Science.gov

Sample records for layer influence des

  1. Copernic: la piste des influences arabes

    NASA Astrophysics Data System (ADS)

    Khalatbari, A.; Bonnet-Bidaud, J. M.

    2004-10-01

    Copernic a-t-il connu le travail des astronomes du Moyen-Orient ? S'en est-il inspiré pour élaborer sa théorie de l'héliocentrisme ? C'est l'hypothèse avancée par certains historiens des sciences pour comprendre le génie de celui qui, le premier, a placé le Soleil au centre du monde. Enquête.

  2. Influence of corrosion layers on quantitative analysis

    NASA Astrophysics Data System (ADS)

    Denker, A.; Bohne, W.; Opitz-Coutureau, J.; Rauschenberg, J.; Röhrich, J.; Strub, E.

    2005-09-01

    Art historians and restorers in charge of ancient metal objects are often reluctant to remove the corrosion layer evolved over time, as this would change the appearance of the artefact dramatically. Therefore, when an elemental analysis of the objects is required, this has to be done by penetrating the corrosion layer. In this work the influence of corrosion was studied on Chinese and Roman coins, where removal of oxidized material was possible. Measurements on spots with and without corrosion are presented and the results discussed.

  3. Pressure gradient influence in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Reuther, Nico; Kaehler, Christian J.

    2015-11-01

    Understanding wall-bounded turbulence is still an ongoing process. Although remarkable progress has been made in the last decades, many challenges still remain. Mean flow statistics are well understood in case of zero pressure gradient flows. However, almost all turbulent boundary layers in technical applications, such as aircrafts, are subjected to a streamwise pressure gradient. When subjecting turbulent boundary layers to adverse pressure gradients, significant changes in the statistical behavior of the near-wall flow have been observed in experimental studies conducted however the details dynamics and characteristics of these flows has not been fully resolved. The sensitivity to Reynolds number and the dependency on several parameters, including the dependence on the pressure gradient parameter, is still under debate and very little information exists about statistically averaged quantities such as the mean velocity profile or Reynolds stresses. In order to improve the understanding of wall-bounded turbulence, this work experimentally investigates turbulent boundary layer subjected to favorable and adverse pressure gradients by means of Particle Image Velocimetry over a wide range of Reynolds numbers, 4200

  4. Les reseaux de politique publique comme facteur d'influence du choix des instruments de politique energetique canadienne a des fins environnementales de 1993 a nos jours

    NASA Astrophysics Data System (ADS)

    Fathy El Dessouky, Naglaa

    l'agenda politique du pays. Notre projet de recherche, par le truchement de l'approche des reseaux de politique publique, s'attarde a decrire et a expliquer le processus de la formulation d'une politique particuliere, soit la politique energetique a des fins de protection de l'environnement, elaboree en 1993. Il s'agit de mettre en evidence les facteurs affectant le choix des instruments de ces politiques publiques dans leur contexte national. Ainsi, la question generale de cette recherche est: Comment les phases evolutives de la formation d'un reseau de politique, en l'occurrence le Conseil canadien de l'energie (CCE), menent a des caracteristiques particulieres a ce reseau; et comment celles-ci determinent-elles les types des instruments de politique publique choisis, particulierement ceux de la recente orientation des politiques energetiques canadiennes a des fins environnementales elaborees en 1993? Afin d'atteindre l'objectif de notre recherche, deux facteurs primordiaux sont utilises, soit la circulation de l'information et l'exercice du controle sur les ressources des acteurs. L'analyse des caracteristiques du reseau en fonction des liens forts et des liens faibles autant que la presence ou l'absence des trous structuraux nous permettent de bien identifier les positions des differents acteurs, etatiques et non etatiques, sur le plan de l'information et du controle, qui a leur tour, nous semble-t-il, constituent des facteurs affectant les types des instruments des politiques publiques choisis: instruments substantifs, qui indiquent le degre de l'intervention du gouvernement, et instruments proceduraux, qui mettent plutot l'accent sur le degre de l'influence du gouvernement sur les acteurs non etatiques. L'etude soutient que l'approche des reseaux se distingue notamment par son potentiel a expliquer l'interrelation relative entre idees, interets et institutions, ce qui a son tour est susceptible de permettre une meilleure comprehension des processus de l

  5. Influence of backing and matching layers in ultrasound transducer performance

    NASA Astrophysics Data System (ADS)

    do Nascimento, Valeria M.; Nantes Button, Vera L. d. S.; Maia, Joaquim M.; Costa, Eduardo T.; Oliveira, Eduardo J. V.

    2003-05-01

    In this work we have investigated the influence of the backing layer composition and the matching layer thickness in the performance of ultrasound transducers constructed with piezoelectric ceramic disks. We have constructed transducers with backing layers of different compositions, using mixtures of epoxy with alumina powder and/or Tungsten powder and with λ/4 or 3λ/4 thickness epoxy matching layers. The evaluation tests were performed in pulse-echo mode, with a flat target, and in transmission/reception mode, with a calibrated PVDF hydrophone. The acoustical field emitted by each transducer was mapped in order to measure the on-axis and transverse field profiles, the aperture size and the beam spreading. The bandwidths of the transducers were determined in pulse-echo mode. Comparing the evaluation tests results of two transducers constructed with the same backing layer, the one constructed with λ/4 thickness epoxy matching layer showed better performance. The results showed that the transducers constructed with epoxy, alumina and Tungsten powders backing layers have larger bandwidth. The larger depth of field was measured for transducers constructed with epoxy and Tungsten powder backing layers. These transducers and those constructed with epoxy, Tungsten and alumina powders backing layers showed the larger field intensities in the measured transverse profiles.

  6. Influence of Root Canal Tapering on Smear Layer Removal.

    PubMed

    Zarei, Mina; Javidi, Maryam; Afkhami, Farzaneh; Tanbakuchi, Behrad; Zadeh, Mohsen Movahed; Mohammadi, Marzieh Maghadam

    2016-04-01

    The purpose of the study presented here was to compare the influence of root canal taper on the efficacy of irrigants and chelating agents in smear layer removal. Eighty mesial roots of molar teeth were selected and prepared with rotary instruments. In group A, file 30/0.02 and in group B, file 30/0.4 were placed at working length and the smear layer was removed. In groups C and D, root canal preparation was the same as in groups A and B, respectively, except that the smear layer was not removed. The amount of the smear layer was quantified using a scanning electron microscope. Greater smear layer was detected in the apical portion of each group, whereas no significant difference was detected between groups in other portions. No statistical difference was found between canals with different tapers. PMID:27348950

  7. The influence of soft layer electrokinetics on bacterial electroporation

    NASA Astrophysics Data System (ADS)

    Moran, Jeffrey; Dingari, Naga Neehar; Buie, Cullen

    2015-11-01

    Electroporation of mammalian cells has received a significant amount of theoretical attention over the last decade because of its ability to deliver biologically active molecules into cells using short and strong electric field pulses. However, application of the same theory to bacterial electroporation presents significant challenges because of the presence of charged soft layers around bacteria. The soft layer charge distribution has been found to significantly influence bacterial electrophoretic mobility and polarizability because it alters the electric potential spatial distribution around the cell envelope. In addition, the RC charging time scale of both the soft layer and electric double layer is of the order of microseconds, which is also of similar order of magnitude as the pore creation time scale. Therefore in this study, we investigate the influence of soft layer electrokinetics on the spatial pore distribution and the temporal pore radius evolution during bacteria electroporation, which are quantitative measures of a bacterium's amenability to electroporation. The study will have significant impact on designing and optimizing bacteria electroporation platforms for gene and drug delivery applications.

  8. 20 March 2015 solar eclipse influence on sporadic E layer

    NASA Astrophysics Data System (ADS)

    Pezzopane, M.; Pietrella, M.; Pignalberi, A.; Tozzi, R.

    2015-11-01

    This paper shows how the solar eclipse occurred on 20 March 2015 influenced the sporadic E (Es) layer as recorded by the Advanced Ionospheric Sounder by Istituto Nazionale di Geofisica e Vulcanologia (AIS-INGV) ionosondes installed at Rome (41.8°N, 12.5°E) and Gibilmanna (37.9°N, 14.0°E), Italy. In these locations, the solar eclipse was only partial, with the maximum area of the solar disk obscured by the Moon equal to ∼54% at Rome and ∼45% at Gibilmanna. Nevertheless, it is shown that the strong thermal gradients that usually accompany a solar eclipse, have significantly influenced the Es phenomenology. Specifically, the solar eclipse did not affect the Es layer in terms of its maximum intensity, which is comparable with that of the previous and next day, but rather in terms of its persistence. In fact, both at Rome and Gibilmanna, contrary to what typically happens in March, the Es layer around the solar eclipse time is always present. On the other hand, this persistence is also confirmed by the application of the height-time-intensity (HTI) technique. A detailed analysis of isoheight ionogram plots suggests that traveling ionospheric disturbances (TIDs) likely caused by gravity wave (GW) propagation have played a significant role in causing the persistence of the Es layer.

  9. Oceanographic influences on Deep Scattering Layers across the North Atlantic

    NASA Astrophysics Data System (ADS)

    Fennell, Sheena; Rose, George

    2015-11-01

    The distribution and density of Deep Scattering Layers (DSLs) were quantified along North Atlantic transits from Ireland to the Grand Banks of Newfoundland in the springs of 2012, 2013 and 2014 employing a calibrated Simrad EK60 echo sounder at 38 kHz. Concurrently, Sippican T5 XBTs (eXpendable Bathy Thermographs) were used to profile temperatures to 1800 m. In each year the scattering layers spanned the deep basin at depths ranging from near surface to approximately 900 m, but annual mean densities differed significantly. Higher DSL densities were recorded during years that exhibited higher sea temperatures at the depths of major DSL concentration (400-600 m), higher sea level anomalies and stronger eastward geostrophic currents. The highest concentration of the DSLs in each year was found in the area east of the Grand Banks that corresponded with areas of anticyclonic eddies. In this region DSL densities in 2014 were among the highest recorded worldwide (>7000 m2 nautical mile-2). Midwater fishing indicated DSLs were dominated by Myctophids and Sternoptychids. Anticyclonic eddy formation is discussed as a possible means of transport and aggregation of the DSLs in that region, where oceanographic influences may play a dominant role in the distribution and density of the DSLs and upper trophic level fishes.

  10. Simulation study of the influence of the ionospheric layer height in the thin layer ionospheric model

    NASA Astrophysics Data System (ADS)

    Brunini, Claudio; Camilion, Emilio; Azpilicueta, Francisco

    2011-09-01

    This work aims to contribute to the understanding of the influence of the ionospheric layer height (ILH) on the thin layer ionospheric model (TLIM) used to retrieve ionospheric information from the GNSS observations. Particular attention is paid to the errors caused on the estimation of the vertical total electron content ( vTEC) and the GNSS satellites and receivers inter-frequency biases (IFB), by the use of an inappropriate ILH. The work relies upon numerical simulations performed with an empirical model of the Earth's ionosphere: the model is used to create realistic but controlled ionospheric scenarios and the errors are evaluated after recovering those scenarios with the TLIM. The error assessment is performed in the Central and the northern part of the South American continents, a region where large errors are expected due to the combined actions of the Appleton Anomaly of the ionosphere and the South-Atlantic anomaly of the geomagnetic field. According to this study, there does not exist a unique ILH that cancels the vTEC error for the whole region under consideration. The ILH that cancels the regional mean vTEC error varies with the solar activity and season. The latitude-dependent conversion error propagates to the parameters of the model used to represent the latitudinal variation on the vTEC on the ionospheric layer, and to the IFB, when these values are simultaneously estimated from the observed sTEC. Besides, the ILH that cancels the regional mean vTEC error is different from the one that cancels the IFB error and the difference between both ILH varies with the solar activity and season.

  11. Dépistage des maladies cardiovasculaires chez des étudiants de l'Université de Douala et influence des activités physiques et sportives

    PubMed Central

    Ewane, Marielle Epacka; Mandengue, Samuel Honoré; Priso, Eugene Belle; Tamba, Stéphane Moumbe; Ahmadou; Fouda, André Bita

    2012-01-01

    Introduction Les maladies cardiovasculaires (MCV) constituent l'une des principales causes de mortalité dans les pays en développement. Le dépistage de ces dernières chez des jeunes est un défi dans la lutte contre leur expansion. Le but de cette étude était de dépister ces maladies au sein d'une population jeunes d’étudiants camerounais. Methodes Deux mille six cent cinquante-huit étudiants de l'Université de Douala (23,6 ± 2,9 ans, sex-ratio H/F = 0,9) ont en Avril - Mai 2011 participé à une campagne de dépistage gratuit du diabète, de l'hypertension artérielle (HTA) et de l'obésité. Ils ont également été soumis à une d'enquête évaluant leur niveau en activités physiques et sportives (APS). Resultats 12,7% des participants avaient une pression artérielle (PA) ≥ 140/90 mmHg, 3,6% étaient obèses et 0,9% avaient une glycémie ≥1,26 g/L. Des corrélations ont été trouvées entre certains facteurs de risque (diabète, hypertension et obésité) et le niveau académique d'une part (r =0,366; p < 0,0001) et le temps passé devant la télévision d'autres part (r = 0,411; p < 0,0001). L‘APS était inversement corrélée à l‘âge (r =-0,015; p < 0,0001) et au temps passé devant la télévision (r = -0,059; p = 0,002). Conclusion La présence des MCV et leurs facteurs de risque mis en évidence dans cette étude réalisée en milieu estudiantin camerounais interpelle à une prévention et une éducation dans la lutte contre ces dernières. PMID:22655111

  12. Influence of transverse surface waves on turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Balasubramanian, R.; Ash, R. L.; Cary, A. M., Jr.; Bushnell, D. M.

    1977-01-01

    Wavy wall experiments using solid waves and progressive waves have been reported. For this paper, the major effects of waviness of the wall on the flow are identified as due to oscillatory curvature (convex-concavity) and oscillatory acceleration/deceleration of the flow, which imposes a highly nonequilibrium influence upon the turbulence structure. The theoretical analysis in this presentation takes into account proper turbulence modeling (including the nonequilibrium effects) for the wavy wall problem. The analysis proceeds in three stages: (1) inviscid solution for induced pressure due to the physical wall, (2) solution of a turbulent boundary layer with pressure gradients and curvature effects in the modeling from which the profile correction is computed, and (3) induced pressure computations for the corrected profile. The phase shift of pressure perturbations with respect to the physical wall can be predicted, and pressure drag and skin friction drag can be estimated, with nonlinear viscous effects included. Comparison of the theoretical estimates with experimental data are also presented.

  13. Influence of proximal drug eluting stent (DES) on distal bare metal stent (BMS) in multi-stent implantation strategies in coronary arteries.

    PubMed

    Sun, Anqiang; Wang, Zhenze; Fan, Zhenmin; Tian, Xiaopeng; Zhan, Fan; Deng, Xiaoyan; Liu, Xiao

    2015-09-01

    The aim of this study was to investigate the drug distribution in arteries treated with DES-BMS stenting strategy and to analyze the influence of proximal DES on distal segments of BMS. A straight artery model (Straight Model) and a branching artery model (Branching Model) were constructed in this study. In each model, the DES was implanted at the proximal position and the BMS was implanted distally. Hemodynamic environments, drug delivery and distribution features were simulated and analyzed in each model. The results showed that blood flow would contribute to non-uniform drug distribution in arteries. In the Straight Model the proximal DES would cause drug concentration in BMS segments. While in the Branching Model the DES in the main artery has slight influence on the BMS segments in the branch artery. In conclusion, due to the blood flow washing effect the uniformly released drug from DES would distribute focally and distally. The proximal DES would have greater influence on the distal BMS in straight artery than that in branching artery. This preliminary study would provide good reference for atherosclerosis treatment, especially for some complex cases, like coronary branching stenting. PMID:26149391

  14. Influence of ultrathin water layer on the van der Waals/Casimir force between gold surfaces

    SciTech Connect

    Palasantzas, G.; Zwol, P. J. van; Svetovoy, V. B.

    2009-06-15

    In this paper we investigate the influence of ultrathin water layer ({approx}1-1.5 nm) on the van der Waals/Casimir force between gold surfaces. Adsorbed water is inevitably present on gold surfaces at ambient conditions as jump-up-to contact during adhesion experiments demonstrate. Calculations based on the Lifshitz theory give very good agreement with the experiment in the absence of any water layer for surface separations d > or approx. 10 nm. However, a layer of thickness h < or approx. 1.5 nm is allowed by the error margin in force measurements. At shorter separations, d < or approx. 10 nm, the water layer can have a strong influence as calculations show for flat surfaces. Nonetheless, in reality the influence of surface roughness must also be considered, and it can overshadow any water layer influence at separations comparable to the total sphere-plate rms roughness w{sub shp}+w.

  15. Influence du comportement des accompagnants sur le vécu des patients admis pour hémorragies digestives hautes au CHU campus de Lomé (Togo)

    PubMed Central

    Bagny, Aklesso; Dusabe, Angelique; Bouglouga, Oumboma; Lawson-ananisoh, Mawuli Late; Kaaga, Yeba Laconi; Djibril, Mohaman Awalou; Soedje, Kokou Mensah; Dassa, Simliwa Kolou; Redah, Datouda

    2014-01-01

    Introduction L'hémorragie digestive haute est une urgence, qui constitue souvent pour les patients un danger mortel suscitant inquiétude et agitation. Dans cet état, le patient dépend de ses accompagnants pour ses soins et pour honorer le traitement; mais souvent, il a été observé une discordance entre l'urgence et les comportements des accompagnants. Le but de cette étude était de décrire les facteurs socioéconomiques et psychologiques pouvant influencer les comportements des accompagnants des patients admis pour HDH, estimer l'indice de relation entre ces comportements et les facteurs associés d'une part et le vécu des patients admis pour HDH d'autre part. Méthodes Il s'agit d'une étude prospective menée de Septembre 2010 à Juin 2011 (soit 10 mois). Nous avions utilisé l'entretien semi-dirigé et l'observation directe pour collecter nos données, ces dernières avaient été traitées par les méthodes statistiques et d'analyse de contenu. Résultats Dans la présente étude, les comportements des accompagnants des patients admis pour HDH sont en majorité marqués par l'abandon (84%) et le manque de sollicitude (80,2%). Ces comportements sont souvent stimulés par les facteurs socioéconomiques tels que les difficultés économiques (83,2%), des conflits intrafamiliaux (85,1%) et des représentations (maladie incurable ou envoûtement) de la maladie par les accompagnants (73,3%) des cas. Quant aux patients, ils vivent ces comportements comme étant des menaces de mort ou des rejets (77,20%) et comme étant une dévalorisation ou une humiliation de la part de leurs accompagnants (70,30%). Les résultats confirment l'existence de lien significatif entre les comportements des accompagnants et les facteurs socio économiques, entre les comportements des accompagnants et des facteurs psychologiques, et entre le vécu des patients admis pour l'HDH et les comportements des accompagnants. Conclusion Des études ultérieures devraient aborder les points

  16. Electrical resistivity of assembled transparent inorganic oxide nanoparticle thin layers: Influence of silica, insulating impurities and surfactant layer thickness

    PubMed Central

    Bubenhofer, Stephanie B.; Schumacher, Christoph M.; Koehler, Fabian M.; Luechinger, Norman A.; Sotiriou, Georgios A.; Grass, Robert N.; Stark, Wendelin J.

    2013-01-01

    Transparent, conductive layers prepared from nanoparticle dispersion of doped oxides are highly sensitive to impurities. Currently investigated cost efficient and fast production of thin conducting films for use in consumer electronics relies on wet processing such as spin and/or dip coating of surfactant-stabilized nanoparticle dispersions. This inherently results in entrainment of organic and inorganic impurities into the conducting layer leading to largely varying electrical conductivity. Therefore this study provides a systematic investigation on the effect of insulating surfactants, small organic molecules and silica in terms of pressure dependent electrical conductivity as a result of different core/shell structure (layer thickness). Application of high temperature flame synthesis gives access to antimony-doped tin oxide (ATO) nanoparticles with high purity. This well-defined starting material was then subjected to representative film preparation processes using organic additives. In addition ATO nanoparticles were prepared with a homogeneous inorganic silica layer (silica layer thickness from 0.7 to 2 nm). Testing both organic and inorganic shell materials for the electronic transport through the nanoparticle composite allowed a systematic study on the influence of surface adsorbates (e.g. organic, insulating materials on the conducting nanoparticle’s surface) in comparison to well-known insulators such as silica. Insulating impurities or shells revealed a dominant influence of tunneling effect on the overall layer resistance. Mechanical relaxation phenomena were found for 2 nm insulating shells for both large polymer surfactants and (inorganic) SiO2 shells. PMID:22545730

  17. Influence of wall permeability on turbulent boundary-layer properties

    NASA Technical Reports Server (NTRS)

    Wilkinson, S. P.

    1983-01-01

    Experimental boundary-layer studies of a series of low pressure drop, permeable surfaces have been conducted to characterize their surface interaction with a turbulent boundary layer. The models were flat and tested at nominally zero pressure gradient in low speed air. The surfaces were thin metal sheets with discrete perforations. Direct drag balance measurements of skin friction indicate that the general effect of surface permeability is to increase drag above that of a smooth plate reference level. Heuristic arguments are presented to show that this type of behavior is to be expected. Other boundary-layer data are also presented including mean velocity profiles and conditionally sampled streamwise velocity fluctuations (hot wire) for selected models.

  18. Influence of scrape-off layer on plasma confinement

    SciTech Connect

    Dolan, Thomas J.

    2011-03-15

    The purpose of this paper is to discuss how plasma phenomena in the scrape-off layer (SOL) can affect the plasma density gradient at the separatrix and hence the plasma behavior inside the separatrix. The parallel flow loss rate and ionization rate in the SOL (related to the electron temperature and neutral gas density) affect the curvature of the electron density profile, which limits the density gradient at the separatrix. This density gradient acts like a boundary condition for plasma inside the separatrix, affecting the ion pressure gradient, radial electric field, and plasma behavior.

  19. The influence of the atmospheric boundary layer on nocturnal layers of noctuids and other moths migrating over southern Britain.

    PubMed

    Wood, Curtis R; Chapman, Jason W; Reynolds, Donald R; Barlow, Janet F; Smith, Alan D; Woiwod, Ian P

    2006-03-01

    Insects migrating at high altitude over southern Britain have been continuously monitored by automatically operating, vertical-looking radars over a period of several years. During some occasions in the summer months, the migrants were observed to form well-defined layer concentrations, typically at heights of 200-400 m, in the stable night-time atmosphere. Under these conditions, insects are likely to have control over their vertical movements and are selecting flight heights that are favourable for long-range migration. We therefore investigated the factors influencing the formation of these insect layers by comparing radar measurements of the vertical distribution of insect density with meteorological profiles generated by the UK Meteorological Office's (UKMO) Unified Model (UM). Radar-derived measurements of mass and displacement speed, along with data from Rothamsted Insect Survey light traps, provided information on the identity of the migrants. We present here three case studies where noctuid and pyralid moths contributed substantially to the observed layers. The major meteorological factors influencing the layer concentrations appeared to be: (a) the altitude of the warmest air, (b) heights corresponding to temperature preferences or thresholds for sustained migration and (c) on nights when air temperatures are relatively high, wind-speed maxima associated with the nocturnal jet. Back-trajectories indicated that layer duration may have been determined by the distance to the coast. Overall, the unique combination of meteorological data from the UM and insect data from entomological radar described here show considerable promise for systematic studies of high-altitude insect layering. PMID:16432728

  20. Theoretical investigations on the layer-anion interaction in Mg-Al layered double hydroxides: Influence of the anion nature and layer composition

    NASA Astrophysics Data System (ADS)

    Cuautli, Cristina; Ireta, Joel

    2015-03-01

    The influence of the anion nature and layer composition on the anion-layer interaction in Mg-Al layered double hydroxides (LDHs) is investigated using density functional theory. Changes in the strength of the anion-layer interaction are assessed calculating the potential energy surface (PES) associated to the interlayer anion (OH-/Cl-) in Mg-Al-OH and Mg-Al-Cl LDHs. The layer composition is varied changing the divalent to trivalent cation proportion (R). Mg-Al-OH is thus investigated with R = 2, 3, 3.5 and Mg-Al-Cl with R = 3. It is found that the PES for OH- in Mg-Al-OH/R = 3 presents wider energy basins and lower energy barriers than any other of the investigated compositions. It is shown that the latter is connected to the number of hydrogen bonds formed by the anions. These results have interesting implications for understanding the enhancement of the physicochemical properties of LDHs upon changing composition.

  1. Factors influencing the marine boundary layer during a cold-air outbreak

    NASA Technical Reports Server (NTRS)

    Stage, S. A.

    1983-01-01

    The model for the cloud-topped marine boundary layer during a cold air outbreak developed by Stage and Businger (1981a) is used in conjunction with a test profile based on a fall outbreak episode over Lake Ontario to study factors influencing marine boundary-layer evolution. Sensitivity tests are done which show changes in layer evolution resulting from variation of wind speed, radiative sky temperature, water surface temperature, humidity of the shoreline sounding and divergence. The behavior of the layer in the presence of a region of cold-water upwelling near the shore is also investigated. It is found that the main effect of the upwelling region is to delay modification of the boundary-layer air.

  2. The influence of free-stream turbulence on turbulent boundary layers with mild adverse pressure gradients

    NASA Technical Reports Server (NTRS)

    Hoffmann, Jon A.

    1988-01-01

    The influence of near isotropic free-stream turbulence on the shape factors and skin friction coefficients of turbulent bounday layers is presented for the cases of zero and mild adverse pressure gradients. With free-stream turbulence, improved fluid mixing occurs in boundary layers with adverse pressure gradients relative to the zero pressure gradient condition, with the same free-stream turbulence intensity and length scale. Stronger boundary layers with lower shape factors occur as a result of a lower ratio of the integral scale of turbulence to the boundary layer thickness, and to vortex stretching of the turbulent eddies in the free stream, both of which act to improve the transmission of momentum from the free stream to the boundary layers.

  3. The influence of free-stream turbulence on turbulent boundary layers with mild adverse pressure gradients

    NASA Technical Reports Server (NTRS)

    Hoffmann, J. A.; Kassir, S. M.; Larwood, S. M.

    1989-01-01

    The influence of near isotropic free-stream turbulence on the shape factors and skin friction coefficients of turbulent boundary layers is presented for the cases of zero and mild adverse pressure gradients. With free-stream turbulence, improved fluid mixing occurs in boundary layers with adverse pressure gradients relative to the zero pressure gradient condition, with the same free-stream turbulence intensity and length scale. Stronger boundary layers with lower shape factors occur as a result of a lower ratio of the integral scale of turbulence to the boundary layer thickness, and to vortex stretching of the turbulent eddies in the free-stream, both of which act to improve the transmission of momentum from the free-stream to the boundary layers.

  4. The investigation of hydrogenation influence on structure changes of zirconium with nickel layer

    NASA Astrophysics Data System (ADS)

    Kudiiarov, V. N.; Bordulev, Yu S.; Laptev, R. S.; Pushilina, N. S.; Kashkarov, E. B.; Syrtanov, M. S.

    2016-06-01

    The results of experimental investigation of hydrogenation influence on structure changes of zirconium alloy (Zr-1%Nb) with thin nickel layer have presented in this work. Nickel layer was formed by magnetron sputter deposition. Hydrogenation was carried out at gas atmosphere at constant temperature. Different hydrogen concentrations were obtained by varying time of hydrogenation. Defect and phase structure was studied by means of X-ray diffraction, glow discharge optical emission spectroscopy, positron lifetime and Doppler broadening spectroscopies. New experimental data about the evolution of the positron annihilation parameters depending on hydrogen concentration in Zr-1Nb alloy with nickel layer was obtained.

  5. Influence of bulk turbulence and entrance boundary layer thickness on the curved duct flow field

    NASA Technical Reports Server (NTRS)

    Crawford, R. A.

    1988-01-01

    The influence of bulk turbulence and boundary layer thickness on the secondary flow development in a square, 90 degree turning duct was investigated. A three-dimensional laser velocimetry system was utilized to measure the mean and fluctuating components of velocity at six cross-planes in the duct. The results from this investigation, with entrance boundary layer thickness of 20 percent, were compared with the thin boundary layer results documented in NASA CR-174811. The axial velocity profiles, cross-flow velocities, and turbulence intensities were compared and evaluated with regard to the influence of bulk turbulence intensity and boundary layer thickness, and the influence was significant. The results of this investigation expand the 90 degree curved duct experimental data base to higher turbulence levels and thicker entrance boundary layers. The experimental results provide a challenging benchmark data base for computational fluid dynamics code development and validation. The variation of inlet bulk turbulence intensity provides additional information to aid in turbulence model evaluation.

  6. Modeling the Influence of Interaction Layer Formation on Thermal Conductivity of U–Mo Dispersion Fuel

    SciTech Connect

    Burkes, Douglas; Casella, Andrew M.; Huber, Tanja K.

    2015-01-01

    The Global Threat Reduction Initiative Program continues to develop existing and new plate- and rod-type research and test reactor fuels with maximum attainable uranium loadings capable of potentially converting a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Currently, the program is focused on assisting with the development and qualification of an even higher density fuel type consisting of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix. Thermal conductivity is an important consideration in determining the operational temperature of the fuel plate and can be influenced by interaction layer formation between the fuel and matrix, porosity that forms during fabrication of the fuel plates, and upon the concentration of the dispersed phase within the matrix. This paper develops and validates a simple model to study the influence of interaction layer formation and conductivity, fuel particle size, and volume fraction of fuel dispersed in the matrix on the effective conductivity of the composite. The model shows excellent agreement with results previously presented in the literature. In particular, the thermal conductivity of the interaction layer does not appear to be important in determining the overall conductivity of the composite, while formation of the interaction layer and subsequent consumption of the matrix reveals a rather significant effect. The effective thermal conductivity of the composite can be influenced by the fuel particle distribution by minimizing interaction layer formation and preserving the higher thermal conductivity matrix.

  7. Influence of metal bonding layer on strain transfer performance of FBG

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Chen, Weimin; Zhang, Peng; Liu, Li; Shu, Yuejie; Wu, Jun

    2013-01-01

    Metal bonding layer seriously affects the strain transfer performance of Fiber Bragg Grating (FBG). Based on the mode of FBG strain transfer, the influence of the length, the thickness, Poisson's ratio, elasticity modulus of metal bonding layer on the strain transfer coefficient of FBG is analyzed by numerical simulation. FBG is packaged to steel wire using metal bonding technology of FBG. The tensile tests of different bonding lengths and elasticity modulus are carried out. The result shows the strain transfer coefficient of FBGs are 0.9848,0.962 and their average strain sensitivities are 1.076 pm/μɛ,1.099 pm/μɛ when the metal bonding layer is zinc, whose lengths are 15mm, 20mm, respectively. The strain transfer coefficient of FBG packaged by metal bonding layer raises 8.9 percent compared to epoxy glue package. The preliminary experimental results show that the strain transfer coefficient increases with the length of metal bonding layer, decreases with the thickness of metal bonding layer and the influence of Poisson's ratio can be ignored. The experiment result is general agreement with the analysis and provides guidance for metal package of FBG.

  8. On the influence of nanometer-thin antiferromagnetic surface layer on ferromagnetic CrO2

    NASA Astrophysics Data System (ADS)

    Das, P.; Bajpai, A.; Ohno, Y.; Ohno, H.; Müller, J.

    2012-09-01

    We investigate the influence of naturally grown 2-5 nm thin surface layer of antiferromagnetic (AFM) Cr2O3 on the half metallic ferromagnet CrO2 by measuring the magnetic behavior of a single micro-crystal. The temperature variation of the magnetic stray fields of the micro-crystal measured by micro-Hall magnetometry shows an anomalous increase below ˜60 K. We find clear evidence that this behavior is due to the influence of the AFM surface layer. The average amplitude of the Barkahausen jumps exhibits a similar temperature dependence indicating that the AFM surface layer plays a role in defining the potential landscape seen by the domain configuration in the ferromagnetic grain.

  9. Influences and interactions of inundation, peat, and snow on active layer thickness

    DOE PAGESBeta

    Atchley, Adam L.; Coon, Ethan T.; Painter, Scott L.; Harp, Dylan R.; Wilson, Cathy J.

    2016-05-18

    The effect of three environmental conditions: 1) thickness of organic soil, 2) snow depth, and 3) soil moisture content or water table height above and below the soil surface, on active layer thickness (ALT) are investigated using an ensemble of 1D thermal hydrology models. Sensitivity analyses of the ensemble exposed the isolated influence of each environmental condition on ALT and their multivariate interactions. The primary and interactive influences are illustrated in the form of color maps of ALT change. Results show that organic layer acts as a strong insulator, and its thickness is the dominant control of ALT, but themore » strength of the effect of organic layer thickness is dependent on the saturation state. Snow depth, subsurface saturation, and ponded water depth are strongly codependent and positively correlated to ALT.« less

  10. Influences of Peat, Surface and Subsurface Water, and Snow on Active Layer Thickness

    SciTech Connect

    Atchley, Adam; Coon, Ethan T.; Painter, Scott L; Harp, Dylan; Wilson, Cathy

    2016-01-01

    The effect of three environmental conditions: 1) thickness of organic soil, 2) snow depth, and 3) soil moisture content or water table height above and below the soil surface, on active layer thickness (ALT) are investigated using an ensemble of 1D thermal hydrology models. Sensitivity analyses of the ensemble exposed the isolated influence of each environmental condition on ALT and their multivariate interactions. The primary and interactive influences are illustrated in the form of color maps of ALT change. Results show that organic layer acts as a strong insulator, and its thickness is the dominant control of ALT, but the strength of the effect of organic layer thickness is dependent on the saturation state. Snow depth, subsurface saturation, and ponded water depth are strongly codependent and positively correlated to ALT.

  11. Influences of Peat, Surface and Subsurface Water, and Snow on Active Layer Thickness

    DOE PAGESBeta

    Atchley, Adam; Coon, Ethan T.; Painter, Scott L; Harp, Dylan; Wilson, Cathy

    2016-01-01

    The effect of three environmental conditions: 1) thickness of organic soil, 2) snow depth, and 3) soil moisture content or water table height above and below the soil surface, on active layer thickness (ALT) are investigated using an ensemble of 1D thermal hydrology models. Sensitivity analyses of the ensemble exposed the isolated influence of each environmental condition on ALT and their multivariate interactions. The primary and interactive influences are illustrated in the form of color maps of ALT change. Results show that organic layer acts as a strong insulator, and its thickness is the dominant control of ALT, but themore » strength of the effect of organic layer thickness is dependent on the saturation state. Snow depth, subsurface saturation, and ponded water depth are strongly codependent and positively correlated to ALT.« less

  12. Upstream-influence scaling of fin-generated shock wave boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Lu, Frank K.; Settles, Gary S.

    1990-01-01

    An upstream-influence scaling law, previously formulated through analysis of Mach 3 data, has been extended to Mach numbers from 2.5 through 4. For adiabatic, equilibrium, turbulent boundary layers, there is no Mach number effect on the constants in the Reynolds number parameters of this law. In addition, based on local similarity, a new Mach number parameter, namely, the Mach number component of the incoming stream normal to the farfield upstream influence, is proposed. Scaling by either the incoming Mach number normal to the inviscid shock or by the incoming Mach number normal to the farfield upstream influence is equivalent to scaling by the hypersonic similarity parameter.

  13. The influence of catalyst layer morphology on the electrochemical performance of DMFC anode

    NASA Astrophysics Data System (ADS)

    Wang, Zhanliang; Liu, Yang; Linkov, Vladimir M.

    The anodes with different morphology for DMFC were prepared, and the influences of the microstructure of anode catalyst layer on their electrochemical performance were investigated by scanning electrochemical microscopy (SECM), scanning electron microscopy (SEM), proton induced X-ray emission (PIXE) and electrochemical methods, respectively. The surface morphology of catalyst layer was observed by SEM, and the elements dispersion status and its distribution of activity intensity on electrode catalyst layer were mapped by PIXE and SECM, respectively. Electrochemical impedance spectroscopy (EIS) and anode polarization experiment were employed to analyze the electrochemical properties of anode. The results reveal that the anode with a relative smooth surface of catalyst layer and less cracks shows good interfacial properties and the lower resistance on the electrode reaction of methanol, and its maximum power of MEA as a single cell was about 178 mW cm -2 at 70 °C.

  14. Influence of magnetization variations in the free layer on a non-volatile magnetic flip flop

    NASA Astrophysics Data System (ADS)

    Windbacher, Thomas; Makarov, Alexander; Sverdlov, Viktor; Selberherr, Siegfried

    2015-06-01

    Recently, we proposed an alternative non-volatile magnetic flip flop which allows high integration density. This work extends the up to now gained results to the devices' functionality under statistically distributed magnetization variations of its free layer. Assuming position uncorrelated random fluctuations in the free layer, that the variations are fixed with respect to time, and that small deviations from its mean are more likely than big ones, a Gaussian distribution was chosen to model the random fluctuations. The random variations were added to the simulations as a position dependent Zeeman term and their influence was varied by changing the variance of the distribution scaled in percent of the free layers saturation magnetization. The results with and without thermal excitation show that the flip flop is capable of operating under high free layer field variations.

  15. Non-local sub-characteristic zones of influence in unsteady interactive boundary-layers

    NASA Technical Reports Server (NTRS)

    Rothmayer, A. P.

    1992-01-01

    The properties of incompressible, unsteady, interactive, boundary layers are examined for a model hypersonic boundary layer and internal flow past humps or, equivalently, external flow past short-scaled humps. Using a linear high frequency analysis, it is shown that the domains of dependence within the viscous sublayer may be a strong function of position within the sublayer and may be strongly influenced by the pressure displacement interaction, or the prescribed displacement condition. Detailed calculations are presented for the hypersonic boundary layer. This effect is found to carry over directly to the fully viscous problem as well as the nonlinear problem. In the fully viscous problem, the non-local character of the domains of dependence manifests itself in the sub-characteristics. Potential implications of the domain of dependence structure on finite difference computations of unsteady boundary layers are briefly discussed.

  16. Influence of geologic layering on heat transport and storage in an aquifer thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Bridger, D. W.; Allen, D. M.

    2013-09-01

    A modeling study was carried out to evaluate the influence of aquifer heterogeneity, as represented by geologic layering, on heat transport and storage in an aquifer thermal energy storage (ATES) system in Agassiz, British Columbia, Canada. Two 3D heat transport models were developed and calibrated using the flow and heat transport code FEFLOW including: a "non-layered" model domain with homogeneous hydraulic and thermal properties; and, a "layered" model domain with variable hydraulic and thermal properties assigned to discrete geological units to represent aquifer heterogeneity. The base model (non-layered) shows limited sensitivity for the ranges of all thermal and hydraulic properties expected at the site; the model is most sensitive to vertical anisotropy and hydraulic gradient. Simulated and observed temperatures within the wells reflect a combination of screen placement and layering, with inconsistencies largely explained by the lateral continuity of high permeability layers represented in the model. Simulation of heat injection, storage and recovery show preferential transport along high permeability layers, resulting in longitudinal plume distortion, and overall higher short-term storage efficiencies.

  17. Influence of Growth Characteristics of Induced Pluripotent Stem Cells on Their Uptake Efficiency for Layer-by-Layer Microcarriers.

    PubMed

    Reibetanz, Uta; Hübner, Denise; Jung, Matthias; Liebert, Uwe Gerd; Claus, Claudia

    2016-07-26

    Induced pluripotent stem cells (iPSCs) have the ability to differentiate into any specialized somatic cell type, which makes them an attractive tool for a wide variety of scientific approaches, including regenerative medicine. However, their pluripotent state and their growth in compact colonies render them difficult to access and, therefore, restrict delivery of specific agents for cell manipulation. Thus, our investigation focus was set on the evaluation of the capability of layer-by-layer (LbL) designed microcarriers to serve as a potential drug delivery system to iPSCs, as they offer several appealing advantages. Most notably, these carriers allow for the transport of active agents in a protected environment and for a rather specific delivery through surface modifications. As we could show, charge and mode of LbL carrier application as well as the size of the iPSC colonies determine the interaction with and the uptake rate by iPSCs. None of the examined conditions had an influence on iPSC colony properties such as colony morphology and size or maintenance of pluripotent properties. An overall interaction rate of LbL carriers with iPSCs of up to 20% was achieved. Those data emphasize the applicability of LbL carriers for stem cell research. Additionally, the potential use of LbL carriers as a promising delivery tool for iPSCs was contrasted to viral particles and liposomes. The identified differences among those delivery tools have substantiated our major conclusion that LbL carrier uptake rate is influenced by characteristic features of the iPSC colonies (most notably colony size) in addition to their surface charges. PMID:27362252

  18. Influence of a heated leading edge on boundary layer growth, stability, and transition

    SciTech Connect

    Landrum, D.B.; Macha, J.M.

    1987-01-01

    This paper presents the results of a combined theoretical and experimental study of the influence of a heated leading edge on the growth, stability, and transition of a two-dimensional boundary layer. The findings are directly applicable to aircraft wings and nacelles that use surface heating for anti-icing protection. The potential effects of the non-adiabatic condition are particularly important for laminar-flow sections where even small perturbations can result in significantly degraded aerodynamic performance. The results of the study give new insight to the fundamental coupling between streamwise pressure gradient and surface heat flux in laminar and transitional boundary layers.

  19. Influence of a heated leading edge on boundary layer growth, stability, and transition

    SciTech Connect

    Landrum, D.B.; Macha, J.M.

    1987-06-01

    This paper presents the results of a combined theoretical and experimental study of the influence of a heated leading edge on the growth, stability, and transition of a two-dimensional boundary layer. The findings are directly applicable to aircraft wings and nacelles that use surface heating for anti-icing protection. The potential effects of the non-adiabatic condition are particularly important for laminar-flow sections where even small perturbations can result in significantly degraded aerodynamic performance. The results of the study give new insight to the fundamental coupling between streamwise pressure gradient and surface heat flux in laminar and transitional boundary layers. 13 references.

  20. The Influence of the Molecular Structure of Cyanine Dye on the Component Composition of Molecular Layers

    NASA Astrophysics Data System (ADS)

    Kaliteevskaya, E. N.; Krutyakova, V. P.; Razumova, T. K.; Starovoitov, A. A.

    2016-03-01

    The formation of the component composition of symmetric cationic cyanine dyes on glass is studied. The absorption spectra of layers of three homologous series of dyes with end heterocyclic groups of different spatial and chemical compositions are measured, and the absorption spectra of monomer components and aggregates are separated. The component compositions of layers of different thicknesses are compared. It is shown that the widening of the absorption spectra of molecular layers against the spectra of ethanol solutions of these compounds is caused mainly by the formation of various monomer stereoisomers and molecular aggregates and their interaction with the substrate surface and the neighborhood. The number of isomer forms and their relative concentrations depend on the layer thickness, the electron donor ability and spatial structure of end groups, and the cation conjugation chain length. The influence of the anion manifests itself only in the concentration ratio of the formed monomers and a small shift of the maxima of their absorption bands. The increase in the number of monomer forms produced in the layer corresponds to the increase in the conjugation chain length. Spatial obstacles created by heterocyclic groups inhibit the formation of definite stereoisomers, which reduces the number of components of the layer.

  1. Influence of layer type and order on barrier properties of multilayer PECVD barrier coatings

    NASA Astrophysics Data System (ADS)

    Bahroun, K.; Behm, H.; Mitschker, F.; Awakowicz, P.; Dahlmann, R.; Hopmann, Ch

    2014-01-01

    Due to their macromolecular structure, plastics are limited in their scope of application whenever high barrier functionality against oxygen and water vapour permeation is required. One solution is the deposition of thin silicon oxide coatings in plasma-enhanced chemical vapour deposition (PECVD) processes. A way to improve performance of barrier coatings is the use of multilayer structures built from dyad layers, which combine an inorganic barrier layer and an organic intermediate layer. In order to investigate the influence of type and number of dyads on the barrier performance of coated 23 µm PET films, different dyad setups are chosen. The setups include SiOCH interlayers and SiOx-barrier layers deposited using the precursor hexamethyldisiloxane (HMDSO). A single reactor setup driven in pulsed microwave plasma (MW) mode as well as capacitively coupled plasma (CCP) mode is chosen. In this paper the effects of a variation in intermediate layer recipe and stacking order using dyad setups on the oxygen barrier properties of multilayer coatings are discussed with regard to the chemical structure, morphology and activation energy of the permeation process. Changes in surface nano-morphology of intermediate layers have a strong impact on the barrier properties of subsequent glass-like coatings. Even a complete failure of the barrier is observed. Therefore, when depositing multilayer barrier coatings, stacking order has to be considered.

  2. Influence of TESG layer viscoelasticity on the imaging properties of microlenses

    NASA Astrophysics Data System (ADS)

    Vasiljević, Darko; Murić, Branka; Pantelić, Dejan; Panić, Bratimir

    2012-05-01

    Microlenses were produced by the irradiation of a layer of tot'hema and eosin sensitized gelatin (TESG) with laser light (second harmonic Nd:YAG, 532 nm). For this research, eight microlenses were written on a dog-bone-shaped TESG layer. After production, microlenses were uniaxially stretched on a tensile testing machine. Each microlens had different amounts of strain (0, 30, 60, 80, 120, 140, 180 and 240% strain). The influence of TESG layer extensibility on the imaging properties of microlenses was characterized by calculating the root mean square wavefront aberration, the modulation transfer function and the geometrical spot diagram. All microlenses had very good imaging properties and the microlens with 0% strain had diffraction-limited performance.

  3. Influence of Atomic Layer Deposition Temperatures on TiO2/n-Si MOS Capacitor

    SciTech Connect

    Wei, Daming; Hossain, T; Garces, N. Y.; Nepal, N.; Meyer III, Harry M; Kirkham, Melanie J; Eddy, C.R., Jr.; Edgar, J H

    2013-01-01

    This paper reports on the influence of temperature on the structure, composition, and electrical properties of TiO2 thin films deposited on n-type silicon (100) by atomic layer deposition (ALD). TiO2 layers around 20nm thick, deposited at temperatures ranging from 100 to 300 C, were studied. Samples deposited at 250 C and 200 C had the most uniform coverage as determined by atomic force microscopy. The average carbon concentration throughout the oxide layer and at the TiO2/Si interface was lowest at 200 C. Metal oxide semiconductor capacitors (MOSCAPs) were fabricated, and profiled by capacitance-voltage techniques. Negligible hysteresis was observed from a capacitance-voltage plot and the capacitance in the accumulation region was constant for the sample prepared at a 200 C ALD growth temperature. The interface trap density was on the order of 1013 eV-1cm-2 regardless of the deposition temperature.

  4. On the influence of interfacial properties to the bending rigidity of layered structures

    NASA Astrophysics Data System (ADS)

    Peng, Shenyou; Wei, Yujie

    2016-07-01

    Layered structures are ubiquitous, from one-atom thick layers in two-dimensional materials, to nanoscale lipid bi-layers, and to micro and millimeter thick layers in composites. The mechanical behavior of layered structures heavily depends on the interfacial properties and is of great interest in engineering practice. In this work, we give an analytical solution of the bending rigidity of bilayered structures as a function of the interfacial shear strength. Our results show that while the critical bending stiffness when the interface starts to slide plastically is proportional to the interfacial shear strength, there is a strong nonlinearity between the rigidity and the applied bending after interfacial plastic shearing. We further give semi-analytical solutions to the bending of bilayers when both interfacial shearing and pre-existing crack are present in the interface of rectangular and circular bilayers. The analytical solutions are validated by using finite element simulations. Our analysis suggests that interfacial shearing resistance, interfacial stiffness and preexisting cracks dramatically influence the bending rigidity of bilayers. The results can be utilized to understand the significant stiffness difference in typical biostructures and novel materials, and may also be used for non-destructive detection of interfacial crack in composites when stiffness can be probed through vibration techniques.

  5. Influence of atomic layer deposition valve temperature on ZrN plasma enhanced atomic layer deposition growth

    SciTech Connect

    Muneshwar, Triratna Cadien, Ken

    2015-11-15

    Atomic layer deposition (ALD) relies on a sequence of self-limiting surface reactions for thin film growth. The effect of non-ALD side reactions, from insufficient purging between pulses and from precursor self-decomposition, on film growth is well known. In this article, precursor condensation within an ALD valve is described, and the effect of the continuous precursor source from condensate evaporation on ALD growth is discussed. The influence of the ALD valve temperature on growth and electrical resistivity of ZrN plasma enhanced ALD (PEALD) films is reported. Increasing ALD valve temperature from 75 to 95 °C, with other process parameters being identical, decreased both the growth per cycle and electrical resistivity (ρ) of ZrN PEALD films from 0.10 to 0.07 nm/cycle and from 560 to 350 μΩ cm, respectively. Our results show that the non-ALD growth resulting from condensate accumulation is eliminated at valve temperatures close to the pressure corrected boiling point of precursor.

  6. Influence of a multi-layered planetary ground on the propagation of ELF electromagnetic field pulses

    NASA Astrophysics Data System (ADS)

    Kulak, Andrzej; Mlynarczyk, Janusz; Kozakiewicz, Joanna

    2013-04-01

    Electrical discharges in planetary atmospheres generate short electromagnetic field pulses that propagate in ground-ionosphere waveguides over long distances as TEM waves. Due to waveguide dispersion the waveform of the ELF (Extremely Low Frequency) electromagnetic field pulses change significantly with the distance. Planetary crusts with a low electric conductivity have a particularly strong influence on ELF radiowave propagation in the ground-ionosphere waveguides due to the penetration of the ground by the wave's electromagnetic field. For a known distance from the source the waveform's shape allows investigating waveguide propagation properties. When the model of the lower ionosphere is known, contribution of the ground to the propagation parameters of the waveguide can be derived. A method based on this principle can be useful in a study of electrical properties of the ground especially on planets where the atmospheric discharges are not frequent enough to continuously generate Schumann resonances. In this work we present and analytical model of the ELF radiowave propagation in ground-ionosphere waveguides with multi-layered ground. We have developed equations that enable us to include different ground models in propagation equations using the concept of complex altitude. The model let us conclude that the influence of the ground on the ELF radiowave propagation is particularly strong when the field penetrates through a low conductivity layer of a planetary crust into a higher conductivity layer or the mantle, and a distinct boundary between the two layers leads to interferences in wave propagation in the upper layer and to a significant change in the propagation parameters of the ground-ionosphere waveguide. We envisage technical possibility of measurement of the magnetic field component of the electromagnetic waves generated by short electric discharges in the Martian atmosphere. The presented model can be useful in studies of ELF radiowave propagation on

  7. Influence of Plant Communities on Active Layer Depth in Boreal Forest

    NASA Astrophysics Data System (ADS)

    Fisher, James; Estop Aragones, Cristian; Thierry, Aaron; Hartley, Iain; Murton, Julian; Charman, Dan; Williams, Mathew; Phoenix, Gareth

    2015-04-01

    Vegetation plays a crucial role in determining active layer depth (ALD) and hence the extent to which permafrost may thaw under climate change. Such influences are multifaceted and include, for example, promotion of shallow ALD by insulation from moss or shading by plant canopies in summer, or trapping of snow in evergreen tree canopies that reduces snow insulation of soil in winter. However, while the role of different vegetation components are understood at a conceptual level, quantitative understanding of the relative importance of different vegetation components and how they interact to determine active layer depth is lacking. In addition, major abiotic factors such as fire and soil hydrological properties will considerably influence the role of vegetation in mediating ALD, though again this is not well understood. To address this we surveyed 60 plots across 4 sites of contrasting vegetation and fire status, encompassing a range of soil moisture and organic matter thickness, in the discontinuous permafrost zone near Yellowknife, NT, Canada. In each plot we measured ALD and a range of vegetation and soil parameters to understand how key characteristics of the understory and canopy vegetation, and soil properties influence ALD. Measurements included moss depth, tree canopy LAI, understory LAI, understory height, vegetation composition, soil organic matter depth, slope and soil moisture. By undertaking these surveys in sites with contrasting hydrological conditions in both burned and unburned areas we have also been able to determine which characteristics of the vegetation and soil are important for protecting permafrost, which characteristics emerge as the most important factors across sites (i.e. irrespective of site conditions) and which factors have site (ecosystem) specific influences. This work provides a major insight into how ecosystem properties influence ALD and therefore also how changes in ecosystems properties arising from climate change may influence

  8. The influence of surface forces on the formation of structural peculiarities in the boundary layers of liquids and boundary phases

    NASA Astrophysics Data System (ADS)

    Derjaguin, B. V.

    1992-05-01

    This article, mentioning the influence of surface forces on the formation and the properties of diffuse adsorption layers on the boundary of solution-substrate, is mainly about the influence of surface forces on the structure and properties of boundary layers of the liquid. It deals with the phenomena of formation of homogeneous liquid crystalline layers of nonmesogenic liquids, boundary phases and the properties of boundary nonhomogeneous layers of water and alcohols. In the conclusion the data on surface forces are given with the radius of action up to 100 μm, which are generated by leucocytes of blood plasma with the addition of a concentrated salt solution.

  9. Surface-cooling effects on compressible boundary-layer instability, and on upstream influence

    NASA Technical Reports Server (NTRS)

    Seddougui, S. O.; Bowles, R. I.; Smith, F. T.

    1991-01-01

    The influence of surface cooling on compressible boundary-layer instability is discussed theoretically for both viscous and inviscid modes, at high Reynolds numbers, with related questions on upstream influence being considered in an Appendix. The cooling enhances the surface heat transfer and velocity gradient, crating a high-heat-transfer sublayer. This has the effect of distorting and accentuating the viscous Tollmien-Schlichting modes to such an extent that their spatial growth rates becomes comparable with, and can even exceed, the growth rates of inviscid modes, including those found previously. This is for moderate cooling, and it applies at any Mach number. In addition, the moderate cooling destabilizes otherwise stable viscous or inviscid modes, in particular triggering outward-traveling waves at the edge of the boundary layer in the supersonic regime. Severe cooling is also discussed as it brings compressible dynamics directly into play within the viscous sublayer. All the new cooled modes found involve the heat-transfer sublayer quite actively, and they are often multistructured in form and may be distinct from those observed in previous computational and experimental investigations. The corresponding nonlinear processes are also pointed out with regard to transition in the cooled compressible boundary layer. Finally, comparisons with Lysenko and Maslov's (1984) experiments on surface cooling are presented.

  10. Factors Influencing Pitot Probe Centerline Displacement in a Turbulent Supersonic Boundary Layer

    NASA Technical Reports Server (NTRS)

    Grosser, Wendy I.

    1997-01-01

    When a total pressure probe is used for measuring flows with transverse total pressure gradients, a displacement of the effective center of the probe is observed (designated Delta). While this phenomenon is well documented in incompressible flow and supersonic laminar flow, there is insufficient information concerning supersonic turbulent flow. In this study, three NASA Lewis Research Center Supersonic Wind Tunnels (SWT's) were used to investigate pitot probe centerline displacement in supersonic turbulent boundary layers. The relationship between test conditions and pitot probe centerline displacement error was to be determined. For this investigation, ten circular probes with diameter-to-boundary layer ratios (D/delta) ranging from 0.015 to 0.256 were tested in the 10 ft x 10 ft SWT, the 15 cm x 15 cm SWT, and the 1 ft x 1 ft SWT. Reynolds numbers of 4.27 x 10(exp 6)/m, 6.00 x 10(exp 6)/in, 10.33 x 10(exp 6)/in, and 16.9 x 10(exp 6)/m were tested at nominal Mach numbers of 2.0 and 2.5. Boundary layer thicknesses for the three tunnels were approximately 200 mm, 13 mm, and 30 mm, respectively. Initial results indicate that boundary layer thickness, delta, and probe diameter, D/delta play a minimal role in pitot probe centerline offset error, Delta/D. It appears that the Mach gradient, dM/dy, is an important factor, though the exact relationship has not yet been determined. More data is needed to fill the map before a conclusion can be drawn with any certainty. This research provides valuable supersonic, turbulent boundary layer data from three supersonic wind tunnels with three very different boundary layers. It will prove a valuable stepping stone for future research into the factors influencing pitot probe centerline offset error.

  11. Influence of homo buffer layer thickness on the quality of ZnO epilayers.

    PubMed

    Eid, E A; Fouda, A N

    2015-10-01

    ZnO buffer layers with different thicknesses were deposited on a-plane sapphire substrates at 300 °C. ZnO epilayers were grown on ZnO buffers at 600 °C by radio-frequency magnetron sputtering and vacuum annealed at 900 °C for an hour. Influence of nucleation layer thickness on the structural and quality of ZnO thin films was investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), and Raman spectroscopy. The best ZnO film quality was obtained with the ZnO buffer layer of 45 nm thick which provided the smoothest surface with RMS value of 0.3 nm. X-ray diffraction measurements reveal that the films have a single phase wurtzite structure with (0001) preferred crystal orientation. As evident from narrow FWHM of ZnO (0002) rocking curve, ZnO buffer can serve as a good template for the growth of high-quality ZnO films with little tilt. In addition, the micro-Raman scattering measurements at room temperature revealed the existence of Raman active phonon modes of ZnO; A1(TO), A1(LO) and E2(high). The latter two modes were not observed in thin buffer layer beside the dis-appearance of E2(low) mode in all films. PMID:25950638

  12. Influence of substrate preparation on the shaping of the topography of the surface of nanoceramic oxide layers

    NASA Astrophysics Data System (ADS)

    Bara, Marek; Kubica, Marek

    2014-02-01

    The paper discusses the shaping mechanism and changes occurring in the structure and topography of the surface of nanoceramic oxide layers during their formation. The paper presents the influence of substrate preparation on the surface topography of oxide layers. The layers were produced via hard anodizing on the EN AW-5251 aluminum alloy. The layers obtained were subjected to microscope examinations, image and chemical composition analyses, and stereometric examinations. Heredity of substrate properties in the topography of the surface of nanoceramic oxide layers formed as a result of electrochemical oxidation has been shown.

  13. Ion adsorption and its influence on direct current electric field induced deformations of flexoelectric nematic layers

    NASA Astrophysics Data System (ADS)

    Derfel, Grzegorz; Buczkowska, Mariola

    2011-07-01

    The influence of ion adsorption on the behavior of the nematic liquid crystal layers is studied numerically. The homeotropic flexoelectric layer subjected to the dc electric field is considered. Selective adsorption of positive ions is assumed. The analysis is based on the free energy formalism for ion adsorption. The distributions of director orientation angle, electric potential, and ion concentrations are calculated by numerical resolving of suitable torques equations and Poisson equation. The threshold voltages for the deformations are also determined. It was shown that adsorption affects the distributions of both cations and anions. Sufficiently large number of adsorbed ions leads to spontaneous deformation arising without any threshold if the total number of ions creates sufficiently strong electric field with significant field gradients in the neighborhood of electrodes. The spontaneous deformations are favored by strong flexoelectricity, large thickness, large ion concentrations, weak anchoring, and large adsorption energy.

  14. The influence of nitrogen co-deposition in mixed layers on deuterium retention and thermal desorption

    NASA Astrophysics Data System (ADS)

    Založnik, Anže; Markelj, Sabina; Čadež, Iztok; Pelicon, Primož; Vavpetič, Primož; Porosnicu, Corneliu; Lungu, Cristian P.

    2015-12-01

    The influence of nitrogen co-deposition in ITER relevant mixed layers on retention and release dynamics of deuterium was studied in situ by Nuclear Reaction Analysis (NRA) and thermodesorption spectroscopy. W:Al and W:Be mixed layers deposited by thermionic vacuum arc (TVA) method were used in order to verify the possibility of Al being used as proxy material for Be in experiments regarding D uptake. Samples were exposed to neutral deuterium atom beam with fluence of 3.24 × 1019 D/cm2 (flux 4.5 × 1014 D/cm2s) at 390 K and NRA with 3He ions was used for depth profile analysis of deuterium content after the exposure. For the investigation of deuterium release dynamics the samples were linearly heated to around 1000 K and during this process NRA spectra at single energy were collected every minute. Complementary to NRA a quadrupole mass spectrometer was used, following masses 2, 3 and 4 in the background vacuum. The numeric simulation of deuterium thermal desorption was performed and desorption energies of desorption sites were calculated. Same experiments were performed with mixed material samples produced by TVA in the presence of nitrogen atmosphere. Nitrogen co-deposition in the mixed layers was found to have an important influence on deuterium retention. The concentration of deuterium in the sample increased by a factor of 4.8 in the presence of nitrogen in the W:Al and by a factor of 1.8 in the W:Be layer compared to the nitrogen-free sample.

  15. Influence des brandons sur la propagation d'un feu de forêt

    NASA Astrophysics Data System (ADS)

    Porterie, Bernard; Zekri, Nouredine; Clerc, Jean-Pierre; Loraud, Jean-Claude

    2005-12-01

    A two-dimensional weighed-site small-world network is proposed to study the action of firebrands (lofted flaming or glowing debris) on fire spread through homogeneous or heterogeneous systems. The firebrand emission distance obeys an exponentially-decreasing distribution law. For homogeneous systems, the effect of firebrands is strengthened when the fire impact length decreases and the characteristic firebrand emission distance increases. As a result, jumps in the rate of spread appear and time oscillations in the burning area can occur. For heterogeneous systems, this effect becomes weaker as the degree of disorder and the distance of firebrand emission increase. The influence of characteristic lengths of radiation, firebrand emission, and medium heterogeneity on fire spread is discussed. To cite this article: B. Porterie et al., C. R. Physique 6 (2005).

  16. Influence of depositional setting and sedimentary fabric on mechanical layer evolution in carbonate aquifers

    USGS Publications Warehouse

    Graham, Wall B.R.

    2006-01-01

    Carbonate aquifers in fold-thrust belt settings often have low-matrix porosity and permeability, and thus groundwater flow pathways depend on high porosity and permeability fracture and fault zones. Methods from sedimentology and structural geology are combined to understand the evolution of fracture controlled flow pathways and determine their spatial distribution. Through this process bed-parallel pressure-solution surfaces (PS1) are identified as a fracture type which influences fragmentation in peritidal and basinal carbonate, and upon shearing provides a major flow pathway in fold - thrust belt carbonate aquifers. Through stratigraphic analysis and fracture mapping, depositional setting is determined to play a critical role in PS1 localization and spacing where peritidal strata have closer spaced and less laterally continuous PS1 than basinal strata. In the peritidal platform facies, units with planar lamination have bed-parallel pressure-solution seams along mudstone laminae. In contrast, burrowed units of peritidal strata have solution seams with irregular and anastamosing geometries. Laminated units with closely spaced bed-parallel solution seams are more fragmented than bioturbated units with anastamosing solution seams. In the deeper-water depositional environment, pelagic settling and turbidity currents are the dominant sedimentation processes, resulting in laterally continuous deposits relative to the peritidal platform environment. To quantify the fracture patterns in the basinal environment, mechanical layer thickness values were measured from regions of low to high bed dip. The results define a trend in which mechanical layer thickness decreases as layer dip increases. A conceptual model is presented that emphasizes the link between sedimentary and structural fabric for the peritidal and basinal environments, where solution seams localize in mud-rich intervals, and the resulting pressure-solution surface geometry is influenced by sedimentary geometry

  17. Influence of nonelectrostatic ion-ion interactions on double-layer capacitance

    NASA Astrophysics Data System (ADS)

    Zhao, Hui

    2012-11-01

    Recently a Poisson-Helmholtz-Boltzmann (PHB) model [Bohinc , Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.85.031130 85, 031130 (2012)] was developed by accounting for solvent-mediated nonelectrostatic ion-ion interactions. Nonelectrostatic interactions are described by a Yukawa-like pair potential. In the present work, we modify the PHB model by adding steric effects (finite ion size) into the free energy to derive governing equations. The modified PHB model is capable of capturing both ion specificity and ion crowding. This modified model is then employed to study the capacitance of the double layer. More specifically, we focus on the influence of nonelectrostatic ion-ion interactions on charging a double layer near a flat surface in the presence of steric effects. We numerically compute the differential capacitance as a function of the voltage under various conditions. At small voltages and low salt concentrations (dilute solution), we find out that the predictions from the modified PHB model are the same as those from the classical Poisson-Boltzmann theory, indicating that nonelectrostatic ion-ion interactions and steric effects are negligible. At moderate voltages, nonelectrostatic ion-ion interactions play an important role in determining the differential capacitance. Generally speaking, nonelectrostatic interactions decrease the capacitance because of additional nonelectrostatic repulsion among excess counterions inside the double layer. However, increasing the voltage gradually favors steric effects, which induce a condensed layer with crowding of counterions near the electrode. Accordingly, the predictions from the modified PHB model collapse onto those computed by the modified Poisson-Boltzmann theory considering steric effects alone. Finally, theoretical predictions are compared and favorably agree with experimental data, in particular, in concentrated solutions, leading one to conclude that the modified PHB model adequately predicts the diffuse

  18. Instability of a compressible circular free jet with consideration of the influence of the jet boundary layer thickness

    NASA Technical Reports Server (NTRS)

    Michalke, A.

    1977-01-01

    The instability of a circular jet was investigated by means of the inviscid linearized stability theory. By variation of a jet parameter which takes the ratio of jet radius to boundary layer thickness into account, the influence of axisymmetry on the spatial growth rate and disturbance phase velocity is studied. The influence of Mach number and temperature ratio is discussed. A comparison with measurements shows that the instability of a turbulent jet boundary layer may also be explained by these results.

  19. Influence of quaternization of ammonium on antibacterial activity and cytocompatibility of thin copolymer layers on titanium.

    PubMed

    Waßmann, Marco; Winkel, Andreas; Haak, Katharina; Dempwolf, Wibke; Stiesch, Meike; Menzel, Henning

    2016-10-01

    Antimicrobial coatings are able to improve the osseointegration of dental implants. Copolymers are promising materials for such applications due to their combined properties of two different monomers. To investigate the influence of different monomer mixtures, we have been synthesized copolymers of dimethyl (methacryloxyethyl) phosphonate (DMMEP) and dipicolyl aminoethyl methacrylate in different compositions and have them characterized to obtain the r-parameters. Some of the copolymers with different compositions have also been alkylated with 1-bromohexane, resulting in quaternized ammonium groups. The copolymers have been deposited onto titanium surfaces resulting in ultrathin, covalently bound layers. These layers have been characterized by water contact angle measurements and ellipsometry. The influence of quaternary ammonium groups on antibacterial properties and cytocompatibility was studied: Activity against bacteria was tested with a gram positive Staphylococcus aureus strain. Cytocompatibility was tested with a modified LDH assay after 24 and 72 h to investigate adhesion and proliferation of human fibroblast cells on modified surfaces. The copolymer with the highest content of DMMEP showed a good reduction of S. aureus and in the alkylated version a very good reduction of about 95%. On the other hand, poor cytocompatibility is observed. However, our results show that this trend cannot be generalized for this copolymer system. PMID:27456132

  20. Influences of an Aluminum Covering Layer on the Performance of Cross-Like Hall Devices.

    PubMed

    Lyu, Fei; Liu, Xinfu; Ding, Yinjie; Toh, Eng-Huat; Zhang, Zhenyan; Pan, Yifan; Wang, Zhen; Li, Chengjie; Li, Li; Sha, Jin; Pan, Hongbing

    2016-01-01

    This work studies the effects of an aluminum covering on the performance of cross-like Hall devices. Four different Hall sensor structures of various sizes were designed and fabricated. The sensitivity and offset of the Hall sensors, two key points impacting their performance, were characterized using a self-built measurement system. The work analyzes the influences of the aluminum covering on those two aspects of the performance. The aluminum layer covering mainly leads to an eddy-current effect in an unstable magnetic field and an additional depletion region above the active region. Those two points have influences on the sensitivity and the offset voltage, respectively. The analysis guides the designer whether to choose covering with an aluminum layer the active region of the Hall sensor as a method to reduce the flicker noise and to improve the stability of the Hall sensor. Because Hall devices, as a reference element, always suffer from a large dispersion, improving their stability is a crucial issue. PMID:26784199

  1. Influences of an Aluminum Covering Layer on the Performance of Cross-Like Hall Devices

    PubMed Central

    Lyu, Fei; Liu, Xinfu; Ding, Yinjie; Toh, Eng-Huat; Zhang, Zhenyan; Pan, Yifan; Wang, Zhen; Li, Chengjie; Li, Li; Sha, Jin; Pan, Hongbing

    2016-01-01

    This work studies the effects of an aluminum covering on the performance of cross-like Hall devices. Four different Hall sensor structures of various sizes were designed and fabricated. The sensitivity and offset of the Hall sensors, two key points impacting their performance, were characterized using a self-built measurement system. The work analyzes the influences of the aluminum covering on those two aspects of the performance. The aluminum layer covering mainly leads to an eddy-current effect in an unstable magnetic field and an additional depletion region above the active region. Those two points have influences on the sensitivity and the offset voltage, respectively. The analysis guides the designer whether to choose covering with an aluminum layer the active region of the Hall sensor as a method to reduce the flicker noise and to improve the stability of the Hall sensor. Because Hall devices, as a reference element, always suffer from a large dispersion, improving their stability is a crucial issue. PMID:26784199

  2. Influence of a high aerosol concentration on the thermal structure of the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Khaikin, M. N.; Kuznetsova, I. N.; Kadygrov, E. N.

    2006-12-01

    The influence of increased concentrations of submicron aerosol produced by forest fires on thermal characteristics of the atmospheric boundary layer (ABL) in Moscow and its remote vicinity (the town of Zvenigorod) are analyzed on the basis of regular remote measurements of the ABL temperature profile with the use of MTP-5 profilers. In the air basin of a large city, additional aerosol and accompanying pollutants in early morning hours (at small heights of the Sun) most frequently did not cause substantial changes in the ABL thermal structure. In the locality remote from the megalopolis (Zvenigorod), the atmospheric pollution by aerosol led to noticeable changes in the ABL thermal characteristics. Especially strong changes were observed in the daytime, during the maximum supply of solar radiation. In morning hours, the heating rate of the lower 100-m layer of the polluted air exceeded the heating rate of a relatively pure air by more than one degree. In higher layers, the differences between the rates of temperature changes in a relatively clean atmosphere and in an atmosphere polluted by aerosol (in the suburb) were insignificant.

  3. Influence of a Two-scale Surface Roughness on a Neutral Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Salizzoni, Pietro; Soulhac, Lionel; Mejean, Patrick; Perkins, Richard J.

    2008-04-01

    Flow in the urban boundary layer is strongly influenced by the surface roughness, which is composed principally of isolated buildings or groups of buildings. Previous research has shown that the flow regime depends on the characteristic height of these obstacles ( H), and the spacing between them ( W). In reality, the urban boundary layer contains roughness elements with a wide range of length scales; in many practical situations these can be classified into large-scale roughness—buildings, or groups of buildings—and small-scale roughness, such as street furniture and elements on the façades and roofs. It is important to understand how the small-scale roughness might modify mass and momentum transfer in the urban boundary layer, but relatively little information is available concerning the potential interaction between large- and small-scale roughness elements in the different flow regimes. This problem has been studied using wind-tunnel experiments, by measuring vertical velocity profiles over a two-dimensional obstacle array, adding small-scale roughness elements to the top of larger parallel square bars. The experiments were performed for different cavity aspect ratios: the results show that the small-scale roughness increases the turbulence intensities and the momentum transfer when the large-scale obstacles are closely packed ( H/ W > 1) but it has very little effect for more widely-spaced obstacles ( H/ W < 1).

  4. Influence of superoleophobic layer on the lubrication performance of partially textured bearing including cavitation

    NASA Astrophysics Data System (ADS)

    Tauviqirrahman, M.; Bayuseno, A. P.; Muchammad, Jamari, J.

    2016-04-01

    Surfaces with high superoleophobicity have attracted important attention because of their potential applications in scientific and industrial field. Especially classical metal bearing are faced with lubrication problem, because metal surface shows typically oleophilicity. The development of superolephobic metal surfaces which repel oil liquid droplet have significant applications in preventing the stiction. In addition, for classical bearing with texturing, the cavitation occurence is often considered as the main cause of the deterioration of the lubrication performance and thus shorten the lifetime of the bearing. In the present study, the exploration of the influence of adding the superoleophobic layer on the improvement of the performance of partially textured bearing in preventing the cavitation was performed. Navier slip model was used to model the behavior of the superoleophobic layer. A formulation of the modified Reynolds equation with mass-conserving boundary conditions was derived and the pressure distribution was of particular interest. The equations of lubrication were discretized using a finite volume method and solved using a tri-diagonal-matrix-algortihm. In this calculation, it was shown that after introducing the superoleophobic layer at the leading edge of the contact, the cavitation occurence can be prevented and thus the increased hydrodynamic pressure is found. However, the results showed that for deeper texture, the deterioration of the load support is noted. This findings may have useful implications to extend the life time of textured bearing.

  5. The Influence of Unconformities Along the Layer Interface on Capillary Barrier Flow

    NASA Astrophysics Data System (ADS)

    Wohnlich, S.; Dallery, M.; Lesón, M.; Bitomsky, K.

    2008-12-01

    Under unsaturated conditions the water flow in sediments is largely influenced by capillary forces. Especially if layers of fine grained sand overlay coarser layers of sand and gravel. The fine soil layer stores infiltrating water (capillary forces), acts like a drainage layer in sloping systems and thus is used to divert laterally the water under unsaturated conditions. This effect is used in waste technology as a barrier to downward flow. By far most of the present experiments with this respect were investigating undisturbed, straight construction of the interface between the two layers. Sedimentological unconformities in natural soils or uneven settlements of underlying waste are disturbing this distinct construction. These unconformities along the layer interface may change the flow pattern and cause vertical breakthrough. The experiments presented here are aimed to quantify the influence of interface discontinuities on the capillary flow. In the experimental set up a capillary layer (0.35 m sand) and capillary block (0.18 m gravel) were placed in an experimental tank of 6 m length, 1 m high, and 0.6 m width, with a slope of 11.3°. The tank is subdivided in 12 separately measurable drainage compartments, which enables the identification and quantification of local breakthrough. Inflow, outflow at all 14 segments, soil water tension (13 tensiometers), soil moisture (4 TDR probes) were automatically monitored. In addition tracers (NaCl and Amidorhodamine G) were used to visualize the flow pattern and determine hydraulic parameters. In a first set of experiments (3) the interface between sand and gravel were partially covered by a plastic membrane with variable openings. The second setup included two pillows filled with water, which were placed in the gravel during the construction each on the left and the right side of the tank, in a distance of 0.42 m from the upper end. In all setups the inflow rate was stepwise increased until reaching the lateral drainage

  6. Mixing layer height measurements determines influence of meteorology on air pollutant concentrations in urban area

    NASA Astrophysics Data System (ADS)

    Schäfer, Klaus; Blumenstock, Thomas; Bonn, Boris; Gerwig, Holger; Hase, Frank; Münkel, Christoph; Nothard, Rainer; von Schneidemesser, Erika

    2015-10-01

    Mixing layer height (MLH) is a key parameter to determine the influence of meteorological parameters upon air pollutants such as trace gas species and particulate concentrations near the surface. Meteorology, and MLH as a key parameter, affect the budget of emission source strengths, deposition, and accumulation. However, greater possibilities for the application of MLH data have been identified in recent years. Here, the results of measurements in Berlin in 2014 are shown and discussed. The concentrations of NO, NO2, O3, CO, PM1, PM2.5, PM10 and about 70 volatile organic compounds (anthropogenic and biogenic of origin) as well as particle size distributions and contributions of SOA and soot species to PM were measured at the urban background station of the Berlin air quality network (BLUME) in Nansenstr./Framstr., Berlin-Neukölln. A Vaisala ceilometer CL51, which is a commercial mini-lidar system, was applied at that site to detect the layers of the lower atmosphere in real time. Special software for these ceilometers with MATLAB provided routine retrievals of MLH from vertical profiles of laser backscatter data. Five portable Bruker EM27/SUN FTIR spectrometers were set up around Berlin to detect column averaged abundances of CO2 and CH4 by solar absorption spectrometry. Correlation analyses were used to show the coupling of temporal variations of trace gas compounds and PM with MLH. Significant influences of MLH upon NO, NO2, PM10, PM2.5, PM1 and toluene (marker for traffic emissions) concentrations as well as particle number concentrations in the size modes 70 - 100 nm, 100 - 200 nm and 200 - 500 nm on the basis of averaged diurnal courses were found. Further, MLH was taken as important auxiliary information about the development of the boundary layer during each day of observations, which was required for the proper estimation of CO2 and CH4 source strengths from Berlin on the basis of atmospheric column density measurements.

  7. Influence of boundary-layer dynamics on pollen dispersion and viability

    NASA Astrophysics Data System (ADS)

    Arritt, Raymond W.; Viner, Brian J.; Westgate, Mark E.

    2013-04-01

    Adoption of genetically modified (GM) crops has raised concerns that GM traits can accidentally cross into conventional crops or wild relatives through the transport of wind-borne pollen. In order to evaluate this risk it is necessary to account both for dispersion of the pollen grains and environmental influences on pollen viability. The Lagrangian approach is suited to this problem because it allows tracking the environmental temperature and moisture that pollen grains experience as they travel. Taking advantage of this capability we have combined a high-resolution version of the WRF meteorological model with a Lagrangian particle dispersion model to predict maize pollen dispersion and viability. WRF is used to obtain fields of wind, turbulence kinetic energy, temperature, and humidity which are then used as input to the Lagrangian dispersion model. The dispersion model in turn predicts transport of a statistical sample of a pollen cloud from source plants to receptors. We also use the three-dimensional temperature and moisture fields from WRF to diagnose changes in moisture content of the pollen grains and consequent loss of viability. Results show that turbulent motions in the convective boundary layer counteract the large terminal velocity of maize pollen grains and lift them to heights of several hundred meters, so that they can be transported long distances before settling to the ground. We also found that pollen lifted into the upper part of the boundary layer remains more viable than has been inferred using surface observations of temperature and humidity. This is attributed to the thermal and moisture structure that typifies the daytime atmospheric boundary layer, producing an environment of low vapor pressure deficit in the upper boundary layer which helps maintain pollen viability.

  8. Influence of vibrational relaxation on perturbations in a shock layer on a plate

    NASA Astrophysics Data System (ADS)

    Kirilovskiy, S. V.; Maslov, A. A.; Poplavskaya, T. V.; Tsyryul'nikov, I. S.

    2015-05-01

    The influence of excitation of molecular vibrational degrees of freedom on the mean flow and perturbation development in a hypersonic (M = 6-14) viscous shock layer is studied. The layer originates on a plate placed in a flow of air, carbon dioxide, or their mixture at high stagnation temperatures (2000-3000 K). The mean flow and pressure pulsation on the surface of the plate are measured in an IT-302M pulsed wind tunnel (Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences). Numerical simulation is carried out in terms of a model of a thermally perfect gas using the ANSYS Fluent program package based on solving nonstationary two-dimensional Navier-Stokes equations. External flow perturbations are introduced into the computational domain in the form of plane monochromatic acoustic waves using UDF modules built in the computational code. It is shown that the excitation of vibrational degrees of freedom in carbon dioxide molecules considerably influences the position of the head wave and intensifies perturbations in contrast to air in which the fraction of vibrationally excited molecules is low at the same parameters of the oncoming low. The influence of the excitation of vibrational degrees of freedom is studied both for equilibrium gas and for a vibrationally nonequilibrium gas. Nonequilibrium vibrational degrees of freedom are simulated using a two-temperature model of relaxation flows in which the time variation of the vibrational energy is described by the Landau-Teller equation with regard to a finite time of energy exchange between vibrational and translational-rotational degrees of freedom of molecules. It is found that the vibrational nonequilibrium has a damping effect on perturbations.

  9. Influence of grid aspect ratio on planetary boundary layer turbulence in large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Nishizawa, S.; Yashiro, H.; Sato, Y.; Miyamoto, Y.; Tomita, H.

    2015-10-01

    We examine the influence of the grid aspect ratio of horizontal to vertical grid spacing on turbulence in the planetary boundary layer (PBL) in a large-eddy simulation (LES). In order to clarify and distinguish them from other artificial effects caused by numerical schemes, we used a fully compressible meteorological LES model with a fully explicit scheme of temporal integration. The influences are investigated with a series of sensitivity tests with parameter sweeps of spatial resolution and grid aspect ratio. We confirmed that the mixing length of the eddy viscosity and diffusion due to sub-grid-scale turbulence plays an essential role in reproducing the theoretical -5/3 slope of the energy spectrum. If we define the filter length in LES modeling based on consideration of the numerical scheme, and introduce a corrective factor for the grid aspect ratio into the mixing length, the theoretical slope of the energy spectrum can be obtained; otherwise, spurious energy piling appears at high wave numbers. We also found that the grid aspect ratio has influence on the turbulent statistics, especially the skewness of the vertical velocity near the top of the PBL, which becomes spuriously large with large aspect ratio, even if a reasonable spectrum is obtained.

  10. Influences on the Height of the Stable Boundary Layer as seen in LES

    SciTech Connect

    Kosovic, B; Lundquist, J

    2004-06-15

    Climate models, numerical weather prediction (NWP) models, and atmospheric dispersion models often rely on parameterizations of planetary boundary layer height. In the case of a stable boundary layer, errors in boundary layer height estimation can result in gross errors in boundary-layer evolution and in prediction of turbulent mixing within the boundary layer.

  11. The influence of blobs on neutral particles in the scrape-off layer

    NASA Astrophysics Data System (ADS)

    Thrysøe, Alexander S.; Tophøj, Laust E. H.; Naulin, Volker; Rasmussen, Jens Juul; Madsen, Jens; Nielsen, Anders H.

    2016-04-01

    Interactions between plasma and neutrals are investigated with particular attention to the influence of large amplitude blob structures that mediate a significant particle and energy transport through the scrape-off layer (SOL). We perform a statistical analysis of the mean-field approximation for plasma parameters in the SOL, and this approximation is shown to be poor in a SOL with a high level of fluctuations, as the plasma fields are strongly correlated. A 1D neutral fluid model which account for both cold and hot neutrals is formulated and the effects of blobs on the ionization in the SOL and edge are investigated. Simulations suggest that neutrals originating from dissociation of hydrogen molecules only fuel in the outermost edge region of the plasma, whereas hot neutrals from charge exchange collisions penetrate deep into the bulk plasma. The results are recovered in a simplified 2D model.

  12. The influence of a model subglacial lake on ice dynamics and internal layering

    NASA Astrophysics Data System (ADS)

    Gudlaugsson, Eythor; Humbert, Angelika; Kleiner, Thomas; Kohler, Jack; Andreassen, Karin

    2016-04-01

    As ice flows over a subglacial lake, the drop in bed resistance leads to an increase in ice velocities and a draw down of isochrones and cold ice. The ice surface flattens as it adjusts to the lack of resisting forces at the base. The rapid transition in velocity induces changes in ice viscosity and releases deformation energy that can raise the temperature locally. Recent studies of Antarctic subglacial lakes indicate that many lakes experience very fast and possibly episodic drainage, during which the lake size is rapidly reduced as water flows out. Questions that arise are what effect this would have on internal layers within the ice and whether such past drainage events could be inferred from isochrone structures downstream. Here, we study the effect of a subglacial lake on ice dynamics as well as the influence that such short timescale drainage would have on the internal layers of the ice. To this end, we use a full Stokes, polythermal ice flow model. An enthalpy-gradient method is used to account for the evolution of temperature and water content within the ice. We find that a rapid transition between slow-moving ice outside the lake, and full sliding over the lake, can release considerable amounts of deformational energy, with the potential to form a temperate layer at depth in the transition zone. In addition, we provide an explanation for a characteristic surface feature commonly seen at the edges of subglacial lakes, a hummocky surface depression in the transition zone between little to full sliding. We also conclude that rapid changes in the horizontal extent of subglacial lakes and slippery patches, compared to the average ice column velocity, can create a traveling wave at depth within the isochrone structure that transfers downstream with the advection of ice, thus indicating the possibility of detecting past drainage events with ice penetrating radar.

  13. The influence of a model subglacial lake on ice dynamics and internal layering

    NASA Astrophysics Data System (ADS)

    Gudlaugsson, E.; Humbert, A.; Kleiner, T.; Kohler, J.; Andreassen, K.

    2015-07-01

    As ice flows over a subglacial lake, the drop in bed resistance leads to an increase in ice velocities and a subsequent draw-down of isochrones and cold ice from the surface. The ice surface flattens as it adjusts to the lack of resisting forces at the base. The rapid transition in velocity induces changes in temperature and ice viscosity, releasing deformation energy which raises the temperature locally. Recent studies of Antarctic subglacial lakes indicate that many lakes experience very fast and possibly episodic drainage, during which the lake size is rapidly reduced as water flows out. A question is what effect this would have on internal layers within the ice, and whether such past events could be inferred from isochrone structures downstream. Here, we study the effect of a subglacial lake on the dynamics of a model ice stream as well as the influence that such short timescale drainage would have on the internal layers of the ice. To this end, we use a Full-Stokes, polythermal ice flow model. An enthalpy gradient method is used to account for the evolution of temperature and water content within the ice. We find that the rapid transition between slow-moving ice outside the lake, and full sliding over the lake, releases large amounts of deformational energy, which has the potential to form a temperate layer at depth in the transition zone. In addition, we provide an explanation for a characteristic surface feature, commonly seen at the edges of subglacial lakes, a hummocky surface depression in the transition zone between little to full sliding. We also conclude that rapid changes in lake geometry or basal friction create a travelling wave at depth within the isochrone structure that transfers downstream with the advection of ice, thus indicating the possibility of detecting past events with ice penetrating radar.

  14. Influence of emulsification process on the properties of Pickering emulsions stabilized by layered double hydroxide particles.

    PubMed

    Zhang, Nana; Zhang, Li; Sun, Dejun

    2015-04-28

    This paper reports the influence of emulsification process on the packing of layered double hydroxide (LDH) particles at the aqueous/oil phase interface and the properties of the resulting Pickering emulsions. Emulsions prepared by ultrasonication display superior long-term stability and gel-like characteristics at the dispersed phase volume fraction well below the random close packing limit, whereas emulsions with same compositions prepared by vortex mixing show some extent of sedimentation and liquid-like behaviors. Rheological measurements demonstrate that the zero-shear elastic modulus and yield stress of gel-like emulsions exhibit power-law dependences on particle concentration and independence on aqueous/oil phase ratio. The microstructural origin of this behavior is investigated by optical microscopy, revealing the droplets become strongly adhesive and a heterogeneous percolating network is formed among neighboring droplets. Fluorescent confocal microscopy measurements further confirm that the droplet adhesion is due to particle layers bridging opposite interfaces. In contrast, homogeneous, isolated, and densely packed droplets are present in emulsions prepared by vortex mixing, which results in these systems being dominantly viscous like the suspending fluid. This study shows that the emulsification process can be used as a trigger to modify long-term stability and rheology of solid-stabilized multiphase mixtures, which greatly expands their potential technological applications. PMID:25853297

  15. Dust aerosol radiative effect and influence on urban atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Chen, M.; Li, L.

    2007-11-01

    An 1.5-level-closure and 3-D non-stationary atmospheric boundary layer (ABL) model and a radiation transfer model with the output of Weather Research and Forecast (WRF) Model and lidar AML-1 are employed to simulate the dust aerosol radiative effect and its influence on ABL in Beijing for the period of 23-26 January 2002 when a dust storm occurred. The simulation shows that daytime dust aerosol radiative effect heats up the ABL at the mean rate of about 0.68 K/h. The horizontal wind speed from ground to 900 m layer is also overall increased, and the value changes about 0.01 m/s at 14:00 LT near the ground. At night, the dust aerosol radiative effect cools the ABL at the mean rate of -0.21 K/h and the wind speed lowers down at about -0.19 m/s at 02:00 LT near the ground.

  16. Influence of pressure gradient on streamwise skewness factor in turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Dróżdż, Artur

    2014-08-01

    The paper shows an effect of favourable and adverse pressure gradients on turbulent boundary layer. The skewness factor of streamwise velocity component was chosen as a measure of the pressure gradient impact. It appears that skewness factor is an indicator of convection velocity of coherent structures, which is not always equal to the average flow velocity. The analysis has been performed based upon velocity profiles measured with hot-wire technique in turbulent boundary layer with pressure gradient corresponding to turbomachinery conditions. The results show that the skewness factor decreases in the flow region subjected to FPG and increases in the APG conditions. The changes of convection velocity and skewness factor are caused by influence of large-scale motion through the mechanism called amplitude modulation. The large-scale motion is less active in FPG and more active in APG, therefore in FPG the production of vortices is random (there are no high and low speed regions), while in the APG the large-scale motion drives the production of vortices. Namely, the vortices appear only in the high-speed regions, therefore have convection velocity higher than local mean velocity. The convection velocity affects directly the turbulent sweep and ejection events. The more flow is dominated by large-scale motion the higher values takes both the convection velocity of small-scale structures and sweep events induced by them.

  17. Influence of emissive layer thickness on electrical characteristics of polyfluorene copolymer based polymer light emitting diodes

    NASA Astrophysics Data System (ADS)

    Das, D.; Gopikrishna, P.; Singh, A.; Dey, A.; Iyer, P. K.

    2016-04-01

    Polymer light emitting diodes (PLEDs) with a device configuration of ITO/PEDOT:PSS/PFONPN01 [Poly [2,7-(9,9’-dioctylfluorene)-co-N-phenyl-1,8-naphthalimide (99:01)]/LiF/Al have been fabricated by varying the emissive layer (EML) thickness (40/65/80/130 nm) and the influence of EML thickness on the electrical characteristics of PLED has been studied. PLED can be modelled as a simple combination of resistors and capacitors. The impedance spectroscopy analysis showed that the devices with different EML thickness had different values of parallel resistance (RP) and the parallel capacitance (CP). The impedance of the devices is found to increase with increasing EML thickness resulting in an increase in the driving voltage. The device with an emissive layer thickness of 80nm, spin coated from a solution of concentration 15 mg/mL is found to give the best device performance with a maximum brightness value of 5226 cd/m2.

  18. Influence of active layer and support layer surface structures on organic fouling propensity of thin-film composite forward osmosis membranes.

    PubMed

    Lu, Xinglin; Arias Chavez, Laura H; Romero-Vargas Castrillón, Santiago; Ma, Jun; Elimelech, Menachem

    2015-02-01

    In this study, we investigate the influence of surface structure on the fouling propensity of thin-film composite (TFC) forward osmosis (FO) membranes. Specifically, we compare membranes fabricated through identical procedures except for the use of different solvents (dimethylformamide, DMF and N-methyl-2-pyrrolidinone, NMP) during phase separation. FO fouling experiments were carried out with a feed solution containing a model organic foulant. The TFC membranes fabricated using NMP (NMP-TFC) had significantly less flux decline (7.47 ± 0.15%) when compared to the membranes fabricated using DMF (DMF-TFC, 12.70 ± 2.62% flux decline). Water flux was also more easily recovered through physical cleaning for the NMP-TFC membrane. To determine the fundamental cause of these differences in fouling propensity, the active and support layers of the membranes were extensively characterized for physical and chemical characteristics relevant to fouling behavior. Polyamide surface roughness was found to dominate all other investigated factors in determining the fouling propensities of our membranes relative to each other. The high roughness polyamide surface of the DMF-TFC membrane was also rich in larger leaf-like structures, whereas the lower roughness NMP-TFC membrane polyamide layer contained more nodular and smaller features. The support layers of the two membrane types were also characterized for their morphological properties, and the relation between support layer surface structure and polyamide active layer formation was discussed. Taken together, our findings indicate that support layer structure has a significant impact on the fouling propensity of the active layer, and this impact should be considered in the design of support layer structures for TFC membranes. PMID:25564877

  19. The biodegradation of layered silicates under the influence of cyanobacterial-actinomycetes associations

    NASA Astrophysics Data System (ADS)

    Ivanova, Ekaterina

    2013-04-01

    substrate. The associative growth of S. cyaneofuscatus and A. variabilis led to the transformation of minerals indicated by the significant decreasing of the intensity of the reflections of vermiculite as well as biotite. Reduction in the intensity of the basal reflections of vermiculite (d001, d004 and d005) three times indicates the process of biodestruction of this component of the rock. The formation of the swelling phase - the product of biotite transformation into the mica-vermicullite mixed-layer formation was revealed. The study demonstrates the differences in the transformation of clay minerals under the influence of cyanobacterial-actinomycetes association, depending on minerals' crystal chemistry and it's resistance to weathering. The rate of the process transformation of micas into the mixed-layer formation depends on their structure - trioctahedral mica (biotite, part of vermiculite sample) are transformated much faster than dioctahedral. The growth of associative thallus and monocultures of cyanobacterium and actinomycete promoted the removal of potassium (?), magnesium (Mg) and aluminum (Al) from the crystal lattice of the rock sample of vermiculite. Leaching of elements due to the influence of associative thallus exceeded the release of cations observed in the sample under the influence of the growth of cyanobacterium and streptomycete monocultures and in the control sample of vermiculite. Therefore, the association's biodegradation impact on the mineral structure was significantly greater than the influence of the monocultures of cyanobacteria and actinomycetes.

  20. Influence of wind velocity on pollen concentration in urban canopy layer

    NASA Astrophysics Data System (ADS)

    Pospisil, J.; Jícha, M.

    2009-09-01

    POLLEN RELEASE Temperature is the basic parameter for prediction of the beginning of the pollen season and identification days with good potential for pollen release. Different approaches are used for determination of the start of the pollen season: i) the sum of daily pollen counts = x criterion (Arnold 2002), ii) the mean temperature method during pre-defined period (Sparks, 2000), iii) the temperature sum method (Jones 1992). Another parameters influencing pollen release are: day light length, morning temperature gradient, relative humidity. The mentioned parameters enable to create the "statistical” model for determination of timing of pollen potential release. But, the correct determination of pollen release timing is only the first step to correct prediction of pollen concentration in air. The above mentioned collection of parameters isn't complete for correct pollen production prediction without inclusion of the actual wind velocity. The wind velocity directly influences the pollen release rate from mother plant and subsequently transport of pollen grains. From this reason, influence of wind conditions has to be considered as exactly as possible in complex prediction models. WIND VELOCITY AND POLLEN CONCENTRATION Results of in-situ measurements were used for carried out analysis of the relation between wind velocity and pollen concentration in an urban canopy layer. The mean daily wind velocities and the mean daily pollen concentrations were used as the input data describing the pollen season 2005 in an inner part of the city of Brno (pop. 400 000). The mean daily pollen concentrations were matched to corresponding mean daily wind velocity and depicted in graphs. This procedure was done for all locally monitored aeroallergens, namely Alnus, Ambrosia, Betula, Artemis, Corylus, Fraxinus, Poaceae and Quercus. Only days with significant pollen concentration (above 10% of maximal pollen season concentration) were considered for detail analysis. Clear

  1. Influence of a fat layer on the near infrared spectra of human muscle: quantitative analysis based on two-layered Monte Carlo simulations and phantom experiments

    NASA Technical Reports Server (NTRS)

    Yang, Ye; Soyemi, Olusola O.; Landry, Michelle R.; Soller, Babs R.

    2005-01-01

    The influence of fat thickness on the diffuse reflectance spectra of muscle in the near infrared (NIR) region is studied by Monte Carlo simulations of a two-layer structure and with phantom experiments. A polynomial relationship was established between the fat thickness and the detected diffuse reflectance. The influence of a range of optical coefficients (absorption and reduced scattering) for fat and muscle over the known range of human physiological values was also investigated. Subject-to-subject variation in the fat optical coefficients and thickness can be ignored if the fat thickness is less than 5 mm. A method was proposed to correct the fat thickness influence. c2005 Optical Society of America.

  2. Influence of the Entrainment Interface Layer on Cloud Microphysical Properties near Stratocumulus Top

    NASA Astrophysics Data System (ADS)

    Chuang, P. Y.; Carman, J. K.; Rossiter, D. L.

    2010-12-01

    Entrainment across the stratocumulus-topped boundary layer is a key process governing the cloud properties and evolution. This process is not well-represented even in high-resolution large-eddy simulations, in part due to the sharp gradients in temperature, buoyancy and (usually) humidity that occur at the top of the boundary layer. In summer 2008, the Physics of Stratocumulus Top (POST) field campaign conduct extensive measurements in the vicinity of cloud top, including the so-called entrainment interface layer or EIL that separates boundary layer and free tropospheric air. Roughly half of the fifteen flights occurred during the day (near solar noon) while the remaining flights occurred during late evening-to-night when solar input was minimal. A wide diversity of EIL properties has been revealed over the course of the campaign. EIL vertical thickness diagnosed using total water varies from fairly thin (~20 m) to very thick (>100 m). The thickness and intensity of the turbulent layer in this interfacial region also varies substantially, with the top of the significantly turbulent region ranging from 10 m to 50 m above cloud top. Shear in the vicinity of cloud top also varied strongly from day-to-day. While almost all cases exhibited strong jumps in potential temperature, there are a number of cases where the jump in total water was very small-to-none, and one case where total water was higher in the free troposphere by 1.4 g/kg. POST thus demonstrates that the cloud-top interfacial region exhibits a rich and diverse range of properties. This study focuses on how this EIL diversity affects the stratocumulus cloud itself. We build on our study of the EIL dynamic and thermodynamic properties to investigate the influence of the EIL on the microphysical properties of the stratocumulus in the vicinity of cloud top. Entrainment of the overlying warmer and (usually) drier air can strongly impact the amount of liquid water as well as the size and concentration of cloud

  3. Urban Heat Island and Its Influence on Atmospheric Boundary Layer Temperature Field

    NASA Astrophysics Data System (ADS)

    Kadygrov, N.; Kruchenitsky, G.; Lykov, A.

    2006-12-01

    The effect of megacity on atmospheric boundary layer (ABL) temperature is a well known phenomenon called "Urban Heat Island" revealed in increasing temperature over megacity relative to its suburb. Until recently the only way to investigate and gather the data about its vertical distribution was to observe temperature on the meteorological, TV towers and by radiosonde. The available information appears to be irregular in time and space. The situation has changed in recent years since the advent of temperature profiler based on microwave radiometer, which can produce the vertical distribution of ABL temperature up to 600 meters ASL with 5 minute sampling period. The station in the center of Moscow megacity and 2 observation sites near Moscow (20 km and 50 km away from city center) were equipped by MTP-5 radiometer in order to get quantitative estimations of the Heat Island Effect on ABL temperature field. Three sites were selected in order to look at transition from megacity to suburb. The main aim was not to get the climatological averages but to get the differences between Heat Island and its background (suburb). The period of observation was from beginning of 2000 till the middle of 2004. The ABL temperature model was developed separately for each station in the multiplicative manner as the product of seasonal and diurnal variations of ABL temperature in order to obtain the differences between Urban Heat Island and suburb ABL temperatures. As the result of data analysis, the amplitudes and phases of seasonal and diurnal harmonics, average annual noon temperature value, average temperature gradients and daily altitude-time crossection of ABL temperature were obtained. The analysis performed in this work has given us a better insight into the mechanism of Urban Heat Island influence on ABL temperature field with quantitative estimations of such influence.

  4. Influence of layer charge and charge distribution of smectites on the flow behaviour and swelling of bentonites

    USGS Publications Warehouse

    Christidis, G.E.; Blum, A.E.; Eberl, D.D.

    2006-01-01

    The influence of layer charge and charge distribution of dioctahedral smectites on the rheological and swelling properties of bentonites is examined. Layer charge and charge distribution were determined by XRD using the LayerCharge program [Christidis, G.E., Eberl, D.D., 2003. Determination of layer charge characteristics of smectites. Clays Clay Miner. 51, 644-655.]. The rheological properties were determined, after sodium exchange using the optimum amount of Na2CO3, from free swelling tests. Rheological properties were determined using 6.42% suspensions according to industrial practice. In smectites with layer charges of - 0.425 to - 0.470 per half formula unit (phfu), layer charge is inversely correlated with free swelling, viscosity, gel strength, yield strength and thixotropic behaviour. In these smectites, the rheological properties are directly associated with the proportion of low charge layers. By contrast, in low charge and high charge smectites there is no systematic relation between layer charge or the proportion of low charge layers and rheological properties. However, low charge smectites yield more viscous suspensions and swell more than high charge smectites. The rheological properties of bentonites also are affected by the proportion of tetrahedral charge (i.e. beidellitic charge), by the existence of fine-grained minerals having clay size, such as opal-CT and to a lesser degree by the ionic strength and the pH of the suspension. A new method for classification of smectites according to the layer charge based on the XRD characteristics of smecites is proposed, that also is consistent with variations in rheological properties. In this classification scheme the term smectites with intermediate layer charge is proposed. ?? 2006 Elsevier B.V. All rights reserved.

  5. The influence of misrepresenting the nocturnal boundary layer on idealized daytime convection in large-eddy simulation

    NASA Astrophysics Data System (ADS)

    van Stratum, Bart J. H.; Stevens, Bjorn

    2015-06-01

    The influence of poorly resolving mixing processes in the nocturnal boundary layer (NBL) on the development of the convective boundary layer the following day is studied using large-eddy simulation (LES). Guided by measurement data from meteorological sites in Cabauw (Netherlands) and Hamburg (Germany), the typical summertime NBL conditions for Western Europe are characterized, and used to design idealized (absence of moisture and large-scale forcings) numerical experiments of the diel cycle. Using the UCLA-LES code with a traditional Smagorinsky-Lilly subgrid model and a simplified land-surface scheme, a sensitivity study to grid spacing is performed. At horizontal grid spacings ranging from 3.125 m in which we are capable of resolving most turbulence in the cases of interest to grid a spacing of 100 m which is clearly insufficient to resolve the NBL, the ability of LES to represent the NBL and the influence of NBL biases on the subsequent daytime development of the convective boundary layer are examined. Although the low-resolution experiments produce substantial biases in the NBL, the influence on daytime convection is shown to be small, with biases in the afternoon boundary layer depth and temperature of approximately 100 m and 0.5 K, which partially cancel each other in terms of the mixed-layer top relative humidity.

  6. Platelets to rings: Influence of sodium dodecyl sulfate on Zn-Al layered double hydroxide morphology

    SciTech Connect

    Yilmaz, Ceren; Unal, Ugur; Yagci Acar, Havva

    2012-03-15

    In the current study, influence of sodium dodecyl sulfate (SDS) on the crystallization of Zn-Al layered double hydroxide (LDH) was investigated. Depending on the SDS concentration coral-like and for the first time ring-like morphologies were obtained in a urea-hydrolysis method. It was revealed that the surfactant level in the starting solution plays an important role in the morphology. Concentration of surfactant equal to or above the anion exchange capacity of the LDH is influential in creating different morphologies. Another important parameter was the critical micelle concentration (CMC) of the surfactant. Surfactant concentrations well above CMC value resulted in ring-like structures. The crystallization mechanism was discussed. - Graphical abstract: Dependence of ZnAl LDH Morphology on SDS concentration. Highlights: Black-Right-Pointing-Pointer In-situ intercalation of SDS in ZnAl LDH was achieved via urea hydrolysis method. Black-Right-Pointing-Pointer Morphology of ZnAl LDH intercalated with SDS depended on the SDS concentration. Black-Right-Pointing-Pointer Ring like morphology for SDS intercalated ZnAl LDH was obtained for the first time. Black-Right-Pointing-Pointer Growth mechanism was discussed. Black-Right-Pointing-Pointer Template assisted growth of ZnAl LDH was proposed.

  7. Influence of the oxygen plasma parameters on the atomic layer deposition of titanium dioxide.

    PubMed

    Ratzsch, Stephan; Kley, Ernst-Bernhard; Tünnermann, Andreas; Szeghalmi, Adriana

    2015-01-16

    The influence of the oxygen plasma parameters on the morphology and optical properties of TiO2 thin films has been extensively analyzed in plasma enhanced atomic layer deposition (PEALD) processes. Crystalline aggregates with the anatase phase have been identified on the film surface at a low deposition temperature (down to 70 °C) under specific plasma conditions. Up to 70% surface coverage by anatase crystallites is obtained at low oxygen gas flow rates and high plasma power. The hillocks abundance is correlated with high ion flux and electron density and with the resulting enhanced ion bombardment of the surface. Altering the plasma conditions is an important parameter besides temperature to control the morphology of the titania film for specific applications such as photocatalysis or functional optical coatings. Specifically, photocatalytic titania coatings on polymer substrates could benefit of such low temperature PEALD processes with abundant anatase crystallites; whereas optical coatings require smooth, high refractive index titania as obtained with low plasma power and high oxygen flow rate. PMID:25525676

  8. Influence of electron transport layer thickness on optical properties of organic light-emitting diodes

    SciTech Connect

    Liu, Guohong; Liu, Yong; Li, Baojun; Zhou, Xiang

    2015-06-07

    We investigate experimentally and theoretically the influence of electron transport layer (ETL) thickness on properties of typical N,N′-diphenyl-N,N′-bis(1-naphthyl)-[1,1′-biphthyl]-4,4′-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq{sub 3}) heterojunction based organic light-emitting diodes (OLEDs), where the thickness of ETL is varied to adjust the distance between the emitting zone and the metal electrode. The devices showed a maximum current efficiency of 3.8 cd/A when the ETL thickness is around 50 nm corresponding to an emitter-cathode distance of 80 nm, and a second maximum current efficiency of 2.6 cd/A when the ETL thickness is around 210 nm corresponding to an emitter-cathode distance of 240 nm. We adopt a rigorous electromagnetic approach that takes parameters, such as dipole orientation, polarization, light emitting angle, exciton recombination zone, and diffusion length into account to model the optical properties of devices as a function of varying ETL thickness. Our simulation results are accurately consistent with the experimental results with a widely varying thickness of ETL, indicating that the theoretical model may be helpful to design high efficiency OLEDs.

  9. The Characters of Dry Soil Layer on the Loess Plateau in China and Their Influencing Factors.

    PubMed

    Yan, Weiming; Deng, Lei; Zhong, Yangquanwei; Shangguan, Zhouping

    2015-01-01

    A dry soil layer (DSL) is a common soil desiccation phenomenon that generally forms at a particular depth in the soil profile because of climatic factors and poor land management, and this phenomenon can influence the water cycle and has been observed on the Loess Plateau of China and other similar regions around the world. Therefore, an investigation of the DSL formation depth (DSLFD), thickness (DSLT) and mean water content (MWDSL) on the Loess Plateau can provide valuable information. This paper synthesized 69 recent publications (1,149 observations of DSLs from 73 sites) that focused on DSLs in this region, and the results indicated that DSLs are significantly affected by climatic and vegetation factors. The mean annual precipitation had a significant positive relationship with DSLFD (p = 0.0003) and MWDSL (p<0.0001) and a negative relationship with DSLT (p = 0.0071). Crops had the lowest DSLT and highest MWDSL values compared with other vegetation types. A significant correlation was observed between the occurrence of DSLs and the years since planting for grasses, shrubs, trees and orchards, and the severity of DSLs increased with increasing planting years and wheat yield. Our results suggest that optimizing land-use management can mitigate DSL formation and development on the Loess Plateau. Understanding the dominant factors affecting DSLs will provide information for use in guidelines for the sustainable development of economies and restoration of natural environments experiencing water deficiencies. PMID:26241046

  10. The Characters of Dry Soil Layer on the Loess Plateau in China and Their Influencing Factors

    PubMed Central

    Yan, Weiming; Deng, Lei; Zhong, Yangquanwei; Shangguan, Zhouping

    2015-01-01

    A dry soil layer (DSL) is a common soil desiccation phenomenon that generally forms at a particular depth in the soil profile because of climatic factors and poor land management, and this phenomenon can influence the water cycle and has been observed on the Loess Plateau of China and other similar regions around the world. Therefore, an investigation of the DSL formation depth (DSLFD), thickness (DSLT) and mean water content (MWDSL) on the Loess Plateau can provide valuable information. This paper synthesized 69 recent publications (1,149 observations of DSLs from 73 sites) that focused on DSLs in this region, and the results indicated that DSLs are significantly affected by climatic and vegetation factors. The mean annual precipitation had a significant positive relationship with DSLFD (p = 0.0003) and MWDSL (p<0.0001) and a negative relationship with DSLT (p = 0.0071). Crops had the lowest DSLT and highest MWDSL values compared with other vegetation types. A significant correlation was observed between the occurrence of DSLs and the years since planting for grasses, shrubs, trees and orchards, and the severity of DSLs increased with increasing planting years and wheat yield. Our results suggest that optimizing land-use management can mitigate DSL formation and development on the Loess Plateau. Understanding the dominant factors affecting DSLs will provide information for use in guidelines for the sustainable development of economies and restoration of natural environments experiencing water deficiencies. PMID:26241046

  11. Anomalous or regular capacitance? The influence of pore size dispersity on double-layer formation

    NASA Astrophysics Data System (ADS)

    Jäckel, N.; Rodner, M.; Schreiber, A.; Jeongwook, J.; Zeiger, M.; Aslan, M.; Weingarth, D.; Presser, V.

    2016-09-01

    The energy storage mechanism of electric double-layer capacitors is governed by ion electrosorption at the electrode surface. This process requires high surface area electrodes, typically highly porous carbons. In common organic electrolytes, bare ion sizes are below one nanometer but they are larger when we consider their solvation shell. In contrast, ionic liquid electrolytes are free of solvent molecules, but cation-anion coordination requires special consideration. By matching pore size and ion size, two seemingly conflicting views have emerged: either an increase in specific capacitance with smaller pore size or a constant capacitance contribution of all micro- and mesopores. In our work, we revisit this issue by using a comprehensive set of electrochemical data and a pore size incremental analysis to identify the influence of certain ranges in the pore size distribution to the ion electrosorption capacity. We see a difference in solvation of ions in organic electrolytes depending on the applied voltage and a cation-anion interaction of ionic liquids in nanometer sized pores.

  12. Influence des melanges complexes organiques sur le sort des dioxines et furanes: Implications dans le developpement de facteurs de caracterisation en analyse du cycle de vie

    NASA Astrophysics Data System (ADS)

    Taing, Eric

    The environmental fate of dioxins and furans, or polychlorodibenzo-p-dioxins and -furans (PCDD/Fs), leaching from wood poles treated with pentachlorophenol (PCP) oil is modified by the presence of oil. Interactions between co-contaminants, which also exist for other pollutants within the mixtures, were shown in the specific context of risk analysis, but have never been taken into account for the generic context of life cycle assessment (LCA). This decision-making tool relies on characterization factors (CF) to estimate the potential impacts of an emitted amount of a pollutant in different impact categories such as aquatic ecotoxicity and human toxicity. For these two impact categories, CFs are calculated from a cause-effect chain that models the environmental fate, exposure and effects of the pollutant (represented by a matrix of fate FF, exposure XF and effect EF, respectively), meaning that a modification of PCDD/Fs fate induces a change in PCDD/Fs CFs. The research question is therefore as follows: In life cycle impact assessment (LCIA), to what extent would the potential impacts of PCDD/Fs on aquatic ecotoxicity and human toxicity change when taking into account the influence of a complex organic mixture on PCDD/Fs fate?. Thus, the main objective is to develop CFs of PCDD/Fs when their fate is influenced by PCP oil and compare them with the CFs of PCDD/Fs without oil for the aquatic ecotoxicity and human toxicity impact categories. A mathematic approach is established to determine the new environmental distribution of PCDD/Fs in the presence of oil and a new FF' matrix is calculated from this new distribution to obtain new CFs' integrating oil influence. FF' and CF' are then compared to FF and CF of PCDD/Fs without the oil. Finally, potential (eco)toxic impacts of the PCDD/F Canadian emissions are calculated with the new CFs' of PCDD/Fs in presence of oil. By only focusing on the results for an emission into air, freshwater and natural soil on a continental

  13. Etude de l'influence de la temperature et de l'humidite sur les proprietes mecaniques en traction des fibres de chanvre et de coco

    NASA Astrophysics Data System (ADS)

    Ho Thi, Thu Nga

    L'objectif de cette etude fut d'etablir l'effet de l'humidite et de la temperature sur la resistance en traction et le module elastique des fibres de chanvre et de coco. Deux etudes ont ete realisees afin d'atteindre cet objectif. La premiere vise l'absorption de l'humidite dans ces fibres en exposition dans l'air (de 0%RH a 80%RH) ainsi que l'absorption de l'eau dans ces fibres immergees dans l'eau aux differentes temperatures. La deuxieme consiste a mesurer la resistance en traction et le module elastique de ces fibres sous differentes conditions d'humidite et de temperature. En basant sur les resultats experimentaux obtenus, les methodes semi empiriques et de reseaux de neurones ont ete utilisees pour but de predire les proprietes en traction (resistance et module d'elasticite) des fibres de chanvre et de coco sous l'influence de l'humidite et de la temperature.

  14. Numerical study on the standing morphology of an oblique detonation wave under the influence of an incoming boundary layer

    NASA Astrophysics Data System (ADS)

    Zhou, Jin; Liu, Yu; Lin, Zhi-yong

    2015-01-01

    The influence of an incoming boundary layer to the standing morphology of an oblique detonation wave (ODW) induced by a compression ramp is numerically studied in this paper. The Spalart-Allmaras (SA) turbulence model is used to perform simulation of detonationboundary- layer interactions. Three different wall conditions are applied to realize control on the boundary-layer separation scales. Accordingly, different standing morphologies of the ODWs are obtained, including smooth ODW (without transverse wave) under no-slip, adiabatic wall condition with large-scale separation, abrupt ODW (with transverse wave) under no-slip, cold wall condition with moderate-scale separation, and bow-shaped detached ODW under slipwall condition without a boundary layer.

  15. Influence of the chemical nature of implanted ions on the structure of a silicon layer damaged by implantation

    SciTech Connect

    Shcherbachev, K. D. Voronova, M. I.; Bublik, V. T.; Mordkovich, V. N. Pazhin, D. M.; Zinenko, V. I.; Agafonov, Yu. A.

    2013-12-15

    The influence of the implantation of silicon single crystals by fluorine, nitrogen, oxygen, and neon ions on the distribution of strain and the static Debye-Waller factor in the crystal lattice over the implanted-layer depth has been investigated by high-resolution X-ray diffraction. The density depth distribution in the surface layer of native oxide has been measured by X-ray reflectometry. Room-temperature implantation conditions have ensured the equality of the suggested ranges of ions of different masses and the energies transferred by them to the target. It is convincingly shown that the change in the structural parameters of the radiation-damaged silicon layer and the native oxide layer depend on the chemical activity of the implanted ions.

  16. A new rapid and non-destructive method to detect tephra layers and cryptotephras: applying to the first distal tephrostratigraphic record of the Chaîne des Puys volcanic field (France).

    NASA Astrophysics Data System (ADS)

    Jouannic, Gwénolé; Walter-Simonnet, Anne-Véronique; Bossuet, Gilles; Delabrousse, Eric; Cubizolle, Hervé

    2014-05-01

    Tephrostratigraphy has been considerably developed for 30 years, mainly in palaeo-environmental studies. In such studies, distal tephra layers are important chronological markers, but they are also tools to establish or specify record of past eruptions of a volcanic field. Nowadays, development of effective rapid methods to detect tephra layers in sedimentary records of various compositions is a challenge. Many classic methods for detection of tephra layers, like regular sampling or magnetic susceptibility measurements, have shown their limits. Regular sampling takes a long time, and finding tephra layers remains uncertain. Moreover, magnetic susceptibility maesurements, although it is a non-destructive method, is ineffective when tephra layers are made of volcanic glass shards with differentiated magma composition. X-ray fluorescence (XRF) is also a non-destructive method but it takes a very long time to analyze a core with sufficient high resolution, and measurements only concern the surface of the sediment. We propose a new method allows detection of tephra layers with, for the first time, a 3D resolution: the Computed Tomography Scan (CT- Scan). This method, regularly used in medicine, allows there to obtain pictures of materials density on 3D with inframillimetric measurement ranges. Then, it is possible to detect tephras, cryptotephras (invisible by naked eye), reworked tephra layers even when tephra layers don't outcrop at the surface of the sediment (and are therefore undetectable by usual methods like XRF and magnetic susceptibility). This method has been tried out on tephras sedimented in different types of sediments (silicated, carbonated and organic matter). Our results show that this method is very efficient for peaty environment. Used on coring carried out in Forez Mountains (French Massif Central), CT-Scan allows to detect more tephra layers than usual methods (XRF and magnetic susceptibility). Results presented here allow to build the first

  17. Observations of a two-layer soil moisture influence on surface energy dynamics and planetary boundary layer characteristics in a semiarid shrubland

    NASA Astrophysics Data System (ADS)

    Sanchez-Mejia, Zulia Mayari; Papuga, Shirley A.

    2014-01-01

    We present an observational analysis examining soil moisture control on surface energy dynamics and planetary boundary layer characteristics. Understanding soil moisture control on land-atmosphere interactions will become increasingly important as climate change continues to alter water availability. In this study, we analyzed 4 years of data from the Santa Rita Creosote Ameriflux site. We categorized our data independently in two ways: (1) wet or dry seasons and (2) one of the four cases within a two-layer soil moisture framework for the root zone based on the presence or absence of moisture in shallow (0-20 cm) and deep (20-60 cm) soil layers. Using these categorizations, we quantified the soil moisture control on surface energy dynamics and planetary boundary layer characteristics using both average responses and linear regression. Our results highlight the importance of deep soil moisture in land-atmosphere interactions. The presence of deep soil moisture decreased albedo by about 10%, and significant differences were observed in evaporative fraction even in the absence of shallow moisture. The planetary boundary layer height (PBLh) was largest when the whole soil profile was dry, decreasing by about 1 km when the whole profile was wet. Even when shallow moisture was absent but deep moisture was present the PBLh was significantly lower than when the entire profile was dry. The importance of deep moisture is likely site-specific and modulated through vegetation. Therefore, understanding these relationships also provides important insights into feedbacks between vegetation and the hydrologic cycle and their consequent influence on the climate system.

  18. The influence of seagrass on shell layers and Florida Bay mudbanks

    USGS Publications Warehouse

    Prager, E.J.; Halley, R.B.

    1999-01-01

    Aerial photography indicates that sometime since the early 1970's, an emergent ridge of shell debris developed on a mudbank north of Calusa Key in Florida Bay. Coarse shell deposits on and within the Bay's shallow mudbanks are believed to be the product of transport during major storm events and subsequent winnowing. However, shell material from the ridge contains nuclear bomb 14C, supporting formation within the past 30 years and the last major hurricanes to influence Florida Bay were Donna and Betsy (1960 and 1965). Results from this study suggest that the Calusa ridge and other coarse shell deposits in Florida Bay can result from, 1) periodic seagrass mortality and wave-induced transport during frequent winter cold fronts and/or 2) mollusc blooms and subsequent burial. A survey of bottom types indicates that dense to intermediate beds of seagrass, mainly Thalassia testudinum (turtle grass), occur within the shallow basins of western Florida Bay and along the margins of Bay mudbanks. Wave measurements and modeling indicate that Thalassia along mudbank margins can reduce incoming wave-energy by over 80%. Seagrass beds also host particularly dense populations of molluscs from periodic 'blooms' and are believed to be the major source of coarse sediments in the Bay. Thus, if bank-edge seagrass dies, sediments, including shell debris, become exposed and subject to greatly increased wave energy. Modeling indicates that winds typical of winter cold fronts in South Florida can produce near-bottom velocities and shear stress at a grass-free bank edge which are sufficient to transport coarse carbonate grains. Shell layers found at depth in mudbank cores can also be explained by previous episodes of sediment accretion over mollusc-rich seagrass beds or grass bed mortality at the edge of a mudbank and shell transport during cold front passage. The latter implies that mortality of marginal seagrass beds has occurred throughout the history of Florida Bay and that the

  19. Characterizing the Influence of the General Circulation on Marine Boundary Layer Clouds

    NASA Technical Reports Server (NTRS)

    Rozendaal, Margaret A.; Rossow, William B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    The seasonal and intraseasonal variability of boundary layer cloud in the subtropical eastern oceans are studied using combined data from the International Satellite Cloud Climatology Project (ISCCP) and the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis. Spectral analysis reveals that most of the time variability of cloud properties occurs on seasonal to annual time scales. The variance decreases one to two orders of magnitude for each decade of time scale decrease, indicating that daily to monthly time scales have smaller, but non-negligible variability. The length of these dominant time scales suggests that the majority of the variability is influenced by the general circulation and its interaction with boundary layer turbulence, rather than a product of boundary layer turbulence alone. Previous datasets have lacked the necessary resolution in either time or in space to properly characterize variability on synoptic scales; this is remedied by using global satellite-retrieved cloud properties. We characterize the intraseasonal subtropical cloud variability in both hemispheres and in different seasons. In addition to cloud fraction, we examine variability of cloud optical thickness - cloud top pressure frequency distributions. Despite the large concentration of research on the variability of Northern Hemisphere (NH) regions during summer, it is noted that the largest amplitude intraseasonal variability in the NH regions occurs during local winter. The effect of intraseasonal variability on the calculation and interpretation of seasonal results is investigated. Decreases in seasonally averaged cloud cover, optical thickness and cloud top pressure from the May-through-September season to the November-through-March season are most apparent in the NH regions. Further analysis indicates that these changes are due to an increase in frequency, but a decrease in the persistence of synoptic events. In addition, changes in cloud top pressure and

  20. Long-term self-assembly of inorganic layered materials influenced by the local states of the interlayer cations.

    PubMed

    Sato, Kiminori; Numata, Kazuomi; Dai, Weili; Hunger, Michael

    2014-06-14

    A wide variety of parameters as, e.g., temperature, humidity, particle size, and cation state are known to influence the agglomeration process of two-dimensional (2D) nanosheets, called self-assembly, in inorganic layered materials. The detailed studies on which parameters are decisive and how they influence the self-assembly, however, have not been performed yet. Here, the long-term self-assembly was studied for layered stevensite and hectorite, and compared with our previous data of saponite for elucidating an influence of local states of the interlayer cations. The results were analyzed with respect to a recently established rheological model, in which 2D nanosheets migrate parallel to the layer direction aided by water molecules as lubricants [K. Sato et al., J. Phys. Chem. C, 2012, 116, 22954]. With decreasing the strength of the local electric fields facing to the interlayer spaces, cation positions split into two or three, which makes the distribution of water molecules more uniformly. These water molecules enhance the rheological motion of the 2D nanosheets parallel to the layer direction, thus accelerating the self-assembly process. PMID:24770790

  1. The Influence of High Aerosol Concentration on Atmospheric Boundary Layer Temperature Stratification

    SciTech Connect

    Khaykin, M.N.; Kadygrove, E.N.; Golitsyn, G.S.

    2005-03-18

    Investigations of the changing in the atmospheric boundary layer (ABL) radiation balance as cased by natural and anthropogenic reasons is an important topic of the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program. The influence of aerosol on temperature stratification of ABL while its concentration was extremely high within a long period of time was studied experimentally. The case was observed in Moscow region (Russia) with the transport of combustion products from peat-bog and forest fires in July-September, 2002. At this time the visibility was some times at about 100-300 m. Aerosol concentration measured by Moscow University Observatory and A.M. Obukhov Institute of Atmospheric Physics field station in Zvenigorod (55.7 N; 36.6 E) for several days was in 50-100 times more than background one (Gorchakov at al 2003). The high aerosol concentration can change the radiation balance at ABL, and so to change thermal stratification in ABL above the mega lopolis. For the analysis the data were used of synchronous measurements by MTP-5 (Microwave Temperature Profiler operating at wavelength 5 mm) in two locations, namely: downtown Moscow and country-side which is 50 km apart to the West (Zvenigorod station). (Kadygrov and Pick 1998; Westwater at al 1999; Kadygrov at al 2002). Zvenigorod station is located in strongly continental climate zone which is in between of the climates of ARM sites (NSANorth Slope of Alaska and SGP-Southern Great Plains). The town of Zvenigorod has little industry, small traffic volume and topography conductive to a good air ventilation of the town. For these reasons Zvenigorod can be considered as an undisturbed rural site. For the analysis some days were chosen with close meteorological parameters (average temperature, humidity, wind, pressure and cloud form) but strongly differing in aerosol concentration level.

  2. Stereographic Visualization of the Influence of Stratospheric Air on Ozone Layers Encountered During TRACE-P

    NASA Astrophysics Data System (ADS)

    Holdzkom, J.; Avery, M.; Hoell, J.; Newell, R.; Fuelberg, H.; Hu, Y.; Browell, E.

    2002-12-01

    The NASA TRAnsport and Chemical Evolution over the Pacific (TRACE-P) aircraft-based measurement campaign was conducted over the northwestern Pacific Basin during March-April, 2001. The broad objectives of determining the chemical composition and evolution of Asian outflow over the western Pacific during the spring time period, and understanding the ensemble of processes that control this evolution. A defining characteristic of the TRACE-P mission was the integration of aircraft, satellite, and ground-based studies, with a particularly strong coupling between the experimental investigations and modeling studies. While the resulting suite of observational data and model results provide a rich source for unraveling the various processes impacting the composition of Asian outflow, it also presents a challenge for efficient visualization of results from the various data sets. A promising approach for visual analysis of such multi-parametered data sets is through software called the Virtual Global Explorer and Observatory (vGeo). The vGeo software facilitates the merging of data objects into a single realistic 3-D stereographic environment in which the user can view, navigate, and interact with the data. Several outflow events encountered during TRACE-P will be presented in a 3-D stereographic world using vGeo. The 3-D visualization merges TRACE-P chemical measurements, meteorological fields, and air mass trajectories into a virtual world that provides a more intuitive synthesis of the combined chemical and dynamical fields. This presentation will focus on upper tropospheric layers of elevated ozone measured during TRACE-P flights in the vicinity of the Japan Jet. Representations of potential temperature, potential vorticity and vertical velocity from the European Center for Medium-Range Weather Forecasting (ECMWF) analysis, combined with coupled air mass trajectories suggest regions of enhanced ozone encountered by the aircraft that were significantly influenced by the

  3. The sub-ice platelet layer and its influence on freeboard to thickness conversion of Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Price, D.; Rack, W.; Langhorne, P. J.; Haas, C.; Leonard, G.; Barnsdale, K.

    2014-02-01

    This is an investigation to quantify the influence of the sub-ice platelet layer on satellite measurements of total freeboard and their conversion to thickness of Antarctic sea ice. The sub-ice platelet layer forms as a result of the seaward advection of supercooled ice shelf water from beneath ice shelves. This ice shelf water provides an oceanic heat sink promoting the formation of platelet crystals which accumulate at the sea ice-ocean interface. The build-up of this porous layer increases sea ice freeboard, and if not accounted for, leads to overestimates of sea ice thickness from surface elevation measurements. In order to quantify this buoyant effect, the solid fraction of the sub-ice platelet layer must be estimated. An extensive in situ data set measured in 2011 in McMurdo Sound in the south-western Ross Sea is used to achieve this. We use drill-hole measurements and the hydrostatic equilibrium assumption to estimate a mean value for the solid fraction of this sub-ice platelet layer of 0.16. This is highly dependent upon the uncertainty in sea ice density. We test this value with independent Global Navigation Satellite System (GNSS) surface elevation data to estimate sea ice thickness. We find that sea ice thickness can be overestimated by up to 19%, with a mean deviation of 12% as a result of the influence of the sub-ice platelet layer. It is concluded that in close proximity to ice shelves this influence should be considered universally when undertaking sea ice thickness investigations using remote sensing surface elevation measurements.

  4. The sub-ice platelet layer and its influence on freeboard to thickness conversion of Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Price, D.; Rack, W.; Langhorne, P. J.; Haas, C.; Leonard, G.; Barnsdale, K.

    2014-06-01

    This is an investigation to quantify the influence of the sub-ice platelet layer on satellite measurements of total freeboard and their conversion to thickness of Antarctic sea ice. The sub-ice platelet layer forms as a result of the seaward advection of supercooled ice shelf water from beneath ice shelves. This ice shelf water provides an oceanic heat sink promoting the formation of platelet crystals which accumulate at the sea ice-ocean interface. The build-up of this porous layer increases sea ice freeboard, and if not accounted for, leads to overestimates of sea ice thickness from surface elevation measurements. In order to quantify this buoyant effect, the solid fraction of the sub-ice platelet layer must be estimated. An extensive in situ data set measured in 2011 in McMurdo Sound in the southwestern Ross Sea is used to achieve this. We use drill-hole measurements and the hydrostatic equilibrium assumption to estimate a mean value for the solid fraction of this sub-ice platelet layer of 0.16. This is highly dependent upon the uncertainty in sea ice density. We test this value with independent Global Navigation Satellite System (GNSS) surface elevation data to estimate sea ice thickness. We find that sea ice thickness can be overestimated by up to 19%, with a mean deviation of 12% as a result of the influence of the sub-ice platelet layer. It is concluded that within 100 km of an ice shelf this influence might need to be considered when undertaking sea ice thickness investigations using remote sensing surface elevation measurements.

  5. The influence of a chemical boundary layer on the fixity, spacing and lifetime of mantle plumes.

    PubMed

    Jellinek, A Mark; Manga, Michael

    2002-08-15

    Seismological observations provide evidence that the lowermost mantle contains superposed thermal and compositional boundary layers that are laterally heterogeneous. Whereas the thermal boundary layer forms as a consequence of the heat flux from the Earth's outer core, the origin of an (intrinsically dense) chemical boundary layer remains uncertain. Observed zones of 'ultra-low' seismic velocity suggest that this dense layer may contain metals or partial melt, and thus it is reasonable to expect the dense layer to have a relatively low viscosity. Also, it is thought that instabilities in the thermal boundary layer could lead to the intermittent formation and rise of mantle plumes. Flow into ascending plumes can deform the dense layer, leading, in turn, to its gradual entrainment. Here we use analogue experiments to show that the presence of a dense layer at the bottom of the mantle induces lateral variations in temperature and viscosity that, in turn, determine the location and dynamics of mantle plumes. A dense layer causes mantle plumes to become spatially fixed, and the entrainment of low-viscosity fluid enables plumes to persist within the Earth for hundreds of millions of years. PMID:12181562

  6. Influence of cutting parameters on the depth of subsurface deformed layer in nano-cutting process of single crystal copper.

    PubMed

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Su, Hao; Wang, Zhiguo; Xie, Wenkun

    2015-12-01

    Large-scale molecular dynamics simulation is performed to study the nano-cutting process of single crystal copper realized by single-point diamond cutting tool in this paper. The centro-symmetry parameter is adopted to characterize the subsurface deformed layers and the distribution and evolution of the subsurface defect structures. Three-dimensional visualization and measurement technology are used to measure the depth of the subsurface deformed layers. The influence of cutting speed, cutting depth, cutting direction, and crystallographic orientation on the depth of subsurface deformed layers is systematically investigated. The results show that a lot of defect structures are formed in the subsurface of workpiece during nano-cutting process, for instance, stair-rod dislocations, stacking fault tetrahedron, atomic clusters, vacancy defects, point defects. In the process of nano-cutting, the depth of subsurface deformed layers increases with the cutting distance at the beginning, then decreases at stable cutting process, and basically remains unchanged when the cutting distance reaches up to 24 nm. The depth of subsurface deformed layers decreases with the increase in cutting speed between 50 and 300 m/s. The depth of subsurface deformed layer increases with cutting depth, proportionally, and basically remains unchanged when the cutting depth reaches over 6 nm. PMID:26452371

  7. An Observational Case Study on the Influence of Atmospheric Boundary-Layer Dynamics on New Particle Formation

    NASA Astrophysics Data System (ADS)

    Platis, Andreas; Altstädter, Barbara; Wehner, Birgit; Wildmann, Norman; Lampert, Astrid; Hermann, Markus; Birmili, Wolfram; Bange, Jens

    2016-01-01

    We analyze the influence of atmospheric boundary-layer development on new particle formation (NPF) during the morning transition. Continuous in-situ measurements of vertical profiles of temperature, humidity and aerosol number concentrations were quasi-continously measured near Melpitz, Germany, by unmanned aerial systems to investigate the potential connection between NPF and boundary-layer dynamics in the context of turbulence, temperature and humidity fluctuations. On 3 April 2014 high number concentrations of nucleation mode particles up to 6.0 × 10^4 cm^{-3} were observed in an inversion layer located about 450 m above ground level. The inversion layer exhibited a spatial temperature structure parameter C_T^2 15 times higher and a spatial humidity structure parameter C_q^2 5 times higher than in the remaining part of the vertical profile. The study provides hints that the inversion layer is responsible for creating favorable thermodynamic conditions for a NPF event. In addition, this layer showed a strong anti-correlation of humidity and temperature fluctuations. Using estimates of the turbulent mixing and dissipation rates, it is concluded that the downward transport of particles by convective mixing was also the reason of the sudden increase of nucleation mode particles measured on ground. This work supports the hypothesis that many of the NPF events that are frequently observed near the ground may, in fact, originate at elevated altitude, with newly formed particles subsequently being mixed down to the ground.

  8. Fracture behavior of coated layer and its influence on critical current of DyBCO coated conductor

    NASA Astrophysics Data System (ADS)

    Arai, T.; Shin, J. K.; Toda, A.; Ochiai, S.; Okuda, H.; Sugano, M.; Osamura, K.; Prusseit, W.

    2010-11-01

    The coated conductors are attractive due to their high superconducting properties. As the conductors are subjected to mechanical and electromagnetic stresses in preparation and service, the study on the mechanical behavior and its influence on superconducting properties is demanded for application. In the present work, the DyBa 2Cu 3O 7-δ coated conductor with MgO buffer layer deposited on the Hastelloy C-276 substrate by inclined substrate deposition, prepared at THEVA, was used as the sample. The relation of the deformation and fracture behavior to the change of critical current under applied tensile strain was investigated. The experimental result of tensile test and critical current measurement revealed that the change of critical current with increasing applied tensile strain is caused in two stages; micro-cracking of the coated layer in the fist stage and extensive multiple cracking of the coated layer induced by the discontinuous yielding of the substrate in the second stage.

  9. A Model Study of the Strong and Weak Wind, Stably Stratified Nocturnal Boundary Layer: Influence of Gentle Slopes

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, S. G.; Freedman, Frank; Sharan, Maithili; Krishna, T. V. B. P. S. Rama

    2005-10-01

    With the exception of intermittency and waves, a brief review of the observed and modeled mean structure of the nocturnal boundary layer (NBL) is presented. The effect of gentle slopes on strong and weak wind NBL was investigated here using a one-dimensional model, with a simple correction term to account for the slope effects, identical to the one used by Brost and Wyngaard (1978). The study indicates that the wind profiles, temperature profiles and surface layer turbulence characteristics are extremely sensitive to the imposed geostrophic wind when small slopes are present especially for light winds. This is due to the complex interaction between the buoyancy driven slope flow and the imposed geostrophic wind that in turn influence the shear generation of turbulence. Finally, the current issues in the modeling of weak wind boundary layer are discussed.

  10. On the Influence of a Fuel Side Heat-Loss (Soot) Layer on a Planar Diffusion Flame

    NASA Technical Reports Server (NTRS)

    Wichman, Indrek S.

    1994-01-01

    A model of the response of a diffusion flame (DF) to an adjacent heat loss or 'soot' layer on the fuel side is investigated. The thermal influence of the 'soot' or heat-loss layer on the DF occurs through the enthalpy sink it creates. A sink distribution in mixture-fraction space is employed to examine possible DF extinction. It is found that (1) the enthalpy sink (or soot layer) must touch the DF for radiation-induced quenching to occur; and (2) for fuel-rich conditions extinction is possible only for a progressively narrower range of values ot the characteristic heat-loss parameter, N(sub R)(Delta Z(sub R)) Various interpretations ot the model are discussed. An attempt is made to place this work into the context created by previous experimental and computational studies.

  11. Influence of CHx thickness layer on the sensing properties of CHx/PS/Si structure against CO2 gas

    NASA Astrophysics Data System (ADS)

    Zouadi, N.; Belhousse, S.; Bradaî, D.; Cheraga, H.; Ouchabane, M.; Keffous, A.; Sam, S.; Gabouze, N.

    2013-11-01

    In this work, we report a study on the influence of hydrocarbon groups (CHx) thickness layer on sensing properties of CHx/Porous Silicon (PS)/Si structures against CO2 gas. The hydrocarbon groups were deposited by plasma of methane-argon mixture. The properties of these structures are investigated by current-voltage, current-time and capacitance-voltage measurements from where a different behaviour depending on CHx layer thickness has been observed. The results show that current-voltage and impedance-voltage characteristics are modified by the gas reactivity on the CHx/PS surface. As the CHx layer thickness increases, the series resistance and the ideality factor of the structure increase. In addition, the response and recovery times of the sensor decrease with increasing the CHx thickness. Finally, the results point out the effect of CHx coating on the sensitivity of the CHx/PS/Si sensor.

  12. Preliminary Results on the Influence of Engineered Artificial Mucus Layer on Phonation

    ERIC Educational Resources Information Center

    Döllinger, Michael; Gröhn, Franziska; Berry, David A.; Eysholdt, Ulrich; Luegmair, Georg

    2014-01-01

    Purpose: Previous studies have confirmed the influence of dehydration and an altered mucus (e.g., due to pathologies) on phonation. However, the underlying reasons for these influences are not fully understood. This study was a preliminary inquiry into the influences of mucus architecture and concentration on vocal fold oscillation. Method: Two…

  13. Influence of Computational Drop Representation in LES of a Droplet-Laden Mixing Layer

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Radhakrishnan, Senthilkumaran

    2013-01-01

    Multiphase turbulent flows are encountered in many practical applications including turbine engines or natural phenomena involving particle dispersion. Numerical computations of multiphase turbulent flows are important because they provide a cheaper alternative to performing experiments during an engine design process or because they can provide predictions of pollutant dispersion, etc. Two-phase flows contain millions and sometimes billions of particles. For flows with volumetrically dilute particle loading, the most accurate method of numerically simulating the flow is based on direct numerical simulation (DNS) of the governing equations in which all scales of the flow including the small scales that are responsible for the overwhelming amount of dissipation are resolved. DNS, however, requires high computational cost and cannot be used in engineering design applications where iterations among several design conditions are necessary. Because of high computational cost, numerical simulations of such flows cannot track all these drops. The objective of this work is to quantify the influence of the number of computational drops and grid spacing on the accuracy of predicted flow statistics, and to possibly identify the minimum number, or, if not possible, the optimal number of computational drops that provide minimal error in flow prediction. For this purpose, several Large Eddy Simulation (LES) of a mixing layer with evaporating drops have been performed by using coarse, medium, and fine grid spacings and computational drops, rather than physical drops. To define computational drops, an integer NR is introduced that represents the ratio of the number of existing physical drops to the desired number of computational drops; for example, if NR=8, this means that a computational drop represents 8 physical drops in the flow field. The desired number of computational drops is determined by the available computational resources; the larger NR is, the less computationally

  14. Influence of combined primordial layering and recycled MORB on the coupled thermal evolution of Earth's mantle and core

    NASA Astrophysics Data System (ADS)

    Nakagawa, Takashi; Tackley, Paul

    2014-05-01

    A thermo-chemical mantle convection model with both primordial compositional layering and recycling of mid-ocean ridge basalt (MORB) coupled to a parameterized core heat balance model is used to investigate how the thermo-chemical evolution of the mantle affects the thermal history of the core including primordial material proposed by early Earth hypotheses. The viscosity formulation has been improved from our previous works. The amount of MORB that accumulates above the CMB is strongly dependent on effective Rayleigh number, such that more accumulates at higher Ra (lower viscosity), but a continuous layer of MORB is not obtained here. With initial primordial layering, large-scale thermo-chemical anomalies are found in the deep mantle, which are generated mainly by the primordial material with small amount of segregated basaltic material on top of it, localized in the hot upwelling region. A successful core evolution can only be obtained when initial primordial layering is present. In conclusion, primordial material above the CMB originated from early mantle differentiation might be needed to construct a realistic model of a coupled mantle and core evolution. Nakagawa, T. and P. J. Tackley, Influence of combined primordial layering and recycled MORB on the coupled thermal evolution of Earth's mantle and core, Geochem. Geophys. Geosyst., in press

  15. Influence of light and darkness on the behaviour of Dermanyssus gallinae on layer farms.

    PubMed

    Sokół, R; Szkamelski, A; Barski, D

    2008-01-01

    The behaviour of Dermanyssus gallinae was investigated on two layer farms where two different light programs were introduced in the 40th week of hen life. In layer house No. 1, light was applied continuously for 16 hours during the day, while layer house No. 2 was subjected to 4 hours of light and 2 hours of darkness applied alternately during the day. To monitor the level of red mite infestation, 30 tube traps were placed in every layer house corridor at a height of 1.5 m above the floor. In the first layer house, 280 Dermanyssus gallinae females, 50 nymph larvae and 198 eggs were found in 100 mg of tube trap material during 16 hours of the light phase, while during the 8-hour darkness phase, 1240 females, 70 nymph larvae and 110 eggs were collected. In the other layer house (with an alternating light phase of 4 hours and a darkness phase of 2 hours per day), 387 Dermanyssus gallinae females, 401 nymph larvae and 1060 eggs were found in trap tubes over the 8-hour dark phase, while 343 females, 202 nymph larvae and 1106 eggs were discovered over the 16-hour light phase. PMID:18540212

  16. Influence of liquid-layer thickness on pulmonary surfactant spreading and collapse.

    PubMed

    Siebert, Trina A; Rugonyi, Sandra

    2008-11-15

    Pulmonary surfactant spreads on the thin ( approximately 0.1 microm) liquid layer that lines the alveoli, forming a film that reduces surface tension and allows normal respiration. Pulmonary surfactant deposited in vitro on liquid layers that are several orders of magnitude thicker, however, does not reach the low surface tensions ( approximately 0.001 N/m) achieved in the lungs during exhalation when the surfactant film compresses. This is due to collapse, a surface phase transition during which the surfactant film, rather than decreasing surface tension by increasing its surface density, becomes thicker at constant surface tension ( approximately 0.024 N/m). Formation of the collapse phase requires transport of surfactant to collapse sites, and this transport can be hindered in thinner liquid layers by viscous resistance to motion. Our objective is to determine the effect of the liquid-layer thickness on surfactant transport, which might affect surfactant collapse. To this end, we developed a mathematical model that accounts for the effect of the liquid-layer thickness on surfactant transport, and focused on surfactant spreading and collapse. Model simulations showed a marked decrease in collapse rates for thinner liquid layers, but this decrease was not enough to completely explain differences in surfactant film behavior between in vitro and in situ experiments. PMID:18676658

  17. Influence of capping layers on CoFeB anisotropy and damping

    SciTech Connect

    Natarajarathinam, A.; Tadisina, Z. R.; Gupta, S.; Mewes, T.; Watts, S.; Chen, E.

    2012-09-01

    Magnetic behavior of CoFeB at various thicknesses ranging from 2 nm to 8 nm capped with different materials, such as MgO, Ta, Ru, and V have been studied. The films were sputter-deposited and subsequently characterized by magnetometry and broadband ferromagnetic resonance (FMR). There are magnetically dead layers at the interface observed with Ru and Ta capping layers, while MgO and V have almost no effect on the magnetization of the CoFeB. As the ferromagnetic layer is made thinner, the effective magnetization decreases, indicating an interfacial perpendicular anisotropy. Particularly in the case of MgO, V/Ru, and V/Ta capping layers, interfacial perpendicular anisotropy is induced in CoFeB, and the Gilbert damping parameter is also reduced. The origin of this perpendicular magnetic anisotropy (PMA) is understood to be caused by the interface anisotropy between the free layer and the capping layer. The effect of post-deposition annealing and CoFeB thickness on the anisotropy and damping of V/Ta capped samples are reported. Doping CoFeB with vanadium (V) greatly reduced the 4{pi}M{sub s} and 4{pi}M{sub eff} values, resulting in an effective increase in the PMA.

  18. Influence of intermediate layers on the surface condition of laser crystallized silicon thin films and solar cell performance

    NASA Astrophysics Data System (ADS)

    Höger, Ingmar; Himmerlich, Marcel; Gawlik, Annett; Brückner, Uwe; Krischok, Stefan; Andrä, Gudrun

    2016-01-01

    The intermediate layer (IL) between glass substrate and silicon plays a significant role in the optimization of multicrystalline liquid phase crystallized silicon thin film solar cells on glass. This study deals with the influence of the IL on the surface condition and the required chemical surface treatment of the crystallized silicon (mc-Si), which is of particular interest for a-Si:H heterojunction thin film solar cells. Two types of IL were investigated: sputtered silicon nitride (SiN) and a layer stack consisting of silicon nitride and silicon oxide (SiN/SiO). X-ray photoelectron spectroscopy measurements revealed the formation of silicon oxynitride (SiOxNy) or silicon oxide (SiO2) layers at the surface of the mc-Si after liquid phase crystallization on SiN or SiN/SiO, respectively. We propose that SiOxNy formation is governed by dissolving nitrogen from the SiN layer in the silicon melt, which segregates at the crystallization front during crystallization. This process is successfully hindered, when additional SiO layers are introduced into the IL. In order to achieve solar cell open circuit voltages above 500 mV, a removal of the formed SiOxNy top layer is required using sophisticated cleaning of the crystallized silicon prior to a-Si:H deposition. However, solar cells crystallized on SiN/SiO yield high open circuit voltage even when a simple wet chemical surface treatment is applied. The implementation of SiN/SiO intermediate layers facilitates the production of mesa type solar cells with open circuit voltages above 600 mV and a power conversion efficiency of 10%.

  19. The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest.

    PubMed

    Fisher, James P; Estop-Aragonés, Cristian; Thierry, Aaron; Charman, Dan J; Wolfe, Stephen A; Hartley, Iain P; Murton, Julian B; Williams, Mathew; Phoenix, Gareth K

    2016-09-01

    Carbon release from thawing permafrost soils could significantly exacerbate global warming as the active-layer deepens, exposing more carbon to decay. Plant community and soil properties provide a major control on this by influencing the maximum depth of thaw each summer (active-layer thickness; ALT), but a quantitative understanding of the relative importance of plant and soil characteristics, and their interactions in determine ALTs, is currently lacking. To address this, we undertook an extensive survey of multiple vegetation and edaphic characteristics and ALTs across multiple plots in four field sites within boreal forest in the discontinuous permafrost zone (NWT, Canada). Our sites included mature black spruce, burned black spruce and paper birch, allowing us to determine vegetation and edaphic drivers that emerge as the most important and broadly applicable across these key vegetation and disturbance gradients, as well as providing insight into site-specific differences. Across sites, the most important vegetation characteristics limiting thaw (shallower ALTs) were tree leaf area index (LAI), moss layer thickness and understory LAI in that order. Thicker soil organic layers also reduced ALTs, though were less influential than moss thickness. Surface moisture (0-6 cm) promoted increased ALTs, whereas deeper soil moisture (11-16 cm) acted to modify the impact of the vegetation, in particular increasing the importance of understory or tree canopy shading in reducing thaw. These direct and indirect effects of moisture indicate that future changes in precipitation and evapotranspiration may have large influences on ALTs. Our work also suggests that forest fires cause greater ALTs by simultaneously decreasing multiple ecosystem characteristics which otherwise protect permafrost. Given that vegetation and edaphic characteristics have such clear and large influences on ALTs, our data provide a key benchmark against which to evaluate process models used to predict

  20. Influence of electronic energy deposition on the structural modification of swift heavy-ion-irradiated amorphous germanium layers

    SciTech Connect

    Steinbach, T.; Schnohr, C. S.; Wesch, W.; Kluth, P.; Giulian, R.; Araujo, L. L.; Sprouster, D. J.; Ridgway, M. C.

    2011-02-01

    Swift heavy-ion (SHI) irradiation of amorphous germanium (a-Ge) layers leads to a strong volume expansion accompanied by a nonsaturating irreversible plastic deformation (ion hammering), which are consequences of the high local electronic energy deposition within the region of the a-Ge layer. We present a detailed study of the influence of SHI irradiation parameters on the effect of plastic deformation and structural modification. Specially prepared a-Ge layers were irradiated using two SHI energies and different angles of incidence, thus resulting in a variation of the electronic energy deposition per depth {epsilon}{sub e} between 14.0 and 38.6 keV nm{sup -1}. For all irradiation parameters used a strong swelling of the irradiated material was observed, which is caused by the formation and growth of randomly distributed voids, leading to a gradual transformation of the amorphous layer into a sponge-like porous structure as established by cross-section scanning electron microscopy investigations. The swelling depends linearly on the ion fluence and on the value of {epsilon}{sub e}, thus clearly demonstrating that the structural changes are determined solely by the electronic energy deposited within the amorphous layer. Plastic deformation shows a superlinear dependence on the ion fluence due to the simultaneous volume expansion. This influence of structural modification on plastic deformation is described by a simple approach, thus allowing estimation of the deformation yield. With these results the threshold values of the electronic energy deposition for the onset of both structural modification and plastic deformation due to SHI irradiation are determined. Furthermore, based on these results, the longstanding question concerning the reason for the structural modification observed in SHI-irradiated crystalline Ge is answered.

  1. The Influence of Free Tropospheric Aerosol on the Boundary Layer Aerosol Budget in the Arctic

    NASA Astrophysics Data System (ADS)

    Igel, A. L.; Ekman, A.; Leck, C.; Savre, J.; Tjernstrom, M. K. H.; Sedlar, J.

    2015-12-01

    Large-eddy simulations of the summertime high Arctic boundary layer with mixed-phase stratus clouds have been performed based on observations taken during the ASCOS[1] campaign. The model includes a prognostic aerosol scheme where accumulation mode aerosol particles can be activated into cloud droplets, impaction scavenged, and regenerated upon cloud droplet evaporation or ice crystal sublimation. Two sets of simulations were performed, one with a constant aerosol concentration in the boundary layer and free troposphere, and one with enhanced free tropospheric concentrations based on observed aerosol concentration profiles. We find that the rate of aerosol depletion in the boundary layer is an order of magnitude larger than the median surface emission rates measured over the open water, indicating that for the present case the surface emissions are unlikely to compensate for aerosol loss due to interactions with clouds. In this case study, when the enhanced free troposphere aerosol concentrations are included, the entrainment of these particles into the boundary layer is able to offset the loss of particles from aerosol-cloud interactions. These results suggest that enhanced levels of accumulation mode particles, if located at the cloud top, may be an important source of accumulation mode particles in the Arctic boundary layer. [1] The Arctic Summer Cloud Ocean Study (ASCOS) was conducted in 2008 with the overall aim to improve our understanding of stratus cloud formation and possible climate feedback processes over the central Arctic Ocean. Tjernström et al., 2014 give more details.

  2. Beryllium deposition on International Thermonuclear Experimental Reactor first mirrors: Layer morphology and influence on mirror reflectivity

    NASA Astrophysics Data System (ADS)

    De Temmerman, G.; Baldwin, M. J.; Doerner, R. P.; Nishijima, D.; Seraydarian, R.; Schmid, K.; Kost, F.; Linsmeier, Ch.; Marot, L.

    2007-10-01

    Metallic mirrors will be essential components of the optical diagnostic systems in the International Thermonuclear Experimental Reactor (ITER). Reliability of these systems may be affected by mirror reflectivity changes induced by erosion and/or deposition of impurities (carbon, beryllium). The present study aims to assess the effect of beryllium (Be) deposition on the reflectivity of metallic mirrors and to collect data on the optical quality of these layers in terms of morphology, roughness, etc. Mirrors from molybdenum and copper were exposed in the PISCES-B linear plasma device to collect eroded material from graphite and beryllium targets exposed to beryllium-seeded deuterium plasma. After exposure, relative reflectivity of the mirrors was measured and different surface analysis techniques were used to investigate the properties of the deposited layers. Be layers formed in PISCES-B exhibit high levels of porosity which makes the reflectivity of the Be layers much lower than the reflectivity of pure Be. It is found that if Be deposition occurs on ITER first mirrors, the reflectivity of the coated mirrors will strongly depend on the layer morphology, which in turn depends on the deposition conditions.

  3. Influence of the layer thickness in plasmonic gold nanoparticles produced by thermal evaporation

    PubMed Central

    Gaspar, D.; Pimentel, A. C.; Mateus, T.; Leitão, J. P.; Soares, J.; Falcão, B. P.; Araújo, A.; Vicente, A.; Filonovich, S. A.; Águas, H.; Martins, R.; Ferreira, I.

    2013-01-01

    Metallic nanoparticles (NPs) have received recently considerable interest of photonic and photovoltaic communities. In this work, we report the optoelectronic properties of gold NPs (Au-NPs) obtained by depositing very thin gold layers on glass substrates through thermal evaporation electron-beam assisted process. The effect of mass thickness of the layer was evaluated. The polycrystalline Au-NPs, with grain sizes of 14 and 19 nm tend to be elongated in one direction as the mass thickness increase. A 2 nm layer deposited at 250°C led to the formation of Au-NPs with 10-20 nm average size, obtained by SEM images, while for a 5 nm layer the wide size elongates from 25 to 150 nm with a mean at 75 nm. In the near infrared region was observed an absorption enhancement of amorphous silicon films deposited onto the Au-NPs layers with a corresponding increase in the PL peak for the same wavelength region. PMID:23552055

  4. Influences and interactions of inundation, peat, and snow on active layer thickness

    NASA Astrophysics Data System (ADS)

    Atchley, Adam L.; Coon, Ethan T.; Painter, Scott L.; Harp, Dylan R.; Wilson, Cathy J.

    2016-05-01

    Active layer thickness (ALT), the uppermost layer of soil that thaws on an annual basis, is a direct control on the amount of organic carbon potentially available for decomposition and release to the atmosphere as carbon-rich Arctic permafrost soils thaw in a warming climate. We investigate how key site characteristics affect ALT using an integrated surface/subsurface permafrost thermal hydrology model. ALT is most sensitive to organic layer thickness followed by snow depth but is relatively insensitive to the amount of water on the landscape with other conditions held fixed. The weak ALT sensitivity to subsurface saturation suggests that changes in Arctic landscape hydrology may only have a minor effect on future ALT. However, surface inundation amplifies the sensitivities to the other parameters and under large snowpacks can trigger the formation of near-surface taliks.

  5. Influences of solid/liquid boundary layer thickness and tilting angle on zone-refinement of germanium crystals

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Guan, Yutong; Mei, Hao; Wang, Guojian; Mei, Dongming

    In zone-refining of metals, solid/liquid (S/L) boundary layer thickness has an influence on segregation coefficient of impurity atoms. Additionally, the segregation of impurity elements during zone refining can be maximized by adjusting the zone refinement tube with a proper angle. In this paper, we report the influences of S/L boundary layer thickness on the segregation coefficients of boron, phosphor, aluminum and gallium, which have been identified as four main impurities in germanium crystal by Photothermal Ionization Spectroscopy (PTIS). The thickness of S/L boundary layer was found by using a well-known model to fit the experimental data. The optimized segregation coefficients have been used to calculate the impurity distribution along the purified ingot. In addition, we have also optimized the tilting angle of the germanium ingot to investigate the impact on the segregation. This work is supported by DOE grant DE-FG02-10ER46709 and the state of South Dakota.

  6. Exploring the influence of boundary layer stability on wind farms and their interplay with the surrounding environment

    NASA Astrophysics Data System (ADS)

    Vanderwende, Brian Joseph

    There is growing awareness in the wind power industry that boundary-layer stability influences wind turbine performance in meaningful ways. Stability is inextricably tied to the diurnal ebb and flow of heat, momentum, and moisture that drives weather. Boundary-layer stability is closely linked to low-level wind speeds, wind shear, wind veer, and turbulence. It is these myriad consequences of stability which directly impact turbines, both modifying performance and contributing to structural fatigue. I describe the influence of near-surface stability on the aggregate power output of a utility-scale wind farm in central North America. During convective conditions, the wind farm produced more power than during neutral conditions, while in stable conditions the farm underperformed. These results are statistically significant, despite the uncertainty involved in using nacelle anemometer measurements of wind speed. Next, I use lidar measurements from Iowa to categorize low-level jets and their impact on rotor-layer winds. Observed jets are similar to those studied in the Great Plains, though regional sloping terrain forcing is absent in Iowa. Rotor-layer wind speeds intensify during jet periods, but detrimental wind shear and veer also increase when jets occur. Simulations using the Weather Research and Forecasting (WRF) model with various input data and boundary-layer physics favorably reproduce jet features. I then utilize the same model to examine the impact of switching from maize to soybeans on rotor-layer winds during the peak of the growing season. The crop change was represented in the simulation by surface roughness. The switch produces a statistically significant increase in both wind speed and power output. Finally, I evaluate the performance of the wind farm parameterization (WFP) in WRF using high-resolution large eddy simulations (LES) from the same model. The wind speed and turbulence impacts estimated by the WFP compare favorably to LES flow for both

  7. Influence of layered skin structure on the distribution of radiofrequency currents in dermis and subcutaneous fat

    NASA Astrophysics Data System (ADS)

    Kruglikov, Ilja L.

    2015-12-01

    The layered structure of skin with multiple interfaces separating the skin layers having very different electrical characteristics significantly modifies the spatial distribution of radiofrequency (RF) current in the skin compared to that in a homogeneous medium. In this study we present the analytical solutions of Laplace's equation describing the current densities for a two-layer skin model with homogeneous single layers for the monopolar and bipolar configurations of RF electrodes. Then we analyze analytically and numerically the optimal distances between the RF electrodes providing the maximal current concentration in a given depth or in a given depths' interval under the skin surface. It is demonstrated that two main parameters which significantly define the optimization condition are the thickness of the dermis and the reflection coefficient of the current at the dermis/subcutis interface. According to this model, under physiological conditions, the surface under RF electrode collecting 50% of the current entering subcutis is 184 times larger than in homogeneous medium. Such redistribution of RF current will significantly reduce the local density of the current entering the fat tissue reducing the effect of its selective heating.

  8. Influence of layering on the formation and growth of solution pipes

    NASA Astrophysics Data System (ADS)

    Petrus, Karine; Szymczak, Piotr

    2015-12-01

    In karst systems, hydraulic conduits called solution pipes (or wormholes) are formed as a result of the dissolution of limestone rocks by the water surcharged with CO2. The solution pipes are the end result of a positive feedback between spatial variations in porosity in the rock matrix and the local dissolution rate. Here, we investigate numerically the effect of rock stratification on the solution pipe growth, using a simple model system with a number of horizontal layers, which are less porous than the rest of the matrix. Stratification is shown to affect the resulting piping patterns in a variety of ways. First of all, it enhances the competition between the pipes, impeding the growth of the shorter ones and enhancing the flow in the longer ones, which therefore grow longer. This is reflected in the change of the pipe length distribution, which becomes steeper as the porosity contrast between the layers is increased. Additionally, stratification affects the shapes of individual solution pipes, with characteristic widening of the profiles in between the layers and narrowing within the layers. These results are in qualitative agreement with the piping morphologies observed in nature.

  9. Influence of Waveguide Layers on Deep Violet InGaN Dqw Lasers Performance

    NASA Astrophysics Data System (ADS)

    Alahyarizadeh, Gh.; Amirhoseiny, M.; Hassan, Z.

    2015-05-01

    This paper focuses on the performance characteristics of laser diodes (LDs) to improve output light emission properties. The optical and electrical properties such as threshold current, output power, slope efficiency, differential quantum efficiency, optical intensity and optical confinement factor has been compared for diode lasers with different waveguide structures. The waveguide structures which were analyzed in this research were a basic GaN waveguide structure, an InGaN waveguide structure, and AlInGaN waveguide structure. In addition the effects of Indium concentration and the thickness of the top and down waveguide layers have been studied. The InGaN waveguide layer, which has a higher concentration of Indium, appears to increase the OCF. The increased thickness of the GaN layer improves light emission. However, laser performance deteriorates with increasing thickness of waveguide layers more than 100 nm. Over all, LD with AlInGaN waveguide structure has highest OCF, slope efficiency and DQE.

  10. The Influence of Irradiation Time and Layer Thickness on Elution of Triethylene Glycol Dimethacrylate from SDR® Bulk-Fill Composite

    PubMed Central

    Jakubowska, Katarzyna; Chlubek, Dariusz; Buczkowska-Radlińska, Jadwiga

    2016-01-01

    Objective. This study aimed to evaluate triethylene glycol dimethacrylate (TEGDMA) elution from SDR bulk-fill composite. Methods. Three groups of samples were prepared, including samples polymerized in a 4 mm layer for 20 s, in a 4 mm layer for 40 s, and in a 2 mm layer for 20 s. Elution of TEGDMA into 100% ethanol, a 75% ethanol/water solution, and distilled water was studied. The TEGDMA concentration was measured using HPLC. Results. The TEGDMA concentration decreased in the following order: 100% ethanol > 75% ethanol > distilled water. Doubling the energy delivered to the 4 mm thick sample caused decrease (p < 0.05) in TEGDMA elution to distilled water. In ethanol solutions, the energy increase had no influence on TEGDMA elution. Decreasing the sample thickness resulted in decrease (p < 0.05) in TEGDMA elution for all the solutions. Conclusions. The concentration of eluted TEGDMA and the elution time were both strongly affected by the hydrophobicity of the solvent. Doubling the energy delivered to the 4 mm thick sample did not decrease the elution of TEGDMA but did decrease the amount of the monomer available to less aggressive solvents. Elution of TEGDMA was also correlated with the exposed sample surface area. Clinical Relevance. Decreasing the SDR layer thickness decreases TEGDMA elution. PMID:27366742

  11. Buffer influence on magnetic dead layer, critical current, and thermal stability in magnetic tunnel junctions with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Frankowski, Marek; Żywczak, Antoni; Czapkiewicz, Maciej; Zietek, Sławomir; Kanak, Jarosław; Banasik, Monika; Powroźnik, Wiesław; Skowroński, Witold; Checiński, Jakub; Wrona, Jerzy; Głowiński, Hubert; Dubowik, Janusz; Ansermet, Jean-Philippe; Stobiecki, Tomasz

    2015-06-01

    We present a detailed study of Ta/Ru-based buffers and their influence on features crucial from the point of view of applications of Magnetic Tunnel Junctions (MTJs) such as critical switching current and thermal stability. We study buffer/FeCoB/MgO/Ta/Ru and buffer/MgO/FeCoB/Ta/Ru layers, investigating the crystallographic texture, the roughness of the buffers, the magnetic domain pattern, the magnetic dead layer thickness, and the perpendicular magnetic anisotropy fields for each sample. Additionally, we examine the effect of the current induced magnetization switching for complete nanopillar MTJs with lateral dimensions of 270 × 180 nm. Buffer Ta 5/Ru 10/Ta 3 (thicknesses in nm), which has the thickest dead layer, exhibits a much larger thermal stability factor (63 compared to 32.5) while featuring a slightly lower critical current density value (1.25 MA/cm2 compared to 1.5 MA/cm2) than the buffer with the thinnest dead layer Ta 5/Ru 20/Ta 5. We can account for these results by considering the difference in damping which compensates for the difference in the switching barrier heights.

  12. A study of the influence of a gravel subslab layer on radon entry rate using two basement structures

    SciTech Connect

    Robinson, A.L.; Sextro, R.G.; Fisk, W.J.; Garbesi, K.; Wooley, J.; Wollenberg, H.A.

    1993-01-01

    In buildings with elevated radon concentrations, the dominant transport mechanism of radon is advective flow of soil gas into the building substructure. However, the building-soil system is often complex, making detailed studies of the radon source term difficult. In order to examine radon entry into buildings, the authors have constructed two room-size, precisely-fabricated basement structures at a site with relatively homogeneous, moderately permeable soil. The basements are identical except that one lies directly on native soil whereas the other lies on a high permeability aggregate layer. The soil pressure field and radon entry rate have been measured for different basement pressures and environmental conditions. The subslab gravel layer greatly enhances the advective entry of radon into the structure; when the structures are depressurized, the radon entry rate into the structure with the subslab gravel layer is more than a factor of 3 times the radon entry rate into the other structure for the same depressurization. The gravel subslab layer also spreads the pressure field around the structure, extending the field of influence of the structure and the region from which it draws radon.

  13. Influence of the magnetic properties and repetitions on the energy product in layered thin film hard soft magnetic nanocomposites

    NASA Astrophysics Data System (ADS)

    Zagardo, David; Beik Mohammadi, Jamileh; Tuggle, Andrew; Mewes, Claudia; Mewes, Tim; Suzuki, Takao; MINT Center Team

    2015-03-01

    Exchange spring composites (hard-soft magnetic composites) are interesting for many applications such as rare-earth free permanent magnets and information storage. One key aspect is the figure of merit, the energy product, also called (BH)max. The system of study is a magnetic nano composite where each bilayer consists of a soft and hard magnetic material of total height of 22 nm. Using micromagnetic simulations we have investigated the influence of different ratios of the volume of the hard and soft layers on the energy product and the number of bilayer repetitions. Our findings indicate that the maximum energy product depends strongly on the volume ratio as well as on the number of repetitions. In addition we have studied the influence of different anisotropy contributions of the hard and soft magnetic layer on the energy product. Finally we have studied the influence of the interlayer exchange coupling on the energy product, which show that strong interlayer exchange coupling is necessary to reach a high energy product.

  14. Linear and weakly nonlinear aspects of free shear layer instability, roll-up, subharmonic interaction and wall influence

    NASA Technical Reports Server (NTRS)

    Cain, A. B.; Thompson, M. W.

    1986-01-01

    The growth of the momentum thickness and the modal disturbance energies are examined to study the nature and onset of nonlinearity in a temporally growing free shear layer. A shooting technique is used to find solutions to the linearized eigenvalue problem, and pseudospectral weakly nonlinear simulations of this flow are obtained for comparison. The roll-up of a fundamental disturbance follows linear theory predictions even with a 20 percent disturbance amplitude. A weak nonlinear interaction of the disturbance creates a finite-amplitude mean shear stress which dominates the growth of the layer momentum thickness, and the disturbance growth rate changes until the fundamental disturbance dominates. The fundamental then becomes an energy source for the harmonic, resulting in an increase in the growth rate of the subharmonic over the linear prediction even when the fundamental has no energy to give. Also considered are phase relations and the wall influence.

  15. Structure of the Supersonic Turbulent Boundary Layer and its Influence on Unsteady Separation.

    NASA Astrophysics Data System (ADS)

    Unalmis, Omer Haldun

    1995-01-01

    This experimental study evolved out of earlier work by other investigators which focused on the unsteadiness of shock-wave induced turbulent boundary layer separation. The primary objective of the current study was to gain a better understanding of the structure and behavior of the compressible turbulent boundary layer, in order to (i) learn more about the large-scale turbulent structures which the earlier work showed were responsible for the high frequency, "jitter" motion of the separated flow, and (ii) determine what in the incoming boundary layer is the cause of the "low frequency component" which appears to be responsible for the low frequency pulsation of the separated flow. Results from fluctuating wall pressure measurements show that the overall streamwise decay length of the turbulent structure is about 20 delta_0, where delta_0 is the boundary layer thickness. The spanwise decay length is about 3 delta_0. Experiments with and without vortex generators showed that the decay of the low frequency component of the wall pressure field appears to be closely connected to Gortler vortices in the tunnel floor boundary layer. With respect to the decay of the high frequency component, the Strouhal number was shown to be an appropriate correlating parameter for incompressible, subsonic, and supersonic boundary layers. Bull's suggestion that the structures lose their coherence over distances of about four wavelengths appears to be approximately valid at Mach 5. Comparisons of wall pressure spectra were made under incompressible, subsonic, and supersonic flow conditions. The subsonic data included flight-test results from The Boeing Company. "Mixed" scaling does the best job of collapsing the compressible and incompressible data. The flight-test spectra, however, did not collapse with the wind tunnel data and it was shown that this was mainly due to the lack of well-controlled conditions in the flight-test environment. Of the two methods widely used for predicting the

  16. Influence of inserting a thin fullerene layer on pentacene organic thin-film transistor

    NASA Astrophysics Data System (ADS)

    Li, Yu-Chang; Lin, Yu-Ju; Wei, Chia-Yu; Chou, Dei-Wei; Tsao, Chun-Ho; Wang, Yeong-Her

    2012-03-01

    The performance of organic thin-film transistors (TFTs) with a pentacene/fullerene(C60)/pentacene (PCP) sandwich structure is presented. Using a 3.5 nm-thick C60 layer inserted between the pentacene films, the obtained hole mobility is improved by more than six times. By applying atomic force microscopy, x-ray diffraction, Raman spectrum, and transmission line method analysis, one can reasonably infer that the smoother surface of the pentacene film covered with thin C60 layer delays the phase transformation of the upper pentacene film, resulting in stronger intermolecular coupling and the reduction of channel resistance of the PCP TFTs from 3.03 to 1.72 MΩ, and, therefore, improving the device performance.

  17. Air-mass origin in the tropical lower stratosphere: The influence of Asian boundary layer air

    NASA Astrophysics Data System (ADS)

    Orbe, Clara; Waugh, Darryn W.; Newman, Paul A.

    2015-05-01

    A climatology of air-mass origin in the tropical lower stratosphere is presented for the Goddard Earth Observing System Chemistry Climate Model. During late boreal summer and fall, air-mass fractions reveal that as much as 20% of the air in the tropical lower stratosphere last contacted the planetary boundary layer (PBL) over Asia; by comparison, the air-mass fractions corresponding to last PBL contact over North America and over Europe are negligible. Asian air reaches the extratropical tropopause within a few days of leaving the boundary layer and is quasi-horizontally transported into the tropical lower stratosphere, where it persists until January. The rapid injection of Asian air into the lower stratosphere—and its persistence in the deep tropics through late (boreal) winter—is important as industrial emissions over East Asia continue to increase. Hence, the Asian monsoon may play an increasingly important role in shaping stratospheric composition.

  18. Influence of electric-double-layer structure on the transient response of nanochannels

    NASA Astrophysics Data System (ADS)

    Schiffbauer, Jarrod; Yossifon, Gilad

    2014-05-01

    A fundamental Poisson-Nernst-Planck-Stokes model is presented for the impedance response of a long nanochannel under zero bias, capturing the effects of surface conduction and the coupling between transverse momentum and axial ion distribution in a manner reminiscent of Taylor dispersion. This is shown to result in a shift of the impedance frequency spectrum with bulk concentration similar to previous experimental observation [Schiffbauer, Liel, and Yossifon, Phys. Rev. E 89, 033017 (2014), 10.1103/PhysRevE.89.033017]. It further predicts an additional downward shift in frequency with increasing viscosity. Finally, the introduction of a phenomenological model for the impedance response of a dynamic Stern layer in parallel with the diffuse layer transport model is shown to yield good agreement between theory and experiment. As a result, we are able to obtain an equivalent circuit model based on the fundamental model and proposed corrections.

  19. Influence of (phospho)lipases on properties of mica supported phospholipid layers

    NASA Astrophysics Data System (ADS)

    Jurak, Malgorzata; Chibowski, Emil

    2010-08-01

    The effect of enzymes: lipase from Candida cylindracea (L Cc), phospholipase A 2 from hog pancreas (PLA 2) and phospholipase C from Bacillus cereus (PLC) to modulate wetting properties of solid supported phospholipid bilayers was studied via advancing and receding contact angle measurements of water, formamide and diiodomethane, and calculation of the surface free energy and its components from van Oss et al. (LWAB) and contact angle hysteresis (CAH) approaches. Simultaneously, topography of the studied layers was determined by Atomic Force Microscopy (AFM). The investigated lipid bilayers were transferred on mica plates from subphase of pure water by means of Langmuir-Blodgett and Langmuir-Schaefer techniques. The investigated phospolipid layers were: saturated DPPC (1,2-dipalmitoyl- sn-glycero-3-phosphocholine), unsaturated DOPC (1,2-dioleoyl- sn-glycero-3-phosphocholine), and their mixture DPPC/DOPC. The obtained results revealed that the lipid membrane degradation by the enzymes caused increase in its surface free energy due to the amphiphilic hydrolysis products, which may accumulate in the lipid bilayer. In result activity of the enzymes may increase and then break down the bilayer structure takes place. It is likely that after dissolution of the hydrolysis reaction products in the bulk phase, patches of bare mica surface are accessible, which contribute to the apparent surface free energy changes. Comparison of AFM images and the free energy changes of the layers gives better insight into changes of their properties. The observed gradual increase in the layer surface free energy allows controlling of the hydrolysis process to obtain the surfaces of defined properties.

  20. Influence of the Halogen Activation on the Ozone Layer in XXIst Century

    NASA Astrophysics Data System (ADS)

    Larin, Igor; Aloyan, Artash; Yermakov, Alexandr

    2016-04-01

    The aim of the work is to evaluate a possible effect of heterophase chemical reactions (HCR) with participation of reservoir gases (ClONO2, HCl) and sulfate particles of the Junge layer on the ozone layer at mid-latitudes in the XXI century, which could be relevant for more accurate predicting a recovery of the ozone layer, taking into account that just these processes were the main cause of the ozone depletion at the end of XXth century. Required for calculating the dynamics of GHR data on the specific volume/surface of the sulfate aerosols in the lower stratosphere were taken from the data of field experiments. Their physico-chemical properties (chemical composition, density, water activity and free protons activity et al.) have been obtained with help of thermodynamic calculations (Atmospheric Inorganic Model, AIM). Altitude concentration profiles of individual gas components, as well as temperature and relative humidity (RH) at a given geographic location and season have been calculated using a two-dimensional model SOCRATES. The calculations have been made for the conditions of June 1995, 2040 and 2080 at 15 km altitude and 50° N latitude. It has been shown that the rate of ozone depletion as a result of processes involving halogen activation for the given conditions in 2040, 2080 is about 35% lower than a corresponding value in 1995 (a year of maximum effect of halogen activation). From this we can conclude that in the XXI century, despite the natural decline of ozone-depleting chlorofluorocarbons. processes of halogen activation of the ozone depletion with participation of sulfate aerosols should be taken into account in the calculations of the recovery of the ozone layer at mid-latitudes.

  1. Influence of rigid boundary on the propagation of torsional surface wave in an inhomogeneous layer

    NASA Astrophysics Data System (ADS)

    Gupta, Shishir; Sultana, Rehena; Kundu, Santimoy

    2015-02-01

    The present work illustrates a theoretical study on the effect of rigid boundary for the propagation of torsional surface wave in an inhomogeneous crustal layer over an inhomogeneous half space. It is believed that the inhomogeneity in the half space arises due to hyperbolic variation in shear modulus and density whereas the layer has linear variation in shear modulus and density. The dispersion equation has been obtained in a closed form by using Whittaker's function, which shows the variation of phase velocity with corresponding wave number. Numerical results show the dispersion equations, which are discussed and presented by means of graphs. Results in some special cases are also compared with existing solutions available from analytical methods, which show a close resemblance. It is also observed that, for a layer over a homogeneous half space, the velocity of torsional waves does not coincide with that of Love waves in the presence of the rigid boundary, whereas it does at the free boundary. Graphical user interface (GUI) software has been developed using MATLAB 7.5 to generalize the effect of various parameter discussed.

  2. Influence of Idealized Heterogeneity on Wet and Dry Planetary Boundary Layers Coupled to the Land Surface. 2; Phase-Averages

    NASA Technical Reports Server (NTRS)

    Houser, Paul (Technical Monitor); Patton, Edward G.; Sullivan, Peter P.; Moeng, Chin-Hoh

    2003-01-01

    We examine the influence of surface heterogeneity on boundary layers using a large-eddy simulation coupled to a land-surface model. Heterogeneity, imposed in strips varying from 2-30 km (1 less than lambda/z(sub i) less than 18), is found to dramatically alter the structure of the free convective boundary layer by inducing significant organized circulations. A conditional sampling technique, based on the scale of the surface heterogeneity (phase averaging), is used to identify and quantify the organized surface fluxes and motions in the atmospheric boundary layer. The impact of the organized motions on turbulent transport depends critically on the scale of the heterogeneity lambda, the boundary layer height zi and the initial moisture state of the boundary layer. Dynamical and scalar fields respond differently as the scale of the heterogeneity varies. Surface heterogeneity of scale 4 less than lamba/z(sub i) less than 9 induces the strongest organized flow fields (up, wp) while heterogeneity with smaller or larger lambda/z(sub i) induces little organized motion. However, the organized components of the scalar fields (virtual potential temperature and mixing ratio) grow continuously in magnitude and horizontal scale, as lambda/z(sub i) increases. For some cases, the organized motions can contribute nearly 100% of the total vertical moisture flux. Patch-induced fluxes are shown to dramatically impact point measurements that assume the time-average vertical velocity to be zero. The magnitude and sign of this impact depends on the location of the measurement within the region of heterogeneity.

  3. Influence of layering on the formation and growth of dissolution pipes in karst systems

    NASA Astrophysics Data System (ADS)

    Petrus, Karine; Pecelerowicz, Michal; Szymczak, Piotr

    2015-04-01

    In karst systems, hydraulic conduits called dissolution pipes (a.k.a. wormholes) are formed as a result of the dissolution of limestone rocks by the water surcharged with CO2. The dissolution pipes are the end result of a positive feedback between spatial variations in porosity in the initial matrix and the local dissolution rate. A small enhancement in porosity at some point in the reaction front increases the fluid flow in that region, which convects reactant further downstream. By this means any local variation in porosity is amplified as the reaction front passes through and propagates downstream with the front, eventually developing into dissolution pipes. As dissolution proceeds the growing pipes interact, competing for the available flow, and eventually the growth of the shorter ones ceases. Here, we investigate numerically the effect of rock stratification on the dissolution pipe growth, using a simple model system with a number of horizontal bedding planes, which are less porous than the rest of the matrix. Stratification is shown to affect the resulting piping patterns in a variety of ways. First of all, it enhances the competition between the pipes, impeding the growth of the shorter ones and enhancing the flow in the longer ones, which therefore grow longer. Next, it affects the shapes of individual dissolution pipes, with characteristic widening of the profiles in between the layers and narrowing within the layers. These results are in qualitative agreement with the piping morphologies observed in nature. Importantly, measuring the ratio between the pipe diameters in different layers can provide one with information on the conditions prevailing during the formation of the pattern as well as on the physical characteristics of the layers in a given natural system. Additionally, we have investigated the model with layers of the same porosity but a smaller dissolution rate. Interestingly, in this case, the stratification is shown to weaken the competition

  4. Influence of defect formation as a result of incorporation of a Mn {delta} layer on the photosensitiviy spectrum of InGaAs/GaAs quantum wells

    SciTech Connect

    Gorshkov, A. P. Karpovich, I. A.; Pavlova, E. D.; Kalenteva, I. L.

    2012-02-15

    The influence of defect formation upon the deposition of a Mn {delta} layer and a GaAs coating layer (with the use of laser evaporation) on the photosensitivity spectra of heterostructures with InGaAs/GaAs quantum wells located in the near-surface region has been studied.

  5. Influence of the spatial arrangement of the Si δ layer on the optoelectronic properties of InGaAs/GaAs quantum-well nanoheterostructures

    SciTech Connect

    Volkova, N. S. Gorshkov, A. P.; Tikhov, S. V.; Baidus, N. V.; Khazanova, S. V.; Degtyarev, V. E.; Filatov, D. O.

    2015-02-15

    The photosensitivity, photoluminescence, and electroluminescence spectra of InGaAs/GaAs diode nanoheterostructures with a Si δ layer formed at a distance of 10 nm from the InGaAs quantum well are studied. The influence of the arrangement of the δ layer with respect to the quantum well on the optoelectronic properties of the structures is established.

  6. Influence of thickness and permeability of endothelial surface layer on transmission of shear stress in capillaries

    NASA Astrophysics Data System (ADS)

    Zhang, SongPeng; Zhang, XiangJun; Tian, Yu; Meng, YongGang; Lipowsky, Herbert

    2015-07-01

    The molecular coating on the surface of microvascular endothelium has been identified as a barrier to transvascular exchange of solutes. With a thickness of hundreds of nanometers, this endothelial surface layer (ESL) has been treated as a porous domain within which fluid shear stresses are dissipated and transmitted to the solid matrix to initiate mechanotransduction events. The present study aims to examine the effects of the ESL thickness and permeability on the transmission of shear stress throughout the ESL. Our results indicate that fluid shear stresses rapidly decrease to insignificant levels within a thin transition layer near the outer boundary of the ESL with a thickness on the order of ten nanometers. The thickness of the transition zone between free fluid and the porous layer was found to be proportional to the square root of the Darcy permeability. As the permeability is reduced ten-fold, the interfacial fluid and solid matrix shear stress gradients increase exponentially two-fold. While the interfacial fluid shear stress is positively related to the ESL thickness, the transmitted matrix stress is reduced by about 50% as the ESL thickness is decreased from 500 to 100 nm, which may occur under pathological conditions. Thus, thickness and permeability of the ESL are two main factors that determine flow features and the apportionment of shear stresses between the fluid and solid phases of the ESL. These results may shed light on the mechanisms of force transmission through the ESL and the pathological events caused by alterations in thickness and permeability of the ESL.

  7. Influence of irradiation upon few-layered graphene using electron-beams and gamma-rays

    SciTech Connect

    Wang, Yuqing; Feng, Yi Mo, Fei; Qian, Gang; Chen, Yangming; Yu, Dongbo; Wang, Yang; Zhang, Xuebin

    2014-07-14

    Few-layered graphene (FLG) is irradiated by electron beams and gamma rays. After 100 keV electron irradiation, the edges of FLG start bending, shrinking, and finally generate gaps and carbon onions due to sputtering and knock-on damage mechanism. When the electron beam energy is increased further to 200 keV, FLG suffers rapid and catastrophic destruction. Unlike electron irradiation, Compton effect is the dominant damage mechanism in gamma irradiation. The irradiation results indicate the crystallinity of FLG decreases first, then restores as increasing irradiation doses, additionally, the ratio (O/C) of FLG surface and the relative content of oxygen groups increases after irradiation.

  8. Influence of the Light Intensity on the layers electrophotographic intensity based on As and Sb chalkogenides

    NASA Astrophysics Data System (ADS)

    Andriesh, A. M.; Buzdugan, A. I.; Shutov, S. D.

    1988-10-01

    Based on dependence of the electrographic sensitivity from the intensity of illumination by an integral and monochromatic light one show that the law of intercompatibility in thin layers based on glasses As_2S_3, alloys of As_2S_3 and Sb_2S_3 and heterostructures Sb_2S_3 and As_2S_3 is not more valid. Underlinear dependences of the lux-ampere characteristics are interpreted based on the Rose model which supposes a great density of localized states of the quasicontinuous and an exponential distribution by energy in a forbidden zone of a semiconductor. Tables 1, Bibliography 5, Illustr. 2

  9. Hydrography and bottom boundary layer dynamics: Influence on inner shelf sediment mobility, Long Bay, North Carolina

    USGS Publications Warehouse

    Davis, L.A.; Leonard, L.A.; Snedden, G.A.

    2008-01-01

    This study examined the hydrography and bottom boundary-layer dynamics of two typical storm events affecting coastal North Carolina (NC); a hurricane and the passages of two small consecutive extratropical storms during November 2005. Two upward-looking 1200-kHz Acoustic Doppler Current Profilers (ADCP) were deployed on the inner shelf in northern Long Bay, NC at water depths of less than 15 m. Both instruments profiled the overlying water column in 0.35 in bins beginning at a height of 1.35 in above the bottom (mab). Simultaneous measurements of wind speed and direction, wave and current parameters, and acoustic backscatter were coupled with output from a bottom boundary layer (bbl) model to describe the hydrography and boundary layer conditions during each event. The bbl model also was used to quantify sediment transport in the boundary layer during each storm. Both study sites exhibited similar temporal variations in wave and current magnitude, however, wave heights during the November event were higher than waves associated with the hurricane. Near-bottom mean and subtidal currents, however, were of greater magnitude during the hurricane. Peak depth-integrated suspended sediment transport during the November event exceeded transport associated with the hurricane by 25-70%. Substantial spatial variations in sediment transport existed throughout both events. During both events, along-shelf sediment transport exceeded across-shelf transport and was related to the magnitude and direction of subtidal currents. Given the variations in sediment type across the bay, complex shoreline configuration, and local bathymetry, the sediment transport rates reported here are very site specific. However, the general hydrography associated with the two storms is representative of conditions across northern Long Bay. Since the beaches in the study area undergo frequent renourishment to counter the effects of beach erosion, the results of this study also are relevant to coastal

  10. Magnetic domain wall propagation in a submicron spin-valve stripe: Influence of the pinned layer

    NASA Astrophysics Data System (ADS)

    Briones, J.; Montaigne, F.; Lacour, D.; Hehn, M.; Carey, M. J.; Childress, J. R.

    2008-01-01

    The propagation of a domain wall in a submicron ferromagnetic spin-valve stripe is investigated using giant magnetoresistance. A notch in the stripe efficiently traps an injected wall stopping the domain propagation. The authors show that the magnetic field at which the wall is depinned displays a stochastic nature. Moreover, the depinning statistics are significantly different for head-to-head and tail-to-tail domain walls. This is attributed to the dipolar field generated in the vicinity of the notch by the pinned layer of the spin valve.

  11. Heat Transfer of Thermocapillary Convection in a Two-Layered Fluid System Under the Influence of Magnetic Field

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Ludovisis, D.; Cha, S. S.

    2006-01-01

    Heat transfer of a two-layer fluid system has been of great importance in a variety of industrial applications. For example, the phenomena of immiscible fluids can be found in materials processing and heat exchangers. Typically in solidification from a melt, the convective motion is the dominant factor that affects the uniformity of material properties. In the layered flow, thermocapillary forces can come into an important play, which was first emphasized by a previous investigator in 1958. Under extraterrestrial environments without gravity, thermocapillary effects can be a more dominant factor, which alters material properties in processing. Control and optimization of heat transfer in an immiscible fluid system need complete understanding of the flow phenomena that can be induced by surface tension at a fluid interface. The present work is focused on understanding of the magnetic field effects on thermocapillary convection, in order to optimize material processing. That is, it involves the study of the complicated phenomena to alter the flow motion in crystal growth. In this effort, the Marangoni convection in a cavity with differentially heated sidewalls is investigated with and without the influence of a magnetic field. As a first step, numerical analyses are performed, by thoroughly investigating influences of all pertinent physical parameters. Experiments are then conducted, with preliminary results, for comparison with the numerical analyses.

  12. Influence of thin oxide layers on tribological properties of E110 alloy tubular specimens under dry friction conditions

    NASA Astrophysics Data System (ADS)

    Kalin, B. A.; Volkov, N. V.; Valikov, R. A.; Yashin, A. S.; Yakutkina, T. V.

    2016-04-01

    Experiments to simulate wear process of fuel cladding in case its contact with spacing grid. System «sphere-plane» selected as friction pair. Tubular parts of fuel claddings from E110 alloy diameter of 9.15 mm and length of 50 mm (wall thickness 1 mm) were used for investigations. Some claddings were subjected to ion cleaning and polishing under the influence of Ar+ ion beam with average energy of 3 keV. Samples were oxidized in steam- water conditions (T=300° C, p=17 MPa, time up to 100 h) to create thin oxide layers with a thickness of 1 mkm on the tubes surface. It is found that wear of the metallic samples takes place in elastically plastic deformation conditions at initial stage (2-5 min). Presenceof thin oxide layer (of thickness up to 200 nm) on the samples surface contributes to reduce wear due to the uniform redistribution its fragments on the friction track, and wear also samples takes place in elastically plastic deformation conditions. Presence of oxide layer with thickness of 700 nm on the samples surface increases wear in conditions of abrasion friction.

  13. An observational study on the influence of solvent composition on the architecture of drug-layered pellets.

    PubMed

    McConnell, Emma L; Macfarlane, Calum B; Basit, Abdul W

    2009-10-01

    Pelletization for the manufacture of modified release multiparticulate drug delivery systems is often considered to be well defined and robust. However, small differences in formulation conditions can lead to surprising changes to the expected outcomes. We observed that extended release tramadol hydrochloride pellets, prepared by solution layering an ethanolic solution of drug on a non-pareil, resulted in highly unusual pellet architecture with deep indentations which prevented the application of a homogeneous outer coating of ethylcellulose and talc, and negatively influenced the desired modified release characteristics. Modification of outer coating thickness and process temperature showed no improvement in release characteristics. A solution to the problem was found in the incorporation of 10% v/v water into the ethanolic drug layering solution, resulting in the production of drug-loaded pellets with a smooth morphology which allowed the application of a coherent outer coating able to retard drug release. The surprising difference in pellet morphology between the two solvent drug layering systems may be attributed to differences in solvent evaporation rates. This demonstrates that established techniques are sometimes less straightforward than thought as small changes in formulation have significant effects on the resulting product in a way which is not always well understood. PMID:19589378

  14. Atomic layer deposition precursor step repetition and surface plasma pretreatment influence on semiconductor–insulator–semiconductor heterojunction solar cell

    SciTech Connect

    Talkenberg, Florian Illhardt, Stefan; Schmidl, Gabriele; Schleusener, Alexander; Sivakov, Vladimir; Radnóczi, György Zoltán; Pécz, Béla; Dikhanbayev, Kadyrjan; Mussabek, Gauhar; Gudovskikh, Alexander

    2015-07-15

    Semiconductor–insulator–semiconductor heterojunction solar cells were prepared using atomic layer deposition (ALD) technique. The silicon surface was treated with oxygen and hydrogen plasma in different orders before dielectric layer deposition. A plasma-enhanced ALD process was applied to deposit dielectric Al{sub 2}O{sub 3} on the plasma pretreated n-type Si(100) substrate. Aluminum doped zinc oxide (Al:ZnO or AZO) was deposited by thermal ALD and serves as transparent conductive oxide. Based on transmission electron microscopy studies the presence of thin silicon oxide (SiO{sub x}) layer was detected at the Si/Al{sub 2}O{sub 3} interface. The SiO{sub x} formation depends on the initial growth behavior of Al{sub 2}O{sub 3} and has significant influence on solar cell parameters. The authors demonstrate that a hydrogen plasma pretreatment and a precursor dose step repetition of a single precursor improve the initial growth behavior of Al{sub 2}O{sub 3} and avoid the SiO{sub x} generation. Furthermore, it improves the solar cell performance, which indicates a change of the Si/Al{sub 2}O{sub 3} interface states.

  15. Influence of oxide layer morphology on hydrogen concentration in tin and niobium containing zirconium alloys after high temperature steam oxidation

    NASA Astrophysics Data System (ADS)

    Große, Mirco; Lehmann, Eberhard; Steinbrück, Martin; Kühne, Guido; Stuckert, Juri

    2009-03-01

    The influence of the oxide layer morphology on the hydrogen uptake during steam oxidation of (Zr,Sn) and Zr-Nb nuclear fuel rod cladding alloys was investigated in isothermal separate-effect tests and large-scale fuel rod bundle simulation experiments. From both it can be concluded that the concentration of hydrogen in the remaining metal strongly depends on the existence of tangential cracks in the oxide layers formed by the tetragonal - monoclinic phase transition in the oxide, known as breakaway effect. In these cracks hydrogen is strongly enriched. It results in very local high hydrogen partial pressure at the oxide/metal interface and in an increase of the hydrogen concentration in the metal at local regions where such cracks in the oxide layer exist. Due to this effect the hydrogen uptake of the remaining zirconium alloy does not depend monotonically on temperature. Differences between (Zr,Sn) and Zr-Nb alloys are caused by differences in the hydrogen production due to different oxidation kinetics and in the crack forming phase transformation in the oxides as well as in the mechanical stability of the oxides.

  16. Influence of casein phosphopeptide-amorphous calcium phosphate application, smear layer removal, and storage time on resin-dentin bonding.

    PubMed

    Lin, Jun; Zheng, Wei-ying; Liu, Peng-ruo-feng; Zhang, Ning; Lin, Hui-ping; Fan, Yi-jing; Gu, Xin-hua; Vollrath, Oliver; Mehl, Christian

    2014-07-01

    The aim of this study is to evaluate the influence of Tooth Mousse (TM) application, smear layer removal, and storage time on resin-dentin microtensile bond strength (µTBS). Dentin specimens were divided into two groups: (1) smear layer covered; (2) smear layer removed using 15% EDTA for 90 s. In each group, half the specimens were treated once with TM for 60 min. After bonding procedures using a two-step self-etching adhesive (Clearfil SE Bond (CSE); Kuraray Medical, Tokyo, Japan), an all-in-one adhesive (G-Bond (GB); GC Corp, Tokyo, Japan), and a total-etch adhesive (Adper Single Bond 2 (SB); 3M ESPE, St. Paul, MN, USA), the specimens were stored for 3 d or 6 months in deionized water at 37 °C, and µTBS was tested and analyzed. With the exception of SB (no TM application) and GB, the μTBS was significantly increased for CSE and SB using EDTA pre-conditioning and 3 d of storage (P≤0.001). Bond strength of GB decreased significantly when using EDTA (3 d storage, P<0.05). TM application only increased the μTBS of GB (no EDTA) and SB (with EDTA) after 3 d (P≤0.02). Comparing the adhesives after 3 d of storage, CSE exhibited the greatest μTBS values followed by GB and SB (P≤0.02). The factors of adhesive, EDTA, and TM did not show any significant impact on μTBS when specimens were stored for 6 months (P>0.05). The additional application of TM and EDTA for cavity preparation seems only to have a short-term effect, and no influence on µTBS of dentin bonds after a period of 6 months. PMID:25001224

  17. Influence of casein phosphopeptide-amorphous calcium phosphate application, smear layer removal, and storage time on resin-dentin bonding*

    PubMed Central

    Lin, Jun; Zheng, Wei-ying; Liu, Peng-ruo-feng; Zhang, Ning; Lin, Hui-ping; Fan, Yi-jing; Gu, Xin-hua; Vollrath, Oliver; Mehl, Christian

    2014-01-01

    The aim of this study is to evaluate the influence of Tooth Mousse (TM) application, smear layer removal, and storage time on resin-dentin microtensile bond strength (μTBS). Dentin specimens were divided into two groups: (1) smear layer covered; (2) smear layer removed using 15% EDTA for 90 s. In each group, half the specimens were treated once with TM for 60 min. After bonding procedures using a two-step self-etching adhesive (Clearfil SE Bond (CSE); Kuraray Medical, Tokyo, Japan), an all-in-one adhesive (G-Bond (GB); GC Corp, Tokyo, Japan), and a total-etch adhesive (Adper Single Bond 2 (SB); 3M ESPE, St. Paul, MN, USA), the specimens were stored for 3 d or 6 months in deionized water at 37 °C, and μTBS was tested and analyzed. With the exception of SB (no TM application) and GB, the μTBS was significantly increased for CSE and SB using EDTA pre-conditioning and 3 d of storage (P≤0.001). Bond strength of GB decreased significantly when using EDTA (3 d storage, P<0.05). TM application only increased the μTBS of GB (no EDTA) and SB (with EDTA) after 3 d (P≤0.02). Comparing the adhesives after 3 d of storage, CSE exhibited the greatest μTBS values followed by GB and SB (P≤0.02). The factors of adhesive, EDTA, and TM did not show any significant impact on μTBS when specimens were stored for 6 months (P>0.05). The additional application of TM and EDTA for cavity preparation seems only to have a short-term effect, and no influence on μTBS of dentin bonds after a period of 6 months. PMID:25001224

  18. Influence of the bluff body shear layers on the wake of a square prism in a turbulent flow

    NASA Astrophysics Data System (ADS)

    Lander, D. C.; Letchford, C. W.; Amitay, M.; Kopp, G. A.

    2016-08-01

    Despite a substantial body of literature dealing with the effects of free-stream turbulence (FST) on two-dimensional square prism, there remain some open questions regarding the influence of the bluff body shear layer development in a highly perturbed environment and the resulting impact on bluff body flow characteristics. Accordingly, flows with ambient and enhanced FST were studied at ReD=5.0 ×104 using long-duration time-resolved particle image velocimetry (PIV). The data indicate a narrowing and lengthening of the mean wake and an accompanying rise in base pressure. Using triple decomposition, the underlying dynamics of the wake reveal a streamwise lengthening of the individual von Kármán vortex structures, complementing the increase in mean wake length. Close inspection of the shear layer region, in the presence of FST, indicates a substantial increase in curvature towards the body but no pronounced increase in the growth rate. The loci of maximum turbulent kinetic energy and spanwise vorticity in the shear layer region further reveal that the most pronounced changes occur during the very initial stages follow separation. Inspection of a series of instantaneous PIV fields of Q criterion show that the conventional transition pathway, via the formation and subsequent pairing of the Kelvin-Helmholtz (KH) vortices, is bypassed. The KH vortices are observed to immediately cluster and amalgamate before breaking into smaller random eddies. The bypass transition is followed by shear layer reattachment in some cases. This is considered a primary mechanism responsible for the reported changes in the global flow characteristics and the altered wake dynamics. Furthermore, a quantitative definition of the diffusion length is implemented for the square prism wake and its relationship to the Strouhal number and wake formation length is considered.

  19. Des Moines.

    ERIC Educational Resources Information Center

    Gore, Deborah, Ed.

    1988-01-01

    This document, intended for elementary students, contains articles and activities designed to acquaint young people with the history of Des Moines, Iowa. The articles are short, and new or difficult words are highlighted and defined for young readers. "The Raccoon River Indian Agency" discusses the archeological exploration of the indian…

  20. Influence of the incoming solar radiation on the boundary layer of an idealized valley.

    NASA Astrophysics Data System (ADS)

    Leukauf, Daniel; Wagner, Johannes; Posch, Christian; Gohm, Alexander; Rotach, Mathias

    2014-05-01

    In recent years, the mechanisms of thermally-driven wind systems and the boundary layer over complex terrain have been investigated through real-case and idealized numerical simulations. However, these studies usually consider only one given latitude or one predefined surface forcing. The question remains how the evolution and structure of the valley boundary layer and the valley wind system depends on solar forcing. This question is fundamental if one aims at developing a parametrization of exchange processes based on bulk fluxes of heat, moisture and other properties from the valley to the free atmosphere evaluated from idealized simulations. One key goal is to determine the dependency of the vertical heat flux in a valley on the incoming solar radiation. For this purpose, we conducted large eddy simulations with the Weather Research and Forecasting (WRF) model in an idealized valley. An idealized radiation formulation has been used and simulations for different magnitude of incoming short-wave radiation were carried out. The chosen valley geometry consists of two sine-shaped mountain ridges which form a 20 km wide and 40 km long valley with a flat valley floor. As the terrain is homogeneous in the along-valley direction and periodic boundary conditions are used, only slope winds but no valley winds evolve. The incoming short-wave radiation is defined using a simple sine function with amplitude A during the day and a value of zero during the night, while long-wave outgoing radiation is calculated using the Angstrom formula. This gives the advantage to have a single parameter, the amplitude A to vary the incoming solar radiation instead of tree pa rameters (albedo, latitude and date) using a radiation scheme. However, control experiments using the Rapid Radiation Transfer Model (RRTM) were performed as well. Parametrizations for surface-atmosphere exchange processes were used and the initial vertical profiles are characterized by a constant buoyancy frequency, a

  1. The influence of Congo River discharges in the surface and deep layers of the Gulf of Guinea

    NASA Astrophysics Data System (ADS)

    Vangriesheim, Annick; Pierre, Catherine; Aminot, Alain; Metzl, Nicolas; Baurand, François; Caprais, Jean-Claude

    2009-12-01

    The main feature of the Congo-Angola margin in the Gulf of Guinea is the Congo (ex-Zaire) deep-sea fan composed of a submarine canyon directly connected to the Congo River, a channel and a [sediment] lobe area. During the multi-disciplinary programme called BIOZAIRE conducted by Ifremer from 2000 to 2005, two CTD-O 2 sections with discrete water column samples were performed (BIOZAIRE3 cruise: 2003-2004) to study the influence of the Congo River discharges, both in the surface layer and in the deep and near-bottom layers. The surface layer water is greatly diluted with river water that has a heavy particle load. The deep layer is affected by episodic turbidity currents that flow in the deep Congo channel and reach deep areas far from the coast. Previous studies revealed deep anomalies in oxygen (deficit) and nutrient (excess) concentrations at ˜4000 m depth and assumed that they resulted from mineralisation of the particulate organic matter from the Congo River. The BIOZAIRE3 sections were designed to explore these phenomena in more detail near the Congo channel. Oxygen and nutrients were measured as well as additional parameters, including stable isotopes of oxygen and carbon, dissolved inorganic carbon and pH. For the surface layer, the effect of the Congo River was studied with reference to salinity. Deviations from the theoretical dilution of various inorganic solutes suggested the occurrence of mineralisation and consumption processes. For the deep layer, the network of CTD-O 2 stations gave a more detailed description of the deep anomalies than in previous studies. From the east-west section, anomalies appeared on the bottom at 4000 m depth and became slightly shallower when they spread to the west. They were also present north and south on the bottom along the 4000 m isobath. In these deep waters, the decrease in the δ 13C values of dissolved inorganic carbon confirmed that the mineralisation of organic matter plays a role in generating these anomalies

  2. Influence of layer charge and charge location on the swelling pressure of dioctahedral smectites

    NASA Astrophysics Data System (ADS)

    Sun, Linlin; Ling, Chian Ye; Lavikainen, Lasse P.; Hirvi, Janne T.; Kasa, Seppo; Pakkanen, Tapani A.

    2016-07-01

    Swelling pressure of dioctahedral smectites in the montmorillonite - beidellite series was investigated by molecular dynamics simulations. The pressure was found to correlate inversely with the magnitude of the layer charge in the range of -0.5 to -1.0 per unit cell. The beidellite type smectites were found to have lower swelling pressure than the montmorillonite type smectites. A clear effect of the type of interlayer cations on the swelling pressure was found. The sodium smectites sustained significant pressure even at longer interlayer distances, while in calcium smectites the pressure decreased soon after the initial swelling. The simulation results are in good agreement with experimental observations and provide a tool for predicting macroscopic swelling behavior in smectites.

  3. Influences of the colonic microbiome on the mucous gel layer in ulcerative colitis

    PubMed Central

    Lennon, Gráinne; Balfe, Áine; Earley, Helen; Devane, Liam A; Lavelle, Aonghus; Winter, Desmond C; Coffey, J Calvin; O'Connell, P Ronan

    2014-01-01

    The colonic mucus gel layer (MGL) is a critical component of the innate immune system acting as a physical barrier to microbes, luminal insults, and toxins. Mucins are the major component of the MGL. Selected microbes have the potential to interact with, bind to, and metabolize mucins. The tolerance of the host to the presence of these microbes is critical to maintaining MGL homeostasis. In disease states such as ulcerative colitis (UC), both the mucosa associated microbes and the constituent MGL mucins have been shown to be altered. Evidence is accumulating that implicates the potential for mucin degrading bacteria to negatively impact the MGL and its stasis. These effects appear more pronounced in UC.   This review is focused on the host-microbiome interactions within the setting of the MGL. Special focus is given to the mucolytic potential of microbes and their interactions in the setting of the colitic colon. PMID:24714392

  4. Influences and interactions of inundation, peat, and snow on active layer thickness: Modeling Archive

    DOE Data Explorer

    Scott Painter; Ethan Coon; Cathy Wilson; Dylan Harp; Adam Atchley

    2016-04-21

    This Modeling Archive is in support of an NGEE Arctic publication currently in review [4/2016]. The Advanced Terrestrial Simulator (ATS) was used to simulate thermal hydrological conditions across varied environmental conditions for an ensemble of 1D models of Arctic permafrost. The thickness of organic soil is varied from 2 to 40cm, snow depth is varied from approximately 0 to 1.2 meters, water table depth was varied from -51cm below the soil surface to 31 cm above the soil surface. A total of 15,960 ensemble members are included. Data produced includes the third and fourth simulation year: active layer thickness, time of deepest thaw depth, temperature of the unfrozen soil, and unfrozen liquid saturation, for each ensemble member. Input files used to run the ensemble are also included.

  5. The influence of Nunataks on atmospheric boundary layer convection during summer in Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Stenmark, Aurora; Hole, Lars Robert; Voss, Paul; Reuder, Joachim; Jonassen, Marius O.

    2014-06-01

    The effects of nunataks on temperature profiles and wind patterns are studied using simulations from the Weather Research and Forecasting model. Simulations are compared to hourly observations from an automatic weather station located at the Troll Research Station in Dronning Maud Land. Areas of bare ground have been implemented in the model, and the simulations correspond well with meteorological measurements acquired during the 4 day simulation period. The nunataks are radiatively heated during daytime, and free convection occurs in the overlying atmospheric boundary layer. The inflow below the updraft forces strong horizontal convergence at the surface, whereas weaker divergence appears aloft. In a control run with a completely ice-covered surface, the convection is absent. In situ observations carried out by a remotely controlled balloon and a small model airplane compare well with model temperature profiles, but these are only available over the ice field upwind to the nunatak.

  6. Influence of Lithium Solutes on Double-Layer Structure of Ionic Liquids.

    PubMed

    Smith, Alexander M; Perkin, Susan

    2015-12-01

    The ionic liquid-electrode interface has attracted much recent interest owing to its importance for development of energy storage devices; however, the important step of adding electro-active ions is not yet well understood at the molecular level. Using direct force measurements across confined electrolyte films, we study the effect of added lithium-ion solute on the double-layer structure of an ionic liquid electrolyte with molecular resolution. We find anionic clusters involving lithium can persist adjacent to the surfaces, and in many cases, this inhibits direct adsorption of lithium ions to the negative surface. Two apparently similar ionic liquid solvents show diverging properties, with one facilitating and the other preventing direct Li-ion adsorption onto the negative surface. The results have implications for the selection of ionic liquids as electrolytes in lithium-ion batteries. PMID:26580815

  7. Leaf Area Influence on Surface Layer in a Deciduous Forest. Part I; Site Description

    NASA Technical Reports Server (NTRS)

    Sakai, Ricardo K.; Fitzjarrald, David R.; Moore, Kathleen E.; Sicker, John W.; Munger, William; Goulden, Michael L.; Wofsy, Steven C.

    1996-01-01

    A study over a deciduous forest located in middle Massachusetts (USA) has been performed to examine the role of leaves in the forest-atmosphere interaction. Due to the seasonal presence of leaves, a deciduous forest is a 'good laboratory' to study this interaction. In this first part, a description of a 30 m micrometeorological tower as well a qualitative description of some meteorological parameters are presented. The presence of leaves affects the forest in several ways. There is a decrease of upward PAR (Photosynthetically Active Radiation) due to absorption of visible light in the canopy. Water vapor concentration increases, and the CO2 concentration decreases in the surface layer as the canopy starts to be foliated. The physical presence of the leaves is felt in other quantities such as the global albedo and the subcanopy environment.

  8. Influence of the dissipation mechanism on collisionless magnetic reconnection in symmetric and asymmetric current layers

    SciTech Connect

    Aunai, Nicolas; Hesse, Michael; Black, Carrie; Evans, Rebekah; Kuznetsova, Maria

    2013-04-15

    Numerical studies implementing different versions of the collisionless Ohm's law have shown a reconnection rate insensitive to the nature of the non-ideal mechanism occurring at the X line, as soon as the Hall effect is operating. Consequently, the dissipation mechanism occurring in the vicinity of the reconnection site in collisionless systems is usually thought not to have a dynamical role beyond the violation of the frozen-in condition. The interpretation of recent studies has, however, led to the opposite conclusion that the electron scale dissipative processes play an important dynamical role in preventing an elongation of the electron layer from throttling the reconnection rate. This work re-visits this topic with a new approach. Instead of focusing on the extensively studied symmetric configuration, we aim to investigate whether the macroscopic properties of collisionless reconnection are affected by the dissipation physics in asymmetric configurations, for which the effect of the Hall physics is substantially modified. Because it includes all the physical scales a priori important for collisionless reconnection (Hall and ion kinetic physics) and also because it allows one to change the nature of the non-ideal electron scale physics, we use a (two dimensional) hybrid model. The effects of numerical, resistive, and hyper-resistive dissipation are studied. In a first part, we perform simulations of symmetric reconnection with different non-ideal electron physics. We show that the model captures the already known properties of collisionless reconnection. In a second part, we focus on an asymmetric configuration where the magnetic field strength and the density are both asymmetric. Our results show that contrary to symmetric reconnection, the asymmetric model evolution strongly depends on the nature of the mechanism which breaks the field line connectivity. The dissipation occurring at the X line plays an important role in preventing the electron current layer

  9. The influence of mobile phase demixion on thin-layer chromatographic enantioseparation of ibuprofen and naproxen.

    PubMed

    Sajewicz, Mieczysław; Kaczmarski, Krzysztof; Gontarska, Monika; Kiszka, Sylwia; Kowalska, Teresa

    2007-09-01

    In our earlier article we presented the results of tracing the enantioseparation of the two test analytes (ibuprofen and naproxen) by means of video densitometry and scanning densitometry. In that way we demonstrated an excellent performance of this combined approach to the thin-layer chromatographic detection in the area of enantioseparation. In this paper we study an impact of the four different mobile phases on the enantioseparation of the scalemic mixtures of ibuprofen and naproxen on the silica gel layers impregnated with L-arginine as chiral selector. The main component of all the investigated mobile phases is 2-propanol. Mobile phase 1 consists of pure 2-propanol, while mobile phases 2-4 contain, respectively, ca. 0.66, 1.32, and 1.98 g/L of glacial acetic acid in 2-propanol. Acetic acid is used to protonate L-arginine, as the involved retention mechanism consists of the ion pair formation between L-arginine in the cationic form and the chiral 2-arylpropionic acids (2-APAs), ibuprofen and naproxen, in the anionic form. It is shown that in the absence of glacial acetic acid no enantioseparation can be obtained. Then with adding of 0.66 g/L glacial acetic acid partial enantioseparation of the naproxen and ibuprofen antimers is obtained, with a simultaneous effect of the mobile phase demixion. With the amount of acetic acid increasing, the effect of demixion becomes increasingly perceptible. In that case the displacement effect is observed (and mathematically modeled), which results in compressing of the antimer pairs by the second front of mobile phase. The obtained results allow a deeper insight into the mechanism of enantioseparation with the two test 2-APAs. A combined impact of the crystalline chirality of silica gel and the molecular chirality of L-arginine on the vertical and the horizontal enantioseparation of ibuprofen and naproxen is also discussed. PMID:18019559

  10. The influence of growth conditions on the surface morphology and development of mechanical stresses in Al(Ga)N layers during metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Lundin, W. V.; Zavarin, E. E.; Brunkov, P. N.; Yagovkina, M. A.; Troshkov, S. I.; Sakharov, A. V.; Nikolaev, A. E.; Tsatsulnikov, A. F.

    2016-04-01

    We have studied the influence of technological parameters on the surface morphology and development of mechanical stresses in Al(Ga)N layers during their growth by metalorganic vapor phase epitaxy (MOVPE) on sapphire substrates. Minimization of tensile stresses under conditions of a retained atomically smooth surface can be achieved by using a combination of factors including (i) nitridation of substrate in ammonia flow, (ii) formation of two-layer AlN-Al(Ga)N structures by introducing a small amount (several percent) of Ga after growth of a thin AlN layer, and (iii) reduction of ammonia flow during growth of an Al(Ga)N layer.

  11. Influence of free-stream disturbances on boundary-layer transition

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.

    1978-01-01

    Considerable experimental evidence exists which shows that free stream disturbances (the ratio of root-mean-square pressure fluctuations to mean values) in conventional wind tunnels increase with increasing Mach number at low supersonic to moderate hypersonic speeds. In addition to local conditions, the free stream disturbance level influences transition behavior on simple test models. Based on this observation, existing noise transition data obtained in the same test facility were correlated for a large number of reference sharp cones and flat plates and are shown to collapse along a single curve. This result is a significant improvement over previous attempts to correlate noise transition data.

  12. Aerosol properties and their influences on marine boundary layer cloud condensation nuclei at the ARM mobile facility over the Azores

    NASA Astrophysics Data System (ADS)

    Logan, Timothy; Xi, Baike; Dong, Xiquan

    2014-04-01

    A multiplatform data set from the Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (MBL) Graciosa, Azores, 2009-2010 field campaign was used to investigate how continental aerosols can influence MBL cloud condensation nuclei (CCN) number concentration (NCCN). The seasonal variations of aerosol properties have shown that the winter and early spring months had the highest mean surface wind speed (> 5 m s-1) and greatest contribution of sea salt to aerosol optical depth (AOD), while continental fine mode aerosols were the main contributors to AOD during the warm season months (May-September). Five aerosol events consisting of mineral dust, pollution, biomass smoke, and volcanic ash particles were selected as case studies using Atmospheric Radiation Measurement (ARM) mobile facility measurements. The aerosols in Case I were found to primarily consist of coarse mode, Saharan mineral dust. For Case II, the aerosols were also coarse mode but consisted of volcanic ash. Case III had fine mode biomass smoke and pollution aerosol influences while Cases IV and V consisted of mixtures of North American pollution and Saharan dust that was advected by an extratropical cyclone to the Azores. Cases I, IV, and V exhibited weak correlations between aerosol loading and NCCN due to mineral dust influences, while Cases II and III had a strong relationship with NCCN likely due to the sulfate content in the volcanic ash and pollution particles. The permanent Eastern North Atlantic ARM facility over the Azores will aid in a future long-term study of aerosol effects on NCCN.

  13. On the Offshore Advection of Boundary-Layer Structures and the Influence on Offshore Wind Conditions

    NASA Astrophysics Data System (ADS)

    Dörenkämper, Martin; Optis, Michael; Monahan, Adam; Steinfeld, Gerald

    2015-06-01

    The coastal discontinuity imposes strong signals to the atmospheric conditions over the sea that are important for wind-energy potential. Here, we provide a comprehensive investigation of the influence of the land-sea transition on wind conditions in the Baltic Sea using data from an offshore meteorological tower, data from a wind farm, and mesoscale model simulations. Results show a strong induced stable stratification when warm inland air flows over a colder sea. This stratification demonstrates a strong diurnal pattern and is most pronounced in spring when the land-sea temperature difference is greatest. The strength of the induced stratification is proportional to this parameter and inversely proportional to fetch. Extended periods of stable stratification lead to increased influence of inertial oscillations and increased frequency of low-level jets. Furthermore, heterogeneity in land-surface roughness along the coastline is found to produce pronounced horizontal streaks of reduced wind speeds that under stable stratification are advected several tens of kilometres over the sea. The intensity and length of the streaks dampen as atmospheric stability decreases. Increasing sea surface roughness leads to a deformation of these streaks with increasing fetch. Slight changes in wind direction shift the path of these advective streaks, which when passing through an offshore wind farm are found to produce large fluctuations in wind power. Implications of these coastline effects on the accurate modelling and forecasting of offshore wind conditions, as well as damage risk to the turbine, are discussed.

  14. The influence of radiation-induced vacancy on the formation of thin-film of compound layer during a reactive diffusion process

    NASA Astrophysics Data System (ADS)

    Akintunde, S. O.; Selyshchev, P. A.

    2016-05-01

    A theoretical approach is developed that describes the formation of a thin-film of AB-compound layer under the influence of radiation-induced vacancy. The AB-compound layer is formed as a result of a chemical reaction between the atomic species of A and B immiscible layers. The two layers are irradiated with a beam of energetic particles and this process leads to several vacant lattice sites creation in both layers due to the displacement of lattice atoms by irradiating particles. A- and B-atoms diffuse via these lattice sites by means of a vacancy mechanism in considerable amount to reaction interfaces A/AB and AB/B. The reaction interfaces increase in thickness as a result of chemical transformation between the diffusing species and surface atoms (near both layers). The compound layer formation occurs in two stages. The first stage begins as an interfacial reaction controlled process, and the second as a diffusion controlled process. The critical thickness and time are determined at a transition point between the two stages. The influence of radiation-induced vacancy on layer thickness, speed of growth, and reaction rate is investigated under irradiation within the framework of the model presented here. The result obtained shows that the layer thickness, speed of growth, and reaction rate increase strongly as the defect generation rate rises in the irradiated layers. It also shows the feasibility of producing a compound layer (especially in near-noble metal silicide considered in this study) at a temperature below their normal formation temperature under the influence of radiation.

  15. Influence of the mole penetrator on measurements of heat flow in lunar subsurface layers

    NASA Astrophysics Data System (ADS)

    Wawrzaszek, Roman; Drogosz, Michal; Seweryn, Karol; Banaszkiewicz, Marek; Grygorczuk, Jerzy

    Measuring the thermal gradient in subsurface layers is a basic method of determination the heat flux from the interior of a planetary body to its surface. In case of the Moon, such measurements complemented with the results of theoretical analysis and modeling can significantly improve our understanding of the thermal and geological evolution of the Moon. In practice, temperature gradient measurements are performed by at least two sensors located at different depths under the surface. These sensors will be attached to a penetrator [1] or to a cable pulled behind the penetrator. In both cases the object that carries the sensors, e.g. penetrator, perturb temperature measurements. In our study we analyze a case of two thermal sensors attached to the ends of 350mm long penetrator made of a composite material. In agreement with the studies of other authors we have found that the penetrator should be placed at the depth of 2-3 meters, where periodic changes of the temperature due to variation of solar flux at the surface are significantly smaller than the error of temperature measurement. The most important result of our analysis is to show how to deconvolve the real gradient of the temperature from the measurements perturbed by the penetrator body. In this way it will be possible to more accurately determine heat flux in the lunar regolith. [1] Grygorczuk J., Seweryn K., Wawrzaszek R., Banaszkiewicz M., Insertion of a Mole Pene-trator -Experimental Results, /39th Lunar and Planetary Science Conference /League City, Texas 2008

  16. Influence of ionic strength on the surface charge and interaction of layered silicate particles.

    PubMed

    Liu, Jing; Miller, Jan D; Yin, Xihui; Gupta, Vishal; Wang, Xuming

    2014-10-15

    The surface charge densities and surface potentials of selected phyllosilicate surfaces were calculated from AFM surface force measurements and reported as a function of ionic strength at pH 5.6. The results show that the silica faces of clay minerals follow the constant surface charge model because of isomorphous substitution in the silica tetrahedral layer. A decreasing surface charge density sequence was observed as follows: muscovite silica face>kaolinite silica face>talc silica face, which is expected to be due to the extent of isomorphous substitution. In contrast, at pH 5.6, the alumina face and the edge surface of kaolinite follow the constant surface potential model with increasing ionic strength, and the surface charge density increased with increasing ionic strength. The cluster size of suspended kaolinite particles at pH 5.6 was found to increase with increasing ionic strength due to an increase in the surface charge density for the alumina face and the edge surface. However, the cluster size decreased at 100mM KCl as a result of an unexpected decrease in the surface charge of the alumina face. When the ionic strength continued to increase above 100mM KCl, the van der Waals attraction dominated and larger clusters of micron size were stabilized. PMID:25086721

  17. Influence of topography on the temperature variation around the tropical tropopause layer

    NASA Astrophysics Data System (ADS)

    Kubokawa, H.; Masaki, S.; Fujiwara, M.; Suzuki, J.

    2015-12-01

    Temperature variations in the Tropical Tropopause Layer (TTL) are an important factor for dehydration in the UTLS region. It is known that Kelvin waves induce large temperature variations in the TTL. We investigated the temperature variations in the TTL using both numerical data produced by the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) and various observational data including satellite data (the Constellation Observing System for Meteorology, Ionosphere, and Climate; COSMIC), the reanalysis data of different resolution (ERA-40-interim, NCEP-CFSR, MERRA, YOTC-ECMWF), and radiosonde data for the Cooperative Indian Ocean experiment on intra-seasonal variability in the Year 2011 (CINDY). We found that all the data shows that the temperature variations become larger over the mountainous regions of the Indonesian maritime continent than over the oceanic regions and that the large temperature variations are associated with Kelvin waves. As, the horizontal resolution of the reanalysis becomes higher, the standard deviations of the TTL temperature near the mountains became larger. When Kelvin waves passed over the Indonesian maritime continent, the amplitude of temperature becomes about 2 K larger over the mountainous regions. The power spectrum for the periods between 7 days and 12 days was larger over the mountainous regions compared with that over the ocean. The sensitivity study using the stretch-NICAM shows that the height of mountains clearly affect the amplitude of temperature near the TTL.

  18. Electroviscoelastic Instability of a Kelvin Fluid Layer Influenced by a Periodic Electric Force.

    PubMed

    Mohamed; Elshehawey; El-Dib

    1998-11-01

    The electroviscoelastic stability of a Kelvin fluid layer is discussed in the presence of the field periodicity. The surface elevations are governed by two transcendental coupled equations of Mathieu type which have not been attempted before. Analysis for the surface waves in axisymmetric modes and antisymmetric deformation which are governed by a single transcendental Mathieu equation is considered. The method of multiple scales expansion is applied to the stability analysis. The solution and the characteristic curves are obtained analytically. It is shown that the region between the two branches of the characteristic curves is unstable, whereas all points which lie outside the characteristic curves are stable. The special case of large viscosity is introduced for numerical calculations. It is found that the increase of kinematic viscosity, field frequency, and the elasticity parameter possesses a dual role in a damping nature. The phenomena of the coupled resonance is observed. The resonance region and the resonance points are functions of viscosity, elasticity, and field frequency, with nonlinear relations in the wavenumber. Copyright 1998 Academic Press. PMID:9778390

  19. Concentration-depleted layers due to colloidal force and its influence on the xanthan fractionation

    SciTech Connect

    Myungsuk Chun; Park, O.O.; Seungman Yang . Dept. of Chemical Engineering)

    1993-11-01

    This paper considers the entropic and colloidal interactions between rodlike polymers and a nearby boundary in a narrow channel of confined space. A theoretical model has been developed to predict both the concentration depletion profile and the chain configuration of thin rod polymers relative to the boundary. This model is shown to accurately predict the concentration profile of rodlike polymers in a confined space without any adjustable parameters. As the ionic strength is decreased, the predicted concentration profile shifts toward the center region due to the increase in repulsive colloidal force, so that the mean depleted layer becomes enlarged. For illustration, capillary hydrodynamic fractionations of anionic xanthan polyelectrolyte with eluants of various ionic strengths were also carried out experimentally. The ionic strength affects the conformational properties of xanthan molecules, which modifies the electrostatic interaction potential. When the eluant velocity is sufficiently low, the velocity enhancement factor x (i.e., the ratio of average polymer velocity to eluant velocity) decreases as the ionic strength of the eluant is increased, which is in good agreement with the predicted results. For a higher eluant velocity, on the other hand, the theoretical prediction loses its accuracy due to the hydrodynamic force effect on xanthan motion, which will be examined in the forthcoming study.

  20. Influence of hydrophobic treatment on the structure of compressed gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Tötzke, C.; Gaiselmann, G.; Osenberg, M.; Arlt, T.; Markötter, H.; Hilger, A.; Kupsch, A.; Müller, B. R.; Schmidt, V.; Lehnert, W.; Manke, I.

    2016-08-01

    Carbon fiber based felt materials are widely used as gas diffusion layer (GDL) in fuel cells. Their transport properties can be adjusted by adding hydrophobic agents such as polytetrafluoroethylene (PTFE). We present a synchrotron X-ray tomographic study on the felt material Freudenberg H2315 with different PTFE finishing. In this study, we analyze changes in microstructure and shape of GDLs at increasing degree of compression which are related to their specific PTFE load. A dedicated compression device mimicking the channel-land pattern of the flowfield is used to reproduce the inhomogeneous compression found in a fuel cell. Transport relevant geometrical parameters such as porosity, pore size distribution and geometric tortuosity are calculated and consequences for media transport discussed. PTFE finishing results in a marked change of shape of compressed GDLs: surface is smoothed and the invasion of GDL fibers into the flow field channel strongly mitigated. Furthermore, the PTFE impacts the microstructure of the compressed GDL. The number of available wide transport paths is significantly increased as compared to the untreated material. These changes improve the transport capacity liquid water through the GDL and promote the discharge of liquid water droplets from the cell.

  1. The Barrier Layer of the Atlantic Warmpool: Formation Mechanism and Influence on the Mean Climate

    SciTech Connect

    Balaguru, Karthik; Chang, P.; Saravanan, R.; Jang, C. J.

    2012-04-20

    Many Coupled General Circulation Models (CGCMs) tend to overestimate the salinity in the Atlantic warm pool or the Northwestern Tropical Atlantic (NWTA) and underestimate the surface salinity in the subtropical salinity maxima region. Most of these models also suffer from a sea-surface temperature (SST) bias in the NWTA region, leading to suggestions that the upper ocean salinity stratification may need to be improved in order to improve the Barrier Layer (BL) simulations and thus the SST through BL-SST-Intertropical Convergence Zone (ITCZ) feedbacks. In the present study, we use a CGCM to perform a set of idealized numerical experiments to test and understand the sensitivity of the BL and consequently SST in the NWTA region to freshwater flux and hence the upper ocean salinity stratification. We find that the BL of the NWTA is sensitive to upper ocean salinity changes in the Amazon river discharge region and the subtropical salinity maxima region. The BL phenomenon is further manifested by the formation of winter temperature inversions in our model simulations, the maximum magnitude of inversions being about 0.20 C. The atmo- spheric response causes a statistically significant reduction of mean precipitation and SST in the equatorial Atlantic region and helps improve the respective biases by 10-15 %. In the region of improved BL simulation, the SST change is positive and in the right direction of bias correction, albeit weak.

  2. Influence of pyrogenic particles on the micromechanical behavior of thin sol-gel layers.

    PubMed

    Schönstedt, B; Garnweitner, G; Barth, N; Mühlmeister, A; Kwade, A

    2011-07-01

    Coatings based on sol-gel technology with different types of nanoparticles embedded into the sol-gel matrix were fabricated, and the resulting properties were investigated. Pyrogenic silica nanoparticles were added to the sol before coating. The silica particles varied in primary particle size and agglomerate size, and in their surface modification. The particles were wetted in ethanol and dispersed to certain finenesses. The difference in agglomerate size was partly caused by varying particle types, but also by the dispersing processes that were applied to the particles. The resulting coatings were examined by visual appearance and SEM microscopy. Furthermore, their micromechanical properties were determined by nanoindentation. The results show an important influence from the added nanoparticles and their properties on the visual appearance as well as the micromechanical behavior of the sol-gel coatings. It is shown that, in fact, the particle size distribution can have a major impact on the coating properties as well as the surface modification. PMID:21630652

  3. The influence of subgrid surface-layer variability on vertical transport of a chemical species in a convective environment

    NASA Astrophysics Data System (ADS)

    Devine, G. M.; Carslaw, K. S.; Parker, D. J.; Petch, J. C.

    2006-08-01

    We use a 2-D cloud-resolving model over a 256 km domain to examine the influence of subgrid-scale processes on the concentration and vertical transport of a chemical species (dimethyl sulphide, or DMS) in a deep convective marine environment. Two issues are highlighted. Firstly, deriving fluxes using a spatially averaged surface wind representative of a global model reduces the domain-mean DMS concentration by approximately 50%. Emission of DMS from the surface is greater in the CRM because it resolves the localized intense winds embedded in the dynamical structure of convective systems. Secondly, we find that the spatial pattern of DMS concentration in the boundary layer is positively correlated with the pattern of convective updraughts. Using a mean concentration field reduces transport to the upper troposphere by more than 50%. The explanation is that secondary convection occurs preferentially on the edges of cold pools, where DMS concentrations are higher than the domain mean.

  4. In vitro corrosion of pure magnesium and AZ91 alloy-the influence of thin electrolyte layer thickness.

    PubMed

    Zeng, Rong-Chang; Qi, Wei-Chen; Zhang, Fen; Li, Shuo-Qi

    2016-03-01

    In vivo degradation predication faces a huge challenge via in vitro corrosion test due to the difficulty for mimicking the complicated microenvironment with various influencing factors. A thin electrolyte layer (TEL) cell for in vitro corrosion of pure magnesium and AZ91 alloy was presented to stimulate the in vivo corrosion in the micro-environment built by the interface of the implant and its neighboring tissue. The results demonstrated that the in vivo corrosion of pure Mg and the AZ91 alloy was suppressed under TEL condition. The AZ91 alloy was more sensitive than pure Mg to the inhibition of corrosion under a TEL thickness of less than 200 µm. The TEL thickness limited the distribution of current, and thus localized corrosion was more preferred to occur under TEL condition than in bulk solution. The TEL cell might be an appropriate approach to simulating the in vivo degradation of magnesium and its alloys. PMID:26816655

  5. Influence of Shielding Gas and Mechanical Activation of Metal Powders on the Quality of Surface Sintered Layers

    NASA Astrophysics Data System (ADS)

    Saprykina, N. A.; Saprykin, A. A.; Arkhipova, D. A.

    2016-04-01

    The thesis analyses the influence of argon shielding gas and mechanical activation of PMS-1 copper powder and DSK-F75 cobalt chrome molybdenum powder on the surface sintered layer quality under various sintering conditions. Factors affecting the quality of the sintered surface and internal structure are studied. The obtained results prove positive impact of the shielding gas and mechanical activation. Sintering PMS-1 copper powder in argon shielding gas after mechanical activation leads to reduced internal stresses and roughness, as well as improved strength characteristics of the sintered surface. Analysis of sintered samples of mechanically activated DSK-F75 cobalt chrome molybdenum powder shows that the strength of the sintered surface grows porosity and coagulation changes.

  6. The influence of nickel layer thickness on microhardness and hydrogen sorption rate of commercially pure titanium alloy

    NASA Astrophysics Data System (ADS)

    Kudiiarov, V. N.; Kashkarov, E. B.; Syrtanov, M. S.; Yugova, I. S.

    2016-02-01

    The influence of nickel coating thickness on microhardness and hydrogen sorption rate by commercially pure titanium alloy was established in this work. Coating deposition was carried out by magnetron sputtering method with prior ion cleaning of surface. It was shown that increase of sputtering time from 10 to 50 minutes leads to increase coating thickness from 56 to 3.78 μm. It was established that increase of nickel coating thickness leads to increase of microhardness at loads less than 0.5 kg. Microhardness values for all samples are not significantly different at loads 1 kg. Hydrogen content in titanium alloy with nickel layer deposited at 10 and 20 minutes exceeds concentration in initial samples on one order of magnitude. Further increasing of deposition time of nickel coating leads to decreasing of hydrogen concentration in samples due to coating delamination in process of hydrogenation.

  7. Influence of the oxide layer for growth of self-assisted InAs nanowires on Si(111)

    PubMed Central

    2011-01-01

    The growth of self-assisted InAs nanowires (NWs) by molecular beam epitaxy (MBE) on Si(111) is studied for different growth parameters and substrate preparations. The thickness of the oxide layer present on the Si(111) surface is observed to play a dominant role. Systematic use of different pre-treatment methods provides information on the influence of the oxide on the NW morphology and growth rates, which can be used for optimizing the growth conditions. We show that it is possible to obtain 100% growth of vertical NWs and no parasitic bulk structures between the NWs by optimizing the oxide thickness. For a growth temperature of 460°C and a V/III ratio of 320 an optimum oxide thickness of 9 ± 3 Å is found. PMID:21880130

  8. In vitro corrosion of pure magnesium and AZ91 alloy—the influence of thin electrolyte layer thickness

    PubMed Central

    Zeng, Rong-Chang; Qi, Wei-Chen; Zhang, Fen; Li, Shuo-Qi

    2016-01-01

    In vivo degradation predication faces a huge challenge via in vitro corrosion test due to the difficulty for mimicking the complicated microenvironment with various influencing factors. A thin electrolyte layer (TEL) cell for in vitro corrosion of pure magnesium and AZ91 alloy was presented to stimulate the in vivo corrosion in the micro-environment built by the interface of the implant and its neighboring tissue. The results demonstrated that the in vivo corrosion of pure Mg and the AZ91 alloy was suppressed under TEL condition. The AZ91 alloy was more sensitive than pure Mg to the inhibition of corrosion under a TEL thickness of less than 200 µm. The TEL thickness limited the distribution of current, and thus localized corrosion was more preferred to occur under TEL condition than in bulk solution. The TEL cell might be an appropriate approach to simulating the in vivo degradation of magnesium and its alloys. PMID:26816655

  9. Influence of urban morphometric modification on regional boundary-layer dynamics

    NASA Astrophysics Data System (ADS)

    Chan, Allen; Fung, Jimmy C. H.; Lau, Alexis K. H.

    2013-04-01

    Fidelity in simulating urban boundary-layer (UBL) physics is recognized to prescribe the prognostic skill of subsequent regional air pollutant transport modeling. Conventional mesoscale meteorological models (MMM) deployed over the South China coast among urban locales have often yielded positive bias in surface wind speed. This bias has been hypothetically attributed to model parameterizations that yield inaccurate meteorological predictions due to underrepresentation of urban aerodynamic roughness. Chemical transport model (CTM) simulations that are forced by the overestimated UBL wind field may undergo excessive advection which results in negative bias in predicted pollutant concentration. This study aimed to corroborate the proposed causality between parameterized urban morphometry and UBL meteorology. Focus was placed on the urban meteorological adjustments induced by urban morphometry modifications rather than prediction improvements attributable to urban canopy parameterization (UCP). Case studies were devised to assess the sensitivity of an urban-meteorology model to a pervasive, region-wide urban morphometry modification. Performance of a UCP scheme was evaluated for the Pearl River Delta (PRD) region, a meso- β-scale subtropical coastal megalopolis. To benchmark the limits of UBL adjustments that were predominantly attributable to urban morphometric transformation, numerical experiments were conducted against two urban fabrics of vastly dissimilar morphometric compositions, each occupying identical topographic tracts. Differences in the diurnal evolution of UBL structure and in the mean and turbulent flow characteristics were analyzed. This UCP sensitivity study suggests that improved urban morphological realism is able to reduce positive wind speed bias observed in conventional mesoscale meteorological models when applied to the PRD region.

  10. Influence of polymeric electron injection layers on the electrical properties of solution-processed multilayered polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Itoh, Eiji; Kurami, Kazuhiko

    2016-02-01

    In this study, we fabricated multilayered polymer-based light-emitting diodes (pLEDs) with various solution-processed electron-injection layers (EILs), and investigated the influence of the EILs on the electrical properties of pLEDs in indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonic acid) (PEDOT:PSS)/poly[(9,9-dioctylfluorene-alt-(1,4-phenylene((4-sec-butylphenyl)amino)-1,4-phenylene))] (TFB) (HTL)/poly(9,9-dioctylfluorene-alt-1,4-benzothiadiazole) (F8BT) (EML)/EIL/Al structures. We have used the quaternized ammonium π-conjugated polyelectrolyte derivative (poly[(9,9-di(3,3‧-N,N‧-trimethylammonium)propylfluorenyl-2,7-diyl)-co-(1,4-phenylene)]diiodide salt) (PF-PDTA), a mixture of PF-PDTA and CS2CO3, and the aliphatic-amine-based polymer poly(ethylene imine) (PEI) as solution-processed EILs, and compared them with LiF as a solvent-free EIL. The EILs enhanced the electron injection and improve the pLED performance. High external quantum efficiencies of nearly 4% were obtained in the pLEDs with the combination of a multilayered structure fabricated by a transfer printing technique and EILs of a PF-PDTA:CS2CO3 mixture and PEI. On the other hand, the device with PF-PDTA exhibited lower efficiency, higher driving voltage, and larger leakage current at lower voltage. The migration of ionic charges was suggested from the abnormal dielectric behaviors, and serious damage on the electrode material occurred when both an acid hole-injection layer (PEDOT:PSS) and PF-PDTA were used. On the other hand, the pLEDs with ultrathin PEI showed high performance and stable device operation in terms of the influence of ionic charges.

  11. Influence of tree cover on herbaceous layer development and carbon and water fluxes in a Portuguese cork-oak woodland

    NASA Astrophysics Data System (ADS)

    Dubbert, Maren; Mosena, Alexander; Piayda, Arndt; Cuntz, Matthias; Correia, Alexandra Cristina; Pereira, Joao Santos; Werner, Christiane

    2014-08-01

    Facilitation and competition between different vegetation layers may have a large impact on small-scale vegetation development. We propose that this should not only influence overall herbaceous layer yield but also species distribution and understory longevity, and hence the ecosystems carbon uptake capacity especially during spring. We analyzed the effects of trees on microclimate and soil properties (water and nitrate content) as well as the development of an herbaceous community layer regarding species composition, aboveground biomass and net water and carbon fluxes in a cork-oak woodland in Portugal, between April and November 2011. The presence of trees caused a significant reduction in photosynthetic active radiation of 35 mol m-2 d-1 and in soil temperature of 5 °C from April to October. At the same time differences in species composition between experimental plots located in open areas and directly below trees could be observed: species composition and abundance of functional groups became increasingly different between locations from mid April onwards. During late spring drought adapted native forbs had significantly higher cover and biomass in the open area while cover and biomass of grasses and nitrogen fixing forbs was highest under the trees. Further, evapotranspiration and net carbon exchange decreased significantly stronger under the tree crowns compared to the open during late spring and the die back of herbaceous plants occurred earlier and faster under trees. This was most likely caused by interspecific competition for water between trees and herbaceous plants, despite the more favorable microclimate conditions under the trees during the onset of summer drought.

  12. From single to multiple TiO{sub 2} nanotubes layers: Analysis of the parameters which influence the growth

    SciTech Connect

    Scaramuzzo, Francesca A. Pasquali, Mauro; Mura, Francesco; Dell’Era, Alessandro

    2015-06-23

    Highly-ordered vertically oriented TiO{sub 2} nanotube arrays (TiO{sub 2} NTs) are widely exploited in many different fields such as catalysis, electronics and biomedicine. TiO{sub 2} NTs can be synthetized by a number of methods; however, the synthesis via anodization in a fluoride-based electrolyte, proposed for the first time in 2001, has been proved to be the procedure which offers the best control over the nanotube dimensions. In literature, four generations of TiO{sub 2} NTs obtained with different types of anodization baths have been reported, each bath giving rise to TiO{sub 2} NTs with specific morphological features. In this work, we performed the growth of third generation TiO{sub 2} NTs by varying different parameters (i.e. voltage, temperature, anodization time, bath composition) and systematically analyzed their influence on NTs morphology. A deep knowledge of the effect of each parameter allowed their suitable combination in order to obtain double and triple NTs layers with different length and aspect ratio. The proposed method can be applied to synthetize multiple layers with predictable and well-defined features.

  13. The influence of few-layer graphene on the gas permeability of the high-free-volume polymer PIM-1

    PubMed Central

    Althumayri, Khalid; Harrison, Wayne J.; Shin, Yuyoung; Gardiner, John M.; Casiraghi, Cinzia; Bernardo, Paola; Clarizia, Gabriele

    2016-01-01

    Gas permeability data are presented for mixed matrix membranes (MMMs) of few-layer graphene in the polymer of intrinsic microporosity PIM-1, and the results compared with previously reported data for two other nanofillers in PIM-1: multiwalled carbon nanotubes functionalized with poly(ethylene glycol) (f-MWCNTs) and fused silica. For few-layer graphene, a significant enhancement in permeability is observed at very low graphene content (0.05 vol.%), which may be attributed to the effect of the nanofiller on the packing of the polymer chains. At higher graphene content permeability decreases, as expected for the addition of an impermeable filler. Other nanofillers, reported in the literature, also give rise to enhancements in permeability, but at substantially higher loadings, the highest measured permeabilities being at 1 vol.% for f-MWCNTs and 24 vol.% for fused silica. These results are consistent with the hypothesis that packing of the polymer chains is influenced by the curvature of the nanofiller surface at the nanoscale, with an increasingly pronounced effect on moving from a more-or-less spherical nanoparticle morphology (fused silica) to a cylindrical morphology (f-MWCNT) to a planar morphology (graphene). While the permeability of a high-free-volume polymer such as PIM-1 decreases over time through physical ageing, for the PIM-1/graphene MMMs a significant permeability enhancement was retained after eight months storage. PMID:26712643

  14. Layered NaxMnO₂+z in sodium ion batteries-influence of morphology on cycle performance.

    PubMed

    Bucher, Nicolas; Hartung, Steffen; Nagasubramanian, Arun; Cheah, Yan Ling; Hoster, Harry E; Madhavi, Srinivasan

    2014-06-11

    Due to its potential cost advantage, sodium ion batteries could become a commercial alternative to lithium ion batteries. One promising cathode material for this type of battery is layered sodium manganese oxide. In this investigation we report on the influence of morphology on cycle performance for the layered NaxMnO2+z. Hollow spheres of NaxMnO2+z with a diameter of ∼5 μm were compared to flake-like NaxMnO2+z. It was found that the electrochemical behavior of both materials as measured by cyclic voltammetry is comparable. However, the cycle stability of the spheres is significantly higher, with 94 mA h g(-1) discharge capacity after 100 cycles, as opposed to 73 mA h g(-1) for the flakes (50 mA g(-1)). The better stability can potentially be attributed to better accommodation of volume changes of the material due to its spherical morphology, better contact with the added conductive carbon, and higher electrode/electrolyte interface owing to better wetting of the active material with the electrolyte. PMID:24820186

  15. Influence of supraglottal structures on the glottal jet exiting a two-layer synthetic, self-oscillating vocal fold model

    PubMed Central

    Drechsel, James S.; Thomson, Scott L.

    2008-01-01

    A synthetic two-layer, self-oscillating, life-size vocal fold model was used to study the influence of the vocal tract and false folds on the glottal jet. The model vibrated at frequencies, pressures, flow rates, and amplitudes consistent with human phonation, although some differences in behavior between the model and the human vocal folds are noted. High-speed images of model motion and flow visualization were acquired. Phase-locked ensemble-averaged glottal jet velocity measurements using particle image velocimetry (PIV) were acquired with and without an idealized vocal tract, with and without false folds. PIV data were obtained with varying degrees of lateral asymmetric model positioning. Glottal jet velocity magnitudes were consistent with those measured using excised larynges. A starting vortex was observed in all test cases. The false folds interfered with the starting vortex, and in some cases vortex shedding from the false folds was observed. In asymmetric cases without false folds, the glottal jet tended to skew toward the nearest wall; with the false folds, the opposite trend was observed. rms velocity calculations showed the jet shear layer and laminar core. The rms velocities were higher in the vocal tract cases compared to the open jet and false fold cases. PMID:18537394

  16. Molecular aggregation of rhodamine dyes in dispersions of layered silicates: influence of dye molecular structure and silicate properties.

    PubMed

    Bujdák, Juraj; Iyi, Nobuo

    2006-02-01

    The molecular aggregation of six rhodamine dyes (rhodamine 560, B, 3B, 19, 6G, 123) in layered silicate (saponite and fluorohectorite) dispersions was investigated by using visible (vis) spectroscopy. The dye molecular aggregation was influenced by the properties of both the silicates and the dyes themselves. The layer charge of the silicates enhanced the molecular aggregation of the hydrophilic, cationic dyes. The presence of a carboxyl acid group in the dye molecules inhibited adsorption of the dyes on the surface of fluorohectorite, a silicate with a high charge density. A lower or no adsorption could be observed by vis spectroscopy. Strong association of the dyes to the silicate surface led to remarkable changes in the dye spectra, mainly due to the molecular aggregation. Dye assemblies initially formed after mixing the dye solutions with silicate dispersions were unstable. Decomposition of the dye molecular assemblies, and the formation of new species or molecular aggregate rearrangements, were studied on the bases of time-difference spectra. The reaction pathways were specific, not only for the dyes, depending upon their molecular structure and properties, but also on the silicate substrates. PMID:16471802

  17. The influence of few-layer graphene on the gas permeability of the high-free-volume polymer PIM-1.

    PubMed

    Althumayri, Khalid; Harrison, Wayne J; Shin, Yuyoung; Gardiner, John M; Casiraghi, Cinzia; Budd, Peter M; Bernardo, Paola; Clarizia, Gabriele; Jansen, Johannes C

    2016-02-13

    Gas permeability data are presented for mixed matrix membranes (MMMs) of few-layer graphene in the polymer of intrinsic microporosity PIM-1, and the results compared with previously reported data for two other nanofillers in PIM-1: multiwalled carbon nanotubes functionalized with poly(ethylene glycol) (f-MWCNTs) and fused silica. For few-layer graphene, a significant enhancement in permeability is observed at very low graphene content (0.05 vol.%), which may be attributed to the effect of the nanofiller on the packing of the polymer chains. At higher graphene content permeability decreases, as expected for the addition of an impermeable filler. Other nanofillers, reported in the literature, also give rise to enhancements in permeability, but at substantially higher loadings, the highest measured permeabilities being at 1 vol.% for f-MWCNTs and 24 vol.% for fused silica. These results are consistent with the hypothesis that packing of the polymer chains is influenced by the curvature of the nanofiller surface at the nanoscale, with an increasingly pronounced effect on moving from a more-or-less spherical nanoparticle morphology (fused silica) to a cylindrical morphology (f-MWCNT) to a planar morphology (graphene). While the permeability of a high-free-volume polymer such as PIM-1 decreases over time through physical ageing, for the PIM-1/graphene MMMs a significant permeability enhancement was retained after eight months storage. PMID:26712643

  18. The influence of the seasonal mixed layer on oceanic uptake of CFCs

    NASA Astrophysics Data System (ADS)

    Haine, Thomas W. N.; Richards, Kelvin J.

    1995-06-01

    The issue of the appropriate GFC boundary condition for the interior of the ocean is addressed. A review of observations clearly shows substantial departure from saturation equilibrium and represents the greatest uncertainty in interpreting CFG measurements. A series of simple models is developed to determine the factors which control the CFC-11, CFC-12 and CFC-113 saturations and CFC-113:CFC-12 ratio age.The physical processes of subduction and entrainment have a strong effect; the sequestration of fluid in the seasonal thermocline and spatial variations in the depth of mixing are most important. The uncertainty in the chemical mechanisms has a smaller influence. To the limited extent that the observational database can be compared to the model results, there is good agreement. The model suggests that the variation in CFC-113:CFC-12 age is significantly less than in the saturations of CFCs 11, 12, or 113. However, given a physically realistic seasonal ocean model, the CFC saturation and age boundary condition should be predictable.

  19. Influence of GlidArc treatment on layers formation of biofouling

    NASA Astrophysics Data System (ADS)

    Hnatiuc, B.; Sabau, A.; Ghita, S.; Hnatiuc, M.; Dumitrache, C. L.; Pellerin, S.

    2015-02-01

    Corrosion in marine environment is a complex dynamic process influenced mainly by physical chemical, microbiological and mechanical parameters. Times for maintenance related to corrosion are greater than 80% of the total repair. Reducing this cost would be a significant saving, and an effective treatment can reduce times related to ships repairing. Biofouling is a main cause of corrosion and its formation contains four steps. To inhibit biofouling it is proposed a treatment based on non-thermal plasma produced by GlidArc, which can be applied before the immersion of small boats in the sea, as well as cleaning treatment of the hull after a period of time. This work presents the microbiological results of treatment of metal surfaces (naval OL36 steel) with GlidArc technology, according to the first, respectively the second phase formation of biofouling. Samples of naval steel were prepared with three specific naval paints and before the treatment have been introduced in seawater. Microbiological results have been compared for two types of treatments based on GlidArc. In the first case the painted samples are submitted to direct action of non-thermal plasma. In the second case the plasma produced by GlidArc technology is used to activate a solution (plasma activated water = PAW) and then the samples are introduced into this water.

  20. Influence of Subpixel Scale Cloud Top Structure on Reflectances from Overcast Stratiform Cloud Layers

    NASA Technical Reports Server (NTRS)

    Loeb, N. G.; Varnai, Tamas; Winker, David M.

    1998-01-01

    Recent observational studies have shown that satellite retrievals of cloud optical depth based on plane-parallel model theory suffer from systematic biases that depend on viewing geometry, even when observations are restricted to overcast marine stratus layers, arguably the closest to plane parallel in nature. At moderate to low sun elevations, the plane-parallel model significantly overestimates the reflectance dependence on view angle in the forward-scattering direction but shows a similar dependence in the backscattering direction. Theoretical simulations are performed that show that the likely cause for this discrepancy is because the plane-parallel model assumption does not account for subpixel, scale variations in cloud-top height (i.e., "cloud bumps"). Monte Carlo simulation, comparing ID model radiances to radiances from overcast cloud field with 1) cloud-top height variation, but constant cloud volume extinction; 2) flat tops but horizontal variations in cloud volume extinction; and 3) variations in both cloud top height and cloud extinction are performed over a approximately equal to 4 km x 4 km domain (roughly the size of an individual GAC AVHRR pixel). The comparisons show that when cloud-top height variations are included, departures from 1D theory are remarkably similar (qualitatively) to those obtained observationally. In contrast, when clouds are assumed flat and only cloud extinction is variable, reflectance differences are much smaller and do not show any view-angle dependence. When both cloud-top height and cloud extinction variations are included, however, large increases in cloud extinction variability can enhance reflectance difference. The reason 3D-1D reflectance differences are more sensitive to cloud-top height variations in the forward-scattering direction (at moderate to low, sun elevations) is because photons leaving the cloud field in that direction experience fewer scattering events (low-order scattering) and are restricted to the

  1. influence of film thickness on optical constants of antimony-based bismuth-doped super-resolution mask layer

    NASA Astrophysics Data System (ADS)

    Lu, Xinmiao; Wu, Yiqun; Wang, Yang; Wei, Jinsong

    As the demand for ultrahigh density information storage continues to grow, recording mark size of several tens nanometer which is smaller than the optical diffraction limit is required in optical memory. Functional film super-resolution technique is one of practical approaches to overcome the optical diffraction limit. Optical constants are important parameters to optical films as super-resolution masks. In this paper, the influence of film thickness on optical constants of antimony-based bismuth-doped super-resolution mask layer is investigated. The structure of the samples with different thickness was studied by X-ray diffraction. The transmission spectrum was measured by spectrophotometry. The optical constants of the films in the range of 300-800 nm were measured by spectroscopic ellipsometry. The results show that the structure of the film transforms from amorphous state to crystal state when the thickness increases from 7 nm to 300 nm. In the range of 300-800 nm, the refractive index and extinction coefficient increase with increasing wavelength. The transmission decreases rapidly when the thickness increases from 7 nm to 30 nm. The influences of film thickness on optical constants are more significant in the thickness range of 7-50 nm than that in the thickness above 50 nm.

  2. Influences of the exhaust flow on the boundary layer flow on the wafer surface in spin coating system

    NASA Astrophysics Data System (ADS)

    Kimura, Seiichi; Munekata, Mizue; Kurishima, Hiroaki; Matsuzaki, Kazuyoshi; Ohba, Hideki

    2005-06-01

    Recently, development of high technology has been required for the formation of thin uniform film in manufacturing processes of semiconductor as the semiconductor become more sophisticated. Spin coating is usually used for spreading photoresist on a wafer surface. However, since rotating speed of the disk is very high in spin coating, the dropped resist scatters outward and reattaches to the film surface. So, the scattered resist is removed by the exhaust flow generated at the gap between the wafer edge and the catch cup. It is seriously concemed that the stripes called Ekman spiral vortices appears on the disk in the case of high rotating speed and the film thickness increases near the wafer edge in the case of low rotating speed, because it prevent the formation of uniform film. The purpose of this study is to make clear the generation mechanism of Ekman spiral vortices and the influence of exhaust flow on it. Moreover the influence of the catch cup geometry on the wafer surface boundary layer flow is investigated.

  3. Study of enhanced photovoltaic behavior in InGaN-based solar cells by using SiNx insertion layer: Influence of dislocations

    NASA Astrophysics Data System (ADS)

    Lee, Seunga; Honda, Yoshio; Amano, Hiroshi; Jang, Jongjin; Nam, Okhyun

    2016-03-01

    Using a SiNx insertion layer to reduce dislocations, enhanced photovoltaic properties could be obtained in p-i-n InGaN/GaN heterojunction solar cell. To investigate the influence of the dislocations on the photovoltaic behaviors, a sample grown without SiNx insertion layer was identically prepared for comparison. From optical properties measurements, the reduction in the number of non-radiative centers and a stronger In localization effect was shown in the sample with SiNx insertion layer. However, the quantum confined stark effect was almost negligible in both the samples. Electrical properties measurement showed reduced saturation current and increased shunt resistance in the sample with SiNx insertion layer due to the reduced dislocation density. By comparing these results and using a numerical model, the influence of the dislocation density on the different photovoltaic properties such as open-circuit voltage and fill factor has been confirmed.

  4. Influence des paramètres de dépôt sur la morphologie de films minces de tétraborate de lithium obtenus par le procédé ``PYROSOL"

    NASA Astrophysics Data System (ADS)

    Bornand, V.; El Bouchikhi, A.; Papet, Ph.; Philippot, E.

    1997-04-01

    Li2B4O7 piezo-electric thin films were prepared by “PYROSOL" process which is a useful method for the elaboration of thin films. Morphological development and crystallization of thin films are very dependent on the experimental parameters like the substrate temperature, the concentration and the relative proportion of the precursors in methyl alcohol. The effect of these various parameters were studied in order to obtain homogeneous, crystallized and oriented thin films. La réalisation de couches minces de matériaux piézo-électriques de Li2B4O7 par le procédé “PYROSOL" révèle une grande diversité de conditions de dépôt. La température du substrat, la composition des solutions de précurseurs et leur concentration conditionnent la morphologie et l'état de cristallisation des films. En particulier, l'obtention de couches minces denses, homogènes et présentant une orientation préférentielle nécessite des températures de substrat supérieures à 620 ^{circ}C. L'influence de ces divers paramètres expérimentaux a été étudiée dans le but d'obtenir des dépôts homogènes, cristallisés et orientés.

  5. Influence of the Saharan Air Layer on Atlantic tropical cyclone formation during the period 1-12 September 2003

    NASA Astrophysics Data System (ADS)

    Pan, Weiyu; Wu, Liguang; Shie, Chung-Lin

    2011-01-01

    Atmospheric Infrared Sounder (AIRS) data show that the Saharan air layer (SAL) is a dry, warm, and well-mixed layer between 950 and 500 hPa over the tropical Atlantic, extending westward from the African coast to the Caribbean Sea. The formations of both Hurricane Isabel and Tropical Depression 14 (TD14) were accompanied with outbreaks of SAL air during the period 1-12 September 2003, although TD14 failed to develop into a named tropical cyclone. The influence of the SAL on their formations is investigated by examining data from satellite observations and numerical simulations, in which AIRS data are incorporated into the MM5 model through the nudging technique. Analyses of the AIRS and simulation data suggest that the SAL may have played two roles in the formation of tropical cyclones during the period 1-12 September 2003. First, the outbreaks of SAL air on 3 and 8 September enhanced the transverse-vertical circulation with the rising motion along the southern edge of the SAL and the sinking motion inside the SAL, triggering the development of two tropical disturbances associated with Hurricane Isabel and TD14. Second, in addition to the reduced environmental humidity and enhanced static stability in the lower troposphere, the SAL dry air intruded into the inner region of these tropical disturbances as their cyclonic flows became strong. This effect may have slowed down the formation of Isabel and inhibited TD14 becoming a named tropical cyclone, while the enhanced vertical shear contributed little to tropical cyclone formation during this period. The 48-h trajectory calculations confirm that the parcels from the SAL can be transported into the inner region of an incipient tropical cyclone.

  6. Influence of an oxygen-inhibited layer on enamel bonding of dental adhesive systems: surface free-energy perspectives.

    PubMed

    Ueta, Hirofumi; Tsujimoto, Akimasa; Barkmeier, Wayne W; Oouchi, Hajime; Sai, Keiichi; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2016-02-01

    The influence of an oxygen-inhibited layer (OIL) on the shear bond strength (SBS) to enamel and surface free-energy (SFE) of adhesive systems was investigated. The adhesive systems tested were Scotchbond Multipurpose (SM), Clearfil SE Bond (CS), and Scotchbond Universal (SU). Resin composite was bonded to bovine enamel surfaces to determine the SBS, with and without an OIL, of adhesives. The SFE of cured adhesives with and without an OIL were determined by measuring the contact angles of three test liquids. There were no significant differences in the mean SBS of SM and CS specimens with or without an OIL; however, the mean SBS of SU specimens with an OIL was significantly higher than that of SU specimens without an OIL. For all three systems, the mean total SFE (γS), polarity force (γSp), and hydrogen bonding force (γSh) values of cured adhesives with an OIL were significantly higher than those of cured adhesives without an OIL. The results of this study indicate that the presence of an OIL promotes higher SBS of a single-step self-etch adhesive system, but not of a three-step or a two-step self-etch primer system. The SFE values of cured adhesives with an OIL were significantly higher than those without an OIL. The SFE characteristics of the OIL of adhesives differed depending on the type of adhesive. PMID:26647775

  7. Influence of Particle Size Distribution on the Performance of Ionic Liquid-based Electrochemical Double Layer Capacitors

    PubMed Central

    Rennie, Anthony J. R.; Martins, Vitor L.; Smith, Rachel M.; Hall, Peter J.

    2016-01-01

    Electrochemical double layer capacitors (EDLCs) employing ionic liquid electrolytes are the subject of much research as they promise increased operating potentials, and hence energy densities, when compared with currently available devices. Herein we report on the influence of the particle size distribution of activated carbon material on the performance of ionic liquid based EDLCs. Mesoporous activated carbon was ball-milled for increasing durations and the resultant powders characterized physically (using laser diffraction, nitrogen sorption and SEM) and investigated electrochemically in the form of composite EDLC electrodes. A bi-modal particle size distribution was found for all materials demonstrating an increasing fraction of smaller particles with increased milling duration. In general, cell capacitance decreased with increased milling duration over a wide range of rates using CV and galvanostatic cycling. Reduced coulombic efficiency is observed at low rates (<25 mVs−1) and the efficiency decreases as the volume fraction of the smaller particles increases. Efficiency loss was attributed to side reactions, particularly electrolyte decomposition, arising from interactions with the smaller particles. The effect of reduced efficiency is confirmed by cycling for over 15,000 cycles, which has the important implication that diminished performance and reduced cycle life is caused by the presence of submicron-sized particles. PMID:26911531

  8. Influence of Particle Size Distribution on the Performance of Ionic Liquid-based Electrochemical Double Layer Capacitors

    NASA Astrophysics Data System (ADS)

    Rennie, Anthony J. R.; Martins, Vitor L.; Smith, Rachel M.; Hall, Peter J.

    2016-02-01

    Electrochemical double layer capacitors (EDLCs) employing ionic liquid electrolytes are the subject of much research as they promise increased operating potentials, and hence energy densities, when compared with currently available devices. Herein we report on the influence of the particle size distribution of activated carbon material on the performance of ionic liquid based EDLCs. Mesoporous activated carbon was ball-milled for increasing durations and the resultant powders characterized physically (using laser diffraction, nitrogen sorption and SEM) and investigated electrochemically in the form of composite EDLC electrodes. A bi-modal particle size distribution was found for all materials demonstrating an increasing fraction of smaller particles with increased milling duration. In general, cell capacitance decreased with increased milling duration over a wide range of rates using CV and galvanostatic cycling. Reduced coulombic efficiency is observed at low rates (<25 mVs-1) and the efficiency decreases as the volume fraction of the smaller particles increases. Efficiency loss was attributed to side reactions, particularly electrolyte decomposition, arising from interactions with the smaller particles. The effect of reduced efficiency is confirmed by cycling for over 15,000 cycles, which has the important implication that diminished performance and reduced cycle life is caused by the presence of submicron-sized particles.

  9. Influences of Alq3 as electron extraction layer instead of Ca on the photo-stability of organic solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Zhiyong; Tian, Miaomiao; Wang, Ning

    2014-03-01

    Calcium (Ca) is not a desirable candidate as electron extraction layer (EEL) for long-term stability organic photovoltaics (OPVs) on account of its nature of active metal. In this paper, we has selected thieno[3,4-b]thiophene/benzodithiophene (PTB7) and [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) as donor and acceptor, respectively, and the device architecture is Glass/ITO/poly(ethylenedioxythiophene):polystyrene sulphonate (PEDOT:PSS)/PTB7:PC71BM/EEL/Aluminum. For comparison, tris (8-hydroxyquinoline) aluminum (Alq3) and Ca were used as EEL to reveal their influence on the performance [power conversion efficiency (PCE), short-circuit current density (JSC), open-circuit voltage (VOC) and fill factor (FF)] of the OPVs. As a result, PCE of the device with Ca as EEL rapidly reduced over 60% after three days due to the poor stability of Ca. The device with Alq3 as EEL shows favorable stability owing to the PCE moderate declined less than 30% after one month. Furthermore, PCE of the device with Alq3 as EEL was fully comparable to that with Ca as EEL. Our results indicate that Alq3 is an alternative candidate for high-performance and long-term photo-stability OPVs.

  10. Influence of laser beam size on measurement sensitivity of thermophysical property gradients in layered structures using thermal-wave techniques

    SciTech Connect

    Wang Chinhua; Qu Hong; Chen Zhuying; Mandelis, Andreas

    2008-02-15

    The influence of the photothermal laser source beam size on the measurement sensitivity of layered systems using photothermal radiometry (PTR) is presented. Based on an appropriate theoretical model, widely different behaviors of the photothermal amplitude and phase in terms of combinations of thermophysical properties (i.e., thermal conductivity and thermal diffusivity) between a thin coating and the substrate are observed. The beam size effect on PTR measurement sensitivity is theoretically examined and experimentally demonstrated using a carbonitrided C1018 steel sample. The experimental results of using a variable size laser beam for the carbonitrided C1018 sample validate the theoretical prediction, in which an expanded beam exhibits a much larger magnitude change in both amplitude and phase as a function of frequency than measurements with a focused beam. The fitted thermal conductivity and thermal diffusivity based on the assumed industrially relevant range of effective hardness case depth gives the approximate range of the change in thermal conductivity and thermal diffusivity of C1018 steels after the carbonitriding process.

  11. Influence of calcination on the adsorptive removal of phosphate by Zn-Al layered double hydroxides from excess sludge liquor.

    PubMed

    Cheng, Xiang; Huang, Xinrui; Wang, Xingzu; Sun, Dezhi

    2010-05-15

    The influence of calcination of Zn-Al layered double hydroxides (LDHs) on their phosphate adsorption capacity was studied in order to improve phosphorus removal from an excess sludge liquor. Powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), thermogravimetry-differential scanning calorimetry (TG-DSC) and nitrogen adsorption-desorption were employed to characterize the raw Zn-Al and the calcined products. The results reveal that the Zn-Al LDHs evolved to a phase of mixed metal oxides with the calcination temperature increasing to 300 degrees C and finally to spinel ZnAl(2)O(4) at 600 degrees C. When the Zn-Al was calcined at 300 degrees C, the interlayer carbonate ions were removed and the greatest BET surface area of 81.20 m(2)/g was achieved. The tested phosphate adsorption capacities of the raw and calcined Zn-Al were closely related to the evolution of physicochemical properties of the LDHs during the calcination. The Zn-Al-300 (Zn-Al LDHs calcined at 300 degrees C) exhibited the highest P uptake of 41.26 mg P/g in 24h. The phosphate adsorption by the raw Zn-Al and the Zn-Al-300 both follows a pseudo-second-order kinetic model; the adsorption isotherms show a good fit with a Langmuir-type equation. PMID:20060217

  12. Influence of AlN nucleation layer temperature on GaN electronic properties grown on SiC

    NASA Astrophysics Data System (ADS)

    Koleske, D. D.; Henry, R. L.; Twigg, M. E.; Culbertson, J. C.; Binari, S. C.; Wickenden, A. E.; Fatemi, M.

    2002-06-01

    GaN electronic properties are shown to depend on the AlN nucleation layer (NL) growth temperature for GaN films grown on 6H- and 4H-SiC. Using identical GaN growth conditions except AlN NL growth temperature, 300 K electron mobilities of 876, 884, and 932 cm2/Vs were obtained on 6H-SiC, 4H-SiC, and 3.5deg off-axis 6H-SiC. An AlN NL temperature of 1080 degC was used for the planar and 3.5deg off-axis 6H-SiC, while an AlN NL temperature of 980 degC was used for 4H-SiC. Atomic force microscope images of the AlN NL grown at 1080 degC reveal smaller AlN grains on the 6H-SiC than those on 4H-SiC, suggesting that the AlN morphology influences GaN film formation and subsequent electron mobility. Transmission electron microscope cross section measurements reveal the absence of screw dislocations in the AlN and a low screw dislocation density near the AlN/GaN interface, consistent with the high electron mobilities achieved in these films.

  13. Influence of Particle Size Distribution on the Performance of Ionic Liquid-based Electrochemical Double Layer Capacitors.

    PubMed

    Rennie, Anthony J R; Martins, Vitor L; Smith, Rachel M; Hall, Peter J

    2016-01-01

    Electrochemical double layer capacitors (EDLCs) employing ionic liquid electrolytes are the subject of much research as they promise increased operating potentials, and hence energy densities, when compared with currently available devices. Herein we report on the influence of the particle size distribution of activated carbon material on the performance of ionic liquid based EDLCs. Mesoporous activated carbon was ball-milled for increasing durations and the resultant powders characterized physically (using laser diffraction, nitrogen sorption and SEM) and investigated electrochemically in the form of composite EDLC electrodes. A bi-modal particle size distribution was found for all materials demonstrating an increasing fraction of smaller particles with increased milling duration. In general, cell capacitance decreased with increased milling duration over a wide range of rates using CV and galvanostatic cycling. Reduced coulombic efficiency is observed at low rates (<25 mVs(-1)) and the efficiency decreases as the volume fraction of the smaller particles increases. Efficiency loss was attributed to side reactions, particularly electrolyte decomposition, arising from interactions with the smaller particles. The effect of reduced efficiency is confirmed by cycling for over 15,000 cycles, which has the important implication that diminished performance and reduced cycle life is caused by the presence of submicron-sized particles. PMID:26911531

  14. Influence of the temperature and duration of the annealing on the lattice structure and growth of the Mg-Al spinel layer

    NASA Astrophysics Data System (ADS)

    Zhang, Hailiang; Zhang, Mingfu; Han, Jiecai; Ying, Guobing; Guo, Huaixin; Xu, Chenghai; Shen, Haitao; Song, Ningning

    2011-03-01

    In this paper, MgO film is successfully grown on polycrystalline and monocrystalline alumina substrates using sol-gel method, and polycrystalline and monocrystalline Mg-Al spinels are fabricated by solid state reaction, respectively. The influence of annealing temperature and time on the lattice structure and growth of the formed Mg-Al spinel layer has been investigated. It is indicated that the annealing temperature and time on the as-synthesized polycrystalline Mg-Al spinel has more significant influence than that of single crystal Mg-Al spinel. The thickness of the Mg-Al spinel layer increases with the annealing temperature, both for polycrystalline and for monocrystalline alumina substrates. And the significantly intercrystalline diffusion of Mg 2+ ions and Al 3+ ions results in a quicker growth velocity of the Mg-Al spinel layer than that of intracrystalline diffusion.

  15. ACCURATE: Influence of Cloud Layers and Aerosol on Infrared Laser Occultation Signals for Sensing of Greenhouse Gases

    NASA Astrophysics Data System (ADS)

    Proschek, V.; Schweitzer, S.; Emde, C.; Ladstädter, F.; Fritzer, J.; Kirchengast, G.

    2009-04-01

    ACCURATE (Atmospheric Climate and Chemistry in the UTLS Region And climate Trends Explorer), a new climate satellite concept, enables simultaneous measurement of profiles of greenhouse gases, isotopes, wind and thermodynamic variables from Low Earth Orbit (LEO) satellites. The measurement principle applied is a combination of the novel LEO-LEO infrared laser occultation (LIO) technique and the well-studied but not yet flown LEO-LEO microwave occultation (LMO) technique. As intrinsic to the space-borne occultation technique, the measurements are evenly distributed around the world, have high vertical resolution and high accuracy and are stable over long time periods. The LIO uses near-monochromatic signals in the short-wave infrared range (~2-2.5 m in the case of ACCURATE) which are absorbed by various trace species in the Earth's atmosphere. From signal transmission measurements, profiles of the concentration of the absorbing species can be derived given that temperature and pressure are accurately known from LMO. The current ACCURATE mission design is arranged for the measurement of six greenhouse gases (H2O, CO2, CH4, N2O, O3, CO) and four isotopes (13CO2, C18OO, HDO, H218O) with focus on the upper troposphere/lower stratosphere region (UTLS, 5-35 km). Wind speed in line-of-sight can be derived from a line-symmetric transmission difference which is caused by wind-induced Doppler shift. By-products are information on cloud layering, aerosol extinction and scintillation strength. This contribution presents an overview on the ACCURATE mission design and the expected accuracy of retrieved atmospheric variables and further focuses on the influence of clouds and aerosols on propagating LIO signals. Special emphasis will be given to sub-visible cirrus clouds which are semi-transparent to infrared signals. A simple frequency dependent cloud extinction parametrization was included into the occultation propagation software EGOPS and evaluated against results of the

  16. Influence of PEDOT:PSS on the effectiveness of barrier layers prepared by atomic layer deposition in organic light emitting diodes

    SciTech Connect

    Wegler, Barbara; Schmidt, Oliver; Hensel, Bernhard

    2015-01-15

    Organic light emitting diodes (OLEDs) are well suited for energy saving lighting applications, especially when thinking about highly flexible and large area devices. In order to avoid the degradation of the organic components by water and oxygen, OLEDs need to be encapsulated, e.g., by a thin sheet of glass. As the device is then no longer flexible, alternative coatings are required. Atomic layer deposition (ALD) is a very promising approach in this respect. The authors studied OLEDs that were encapsulated by 100 nm Al{sub 2}O{sub 3} deposited by ALD. The authors show that this coating effectively protects the active surface area of the OLEDs from humidity. However, secondary degradation processes still occur at sharp edges of the OLED stack where the extremely thin encapsulation layer does not provide perfect coverage. Particularly, the swelling of poly(3,4-ethylenedioxythiophene) mixed with poly(styrenesulfonate), which is a popular choice for the planarization of the bottom electrode and at the same time acts as a hole injection layer, affects the effectiveness of the encapsulation layer.

  17. Reticulation des fibres lignocellulosiques

    NASA Astrophysics Data System (ADS)

    Landrevy, Christel

    Pour faire face à la crise économique la conception de papier à valeur ajoutée est développée par les industries papetières. Le but de se projet est l'amélioration des techniques actuelles de réticulation des fibres lignocellulosiques de la pâte à papier visant à produire un papier plus résistant. En effet, lors des réactions de réticulation traditionnelles, de nombreuses liaisons intra-fibres se forment ce qui affecte négativement l'amélioration anticipée des propriétés physiques du papier ou du matériau produit. Pour éviter la formation de ces liaisons intra-fibres, un greffage sur les fibres de groupements ne pouvant pas réagir entre eux est nécessaire. La réticulation des fibres par une réaction de « click chemistry » appelée cycloaddition de Huisgen entre un azide et un alcyne vrai, catalysée par du cuivre (CuAAC) a été l'une des solutions trouvée pour remédier à ce problème. De plus, une adaptation de cette réaction en milieux aqueux pourrait favoriser son utilisation en milieu industriel. L'étude que nous désirons entreprendre lors de ce projet vise à optimiser la réaction de CuAAC et les réactions intermédiaires (propargylation, tosylation et azidation) sur la pâte kraft, en milieu aqueux. Pour cela, les réactions ont été adaptées en milieu aqueux sur la cellulose microcristalline afin de vérifier sa faisabilité, puis transférée à la pâte kraft et l'influence de différents paramètres comme le temps de réaction ou la quantité de réactifs utilisée a été étudiée. Dans un second temps, une étude des différentes propriétés conférées au papier par les réactions a été réalisée à partir d'une série de tests papetiers optiques et physiques. Mots Clés Click chemistry, Huisgen, CuAAC, propargylation, tosylation, azidation, cellulose, pâte kraft, milieu aqueux, papier.

  18. The influence of the mixed host emitting layer based on the TCTA and TPBi in blue phosphorescent OLED

    NASA Astrophysics Data System (ADS)

    Jiang, Zhong-Lin; Tian, Wei; Kou, Zhi-Qi; Cheng, Shuang; Li, Yi-Hang

    2016-08-01

    The performance of the blue phosphorescent organic light-emitting diodes (PHOLEDs) can be improved by changing the proportion and structure of the host materials in the emitting layer. A series of devices with the mixed host (TCTAx: TPBi1-x) single emitting layer is fabricated and the best performance appears when x is 1/2. Then, the highest luminance and power efficiency reach 7189 (cd/m2) at 10.5 V and 41.7 lm/W at 2.75 V respectively after changing the position of the single host (TCTA or TPBi) emitting layer and the mixed host (TCTA1/2: TPBi1/2) emitting layer in the multiple emitting layers device. The power efficiency is almost 37% improved in device with the optimized mixed host multiple emitting layers than that of device with the mixed host single emitting layer, the former device shows great potential to realize the high efficiency blue PHOLEDs.

  19. Influence of head size on the development of metallic wear and on the characteristics of carbon layers in metal-on-metal hip joints

    PubMed Central

    Sprecher, Christoph M; Wimmer, Markus A; Milz, Stefan; Taeger, Georg

    2009-01-01

    Background and purpose Particles originating from the articulating surfaces of hip endoprostheses often induce an inflammatory response, which can be related to implant failure. We therefore analyzed the metal content in capsular tissue from 44 McKee-Farrar metal-on-metal hip prostheses (with 3 different head sizes) and we also analyzed the morphological structure of layers located on articulating surfaces. Methods Atomic absorption spectrometry (AAS) was used to analyze the metal content in capsular tissue. Visually detectable carbon layers located on the articulating surfaces were evaluated using scanning electron microscopy (SEM), energy-dispersive Xray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). Results Metallic debris was detected in all capsular tissue samples but no statistically significant differences in metal content were found in relation to implant head size. The morphological characteristics of the different layer zones allowed an exact analysis of contact and non-contact areas. Furthermore, surface layers appear to have a protective function because they can prevent sharp-edged particles from damaging the prostheses surface. Interpretation The implant head size does not appear to influence the amount of metallic debris. The layers obviously act like a lubricating agent because the protection function does not occur in regions without layers where the metal surface often shows numerous scratches. As layers are not generated immediately after the implantation of hip prostheses, these findings may at least partially explain the high amount of wear early after implantation. PMID:19421914

  20. Influence of convection on mixed-layer evolution: comparison of two mixing parameterizations with buoys data in the Bay of Biscay

    NASA Astrophysics Data System (ADS)

    Jézéquel, N.; Pichon, A.; Mazé, R.

    2004-01-01

    In this study, we compare two 1-D mixing parameterizations developed by Gaspar et al. [J. Geophys. Res. C95 (C9) (1990) 16179] (G90) and Large et al. [Rev. Geophys. 32 (1994) 363] (L94), respectively. Both models are tested against drifting Marisonde bouys deployed in the Bay of Biscay during PRECOCE experiment (1997-1998) [Mariette, V., Ratsivalaka, C., Verbéque V., Leborgne, E., 1999. CAMPAGNE PREOCOCE (PREdiction du comportement des Couches superficielles de l'Océan le long des Côtes Européennes, Tomes 1, 2 and 3, Rapport EPSHOM/CMO/RE/NP 11 du 31 mai 1999]. Periods of stabilizing and destabilizing conditions are successively examined by using both realistic and schematic dynamical and thermodynamical air-sea fluxes. Schematic conditions applied over one diurnal cycle evidence the relative performance of G90 and L94 parameterizations as a function of surface inputs and stratification. The results obtained from these schematic cases are used to compare the results obtained by G90 and L94 over periods of 2 to 10 weeks along three Marisonde buoy trajectories. The ability of both models to simulate the seasonal thermocline formation in Spring as well as its destruction in Fall is discussed. If the nonlocal parameterization used by L94 is taken in its complete form (including the diapycnal mixing), it allows the mixed-layer deepening in Fall in a more satisfactory way than the local parameterization used by G90. The results obtained in Spring by both models are debatable.

  1. Influence of cathode opening size and wetting properties of diffusion layers on the performance of air-breathing PEMFCs

    NASA Astrophysics Data System (ADS)

    Schmitz, A.; Tranitz, M.; Eccarius, S.; Weil, A.; Hebling, C.

    Air-breathing PEMFCs consist of an open cathodic side to allow an entirely passive supply of oxygen by diffusion. Furthermore, a large fraction of the produced water is removed by evaporation from the open cathode. Gas diffusion layers (GDLs) and the opening size of the cathode have a crucial influence on the performance of an air-breathing PEMFC. In order to assure an unobstructed supply of oxygen the water has to be removed efficiently and condensation in the GDL has to be avoided. On the other hand good humidification of the membrane has to be achieved to obtain high protonic conductivity. In this paper the influence of varying cathodic opening sizes (33%, 50% and 80% opening ratios) and of GDLs with different wetting properties are analysed. GDLs with hydrophobic and hydrophilic properties are prepared by coating of untreated GDLs (Toray ® carbon paper TGP-H-120, thickness of 350 μm). The air-breathing PEMFC test samples are realised using printed circuit board (PCB) technology. The cell samples were characterised over the entire potential range (0-0.95 V) by extensive measurements of the current density, the temperature and the cell impedance at 1 kHz. Additionally, measurements of the water balance were carried out at distinct operation points. The best cell performance was achieved with the largest opening ratio (80%) and an untreated GDL. At the maximum power point, this cell sample achieved a power density of 100 mW cm -2 at a moderate cell temperature of 43 °C. Furthermore, it could be shown that GDLs with hydrophilic or intense hydrophobic properties do not improve the performance of an air-breathing PEMFC. Based on the extensive characterisations, two design rules for air-breathing PEMFCs could be formulated. Firstly, it is crucial to maximise the cathode opening as far as an appropriate compression pressure of the cell assembly and therewith low contact resistance can be assured. Secondly, it is advantageous to use an untreated, slightly hydrophobic

  2. Influence of layer thickness on the structure and the magnetic properties of Co/Pd epitaxial multilayer films

    NASA Astrophysics Data System (ADS)

    Tobari, Kousuke; Ohtake, Mitsuru; Nagano, Katsumasa; Futamoto, Masaaki

    2012-03-01

    Co/Pd epitaxial multilayer films were prepared on Pd(111)fcc underlayers hetero-epitaxially grown on MgO(111)B1 single-crystal substrates at room temperature by ultra-high vacuum RF magnetron sputtering. In-situ reflection high energy electron diffraction shows that the in-plane lattice spacing of Co on Pd layer gradually decreases with increasing the Co layer thickness, whereas that of Pd on Co layer remains unchanged during the Pd layer formation. The CoPd alloy phase formation is observed around the Co/Pd interface. The atomic mixing is enhanced for thinner Co and Pd layers in multilayer structure. With decreasing the Co and the Pd layer thicknesses and increasing the repetition number of Co/Pd multilayer film, stronger perpendicular magnetic anisotropy is observed. The relationships between the film structure and the magnetic properties are discussed.

  3. The evaluation of the influence of laser treatment parameters on the type of thermal effects in the surface layer microstructure of gray irons

    NASA Astrophysics Data System (ADS)

    Paczkowska, Marta

    2016-01-01

    The aim of the presented research was to create a laser heat treatment (LHT) diagram presenting singular modifications such as remelting, alloying, hardening from the solid state, tempering the surface layer of gray iron in individual ranges of laser beam parameters (power density and its interaction time). A synthesis of such different thermal phenomena taking place in gray irons surface layer resulting from LHT was the aim of this analysis. The performed research allowed specifying similar, previously created diagrams concerning different engineering materials in general. The created LHT diagram presents singular modifications in the surface layer of gray iron in individual ranges of laser beam parameters. This diagram allows distinguishing ranges of laser beam parameters that could be useful in selecting the LHT parameters or forecasting their effects in the gray iron surface layer. It has been observed that it is possible to achieve the modification of the surface layer of gray iron by applying values of laser beam power density lower than the values of density presented in previously created diagrams related to the influence of LHT parameters on their effects in the surface layer referring to different groups of engineering materials. The limit of the laser beam density was defined resulting in the modification of the surface layer for interaction time t<0.2 s (remelting or alloying) and t>0.2 s (hardening from the solid state). It is not possible to achieve melting or hardening of the surface layer in gray irons using a laser beam density of less than 10 W mm-2. Hardening is possible only with the interaction time longer than 0.2 s and the power beam density between 10 and 40 W mm-2. Tempering of the surface layer is possible with the density of nearly 10 W mm-2 but only with a relatively long interaction time (i.e. 4 s).

  4. Study on the influence of the B4C layer thickness on the neutron flux and energy distribution shape in multi-electrode ionisation chamber.

    PubMed

    Tymińska, K; Maciak, M; Ośko, J; Tulik, P; Zielczyński, M; Gryziński, M A

    2014-10-01

    A model of a multi-electrode ionisation chamber, with polypropylene electrodes coated with a thin layer of B4C was created within Monte Carlo N-Particle Transport Code (MCNPX) and Fluktuierende Kaskade (FLUKA) codes. The influence of the layer thickness on neutron absorption in B4C and on the neutron spectra in the consecutive intra-electrode gas volumes has been studied using the MCNPX and FLUKA codes. The results will be used for designing the new type of the ionisation chamber. PMID:24729596

  5. Influences of alcoholic solvents on spray pyrolysis deposition of TiO{sub 2} blocking layer films for solid-state dye-sensitized solar cells

    SciTech Connect

    Jiang, Changyun; Koh, Wei Lin; Leung, Man Yin; Hong, Wei; Li, Yuning; Zhang, Jie

    2013-02-15

    Influences of alcoholic solvents for titanium diisopropoxide bis(acetylacetonate) (TPA) precursor solutions on the spray pyrolysis deposited TiO{sub 2} films and the photovoltaic performance of the solid-state dye-sensitized solar cells (SDSCs) using these TiO{sub 2} films as the blocking layers were investigated. Smooth TiO{sub 2} films were obtained by spray pyrolysis deposition of a TPA solution in isopropanol (IPA) at a relatively low temperature of 260 Degree-Sign C. On the other hand, when ethanol was used as solvent, the TiO{sub 2} films fabricated at the same temperature showed much rougher surfaces with many pinholes. Our results showed that ethanol reacts with TPA to form titanium diethoxide bis(acetylacetonate) (TEA), which requires a higher thermal decomposition temperature than that of TPA. SDSCs with TiO{sub 2} blocking layer films fabricated using a TPA solution in IPA showed higher power conversion efficiencies with smaller variations. - Graphical abstract: Alcoholic solvents used for the TiO{sub 2} precursor play a critical role in determining the surface morphology of blocking layers and thus the photovoltaic performance of the SDSCs. Highlights: Black-Right-Pointing-Pointer Solvent influences morphology of spray pyrolysis deposited TiO{sub 2} blocking layer. Black-Right-Pointing-Pointer Ethanol reacts with TPA, resulting poor quality of blocking layer. Black-Right-Pointing-Pointer Isopropanol is better than ethanol for obtaining smooth blocking layer. Black-Right-Pointing-Pointer SDSC with blocking layer made with isopropanol showed better performance.

  6. Development of time controlled chronomodulated tablet with swelling and rupturable layers: Optimization of factors influencing lag-time and drug release

    PubMed Central

    Desai, Mayur; Jivani, Rishad R; Patel, Laxman D; Jivani, Noordin P; Sonagara, Bhavin

    2012-01-01

    Introduction: A tablet system consisting of cores coated with two layers of swelling and rupturable coatings was prepared and evaluated as time controlled chronomodulated tablet. Materials and Methods: Cores containing Montelukast sodium as model drug were prepared by direct compression and then coated sequentially with an inner swelling layer containing a HPMC E 5 and an outer rupturable layer of Eudragit RL/RS (1:1). A three-factor, two-level, full factorial design was used to investigate the influence of amount of HPMC E 5 and Eudragit RL/RS (1:1) on the responses, i.e., lag time to release and time required for 80% of drug to releases. The dissolution tests were studied using the USP paddle method at 50 rpm in 0.1 N HCL for 2 hr and than in phosphate buffer pH 6.8. Methods: Cores containing Montelukast sodium as model drug were prepared by direct compression and then coated sequentially with an inner swelling layer containing a HPMC E 5 and an outer rupturable layer of Eudragit RL/RS (1:1). A three-factor, two-level, full factorial design was used to investigate the influence of amount of HPMC E 5 and Eudragit RL/RS (1:1) on the responses, i.e., lag time to release and time required for 80% of drug to releases. The dissolution tests were studied using the USP paddle method at 50 rpm in 0.1 N HCL for 2 hr and than in phosphate buffer pH 6.8. Result: The lag time of the drug release decreased by increasing the inner swelling layer and increased by increasing the rupturing layer level. Conclusion: The results obtain from present study suggest that swelling come reputable coating approach gives desire drug release after lag time. PMID:23580937

  7. Observation studies on the influence of atmospheric boundary layer characteristics associate with air quality in dry season over the Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Fan, Shaojia; Wu, Meng; Li, Haowen; Liao, Zhiheng; Fan, Qi; Zhu, Wei

    2016-04-01

    The characteristics of atmospheric boundary layer (ABL) is the very important factors influence on air quality in dry season over the Pearl River Delta (PRD), China. Based on the sounding data at six stations (Xinken,Dongguan, Sanshui, Nanhai, Shunde, and Heshan) which obtained from three times ABL experiments carried in dry season over PRD, the influence of wind and temperature vertical structure to the air quality over PRD has been studied with wind and temperature profiles, inversion layer, recirculation factor (RF), atmospheric boundary layer height (ABLH) and ventilation index (VI). It was found that the vertical wind of PRD could be divided in typical three layers according two wind shears appeared in 800 m and 1300 m. The thickness of calm or lower wind speed layer in pollution days was 500-1000m thicker than that of clean days, and its last time also much longer than that of clean days. The frequency of surface inversion in pollution days was about 35%,the mean thickness was about 100 m. With the influence of sea breeze, the frequency and thickness of surface inversion layer at Xinken station was a little lower than that in inland. Influenced by sea-land breezes and urban heat-island circulation, the RF of pollution days in coastal and urban area was quite smaller than that of clean days. During sea-land breezes days, the pollutants would be transported back to inland in nighttime with the influence of sea breeze, and resulted in 72.7% sea-land breezes was pollution days. The evolution of ABL was very typical in PRD during dry season. In pollution days, daily ABLH in PRD was lower than 500 m, daily VI was about 500-1500 m2/s. In clean days, daily VI was much larger than 2500 m2/s. An improved conceptual model of ABL influence on poor air quality and the parameters of the ABL characteristics associate with poor air quality in dry season over PRD had been summarized.

  8. Influence of annealing in H atmosphere on the electrical properties of Al2O3 layers grown on p-type Si by the atomic layer deposition technique

    NASA Astrophysics Data System (ADS)

    Kolkovsky, Vl.; Stübner, R.; Langa, S.; Wende, U.; Kaiser, B.; Conrad, H.; Schenk, H.

    2016-09-01

    In the present study the electrical properties of 100 nm and 400 nm alumina films grown by the atomic layer deposition technique on p-type Si before and after a post-deposition annealing at 440 °C and after a dc H plasma treatment at different temperatures are investigated. We show that the density of interface states is below 2 × 1010 cm-2 in these samples and this value is significantly lower compared to that reported previously in thinner alumina layers (below 50 nm). The effective minority carrier lifetime τg,eff and the effective surface recombination velocity seff in untreated p-type Si samples with 100 nm and 400 nm aluminum oxide is comparable with those obtained after thermal oxidation of 90 nm SiO2. Both, a post-deposition annealing in forming gas (nitrogen/hydrogen) at elevated temperatures and a dc H-plasma treatment at temperatures close to room temperature lead to the introduction of negatively charged defects in alumina films. The results obtained in samples annealed in different atmospheres at different temperatures or subjected to a dc H plasma treatment allow us to correlate these centers with H-related defects. By comparing with theory we tentatively assign them to negatively charged interstitial H atoms.

  9. Influence of embedded fibers and an epithelium layer on glottal closure pattern in a physical vocal fold modela)

    PubMed Central

    Xuan, Yue; Zhang, Zhaoyan

    2013-01-01

    Purpose To explore the possible structural and material property features that may facilitate complete glottal closure in an otherwise isotropic physical vocal fold model. Method Seven vocal fold models with different structural features were used in this study. An isotropic model was used as the baseline model, and other models were modified from the baseline model by either embedding fibers aligned along the anterior-posterior direction in the body or cover layer, adding a stiffer outer layer simulating the epithelium layer, or a combination of the two features. Phonation tests were performed with both aerodynamic and acoustic measurements and high-speed imaging of vocal fold vibration. Results Compared to the isotropic one-layer model, the presence of a stiffer epithelium layer led to complete glottal closure along the anterior-posterior direction and strong excitation of high-order harmonics in the resulting acoustic spectra. Similar improvements were observed with fibers embedded in the cover layer, but to a lesser degree. Presence of fibers in the body layer did not yield noticeable improvements in glottal closure or harmonic excitation. Conclusions This study shows that the presence of collagen and elastin fibers and the epithelium layer may play a critical role in achieving complete glottal closure. PMID:24167236

  10. Influence d'une substitution partielle du ciment par du laitier de hauts fourneaux sur la résistance des mortiers en milieu acide

    NASA Astrophysics Data System (ADS)

    Achoura, D.; Lanos, Ch.; Jauberthie, R.; Redjel, B.

    2004-11-01

    Le stockage de produits chimiques dans du béton présente souvent des problèmes de durabilité dus aux attaques chimiques. Inévitablement les concentrations élevées sont les plus dangereuses. Le but de notre étude est de déterminer les changements de phases qui apparaissent dans le béton lorsqu'on substitue une partie du ciment par du laitier de haut fourneaux. Les échantillons sont conservés dans des solutions acides différents anions (HCl, H{2}SO{4}, H{3}PO{4} et CH{3}COOH) et différentes concentrations (0,1; 0,25 et 0,5M). Les formations qui apparaissent sont déterminées par diffraction X et observées au MEB. Les solutions sulfatiques conduisent à une formation de gypse en surface et d'ettringite au contact de la matrice cimentaire. Avec l'acide acétique, il y a formation de calcium acétate hydrate sous forme spongieuse tandis que, avec l'acide phosphatique, la formation de calcium hydrogeno phosphate hydrate est très superficielle. Enfin, avec l'acide chlorhydrique, la surface du mortier est recouverte de chlorure de calcium dihydrate et d'hydroxyde de fer. Les résistances mécaniques sont plus ou moins affectées par la concentration mais aussi et surtout par la nature des acides avec dans l'ordre le plus agressif H{2}SO{4} puis HCl et CH{3}COOH enfin peu de modification pour H{3}PO{4}.

  11. Influence of Idealized Heterogeneity on Wet and Dry Planetary Boundary Layers Coupled to the Land Surface. 1; Instantaneous Fields and Statistics

    NASA Technical Reports Server (NTRS)

    Houser, Paul (Technical Monitor); Patton, Edward G.; Sullivan, Peter P.; Moeng, Chin-Hoh

    2003-01-01

    This is the first in a two-part series of manuscripts describing numerical experiments on the influence of 2-30 km striplike heterogeneity on wet and dry boundary layers coupled to the land surface. The strip-like heterogeneity is shown to dramatically alter the structure of the free-convective boundary layer by inducing significant organized circulations that modify turbulent statistics. The coupling with the land-surface modifies the circulations compared to previous studies using fixed surface forcing. Total boundary layer turbulence kinetic energy increases significantly for surface heterogeneity at scales between Lambda/z(sub i) = 4 and 9, however entrainment rates for all cases are largely unaffected by the strip-like heterogeneity.

  12. Influence of the characteristics of atmospheric boundary layer on the vertical distribution of air pollutant in China's Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Wang, Chenggang; Cao, Le

    2016-04-01

    Air pollution occurring in the atmospheric boundary layer is a kind of weather phenomenon which decreases the visibility of the atmosphere and results in poor air quality. Recently, the occurrence of the heavy air pollution events has become more frequent all over Asia, especially in Mid-Eastern China. In December 2015, the most severe air pollution in recorded history of China occurred in the regions of Yangtze River Delta and Beijing-Tianjin-Hebei. More than 10 days of severe air pollution (Air Quality Index, AQI>200) appeared in many large cities of China such as Beijing, Tianjin, Shijiazhuang and Baoding. Thus, the research and the management of the air pollution has attracted most attentions in China. In order to investigate the formation, development and dissipation of the air pollutions in China, a field campaign has been conducted between January 1, 2015 and January 28, 2015 in Yangtze River Delta of China, aiming at a intensive observation of the vertical structure of the air pollutants in the atmospheric boundary layer during the time period with heavy pollution. In this study, the observation data obtained in the field campaign mentioned above is analyzed. The characteristics of the atmospheric boundary layer and the vertical distribution of air pollutants in the city Dongshan located in the center of Lake Taihu are shown and discussed in great detail. It is indicated that the stability of the boundary layer is the strongest during the nighttime and the early morning of Dongshan. Meanwhile, the major air pollutants, PM2.5 and PM10 in the boundary layer, reach their maximum values, 177.1μg m-3 and 285μg m-3 respectively. The convective boundary layer height in the observations ranges from approximately 700m to 1100m. It is found that the major air pollutants tend to be confined in a relatively shallow boundary layer, which represents that the boundary layer height is the dominant factor for controlling the vertical distribution of the air pollutants. In

  13. The influence of growth chemistry on the MOVPE growth of GaAs and Al(x)Ga(1-x)As layers and heterostructures

    NASA Astrophysics Data System (ADS)

    Kuech, T. F.; Veuhoff, E.; Kuan, T. S.; Deline, V.; Potemski, R.

    1986-09-01

    Various combinations of triethylgallium, triethylaluminum, trimethylgallium, and trimethylaluminum have been used during the metalorganic vapor phase epitaxy (MOVPE) growth of Al(x)Ga(1-x)As in order to ascertain the influence of their growth chemistry on the properties of the resulting semiconductor layers and quantum well structures. Substantial reductions in carbon incorporation can be achieved using the ethyl-based growth chemistry. Narrow quantum well structures were demonstrated using both ethyl- and methyl-based precursors.

  14. Influence of confinement in controlled-pore glass on the layer spacing of smectic- A liquid crystals

    NASA Astrophysics Data System (ADS)

    Cordoyiannis, George; Zidanšek, Aleksander; Lahajnar, Gojmir; Kutnjak, Zdravko; Amenitsch, Heinz; Nounesis, George; Kralj, Samo

    2009-05-01

    A detailed x-ray scattering study has been performed in the temperature range of the smectic- A phase for the liquid crystal compounds dodecylcyanobiphenyl (12CB) and octylcyanobiphenyl (8CB) confined in different controlled-pore glasses (CPGs) characterized by their average void radius R . On decreasing the temperature in bulk samples the layer thickness is increasing for 12CB and decreasing for 8CB, respectively. In nontreated CPG samples the layers dilate significantly with respect to the bulk liquid crystal. In order to explain the layer thickness behavior on varying temperature and R , one has to take into account molecular details of the liquid crystalline samples as well as memory effects.

  15. Simulation and study of the influence of the buffer intrinsic layer, back-surface field, densities of interface defects, resistivity of p-type silicon substrate and transparent conductive oxide on heterojunction with intrinsic thin-layer (HIT) solar cell

    SciTech Connect

    Dao, Vinh Ai; Heo, Jongkyu; Choi, Hyungwook; Kim, Yongkuk; Park, Seungman; Jung, Sungwook; Lakshminarayan, Nariangadu; Yi, Junsin

    2010-05-15

    The influence of various parameters such as buffer intrinsic layers, back-surface fields, densities of interface defects (D{sub it}), the resistivity of p-type silicon substrates ({rho}) and then work function of transparent conductive oxide ({phi}{sub TCO}) on heterojunction with intrinsic thin-layer (HIT) solar cell performance was investigated using software simulation. Automat for the simulation of heterostructures (AFORS-HET) software was used for that purpose. Our results indicate that band bending, which is determined by the band offsets at the buffer intrinsic/c-Si and/or the c-Si/back-surface field heterointerface, could be critical to solar cell performance. The effect of band bending on solar cell performance and the dependence of cell performance on {rho} and {phi}{sub TCO} were investigated in detail. Eventually, suggestive design parameters for HIT solar cell fabrication are proposed. (author)

  16. Influence of strain induced by AlN nucleation layer on the electrical properties of AlGaN/GaN heterostructures on Si(111) substrate

    NASA Astrophysics Data System (ADS)

    Christy, Dennis; Watanabe, Arata; Egawa, Takashi

    2014-10-01

    The crack-free metal-organic chemical vapor deposition (MOCVD) grown AlGaN/GaN heterostructures on Si substrate with modified growth conditions of AlN nucleation layer (NL) and its influence on the electrical and structural properties of conductive GaN layer are presented. From the Hall electrical measurements, a gradual decrease of two-dimensional electron gas (2DEG) concentration near heterointerface as the function of NL thickness is observed possibly due to the reduction in difference of piezoelectric polarization charge densities between AlGaN and GaN layers. It also indicates that the minimum tensile stress and a relatively less total dislocation density for high pressure grown NL can ensure a 20 % increment in mobility at room temperature irrespective of the interface roughness. The thickness and pressure variations in NL and the subsequent changes in growth mode of AlN contributing to the post growth residual tensile stress are investigated using X-ray diffraction and Raman scattering experiments, respectively. The post growth intrinsic residual stress in top layers of heterostructures arises from lattice mismatches, NL parameters and defect densities in GaN. Hence, efforts to reduce the intrinsic residual stress in current conducting GaN layer give an opportunity to further improve the electrical characteristics of AlGaN/GaN device structures on Si.

  17. Influence of strain induced by AlN nucleation layer on the electrical properties of AlGaN/GaN heterostructures on Si(111) substrate

    SciTech Connect

    Christy, Dennis; Watanabe, Arata; Egawa, Takashi

    2014-10-15

    The crack-free metal-organic chemical vapor deposition (MOCVD) grown AlGaN/GaN heterostructures on Si substrate with modified growth conditions of AlN nucleation layer (NL) and its influence on the electrical and structural properties of conductive GaN layer are presented. From the Hall electrical measurements, a gradual decrease of two-dimensional electron gas (2DEG) concentration near heterointerface as the function of NL thickness is observed possibly due to the reduction in difference of piezoelectric polarization charge densities between AlGaN and GaN layers. It also indicates that the minimum tensile stress and a relatively less total dislocation density for high pressure grown NL can ensure a 20 % increment in mobility at room temperature irrespective of the interface roughness. The thickness and pressure variations in NL and the subsequent changes in growth mode of AlN contributing to the post growth residual tensile stress are investigated using X-ray diffraction and Raman scattering experiments, respectively. The post growth intrinsic residual stress in top layers of heterostructures arises from lattice mismatches, NL parameters and defect densities in GaN. Hence, efforts to reduce the intrinsic residual stress in current conducting GaN layer give an opportunity to further improve the electrical characteristics of AlGaN/GaN device structures on Si.

  18. POU-III Transcription Factors (Brn1, Brn2, and Oct6) Influence Neurogenesis, Molecular Identity, and Migratory Destination of Upper-Layer Cells of the Cerebral Cortex

    PubMed Central

    Dominguez, Martin H.; Ayoub, Albert E.; Rakic, Pasko

    2013-01-01

    The upper layers (II–IV) are the most prominent distinguishing feature of mammalian neocortex compared with avian or reptilian dorsal cortex, and are vastly expanded in primates. Although the time-dependent embryonic generation of upper-layer cells is genetically instructed within their parental progenitors, mechanisms governing cell-intrinsic fate transitions remain obscure. POU-homeodomain transcription factors Pou3f3 and Pou3f2 (Brn1 and Brn2) are known to label postmitotic upper-layer cells, and are redundantly required for their production. We find that the onset of Pou3f3/2 expression actually occurs in ventricular zone (VZ) progenitors, and that Pou3f3/2 subsequently label neural progeny switching from deep-layer Ctip2+ identity to Satb2+ upper-layer fate as they migrate to proper superficial positions. By using an Engrailed dominant-negative repressor, we show that sustained neurogenesis after the deep- to upper-layer transition requires the proneual action of Pou3fs in VZ progenitors. Conversely, single-gene overexpression of any Pou3f in early neural progenitors is sufficient to specify the precocious birth of Satb2+ daughter neurons that extend axons to the contralateral hemisphere, as well as exhibit robust pia-directed migration that is characteristic of upper-layer cells. Finally, we demonstrate that Pou3fs influence multiple stages of neurogenesis by suppressing Notch effector Hes5, and promoting the expression of proneural transcription factors Tbr2 and Tbr1. PMID:22892427

  19. Les effets des interfaces sur les proprietes magnetiques et de transport des multicouches nickel/iron et cobalt/silver

    NASA Astrophysics Data System (ADS)

    Veres, Teodor

    Cette these est consacree a l'etude de l'evolution structurale des proprietes magnetiques et de transport des multicouches Ni/Fe et nanostructures a base de Co et de l'Ag. Dans une premiere partie, essentiellement bibliographique, nous introduisons quelques concepts de base relies aux proprietes magnetiques et de transport des multicouches metalliques. Ensuite, nous presentons une breve description des methodes d'analyse des resultats. La deuxieme partie est consacree a l'etude des proprietes magnetiques et de transport des multicouches ferromagnetiques/ferromagnetiques Ni/Fe. Nous montrerons qu'une interpretation coherente de ces proprietes necessite la prise en consideration des effets des interfaces. Nous nous attacherons a mettre en evidence, a evaluer et a etudier les effets de ces interfaces ainsi que leur evolution, et ce, suite a des traitements thermiques tel que le depot a temperature elevee et l'irradiation ionique. Les analyses correlees de la structure et de la magnetoresistance nous permettront d'emettre des conclusions sur l'influence des couches tampons entre l'interface et le substrat ainsi qu'entre les couches elles-memes sur le comportement magnetique des couches F/F. La troisieme partie est consacree aux systemes a Magneto-Resistance Geante (MRG) a base de Co et Ag. Nous allons etudier l'evolution de la microstructure suite a l'irradiation avec des ions Si+ ayant une energie de 1 MeV, ainsi que les effets de ces changements sur le comportement magnetique. Cette partie debutera par l'analyse des proprietes d'une multicouche hybride, intermediaire entre les multicouches et les materiaux granulaires. Nous analyserons a l'aide des mesures de diffraction, de relaxation superparamagnetique et de magnetoresistance, les evolutions structurales produites par l'irradiation ionique. Nous etablirons des modeles qui nous aideront a interpreter les resultats pour une serie des multicouches qui couvrent un large eventail de differents comportements magnetiques

  20. Preparation of Er3+:Y3Al5O12/TiO2 composite film and influence of layer number and layer sequence on the visible-light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Ma, C. H.; Wang, J.; Li, S. G.; Li, Y.; Wang, B. X.

    2014-12-01

    In this work, the Er3+:Y3Al5O12 as up-conversion luminescence agent was mixed with TiO2 and the corresponding Er3+:Y3Al5O12/TiO2 composite films were prepared on the one-sided surface of treated sheet glass through sol-gel dip-coating method. The prepared Er3+:Y3Al5O12/TiO2 composite films were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Their photocatalytic activities were examined through the degradation of some organic dyes under visible-light irradiation. The degradation process of organic dyes was monitored by UV-Vis spectrophotometer. Furthermore, some main influence factors on the visible-light photocatalytic activity of Er3+:Y3Al5O12/TiO2 composite film such as heat-treatment temperature and heat-treatment time were studied. The results indicate that three layer Er3+:Y3Al5O12/TiO2 composite films with one Er3+:Y3Al5O12/TiO2 composite film (as first layer close to sheet glass) and two pure TiO2 film (as second and third layers) display a higher visible-light photocatalytic activity during photocatalytic degradation of Azo Fuchsine. In addition, the results showed that the visible-light photocatalytic activity of Er3+:Y3Al5O12/TiO2 composite film related to the layer number and layer sequence on the sheet glass. Perhaps, the research results may offer some meaningful references for developing solar energy continuous flow wastewater treatment reactor.

  1. Influence of Clinical Factors and Magnification Correction on Normal Thickness Profiles of Macular Retinal Layers Using Optical Coherence Tomography

    PubMed Central

    Higashide, Tomomi; Ohkubo, Shinji; Hangai, Masanori; Ito, Yasuki; Shimada, Noriaki; Ohno-Matsui, Kyoko; Terasaki, Hiroko; Sugiyama, Kazuhisa; Chew, Paul; Li, Kenneth K. W.; Yoshimura, Nagahisa

    2016-01-01

    Purpose To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects. Methods The thickness of retinal layers {retinal nerve fiber layer (RNFL), ganglion cell layer plus inner plexiform layer (GCLIPL), RNFL plus GCLIPL (ganglion cell complex, GCC), total retina, total retina minus GCC (outer retina)} were measured by macular scans (RS-3000, NIDEK) in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters) with or without magnification correction. For each layer thickness, a semipartial correlation (sr) was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index. Results Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13) regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33) and a negative sr with GCLIPL (sr2, 0.22 to 0.31), GCC (sr2, 0.03 to 0.17), total retina (sr2, 0.07 to 0.17) and outer retina (sr2, 0.16 to 0.29) in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction. Conclusions The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction. PMID:26814541

  2. Numerical simulations of the influence of solar zenith angle on properties of the M1 layer of the Mars ionosphere

    NASA Astrophysics Data System (ADS)

    Fallows, K.; Withers, P.; Matta, M.

    2015-08-01

    The M1 layer of the Mars ionosphere is one of its most significant features, second only to the M2 layer. Observations have shown how the physical properties of this layer depend on solar zenith angle (SZA) and solar irradiance, but these trends have not yet been explored in detail by numerical simulations. Hence, the full implications of the observational findings for the M1 layer's behavior have not been established. Here we use the Boston University Mars Ionosphere Model to simulate the M1 layer over a period of 6 months. In order to adequately reproduce the SZA dependence of the observed M2 peak density, an ad hoc isothermal electron temperature profile was required. This representation was motivated by detailed energy balance calculations that predict relatively small variations in electron temperature at the M2 peak. We find several model results consistent with observations: the simulated M1 peak density is effectively proportional to Ch(SZA)-0.5, where Ch is the Chapman function; the ratio of M1 to M2 peak electron densities is independent of SZA; the simulated M1 peak altitude decreases with increasing solar irradiance; and the simulated difference in altitude between the M1 and M2 layers increases with SZA at the observed rate. Due to limitations in the assumed neutral atmosphere, the simulated increase in M1 peak altitude with increasing solar zenith angle is significantly greater than observed. In both simulations and observations, limitations in representing the width of the M1 layer prevent meaningful comparisons and connections to the neutral scale height.

  3. Influence of carboxylic ion-pairing reagents on retention of peptides in thin-layer chromatography systems with C18 silica-based adsorbents.

    PubMed

    Gwarda, Radosław Ł; Aletańska-Kozak, Monika; Klimek-Turek, Anna; Ziajko-Jankowska, Agnieszka; Matosiuk, Dariusz; Dzido, Tadeusz H

    2016-04-01

    One of the main problems related to chromatography of peptides concerns adverse interactions of their strong basic groups with free silanol groups of the silica based stationary phase. Influence of type and concentration of ion-pairing regents on peptide retention in reversed-phase high-performance liquid chromatography (RP-HPLC) systems has been discussed before. Here we present influence of these mobile phase additives on retention of some peptide standards in high-performance thin-layer chromatography (HPTLC) systems with C18 silica-based adsorbents. We prove, that due to different characteristic of adsorbents used in both techniques (RP HPLC and HPTLC), influence of ion-pairing reagents on retention of basic and/or amphoteric compounds also may be quite different. C18 silica-based HPTLC adsorbents provide more complex mechanism of retention and should be rather considered as mixed-mode adsorbents. PMID:26944833

  4. Influence of Dopant Concentration on Electroluminescent Performance of Organic White-Light-Emitting Device with Double-Emissive-Layered Structure

    NASA Astrophysics Data System (ADS)

    Wu, Xiao-Ming; Hua, Yu-Lin; Yin, Shou-Gen; Zhang, Li-Juan; Wang, Yu; Hou, Qing-Chuan; Zhang, Jun-Mei

    2008-01-01

    A novel phosphorescent organic white-light-emitting device (WOLED) with configuration of ITO/NPB/CBP:TBPe:rubrene/Zn(BTZ)2:Ir(piq)2(acac)/Zn(BTZ)2/Mg:Ag is fabricated successfully, where the phosphorescent dye bis (1-(phenyl)isoquinoline) iridium (III) acetylanetonate (Ir(piq)2(acac)) doped into bis-(2-(2-hydroxyphenyl) benzothiazole)zinc (Zn(BTZ)2) (greenish-blue emitting material with electron transport character) as the red emitting layer, and fluorescent dye 2,5,8,11-tetra-tertbutylperylene (TBPe) and 5,6,11,12-tetraphenyl-naphthacene (rubrene) together doped into 4,4'-N,N'-dicarbazole-biphenyl (CBP) (ambipolar conductivity material) as the blue-orange emitting layer, respectively. The two emitting layers are sandwiched between the hole-transport layer N,N'-biphenyl-N, N'-bis (1-naphthyl)-(1,1'-biphenyl)-4,4'-diamine (NPB) and electron-transport layer (Zn(BTZ)2). The optimum device turns on at the driving voltage of 4.5 V. A maximum external quantum efficiency of 1.53% and brightness 15000 cd/m2 are presented. The best point of the Commission Internationale de l'Eclairage (CIE) coordinates locates at (0.335, 0.338) at about 13 V. Moreover, we also discuss how to achieve the bright pure white light through optimizing the doping concentration of each dye from the viewpoint of energy transfer process.

  5. Influence of a high resistivity transparent (HRT) layer on the performance of CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Mahabaduge, Hasitha; Wieland, Kristopher; Compaan, Alvin

    2010-04-01

    Cadmium telluride (CdTe) solar cells have become very successful for large scale application of photovoltaic energy conversion with Ohio-based solar cell manufacturer, First Solar, now the largest manufacturer of thin-film cells in the world. Although CdTe solar cells have shown laboratory efficiencies in excess of 16.5% its realistic potential efficiency is well above 20%. High-resistivity transparent oxide buffer layers (HRT's) added between the transparent conducting oxide (TCO) and CdS layers in CdTe solar cells can enhance the performance of the device. Our results show an increase in efficiency with the HRT layer with the greatest contribution coming from improved fill factor (FF). Open circuit-voltage (Voc) and short-circuit current (Jsc) stay relatively constant. The effect of different materials as the HRT layer on the cell structure TCO/HRT/CdS/CdTe/Cu/Au was investigated using commercially available SnO2:F as the TCO. The study included ZnO, ZnO:Al, SiO2, SnO2 and Al2O3. Our results show that ZnO and ZnO:Al are promising candidates for the HRT layer and the use of ZnO:Al reactively sputtered with O2 is particularly attractive since the transition from TCO to HRT is accomplished simply by adding O2 to the Ar sputtering gas.

  6. The growth of various buffer layer structures and their influence on the quality of (CdHg)Te epilayers

    NASA Astrophysics Data System (ADS)

    Gouws, G. J.; Muller, R. J.; Bowden, R. S.

    1993-05-01

    The suitability of various buffer layer structures on (100) GaAs for (CdHg)Te growth by organometallic vapour phase epitaxy (OMVPE) was investigated. The preferred epitaxial orientation of {(100)GaAs}/{(111)CdTe} was found to be unsuitable due to the formation of electrically active defects in the material. An intermediate ZnTe layer was used to select the (100) orientation and (100) CdTe layers were when deposited on this ZnTe layer. The quality of the resultant CdTe buffer was found to critically depend on the thickness of this intermediate ZnTe buffer, with a ZnTe thickness of approximately 500 Å producing the best CdTe buffer. (CdHg)Te epilayers grown on these {ZnTe}/{CdTe} buffers had improved electrical properties, but still suffered from a poor surface morphology. This surface morphology could be improved by using a lattice matched Cd 0.96Zn 0.04Te alloy as the final buffer layer, but the surface pyramids typical of the (100) orientation could never be completely eliminated.

  7. Kinematic Thermal Model for Tonga Descending Slab: A Case Study on the Influence of Velocity Boundary Layers

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Wei, D.

    2009-12-01

    Within the core of a colder slab (e.g., the Tonga slab), the existence of metastable olivine (MO), extending deeper than the 410 km, has several important implications for understanding both the mechanism of deep earthquakes (>300 km) and the slab dynamics. The effect of subduction kinematics on the slab thermal structure has been widely investigated by prescribing Constant Velocity field for the subducting Slab (CVS-model), which may result in artificial computational interferences along the slab interfaces by accelerating the heating of subducting slabs. For the purpose of moderating the CVS effect and investigating the influence of metastable phase transformations on deep seismicity, we construct a 2-dimensional finite element thermal model for a 120 Ma-old 50° dipping oceanic lithosphere descending at 10 cm/yr with Velocity Boundary Layers (VBL-model), within which the velocities decrease from v to zero with the distance to the interface. The density anomalies for the VBL-model show significant variations (~100 kg/m3) at depths of both ~230 and ~410 km, whereas CVS-model shows anomalies above ~410 km. Thus, the VBL-model result is in better agreement with our knowledge of the subducting evolution that the density anomalies are primarily controlled by the conductive cooling and the phase transitions for the shallow depths of the slab and the transition zone, respectively. The VBL-model pressure anomalies also indicate that the negative buoyancy force causes the downdip tensional (DDT) earthquakes occurring above depth of ~230 km. At depths >410 km, the zonal distributed pressures of the VBL-model show negative and positive anomalies within the core and the outermost portion of slab, respectively, whereas the CVS-model produces negative pressure anomalies. The seismicity shows that down-dip compressional (DDC) and DDT deep earthquakes occur along the lower and upper interfaces of Tonga slab, whereas the P- and T-axes for the earthquakes in-between portion are

  8. Influence of Copper Layer Content in the Elastic and Damping Behavior of Glass-Fiber/Epoxy-Resin Composites

    NASA Astrophysics Data System (ADS)

    Carneiro, V. H.; Capela, P.; Teixeira, J. C.; Teixeira, S.; Cerqueira, F.; Macedo, F.; Ribas, L.; Soares, D.

    2016-06-01

    The impact in the elastic behavior and internal friction, caused by the introduction of Copper layers in Glass-Fiber/Epoxy Resin composites and temperature effects, were studied and evaluated recurring to Dynamic Mechanical Analysis. It is shown that the introduction of Copper layers increases the storage modulus of the composites and delays their glass transition temperature, however, it allows a faster transformation. Additionally, it is concluded that the introduction of Copper layers elevates the internal friction during the glass transition phase by the inversion of the deformation mechanism due to thermal expansion and increase in the Poisson's ratio of the epoxy resin to a value near 0.5 where its deformation is approximately isochoric. This increase in damping capacity is relevant in application with cyclic fatigue and mechanical vibration.

  9. Influence of surface forcing on near-surface and mixing layer turbulence in the tropical Indian Ocean

    NASA Astrophysics Data System (ADS)

    Callaghan, Adrian H.; Ward, Brian; Vialard, Jérôme

    2014-12-01

    An autonomous upwardly-moving microstructure profiler was used to collect measurements of the rate of dissipation of turbulent kinetic energy (ε) in the tropical Indian Ocean during a single diurnal cycle, from about 50 m depth to the sea surface. This dataset is one of only a few to resolve upper ocean ε over a diurnal cycle from below the active mixing layer up to the air-sea interface. Wind speed was weak with an average value of ~5 m s-1 and the wave field was swell-dominated. Within the wind and wave affected surface layer (WWSL), ε values were on the order of 10-7-10-6 W kg-1 at a depth of 0.75 m and when averaged, were almost a factor of two above classical law of the wall theory, possibly indicative of an additional source of energy from the wave field. Below this depth, ε values were closer to wall layer scaling, suggesting that the work of the Reynolds stress on the wind-induced vertical shear was the major source of turbulence within this layer. No evidence of persistent elevated near-surface ε characteristic of wave-breaking conditions was found. Profiles collected during night-time displayed relatively constant ε values at depths between the WWSL and the base of the mixing layer, characteristic of mixing by convective overturning. Within the remnant layer, depth-averaged values of ε started decaying exponentially with an e-folding time of 47 min, about 30 min after the reversal of the total surface net heat flux from oceanic loss to gain.

  10. Influence of a thin interfacial oxide layer on the ion beam assisted epitaxial crystallization of deposited Si

    NASA Astrophysics Data System (ADS)

    Priolo, F.; La Ferla, A.; Spinella, C.; Rimini, E.; Ferla, G.; Baroetto, F.; Licciardello, A.

    1988-12-01

    The epitaxial crystallization of chemical vapor deposited Si layers on <100> Si substrates with a thin interfacial oxide layer was induced by a 600 keV Kr beam in the temperature range 350-500 °C. During irradiation the single crystal-amorphous interface velocity was measured in situ by monitoring the reflectivity of He-Ne laser light. We show that a critical irradiation dose is needed before the interfacial oxide breaks down and epitaxial regrowth can take place. This critical dose depends exponentially on the reciprocal temperature with an activation energy of 0.44 eV.