines of both stages. The structural mass is analysed mostly on the basis of carbon fibre reinforced materials as well as classical aerospace metallic materials. Finally, this paper gives a critical overview of the technical feasibility and cost of small rockets for such missions. Key words: micro-satellite, two-stage-rocket, railgun, rocket-engines, aero/thermodynamic, mass optimization

  20. Balloon launched Viking decelerator test program

    NASA Technical Reports Server (NTRS)

    Moog, R. D.; Michel, F. C.

    1973-01-01

    Four BLDT flights were conducted during the summer of 1972. The purpose of these tests was to qualify the Viking parachute system behind the full-scale Viking entry vehicle over the maximum range of entry conditions anticipated in the Viking '75 soft landing on Mars. A summary of the test series is presented. Test conditions ranged from a Mach number of 2.0 to 0.5 and dynamic pressure from 11.7 to 4.4 psf. This range of conditions covers the uncertainty in entry conditions at Mars due to atmospheric and entry performance uncertainties. Emphasis is placed on parachute performance and simulated Mars entry vehicle motions as influenced by the parachute performance. Conclusions are presented regarding the ability of the parachute to perform within the operational parameters required for a successful soft Martian landing. A list of references which covers all reports in the qualification test program is included.

  1. Testing of electroformed deposited iridium/powder metallurgy rhenium rockets

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.; Dickerson, Robert

    1996-01-01

    High-temperature, oxidation-resistant chamber materials offer the thermal margin for high performance and extended lifetimes for radiation-cooled rockets. Rhenium (Re) coated with iridium (Ir) allow hours of operation at 2200 C on Earth-storable propellants. One process for manufacturing Ir/Re rocket chambers is the fabrication of Re substrates by powder metallurgy (PM) and the application of Ir coatings by using electroformed deposition (ED). ED Ir coatings, however, have been found to be porous and poorly adherent. The integrity of ED Ir coatings could be improved by densification after the electroforming process. This report summarizes the testing of two 22-N, ED Ir/PM Re rocket chambers that were subjected to post-deposition treatments in an effort to densify the Ir coating. One chamber was vacuum annealed, while the other chamber was subjected to hot isostatic pressure (HIP). The chambers were tested on gaseous oxygen/gaseous hydrogen propellants, at mixture ratios that simulated the oxidizing environments of Earth-storable propellants. ne annealed ED Ir/PM Re chamber was tested for a total of 24 firings and 4.58 hr at a mixture ratio of 4.2. After only 9 firings, the annealed ED Ir coating began to blister and spall upstream of the throat. The blistering and spalling were similar to what had been experienced with unannealed, as-deposited ED Ir coatings. The HIP ED Ir/PM Re chamber was tested for a total of 91 firings and 11.45 hr at mixture ratios of 3.2 and 4.2. The HIP ED Ir coating remained adherent to the Re substrate throughout testing; there were no visible signs of coating degradation. Metallography revealed, however, thinning of the HIP Ir coating and occasional pores in the Re layer upstream of the throat. Pinholes in the Ir coating may have provided a path for oxidation of the Re substrate at these locations. The HIP ED Ir coating proved to be more effective than vacuum annealed and as-deposited ED Ir. Further densification is still required to match the integrity of chemically vapor deposited Ir coatings. Despite this, the successful long duration testing of the HIP ED Ir chamber, in an oxidizing environment comparable to Earth-storable propellants, demonstrated the viability of this Ir/Re rocket fabrication process.

  2. APOLLO 17 PRELAUNCH TESTS IN LAUNCH CONTROL CENTER

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Personnel in the Launch Control Center's Firing Room #1 monitor the final count of the 'dry' portion of the week long Countdown Demonstration test [CDDT]. The CDDT is a dress rehearsal for launch, and its successful completion cleared the way for the Apollo 17 launch scheduled for December 6, 1972 at 9:53 p.m. The targeted landing point for the Apollo 17 mission is a combination mountain highland and valley lowland region designated Taurus- Littrow. The flight crew for the Apollo 17 mission, the sixth and final Apollo Lunar landing is comprised of E.A. Cernan, R. E. Evans and Dr. H. H. Schmitt.

  3. Ground Vibration Testing Options for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Patterson, Alan; Smith, Robert K.; Goggin, David; Newsom, Jerry

    2011-01-01

    New NASA launch vehicles will require development of robust systems in a fiscally-constrained environment. NASA, Department of Defense (DoD), and commercial space companies routinely conduct ground vibration tests as an essential part of math model validation and launch vehicle certification. Although ground vibration testing must be a part of the integrated test planning process, more affordable approaches must also be considered. A study evaluated several ground vibration test options for the NASA Constellation Program flight test vehicles, Orion-1 and Orion-2, which concluded that more affordable ground vibration test options are available. The motivation for ground vibration testing is supported by historical examples from NASA and DoD. The approach used in the present study employed surveys of ground vibration test subject-matter experts that provided data to qualitatively rank six test options. Twenty-five experts from NASA, DoD, and industry provided scoring and comments for this study. The current study determined that both element-level modal tests and integrated vehicle modal tests have technical merits. Both have been successful in validating structural dynamic math models of launch vehicles. However, element-level testing has less overall cost and schedule risk as compared to integrated vehicle testing. Future NASA launch vehicle development programs should anticipate that some structural dynamics testing will be necessary. Analysis alone will be inadequate to certify a crew-capable launch vehicle. At a minimum, component and element structural dynamic tests are recommended for new vehicle elements. Three viable structural dynamic test options were identified. Modal testing of the new vehicle elements and an integrated vehicle test on the mobile launcher provided the optimal trade between technical, cost, and schedule.

  4. Determination of the availability of appropriate aged flight rocket motors. [captive tests to determine case bond separation and grain bore cracking

    NASA Technical Reports Server (NTRS)

    Martin, P. J.

    1974-01-01

    A program to identify surplus solid rocket propellant engines which would be available for a program of functional integrity testing was conducted. The engines are classified as: (1) upper stage and apogee engines, (2) sounding rocket and launch vehicle engines, and (3) jato, sled, and tactical engines. Nearly all the engines were available because their age exceeds the warranted shelf life. The preference for testing included tests at nominal flight conditions, at design limits, and to establish margin limits. The principal failure modes of interest were case bond separation and grain bore cracking. Data concerning the identification and characteristics of each engine are tabulated. Methods for conducting the tests are described.

  5. Preliminary Sizing Completed for Single- Stage-To-Orbit Launch Vehicles Powered By Rocket-Based Combined Cycle Technology

    NASA Technical Reports Server (NTRS)

    Roche, Joseph M.

    2002-01-01

    Single-stage-to-orbit (SSTO) propulsion remains an elusive goal for launch vehicles. The physics of the problem is leading developers to a search for higher propulsion performance than is available with all-rocket power. Rocket-based combined cycle (RBCC) technology provides additional propulsion performance that may enable SSTO flight. Structural efficiency is also a major driving force in enabling SSTO flight. Increases in performance with RBCC propulsion are offset with the added size of the propulsion system. Geometrical considerations must be exploited to minimize the weight. Integration of the propulsion system with the vehicle must be carefully planned such that aeroperformance is not degraded and the air-breathing performance is enhanced. Consequently, the vehicle's structural architecture becomes one with the propulsion system architecture. Geometrical considerations applied to the integrated vehicle lead to low drag and high structural and volumetric efficiency. Sizing of the SSTO launch vehicle (GTX) is itself an elusive task. The weight of the vehicle depends strongly on the propellant required to meet the mission requirements. Changes in propellant requirements result in changes in the size of the vehicle, which in turn, affect the weight of the vehicle and change the propellant requirements. An iterative approach is necessary to size the vehicle to meet the flight requirements. GTX Sizer was developed to do exactly this. The governing geometry was built into a spreadsheet model along with scaling relationships. The scaling laws attempt to maintain structural integrity as the vehicle size is changed. Key aerodynamic relationships are maintained as the vehicle size is changed. The closed weight and center of gravity are displayed graphically on a plot of the synthesized vehicle. In addition, comprehensive tabular data of the subsystem weights and centers of gravity are generated. The model has been verified for accuracy with finite element analysis. The final trajectory was rerun using OTIS (Boeing Corporation's trajectory optimization software package), and the sizing output was incorporated into a solid model of the vehicle using PRO/Engineer computer-aided design software (Parametric Technology Corporation, Waltham, MA).

  6. High-Aspect-Ratio Cooling Channel Concept Tested in Lewis' Rocket Engine Test Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Rocket combustion chamber walls are exposed to the high-temperature environment caused by the combustion of propellants. Even with the walls actively cooled by the fuel, the hot gases can deteriorate the walls severely and limit any possibility for reusing the combustion chamber. For many years, the NASA Lewis Research Center has performed subscale investigations of potential improved cooling concepts to extend the life and reliability of the combustion chamber. Results from previous subscale tests have shown that, by increasing the coolant channel height-to-width aspect ratio, the rocket combustion chamber hot gas side wall temperature can be reduced by as much as 28 percent, without an increase in the coolant pressure drop. Recently, a series of experiments were completed in Lewis' Rocket Engine Test Facility (RETF) to validate the benefits of high aspect ratio cooling channels with a high-pressure, contoured rocket combustion chamber.

  7. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    NASA Technical Reports Server (NTRS)

    Bradley, David E.; Mireles, Omar R.; Hickman, Robert R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse (Isp) and relatively high thrust in order to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average Isp. Nuclear thermal rockets (NTR) capable of high Isp thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high temperature hydrogen exposure on fuel elements is limited. The primary concern is the mechanical failure of fuel elements which employ high-melting-point metals, ceramics or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via non-contact RF heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  8. Orbit transfer rocket engine technology program: Oxygen materials compatibility testing

    NASA Technical Reports Server (NTRS)

    Schoenman, Leonard

    1989-01-01

    Particle impact and frictional heating tests of metals in high pressure oxygen, are conducted in support of the design of an advanced rocket engine oxygen turbopump. Materials having a wide range of thermodynamic properties including heat of combustion and thermal diffusivity were compared in their resistance to ignition and sustained burning. Copper, nickel and their alloys were found superior to iron based and stainless steel alloys. Some materials became more difficult to ignite as oxygen pressure was increased from 7 to 21 MPa (1000 to 3000 psia).

  9. Use of Atomic Fuels for Rocket-Powered Launch Vehicles Analyzed

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1999-01-01

    At the NASA Lewis Research Center, the launch vehicle gross lift-off weight (GLOW) was analyzed for solid particle feed systems that use high-energy density atomic propellants (ref. 1). The analyses covered several propellant combinations, including atoms of aluminum, boron, carbon, and hydrogen stored in a solid cryogenic particle, with a cryogenic liquid as the carrier fluid. Several different weight percents for the liquid carrier were investigated, and the GLOW values of vehicles using the solid particle feed systems were compared with that of a conventional oxygen/hydrogen (O2/H2) propellant vehicle. Atomic propellants, such as boron, carbon, and hydrogen, have an enormous potential for high specific impulse Isp operation, and their pursuit has been a topic of great interest for decades. Recent and continuing advances in the understanding of matter, the development of new technologies for simulating matter at its most basic level, and manipulations of matter through microtechnology and nanotechnology will no doubt create a bright future for atomic propellants and an exciting one for the researchers exploring this technology.

  10. Design of Electrical Systems for Rocket Propulsion Test Facilities at the John C. Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Hughes, Mark S.; Davis, Dawn M.; Bakker, Henry J.; Jensen, Scott L.

    2007-01-01

    This viewgraph presentation reviews the design of the electrical systems that are required for the testing of rockets at the Rocket Propulsion Facility at NASA Stennis Space Center (NASA SSC). NASA/SSC s Mission in Rocket Propulsion Testing Is to Acquire Test Performance Data for Verification, Validation and Qualification of Propulsion Systems Hardware. These must be accurate reliable comprehensive and timely. Data acquisition in a rocket propulsion test environment is challenging: severe temporal transient dynamic environments, large thermal gradients, vacuum to 15 ksi pressure regimes SSC has developed and employs DAS, control systems and control systems and robust instrumentation that effectively satisfies these challenges.

  11. Objectives and Progress on Ground Vibration Testing for the Ares Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.; Askins, Bruce R.; Chenevert, Donald J.

    2009-01-01

    NASA has conducted dynamic tests on each of its major launch vehicles during the past 45 years. Each test has provided invaluable data to correlate and correct analytical models used to predict structural responses to differing dynamics for these vehicles. With both Saturn V and Space Shuttle, hardware changes were also required to the flight vehicles to ensure crew and vehicle safety. The Ares I IVGVT will undoubtedly provide similar valuable test data to support successful flights of the Constellation Program. The IVGVT will provide test determined natural frequencies, mode shapes and damping for the Ares I. This data will be used to support controls analysis by providing this test data to reduce uncertainty in the models. The value of this testing has been proven by past launch vehicle successes and failures. Performing dynamic testing on the Ares vehicles will provide confidence that the launch vehicles will be safe and successful in their missions. In addition, IVGVT will provide the following benefits for the Ares rockets: a) IVGVT data along with Ares development flights like Ares I-X, Ares I-Y, Ares I-X Prime, and Orion-1 or others will reduce the risk to the Orion-2 crew. IVGVT will permit anchoring the various analytical and operational models used in so many different aspects of Ares operations. b) IVGVT data will permit better understanding of the structural and GN&C margins of the spacecraft and may permit mass savings or expanded day-of-launch opportunities or fewer constraints to launch. c) Undoubtedly IVGVT will uncover some of the "unknown unknowns" so often seen in developing, launching, and flying new spacecraft vehicles and data from IVGVT may help prevent a loss of vehicle or crew. d) IVGVT also will be the first time Ares I flight-like hardware is transported, handled, rotated, mated, stacked, and integrated. e) Furthermore, handling and stacking the IVGVT launch vehicle stacks will be an opportunity to understand certain aspects of vehicle operability much better (for example, handling procedures, touch-labor time to accomplish tasks, access at interfaces, access to stage mating bolts, access to avionics boxes, access to the Interstage, GSE functionality, and many other important aspects of Ares I operability). All of these results will provide for better vehicle safety and better stewardship of national resources as NASA begins its next phase of human space exploration.

  12. Unsteady Analyses of Valve Systems in Rocket Engine Testing Environments

    NASA Technical Reports Server (NTRS)

    Shipman, Jeremy; Hosangadi, Ashvin; Ahuja, Vineet

    2004-01-01

    This paper discusses simulation technology used to support the testing of rocket propulsion systems by performing high fidelity analyses of feed system components. A generalized multi-element framework has been used to perform simulations of control valve systems. This framework provides the flexibility to resolve the structural and functional complexities typically associated with valve-based high pressure feed systems that are difficult to deal with using traditional Computational Fluid Dynamics (CFD) methods. In order to validate this framework for control valve systems, results are presented for simulations of a cryogenic control valve at various plug settings and compared to both experimental data and simulation results obtained at NASA Stennis Space Center. A detailed unsteady analysis has also been performed for a pressure regulator type control valve used to support rocket engine and component testing at Stennis Space Center. The transient simulation captures the onset of a modal instability that has been observed in the operation of the valve. A discussion of the flow physics responsible for the instability and a prediction of the dominant modes associated with the fluctuations is presented.

  13. Cooled Ceramic Composite Panel Tested Successfully in Rocket Combustion Facility

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.

    2003-01-01

    Regeneratively cooled ceramic matrix composite (CMC) structures are being considered for use along the walls of the hot-flow paths of rocket-based or turbine-based combined-cycle propulsion systems. They offer the combined benefits of substantial weight savings, higher operating temperatures, and reduced coolant requirements in comparison to components designed with traditional metals. These cooled structures, which use the fuel as the coolant, require materials that can survive aggressive thermal, mechanical, acoustic, and aerodynamic loads while acting as heat exchangers, which can improve the efficiency of the engine. A team effort between the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and various industrial partners has led to the design, development, and fabrication of several types of regeneratively cooled panels. The concepts for these panels range from ultra-lightweight designs that rely only on CMC tubes for coolant containment to more maintainable designs that incorporate metal coolant containment tubes to allow for the rapid assembly or disassembly of the heat exchanger. One of the cooled panels based on an all-CMC design was successfully tested in the rocket combustion facility at Glenn. Testing of the remaining four panels is underway.

  14. Fabrication and Testing of Ceramic Matrix Composite Rocket Propulsion Components

    NASA Technical Reports Server (NTRS)

    Effinger, Michael; Clinton, R. G., Jr.; Dennis, Jay; Elam, Sandy; Genge, Gary; Eckel, Andy; Jaskowiak, Matha; Kiser, J. Doug; Lang, Jerry

    1999-01-01

    The National Aeronautics and Space Administration (NASA) is pursuing using ceramic matrix composites (CMC) as primary structural components for advanced rocket engines. This endeavor is due to the requirement of increasing safety by two orders of magnitude and reducing costs from $10,000/lb to $1,000/lb both within ten years. Out year goals are even more aggressive. Safety gains, through using CMCS, will be realized by increasing temperature margins, tolerance for extreme thermal transients, and damping capability of components and systems, by using components with lower weight and thermal conductivity, etc. Gains in cost reduction, through using CMCS, are anticipated by enabling higher performance systems, using lighter weight components and systems, enabling 100 mission reusability without system refurbishment, greatly reducing cooling requirements and erosion rates, selecting safe fabrication processes that are ideally cost competitive with metal processes at low volume production, etc. This philosophy contrasts the previous philosophy of rocket engine development focused largely on achieving the highest performance with metals and ablatives -- cost and safety were not the focal point of the initial design. Rocket engine components currently being pursued, largely C/SiC and SiC/SiC, include blisks or rotors, 10 foot by 8 foot nozzle ramps, gas generators, thrust chambers, and upperstage nozzles. The Simplex Turbopump CMC blisk effort has just successfully completed a 4.5 year development and test program. The other components mentioned are in the design or fabrication stage. Although the temperature limits of the CMC materials are not quantified in a realistic environment yet, CMC materials are projected to be the only way to achieve significant safety risks mitigation and cost reductions simultaneously. We, the end-users, material fabricators, technology facilitators, and government organizations are charged with developing and demonstrating a much safer and a lot less costly Earth-to-Orbit full-scale propulsion system by 2005.

  15. Integrated System Health Management (ISHM) Implementation in Rocket Engine Testing

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Morris, Jon; Turowski, Mark; Franzl, Richard; Walker, Mark; Kapadia, Ravi; Venkatesh, Meera

    2010-01-01

    A pilot operational ISHM capability has been implemented for the E-2 Rocket Engine Test Stand (RETS) and a Chemical Steam Generator (CSG) test article at NASA Stennis Space Center. The implementation currently includes an ISHM computer and a large display in the control room. The paper will address the overall approach, tools, and requirements. It will also address the infrastructure and architecture. Specific anomaly detection algorithms will be discussed regarding leak detection and diagnostics, valve validation, and sensor validation. It will also describe development and use of a Health Assessment Database System (HADS) as a repository for measurements, health, configuration, and knowledge related to a system with ISHM capability. It will conclude with a discussion of user interfaces, and a description of the operation of the ISHM system prior, during, and after testing.

  16. 28. HISTORIC VIEW OF A3 ROCKET IN TEST STAND NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. HISTORIC VIEW OF A-3 ROCKET IN TEST STAND NO. 3 AT KUMMERSDORF (THE LARGEST TEST STAND AT KUMMERSDORF). THE STAND WAS MOBILE, SINCE IT MOVED ALONG RAILS. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  17. Ensuring Safe Exploration: Ares Launch Vehicle Integrated Vehicle Ground Vibration Testing

    NASA Technical Reports Server (NTRS)

    Tuma, M. L.; Chenevert, D. J.

    2010-01-01

    Integrated vehicle ground vibration testing (IVGVT) will be a vital component for ensuring the safety of NASA's next generation of exploration vehicles to send human beings to the Moon and beyond. A ground vibration test (GVT) measures the fundamental dynamic characteristics of launch vehicles during various phases of flight. The Ares Flight & Integrated Test Office (FITO) will be leading the IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2012 to 2014 using Test Stand (TS) 4550. MSFC conducted similar GVT for the Saturn V and Space Shuttle vehicles. FITO is responsible for performing the IVGVT on the Ares I crew launch vehicle, which will lift the Orion crew exploration vehicle to low Earth orbit, and the Ares V cargo launch vehicle, which can launch the lunar lander into orbit and send the combined Orionilander vehicles toward the Moon. Ares V consists of a six-engine core stage with two solid rocket boosters and an Earth departure stage (EDS). The same engine will power the EDS and the Ares I second stage. For the Ares IVGVT, the current plan is to test six configurations in three unique test positions inside TS 4550. Position 1 represents the entire launch stack at liftoff (using inert first stage segments). Position 2 consists of the entire launch stack at first stage burn-out (using empty first stage segments). Four Ares I second stage test configurations will be tested in Position 3, consisting of the Upper Stage and Orion crew module in four nominal conditions: J-2X engine ignition, post Launch Abort System (LAS) jettison, critical slosh mass, and J-2X burn-out. Because of long disuse, TS 4550 is being repaired and reactivated to conduct the Ares I IVGVT. The Shuttle-era platforms have been removed and are being replaced with mast climbers that provide ready access to the test articles and can be moved easily to support different positions within the test stand. The electrical power distribution system for TS 4550 was upgraded. Two new cranes will help move test articles at the test stand and at the Redstone Arsenal railhead where first stage segments will be received in 2011. The Hydrodynamic Support systems (HDSs) used for Saturn and Shuttle have been disassembled and evaluated for use during IVGVT. Analyses indicate that the 45-year-old HDSs can be refurbished to support the Ares I IVGVT. An alternate concept for a pneumatic suspension system is also being explored. A decision on which suspension system configuration to use for IVGVT will be made in 2010. In the next three years, the team will complete the updates to TS 4550, upgrade the test and data collection equipment, and finalize the configurations of the test articles to be used in the IVGVT. With NASA's GVT capabilities reestablished, the FITO team will be well positioned to perform similar work on Ares V, the largest exploration launch vehicle NASA has ever built. The GVT effort continues NASA's 50-year commitment to using testing and data analysis for safer, more reliable launch vehicles.

  18. V-2 Rocket at White Sands

    NASA Technical Reports Server (NTRS)

    1946-01-01

    A V-2 rocket takes flight at White Sands, New Mexico, in 1946. The German engineers and scientists who developed the V-2 came to the United States at the end of World War II and continued rocket testing under the direction of the U. S. Army, launching more than sixty V-2s.

  19. The 260: The Largest Solid Rocket Motor Ever Tested

    NASA Technical Reports Server (NTRS)

    Crimmins, P.; Cousineau, M.; Rogers, C.; Shell, V.

    1999-01-01

    Aerojet in the mid 1960s, under contract to NASA, built and static hot fire tested the largest solid rocket motor (SRM) in history for the purpose of demonstrating the feasibility of utilizing large SRMs for space exploration. This program successfully fabricated two high strength steel chambers, loaded each with approximately 1,68 million pounds of propellant, and static test fired these giants with their nozzles up from an underground silo located adjacent to the Florida everglades. Maximum thrust and total impulse in excess of 5,000,000 lbf and 3,470,000,000 lbf-sec were achieved. Flames from the second firing, conducted at night, were seen over eighty miles away. For comparative purposes: the thrust developed was nearly 100 times that of a Minuteman III second stage and the 260 in.-dia cross-section was over 3 times that of the Space Shuttle SRM.

  20. Test of a CMC liquid propulsion rocket engine turbine stator

    NASA Astrophysics Data System (ADS)

    Berque, J.; Georges, J. M.

    The succesful testing of two Ceramic Matrix Composite (CMC) stators in conditions fully representative of a cryogenic rocket engine turbine is reported. Both stators possessed the same overall geometry as the actual metallic component used in the turbine second stage of the HM7 engine. They sustained several mid duration tests devoted to combustion parameter tuning and composite material behavior control, before long duration runs, representative of the engine duty cycle. The main objectives were to increase the gas temperature above 1600 K, and to simulate the thermal shock that occurs during the chilldown at the end of the combustion phase, in order to provide a good insight of the benefits in terms of performance, mass, durability and reliability associated with CMC application to a large set of aerospace engine turbines.

  1. Wireless Data-Acquisition System for Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    Lin, Chujen; Lonske, Ben; Hou, Yalin; Xu, Yingjiu; Gang, Mei

    2007-01-01

    A prototype wireless data-acquisition system has been developed as a potential replacement for a wired data-acquisition system heretofore used in testing rocket engines. The traditional use of wires to connect sensors, signal-conditioning circuits, and data acquisition circuitry is time-consuming and prone to error, especially when, as is often the case, many sensors are used in a test. The system includes one master and multiple slave nodes. The master node communicates with a computer via an Ethernet connection. The slave nodes are powered by rechargeable batteries and are packaged in weatherproof enclosures. The master unit and each of the slave units are equipped with a time-modulated ultra-wide-band (TMUWB) radio transceiver, which spreads its RF energy over several gigahertz by transmitting extremely low-power and super-narrow pulses. In this prototype system, each slave node can be connected to as many as six sensors: two sensors can be connected directly to analog-to-digital converters (ADCs) in the slave node and four sensors can be connected indirectly to the ADCs via signal conditioners. The maximum sampling rate for streaming data from any given sensor is about 5 kHz. The bandwidth of one channel of the TM-UWB radio communication system is sufficient to accommodate streaming of data from five slave nodes when they are fully loaded with data collected through all possible sensor connections. TM-UWB radios have a much higher spatial capacity than traditional sinusoidal wave-based radios. Hence, this TM-UWB wireless data-acquisition can be scaled to cover denser sensor setups for rocket engine test stands. Another advantage of TM-UWB radios is that it will not interfere with existing wireless transmission. The maximum radio-communication range between the master node and a slave node for this prototype system is about 50 ft (15 m) when the master and slave transceivers are equipped with small dipole antennas. The range can be increased by changing to larger antennas and/or greater transmission power. The battery life of a slave node ranges from about six hours during operation at full capacity to as long as three days when the system is in a "sleep" mode used to conserve battery charge during times between setup and rocket-engine testing. Batteries can be added to prolong operational lifetimes. The radio transceiver dominates the power consumption.

  2. Development of a 12-Thrust Chamber Kerosene /Oxygen Primary Rocket Sub-System for an Early (1964) Air-Augmented Rocket Ground-Test System

    NASA Technical Reports Server (NTRS)

    Pryor, D.; Hyde, E. H.; Escher, W. J. D.

    1999-01-01

    Airbreathing/Rocket combined-cycle, and specifically rocket-based combined- cycle (RBCC), propulsion systems, typically employ an internal engine flow-path installed primary rocket subsystem. To achieve acceptably short mixing lengths in effecting the "air augmentation" process, a large rocket-exhaust/air interfacial mixing surface is needed. This leads, in some engine design concepts, to a "cluster" of small rocket units, suitably arrayed in the flowpath. To support an early (1964) subscale ground-test of a specific RBCC concept, such a 12-rocket cluster was developed by NASA's Marshall Space Flight Center (MSFC). The small primary rockets used in the cluster assembly were modified versions of an existing small kerosene/oxygen water-cooled rocket engine unit routinely tested at MSFC. Following individual thrust-chamber tests and overall subsystem qualification testing, the cluster assembly was installed at the U. S. Air Force's Arnold Engineering Development Center (AEDC) for RBCC systems testing. (The results of the special air-augmented rocket testing are not covered here.) While this project was eventually successfully completed, a number of hardware integration problems were met, leading to catastrophic thrust chamber failures. The principal "lessons learned" in conducting this early primary rocket subsystem experimental effort are documented here as a basic knowledge-base contribution for the benefit of today's RBCC research and development community.

  3. Cooperative Testing of Rocket Injectors That Use Gaseous Oxygen and Hydrogen

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Gaseous oxygen and hydrogen propellants used in a special engine energy cycle called Full-Flow Staged Combustion are believed to significantly increase the lifetime of a rocket engine's pumps. The cycle can also reduce the operating temperatures of the engine. Improving the lifetime of the hardware reduces its overall maintenance and operations costs, and is critical to reducing costs for the joint NASA/industry Reusable Launch Vehicle (RLV). The work in this project will demonstrate the performance and lifetime of one-element and many-element combustors with gaseous O2/H2 injectors. This work supporting the RLV program is a cooperative venture of the NASA Lewis Research Center, the NASA Marshall Space Flight Center, Rocketdyne, and the Pennsylvania State University. Information about gas-gas rocket injector performance with O2/H2 is very limited. Because of this paucity of data, new testing is needed to improve the knowledge base for testing and designing new injectors for the RLV and to improve computer models that predict the combusting gas flows of new injector designs. Therefore, detailed observations and measurements of the combusting flow from many-element injectors in a rocket engine are being sought. These observations and measurements will be done with three different tools: schlieren photography, ultraviolet imaging, and Raman spectroscopy. The schlieren system will take photos of the density differences in combusting flow, the ultraviolet movies will determine the location of the hydroxyl (OH) radical in the combustion flow, and the Raman spectroscopic measurements will provide the combustion temperature and amount of water (H2O), hydrogen (H2), and oxygen (O2) in the combustor. Marshall is providing overall program management, design and computational fluid dynamics (CFD) analyses, as well as funding for the work at Penn State. An existing, windowed combustor and several injectors will be provided by Rocketdyne--two injectors for the initial screening tests and one with an optimized design based on the best design found in the screening tests. Lewis will provide a nozzle and several injectors for the screening test program. The configuration of the injectors will be based on a design chosen by all the participants, and their elements will be based on the coaxial and impinging flow. Lewis also will provide the instrumentation for the flow-field measurements: schlieren, ultraviolet imaging, and Raman spectroscopy. In addition, thermocouples will measure heat flow on the injector face. Other traditional measurements of rocket performance will be made as well: chamber pressure, mass flow of each propellant, purge flow, and the barrier cooling gas flow. Penn State will conduct single-element testing with the injector elements from both the Rocketdyne and the jointly designed injectors. A wide variety of traditional and nontraditional injector designs will be tested in this program. The results will be valuable in computational fluid dynamics code validation and overall rocket combustion efficiency measurements. Correlations between combustion efficiency, laser measurements of species, and ultraviolet and visible light photography will also be made. Thus far, several different single-element injectors have been tested at Penn State and Lewis. The experimental setup of a rocket engine with a viewing window is shown. The combusting flow is shown. The results are helping engineers design the many element injectors.

  4. Electrets used in measuring rocket exhaust effluents from the space shuttle's solid rocket booster during static test firing, DM-3

    NASA Technical Reports Server (NTRS)

    Susko, M.

    1979-01-01

    The purpose of this experimental research was to compare Marshall Space Flight Center's electrets with Thiokol's fixed flow air samplers during the Space Shuttle Solid Rocket Booster Demonstration Model-3 static test firing on October 19, 1978. The measurement of rocket exhaust effluents by Thiokol's samplers and MSFC's electrets indicated that the firing of the Solid Rocket Booster had no significant effect on the quality of the air sampled. The highest measurement by Thiokol's samplers was obtained at Plant 3 (site 11) approximately 8 km at a 113 degree heading from the static test stand. At sites 11, 12, and 5, Thiokol's fixed flow air samplers measured 0.0048, 0.00016, and 0.00012 mg/m3 of CI. Alongside the fixed flow measurements, the electret counts from X-ray spectroscopy were 685, 894, and 719 counts. After background corrections, the counts were 334, 543, and 368, or an average of 415 counts. An additional electred, E20, which was the only measurement device at a site approximately 20 km northeast from the test site where no power was available, obtained 901 counts. After background correction, the count was 550. Again this data indicate there was no measurement of significant rocket exhaust effluents at the test site.

  5. Structural damage claims resulting from acoustic environments developed during static test firing of rocket engines

    NASA Technical Reports Server (NTRS)

    Guest, S. H.; Slone, R. M., Jr.

    1972-01-01

    During static testing of multi-million pound thrust rocket engines areas adjacent to the test site have been subjected to the noise generated by rocket engines. Structural damage claims and subjective complaints were filed by those who alleged that the noise levels were excessive. The statistical analysis of these claims and complaints which were filed during these rocket engine development programs led to the determination of a relationship between claims and overall sound pressure level. Community exposure criteria are then assessed based on what can be considered allowable acoustic environments from large rocket engines.

  6. The Max Launch Abort System - Concept, Flight Test, and Evolution

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    2014-01-01

    The NASA Engineering and Safety Center (NESC) is an independent engineering analysis and test organization providing support across the range of NASA programs. In 2007 NASA was developing the launch escape system for the Orion spacecraft that was evolved from the traditional tower-configuration escape systems used for the historic Mercury and Apollo spacecraft. The NESC was tasked, as a programmatic risk-reduction effort to develop and flight test an alternative to the Orion baseline escape system concept. This project became known as the Max Launch Abort System (MLAS), named in honor of Maxime Faget, the developer of the original Mercury escape system. Over the course of approximately two years the NESC performed conceptual and tradeoff analyses, designed and built full-scale flight test hardware, and conducted a flight test demonstration in July 2009. Since the flight test, the NESC has continued to further develop and refine the MLAS concept.

  7. Radiological effluents released from nuclear rocket and ramjet engine tests at the Nevada Test Site 1959 through 1969: Fact Book

    SciTech Connect

    Friesen, H.N.

    1995-06-01

    Nuclear rocket and ramjet engine tests were conducted on the Nevada Test Site (NTS) in Area 25 and Area 26, about 80 miles northwest of Las Vegas, Nevada, from July 1959 through September 1969. This document presents a brief history of the nuclear rocket engine tests, information on the off-site radiological monitoring, and descriptions of the tests.

  8. Development Testing of 1-Newton ADN-Based Rocket Engines

    NASA Astrophysics Data System (ADS)

    Anflo, K.; Gronland, T.-A.; Bergman, G.; Nedar, R.; Thormählen, P.

    2004-10-01

    With the objective to reduce operational hazards and improve specific and density impulse as compared with hydrazine, the Research and Development (R&D) of a new monopropellant for space applications based on AmmoniumDiNitramide (ADN), was first proposed in 1997. This pioneering work has been described in previous papers1,2,3,4 . From the discussion above, it is clear that cost savings as well as risk reduction are the main drivers to develop a new generation of reduced hazard propellants. However, this alone is not enough to convince a spacecraft builder to choose a new technology. Cost, risk and schedule reduction are good incentives, but a spacecraft supplier will ask for evidence that this new propulsion system meets a number of requirements within the following areas: This paper describes the ongoing effort to develop a storable liquid monopropellant blend, based on AND, and its specific rocket engines. After building and testing more than 20 experimental rocket engines, the first Engineering Model (EM-1) has now accumulated more than 1 hour of firing-time. The results from test firings have validated the design. Specific impulse, combustion stability, blow-down capability and short pulse capability are amongst the requirements that have been demonstrated. The LMP-103x propellant candidate has been stored for more than 1 year and initial material compatibility screening and testing has started. 1. Performance &life 2. Impact on spacecraft design &operation 3. Flight heritage Hereafter, the essential requirements for some of these areas are outlined. These issues are discussed in detail in a previous paper1 . The use of "Commercial Of The Shelf" (COTS) propulsion system components as much as possible is essential to minimize the overall cost, risk and schedule. This leads to the conclusion that the Technology Readiness Level (TRL) 5 has been reached for the thruster and propellant. Furthermore, that the concept of ADN-based propulsion is feasible.

  9. Pegasus Rocket Booster Being Prepared for X-43A/Hyper-X Flight Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Technicians prepare a Pegasus rocket booster for flight tests with the X-43A 'Hypersonic Experimental Vehicle,' or 'Hyper-X.' The X-43A, which will be attached to the Pegasus booster and drop launched from NASA's B-52 mothership, was developed to research dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.

  10. Pegasus Rocket Booster Being Prepared for X-43A/Hyper-X Flight Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A close-up view of the front end of a Pegasus rocket booster being prepared by technicians at the Dryden Flight Research Center for flight tests with the X-43A 'Hypersonic Experimental Vehicle,' or 'Hyper-X.' The X-43A, which will be attached to the Pegasus booster and drop launched from NASA's B-52 mothership, was developed to research dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.

  11. A new one-man submarine is tested as vehicle for solid rocket booster retrieval

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A mockup of a solid rocket booster nozzle is lowered into the waters of the Atlantic during a test of a new booster retrieval method. A one-man submarine known as DeepWorker 2000 is being tested on its ability to duplicate the sometimes hazardous job United Space Alliance (USA) divers perform to recover the expended boosters in the ocean after a launch. The boosters splash down in an impact area about 140 miles east of Jacksonville and after recovery are towed back to KSC for refurbishment by the specially rigged recovery ships. DeepWorker 2000 will be used in a demonstration during retrieval operations after the upcoming STS-101 launch. The submarine pilot will demonstrate capabilities to cut tangled parachute riser lines using a manipulator arm and attach a Diver Operator Plug to extract water and provide flotation for the booster. DeepWorker 2000 was built by Nuytco Research Ltd., North Vancouver, British Columbia. It is 8.25 feet long, 5.75 feet high, and weighs 3,800 pounds. USA is a prime contractor to NASA for the Space Shuttle program.

  12. Launch Deployment Assembly Extravehicular Activity Neutral Buoyancy Development Test Report

    NASA Technical Reports Server (NTRS)

    Loughead, T.

    1996-01-01

    This test evaluated the Launch Deployment Assembly (LDA) design for Extravehicular Activity (EVA) work sites (setup, igress, egress), reach and visual access, and translation required for cargo item removal. As part of the LDA design, this document describes the method and results of the LDA EVA Neutral Buoyancy Development Test to ensure that the LDA hardware support the deployment of the cargo items from the pallet. This document includes the test objectives, flight and mockup hardware description, descriptions of procedures and data collection used in the testing, and the results of the development test at the National Aeronautics and Space Administrations (NASA) Marshall Space Flight Center (MSFC) Neutral Buoyancy Simulator (NBS).

  13. Design and Testing of a Liquid Nitrous Oxide and Ethanol Fueled Rocket Engine

    SciTech Connect

    Youngblood, Stewart

    2015-08-01

    A small-scale, bi-propellant, liquid fueled rocket engine and supporting test infrastructure were designed and constructed at the Energetic Materials Research and Testing Center (EMRTC). This facility was used to evaluate liquid nitrous oxide and ethanol as potential rocket propellants. Thrust and pressure measurements along with high-speed digital imaging of the rocket exhaust plume were made. This experimental data was used for validation of a computational model developed of the rocket engine tested. The developed computational model was utilized to analyze rocket engine performance across a range of operating pressures, fuel-oxidizer mixture ratios, and outlet nozzle configurations. A comparative study of the modeling of a liquid rocket engine was performed using NASA CEA and Cantera, an opensource equilibrium code capable of being interfaced with MATLAB. One goal of this modeling was to demonstrate the ability of Cantera to accurately model the basic chemical equilibrium, thermodynamics, and transport properties for varied fuel and oxidizer operating conditions. Once validated for basic equilibrium, an expanded MATLAB code, referencing Cantera, was advanced beyond CEAs capabilities to predict rocket engine performance as a function of supplied propellant flow rate and rocket engine nozzle dimensions. Cantera was found to comparable favorably to CEA for making equilibrium calculations, supporting its use as an alternative to CEA. The developed rocket engine performs as predicted, demonstrating the developedMATLAB rocket engine model was successful in predicting real world rocket engine performance. Finally, nitrous oxide and ethanol were shown to perform well as rocket propellants, with specific impulses experimentally recorded in the range of 250 to 260 seconds.

  14. Ares Launch Vehicles Development Awakens Historic Test Stands at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.; Burt, Richard K.

    2008-01-01

    This paper chronicles the rebirth of two national rocket testing assets located at NASA's Marshall Space Flight Center: the Dynamic Test Stand (also known as the Ground Vibration Test Stand) and the Static Test Stand (also known as the Main Propulsion Test Stand). It will touch on the historical significance of these special facilities, while introducing the requirements driving modifications for testing a new generation space transportation system, which is set to come on line after the Space Shuttle is retired in 2010. In many ways, America's journey to explore the Moon begins at the Marshall Center, which is developing the Ares I crew launch vehicle and the Ares V cargo launch vehicle, along with managing the Lunar Precursor Robotic Program and leading the Lunar Lander descent stage work, among other Constellation Program assignments. An important component of this work is housed in Marshall's Engineering Directorate, which manages more than 40 facilities capable of a full spectrum of rocket and space transportation technology testing - from small components to full-up engine systems. The engineers and technicians who operate these test facilities have more than a thousand years of combined experience in this highly specialized field. Marshall has one of the few government test groups in the United States with responsibility for the overall performance of a test program from conception to completion. The Test Laboratory has facilities dating back to the early 1960s, when the test stands needed for the Apollo Program and other scientific endeavors were commissioned and built along the Marshall Center's southern boundary, with logistics access by air, railroad, and barge or boat on the Tennessee River. NASA and its industry partners are designing and developing a new human-rated system based on the requirements for safe, reliable, and cost-effective transportation solutions. Given below are summaries of the Dynamic Test Stand and the Static Test Stand capabilities, along with an introduction to the new missions that these sleeping giants will be fulfilling as NASA readies the Ares I for service in the 2015 timeframe, and plans the development work for fielding the Ares V late next decade (fig. 1). Validating modern computer design models and techniques requires the sorts of data that can only be generated by these one-of-a-kind facilities.

  15. Ares Launch Vehicle Transonic Buffet Testing and Analysis Techniques

    NASA Technical Reports Server (NTRS)

    Piatak, David J.; Sekula, Martin K.; Rausch, Russ D.

    2010-01-01

    It is necessary to define the launch vehicle buffet loads to ensure that structural components and vehicle subsystems possess adequate strength, stress, and fatigue margins when the vehicle structural dynamic response to buffet forcing functions are considered. In order to obtain these forcing functions, the accepted method is to perform wind-tunnel testing of a rigid model instrumented with hundreds of unsteady pressure transducers designed to measure the buffet environment across the desired frequency range. The buffet wind-tunnel test program for the Ares Crew Launch Vehicle employed 3.5 percent scale rigid models of the Ares I and Ares I-X launch vehicles instrumented with 256 unsteady pressure transducers each. These models were tested at transonic conditions at the Transonic Dynamics Tunnel at NASA Langley Research Center. The ultimate deliverable of the Ares buffet test program are buffet forcing functions (BFFs) derived from integrating the measured fluctuating pressures on the rigid wind-tunnel models. These BFFs are then used as input to a multi-mode structural analysis to determine the vehicle response to buffet and the resulting buffet loads and accelerations. This paper discusses the development of the Ares I and I-X rigid buffet model test programs from the standpoint of model design, instrumentation system design, test implementation, data analysis techniques to yield final products, and presents normalized sectional buffet forcing function root-mean-squared levels.

  16. Acoustic-Structure Interaction in Rocket Engines: Validation Testing

    NASA Technical Reports Server (NTRS)

    Davis, R. Benjamin; Joji, Scott S.; Parks, Russel A.; Brown, Andrew M.

    2009-01-01

    While analyzing a rocket engine component, it is often necessary to account for any effects that adjacent fluids (e.g., liquid fuels or oxidizers) might have on the structural dynamics of the component. To better characterize the fully coupled fluid-structure system responses, an analytical approach that models the system as a coupled expansion of rigid wall acoustic modes and in vacuo structural modes has been proposed. The present work seeks to experimentally validate this approach. To experimentally observe well-coupled system modes, the test article and fluid cavities are designed such that the uncoupled structural frequencies are comparable to the uncoupled acoustic frequencies. The test measures the natural frequencies, mode shapes, and forced response of cylindrical test articles in contact with fluid-filled cylindrical and/or annular cavities. The test article is excited with a stinger and the fluid-loaded response is acquired using a laser-doppler vibrometer. The experimentally determined fluid-loaded natural frequencies are compared directly to the results of the analytical model. Due to the geometric configuration of the test article, the analytical model is found to be valid for natural modes with circumferential wave numbers greater than four. In the case of these modes, the natural frequencies predicted by the analytical model demonstrate excellent agreement with the experimentally determined natural frequencies.

  17. Software for Preprocessing Data From Rocket-Engine Tests

    NASA Technical Reports Server (NTRS)

    Cheng, Chiu-Fu

    2003-01-01

    Three computer programs have been written to preprocess digitized outputs of sensors during rocket-engine tests at Stennis Space Center (SSC). The programs apply exclusively to the SSC E test-stand complex and utilize the SSC file format. The programs are the following: (1) Engineering Units Generator (EUGEN) converts sensor-output-measurement data to engineering units. The inputs to EUGEN are raw binary test-data files, which include the voltage data, a list identifying the data channels, and time codes. EUGEN effects conversion by use of a file that contains calibration coefficients for each channel. (2) QUICKLOOK enables immediate viewing of a few selected channels of data, in contradistinction to viewing only after post-test processing (which can take 30 minutes to several hours depending on the number of channels and other test parameters) of data from all channels. QUICKLOOK converts the selected data into a form in which they can be plotted in engineering units by use of Winplot. (3) EUPLOT provides a quick means for looking at data files generated by EUGEN without the necessity of relying on the PVWAVE based plotting software.

  18. Software for Preprocessing Data from Rocket-Engine Tests

    NASA Technical Reports Server (NTRS)

    Cheng, Chiu-Fu

    2004-01-01

    Three computer programs have been written to preprocess digitized outputs of sensors during rocket-engine tests at Stennis Space Center (SSC). The programs apply exclusively to the SSC E test-stand complex and utilize the SSC file format. The programs are the following: Engineering Units Generator (EUGEN) converts sensor-output-measurement data to engineering units. The inputs to EUGEN are raw binary test-data files, which include the voltage data, a list identifying the data channels, and time codes. EUGEN effects conversion by use of a file that contains calibration coefficients for each channel. QUICKLOOK enables immediate viewing of a few selected channels of data, in contradistinction to viewing only after post-test processing (which can take 30 minutes to several hours depending on the number of channels and other test parameters) of data from all channels. QUICKLOOK converts the selected data into a form in which they can be plotted in engineering units by use of Winplot (a free graphing program written by Rick Paris). EUPLOT provides a quick means for looking at data files generated by EUGEN without the necessity of relying on the PV-WAVE based plotting software.

  19. Software for Preprocessing Data From Rocket-Engine Tests

    NASA Technical Reports Server (NTRS)

    Cheng, Chiu-Fu

    2002-01-01

    Three computer programs have been written to preprocess digitized outputs of sensors during rocket-engine tests at Stennis Space Center (SSC). The programs apply exclusively to the SSC "E" test-stand complex and utilize the SSC file format. The programs are the following: 1) Engineering Units Generator (EUGEN) converts sensor-output-measurement data to engineering units. The inputs to EUGEN are raw binary test-data files, which include the voltage data, a list identifying the data channels, and time codes. EUGEN effects conversion by use of a file that contains calibration coefficients for each channel; 2) QUICKLOOK enables immediate viewing of a few selected channels of data, in contradistinction to viewing only after post test processing (which can take 30 minutes to several hours depending on the number of channels and other test parameters) of data from all channels. QUICKLOOK converts the selected data into a form in which they can be plotted in engineering units by use of Winplot (a free graphing program written by Rick Paris); and 3) EUPLOT provides a quick means for looking at data files generated by EUGEN without the necessity of relying on the PVWAVE based plotting software.

  20. Rehabilitation of the Rocket Vehicle Integration Test Stand at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Ray, Ronald J.; Phillips, Paul

    2005-01-01

    Since initial use in 1958 for the X-15 rocket-powered research airplane, the Rocket Engine Test Facility has proven essential for testing and servicing rocket-powered vehicles at Edwards Air Force Base. For almost two decades, several successful flight-test programs utilized the capability of this facility. The Department of Defense has recently demonstrated a renewed interest in propulsion technology development with the establishment of the National Aerospace Initiative. More recently, the National Aeronautics and Space Administration is undergoing a transformation to realign the organization, focusing on the Vision for Space Exploration. These initiatives provide a clear indication that a very capable ground-test stand at Edwards Air Force Base will be beneficial to support the testing of future access-to-space vehicles. To meet the demand of full integration testing of rocket-powered vehicles, the NASA Dryden Flight Research Center, the Air Force Flight Test Center, and the Air Force Research Laboratory have combined their resources in an effort to restore and upgrade the original X-15 Rocket Engine Test Facility to become the new Rocket Vehicle Integration Test Stand. This report describes the history of the X-15 Rocket Engine Test Facility, discusses the current status of the facility, and summarizes recent efforts to rehabilitate the facility to support potential access-to-space flight-test programs. A summary of the capabilities of the facility is presented and other important issues are discussed.

  1. Effluent monitoring of the December 10, 1974, Titan 3-E launch at Air Force Eastern Test Range, Florida

    NASA Technical Reports Server (NTRS)

    Wornom, D. E.; Woods, D. C.

    1978-01-01

    Surface and airborne field measurements of the cloud behavior and effluent dispersion from a solid rocket motor launch vehicle are presented. The measurements were obtained as part of a continuing launch vehicle effluent monitoring program to obtain experimental field measurements in order to evaluate a model used to predict launch vehicle environmental impact. Results show that the model tends to overpredict effluent levels.

  2. Exhaust gas treatment in testing nuclear rocket engines

    NASA Astrophysics Data System (ADS)

    Zweig, Herbert R.; Fischler, Stanley; Wagner, William R.

    1993-01-01

    With the exception of the last test series of the Rover program, Nuclear Furnace 1, test-reactor and rocket engine hydrogen gas exhaust generated during the Rover/NERVA program was released directly to the atmosphere, without removal of the associated fission products and other radioactive debris. Current rules for nuclear facilities (DOE Order 5480.6) are far more protective of the general environment; even with the remoteness of the Nevada Test Site, introduction of potentially hazardous quantities of radioactive waste into the atmosphere must be scrupulously avoided. The Rocketdyne treatment concept features a diffuser to provide altitude simulation and pressure recovery, a series of heat exchangers to gradually cool the exhaust gas stream to 100 K, and an activated charcoal bed for adsorption of inert gases. A hydrogen-gas fed ejector provides auxiliary pumping for startup and shutdown of the engine. Supplemental filtration to remove particulates and condensed phases may be added at appropriate locations in the system. The clean hydrogen may be exhausted to the atmosphere and flared, or the gas may be condensed and stored for reuse in testing. The latter approach totally isolates the working gas from the environment.

  3. Launch summary for 1978

    NASA Technical Reports Server (NTRS)

    Vostreys, R. W.

    1978-01-01

    Sounding rocket, satellite, and space probe launchings are presented. Time, date, and location of the launches are provided. The sponsoring countries and the institutions responsible for the launch are listed.

  4. Cracking Codes & Launching Rockets

    ERIC Educational Resources Information Center

    Paoletti, Teo J.

    2013-01-01

    To engage students, many teachers wish to connect the mathematics they are teaching to other branches of mathematics or to real-world applications. The lesson presented in this article, which uses the algebraic skill of finding the equation of a line between two points and the geometric axiom that any two points define a line, does both. A…

  5. Testing Strategies and Methodologies for the Max Launch Abort System

    NASA Technical Reports Server (NTRS)

    Schaible, Dawn M.; Yuchnovicz, Daniel E.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center (NESC) was tasked to develop an alternate, tower-less launch abort system (LAS) as risk mitigation for the Orion Project. The successful pad abort flight demonstration test in July 2009 of the "Max" launch abort system (MLAS) provided data critical to the design of future LASs, while demonstrating the Agency s ability to rapidly design, build and fly full-scale hardware at minimal cost in a "virtual" work environment. Limited funding and an aggressive schedule presented a challenge for testing of the complex MLAS system. The successful pad abort flight demonstration test was attributed to the project s systems engineering and integration process, which included: a concise definition of, and an adherence to, flight test objectives; a solid operational concept; well defined performance requirements, and a test program tailored to reducing the highest flight test risks. The testing ranged from wind tunnel validation of computational fluid dynamic simulations to component ground tests of the highest risk subsystems. This paper provides an overview of the testing/risk management approach and methodologies used to understand and reduce the areas of highest risk - resulting in a successful flight demonstration test.

  6. A new one-man submarine is tested as vehicle for solid rocket booster retrieval

    NASA Technical Reports Server (NTRS)

    2000-01-01

    After a successful dive, the one-man submarine known as DeepWorker 2000 is lifted from Atlantic waters near Cape Canaveral, Fla., onto the deck of the Liberty Star, one of two KSC solid rocket booster recovery ships. Inside the sub is the pilot, Anker Rasmussen. The sub is being tested on its ability to duplicate the sometimes hazardous job United Space Alliance (USA) divers perform to recover the expended boosters in the ocean after a launch. The boosters splash down in an impact area about 140 miles east of Jacksonville and after recovery are towed back to KSC for refurbishment by the specially rigged recovery ships. DeepWorker 2000 will be used in a demonstration during retrieval operations after the upcoming STS-101 launch. The submarine pilot will demonstrate capabilities to cut tangled parachute riser lines using a manipulator arm and attach a Diver Operator Plug to extract water and provide flotation for the booster. DeepWorker 2000 was built by Nuytco Research Ltd., North Vancouver, British Columbia. It is 8.25 feet long, 5.75 feet high, and weighs 3,800 pounds. USA is a prime contractor to NASA for the Space Shuttle program.

  7. A new one-man submarine is tested as vehicle for solid rocket booster retrieval

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At left, a manipulator arm on a one-man submarine demonstrates its ability to cut tangled parachute riser lines and place a Diver Operator Plug (top right) inside a mock solid rocket booster nozzle (center). Known as DeepWorker 2000, the sub is being tested on its ability to duplicate the sometimes hazardous job United Space Alliance (USA) divers perform to recover the expended boosters in the ocean after a launch. The boosters splash down in an impact area about 140 miles east of Jacksonville and after recovery are towed back to KSC for refurbishment by the specially rigged recovery ships. DeepWorker 2000 will be used in a demonstration during retrieval operations after the upcoming STS-101 launch. The submarine pilot will demonstrate capabilities to cut tangled parachute riser lines using a manipulator arm and attach the DOP to extract water and provide flotation for the booster. DeepWorker 2000 was built by Nuytco Research Ltd., North Vancouver, British Columbia. It is 8.25 feet long, 5.75 feet high, and weighs 3,800 pounds. USA is a prime contractor to NASA for the Space Shuttle program.

  8. A new one-man submarine is tested as vehicle for solid rocket booster retrieval

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A Diver Operator Plug (DOP) is being pulled down into the ocean by a newly designed one-man submarine known as DeepWorker 2000. The activity is part of an operation to attach the plug to a mockup of a solid rocket booster nozzle. DeepWorker 2000 is being tested on its ability to duplicate the sometimes hazardous job United Space Alliance (USA) divers perform to recover the expended boosters in the ocean after a launch. The boosters splash down in an impact area about 140 miles east of Jacksonville and after recovery are towed back to KSC for refurbishment by the specially rigged recovery ships. DeepWorker 2000 will be used in a demonstration during retrieval operations after the upcoming STS-101 launch. The submarine pilot will demonstrate capabilities to cut tangled parachute riser lines using a manipulator arm and attach the DOP to extract water and provide flotation for the booster. DeepWorker 2000 was built by Nuytco Research Ltd., North Vancouver, British Columbia. It is 8.25 feet long, 5.75 feet high, and weighs 3,800 pounds. USA is a prime contractor to NASA for the Space Shuttle program.

  9. A new one-man submarine is tested as vehicle for solid rocket booster retrieval

    NASA Technical Reports Server (NTRS)

    2000-01-01

    From the deck of Liberty Star, one of two KSC solid rocket booster recovery ships, a crane lowers a one-man submarine into the ocean near Cape Canaveral, Fla. Called DeepWorker 2000, the sub is being tested on its ability to duplicate the sometimes hazardous job United Space Alliance (USA) divers perform to recover the expended boosters in the ocean after a launch. The boosters splash down in an impact area about 140 miles east of Jacksonville and after recovery are towed back to KSC for refurbishment by the specially rigged recovery ships. DeepWorker 2000 will be used in a demonstration during retrieval operations after the upcoming STS-101 launch. The submarine pilot will demonstrate capabilities to cut tangled parachute riser lines using a manipulator arm and attach a Diver Operator Plug to extract water and provide flotation for the booster. DeepWorker 2000 was built by Nuytco Research Ltd., North Vancouver, British Columbia. It is 8.25 feet long, 5.75 feet high, and weighs 3,800 pounds. USA is a prime contractor to NASA for the Space Shuttle program.

  10. A new one-man submarine is tested as vehicle for solid rocket booster retrieval

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The one-man submarine dubbed DeepWorker 2000 sits on the deck of Liberty Star, one of two KSC solid rocket booster recovery ships. The sub is being tested on its ability to duplicate the sometimes hazardous job United Space Alliance (USA) divers perform to recover the expended boosters in the ocean after a launch. The boosters splash down in an impact area about 140 miles east of Jacksonville and after recovery are towed back to KSC for refurbishment by the specially rigged recovery ships. DeepWorker 2000 will be used in a demonstration during retrieval operations after the upcoming STS-101 launch. The submarine pilot will demonstrate capabilities to cut tangled parachute riser lines using a manipulator arm and attach a Diver Operator Plug to extract water and provide flotation for the booster. DeepWorker 2000 was built by Nuytco Research Ltd., North Vancouver, British Columbia. It is 8.25 feet long, 5.75 feet high, and weighs 3,800 pounds. USA is a prime contractor to NASA for the Space Shuttle program.

  11. 40 CFR 61.43 - Emission testing-rocket firing or propellant disposal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Emission testing-rocket firing or propellant disposal. 61.43 Section 61.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium Rocket Motor Firing...

  12. 40 CFR 61.43 - Emission testing-rocket firing or propellant disposal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Emission testing-rocket firing or propellant disposal. 61.43 Section 61.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium Rocket Motor Firing...

  13. Reliability assessment of MEMS switches for space applications: laboratory and launch testing

    NASA Astrophysics Data System (ADS)

    O'Mahony, Conor; Olszewski, Oskar; Hill, Ronan; Houlihan, Ruth; Ryan, Cormac; Rodgers, Ken; Kelleher, Carmel; Duane, Russell; Hill, Martin

    2014-12-01

    A novel combination of ground-based and flight tests was employed to examine the reliability of capacitive radio-frequency microelectromechanical switches for use in space applications. Laboratory tests were initially conducted to examine the thermomechanical effects of packaging and space-like thermal stresses on the pull-in voltage of the devices; during this process it was observed that operational stability is highly dependent on the geometrical design of the switch and this must be taken in to account during the design stage. To further expose the switches to acceleration levels experienced during a space mission, they were launched on board a sounding rocket and then subjected to free-fall from a height of over 1.3?km with a resulting impact of over 3500g. Post launch analysis indicates that the switches are remarkably resilient to high levels of acceleration. Some evidence is also present to indicate that time-dependent strain relaxation in die attach epoxy materials may contribute to minor variations in device shape and performance.

  14. Aerodynamic Tests of the Space Launch System for Database Development

    NASA Technical Reports Server (NTRS)

    Pritchett, Victor E.; Mayle, Melody N.; Blevins, John A.; Crosby, William A.; Purinton, David C.

    2014-01-01

    The Aerosciences Branch (EV33) at the George C. Marshall Space Flight Center (MSFC) has been responsible for a series of wind tunnel tests on the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) vehicles. The primary purpose of these tests was to obtain aerodynamic data during the ascent phase and establish databases that can be used by the Guidance, Navigation, and Mission Analysis Branch (EV42) for trajectory simulations. The paper describes the test particulars regarding models and measurements and the facilities used, as well as database preparations.

  15. Start Me Up! J-2X Rocket Test - Duration: 59 seconds.

    NASA Video Gallery

    NASA engineers conducted the first in a new round of tests on the next-generation J-2X rocket engine Feb. 15 at Stennis Space Center. The 35-second test continued progress in development of the eng...

  16. Test Results for Entry Guidance Methods for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Jones, Robert E.

    2003-01-01

    There are a number of approaches to advanced guidance and control (AG&C) that have the potential for achieving the goals of significantly increasing reusable launch vehicle (RLV) safety and reliability, and reducing the cost. This paper examines some approaches to entry guidance. An effort called Integration and Testing of Advanced Guidance and Control Technologies (ITAGCT) has recently completed a rigorous testing phase where these algorithms faced high-fidelity vehicle models and were required to perform a variety of representative tests. The algorithm developers spent substantial effort improving the algorithm performance in the testing. This paper lists the test cases used to demonstrate that the desired results are achieved, shows an automated test scoring method that greatly reduces the evaluation effort required, and displays results of the tests. Results show a significant improvement over previous guidance approaches. The two best-scoring algorithm approaches show roughly equivalent results and are ready to be applied to future reusable vehicle concepts.

  17. Current and Future Rocket Propulsion Testing at NASA Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Ryan, H. M.; Rahman, S.; Gilbrech, R.

    2000-01-01

    Year 2000 has been an active one for large-scale propulsion testing at the NASA John C. Stennis Space Center. This paper highlights several of the current-year test programs conducted at the Stennis Space Center (SSC) including the X-33 Aerospike Engine, Ultra Low Cost Engine (ULCE) program, and the Hybrid Sounding Rocket (HYSR) program. Future directions in propulsion test are also introduced including the development of a large-scale Rocket Based Combined Cycle (RBCC) test facility.

  18. Solid Rocket Booster Hydraulic Pump Port Cap Joint Load Testing

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.; Murphy, N. C.

    2004-01-01

    The solid rocket booster uses hydraulic pumps fabricated from cast C355 aluminum alloy, with 17-4 PH stainless steel pump port caps. Corrosion-resistant steel, MS51830 CA204L self-locking screw thread inserts are installed into C355 pump housings, with A286 stainless steel fasteners installed into the insert to secure the pump port cap to the housing. In the past, pump port cap fasteners were installed to a torque of 33 Nm (300 in-lb). However, the structural analyses used a significantly higher nut factor than indicated during tests conducted by Boeing Space Systems. When the torque values were reassessed using Boeing's nut factor, the fastener preload had a factor of safety of less than 1, with potential for overloading the joint. This paper describes how behavior was determined for a preloaded joint with a steel bolt threaded into steel inserts in aluminum parts. Finite element models were compared with test results. For all initial bolt preloads, bolt loads increased as external applied loads increased. For higher initial bolt preloads, less load was transferred into the bolt, due to external applied loading. Lower torque limits were established for pump port cap fasteners and additional limits were placed on insert axial deformation under operating conditions after seating the insert with an initial preload.

  19. ALSAT-2A power subsystem behavior during launch, early operation, and in-orbit test

    NASA Astrophysics Data System (ADS)

    Larbi, N.; Attaba, M.; Beaufume, E.

    2012-09-01

    In 2006, Algerian Space Agency (ASAL) decided to design and built two optical Earth observation satellites. The first one, ALSAT-2A, was integrated and tested as a training and cooperation program with EADS Astrium. The second satellite ALSAT-2B will be integrated by ASAL engineers in the Satellite Development Center (CDS) at Oran in Algeria. On 12th July 2010, Algeria has launched ALSAT-2A onboard an Indian rocket PSLV-C15 from the Sriharikota launch base, Chennaï. ALSAT-2A is the first Earth observation satellite of the AstroSat-100 family; the design is based on the Myriade platform and comprising the first flight model of the New Astrosat Observation Modular Instrument (NAOMI). This Instrument offers a 2.5m ground resolution for the PAN channel and a 10m ground resolution for four multi-spectral channels which provides high imaging quality. The operations are performed from ALSAT-2 ground segment located in Ouargla (Algeria) and after the test phase ALSAT-2A provides successful images. ALSAT-2A electrical power subsystem (EPS) is composed of a Solar Array Generator (SAG ), a Li-ion battery dedicated to power storage and energy source during eclipse or high consumption phases and a Power Conditioning and Distribution Unit (PCDU). This paper focuses primarily on ALSAT-2A electrical power subsystem behavior during Launch and Early OPeration (LEOP) as well as In Orbit Test (IOT). The telemetry data related to the SAG voltage, current and temperature will be analyzed in addition to battery temperature, voltage, charge and discharge current. These parameters will be studied in function of satellite power consumption.

  20. NASA Ares I Launch Vehicle Upper Stage Reaction Control System (ReCS) Cold Flow Development Test Overview

    NASA Technical Reports Server (NTRS)

    Dervan, Melanie; Williams, Hunter; Holt, Kim; Sivak, Amy; Morris, Jon D.

    2010-01-01

    NASA s Ares I launch vehicle, consisting of a five segment solid rocket booster first stage and a liquid bi-propellant J2-X engine Upper Stage, is the vehicle that s been chosen to launch the Orion Crew Module, which will return humans to the Moon, Mars, and beyond. After First Stage booster separation, the Reaction Control System (ReCS), a monopropellant hydrazine system, will provide the Upper Stage element with three degrees of freedom control as needed. This paper provides an overview of the system level development testing that has taken place on the Ares I launch vehicle Upper Stage ReCS. The ReCS System Development Test Article (SDTA) was built as a flight representative water flow test article whose primary test objective was to obtain fluid system performance data to evaluate the integrate system performance characteristics and verify analytical models. Water is the industry standard for cold flow testing of hydrazine systems, because the densities are very close and the speeds of sound are well characterized. The completion of this development level test program was considered necessary to support the ReCS Critical Design Review. This paper will address the design approach taken in building the test article, the objectives of the test program, types of testing completed, general results, the ability of the program to meet the test objectives, and lessons learned

  1. Sounding rockets in Antarctica

    NASA Technical Reports Server (NTRS)

    Alford, G. C.; Cooper, G. W.; Peterson, N. E.

    1982-01-01

    Sounding rockets are versatile tools for scientists studying the atmospheric region which is located above balloon altitudes but below orbital satellite altitudes. Three NASA Nike-Tomahawk sounding rockets were launched from Siple Station in Antarctica in an upper atmosphere physics experiment in the austral summer of 1980-81. The 110 kg payloads were carried to 200 km apogee altitudes in a coordinated project with Arcas rocket payloads and instrumented balloons. This Siple Station Expedition demonstrated the feasibility of launching large, near 1,000 kg, rocket systems from research stations in Antarctica. The remoteness of research stations in Antarctica and the severe environment are major considerations in planning rocket launching expeditions.

  2. Launch summary for 1980

    NASA Technical Reports Server (NTRS)

    Vostreys, R. W.

    1981-01-01

    Sounding rockets, artificial Earth satellites, and space probes launched betweeen January 1 and December 31, 1980 are listed. Data tabulated for the rocket launchings show launching site, instruments carried, date of launch, agency rocket identification, sponsoring country, experiment discipline, peak altitude, and the experimenter or institution responsible. Tables for satellites and space probes show COSPAR designation, spacecraft name, country, launch date, epoch date, orbit type, apoapsis, periapsis and inclination period. The functions and responsibilities of the World Data Center and the areas of scientific interest at the seven subcenters are defined. An alphabetical listing of experimenters using the sounding rockets is also provided.

  3. A Sounding Rocket Payload to Test the Weak Equivalence Principle

    NASA Astrophysics Data System (ADS)

    Reasenberg, Robert D.; Phillips, James D.

    2014-03-01

    We are developing SR-POEM, a payload for detecting a possible violation of the weak equivalence principle (WEP) while on a sounding rocket's free-fall trajectory. We estimate an uncertainty of σ (η) <=10-17 from a single flight. The experiment consists of calibration maneuvers plus eight 120 s drops of the two test masses (TMs). The instrument orientation will be reversed between successive drops, which reverses the signal but leaves most systematic errors unchanged. Each TM comprises three bars and a Y-shaped connector. The six bars are in a hexagonal housing and stand in a plane perpendicular to the symmetry axis (Z axis) of the payload and close to its CM. At a distance of 0.3 m along the Z axis, there is a highly stable plate that holds six of our tracking frequency laser gauges (TFGs), which measure the distances to the bars. The TMs are surrounded by capacitance plates, which allow both measurement and control of TM position and orientation. A central theme of the design is the prevention and correction of systematic error. Temperature stability of the instrument is essential and, during the brief night-time flight, it is achieved passively. This work was supported in part by NASA grant NNX08AO04G.

  4. The use of programmable logic controllers (PLC) for rocket engine component testing

    NASA Technical Reports Server (NTRS)

    Nail, William; Scheuermann, Patrick; Witcher, Kern

    1991-01-01

    Application of PLCs to the rocket engine component testing at a new Stennis Space Center Component Test Facility is suggested as an alternative to dedicated specialized computers. The PLC systems are characterized by rugged design, intuitive software, fault tolerance, flexibility, multiple end device options, networking capability, and built-in diagnostics. A distributed PLC-based system is projected to be used for testing LH2/LOx turbopumps required for the ALS/NLS rocket engines.

  5. Common Data Acquisition Systems (DAS) Software Development for Rocket Propulsion Test (RPT) Test Facilities - A General Overview

    NASA Technical Reports Server (NTRS)

    Hebert, Phillip W., Sr.; Hughes, Mark S.; Davis, Dawn M.; Turowski, Mark P.; Holladay, Wendy T.; Marshall, PeggL.; Duncan, Michael E.; Morris, Jon A.; Franzl, Richard W.

    2012-01-01

    The advent of the commercial space launch industry and NASA's more recent resumption of operation of Stennis Space Center's large test facilities after thirty years of contractor control resulted in a need for a non-proprietary data acquisition system (DAS) software to support government and commercial testing. The software is designed for modularity and adaptability to minimize the software development effort for current and future data systems. An additional benefit of the software's architecture is its ability to easily migrate to other testing facilities thus providing future commonality across Stennis. Adapting the software to other Rocket Propulsion Test (RPT) Centers such as MSFC, White Sands, and Plumbrook Station would provide additional commonality and help reduce testing costs for NASA. Ultimately, the software provides the government with unlimited rights and guarantees privacy of data to commercial entities. The project engaged all RPT Centers and NASA's Independent Verification & Validation facility to enhance product quality. The design consists of a translation layer which provides the transparency of the software application layers to underlying hardware regardless of test facility location and a flexible and easily accessible database. This presentation addresses system technical design, issues encountered, and the status of Stennis' development and deployment.

  6. Propellant Densification Ground Testing Conducted for Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Tomsik, Thomas M.

    2000-01-01

    The NASA Glenn Research Center at Lewis Field has taken the lead in the development of practical densified cryogenic propellants for launch vehicle applications. The technology of subcooling cryogenic propellants below their normal boiling point to produce a denser fluid is one of the key process technologies necessary to meet the challenge of single-stage-to-orbit and reusable launch vehicles. Densified propellants are critical to lowering launch costs because they enable more propellant to be packed into a given unit volume, thus improving the performance by reducing the overall size and weight of the launch vehicle. This two-pronged research and test program has evolved into (1) conducting tank loading tests using densified liquid hydrogen and (2) developing two large-scale propellant densification systems that will be performance tested next year at Glenn. The propellant-loading test program was undertaken at Glenn in coordination with Lockheed Martin Michoud Space Systems. In this testing, the liquid hydrogen recirculation and densification process was simulated, and the thermal stratification of the densified propellant was recorded throughout the tank. The test article was a flight-weight tank constructed from composite materials similar to those to be used on the X-33 launch vehicle. The tank geometry as designed by Lockheed Martin had two cylindrical lobes with a center septum. Liquid hydrogen flow rate, pressure data, and temperature data plotted over time were collected while the subscale tank was filled with 27 R (15 K) densified liquid hydrogen propellant. This testing has validated mathematical models and demonstrated the readiness of densified propellant technology for near-term use. It marks the first time that such a process has been carried out with a multiple-lobe, flight-similar tank. Glenn researchers have also been working on providing a process and critical test data for the continuous production of densified liquid hydrogen (LH2) and densified liquid oxygen (LO2). Each densification production process uses a high-efficiency, subatmospheric boiling bath heat exchanger to cool the working fluid. A near triple-point hydrogen boiling bath is used to condition and subcool hydrogen to 27 R (15 K), and a nitrogen boiling bath is used to cool the liquid oxygen to 120 R (66.7 K). Multistage centrifugal compressors operating at cryogenic inlet conditions maintain the heat exchanger bath vapor pressure below 1 atm. The LO2 propellant densification unit shown in the photograph has a 30 lb/sec capacity, whereas the LH2 unit was designed to process 8 lb/sec of propellant. Each densification unit will be transported to Glenn's South Forty area after all fabrication work is completed sometime late next year. There the LO2 and LH2 densifier performance tests will be conducted with another larger Lockheed Martin tank designated the Structural Test Article (STA). This liquid oxygen tank is a full-scale, flight-weight, prototype aluminum tank designed for the X-33. It has a capacity of 20,000 gallons of LO2. The tank loading and recirculation testing planned for next year with STA will provide the data necessary for full-scale development of propellant densification technology.

  7. Launch Summary for 1979

    NASA Technical Reports Server (NTRS)

    Vostreys, R. W.

    1980-01-01

    Spacecraft launching for 1979 are identified and listed under the categories of (1) sounding rockets, and (2) artificial Earth satellites and space probes. The sounding rockets section includes a listing of the experiments, index of launch sites and tables of the meanings and codes used in the launch listing.

  8. NASA, ATK Successfully Test Solid Rocket Motor - Duration: 4 minutes, 37 seconds.

    NASA Video Gallery

    With a loud roar and mighty column of flame, NASA and ATK Aerospace Systems successfully completed a two-minute, full-scale test of the largest and most powerful solid rocket motor designed for fli...

  9. Launch vehicle effluent measurements during the May 12, 1977, Titan 3 launch at Air Force Eastern Test Range

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Bendura, R. J.; Woods, D. C.

    1979-01-01

    Airborne effluent measurements and cloud physical behavior for the May 21, 1977, Titan 3 launch from the Air Force Eastern Test Range, Fla. are presented. The monitoring program included airborne effluent measurements in situ in the launch cloud, visible and infrared photography of cloud growth and physical behavior, and limited surface collection of rain samples. Airborne effluent measurements included concentrations of HCl, NO, NOx, and aerosols as a function of time in the exhaust cloud. For the first time in situ particulate mass concentration and aerosol number density were measured as a function of time and size in the size range of 0.05 to 25 micro meters diameter. Measurement results were similar to those of earlier launch monitorings. Maximum HCl and NOx concentrations ranged from 10 ppm and 500 ppb, respectively, several minutes after launch to about 1 ppm and 100 ppb at 45 minutes after launch.

  10. Infrared Imagery of Solid Rocket Exhaust Plumes

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.; Houston, Janice D.

    2011-01-01

    The Ares I Scale Model Acoustic Test program consisted of a series of 18 solid rocket motor static firings, simulating the liftoff conditions of the Ares I five-segment Reusable Solid Rocket Motor Vehicle. Primary test objectives included acquiring acoustic and pressure data which will be used to validate analytical models for the prediction of Ares 1 liftoff acoustics and ignition overpressure environments. The test article consisted of a 5% scale Ares I vehicle and launch tower mounted on the Mobile Launch Pad. The testing also incorporated several Water Sound Suppression Systems. Infrared imagery was employed during the solid rocket testing to support the validation or improvement of analytical models, and identify corollaries between rocket plume size or shape and the accompanying measured level of noise suppression obtained by water sound suppression systems.

  11. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. Appendix F: Performance and trajectory for ALS/LRB launch vehicles

    NASA Technical Reports Server (NTRS)

    1989-01-01

    By simply combining two baseline pump-fed LOX/RP-1 Liquid Rocket Boosters (LRBs) with the Denver core, a launch vehicle (Option 1 Advanced Launch System (ALS)) is obtained that can perform both the 28.5 deg (ALS) mission and the polar orbit ALS mission. The Option 2 LRB was obtained by finding the optimum LOX/LH2 engine for the STS/LRB reference mission (70.5 K lb payload). Then this engine and booster were used to estimate ALS payload for the 28.5 deg inclination ALS mission. Previous studies indicated that the optimum number of STS/LRB engines is four. When the engine/booster sizing was performed, each engine had 478 K lb sea level thrust and the booster carried 625,000 lb of useable propellant. Two of these LRBs combined with the Denver core provided a launch vehicle that meets the payload requirements for both the ALS and STS reference missions. The Option 3 LRB uses common engines for the cores and boosters. The booster engines do not have the nozzle extension. These engines were sized as common ALS engines. An ALS launch vehicle that has six core engines and five engines per booster provides 109,100 lb payload for the 28.5 deg mission. Each of these LOX/LH2 LRBs carries 714,100 lb of useable propellant. It is estimated that the STS/LRB reference mission payload would be 75,900 lb.

  12. Acoustic-Modal Testing of the Ares I Launch Abort System Attitude Control Motor Valve

    NASA Technical Reports Server (NTRS)

    Davis, R. Benjamin; Fischbach, Sean R.

    2010-01-01

    The Attitude Control Motor (ACM) is being developed for use in the Launch Abort System (LAS) of NASA's Ares I launch vehicle. The ACM consists of a small solid rocket motor and eight actuated pintle valves that directionally allocate.thrust_- 1t.has-been- predicted-that significant unsteady. pressure.fluctuations.will.exist. inside the-valves during operation. The dominant frequencies of these oscillations correspond to the lowest several acoustic natural frequencies of the individual valves. An acoustic finite element model of the fluid volume inside the valve has been critical to the prediction of these frequencies and their associated mode shapes. This work describes an effort to experimentally validate the acoustic finite model of the valve with an acoustic modal test. The modal test involved instrumenting a flight-like valve with six microphones and then exciting the enclosed air with a loudspeaker. The loudspeaker was configured to deliver broadband noise at relatively high sound pressure levels. The aquired microphone signals were post-processed and compared to results generated from the acoustic finite element model. Initial comparisons between the test data and the model results revealed that additional model refinement was necessary. Specifically, the model was updated to implement a complex impedance boundary condition at the entrance to the valve supply tube. This boundary condition models the frequency-dependent impedance that an acoustic wave will encounter as it reaches the end of the supply tube. Upon invoking this boundary condition, significantly improved agreement between the test data and the model was realized.

  13. Technical Advisory Team (TAT) report on the rocket sled test accident of October 9, 2008.

    SciTech Connect

    Stofleth, Jerome H.; Dinallo, Michael Anthony; Medina, Anthony J.

    2009-01-01

    This report summarizes probable causes and contributing factors that led to a rocket motor initiating prematurely while employees were preparing instrumentation for an AIII rocket sled test at SNL/NM, resulting in a Type-B Accident. Originally prepared by the Technical Advisory Team that provided technical assistance to the NNSA's Accident Investigation Board, the report includes analyses of several proposed causes and concludes that the most probable source of power for premature initiation of the rocket motor was the independent battery contained in the HiCap recorder package. The report includes data, evidence, and proposed scenarios to substantiate the analyses.

  14. Propellant Densification for Launch Vehicles: Simulation and Testing 1999

    NASA Technical Reports Server (NTRS)

    Knowles, Timothy E.; Tomisk, Thomas M.; Greene, William D.

    1999-01-01

    One of the many key technologies required to make single-stage to orbit an actuality, the technology of sub-cooling cryogenic propellants below their normal saturation temperatures and thereby making them more dense, is unquestionably on its way towards full and practical realization. The technology of Propellant Densification has been the subject of an extensive research and development program overseen by Lockheed Martin Michoud Space Systems and NASA Glenn Research Center over the past several years. This paper presents a status report of this research and development. Specifically examined within this paper is the status of the current and continuing efforts on the mathematical simulation of the in-tank propellant densification process currently baselined for the Lockheed Martin VentureStar Reusable Launch Vehicle (RLV). Keys to this modeling effort are an understanding and quantification of the effects of thermal stratification and the ability to capture the complex and unique multiple section tank geometries being proposed for future launch vehicles. A simulation that properly captures these phenomena has been developed by Lockheed Martin. Also discussed is the significant test program that has been undertaken in coordination with NASA Glenn Research Center. In this testing, the liquid hydrogen recirculation and densification process was simulated and the thermal stratification of the densified propellant was recorded throughout the tank. This testing marks the first time that such a process has been carried out within a multiple-lobe, flight-similar tank. The results from this testing have gone a long way towards grounding the mathematical models and towards demonstrating the readiness of the technology for near-term use. A further and even more ambitious test program examining the production and utilization of densified propellants is being planned for late-autumn 1999. An overview of these plans is presented.

  15. Launch vehicle test and checkout plan. - Volume 2: Saturn 1B launch vehicle Skylab R (rescue) and AS-208 flow plan and listings

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The launch operations test and checkout plan is a planning document that establishes all launch site checkout activity, including the individual tests and sequence of testing required to fulfill the development center and KSC test and checkout requirements. This volume contains the launch vehicle test and checkout plan encompassing S-1B, S-4B, IU stage, and ground support equipment tests. The plan is based upon AS-208 flow utilizing a manned spacecraft, LUT 1, and launch pad 39B facilities.

  16. Air-Breathing Rocket Engines

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph depicts an air-breathing rocket engine prototype in the test bay at the General Applied Science Lab facility in Ronkonkoma, New York. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced Space Transportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  17. NASA Ares I Launch Vehicle First Stage Roll Control System Cold Flow Development Test Program Overview

    NASA Technical Reports Server (NTRS)

    Butt, Adam; Popp, Christopher G.; Holt, Kimberly A.; Pitts, Hank M.

    2010-01-01

    The Ares I launch vehicle is the selected design, chosen to return humans to the moon, Mars, and beyond. It is configured in two inline stages: the First Stage is a Space Shuttle derived five-segment Solid Rocket Booster and the Upper Stage is powered by a Saturn V derived J-2X engine. During launch, roll control for the First Stage (FS) is handled by a dedicated Roll Control System (RoCS) located on the connecting Interstage. That system will provide the Ares I with the ability to counteract induced roll torque while any induced yaw or pitch moments are handled by vectoring of the booster nozzle. This paper provides an overview of NASA s Ares I FS RoCS cold flow development test program including detailed test objectives, types of tests run to meet those objectives, an overview of the results, and applicable lessons learned. The test article was built and tested at the NASA Marshall Space Flight Center in Huntsville, AL. The FS RoCS System Development Test Article (SDTA) is a full scale, flight representative water flow test article whose primary objective was to obtain fluid system performance data to evaluate integrated system level performance characteristics and verify analytical models. Development testing and model correlation was deemed necessary as there is little historical precedent for similar large flow, pulsing systems such as the FS RoCS. The cold flow development test program consisted of flight-similar tanks, pressure regulators, and thruster valves, as well as plumbing simulating flight geometries, combined with other facility grade components and structure. Orifices downstream of the thruster valves were used to simulate the pressure drop through the thrusters. Additional primary objectives of this test program were to: evaluate system surge pressure (waterhammer) characteristics due to thruster valve operation over a range of mission duty cycles at various feed system pressures, evaluate temperature transients and heat transfer in the pressurization system, including regulator blowdown and propellant ullage performance, measure system pressure drops for comparison to analysis of tubing and components, and validate system activation and re-activation procedures for the helium pressurant system. Secondary objectives included: validating system processes for loading, unloading, and purging, validating procedures and system response for multiple failure scenarios, including relief valve operation, and evaluating system performance for contingency scenarios. The test results of the cold flow development test program are essential in validating the performance and interaction of the Roll Control System and anchoring analysis tools and results to a Critical Design Review level of fidelity.

  18. Using a geographical information system for monitoring space shuttle launches: Determining cumulative distribution of deposition and an empirical test of a spatial model

    NASA Astrophysics Data System (ADS)

    Duncan, Brean W.; Schmalzer, Paul A.

    1994-05-01

    Space shuttle launches produce localized hydrochloric acid deposition. The interaction of solid rocket motor exhaust and deluge water released on the pad at the time of launch results in the formation of an exhaust cloud. The spatial pattern and extent of deposition from the launch cloud are predicted by the rocket exhaust effluent diffusion (REED) model. The actual pattern of deposition has been mapped by field surveys for each shuttle launch since 1981. In this paper we use a geographical information system (GIS) to compare model predictions with ground patterns for 49 shuttle launches. We also compile cumulative maps of deposition patterns needed to consider long-term impacts. The direction of launch cloud movement did not differ significantly from model predictions. The REED model overpredicted both the area that received deposition and the maximum distance from the launch pad that deposition occurred. Severe vegetation damage was restricted to near-field deposition areas within 1980 m north of each launch pad. Total area impacted from launches has been 87.0 ha around pad 39A and 52.9 ha around pad 39B. Far-field deposition has caused leaf spotting from acid droplets or aluminum oxide over a wider and more variable area than near-field. A total of 19,397 ha has received deposition, but 63.6% of this area has received deposition only one time and 92.2% not more than three times. GIS techniques provide means to test spatial models and compile information useful for assessing cumulative impacts.

  19. Development Status of Reusable Rocket Engine

    NASA Astrophysics Data System (ADS)

    Yoshida, Makoto; Takada, Satoshi; Naruo, Yoshihiro; Niu, Kenichi

    A 30-kN rocket engine, a pilot engine, is being developed in Japan. Development of this pilot engine has been initiated in relation to a reusable sounding rocket, which is also being developed in Japan. This rocket takes off vertically, reaches an altitude of 100 km, lands vertically at the launch site, and is launched again within several days. Due to advantage of reusability, successful development of this rocket will mean that observation missions can be carried out more frequently and economically. In order to realize this rocket concept, the engines installed on the rocket should be characterized by reusability, long life, deep throttling and health monitoring, features which have not yet been established in Japanese rocket engines. To solve the engineering factors entitled by those features, a new design methodology, advanced engine simulations and engineering testing are being focused on in the pilot engine development stage. Especially in engineering testing, limit condition data is acquired to facilitate development of new diagnostic techniques, which can be applied by utilizing the mobility of small-size hardware. In this paper, the development status of the pilot engine is described, including fundamental design and engineering tests of the turbopump bearing and seal, turbine rig, injector and combustion chamber, and operation and maintenance concepts for one hundred flights by a reusable rocket are examined.

  20. Orion Launch Abort Vehicle Attitude Control Motor Testing

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Brauckmann, Gregory J.; Paschal, Keith B.; Chan, David T.; Walker, Eric L.; Foley, Robert; Mayfield, David; Cross, Jared

    2011-01-01

    Current Orion Launch Abort Vehicle (LAV) configurations use an eight-jet, solid-fueled Attitude Control Motor (ACM) to provide required vehicle control for all proposed abort trajectories. Due to the forward position of the ACM on the LAV, it is necessary to assess the effects of jet-interactions (JI) between the various ACM nozzle plumes and the external flow along the outside surfaces of the vehicle. These JI-induced changes in flight control characteristics must be accounted for in developing ACM operations and LAV flight characteristics. A test program to generate jet interaction aerodynamic increment data for multiple LAV configurations was conducted in the NASA Ames and NASA Langley Unitary Plan Wind Tunnels from August 2007 through December 2009. Using cold air as the simulant gas, powered subscale models were used to generate interaction data at subsonic, transonic, and supersonic test conditions. This paper presents an overview of the complete ACM JI experimental test program for Orion LAV configurations, highlighting ACM system modeling, nozzle scaling assumptions, experimental test techniques, and data reduction methodologies. Lessons learned are discussed, and sample jet interaction data are shown. These data, in conjunction with computational predictions, were used to create the ACM JI increments for all relevant flight databases.

  1. Rocket-Based Combined Cycle Flowpath Testing for Modes 1 and 4

    NASA Technical Reports Server (NTRS)

    Rice, Tharen

    2002-01-01

    Under sponsorship of the NASA Glenn Research Center (NASA GRC), the Johns Hopkins University Applied Physics Laboratory (JHU/APL) designed and built a five-inch diameter, Rocket-Based Combined Cycle (RBCC) engine to investigate mode 1 and mode 4 engine performance as well as Mach 4 inlet performance. This engine was designed so that engine area and length ratios were similar to the NASA GRC GTX engine is shown. Unlike the GTX semi-circular engine design, the APL engine is completely axisymmetric. For this design, a traditional rocket thruster was installed inside of the scramjet flowpath, along the engine centerline. A three part test series was conducted to determine Mode I and Mode 4 engine performance. In part one, testing of the rocket thruster alone was accomplished and its performance determined (average Isp efficiency = 90%). In part two, Mode 1 (air-augmented rocket) testing was conducted at a nominal chamber pressure-to-ambient pressure ratio of 100 with the engine inlet fully open. Results showed that there was neither a thrust increment nor decrement over rocket-only thrust during Mode 1 operation. In part three, Mode 4 testing was conducted with chamber pressure-to-ambient pressure ratios lower than desired (80 instead of 600) with the inlet fully closed. Results for this testing showed a performance decrease of 20% as compared to the rocket-only testing. It is felt that these results are directly related to the low pressure ratio tested and not the engine design. During this program, Mach 4 inlet testing was also conducted. For these tests, a moveable centerbody was tested to determine the maximum contraction ratio for the engine design. The experimental results agreed with CFD results conducted by NASA GRC, showing a maximum geometric contraction ratio of approximately 10.5. This report details the hardware design, test setup, experimental results and data analysis associated with the aforementioned tests.

  2. Rocket-Based Combined Cycle Flowpath Testing for Modes 1 and 4

    NASA Astrophysics Data System (ADS)

    Rice, Tharen

    2002-10-01

    Under sponsorship of the NASA Glenn Research Center (NASA GRC), the Johns Hopkins University Applied Physics Laboratory (JHU/APL) designed and built a five-inch diameter, Rocket-Based Combined Cycle (RBCC) engine to investigate mode 1 and mode 4 engine performance as well as Mach 4 inlet performance. This engine was designed so that engine area and length ratios were similar to the NASA GRC GTX engine is shown. Unlike the GTX semi-circular engine design, the APL engine is completely axisymmetric. For this design, a traditional rocket thruster was installed inside of the scramjet flowpath, along the engine centerline. A three part test series was conducted to determine Mode I and Mode 4 engine performance. In part one, testing of the rocket thruster alone was accomplished and its performance determined (average Isp efficiency = 90%). In part two, Mode 1 (air-augmented rocket) testing was conducted at a nominal chamber pressure-to-ambient pressure ratio of 100 with the engine inlet fully open. Results showed that there was neither a thrust increment nor decrement over rocket-only thrust during Mode 1 operation. In part three, Mode 4 testing was conducted with chamber pressure-to-ambient pressure ratios lower than desired (80 instead of 600) with the inlet fully closed. Results for this testing showed a performance decrease of 20% as compared to the rocket-only testing. It is felt that these results are directly related to the low pressure ratio tested and not the engine design. During this program, Mach 4 inlet testing was also conducted. For these tests, a moveable centerbody was tested to determine the maximum contraction ratio for the engine design. The experimental results agreed with CFD results conducted by NASA GRC, showing a maximum geometric contraction ratio of approximately 10.5. This report details the hardware design, test setup, experimental results and data analysis associated with the aforementioned tests.

  3. A facility for testing the acoustic combustion instability characteristics of solid rocket propellants

    NASA Technical Reports Server (NTRS)

    Mathes, H. B.

    1980-01-01

    A facility is described that has been specifically designed for small-scale laboratory testing of solid rocket propellants. A description of the facility is provided which includes the general plan of the facility and features related to personnel safety. One of the major activities in the facility is testing solid rocket propellants for combustion response to acoustic perturbations. A detailed discussion of acoustic instability testing is given including specially designed combustion apparatus, data acquisition, and signal conditioning. Techniques of data reduction are reviewed and some of the instrumentation problems that arise in this type of testing are mentioned along with practical solutions.

  4. Acoustic Measurements for Small Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Kenny, R. Jeremy

    2010-01-01

    Models have been developed to predict large solid rocket motor acoustic loads based on the scaling of small solid rocket motors. MSFC has measured several small solid rocket motors in horizontal and launch configurations to anchor these models. Solid Rocket Test Motor (SRTM) has ballistics similar to the Reusable Solid Rocket Motor (RSRM) therefore a good choice for acoustic scaling. Acoustic measurements were collected during the test firing of the Insulation Configuration Extended Length (ICXL) 7,6, and 8 (in firing order) in order to compare to RSRM horizontal firing data. The scope of this presentation includes: Acoustic test procedures and instrumentation implemented during the three SRTM firings and Data analysis method and general trends observed in the data.

  5. C/C composites for rocket chamber applications. Part 2: Fabrication and evaluation tests of rocket chamber

    NASA Astrophysics Data System (ADS)

    Sato, Masahiro; Tadano, Makoto; Ueda, Shuichi; Kuroda, Yukio; Kusaka, Kazuo; Suemitsu, Takeshi; Hasegawa, Satoshi; Kude, Yukinori

    1995-05-01

    Carbon fiber-reinforced carbon matrix (C/C) composites coated with SiC are promising candidates for use in the main structural materials of the body of spaceplanes and combustion chambers of rocket engines, because of their superior properties of high specific strength, specific modulus, and fracture strength at high temperatures. However, C/C composite has poor resistance to oxidation, and protection from the oxidating environment is crucial. Conventional C/C composites for use in the high-temperature components of rocket engines are coated with SiC. However, due to the difference in the thermal expansion rates of the SiC coating layer and the base materials, cracks occur in the SiC coating layer during the coating process, and oxygen diffuses to the base material through the cracks during repeated temperature cycling in the rocket combustion environment. To protect the base materials from oxidation at high temperatures, we have employed SiC C/C-coated composites with a modified matrix and also developed SiC C/C functionally gradient materials (FGM's). In this test series, three kinds of combustion chambers were constructed for the Reaction Control System (RCS) subscale engine of H-II Orbiting Plane (HOPE): (1) Conventional C/C composites, (2) SiC C/C-coated composites with a modified matrix, and (3) SiC C/C FGM's. Firing tests were performed at sea level at a temperature around 2000 K using nitrogen tetroxide (NTO)/monomethyl hydrazine (MMH) propellant to evaluate the durability of these chambers. This test series showed that conventional C/C composite developed no microcracks and delamination in the coating layer at 1940 K. Modified matrix C/C composite also did not suffer microcracks and delamination at the boundary between the SiC and the base materials when the inner surface temperature was 1875 K. However, microcracks were observed at injector flange surface after these test cycles. In the test series of FGM's chamber, it was shown that coating with FGM's seemed to effectively prevent permeation by the combustion gases after 2 cycles of 1940 K and that the FGM's chamber is a promising candidate for low thrust storable bipropellant engines. Graphite packing coupled with Gramet, which applied to the injector sealing, also seemed to be effective at assuring gas tightness in the test conditions.

  6. Loads analysis and testing of flight configuration solid rocket motor outer boot ring segments

    NASA Technical Reports Server (NTRS)

    Ahmed, Rafiq

    1990-01-01

    The loads testing on in-house-fabricated flight configuration Solid Rocket Motor (SRM) outer boot ring segments. The tests determined the bending strength and bending stiffness of these beams and showed that they compared well with the hand analysis. The bending stiffness test results compared very well with the finite element data.

  7. Formulation and Testing of Paraffin-Based Solid Fuels Containing Energetic Additives for Hybrid Rockets

    NASA Technical Reports Server (NTRS)

    Larson, Daniel B.; Boyer, Eric; Wachs,Trevor; Kuo, Kenneth K.; Story, George

    2012-01-01

    Many approaches have been considered in an effort to improve the regression rate of solid fuels for hybrid rocket applications. One promising method is to use a fuel with a fast burning rate such as paraffin wax; however, additional performance increases to the fuel regression rate are necessary to make the fuel a viable candidate to replace current launch propulsion systems. The addition of energetic and/or nano-sized particles is one way to increase mass-burning rates of the solid fuels and increase the overall performance of the hybrid rocket motor.1,2 Several paraffin-based fuel grains with various energetic additives (e.g., lithium aluminum hydride (LiAlH4) have been cast in an attempt to improve regression rates. There are two major advantages to introducing LiAlH4 additive into the solid fuel matrix: 1) the increased characteristic velocity, 2) decreased dependency of Isp on oxidizer-to-fuel ratio. The testing and characterization of these solid-fuel grains have shown that continued work is necessary to eliminate unburned/unreacted fuel in downstream sections of the test apparatus.3 Changes to the fuel matrix include higher melting point wax and smaller energetic additive particles. The reduction in particle size through various methods can result in more homogeneous grain structure. The higher melting point wax can serve to reduce the melt-layer thickness, allowing the LiAlH4 particles to react closer to the burning surface, thus increasing the heat feedback rate and fuel regression rate. In addition to the formulation of LiAlH4 and paraffin wax solid-fuel grains, liquid additives of triethylaluminum and diisobutylaluminum hydride will be included in this study. Another promising fuel formulation consideration is to incorporate a small percentage of RDX as an additive to paraffin. A novel casting technique will be used by dissolving RDX in a solvent to crystallize the energetic additive. After dissolving the RDX in a solvent chosen for its compatibility with both paraffin and RDX, the mixture will be combined with the melted paraffin. With the melting point of the paraffin far below the decomposition temperature of the RDX, the solvent will be boiled off, leaving the crystallized RDX embedded in the paraffin. At low percentages of RDX additive and with crystallized RDX surrounded by paraffin, the fuel grains will remain inert, maintaining a key benefit of hybrids in the safety of the solid fuel.

  8. Designing the SSTO rocket

    NASA Astrophysics Data System (ADS)

    Payton, Gary; Sponable, Jess M.

    1991-04-01

    A review is presented of single-stage-to-orbit (SSTO) rocket vehicle structures fabricated with off-the-shelf technology. The parallel development of the Advanced Launch Development Program (ALDP) and NASP technology gave many spinoffs required for supportable, robust SSTO rockets. The advanced materials, structures, subsystems, cryogenic tanks, rockets, CFDs, and design tools are well suited to SSTO rockets. Developments include lightweight thermoplastic tanks for hydrogen fuel, lightweight carbon-carbon panels able to withstand 3,000 F reentry temperatures, and the CFD analysis of linear rocket thrusters installed on a ballistic rocket. The ALDP has also provided operations concepts, manufacturing technologies, and materials such as aluminum-lithium.

  9. If Only Newton Had a Rocket.

    ERIC Educational Resources Information Center

    Hammock, Frank M.

    1988-01-01

    Shows how model rocketry can be included in physics curricula. Describes rocket construction, a rocket guide sheet, calculations and launch teams. Discusses the relationships of basic mechanics with rockets. (CW)

  10. Micro-Rockets for the Classroom.

    ERIC Educational Resources Information Center

    Huebner, Jay S.; Fletcher, Alice S.; Cato, Julia A.; Barrett, Jennifer A.

    1999-01-01

    Compares micro-rockets to commercial models and water rockets. Finds that micro-rockets are more advantageous because they are constructed with inexpensive and readily available materials and can be safely launched indoors. (CCM)

  11. Reusable launch vehicle: Technology development and test program

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The National Aeronautics and Space Administration (NASA) requested that the National Research Council (NRC) assess the Reusable Launch Vehicle (RLV) technology development and test programs in the most critical component technologies. At a time when discretionary government spending is under close scrutiny, the RLV program is designed to reduce the cost of access to space through a combination of robust vehicles and a streamlined infrastructure. Routine access to space has obvious benefits for space science, national security, commercial technologies, and the further exploration of space. Because of technological challenges, knowledgeable people disagree about the feasibility of a single-stage-to-orbit (SSTO) vehicle. The purpose of the RLV program proposed by NASA and industry contractors is to investigate the status of existing technology and to identify and advance key technology areas required for development and validation of an SSTO vehicle. This report does not address the feasibility of an SSTO vehicle, nor does it revisit the roles and responsibilities assigned to NASA by the National Transportation Policy. Instead, the report sets forth the NRC committee's findings and recommendations regarding the RLV technology development and test program in the critical areas of propulsion, a reusable cryogenic tank system (RCTS), primary vehicle structure, and a thermal protection system (TPS).

  12. Validation and Simulation of Ares I Scale Model Acoustic Test - 2 - Simulations at 5 Foot Elevation for Evaluation of Launch Mount Effects

    NASA Technical Reports Server (NTRS)

    Strutzenberg, Louise L.; Putman, Gabriel C.

    2011-01-01

    The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. Expanding from initial simulations of the ASMAT setup in a held down configuration, simulations have been performed using the Loci/CHEM computational fluid dynamics software for ASMAT tests of the vehicle at 5 ft. elevation (100 ft. real vehicle elevation) with worst case drift in the direction of the launch tower. These tests have been performed without water suppression and have compared the acoustic emissions for launch structures with and without launch mounts. In addition, simulation results have also been compared to acoustic and imagery data collected from similar live-fire tests to assess the accuracy of the simulations. Simulations have shown a marked change in the pattern of emissions after removal of the launch mount with a reduction in the overall acoustic environment experienced by the vehicle and the formation of highly directed acoustic waves moving across the platform deck. Comparisons of simulation results to live-fire test data showed good amplitude and temporal correlation and imagery comparisons over the visible and infrared wavelengths showed qualitative capture of all plume and pressure wave evolution features.

  13. Questions of testing rate and flexibility of rocket test benches, discussed on the basis of the test benches of Nitrochemie GMBH in Aschau

    NASA Technical Reports Server (NTRS)

    LEGRAND

    1987-01-01

    The rocket test benches are used to study burnup behavior by various methods. In the first ten months of 1966, 1578 shots were performed to test propellants, and 920 to test 14 thrust and pressure measurement projects.

  14. Synergistic Development, Test, and Qualification Approaches for the Ares I and V Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E.; Taylor, James L.; Patterson, Alan; Stephens, Samuel E.; Tyson, Richard W.; Hueter, Uwe

    2009-01-01

    The U.S. National Aeronautics and Space Administration is designing and developing the Ares I and Ares V launch vehicles for access to the International Space Station (ISS) and human exploration of the Moon. The Ares I consists of a first stage reusable five-segment solid rocket booster, a upper stage using a J-2X engine derived from heritage experience (Saturn and Space Shuttle External Tank programs), and the Orion crew exploration vehicle (CEV). The Ares V is designed to minimize the development and overall life-cycle costs by leveraging off of the Ares I design. The Ares V consists of two boosters, a core stage, an earth departure stage (EDS), and a shroud. The core stage and EDS use LH2/LO2 propellants, metallic propellant tanks, and composite dry structures. The core stage has six RS-68B upgraded Delta IV engines while the EDS uses a J-2X engine for second stage ascent and trans-lunar injection (TLI) burn. System and propulsion tests and qualification approaches for Ares V elements are being considered as follow-on extensions of the Ares I development program. Following Ares I IOC, testing will be conducted to verify the J-2X engine's orbital restart and TLI burn capability. The Ares I upper stage operation will be demonstrated through integrated stage development and acceptance testing. The EDS will undergo similar development and acceptance testing with additional testing to verify aspects of cryogenic propellant management, operation of sub-systems in a space simulation environment, and orbital re-start of the main propulsion system. RS-68B certification testing will be conducted along with integrated core stage development and acceptance testing. Structural testing of the Ares V EDS and core stage propellant tanks will be conducted similar to the Ares I upper stage. The structural qualification testing may be accomplished with separate propellant tank test articles. Structural development and qualification testing of the dry structure will be pursued as part of the design and development process. Especially critical is the development test program for the composite structures. The Ares V payload shroud will undergo acoustic, vibration, structural qualification, and deployment testing in a space simulation environment. Similar to Ares I, requirements for full-scale structural dynamic testing are being studied. Both Ares I and Ares V include validation flight testing as part of the qualification programs.

  15. Solid rocket booster thrust vector control subsystem verification test (V-2) report

    NASA Technical Reports Server (NTRS)

    Pagan, B.

    1979-01-01

    The results of the verification testing sequence V-2 performed on the space shuttle solid rocket booster thrust vector control subsystem are presented. A detailed history of the hot firings plus additional discussion of the auxiliary power unit and the hydraulic component performance is presented. The test objectives, data, and conclusions are included.

  16. Monomethylhydrazine versus hydrazine fuels - Test results using a 100 pound thrust bipropellant rocket engine

    NASA Technical Reports Server (NTRS)

    Smith, J. A.; Stechman, R. C.

    1981-01-01

    A test program was performed to evaluate hydrazine (N2H4) as a fuel for a 445 Newton (100 lbf) thrust bipropellant rocket engine. Results of testing with an identical thruster utilizing monomethylhydrazine (MMH) are included for comparison. Engine performance with hydrazine fuel was essentially identical to that experienced with monomethylhydrazine although higher combustor wall temperatures (approximately 400 F) were obtained with hydrazine. Results are presented which indicate that hydrazine as a fuel is compatible with Marquardt bipropellant rocket engines which use monomethylhydrazine as a baseline fuel.

  17. The Micro-X Imaging X-Ray Microcalorimeter Sounding Rocket Payload: Final Design and Performance Tests

    NASA Astrophysics Data System (ADS)

    Rutherford, John; Micro-X Collaboration

    2011-09-01

    The first operating set of transition edge sensors (TES) microcalorimeters in space will launch on a sounding rocket carrying the Micro-X imaging X-ray telescope in 2012. We present the final instrument flight design, as well as the results from initial performance tests. A spectral resolution of 2 eV is targeted across the science band of 0.3-2.5 keV. The 12x12 spectrometer array contains 128 active pixels on a 600 micron pitch, consisting of Au/Bi absorbers and Mo/Au bilayer TESs with a transition temperature of 100 mK. A SQUID time-division multiplexer will read out the array at 30 kHz, which is limited by the rocket telemetry. The TESs have been engineered with a 2 ms time constant to match the multiplexer. The detector array and two SQUID stages of the TDM readout system are accommodated in a lightweight Mg enclosure, which is mounted to the 50 mK stage of an adiabatic demagnetization refrigerator. A third SQUID amplification stage is located on the 1.6 K liquid He stage of the cryostat. An on-board 55-Fe source will fluoresce a Ca target, providing 3.7 and 4.0 keV calibration lines that will not interfere with the scientifically interesting energy band.

  18. Gouge initiation in high-velocity rocket sled testing

    SciTech Connect

    Tachau, R.D.M.; Trucano, T.G.; Yew, C.H.

    1994-07-01

    A model is presented which describes the formation of surface damage ``gouging`` on the rails that guide rocket sleds. An unbalanced sled can randomly cause a very shallow-angle, oblique impact between the sled shoe and the rail. This damage phenomenon has also been observed in high-velocity guns where the projectile is analogous to the moving sled shoe and the gun barrel is analogous to the stationary rail. At sufficiently high velocity, the oblique impact will produce a thin hot layer of soft material on the contact surfaces. Under the action of a normal moving load, the soft layer lends itself to an anti-symmetric deformation and the formation of a ``hump`` in front of the moving load. A gouge is formed when this hump is overrun by the sled shoe. The phenomenon is simulated numerically using the CTH strong shock physics code, and the results are in good agreement with experimental observation.

  19. Soda-Bottle Water Rockets.

    ERIC Educational Resources Information Center

    Kagan, David; And Others

    1995-01-01

    Provides instructions for the construction and launch of a two-liter plastic soda-bottle rocket and presents the author's theory of their motion during launch. Modeled predictions are compared with actual experimental data. Explains theory behind the motion of a water rocket during launch. (LZ)

  20. Genetic Algorithm Optimization of a Cost Competitive Hybrid Rocket Booster

    NASA Technical Reports Server (NTRS)

    Story, George

    2015-01-01

    Performance, reliability and cost have always been drivers in the rocket business. Hybrid rockets have been late entries into the launch business due to substantial early development work on liquid rockets and solid rockets. Slowly the technology readiness level of hybrids has been increasing due to various large scale testing and flight tests of hybrid rockets. One remaining issue is the cost of hybrids versus the existing launch propulsion systems. This paper will review the known state-of-the-art hybrid development work to date and incorporate it into a genetic algorithm to optimize the configuration based on various parameters. A cost module will be incorporated to the code based on the weights of the components. The design will be optimized on meeting the performance requirements at the lowest cost.

  1. Genetic Algorithm Optimization of a Cost Competitive Hybrid Rocket Booster

    NASA Technical Reports Server (NTRS)

    Story, George

    2014-01-01

    Performance, reliability and cost have always been drivers in the rocket business. Hybrid rockets have been late entries into the launch business due to substantial early development work on liquid rockets and later on solid rockets. Slowly the technology readiness level of hybrids has been increasing due to various large scale testing and flight tests of hybrid rockets. A remaining issue is the cost of hybrids vs the existing launch propulsion systems. This paper will review the known state of the art hybrid development work to date and incorporate it into a genetic algorithm to optimize the configuration based on various parameters. A cost module will be incorporated to the code based on the weights of the components. The design will be optimized on meeting the performance requirements at the lowest cost.

  2. Wind tunnel tests of space shuttle solid rocket booster insulation material in the aerothermal tunnel c

    NASA Technical Reports Server (NTRS)

    Hartman, A. S.; Nutt, K. W.

    1982-01-01

    Wind tunnel tests of the space shuttle Solid Rocket Booster Insulation were conducted in the von Karman Gas Dynamics Facility Tunnel C. For these tests, Tunnel C was run at Mach 4 with a total temperature of 1100-1440 and a total pressure of 100 psia. Cold wall heating rates were changed by varying the test article support wedge angle. Selected results are presented to illustrate the test techniques and typical data obtained.

  3. The space shuttle advanced solid rocket motor: Quality control and testing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Congressional committees that authorize the activities of NASA requested that the National Research Council (NRC) review the testing and quality assurance programs for the Advanced Solid Rocket Motor (ASRM) program. The proposed ASRM design incorporates numerous features that are significant departures from the Redesigned Solid Rocket Motor (RSRM). The NRC review concentrated mainly on these features. Primary among these are the steel case material, welding rather than pinning of case factory joints, a bolted field joint designed to close upon firing the rocket, continuous mixing and casting of the solid propellant in place of the current batch processes, use of asbestos-free insulation, and a lightweight nozzle. The committee's assessment of these and other features of the ASRM are presented in terms of their potential impact on flight safety.

  4. World Data Center A (rockets and satellites) catalogue of data. Volume 1, part A: Sounding rockets

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A cumulative listing of all scientifically successful rockets that have been identified from various sources is presented. The listing starts with the V-2 rocket launched on 7 March 1947 and contains all rockets identified up to 31 December 1971.

  5. Long Life Testing of Oxide-Coated Iridium/Rhenium Rockets

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.

    1995-01-01

    22-N class rockets, composed of a rhenium (Re) substrate, an iridium (Ir) coating, and an additional composite coating consisting of Ir and a ceramic oxide, were tested on gaseous oxygen/gaseous hydrogen (GO2/GH2) propellants. Two rockets were tested, one for nearly 39 hours at a nominal mixture ratio (MR) of 4.6 and chamber pressure (Pc) of 469 kPa, and the other for over 13 hours at a nominal MR of 5.8 and 621 kPa Pc. Four additional Ir/Re rockets, with a composite Ir-oxide coating fabricated using a modified process, were also tested, including one for 1.3 hours at a nominal MR of 16.7 and Pc of 503 kPa. The long lifetimes demonstrated on low MR GO2/GH2 suggest greatly extended chamber lifetimes (tens of hours) in the relatively low oxidizing combustion environments of Earth storable propellants. The oxide coatings could also serve as a protective coating in the near injector region, where a still-mixing flowfield may cause degradation of the Ir layer. Operation at MR close to 17 suggests that oxide-coated Ir/Re rockets could be used in severely oxidizing combustion environments, such as high MR GO2/GH2, oxygen/hydrocarbon, and liquid gun propellants.

  6. A Rocket Powered Single-Stage-to-Orbit Launch Vehicle With U.S. and Soviet Engineers

    NASA Technical Reports Server (NTRS)

    MacConochie, Ian O.; Stnaley, Douglas O.

    1991-01-01

    A single-stage-to-orbit launch vehicle is used to assess the applicability of Soviet Energia high-pressure-hydrocarbon engine to advanced U.S. manned space transportation systems. Two of the Soviet engines are used with three Space Shuttle Main Engines. When applied to a baseline vehicle that utilized advanced hydrocarbon engines, the higher weight of the Soviet engines resulted in a 20 percent loss of payload capability and necessitated a change in the crew compartment size and location from mid-body to forebody in order to balance the vehicle. Various combinations of Soviet and Shuttle engines were evaluated for comparison purposes, including an all hydrogen system using all Space Shuttle Main Engines. Operational aspects of the baseline vehicle are also discussed. A new mass properties program entitles Weights and Moments of Inertia (WAMI) is used in the study.

  7. Magnetic Launch Assist System Demonstration

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Quick Time movie demonstrates the Magnetic Launch Assist system, previously referred to as the Magnetic Levitation (Maglev) system, for space launch using a 5 foot model of a reusable Bantam Class launch vehicle on a 50 foot track that provided 6-g acceleration and 6-g de-acceleration. Overcoming the grip of Earth's gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the takeoff, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  8. Integrated Vehicle Ground Vibration Testing in Support of Launch Vehicle Loads and Controls Analysis

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.; Chenevert, Donald J.

    2009-01-01

    NASA has conducted dynamic tests on each major launch vehicle during the past 45 years. Each test provided invaluable data to correlate and correct analytical models. GVTs result in hardware changes to Saturn and Space Shuttle, ensuring crew and vehicle safety. Ares I IVGT will provide test data such as natural frequencies, mode shapes, and damping to support successful Ares I flights. Testing will support controls analysis by providing data to reduce model uncertainty. Value of testing proven by past launch vehicle successes and failures. Performing dynamic testing on Ares vehicles will provide confidence that the launch vehicles will be safe and successful in their missions.

  9. Fabrication and Testing of Ceramic Matrix Composite Rocket Propulsion Components

    NASA Technical Reports Server (NTRS)

    Effinger, M. R.; Clinton, R. C., Jr.; Dennis, J.; Elam, S.; Genge, G.; Eckel, A.; Jaskowiak, M. H.; Kiser, J. D.; Lang, J.

    2001-01-01

    NASA has established goals for Second and Third Generation Reusable Launch Vehicles. Emphasis has been placed on significantly improving safety and decreasing the cost of transporting payloads to orbit. Ceramic matrix composites (CMC) components are being developed by NASA to enable significant increases in safety and engineer performance, while reducing costs. The development of the following CMC components are being pursued by NASA: (1) Simplex CMC Blisk; (2) Cooled CMC Nozzle Ramps; (3) Cooled CMC Thrust Chambers; and (4) CMC Gas Generator. These development efforts are application oriented, but have a strong underpinning of fundamental understanding of processing-microstructure-property relationships relative to structural analyses, nondestructive characterization, and material behavior analysis at the coupon and component and system operation levels. As each effort matures, emphasis will be placed on optimizing and demonstrating material/component durability, ideally using a combined Building Block Approach and Build and Bust Approach.

  10. Magnetic Launch Assist Vehicle-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This artist's concept depicts a Magnetic Launch Assist vehicle clearing the track and shifting to rocket engines for launch into orbit. The system, formerly referred as the Magnetic Levitation (MagLev) system, is a launch system developed and tested by Engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using an off-board electric energy source and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  11. Integrated Vehicle Ground Vibration Testing in Support of Launch Vehicle Loads and Controls Analysis

    NASA Technical Reports Server (NTRS)

    Askins, Bruce R.; Davis, Susan R.; Salyer, Blaine H.; Tuma, Margaret L.

    2008-01-01

    All structural systems possess a basic set of physical characteristics unique to that system. These unique physical characteristics include items such as mass distribution and damping. When specified, they allow engineers to understand and predict how a structural system behaves under given loading conditions and different methods of control. These physical properties of launch vehicles may be predicted by analysis or measured by certain types of tests. Generally, these properties are predicted by analysis during the design phase of a launch vehicle and then verified by testing before the vehicle becomes operational. A ground vibration test (GVT) is intended to measure by test the fundamental dynamic characteristics of launch vehicles during various phases of flight. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. These data will then be used to calibrate loads and control systems analysis models for verifying analyses of the launch vehicle. NASA manned launch vehicles have undergone ground vibration testing leading to the development of successful launch vehicles. A GVT was not performed on the inaugural launch of the unmanned Delta III which was lost during launch. Subsequent analyses indicated had a GVT been performed, it would have identified instability issues avoiding loss of the vehicle. This discussion will address GVT planning, set-up, execution and analyses, for the Saturn and Shuttle programs, and will also focus on the current and on-going planning for the Ares I and V Integrated Vehicle Ground Vibration Test (IVGVT).

  12. Design, Development and Testing of the GMI Launch Locks

    NASA Technical Reports Server (NTRS)

    Sexton, Adam; Dayton, Chris; Wendland, Ron; Pellicciotti, Joseph

    2011-01-01

    Ball Aerospace will deliver the GPM Microwave Imager (GMI), to NASA as one of the 3 instruments to fly on the Global Precipitation Measurement (GPM) mission, for launch in 2013. The radiometer, when deployed, is over 8 feet tall and rotates at 32 revolutions per minute (RPM) can be described as a collection of mechanisms working to achieve its scientific objectives. This collection precisely positions a 1.2 meter reflector to a 48.5 degree off nadir angle while rotating, transferring electrical power and signals to and from the RF receivers, designs two very stable calibration sources, and provides the structural integrity of all the components. There are a total of 7 launch restraints coupling across the moving and stationary elements of the structure,. Getting from design to integration will be the focus of this paper.

  13. Solid rocket booster thrust vector control V-2 off-nominal testing

    NASA Technical Reports Server (NTRS)

    Pagan, B.

    1981-01-01

    The results of the V-2 off nominal test sequence performed on the space shuttle solid rocket booster thrust vector control (SRB TVC) system are reported. The TVC subsystem was subjected to 19 off nominal test conditions. The test sequence consisted of: 8 burp starts, 30 hot firings, 14 GN2 spin tests, and 3 servicing passive system tests. It is concluded that the TVC subsystem operated nominally in response to the given commands and test conditions. Test objectives, detail results, and data are included.

  14. Hybrid rocket performance

    NASA Technical Reports Server (NTRS)

    Frederick, Robert A., Jr.

    1992-01-01

    A hybrid rocket is a system consisting of a solid fuel grain and a gaseous or liquid oxidizer. Figure 1 shows three popular hybrid propulsion cycles that are under current consideration. NASA MSFC has teamed with industry to test two hybrid propulsion systems that will allow scaling to motors of potential interest for Titan and Atlas systems, as well as encompassing the range of interest for SEI lunar ascent stages and National Launch System Cargo Transfer Vehicle (NLS CTV) and NLS deorbit systems. Hybrid systems also offer advantages as moderate-cost, environmentally acceptable propulsion system. The objective of this work was to recommend a performance prediction methodology for hybrid rocket motors. The scope included completion of: a literature review, a general methodology, and a simplified performance model.

  15. The Ares I-1 Flight Test--Paving the Road for the Ares I Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.; Tinker, Michael L.; Tuma, Meg

    2007-01-01

    In accordance with the U.S. Vision for Space Exploration and the nation's desire to again send humans to explore beyond Earth orbit, NASA has been tasked to send human beings to the moon, Mars, and beyond. It has been 30 years since the United States last designed and built a human-rated launch vehicle. NASA is now building the Ares I crew launch vehicle, which will loft the Orion crew exploration vehicle into orbit, and the Ares V cargo launch vehicle, which will launch the Lunar Surface Access Module and Earth departure stage to rendezvous Orion for missions to the moon. NASA has marshaled unique resources from the government and private sectors to perform the technically and programmatically complex work of delivering astronauts to orbit early next decade, followed by heavy cargo late next decade. Our experiences with Saturn and the Shuttle have taught us the value of adhering to sound systems engineering, such as the "test as you fly" principle, while applying aerospace best practices and lessons learned. If we are to fly humans safely aboard a launch vehicle, we must employ a variety of methodologies to reduce the technical, schedule, and cost risks inherent in the complex business of space transportation. During the Saturn development effort, NASA conducted multiple demonstration and verification flight tests to prove technology in its operating environment before relying upon it for human spaceflight. Less testing on the integrated Shuttle system did not reduce cost or schedule. NASA plans a progressive series of demonstration (ascent), verification (orbital), and mission flight tests to supplement ground research and high-altitude subsystem testing with real-world data, factoring the results of each test into the next one. In this way, sophisticated analytical models and tools, many of which were not available during Saturn and Shuttle, will be calibrated and we will gain confidence in their predictions, as we gain hands-on experience in operating the first of two new launch vehicle systems. The Ares I-1 flight test vehicle (FTV) will incorporate a mix of flight and mockup hardware, reflecting a configuration similar in mass, weight, and shape (outer mold line or OML) to the operational vehicle. It will be powered by a four-segment reusable solid rocket booster (RSRB), which is currently in Shuttle inventory, and will be modified to include a fifth, inert segment that makes it approximately the same size and weight as the five segment RSRB, which will be available for the second flight test in 2012. The Ares I-1 vehicle configuration is shown. Each test flight has specific objectives appropriate to the design analysis cycle in progress. The Ares I-1 demonstration test, slated for April 2009, gives NASA its first opportunity to gather critical data about the flight dynamics of the integrated launch vehicle stack, understand how to control its roll during flight, and other characterize the severe stage separation environment that the upper stage will experience during future operational flights. NASA also will begin the process of modifying the launch infrastructure and fine-tuning ground and mission operational scenarios, as NASA transitions from the Shuttle to the Ares/Orion system.

  16. Cyclic loads tests of carbon involute solid rocket motor outer boot ring segments

    NASA Technical Reports Server (NTRS)

    Ahmed, Rafiq

    1988-01-01

    The cyclic loads tests performed on the 30-in. segments of the DM-9 (Development Motor-9) configuration solid rocket outer boot ring are described. The tests found that the effect of the cyclic loadings on the structural integrity of the outer boot ring was negligible. The results are compared with a hand analysis of the strength of a 30-in. outer boot ring segment. Several phenomena of engineering interest are also described.

  17. Plasma torch testing for thermostructural evaluation of rocket motor nozzle materials

    NASA Technical Reports Server (NTRS)

    Prince, Andrew S.; Bunker, Robert C.; Lawrence, Tim

    1989-01-01

    This paper presents data from the thermostructural testing of tape-wrapped carbon phenolic. This work has been performed with the use of a plasma torch and loading device in an effort to study the anomalous erosion characteristicfs of that seen in the Space Shuttle Solid Rocket Motor Nozzle STS-8A. Testing is conducted in an effort to determine conditions or parameters involved in this mode of failure.

  18. Space shuttle solid rocket booster sting interference wind tunnel test analysis

    NASA Technical Reports Server (NTRS)

    Conine, B.; Boyle, W.

    1981-01-01

    Wind tunnel test results from shuttle solid rocket booster (SRB) sting interference tests were evaluated, yielding the general influence of the sting on the normal force and pitching moment coefficients and the side force and yawing moment coefficients. The procedures developed to determine the sting interference, the development of the corrected aerodynamic data, and the development of a new SRB aerodynamic mathematical model are documented.

  19. A Method for Calculating the Probability of Successfully Completing a Rocket Propulsion Ground Test

    NASA Technical Reports Server (NTRS)

    Messer, Bradley P.

    2004-01-01

    Propulsion ground test facilities face the daily challenges of scheduling multiple customers into limited facility space and successfully completing their propulsion test projects. Due to budgetary and schedule constraints, NASA and industry customers are pushing to test more components, for less money, in a shorter period of time. As these new rocket engine component test programs are undertaken, the lack of technology maturity in the test articles, combined with pushing the test facilities capabilities to their limits, tends to lead to an increase in facility breakdowns and unsuccessful tests. Over the last five years Stennis Space Center's propulsion test facilities have performed hundreds of tests, collected thousands of seconds of test data, and broken numerous test facility and test article parts. While various initiatives have been implemented to provide better propulsion test techniques and improve the quality, reliability, and maintainability of goods and parts used in the propulsion test facilities, unexpected failures during testing still occur quite regularly due to the harsh environment in which the propulsion test facilities operate. Previous attempts at modeling the lifecycle of a propulsion component test project have met with little success. Each of the attempts suffered form incomplete or inconsistent data on which to base the models. By focusing on the actual test phase of the tests project rather than the formulation, design or construction phases of the test project, the quality and quantity of available data increases dramatically. A logistic regression model has been developed form the data collected over the last five years, allowing the probability of successfully completing a rocket propulsion component test to be calculated. A logistic regression model is a mathematical modeling approach that can be used to describe the relationship of several independent predictor variables X(sub 1), X(sub 2),..,X(sub k) to a binary or dichotomous dependent variable Y, where Y can only be one of two possible outcomes, in this case Success or Failure. Logistic regression has primarily been used in the fields of epidemiology and biomedical research, but lends itself to many other applications. As indicated the use of logistic regression is not new, however, modeling propulsion ground test facilities using logistic regression is both a new and unique application of the statistical technique. Results from the models provide project managers with insight and confidence into the affectivity of rocket engine component ground test projects. The initial success in modeling rocket propulsion ground test projects clears the way for more complex models to be developed in this area.

  20. Reusable Launch Vehicle Technology Program

    NASA Technical Reports Server (NTRS)

    Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, R. Eugene

    1996-01-01

    Industry/NASA Reusable Launch Vehicle (RLV) Technology Program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low-cost program. This paper reviews the current status of the Reusable Launch Vehicle Technology Program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion, and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight tests. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost-effective, reusable launch vehicle systems.

  1. Overview of Rocket Propulsion Testing at NASA Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Rahman, S.; Gilbrech, R.; Lightfoot, R.; Dawson, M.

    1999-01-01

    THe recent nationwide thrust toward development of low-cost space transportation has precipitated a sharp increase in demand for subscale and full-scale propulsion test services. This paper highlights the unique capabilities of Stennis Space Center(SSC) to meet these demands, and summarizes several major propulsion test activities and other related milestone achievements during the 1999 calendar year. The current and projected list of SSC test projects heralds an even more vigorous, interesting, and challenging future in propulsion test.

  2. NASDA's new test facilities for satellites and rockets

    NASA Technical Reports Server (NTRS)

    Tsuchiya, Mitsuhiro

    1988-01-01

    The National Space Development Agency of Japan (NASDA) has decided to construct integrated environmental and structural test facilities for large space satellites. These facilities are under construction. The new test facilities are described and some technical considerations, especially for the unique vibration test facility are discussed.

  3. Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall

    SciTech Connect

    Michael Kruzic

    2007-09-01

    Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

  4. From the Rocket Equation to Maxwell's Equations: Electrodynamic Tether Propulsion Nears Space Test

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Estes, Robert

    1999-01-01

    The US space program is facing a growing challenge to its decades-long, global leadership position, as current launch costs consume valuable resources and limit achievements in science, exploration, and commercial development. More than 40% of projected launches over the next 10 years have payloads with intended destinations beyond low-Earth orbit. Therefore, more cost-effective upper stages and on-board propulsion systems are critical elements in reducing total space transportation costs. A new type of space propulsion, using electrodynamic tethers, may be capable of performing multiple sequential missions without resupply and have a potential usable lifetime of several years. They may provide an in-space infrastructure that has a very low life cycle cost and greatly enhanced mission flexibility, thus supporting the goal of reducing the cost of access to space. Electrodynamic tether thrusters work by virtue of the force the Earth's magnetic field exerts on a wire carrying an electrical current. The effect is the basis for electric motors and generators. The Propulsive Small Expendable Deployer System (ProSEDS) experiment, planned for launch in the summer of 2000, will demonstrate the use electrodynamic tether thrust by lowering the altitude of a Delta-H rocket's upper stage on which it will be flying. Applications of the technology include a passive deorbit system for spacecraft at their end-of-life, reusable Orbit Transfer Vehicles, propellantless reboost of the International Space Station, and propulsion and power generation for future missions to Jupiter.

  5. Objectives and Progress on Integrated Vehicle Ground Vibration Testing for the Ares Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.; Asloms. Brice R.

    2009-01-01

    As NASA begins design and development of the Ares launch vehicles to replace the Space Shuttle and explore beyond low Earth orbit, Integrated Vehicle Ground Vibration Testing (IVGVT) will be a vital component of ensuring that those vehicles can perform the missions assigned to them. A ground vibration test (GVT) is intended to measure by test the fundamental dynamic characteristics of launch vehicles during various phases of flight. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. This data is then used to calibrate loads and control systems analysis models for verifying analyses of the launch vehicle. The Ares Flight & Integrated Test Office (FITO) will be conducting IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2011 to 2012 using the venerable Test Stand (TS) 4550, which supported similar tests for the Saturn V and Space Shuttle vehicle stacks.

  6. A Brief Historical Survey of Rocket Testing Induced Acoustic Environments at NASA SSC

    NASA Technical Reports Server (NTRS)

    Allgood, Daniel C.

    2012-01-01

    A survey was conducted of all the various rocket test programs that have been performed since the establishment of NASA Stennis Space Center. The relevant information from each of these programs were compiled and used to quantify the theoretical noise source levels using the NASA approved methodology for computing "acoustic loads generated by a propulsion system" (NASA SP ]8072). This methodology, which is outlined in Reference 1, has been verified as a reliable means of determining the noise source characteristics of rocket engines. This information is being provided to establish reference environments for new government/business residents to ascertain whether or not their activities will generate acoustic environments that are more "encroaching" in the NASA Fee Area. In this report, the designation of sound power level refers to the acoustic power of the rocket engine at the engine itself. This is in contrast to the sound pressure level associated with the propagation of the acoustic energy in the surrounding air. The first part of the survey documents the "at source" sound power levels and their dominant frequency bands for the range of engines tested at Stennis. The second part of the survey discusses how the acoustic energy levels will propagate non ]uniformly from the test stands. To demonstrate this, representative acoustic sound pressure mappings in the NASA Stennis Fee Area were computed for typical engine tests on the B ]1 and E ]1 test stands.

  7. General view of the Solid Rocket Booster's (SRB) Solid Rocket ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the Solid Rocket Booster's (SRB) Solid Rocket Motor Segments in the Surge Building of the Rotation Processing and Surge Facility at Kennedy Space Center awaiting transfer to the Vehicle Assembly Building and subsequent mounting and assembly on the Mobile Launch Platform. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  8. The Rocket Project.

    ERIC Educational Resources Information Center

    Winemiller, Jake; And Others

    1991-01-01

    Describes an extra credit science project in which students compete to see who can build the most efficient water rocket out of a two-liter pop bottle. Provides instructions on how to build a demonstration rocket and launching pad. (MDH)

  9. Comparison of the Effects of using Tygon Tubing in Rocket Propulsion Ground Test Pressure Transducer Measurements

    NASA Technical Reports Server (NTRS)

    Farr, Rebecca A.; Wiley, John T.; Vitarius, Patrick

    2005-01-01

    This paper documents acoustics environments data collected during liquid oxygen- ethanol hot-fire rocket testing at NASA Marshall Space Flight Center in November- December 2003. The test program was conducted during development testing of the RS-88 development engine thrust chamber assembly in support of the Orbital Space Plane Crew Escape System Propulsion Program Pad Abort Demonstrator. In addition to induced environments analysis support, coincident data collected using other sensors and methods has allowed benchmarking of specific acoustics test measurement methodologies during propulsion tests. Qualitative effects on data characteristics caused by using tygon sense lines of various lengths in pressure transducer measurements is discussed here.

  10. Water impact laboratory and flight test results for the space shuttle solid rocket booster aft skirt

    NASA Technical Reports Server (NTRS)

    Kross, D. A.; Murphy, N. C.; Rawls, E. A.

    1984-01-01

    A series of water impact tests was conducted using full-scale segment representations of the Space Shuttle Solid Rocket Booster (SRB) aft skirt structure. The baseline reinforced structural design was tested as well as various alternative design concepts. A major portion of the test program consisted of evaluating foam as a load attenuation material. Applied pressures and response strains were measured for impact velocities from 40 feet per second (ft/s) to 110 ft/s. The structural configurations, test articles, test results, and flight results are described.

  11. Balloon launched decelerator test program: Post-flight test report, BLDT vehicle AV-2, Viking 1975 project

    NASA Technical Reports Server (NTRS)

    Dickinson, D.; Hicks, F.; Schlemmer, J.; Michel, F.; Moog, R. D.

    1972-01-01

    The pertinent events concerned with the launch, float, and flight of balloon launched decelerator test vehicle AV-2 are discussed. The performance of the decelerator system is analyzed. Data on the flight trajectory and decelerator test points at the time of decelerator deployment are provided. A description of the time history of vehicle events and anomalies encounters during the mission is included.

  12. Balloon launched decelerator test program: Post-flight test report, BLDT vehicle AV-3, Viking 1975 project

    NASA Technical Reports Server (NTRS)

    Dickinson, D.; Hicks, F.; Schlemmer, J.; Michel, F.; Moog, R. D.

    1973-01-01

    The pertinent events concerned with the launch, float, and flight of balloon launched decelerator test vehicle AV-3 are discussed. The performance of the decelerator system is analyzed. Data on the flight trajectory and decelerator test points at the time of decelerator deployment are provided. A description of the time history of vehicle events and anaomalies encounters during the mission is included.

  13. NASA Tests Rocket Engine for Commercial Vehicle - Duration: 13 seconds.

    NASA Video Gallery

    NASA's John C. Stennis Space Center in Mississippi conducted a successful test firing Wednesday of the liquid-fuel AJ26 engine that will power the first stage of Orbital Sciences Corp.'s Taurus II ...

  14. AJ26 Rocket Engine Test - Duration: 85 seconds.

    NASA Video Gallery

    Engineers at NASA’s John C. Stennis Space Center conducts the second in a series of verification tests on an Aerojet AJ26 engine that will power the first stage of the Orbital Sciences Corporatio...

  15. Capillary device refilling. [liquid rocket propellant tank tests

    NASA Technical Reports Server (NTRS)

    Blatt, M. H.; Merino, F.; Symons, E. P.

    1980-01-01

    An analytical and experimental study was conducted dealing with refilling start baskets (capillary devices) with settled fluid. A computer program was written to include dynamic pressure, screen wicking, multiple-screen barriers, standpipe screens, variable vehicle mass for computing vehicle acceleration, and calculation of tank outflow rate and vapor pullthrough height. An experimental apparatus was fabricated and tested to provide data for correlation with the analytical model; the test program was conducted in normal gravity using a scale-model capillary device and ethanol as the test fluid. The test data correlated with the analytical model; the model is a versatile and apparently accurate tool for predicting start basket refilling under actual mission conditions.

  16. Design and test of an oxygen turbopump for a dual expander cycle rocket engine

    NASA Technical Reports Server (NTRS)

    Buckmann, P. S.; Shimp, N. R.; Viteri, F.; Proctor, M.

    1989-01-01

    A liquid oxygen (LOX) turbopump with an 860 R gaseous oxygen (GOX) turbine drive was designed for a 3750 lb thrust dual expander cycle rocket engine. This turbopump, which requires no interpropellant seals or system purges, features a 156 hp, single stage, full admission, impulse turbine; an axial flow inducer; a two-stage centrifugal pump with unshrouded impellers; long-life, LOX-lubricated, self-aligning, hydrostatic bearings; and a subcritical rotor design. It is constructed of Monel, a nickel-copper alloy, which has low ignition potential in oxygen. The pump was designed to deliver 34.7 gpm of 4655 psia liquid oxygen at a shaft speed of 75,000 rpm. The dual expander cycle rocket engine and the performance it requires of the LOX turbopump will be discussed as well as the design of the pump, turbine, bearings, and the turbopump rotordynamics. The test program and preliminary test results will also be presented.

  17. Rocket system for development testing of a retardation parachute for a supersonic store

    SciTech Connect

    Rollstin, L.R.

    1986-01-01

    A solid-propellant rocket booster system has been developed to support the development testing of a parachute system for the supersonic retardation of an 800-lb store. The parachute deployment flight condition requirements ranged from a dynamic pressure of 1800 psf to 4400 psf with a corresponding Mach number of 1.3 to 2.3. Also, this development testing was supported by the design and development of a small ''tractor'' (pulling type) rocket motor which affected the required rapid and symmetrical deployment of the parachute in the supersonic flight environment. A data reduction procedure was developed to combine payload accelerometer data with the optical or radar track to enhance the accuracy of the flight environment parameters during parachute deployment and the extreme deceleration phase.

  18. Dynamic Tow Maneuver Orbital Launch Technique

    NASA Technical Reports Server (NTRS)

    Rutan, Elbert L. (Inventor)

    2014-01-01

    An orbital launch system and its method of operation use a maneuver to improve the launch condition of a booster rocket and payload. A towed launch aircraft, to which the booster rocket is mounted, is towed to a predetermined elevation and airspeed. The towed launch aircraft begins the maneuver by increasing its lift, thereby increasing the flight path angle, which increases the tension on the towline connecting the towed launch aircraft to a towing aircraft. The increased tension accelerates the towed launch aircraft and booster rocket, while decreasing the speed (and thus the kinetic energy) of the towing aircraft, while increasing kinetic energy of the towed launch aircraft and booster rocket by transferring energy from the towing aircraft. The potential energy of the towed launch aircraft and booster rocket is also increased, due to the increased lift. The booster rocket is released and ignited, completing the launch.

  19. Technology Innovations from NASA's Next Generation Launch Technology Program

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.; Morris, Charles E. K., Jr.; Tyson, Richard W.

    2004-01-01

    NASA's Next Generation Launch Technology Program has been on the cutting edge of technology, improving the safety, affordability, and reliability of future space-launch-transportation systems. The array of projects focused on propulsion, airframe, and other vehicle systems. Achievements range from building miniature fuel/oxygen sensors to hot-firings of major rocket-engine systems as well as extreme thermo-mechanical testing of large-scale structures. Results to date have significantly advanced technology readiness for future space-launch systems using either airbreathing or rocket propulsion.

  20. Rover nuclear rocket engine program: Overview of rover engine tests. Final Report

    SciTech Connect

    Finseth, J.L.

    1991-02-01

    The results of nuclear rocket development activities from the inception of the ROVER program in 1955 through the termination of activities on January 5, 1973 are summarized. This report discusses the nuclear reactor test configurations (non cold flow) along with the nuclear furnace demonstrated during this time frame. Included in the report are brief descriptions of the propulsion systems, test objectives, accomplishments, technical issues, and relevant test results for the various reactor tests. Additionally, this document is specifically aimed at reporting performance data and their relationship to fuel element development with little or no emphasis on other (important) items.

  1. Plasma tests of sprayed coatings for rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Curren, A. N.; Love, W. K.

    1974-01-01

    Several plasma-sprayed coating systems were evaluated for structural stability in hydrogen plasma and in oxygen plasma mixed with hydrogen plasma. The principal test heat flux was 15 Btu per inch squared seconds. The system consisted of a number of thin 0.002 to 0.020 in. layers of metal oxides and/or metals. The principal materials included are molybdenum nichrome, alumina, and zirconia. The study identifies important factors in coating system fabrication and describes the durability of the coating systems in the test environments. Values of effective thermal conductivity for some of the systems are indicated.

  2. Application of intelligent sensors in the integrated systems health monitoring of a rocket test stand

    NASA Astrophysics Data System (ADS)

    Mahajan, Ajay; Chitikeshi, Sanjeevi; Utterbach, Lucas; Bandhil, Pavan; Figueroa, Fernando

    2006-05-01

    This paper describes the application of intelligent sensors in the Integrated Systems Health Monitoring (ISHM) as applied to a rocket test stand. The development of intelligent sensors is attempted as an integrated system approach, i.e. one treats the sensors as a complete system with its own physical transducer, A/D converters, processing and storage capabilities, software drivers, self-assessment algorithms, communication protocols and evolutionary methodologies that allow them to get better with time. Under a project being undertaken at the NASA Stennis Space Center, an integrated framework is being developed for the intelligent monitoring of smart elements associated with the rocket tests stands. These smart elements can be sensors, actuators or other devices. Though the immediate application is the monitoring of the rocket test stands, the technology should be generally applicable to the ISHM vision. This paper outlines progress made in the development of intelligent sensors by describing the work done till date on Physical Intelligent sensors (PIS) and Virtual Intelligent Sensors (VIS).

  3. Mars Flyer Rocket Propulsion Risk Assessment: ARC Testing

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This report describes the investigation of a 10-N, bipropellant thruster, operating at -40 C, with monomethy1hydrazine (MMH) and 25% nitric oxide in nitrogen tetroxide (MON-25). The thruster testing was conducted as part of a risk reduction activity for the Mars Flyer, a proposed mission to fly a miniature airplane in the Martian atmosphere. Testing was conducted using an existing thruster, designed for MMH and MON-3 propellants. MON-25 oxidizer was successfully manufactured from MON-3 by the addition of nitric oxide. The thruster was operated successfully over a range of propellant temperatures (-40 to 21 C and feed pressures (6.9 to 20.7 kPa). The thruster hardware was always equal or lower than the propellant temperature. Most tests were 30- and 60-second durations, with 600- and 1200-second duration and pulse testing also conducted. When operating at -40 C, the mixture ratio of the thruster shifted from the nominal value of 1.65 to about 1.85, probably caused by an increase in MMH viscosity, with a corresponding reduction in MMH flowrate. Specific impulse at - 40 C (at nominal feed pressures) was 267 sec, while performance was 277 sec at 21 C. This difference in performance was due, in part, to the mixture ratio shift.

  4. Mars Flyer Rocket Propulsion Risk Assessment Kaiser Marquardt Testing

    NASA Technical Reports Server (NTRS)

    Marquardt, Kaiser

    2001-01-01

    This report describes the investigation of a 10-N, bipropellant thruster, operating at -40 C, with monomethylhydrazine (MMH) and 25% nitric oxide in nitrogen tetroxide (MON-25). The thruster testing was conducted as part of a risk reduction activity for the Mars Flyer, a proposed mission to fly a miniature airplane in the Martian atmosphere. Testing was conducted using an existing thruster, designed for MMH and MON-3 propellants. The nitric oxide content of MON-3 was increased to 25%, to lower its freezing point to -55 C. The thruster was conditioned, along with the propellants, to temperature prior to hot firing. Thruster operating parameters included oxidizer-to-fuel mixture ratios of 1.6 to 2.7 and inlet pressure ranging from 689 to 2070 kPa. The test matrix consisted of many 10-second firings and several 60-, 300-, 600-, and 1200-second firings, as well as pulse testing. The thruster successfully accumulated nearly 10,000 seconds of operation without failure, at temperatures ranging from -40 C to 22 C. At nominal inlet pressures, the ignition delay was comparable to MMH/MON-3 operation. The optimal performance for the 8.9-N thruster was determined to be at a mixture ratio of 1.93 with an average specific impulse of 298 sec.

  5. Rocket Propulsion Testing at NASA's John C. Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Schwer, Robert

    2005-01-01

    Viewgraph presentation on the design and testing Liquid Hydrogen Barge Vaporizers at NASA John C. Stennis Space Center is shown. The topics include: 1) Vaporizer Requirements; 2) Vaporizer Design; 3) LH2 # 2 Vaporizer Statistics; 4) Corrective Actions; and 5) Lessons Learned.

  6. Thermal-Mechanical Cyclic Test of a Composite Cryogenic Tank for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Messinger, Ross; Pulley, John

    2003-01-01

    This viewgraph presentation provides an overview of thermal-mechanical cyclic tests conducted on a composite cryogenic tank designed for reusable launch vehicles. Topics covered include: a structural analysis of the composite cryogenic tank, a description of Marshall Space Flight Center's Cryogenic Structure Test Facility, cyclic test plans and accomplishments, burst test and analysis and post-testing evaluation.

  7. A Method for Calculating the Probability of Successfully Completing a Rocket Propulsion Ground Test

    NASA Technical Reports Server (NTRS)

    Messer, Bradley

    2007-01-01

    Propulsion ground test facilities face the daily challenge of scheduling multiple customers into limited facility space and successfully completing their propulsion test projects. Over the last decade NASA s propulsion test facilities have performed hundreds of tests, collected thousands of seconds of test data, and exceeded the capabilities of numerous test facility and test article components. A logistic regression mathematical modeling technique has been developed to predict the probability of successfully completing a rocket propulsion test. A logistic regression model is a mathematical modeling approach that can be used to describe the relationship of several independent predictor variables X(sub 1), X(sub 2),.., X(sub k) to a binary or dichotomous dependent variable Y, where Y can only be one of two possible outcomes, in this case Success or Failure of accomplishing a full duration test. The use of logistic regression modeling is not new; however, modeling propulsion ground test facilities using logistic regression is both a new and unique application of the statistical technique. Results from this type of model provide project managers with insight and confidence into the effectiveness of rocket propulsion ground testing.

  8. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 496: Buried Rocket Site, Antelope Lake, Tonopah Test Range

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

    2004-05-01

    This Streamlined Approach for Environmental Restoration (SAFER) plan details the activities necessary to close Corrective Action Unit 496: Buried Rocket Site, Antelope Lake. CAU 496 consists of one site located at the Tonopah Test Range, Nevada.

  9. Artificial intelligence techniques for ground test monitoring of rocket engines

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Gupta, U. K.

    1990-01-01

    An expert system is being developed which can detect anomalies in Space Shuttle Main Engine (SSME) sensor data significantly earlier than the redline algorithm currently in use. The training of such an expert system focuses on two approaches which are based on low frequency and high frequency analyses of sensor data. Both approaches are being tested on data from SSME tests and their results compared with the findings of NASA and Rocketdyne experts. Prototype implementations have detected the presence of anomalies earlier than the redline algorithms that are in use currently. It therefore appears that these approaches have the potential of detecting anomalies early eneough to shut down the engine or take other corrective action before severe damage to the engine occurs.

  10. Development of eddy current testing system for inspection of combustion chambers of liquid rocket engines

    NASA Astrophysics Data System (ADS)

    He, D. F.; Zhang, Y. Z.; Shiwa, M.; Moriya, S.

    2013-01-01

    An eddy current testing (ECT) system using a high sensitive anisotropic magnetoresistive (AMR) sensor was developed. In this system, a 20 turn circular coil with a diameter of 3 mm was used to produce the excitation field. A high sensitivity AMR sensor was used to measure the magnetic field produced by the induced eddy currents. A specimen made of copper alloy was prepared to simulate the combustion chamber of liquid rocket. Scanning was realized by rotating the chamber with a motor. To reduce the influence of liftoff variance during scanning, a dual frequency excitation method was used. The experimental results proved that ECT system with an AMR sensor could be used to check liquid rocket combustion chamber.

  11. Development of eddy current testing system for inspection of combustion chambers of liquid rocket engines.

    PubMed

    He, D F; Zhang, Y Z; Shiwa, M; Moriya, S

    2013-01-01

    An eddy current testing (ECT) system using a high sensitive anisotropic magnetoresistive (AMR) sensor was developed. In this system, a 20 turn circular coil with a diameter of 3 mm was used to produce the excitation field. A high sensitivity AMR sensor was used to measure the magnetic field produced by the induced eddy currents. A specimen made of copper alloy was prepared to simulate the combustion chamber of liquid rocket. Scanning was realized by rotating the chamber with a motor. To reduce the influence of liftoff variance during scanning, a dual frequency excitation method was used. The experimental results proved that ECT system with an AMR sensor could be used to check liquid rocket combustion chamber. PMID:23387673

  12. Reusable launch vehicle technology program

    NASA Astrophysics Data System (ADS)

    Freeman, Delma C.; Talay, Theodore A.; Austin, R. Eugene

    Industry/NASA reusable launch vehicle (RLV) technology program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low-cost program. This paper reviews the current status of the RLV technology program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion, and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight tests. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost-effective, reusable launch vehicle systems.

  13. Reusable Launch Vehicle Technology Program

    NASA Technical Reports Server (NTRS)

    Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, R. Eugene

    1997-01-01

    Industry/NASA reusable launch vehicle (RLV) technology program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low cost program. This paper reviews the current status of the RLV technology program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight test. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost effective, reusable launch vehicle systems.

  14. Solar Thermal Propulsion Optical Figure Measuring and Rocket Engine Testing

    NASA Technical Reports Server (NTRS)

    Bonometti, Joseph

    1997-01-01

    Solar thermal propulsion has been an important area of study for four years at the Propulsion Research Center. Significant resources have been devoted to the development of the UAH Solar Thermal Laboratory that provides unique, high temperature, test capabilities. The facility is fully operational and has successfully conducted a series of solar thruster shell experiments. Although presently dedicated to solar thermal propulsion, the facility has application to a variety of material processing, power generation, environmental clean-up, and other fundamental research studies. Additionally, the UAH Physics Department has joined the Center in support of an in-depth experimental investigation on Solar Thermal Upper Stage (STUS) concentrators. Laboratory space has been dedicated to the concentrator evaluation in the UAH Optics Building which includes a vertical light tunnel. Two, on-going, research efforts are being sponsored through NASA MSFC (Shooting Star Flight Experiment) and the McDonnell Douglas Corporation (Solar Thermal Upper Stage Technology Ground Demonstrator).

  15. Solid rocket technology advancement for Space Tug and IUS applications. [Interim Upper Stage

    NASA Technical Reports Server (NTRS)

    Ascher, W.; Bailey, R. L.; Behm, J. W.; Gin, W.

    1975-01-01

    Two-burn restartable solid propellant rocket motors for the kick stage (auxiliary stage) of the Shuttle Tug, or Interim Upper Stage, are described, with details on features and test results of the ignition and quench (thrust termination) systems and procedures, fabrication of propellant and insulation, explosion hazards of propellants, and comparative data on present and future motor design. These rocket motor systems are designed for upper stage augmentation of launch vehicles and possible service in Shuttle-launched outer planet spacecraft.

  16. High-g launch testing of a low-cost un-cooled LWIR imager

    NASA Astrophysics Data System (ADS)

    Tiffany, Jason; Brown, F. Christophe; Manning, Kyle; Kellermeyer, William; King, Don; Drewry, David

    2014-06-01

    Unmanned aerial vehicles (UAVs) and smart munitions require low-cost IR sensors that fit within very small volumes, yet offer acceptable performance and landing/launch survivability. The LWIR band provides unique contrast for specific applications in both UAVs and smart munitions, with smart munitions presenting an additional challenge of high g-loads during launch. These high g-loads are not typically a design target of low-cost, un-cooled commercial off the shelf (COTS) LWIR sensors. This work addresses the challenges of adapting a COTS un-cooled LWIR imager for launch survivability. The sensor was modeled for mechanical stability and weaknesses identified. Modifications were made to improve launch survivability and multiple units were tested. Data is presented on the optical performance as measured through the modulation transfer function (MTF) both before and after launches for multiple locations across the lens.

  17. Brief, Why the Launch Equipment Test Facility Needs a Laser Tracker

    NASA Technical Reports Server (NTRS)

    Yue, Shiu H.

    2011-01-01

    The NASA Kennedy Space Center Launch Equipment Test Facility (LETF) supports a wide spectrum of testing and development activities. This capability was originally established in the 1970's to allow full-scale qualification of Space Shuttle umbilicals and T-O release mechanisms. The LETF has leveraged these unique test capabilities to evolve into a versatile test and development area that supports the entire spectrum of operational programs at KSC. These capabilities are historically Aerospace related, but can certainly can be adapted for other industries. One of the more unique test fixtures is the Vehicle Motion Simulator or the VMS. The VMS simulates all of the motions that a launch vehicle will experience from the time of its roll-out to the launch pad, through roughly the first X second of launch. The VMS enables the development and qualification testing of umbilical systems in both pre-launch and launch environments. The VMS can be used to verify operations procedures, clearances, disconnect systems performance &margins, and vehicle loads through processing flow motion excursions.

  18. Small Space Launch: Origins & Challenges

    NASA Astrophysics Data System (ADS)

    Freeman, T.; Delarosa, J.

    2010-09-01

    The United States Space Situational Awareness capability continues to be a key element in obtaining and maintaining the high ground in space. Space Situational Awareness satellites are critical enablers for integrated air, ground and sea operations, and play an essential role in fighting and winning conflicts. The United States leads the world space community in spacecraft payload systems from the component level into spacecraft, and in the development of constellations of spacecraft. In the area of launch systems that support Space Situational Awareness, despite the recent development of small launch vehicles, the United States launch capability is dominated by an old, unresponsive and relatively expensive set of launchers in the Expandable, Expendable Launch Vehicles (EELV) platforms; Delta IV and Atlas V. The United States directed Air Force Space Command to develop the capability for operationally responsive access to space and use of space to support national security, including the ability to provide critical space capabilities in the event of a failure of launch or on-orbit capabilities. On 1 Aug 06, Air Force Space Command activated the Space Development & Test Wing (SDTW) to perform development, test and evaluation of Air Force space systems and to execute advanced space deployment and demonstration projects to exploit new concepts and technologies, and rapidly migrate capabilities to the warfighter. The SDTW charged the Launch Test Squadron (LTS) with the mission to develop the capability of small space launch, supporting government research and development space launches and missile defense target missions, with operationally responsive spacelift for Low-Earth-Orbit Space Situational Awareness assets as a future mission. This new mission created new challenges for LTS. The LTS mission tenets of developing space launches and missile defense target vehicles were an evolution from the squadrons previous mission of providing sounding rockets under the Rocket Sounding Launch Program (RSLP). The new mission tenets include shortened operational response periods criteria for the warfighter, while reducing the life-cycle development, production and launch costs of space launch systems. This presentation will focus on the technical challenges in transforming and integrating space launch vehicles and space craft vehicles for small space launch missions.

  19. Launch Vehicle Ascent Stage Separation Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Bordelon, Wayne; Frost, Alonzo; Pritchett, Victor

    2002-01-01

    The Aerodynamic Research Facility (ARF) LGBB (Liquid Glide-back Booster) Stage Separation Test is part of the Multi-Center Second Generation In-House Tool Development Task. The ARF LGBB Stage Separation Test has been completed at MSFC (Marshall Space Flight Center). It includes the following: PSP (Project Study Plan) Feasibility Test; Isolated Force/Moment Data; Bimese Configuration Force/Moment Data; Schlieren Video. The LGBB Bimese Reference Configuration Analyses and Test Results In-Work to Develop Tools and Database. Preliminary results showed qualitative agreement with CFD (computational fluid dynamics) aerodynamic predictions. The preliminary results exhibit the complex nature of the stage separation aerothermal problem.

  20. Ball launch conditions for skilled golfers using drivers of different lengths in an indoor testing facility.

    PubMed

    Wallace, E S; Otto, S R; Nevill, A

    2007-05-01

    The displacement of the golf ball struck by a driving club is affected by several player characteristics and equipment parameters and their interrelationships. Some modelling and simulation studies have shown a relationship between shaft length and clubhead speed, supported by a few experimental studies. The aim of the present study was to examine the relationship between driver length and ball launch conditions in an indoor test facility using a ball launch monitor. Nine males considered to be skilled golfers participated in the study. Four driving clubs of total length 117, 119, 124, and 132 cm were assembled from commercially available components and were used to strike golf shots while initial ball velocity, backspin rate, and launch angles were measured. Statistical analysis identified a significant difference in initial launch speed due to club length, a significant difference between participants, but no difference between the trials for a given golfer. A positive trend was noted between backspin and launch angle for all four clubs, and significant inverse associations between initial launch speed and backspin rate and launch angle. However, the combined launch conditions associated with increasing length were not considered optimal, with uncontrolled swingweight and moment of inertia effects considered to be limiting factors. PMID:17454541

  1. Electrets used to measure exhaust cloud effluents from Solid Rocket Motor (SRM) during demonstration model (DM-2) static test firing

    NASA Technical Reports Server (NTRS)

    Susko, M.

    1978-01-01

    Electrets were compared with fixed flow samplers during static test firing. The measurement of the rocket exhaust effluents by samplers and electrets indicated that the Solid Rocket Motor had no significant effect on the air quality in the area sampled. The results show that the electrets (a passive device which needs no power) can be used effectively alongside existing measuring devices (which need power). By placing electrets in areas where no power is available, measurements may be obtained. Consequently, it is a valuable complementary instrument in measuring rocket exhaust effluents in areas where other measuring devices may not be able to assess the contaminants.

  2. Test report for 120-inch-diameter Solid Rocket Booster (SRB) model tests. [floating and towing characteristics of space shuttle boosters

    NASA Technical Reports Server (NTRS)

    Jones, W. C.

    1973-01-01

    The space shuttle solid rocket boosters (SRB's) will be jettisoned to impact in the ocean within a 200-mile radius of the launch site. Tests were conducted at Long Beach, California, using a 12-inch diameter Titan 3C model to simulate the full-scale characteristics of the prototype SRB during retrieval operations. The objectives of the towing tests were to investigate and assess the following: (1) a floating and towing characteristics of the SRB; (2) need for plugging the SRB nozzle prior to tow; (3) attach point locations on the SRB; (4) effects of varying the SRB configuration; (5) towing hardware; and (6) difficulty of attaching a tow line to the SRB in the open sea. The model was towed in various sea states using four different types and varying lengths of tow line at various speeds. Three attach point locations were tested. Test data was recorded on magnetic tape for the tow line loads and for model pitch, roll, and yaw characteristics and was reduced by computer to tabular printouts and X-Y plots. Profile and movie photography provided documentary test data.

  3. National Report on the NASA Sounding Rocket and Balloon Programs

    NASA Technical Reports Server (NTRS)

    Eberspeaker, Philip; Fairbrother, Debora

    2013-01-01

    The U. S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a total of 30 to 40 missions per year in support of the NASA scientific community and other users. The NASA Sounding Rockets Program supports the science community by integrating their experiments into the sounding rocket payloads, and providing both the rocket vehicle and launch operations services. Activities since 2011 have included two flights from Andoya Rocket Range, more than eight flights from White Sands Missile Range, approximately sixteen flights from Wallops Flight Facility, two flights from Poker Flat Research Range, and four flights from Kwajalein Atoll. Other activities included the final developmental flight of the Terrier-Improved Malemute launch vehicle, a test flight of the Talos-Terrier-Oriole launch vehicle, and a host of smaller activities to improve program support capabilities. Several operational missions have utilized the new Terrier-Malemute vehicle. The NASA Sounding Rockets Program is currently engaged in the development of a new sustainer motor known as the Peregrine. The Peregrine development effort will involve one static firing and three flight tests with a target completion data of August 2014. The NASA Balloon Program supported numerous scientific and developmental missions since its last report. The program conducted flights from the U.S., Sweden, Australia, and Antarctica utilizing standard and experimental vehicles. Of particular note are the successful test flights of the Wallops Arc Second Pointer (WASP), the successful demonstration of a medium-size Super Pressure Balloon (SPB), and most recently, three simultaneous missions aloft over Antarctica. NASA continues its successful incremental design qualification program and will support a science mission aboard WASP in late 2013 and a science mission aboard the SPB in early 2015. NASA has also embarked on an intra-agency collaboration to launch a rocket from a balloon to conduct supersonic decelerator tests. An overview of NASA's Sounding Rockets and Balloon Operations, Technology Development and Science support activities will be presented.

  4. Ablative material testing for low-pressure, low-cost rocket engines

    NASA Technical Reports Server (NTRS)

    Richter, G. Paul; Smith, Timothy D.

    1995-01-01

    The results of an experimental evaluation of ablative materials suitable for the production of light weight, low cost rocket engine combustion chambers and nozzles are presented. Ten individual specimens of four different compositions of silica cloth-reinforced phenolic resin materials were evaluated for comparative erosion in a subscale rocket engine combustion chamber. Gaseous hydrogen and gaseous oxygen were used as propellants, operating at a nominal chamber pressure of 1138 kPa (165 psi) and a nominal mixture ratio (O/F) of 3.3. These conditions were used to thermally simulate operation with RP-1 and liquid oxygen, and achieved a specimen throat gas temperature of approximately 2456 K (4420 R). Two high-density composition materials exhibited high erosion resistance, while two low-density compositions exhibited approximately 6-75 times lower average erosion resistance. The results compare favorably with previous testing by NASA and provide adequate data for selection of ablatives for low pressure, low cost rocket engines.

  5. Experimental evaluation of the drag coefficient of water rockets by a simple free-fall test

    NASA Astrophysics Data System (ADS)

    Barrio-Perotti, R.; Blanco-Marigorta, E.; Argüelles-Díaz, K.; Fernández-Oro, J.

    2009-09-01

    The flight trajectory of a water rocket can be reasonably calculated if the magnitude of the drag coefficient is known. The experimental determination of this coefficient with enough precision is usually quite difficult, but in this paper we propose a simple free-fall experiment for undergraduate students to reasonably estimate the drag coefficient of water rockets made from plastic soft drink bottles. The experiment is performed using relatively small fall distances (only about 14 m) in addition with a simple digital-sound-recording device. The fall time is inferred from the recorded signal with quite good precision, and it is subsequently introduced as an input of a Matlab® program that estimates the magnitude of the drag coefficient. This procedure was tested first with a toy ball, obtaining a result with a deviation from the typical sphere value of only about 3%. For the particular water rocket used in the present investigation, a drag coefficient of 0.345 was estimated.

  6. Theoretical Tools and Software for Modeling, Simulation and Control Design of Rocket Test Facilities

    NASA Technical Reports Server (NTRS)

    Richter, Hanz

    2004-01-01

    A rocket test stand and associated subsystems are complex devices whose operation requires that certain preparatory calculations be carried out before a test. In addition, real-time control calculations must be performed during the test, and further calculations are carried out after a test is completed. The latter may be required in order to evaluate if a particular test conformed to specifications. These calculations are used to set valve positions, pressure setpoints, control gains and other operating parameters so that a desired system behavior is obtained and the test can be successfully carried out. Currently, calculations are made in an ad-hoc fashion and involve trial-and-error procedures that may involve activating the system with the sole purpose of finding the correct parameter settings. The goals of this project are to develop mathematical models, control methodologies and associated simulation environments to provide a systematic and comprehensive prediction and real-time control capability. The models and controller designs are expected to be useful in two respects: 1) As a design tool, a model is the only way to determine the effects of design choices without building a prototype, which is, in the context of rocket test stands, impracticable; 2) As a prediction and tuning tool, a good model allows to set system parameters off-line, so that the expected system response conforms to specifications. This includes the setting of physical parameters, such as valve positions, and the configuration and tuning of any feedback controllers in the loop.

  7. ISRO's solid rocket motors

    NASA Astrophysics Data System (ADS)

    Nagappa, R.; Kurup, M. R.; Muthunayagam, A. E.

    1989-08-01

    Solid rocket motors have been the mainstay of ISRO's sounding rockets and the first generation satellite launch vehicles. For the new launch vehicle under development also, the solid rocket motors contribute significantly to the vehicle's total propulsive power. The rocket motors in use and under development have been developed for a variety of applications and range in size from 30 mm dia employing 450 g of solid propellant—employed for providing a spin to the apogee motors—to the giant 2.8 m dia motor employing nearly 130 tonnes of solid propellant. The initial development, undertaken in 1967 was of small calibre motor of 75 mm dia using a double base charge. The development was essentially to understand the technological elements. Extruded aluminium tubes were used as a rocket motor casing. The fore and aft closures were machined from aluminium rods. The grain was a seven-pointed star with an enlargement of the port at the aft end and was charged into the chamber using a polyester resin system. The nozzle was a metallic heat sink type with graphite throat insert. The motor was ignited with a black powder charge and fired for 2.0 s. Subsequent to this, further developmental activities were undertaken using PVC plastisol based propellants. A class of sounding rockets ranging from 125 to 560 mm calibre were realized. These rocket motors employed improved designs and had delivered lsp ranging from 2060 to 2256 Ns/kg. Case bonding could not be adopted due to the higher cure temperatures of the plastisol propellants but improvements were made in the grain charging techniques and in the design of the igniters and the nozzle. Ablative nozzles based on asbestos phenolic and silica phenolic with graphite inserts were used. For the larger calibre rocket motors, the lsp could be improved by metallic additives. In the early 1970s designs were evolved for larger and more efficient motors. A series of 4 motors for the country's first satellite launch vehicle SLV-3 were developed. The first and second stages of 1 and 0.8 m dia respectively used low carbon steel casing and PBAN propellant. The first stage used segmented construction with a total propellant weight of 8600 kg. The second stage employed about 3 tonnes of the same propellant. The third and fourth stages were of GFRP construction and employed respectively 1100 and 275 kg of CTPB type propellants. Nozzle expansion ratios upto 30 were employed and delivered vacuum lsp of 2766 Ns/kg realized. The fourth stage motor was subsequently used as the apogee motor for orbit injection of India's first geosynchronous satellite—APPLE. All these motors have been flight proven a number of times. Further design improvements have been incorporated and these motors continue to be in use. Starting in 1984 design for a large booster was undertaken. This booster employs a nominal propellant weight of 125 tonne in a 2.8 m dia casing. The motor is expected to be qualified for flight test in 1989. Side by side a high performance motor housing nearly 7 tonnes of propellant in composite casing of 2 m dia and having flex nozzle control system is also under development for upper stage application. Details of the development of the motors, their leading specifications and performance are described.

  8. Water Rocket Workout.

    ERIC Educational Resources Information Center

    Esler, William K.; Sanford, Daniel

    1989-01-01

    Water rockets are used to present Newton's three laws of motion to high school physics students. Described is an outdoor activity which uses four students per group. Provides a launch data sheet to record height, angle of elevation, amount of water used, and launch number. (MVL)

  9. Space Shuttle Solid Rocket Booster decelerator subsystem - Air drop test vehicle/B-52 design

    NASA Technical Reports Server (NTRS)

    Runkle, R. E.; Drobnik, R. F.

    1979-01-01

    The air drop development test program for the Space Shuttle Solid Rocket Booster Recovery System required the design of a large drop test vehicle that would meet all the stringent requirements placed on it by structural loads, safety considerations, flight recovery system interfaces, and sequence. The drop test vehicle had to have the capability to test the drogue and the three main parachutes both separately and in the total flight deployment sequence and still be low-cost to fit in a low-budget development program. The design to test large ribbon parachutes to loads of 300,000 pounds required the detailed investigation and integration of several parameters such as carrier aircraft mechanical interface, drop test vehicle ground transportability, impact point ground penetration, salvageability, drop test vehicle intelligence, flight design hardware interfaces, and packaging fidelity.

  10. Space Shuttle Solid Rocket Booster Decelerator Subsystem Drop Test 3 - Anatomy of a failure

    NASA Technical Reports Server (NTRS)

    Runkle, R. E.; Woodis, W. R.

    1979-01-01

    A test failure dramatically points out a design weakness or the limits of the material in the test article. In a low budget test program, with a very limited number of tests, a test failure sparks supreme efforts to investigate, analyze, and/or explain the anomaly and to improve the design such that the failure will not recur. The third air drop of the Space Shuttle Solid Rocket Booster Recovery System experienced such a dramatic failure. On air drop 3, the 54-ft drogue parachute was totally destroyed 0.7 sec after deployment. The parachute failure investigation, based on analysis of drop test data and supporting ground element test results is presented. Drogue design modifications are also discussed.

  11. Thruster Injector Faceplate Testing in Support of the Aerojet Rocket-Based Combined Cycle (RBCC) Concept

    NASA Technical Reports Server (NTRS)

    Fazah, M. M.; Cramer, J. M.

    1998-01-01

    To satisfy RBCC rocket thruster requirements of high performance and a minimum amount of free hydrogen at plume boundary, a new impinging injector element using gaseous hydrogen and gaseous oxygen as the propellants has been designed. Analysis has shown that this injector design has potential to provide a high specific impulse (Isp) while minimizing the amount of free hydrogen that is available to be burned with incoming secondary flow. Past studies and test programs have shown that gas/gas-impinging elements typically result in high injector face temperatures due to combustion occurring close to the face. Since this design is new, there is no hot fire experience with this element. Objectives of this test program were to gain experience and hot fire test data on this new rocket thruster element design and injector faceplate pattern. Twenty-two hot fire tests were run with maximum mixture ratio (MR) and chamber pressure (Pc) obtained at 7.25 and 1,822 psia, respectively. Post-test scanning microscope (SEM) images show only slight faceplate erosion during testing. This injector element design performed well and can be operated at design conditions: (1) Pc of 2,000 psia and MR of 7.0 and (2) Pc of 1,000 psia and MR of 5.0.

  12. Integrated System Test Approaches for the NASA Ares I Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Askins, Bruce R.; Bland, Jeffrey; Davis, Stephan; Holladay, Jon B.; Taylor, James L.; Taylor, Terry L.; Robinson, Kimberly F.; Roberts, Ryan E.; Tuma, Margaret

    2007-01-01

    The Ares I Crew Launch Vehicle (CLV) is being developed by the U.S. National Aeronautics and Space Administration (NASA) to provide crew access to the International Space Station (ISS) and, together with the Ares V Cargo Launch Vehicle (CaLV), serves as one component of a future launch capability for human exploration of the Moon. During the system requirements definition process and early design cycles, NASA defined and began implementing plans for integrated ground and flight testing necessary to achieve the first human launch of Ares I. The individual Ares I flight hardware elements: the first stage five segment booster (FSB), upper stage, and J-2X upper stage engine, will undergo extensive development, qualification, and certification testing prior to flight. Key integrated system tests include the Main Propulsion Test Article (MPTA), acceptance tests of the integrated upper stage and upper stage engine assembly, a full-scale integrated vehicle dynamic test (IVDT), aerodynamic testing to characterize vehicle performance, and integrated testing of the avionics and software components. The Ares I-X development flight test will provide flight data to validate engineering models for aerodynamic performance, stage separation, structural dynamic performance, and control system functionality. The Ares I-Y flight test will validate ascent performance of the first stage, stage separation functionality, and a highaltitude actuation of the launch abort system (LAS) following separation. The Orion-1 flight test will be conducted as a full, un-crewed, operational flight test through the entire ascent flight profile prior to the first crewed launch.

  13. Ground cloud effluent measurements during the May 30, 1974, Titan 3 launch at the Air Force eastern test range

    NASA Technical Reports Server (NTRS)

    Bendura, R. J.; Crumbly, K. H.

    1977-01-01

    Surface-level exhaust effluent measurements of HCl, CO, and particulates, ground-cloud behavior, and some comparisons with model predictions for the launch of a Titan 3 rocket are presented along with a limited amount of airborne sampling measurements of other cloud species (O3, NO, NOX). Values above background levels for these effluents were obtained at 20 of the 30 instrument sites; these values were lower than model predictions and did not exceed public health standards. Cloud rise rate, stabilization altitude, and volume are compared with results from previous launches.

  14. Forward Skirt Structural Testing on the Space Launch System (SLS) Program

    NASA Technical Reports Server (NTRS)

    Lohrer, Joe; Wright, R. D.

    2016-01-01

    Introduction: (a) Structural testing was performed to evaluate Space Shuttle heritage forward skirts for use on the Space Launch System (SLS) program, (b) Testing was required because SLS loads are approximately 35% greater than shuttle loads; and (c) Two forwards skirts were tested to failure.

  15. Adhesion Testing of Firebricks from Launch Pad 39A Flame Trench after STS-124

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Curran, Jerome P.

    2009-01-01

    Adhesion testing was performed on the firebricks in the flame trench of Launch Complex 39A to determine the strength of the epoxy/firebrick bond to the backing concrete wall. The testing used an Elcometer 110 pneumatic adhesion tensile testing instrument (PATTI).

  16. Ground Handling of Batteries at Test and Launch-site Facilities

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Hohl, Alan R.

    2008-01-01

    Ground handling of flight as well as engineering batteries at test facilities and launch-site facilities is a safety critical process. Test equipment interfacing with the batteries should have the required controls to prevent a hazardous failure of the batteries. Test equipment failures should not induce catastrophic failures on the batteries. Transportation requirements for batteries should also be taken into consideration for safe transportation. This viewgraph presentation includes information on the safe handling of batteries for ground processing at test facilities as well as launch-site facilities.

  17. Selection of appropriate test method for simulating steady-state spacecraft launch loads

    NASA Technical Reports Server (NTRS)

    Shockey, E. F.; Arcilesi, C. J.

    1974-01-01

    In ground testing prior to launch the static loads portion of the launch profile may be simulated by either applying static loads directly to the spacecraft through an appropriate loading facility or by subjecting the spacecraft to acceleration loads on a centrifuge. The factors to be considered in selecting one of the two simulation methods are discussed, giving attention to the relative advantages of the two methods in each case.

  18. Launch Condition Deviations of Reusable Launch Vehicle Simulations in Exo-Atmospheric Zoom Climbs

    NASA Technical Reports Server (NTRS)

    Urschel, Peter H.; Cox, Timothy H.

    2003-01-01

    The Defense Advanced Research Projects Agency has proposed a two-stage system to deliver a small payload to orbit. The proposal calls for an airplane to perform an exo-atmospheric zoom climb maneuver, from which a second-stage rocket is launched carrying the payload into orbit. The NASA Dryden Flight Research Center has conducted an in-house generic simulation study to determine how accurately a human-piloted airplane can deliver a second-stage rocket to a desired exo-atmospheric launch condition. A high-performance, fighter-type, fixed-base, real-time, pilot-in-the-loop airplane simulation has been modified to perform exo-atmospheric zoom climb maneuvers. Four research pilots tracked a reference trajectory in the presence of winds, initial offsets, and degraded engine thrust to a second-stage launch condition. These launch conditions have been compared to the reference launch condition to characterize the expected deviation. At each launch condition, a speed change was applied to the second-stage rocket to insert the payload onto a transfer orbit to the desired operational orbit. The most sensitive of the test cases was the degraded thrust case, yielding second-stage launch energies that were too low to achieve the radius of the desired operational orbit. The handling qualities of the airplane, as a first-stage vehicle, have also been investigated.

  19. Test Results of the RS-44 Integrated Component Evaluator Liquid Oxygen/Hydrogen Rocket Engine

    NASA Technical Reports Server (NTRS)

    Sutton, R. F.; Lariviere, B. W.

    1993-01-01

    An advanced LOX/LH2 expander cycle rocket engine, producing 15,000 lbf thrust for Orbital Transfer Vehicle missions, was tested to determine ignition, transition, and main stage characteristics. Detail design and fabrication of the pump fed RS44 integrated component evaluator (ICE) was accomplished using company discretionary resources and was tested under this contracted effort. Successful demonstrations were completed to about the 50 percent fuel turbopump power level (87,000 RPM), but during this last test, a high pressure fuel turbopump (HPFTP) bearing failed curtailing the test program. No other hardware were affected by the HPFTP premature shutdown. The ICE operations matched well with the predicted start transient simulations. The tests demonstrated the feasibility of a high performance advanced expander cycle engine. All engine components operated nominally, except for the HPFTP, during the engine hot-fire tests. A failure investigation was completed using company discretionary resources.

  20. Optical Measurement Techniques for Rocket Engine Testing and Component Applications: Digital Image Correlation and Dynamic Photogrammetry

    NASA Technical Reports Server (NTRS)

    Gradl, Paul

    2016-01-01

    NASA Marshall Space Flight Center (MSFC) has been advancing dynamic optical measurement systems, primarily Digital Image Correlation, for extreme environment rocket engine test applications. The Digital Image Correlation (DIC) technology is used to track local and full field deformations, displacement vectors and local and global strain measurements. This technology has been evaluated at MSFC through lab testing to full scale hotfire engine testing of the J-2X Upper Stage engine at Stennis Space Center. It has been shown to provide reliable measurement data and has replaced many traditional measurement techniques for NASA applications. NASA and AMRDEC have recently signed agreements for NASA to train and transition the technology to applications for missile and helicopter testing. This presentation will provide an overview and progression of the technology, various testing applications at NASA MSFC, overview of Army-NASA test collaborations and application lessons learned about Digital Image Correlation.

  1. Preliminary study of a hydrogen peroxide rocket for use in moving source jet noise tests

    NASA Technical Reports Server (NTRS)

    Plencner, R. M.

    1977-01-01

    A preliminary investigation was made of using a hydrogen peroxide rocket to obtain pure moving source jet noise data. The thermodynamic cycle of the rocket was analyzed. It was found that the thermodynamic exhaust properties of the rocket could be made to match those of typical advanced commercial supersonic transport engines. The rocket thruster was then considered in combination with a streamlined ground car for moving source jet noise experiments. When a nonthrottlable hydrogen peroxide rocket was used to accelerate the vehicle, propellant masses and/or acceleration distances became too large. However, when a throttlable rocket or an auxiliary system was used to accelerate the vehicle, reasonable propellant masses could be obtained.

  2. Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB)

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge; Rajkumar, T.

    2003-01-01

    Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB) is a real-time web-based command and control, communication, and intelligent simulation environment of ground-vehicle, launch and range operation activities. ILRO-VTB consists of a variety of simulation models combined with commercial and indigenous software developments (NASA Ames). It creates a hybrid software/hardware environment suitable for testing various integrated control system components of launch and range. The dynamic interactions of the integrated simulated control systems are not well understood. Insight into such systems can only be achieved through simulation/emulation. For that reason, NASA has established a VTB where we can learn the actual control and dynamics of designs for future space programs, including testing and performance evaluation. The current implementation of the VTB simulates the operations of a sub-orbital vehicle of mission, control, ground-vehicle engineering, launch and range operations. The present development of the test bed simulates the operations of Space Shuttle Vehicle (SSV) at NASA Kennedy Space Center. The test bed supports a wide variety of shuttle missions with ancillary modeling capabilities like weather forecasting, lightning tracker, toxic gas dispersion model, debris dispersion model, telemetry, trajectory modeling, ground operations, payload models and etc. To achieve the simulations, all models are linked using Common Object Request Broker Architecture (CORBA). The test bed provides opportunities for government, universities, researchers and industries to do a real time of shuttle launch in cyber space.

  3. Smart Sensor Node Development, Testing and Implementation for Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Mengers, Timothy R.; Shipley, John; Merrill, Richard; Eggett, Leon; Johnson, Mont; Morris, Jonathan; Figueroa, Fernando; Schmalzel, John; Turowski, Mark P.

    2007-01-01

    Successful design and implementation of an Integrated System Health Management (ISHM) approach for rocket propulsion systems requires the capability improve the reliability of complex systems by detecting and diagnosing problems. One of the critical elements in the ISHM is an intelligent sensor node for data acquisition that meets specific requirements for rocket motor testing including accuracy, sample rate and size/weight. Traditional data acquisition systems are calibrated in a controlled environment and guaranteed to perform bounded by their tested conditions. In a real world ISHM system, the data acquisition and signal conditioning needs to function in an uncontrolled environment. Development and testing of this sensor node focuses on a design with the ability to self check in order to extend calibration times, report internal faults and drifts and notify the overall system when the data acquisition is not performing as it should. All of this will be designed within a system that is flexible, requiring little re-design to be deployed on a wide variety of systems. Progress in this design and initial testing of prototype units will be reported.

  4. A life test of a 22-Newton (5-lbf) hydrazine rocket

    NASA Technical Reports Server (NTRS)

    Meng, P. R.; Schneider, S. J.; Morgan, C. J.; Jones, R. E.; Pahl, D. A.

    1987-01-01

    Life tests were conducted on a 22-N (5-lb) hydrazine rocket thruster which incorporates the latest technology to obtain long life from the catalyst bed. A spring mechanism surrounding the catalyst bed continually applies compression to the catalyst bed to prevent the formation of any void channels. The research rocket thruster was tested over an operational cycle of both steady state and pulse firing which simulated a possible space station duty cycle. The thruster ran as expected for about 40 hours, or 3.2 times 10 to the 6th power N-sec (7.2 times 10 to the 5th power lb-sec) total impulse. Subsequently, some thrust chamber pressure decreases were noted during long steady state test periods. After 60.2 hours of run time, tests had to be terminated due to a blockage in the propellant injector tube which occurred during heating of the thruster by a heat lamp. A chemical analysis of the catalyst indicated that iron and nickel metals had poisoned some of the catalyst, thereby causing a degradation in performance. It was determined that a contaminated barrel of hydrazine was the source of the metal poisoning.

  5. Ablation Performance of Carbon/Carbon Composite Throat after a Solid Rocket Motor Ground Ignition Test

    NASA Astrophysics Data System (ADS)

    Yin, Jian; Zhang, Hongbo B.; Xiong, Xiang; Zuo, Jinlv L.; Huang, Baiyun Y.

    2012-06-01

    The ablation performances of a fine-woven, pierced carbon/carbon (C/C) composite throats for solid rocket motor were investigated by a ground ignition test. The ablation surface morphologies of three regions (entrance, throat and exit) of the throats were examined in detail by scanning electron microscopy. The results show that the C/C composite throats retain smooth inner surface, experiencing ablation rates of 0.142-0.146 mm/s under a pressure of about 6.0 MPa. But ablation morphologies of the three regions are different, due to the continuously changing of temperatures, velocities, and oxidant concentrations of combustion gas plume.

  6. Dragonfly directional sensor versus rocket-propelled grenades

    NASA Astrophysics Data System (ADS)

    Geary, Joseph; Blackwell, Lisa

    2015-02-01

    The Dragonfly directional sensor was deployed at the Army's Yuma Proving Grounds for preliminary field tests against rocket-propelled grenades. This wide-field (nonimaging) sensor's purpose was to angularly locate the latter's launch plume. These tests successfully demonstrated proof-of-concept.

  7. Fatigue life prediction of liquid rocket engine combustor with subscale test verification

    NASA Astrophysics Data System (ADS)

    Sung, In-Kyung

    Reusable rocket systems such as the Space Shuttle introduced a new era in propulsion system design for economic feasibility. Practical reusable systems require an order of magnitude increase in life. To achieve this improved methods are needed to assess failure mechanisms and to predict life cycles of rocket combustor. A general goal of the research was to demonstrate the use of subscale rocket combustor prototype in a cost-effective test program. Life limiting factors and metal behaviors under repeated loads were surveyed and reviewed. The life prediction theories are presented, with an emphasis on studies that used subscale test hardware for model validation. From this review, low cycle fatigue (LCF) and creep-fatigue interaction (ratcheting) were identified as the main life limiting factors of the combustor. Several life prediction methods such as conventional and advanced viscoplastic models were used to predict life cycle due to low cycle thermal stress, transient effects, and creep rupture damage. Creep-fatigue interaction and cyclic hardening were also investigated. A prediction method based on 2D beam theory was modified using 3D plate deformation theory to provide an extended prediction method. For experimental validation two small scale annular plug nozzle thrusters were designed, built and tested. The test article was composed of a water-cooled liner, plug annular nozzle and 200 psia precombustor that used decomposed hydrogen peroxide as the oxidizer and JP-8 as the fuel. The first combustor was tested cyclically at the Advanced Propellants and Combustion Laboratory at Purdue University. Testing was stopped after 140 cycles due to an unpredicted failure mechanism due to an increasing hot spot in the location where failure was predicted. A second combustor was designed to avoid the previous failure, however, it was over pressurized and deformed beyond repair during cold-flow test. The test results are discussed and compared to the analytical and numerical predictions. A detailed comparison was not performed, however, due to the lack of test data resulting from a failure of the test article. Some theoretical and experimental aspects such as fin effect and round corner were found to reduce the discrepancy between prediction and test results.

  8. Integrated Vehicle Ground Vibration Testing in Support of NASA Launch Vehicle Loads and Controls Analysis

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.; Davis, Susan R.; Askins, Bruce R.; Salyer, Blaine H.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) Ares Projects Office (APO) is continuing to make progress toward the final design of the Ares I crew launch vehicle and Ares V cargo launch vehicle. Ares I and V will form the space launch capabilities necessary to fulfill NASA's exploration strategy of sending human beings to the Moon, Mars, and beyond. As with all new space vehicles there will be a number of tests to ensure the design can be Human Rated. One of these is the Integrated Vehicle Ground Vibration Test (IVGVT) that will be measuring responses of the Ares I as a system. All structural systems possess a basic set of physical characteristics unique to that system. These unique characteristics include items such as mass distribution, frequency and damping. When specified, they allow engineers to understand and predict how a structural system like the Ares I launch vehicle behaves under given loading conditions. These physical properties of launch vehicles may be predicted by analysis or measured through certain types of tests. Generally, these properties are predicted by analysis during the design phase of a launch vehicle and then verified through testing before the vehicle is Human Rated. The IVGVT is intended to measure by test the fundamental dynamic characteristics of Ares I during various phases of operational/flight. This testing includes excitations of the vehicle in lateral, longitudinal, and torsional directions at vehicle configurations representing different trajectory points. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. These data will then be used to calibrate loads and Guidance, Navigation, and Controls (GN&C) analysis models for verifying analyses of Ares I. NASA launch vehicles from Saturn to Shuttle have undergone Ground Vibration Tests (GVTs) leading to successful launch vehicles. A GVT was not performed on the unmanned Delta III. This vehicle was lost during launch. Subsequent analyses indicated that had a GVT been conducted on the vehicle, problems with vehicle modes and control may have been discovered and corrected, avoiding loss of the vehicle/mission. This paper will address GVT planning, set-up, conduction and analyses, for the Saturn and Shuttle programs, and also focus on the current and on-going planning for the Ares I and V IVGVT.

  9. Forward Skirt Structural Testing on the Space Launch System (SLS) Program

    NASA Technical Reports Server (NTRS)

    Lohrer, J. D.; Wright, R. D.

    2016-01-01

    Structural testing was performed to evaluate heritage forward skirts from the Space Shuttle program for use on the Space Launch System (SLS) program. One forward skirt is located in each solid rocket booster. Heritage forward skirts are aluminum 2219 welded structures. Loads are applied at the forward skirt thrust post and ball assembly. Testing was needed because SLS ascent loads are roughly 40% higher than Space Shuttle loads. Testing objectives were to determine margins of safety, demonstrate reliability, and validate analytical models. Two forward skirts were structurally tested using the test configuration. The test stand applied loads to the thrust post. Four hydraulic actuators were used to apply axial load and two hydraulic actuators were used to apply radial and tangential loads. The first test was referred to as FSTA-1 (Forward Skirt Structural Test Article) and was performed in April/May 2014. The purpose of FSTA-1 was to verify the ultimate capability of the forward skirt subjected to ascent ultimate loads. Testing consisted of two liftoff load cases taken to 100% limit load followed by an ascent load case taken to 110% limit load. The forward skirt was unloaded to no load after each test case. Lastly, the forward skirt was tested to 140% limit and then to failure using the ascent loads. The second test was referred to as FSTA-2 and performed in July/August of 2014. The purpose of FSTA-2 was to verify the ultimate capability of the forward skirt subjected to liftoff ultimate loads. Testing consisted of six liftoff load cases taken to 100% limit load followed by the six liftoff cases taken to 140% limit load. Two ascent load cases were then tested to 100% limit load. The forward skirt was unloaded to no load after each test case. Lastly, the forward skirt was tested to 140% limit and then to failure using the ascent loads. The forward skirts on FSTA-1 and FSTA-2 successfully carried all applied liftoff and ascent load cases. Both FSTA-1 and FSTA-2 were tested to failure by increasing the ascent loads. Failure occurred in the forward skirt thrust post radius. The forward skirts on FSTA-1 and FSTA-2 had nearly identical failure modes. FSTA-1 failed at 1.72 times limit load and FSTA-2 failed at 1.62 times limit load. This difference is primarily attributed to variation in material properties in the thrust post region. Test data were obtained from strain gages, deflection gages, ARAMIS digital strain measurement, acoustic emissions, and high-speed video. Strain gage data and ARAMIS strain were compared to finite element (FE) analysis predictions. Both the forward skirt and tooling were modeled. This allows the analysis to simulate the loading as close as possible to actual test configuration. FSTA-1 and FSTA-2 were instrumented with over 200 strain gages to ensure all possible failure modes could be captured. However, it turned out that three gages provided critical strain data. One was located in the post bore and two on the post radius. More gages were not specified due to space limitations and the desire to not interfere with the use of the ARAMIS system on the post radius. Measured strains were compared to analysis results for the load cycle to failure. Note that FSTA-1 gages were lost before failure was reached. FSTA-2 gages made it to the failure load but one of the radius gages was lost before testing began. This gage was not replaced because of the time and cost associated with disassembly of the test structure. Correlation to analysis was excellent for FSTA-1. FSTA-2 was not quite as good because there was more residual strain from previous load cycles. FSTA-2 was loaded and unloaded with 12 liftoff cases and two ascent cases before taking the skirt to failure. FSTA-1 only had two liftoff cases and one ascent case before taking the skirt to failure. The ARAMIS system was used to determine strain at the post radius by processing digital images of a speckled paint pattern. Digital cameras recorded images of the speckled paint pattern. ARAMIS strain results for FSTA-2 just prior to failure. Note a high strain location develops near the left side. This high strain compares well to analysis prediction for both FSTA-1 and FSTA-2. The strain at this location was also plotted versus limit load. Both FSTA-1 and FSTA-2 had excellent correlation between ARAMIS and analysis strains. Acoustic emission (AE) sensors were used to monitor for damage formation that may occur during testing (e.g., crack formation and growth or propagation). AE was very important because after disassembly of FSTA-1, a crack was observed in the ball fitting radius. The ball fitting did not crack on FSTA-2. AE data was used to reconstruct when the crack occurred. The AE energy versus time plot for FSTA. The energy increased considerably at 850 seconds (152% limit load), indicating a crack could have formed at this point. The only visual evidence found that could have corresponded to this was the crack that initiated in the ball fitting. The cracks in the forward skirt aluminum structures would likely have been lower energy due to a lower modulus and all that were found after failure correlated to occurring after the initial crack in the post radius. This was verified by high-speed cameras used to record the failure.

  10. Launch Pad in a Box

    NASA Technical Reports Server (NTRS)

    Mantovani, J. G.; Tamasy, G. J.; Mueller, R. P.; Townsend, I. I.; Sampson, J. W.; Lane, M. A.

    2016-01-01

    NASA Kennedy Space Center (KSC) is developing a new deployable launch system capability to support a small class of launch vehicles for NASA and commercial space companies to test and launch their vehicles. The deployable launch pad concept was first demonstrated on a smaller scale at KSC in 2012 in support of NASA Johnson Space Center's Morpheus Lander Project. The main objective of the Morpheus Project was to test a prototype planetary lander as a vertical takeoff and landing test-bed for advanced spacecraft technologies using a hazard field that KSC had constructed at the Shuttle Landing Facility (SLF). A steel pad for launch or landing was constructed using a modular design that allowed it to be reconfigurable and expandable. A steel flame trench was designed as an optional module that could be easily inserted in place of any modular steel plate component. The concept of a transportable modular launch and landing pad may also be applicable to planetary surfaces where the effects of rocket exhaust plume on surface regolith is problematic for hardware on the surface that may either be damaged by direct impact of high speed dust particles, or impaired by the accumulation of dust (e.g., solar array panels and thermal radiators). During the Morpheus free flight campaign in 2013-14, KSC performed two studies related to rocket plume effects. One study compared four different thermal ablatives that were applied to the interior of a steel flame trench that KSC had designed and built. The second study monitored the erosion of a concrete landing pad following each landing of the Morpheus vehicle on the same pad located in the hazard field. All surfaces of a portable flame trench that could be directly exposed to hot gas during launch of the Morpheus vehicle were coated with four types of ablatives. All ablative products had been tested by NASA KSC and/or the manufacturer. The ablative thicknesses were measured periodically following the twelve Morpheus free flight tests. The thermal energy from the Morpheus rocket exhaust plume was only found to be sufficient to cause appreciable ablation of one of the four ablatives that were tested. The rocket exhaust plume did cause spalling of concrete during each descent and landing on a landing pad in the hazard field. The Extended Abstract ASE Earth and Space Conference April, 2016 - Orlando, FL concrete surface was laser scanned following each Morpheus landing, and the total volume of spalled concrete that eroded between the first and final landings of the Morpheus Project's test campaign was estimated. This paper will also describe a new deployable launch system (DLS) capability that is being developed at KSC and was publicly announced in May 2015 (KSC Partnerships, 2015). The DLS is a set of multi-user Ground Support Equipment that will be used to test and launch small class launch vehicles. The system is comprised of four main elements: the Launch Stand, the Flame Deflector, the Pad Apron and the KAMAG transporter. The system elements are designed to be deployed at launch or test sites within the KSC/CCAFS boundaries. The DLS is intended to be used together with the Fluid and Electrical System of the Universal Propellant Servicing Systems and Mobile Power Data and Communications Unit.

  11. Integrated Testing Approaches for the NASA Ares I Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Taylor, James L.; Cockrell, Charles E.; Tuma, Margaret L.; Askins, Bruce R.; Bland, Jeff D.; Davis, Stephan R.; Patterson, Alan F.; Taylor, Terry L.; Robinson, Kimberly L.

    2008-01-01

    The Ares I crew launch vehicle is being developed by the U.S. National Aeronautics and Space Administration (NASA) to provide crew and cargo access to the International Space Station (ISS) and, together with the Ares V cargo launch vehicle, serves as a critical component of NASA's future human exploration of the Moon. During the preliminary design phase, NASA defined and began implementing plans for integrated ground and flight testing necessary to achieve the first human launch of Ares I. The individual Ares I flight hardware elements - including the first stage five segment booster (FSB), upper stage, and J-2X upper stage engine - will undergo extensive development, qualification, and certification testing prior to flight. Key integrated system tests include the upper stage Main Propulsion Test Article (MPTA), acceptance tests of the integrated upper stage and upper stage engine assembly, a full-scale integrated vehicle ground vibration test (IVGVT), aerodynamic testing to characterize vehicle performance, and integrated testing of the avionics and software components. The Ares I-X development flight test will provide flight data to validate engineering models for aerodynamic performance, stage separation, structural dynamic performance, and control system functionality. The Ares I-Y flight test will validate ascent performance of the first stage, stage separation functionality, validate the ability of the upper stage to manage cryogenic propellants to achieve upper stage engine start conditions, and a high-altitude demonstration of the launch abort system (LAS) following stage separation. The Orion 1 flight test will be conducted as a full, un-crewed, operational flight test through the entire ascent flight profile prior to the first crewed launch.

  12. Ensuring Safe Exploration: Ares Launch Vehicle Integrated Vehicle Ground Vibration Testing

    NASA Technical Reports Server (NTRS)

    Tuma, M. L.; Chenevert, D. J.

    2009-01-01

    Ground vibration testing has been an integral tool for developing new launch vehicles throughout the space age. Several launch vehicles have been lost due to problems that would have been detected by early vibration testing, including Ariane 5, Delta III, and Falcon 1. NASA will leverage experience and testing hardware developed during the Saturn and Shuttle programs to perform ground vibration testing (GVT) on the Ares I crew launch vehicle and Ares V cargo launch vehicle stacks. NASA performed dynamic vehicle testing (DVT) for Saturn and mated vehicle ground vibration testing (MVGVT) for Shuttle at the Dynamic Test Stand (Test Stand 4550) at Marshall Space Flight Center (MSFC) in Huntsville, Alabama, and is now modifying that facility to support Ares I integrated vehicle ground vibration testing (IVGVT) beginning in 2012. The Ares IVGVT schedule shows most of its work being completed between 2010 and 2014. Integrated 2nd Stage Ares IVGVT will begin in 2012 and IVGVT of the entire Ares launch stack will begin in 2013. The IVGVT data is needed for the human-rated Orion launch vehicle's Design Certification Review (DCR) in early 2015. During the Apollo program, GVT detected several serious design concerns, which NASA was able to address before Saturn V flew, eliminating costly failures and potential losses of mission or crew. During the late 1970s, Test Stand 4550 was modified to support the four-body structure of the Space Shuttle. Vibration testing confirmed that the vehicle's mode shapes and frequencies were better than analytical models suggested, however, the testing also identified challenges with the rate gyro assemblies, which could have created flight instability and possibly resulted in loss of the vehicle. Today, NASA has begun modifying Test Stand 4550 to accommodate Ares I, including removing platforms needed for Shuttle testing and upgrading the dynamic test facilities to characterize the mode shapes and resonant frequencies of the vehicle. The IVGVT team expects to collect important information about the new launch vehicles, greatly increasing astronaut safety as NASA prepares to explore the Moon and beyond.

  13. Analysis of Flame Deflector Spray Nozzles in Rocket Engine Test Stands

    NASA Technical Reports Server (NTRS)

    Sachdev, Jai S.; Ahuja, Vineet; Hosangadi, Ashvin; Allgood, Daniel C.

    2010-01-01

    The development of a unified tightly coupled multi-phase computational framework is described for the analysis and design of cooling spray nozzle configurations on the flame deflector in rocket engine test stands. An Eulerian formulation is used to model the disperse phase and is coupled to the gas-phase equations through momentum and heat transfer as well as phase change. The phase change formulation is modeled according to a modified form of the Hertz-Knudsen equation. Various simple test cases are presented to verify the validity of the numerical framework. The ability of the methodology to accurately predict the temperature load on the flame deflector is demonstrated though application to an actual sub-scale test facility. The CFD simulation was able to reproduce the result of the test-firing, showing that the spray nozzle configuration provided insufficient amount of cooling.

  14. Development of a liquid oxygen facility for rocket engine injector performance testing

    NASA Astrophysics Data System (ADS)

    Mulkey, Henry W.

    This study demonstrated the successful operation of a new liquid oxygen-gaseous methane rocket engine test facility to characterize the performance of a swirl coaxial injector. In support of safe system functional development, an oxygen compatibility and hazards assessment was completed to identify and minimize operational risks. Facility changes were implemented to create a more fault tolerant system. Major upgrades included initiatives to manage the oxygen risk and mitigate specific oxygen ignition mechanisms. Oxygen compatible materials and facility configuration changes were instituted to achieve safer experimentation. The demonstration testing of the cryogenic propellant system employed the swirl coaxial injector element in an ongoing program to study liquid oxygen-methane injectors. The injector performance was evaluated by experimental determination of combustion efficiency. The combustion efficiency determined for the injector arrangement during the single operational test was 80% with a 95% confidence systematic standard uncertainty estimate of 4%. Random uncertainty estimation must await repeated tests.

  15. Analytical flow/thermal modeling of combustion gas flows in Redesigned Solid Rocket Motor test joints

    NASA Technical Reports Server (NTRS)

    Woods, G. H.; Knox, E. C.; Pond, J. E.; Bacchus, D. L.; Hengel, J. E.

    1992-01-01

    A one-dimensional analytical tool, TOPAZ (Transient One-dimensional Pipe flow AnalyZer), was used to model the flow characteristics of hot combustion gases through Redesigned Solid Rocket Motor (RSRM) joints and to compute the resultant material surface temperatures and o-ring seal erosion of the joints. The capabilities of the analytical tool were validated with test data during the Seventy Pound Charge (SPC) motor test program. The predicted RSRM joint thermal response to ignition transients was compared with test data for full-scale motor tests. The one-dimensional analyzer is found to be an effective tool for simulating combustion gas flows in RSRM joints and for predicting flow and thermal properties.

  16. Integrated System Test Approaches for the NASA Ares I Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles

    2008-01-01

    NASA is maturing test and evaluation plans leading to flight readiness of the Ares I crew launch vehicle. Key development, qualification, and verification tests are planned . Upper stage engine sea-level and altitude testing. First stage development and qualification motors. Upper stage structural and thermal development and qualification test articles. Main Propulsion Test Article (MPTA). Upper stage green run testing. Integrated Vehicle Ground Vibration Testing (IVGVT). Aerodynamic characterization testing. Test and evaluation supports initial validation flights (Ares I-Y and Orion 1) and design certification.

  17. Experimental Analysis of a Rocket Based Combined Cycle (RBCC) Engine in a Direct-Connect Test Facility

    NASA Technical Reports Server (NTRS)

    Nelson, K.; Hawk, Clark W.

    1997-01-01

    The object of this study is to investigate the operation of a RBCC at ramjet and scramjet flight conditions using a direct-connect test facility. The apparatus being tested is a single strut-rocket within a dual-mode ram/scramjet combustor. The gaseous hydrogen/oxygen, linear strut-rocket was supplied by Aerojet Propulsion Company. The hardware is being tested in the Direct Connect Supersonic Combustion Test Facility at NASA Langley Research Center. The test facilities hydrogen/oxygen vitiated heater is capable of flight total enthalpies to Mach 8. A Mach 2.5 facility nozzle mates the heater to the combustor duct. The rocket ejector will ordinarily operate in a fuel-rich mode. Additional fuel injection is provided by a pair of parallel injectors located at the base of the strut body. Instrumentation on the test apparatus includes a unique, direct thrust measurement system. Performance predictions for the anticipated test conditions have been made using a one-dimensional, thermodynamic analysis code. Results from the code show the dependence of overall thrust and specific impulse on rocket chamber pressure, rocket fuel equivalence ratio, and overall fuel equivalence ratio. Once the experimental test series begins, the inferred combustion efficiency as a function of axial location and the thermal choke region (where applicable) can also be determined using this code. Upon completion of the experimental test series, measurements will be used to calculate thrust, specific impulse, etc. Measured and calculated values will be compared to those found analytically. If appropriate, the code will be tailored to better predict hardware operation. Conclusions will be drawn as to the fuel-rich rocket's overall effect on ramjet and scramjet performance. Also, comparisons will be made between the integrated thrust calculated from the static pressure taps located along the duct and the thrust measured by the direct thrust measurement system.

  18. A detailed description of the uncertainty analysis for High Area Ratio Rocket Nozzle tests at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth J.; Dieck, Ronald H.; Chuang, Isaac

    1987-01-01

    A preliminary uncertainty analysis has been performed for the High Area Ratio Rocket Nozzle test program which took place at the altitude test capsule of the Rocket Engine Test Facility at the NASA Lewis Research Center. Results from the study establish the uncertainty of measured and calculated parameters required for the calculation of rocket engine specific impulse. A generalized description of the uncertainty methodology used is provided. Specific equations and a detailed description of the analysis are presented. Verification of the uncertainty analysis model was performed by comparison with results from the experimental program's data reduction code. Final results include an uncertainty for specific impulse of 1.30 percent. The largest contributors to this uncertainty were calibration errors from the test capsule pressure and thrust measurement devices.

  19. A Review of Large Solid Rocket Motor Free Field Acoustics, Part I

    NASA Technical Reports Server (NTRS)

    Pilkey, Debbie; Kenny, Robert Jeremy

    2011-01-01

    At the ATK facility in Utah, large full scale solid rocket motors are tested. The largest is a five segment version of the Reusable Solid Rocket Motor, which is for use on future launch vehicles. Since 2006, Acoustic measurements have been taken on large solid rocket motors at ATK. Both the four segment RSRM and the five segment RSRMV have been instrumented. Measurements are used to update acoustic prediction models and to correlate against vibration responses of the motor. Presentation focuses on two major sections: Part I) Unique challenges associated with measuring rocket acoustics Part II) Acoustic measurements summary over past five years

  20. Forward Skirt Structural Testing on the Space Launch System (SLS) Program

    NASA Technical Reports Server (NTRS)

    Lohrer, J. D.; Wright, R. D.

    2016-01-01

    Structural testing was performed to evaluate heritage forward skirts from the Space Shuttle program for use on the NASA Space Launch System (SLS) program. Testing was needed because SLS ascent loads are 35% higher than Space Shuttle loads. Objectives of testing were to determine margins of safety, demonstrate reliability, and validate analytical models. Testing combined with analysis was able to show heritage forward skirts were acceptable to use on the SLS program.

  1. RocketCam systems for providing situational awareness on rockets, spacecraft, and other remote platforms

    NASA Astrophysics Data System (ADS)

    Ridenoure, Rex

    2004-09-01

    Space-borne imaging systems derived from commercial technology have been successfully employed on launch vehicles for several years. Since 1997, over sixty such imagers - all in the product family called RocketCamTM - have operated successfully on 29 launches involving most U.S. launch systems. During this time, these inexpensive systems have demonstrated their utility in engineering analysis of liftoff and ascent events, booster performance, separation events and payload separation operations, and have also been employed to support and document related ground-based engineering tests. Such views from various vantage points provide not only visualization of key events but stunning and extremely positive public relations video content. Near-term applications include capturing key events on Earth-orbiting spacecraft and related proximity operations. This paper examines the history to date of RocketCams on expendable and manned launch vehicles, assesses their current utility on rockets, spacecraft and other aerospace vehicles (e.g., UAVs), and provides guidance for their use in selected defense and security applications. Broad use of RocketCams on defense and security projects will provide critical engineering data for developmental efforts, a large database of in-situ measurements onboard and around aerospace vehicles and platforms, compelling public relations content, and new diagnostic information for systems designers and failure-review panels alike.

  2. Suomi Npp and Jpss Pre-Launch Test Data Collection and Archive

    NASA Astrophysics Data System (ADS)

    Denning, M.; Ullman, R.; Guenther, B.; Kilcoyne, H.; Chandler, C.; Adameck, J.

    2012-12-01

    During the development of each Suomi National Polar-orbiting Partnership (Suomi NPP) instrument, significant testing was performed, both in ambient and simulated orbital (thermal-vacuum) conditions, at the instrument factory, and again after integration with the spacecraft. The NPOESS Integrated Program Office (IPO), and later the NASA Joint Polar Satellite System (JPSS) Program Office, defined two primary objectives with respect to capturing instrument and spacecraft test data during these test events. The first objective was to disseminate test data and auxiliary documentation to an often distributed network of scientists to permit timely production of independent assessments of instrument performance, calibration, data quality, and test progress. The second goal was to preserve the data and documentation in a catalogued government archive for the life of the mission, to aid in the resolution of anomalies and to facilitate the comparison of on-orbit instrument operating characteristics to those observed prior to launch. In order to meet these objectives, Suomi NPP pre-launch test data collection, distribution, processing, and archive methods included adaptable support infrastructures to quickly and completely transfer test data and documentation from the instrument and spacecraft factories to sensor scientist teams on-site at the factory and around the country. These methods were unique, effective, and low in cost. These efforts supporting pre-launch instrument calibration permitted timely data quality assessments and technical feedback from contributing organizations within the government, academia, and industry, and were critical in supporting timely sensor development. Second, in parallel to data distribution to the sensor science teams, pre-launch test data were transferred and ingested into the central Suomi NPP calibration and validation (cal/val) system, known as the Government Resource for Algorithm Verification, Independent Testing, and Evaluation (GRAVITE), where they will reside for the life of the mission. As a result, data and documentation are available for query, analysis, and download by the cal/val community via the command-line GRAVITE Transfer Protocol (GTP) tool or via the NOAA-collaborative website "CasaNOSA". Instrument and spacecraft test data, telemetry, and ground support equipment information were collected and organized with detailed test procedures, logs, analyses, characterizations, and reports. This 45 Terabyte archive facilitates the comparison of on-orbit Suomi NPP operating characteristics with that observed prior to launch, and will serve as a resource to aid in the assessment of pre-launch JPSS-1 sensor performance. In summary, this paper will present the innovative pre-launch test data campaign infrastructures employed for Suomi NPP and planned for JPSS-1.

  3. Design and test of a small two stage counter-rotating turbine for rocket engine application

    NASA Astrophysics Data System (ADS)

    Huber, F. W.; Branstrom, B. R.; Finke, A. K.; Johnson, P. D.; Rowey, R. J.; Veres, J. P.

    1993-06-01

    The aerodynamic design and rig test evaluation of a small counter-rotating turbine system is described. The technology represented by this turbine is being developed for application in an advanced upper stage rocket engine turbopump. This engine will employ an oxygen/hydrogen expander cycle and achieve high performance through efficient combustion, high combustion pressure, and high area ratio exhaust nozzle expansion. Engine performance goals require that the turbopump drive turbines achieve high efficiency at low gas flow rates. The low flow rates result in very small airfoil diameter, height and chord. The high efficiency and small size requirements present a challenging turbine design problem. The unconventional approach employed to meet this challenge is described, along with the detailed design process and resulting airfoil configurations. The method and results of full scale aerodynamic performance evaluation testing of both one and two stage configurations, as well as operation without the secondary stage stator are presented. The overall results of this effort illustrate that advanced aerodynamic design tools and hardware fabrication techniques have provided improved capability to produce small high performance turbines for advanced rocket engines.

  4. Design and test of a small two stage counter-rotating turbine for rocket engine application

    NASA Technical Reports Server (NTRS)

    Huber, F. W.; Branstrom, B. R.; Finke, A. K.; Johnson, P. D.; Rowey, R. J.; Veres, J. P.

    1993-01-01

    The aerodynamic design and rig test evaluation of a small counter-rotating turbine system is described. The technology represented by this turbine is being developed for application in an advanced upper stage rocket engine turbopump. This engine will employ an oxygen/hydrogen expander cycle and achieve high performance through efficient combustion, high combustion pressure, and high area ratio exhaust nozzle expansion. Engine performance goals require that the turbopump drive turbines achieve high efficiency at low gas flow rates. The low flow rates result in very small airfoil diameter, height and chord. The high efficiency and small size requirements present a challenging turbine design problem. The unconventional approach employed to meet this challenge is described, along with the detailed design process and resulting airfoil configurations. The method and results of full scale aerodynamic performance evaluation testing of both one and two stage configurations, as well as operation without the secondary stage stator are presented. The overall results of this effort illustrate that advanced aerodynamic design tools and hardware fabrication techniques have provided improved capability to produce small high performance turbines for advanced rocket engines.

  5. Modeling and Testing of Non-Nuclear, Highpower Simulated Nuclear Thermal Rocket Reactor Elements

    NASA Technical Reports Server (NTRS)

    Kirk, Daniel R.

    2005-01-01

    When the President offered his new vision for space exploration in January of 2004, he said, "Our third goal is to return to the moon by 2020, as the launching point for missions beyond," and, "With the experience and knowledge gained on the moon, we will then be ready to take the next steps of space exploration: human missions to Mars and to worlds beyond." A human mission to Mars implies the need to move large payloads as rapidly as possible, in an efficient and cost-effective manner. Furthermore, with the scientific advancements possible with Project Prometheus and its Jupiter Icy Moons Orbiter (JIMO), (these use electric propulsion), there is a renewed interest in deep space exploration propulsion systems. According to many mission analyses, nuclear thermal propulsion (NTP), with its relatively high thrust and high specific impulse, is a serious candidate for such missions. Nuclear rockets utilize fission energy to heat a reactor core to very high temperatures. Hydrogen gas flowing through the core then becomes superheated and exits the engine at very high exhaust velocities. The combination of temperature and low molecular weight results in an engine with specific impulses above 900 seconds. This is almost twice the performance of the LOX/LH2 space shuttle engines, and the impact of this performance would be to reduce the trip time of a manned Mars mission from the 2.5 years, possible with chemical engines, to about 12-14 months.

  6. Metop-BAVHRR IR channel post-launch calibration and verification tests

    NASA Astrophysics Data System (ADS)

    Chang, Tiejun; Wu, Xiangqian; Weng, Fuzhong

    2013-09-01

    Meteorological Operational (METOP)-B spacecraft was launched on September 17, 2012, and the Advanced Very High Resolution Radiometer (AVHRR) IR channels were activated October 18. AVHRR instrument has been tested and characterized pre-launch under thermal vacuum (TV) condition by the instrument vender. The instrument dynamic range, noise equivalent differential temperature (NEDT), and nonlinear response have been characterized in the test. Basing on the TV test data, the calibration coefficients are generated for post-launch. The on-orbit verification tests have been performed to verify the instrument response and performance, including the dynamic range, NEDT, on-board blackbody (BB) temperature, instrument response calibration, and instrument status from the telemetry data. The post-launch Cal/Val test is to improve the calibration accuracy and enhance the L1B data quality. These tests include stray light analysis, instrument gain verification, and uncertainty assessment. The stray light impact on the calibration is estimated as 0.2% for 11 ?m channel, 0.3% for 12 ?m channel, and 3% for 3.7?m channel. The inter-comparison AVHRR IR channel radiances with the radiance derived from Infrared Atmospheric Sounding Interferometer (IASI) measurement has been performed and the AVHRR bias shoes brightness temperature dependency.

  7. Test data from small solid propellant rocket motor plume measurements (FA-21)

    NASA Technical Reports Server (NTRS)

    Hair, L. M.; Somers, R. E.

    1976-01-01

    A program is described for obtaining a reliable, parametric set of measurements in the exhaust plumes of solid propellant rocket motors. Plume measurements included pressures, temperatures, forces, heat transfer rates, particle sampling, and high-speed movies. Approximately 210,000 digital data points and 15,000 movie frames were acquired. Measurements were made at points in the plumes via rake-mounted probes, and on the surface of a large plate impinged by the exhaust plume. Parametric variations were made in pressure altitude, propellant aluminum loading, impinged plate incidence angle and distance from nozzle exit to plate or rake. Reliability was incorporated by continual use of repeat runs. The test setup of the various hardware items is described along with an account of test procedures. Test results and data accuracy are discussed. Format of the data presentation is detailed. Complete data are included in the appendix.

  8. Enhanced Large Solid Rocket Motor Understanding Through Performance Margin Testing: RSRM Five-Segment Engineering Test Motor (ETM-3)

    NASA Technical Reports Server (NTRS)

    Huppi, Hal; Tobias, Mark; Seiler, James

    2003-01-01

    The Five-Segment Engineering Test Motor (ETM-3) is an extended length reusable solid rocket motor (RSRM) intended to increase motor performance and internal environments above the current four-segment RSRM flight motor. The principal purpose of ETM-3 is to provide a test article for RSRM component margin testing. As the RSRM and Space Shuttle in general continue to age, replacing obsolete materials becomes an ever-increasing issue. Having a five-segment motor that provides environments in excess of normal opera- tion allows a mechanism to subject replacement materials to a more severe environment than experienced in flight. Additionally, ETM-3 offers a second design data point from which to develop and/or validate analytical models that currently have some level of empiricism associated with them. These enhanced models have the potential to further the understanding of RSRM motor performance and solid rocket motor (SRM) propulsion in general. Furthermore, these data could be leveraged to support a five-segment booster (FSB) development program should the Space Shuttle program choose to pursue this option for abort mode enhancements during the ascent phase. A tertiary goal of ETM-3 is to challenge both the ATK Thiokol Propulsion and NASA MSFC technical personnel through the design and analysis of a large solid rocket motor without the benefit of a well-established performance database such as the RSRM. The end result of this undertaking will be a more competent and experienced workforce for both organizations. Of particular interest are the motor design characteristics and the systems engineering approach used to conduct a complex yet successful large motor static test. These aspects of ETM-3 and more will be summarized.

  9. Parametric studies with an atmospheric diffusion model that assesses toxic fuel hazards due to the ground clouds generated by rocket launches

    NASA Technical Reports Server (NTRS)

    Stewart, R. B.; Grose, W. L.

    1975-01-01

    Parametric studies were made with a multilayer atmospheric diffusion model to place quantitative limits on the uncertainty of predicting ground-level toxic rocket-fuel concentrations. Exhaust distributions in the ground cloud, cloud stabilized geometry, atmospheric coefficients, the effects of exhaust plume afterburning of carbon monoxide CO, assumed surface mixing-layer division in the model, and model sensitivity to different meteorological regimes were studied. Large-scale differences in ground-level predictions are quantitatively described. Cloud alongwind growth for several meteorological conditions is shown to be in error because of incorrect application of previous diffusion theory. In addition, rocket-plume calculations indicate that almost all of the rocket-motor carbon monoxide is afterburned to carbon dioxide CO2, thus reducing toxic hazards due to CO. The afterburning is also shown to have a significant effect on cloud stabilization height and on ground-level concentrations of exhaust products.

  10. Establishing A Proxy Database for Supporting NPOESS/NPP VIIRS Land Product Pre-launch Testing

    NASA Astrophysics Data System (ADS)

    Hao, X.; Qu, J. J.; Hauss, B.; Wang, C.; Privette, J. L.

    2005-12-01

    The National Polar-orbiting Operational Environmental Satellite System (NPOESS) will become the primary platform for Earth observation in near future. As the key instrument under NPOESS and the successor of Moderate Resolution Spectroradiometer (MODIS), Visible Infrared Imager Radiometer Suite (VIIRS) is the primary instrument for land measurements in NPOESS and NPOESS Preparatory Project (NPP). With the approaching of launch, it is necessary to study the VIIRS measurements for land applications. Although there is no real VIIRS measurements before NPP launch, proxy datasets can be very valuable for land algorithm development and pre-launch testing. We have studied AIRS/MODIS/VIIRS cross-sensor calibration and validation, developed algorithms and toolkit for AIRS/MODIS/VIIRS band mapping, and constructed a testing database, which contains AIRS-simulated VIIRS thermal infrared band measurements, AIRS-simulated MODIS thermal infrared band measurements, aggregated MODIS thermal infrared band measurements as well as the corresponding scene characteristics, such as surface types, total precipitable water in air column, cloud fraction, scan angle, solar angles, and satellite angles. In this paper, we investigate the applications of proxy datasets and testing database in NPOESS and NPP land measurements pre-launch testing, especially land surface temperature retrieval and fire detection. In addition, data record continuity across multi-missions is also a very important issue for long term observation of the Earth's surface, our testing database also provides a good chance to investigate the continuity of land Environmental Data Records (EDRs) across MODIS and VIIRS.

  11. 22. V2 GANTRY, LAUNCH COMPLEX 33: GENERAL VIEW, LOOKING WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. V-2 GANTRY, LAUNCH COMPLEX 33: GENERAL VIEW, LOOKING WEST AND UPWARD FROM APRON OF BLAST PIT, 20,000 POUND MOTOR TEST AND LAUNCH FACILITY - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM

  12. 21. V2 GANTRY, LAUNCH COMPLEX 33: VIEW OF CRANE WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. V-2 GANTRY, LAUNCH COMPLEX 33: VIEW OF CRANE WITH BLAST PIT OF 20,000 POUND MOTOR TEST AND LAUNCH FACILITY, IN FOREGROUND, LOOKING WEST - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM

  13. Cold Flow Testing for Liquid Propellant Rocket Injector Scaling and Throttling

    NASA Technical Reports Server (NTRS)

    Kenny, Jeremy R.; Moser, Marlow D.; Hulka, James; Jones, Gregg

    2006-01-01

    Scaling and throttling of combustion devices are important capabilities to demonstrate in development of liquid rocket engines for NASA's Space Exploration Mission. Scaling provides the ability to design new injectors and injection elements with predictable performance on the basis of test experience with existing injectors and elements, and could be a key aspect of future development programs. Throttling is the reduction of thrust with fixed designs and is a critical requirement in lunar and other planetary landing missions. A task in the Constellation University Institutes Program (CUIP) has been designed to evaluate spray characteristics when liquid propellant rocket engine injectors are scaled and throttled. The specific objectives of the present study are to characterize injection and primary atomization using cold flow simulations of the reacting sprays. These simulations can provide relevant information because the injection and primary atomization are believed to be the spray processes least affected by the propellant reaction. Cold flow studies also provide acceptable test conditions for a university environment. Three geometric scales - 1/4- scale, 1/2-scale, and full-scale - of two different injector element types - swirl coaxial and shear coaxial - will be designed, fabricated, and tested. A literature review is currently being conducted to revisit and compile the previous scaling documentation. Because it is simple to perform, throttling will also be examined in the present work by measuring primary atomization characteristics as the mass flow rate and pressure drop of the six injector element concepts are reduced, with corresponding changes in chamber backpressure. Simulants will include water and gaseous nitrogen, and an optically accessible chamber will be used for visual and laser-based diagnostics. The chamber will include curtain flow capability to repress recirculation, and additional gas injection to provide independent control of the backpressure. This paper provides a short review of the appropriate literature, as well as descriptions of plans for experimental hardware, test chamber instrumentation, diagnostics, and testing.

  14. Integrated System Health Management: Pilot Operational Implementation in a Rocket Engine Test Stand

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Schmalzel, John L.; Morris, Jonathan A.; Turowski, Mark P.; Franzl, Richard

    2010-01-01

    This paper describes a credible implementation of integrated system health management (ISHM) capability, as a pilot operational system. Important core elements that make possible fielding and evolution of ISHM capability have been validated in a rocket engine test stand, encompassing all phases of operation: stand-by, pre-test, test, and post-test. The core elements include an architecture (hardware/software) for ISHM, gateways for streaming real-time data from the data acquisition system into the ISHM system, automated configuration management employing transducer electronic data sheets (TEDS?s) adhering to the IEEE 1451.4 Standard for Smart Sensors and Actuators, broadcasting and capture of sensor measurements and health information adhering to the IEEE 1451.1 Standard for Smart Sensors and Actuators, user interfaces for management of redlines/bluelines, and establishment of a health assessment database system (HADS) and browser for extensive post-test analysis. The ISHM system was installed in the Test Control Room, where test operators were exposed to the capability. All functionalities of the pilot implementation were validated during testing and in post-test data streaming through the ISHM system. The implementation enabled significant improvements in awareness about the status of the test stand, and events and their causes/consequences. The architecture and software elements embody a systems engineering, knowledge-based approach; in conjunction with object-oriented environments. These qualities are permitting systematic augmentation of the capability and scaling to encompass other subsystems.

  15. Fuzzy/Neural Software Estimates Costs of Rocket-Engine Tests

    NASA Technical Reports Server (NTRS)

    Douglas, Freddie; Bourgeois, Edit Kaminsky

    2005-01-01

    The Highly Accurate Cost Estimating Model (HACEM) is a software system for estimating the costs of testing rocket engines and components at Stennis Space Center. HACEM is built on a foundation of adaptive-network-based fuzzy inference systems (ANFIS) a hybrid software concept that combines the adaptive capabilities of neural networks with the ease of development and additional benefits of fuzzy-logic-based systems. In ANFIS, fuzzy inference systems are trained by use of neural networks. HACEM includes selectable subsystems that utilize various numbers and types of inputs, various numbers of fuzzy membership functions, and various input-preprocessing techniques. The inputs to HACEM are parameters of specific tests or series of tests. These parameters include test type (component or engine test), number and duration of tests, and thrust level(s) (in the case of engine tests). The ANFIS in HACEM are trained by use of sets of these parameters, along with costs of past tests. Thereafter, the user feeds HACEM a simple input text file that contains the parameters of a planned test or series of tests, the user selects the desired HACEM subsystem, and the subsystem processes the parameters into an estimate of cost(s).

  16. Rockets for spin recovery

    NASA Technical Reports Server (NTRS)

    Whipple, R. D.

    1980-01-01

    The potential effectiveness of rockets as an auxiliary means for an aircraft to effect recovery from spins was investigated. The advances in rocket technology produced by the space effort suggested that currently available systems might obviate many of the problems encountered in earlier rocket systems. A modern fighter configuration known to exhibit a flat spin mode was selected. An analytical study was made of the thrust requirements for a rocket spin recovery system for the subject configuration. These results were then applied to a preliminary systems study of rocket components appropriate to the problem. Subsequent spin tunnel tests were run to evaluate the analytical results.

  17. NASA's Space Launch System: Momentum Builds Towards First Launch

    NASA Technical Reports Server (NTRS)

    May, Todd; Lyles, Garry

    2014-01-01

    NASA's Space Launch System (SLS) is gaining momentum programmatically and technically toward the first launch of a new exploration-class heavy lift launch vehicle for international exploration and science initiatives. The SLS comprises an architecture that begins with a vehicle capable of launching 70 metric tons (t) into low Earth orbit. Its first mission will be the launch of the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back. SLS will also launch the first Orion crewed flight in 2021. SLS can evolve to a 130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Managed by NASA's Marshall Space Flight Center, the SLS Program formally transitioned from the formulation phase to implementation with the successful completion of the rigorous Key Decision Point C review in 2014. At KDP-C, the Agency Planning Management Council determines the readiness of a program to go to the next life-cycle phase and makes technical, cost, and schedule commitments to its external stakeholders. As a result, the Agency authorized the Program to move forward to Critical Design Review, scheduled for 2015, and a launch readiness date of November 2018. Every SLS element is currently in testing or test preparations. The Program shipped its first flight hardware in 2014 in preparation for Orion's Exploration Flight Test-1 (EFT-1) launch on a Delta IV Heavy rocket in December, a significant first step toward human journeys into deep space. Accomplishments during 2014 included manufacture of Core Stage test articles and preparations for qualification testing the Solid Rocket Boosters and the RS-25 Core Stage engines. SLS was conceived with the goals of safety, affordability, and sustainability, while also providing unprecedented capability for human exploration and scientific discovery beyond Earth orbit. In an environment of economic challenges, the nationwide SLS team continues to meet ambitious budget and schedule targets through the studied use of hardware, infrastructure, and workforce investments the United States has already made in the last half century, while selectively using new technologies for design, manufacturing, and testing, as well as streamlined management approaches that have increased decision velocity and reduced associated costs. This paper will summarize recent SLS Program technical accomplishments, as well as the challenges and opportunities ahead for the most powerful and capable launch vehicle in history.

  18. Supplemental final environmental impact statement for advanced solid rocket motor testing at Stennis Space Center

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Since the Final Environmental Impact Statement (FEIS) and Record of Decision on the FEIS describing the potential impacts to human health and the environment associated with the program, three factors have caused NASA to initiate additional studies regarding these issues. These factors are: (1) The U.S. Army Corps of Engineers and the Environmental Protection Agency (EPA) agreed to use the same comprehensive procedures to identify and delineate wetlands; (2) EPA has given NASA further guidance on how best to simulate the exhaust plume from the Advanced Solid Rocket Motor (ASRM) testing through computer modeling, enabling more realistic analysis of emission impacts; and (3) public concerns have been raised concerning short and long term impacts on human health and the environment from ASRM testing.

  19. Ion Propulsion Development Projects in US: Space Electric Rocket Test I to Deep Space 1

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Rawlin, Vincent K.; Patterson, Michael J.

    2001-01-01

    The historical background and characteristics of the experimental flights of ion propulsion systems and the major ground-based technology demonstrations are reviewed. The results of the first successful ion engine flight in 1964, Space Electric Rocket Test (SERT) I, which demonstrated ion beam neutralization, are discussed along with the extended operation of SERT II starting in 1970. These results together with the technologies employed on the early cesium engine flights, the applications technology satellite series, and the ground-test demonstrations, have provided the evolutionary path for the development of xenon ion thruster component technologies, control systems, and power circuit implementations. In the 1997-1999 period, the communication satellite flights using ion engine systems and the Deep Space 1 flight confirmed that these auxiliary and primary propulsion systems have advanced to a high level of flight readiness.

  20. Testing and environmental exposure of parachute materials for the solid rocket booster decelerator subsystem

    NASA Technical Reports Server (NTRS)

    Tannehill, B. K.

    1978-01-01

    Static tests and evaluation of nonmetallic materials for use in parachutes for recovery of solid rocket boosters used in the space shuttle program are reported. Literature survey and manufacturer and vendor contacts led to the choice of nylon as the fabric most capable of withstanding the extreme loads and environmental conditions during repeated use. The material tests included rupture strength, elongation, abrasion resistance, shrinkage, environmental exposure, and degradation levels. Rinsing and drying procedures were also investigated and a salt-free level for nylon recommended in preparation for reuse. In all possible cases, worst-case conditions were used (e.g., inflation loads, seawater exposure for 3 days per drop-recovery, etc.).

  1. Detailed test objectives for the extended long tank delta launch vehicle, spacecraft: AE-C

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The test objectives for the extended long tank Delta Launch Vehicle are presented. The subjects discussed are: (1) mission and vehicle objectives, (2) nominal flight plan, (3) trajectory analysis, (4) weight summary and inflight mass properties, and (5) instrumentation channel assignments and ground monitoring assignments.

  2. Wind-tunnel development of an SR-71 aerospike rocket flight test configuration

    NASA Technical Reports Server (NTRS)

    Smith, Stephen C.; Shirakata, Norm; Moes, Timothy R.; Cobleigh, Brent R.; Conners, Timothy H.

    1996-01-01

    A flight experiment has been proposed to investigate the performance of an aerospike rocket motor installed in a lifting body configuration. An SR-71 airplane would be used to carry the aerospike configuration to the desired flight test conditions. Wind-tunnel tests were completed on a 4-percent scale SR-71 airplane with the aerospike pod mounted in various locations on the upper fuselage. Testing was accomplished using sting and blade mounts from Mach 0.6 to Mach 3.2. Initial test objectives included assessing transonic drag and supersonic lateral-directional stability and control. During these tests, flight simulations were run with wind-tunnel data to assess the acceptability of the configurations. Early testing demonstrated that the initial configuration with the aerospike pod near the SR-71 center of gravity was unsuitable because of large nosedown pitching moments at transonic speeds. The excessive trim drag resulting from accommodating this pitching moment far exceeded the excess thrust capability of the airplane. Wind-tunnel testing continued in an attempt to find a configuration suitable for flight test. Multiple configurations were tested. Results indicate that an aft-mounted model configuration possessed acceptable performance, stability, and control characteristics.

  3. Challenging Pneumatic Requirements for Acoustic Testing of the Cryogenic Second Stage for the New Delta 3 Rocket

    NASA Technical Reports Server (NTRS)

    Webb, Andrew T.

    1998-01-01

    The paper describes the unique pneumatic test requirements for the acoustic and shock separation testing of the Second Stage for the new Delta III Rocket at the Goddard Space Flight Center in Greenbelt, Maryland. The testing was conducted in the 45,000 cu ft (25-feet wide by 30-feet deep by 50-foot high) Acoustic Facility. The acoustic testing required that the liquid oxygen (LOX) and liquid hydrogen (LH2) tanks be filled with enough liquid nitrogen (LN2) to simulate launch fuel masses during testing. The challenge for this test dealt with designing, procuring, and fabricating the pneumatic supply systems for quick assembly while maintaining the purity requirements and minimizing costs. The pneumatic systems were designed to fill and drain the both LOX and LH2 tanks as well as to operate the fill/drain and vent valves for each of the tanks. The test criteria for the pneumatic sub-systems consisted of function, cleanliness, availability, and cost. The first criteria, function, required the tanks to be filled and drained in an efficient manner while preventing them from seeing pressures greater than 9 psig which would add a pressure cycle to the tank. An LN2 tanker, borrowed from another NASA facility, served as the pre-cool and drain tanker. Pre-cooling the tanks allowed for more efficient and cost effective transfer from the LN2 delivery tankers. Helium gas, supplied from a high purity tube trailer, was used to pressurize the vapor space above the LN2 pushing it into the drain tanker. The tube trailer also supplied high pressure helium to the vehicle for valve control and component purges. Cleanliness was maintained by proper component selection, end-use particle filtration, and any on-site cleaning determined necessary by testing. In order to meet the availability/cost juggling act, products designed for LOX delivery systems were procured to ensure system compatibility while off the shelf valves and tubing designed for the semiconductor industry were procured for the gas systems.

  4. Rocket engine analog simulation

    NASA Technical Reports Server (NTRS)

    Philyaw, B. K.; Randazzo, G. J.

    1968-01-01

    Mathematical equations simulate the operation of a rocket engine, simulate destructive and nondestructive tests to verify engine design feasibility, and investigate nonlinear variations in engine performance.

  5. Large-Scale Cryogenic Testing of Launch Vehicle Ground Systems at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Ernst, E. W.; Sass, J. P.; Lobemeyer, D. A.; Sojourner, S. J.; Hatfield, W. H.; Rewinkel, D. A.

    2007-01-01

    The development of a new launch vehicle to support NASA's future exploration plans requires significant redesign and upgrade of Kennedy Space Center's (KSC) launch pad and ground support equipment systems. In many cases, specialized test equipment and systems will be required to certify the function of the new system designs under simulated operational conditions, including propellant loading. This paper provides an overview of the cryogenic test infrastructure that is in place at KSC to conduct development and qualification testing that ranges from the component level to the integrated-system level. An overview of the major cryogenic test facilities will be provided, along with a detailed explanation of the technology focus area for each facility

  6. Shuttle Launch

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A Space Shuttle thunders to space, powered by three main engines and two solid rocket boosters. At ignition, a close-up view shows the distinct cone-shaped flame of the Space Shuttle Main Engines that are tested and flight-certified at Stennis Space Center.

  7. Modal test/analysis correlation for Centaur G Prime launch vehicle

    NASA Technical Reports Server (NTRS)

    Chen, J.; Rose, T.; Trubert, M.; Wada, B.; Shaker, F.

    1986-01-01

    A modal test was performed on the Centaur G Prime launch vehicle for the purpose of verifying the loads analysis model. This paper describes the procedure by which modal parameters obtained in this test were correlated with the corresponding analytical predictions. Based on this correlation the stiffness model of the shuttle trunnion system has been modified. The evolution of the model updating and the final results are described.

  8. Advanced Guidance and Control Methods for Reusable Launch Vehicles: Test Results

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Jones, Robert E.; Krupp, Don R.; Fogle, Frank R. (Technical Monitor)

    2002-01-01

    There are a number of approaches to advanced guidance and control (AG&C) that have the potential for achieving the goals of significantly increasing reusable launch vehicle (RLV) safety/reliability and reducing the cost. In this paper, we examine some of these methods and compare the results. We briefly introduce the various methods under test, list the test cases used to demonstrate that the desired results are achieved, show an automated test scoring method that greatly reduces the evaluation effort required, and display results of the tests. Results are shown for the algorithms that have entered testing so far.

  9. The Advanced Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Mitchell, Royce E.

    1992-01-01

    The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.

  10. Rocket engine condition monitoring system

    SciTech Connect

    Hagar, S.K.; Alcock, J.F.

    1989-01-01

    It is expected that the Rocket Engine Condition Monitoring System (RECMS) program will define engine monitoring technologies and an integration approach which can be applied to engine development in support of advanced launch system objectives. The RECMS program approaches engine monitoring as a system which is fully integrated with the engine controller, vehicle monitoring system, and ground processing systems to ensure mission success in addition to engine reliability. The system components are monitored through health and performance sensors; they are analyzed with the diagnostic and prognostic algorithms and demonstrated by system testing with hardware from other advanced development programs.

  11. Magnetic Launch Assist System-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This illustration is an artist's concept of a Magnetic Launch Assist System, formerly referred as the Magnetic Levitation (Maglev) system, for space launch. Overcoming the grip of Earth's gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist System technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, landing gear and the wing size, as well as the elimination of propellant weight resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  12. Development and Testing of a Methane/Oxygen Catalytic Microtube Ignition System for Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Deans, Matthew

    2012-01-01

    This study sought to develop a catalytic ignition advanced torch system with a unique catalyst microtube design that could serve as a low energy alternative or redundant system for the ignition of methane and oxygen rockets. Development and testing of iterations of hardware was carried out to create a system that could operate at altitude and produce a torch. A unique design was created that initiated ignition via the catalyst and then propagated into external staged ignition. This system was able to meet the goals of operating across a range of atmospheric and altitude conditions with power inputs on the order of 20 to 30 watts with chamber pressures and mass flow rates typical of comparable ignition systems for a 100 lbf engine.

  13. Rocket sled testing of a prototype terrain-relative navigation system

    NASA Technical Reports Server (NTRS)

    Skulsky, Eli David; Johnson, Andrew Edie; Umland, Jeff; Padgett, Curtis; Martin, Bill; Weinstein, Stacy; Wallace, Mark; Steltzner, Adam; Thurman, Sam

    2001-01-01

    The next generation of Martian landers (2007 and beyond) will employ a precision soft-landing capability that will make it possible to explore previously inaccessible regions on the surface of Mars. This capability will be enabled by onboard systems that automatically identify and avoid terrain containing steep slopes or rocks exceeding a particular terrain height. JPL is currently developing such a hazard detection and avoidance system; this system will map the landing zone with a scanning laser radar, identify hazards, select a safe landing zone, and then guide the vehicle to the selected landing area. This paper describes how one component of this system-hazard detection-is being tested using a rocket sled and simulated Martian terrain.

  14. Development and Testing of a Methane/Oxygen Catalytic Microtube Ignition System for Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Deans, Matthew C.; Schneider, Steven J.

    2012-01-01

    This study sought to develop a catalytic ignition advanced torch system with a unique catalyst microtube design that could serve as a low energy alternative or redundant system for the ignition of methane and oxygen rockets. Development and testing of iterations of hardware was carried out to create a system that could operate at altitude and produce a torch. A unique design was created that initiated ignition via the catalyst and then propagated into external staged ignition. This system was able to meet the goals of operating across a range of atmospheric and altitude conditions with power inputs on the order of 20 to 30 watts with chamber pressures and mass flow rates typical of comparable ignition systems for a 100 Ibf engine.

  15. Empirical Scaling Laws of Rocket Exhaust Cratering

    NASA Technical Reports Server (NTRS)

    Donahue, Carly M.; Metzger, Philip T.; Immer, Christopher D.

    2005-01-01

    When launching or landing a space craft on the regolith of a terrestrial surface, special attention needs to be paid to the rocket exhaust cratering effects. If the effects are not controlled, the rocket cratering could damage the spacecraft or other surrounding hardware. The cratering effects of a rocket landing on a planet's surface are not understood well, especially for the lunar case with the plume expanding in vacuum. As a result, the blast effects cannot be estimated sufficiently using analytical theories. It is necessary to develop physics-based simulation tools in order to calculate mission-essential parameters. In this work we test out the scaling laws of the physics in regard to growth rate of the crater depth. This will provide the physical insight necessary to begin the physics-based modeling.

  16. A rocket-borne airglow photometer

    NASA Technical Reports Server (NTRS)

    Paarmann, L. D.; Smith, L. G.

    1977-01-01

    The design of a rocket-borne photometer to measure the airglow emission of ionized molecular nitrogen in the 391.4 nm band is presented. This airglow is a well known and often observed phenomenon of auroras, where the principal source of ionization is energetic electrons. It is believed that at some midlatitude locations energetic electrons are also a source of nighttime ionization in the E region of the ionosphere. If this is so, then significant levels of 391.4 nm airglow should be present. The intensity of this airglow will be measured in a rocket payload which also contains instrumentation to measured in a rocket payload which also contains instrumentation to measure energetic electron differential flux and the ambient electron density. An intercomparison of the 3 experiments in a nightime launch will allow a test of the importance of energetic electrons as a nighttime source of ionization in the upper E region.

  17. Overview of the Space Launch System Transonic Buffet Environment Test Program

    NASA Technical Reports Server (NTRS)

    Piatak, David J.; Sekula, Martin K.; Rausch, Russ D.; Florance, James R.; Ivanco, Thomas G.

    2015-01-01

    Fluctuating aerodynamic loads are a significant concern for the structural design of a launch vehicle, particularly while traversing the transonic flight environment. At these trajectory conditions, unsteady aerodynamic pressures can excite the vehicle dynamic modes of vibration and result in high structural bending moments and vibratory environments. To ensure that vehicle structural components and subsystems possess adequate strength, stress, and fatigue margins in the presence of buffet and other environments, buffet forcing functions are required to conduct the coupled load analysis of the launch vehicle. The accepted method to obtain these buffet forcing functions is to perform wind-tunnel testing of a rigid model that is heavily instrumented with unsteady pressure transducers designed to measure the buffet environment within the desired frequency range. Two wind-tunnel tests of a 3 percent scale rigid buffet model have been conducted at the Langley Research Center Transonic Dynamics Tunnel (TDT) as part of the Space Launch System (SLS) buffet test program. The SLS buffet models have been instrumented with as many as 472 unsteady pressure transducers to resolve the buffet forcing functions of this multi-body configuration through integration of the individual pressure time histories. This paper will discuss test program development, instrumentation, data acquisition, test implementation, data analysis techniques, and several methods explored to mitigate high buffet environment encountered during the test program. Preliminary buffet environments will be presented and compared using normalized sectional buffet forcing function root-meansquared levels along the vehicle centerline.

  18. Marshall Team Fires Recreated Goddard Rocket

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In honor of the Centernial of Flight Celebration and commissioned by the American Institute of Aeronautics and Astronautics (AIAA), a team of engineers from Marshall Space Flight Center (MSFC) built a replica of the first liquid-fueled rocket. The original rocket, designed and built by rocket engineering pioneer Robert H. Goddard in 1926, opened the door to modern rocketry. Goddard's rocket reached an altitude of 41 feet while its flight lasted only 2.5 seconds. The Marshall design team's plan was to stay as close as possible to an authentic reconstruction of Goddard's rocket. The same propellants were used - liquid oxygen and gasoline - as available during Goddard's initial testing and firing. The team also tried to construct the replica using the original materials and design to the greatest extent possible. By purposely using less advanced techniques and materials than many that are available today, the team encountered numerous technical challenges in testing the functional hardware. There were no original blueprints or drawings, only photographs and notes. However, this faithful adherence to historical accuracy has allowed the team to experience many of the same challenges Goddard faced 77 years ago, and more fully appreciate the genius of this extraordinary man. In this photo, the replica is shown firing in the A-frame launch stand in near-flight configuration at MSFC's Test Area 116 during the American Institute of Aeronautics and Astronautics 39th Joint Propulsion Conference on July 23, 2003.

  19. Ground Testing a Nuclear Thermal Rocket: Design of a sub-scale demonstration experiment

    SciTech Connect

    David Bedsun; Debra Lee; Margaret Townsend; Clay A. Cooper; Jennifer Chapman; Ronald Samborsky; Mel Bulman; Daniel Brasuell; Stanley K. Borowski

    2012-07-01

    In 2008, the NASA Mars Architecture Team found that the Nuclear Thermal Rocket (NTR) was the preferred propulsion system out of all the combinations of chemical propulsion, solar electric, nuclear electric, aerobrake, and NTR studied. Recently, the National Research Council committee reviewing the NASA Technology Roadmaps recommended the NTR as one of the top 16 technologies that should be pursued by NASA. One of the main issues with developing a NTR for future missions is the ability to economically test the full system on the ground. In the late 1990s, the Sub-surface Active Filtering of Exhaust (SAFE) concept was first proposed by Howe as a method to test NTRs at full power and full duration. The concept relied on firing the NTR into one of the test holes at the Nevada Test Site which had been constructed to test nuclear weapons. In 2011, the cost of testing a NTR and the cost of performing a proof of concept experiment were evaluated.

  20. Water impact test of aft skirt end ring, and mid ring segments of the Space Shuttle Solid Rocket Booster

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The results of water impact loads tests using aft skirt end ring, and mid ring segments of the Space Shuttle Solid Rocket Booster (SRB) are examined. Dynamic structural response data is developed and an evaluation of the model in various configurations is presented. Impact velocities are determined for the SRB with the larger main chute system. Various failure modes are also investigated.

  1. Atlas V Launch Incorporated NASA Glenn Thermal Barrier

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2004-01-01

    In the Spring of 2002, Aerojet experienced a major failure during a qualification test of the solid rocket motor that they were developing for the Atlas V Enhanced Expendable Launch Vehicle. In that test, hot combustion gas reached the O-rings in the nozzle-to-case joint and caused a structural failure that resulted in loss of the nozzle and aft dome sections of the motor. To improve the design of this joint, Aerojet decided to incorporate three braided carbon-fiber thermal barriers developed at the NASA Glenn Research Center. The thermal barriers were used to block the searing-hot 5500 F pressurized gases from reaching the temperature-sensitive O-rings that seal the joint. Glenn originally developed the thermal barriers for the nozzle joints of the space shuttle solid rocket motors, and Aerojet decided to use them on the basis of the results of several successful ground tests of the thermal barriers in the shuttle rockets. Aerojet undertook an aggressive schedule to redesign the rocket nozzle-to-case joint with the thermal barriers and to qualify it in time for a launch planned for the middle of 2003. They performed two successful qualification tests (Oct. and Dec. 2002) in which the Glenn thermal barriers effectively protected the O-rings. These qualification tests saved hundreds of thousands of dollars in development costs and put the Lockheed-Martin/Aerojet team back on schedule. On July 17, 2003, the first flight of an Atlas V boosted with solid rocket motors successfully launched a commercial satellite into orbit from Cape Canaveral Air Force Station. Aero-jet's two 67-ft solid rocket boosters performed flawlessly, with each providing thrust in excess of 250,000 lbf. Both motors incorporated three Glenn-developed thermal barriers in their nozzle-to-case joints. The Cablevision satellite launched on this mission will be used to provide direct-to-home satellite television programming for the U.S. market starting in late 2003. The Atlas V is a product of the military's Enhanced Expendable Launch Vehicle program designed to provide assured military access to space. It can lift payloads up to 19,100 lb to geosynchronous transfer orbit and was designed to meet Department of Defense, commercial, and NASA needs. The Atlas V and Delta IV are two launch systems being considered by NASA to launch the Orbital Space Plane/Crew Exploration Vehicle. The launch and rocket costs of this mission are valued at $250 million. Successful application of the Glenn thermal barrier to the Atlas V program was an enormous breakthrough for the program's technical and schedule success.

  2. GN and C Design Overview and Flight Test Results from NASA's Max Launch Abort System (MLAS)

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Lanzi, Ryamond J.; Ward, Philip R.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center (NESC) designed, developed and flew the alternative Max Launch Abort System (MLAS) as risk mitigation for the baseline Orion spacecraft launch abort system (LAS) already in development. The NESC was tasked with both formulating a conceptual objective system (OS) design of this alternative MLAS as well as demonstrating this concept with a simulated pad abort flight test. The goal was to obtain sufficient flight test data to assess performance, validate models/tools, and to reduce the design and development risks for a MLAS OS. Less than 2 years after Project start the MLAS simulated pad abort flight test was successfully conducted from Wallops Island on July 8, 2009. The entire flight test duration was 88 seconds during which time multiple staging events were performed and nine separate critically timed parachute deployments occurred as scheduled. Overall, the as-flown flight performance was as predicted prior to launch. This paper provides an overview of the guidance navigation and control (GN&C) technical approaches employed on this rapid prototyping activity. This paper describes the methodology used to design the MLAS flight test vehicle (FTV). Lessons that were learned during this rapid prototyping project are also summarized.

  3. Ares I-X Launch Vehicle Modal Test Measurements and Data Quality Assessments

    NASA Technical Reports Server (NTRS)

    Templeton, Justin D.; Buehrle, Ralph D.; Gaspar, James L.; Parks, Russell A.; Lazor, Daniel R.

    2010-01-01

    The Ares I-X modal test program consisted of three modal tests conducted at the Vehicle Assembly Building at NASA s Kennedy Space Center. The first test was performed on the 71-foot 53,000-pound top segment of the Ares I-X launch vehicle known as Super Stack 5 and the second test was performed on the 66-foot 146,000- pound middle segment known as Super Stack 1. For these tests, two 250 lb-peak electro-dynamic shakers were used to excite bending and shell modes with the test articles resting on the floor. The third modal test was performed on the 327-foot 1,800,000-pound Ares I-X launch vehicle mounted to the Mobile Launcher Platform. The excitation for this test consisted of four 1000+ lb-peak hydraulic shakers arranged to excite the vehicle s cantilevered bending modes. Because the frequencies of interest for these modal tests ranged from 0.02 to 30 Hz, high sensitivity capacitive accelerometers were used. Excitation techniques included impact, burst random, pure random, and force controlled sine sweep. This paper provides the test details for the companion papers covering the Ares I-X finite element model calibration process. Topics to be discussed include test setups, procedures, measurements, data quality assessments, and consistency of modal parameter estimates.

  4. In-reactor tests of the nuclear light bulb rocket concept

    NASA Astrophysics Data System (ADS)

    Gauntt, R. O.; Slutz, S. A.; Latham, T. S.; Roman, W. C.; Rogers, R. J.

    1992-07-01

    An overview is given of the closed-cycle Gas Core Nuclear Rocket outlining scenarios for its use in short-duration Mars missions and results of Nuclear Light Bulb (NLB) tests. Isothermal and nonnuclear tests are described which confirmed the fundamental concepts behind the NLB. NLB reference-engine performance characteristics are given for hypothetical engines that could be used for manned Mars missions. Vehicle/propulsion sizing is based on a Mars mission with three trans-Mars impulse burns, capture and escape burns, and a total mission duration of 600 days. The engine would have a specific impulse of 1870 seconds, a 412-kN thrust, and a thrust/weight ratio of 1.3. Reactor tests including small-scale in-reactor tests are shown to be prerequisites for studying: (1) fluid mechanical confinement of the gaseous nuclear fuel; (2) buffer gas separation and circulation; and (3) the minimization of transparent wall-heat loading. The reactor tests are shown to be critical for establishing the feasibility of the NLB concept.

  5. Space Shuttle solid rocket booster initial water impact loads and dynamics - Analysis, tests, and flight experience

    NASA Technical Reports Server (NTRS)

    Kross, D. A.; Kiefling, L. A.; Murphy, N. C.; Rawls, E. A.

    1983-01-01

    A series of scale model tests, finite element dynamic response analyses and full scale segment tests have been performed for purposes of developing design criteria for the initial water impact loading conditions applied to the internal stiffener rings located in the aft skirt portion of the Space Shuttle Solid Rocket Booster (SRB). In addition, flight experience has yielded information relative to structural reinforcement requirements. This paper discusses the test and analysis methods and summarizes significant results. It is noted that, although scale model test data are valuable for identifying trends, they have shortcomings concerning definition of full scale design loads criteria. Also, the frequently used static equivalent loads definition approach is not applicable for this type impact loading condition applied to an aft skirt type structure. Various types of ring structural fixes, including the addition of selected types of foam, are presented as well as associated full scale segment test results. Depending on the type and contour shape of the foam, reductions on applied pressures and peak measured strains over 50 percent are noted.

  6. Calculated concentrations of any radionuclide deposited on the ground by release from underground nuclear detonations, tests of nuclear rockets, and tests of nuclear ramjet engines

    SciTech Connect

    Hicks, H.G.

    1981-11-01

    This report presents calculated gamma radiation exposure rates and ground deposition of related radionuclides resulting from three types of event that deposited detectable radioactivity outside the Nevada Test Site complex, namely, underground nuclear detonations, tests of nuclear rocket engines and tests of nuclear ramjet engines.

  7. Characterization of Space Shuttle Reusable Rocket Motor Static Test Stand Thrust Measurements

    NASA Technical Reports Server (NTRS)

    Cook, Mart L.; Gruet, Laurent; Cash, Stephen F. (Technical Monitor)

    2003-01-01

    Space Shuttle Reusable Solid Rocket Motors (RSRM) are static tested at two ATK Thiokol Propulsion facilities in Utah, T-24 and T-97. The newer T-97 static test facility was recently upgraded to allow thrust measurement capability. All previous static test motor thrust measurements have been taken at T-24; data from these tests were used to characterize thrust parameters and requirement limits for flight motors. Validation of the new T-97 thrust measurement system is required prior to use for official RSRM performance assessments. Since thrust cannot be measured on RSRM flight motors, flight motor measured chamber pressure and a nominal thrust-to-pressure relationship (based on static test motor thrust and pressure measurements) are used to reconstruct flight motor performance. Historical static test and flight motor performance data are used in conjunction with production subscale test data to predict RSRM performance. The predicted motor performance is provided to support Space Shuttle trajectory and system loads analyses. Therefore, an accurate nominal thrust-to-pressure (F/P) relationship is critical for accurate RSRM flight motor performance and Space Shuttle analyses. Flight Support Motors (FSM) 7, 8, and 9 provided thrust data for the validation of the T-97 thrust measurement system. The T-97 thrust data were analyzed and compared to thrust previously measured at T-24 to verify measured thrust data and identify any test-stand bias. The T-97 FIP data were consistent and within the T-24 static test statistical family expectation. The FSMs 7-9 thrust data met all NASA contract requirements, and the test stand is now verified for future thrust measurements.

  8. Flight and Integrated Testing: Blazing the Trail for the Ares Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Taylor, James L.; Cockrell, Charlie; Robinson, Kimberly; Tuma, Margaret L.; Flynn, Kevin C.; Briscoe, Jeri M.

    2007-01-01

    It has been 30 years since the United States last designed and built a human-rated launch vehicle. The National Aeronautics and Space Administration (NASA) has marshaled unique resources from the government and private sectors that will carry the next generation of astronauts into space safer and more efficiently than ever and send them to the Moon to develop a permanent outpost. NASA's Flight and Integrated Test Office (FITO) located at Marshall Space Flight Center and the Ares I-X Mission Management Office have primary responsibility for developing and conducting critical ground and flight tests for the Ares I and Ares V launch vehicles. These tests will draw upon Saturn and the Space Shuttle experiences, which taught the value of using sound systems engineering practices, while also applying aerospace best practices such as "test as you fly" and other lessons learned. FITO will use a variety of methods to reduce the technical, schedule, and cost risks of flying humans safely aboard a launch vehicle.

  9. Post Launch Calibration and Testing of the Advanced Baseline Imager on the GOES-R Satellite

    NASA Technical Reports Server (NTRS)

    Lebair, William; Rollins, C.; Kline, John; Todirita, M.; Kronenwetter, J.

    2016-01-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United State's National Oceanic and Atmospheric Administration. The first launch of the GOES-R series is planned for October 2016. The GOES-R series satellites and instruments are being developed by the National Aeronautics and Space Administration (NASA). One of the key instruments on the GOES-R series is the Advance Baseline Imager (ABI). The ABI is a multi-channel, visible through infrared, passive imaging radiometer. The ABI will provide moderate spatial and spectral resolution at high temporal and radiometric resolution to accurately monitor rapidly changing weather. Initial on-orbit calibration and performance characterization is crucial to establishing baseline used to maintain performance throughout mission life. A series of tests has been planned to establish the post launch performance and establish the parameters needed to process the data in the Ground Processing Algorithm. The large number of detectors for each channel required to provide the needed temporal coverage presents unique challenges for accurately calibrating ABI and minimizing striping. This paper discusses the planned tests to be performed on ABI over the six-month Post Launch Test period and the expected performance as it relates to ground tests.

  10. Space Launch System Development Status

    NASA Technical Reports Server (NTRS)

    Lyles, Garry

    2014-01-01

    Development of NASA's Space Launch System (SLS) heavy lift rocket is shifting from the formulation phase into the implementation phase in 2014, a little more than three years after formal program approval. Current development is focused on delivering a vehicle capable of launching 70 metric tons (t) into low Earth orbit. This "Block 1" configuration will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017, followed by its first crewed flight in 2021. SLS can evolve to a130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Benefits associated with its unprecedented mass and volume include reduced trip times and simplified payload design. Every SLS element achieved significant, tangible progress over the past year. Among the Program's many accomplishments are: manufacture of Core Stage test panels; testing of Solid Rocket Booster development hardware including thrust vector controls and avionics; planning for testing the RS-25 Core Stage engine; and more than 4,000 wind tunnel runs to refine vehicle configuration, trajectory, and guidance. The Program shipped its first flight hardware - the Multi-Purpose Crew Vehicle Stage Adapter (MSA) - to the United Launch Alliance for integration with the Delta IV heavy rocket that will launch an Orion test article in 2014 from NASA's Kennedy Space Center. Objectives of this Earth-orbit flight include validating the performance of Orion's heat shield and the MSA design, which will be manufactured again for SLS missions to deep space. The Program successfully completed Preliminary Design Review in 2013 and Key Decision Point C in early 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015 and a December 2017 first launch. The Program's success to date is due to prudent use of proven technology, infrastructure, and workforce from the Saturn and Space Shuttle programs, a streamlined management approach, and judicious use of new technologies. The result is a safe, affordable, sustainable, and evolutionary path to development of an unprecedented capability for future missions across the solar system. In an environment of economic challenges, the nationwide SLS team continues to meet ambitious budget and schedule targets. This paper will discuss SLS program and technical accomplishments over the past year and provide a look at the milestones and challenges ahead.

  11. IRIS Launch Animation - Duration: 108 seconds.

    NASA Video Gallery

    This animation demonstrates the launch and deployment of NASA's Interface Region Imaging Spectrograph (IRIS) mission satellite via a Pegasus rocket. The launch is scheduled for June 26, 2013 from V...

  12. Flow Simulation of Solid Rocket Motors. 1; Injection Induced Water-Flow Tests from Porous Media

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Yeh, Y. P.; Smith, A. W.; Heaman, J. P.

    1999-01-01

    Prior to selecting a proper porous material for use in simulating the internal port flow of a solid rocket motor (SRM), in cold-flow testing, the flow emerging from porous materials is experimentally investigated. The injection-flow emerging from a porous matrix always exhibits a lumpy velocity profile that is spatially stable and affects the development of the longitudinal port flow. This flow instability, termed pseudoturbulence, is an inherent signature of the porous matrix and is found to generally increase with the wall porosity and with the injection flow rate. Visualization studies further show that the flow from porous walls made from shaving-type material (sintered stainless-steel) exhibits strong recirculation zones that are conspicuously absent in walls made from nodular or spherical material (sintered bronze). Detailed flow visualization observations and hot-film measurements are reported from tests of injection-flow and a coupled cross-flow from different porous wall materials. Based on the experimental data, discussion is provided on the choice of suitable material for SRM model testing while addressing the consequences and shortcomings from such a test.

  13. NASA Data Acquisition System Software Development for Rocket Propulsion Test Facilities

    NASA Technical Reports Server (NTRS)

    Herbert, Phillip W., Sr.; Elliot, Alex C.; Graves, Andrew R.

    2015-01-01

    Current NASA propulsion test facilities include Stennis Space Center in Mississippi, Marshall Space Flight Center in Alabama, Plum Brook Station in Ohio, and White Sands Test Facility in New Mexico. Within and across these centers, a diverse set of data acquisition systems exist with different hardware and software platforms. The NASA Data Acquisition System (NDAS) is a software suite designed to operate and control many critical aspects of rocket engine testing. The software suite combines real-time data visualization, data recording to a variety formats, short-term and long-term acquisition system calibration capabilities, test stand configuration control, and a variety of data post-processing capabilities. Additionally, data stream conversion functions exist to translate test facility data streams to and from downstream systems, including engine customer systems. The primary design goals for NDAS are flexibility, extensibility, and modularity. Providing a common user interface for a variety of hardware platforms helps drive consistency and error reduction during testing. In addition, with an understanding that test facilities have different requirements and setups, the software is designed to be modular. One engine program may require real-time displays and data recording; others may require more complex data stream conversion, measurement filtering, or test stand configuration management. The NDAS suite allows test facilities to choose which components to use based on their specific needs. The NDAS code is primarily written in LabVIEW, a graphical, data-flow driven language. Although LabVIEW is a general-purpose programming language; large-scale software development in the language is relatively rare compared to more commonly used languages. The NDAS software suite also makes extensive use of a new, advanced development framework called the Actor Framework. The Actor Framework provides a level of code reuse and extensibility that has previously been difficult to achieve using LabVIEW. The

  14. Ares I-X Flight Test Vehicle Similitude to the Ares I Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Smith, R. Marshall; Campbell, John R., Jr.; Taylor, Terry L.

    2008-01-01

    The Ares I-X Flight Test Vehicle is the first in a series of flight test vehicles that will take the Ares I Crew Launch Vehicle design from development to operational capability. The test flight is scheduled for April 2009, relatively early in the Ares I design process so that data obtained from the flight can impact the design of Ares I before its Critical Design Review. Because of the short time frame (relative to new launch vehicle development) before the Ares I-X flight, decisions about the flight test vehicle design had to be made in order to complete analysis and testing in time to manufacture the Ares I-X vehicle hardware elements. This paper describes the similarities and differences between the Ares I-X Flight Test Vehicle and the Ares I Crew Launch Vehicle. Areas of comparison include the outer mold line geometry, aerosciences, trajectory, structural modes, flight control architecture, separation sequence, and relevant element differences. Most of the outer mold line differences present between Ares I and Ares I-X are minor and will not have a significant effect on overall vehicle performance. The most significant impacts are related to the geometric differences in Orion Crew Exploration Vehicle at the forward end of the stack. These physical differences will cause differences in the flow physics in these areas. Even with these differences, the Ares I-X flight test is poised to meet all five primary objectives and six secondary objectives. Knowledge of what the Ares I-X flight test will provide in similitude to Ares I as well as what the test will not provide is important in the continued execution of the Ares I-X mission leading to its flight and the continued design and development of Ares I.

  15. Jupiter-A Launch

    NASA Technical Reports Server (NTRS)

    1957-01-01

    The Jupiter rocket was designed and developed by the Army Ballistic Missile Agency (ABMA). ABMA launched the Jupiter-A at Cape Canaveral, Florida, on March 1, 1957. The Jupiter vehicle was a direct derivative of the Redstone. The Army Ballistic Missile Agency (ABMA) at Redstone Arsenal, Alabama, continued Jupiter development into a successful intermediate ballistic missile, even though the Department of Defense directed its operational development to the Air Force. ABMA maintained a role in Jupiter RD, including high-altitude launches that added to ABMA's understanding of rocket vehicle operations in the near-Earth space environment. It was knowledge that paid handsome dividends later.

  16. H-2A Launch Vehicle Test Flight Results and the Plan for the Future

    NASA Astrophysics Data System (ADS)

    Maemura, T.

    2002-01-01

    H-2A launch vehicle, developed by National Space Development Agency of Japan (NASDA), has made successful two consecutive test flights and is now ready for operational phase. This paper presents the overview of the test flight results and the plan for the future. Two test flights of H-2A were launched from Tanegashima Space Center (TNSC) of NASDA and successfully made following missions: (a) Test flight no.1 (Date: 16:00 JST, August 29, 2001) Configuration: H2A202 (standard type, basic configuration), single launch Mission: To verify vehicle performance. Separated Laser Range Equipment (LRE) for accurate trajectory determination Results: Achieved as planned (b) Test flight no.2 (Date: 11:45 JST, February 4, 2002) Configuration: H2A2024 (standard type with four additional solid boosters, SSB), dual launch Mission: To put Mission Demonstration Satellite-1 (MDS-1) and piggy-back reentry probe (Demonstrator of Atmospheric Reentry System with Hyper Velocity, DASH) into proper orbit. Results: Achieved planned mission for MDS-1. Failed to separate DASH due to wiring mistakes of the probe. In the two test flight, following results are obtained and the vehicle is confirmed to be performed as nominal. (1) Accuracy of satellite separation trajectory was confirmed. (Estimated error at apogee = F1: 4.4km, F2: 39km) (2) The acoustic and vibration environment was confirmed to be within the planned level. (3) Verified the vehicle performance As for vehicle performance, items listed below are verified: (1) Engine (LE-7A and LE-5B) and propulsion system performance are confirmed to be within estimated range, including the ability of third restart capability of LE-5B after coasting time over 4400 sec. (2) Guidance, Navigation and Control systems are confirmed to perform as planned, including the successful spin-up maneuver test and flight evaluation of the onboard GPS receiver. (3) Separation mechanism is confirmed to have performed as planned. (4) Five Onboard video cameras are installed to confirm the separation performance and propellant settling in second stage liquid hydrogen tank. As the vehicle itself showed its expected performance flawlessly in two consecutive flights, H-2A is now considered to be flight-proven and ready for operational phase. Five flights with Japanese government payloads are planned by summer 2003, and H-2A is now paving its way to the commercial launch services.

  17. Space shuttle phase B wind tunnel model and test information. Volume 3: Launch configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternate recoverable configuration as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle, including contractor data for an extensive variety of configurations with an array of wing and body planforms. The test data have been compiled into a database and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration. Basic components include booster, orbiter, and launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retroglide and twin body. Orbiter configurations include straight and delta wings, lifting body, drop tanks and double delta wings. Launch configurations include booster and orbiter components in various stacked and tandem combinations. The digital database consists of 220 files containing basic tunnel data. Database structure is documented in a series of reports which include configuration sketches for the various planforms tested. This is Volume 3 -- launch configurations.

  18. Development tests of LOX/LH 2 tank for H-I launch vehicle

    NASA Astrophysics Data System (ADS)

    Takamatsu, H.; Imagawa, K.; Ichimaru, Y.

    H-I is a future launch vehicle of Japan with a capability of placing more than 550 kg payload into a geostationary orbit. The National Space Development Agency of Japan (NASDA) is now directing its efforts to the final development of H-I launch vehicle. H-I's high launch capability is attained by adopting a newly developed second stage with a LOX/LH 2 propulsion system. The second stage propulsion system consists of a tank and an engine. The tank is 2.5 m in diameter and 5.7 m in length and contains 8.7 tons of propellants. This tank is an integral tank with a common bulkhead which separates the tank into forward LH 2 tank and aft LOX tank. The tank is made of 2219 aluminum alloy and is insulated with sprayed polyurethane foam. The common bulkhead is made of FRP honeycomb core and aluminium alloy surface sheets. The most critical item in the development of the tank is the common bulkhead, therefore the cryogenic structural test was carried out to verify the structural integrity of the bulkhead. The structural integrity of the whole LOX/LH 2 tank was verified by the cryogenic structural test of a sub-scale tank and the room temperature structural test of a prototype tank.

  19. Synergistic Development, Test, and Qualification Approaches for the Ares I and V Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E.; Taylor, James L.; Patterson, Alan; Stephens, Samuel E.; Tuma, Margaret; Bartolotta, Paul; Huetter, Uwe; Kaderback, Don; Goggin, David

    2009-01-01

    The U.S. National Aeronautics and Space Administration (NASA) initiated plans to develop the Ares I and Ares V launch vehicles in 2005 to meet the mission objectives for future human exploration of space. Ares I is designed to provide the capability to deliver the Orion crew exploration vehicle (CEV) to low-Earth orbit (LEO), either for docking to the International Space Station (ISS) or docking with an Earth departure stage (EDS) and lunar lander for transit to the Moon. Ares V provides the heavy-lift capability to deliver the EDS and lunar lander to orbit. An integrated test plan was developed for Ares I that includes un-crewed flight validation testing and ground testing to qualify structural components and propulsion systems prior to operational deployment. The overall test program also includes a single development test flight conducted prior to the Ares I critical design review (CDR). Since the Ares V concept was formulated to maximize hardware commonality between the Ares V and Ares I launch vehicles, initial test planning for Ares V has considered the extensibility of test approaches and facilities from Ares I. The Ares V test plan was part of a successful mission concept review (MCR) in 2008.

  20. Overview of the Space Launch System Ascent Aeroacoustic Environment Test Program

    NASA Technical Reports Server (NTRS)

    Herron, Andrew J.; Crosby, William A.; Reed, Darren K.

    2016-01-01

    Characterization of accurate flight vehicle unsteady aerodynamics is critical for component and secondary structure vibroacoustic design. The Aerosciences Branch at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center has conducted a test at the NASA Ames Research Center (ARC) Unitary Plan Wind Tunnels (UPWT) to determine such ascent aeroacoustic environments for the Space Launch System (SLS). Surface static pressure measurements were also collected to aid in determination of local environments for venting, CFD substantiation, and calibration of the flush air data system located on the launch abort system. Additionally, this test supported a NASA Engineering and Safety Center study of alternate booster nose caps. Testing occurred during two test campaigns: August - September 2013 and December 2013 - January 2014. Four primary model configurations were tested for ascent aeroacoustic environment definition. The SLS Block 1 vehicle was represented by a 2.5% full stack model and a 4% truncated model. Preliminary Block 1B payload and manned configurations were also tested, using 2.5% full stack and 4% truncated models respectively. This test utilized the 11 x 11 foot transonic and 9 x 7 foot supersonic tunnel sections at the ARC UPWT to collect data from Mach 0.7 through 2.5 at various total angles of attack. SLS Block 1 design environments were developed primarily using these data. SLS Block 1B preliminary environments have also been prepared using these data. This paper discusses the test and analysis methodology utilized, with a focus on the unsteady data collection and processing.