Science.gov

Sample records for layer-by-layer covalent attachment

  1. Covalent assembly of poly(ethyleneimine) via layer-by-layer deposition for enhancing surface density of protein and bacteria attachment

    NASA Astrophysics Data System (ADS)

    Xia, Bing; Shi, Jisen; Dong, Chen; Zhang, Wenyi; Lu, Ye; Guo, Ping

    2014-02-01

    Covalently assembly of low molecular weight poly(ethyleneimine) was introduced to glass surfaces via glutaraldehyde crosslinking, with focus on its application on protein immobilization or bacteria attachment. Characterizations of Fourier transform infrared spectroscopy and ellipsometry measurement revealed a stepwise growth of poly(ethyleneimine) films by layer-by-layer deposition. After fluorescein isothiocyanate labelling, photoluminescence spectroscopy measurement indicated that the amount of surface accessible amine groups had been gradually enhanced with increasing poly(ethyleneimine) layers deposition. As compared with traditional aminosilanized surfaces, the surface density of amine groups was enhanced by ∼11 times after five layers grafting, which resulted in ∼9-time increasing of surface density of immobilized bovine serum albumin. Finally, these as-prepared PEI multi-films with excellent biocompatibility were adopted as culture substrates to improve Escherichia coli adherence, which showed that their surface density had been increased by ∼251 times.

  2. Covalent layer-by-layer assembly of hyperbranched polymers on alginate microcapsulesto impart stability and permselectivity.

    PubMed

    Gattás-Asfura, Km; Valdes, M; Celik, E; Stabler, Cl

    2014-12-14

    The microencapsulation of cells has shown promise as a therapeutic vehicle for the treatment of a wide variety of diseases. While alginate microcapsules provide an ideal cell encapsulation material, polycations coatings are commonly employed to enhance stability and impart permselectivity. In this study, functionalized hyperbranched alginate and dendrimer polymers were used to generate discreet nanoscale coatings onto alginate microbeads via covalent layer-by-layer assembly. The bioorthogonal Staudinger ligation scheme was used to chemoselectively crosslink azide functionalized hyperbranched alginate (alginate-hN3) to methyl-2-diphenylphosphino-terephthalate (MDT) linked PAMAM dendrimer (PAMAM-MDT). Covalent layer-by-layer deposition of PAMAM-MDT/alginate-hN3 coatings onto alginate microbeads resulted in highly stable coatings, even after the inner alginate gel was liquefied to form microcapsules. The permselectivity of the coated microcapsules could be manipulated via the charge density of the PAMAM, the number of layers deposited, and the length of the functional arms. The cytocompatibility of the resulting PAMAM-MDT/alginate-hN3 coating was evaluated using a beta cell line, with no significant detrimental response observed. The biocompatibility of the coatings in vivo was also found comparable to uncoated alginate beads. The remarkable stability and versatile nature of these coatings provides an appealing option for bioencapsulation and the release of therapeutic agents. PMID:25478165

  3. Covalent layer-by-layer assembly of polyethyleneimine multilayer for antibacterial applications.

    PubMed

    He, Tao; Chan, Vincent

    2010-11-01

    Polyelectrolyte multilayer film (PMF) is conventionally fabricated by the layer-by-layer (LBL) assembly of a pair of oppositely charged polyelectrolytes on a substrate through electrostatic attractions. However, the lack of long-term stability of PMF under physiological conditions limits its application as antimicrobial coating in medical devices. In this study, a stable PMF composed of only polyethyleneimine (PEI) was constructed by covalent LBL deposition. First, the specific buildup of PEI during covalent LBL assembly was validated by UV-Vis absorption spectroscopy and atomic force microscopy. Second, silver (Ag) nanoparticles were incorporated into PEI multilayers through in situ reduction of Ag(+) by the pre-absorption of NaBH(4). It was also shown that the mass of Ag nanoparticle can be controlled by varying multilayer thickness and loading cycles. Bacterial live/dead assay showed that the PEI multilayers effectively killed Staphylococcus aureus and Escherichia coli upon contact formation. The inclusion of Ag nanoparticles in (PEI) film not only enhanced the antimicrobial property against adherent bacteria but also led to the inhibition of the bacteria growth in suspended culture via the long-term release of Ag(+) into the liquid medium. PMID:20648543

  4. Hemoglobin protein hollow shells fabricated through covalent layer-by-layer technique

    SciTech Connect

    Duan Li; He Qiang; Cui Yue; Wang Kewei; Li Junbai . E-mail: jbli@iccas.ac.cn

    2007-03-09

    Hemoglobin (Hb) protein microcapsules held together by cross-linker, glutaraldehyde (GA), were successfully fabricated by covalent layer-by-layer (LbL) technique. The Schiff base reaction occurred on the colloid templates between the aldehyde groups of GA and free amino sites of Hb results in the formation of GA/Hb microcapsules after the removal of the templates. The structure of obtained monodisperse protein microcapsule was characterized by transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). The UV-Vis spectra measurements demonstrate the existence of Hb in the assembled capsules. Cyclic voltammetry (CV) and potential-controlled amperometric measurements (I-t curve) confirm that hemoglobin microcapsules after fabrication remain their heme electroactivity. Moreover, direct electron transfer process from protein to electrode surface was performed to detect the heme electrochemistry without using any mediator or promoter. The experiments of fluorescence recovery after photobleaching (FRAP) by CLSM demonstrate that the hemoglobin protein microcapsules have an improved permeability comparing to the conventional polyelectrolyte microcapsules.

  5. A facile method for the construction of covalently cross-linked layered double hydroxides layer-by-layer films: Enhanced stability and delayed release of guests

    NASA Astrophysics Data System (ADS)

    Li, Yulong; An, Qi; Hu, Yingmo; Luan, Xinglong; Zhang, Qian; Zhang, Tianhang; Zhang, Yihe

    2015-07-01

    Stable composite films that contain layered double hydroxide (LDH) are appealing materials but are also difficult to prepare. We report here a facile strategy for the fabrication of covalently cross-linked layer-by-layer multilayers that incorporate LDH. The films were first prepared using the traditional LbL method based on non-covalent interactions, followed by infiltration of a photoactive small molecule DAS. UV light was then used to cross-link the multilayers. The stability of the cross-linked film was remarkably enhanced. Furthermore, the release profile of incorporated molecules from layered double hydroxide was significantly delayed.

  6. Freestanding and Reactive Thin Films Fabricated by Covalent Layer-by-Layer Assembly and Subsequent Lift-Off of Azlactone-Containing Polymer Multilayers

    PubMed Central

    Buck, Maren E.

    2010-01-01

    We report an approach to the fabrication of freestanding and amine-reactive thin films that is based on the reactive layer-by-layer assembly and subsequent lift-off of azlactone-containing polymer multilayers. We demonstrate that covalently crosslinked multilayers fabricated using the azlactone-functionalized polymer poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) and a primary amine-containing polymer [poly(ethyleneimine) (PEI)] can be delaminated from planar glass and silicon surfaces by immersion in mildly acidic aqueous environments to yield flexible freestanding membranes. These freestanding membranes are robust and can withstand exposure to strong acid, strong base, or incubation in high ionic strength solutions that typically lead to the disruption and erosion of polymer multilayers assembled by reversible weak interactions (e.g., ‘polyelectrolyte multilayers’ assembled by electrostatic interactions or hydrogen bonding). We demonstrate further that these PEI/PVDMA assemblies contain residual reactive azlactone functionality that can be exploited to chemically modify the films (either directly after fabrication or after they have been lifted off of the substrates on which they were fabricated) using a variety of amine-functionalized small molecules. These freestanding membranes can also be transferred readily onto other objects (for example, onto the surfaces of planar substrates containing holes or pores) to fabricate suspended polymer membranes and other film-functionalized interfaces. In addition to planar, two-dimensional freestanding films, this approach can be used to fabricate and isolate three-dimensional freestanding membranes (e.g., curved films or tubes) by layer-by-layer assembly on, and subsequent lift-off from, the surfaces of topologically complex substrates (e.g., the curved ends of glass tubing, etc.). The results of this investigation, when combined, suggest the basis of methods for the fabrication of stable, chemically-reactive, and

  7. Fabrication of Covalently Crosslinked and Amine-Reactive Microcapsules by Reactive Layer-by-Layer Assembly of Azlactone-Containing Polymer Multilayers on Sacrificial Microparticle Templates

    PubMed Central

    Saurer, Eric M.; Flessner, Ryan M.; Buck, Maren E.; Lynn, David M.

    2011-01-01

    We report on the fabrication of covalently crosslinked and amine-reactive hollow microcapsules using ‘reactive’ layer-by-layer assembly to deposit thin polymer films on sacrificial microparticle templates. Our approach is based on the alternating deposition of layers of a synthetic polyamine and a polymer containing reactive azlactone functionality. Multilayered films composed of branched poly(ethylene imine) (BPEI) and poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) were fabricated layer-by-layer on the surfaces of calcium carbonate and glass microparticle templates. After fabrication, these films contained residual azlactone functionality that was accessible for reaction with amine-containing molecules. Dissolution of the calcium carbonate or glass cores using aqueous ethylenediamine tetraacetic acid (EDTA) or hydrofluoric acid (HF), respectively, led to the formation of hollow polymer microcapsules. These microcapsules were robust enough to encapsulate and retain a model macromolecule (FITC-dextran) and were stable for at least 22 hours in high ionic strength environments, in low and high pH solutions, and in several common organic solvents. Significant differences in the behaviors of capsules fabricated on CaCO3 and glass cores were observed and characterized using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Whereas capsules fabricated on CaCO3 templates collapsed upon drying, capsules fabricated on glass templates remained rigid and spherical. Characterization using EDS suggested that this latter behavior results, at least in part, from the presence of insoluble metal fluoride salts that are trapped or precipitate within the walls of capsules after etching of the glass cores using HF. Our results demonstrate that the assembly of BPEI/PVDMA films on sacrificial templates can be used to fabricate reactive microcapsules of potential use in a wide range of fields, including catalysis, drug and gene delivery, imaging, and

  8. What is really driving cell-surface interactions? Layer-by-layer assembled films may help to answer questions concerning cell attachment and response to biomaterials.

    PubMed

    Sergeeva, Yulia N; Huang, Tongtong; Felix, Olivier; Jung, Laura; Tropel, Philippe; Viville, Stephane; Decher, Gero

    2016-06-01

    Layer-by-layer (LbL) assembled multicomponent films offer the opportunity to control and to fine-tune cell attachment and behavior on solid surfaces [Layer-by-Layer Films for Biomedical Applications, edited by Picart et al. (Wiley, Weinheim, 2014) and El-Khouri et al., "Multifunctional layer-by-layer architectures for biological applications," in Functional Polymeric Ultrathin Films, edited by Advincula and Knoll (Wiley, Weinheim, 2011), Vol. 1]. At the same time, these films allow for quite detailed physicochemical characterization of static and dynamic surface properties that are typically not available in classic cell culture. In this report, the authors investigate cell adhesion and cytocompatibility of compositionally and morphologically similar thin films composed of oppositely charged synthetic or natural polyelectrolytes in which different physical parameters such as surface charge or water content are varied through chemical composition and deposition conditions. Human adult dermal fibroblasts were chosen as a model because of the need for chemically defined matrix in the field of primary cell amplification. The growth and the stability of the multilayer films in the incubation media were studied dissipation-enhanced quartz crystal micobalance (QCM-D) and ellipsometry. The QCM-D signals observed during the film deposition were analyzed qualitatively to estimate the viscoelastic properties of the films. The authors used contact angle measurements with water to study the contribution of the chemical functionalities to wetting behavior of the films. Most importantly, they also studied the interaction of the films with serum components. Our results underline that cell adhesion is a highly complex process which is not only governed by the functionality of a surface but also by its morphology, its affinity for serum components, and also by changes of surface properties brought about by adsorbing molecules. Of the many LbL-films tested, poly(4-styrenesulfonate

  9. PAH/DAS covalently cross-linked layer-by-layer multilayers: a "nano-net" superstratum immobilizes nanoparticles and remains permeable to small molecules.

    PubMed

    An, Qi; Nie, Kun; Zhang, Yihe; Wang, Yue; Hu, Yingmo; Dutschk, Victoria; Luan, Xinglong

    2015-09-14

    A "nano-net" superstratum strategy is developed to stabilize layer-by-layer (LbL) films that incorporate nanoparticles. The superstratum immobilizes silica, gold, or magnetic nanoparticles and at the same time is permeable to small molecules. Unlike most strategies to stabilize LbL multilayers reported in the literature, our strategy does not directly cross-link the nanoparticles and polymers in the adjacent layer, thus circumventing the tedious processes of (surface) modification of the nanoparticles or polymers. The unique advantage of our strategy is further employed in the preparation of a model functional device, where mesoporous silica nanoparticles are held in the composite multilayers with enhanced stabilities. A model drug, methylene blue, is then loaded in large amounts due to the porous structure of the silica particles, and could be released in a delayed manner up to 55 h. PMID:26235250

  10. Layer-by-layer cell membrane assembly

    NASA Astrophysics Data System (ADS)

    Matosevic, Sandro; Paegel, Brian M.

    2013-11-01

    Eukaryotic subcellular membrane systems, such as the nuclear envelope or endoplasmic reticulum, present a rich array of architecturally and compositionally complex supramolecular targets that are as yet inaccessible. Here we describe layer-by-layer phospholipid membrane assembly on microfluidic droplets, a route to structures with defined compositional asymmetry and lamellarity. Starting with phospholipid-stabilized water-in-oil droplets trapped in a static droplet array, lipid monolayer deposition proceeds as oil/water-phase boundaries pass over the droplets. Unilamellar vesicles assembled layer-by-layer support functional insertion both of purified and of in situ expressed membrane proteins. Synthesis and chemical probing of asymmetric unilamellar and double-bilayer vesicles demonstrate the programmability of both membrane lamellarity and lipid-leaflet composition during assembly. The immobilized vesicle arrays are a pragmatic experimental platform for biophysical studies of membranes and their associated proteins, particularly complexes that assemble and function in multilamellar contexts in vivo.

  11. Organic self-assembled layer-by-layer thin films for second-order nonlinear optics

    NASA Astrophysics Data System (ADS)

    Guzy, Matthew T.

    Layer-by-layer deposition techniques were used to fabricate films with second order nonlinear optical (NLO) properties. These materials are key to the development of electro-optic modulators used in fiber optic communication systems. Performance benefits and lower manufacturing costs are driving the development of organic NLO materials as replacements for inorganic crystalline materials such as lithium niobate. The layer-by-layer deposition technique in which polyelectrolytes are deposited on a surface by electrostatic effects is called the Ionically Self-Assembled Monolayer or ISAM method. The role of the optically inactive polycation's structure on deposition and chromophore orientation was studied by fabricating films with several different polycations. While the specific interactions responsible for chromophore orientation in ISAM films remains unclear, hydrogen bonding and electrostatic effects are ruled out as the sole sources of orientation. The highest values of chi(2) were observed under pH conditions that resulted in flat and thin layers. The relationship between pH and the optical homogeneity of the film was also explored. Deposition of polymers under pH conditions in which the polymer chains were aggregated in solution results in films that are not suitable for use in devices. In this work, a new layer-by-layer deposition technique was developed. Coined hybrid deposition, it relies on covalent bonds and electrostatic interactions for film fabrication. Optically inactive polyamines were used as sources of positive charges and as binding sites with optically active low molecular weight chromophores functionalized with a reactive triazine ring and negative charged sulfonate groups. Polar ordering of the chromophores was obtained when the deposition was done under conditions in which covalent bonding was the preferred attachment mechanism for the chromophore molecules. pH conditions in which electrostatic attachment dominated resulted in poorer orientation

  12. Burning Graphene Layer-by-Layer

    PubMed Central

    Ermakov, Victor A.; Alaferdov, Andrei V.; Vaz, Alfredo R.; Perim, Eric; Autreto, Pedro A. S.; Paupitz, Ricardo; Galvao, Douglas S.; Moshkalev, Stanislav A.

    2015-01-01

    Graphene, in single layer or multi-layer forms, holds great promise for future electronics and high-temperature applications. Resistance to oxidation, an important property for high-temperature applications, has not yet been extensively investigated. Controlled thinning of multi-layer graphene (MLG), e.g., by plasma or laser processing is another challenge, since the existing methods produce non-uniform thinning or introduce undesirable defects in the basal plane. We report here that heating to extremely high temperatures (exceeding 2000 K) and controllable layer-by-layer burning (thinning) can be achieved by low-power laser processing of suspended high-quality MLG in air in “cold-wall” reactor configuration. In contrast, localized laser heating of supported samples results in non-uniform graphene burning at much higher rates. Fully atomistic molecular dynamics simulations were also performed to reveal details of oxidation mechanisms leading to uniform layer-by-layer graphene gasification. The extraordinary resistance of MLG to oxidation paves the way to novel high-temperature applications as continuum light source or scaffolding material. PMID:26100466

  13. Burning Graphene Layer-by-Layer.

    PubMed

    Ermakov, Victor A; Alaferdov, Andrei V; Vaz, Alfredo R; Perim, Eric; Autreto, Pedro A S; Paupitz, Ricardo; Galvao, Douglas S; Moshkalev, Stanislav A

    2015-01-01

    Graphene, in single layer or multi-layer forms, holds great promise for future electronics and high-temperature applications. Resistance to oxidation, an important property for high-temperature applications, has not yet been extensively investigated. Controlled thinning of multi-layer graphene (MLG), e.g., by plasma or laser processing is another challenge, since the existing methods produce non-uniform thinning or introduce undesirable defects in the basal plane. We report here that heating to extremely high temperatures (exceeding 2000 K) and controllable layer-by-layer burning (thinning) can be achieved by low-power laser processing of suspended high-quality MLG in air in "cold-wall" reactor configuration. In contrast, localized laser heating of supported samples results in non-uniform graphene burning at much higher rates. Fully atomistic molecular dynamics simulations were also performed to reveal details of oxidation mechanisms leading to uniform layer-by-layer graphene gasification. The extraordinary resistance of MLG to oxidation paves the way to novel high-temperature applications as continuum light source or scaffolding material. PMID:26100466

  14. Boosting water oxidation layer-by-layer.

    PubMed

    Hidalgo-Acosta, Jonnathan C; Scanlon, Micheál D; Méndez, Manuel A; Amstutz, Véronique; Vrubel, Heron; Opallo, Marcin; Girault, Hubert H

    2016-04-01

    Electrocatalysis of water oxidation was achieved using fluorinated tin oxide (FTO) electrodes modified with layer-by-layer deposited films consisting of bilayers of negatively charged citrate-stabilized IrO2 NPs and positively charged poly(diallyldimethylammonium chloride) (PDDA) polymer. The IrO2 NP surface coverage can be fine-tuned by controlling the number of bilayers. The IrO2 NP films were amorphous, with the NPs therein being well-dispersed and retaining their as-synthesized shape and sizes. UV/vis spectroscopic and spectro-electrochemical studies confirmed that the total surface coverage and electrochemically addressable surface coverage of IrO2 NPs increased linearly with the number of bilayers up to 10 bilayers. The voltammetry of the modified electrode was that of hydrous iridium oxide films (HIROFs) with an observed super-Nernstian pH response of the Ir(III)/Ir(IV) and Ir(IV)-Ir(IV)/Ir(IV)-Ir(V) redox transitions and Nernstian shift of the oxygen evolution onset potential. The overpotential of the oxygen evolution reaction (OER) was essentially pH independent, varying only from 0.22 V to 0.28 V (at a current density of 0.1 mA cm(-2)), moving from acidic to alkaline conditions. Bulk electrolysis experiments revealed that the IrO2/PDDA films were stable and adherent under acidic and neutral conditions but degraded in alkaline solutions. Oxygen was evolved with Faradaic efficiencies approaching 100% under acidic (pH 1) and neutral (pH 7) conditions, and 88% in alkaline solutions (pH 13). This layer-by-layer approach forms the basis of future large-scale OER electrode development using ink-jet printing technology. PMID:26977761

  15. Covalent attachment of lysozyme to cotton/cellulose materials: protein verses solid support activation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Covalent attachment of enzymes to cellulosic materials like cotton is of interest where either release or loss of enzyme activity over time needs to be avoided. The covalent attachment of an enzyme to a cellulosic substrate requires either activation of a protein side chain or an organic functional ...

  16. Cellular Responses Modulated by FGF-2 Adsorbed on Albumin/Heparin Layer-by-Layer Assemblies

    PubMed Central

    Kumorek, Marta; Kubies, Dana; Filová, Elena; Houska, Milan; Kasoju, Naresh; Mázl Chánová, Eliška; Matějka, Roman; Krýslová, Markéta; Bačáková, Lucie; Rypáček, František

    2015-01-01

    In a typical cell culture system, growth factors immobilized on the cell culture surfaces can serve as a reservoir of bio-signaling molecules, without the need to supplement them additionally into the culture medium. In this paper, we report on the fabrication of albumin/heparin (Alb/Hep) assemblies for controlled binding of basic fibroblast growth factor (FGF-2). The surfaces were constructed by layer-by-layer adsorption of polyelectrolytes albumin and heparin and were subsequently stabilized by covalent crosslinking with glutaraldehyde. An analysis of the surface morphology by atomic force microscopy showed that two Alb/Hep bilayers are required to cover the surface of substrate. The formation of the Alb/Hep assemblies was monitored by the surface plasmon resonance (SPR), the infrared multiinternal reflection spectroscopy (FTIR MIRS) and UV/VIS spectroscopy. The adsorption of FGF-2 on the cross-linked Alb/Hep was followed by SPR. The results revealed that FGF-2 binds to the Alb/Hep assembly in a dose and time-dependent manner up to the surface concentration of 120 ng/cm2. The bioactivity of the adsorbed FGF-2 was assessed in experiments in vitro, using calf pulmonary arterial endothelial cells (CPAE). CPAE cells could attach and proliferate on Alb/Hep surfaces. The adsorbed FGF-2 was bioactive and stimulated both the proliferation and the differentiation of CPAE cells. The improvement was more pronounced at a lower FGF-2 surface concentration (30 ng/cm2) than on surfaces with a higher concentration of FGF-2 (120 ng/cm2). PMID:25945799

  17. Bioorthogonal layer-by-layer encapsulation of pancreatic islets via hyperbranched polymers.

    PubMed

    Gattás-Asfura, Kerim M; Stabler, Cherie L

    2013-10-23

    Encapsulation of viable tissues via layer-by-layer polymer assembly provides a versatile platform for cell surface engineering, with nanoscale control over the capsule properties. Herein, we report the development of a hyperbranched polymer-based, ultrathin capsule architecture expressing bioorthogonal functionality and tailored physiochemical properties. Random carbodiimide-based condensation of 3,5-dicarboxyphenyl glycineamide on alginate yielded a highly branched polysaccharide with multiple, spatially restricted, and readily functionalizable terminal carboxylate moieties. Poly(ethylene glycol) (PEG) was utilized to link azido end groups to the structured alginate. Together with a phosphine-functionalized poly(amidoamine) dendrimer, nanoscale layer-by-layer coatings, covalently stabilized via Staudinger ligation, were assembled onto solid surfaces and pancreatic islets. The effects of electrostatic and/or bioorthogonal covalent interlayer interactions on the resulting coating efficiency and stability, as well as pancreatic islet viability and function, were studied. These hyperbranched polymers provide a flexible platform for the formation of covalently stabilized, ultrathin coatings on viable cells and tissues. In addition, the hyperbranched nature of the polymers presents a highly functionalized surface capable of bioorthogonal conjugation of additional bioactive or labeling motifs. PMID:24063764

  18. Protein attachment to silane-functionalized porous silicon: A comparison of electrostatic and covalent attachment.

    PubMed

    Baranowska, Malgorzata; Slota, Agata J; Eravuchira, Pinkie J; Alba, Maria; Formentin, Pilar; Pallarès, Josep; Ferré-Borrull, Josep; Marsal, Lluís F

    2015-08-15

    Porous silicon (pSi) is a prosperous biomaterial, biocompatible, and biodegradable. Obtaining regularly functionalized pSi surfaces is required in many biotechnology applications. Silane-PEG-NHS (triethoxysilane-polyethylene-glycol-N-hydroxysuccinimide) is useful for single-molecule studies due to its ability to attach to only one biomolecule. We investigate the functionalization of pSi with silane-PEG-NHS and compare it with two common grafting agents: APTMS (3-aminopropylotrimethoxysilane) as electrostatic linker, and APTMS modified with glutaraldehyde as covalent spacer. We show the arrangement of two proteins (collagen and bovine serum albumin) as a function of the functionalization and of the pore size. FTIR is used to demonstrate correct functionalization while fluorescence confocal microscopy reveals that silane-PEG-NHS results in a more uniform protein distribution. Reflection interference spectroscopy (RIfS) is used to estimate the attachment of linker and proteins. The results open a way to obtain homogenous chemical modified silicon supports with a great value in biosensing, drug delivery and cell biology. PMID:25942096

  19. Use of Functionalized Carbon Nanotubes for Covalent Attachment of Nanotubes to Silicon

    NASA Technical Reports Server (NTRS)

    Tour, James M.; Dyke, Christopher A.; Maya, Francisco; Stewart, Michael P.; Chen, Bo; Flatt, Austen K.

    2012-01-01

    The purpose of the invention is to covalently attach functionalized carbon nanotubes to silicon. This step allows for the introduction of carbon nanotubes onto all manner of silicon surfaces, and thereby introduction of carbon nano - tubes covalently into silicon-based devices, onto silicon particles, and onto silicon surfaces. Single-walled carbon nanotubes (SWNTs) dispersed as individuals in surfactant were functionalized. The nano - tube was first treated with 4-t-butylbenzenediazonium tetrafluoroborate to give increased solubility to the carbon nanotube; the second group attached to the sidewall of the nanotube has a silyl-protected terminal alkyne that is de-protected in situ. This gives a soluble carbon nanotube that has functional groups appended to the sidewall that can be attached covalently to silicon. This reaction was monitored by UV/vis/NJR to assure direct covalent functionalization.

  20. Atomic layer-by-layer epitaxy of cuprate superconductors

    SciTech Connect

    Bozovic, I.; Eckstein, J.N.; Virshup, G.F.

    1994-03-01

    A technique for atomic layer-by-layer epitaxy of cuprate superconductors and other complex oxides has been developed at Varian. The samples are engineered by stacking molecular layers of different compounds to assemble multilayers and superlattices, by adding or omitting atomic monolayers to create novel compounds, and by doping within specified atomic monolayers. Apart form manufacturing trilayer Josephson junctions with I{sub c}R{sub n}>5 mV, this technique enables one to address fundamental issues such as the dimensionality of HTSC state, existence of long-range proximity effects, occurrence of resonant tunneling etc., as well as to synthesize novel metastable HTSC compounds. 4 refs., 2 figs.

  1. Layer-by-layer growth of porphyrin supramolecular thin films

    SciTech Connect

    Nishiyama, Fumitaka; Yokoyama, Takashi; Kamikado, Toshiya; Yokoyama, Shiyoshi; Mashiko, Shinro

    2006-06-19

    Multilayer thin film growth of carboxyphenyl-substituted porphyrin on Au(111) was investigated by means of low-temperature scanning tunneling microscopy. The carboxyphenyl-substituted porphyrins are assembled into supramolecular wires on Au(111) by sequential hydrogen bonding between carboxyphenyl groups, and the dense aggregation of the supramolecular wires results in the formation of the first monolayer film. By further molecular deposition, the layer-by-layer growth of the supramolecular wires has been observed, leading to the supramolecular thin film growth.

  2. Stabilization of layer-by-layer engineered multilayered hollow microspheres.

    PubMed

    Liu, Peng

    2014-05-01

    Polymer multilayered hollow microspheres prepared by layer-by-layer (LbL) self-assembly attract more and more interest due to their unique application, especially as drug delivery system (DDS). Unfortunately, the multilayered hollow microspheres assembled via weak linkages could fuse and/or aggregate in high ionic strength media or strong acidic or basic media. This severely restricts the practical applications of the multilayered hollow microspheres as DDS in human physiological medium. In the present work, the progress in stabilization of the multilayered hollow microspheres is reviewed, with emphasis on the assembling process and their crosslinking mechanism. PMID:24321861

  3. Layer-by-Layer Assembly Onto Gold Nanoparticles of Various Size

    NASA Astrophysics Data System (ADS)

    Kilroy, Andrew; Kessler, Sarah; Dobbins, Tabbetha

    This research focuses on the potential applications of coated gold nanoparticles in medicine. By coating gold nanoparticles in layers of polyelectrolytes, with a final layer of antibodies which targets chemicals uniquely exhibited by cancer cells, we eventually hope to selectively attach the nanoparticles to the cancer cells. The coated nanoparticles are assembled through layer-by-layer coulombic attraction due to the passive zeta potential of the particle and the charged nature of the polyelectrolytes. This poster will explore the potential usefulness of variously sized nanoparticles with various thickness of polyelectrolyte layers.

  4. Metal-organic coordination-enabled layer-by-layer self-assembly to prepare hybrid microcapsules for efficient enzyme immobilization.

    PubMed

    Wang, Xiaoli; Jiang, Zhongyi; Shi, Jiafu; Liang, Yanpeng; Zhang, Chunhong; Wu, Hong

    2012-07-25

    A novel layer-by-layer self-assembly approach enabled by metal-organic coordination was developed to prepare polymer-inorganic hybrid microcapsules. Alginate was first activated via N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) coupling chemistry, and subsequently reacted with dopamine. Afterward, the dopamine modified alginate (Alg-DA) and titanium(IV) bis(ammonium lactato) dihydroxide (Ti(IV)) were alternatively deposited onto CaCO3 templates. The coordination reaction between the catechol groups of Alg-DA and the Ti(IV) allowed the alternative assembly to form a series of multilayers. After removing the templates, the alginate-titanium hybrid microcapsules were obtained. The high mechanical stability of hybrid microcapsules was demonstrated by osmotic pressure experiment. Furthermore, the hybrid microcapsules displayed superior thermal stability due to Ti(IV) coordination. Catalase (CAT) was used as model enzyme, either encapsulated inside or covalently attached on the surface of the resultant microcapsules. No CAT leakage from the microcapsules was detected after incubation for 48 h. The encapsulated CAT, with a loading capacity of 450-500 mg g(-1) microcapsules, exhibited desirable long-term storage stability, whereas the covalently attached CAT, with a loading capacity of 100-150 mg g(-1) microcapsules, showed desirable operational stability. PMID:22724538

  5. Multilayer thin films employing electrostatic layer-by- layer self-assembly for optical device applications

    NASA Astrophysics Data System (ADS)

    Lee, Soo-Hyoung

    2000-11-01

    molecules were covalently incorporated into poly(acrylic acid) and subsequently assembled with a polycation employing electrostatic layer-by-layer self-assembly. The sensor is based on the fluorescence quenching of indicator molecules by electron transfer from indicator to electron-deficient analytes such as ferric ions, mercury and 2,4-dinitro toluene. Fluorescence intensities decreased with increasing concentration of analytes. Quenching behavior follows Stern-Volmer bimolecular quenching kinetics. Linear increase in absorbance, film thickness and emission intensity was observed as a function of number of bilayers deposited in all these films.

  6. Spraying asymmetry into functional membranes layer-by-layer

    NASA Astrophysics Data System (ADS)

    Krogman, Kevin C.; Lowery, Joseph L.; Zacharia, Nicole S.; Rutledge, Gregory C.; Hammond, Paula T.

    2009-06-01

    As engineers strive to mimic the form and function of naturally occurring materials with synthetic alternatives, the challenges and costs of processing often limit creative innovation. Here we describe a powerful yet economical technique for developing multiple coatings of different morphologies and functions within a single textile membrane, enabling scientists to engineer the properties of a material from the nanoscopic level in commercially viable quantities. By simply varying the flow rate of charged species passing through an electrospun material during spray-assisted layer-by-layer deposition, individual fibres within the matrix can be conformally functionalized for ultrahigh-surface-area catalysis, or bridged to form a networked sublayer with complimentary properties. Exemplified here by the creation of selectively reactive gas purification membranes, the myriad applications of this technology also include self-cleaning fabrics, water purification and protein functionalization of scaffolds for tissue engineering.

  7. Spraying asymmetry into functional membranes layer-by-layer.

    PubMed

    Krogman, Kevin C; Lowery, Joseph L; Zacharia, Nicole S; Rutledge, Gregory C; Hammond, Paula T

    2009-06-01

    As engineers strive to mimic the form and function of naturally occurring materials with synthetic alternatives, the challenges and costs of processing often limit creative innovation. Here we describe a powerful yet economical technique for developing multiple coatings of different morphologies and functions within a single textile membrane, enabling scientists to engineer the properties of a material from the nanoscopic level in commercially viable quantities. By simply varying the flow rate of charged species passing through an electrospun material during spray-assisted layer-by-layer deposition, individual fibres within the matrix can be conformally functionalized for ultrahigh-surface-area catalysis, or bridged to form a networked sublayer with complimentary properties. Exemplified here by the creation of selectively reactive gas purification membranes, the myriad applications of this technology also include self-cleaning fabrics, water purification and protein functionalization of scaffolds for tissue engineering. PMID:19377464

  8. Natural melanin composites by layer-by-layer assembly

    NASA Astrophysics Data System (ADS)

    Eom, Taesik; Shim, Bong Sub

    2015-04-01

    Melanin is an electrically conductive and biocompatible material, because their conjugated backbone structures provide conducting pathways from human skin, eyes, brain, and beyond. So there is a potential of using as materials for the neural interfaces and the implantable devices. Extracted from Sepia officinalis ink, our natural melanin was uniformly dispersed in mostly polar solvents such as water and alcohols. Then, the dispersed melanin was further fabricated to nano-thin layered composites by the layer-by-layer (LBL) assembly technique. Combined with polyvinyl alcohol (PVA), the melanin nanoparticles behave as an LBL counterpart to from finely tuned nanostructured films. The LBL process can adjust the smart performances of the composites by varying the layering conditions and sandwich thickness. We further demonstrated the melanin loading degree of stacked layers, combination nanostructures, electrical properties, and biocompatibility of the resulting composites by UV-vis spectrophotometer, scanning electron microscope (SEM), multimeter, and in-vitro cell test of PC12, respectively.

  9. Layer-by-Layer Assembly of Enzymes on Carbon Nanotubes

    SciTech Connect

    Wang, Jun; Liu, Guodong; Lin, Yuehe

    2008-06-01

    The use of Layer-by-layer techniques for immobilizing several types of enzymes, e.g. glucose oxidase (GOx), horse radish oxidases(HRP), and choline oxidase(CHO) on carbon nanotubes and their applications for biosenseing are presented. The enzyme is immobilized on the negatively charged CNT surface by alternatively assembling a cationic polydiallyldimethyl-ammonium chloride (PDDA) layer and a enzyme layer. The sandwich-like layer structure (PDDA/enzyme/PDDA/CNT) formed by electrostatic assembling provides a favorable microenvironment to keep the bioactivity of enzyme and to prevent enzyme molecule leakage. The morphologies and electrocatalytic acitivity of the resulted enzyme film were characterized using TEM and electrochemical techniques, respectively. It was found that these enzyme-based biosensors are very sensitive, selective for detection of biomolecules, e.g. glucose, choline.

  10. Fluorescent DNA Nanotags Featuring Covalently Attached Intercalating Dyes: Synthesis, Antibody Conjugation and Intracellular Imaging

    PubMed Central

    Stadler, Andrea L.; Santos, Junriz Delos; Stensrud, Elizabeth S.; Dembska, Anna; Silva, Gloria L.; Liu, Shengpeng; Shank, Nathaniel I.; Kunttas-Tatli, Ezgi; Sobers, Courtney J.; Gramlich, Philipp M. E.; Carell, Thomas; Peteanu, Linda A.; McCartney, Brooke M.; Armitage, Bruce A.

    2011-01-01

    We have synthesized fluorescent DNA duplexes featuring multiple thiazole orange (TO) intercalating dyes covalently attached to the DNA via a triazole linkage. The intercalating dyes stabilize the duplex against thermal denaturation and show bright fluorescence in the green. The emission color can be changed to orange or red by addition of energy-accepting Cy3 or Cy5 dyes attached covalently to the DNA duplex. The dye-modified DNA duplexes were then attached to a secondary antibody for intracellular fluorescence imaging of centrosomes in Drosophila embryos. Bright fluorescent foci were observed at the centrosomes in both the donor (TO) and acceptor (Cy5) channels, due to the fact that the energy transfer efficiency is moderate. Monitoring the Cy5 emission channel significantly minimized the background signal due to the large shift in emission wavelength allowed by energy transfer. PMID:21755981

  11. Covalent attachment of catalyst molecules to conductive diamond: CO2 reduction using "smart" electrodes.

    PubMed

    Yao, Shu A; Ruther, Rose E; Zhang, Linghong; Franking, Ryan A; Hamers, Robert J; Berry, John F

    2012-09-26

    We report here covalent attachment of a catalytically active cobalt complex onto boron-doped, p-type conductive diamond. Peripheral acetylene groups were appended on a cobalt porphyrin complex, and azide-alkyne cycloaddition was used for covalent linking to a diamond surface decorated with alkyl azides. The functionalized surface was characterized by X-ray photoelectron spectroscopy and Fourier transform IR spectroscopy, and the catalytic activity was characterized using cyclic voltammetry and FTIR. The catalyst-modified diamond surfaces were used as "smart" electrodes exhibiting good stability and electrocatalytic activity for electrochemical reduction of CO(2) to CO in acetonitrile solution. PMID:22963046

  12. Layer-by-layer nanoencapsulation of camptothecin with improved activity

    PubMed Central

    Parekh, Gaurav; Pattekari, Pravin; Joshi, Chaitanya; Shutava, Tatsiana; DeCoster, Mark; Levchenko, Tatyana; Torchilin, Vladimir; Lvov, Yuri

    2014-01-01

    160 nm nanocapsules containing up to 60% of camptothecin in the core and 7–8 polyelectrolyte bilayers in the shell were produced by washless layer-by-layer assembly of heparin and block-copolymer of poly-L-lysine and polyethylene glycol. The outer surface of the nanocapsules was additionally modified with polyethylene glycol of 5 kDa or 20 kDa molecular weight to attain protein resistant properties, colloidal stability in serum and prolonged release of the drug from the capsules. An advantage of the LbL coated capsules is the preservation of camptothecin lactone form with the shell assembly starting at acidic pH and improved chemical stability of encapsulated drug at neutral and basic pH, especially in the presence of albumin that makes such formulation more active than free camptothecin. LbL nanocapsules preserve the camptothecin lactone form at pH 7.4 resulting in triple activity of the drug toward CRL2303 glioblastoma cell. PMID:24508806

  13. Biomimetic layer-by-layer templates for calcium phosphate biomineralization.

    PubMed

    Abdelkebir, K; Morin-Grognet, S; Gaudière, F; Coquerel, G; Labat, B; Atmani, H; Ladam, G

    2012-09-01

    Carboxylated, sulfated and/or phosphorylated surfaces are admitted as potential optimal templates for biomimetic deposition of calcium phosphate (CaP) coatings in view of improving implants' osseointegration. Layer-by-layer films were built up consisting of anionic chondroitin sulfate (ChS), a biological carboxylated and sulfated polysaccharide and cationic poly(l-lysine) (PLL). The films were used as soft matrices to immobilize a model phosphoprotein, phosvitin (PhV). The respective roles of ChS, PLL and PhV terminal layers on the heterogeneous nucleation kinetics and the structure of CaP deposits obtained from supersaturated solutions were inspected. Critical supersaturation ratios and induction times preceding heterogeneous nucleation were precisely determined and interpreted within the framework of classical nucleation theory in order to derive the effective interfacial energies of CaP crystals. It was found that the potency of terminal layers toward CaP nucleation increased in the order: PLL

  14. Controlled Layer-by-Layer Etching of MoS₂.

    PubMed

    Lin, TaiZhe; Kang, BaoTao; Jeon, MinHwan; Huffman, Craig; Jeon, JeaHoo; Lee, SungJoo; Han, Wei; Lee, JinYong; Lee, SeHan; Yeom, GeunYoung; Kim, KyongNam

    2015-07-29

    Two-dimensional (2D) metal dichalcogenides like molybdenum disulfide (MoS2) may provide a pathway to high-mobility channel materials that are needed for beyond-complementary metal-oxide-semiconductor (CMOS) devices. Controlling the thickness of these materials at the atomic level will be a key factor in the future development of MoS2 devices. In this study, we propose a layer-by-layer removal of MoS2 using the atomic layer etching (ALET) that is composed of the cyclic processing of chlorine (Cl)-radical adsorption and argon (Ar)(+) ion-beam desorption. MoS2 etching was not observed with only the Cl-radical adsorption or low-energy (<20 eV) Ar(+) ion-beam desorption steps; however, the use of sequential etching that is composed of the Cl-radical adsorption step and a subsequent Ar(+) ion-beam desorption step resulted in the complete etching of one monolayer of MoS2. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) indicated the removal of one monolayer of MoS2 with each ALET cycle; therefore, the number of MoS2 layers could be precisely controlled by using this cyclical etch method. In addition, no noticeable damage or etch residue was observed on the exposed MoS2. PMID:26091282

  15. Osteotropic therapy via targeted Layer-by-Layer nanoparticles

    PubMed Central

    Morton, Stephen W.; Shah, Nisarg J.; Quadir, Mohiuddin A.; Deng, Zhou J.; Poon, Zhiyong

    2014-01-01

    Current treatment options for debilitating bone diseases such as osteosarcoma, osteoporosis, and bone metastatic cancer are suboptimal and have low efficacy. New treatment options for these pathologies require targeted therapy that maximizes exposure to the diseased tissue and minimizes off-target side effects. This work investigates an approach for generating functional and targeted drug carriers specifically for treating primary osteosarcoma, a disease in which recurrence is common and the cure rate has remained around 20%. Our approach utilizes the modularity of Layer-by-Layer (LbL) assembly to generate tissue-specific drug carriers for systemic administration. This is accomplished via surface modification of drug-loaded nanoparticles with an aqueous polyelectrolyte, poly(acrylic acid) (PAA), side-chain functionalized with alendronate, a potent clinically-used bisphosphonate. Nanoparticles coated with PAA-Alendronate are observed to bind and internalize rapidly in human osteosarcoma 143B cells. Encapsulation of doxorubicin, a front-line chemotherapeutic, in an LbL-targeted liposome demonstrates potent toxicity in vitro. Active targeting of 143B xenografts in NCR nude mice with the LbL-targeted doxorubicin liposomes promotes enhanced, prolonged tumor accumulation and significantly improved efficacy. This report represents a tunable approach towards the synthesis of drug carriers, in which LbL can enable surface modification of nanoparticles for tissue-specific targeting and treatment. PMID:24124132

  16. Layer-by-layer assemblies for cancer treatment and diagnosis

    PubMed Central

    Liu, Xi Qiu; Picart, Catherine

    2016-01-01

    The layer-by-layer (LbL) technique was introduced in the early 90s by Profs Moehwald, Lvov and Decher. Since then, it has undergone a series of technological developments, making it possible to engineer various theranostic platforms such as films and capsules, with precise control at the nanometer and micrometer scales. This Research News article highlights recent progress in the applications of LbL assemblies in the field of cancer therapy, diagnosis and fundamental biology study. The potentials of LbL-based systems as drug carriers are discussed, especially with regard to the engineering of innovative stimuli-responsive systems, and their advantageous multifunctionality in the development of new therapeutic tools. Then, the diagnostic functions of LbL assemblies are illustrated for detection and capture of rare cancer cells. Finally, LbL mimicking extracellular environments demonstrate the emerging potential for the study of cancer cell behaviors in vitro. We conclude by highlighting the advantages of LbL systems, important challenges that need to be overcome, and future perspectives in clinical practice. PMID:26390356

  17. Inkjet Deposition of Layer by Layer Assembled Films

    PubMed Central

    Andres, Christine M.; Kotov, Nicholas A.

    2010-01-01

    Layer-by-layer assembly (LBL) can create advanced composites with exceptional properties unavailable by other means, but the laborious deposition process and multiple dipping cycles hamper their utilization in microtechnologies and electronics. Multiple rinse steps provide both structural control and thermodynamic stability to LBL multilayers but they significantly limit their practical applications and contribute significantly to the processing time and waste. Here we demonstrate that by employing inkjet technology one can deliver the necessary quantities of LBL components required for film build-up without excess, eliminating the need for repetitive rinsing steps. This feature differentiates this approach from all other recognized LBL modalities. Using a model system of negatively charged gold nanoparticles and positively charged poly(diallyldimethylammonium) chloride, the material stability, nanoscale control over thickness and particle coverage offered by the inkjet LBL technique are shown to be equal or better than the multilayers made with traditional dipping cycles. The opportunity for fast deposition of complex metallic patterns using a simple inkjet printer was also shown. The additive nature of LBL deposition based on the formation of insoluble nanoparticle-polyelectrolyte complexes of various compositions provides an excellent opportunity for versatile, multi-component, and non-contact patterning for the simple production of stratified patterns that are much needed in advanced devices. PMID:20863114

  18. Persistence Length Control of the Polyelectrolyte Layer-by-Layer Self-Assembly on Carbon Nanotubes

    SciTech Connect

    Huang, S J; Artyukhin, A B; Wang, Y; Ju, J; Stroeve, P; Noy, A

    2005-04-30

    One-dimensional inorganic materials such as carbon nanotubes1 and semiconductor nanowires have been central to important advances in materials science in the last decade. Unique mechanical and electronic properties of these molecular-scale wires enabled a variety of applications ranging from novel composite materials, to electronic circuits, to new sensors. Often, these applications require non-covalent modification of carbon nanotubes with organic compounds, DNA and biomolecules, and polymers to change nanotube properties or to add new functionality. We recently demonstrated a versatile and flexible strategy for non-covalent modification of carbon nanotubes using layer-by-layer self-assembly of polyelectrolytes. Researchers used this technique extensively for modification of flat surfaces, micro-, and nano-particles; however, little is known about the mechanism and the factors influencing layer-by-layer self-assembly in one-dimensional nanostructures. The exact conformation of polyelectrolyte chains deposited on single-walled carbon nanotubes (SWNT) is still unknown. There are two possible configurations: flexible polymers wrapping around the nanotube and stretched, rigid chains stacked parallel to the nanotube axis. Several factors, such as polymer rigidity, surface curvature, and strength of polymer-surface interactions, can determine the nature of assembly. Persistence length of the polymer chain should be one of the critical parameters, since it determines the chain's ability to wrap around the nanotube. Indeed, computer simulations for spherical substrates show that polymer rigidity and substrate surface curvature can influence the deposition process. Computational models also show that the persistence length of the polymer must fall below the threshold values determined by target surface curvature in order to initiate polyelectrolyte deposition process. Although these models described the effects of salt concentration and target surface curvature, they

  19. Electron beam controlled covalent attachment of small organic molecules to graphene

    NASA Astrophysics Data System (ADS)

    Markevich, Alexander; Kurasch, Simon; Lehtinen, Ossi; Reimer, Oliver; Feng, Xinliang; Müllen, Klaus; Turchanin, Andrey; Khlobystov, Andrei N.; Kaiser, Ute; Besley, Elena

    2016-01-01

    The electron beam induced functionalization of graphene through the formation of covalent bonds between free radicals of polyaromatic molecules and C&z.dbd;C bonds of pristine graphene surface has been explored using first principles calculations and high-resolution transmission electron microscopy. We show that the energetically strongest attachment of the radicals occurs along the armchair direction in graphene to carbon atoms residing in different graphene sub-lattices. The radicals tend to assume vertical position on graphene substrate irrespective of direction of the bonding and the initial configuration. The ``standing up'' molecules, covalently anchored to graphene, exhibit two types of oscillatory motion - bending and twisting - caused by the presence of acoustic phonons in graphene and dispersion attraction to the substrate. The theoretically derived mechanisms are confirmed by near atomic resolution imaging of individual perchlorocoronene (C24Cl12) molecules on graphene. Our results facilitate the understanding of controlled functionalization of graphene employing electron irradiation as well as mechanisms of attachment of impurities via the processing of graphene nanoelectronic devices by electron beam lithography.The electron beam induced functionalization of graphene through the formation of covalent bonds between free radicals of polyaromatic molecules and C&z.dbd;C bonds of pristine graphene surface has been explored using first principles calculations and high-resolution transmission electron microscopy. We show that the energetically strongest attachment of the radicals occurs along the armchair direction in graphene to carbon atoms residing in different graphene sub-lattices. The radicals tend to assume vertical position on graphene substrate irrespective of direction of the bonding and the initial configuration. The ``standing up'' molecules, covalently anchored to graphene, exhibit two types of oscillatory motion - bending and twisting - caused

  20. Interactions between Chitosan and Alginate Dialdehyde Biopolymers and Their Layer-by-Layer Assemblies.

    PubMed

    Aston, Robyn; Wimalaratne, Medini; Brock, Aidan; Lawrie, Gwendolyn; Grøndahl, Lisbeth

    2015-06-01

    Biopolymers are researched extensively for their applications in biomaterials science and drug delivery including structures and complexes of more than one polymer. Chemical characterization of complexes formed between chitosan (CHI) and alginate dialdehyde (ADA) biopolymers established that while electrostatic interactions dominate (as determined from X-ray photoelectron spectroscopy (XPS)) covalent cross-linking between these biopolymers also contribute to their stability (evidenced from immersion in salt solution). It was furthermore found that imine bond formation could not be directly detected by any of the techniques XPS, FTIR, (1)H NMR, or fluorescence. The layer-by-layer assemblies of the biopolymers formed on silica colloids, glass slides, and alginate hydrogel beads were evaluated using XPS, as well as zeta potential measurements for the silica colloids and changes to hydration properties for the hydrogels. It was found that the degree of oxidation of ADA affected the LbL assemblies in terms of a greater degree of CHI penetration observed when using the more conformationally flexible biopolymer ADA (higher degree of oxidation). PMID:25970641

  1. Note: Automatic layer-by-layer spraying system for functional thin film coatings

    NASA Astrophysics Data System (ADS)

    Seo, Seongmin; Lee, Sangmin; Park, Yong Tae

    2016-03-01

    In this study, we have constructed an automatic spray machine for producing polyelectrolyte multilayer films containing various functional materials on wide substrates via the layer-by-layer (LbL) assembly technique. The proposed machine exhibits advantages in terms of automation, process speed, and versatility. Furthermore, it has several features that allow a fully automated spraying operation, such as various two-dimensional spraying paths, control of the flow rate and operating speed, air-assist fan-shaped twin-fluid nozzles, and an optical display. The robot uniformly sprays aqueous mixtures containing complementary (e.g., oppositely charged, capable of hydrogen bonding, or capable of covalent bonding) species onto a large-area substrate. Between each deposition of opposite species, samples are spray-rinsed with deionized water and blow-dried with air. The spraying, rinsing, and drying areas and times are adjustable by a computer program. Twenty-bilayer flame-retardant thin films were prepared in order to compare the performance of the spray-assisted LbL assembly with a sample produced by conventional dipping. The spray-coated film exhibited a reduction of afterglow time in vertical flame tests, indicating that the spray-LbL technique is a simple method to produce functional thin film coatings.

  2. Controlling interlayer diffusion to achieve sustained, multiagent delivery from layer-by-layer thin films

    PubMed Central

    Wood, Kris C.; Chuang, Helen F.; Batten, Robert D.; Lynn, David M.; Hammond, Paula T.

    2006-01-01

    We present the fabrication of conformal, hydrolytically degradable thin films capable of administering sustained, multiagent release profiles. Films are constructed one molecular layer at a time by using the layer-by-layer, directed-deposition technique; the subsequent hydrolytic surface erosion of these systems results in the release of incorporated materials in a sequence that reflects their relative positions in the film. The position of each species is determined by its ability to diffuse throughout the film architecture, and, as such, the major focus of this work is to define strategies that physically block interlayer diffusion during assembly to create multicomponent, stratified films. By using a series of radiolabeled polyelectrolytes as experimental probes, we show that covalently crosslinked barriers can effectively block interlayer diffusion, leading to compartmentalized structures, although even very large numbers of ionically crosslinked (degradable or nondegradable) barrier layers cannot block interlayer diffusion. By using these principles, we designed degradable films capable of extended release as well as both parallel and serial multiagent release. The ability to fabricate multicomponent thin films with nanoscale resolution may lead to a host of new materials and applications. PMID:16801543

  3. Note: Automatic layer-by-layer spraying system for functional thin film coatings.

    PubMed

    Seo, Seongmin; Lee, Sangmin; Park, Yong Tae

    2016-03-01

    In this study, we have constructed an automatic spray machine for producing polyelectrolyte multilayer films containing various functional materials on wide substrates via the layer-by-layer (LbL) assembly technique. The proposed machine exhibits advantages in terms of automation, process speed, and versatility. Furthermore, it has several features that allow a fully automated spraying operation, such as various two-dimensional spraying paths, control of the flow rate and operating speed, air-assist fan-shaped twin-fluid nozzles, and an optical display. The robot uniformly sprays aqueous mixtures containing complementary (e.g., oppositely charged, capable of hydrogen bonding, or capable of covalent bonding) species onto a large-area substrate. Between each deposition of opposite species, samples are spray-rinsed with deionized water and blow-dried with air. The spraying, rinsing, and drying areas and times are adjustable by a computer program. Twenty-bilayer flame-retardant thin films were prepared in order to compare the performance of the spray-assisted LbL assembly with a sample produced by conventional dipping. The spray-coated film exhibited a reduction of afterglow time in vertical flame tests, indicating that the spray-LbL technique is a simple method to produce functional thin film coatings. PMID:27036843

  4. DNA biosensors based on layer-by-layer self-assembled multilayer films of carbon nanotubes and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Xiao, Yiyun; Dai, Zhao; Zhang, Jimei; Pang, Jiechun; Xu, Shichao; Zheng, Guo

    2009-07-01

    A novel DNA biosensor based on layer-by-layer self-assembled multi-walled carbon nanotubes (MWNTs) and gold nano-particles (GNPs) was presented in this paper, in which the probe HS-ssDNA oligonucleotides, MWNTs and GNPs were all covalently immobilized by chemical Au-Sulphide bonding. Firstly, the super short MWNTs were prepared and modified with thio groups which could be self-assembled onto the surface of Au elcetrode by Au-sulphide bonding, then the GNPs were chemically adhered to the surfaces of MWNTs by forming Au-sulphide bonding again, at last the selfassamble of probe DNA oligonucleotides were also covalently immobilized via Au-sulphide bonding between thio groups at the ends of the DNA oligonucleotides and GNPs. Hybridization between the probe HS-ssDNA oligonucleotides and target DNA oligonucleotides was confirmed by the changes in the voltammetric peak of an anionic intercalator, anthraquinone-2,6-disulfonic acid (AQDS) as a hybridization indicator. The cyclic voltammetric and differential pulse voltammetry responses demonstrated that the DNA biosensors based on Layer-by-layer self-assembled multilayer films of MWNTs and NGPs offer a higher hybridization efficiency and selectivity compared to those based on only random MWNTs or GNPs.

  5. Electron beam controlled covalent attachment of small organic molecules to graphene.

    PubMed

    Markevich, Alexander; Kurasch, Simon; Lehtinen, Ossi; Reimer, Oliver; Feng, Xinliang; Müllen, Klaus; Turchanin, Andrey; Khlobystov, Andrei N; Kaiser, Ute; Besley, Elena

    2016-02-01

    The electron beam induced functionalization of graphene through the formation of covalent bonds between free radicals of polyaromatic molecules and C=C bonds of pristine graphene surface has been explored using first principles calculations and high-resolution transmission electron microscopy. We show that the energetically strongest attachment of the radicals occurs along the armchair direction in graphene to carbon atoms residing in different graphene sub-lattices. The radicals tend to assume vertical position on graphene substrate irrespective of direction of the bonding and the initial configuration. The "standing up" molecules, covalently anchored to graphene, exhibit two types of oscillatory motion--bending and twisting--caused by the presence of acoustic phonons in graphene and dispersion attraction to the substrate. The theoretically derived mechanisms are confirmed by near atomic resolution imaging of individual perchlorocoronene (C24Cl12) molecules on graphene. Our results facilitate the understanding of controlled functionalization of graphene employing electron irradiation as well as mechanisms of attachment of impurities via the processing of graphene nanoelectronic devices by electron beam lithography. PMID:26757842

  6. Covalent attachment of FeFe hydrogenases to carbon electrodes for direct electron transfer.

    PubMed

    Baffert, Carole; Sybirna, Kateryna; Ezanno, Pierre; Lautier, Thomas; Hajj, Viviane; Meynial-Salles, Isabelle; Soucaille, Philippe; Bottin, Hervé; Léger, Christophe

    2012-09-18

    Direct electron transfer between enzymes and electrodes is now commonly achieved, but obtaining protein films that are very stable may be challenging. This is particularly crucial in the case of hydrogenases, the enzymes that catalyze the biological conversion between dihydrogen and protons, because the instability of the hydrogenase films may prevent the use of these enzymes as electrocatalysts of H(2) oxidation and production in biofuel cells and photoelectrochemical cells. Here we show that two different FeFe hydrogenases (from Chamydomonas reinhardtii and Clostridium acetobutylicum) can be covalently attached to functionalized pyrolytic graphite electrodes using peptidic coupling. In both cases, a surface patch of lysine residues makes it possible to favor an orientation that is efficient for fast, direct electron transfer. High hydrogen-oxidation current densities are maintained for up to one week, the only limitation being the intrinsic stability of the enzyme. We also show that covalent attachment has no effect on the catalytic properties of the enzyme, which means that this strategy can also used be for electrochemical studies of the catalytic mechanism. PMID:22891965

  7. Layer-by-Layer Proteomic Analysis of Mytilus galloprovincialis Shell

    PubMed Central

    Wang, Xin-xing; Bao, Lin-fei; Fan, Mei-hua; Li, Xiao-min; Wu, Chang-wen; Xia, Shu-wei

    2015-01-01

    Bivalve shell is a biomineralized tissue with various layers/microstructures and excellent mechanical properties. Shell matrix proteins (SMPs) pervade and envelop the mineral crystals and play essential roles in biomineralization. Despite that Mytilus is an economically important bivalve, only few proteomic studies have been performed for the shell, and current knowledge of the SMP set responsible for different shell layers of Mytilus remains largely patchy. In this study, we observed that Mytilus galloprovincialis shell contained three layers, including nacre, fibrous prism, and myostracum that is involved in shell-muscle attachment. A parallel proteomic analysis was performed for these three layers. By combining LC-MS/MS analysis with Mytilus EST database interrogations, a whole set of 113 proteins was identified, and the distribution of these proteins in different shell layers followed a mosaic pattern. For each layer, about a half of identified proteins are unique and the others are shared by two or all of three layers. This is the first description of the protein set exclusive to nacre, myostracum, and fibrous prism in Mytilus shell. Moreover, most of identified proteins in the present study are novel SMPs, which greatly extended biomineralization-related protein data of Mytilus. These results are useful, on one hand, for understanding the roles of SMPs in the deposition of different shell layers. On the other hand, the identified protein set of myostracum provides candidates for further exploring the mechanism of adductor muscle-shell attachment. PMID:26218932

  8. Synthesis of covalently attached hexadecaanilines on carbon nanotubes: toward electronic nanocarbon preparation

    NASA Astrophysics Data System (ADS)

    Chiang, Long Y.; Anandakathir, Robinson; Hauck, Tanya S.; Lee, Lawrence; Canteenwala, Taizoon; Padmawar, Prashant A.; Pritzker, Kenneth; Bruno, Ferdinando F.; Samuelson, Lynne A.

    2010-04-01

    We describe the direct covalent-grafting synthesis of well-defined aniline oligomers, such as tetraaniline (A4) and hexadecaaniline (A16, major)/eicosaaniline (A20, minor), on the sidewalls of carbon nanotubes (CNTs), via dediazonization reaction, for achieving highly soluble nanomaterials suitable for printing purposes, with long-term physical stability. Chemically grafting a layer of electroactive hexadecaanilines on CNTs resembles semiconductive encapsulation of functionalized CNTs. The resulting covalent nanoconjugates SWNT-(A4)x, MWNT-(A4)x, SWNT-(A16/20)x, and MWNT-(A16/20)x were characterized by various spectroscopic and microscopic mapping methods. The combination of transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) analyses provided direct evidence for A16/20 attachment to the CNTs, giving confirmation of the presence of heteroatoms surrounding the CNTs that was absent in the parent CNTs. Subsequent atom mapping in the vicinity of the tube structure allowed us to illustrate the 3D distribution of heteroatoms along the CNT surface.We describe the direct covalent-grafting synthesis of well-defined aniline oligomers, such as tetraaniline (A4) and hexadecaaniline (A16, major)/eicosaaniline (A20, minor), on the sidewalls of carbon nanotubes (CNTs), via dediazonization reaction, for achieving highly soluble nanomaterials suitable for printing purposes, with long-term physical stability. Chemically grafting a layer of electroactive hexadecaanilines on CNTs resembles semiconductive encapsulation of functionalized CNTs. The resulting covalent nanoconjugates SWNT-(A4)x, MWNT-(A4)x, SWNT-(A16/20)x, and MWNT-(A16/20)x were characterized by various spectroscopic and microscopic mapping methods. The combination of transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) analyses provided direct evidence for A16/20 attachment to the CNTs, giving confirmation of the presence of heteroatoms surrounding the CNTs

  9. Nanoscale coatings on wood: polyelectrolyte adsorption and layer-by-layer assembled film formation.

    PubMed

    Renneckar, Scott; Zhou, Yu

    2009-03-01

    Surface chemistry of wood is based on the exposed surface that is the combination of the intact and cut cellular wall material. It is inherently complex and changes with processing history. Modification of wood surfaces through noncovalent attachment of amine containing water soluble polyelectrolytes provides a path to create functional surfaces in a controlled manner. Adsorption of polyethylenimine (PEI) and polydiallydimethylammonium chloride (PDDA) to wood was quantified as a function of solution conditions (pH and ionic strength). Polycation adsorption was maximized under basic pH without the addition of electrolyte. Added salt either had marginal influence or decreased adsorption of polycation, indicating interactions are strongly influenced by Coulombic forces. PEI adsorption could be modeled by both a Langmuir and Freundlich equations, although the wood surface is known to be heterogeneous. After adsorption of polycations, layer-by-layer assembled films were created on the wood surface. Layered films masked ultrastructural features of the cell wall, while leaving the microscale features of wood (cut lumen walls and openings) evident. These findings revealed for the first time that nanoscale films on wood can be deposited without changing the microscopic and macroscopic texture. Functionalized wood surfaces created by nanoscale films may have a future role in adhesives systems for wood composites, wood protection, and creating new functional features on wood. PMID:20355976

  10. Synthesis of covalently attached hexadecaanilines on carbon nanotubes: toward electronic nanocarbon preparation.

    PubMed

    Chiang, Long Y; Anandakathir, Robinson; Hauck, Tanya S; Lee, Lawrence; Canteenwala, Taizoon; Padmawar, Prashant A; Pritzker, Kenneth; Bruno, Ferdinando F; Samuelson, Lynne A

    2010-04-01

    We describe the direct covalent-grafting synthesis of well-defined aniline oligomers, such as tetraaniline (A(4)) and hexadecaaniline (A(16), major)/eicosaaniline (A(20), minor), on the sidewalls of carbon nanotubes (CNTs), via dediazonization reaction, for achieving highly soluble nanomaterials suitable for printing purposes, with long-term physical stability. Chemically grafting a layer of electroactive hexadecaanilines on CNTs resembles semiconductive encapsulation of functionalized CNTs. The resulting covalent nanoconjugates SWNT-(A(4))(x), MWNT-(A(4))(x), SWNT-(A(16/20))(x), and MWNT-(A(16/20))(x) were characterized by various spectroscopic and microscopic mapping methods. The combination of transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) analyses provided direct evidence for A(16/20) attachment to the CNTs, giving confirmation of the presence of heteroatoms surrounding the CNTs that was absent in the parent CNTs. Subsequent atom mapping in the vicinity of the tube structure allowed us to illustrate the 3D distribution of heteroatoms along the CNT surface. PMID:20644756

  11. Azidobupramine, an Antidepressant-Derived Bifunctional Neurotransmitter Transporter Ligand Allowing Covalent Labeling and Attachment of Fluorophores.

    PubMed

    Kirmeier, Thomas; Gopalakrishnan, Ranganath; Gormanns, Vanessa; Werner, Anna M; Cuboni, Serena; Rudolf, Georg C; Höfner, Georg; Wanner, Klaus T; Sieber, Stephan A; Schmidt, Ulrike; Holsboer, Florian; Rein, Theo; Hausch, Felix

    2016-01-01

    The aim of this study was to design, synthesize and validate a multifunctional antidepressant probe that is modified at two distinct positions. The purpose of these modifications was to allow covalent linkage of the probe to interaction partners, and decoration of probe-target complexes with fluorescent reporter molecules. The strategy for the design of such a probe (i.e., azidobupramine) was guided by the need for the introduction of additional functional groups, conveying the required properties while keeping the additional moieties as small as possible. This should minimize the risk of changing antidepressant-like properties of the new probe azidobupramine. To control for this, we evaluated the binding parameters of azidobupramine to known target sites such as the transporters for serotonin (SERT), norepinephrine (NET), and dopamine (DAT). The binding affinities of azidobupramine to SERT, NET, and DAT were in the range of structurally related and clinically active antidepressants. Furthermore, we successfully visualized azidobupramine-SERT complexes not only in SERT-enriched protein material but also in living cells stably overexpressing SERT. To our knowledge, azidobupramine is the first structural analogue of a tricyclic antidepressant that can be covalently linked to target structures and further attached to reporter molecules while preserving antidepressant-like properties and avoiding radioactive isotopes. PMID:26863431

  12. Azidobupramine, an Antidepressant-Derived Bifunctional Neurotransmitter Transporter Ligand Allowing Covalent Labeling and Attachment of Fluorophores

    PubMed Central

    Werner, Anna M.; Cuboni, Serena; Rudolf, Georg C.; Höfner, Georg; Wanner, Klaus T.; Sieber, Stephan A.; Schmidt, Ulrike; Holsboer, Florian; Rein, Theo; Hausch, Felix

    2016-01-01

    The aim of this study was to design, synthesize and validate a multifunctional antidepressant probe that is modified at two distinct positions. The purpose of these modifications was to allow covalent linkage of the probe to interaction partners, and decoration of probe-target complexes with fluorescent reporter molecules. The strategy for the design of such a probe (i.e., azidobupramine) was guided by the need for the introduction of additional functional groups, conveying the required properties while keeping the additional moieties as small as possible. This should minimize the risk of changing antidepressant-like properties of the new probe azidobupramine. To control for this, we evaluated the binding parameters of azidobupramine to known target sites such as the transporters for serotonin (SERT), norepinephrine (NET), and dopamine (DAT). The binding affinities of azidobupramine to SERT, NET, and DAT were in the range of structurally related and clinically active antidepressants. Furthermore, we successfully visualized azidobupramine-SERT complexes not only in SERT-enriched protein material but also in living cells stably overexpressing SERT. To our knowledge, azidobupramine is the first structural analogue of a tricyclic antidepressant that can be covalently linked to target structures and further attached to reporter molecules while preserving antidepressant-like properties and avoiding radioactive isotopes. PMID:26863431

  13. Covalent attachment of functionalized lipid bilayers to planar waveguides for measuring protein binding to biomimetic membranes.

    PubMed Central

    Heyse, S.; Vogel, H.; Sänger, M.; Sigrist, H.

    1995-01-01

    A new method is presented for measuring sensitively the interactions between ligands and their membrane-bound receptors in situ using integrated optics, thus avoiding the need for additional labels. Phospholipid bilayers were attached covalently to waveguides by a novel protocol, which can in principle be used with any glass-like surface. In a first step, phospholipids carrying head-group thiols were covalently immobilized onto SiO2-TiO2 waveguide surfaces. This was accomplished by acylation of aminated waveguides with the heterobifunctional crosslinker N-succinimidyl-3-maleimidopropionate, followed by the formation of thioethers between the surface-grafted maleimides and the synthetic thiolipids. The surface-attached thiolipids served as hydrophobic templates and anchors for the deposition of a complete lipid bilayer either by fusion of lipid vesicles or by lipid self-assembly from mixed lipid/detergent micelles. The step-by-step lipid bilayer formation on the waveguide surface was monitored in situ by an integrated optics technique, allowing the simultaneous determination of optical thickness and one of the two refractive indices of the adsorbed organic layers. Surface coverages of 50-60% were calculated for thiolipid layers. Subsequent deposition of POPC resulted in an overall lipid layer thickness of 45-50 A, which corresponds to the thickness of a fluid bilayer membrane. Specific recognition reactions occurring at cell membrane surfaces were modeled by the incorporation of lipid-anchored receptor molecules into the supported bilayer membranes. (1) The outer POPC layer was doped with biotinylated phosphatidylethanolamine. Subsequent specific binding of streptavidin was optically monitored. (2) A lipopeptide was incorporated in the outer POPC monolayer. Membrane binding of monoclonal antibodies, which were directed against the peptide moiety of the lipopeptide, was optically detected. The specific antibody binding correlated well with the lipopepitde

  14. Stable, Covalent Attachment of Laminin to Microposts Improves the Contractility of Mouse Neonatal Cardiomyocytes

    PubMed Central

    2015-01-01

    The mechanical output of contracting cardiomyocytes, the muscle cells of the heart, relates to healthy and disease states of the heart. Culturing cardiomyocytes on arrays of elastomeric microposts can enable inexpensive and high-throughput studies of heart disease at the single-cell level. However, cardiomyocytes weakly adhere to these microposts, which limits the possibility of using biomechanical assays of single cardiomyocytes to study heart disease. We hypothesized that a stable covalent attachment of laminin to the surface of microposts improves cardiomyocyte contractility. We cultured cells on polydimethylsiloxane microposts with laminin covalently bonded with the organosilanes 3-glycidoxypropyltrimethoxysilane and 3-aminopropyltriethoxysilane with glutaraldehyde. We measured displacement of microposts induced by the contractility of mouse neonatal cardiomyocytes, which attach better than mature cardiomyocytes to substrates. We observed time-dependent changes in contractile parameters such as micropost deformation, contractility rates, contraction and relaxation speeds, and the times of contractions. These parameters were affected by the density of laminin on microposts and by the stability of laminin binding to micropost surfaces. Organosilane-mediated binding resulted in higher laminin surface density and laminin binding stability. 3-glycidoxypropyltrimethoxysilane provided the highest laminin density but did not provide stable protein binding with time. Higher surface protein binding stability and strength were observed with 3-aminopropyltriethoxysilane with glutaraldehyde. In cultured cardiomyocytes, contractility rate, contraction speeds, and contraction time increased with higher laminin stability. Given these variations in contractile function, we conclude that binding of laminin to microposts via 3-aminopropyltriethoxysilane with glutaraldehyde improves contractility observed by an increase in beating rate and contraction speed as it occurs during the

  15. Spray Layer-by-Layer Assembled Clay Composite Thin Films as Selective Layers in Reverse Osmosis Membranes.

    PubMed

    Kovacs, Jason R; Liu, Chaoyang; Hammond, Paula T

    2015-06-24

    Spray layer-by-layer assembled thin films containing laponite (LAP) clay exhibit effective salt barrier and water permeability properties when applied as selective layers in reverse osmosis (RO) membranes. Negatively charged LAP platelets were layered with poly(diallyldimethylammonium) (PDAC), poly(allylamine) (PAH), and poly(acrylic acid) (PAA) in bilayer and tetralayer film architectures to generate uniform films on the order of 100 nm thick that bridge a porous poly(ether sulfone) support to form novel RO membranes. Nanostructures were formed of clay layers intercalated in a polymeric matrix that introduced size-exclusion transport mechanisms into the selective layer. Thermal cross-linking of the polymeric matrix was used to increase the mechanical stability of the films and improve salt rejection by constraining swelling during operation. Maximum salt rejection of 89% was observed for the tetralayer film architecture, with an order of magnitude increase in water permeability compared to commercially available TFC-HR membranes. These clay composite thin films could serve as a high-flux alternative to current polymeric RO membranes for wastewater and brackish water treatment as well as potentially for forward osmosis applications. In general, we illustrate that by investigating the composite systems accessed using alternating layer-by-layer assembly in conjunction with complementary covalent cross-linking, it is possible to design thin film membranes with tunable transport properties for water purification applications. PMID:26058008

  16. Covalent Attachment to GaP(110) - Engineering the Chemical Functionalization of a III-V Semiconductor

    NASA Astrophysics Data System (ADS)

    Bradley, A. J.; Ugeda, M. M.; Liu, Wenjun; Yu, Min; Tilley, T. Don; Pérez, Rubén; Neaton, Jeffrey B.; Crommie, M. F.

    2014-03-01

    With its 2.3 eV bulk bandgap, relatively high conduction band edge, and low chemical reactivity, the (110) surface of GaP is an excellent candidate for many UV and visible light applications, such as photo-catalysis and light-induced chemical reduction. However, the reconstruction and resulting charge transfer of the surface makes it difficult to covalently attach the required molecules. Indeed, very little work has been done to understand either covalent functionalization or passivation of this surface. Here we report on a Staudinger-type, thermally-driven covalent attachment of perfluorophenyl azide (pfpa) to GaP(110). We have studied the adsorption of pfpa molecules by means of high-resolution scanning tunneling microscopy and spectroscopy in combination with first principles calculations. We show a progression from a physisorbed state at room temperature to a covalently attached state after exposure to slightly higher temperatures (~ 50°C). The developed approach is expected to be valid for various other functional groups attached to the azide, as well as other III-V semiconductors.

  17. Covalent Attachment of Proteins to Solid Supports and Surfaces via Sortase-Mediated Ligation

    PubMed Central

    Chan, Lilyan; Cross, Hannah F.; She, Joseph K.; Cavalli, Gabriel; Martins, Hugo F. P.; Neylon, Cameron

    2007-01-01

    Background There is growing interest in the attachment of proteins to solid supports for the development of supported catalysts, affinity matrices, and micro devices as well as for the development of planar and bead based protein arrays for multiplexed assays of protein concentration, interactions, and activity. A critical requirement for these applications is the generation of a stable linkage between the solid support and the immobilized, but still functional, protein. Methodology Solid supports including crosslinked polymer beads, beaded agarose, and planar glass surfaces, were modified to present an oligoglycine motif to solution. A range of proteins were ligated to the various surfaces using the Sortase A enzyme of S. aureus. Reactions were carried out in aqueous buffer conditions at room temperature for times between one and twelve hours. Conclusions The Sortase A transpeptidase of S. aureus provides a general, robust, and gentle approach to the selective covalent immobilization of proteins on three very different solid supports. The proteins remain functional and accessible to solution. Sortase mediated ligation is therefore a straightforward methodology for the preparation of solid supported enzymes and bead based assays, as well as the modification of planar surfaces for microanalytical devices and protein arrays. PMID:18000537

  18. Covalent attachment of Arc repressor subunits by a peptide linker enhances affinity for operator DNA.

    PubMed

    Robinson, C R; Sauer, R T

    1996-01-01

    By designing a recombinant gene containing tandem copies of the arc coding sequence with intervening DNA encoding the linker sequence GGGSGGGTGGGSGGG, the two subunits of the P22 Are repressor dimer have been covalently linked to form a single-chain protein called Arc-L1-Arc. The 15-residue linker joins the C-terminus of one monomer to the N-terminus of the second, a distance of approximately 45 A in the Arc-operator cocrystal structure. Arc-L1-Arc is expressed at high levels in Escherichia coli, with no evidence of degradation or proteolytic clipping of the linker, and is more active than wild-type Arc in repression assays. The purified Arc-L1-Arc protein has the molecular weight expected for the designed protein and unfolds cooperatively, reversibly, and with no concentration dependence in thermal-denaturation studies. Arc-L1-Arc protects operator DNA in a manner indistinguishable from that of wild-type Arc in DNase I and copper-phenanthroline footprinting studies, but the covalent attachment of the two monomers results in enhanced affinity for operator DNA. Arc-L1-Arc binds operator DNA half-maximally at a concentration of 1.7 pM, compared with the wild-type value of 185 pM, and also binds DNA fragments containing the left or right operator half-sites more tightly than wild type. Because wild-type Arc is monomeric at sub-nanomolar concentrations and must dimerize before binding to the operator, it was anticipated that Arc-L1-Arc would exhibit a lower half-maximal binding concentration. However, even when the change from a monomeric to a dimeric species is taken into account, the affinity of Arc-L1-Arc for operator and half-operator DNA is greater than the wild-type affinity. This tighter binding appears to result from slower dissociation, as Arc-L1-Arc DNA complexes with full or half-site operators dissociate at rates 5-10 times slower than the corresponding Arc--DNA complexes. Hence, the activity of the designed Arc-L1-Arc protein is substantially increased

  19. Integration of micro nano and bio technologies with layer-by-layer self-assembly

    NASA Astrophysics Data System (ADS)

    Kommireddy, Dinesh Shankar

    In the past decade, layer-by-layer (LbL) nanoassembly has been used as a tool for immobilization and surface modification of materials with applications in biology and physical sciences. Often, in such applications, LbL assembly is integrated with various techniques to form functional surface coatings and immobilized matrices. In this work, integration of LbL with microfabrication and microfluidics, and tissue engineering are explored. In an effort to integrate microfabrication with LbL nanoassembly, microchannels were fabricated using soft-lithography and the surface of these channels was used for the immobilization of materials using LbL and laminar flow patterning. Synthesis of poly(dimethyldiallyl ammonium chloride)/poly(styrene sulfonate) and poly(dimethyldiallyl ammonium chloride)/bovine serum albumin microstrips is demonstrated with the laminar flow microfluidic reactor. Resulting micropatterns are 8-10 mum wide, separated with few micron gaps. The width of these microstrips as well as their position in the microchannel is controlled by varying the flow rate, time of interaction and concentration of the individual components, which is verified by numerical simulation. Spatially resolved pH sensitivity was observed by modifying the surface of the channel with a pH sensitive dye. In order to investigate the integration of LbL assembly with tissue engineering, glass substrates were coated with nanoparticle/polyelectrolyte layers, and two different cell types were used to test the applicability of these coatings for the surface modification of medical implants. Titanium dioxide (TiO 2), silicon dioxide, halloysite and montmorillonite nanoparticles were assembled with oppositely charged polyelectrolytes. In-vitro cytotoxicity tests of the nanoparticle substrates on human dermal firbroblasts (HDFs) showed that the nanoparticle surfaces do not have toxic effects on the cells. HDFs retained their phenotype on the nanoparticle coatings, by synthesizing type

  20. Growth and behavior of chondrocytes on nano engineered surfaces and construction of micropatterned co-culture platforms using layer-by-layer platforms using layer-by-layer assembly lift-off method

    NASA Astrophysics Data System (ADS)

    Shaik, Jameel

    Several approaches such as self-assembled monolayers and layer-by-layer assembled multilayer films are being used as tools to study the interactions of cells with biomaterials in vitro. In this study, the layer-by-layer assembly approach was used to create monolayer, bilayer, trilayer, five, ten and twenty-bilayer beds of eleven different biomaterials. The various biomaterials used were poly(styrene-sulfonate), fibronectin, poly-L-lysine, poly-D-lysine, laminin, bovine serum albumin, chondroitin sulfate, poly(ethyleneimine), polyethylene glycol amine, collagen and poly(dimethyldiallyl-ammonium chloride) with unmodified tissue-culture polystyrene as standard control. Three different cell lines---primary bovine articular chondrocytes, and two secondary cell lines, human chondrosarcoma cells and canine chondrocytes were used in these studies. Chondrocyte morphology and attachment, viability, proliferation, and functionality were determined using bright field microscopy, the Live/Dead viability assay, MTT assay, and immunocytochemistry, respectively. Atomic force microscopy of the nanofilms indicated an increase in surface roughness with increasing number of layers. The most important observations from the studies on primary bovine articular chondrocytes were that these cells exhibited increasing viability and cell metabolic activity with increasing number of bilayers. The increase in viability was more pronounced than the increase in cell metabolic activity. Also, bovine chondrocytes on bilayers of poly(dimethyldiallyl-ammonium chloride, poly-L-lysine, poly(styrene-sulfonate), and bovine serum albumin were substantially bigger in size and well-attached when compared to the cells grown on monolayer and trilayers. Lactate dehydrogenase assay performed on chondrosarcoma cells grown on 5- and 10-bilayer multilayer beds indicated that the 10-bilayer beds had reduced cytotoxicity compared to the 5-bilayer beds. MTT assay performed on canine chondrocytes grown on 5-, 10

  1. Layer-by-layer assemblies of catechol-functionalized TiO2 nanoparticles and porphyrins through electrostatic interactions.

    PubMed

    Burger, Alexandra; Costa, Rubén D; Lobaz, Volodymyr; Peukert, Wolfgang; Guldi, Dirk M; Hirsch, Andreas

    2015-03-23

    In the current work, we present the successful functionalization and stabilization of P-25 TiO2 nanoparticles by means of N1,N7-bis(3-(4-tert-butyl-pyridium-methyl)phenyl)-4-(3-(3-(4-tert-butyl-pyridinium-methyl)phenylamino)-3-oxopropyl)-4-(3,4-dihydroxybenzamido)heptanediamide tribromide (1). The design of the latter is aimed at nanoparticle functionalization and stabilization with organic building blocks. On one hand, 1 features a catechol anchor to enable its covalent grafting onto the TiO2 surface, and on the other hand, positively charged pyridine groups at its periphery to prevent TiO2 agglomeration through electrostatic repulsion. The success of functionalization and stabilization was corroborated by thermogravimetric analysis, dynamic light-scattering, and zeta potential measurements. As a complement to this, the formation of layer-by-layer assemblies, which are governed by electrostatic interactions, by alternate deposition of functionalized TiO2 nanoparticles and two negatively charged porphyrin derivatives, that is, 5,10,15,20-(phenoxyacetic acid)-porphyrin (2) and 5,10,15,20-(4-(2-ethoxycarbonyl)-4-(2-phenoxyacetamido)heptanedioic acid)-porphyrin (3), is documented. To this end, the layer-by-layer deposition is monitored by UV/Vis spectroscopy, scanning electron microscopy, ellipsometry, and profilometry techniques. The resulting assemblies are utilized for the construction and testing of novel solar cells. From stable and repeatable photocurrents generated during several "on-off" cycles of illumination, we derive monochromatic incident photo-to-current conversion efficiencies of around 3 %. PMID:25684221

  2. Covalent attachment of polymeric monolith to polyether ether ketone (PEEK) tubing.

    PubMed

    Lv, Chunguang; Heiter, Jaana; Haljasorg, Tõiv; Leito, Ivo

    2016-08-17

    A new method of reproducible preparation of vinylic polymeric monolithic columns with a key step of covalently anchoring the monolith to PEEK surface is described. In order to chemically attach the polymer monolith to the tube wall, methacrylate functional groups were introduced onto PEEK surface by a three-step procedure, including surface etching, surface reduction and surface methacryloylation. The chemical state of the modified tubing surface was characterized by attenuated total reflectance infrared (ATR-IR) spectroscopy. It was found that the etching step is the key to successfully modifying the PEEK tubing surface. Poly(styrene-co-divinylbenzene) monoliths were in situ synthesized by thermally initiated free radical copolymerization within the confines of surface-vinylized PEEK tubings of dimensions close to ones conventionally used in HPLC and UHPLC (1.6 mm internal diameter, 10.0-12.5 cm length). Adhesion test was done by measuring the operating pressure drop, which the prepared stationary phases can withstand. Good pressure resistance, up to 140 bar/10 cm (flow rate 0.5 mL min(-1), acetonitrile as a mobile phase), indicates strong bonding of monolith to the tubing wall. The monolithic material was proven to have a permeability of 1.7 × 10 (-14) m(2), applying acetonitrile-water 70:30 (v/v) as a mobile phase. The column performance was reproducible from column to column and was evaluated via the isocratic separation of a series of alkylbenzenes in the reversed-phase mode (acetonitrile-water 70:30, v/v). The numbers of plates per meter at optimal flow rate were found to be between 26 000 and 32 000 for the different analytes. PMID:27286776

  3. Anodic Methods for Covalent Attachment of Ethynylferrocenes to Electrode Surfaces: Comparison of Ethynyl Activation Processes.

    PubMed

    Sheridan, Matthew V; Lam, Kevin; Sharafi, Mona; Schneebeli, Severin T; Geiger, William E

    2016-02-16

    The electrochemical oxidation of ferrocenes having an H- or Li-terminated ethynyl group has been studied, especially as it relates to their covalent anchoring to carbon surfaces. The anodic oxidation of lithioethynylferrocene (1-Li) results in rapid loss of Li(+) and formation of the ethynyl-based radical FeCp(η(5)-C5H4)(C≡C), (1, Cp = η(5)-C5H5), which reacts with the electrode. Chemically modified electrodes (CMEs) were thereby produced containing strongly bonded, ethynyl-linked monolayers and electrochemically controlled multilayers. Strong attachments of ethynylferrocenes to gold and platinum surfaces were also possible. The lithiation/anodic oxidation process is a mirror analogue of the diazonium/cathodic reduction process for preparation of aryl-modified CMEs. A second method produced an ethynylferrocene-modified electrode by direct anodic oxidation of the H-terminated ethynylferrocene (1-H) at a considerably more positive potential. Both processes produced robust modified electrodes with well-defined ferrocene-based surface cyclic voltammetry waves that remained unchanged for as many as 10(4) scans. Ferrocene derivatives in which the ethynyl moiety was separated from the cyclopentadienyl ring by an ether group showed very similar behavior. DFT calculations were performed on the relevant redox states of 1-H, 1-Li, and 1, with emphasis on the ferrocenyl vs ethynyl character of their high valence orbitals. Whereas the HOMOs of both 1-H and 1-Li have some ethynyl character, the SOMOs of the corresponding monocations are strictly ferrocenium in makeup. Predominant ethynyl character returns to the highest valence orbitals after loss of Li(+) from [1-Li](+) or loss of H(+) from [1-H](2+). These anodic processes hold promise for the controlled chemical modification of carbon and other electrode surfaces by a variety of ethynyl or alkynyl-linked organic and metal-containing systems. PMID:26756403

  4. Growth of gold/zinc sulphide multilayer films using layer-by-layer assembly of colloidal nanoparticles

    NASA Astrophysics Data System (ADS)

    Promnimit, S.; Cavelius, C.; Mathur, S.; Dutta, J.

    2008-12-01

    Fabrication of multilayer thin films through layer-by-layer (lbl) deposition of charged nanoparticles on tin-doped indium oxide (ITO) coated and uncoated glass substrates are reported. The thin films were constructed by alternately dipping a substrate into a colloidal suspension of chitosan capped zinc sulphide (ZnS) nanoparticles (∼30 nm) and citrate stabilized colloidal gold (Au) nanoparticles (∼20 nm) leading to electrostatic interactions between the oppositely charged nanoparticle layers. Thin films consisting of up to 200 deposition cycles by multiple dipping have been studied and surface morphology, changes in the optical absorption characteristics, thickness, uniformity, roughness and electrical characteristics are reported. The multilayered assemblies, attached to the surface by strong ionic bonds, were highly stable and could not be removed by moderate scratching. The current-voltage characteristics in the forward and reverse bias conditions demonstrated rectifying behaviors in the onset of conduction voltage which makes these films attractive for future electronic devices.

  5. Immobilization of Yarrowia lipolytica Lipase—A Comparison of Stability of Physical Adsorption and Covalent Attachment Techniques

    NASA Astrophysics Data System (ADS)

    Cunha, Aline G.; Fernández-Lorente, Gloria; Bevilaqua, Juliana V.; Destain, Jacqueline; Paiva, Lúcia M. C.; Freire, Denise M. G.; Fernández-Lafuente, Roberto; Guisán, Jose M.

    Lipase immobilization offers unique advantages in terms of better process control, enhanced stability, predictable decay rates and improved economics. This work evaluated the immobilization of a highly active Yarrowia lipolytica lipase (YLL) by physical adsorption and covalent attachment. The enzyme was adsorbed on octyl-agarose and octadecyl-sepabeads supports by hydrophobic adsorption at low ionic strength and on MANAE-agarose support by ionic adsorption. CNBr-agarose was used as support for the covalent attachment immobilization. Immobilization yields of 71, 90 and 97% were obtained when Y. lipolytica lipase was immobilized into octyl-agarose, octadecyl-sepabeads and MANAE-agarose, respectively. However, the activity retention was lower (34% for octyl-agarose, 50% for octadecyl-sepabeads and 61% for MANAE-agarose), indicating that the immobilized lipase lost activity during immobilization procedures. Furthermore, immobilization by covalent attachment led to complete enzyme inactivation. Thermal deactivation was studied at a temperature range from 25 to 45°C and pH varying from 5.0 to 9.0 and revealed that the hydrophobic adsorption on octadecyl-sepabeads produced an appreciable stabilization of the biocatalyst. The octadecyl-sepabeads biocatalyst was almost tenfold more stable than free lipase, and its thermal deactivation profile was also modified. On the other hand, the Y. lipolytica lipase immobilized on octyl-agarose and MANAE-agarose supports presented low stability, even less than the free enzyme.

  6. Surface coating for flame retardant behavior of cotton fabric by layer-by-layer processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flame retardant behavior has been prepared by the layer-by layer assemblies of branched polyethylenimine (BPEI), kaolin, urea, diammonium phosphate (dibasic) on cotton fabrics. Three different kinds of cotton fabrics (print cloth, mercerized print cloth, and mercerized twill fabric) were prepared wi...

  7. Layer-by-Layer Assembly of a pH-Responsive and Electrochromic Thin Film

    ERIC Educational Resources Information Center

    Schmidt, Daniel J.; Pridgen, Eric M.; Hammond, Paula T.; Love, J. Christopher

    2010-01-01

    This article summarizes an experiment on thin-film fabrication with layer-by-layer assembly that is appropriate for undergraduate laboratory courses. The purpose of this experiment is to teach students about self-assembly in the context of thin films and to expose students to the concepts of functional polymeric coatings. Students dip coat…

  8. Innovative layer-by-layer processing for flame retardant behavior of cotton fabric

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flame retardant behavior has been prepared by the layer-by layer assemblies of kaolin/casein with inorganic chemicals on cotton fabrics. Three different kinds of cotton fabrics (print cloth, mercerized print cloth, and mercerized twill fabric) were prepared with solutions of mixture of BPEI, urea, ...

  9. Industrial-scale spray layer-by-layer assembly for production of biomimetic photonic systems.

    PubMed

    Krogman, K C; Cohen, R E; Hammond, P T; Rubner, M F; Wang, B N

    2013-12-01

    Layer-by-layer assembly is a powerful and flexible thin film process that has successfully reproduced biomimetic photonic systems such as structural colour. While most of the seminal work has been carried out using slow and ultimately unscalable immersion assembly, recent developments using spray layer-by-layer assembly provide a platform for addressing challenges to scale-up and manufacturability. A series of manufacturing systems has been developed to increase production throughput by orders of magnitude, making commercialized structural colour possible. Inspired by biomimetic photonic structures we developed and demonstrated a heat management system that relies on constructive reflection of near infrared radiation to bring about dramatic reductions in heat content. PMID:24263056

  10. Elastodynamic behavior of the three dimensional layer-by-layer metamaterial structure

    SciTech Connect

    Aravantinos-Zafiris, N.; Sigalas, M. M.; Economou, E. N.

    2014-10-07

    In this work, we numerically investigate for the first time the elastodynamic behavior of a three dimensional layer-by-layer rod structure, which is easy to fabricate and has already proved to be very efficient as a photonic crystal. The Finite Difference Time Domain method was used for the numerical calculations. For the rods, several materials were examined and the effects of all the geometric parameters of the structure were also numerically investigated. Additionally, two modifications of the structure were included in our calculations. The results obtained here (for certain geometric parameters), exhibiting a high ratio of longitudinal over transverse sound velocity and therefore a close approach to ideal pentamode behavior over a frequency range, clearly show that the layer-by-layer rod structure, besides being an efficient photonic crystal, is a very serious contender as an elastodynamic metamaterial.

  11. Discrete Layer-by-Layer Magnetic Switching in Fe /MgO (001 ) Superlattices

    NASA Astrophysics Data System (ADS)

    Moubah, R.; Magnus, F.; Warnatz, T.; Palsson, G. K.; Kapaklis, V.; Ukleev, V.; Devishvili, A.; Palisaitis, J.; Persson, P. O. Å.; Hjörvarsson, B.

    2016-04-01

    We report on a discrete layer-by-layer magnetic switching in Fe /MgO superlattices driven by an antiferromagnetic interlayer exchange coupling. The strong interlayer coupling is mediated by tunneling through MgO layers with thicknesses up to at least 1.8 nm, and the coupling strength varies with MgO thickness. Furthermore, the competition between the interlayer coupling and magnetocrystalline anisotropy stabilizes both 90° and 180° periodic alignment of adjacent layers throughout the entire superlattice. The tunable layer-by-layer switching, coupled with the giant tunneling magnetoresistance of Fe /MgO /Fe junctions, is an appealing combination for three-dimensional spintronic memories and logic devices.

  12. Enforced Layer-by-Layer Stacking of Energetic Salts towards High-Performance Insensitive Energetic Materials.

    PubMed

    Zhang, Jiaheng; Mitchell, Lauren A; Parrish, Damon A; Shreeve, Jean'ne M

    2015-08-26

    Development of modern high-performance insensitive energetic materials is significant because of the increasing demands for both military and civilian applications. Here we propose a rapid and facile strategy called the "layer hydrogen bonding pairing approach" to organize energetic molecules via layer-by-layer stacking, which grants access to tunable energetic materials with targeted properties. Using this strategy, an unusual energetic salt, hydroxylammonium 4-amino-furazan-3-yl-tetrazol-1-olate, with good detonation performances and excellent sensitivities, was designed, synthesized, and fully characterized. In addition, the expected unique layer-by-layer structure with a high crystal packing coefficient was confirmed by single-crystal X-ray crystallography. Calculations indicate that the layer-stacking structure of this material can absorb the mechanical stimuli-induced kinetic energy by converting it to layer sliding, which results in low sensitivity. PMID:26262555

  13. Covalent attachment of a bioactive hyperbranched polymeric layer to titanium surface for the biomimetic growth of calcium phosphates

    PubMed Central

    Tsiourvas, D.; Arkas, M.; Diplas, S.; Mastrogianni, E.

    2010-01-01

    This work is investigating the chemical grafting on Ti surface of a polymer/calcium phosphate coating of improved adhesion for enhanced bioactivity. For this purpose, a whole new methodology was developed based on covalently attaching a hyperbranched poly(ethylene imine) layer on Ti surface able to promote calcium phosphate formation in a next deposition stage. This was achieved through an intermediate surface silanization step. The research included optimization both of the reaction conditions for covalently grafting the intermediate organosilicon and the subsequent hyperbranched poly(ethylene imine) layers, as well as of the conditions for the mechanical and chemical pretreatment of Ti surface before coating. The reaction steps were monitored employing FTIR and XPS analyses, whereas the surface morphology and structure of the successive coating layers were studied by SEM combined with EDS. The analysis confirmed the successful grafting of the hybrid layer which demonstrated very good ability for hydroxyapatite growth in simulated body fluid. PMID:21069559

  14. Layer-by-layer assembly of a metallomesogen by dip-pen nanolithography.

    PubMed

    Radha, Boya; Liu, Guoliang; Eichelsdoerfer, Daniel J; Kulkarni, Giridhar U; Mirkin, Chad A

    2013-03-26

    Palladium alkanethiolates are introduced here as a novel liquid ink for dip-pen nanolithography (DPN). These structures exhibit the unusual characteristic of layer-by-layer assembly, allowing one to deposit a desired number of metal ions on a surface, which can subsequently be reduced via thermolysis to form active catalytic structures. Such structures have been used to generate contiguous metallic or conducting polymer nanoscale architectures by electroless deposition. PMID:23402390

  15. Molecular layer-by-layer assembled thin-film composite membranes for water desalination.

    PubMed

    Gu, Joung-Eun; Lee, Seunghye; Stafford, Christopher M; Lee, Jong Suk; Choi, Wansuk; Kim, Bo-Young; Baek, Kyung-Youl; Chan, Edwin P; Chung, Jun Young; Bang, Joona; Lee, Jung-Hyun

    2013-09-14

    Molecular layer-by-layer (mLbL) assembled thin-film composite membranes fabricated by alternating deposition of reactive monomers on porous supports exhibit both improved salt rejection and enhanced water flux compared to traditional reverse osmosis membranes prepared by interfacial polymerization. Additionally, the well-controlled structures achieved by mLbL deposition further lead to improved antifouling performance. PMID:23847127

  16. Sandwich-like layer-by-layer assembly of gold nanoparticles with tunable SERS properties.

    PubMed

    Liu, Zhicheng; Bai, Lu; Zhao, Guizhe; Liu, Yaqing

    2016-01-01

    Sandwich-like layer-by-layer thin films consisting of polyelectrolytes and gold nanoparticles were utilized to construct surface-enhanced Raman scattering (SERS) substrates with tunable SERS properties. It is found that both the size of the nanoparticles in the layers and the interlayer distance significantly influence the SERS performance of the multilayered thin film. These simple, low-cost, easily processable and controllable SERS substrates have a promising future in the field of molecular sensing. PMID:27547620

  17. Sandwich-like layer-by-layer assembly of gold nanoparticles with tunable SERS properties

    PubMed Central

    Bai, Lu; Zhao, Guizhe

    2016-01-01

    Summary Sandwich-like layer-by-layer thin films consisting of polyelectrolytes and gold nanoparticles were utilized to construct surface-enhanced Raman scattering (SERS) substrates with tunable SERS properties. It is found that both the size of the nanoparticles in the layers and the interlayer distance significantly influence the SERS performance of the multilayered thin film. These simple, low-cost, easily processable and controllable SERS substrates have a promising future in the field of molecular sensing. PMID:27547620

  18. Hierarchical fibrillar scaffolds obtained by non-conventional layer-by-layer electrostatic self-assembly.

    PubMed

    Oliveira, Sara M; Silva, Tiago H; Reis, Rui L; Mano, João F

    2013-03-01

    A new application of layer-by-layer assembly is presented, able to create nano/micro fibrils or nanocoatings inside 3D scaffolds using non-fibrillar polyelectrolytes for tissue-engineering applications. This approach shows promise for developing advanced scaffolds with controlled nano/micro environments, and nature and architectures similar to the natural extracellular matrix, leading to improved biological performance. PMID:23184814

  19. "Face-lifting" and "make-up" for microorganisms: layer-by-layer polyelectrolyte nanocoating.

    PubMed

    Fakhrullin, Rawil F; Lvov, Yuri M

    2012-06-26

    Layer-by-layer encapsulation of living biological cells and other microorganisms via sequential adsorption of oppositely charged functional nanoscale components is a promising instrument for engineering cells with enhanced properties and artificial microorganisms. Such nanoarchitectural shells assembled in mild aqueous conditions provide cells with additional abilities, widening their functionality and applications in artificial spore formation, whole-cell biosensors, and fabrication of three-dimensional multicellular clusters. PMID:22612633

  20. Novel layer-by-layer structured nanofibrous mats coated by protein films for dermal regeneration.

    PubMed

    Xin, Shangjing; Li, Xueyong; Wang, Qun; Huang, Rong; Xu, Xiaoli; Lei, Zhanjun; Deng, Hongbing

    2014-05-01

    Layer-by-layer coating technique is effective in modifying the surface of nanofibrous mats, but overmuch film-coating makes the mats less porous to hardly suit the condition for tissue engineering. We developed novel nanofibrous mats layer-by-layer coated by silk fibroin and lysozyme on the cellulose electrospun template via electrostatic interaction. The film-coating assembled on the mats was not excessive because the charge of the proteins varied in the coating process due to different pH value. In addition, pure nature materials made the mats nontoxic, biodegradable and low-cost. The morphology and composition variation during layer-by-layer coating process was investigated and the results showed that the structure and thickness of film-coatings could be well-controlled. The antibacterial assay and in vitro cell experiments indicated that the mats could actively inhibit bacteria and exhibit excellent biocompatibility. In vivo implant assay further verified the mats cultured with human epidermal cells could promote wound healing and avoid wound infection. Therefore, these mats showed promising prospects when performed for dermal reconstruction. PMID:24734533

  1. Augmenting Protein Release from Layer- by-Layer Functionalized Agarose Hydrogels

    PubMed Central

    Lynam, Daniel; Peterson, Chelsea; Maloney, Ryan; Shahriari, Dena; Garrison, Alexa; Saleh, Sara; Mehrotra, Sumit; Chan, Christina; Sakamoto, Jeff

    2014-01-01

    Recent work demonstrated the efficacy of combining layer-by-layer assembly with hydrogels to provide the controlled delivery of proteins for use in nerve repair scaffolds. In this work, we augmented the protein dose response by controlling and increasing the hydrogel internal surface area. Sucrose was added to agarose during gelation to homogenize the nanopore morphology, resulting in increased surface area per unit volume of hydrogel. The surface area of a range of compositions (1.5 to 5.0 wt% agarose and 0, 50 and 65 wt% sucrose) was measured. Gels were supercritically dried to preserve porosity enabling detailed pore morphology measurements using nitrogen adsorption and high resolution scanning electron microscopy. The resulting surface area, normalized by superficial gel volume, ranged between 6 and 56m2/ccgel. Using the layer-by-layer process to load lysozyme, a neurotrophic factor analog, a relationship was observed between surface area and cumulative dose response ranging from 176 to 2556 μg/mL, which is in the range of clinical relevance for the delivery of growth factors. In this work, we demonstrated that the ability to control porosity is key in tuning drug delivery dose response from layer-by-layer modified hydrogels. PMID:24528743

  2. Non-covalent attachment of silver nanoclusters onto single-walled carbon nanotubes with human serum albumin as linking molecule

    NASA Astrophysics Data System (ADS)

    Rodríguez-Galván, Andrés; Heredia, Alejandro; Amelines-Sarria, Oscar; Rivera, Margarita; Medina, Luis A.; Basiuk, Vladimir A.

    2015-03-01

    The attachment of silver nanoclusters (AgNCs) onto single-walled carbon nanotubes (SWNTs) for the formation of integrated fluorescence sites has attracted much attention due their potential applications as biological probes and nanovectors in theragnosis. Here, we report the preparation through assembly of fluorescent quasi 1-D nanomaterial based on SWNTs and silver nanoclusters (AgNCs) non-covalently attached to human serum albumin as biological linker. The fluorescent SWNT-AgNCs-HSA conjugates were characterized by atomic force microscopy, high-resolution transmission electron microscopy (HRTEM), high angle annular dark field scanning TEM (HAADF-STEM), fluorescent and UV-vis spectroscopy. The above techniques confirmed that AgNCs were non-covalently attached onto the external surface of SWNTs. In addition, it was observed that the modification did not affect the optical properties of the synthesized AgNCs since the absorption spectra and fluorescence under UV irradiation (λ = 365 nm) remain the same. The effect of the functionalized systems was tested on mammal red blood cells (RBCs) and it was found that their structural integrity was compromised by the conjugates, limiting their biological and medical applications.

  3. Impact of vacancy defects in single-walled carbon nanotube on the structural properties of covalently attached aromatic diisocyanates

    NASA Astrophysics Data System (ADS)

    Kozlowska, Mariana; Goclon, Jakub; Rodziewicz, Pawel

    2016-01-01

    Ab initio molecular dynamics simulations (AIMD) are used to investigate the influence of the vacancy- and divacancy (5-8-5) defects on the surface of single-walled carbon nanotube (SWCNT)(10,0) on the structural properties of covalently attached aromatic diisocyanate molecules, namely 4,4‧-methylene diphenyl diisocyanate (MDI) and toluene-2,4-diisocyanate (TDI). The structural rearrangements and flexibility of MDI and TDI attached to the defective SWCNTs are analysed and compared with the defect-free SWCNT(10,0). The results obtained indicate more than 4 times higher reactivity of vacancy defective SWCNT(10,0) comparing with the defect-free system. Due to weak C-H⋯O and C-H⋯π hydrogen bonds, formed during the covalent functionalisation, the flexibility of the attached diisocyanates is suppressed. Detailed analysis of the time evolution of the structural parameters during AIMD simulations suggests cyclically repeated mechanism of the structural rearrangements of aromatic diisocyanates on the surface of SWCNTs(10,0).

  4. Layer-by-Layer Assemblies in Nanoporous Templates: Nano-Organized Design and Applications of Soft Nanotechnology

    PubMed Central

    Azzaroni, Omar; Lau, K.H. Aaron

    2011-01-01

    The synergistic combination of layer-by-layer (LbL) assembly and nanoporous membrane templating has greatly facilitated the creation of complex and functional nanotubular structures. The approach takes advantage of both the new properties conferred by assembling diverse LbL building blocks and the tight dimensional control offered by nanotemplating to enable new functionalities that arise from the highly anisotropic “one-dimensional” LbL-nanotube format. In this review, we aim to convey the key developments and provide a current snap-shot of such templated LbL nanoarchitectures. We survey recent developments that have enabled the assembly of polymers, biomolecules and inorganic nanoparticles “à la carte”, via electrostatic, covalent and specific (bio)recognition interactions. We also discuss the emerging mechanistic understanding of the LbL assembly process within the nanopore environment. Finally, we present a diverse range of LbL nanotube “devices” to illustrate the versatility of the nanotemplated LbL toolbox for generating functional soft nanotechnology. PMID:22216060

  5. Fabrication of graphene/polyaniline composite multilayer films by electrostatic layer-by-layer assembly

    SciTech Connect

    Cong, Jiaojiao; Chen, Yuze; Luo, Jing Liu, Xiaoya

    2014-10-15

    A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet–visible absorption spectrum (UV–vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10{sup −4} to 1.2×10{sup −3} M with the detect limit of 5×10{sup −6} M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor. - Graphical abstract: A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. - Highlights: • A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. • The water dispersible and negatively charged graphene (CCG) was used as building block. • CCG was achieved through partly reduced graphene oxide with carboxyl group on its surface. • CCG/PANI film kept

  6. A new generation of electrochemical supercapacitors based on layer-by-layer polymer films

    NASA Astrophysics Data System (ADS)

    Christinelli, Wania Ap.; Gonçalves, Roger; Pereira, Ernesto C.

    2016-01-01

    Here we report supercapacitors fabricated with the layer-by-layer (LBL) technique using two polymers, namely poly(o-methoxyaniline) (POMA) and poly(3-thiophene acetic acid) (PTAA). The electrochemical performances of POMA/PTAA supercapacitors were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The results were compared with POMA casting film. The specific capacitance of LBL films increases almost linearly with a number of bilayers which were not observed for POMA casting films. The results of this investigation demonstrate that the self-doping effect between POMA and PTAA can change the properties on films and can be successfully used as a supercapacitor technology.

  7. Layer-by-layer design method for soft-X-ray multilayers

    NASA Technical Reports Server (NTRS)

    Yamamoto, Masaki; Namioka, Takeshi

    1992-01-01

    A new design method effective for a nontransparent system has been developed for soft-X-ray multilayers with the aid of graphic representation of the complex amplitude reflectance in a Gaussian plane. The method provides an effective means of attaining the absolute maximum reflectance on a layer-by-layer basis and also gives clear insight into the evolution of the amplitude reflectance on a multilayer as it builds up. An optical criterion is derived for the selection of a proper pair of materials needed for designing a high-reflectance multilayer. Some examples are given to illustrate the usefulness of this design method.

  8. Layer-by-layer films from tartrazine dye with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    de Souza, Nara C.; Flores, Júlio C. Johner; Silva, Josmary R.

    2009-12-01

    We report on the preparation and study of the adsorption process of layer-by-layer films of tartrazine alternated with bovine serum albumin. UV-Vis spectroscopy indicated that the films form J-aggregates of tartrazine. Adsorption kinetics was fitted by the Johnson-Mehl-Avrami equation and surface morphological analyses by atomic force microscopy suggested that the J-aggregates were column-shaped, which was attributed to the column-like symmetry of the tartrazine molecules. The columnar structures that formed probably arose from the juxtaposition of smaller aggregates that were already present at the beginning of film growth.

  9. Layer-by-Layer Assembled 2D Montmorillonite Dielectrics for Solution-Processed Electronics.

    PubMed

    Zhu, Jian; Liu, Xiaolong; Geier, Michael L; McMorrow, Julian J; Jariwala, Deep; Beck, Megan E; Huang, Wei; Marks, Tobin J; Hersam, Mark C

    2016-01-01

    Layer-by-layer assembled 2D montmorillonite nanosheets are shown to be high-performance, solution-processed dielectrics. These scalable and spatially uniform sub-10 nm thick dielectrics yield high areal capacitances of ≈600 nF cm(-2) and low leakage currents down to 6 × 10(-9) A cm(-2) that enable low voltage operation of p-type semiconducting single-walled carbon nanotube and n-type indium gallium zinc oxide field-effect transistors. PMID:26514248

  10. Layer-by-layer assembly of silica nanoparticles on 3D fibrous scaffolds: enhancement of osteoblast cell adhesion, proliferation, and differentiation.

    PubMed

    Tang, Yanwei; Zhao, Yan; Wang, Xungai; Lin, Tong

    2014-11-01

    Silica nanoparticles were applied onto the fiber surface of an interbonded three-dimensional polycaprolactone fibrous tissue scaffold by an electrostatic layer-by-layer self-assembly technique. The nanoparticle layer was found to improve the fiber wettability and surface roughness. Osteoblast cells were cultured on the fibrous scaffolds to evaluate the biological compatibility. The silica nanoparticle coated scaffold showed enhanced cell attachment, proliferation, and alkaline phosphatase activities. The overall results suggested that interbonded fibrous scaffold with silica nanoparticulate coating could be a promising scaffolding candidate for various applications in bone repair and regeneration. PMID:24288259

  11. Electrodeposition of alginate/chitosan layer-by-layer composite coatings on titanium substrates.

    PubMed

    Wang, Zhiliang; Zhang, Xueqin; Gu, Juming; Yang, Haitao; Nie, Jun; Ma, Guiping

    2014-03-15

    In this study, alginate/chitosan layer-by-layer composite coatings were prepared on titanium substrates via electrodeposition. The mechanism of anodic deposition of anionic alginate based on the pH decrease at the anode surface, while the pH increase at the cathode surface enabled the deposition of cationic chitosan coatings. The surface of coatings was characterized by using attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The properties of coatings were characterized by X-ray diffraction (XRD) and differential thermal analysis (DTA). Indirect in vitro cytotoxicity test showed that the extracts of coating had no significant effects on cell viability. Moreover, in vitro cytocompatibility test exhibited cell population and spreading tendency, suggesting that the coatings were non-toxic to L929 cells. However, the results revealed that alginate coating was more benefit for cells growing than chitosan coating. The results indicated that the proposed method could be used to fabricate alginate/chitosan layer-by-layer composite coatings on the titanium surface at room temperature and such composite coatings might have potential applications in tissue engineering scaffolds field. PMID:24528698

  12. Calcium-doped ceria/titanate tabular functional nanocomposite by layer-by-layer coating method

    SciTech Connect

    Liu, Xiang W.; Devaraju, M.K.; Yin, Shu; Sato, Tsugio

    2010-07-15

    Ca-doped ceria (CDC)/tabular titanate (K{sub 0.8}Li{sub 0.27}Ti{sub 1.73}O{sub 4}, TT) UV-shielding functional nanocomposite with fairly uniform CDC coating layers was prepared through a polyelectrolyte-associated layer-by-layer (LbL) coating method. TT with lepidocrocite-like layered structure was used as the substrate, poly (diallyldimethylammonium chloride) (PDDA) was used as a coupling agent, CDC nanoparticles were used as the main UV-shielding component. CDC/TT nanocomposites with various coating layers of CDC were obtained through a multistep coating process. The phases were studied by X-ray diffraction. The morphology and coating quality were studied by scanning electron microscopy and element mapping of energy dispersive X-ray analysis. The oxidation catalytic activity, UV-shielding ability and using comfort were characterized by Rancimat test, UV-vis spectra and dynamic friction test, respectively. CDC/TT nanocomposites with low oxidation catalytic activity, high UV-shielding ability and good using comfort were finally obtained. - Graphical abstract: Through the control of surface charge of particles calcium-doped ceria/titanate composites with low oxidation catalytic activity, higher UV-shielding ability and excellent comfort was obtained by a facile layer-by-layer coating method.

  13. Antitumoral materials with regenerative function obtained using a layer-by-layer technique

    PubMed Central

    Ficai, Denisa; Sonmez, Maria; Albu, Madalina Georgiana; Mihaiescu, Dan Eduard; Ficai, Anton; Bleotu, Coralia

    2015-01-01

    A layer-by layer technique was successfully used to obtain collagen/hydroxyapatite-magnetite-cisplatin (COLL/HAn-Fe3O4-CisPt, n=1–7) composite materials with a variable content of hydroxyapatite intended for use in the treatment of bone cancer. The main advantages of this system are the possibility of controlling the rate of delivery of cytostatic agents, the presence of collagen and hydroxyapatite to ensure more rapid healing of the injured bone tissue, and the potential for magnetite to be a passive antitumoral component that can be activated when an appropriate external electromagnetic field is applied. In vitro cytotoxicity assays performed on the COLL/HAn-Fe3O4-CisPt materials obtained using a layer-by layer method confirmed their antitumoral activity. Samples with a higher content of hydroxyapatite had more antitumoral activity because of their better absorption of cisplatin and consequently a higher amount of cisplatin being present in the matrices. PMID:25767374

  14. Layer-by-layer nucleation mechanism for quantum dot formation in strained heteroepitaxy.

    PubMed

    Xiang, Ruoxi; Lung, M T; Lam, Chi-Hang

    2010-08-01

    We study the spontaneous formation of quantum dots in the form of three-dimensional (3D) islands on facetted surfaces in heteroepitaxy. Island development from fast kinetic Monte Carlo (KMC) simulations at low deposition rates is found to follow a layer-by-layer nucleation pathway characterized by energetics driven continuous lateral expansion interrupted by a sequence of independent two-dimensional (2D) upper-layer nucleation events. The process involves only unstable 2D upper-layer nuclei but no unstable 3D nucleus. We have calculated analytically the elastic strain energy of an island in the form of an axisymmetric stepped mound using a small-slope approximation. The total free energy of a system with a 3D island and an adatom bath is obtained. Our theory explains island formation via a free energy driven layer-by-layer nucleation mechanism. Upper-layer nucleation energy barrier, nucleation time, critical radius, and island step spacings are estimated. The relevance of entropic step-step repulsion is discussed. Our theory satisfactorily explains the 3D KMC simulations and may describe the initial evolution of islands in the form of stepped mounds observed in experiments. PMID:20866820

  15. Layer-by-layer self-assembly immobilization of catalases on wool fabrics.

    PubMed

    Liu, J; Wang, Q; Fan, X R; Sun, X J; Huang, P H

    2013-04-01

    A new immobilization strategy of catalases on natural fibers was reported in this paper. Catalase (CAT) from Bacillus subtilis was assembled into multiple layers together with poly(diallyldimethylammonium chloride) (PDDA) on wool fabrics via layer-by-layer (LBL) electrostatic self-assembly deposition. The mechanism and structural evaluation of LBL electrostatic self-assembly were studied in terms of scanning electron microscopy (SEM), surface zeta potential, and apparent color depth (K/S). The SEM pictures showed obvious deposits absorbed on the wool surfaces after LBL self-assembly. The surface zeta potential and dyeing depth of CAT/PDDA-assembled wool fabrics presented a regular layer-by-layer alternating trend along with the change of deposited materials, revealing the multilayer structure of the wool fiber immobilized catalases. The V(max) values were found to be 2,500±238 U/mg protein for the free catalase and 1,000±102 U/mg protein for the immobilized catalase. The K(m) value of free catalase (11.25±2.3 mM) was found to be lower than that of the immobilized catalase (222.2±36.5 mM). The immobilized catalase remained high enzymatic activity and showed a measureable amount of reusability, which proved that LBL electrostatic self-assembly deposition is a promising approach to immobilize catalases. PMID:23420488

  16. Clay induced aggregation of a tetra-cationic metalloporphyrin in Layer by Layer self assembled film

    NASA Astrophysics Data System (ADS)

    Banik, Soma; Bhattacharjee, J.; Hussain, S. A.; Bhattacharjee, D.

    2015-12-01

    Porphyrins have a general tendency to form aggregates in ultrathin films. Also electrostatic adsorption of cationic porphyrins onto anionic nano clay platelets results in the flattening of porphyrin moieties. The flattening is evidenced by the red-shifting of Soret band with respect to the aqueous solution. In the present communication, we have studied the clay induced aggregation behaviour of a tetra-cationic metalloporphyrin Manganese (III) 5, 10, 15, 20-tetra (4 pyridyl)-21 H, 23 H-porphine chloride tetrakis (methochloride) (MnTMPyP) in Layer-by-Layer (LbL) self assembled film. The adsorption of dye molecules onto nano clay platelets resulted in the flattening of the meso substituent groups of the dye chromophore. In Layer-by-Layer ultrathin film, the flattened porphyrin molecules tagged nano clay platelets were further associated to form porphyrin aggregates. This has been clearly demonstrated from the UV-vis absorption spectroscopic studies. Atomic Force Microscopic (AFM) studies gave visual evidence of the association of organo-clay hybrid molecules in the LbL film.

  17. Detection of water in jet fuel using layer-by-layer thin film coated long period grating sensor.

    PubMed

    Puckett, Sean D; Pacey, Gilbert E

    2009-04-15

    The quantitative measurement of jet fuel additives in the field is of interest to the Air Force. The "smart nozzle" project was designed as a state-of-the-art diagnostics package attached to a single-point refueling nozzle for assessing key fuel properties as the fuel is dispensed. The objective of the work was to show proof of concept that a layer-by-layer thin film and long period grating fibers could be used to detect the presence of water in jet fuel. The data for the nafion/PDMA film and a long period grating fiber is a combination capable of quantitative measurement of water in kerosene. The average response (spectral loss wavelength shift) to the kerosene sample ranged from -6.0 for 15 ppm to -126.5 for 60 ppm water. The average calculated value for the check standard was 21.71 and ranged from 21.25 to 22.00 with a true value of 22.5 ppm water. Potential interferences were observed and are judged to be insignificant in real samples. PMID:19174242

  18. Preparation of novel capsosome with liposomal core by layer-by-Layer self-assembly of sodium hyaluronate and chitosan.

    PubMed

    Yoo, Cha Young; Seong, Joon Seob; Park, Soo Nam

    2016-08-01

    Multi-compartmentalized capsosomes are polyelectrolyte capsules with liposomes as cargo, and are prepared by combining liposomes and polymer capsules. They offer additional functionality while maintaining the advantages and compensating for the weak points of both systems. In this study, a polyelectrolyte multilayered liposome was prepared by alternating adsorption of negatively charged sodium hyaluronate (HA) and positively charged chitosan (CH) on the surface of a cationic core liposome (CL) via layer-by-layer (LbL) deposition. Then, smaller sized liposomes (L) were coated onto the multilayered liposome. Lastly, the particle surfaces were coated with HA as a capping layer to obtain a novel type of capsosome with a liposomal core. The amount of adsorbed liposome was measured for different pH values (pH 2-10) and with liposome solutions of different concentrations (1-3%). The highest liposome adsorption occurred at pH 10 in the 3% solution, respectively. Finally, capsosomes in the size range of 500nm to 2μm were observed and the attached liposomes were located both on the surface and within the polymer shell. In conclusion, the cell-mimicking, liposome-based capsosomes could have infinite applications in the field of medicine, pharmaceuticals, and cosmetics as compartmentalized microreactors, multi-drug delivery systems with controlled release, or functional artificial cells in the future. PMID:27085041

  19. Surface functionalization of silica-coated magnetic nanoparticles for covalent attachment of cholesterol oxidase

    NASA Astrophysics Data System (ADS)

    Šulek, Franja; Drofenik, Miha; Habulin, Maja; Knez, Željko

    2010-01-01

    A systematic approach towards the fabrication of highly functionalized silica shell magnetic nanoparticles, presently used for enzyme immobilization, is herein fully presented. The synthesis of bare maghemite (γ-Fe 2O 3) nanoparticles was accomplished by thermal co-precipitation of iron ions in ammonia alkaline solution at harsh reaction conditions, respectively. Primary surface engineering of maghemite nanoparticles was successfully performed by the proper deposition of silica onto nanoparticles surface under strictly regulated reaction conditions. Next, the secondary surface functionalization of the particles was achieved by coating the particles with organosilane followed by glutaraldehyde activation in order to enhance protein immobilization. Covalent immobilization of cholesterol oxidase was attempted afterwards. The structural and magnetic properties of magnetic silica nanocomposites were characterized by TEM and vibrating sample magnetometer (VSM) instruments. X-ray diffraction measurements confirmed the spinel structure and average size of uncoated maghemite nanoparticles to be around 20 nm in diameter. SEM-EDS spectra indicated a strong signal for Si, implying the coating procedure of silica onto the particles surface to be successfully accomplished. Fourier transform infrared (FT-IR) spectra analysis confirmed the binding of amino silane molecules onto the surface of the maghemite nanoparticles mediated Si-O-Si chemical bonds. Compared to the free enzyme, the covalently bound cholesterol oxidase retained 50% of its activity. Binding of enzyme onto chemically modified magnetic nanoparticles via glutaraldehyde activation is a promising method for developing biosensing components in biomedicine.

  20. Characterization of the estrogen receptor and its dynamics in MCF-7 human breast cancer cells using a covalently attaching antiestrogen

    SciTech Connect

    Monsma, F.J. Jr.; Katzenellenbogen, B.S.; Miller, M.A.; Ziegler, Y.S.; Katzenellenbogen, J.A.

    1984-07-01

    The authors have used a covalently attaching antiestrogen, tamoxifen aziridine TA to analyze the structure and dynamics of the estrogen receptor in MCF-7 human breast cancer cells. The labeling of receptor with (/sup 3/H)TA is specific, being blocked only by estrogens and antiestrogens, and the labeling is very efficient in that TA labels covalently the same number of receptors that are labeled reversibly by estradiol. In cells exposed to (/sup 3/H)TA for 1 h, most of the covalently associated radioactivity is found in the 0.6 M KCl extract of the nuclear fraction; this receptor has an apparent mol wt of 63,000 +/- 2000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and a pI of 5.7 by gel isoelectric focusing in the presence of 8 M urea. The mol wt and pI of cytosol receptor labeled with (/sup 3/H) TA are identical. In cells labeled with (/sup 3/H)TA (20 nM) for 1 h and then exposed to a chase of 10(-6) M estradiol, (3H)TA-labeled nuclear receptor disappears with a half-life of 4 h. Affinity labeled receptor interacts with several monoclonal antibodies to MCF-7 estrogen receptor, and it can be purified extensively by immunoadsorbent chromatography. The findings of similar mol wt and isoelectric points for soluble cytosol and nuclear extracted receptors under strongly denaturing and disaggregating conditions reveal that nuclear localization of receptor after ligand binding is not associated with major structural alterations in the receptor component labeled by TA.

  1. Investigation of human cell response to covalently attached RADA16-I peptide on silicon surfaces.

    PubMed

    Shamsi, Fahimeh

    2016-09-01

    We described a modification of the ionic (RADARADARADARADA)(1) peptide or RADA16-I with 4-azidophenyl isothiocyanate via a specific and gentle reaction. The azidated peptide was covalently immobilized on an alkyne-terminated monolayer on Si(111) via the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction. Detailed characterization using Impedance spectroscopy (IS), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy demonstrated high coverage of the RADA 16-I peptide on silicon surfaces. Scanning electron microscopy (SEM) and methyl tetrazole sulfate (MTS) assay were used to characterize the morphology and proliferation ability of human fibroblast cells on surfaces. Cell adhesion assay was performed to examine cell-substrate interactions. Significant differences in fibroblast cell morphology, adhesion, and viability were observed on the RADA16-I peptide modified surfaces compared to the control surfaces. These results may suggest a potential application of RADA16-I peptide modified surfaces in biomedical applications. PMID:27236098

  2. Chemical reactivity of Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803 hemoglobins: covalent heme attachment and bishistidine coordination

    PubMed Central

    Nothnagel, Henry J.; Preimesberger, Matthew R.; Pond, Matthew P.; Winer, Benjamin Y.; Adney, Emily M.

    2011-01-01

    In the absence of an exogenous ligand, the hemoglobins from the cyanobacteria Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002 coordinate the heme group with two axial histidines (His46 and His70). These globins also form a covalent linkage between the heme 2-vinyl substituent and His117. The in vitro mechanism of heme attachment to His117 was examined with a combination of site-directed mutagenesis, NMR spectroscopy, and optical spectroscopy. The results supported an electrophilic addition with vinyl protonation being the rate-determining step. Replacement of His117 with a cysteine demonstrated that the reaction could occur with an alternative nucleophile. His46 (distal histidine) was implicated in the specificity of the reaction for the 2-vinyl group as well as protection of the protein from oxidative damage caused by exposure to exogenous H2O2. PMID:21240532

  3. Covalent attachment and growth of nanocrystalline films of photocatalytic TiOF2

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Lv, Fujian; Xiao, Shengxiong; Bian, Zhenfeng; Buntkowsky, Gerd; Nuckolls, Colin; Li, Hexing

    2014-11-01

    This manuscript describes a synthesis of nanocrystalline TiOF2 film. The nanocrystalline TiOF2 becomes chemically attached to the surface of the glass slide. These films are robust and can be recycled as photocatalysts for the degradation of organic dyes and solvents. These films also have significant antibacterial properties upon irradiation.This manuscript describes a synthesis of nanocrystalline TiOF2 film. The nanocrystalline TiOF2 becomes chemically attached to the surface of the glass slide. These films are robust and can be recycled as photocatalysts for the degradation of organic dyes and solvents. These films also have significant antibacterial properties upon irradiation. Electronic supplementary information (ESI) available: Methods for sample preparation, characterization and Fig. S1-S8. See DOI: 10.1039/c4nr05598e

  4. Development of polysaccharides-based edible coatings for citrus fruits: a layer-by-layer approach.

    PubMed

    Arnon, Hadar; Granit, Rina; Porat, Ron; Poverenov, Elena

    2015-01-01

    Biodegradable coatings for citrus fruits that would replace the currently used polyethylene-based waxes, are of great interest. Methylcellulose (MC), hydroxypropyl methylcellulose (HPMC), carboxymethyl cellulose (CMC) and chitosan (CH) coatings were examined on the most sensitive citrus fruit model: mandarins. Among the examined polysaccharides, CMC provided mandarins with the best firmness, lowest weight loss and satisfying gloss, while not affecting natural flavour and the respiration process. To enhance coating performance, glycerol, oleic acid and stearic acid were added; however, mandarin quality generally deteriorated with these additives. Then, a layer-by-layer (LBL) approach was applied. LbL coatings, based on a combination of two polysaccharides, CMC as an internal layer and chitosan as an external layer, gave the best performance. Different concentrations of chitosan were examined. The LbL coatings notably improved all quantified parameters of fruit quality, proving that polysaccharide-based edible coating may offer an alternative to synthetic waxes. PMID:25053081

  5. Tailored surface engineering of pigments by layer-by-layer coating.

    PubMed

    Dähne, Lars; Schneider, Julia; Lewe, Dirk; Petersen, Henrik

    2015-01-01

    We have evaluated the feasibility of layer-by-layer encapsulation technology for the improvement of dye pigments used for tattoos or permanent make-up. The formation of core-shell structures is possible by coating pigments with thin films of several different polyelectrolytes using this technology. The physicochemical surface properties, such as charge density and chemical functionality, can be reproducibly varied in a wide range. Tailoring the surface properties independently from the pigment core allows one to control the rheological behaviour of pigment suspensions, to prevent aggregation between different pigments, to reduce the cytotoxicity, and to influence the response of phagocytes in order to have similar or the same uptake and bioclearance for all pigments. These properties determine the durability and colour tone stability of tattoos and permanent make-up. PMID:25833634

  6. High {Tc} trilayer tunneling and Josephson junction structures made using atomic layer by layer growth

    SciTech Connect

    Eckstein, J.N.; Bozovic, I.; Virshup, G.F.

    1994-12-31

    Very precise artificial structuring of high {Tc} heterostructures is possible using atomic layer-by-layer molecular beam epitaxy (ALL-MBE). Cuprates are combined with other oxides, such as titanates, to make atomically precise heterostructures for studying transport and interfacial effects. Titanate slabs as thin as one unit cell thick can be grown without pinholes and provide tunneling barriers for c-axis transport. Single doped unit cells of BSCCO-2212 can also be used as barriers. These give SNS Josephson junctions at temperatures as high as 65 K. Since the crystallographic structure of the barrier is identical to the structure of the 2212 electrode material, it is easily possible to stack more than junction in close proximity. This results in phase-locked operation of two junctions together.

  7. Systematic layer-by-layer characterization of multilayers for three-dimensional data storage and logic

    NASA Astrophysics Data System (ADS)

    Petit, Dorothée; Lavrijsen, Reinoud; Lee, JiHyun; Mansell, Rhodri; Fernández-Pacheco, Amalio; Cowburn, Russell P.

    2016-04-01

    Magnetic kink solitons are used as a probe to experimentally measure the layer-by-layer coercivity and interlayer coupling strength of an antiferromagnetically coupled perpendicularly magnetized Co multilayer. The magnetic response is well described by a nearest neighbor Ising macrospin model. By controlling the position of one, two or three solitons in the stack using globally applied magnetic fields, we successfully probe the switching of individual buried layers under different neighboring configurations, allowing us to access individual layer's characteristic parameters. We found the coercivity to increase dramatically up the multilayer, while the interlayer coupling strength decreased slightly. We corroborate these findings with scanning transmission electron microscopy images where a degrading quality of the multilayer is observed. This method provides a very powerful tool to characterize the quality of individual layers in complex multilayers, without the need for depth-sensitive magnetic characterization equipment.

  8. Multicolor Layer-by-Layer films using weak polyelectrolyte assisted synthesis of silver nanoparticles

    PubMed Central

    2013-01-01

    In the present study, we show that silver nanoparticles (AgNPs) with different shape, aggregation state and color (violet, green, orange) have been successfully incorporated into polyelectrolyte multilayer thin films using the layer-by-layer (LbL) assembly. In order to obtain colored thin films based on AgNPs is necessary to maintain the aggregation state of the nanoparticles, a non-trivial aspect in which this work is focused on. The use of Poly(acrylic acid, sodium salt) (PAA) as a protective agent of the AgNPs is the key element to preserve the aggregation state and makes possible the presence of similar aggregates (shape and size) within the LbLcolored films. This approach based on electrostatic interactions of the polymeric chains and the immobilization of AgNPs with different shape and size into the thin films opens up a new interesting perspective to fabricate multicolornanocomposites based on AgNPs. PMID:24148227

  9. Underpotential deposition-mediated layer-by-layer growth of thin films

    SciTech Connect

    Wang, Jia Xu; Adzic, Radoslav R.

    2015-05-19

    A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves the use of underpotential deposition of a first element to mediate the growth of a second material by overpotential deposition. Deposition occurs between a potential positive to the bulk deposition potential for the mediating element where a full monolayer of mediating element forms, and a potential which is less than, or only slightly greater than, the bulk deposition potential of the material to be deposited. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis. This process is especially suitable for the formation of a catalytically active layer on core-shell particles for use in energy conversion devices such as fuel cells.

  10. Layer-by-layer Collagen Deposition in Microfluidic Devices for Microtissue Stabilization.

    PubMed

    McCarty, William J; Prodanov, Ljupcho; Bale, Shyam Sundhar; Bhushan, Abhinav; Jindal, Rohit; Yarmush, Martin L; Usta, O Berk

    2015-01-01

    Although microfluidics provides exquisite control of the cellular microenvironment, culturing cells within microfluidic devices can be challenging. 3D culture of cells in collagen type I gels helps to stabilize cell morphology and function, which is necessary for creating microfluidic tissue models in microdevices. Translating traditional 3D culture techniques for tissue culture plates to microfluidic devices is often difficult because of the limited channel dimensions. In this method, we describe a technique for modifying native type I collagen to generate polycationic and polyanionic collagen solutions that can be used with layer-by-layer deposition to create ultrathin collagen assemblies on top of cells cultured in microfluidic devices. These thin collagen layers stabilize cell morphology and function, as shown using primary hepatocytes as an example cell, allowing for the long term culture of microtissues in microfluidic devices. PMID:26485274

  11. Characterization of Field Effect Transistor Biosensors Fabricated Using Layer-by-Layer Nanoassembly Process.

    PubMed

    Pathak, Pushparaj; Que, Long

    2015-12-01

    In order to avoid the fabrication complexity involved with a single carbon nanotube (CNT) based immunosensor, herein we report an FET based biosensor, in which the channel is made out of Carbon Nanotube Thin Film (CNTF). The CNTF channel between the source and drain electrodes is assembled using a combination of photolithography and electrostatic layer-by-layer self-assembly (LbL). The fabricated device behaves like a p-type transistor. The bio-affinity interaction between Protein A and rabbit Immunoglobulin G (IgG) is used to model the immunosensing, and our initial results show the device is capable of detecting IgG concentrations as low as 1 pg/mL. PMID:26682397

  12. Manufacturing three-dimensional nickel titanium articles using layer-by-layer laser-melting technology

    NASA Astrophysics Data System (ADS)

    Shishkovsky, I. V.; Yadroitsev, I. A.; Smurov, I. Yu.

    2013-12-01

    Specific features of layer-by-layer synthesis of three-dimensional (3D) nickel titanium (NiTi, nitinol) articles by selective laser melting (SLM) technology have been studied. Nonporous 3D nitinol articles have been obtained for the first time in a single technological cycle. A necessary condition was that the NiTi powder medium was heated to 500°C during sintering. The structure and composition of intermetallic phases in SLM-synthesized samples have been studied by optical metallography, microhardness measurements, scanning electron microscopy, X-ray diffraction, and energy-dispersive x-ray analysis techniques. Optimum SLM regimes for manufacturing NiTi articles and promising medical applications of this material are considered.

  13. Enhanced amplified spontaneous emission using layer-by-layer assembled cowpea mosaic virus

    NASA Astrophysics Data System (ADS)

    Li, Na; Deng, Zhaoqi; Lin, Yuan; Zhang, Xiaojie; Geng, Yanhou; Ma, Dongge; Su, Zhaohui

    2009-01-01

    Layer-by-layer assembly technique was used to construct ultrathin film of cowpea mosaic virus (CPMV) by electrostatic interactions, and the film was employed as a precursor on which an OF8T2 film was deposited by spin coating. Amplified spontaneous emission (ASE) was observed and improved for the OF8T2 film. Compared with OF8T2 film on quartz, the introduction of CPMV nanoparticles reduced the threshold and loss, and remarkably increased the net gain. The threshold, loss, and gain reached 0.05 mJ/pulse, 6.9 cm-1, and 82 cm-1, respectively. CPMV nanoparticles may enormously scatter light, resulting in a positive feedback, thus the ASE is easily obtained and improved.

  14. Layer-by-layer self-assembly of polyelectrolyte functionalized MoS2 nanosheets.

    PubMed

    Shen, Jianfeng; Pei, Yu; Dong, Pei; Ji, Jin; Cui, Zheng; Yuan, Junhua; Baines, Robert; Ajayan, Pulickel M; Ye, Mingxin

    2016-05-01

    Few-layered polyelectrolyte functionalized MoS2 nanosheets were obtained for the first time through in situ polymerization of MoS2 nanosheets with poly(acrylic acid) and poly(acrylamide), both of which demonstrated excellent dispersibility and stability in water. After designing and optimizing the components of this series of polyelectrolyte functionalized MoS2 nanosheets, by exploiting the electrostatic interactions present in the modified MoS2 nanosheets, we further created a series of layer-by-layer (LBL) self-assembling MoS2-based films. To this end, uniform MoS2 nanosheet-based LBL films were precisely deposited on substrates such as quartz, silicon, and ITO. The polyelectrolyte functionalized MoS2 nanosheet assembled LBL film-modified electrodes demonstrated enhanced electrocatalytic activity for H2O2. As such, they are conducive to efficient sensors and advanced biosensing systems. PMID:27102889

  15. Multicolor Layer-by-Layer films using weak polyelectrolyte assisted synthesis of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Rivero, Pedro Jose; Goicoechea, Javier; Urrutia, Aitor; Matias, Ignacio Raul; Arregui, Francisco Javier

    2013-10-01

    In the present study, we show that silver nanoparticles (AgNPs) with different shape, aggregation state and color (violet, green, orange) have been successfully incorporated into polyelectrolyte multilayer thin films using the layer-by-layer (LbL) assembly. In order to obtain colored thin films based on AgNPs is necessary to maintain the aggregation state of the nanoparticles, a non-trivial aspect in which this work is focused on. The use of Poly(acrylic acid, sodium salt) (PAA) as a protective agent of the AgNPs is the key element to preserve the aggregation state and makes possible the presence of similar aggregates (shape and size) within the LbLcolored films. This approach based on electrostatic interactions of the polymeric chains and the immobilization of AgNPs with different shape and size into the thin films opens up a new interesting perspective to fabricate multicolornanocomposites based on AgNPs.

  16. Direct atomic-scale observation of layer-by-layer oxide growth during magnesium oxidation

    SciTech Connect

    Zheng, He; Wu, Shujing; Sheng, Huaping; Liu, Chun; Liu, Yu; Cao, Fan; Zhou, Zhichao; Zhao, Dongshan E-mail: dszhao@whu.edu.cn; Wang, Jianbo E-mail: dszhao@whu.edu.cn; Zhao, Xingzhong

    2014-04-07

    The atomic-scale oxide growth dynamics are directly revealed by in situ high resolution transmission electron microscopy during the oxidation of Mg surface. The oxidation process is characterized by the layer-by-layer growth of magnesium oxide (MgO) nanocrystal via the adatom process. Consistently, the nucleated MgO crystals exhibit faceted surface morphology as enclosed by (200) lattice planes. It is believed that the relatively lower surface energies of (200) lattice planes should play important roles, governing the growth mechanism. These results facilitate the understanding of the nanoscale oxide growth mechanism that will have an important impact on the development of magnesium or magnesium alloys with improved resistance to oxidation.

  17. Super Gas Barrier Thin Films via Layer-by-Layer Assembly of Polyelectrolytes and Clay

    NASA Astrophysics Data System (ADS)

    Priolo, Morgan; Gamboa, Daniel; Grunlan, Jaime

    2010-03-01

    Thin composite films of branched polyethylenimine (PEI), polyacrylic acid (PAA) and sodium montmorillonite clay (MMT) platelets were prepared using layer-by-layer assembly. Film thickness, mass deposited per layer, and barrier were shown to increase exponentially with the number of deposition cycles. After 32 layers (i.e., eight PEI/PAA/PEI/MMT quadlayers) are deposited, the resulting transparent film exhibits an oxygen transmission rate below the detection limit of commercial instrumentation (< 0.005 cm^3/m^2 . day). This level of oxygen barrier is believed to be due to a nano-brick wall microstructure comprised of exfoliated clay bricks in polymeric mortar, where the enhanced spacing between MMT layers, provided by PEI and PAA, creates channels perpendicular concentration gradient that delay the permeating molecule. These films are good candidates for flexible electronics, food, and pharmaceutical packaging due to their transparency, super gas barrier (that rivals SiOx) and lack of metal.

  18. Layer-by-layer polysaccharide-coated liposomes for sustained delivery of epidermal growth factor.

    PubMed

    Kaminski, Gabriel A T; Sierakowski, Maria Rita; Pontarolo, Roberto; Santos, Larissa Antoniacomi Dos; de Freitas, Rilton Alves

    2016-04-20

    A three-dimensional layer-by-layer (LbL) structure composed by xanthan and galactomannan biopolymers over dioctadecyldimethylammonium bromide (DODAB) liposome template was proposed and characterized for protein drug delivery. The polymers and the surfactant interaction were sufficiently strong to create a LbL structure up to 8 layers, evaluated using quartz crystal microbalance (QCM) and zeta potential analysis. The polymer-liposome binding enthalpy was determined by isothermal titration calorimetry (ITC). The bilayer of biopolymer-coated liposomes with diameters of 165 (±15)nm, measured by dynamic light scattering (DLS), and ζ-potential of -4 (±13)mV. These bilayer-coated nanoparticles increased up to 5 times the sustained release of epidermal growth factor (EGF) at a first order rate of 0.005min(-1). This system could be useful for improving the release profile of low-stability drugs like EGF. PMID:26876836

  19. Porous Materials with Tunable Structure and Mechanical Properties via Templated Layer-by-Layer Assembly.

    PubMed

    Ziminska, Monika; Dunne, Nicholas; Hamilton, Andrew R

    2016-08-31

    The deposition of stiff and strong coatings onto porous templates offers a novel strategy for fabricating macroscale materials with controlled architectures at the micro- and nanoscale. Here, layer-by-layer assembly is utilized to fabricate nanocomposite-coated foams with highly customizable properties by depositing polymer-nanoclay coatings onto open-cell foam templates. The compressive mechanical behavior of these materials evolves in a predictable manner that is qualitatively captured by scaling laws for the mechanical properties of cellular materials. The observed and predicted properties span a remarkable range of density-stiffness space, extending from regions of very soft elastomer foams to very stiff, lightweight honeycomb and lattice materials. PMID:27513218

  20. Layer-by-layer assembled multilayers using catalase-encapsulated gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Sungwoo; Park, Jeongju; Cho, Jinhan

    2010-09-01

    We introduce a novel and versatile approach for the preparation of multilayers, based on catalase-encapsulated gold nanoparticles (CAT-AuNP), allowing electrostatic charge reversal and structural transformation through pH adjustment. CAT-AuNP, which are synthesized directly from CAT stabilizer, can be electrostatically assembled with anionic and cationic PEs as a result of the charge reversal of the catalase stabilizers through pH control. In particular, at pH 5.2, near the pI of catalase, dispersed CAT-AuNP are structurally transformed into colloidal or network CAT-AuNP nanocomposites. Furthermore, we demonstrate that the layer-by-layer assembled multilayers composed of PEs and CAT-AuNP induce an effective electron transfer between CAT and the electrode as well as a high loading of CAT and AuNP, and resultantly exhibit a highly catalytic activity toward H2O2.

  1. Enzymatic Degradation of Polysaccharide-Based Layer-by-Layer Structures.

    PubMed

    Cardoso, Matias J; Caridade, Sofia G; Costa, Rui R; Mano, João F

    2016-04-11

    The lack of knowledge on the degradation of layer-by-layer structures is one of the causes hindering its translation to preclinical assays. The enzymatic degradation of chitosan/hyaluronic acid films in the form of ultrathin films, freestanding membranes, and microcapsules was studied resorting to hyaluronidase. The reduction of the thickness of ultrathin films was dependent on the hyaluronidase concentration, leading to thickness and topography variations. Freestanding membranes exhibited accelerated weight loss up to 120 h in the presence of the enzyme, achieving complete degradation. Microcapsules with around 5 μm loaded simultaneously with FITC-BSA and hyaluronidase showed that the coencapsulation of such enzyme and protein mixture led to a FITC-BSA release four times higher than in the absence of hyaluronidase. The results suggest that the degradation of LbL devices may be tuned via embedded enzymes, namely, in the controlled release of active agents in biomedical applications. PMID:26957012

  2. Systematic layer-by-layer characterization of multilayers for three-dimensional data storage and logic.

    PubMed

    Petit, Dorothée; Lavrijsen, Reinoud; Lee, JiHyun; Mansell, Rhodri; Fernández-Pacheco, Amalio; Cowburn, Russell P

    2016-04-15

    Magnetic kink solitons are used as a probe to experimentally measure the layer-by-layer coercivity and interlayer coupling strength of an antiferromagnetically coupled perpendicularly magnetized Co multilayer. The magnetic response is well described by a nearest neighbor Ising macrospin model. By controlling the position of one, two or three solitons in the stack using globally applied magnetic fields, we successfully probe the switching of individual buried layers under different neighboring configurations, allowing us to access individual layer's characteristic parameters. We found the coercivity to increase dramatically up the multilayer, while the interlayer coupling strength decreased slightly. We corroborate these findings with scanning transmission electron microscopy images where a degrading quality of the multilayer is observed. This method provides a very powerful tool to characterize the quality of individual layers in complex multilayers, without the need for depth-sensitive magnetic characterization equipment. PMID:26938688

  3. Thin bacteria/Layered Double Hydroxide films using a layer-by-layer approach.

    PubMed

    Halma, Matilte; Khenifi, Aicha; Sancelme, Martine; Besse-Hoggan, Pascale; Bussière, Pierre-Olivier; Prévot, Vanessa; Mousty, Christine

    2016-07-15

    This paper reports the design of thin bacteria/Layered Double Hydroxides (LDH) films in which bacterial cells of Pseudomonas sp. strain ADP were assembled alternatively with Mg2Al-NO3 LDH nanosheets by a layer-by-layer deposition method. The UV-Vis spectroscopy was used to monitor the assembly process, showing a progressive increase in immobilized bacteria amount upon deposited cycles. The {ADP/LDH}n film was characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy and atomic force microscopy. The metabolic activity of immobilized bacteria was determined using chronoamperometry by measuring the biochemical oxygen demand in presence of glucose using an artificial electron acceptor (Fe(CN)6(3-)) at 0.5V/Ag-AgCl. A steady current of 0.250μAcm(-2) was reached in about 30s after the addition of 5mM glucose. PMID:27124809

  4. Three-Dimensional Nanoprinting via Scanning Probe Lithography-Delivered Layer-by-Layer Deposition.

    PubMed

    Zhao, Jianli; Swartz, Logan A; Lin, Wei-Feng; Schlenoff, Philip S; Frommer, Jane; Schlenoff, Joseph B; Liu, Gang-Yu

    2016-06-28

    Three-dimensional (3D) printing has been a very active area of research and development due to its capability to produce 3D objects by design. Miniaturization and improvement of spatial resolution are major challenges in current 3D printing technology development. This work reports advances in miniaturizing 3D printing to the nanometer scale using scanning probe microscopy in conjunction with local material delivery. Using polyelectrolyte polymers and complexes, we have demonstrated the concept of layer-by-layer nanoprinting by design. Nanometer precision is achieved in all three dimensions, as well as in interlayer registry. The approach enables production of designed functional 3D materials with nanometer resolution and, as such, creates a platform for conducting scientific research in designed 3D nanoenvironments as well. In doing so, it enables production of nanomaterials and scaffolds for photonics devices, biomedicine, and tissue engineering. PMID:27203853

  5. New type of Reverse Osmosis Membrane via Layer-by-Layer Assembly Process

    NASA Astrophysics Data System (ADS)

    Park, Junwoo; Bang, Joona; Park, Jeongju; Cho, Jinhan

    2009-03-01

    As to the commercial RO membranes for desalination, the polyamide (PA) based membranes have been widely used so far. However, they still have limitations, such as low permeability, bio-fouling, etc. In this work, we propose new types of polyelectrolyte-membranes which can overcome such problems. The membranes were designed by layer-by-layer (LbL) method using polyelectrolytes, including poly(allylamine hydrochloride), poly(styrene sulfonate), poly(acrylic acid), etc. Individual layers were adjusted by pH condition and number of deposition. The resulting multi-layered membranes were crosslinked by heat to provide the good durability. The morphologies were characterized by FE-SEM and AFM and the salt rejection was monitored by ion chromatography. By optimizing the membrane structures, we found that the water permeability was enhanced, while the salt rejection was as efficient as RO membranes. We believe that these results can provide the new protocol to design the advanced RO membrane.

  6. Spray-assisted layer-by-Layer (LbL) assembly of anisotropic materials

    NASA Astrophysics Data System (ADS)

    de, Souvik; Suarez Martinez, Pilar; Kavarthapu, Avanti; Lutkenhaus, Jodie

    2015-03-01

    Layer-by-layer (LbL) assembly has gained tremendous interest as it allows one to incorporate a large variety of molecules with nano-scale precision and very good reproducibility. In addition to charged polymers, the technique has become extremely popular to fabricate tailor-made thin films containing anisotropic nanomaterials (e.g., graphene oxide sheets). The challenge is that a standard protocol to fabricate ``all-polyelectrolyte'' LbL films may not necessarily give rise to satisfactory film growth when applied to LbL assembly where one of the adsorbing components is an anisotropic nanomaterial. Therefore, in this contribution, we combine polymers and anisotropic nanomaterials via dip- and spray-assisted LbL assembly and investigate the effect of charge density, exfoliation, concentration etc. of the components on the growth behavior and the film quality. The end result is a conformal, pin-hole free coating on model substrates (glass, silicon, metal) over a large area.

  7. Nanofilms of hyaluronan/chitosan assembled layer-by-layer: An antibacterial surface for Xylella fastidiosa.

    PubMed

    Hernández-Montelongo, Jacobo; Nascimento, Vicente F; Murillo, Duber; Taketa, Thiago B; Sahoo, Prasana; de Souza, Alessandra A; Beppu, Marisa M; Cotta, Monica A

    2016-01-20

    In this work, nanofilms of hyaluronan/chitosan (HA/CHI) assembled layer by layer were synthesized; their application as a potential antimicrobial material was demonstrated for the phytopathogen Xylella fastidiosa, a gram-negative bacterium, here used as a model. For the synthesis, the influence of pH and ionic strength of these natural polymer stem-solutions on final characteristics of the HA/CHI nanofilms was studied in detail. The antibacterial effect was evaluated using widefield fluorescence microscopy. These results were correlated with the chemical properties of the nanofilms, studied by FTIR and Raman spectroscopy, as well as with their morphology and surface properties characterized using SEM and AFM. The present findings can be extended to design and optimize HA/CHI nanofilms with enhanced antimicrobial behavior for other type of phytopathogenic gram-negative bacteria species, such as Xanthomonas citri, Xanthomas campestri and Ralstonia solanacearum. PMID:26572322

  8. Tunable thermal and flame response of phosphonated oligoallylamines layer by layer assemblies on cotton.

    PubMed

    Carosio, Federico; Negrell-Guirao, Claire; Di Blasio, Alessandro; Alongi, Jenny; David, Ghislain; Camino, Giovanni

    2015-01-22

    In the present paper we have demonstrated how the change of the layer by layer deposition parameters can influence the final properties of cotton fabrics in terms of coating morphology, thermal stability and flammability. To this aim, novel synthetized oligoallylamines and phosphonated oligoallylamines have been assembled on the surface of cotton exploiting different molecular weights and pH conditions. Low molecular weights have yielded an incomplete "island growth" coating while high molecular weight resulted in a homogeneous coating which thickness was controlled by the adopted pH. Both low and high molecular weight assemblies induced a reduction of the cellulose decomposition temperatures that was, conversely, delayed by coatings assembled at pH=10. All assemblies were able to improve cotton flammability by suppressing the afterglow phenomenon; the best results in terms of flame spread and final residue have been achieved by high molecular weight assemblies. PMID:25439958

  9. Nucleation and Early Stages of Layer-by-Layer Growth of Metal Organic Frameworks on Surfaces

    PubMed Central

    2015-01-01

    High resolution atomic force microscopy (AFM) is used to resolve the evolution of crystallites of a metal organic framework (HKUST-1) grown on Au(111) using a liquid-phase layer-by-layer methodology. The nucleation and faceting of individual crystallites is followed by repeatedly imaging the same submicron region after each cycle of growth and we find that the growing surface is terminated by {111} facets leading to the formation of pyramidal nanostructures for [100] oriented crystallites, and triangular [111] islands with typical lateral dimensions of tens of nanometres. AFM images reveal that crystallites can grow by 5–10 layers in each cycle. The growth rate depends on crystallographic orientation and the morphology of the gold substrate, and we demonstrate that under these conditions the growth is nanocrystalline with a morphology determined by the minimum energy surface. PMID:26709359

  10. Anisotropic behavior of layer-by-layer films using highly disordered copper hexacyanoferrate(II) nanoparticles

    NASA Astrophysics Data System (ADS)

    Soek, Rafael N.; Schmidt, Ariane; Winnischofer, Herbert; Vidotti, Marcio

    2016-08-01

    Copper hexacyanoferrate(II) (Cuhcf(II)) nanoparticles (NPs) were synthesized by using a simple and straightforward methodology using aqueous solution without the need of any further passivating agent. The 15 nm NPs (obtained by TEM) were fully characterized by XRD, FTIR and Raman spectroscopy that revealed a high number of structural defects. These structural defects are responsible to produce a strong internal dipole moment. This leads to an anisotropic growth onto the electrode surface by using the layer-by-layer technique. Specular Reflectance FTIR corroborates with our assumption. The defects are also responsible for the high electroactivity of the Cuhcf(II)NPs modified electrodes in sodium based electrolytes. Our results contrast with others in which the authors attributed the cell distortion as the main phenomenon.

  11. Layer-by-layer heparinization of decellularized liver matrices to reduce thrombogenicity of tissue engineered grafts

    PubMed Central

    Bruinsma, Bote G; Kim, Yeonhee; Berendsen, Tim A; Ozer, Sinan; Yarmush, Martin L; Uygun, Basak E

    2015-01-01

    Background Tissue-engineered liver grafts may offer a viable alternative to orthotopic liver transplantation and help overcome the donor organ shortage. Decellularized liver matrices (DLM) have a preserved vasculature and sustain hepatocellular function in culture, but graft survival after transplantation remains limited due to thrombogenicity of the matrix. Aim To evaluate the effect of heparin immobilization on DLM thrombogenicity. Methods Heparin was immobilized on DLMs by means of layer-by-layer deposition. Grafts with 4 or 8 bilayers and 2 or 4 g/L of heparin were recellularized with primary rat hepatocytes and maintained in culture for 5 days. Hemocompatibility of the graft was assessed by ex vivo diluted whole-blood perfusion and heterotopic transplantation. Results Heparin was deposited throughout the matrix and the heparin content in the graft was higher with increasing number of bilayers and concentration of heparin. Recellularization and in vitro albumin and urea production were unaffected by heparinization. Resistance to blood flow during ex vivo perfusion was lower with increased heparinization and, macroscopically, no clots were visible in grafts with 8 bilayers. Following transplantation, flow through the graft was limited in all groups. Histological evidence of thrombosis was lower in heparinized DLMs, but transplantation of DLM grafts was not improved. Conclusions Layer-by-layer deposition of heparin on a DLM is an effective method of immobilizing heparin throughout the graft and does not impede recellularization or hepatocellular function in vitro. Thrombogenicity during ex vivo blood perfusion was reduced in heparinized grafts and optimal with 8 bilayers, but transplantation remained unsuccessful with this method. Relevance for patients Tissue engineered liver grafts may offer a viable solution to dramatic shortages in donor organs PMID:26478914

  12. Covalent attachment of microbial lipase onto microporous styrene-divinylbenzene copolymer by means of polyglutaraldehyde.

    PubMed

    Dizge, Nadir; Keskinler, Bülent; Tanriseven, Aziz

    2008-10-01

    A novel method for immobilization of Thermomyces lanuginosus lipase onto polyglutaraldehyde-activated poly(styrene-divinylbenzene) (STY-DVB), which is a hydrophobic microporous support has been successfully developed. The copolymer was prepared by the polymerization of the continuous phase of a high internal phase emulsion (polyHIPE). The concentrated emulsion consists of a mixture of styrene and divinylbenzene containing a suitable surfactant and an initiator as the continuous phase and water as the dispersed phase. Lipase from T. lanuginosus was immobilized covalently with 85% yield on the internal surface of the hydrophobic microporous poly(styrene-divinylbenzene) copolymer and used as a biocatalyst for the transesterification reaction. The immobilized enzyme has been fully active 30 days in storage and retained the activity during the 15 repeated batch reactions. The properties of free and immobilized lipase were studied. The effects of protein concentration, pH, temperature, and time on the immobilization, activity, and stability of the immobilized lipase were also studied. The newly synthesized microporous poly(styrene-divinylbenzene) copolymer constitutes excellent support for lipase. It given rise to high immobilization yield, retains enzymatic activity for 30 days, stable in structure and allows for the immobilization of large amount of protein (11.4mg/g support). Since immobilization is simple yet effective, the newly immobilized lipase could be used in several application including oil hydrolysis, production of modified oils, biodiesel synthesis, and removal of fatty acids from oils. PMID:18571389

  13. Fluorometric assay for quantitation of biotin covalently attached to proteins and nucleic acids.

    PubMed

    Batchelor, Robert H; Sarkez, Adam; Cox, W Gregory; Johnson, Iain

    2007-10-01

    As a component of the (strept)avidin affinity system, biotin is often covalently linked to proteins or nucleic acids. We describe here a microplate-based high-throughput fluorometric assay for biotin linked to either proteins or nucleic acids based on fluorescence resonance energy transfer (FRET). This assay utilizes a complex of Alexa Fluoro 488 dye-labeled avidin with a quencher dye, 2-(4'-hydroxyazobenzene) benzoic acid (HABA), occupying the biotin binding sites of the avidin. In the absence of biotin, HABA quenches the fluorescence emission of the Alexa Fluor 488 dyes via FRET HABA is displaced when biotin binds to the Alexa Fluor 488 dye-labeled avidin, resulting in decreased FRET efficiency. This mechanism results in an increase in fluorescence intensity directly related to the amount of biotin present in the sample. The assay is able to detect as little as 4 pmol biotin in a 0.1 mL volume within 15 min of adding sample to the reagent, with a Z-factor > 0.9. PMID:18019342

  14. Electrical detection of the temperature induced melting transition of a DNA hairpin covalently attached to gold interdigitated microelectrodes

    PubMed Central

    Brewood, Greg P.; Rangineni, Yaswanth; Fish, Daniel J.; Bhandiwad, Ashwini S.; Evans, David R.; Solanki, Raj; Benight, Albert S.

    2008-01-01

    The temperature induced melting transition of a self-complementary DNA strand covalently attached at the 5′ end to the surface of a gold interdigitated microelectrode (GIME) was monitored in a novel, label-free, manner. The structural state of the hairpin was assessed by measuring four different electronic properties of the GIME (capacitance, impedance, dissipation factor and phase angle) as a function of temperature from 25°C to 80°C. Consistent changes in all four electronic properties of the GIME were observed over this temperature range, and attributed to the transition of the attached single-stranded DNA (ssDNA) from an intramolecular, folded hairpin structure to a melted ssDNA. The melting curve of the self-complementary single strand was also measured in solution using differential scanning calorimetry (DSC) and UV absorbance spectroscopy. Temperature dependent electronic measurements on the surface and absorbance versus temperature values measured in solution experiments were analyzed assuming a two-state process. The model analysis provided estimates of the thermodynamic transition parameters of the hairpin on the surface. Two-state analyses of optical melting data and DSC measurements provided evaluations of the thermodynamic transition parameters of the hairpin in solution. Comparison of surface and solution measurements provided quantitative evaluation of the effect of the surface on the thermodynamics of the melting transition of the DNA hairpin. PMID:18628294

  15. Ultrasonication assisted Layer-by-Layer technology for the preparation of multi-functional anticancer drugs paclitaxel and lapatinib

    NASA Astrophysics Data System (ADS)

    Zhang, Xingcai

    with less powerful sonication. By using polymeric excipients combined with non-ionic and anionic surfactants along with regular sonication, the prepared particle sizes was uniform at around 140-150 nm. Less sonication time (ca 15 minutes) and lower sonication power avoided TiO2 contamination. The amphiphiles attached to the hydrophobic nanoparticles and served as anchors for LbL shell. The inner LbL layers and surfactants minimized the surface free energy, thereby preventing crystal form changes and nanoparticles coalescence, while the outermost layers enhanced colloidal stability. In the third part of the dissertation, LbL shells with PEGylation (using a block copolymer of poly-L-lysine (PLL) and PEG) for lapatinib were developed for enhanced colloidal stability in high molarity PBS buffer. In the above proposed paclitaxel and lapatinib formulation, we obtained 150-200 nm with high drug content of 80-90% due to very thin capsule walls (ca 10 nm). The drug release time from the LbL capsules was found to be between 10 and 20 hours depending on the shell thickness. Washless Layer-by-Layer assembly was used: 1) addition of polycation in the amount that is enough to reverse surface charge of the dispersion to a high positive (+30 mV) value; 2) addition of polyanion in the amount that is enough to reverse surface charge of the dispersion to a high negative (-30 mV) value. No intermediate washing of nanoparticles was done until the shell was complete. The washless method had the advantage of time and energy saving, preservation of the sample structure and no losses of sample. In the last part of the dissertation, we elaborated nanoformulation of two drugs in one nanocapsule locating paclitaxel in the core and lapatinib on the shell periphery. With this formulation, combining in one nanoparticle dual drugs, we reached the drugs' efficiency synergy. In a multidrug-resistant (MDR) ovarian cancer cell line, OVCAR-3, LbL lapatinib/paclitaxel nanocolloids mediated an enhanced cell

  16. In situ imaging and control of layer-by-layer femtosecond laser thinning of graphene

    NASA Astrophysics Data System (ADS)

    Li, D. W.; Zhou, Y. S.; Huang, X.; Jiang, L.; Silvain, J.-F.; Lu, Y. F.

    2015-02-01

    Although existing methods (chemical vapor deposition, mechanical exfoliation, etc.) are available to produce graphene, the lack of thickness control limits further graphene applications. In this study, we demonstrate an approach to precisely thin graphene films to a specific thickness using femtosecond (fs) laser raster scanning. By using appropriate laser fluence and scanning times, graphene thinning with an atomic layer precision, namely layer-by-layer graphene removal, has been realized. The fs laser used was configured in a four-wave mixing (FWM) system which can be used to distinguish graphene layer thickness and count the number of layers using the linear relationship between the FWM signal intensity and the graphene thickness. Furthermore, FWM imaging has been successfully applied to achieve in situ, real-time monitoring of the fs laser graphene thinning process. This method can not only realize the large-scale thinning of graphene with atomic layer precision, but also provide in situ, rapid imaging capability of graphene for an accurate assessment of the number of layers.Although existing methods (chemical vapor deposition, mechanical exfoliation, etc.) are available to produce graphene, the lack of thickness control limits further graphene applications. In this study, we demonstrate an approach to precisely thin graphene films to a specific thickness using femtosecond (fs) laser raster scanning. By using appropriate laser fluence and scanning times, graphene thinning with an atomic layer precision, namely layer-by-layer graphene removal, has been realized. The fs laser used was configured in a four-wave mixing (FWM) system which can be used to distinguish graphene layer thickness and count the number of layers using the linear relationship between the FWM signal intensity and the graphene thickness. Furthermore, FWM imaging has been successfully applied to achieve in situ, real-time monitoring of the fs laser graphene thinning process. This method can not

  17. Ultrathin Molecular-Layer-by-Layer Polyamide Membranes: Insights from Atomistic Molecular Simulations.

    PubMed

    Liyana-Arachchi, Thilanga P; Sturnfield, James F; Colina, Coray M

    2016-09-01

    In this study, we present an atomistic simulation study of several physicochemical properties of polyamide (PA) membranes formed from interfacial polymerization or from a molecular-layer-by-layer (mLbL) on a silicon wafer. These membranes are composed of meta-phenylenediamine (MPD) and benzene-1,3,5-tricarboxylic acid chloride (TMC) for potential reverse osmosis (RO) applications. The mLbL membrane generation procedure and the force field models were validated, by comparison with available experimental data, for hydrated density, membrane swelling, and pore size distributions of PA membranes formed by interfacial polymerization. Physicochemical properties such as density, free volume, thickness, the degree of cross-linking, atomic compositions, and average molecular orientation (which is relevant for the mLbL membranes) are compared for these different processes. The mLbL membranes are investigated systematically with respect to TMC monomer growth rate per substrate surface area, MPD/TMC ratio, and the number of mLbL deposition cycles. Atomistic simulations show that the mLbL deposition generates membranes with a constant film growth if both the TMC monomer growth rate and MPD/TMC monomer ratio are kept constant. The film growth rate increases with TMC monomer growth rate or MPD/TMC ratio. Furthermore, it was found on one hand that the mLbL membrane density and free volume varies significantly with respect to the TMC monomer growth rate, while on the other hand the degree of cross-linking and the atomic composition varies considerably with the MPD/TMC ratio. Additionally, it was found that both TMC and MPD orient at a tilted angle with respect to the substrate surface, where their angular distribution and average angle orientation depend on both the TMC growth rate and the number of deposition cycles. This study illustrates that molecular simulations can play a crucial role in the understanding of structural properties that can empower the design of the next

  18. Controlled surface functionality of magnetic nanoparticles by layer-by-layer assembled nano-films

    NASA Astrophysics Data System (ADS)

    Choi, Daheui; Son, Boram; Park, Tai Hyun; Hong, Jinkee

    2015-04-01

    Over the past several years, the preparation of functionalized nanoparticles has been aggressively pursued in order to develop desired structures, compositions, and structural order. Among the various nanoparticles, iron oxide magnetic nanoparticles (MNPs) have shown great promise because the material generated using these MNPs can be used in a variety of biomedical applications and possible bioactive functionalities. In this study, we report the development of various functionalized MNPs (F-MNPs) generated using the layer-by-layer (LbL) self-assembly method. To provide broad functional opportunities, we fabricated F-MNP bio-toolbox by using three different materials: synthetic polymers, natural polymers, and carbon materials. Each of these F-MNPs displays distinct properties, such as enhanced thickness or unique morphologies. In an effort to explore their biomedical applications, we generated basic fibroblast growth factor (bFGF)-loaded F-MNPs. The bFGF-loaded F-MNPs exhibited different release mechanisms and loading amounts, depending on the film material and composition order. Moreover, bFGF-loaded F-MNPs displayed higher biocompatibility and possessed superior proliferation properties than the bare MNPs and pure bFGF, respectively. We conclude that by simply optimizing the building materials and the nanoparticle's film composition, MNPs exhibiting various bioactive properties can be generated.Over the past several years, the preparation of functionalized nanoparticles has been aggressively pursued in order to develop desired structures, compositions, and structural order. Among the various nanoparticles, iron oxide magnetic nanoparticles (MNPs) have shown great promise because the material generated using these MNPs can be used in a variety of biomedical applications and possible bioactive functionalities. In this study, we report the development of various functionalized MNPs (F-MNPs) generated using the layer-by-layer (LbL) self-assembly method. To provide

  19. Layer-by-layer self-assembly of polyelectrolyte functionalized MoS2 nanosheets

    NASA Astrophysics Data System (ADS)

    Shen, Jianfeng; Pei, Yu; Dong, Pei; Ji, Jin; Cui, Zheng; Yuan, Junhua; Baines, Robert; Ajayan, Pulickel M.; Ye, Mingxin

    2016-05-01

    Few-layered polyelectrolyte functionalized MoS2 nanosheets were obtained for the first time through in situ polymerization of MoS2 nanosheets with poly(acrylic acid) and poly(acrylamide), both of which demonstrated excellent dispersibility and stability in water. After designing and optimizing the components of this series of polyelectrolyte functionalized MoS2 nanosheets, by exploiting the electrostatic interactions present in the modified MoS2 nanosheets, we further created a series of layer-by-layer (LBL) self-assembling MoS2-based films. To this end, uniform MoS2 nanosheet-based LBL films were precisely deposited on substrates such as quartz, silicon, and ITO. The polyelectrolyte functionalized MoS2 nanosheet assembled LBL film-modified electrodes demonstrated enhanced electrocatalytic activity for H2O2. As such, they are conducive to efficient sensors and advanced biosensing systems.Few-layered polyelectrolyte functionalized MoS2 nanosheets were obtained for the first time through in situ polymerization of MoS2 nanosheets with poly(acrylic acid) and poly(acrylamide), both of which demonstrated excellent dispersibility and stability in water. After designing and optimizing the components of this series of polyelectrolyte functionalized MoS2 nanosheets, by exploiting the electrostatic interactions present in the modified MoS2 nanosheets, we further created a series of layer-by-layer (LBL) self-assembling MoS2-based films. To this end, uniform MoS2 nanosheet-based LBL films were precisely deposited on substrates such as quartz, silicon, and ITO. The polyelectrolyte functionalized MoS2 nanosheet assembled LBL film-modified electrodes demonstrated enhanced electrocatalytic activity for H2O2. As such, they are conducive to efficient sensors and advanced biosensing systems. Electronic supplementary information (ESI) available: SEM, AFM and TEM characterization of PAA-MoS2 and PAM-MoS2 nanocomposites. More characterization and electrochemical properties of LBL films

  20. Surface chemical study on the covalent attachment of hydroxypropyltrimethyl ammonium chloride chitosan to titanium surfaces

    NASA Astrophysics Data System (ADS)

    Xu, Xiaofen; Wang, Ling; Guo, Shengrong; Lei, Lei; Tang, Tingting

    2011-10-01

    An anti-microbial and bioactive coating could not only reduce the probability of infection related to titanium implants but also support the growth of surrounding osteogenic cells. Our previous study has showed that hydroxypropyltrimethyl ammonium chloride chitosan (HACC) with a DS (degrees of substitution) of 18% had improved solubility and significantly higher antibacterial activities against three bacteria which were usually associated with infections in orthopaedics. In the current study, HACC with a DS of 18% coating was bonded to titanium surface by a three-step process. The titanium surface after each individual reaction step was analyzed by X-ray photoelectron spectroscopy (XPS) and attenuated total reflection (ATR) of Fourier-transformed infrared (FT-IR) spectroscopy. The XPS results demonstrated that there were great changes in the atomic ratios of C/Ti, O/Ti, and N/Ti after each reaction step. The XPS high resolution and corresponding devolution spectra of carbon, oxygen, nitrogen, and titanium were also in good coordination with the anticipated reaction steps. Additionally, the absorption bands around 3365 cm -1 (-OH vibration), 1664 cm -1 (Amide I), 1165 cm -1 ( νas, C-O-C bridge), and the broad absorption bands between 958 cm -1 and 1155 cm -1 (skeletal vibrations involving the C-O stretching of saccharide structure of HACC) verified that HACC was successfully attached to titanium surface.

  1. Assembling semiconducting molecules by covalent attachment to a lamellar crystalline polymer substrate

    PubMed Central

    Machatschek, Rainhard; Ortmann, Patrick; Reiter, Renate; Mecking, Stefan

    2016-01-01

    Summary We have investigated the potential of polymers containing precisely spaced side-branches for thin film applications, particularly in the context of organic electronics. Upon crystallization, the side-branches were excluded from the crystalline core of a lamellar crystal. Thus, the surfaces of these crystals were covered by side-branches. By using carboxyl groups as side-branches, which allow for chemical reactions, we could functionalize the crystal with semiconducting molecules. Here, we compare properties of crystals differing in size: small nanocrystals and large single crystals. By assembling nanocrystals on a Langmuir trough, large areas could be covered by monolayers consisting of randomly arranged nanocrystals. Alternatively, we used a method based on local supersaturation to grow large area single crystals of the precisely side-branched polymer from solution. Attachment of the semiconducting molecules to the lamellar surface of large single crystals was possible, however, only after an appropriate annealing procedure. As a function of the duration of the grafting process, the morphology of the resulting layer of semiconducting molecules changed from patchy to compact. PMID:27335767

  2. Layer-by-layer assembly of epidermal growth factors on polyurethane films for wound closure.

    PubMed

    Kulkarni, Abhilash; Diehl-Jones, William; Ghanbar, Sadegh; Liu, Song

    2014-02-13

    To facilitate the healing of chronic wounds, growth factors such as epidermal growth factor need to be safely encapsulated for their sustained and effective delivery to the wound bed. Using a layer-by-layer assembly technique, epidermal growth factor is successfully encapsulated on the surface of poly(acrylic acid)-modified polyurethane film. The amount of encapsulated epidermal growth factor is controlled by adjusting the number of chitosan/epidermal growth factor bilayers. A controlled release of epidermal growth factor from the surface of polyurethane film for a period of five days is achieved with well-retained bioactivity (over 90%) as evidenced by a cell proliferation assay. In an in vitro cellular wounding assay, the cell gap covered with the epidermal growth factor-loaded polyurethane film closes at a rate more than twice as fast as that covered with a control polyurethane film. Fluorescent staining of F-actin reveals that the released epidermal growth factor induces differences in cytoskeletal organization, suggesting that stimulated cell migration also contributes to the close of the cell gap. PMID:24525716

  3. Ion-Exchange Membranes Prepared Using Layer-by-Layer Polyelectrolyte Deposition

    PubMed Central

    Liu, Guanqing; Dotzauer, David M.; Bruening, Merlin L

    2010-01-01

    Layer-by-layer polyelectrolyte adsorption in porous polymeric membranes provides a simple way to create ion-exchange sites without greatly decreasing hydraulic permeability (<20% reduction in permeability). At 80% breakthrough, membranes coated with 3-bilayer poly(styrene sulfonate) (PSS)/polyethyleneimine (PEI) films bind 37±6 mg of negatively charged Au colloids per mL of membrane volume. The binding capacity of membranes coated with 1-bilayer films decreases in the order PSS/PEI>PSS/poly(diallyldimethyl ammonium chloride)>PSS/poly(allylamine hydrochloride). Films terminated with a polyanion present cation-exchange sites that bind lysozyme, and the lysozyme-binding capacities of (PSS/PEI)3/PSS films increase with the ionic strength of the solution from which the last PSS layer is deposited. Charge screening during deposition of the terminal PSS layer gives rise to a larger number of ion-exchange sites and lysozyme binding capacities as high as 16 mg per mL of membrane. At 10% breakthrough, a stack of 3 membranes binds 3 times as much lysozyme as a single membrane, showing that stacking is an effective way to increase capacity. PMID:20606722

  4. Silica Encapsulation of Ferrimagnetic Zinc Ferrite Nanocubes Enabled by Layer-by-layer Polyelectrolyte Deposition

    PubMed Central

    Park, Jooneon; Porter, Marc D.; Granger, Michael C.

    2016-01-01

    Stable suspensions of magnetic nanoparticles (MNPs) with large magnetic moment, m, per particle have tremendous utility in a wide range of biological applications. However, due to the strong magnetic coupling interactions often present in these systems, it is challenging to stabilize individual, high moment, ferro- and ferrimagnetic nanoparticles. A novel approach to encapsulate large, i.e., >100 nm, ferrimagnetic zinc ferrite nanocubes (ZFNCs) with silica after an intermediary layer-by-layer polyelectrolyte deposition step is described in this paper. The seed ZFNCs are uniform in shape and size and have high saturation mass magnetic moment (σs ~100 emu/g, m~4×10−13 emu/particle at 150 Oe). For the MNP system described within, successful silica encapsulation and creation of discrete ZFNCs were realized only after depositing polyelectrolyte multilayers composed of alternating polyallylamine and polystyrene sulfonate. Without the intermediary polyelectrolyte layers, magnetic dipole-dipole interactions led to the formation of linearly chained ZFNCs embedded in a silica matrix. Characterization of particle samples was performed by electron microscopy, energy-dispersive X-ray spectroscopy, infrared spectroscopy, powder X-ray diffraction, dynamic light scattering (hydrodynamic size and ζ-potential), and vibrating sample magnetometry. The results of these characterizations, which were performed after each of the synthetic steps, and synthetic details are presented. PMID:25756216

  5. Biocompatibility of layer-by-layer self-assembled nanofilm on silicone rubber for neurons.

    PubMed

    Ai, Hua; Meng, Hongdi; Ichinose, Izumi; Jones, Steven A; Mills, David K; Lvov, Yuri M; Qiao, Xiaoxi

    2003-09-30

    Electrostatic layer-by-layer (LbL) self-assembly, a novel method for ultrathin film coating has been applied to silicone rubber to encourage nerve cell adhesion. The surfaces studied consisted of precursor layers, with alternating cationic poly(ethyleneimine) (PEI) and anionic sodium poly(styrenesulfonate) (PSS) followed by alternating laminin and poly-D-lysine (PDL) layers or fibronectin and PDL layers. Film growth increased linearly with the number of layers. Every fibronectin/PDL and laminin/PDL bilayer was 4.4 and 3.5 nm thick, respectively. All layers were more hydrophilic than the unmodified silicone rubber surface, as determined from contact angle measurements. Of the coatings studied, a PDL layer was the most hydrophilic. A multilayer film with composition [PSS/PEI]3+[fibronectin/PDL]4 or [PSS/PEI]3+[laminin/PDL]4 was highly favorable for neuron adhesion, in contrast to bare silicone rubber substrate. The film coated on silicone rubber is biocompatible for cerebellar neurons with active viability, as shown by lactate dehydrogenase (LDH) assay and fluorescence cellular metabolism observations. These results demonstrate that LbL self-assembly provides an effective approach to apply films with nanometer thickness to silicone rubber. Such only few nanometer thick films are biocompatible with neurons, and may be used to coat devises for long-term implant in the central nervous system. PMID:12948543

  6. Layer-by-layer assembled cell instructive nanocoatings containing platelet lysate.

    PubMed

    Oliveira, Sara M; Santo, Vítor E; Gomes, Manuela E; Reis, Rui L; Mano, João F

    2015-04-01

    Great efforts have been made to introduce growth factors (GFs) onto 2D/3D constructs in order to control cell behavior. Platelet lysate (PL) presents itself as a cost-effective source of multiple GFs and other proteins. The instruction given by a construct-PL combination will depend on how its instructive cues are presented to the cells. The content, stability and conformation of the GFs affect their instruction. Strategies for a controlled incorporation of PL are needed. Herein, PL was incorporated into nanocoatings by layer-by-layer assembling with polysaccharides presenting different sulfation degrees (SD) and charges. Heparin and several marine polysaccharides were tested to evaluate their PL and GF incorporation capability. The consequent effects of those multilayers on human adipose derived stem cells (hASCs) were assessed in short-term cultures. Both nature of the polysaccharide and SD were important properties that influenced the adsorption of PL, vascular endothelial growth factor (VEGF), fibroblast growth factor b (FGFb) and platelet derived growth factor (PDGF). The sulfated polysaccharides-PL multilayers showed to be efficient in the promotion of morphological changes, serum-free adhesion and proliferation of high passage hASCs (P > 5). These biomimetic multilayers promise to be versatile platforms to fabricate instructive devices allowing a tunable incorporation of PL. PMID:25701032

  7. Protein Induces Layer-by-Layer Exfoliation of Transition Metal Dichalcogenides.

    PubMed

    Guan, Guijian; Zhang, Shuangyuan; Liu, Shuhua; Cai, Yongqing; Low, Michelle; Teng, Choon Peng; Phang, In Yee; Cheng, Yuan; Duei, Koh Leng; Srinivasan, Bharathi Madurai; Zheng, Yuangang; Zhang, Yong-Wei; Han, Ming-Yong

    2015-05-20

    Here, we report a general and facile method for effective layer-by-layer exfoliation of transition metal dichalcogenides (TMDs) and graphite in water by using protein, bovine serum albumin (BSA) to produce single-layer nanosheets, which cannot be achieved using other commonly used bio- and synthetic polymers. Besides serving as an effective exfoliating agent, BSA can also function as a strong stabilizing agent against reaggregation of single-layer nanosheets for greatly improving their biocompatibility in biomedical applications. With significantly increased surface area, single-layer MoS2 nanosheets also exhibit a much higher binding capacity to pesticides and a much larger specific capacitance. The protein exfoliation process is carefully investigated with various control experiments and density functional theory simulations. It is interesting to find that the nonpolar groups of protein can firmly bind to TMD layers or graphene to expose polar groups in water, facilitating the effective exfoliation of single-layer nanosheets in aqueous solution. The present work will enable to optimize the fabrication of various 2D materials at high yield and large scale, and bring more opportunities to investigate the unique properties of 2D materials and exploit their novel applications. PMID:25936424

  8. Pulmonary sustained release of insulin from microparticles composed of polyelectrolyte layer-by-layer assembly.

    PubMed

    Amancha, Kiran Prakash; Balkundi, Shantanu; Lvov, Yuri; Hussain, Alamdar

    2014-05-15

    The present study tests the hypothesis that layer-by-layer (LbL) nanoassembly of thin polyelectrolyte films on insulin particles provides sustained release of the drug after pulmonary delivery. LbL insulin microparticles were formulated using cationic and anionic polyelectrolytes. The microparticles were characterized for particle size, particle morphology, zeta potential and in vitro release. The pharmacokinetics and pharmacodynamics of drug were assessed by measuring serum insulin and glucose levels after intrapulmonary administration in rats. Bronchoalveolar lavage (BAL) and evans blue (EB) extravasation studies were performed to investigate the cellular or biochemical changes in the lungs caused by formulation administration. The mass median aerodynamic diameter (MMAD) of the insulin microparticles was 2.7 μm. Confocal image of the formulation particles confirmed the polyelectrolyte deposition around the insulin particles. Zeta potential measurements showed that there was charge reversal after each layering. Pulmonary administered LbL insulin formulation resulted in sustained serum insulin levels and concomitant decrease in serum glucose levels. The BAL and EB extravasation studies showed that the LbL insulin formulation did not elicit significant increase in marker enzymes activities compared to control group. These results demonstrate that the sustained release of insulin could be achieved using LbL nanoassembly around the insulin particles. PMID:24566038

  9. Layer-by-Layer (LBL) Self-Assembled Biohybrid Nanomaterials for Efficient Antibacterial Applications.

    PubMed

    Wu, Yuanhao; Long, Yubo; Li, Qing-Lan; Han, Shuying; Ma, Jianbiao; Yang, Ying-Wei; Gao, Hui

    2015-08-12

    Although antibiotics have been widely used in clinical applications to treat pathogenic infections at present, the problem of drug-resistance associated with abuse of antibiotics is becoming a potential threat to human beings. We report a biohybrid nanomaterial consisting of antibiotics, enzyme, polymers, hyaluronic acid (HA), and mesoporous silica nanoparticles (MSNs), which exhibits efficient in vitro and in vivo antibacterial activity with good biocompatibility and negligible hemolytic side effect. Herein, biocompatible layer-by-layer (LBL) coated MSNs are designed and crafted to release encapsulated antibiotics, e.g., amoxicillin (AMO), upon triggering with hyaluronidase, produced by various pathogenic Staphylococcus aureus (S. aureus). The LBL coating process comprises lysozyme (Lys), HA, and 1,2-ethanediamine (EDA)-modified polyglycerol methacrylate (PGMA). The Lys and cationic polymers provided multivalent interactions between MSN-Lys-HA-PGMA and bacterial membrane and accordingly immobilized the nanoparticles to facilitate the synergistic effect of these antibacterial agents. Loading process was characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and X-ray diffraction spectroscopy (XRD). The minimal inhibition concentration (MIC) of MSN-Lys-HA-PGMA treated to antibiotic resistant bacteria is much lower than that of isodose Lys and AMO. Especially, MSN-Lys-HA-PGMA exhibited good inhibition for pathogens in bacteria-infected wounds in vivo. Therefore, this type of new biohybrid nanomaterials showed great potential as novel antibacterial agents. PMID:26192024

  10. Genipin-cross-linked layer-by-layer assemblies: biocompatible microenvironments to direct bone cell fate.

    PubMed

    Gaudière, Fabien; Morin-Grognet, Sandrine; Bidault, Laurent; Lembré, Pierre; Pauthe, Emmanuel; Vannier, Jean-Pierre; Atmani, Hassan; Ladam, Guy; Labat, Béatrice

    2014-05-12

    The design of biomimetic coatings capable of improving the osseointegration of bone biomaterials is a current challenge in the field of bone repair. Toward this end, layer-by-layer (LbL) films composed of natural components are suitable candidates. Chondroitin sulfate A (CSA), a natural glycosaminoglycan (GAG), was used as the polyanionic component because it promotes osteoblast maturation in vivo. In their native state, GAG-containing LbL films are generally cytophobic because of their low stiffness. To stiffen our CSA-based LbL films, genipin (GnP) was used as a natural cross-linking agent, which is much less cytotoxic than conventional chemical cross-linkers. GnP-cross-linked films display an original combination of microscale topography and tunable mechanical properties. Structural characterization was partly based on a novel donor/acceptor Förster resonance energy transfer (FRET) couple, namely, FITC/GnP, which is a promising approach for further inspection of any GnP-cross-linked system. GnP-cross-linked films significantly promote adhesion, proliferation, and early and late differentiation of preosteoblasts. PMID:24666097

  11. Protein-triggered instant disassembly of biomimetic Layer-by-Layer films.

    PubMed

    Abdelkebir, Khalil; Gaudière, Fabien; Morin-Grognet, Sandrine; Coquerel, Gérard; Atmani, Hassan; Labat, Béatrice; Ladam, Guy

    2011-12-01

    Layer-by-Layer (LbL) coatings are promising tools for the biofunctionalization of biomaterials, as they allow stress-free immobilization of proteins. Here, we explore the possibility to immobilize phosvitin, a highly phosphorylated protein viewed as a model of bone phosphoproteins and, as such, a potential promotive agent of surface-directed biomineralization, into biomimetic LbL architectures. Two immobilization protocols are attempted, first, using phosvitin as the polyanionic component of phosvitin/poly-(L-lysine) films and, second, adsorbing it onto preformed chondroitin sulfate/poly-(L-lysine) films. Surprisingly, it is neither possible to embed phosvitin as the constitutive polyanion of the LbL architectures nor to adsorb it atop preformed films. Instead, phosvitin triggers instant massive film disassembly. This unexpected, incidentally detected behavior constitutes the first example of destructive interactions between LbL films and a third polyelectrolyte, a fortiori a protein, which might open a route toward new stimuli-responsive films for biosensing or drug delivery applications. Interestingly, additional preliminary results still indicate a promotive effect of phosvitin-containing remnant films on calcium phosphate deposition. PMID:22007998

  12. Chondrocyte Behavior on Micropatterns Fabricated Using Layer-by-Layer Lift-Off: Morphological Analysis

    PubMed Central

    Shaik, Jameel; Shaikh Mohammed, Javeed; McShane, Michael J.; Mills, David K.

    2013-01-01

    Cell patterning has emerged as an elegant tool in developing cellular arrays, bioreactors, biosensors, and lab-on-chip devices and for use in engineering neotissue for repair or regeneration. In this study, micropatterned surfaces were created using the layer-by-layer lift-off (LbL-LO) method for analyzing canine chondrocytes response to patterned substrates. Five materials were chosen based on our previous studies. These included: poly(dimethyldiallylammonium chloride) (PDDA), poly(ethyleneimine) (PEI), poly(styrene sulfonate) (PSS), collagen, and chondroitin sulfate (CS). The substrates were patterned with these five different materials, in five and ten bilayers, resulting in the following multilayer nanofilm architectures: (PSS/PDDA)5, (PSS/PDDA)10; (CS/PEI)4/CS, (CS/PEI)9/CS; (PSS/PEI)5, (PSS/PEI)10; (PSS/Collagen)5, (PSS/Collagen)10; (PSS/PEI)4/PSS, (PSS/PEI)9/PSS. Cell characterization studies were used to assess the viability, longevity, and cellular response to the configured patterned multilayer architectures. The cumulative cell characterization data suggests that cell viability, longevity, and functionality were enhanced on micropatterned PEI, PSS, collagen, and CS multilayer nanofilms suggesting their possible use in biomedical applications. PMID:27006918

  13. Silica encapsulation of ferrimagnetic zinc ferrite nanocubes enabled by layer-by-layer polyelectrolyte deposition.

    PubMed

    Park, Jooneon; Porter, Marc D; Granger, Michael C

    2015-03-24

    Stable suspensions of magnetic nanoparticles (MNPs) with large magnetic moment, m, per particle have tremendous utility in a wide range of biological applications. However, because of the strong magnetic coupling interactions often present in these systems, it is challenging to stabilize individual, high-moment, ferro- and ferrimagnetic nanoparticles. A novel approach to encapsulate large, that is, >100 nm, ferrimagnetic zinc ferrite nanocubes (ZFNCs) with silica after an intermediary layer-by-layer polyelectrolyte deposition step is described in this paper. The seed ZFNCs are uniform in shape and size and have high saturation mass magnetic moment (σ(s) ∼100 emu/g, m ∼ 4 × 10(-13) emu/particle at 150 Oe). For the MNP system described within, successful silica encapsulation and creation of discrete ZFNCs were realized only after depositing polyelectrolyte multilayers composed of alternating polyallylamine and polystyrenesulfonate. Without the intermediary polyelectrolyte layers, magnetic dipole-dipole interactions led to the formation of linearly chained ZFNCs embedded in a silica matrix. Characterization of particle samples was performed by electron microscopy, energy-dispersive X-ray spectroscopy, infrared spectroscopy, powder X-ray diffraction, dynamic light scattering (hydrodynamic size and ζ-potential), and vibrating sample magnetometry. The results of these characterizations, which were performed after each of the synthetic steps, and synthetic details are presented. PMID:25756216

  14. Antibacterial, anti-inflammatory and neuroprotective layer-by-layer coatings for neural implants

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiling; Nong, Jia; Zhong, Yinghui

    2015-08-01

    Objective. Infection, inflammation, and neuronal loss are common issues that seriously affect the functionality and longevity of chronically implanted neural prostheses. Minocycline hydrochloride (MH) is a broad-spectrum antibiotic and effective anti-inflammatory drug that also exhibits potent neuroprotective activities. In this study, we investigated the development of biocompatible thin film coatings capable of sustained release of MH for improving the long term performance of implanted neural electrodes. Approach. We developed a novel magnesium binding-mediated drug delivery mechanism for controlled and sustained release of MH from an ultrathin hydrophilic layer-by-layer (LbL) coating and characterized the parameters that control MH loading and release. The anti-biofilm, anti-inflammatory and neuroprotective potencies of the LbL coating and released MH were also examined. Main results. Sustained release of physiologically relevant amount of MH for 46 days was achieved from the Mg2+-based LbL coating at a thickness of 1.25 μm. In addition, MH release from the LbL coating is pH-sensitive. The coating and released MH demonstrated strong anti-biofilm, anti-inflammatory, and neuroprotective potencies. Significance. This study reports, for the first time, the development of a bioactive coating that can target infection, inflammation, and neuroprotection simultaneously, which may facilitate the translation of neural interfaces to clinical applications.

  15. Functional layer-by-layer design of xerogel-based first-generation amperometric glucose biosensors.

    PubMed

    Poulos, Nicholas G; Hall, Jackson R; Leopold, Michael C

    2015-02-01

    Xerogel-based first-generation amperometric glucose biosensors, constructed through specific layer-by-layer assembly of films featuring glucose oxidase doped xerogel, a diffusion-limiting xerogel layer, and capped with both electropolymerized polyphenol and blended polyurethane semipermeable membranes, are presented. The specific combination of xerogels formed from specific silane precursors, including propyl-trimethoxysilane, isobutyl-trimethoxysilane, octyl-trimethoxysilane, and hydroxymethyl-triethoxysilane, exhibit impressive dynamic and linear ranges of detection (e.g., ≥24-28 mM glucose) and low response times, as well as significant discrimination against common interferent species such as acetaminophen, ascorbic acid, sodium nitrite, oxalic acid, and uric acid as determined by selectivity coefficients. Additionally, systematic electrochemical and contact angle studies of different xerogel silane precursors, varying in structure, chain length, and/or functional group, reveal that sensor performance is more dependent on the tunable porosity/permeability of the layered interfaces rather than the hydrophobic character or functional groups within the films. While the sensing performance largely exceeds that of existing electrochemical glucose sensing schemes in the literature, the presented layered approach establishes the specific functionality of each layer working in concert with each other and suggests that the strategy may be readily adaptable to other clinically relevant targets and is amenable to miniaturization for eventual in situ or in vivo sensing. PMID:25562760

  16. Amperometric detection of lactose using β-galactosidase immobilized in layer-by-layer films.

    PubMed

    Campos, Paula P; Moraes, Marli L; Volpati, Diogo; Miranda, Paulo B; Oliveira, Osvaldo N; Ferreira, Marystela

    2014-07-23

    A direct, low-cost method to determine the concentration of lactose is an important goal with possible impact in various types of industry. In this study, a biosensor is reported that exploits the specific interaction between lactose and the enzyme β-galactosidase (β-Gal) normally employed to process lactose into glucose and galactose for lactose-intolerant people. The biosensor was made with β-Gal immobilized in layer-by-layer (LbL) films with the polyelectrolyte poly(ethylene imine) (PEI) and poly(vinyl sufonate) (PVS) on an indium tin oxide (ITO) electrode modified with a layer of Prussian Blue (PB). With an ITO/PB/(PEI/PVS)1(PEI/β-Gal)30 architecture, lactose could be determined with an amperometric method with sensitivity of 0.31 μA mmol(-1) cm(-2) and detection limit of 1.13 mmol L(-1), which is sufficient for detecting lactose in milk and for clinical exams. Detection occurred via a cascade reaction involving glucose oxidase titrated as electrolytic solution in the electrochemical cell, while PB allowed for operation at 0.0 V versus saturated calomel electrode, thus avoiding effects from interfering species. Sum-frequency generation spectroscopy data for the interface between the LbL film and a buffer containing lactose indicated that β-Gal lost order, which is the first demonstration of structural effects induced by the molecular recognition interaction with lactose. PMID:24991705

  17. Layer-by-Layer Templated Assembly of Silica at the Nanoscale

    SciTech Connect

    Hinestrosa Salazar, Juan P; Sutton, Jonathan; Allison, David P; Doktycz, Mitchel John; Messman, Jamie M; Retterer, Scott T

    2013-01-01

    Bioinspired bottom-up assembly and layer-by-layer (LbL) construction of inorganic materials from lithographically defined organic templates enables the fabrication of nanostructured systems under mild temperature and pH conditions. Such processes open the door to low-impact manufacturing and facile recycling of hybrid materials for energy, biology, and information technologies. Here, templated LbL assembly of silica was achieved using a combination of electron beam lithography, chemical lift-off, and aqueous solution chemistry. Nanopatterns of lines, honeycomb-lattices, and dot arrays were defined in polymer resist using electron beam lithography. Following development, exposed areas of silicon were functionalized with a vapor deposited amine-silane monolayer. Silicic acid solutions of varying pH and salt content were reacted with the patterned organic amine-functional templates. Vapor treatment and solution reaction could be repeated, allowing LbL deposition. Conditions for the silicic acid deposition had a strong effect on thickness of each layer, and the morphology of the amorphous silica formed. Defects in the arrays of silica nanostructures were minor and do not affect the overall organization of the layers. The bioinspired method described here facilitates the bottom-up assembly of inorganic nanostructures defined in three dimensions and provides a path, via LbL processing, for the construction of layered hybrid materials under mild conditions.

  18. Layer-by-layer deposition of vesicles mediated by supramolecular interactions.

    PubMed

    Roling, Oliver; Wendeln, Christian; Kauscher, Ulrike; Seelheim, Patrick; Galla, Hans-Joachim; Ravoo, Bart Jan

    2013-08-13

    Vesicles are dynamic supramolecular structures with a bilayer membrane consisting of lipids or synthetic amphiphiles enclosing an aqueous compartment. Lipid vesicles have often been considered as mimics for biological cells. In this paper, we present a novel strategy for the preparation of three-dimensional multilayered structures in which vesicles containing amphiphilic β-cyclodextrin are interconnected by proteins using cyclodextrin guests as bifunctional linker molecules. We compared two pairs of adhesion molecules for the immobilization of vesicles: mannose-concanavalin A and biotin-streptavidin. Microcontact printing and thiol-ene click chemistry were used to prepare suitable substrates for the vesicles. Successful immobilization of intact vesicles through the mannose-concanavalin A and biotin-streptavidin motifs was verified by fluorescence microscopy imaging and dynamic light scattering, while the vesicle adlayer was characterized by quartz crystal microbalance with dissipation monitoring. In the case of the biotin-streptavidin motif, up to six layers of intact vesicles could be immobilized in a layer-by-layer fashion using supramolecular interactions. The construction of vesicle multilayers guided by noncovalent vesicle-vesicle junctions can be taken as a minimal model for artificial biological tissue. PMID:23898918

  19. Cubical Shape Enhances the Interaction of Layer-by-Layer Polymeric Particles with Breast Cancer Cells.

    PubMed

    Alexander, Jenolyn F; Kozlovskaya, Veronika; Chen, Jun; Kuncewicz, Thomas; Kharlampieva, Eugenia; Godin, Biana

    2015-12-01

    Blood-borne objects display a nonspherical shape with in-flow dimensions much larger than the vascular endothelial fenestrations, yet, at the diseased state, are able to traverse through these fenestrations owing to their elasticity. The role of physical parameters including shape and elasticity in the behavior of objects found in the tumor microenvironment needs to be understood to ultimately enhance chemotherapy and minimize its side effects. In this study, sphere- and cube-shaped biocompatible elastic microparticles (EM) made via layer-by-layer assembly of hydrogen-bonded tannic acid/poly(N-vinylpyrrolidone) (TA/PVPON) as hollow polymer shells and their rigid core-shell precursors (RM) are explored. In contrast to rigid five-bilayer (TA/PVPON) core shells, hollow elastic shells are unrecognized by J774A.1 macrophages, yet interact with endothelial and breast cancer cells. Internalization of cubical shells is fivefold more efficient by HMVEC (human microvascular endothelial cells) and sixfold and 2.5-fold more efficient by MDA-MB-231 and by SUM159 (breast cancer cells), respectively, compared to spherical shells. The interaction of cubical (TA/PVPON)5 shells with endothelial cells is similar under 10 s(-1) (characteristic of tumor vasculature) and 100 s(-1) shear rate (normal vasculature) while it is decreased at 100 s(-1) shear rate for the spherical shells. Our data suggest that cubical geometry promotes interaction of particles with breast cancer cells, while elasticity prevents engulfment by phagocytic cells in the tumor microenvironment. PMID:26424126

  20. Flame-Retardant Paper from Wood Fibers Functionalized via Layer-by-Layer Assembly.

    PubMed

    Köklükaya, Oruç; Carosio, Federico; Grunlan, Jaime C; Wågberg, Lars

    2015-10-28

    The highly flammable character of cellulose-rich fibers from wood limits their use in some advanced materials. To suppress the flammability and introduce flame-retardant properties to individual pulp fibers, we deposited nanometer thin films consisting of cationic chitosan (CH) and anionic poly(vinylphosphonic acid) (PVPA) on fibers using the layer-by-layer (LbL) technique. The buildup of the multilayer film was investigated in the presence and absence of salt (NaCl) using model cellulose surfaces and a quartz crystal microbalance technique. Fibers were then treated with the same strategy, and the treated fibers were used to prepare paper sheets. A horizontal flame test (HFT) and cone calorimetry were conducted to evaluate the combustion behavior of paper sheets as a function of the number of bilayers deposited on fibers. In HFT, paper made of fibers coated with 20 CH/PVPA bilayers (BL), self-extinguished the flame, while uncoated fibers were completely consumed. Scanning electron microscopy of charred paper after HFT revealed that a thin shell of the charred polymeric multilayer remained after the cellulose fibers had been completely oxidized. Cone calorimetry demonstrated that the phosphorus-containing thin films (20 BL is ∼25 nm) reduced the peak heat release rate by 49%. This study identifies a unique and highly effective way to impart flame-retardant characteristic to pulp fibers and the papers made from these fibers. PMID:26457504

  1. Layer-by-Layer Assembly of Supported Lipid Bilayer Poly-L-Lysine Multilayers.

    PubMed

    Heath, George R; Li, Mengqiu; Polignano, Isabelle L; Richens, Joanna L; Catucci, Gianluca; O'Shea, Paul; Sadeghi, Sheila J; Gilardi, Gianfranco; Butt, Julea N; Jeuken, Lars J C

    2016-01-11

    Multilayer lipid membranes perform many important functions in biology, such as electrical isolation (myelination of axons), increased surface area for biocatalytic purposes (thylakoid grana and mitochondrial cristae), and sequential processing (golgi cisternae). Here we develop a simple layer-by-layer methodology to form lipid multilayers via vesicle rupture onto existing supported lipid bilayers (SLBs) using poly l-lysine (PLL) as an electrostatic polymer linker. The assembly process was monitored at the macroscale by quartz crystal microbalance with dissipation (QCM-D) and the nanoscale by atomic force microscopy (AFM) for up to six lipid bilayers. By varying buffer pH and PLL chain length, we show that longer chains (≥300 kDa) at pH 9.0 form thicker polymer supported multilayers, while at low pH and shorter length PLL, we create close packed layers (average lipid bilayers separations of 2.8 and 0.8 nm, respectively). Fluorescence recovery after photobleaching (FRAP) and AFM were used to show that the diffusion of lipid and three different membrane proteins in the multilayered membranes has little dependence on lipid stack number or separation between membranes. These approaches provide a straightforward route to creating the complex membrane structures that are found throughout nature, allowing possible applications in areas such as energy production and biosensing while developing our understanding of the biological processes at play. PMID:26642374

  2. Biocorrosion behavior of biodegradable nanocomposite fibers coated layer-by-layer on AM50 magnesium implant.

    PubMed

    Abdal-Hay, Abdalla; Hasan, Anwarul; Kim, Yu-Kyoung; Yu-Kyoung; Lee, Min-Ho; Hamdy, Abdel Salam; Khalil, Khalil Abdelrazek

    2016-01-01

    This article demonstrates the use of hybrid nanofibers to improve the biodegradation rate and biocompatibility of AM50 magnesium alloy. Biodegradable hybrid membrane fiber layers containing nano-hydroxyapatite (nHA) particles and poly(lactide)(PLA) nanofibers were coated layer-by-layer (LbL) on AM50 coupons using a facile single-step air jet spinning (AJS) approach. The corrosion performance of coated and uncoated coupon samples was investigated by means of electrochemical measurements. The results showed that the AJS 3D membrane fiber layers, particularly the hybrid membrane layers containing a small amount of nHA (3 wt.%), induce a higher biocorrosion resistance and effectively decrease the initial degradation rate compared with the neat AM50 coupon samples. The adhesion strength improved highly due to the presence of nHA particles in the AJS layer. Furthermore, the long biodegradation rates of AM50 alloy in Hank's balanced salt solution (HBSS) were significantly controlled by the AJS-coatings. The results showed a higher cytocompatibility for AJS-coatings compared to that for neat Mg alloys. The nanostructured nHA embedded hybrid PLA nanofiber coating can therefore be a suitable coating material for Mg alloy as a potential material for biodegradable metallic orthopedic implants. PMID:26478426

  3. Layer-by-layer assembly for biomedical applications in the last decade.

    PubMed

    Gentile, P; Carmagnola, I; Nardo, T; Chiono, V

    2015-10-23

    In the past two decades, the design and manufacture of nanostructured materials has been of tremendous interest to the scientific community for their application in the biomedical field. Among the available techniques, layer-by-layer (LBL) assembly has attracted considerable attention as a convenient method to fabricate functional coatings. Nowadays, more than 1000 scientific papers are published every year, tens of patents have been deposited and some commercial products based on LBL technology have become commercially available. LBL presents several advantages, such as (1): a precise control of the coating properties; (2) environmentally friendly, mild conditions and low-cost manufacturing; (3) versatility for coating all available surfaces; (4) obtainment of homogeneous film with controlled thickness; and (5) incorporation and controlled release of biomolecules/drugs. This paper critically reviews the scientific challenge of the last 10 years--functionalizing biomaterials by LBL to obtain appropriate properties for biomedical applications, in particular in tissue engineering (TE). The analysis of the state-of-the-art highlights the current techniques and the innovative materials for scaffold and medical device preparation that are opening the way for the preparation of LBL-functionalized substrates capable of modifying their surface properties for modulating cell interaction to improve substitution, repair or enhancement of tissue function. PMID:26421916

  4. Layer-by-layer polyelectrolyte deposition: a mechanism for forming biocomposite materials

    PubMed Central

    Tan, YerPeng; Yildiz, Umit Hakan; Wei, Wei; Waite, J. Herbert; Miserez, Ali

    2014-01-01

    Complex coacervates prepared from poly-Aspartic acid (polyAsp) and poly-L-Histidine (polyHis) were investigated as models of the metastable protein phases used in the formation of biological structures such as squid beak. When mixed, polyHis and polyAsp form coacervates whereas poly-L-Glutamic acid (polyGlu) forms precipitates with polyHis. Layer-by-layer (LbL) structures of polyHis-polyAsp on gold substrates were compared with those of precipitate-forming polyHis-polyGlu by monitoring with iSPR and QCM-D. PolyHis-polyAsp LbL was found to be stiffer than polyHis-polyGlu LbL with most water evicted from the structure but with sufficient interfacial water remaining for molecular rearrangement to occur. This thin layer is believed to be fluid and like preformed coacervate films, capable of spreading over both hydrophilic ethylene glycol as well as hydrophobic monolayers. These results suggest that coacervate-forming polyelectrolytes deserve consideration for potential LbL applications and point to LbL as an important process by which biological materials form. PMID:23600626

  5. Zinc oxide nanoparticle suspensions and layer-by-layer coatings inhibit staphylococcal growth.

    PubMed

    McGuffie, Matthew J; Hong, Jin; Bahng, Joong Hwan; Glynos, Emmanouil; Green, Peter F; Kotov, Nicholas A; Younger, John G; VanEpps, J Scott

    2016-01-01

    Despite a decade of engineering and process improvements, bacterial infection remains the primary threat to implanted medical devices. Zinc oxide nanoparticles (ZnO-NPs) have demonstrated antimicrobial properties. Their microbial selectivity, stability, ease of production, and low cost make them attractive alternatives to silver NPs or antimicrobial peptides. Here we sought to (1) determine the relative efficacy of ZnO-NPs on planktonic growth of medically relevant pathogens; (2) establish the role of bacterial surface chemistry on ZnO-NP effectiveness; (3) evaluate NP shape as a factor in the dose-response; and (4) evaluate layer-by-layer (LBL) ZnO-NP surface coatings on biofilm growth. ZnO-NPs inhibited bacterial growth in a shape-dependent manner not previously seen or predicted. Pyramid shaped particles were the most effective and contrary to previous work, larger particles were more effective than smaller particles. Differential susceptibility of pathogens may be related to their surface hydrophobicity. LBL ZnO-NO coatings reduced staphylococcal biofilm burden by >95%. From the Clinical Editor: The use of medical implants is widespread. However, bacterial colonization remains a major concern. In this article, the authors investigated the use of zinc oxide nanoparticles (ZnO-NPs) to prevent bacterial infection. They showed in their experiments that ZnO-NPs significantly inhibited bacterial growth. This work may present a new alternative in using ZnO-NPs in medical devices. PMID:26515755

  6. Microporous polymeric 3D scaffolds templated by the layer-by-layer self-assembly.

    PubMed

    Paulraj, Thomas; Feoktistova, Natalia; Velk, Natalia; Uhlig, Katja; Duschl, Claus; Volodkin, Dmitry

    2014-08-01

    Polymeric scaffolds serve as valuable supports for biological cells since they offer essential features for guiding cellular organization and tissue development. The main challenges for scaffold fabrication are i) to tune an internal structure and ii) to load bio-molecules such as growth factors and control their local concentration and distribution. Here, a new approach for the design of hollow polymeric scaffolds using porous CaCO3 particles (cores) as templates is presented. The cores packed into a microfluidic channel are coated with polymers employing the layer-by-layer (LbL) technique. Subsequent core elimination at mild conditions results in formation of the scaffold composed of interconnected hollow polymer microspheres. The size of the cores determines the feature dimensions and, as a consequence, governs cellular adhesion: for 3T3 fibroblasts an optimal microsphere size is 12 μm. By making use of the carrier properties of the porous CaCO3 cores, the microspheres are loaded with BSA as a model protein. The scaffolds developed here may also be well suited for the localized release of bio-molecules using external triggers such as IR-light. PMID:25042776

  7. Layer-by-layer assembly of 3D tissue constructs with functionalized graphene.

    PubMed

    Shin, Su Ryon; Aghaei-Ghareh-Bolagh, Behnaz; Gao, Xiguang; Nikkhah, Mehdi; Jung, Sung Mi; Dolatshahi-Pirouz, Alireza; Kim, Sang Bok; Kim, Sun Min; Dokmeci, Mehmet R; Tang, Xiaowu Shirley; Khademhosseini, Ali

    2014-10-22

    Carbon-based nanomaterials have been considered as promising candidates to mimic certain structure and function of native extracellular matrix materials for tissue engineering. Significant progress has been made in fabricating carbon nanoparticle-incorporated cell culture substrates, but limited studies have been reported on the development of three-dimensional (3D) tissue constructs using these nanomaterials. Here, we present a novel approach to engineer 3D multi-layered constructs using layer-by-layer (LbL) assembly of cells separated with self-assembled graphene oxide (GO)-based thin films. The GO-based structures are shown to serve as cell adhesive sheets that effectively facilitate the formation of multi-layer cell constructs with interlayer connectivity. By controlling the amount of GO deposited in forming the thin films, the thickness of the multi-layer tissue constructs could be tuned with high cell viability. Specifically, this approach could be useful for creating dense and tightly connected cardiac tissues through the co-culture of cardiomyocytes and other cell types. In this work, we demonstrated the fabrication of stand-alone multi-layer cardiac tissues with strong spontaneous beating behavior and programmable pumping properties. Therefore, this LbL-based cell construct fabrication approach, utilizing GO thin films formed directly on cell surfaces, has great potential in engineering 3D tissue structures with improved organization, electrophysiological function, and mechanical integrity. PMID:25419209

  8. Lubricant-Infused Nanoparticulate Coatings Assembled by Layer-by-Layer Deposition

    SciTech Connect

    Sunny, S; Vogel, N; Howell, C; Vu, TL; Aizenberg, J

    2014-09-01

    Omniphobic coatings are designed to repel a wide range of liquids without leaving stains on the surface. A practical coating should exhibit stable repellency, show no interference with color or transparency of the underlying substrate and, ideally, be deposited in a simple process on arbitrarily shaped surfaces. We use layer-by-layer (LbL) deposition of negatively charged silica nanoparticles and positively charged polyelectrolytes to create nanoscale surface structures that are further surface-functionalized with fluorinated silanes and infiltrated with fluorinated oil, forming a smooth, highly repellent coating on surfaces of different materials and shapes. We show that four or more LbL cycles introduce sufficient surface roughness to effectively immobilize the lubricant into the nanoporous coating and provide a stable liquid interface that repels water, low-surface-tension liquids and complex fluids. The absence of hierarchical structures and the small size of the silica nanoparticles enables complete transparency of the coating, with light transmittance exceeding that of normal glass. The coating is mechanically robust, maintains its repellency after exposure to continuous flow for several days and prevents adsorption of streptavidin as a model protein. The LbL process is conceptually simple, of low cost, environmentally benign, scalable, automatable and therefore may present an efficient synthetic route to non-fouling materials.

  9. Polymer Thin Films and Interfaces; a Layer-by-Layer Approach

    NASA Astrophysics Data System (ADS)

    White, Ronald; Lipson, Jane

    2013-03-01

    In this talk we discuss new ways to model polymer films and interfaces, including properties such as density and concentration gradients, interfacial tension, and surface enrichment. We build on recent work where we developed a very simple equation of state approach for polymer thin films, and successfully applied it to determine thermodynamic properties and even to make predictions for the thickness-dependent depression of the thin film glass transition temperature. In that very simplified mean field model, the film properties across the entire interface region were treated as a ``whole sample'' average. Here, we take the next step, and develop a layer-by-layer equation of state model wherein details of the interface region are captured by allowing properties to vary from one discretized layer (within which properties are uniform) to the next. The model can be solved by imposing hydrostatic equilibrium in each layer, which then leads to predictions for the corresponding density gradient and other key interface properties. Work supported by the National Science Foundation.

  10. Layer-by-Layer Assembled Antisense DNA Microsponge Particles for Efficient Delivery of Cancer Therapeutics

    PubMed Central

    2015-01-01

    Antisense oligonucleotides can be employed as a potential approach to effectively treat cancer. However, the inherent instability and inefficient systemic delivery methods for antisense therapeutics remain major challenges to their clinical application. Here, we present a polymerized oligonucleotides (ODNs) that self-assemble during their formation through an enzymatic elongation method (rolling circle replication) to generate a composite nucleic acid/magnesium pyrophosphate sponge-like microstructure, or DNA microsponge, yielding high molecular weight nucleic acid product. In addition, this densely packed ODN microsponge structure can be further condensed to generate polyelectrolyte complexes with a favorable size for cellular uptake by displacing magnesium pyrophosphate crystals from the microsponge structure. Additional layers are applied to generate a blood-stable and multifunctional nanoparticle via the layer-by-layer (LbL) assembly technique. By taking advantage of DNA nanotechnology and LbL assembly, functionalized DNA nanostructures were utilized to provide extremely high numbers of repeated ODN copies for efficient antisense therapy. Moreover, we show that this formulation significantly improves nucleic acid drug/carrier stability during in vivo biodistribution. These polymeric ODN systems can be designed to serve as a potent means of delivering stable and large quantities of ODN therapeutics systemically for cancer treatment to tumor cells at significantly lower toxicity than traditional synthetic vectors, thus enabling a therapeutic window suitable for clinical translation. PMID:25198246

  11. High-Performance Carbon Nanotube/Polymer Composite Fiber from Layer-by-Layer Deposition.

    PubMed

    Wu, Min Le; Chen, Yun; Zhang, Liang; Zhan, Hang; Qiang, Lei; Wang, Jian Nong

    2016-03-30

    So far, preparation of high-performance carbon nanotube (CNT)/polymer composites still faces big challenges mainly due to the limited control of CNT dispersion, fraction, and alignment in polymers. Here, a new "layer-by-layer deposition" method is put forward for preparing CNT/polymer composite fibers using poly(vinyl alcohol) (PVA) as an exemplary polymer. This is based on the continuous production of a hollow cylindrical CNT assembly from a high temperature reactor and its shrinking by a PVA-containing solution and deposition on a removable substrate wire. The in situ mixing of the two composite components at the molecular level allows CNTs to disperse and PVA to infiltrate into the fiber efficiently. As a result, remarkable effects of the CNT reinforcement on the PVA matrix are observed, including a strength improvement from ∼50 to 1255 MPa and electrical conductivity from ∼0 to 1948 S cm(-1). The new method offers good controllability of CNT dispersion and fraction in the polymer matrix, variability for making composite fibers using different polymers, and suitability for scaled up production. This study thus provides a new research direction for preparing CNT-reinforced composites and future performance maximization. PMID:26959406

  12. Biobased nanocomposites from layer-by-layer assembly of cellulose nanowhiskers with chitosan.

    PubMed

    de Mesquita, João P; Donnici, Claudio L; Pereira, Fabiano V

    2010-02-01

    A new biodegradable nanocomposite was obtained from layer-by-layer (LBL) technique using highly deacetylated chitosan and eucalyptus wood cellulose nanowhiskers (CNWs). Hydrogen bonds and electrostatic interactions between the negatively charged sulfate groups on the whisker surface and the ammonium groups of chitosan were the driving forces for the growth of the multilayered films. The film growth was followed by UV-vis spectroscopy through the maximum value of the absorption band at 194 nm and showed the deposition of 14.7 mg.m(-2) of chitosan polymer in each cycle. Scanning electron microscopy showed high density and homogeneous distribution of CNWs adsorbed on each chitosan layer. Cross-section characterization of the assembled films indicates an average of approximately 7 nm of thickness per bilayer. The results presented in this work indicate that the methodology used can be extended to different biopolymers for the design of new biobased nanocomposites in a wide range of applications such as biomedical and food packaging. PMID:20055503

  13. Thermally Induced Charge Reversal of Layer-by-Layer Assembled Single-Component Polymer Films.

    PubMed

    Richardson, Joseph J; Tardy, Blaise L; Ejima, Hirotaka; Guo, Junling; Cui, Jiwei; Liang, Kang; Choi, Gwan H; Yoo, Pil J; De Geest, Bruno G; Caruso, Frank

    2016-03-23

    Temperature can be harnessed to engineer unique properties for materials useful in various contexts and has been shown to affect the layer-by-layer (LbL) assembly of polymer thin films and cause physical changes in preassembled polymer thin films. Herein we demonstrate that exposure to relatively low temperatures (≤ 100 °C) can induce physicochemical changes in cationic polymer thin films. The surface charge of polymer films containing primary and secondary amines reverses after heating (from positive to negative), and different characterization techniques are used to show that the change in surface charge is related to oxidation of the polymer that specifically occurs in the thin film state. This charge reversal allows for single-polymer LbL assembly to be performed with poly(allylamine) hydrochloride (PAH) through alternating heat/deposition steps. Furthermore, the negative charge induced by heating reduces the fouling and cell-association of PAH-coated planar and particulate substrates, respectively. This study highlights a unique property of thin films which is relevant to LbL assembly and biofouling and is of interest for the future development of thin polymer films for biomedical systems. PMID:26953514

  14. Development of the layer-by-layer biosensor using graphene films: application for cholesterol determination

    NASA Astrophysics Data System (ADS)

    Binh Nguyen, Hai; Chuc Nguyen, Van; Nguyen, Van Tu; Doan Le, Huu; Quynh Nguyen, Van; Thanh Tam Ngo, Thi; Phuc Do, Quan; Nghia Nguyen, Xuan; Phan, Ngoc Minh; Tran, Dai Lam

    2013-03-01

    The preparation and characterization of graphene films for cholesterol determination are described. The graphene films were synthesized by thermal chemical vapor deposition (CVD) method. Methane gas (CH4) and copper tape were used as carbon source and catalyst in the graphene growth process, respectively. The intergrated array was fabricated by using micro-electro-mechanical systems (MEMS) technology in which Fe3O4-doped polyaniline (PANi) film was electropolymerized on Pt/Gr electrodes. The properties of the Pt/Gr/PANi/Fe3O4 films were investigated by field-emission scanning electron microscopy (FE-SEM), Raman spectroscopy and electrochemical techniques. Cholesterol oxidase (ChOx) has been immobilized onto the working electrode with glutaraldehyde agent. The cholesterol electrochemical biosensor shows high sensitivity (74 μA mM-1 cm-2) and fast response time (<5 s). A linear calibration plot was obtained in the wide cholesterol concentration range from 2 to 20 mM and correlation coefficient square (R2) of 0.9986. This new layer-by-layer biosensor based on graphene films promises many practical applications.

  15. Drug nano-reservoirs synthesized using layer-by-layer technologies.

    PubMed

    Costa, Rui R; Alatorre-Meda, Manuel; Mano, João F

    2015-11-01

    The pharmaceutical industry has been able to tackle the emergence of new microorganisms and diseases by synthesizing new specialized drugs to counter them. Their administration must ensure that a drug is effectively encapsulated and protected until it reaches its target, and that it is released in a controlled way. Herein, the potential of layer-by-layer (LbL) structures to act as drug reservoirs is presented with an emphasis to "nano"-devices of various geometries, from planar coatings to fibers and capsules. The inherent versatile nature of this technique allows producing carriers resorting to distinct classes of materials, variable geometry and customized release profiles that fit within adequate criteria required for disease treatment or for novel applications in the tissue engineering field. The production methods of LbL reservoirs are varied and allow for different kinds of molecules to be incorporated, such as antibiotics, growth factors and biosensing substances, not limited to water-soluble molecules but including hydrophobic drugs. We will also debate the future of LbL in the pharmaceutical industry. Currently, multilayered structures are yet to be covered by the regulatory guidelines that govern the fabrication of nanotechnology products. However, as they stand now, LbL nanodevices have already shown usefulness for antifouling applications, gene therapy, nanovaccines and the formation of de novo tissues. PMID:25900197

  16. Effects of geometrical confinement in membrane pores on enzyme-based layer-by-layer assemblies

    NASA Astrophysics Data System (ADS)

    Ramírez-Wong, Diana G.; Coelho-Diogo, Cristina; Aimé, Carole; Bonhomme, Christian; Jonas, Alain M.; Demoustier-Champagne, Sophie

    2015-05-01

    Micro- and nanoporous systems incorporating bioactive molecules, such as enzymes, are very promising supports for biocatalysis. Here, we investigate the influence of geometrical confinement on the layer-by-layer (LbL) assembly of enzyme-based thin films, using the polyionic couple (chitosan/β-lactamase)n. Thin films with different number of layers were prepared on flat silicon wafers and within cylindrical submicron pores of polycarbonate membranes to determine the impact of the confinement of macromolecules on: (i) the LbL film growth, (ii) the enzyme loading, and (iii) the biocatalytic efficiency. Solid-state NMR is employed to estimate the amount of enzyme loaded in the different types of LbL films, and the enzyme activity is determined by the study of the kinetics of nitrocefin hydrolysis. Film growth and loading of enzyme occur faster in the confined medium, until pores reach saturation. Moreover, when LbL films are grown within nanopores, the weight fraction of enzyme is very high and remains constant along the build-up. Conversely, the relative amount of enzyme in flat films significantly decreases with the number of layers due to the partial exchange during the growth. Finally, our study emphasizes that the immobilization of enzymes through LbL assembly in confined media can lead to very active surfaces with a restricted number of LbL cycles.

  17. Local and Sustained Activity of Doxycycline Delivered with Layer-by-Layer Microcapsules.

    PubMed

    Luo, Dong; Gould, David J; Sukhorukov, Gleb B

    2016-04-11

    Achieving localized delivery of small molecule drugs has the potential to increase efficacy and reduce off target and side effects associated with systemic distribution. Herein, we explore the potential use of layer-by-layer (LbL) assembled microcapsules for the delivery of doxycycline. Absorbance of doxycycline onto core dextran sulfate of preassembled microcapsules provides an efficient method to load both synthetic and biodegradable microcapsules with the drug. Application of an outer layer lipid coat enhances the sustained in vitro release of doxycycline from both microcapsule types. To monitor doxycycline delivery in a biological system, C2C12 mouse myoblasts are engineered to express EGFP under the control of the optimized components of the tetracycline regulated gene expression system. Microcapsules are not toxic to these cells, and upon delivery to the cells, EGFP is more efficiently induced in those cells that contain engulfed microcapsules and monitored EGFP expression clearly demonstrates that synthetic microcapsules with a DPPC coat are the most efficient for sustain intracellular delivery. Doxycycline released from microcapsules also displayed sustained activity in an antimicrobial growth inhibition assay compared with doxycycline solution. This study reveals the potential for LbL microcapsules in small molecule drug delivery and their feasible use for achieving prolonged doxycycline activity. PMID:26967921

  18. Dual drug delivery microcapsules via layer-by-layer self-assembly.

    PubMed

    Manna, Uttam; Patil, Satish

    2009-09-15

    The integration of hydrophobic and hydrophilic drugs in the polymer microcapsule offers the possibility of developing a new drug delivery system that combines the best features of these two distinct classes of material. Recently, we have reported the encapsulation of an uncharged water-insoluble drug in the polymer membrane. The hydrophobic drug is deposited using a layer-by-layer (LbL) technique, which is based on the sequential adsorption of oppositely charged polyelectrolytes onto a charged substrate. In this paper, we report the encapsulation of two different drugs, which are invariably different in structure and in their solubility in water. We have characterized these dual drug vehicular capsules by confocal laser scanning microscopy, atomic force microscopy, visible microscopy, and transmission electron microscopy. The growth of a thin film on a flat substrate by LbL was monitored by UV-vis spectra. The desorption kinetics of two drugs from the thin film was modeled by a second-order rate model. PMID:19735129

  19. Layer-by-layer assembly of functionalized reduced graphene oxide for direct electrochemistry and glucose detection.

    PubMed

    Mascagni, Daniela Branco Tavares; Miyazaki, Celina Massumi; da Cruz, Nilson Cristino; de Moraes, Marli Leite; Riul, Antonio; Ferreira, Marystela

    2016-11-01

    We report an electrochemical glucose biosensor made with layer-by-layer (LbL) films of functionalized reduced graphene oxide (rGO) and glucose oxidase (GOx). The LbL assembly using positively and negatively charged rGO multilayers represents a simple approach to develop enzymatic biosensors. The electron transport properties of graphene were combined with the specificity provided by the enzyme. rGO was obtained and functionalized using chemical methods, being positively charged with poly(diallyldimethylammonium chloride) to form GPDDA, and negatively charged with poly(styrene sulfonate) to form GPSS. Stable aqueous dispersions of GPDDA and GPSS are easily obtained, enabling the growth of LbL films on various solid supports. The use of graphene in the immobilization of GOx promoted Direct Electron Transfer, which was evaluated by Cyclic Voltammetry. Amperometric measurements indicated a detection limit of 13.4μmol·L(-1) and sensitivity of 2.47μA·cm(-2)·mmol(-1)·L for glucose with the (GPDDA/GPSS)1/(GPDDA/GOx)2 architecture, whose thickness was 19.80±0.28nm, as determined by Surface Plasmon Resonance (SPR). The sensor may be useful for clinical analysis since glucose could be detected even in the presence of typical interfering agents and in real samples of a lactose-free milk and an electrolyte solution to prevent dehydration. PMID:27524075

  20. Layer-by-layer coated gold nanoparticles: size-dependent delivery of DNA into cells.

    PubMed

    Elbakry, Asmaa; Wurster, Eva-Christina; Zaky, Alaa; Liebl, Renate; Schindler, Edith; Bauer-Kreisel, Petra; Blunk, Torsten; Rachel, Reinhard; Goepferich, Achim; Breunig, Miriam

    2012-12-21

    Because nanoparticles are finding uses in myriad biomedical applications, including the delivery of nucleic acids, a detailed knowledge of their interaction with the biological system is of utmost importance. Here the size-dependent uptake of gold nanoparticles (AuNPs) (20, 30, 50 and 80 nm), coated with a layer-by-layer approach with nucleic acid and poly(ethylene imine) (PEI), into a variety of mammalian cell lines is studied. In contrast to other studies, the optimal particle diameter for cellular uptake is determined but also the number of therapeutic cargo molecules per cell. It is found that 20 nm AuNPs, with diameters of about 32 nm after the coating process and about 88 nm including the protein corona after incubation in cell culture medium, yield the highest number of nanoparticles and therapeutic DNA molecules per cell. Interestingly, PEI, which is known for its toxicity, can be applied at significantly higher concentrations than its IC(50) value, most likely because it is tightly bound to the AuNP surface and/or covered by a protein corona. These results are important for the future design of nanomaterials for the delivery of nucleic acids in two ways. They demonstrate that changes in the nanoparticle size can lead to significant differences in the number of therapeutic molecules delivered per cell, and they reveal that the toxicity of polyelectrolytes can be modulated by an appropriate binding to the nanoparticle surface. PMID:22911477

  1. Layer-by-layer engineered nanocapsules of curcumin with improved cell activity.

    PubMed

    Kittitheeranun, Paveenuch; Sajomsang, Warayuth; Phanpee, Sarunya; Treetong, Alongkot; Wutikhun, Tuksadon; Suktham, Kunat; Puttipipatkhachorn, Satit; Ruktanonchai, Uracha Rungsardthong

    2015-08-15

    Nanocarriers based on electrostatic Layer-by-layer (LbL) assembly of CaCO3 nanoparticles (CaCO3 NPs) was investigated. These inorganic nanoparticles was used as templates to construct nanocapsules made from films based on two oppositely charged polyelectrolytes, poly(diallyldimethylammonium chloride), and poly (sodium 4-styrene-sulfonate sodium salt), followed by core dissolution. The naked CaCO3 NPs, CaCO3 NPs coated with the polyelectrolytes and hollow nanocapsules were found with hexagonal shape with average sizes of 350-400 nm. A reversal of the surface charge between positive to negative zeta potential values was found, confirming the adsorption of polyelectrolytes. The loading efficiency and release of curcumin were controlled by the hydrophobic interactions between the drug and the polyelectrolyte matrix of the hollow nanocapsules. The quantity of curcumin released from hollow nanocapsules was found to increase under acidic environments, which is a desirable for anti-cancer drug delivery. The hollow nanocapsules were found to localize in the cytoplasm and nucleus compartment of Hela cancer cells after 24 h of incubation. Hollow nanocapsules were non-toxic to human fibroblast cells. Furthermore, curcumin loaded hollow nanocapsules exhibited higher in vitro cell inhibition against Hela cells than that of free curcumin, suggesting that polyelectrolyte based-hollow nanocapsules can be utilized as new carriers for drug delivery. PMID:26143232

  2. Layer-by-layer films from hyaluronan and amine modified hyaluronan

    PubMed Central

    Schneider, Aurore; Senger, Bernard; Schaaf, Pierre; Voegel, Jean-Claude; Frisch, Benoit

    2008-01-01

    Hyaluronan is a polysaccharide that is increasingly investigated for its role in cellular adhesion and for the preparation of biomimetic matrices for tissue engineering. Hyaluronan gels are prepared for application as space fillers whereas hyaluronan films are usually obtained by adsorbing or grafting a single hyaluronan layer onto a biomaterial surface. Here, we examine the possibility to employ the layer-by-layer technique to deposit thin films of cationic modified hyaluronan (HA+) and hyaluronan (HA) of controlled thicknesses. The buildup conditions are investigated and growth is compared to that of other polyelectrolyte multilayer films containing either HA as polyanion or HA+ as polycation. The films could be formed in a low ionic strength medium but required to be cross-linked prior to be put in contact with physiological medium. NIH3T3 fibroblasts were perfectly viable on self-assembled hyaluronan films with however a preference for hyaluronan ending films. These findings point out the possibility to tune the thickness of thin hyaluronan films at the nanometer scale. Such architectures could be employed for investigating cell/substrate interactions or for functionalizing biomaterial surfaces. PMID:17309215

  3. Sonication-Assisted Layer-by-Layer Assembly for Low Solubility Drug Nanoformulation.

    PubMed

    Santos, Ana C; Pattekari, Pravin; Jesus, Sandra; Veiga, Francisco; Lvov, Yuri; Ribeiro, António J

    2015-06-10

    Sonication-assisted layer-by-layer (LbL) self-assembly is a nanoencapsulation technique based on the alternate adsorption of oppositely charged polyelectrolytes, enabling the encapsulation of low solubility drugs. In this work, a top-down LbL technique was performed using a washless approach and ibuprofen (IBF) as a model class II drug. For each saturated layer deposition, polyelectrolyte concentration was determined by titration curves. The first layer was constituted by cationic poly(allylamine hydrochloride) (PAH), given the IBF negative surface charge, followed by anionic polystyrenesulfonate (PSS). This polyelectrolyte sequence was made up with 2.5, 5.5, and 7.5 bilayer nanoshells. IBF nanoparticles (NPs) coated with 7.5 bilayers of PAH/PSS showed 127.5 ± 38.0 nm of particle size, a PDI of 0.24, and a high zeta potential (+32.7 ± 0.6 mV), allowing for a stable aqueous nanocolloid of the drug. IBF entrapment efficiency of 72.1 ± 5.8% was determined by HPLC quantification. In vitro MTT assay showed that LbL NPs were biocompatible. According to the number of coating layers, a controlled release of IBF from LbL NPs was achieved under simulated intestinal conditions (from 5 h up to 7 days). PAH/PSS-LbL NPs constitute a potential delivery system to improve biopharmaceutical parameters of water low solubility drugs. PMID:25985366

  4. Modifying Randles circuit for analysis of polyoxometalate layer-by-layer films.

    PubMed

    Vyas, Ritesh N; Li, Kuyen; Wang, Bin

    2010-12-01

    Multilayer films with anionic phosphomolybidic acid (PMo(12)) clusters have been fabricated via the electrostatic layer-by-layer (LbL) method. The charged mass transport phenomena of these thin films have been studied using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) with [Fe(CN)(6)](3-/4-) and [Ru(NH(3))(6)](3+/2+) as the redox probes. By adding a film resistance and a film capacitance to the conventional Randles equivalent circuit, we can calculate the diffusion coefficient values that help understand the microscopic nature of the thin films. When the negatively charged probe [Fe(CN)(6)](3-/4-) was used, lower diffusion coefficients were obtained for multilayers deposited from higher ionic strength solutions. This relationship was less obvious when the positively charged probe [Ru(NH(3))(6)](3+/2+) was used, in which the electrostatic attraction between PMo(12) clusters and the probe ions complicates the mass-transfer process. It is believed that the addition of salt to dipping solutions increases the tortuosity of the films so the mass transport takes longer paths, inducing lower diffusion coefficients. Higher PMo(12) loading causes lower diffusion coefficients due to the polyoxometalate clusters blocking the paths for charged probe ions. PMID:21077668

  5. Sprayable, Paintable Layer-by-Layer Polyaniline Nanofiber/Graphene Electrodes for Electrochemical Energy Storage

    NASA Astrophysics Data System (ADS)

    Kwon, Se Ra; Jeon, Ju-Won; Lutkenhus, Jodie

    2015-03-01

    Sprayable batteries are growing in interest for applications in structural energy storage and power or flexible power. Spray-assisted layer-by-layer (LbL) assembly, in which complementary species are alternately sprayed onto a surface, is particularly amenable toward this application. Here, we report on the fabrication of composite films containing polyaniline nanofibers (PANI NF) and graphene oxide (GO) sheets fabricated via spray-assisted LbL assembly. The resulting films are electrochemical reduced to yield PANI NF/electrochemically reduced graphene (ERGO) electrodes for use as a cathode in non-aqueous energy storage systems. Through the spray-assisted LbL process, the hybrid electrodes could be fabricated 74 times faster than competing dip-assisted LbL assembly. The resulting electrodes are highly porous (0.72 void fraction), and are comprised of 67 wt% PANI NF and 33 wt% ERGO. The sprayed electrodes showed better rate capability, higher specific power, as well as more stable cycle life than dip-assisted LbL electrodes. It is shown here that the spray-assisted LbL approach is well-suited towards the fabrication of paintable electrodes containing polyaniline nanofibers and electrochemically reduced graphene oxide sheets.

  6. Layer-by-layer assembly of UV-resistant poly(3,4-ethylenedioxythiophene) thin films.

    PubMed

    Dawidczyk, Thomas J; Walton, Matthew D; Jang, Woo-Sik; Grunlan, Jaime C

    2008-08-01

    The layer-by-layer assembly technique was used to create electrically conductive films with poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT-PSS) and branched polyethylenimine (BPEI). Titanium dioxide (TiO(2)) and carbon black were used to prevent UV-degradation of these PEDOT-PSS thin film assemblies. Film growth and conductivity were studied, while varying composition and examining the effect of UV absorbing particles on the electrical conductivity. All films showed similar initial sheet resistances, but after exposure to 365 nm UV light for 9 days (correlating to approximately 4 years of sunlight), the films containing TiO(2) were up to 250 times more conductive. Additionally, the TiO(2) containing films were 27% more optically transparent than films made with PEDOT in the absence of TiO(2). The addition of colloidal titania allows the useful life of the PEDOT films to be extended without the detrimental effects of decreased transparency. Doping the PEDOT with dimethylsulfoxide produced eight bilayer films that were almost 6 times more conductive. However, the degradation rate for the doped PEDOT films without TiO(2) was 10 times greater than the doped films with TiO(2). PMID:18590298

  7. Structure analysis of layer-by-layer multilayer films of colloidal particles

    NASA Astrophysics Data System (ADS)

    Batys, Piotr; Nosek, Magdalena; Weroński, Paweł

    2015-03-01

    We have mimicked the layer-by-layer self-assembling process of monodisperse colloidal particles at a solid-liquid interface using the extended random sequential adsorption model of hard spheres. We have studied five multilayer structures of similar thickness, each created at a different single-layer surface coverage. For each multilayer, we have determined its particle volume fraction as a function of distance from the interface. Additionally, we have characterized the film structure in terms of 2D and 3D pair-correlation functions. We have found that the coverage of about 0.3 is optimal for producing a uniform, constant-porosity multilayer in a minimum number of adsorption cycles. The single-layer coverage has also a significant effect on the primary maximum of 2D radial distribution function. In the case of multilayer with the coverage lower than 0.30 the 2D pair-correlation functions of even layers exhibit maxima decreasing with the increase in the layer number. We have verified our theoretical predictions experimentally. We have used fluorescence microscopy to determine the 2D pair-correlation functions for the second, third, and fourth layers of multilayer formed of micron-sized spherical latex particles. We have found a good agreement between our theoretical and experimental results, which confirms the validity of the extended RSA model.

  8. Self-Healing Textile: Enzyme Encapsulated Layer-by-Layer Structural Proteins.

    PubMed

    Gaddes, David; Jung, Huihun; Pena-Francesch, Abdon; Dion, Genevieve; Tadigadapa, Srinivas; Dressick, Walter J; Demirel, Melik C

    2016-08-10

    Self-healing materials, which enable an autonomous repair response to damage, are highly desirable for the long-term reliability of woven or nonwoven textiles. Polyelectrolyte layer-by-layer (LbL) films are of considerable interest as self-healing coatings due to the mobility of the components comprising the film. In this work mechanically stable self-healing films were fabricated through construction of a polyelectrolyte LbL film containing squid ring teeth (SRT) proteins. SRTs are structural proteins with unique self-healing properties and high elastic modulus in both dry and wet conditions (>2 GPa) due to their semicrystalline architecture. We demonstrate LbL construction of multilayers containing native and recombinant SRT proteins capable of self-healing defects. Additionally, we show these films are capable of utilizing functional biomolecules by incorporating an enzyme into the SRT multilayer. Urease was chosen as a model enzyme of interest to test its activity via fluorescence assay. Successful construction of the SRT films demonstrates the use of mechanically stable self-healing coatings, which can incorporate biomolecules for more complex protective functionalities for advanced functional fabrics. PMID:27419265

  9. Layer-by-layer assembly of 3D tissue constructs with functionalized graphene

    PubMed Central

    Shin, Su Ryon; Aghaei-Ghareh-Bolagh, Behnaz; Gao, Xiguang; Nikkhah, Mehdi; Jung, Sung Mi; Dolatshahi-Pirouz, Alireza; Kim, Sang Bok; Kim, Sun Min; Dokmeci, Mehmet R.; Tang, Xiaowu (Shirley); Khademhosseini, Ali

    2014-01-01

    Carbon-based nanomaterials have been considered as promising candidates to mimic certain structure and function of native extracellular matrix materials for tissue engineering. Significant progress has been made in fabricating carbon nanoparticle-incorporated cell culture substrates, but limited studies have been reported on the development of three-dimensional (3D) tissue constructs using these nanomaterials. Here, we present a novel approach to engineer 3D multi-layered constructs using layer-by-layer (LbL) assembly of cells separated with self-assembled graphene oxide (GO)-based thin films. The GO-based structures are shown to serve as cell adhesive sheets that effectively facilitate the formation of multi-layer cell constructs with interlayer connectivity. By controlling the amount of GO deposited in forming the thin films, the thickness of the multi-layer tissue constructs could be tuned with high cell viability. Specifically, this approach could be useful for creating dense and tightly connected cardiac tissues through the co-culture of cardiomyocytes and other cell types. In this work, we demonstrated the fabrication of stand-alone multi-layer cardiac tissues with strong spontaneous beating behavior and programmable pumping properties. Therefore, this LbL-based cell construct fabrication approach, utilizing GO thin films formed directly on cell surfaces, has great potential in engineering 3D tissue structures with improved organization, electrophysiological function, and mechanical integrity. PMID:25419209

  10. Probing nonlinear rheology layer-by-layer in interfacial hydration water

    PubMed Central

    Kim, Bongsu; Kwon, Soyoung; Lee, Manhee; Kim, QHwan; An, Sangmin; Jhe, Wonho

    2015-01-01

    Viscoelastic fluids exhibit rheological nonlinearity at a high shear rate. Although typical nonlinear effects, shear thinning and shear thickening, have been usually understood by variation of intrinsic quantities such as viscosity, one still requires a better understanding of the microscopic origins, currently under debate, especially on the shear-thickening mechanism. We present accurate measurements of shear stress in the bound hydration water layer using noncontact dynamic force microscopy. We find shear thickening occurs above ∼ 106 s−1 shear rate beyond 0.3-nm layer thickness, which is attributed to the nonviscous, elasticity-associated fluidic instability via fluctuation correlation. Such a nonlinear fluidic transition is observed due to the long relaxation time (∼ 10−6 s) of water available in the nanoconfined hydration layer, which indicates the onset of elastic turbulence at nanoscale, elucidating the interplay between relaxation and shear motion, which also indicates the onset of elastic turbulence at nanoscale above a universal shear velocity of ∼ 1 mm/s. This extensive layer-by-layer control paves the way for fundamental studies of nonlinear nanorheology and nanoscale hydrodynamics, as well as provides novel insights on viscoelastic dynamics of interfacial water. PMID:26644571

  11. Photosystem II based multilayers obtained by electrostatic layer-by-layer assembly on quartz substrates.

    PubMed

    Ventrella, Andrea; Catucci, Lucia; Placido, Tiziana; Longobardi, Francesco; Agostiano, Angela

    2014-06-01

    Photosystem II (PSII) proteins from spinach leaves were immobilized onto quartz substrates according to the Layer-by-Layer (LbL) procedure, alternating protein to polyethylenimine (PEI) layers by exploiting electrostatic interactions. The effects of several factors, such as storage conditions, ageing of the PSII-modified substrates, as well as PSII concentration in buffer, on the quality of the prepared multilayers, were investigated by UV-vis Absorption Spectroscopy and Atomic Force Microscopy (AFM). A number of 13 layers was found to be optimal to guarantee intense PSII optical signals with homogeneous morphological distributions of proteins. The multilayers resulted stable if stored in contact with air at 4 °C, as observed by UV-vis Absorption spectra recorded after 48 h. The best results in terms of AFM images and electron transfer efficiency (measured by Hill Reaction assays) were gained by using 5.6 × 10(-7) M chlorophyll concentration, obtaining multilayers with the most ordered protein distributions and the highest electron transfer efficiency, i.e. 85% of an iso-absorbing PSII suspension. The results highlight the possibility to successfully immobilize PSII proteins, without considerable loss of bioactivity, thanks to the mild nature of the electrostatic LbL technique, opening up possibilities of applications in the bioelectrochemical energy conversion and biosensoristic fields. PMID:24550146

  12. Photonic crystal fiber for layer-by-layer assembly and measurements of polyelectrolyte thin films.

    PubMed

    Tian, Fei; Kanka, Jiri; Sukhishvili, Svetlana A; Du, Henry

    2012-10-15

    The cladding air channels of an endlessly single-mode photonic crystal fiber (PCF) and the high-index sensitivity of its long-period gratings (LPG) inscribed by CO(2) laser have been exploited to deposit poly(vinyl pyrrolidone) (PVPON)/poly(methacrylic acid) (PMAA) polyelectrolyte thin films via layer-by-layer assembly (LbL) and to measure the deposition process. We show that LbL can be controllably carried out within the axially aligned air channels. PCF-LPG is highly sensitive to the LbL process as reflected by ~1.625 nm shift in the resonance wavelength per polyelectrolyte layer incorporated. PCF-LPG is also very robust for in situ monitoring of the release of PVPON from cross-linked polyelectrolytes, which results in the formation of pH-responsive PMAA hydrogel. PCF-LPG containing the hydrogel exhibits well-behaved response to changes in solution pH over 2 to 7.5. We demonstrate that PCF-LPG is 2 orders of magnitude more sensitive than its traditional all-solid counterpart through parallel investigation. PMID:23073443

  13. Multifunctional carbon nanotube thin film composites by layer-by-layer assembly technique

    NASA Astrophysics Data System (ADS)

    Shim, Bong Sup

    Polymeric layer-by-layer (LBL) assembly offers a pathway for multifunctional/multicomponent materials with molecular-scale control of stratified structures. Among the wide variety nanoscale building blocks such as nanowires and nanodots, single-walled carbon nanotubes (SWNTs) are regarded as one of the most versatile because of their superior mechanical and electrical properties as well as geometrical perfection. In this thesis, LBL assembled SWNT thin film nanocomposites with high mechanical strength/toughness and with high electrical/optical properties are presented. Exceptional exfoliation state of SWNTs and controlled nm-thick layered structures are the basis for achieving tunable physical properties. Highly anisotropic features of SWNTs are translated into 2 dimensional alignments by meniscus combing technique during LBL assemblies. Advanced LBL assemblies by dewetting methods are also introduced, which significantly accelerate the process with improved lateral organization of nanowires. Furthermore, SWNT composite coating on commodity cotton yarns produced intelligent electronic textiles (e-textiles) with intrinsic humidity sensibility. This e-textile has been further combined with antigen/antibody sensing capability in order to develop a selective albumin biosensor which provides a direct route for the application of these materials as wearable biomonitoring and telemedicine sensors.

  14. Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly

    PubMed Central

    Lu, Xiaoli; Xia, Yang; Liu, Mei; Qian, Yunzhu; Zhou, Xuefeng; Gu, Ning; Zhang, Feimin

    2012-01-01

    To fabricate high-strength diatomite-based ceramics for dental applications, the layer-by-layer technique was used to coat diatomite particles with cationic [poly(allylamine hydrochloride)] and anionic [poly(sodium 4-styrenesulfonate)] polymers to improve the dispersion and adsorption of positively charged nano-ZrO2 (zirconia) as a reinforcing agent. The modified diatomite particles had reduced particle size, narrower size distribution, and were well dispersed, with good adsorption of nano-ZrO2. To determine the optimum addition levels for nano-ZrO2, ceramics containing 0, 20, 25, 30, and 35 wt% nano-ZrO2 were sintered and characterized by the three-point bending test and microhardness test. In addition to scanning electron microscopy, propagation phase-contrast synchrotron X-ray microtomography was used to examine the internal structure of the ceramics. The addition of 30 wt% nano-ZrO2 resulted in the highest flexural strength and fracture toughness with reduced porosity. Shear bond strength between the core and veneer of our diatomite ceramics and the most widely used dental ceramics were compared; the shear bond strength value for the diatomite-based ceramics was found to be significantly higher than for other groups (P < 0.05). Our results show that diatomite-based nanocomposite ceramics are good potential candidates for ceramic-based dental materials. PMID:22619551

  15. Layer-by-Layer Assembly of Stable Aqueous Quantum Dots for Luminescent Planar Plate.

    PubMed

    Zhang, Xuejing; Zhou, Changhua; Zang, Shuaipu; Shen, Huaibin; Dai, Pengpeng; Zhang, Xintong; Li, Lin Song

    2015-07-15

    This work reports the fabrication of a luminescent planar plate based on stable aqueous quantum dots (QDs) and poly(diallyldimethylammonium chloride) (PDDA) via a layer-by-layer (LBL) assembly technique. Preparation of aqueous QDs with facile monoalkyl maleate amphiphilic surfactants as the coating agent is conducted by a robust and efficient phase-transfer method. The as-prepared aqueous QDs exhibit bright emission, and their surface has very large negative zeta potential values, which are useful for electrostatic LBL assembly. Red, green, and blue luminescent planar plates are successfully fabricated via LBL assembly of the monocolor QDs, respectively. Through accurately adjusting the relative proportion of each monocolor luminescent component, we obtain an inspiring luminescent planar plate, which emits bright white light with a color coordinate of (0.3509, 0.3483), a correlated color temperature (CCT) of 4766 K, and a high color rendering index (CRI, Ra) of 89.5 under the irradiation of UV light. Therefore, this paper reports a facile process for the design and preparation of luminescent planar plates, which have potential applications in display and solid-state lighting devices. PMID:26091336

  16. Effect of layer-by-layer polyelectrolyte method on encapsulation of vanillin.

    PubMed

    Noshad, Mohammad; Mohebbi, Mohebbat; Shahidi, Fakhri; Koocheki, Arash

    2015-11-01

    The objective of this work was to microencapsulate vanillin by multilayer emulsion followed by spray drying, aiming to protect it and control its release. An electrostatic layer-by-layer deposition method was used to create the multilayered interfacial membranes around microcapsules with different compositions: (i) one-layer (soy protein isolate); (ii) two-layer (soy protein isolate - OSA starch); (iii) three-layer (soy protein isolate - OSA starch - Chitosan). The morphology of the microcapsules was analyzed by scanning electronic microscopy. The hygroscopicity, solubility, particle size, encapsulation efficiency, Fourier transform infrared spectroscopy and release into water (37°C and 80°C) were also examined. FTIR confirmed the interaction between the wall materials. All microcapsules were not very water-soluble or hygroscopic while three-layer microcapsules compared to one and two layer microcapsules have lower moisture content and predominantly shriveled surfaces. The results indicated it was possible to encapsulate vanillin with the techniques employed and that these protected the vanillin even at 80°C. The reduced solubility and low release rates indicated the enormous potential of the vehicle developed in controlling the release of the vanillin into the food and pharmaceuticals. PMID:26358552

  17. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics.

    PubMed

    Javey, Ali; Nam, SungWoo; Friedman, Robin S; Yan, Hao; Lieber, Charles M

    2007-03-01

    We report a general approach for three-dimensional (3D) multifunctional electronics based on the layer-by-layer assembly of nanowire (NW) building blocks. Using germanium/silicon (Ge/Si) core/shell NWs as a representative example, ten vertically stacked layers of multi-NW field-effect transistors (FETs) were fabricated. Transport measurements demonstrate that the Ge/Si NW FETs have reproducible high-performance device characteristics within a given device layer, that the FET characteristics are not affected by sequential stacking, and importantly, that uniform performance is achieved in sequential layers 1 through 10 of the 3D structure. Five-layer single-NW FET structures were also prepared by printing Ge/Si NWs from lower density growth substrates, and transport measurements showed similar high-performance characteristics for the FETs in layers 1 and 5. In addition, 3D multifunctional circuitry was demonstrated on plastic substrates with sequential layers of inverter logical gates and floating gate memory elements. Notably, electrical characterization studies show stable writing and erasing of the NW floating gate memory elements and demonstrate signal inversion with larger than unity gain for frequencies up to at least 50 MHz. The ability to assemble reproducibly sequential layers of distinct types of NW-based devices coupled with the breadth of NW building blocks should enable the assembly of increasing complex multilayer and multifunctional 3D electronics in the future. PMID:17266383

  18. Layer-by-layer Synthesis and Transfer of Freestanding Conjugated Microporous Polymer Nanomembranes.

    PubMed

    Lindemann, Peter; Träutlein, Yannick; Wöll, Christof; Tsotsalas, Manuel

    2015-01-01

    CMP as large surface area materials have attracted growing interest recently, due to their high variability in the incorporation of functional groups in combination with their outstanding thermal and chemical stability, and low densities. However, their insoluble nature causes problems in their processing since usually applied techniques such as spin coating are not available. Especially for membrane applications, where the processing of CMP as thin films is desirable, the processing problems have hindered their commercial application. Here we describe the interfacial synthesis of CMP thin films on functionalized substrates via molecular layer-by-layer (l-b-l) synthesis. This process allows the preparation of films with desired thickness and composition and even desired composition gradients. The use of sacrificial supports allows the preparation of freestanding membranes by dissolution of the support after the synthesis. To handle such ultra-thin freestanding membranes the protection with sacrificial coatings showed great promise, to avoid rupture of the nanomembranes. To transfer the nanomembranes to the desired substrate, the coated membranes are upfloated at the air-liquid interface and then transferred via dip coating. PMID:26710232

  19. Layer-by-layer assembly for biomedical applications in the last decade

    NASA Astrophysics Data System (ADS)

    Gentile, P.; Carmagnola, I.; Nardo, T.; Chiono, V.

    2015-10-01

    In the past two decades, the design and manufacture of nanostructured materials has been of tremendous interest to the scientific community for their application in the biomedical field. Among the available techniques, layer-by-layer (LBL) assembly has attracted considerable attention as a convenient method to fabricate functional coatings. Nowadays, more than 1000 scientific papers are published every year, tens of patents have been deposited and some commercial products based on LBL technology have become commercially available. LBL presents several advantages, such as (1): a precise control of the coating properties; (2) environmentally friendly, mild conditions and low-cost manufacturing; (3) versatility for coating all available surfaces; (4) obtainment of homogeneous film with controlled thickness; and (5) incorporation and controlled release of biomolecules/drugs. This paper critically reviews the scientific challenge of the last 10 years—functionalizing biomaterials by LBL to obtain appropriate properties for biomedical applications, in particular in tissue engineering (TE). The analysis of the state-of-the-art highlights the current techniques and the innovative materials for scaffold and medical device preparation that are opening the way for the preparation of LBL-functionalized substrates capable of modifying their surface properties for modulating cell interaction to improve substitution, repair or enhancement of tissue function.

  20. Magnetically encoded luminescent composite nanoparticles through layer-by-layer self-assembly.

    PubMed

    Song, Erqun; Han, Weiye; Xu, Hongyan; Jiang, Yunfei; Cheng, Dan; Song, Yang; Swihart, Mark T

    2014-11-01

    Sensitive and rapid detection of multiple analytes and the collection of components from complex samples are important in fields ranging from bioassays/chemical assays, clinical diagnosis, to environmental monitoring. A convenient strategy for creating magnetically encoded luminescent CdTe@SiO2 @n Fe3 O4 composite nanoparticles, by using a layer-by-layer self-assembly approach based on electrostatic interactions, is described. Silica-coated CdTe quantum dots (CdTe@SiO2 ) serve as core templates for the deposition of alternating layers of Fe3 O4 magnetic nanoparticles and poly(dimethyldiallyl ammonium chloride), to construct CdTe@SiO2 @n Fe3 O4 (n=1, 2, 3, …︁) composite nanoparticles with a defined number (n) of Fe3 O4 layers. Composite nanoparticles were characterized by zeta-potential analysis, fluorescence spectroscopy, vibrating sample magnetometry, and transmission electron microscopy, which showed that the CdTe@SiO2 @n Fe3 O4 composite nanoparticles exhibited excellent luminescence properties coupled with well-defined magnetic responses. To demonstrate the utility of these magnetically encoded nanoparticles for near-simultaneous detection and separation of multiple components from complex samples, three different fluorescently labeled IgG proteins, as model targets, were identified and collected from a mixture by using the CdTe@SiO2 @n Fe3 O4 nanoparticles. PMID:25258095

  1. Polyaniline-based organic memristive device fabricated by layer-by-layer deposition technique

    NASA Astrophysics Data System (ADS)

    Erokhina, Svetlana; Sorokin, Vladimir; Erokhin, Victor

    2015-09-01

    Memristors and memristive devices represent a splendid area of research due to the unique possibilities for the realization of new types of computer hardware elements and mimicking several essential properties of the nervous system of living beings. The organic memristive device was developed as an electronic single-device analogue of the synapse, suitable for the realization of circuits allowing Hebbian type of learning. This work is dedicated to the realization of the active channel of organic memristive devices by polyelectrolyte self-assembling (layer-by-layer technique). Stable and reproducible electrical characteristics of the device were obtained when the thickness of the active channel was more than seven bilayers. The device revealed rectifying behaviour and the presence of hysteresis—important properties for the realization of neuromorphic systems with synapse-like properties of the individual elements. Compared to previously reported results on organic memristive devices fabricated using other methods, the present device does not require any additional doping that is usually performed through acid treatment. Such a behaviour is extremely important for the cases in which biological systems (nervous cells, slime mould, etc.) must be interfaced with the system of organic memristive devices, since acid treatment can kill living beings. [Figure not available: see fulltext.

  2. Starch-Based Layer by Layer Assembly: Efficient and Sustainable Approach to Cotton Fire Protection.

    PubMed

    Carosio, F; Fontaine, G; Alongi, J; Bourbigot, S

    2015-06-10

    Starch has been employed via layer by layer assembly for building an efficient and sustainable biobased coatings capable of protecting cotton from fire. In order to obtain a better understanding of the coating to substrate relationship, the coating efficiency has been tested on cotton fabrics having different densities (i.e., 100, 200, and 400 g/m(2)). The adopted deposition conditions allow for the buildup of a homogeneous coating even at a low number of deposition steps. The physical and chemical mechanisms are described and related to the achieved results. The coating can greatly enhance the char forming ability of cellulose, nearly doubling the amount of thermally stable organic residue produced by cotton at high temperatures, as assessed by thermogravimetric analyses. After only 2 bilayers deposited, this biobased system is capable of self-extinguishing a flame during flammability tests with less than 5% in weight deposited on cotton. This high efficiency is kept even when the coating is deposited on cotton with the highest density. By cone calorimetry, all treated cottons showed significant reductions (up to 40%) of the total heat released during combustion, thus demonstrating the high efficiency achieved. PMID:25978652

  3. A 'microfluidic pinball' for on-chip generation of Layer-by-Layer polyelectrolyte microcapsules.

    PubMed

    Kantak, Chaitanya; Beyer, Sebastian; Yobas, Levent; Bansal, Tushar; Trau, Dieter

    2011-03-21

    Inspired by the game of "pinball" where rolling metal balls are guided by obstacles, here we describe a novel microfluidic technique which utilizes micropillars in a flow channel to continuously generate, encapsulate and guide Layer-by-Layer (LbL) polyelectrolyte microcapsules. Droplet-based microfluidic techniques were exploited to generate oil droplets which were smoothly guided along a row of micropillars to repeatedly travel through three parallel laminar streams consisting of two polymers and a washing solution. Devices were prototyped in PDMS and generated highly monodisperse and stable 45±2 µm sized polyelectrolyte microcapsules. A total of six layers of hydrogen bonded polyelectrolytes (3 bi-layers) were adsorbed on each droplet within <3 minutes and a fluorescent intensity measurement confirmed polymer film deposition. AFM analysis revealed the thickness of each polymer layer to be approx. 2.8 nm. Our design approach not only provides a faster and more efficient alternative to conventional LbL deposition techniques, but also achieves the highest number of polyelectrolyte multilayers (PEMs) reported thus far using microfluidics. Additionally, with our design, a larger number of PEMs can be deposited without adding any extra operational or interfacial complexities (e.g. syringe pumps) which are a necessity in most other designs. Based on the aforementioned advantages of our device, it may be developed into a great tool for drug encapsulation, or to create capsules for biosensing where deposition of thin nanofilms with controlled interfacial properties is highly required. PMID:21218225

  4. Layer-by-layer assembly of zeolite imidazolate framework-8 as coating material for capillary electrochromatography.

    PubMed

    Qu, Qishu; Xuan, Han; Zhang, Kehua; Ding, Yi; Xu, Qin

    2016-08-01

    In this work, open-tubular capillary column coated with zeolite imidazolate framework-8 (ZIF-8) nanocrystals was prepared by a layer-by-layer method. The coating was formed by growing ZIF-8 nanocrystals on either bare fused silica capillary wall or the capillary column premodified with amino groups. The shape and the thickness of the coating formed by using these two methods were almost the same. However, the coverage of the ZIF-8 crystals on the bare fused silica capillary wall was higher than that on the capillary column premodified with amino groups. The ZIF-8 coated capillary column was evaluated for open-tubular capillary electrochromatography. The effect of pH value, buffer concentration, and applied voltage on the separation of phenols was investigated. Good separation of nine phenolic isomers was achieved because of the strong interaction between unsaturated Zn sites and phenols. The column performance for o-nitrophenol was as high as 208 860 plates m(-1) . The run-to-run, day-to-day, and column-to-column reproducibility of retention time and resolution for p-nitrophenol and o-nitrophenol were very good with RSDs of less than 6.5%. PMID:27174427

  5. Flame retardation of cellulose-rich fabrics via a simplified layer-by-layer assembly.

    PubMed

    Yang, Jun-Chi; Liao, Wang; Deng, Shi-Bi; Cao, Zhi-Jie; Wang, Yu-Zhong

    2016-10-20

    Due to the high cellulose content of cotton (88.0-96.5%), the flame retardation of cotton fabrics can be achieved via an approach for the flame retardation of cellulose. In this work, a facile water-based flame retardant coating was deposited on cotton fabrics by a 'simplified' layer-by-layer (LbL) assembly. The novel coating solution was based on a mild reaction between ammonium polyphosphate (APP) and branched polyethyleneimine (BPEI), and the reaction mechanism was studied. TGA results showed that the char residues of coated fabrics were remarkably increased. The fabric with only 5wt% coating showed self-extinguishing in the horizontal flame test, and the peak heat release rate (pHRR) in cone calorimeter test decreased by 51%. Furthermore, this coating overcame a general drawback of flame-retardant LbL assembly which was easily washed away. Therefore, the simplified LbL method provides a fast, low-cost, eco-friendly and wash-durable flame-retardant finishing for the cellulose-rich cotton fabrics. PMID:27474586

  6. Self-limiting layer-by-layer oxidation of atomically thin WSe2.

    PubMed

    Yamamoto, Mahito; Dutta, Sudipta; Aikawa, Shinya; Nakaharai, Shu; Wakabayashi, Katsunori; Fuhrer, Michael S; Ueno, Keiji; Tsukagoshi, Kazuhito

    2015-03-11

    Growth of a uniform oxide film with a tunable thickness on two-dimensional transition metal dichalcogenides is of great importance for electronic and optoelectronic applications. Here we demonstrate homogeneous surface oxidation of atomically thin WSe2 with a self-limiting thickness from single- to trilayers. Exposure to ozone (O3) below 100 °C leads to the lateral growth of tungsten oxide selectively along selenium zigzag-edge orientations on WSe2. With further O3 exposure, the oxide regions coalesce and oxidation terminates leaving a uniform thickness oxide film on top of unoxidized WSe2. At higher temperatures, oxidation evolves in the layer-by-layer regime up to trilayers. The oxide films formed on WSe2 are nearly atomically flat. Using photoluminescence and Raman spectroscopy, we find that the underlying single-layer WSe2 is decoupled from the top oxide but hole-doped. Our findings offer a new strategy for creating atomically thin heterostructures of semiconductors and insulating oxides with potential for applications in electronic devices. PMID:25646637

  7. Lubricant-infused nanoparticulate coatings assembled by layer-by-layer deposition

    DOE PAGESBeta

    Sunny, Steffi; Vogel, Nicolas; Howell, Caitlin; Vu, Thy L.; Aizenberg, Joanna

    2014-09-01

    Omniphobic coatings are designed to repel a wide range of liquids without leaving stains on the surface. A practical coating should exhibit stable repellency, show no interference with color or transparency of the underlying substrate and, ideally, be deposited in a simple process on arbitrarily shaped surfaces. We use layer-by-layer (LbL) deposition of negatively charged silica nanoparticles and positively charged polyelectrolytes to create nanoscale surface structures that are further surface-functionalized with fluorinated silanes and infiltrated with fluorinated oil, forming a smooth, highly repellent coating on surfaces of different materials and shapes. We show that four or more LbL cycles introducemore » sufficient surface roughness to effectively immobilize the lubricant into the nanoporous coating and provide a stable liquid interface that repels water, low-surface-tension liquids and complex fluids. The absence of hierarchical structures and the small size of the silica nanoparticles enables complete transparency of the coating, with light transmittance exceeding that of normal glass. The coating is mechanically robust, maintains its repellency after exposure to continuous flow for several days and prevents adsorption of streptavidin as a model protein. As a result, the LbL process is conceptually simple, of low cost, environmentally benign, scalable, automatable and therefore may present an efficient synthetic route to non-fouling materials.« less

  8. Lubricant-infused nanoparticulate coatings assembled by layer-by-layer deposition

    SciTech Connect

    Sunny, Steffi; Vogel, Nicolas; Howell, Caitlin; Vu, Thy L.; Aizenberg, Joanna

    2014-09-01

    Omniphobic coatings are designed to repel a wide range of liquids without leaving stains on the surface. A practical coating should exhibit stable repellency, show no interference with color or transparency of the underlying substrate and, ideally, be deposited in a simple process on arbitrarily shaped surfaces. We use layer-by-layer (LbL) deposition of negatively charged silica nanoparticles and positively charged polyelectrolytes to create nanoscale surface structures that are further surface-functionalized with fluorinated silanes and infiltrated with fluorinated oil, forming a smooth, highly repellent coating on surfaces of different materials and shapes. We show that four or more LbL cycles introduce sufficient surface roughness to effectively immobilize the lubricant into the nanoporous coating and provide a stable liquid interface that repels water, low-surface-tension liquids and complex fluids. The absence of hierarchical structures and the small size of the silica nanoparticles enables complete transparency of the coating, with light transmittance exceeding that of normal glass. The coating is mechanically robust, maintains its repellency after exposure to continuous flow for several days and prevents adsorption of streptavidin as a model protein. As a result, the LbL process is conceptually simple, of low cost, environmentally benign, scalable, automatable and therefore may present an efficient synthetic route to non-fouling materials.

  9. Nanocoating for biomolecule delivery using layer-by-layer self-assembly

    PubMed Central

    Keeney, M.; Jiang, X. Y.; Yamane, M.; Lee, M.; Goodman, S.

    2016-01-01

    Since its introduction in the early 1990s, layer-by-layer (LbL) self-assembly of films has been widely used in the fields of nanoelectronics, optics, sensors, surface coatings, and controlled drug delivery. The growth of this industry is propelled by the ease of film manufacture, low cost, mild assembly conditions, precise control of coating thickness, and versatility of coating materials. Despite the wealth of research on LbL for biomolecule delivery, clinical translation has been limited and slow. This review provides an overview of methods and mechanisms of loading biomolecules within LbL films and achieving controlled release. In particular, this review highlights recent advances in the development of LbL coatings for the delivery of different types of biomolecules including proteins, polypeptides, DNA, particles and viruses. To address the need for co-delivery of multiple types of biomolecules at different timing, we also review recent advances in incorporating compartmentalization into LbL assembly. Existing obstacles to clinical translation of LbL technologies and enabling technologies for future directions are also discussed. PMID:27099754

  10. Resistive switching memory properties of layer-by-layer assembled enzyme multilayers.

    PubMed

    Baek, Hyunhee; Lee, Chanwoo; Lim, Kwang-il; Cho, Jinhan

    2012-04-20

    The properties of enzymes, which can cause reversible changes in currents through redox reactions in solution, are of fundamental and practical importance in bio-electrochemical applications. These redox properties of enzymes are often associated with their charge-trap sites. Here, we demonstrate that reversible changes in resistance in dried lysozyme (LYS) films can be generated by an externally applied voltage as a result of charge trap/release. Based on such changes, LYS can be used as resistive switching active material for nonvolatile memory devices. In this study, cationic LYS and anionic poly(styrene sulfonate) (PSS) layers were alternately deposited onto Pt-coated silicon substrates using a layer-by-layer assembly method. Then, top electrodes were deposited onto the top of LYS/PSS multilayers to complete the fabrication of the memory-like device. The LYS/PSS multilayer devices exhibited typical resistive switching characteristics with an ON/OFF current ratio above 10(2), a fast switching speed of 100 ns and stable performance. Furthermore, the insertion of insulating polyelectrolytes (PEs) between the respective LYS layers significantly enhanced the memory performance of the devices showing a high ON/OFF current ratio of ~10(6) and low levels of power consumption. PMID:22456233

  11. Novel Layer-by-Layer Deposition Technique for the Preparation of Double-Chambered Nanoparticle Formulations.

    PubMed

    Sakr, Omar S; Jordan, Olivier; Borchard, Gerrit

    2015-08-01

    In this work, we report a novel method of layer-by-layer (LbL) deposition using concentration tubes that enables faster process and less damage to fragile nanocores than previously described methods. Such methods are generally based on continuous cycles of centrifugation/resuspension for long times and at high speeds, which may eventually lead to the aggregation of the deflocculated suspension of nanoparticles into a compact, non-resuspendable cake. The new method was applied to the preparation of a double-chambered nanocarrier system, which was successfully loaded with a fluorescently labeled model protein (lysozyme) and a model small molecule (fluorescein) in two defined and separate compartments, namely the poly lactide-co-glycolide (PLGA) core (∼110 nm) and an outer shell obtained by LbL surface coating. The new method yielded stable suspensions of drug-loaded, LbL-coated PLGA nanoparticles, while centrifugation at high speeds and long time intervals leads to a compact cake of non-resuspendable aggregates. These nanocarriers were taken up by MDCK cells in vitro, where a colocalization of both model compounds was shown by confocal imaging. PMID:26017561

  12. Selective growth of graphene in layer-by-layer via chemical vapor deposition.

    PubMed

    Park, Jaehyun; An, Hyosub; Choi, Dong-Chul; Hussain, Sajjad; Song, Wooseok; An, Ki-Seok; Lee, Won-Jun; Lee, Naesung; Lee, Wan-Gyu; Jung, Jongwan

    2016-08-14

    Selective and precise control of the layer number of graphene remains a critical issue for the practical applications of graphene. First, it is highly challenging to grow a continuous and uniform few-layer graphene since once the monolayer graphene fully covers a copper (Cu) surface, the growth of the second layer stops, resulting in mostly nonhomogeneous films. Second, from the selective adlayer growth point of view, there is no clear pathway for achieving this. We have developed the selective growth of a graphene adlayer in layer-by-layer via chemical vapor deposition (CVD) which makes it possible to stack graphene on a specific position. The key idea is to deposit a thin Cu layer (∼40 nm thick) on pre-grown monolayer graphene and to apply additional growth. The thin Cu atop the graphene/Cu substrate acts as a catalyst to decompose methane (CH4) gas during the additional growth. The adlayer is grown selectively on the pre-grown graphene, and the thin Cu is removed through evaporation during CVD, eventually forming large-area and uniform double layer graphene. With this technology, highly uniform graphene films with precise thicknesses of 1 to 5 layers and graphene check patterns with 1 to 3 layers were successfully demonstrated. This method provides precise LBL growth for a uniform graphene film and a technique for the design of new graphene devices. PMID:27436358

  13. Bimodal Tumor-Targeting from Microenvironment Responsive Hyaluronan Layer-by-Layer (LbL) Nanoparticles

    PubMed Central

    2015-01-01

    Active targeting of nanoscale drug carriers can improve tumor-specific delivery; however, cellular heterogeneity both within and among tumor sites is a fundamental barrier to their success. Here, we describe a tumor microenvironment-responsive layer-by-layer (LbL) polymer drug carrier that actively targets tumors based on two independent mechanisms: pH-dependent cellular uptake at hypoxic tumor pH and hyaluronan-directed targeting of cell-surface CD44 receptor, a well-characterized biomarker for breast and ovarian cancer stem cells. Hypoxic pH-induced structural reorganization of hyaluronan-LbL nanoparticles was a direct result of the nature of the LbL electrostatic complex, and led to targeted cellular delivery in vitro and in vivo, with effective tumor penetration and uptake. The nanoscale drug carriers selectively bound CD44 and diminished cancer cell migration in vitro, while co-localizing with the CD44 receptor in vivo. Multimodal targeting of LbL nanoparticles is a powerful strategy for tumor-specific cancer diagnostics and therapy that can be accomplished using a single bilayer of polyamine and hyaluronan that, when assembled, produce a dynamic and responsive cell–particle interface. PMID:25100313

  14. Preparation and characterization of directly compactible layer-by-layer nanocoated cellulose.

    PubMed

    Strydom, Schalk J; Otto, Daniel P; Liebenberg, Wilna; Lvov, Yuri M; de Villiers, Melgardt M

    2011-02-14

    Microcrystalline cellulose is a commonly used direct compression tablet diluent and binder. It is derived from purified α-cellulose in an environmentally unfriendly process that involves mineral acid catalysed hydrolysis. In this study Kraft softwood fibers was nanocoated using a layer-by-layer self-assembling process. Powder flow and compactibility results showed that the application of nano-thin polymer layers on the fibers turned non-flowing, non-compacting cellulose into powders that can be used in the direct compression of tablets. The powder flow properties and tableting indices of compacts compressed from these nanocoated microfibers were similar or better than that of directly compactible microcrystalline cellulose powders. Cellulose microfibers coated with four PSS/PVP bilayers had the best compaction properties while still producing tablets that were able to absorb water and disintegrate and did not retard the dissolution of a model drug acetaminophen. The advantages of nanocoating rather than traditional pharmaceutical coating are that it add less than 1% to the weight of the fibers and allows control of the molecular properties of the surface and the thickness of the coat to within a few nanometers. This process is potentially friendlier to the environment because of the type and quantity of materials used. Also, it does not involve acid-catalyzed hydrolysis and neutralization of depolymerized cellulose. PMID:21056645

  15. Conductive wood microfibres for smart paper through layer-by-layer nanocoating

    NASA Astrophysics Data System (ADS)

    Agarwal, Mangilal; Lvov, Yuri; Varahramyan, Kody

    2006-11-01

    A layer-by-layer (LbL) self-assembly of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) on lignocellulose wood microfibres was used to make conductive fibres and paper. Polycations such as poly(allylamine hydrochloride) (PAH), and poly(ethyleneimine) (PEI) were used in alternate deposition with anionic conductive polythiophene (PEDOT-PSS) to construct the multilayer nanofilms on wood microfibres. Current-voltage characterization was measured on single fibres using a Keithley probe measurement system after deposition of every PEDOT-PSS monolayer to study the electrical properties of the coating. The conductivity of the microfibres increased linearly with increasing number of bilayers of PEDOT-PSS/polycation. The measured conductivities of the coated microfibres ranged from 1 to 10 S cm-1. It was also observed that the conductivity of the fibres (i.e., coating of PEDOT-PSS) depends upon the type of polycations used to alternate with the polythiophene. In this work we have demonstrated successful scale integration from nano to micro and macroscale (nanocoating-microfibres-macropaper) in developing new paper material. The conductive paper that has been produced (and its fabrication method) can be used for the development of smart paper technology on monitoring of electrical, and optical/electrical signals.

  16. Layer-by-layer fully printed Zn-MnO2 batteries with improved internal resistance and cycle life

    NASA Astrophysics Data System (ADS)

    Kim, B.; Winslow, R.; Lin, I.; Gururangan, K.; Evans, J.; Wright, P.

    2015-12-01

    This research created direct layer-by-layer printed zinc-based secondary batteries with an ionic liquid-based gel polymer electrolyte to power micro- and meso-scale devices. The use of a gel polymer electrolyte composed of [BMIM][Otf] ionic liquid, ZnOtf salt, and PVDF-HFP polymer binder enabled direct layer-by-layer printing of functional cells. The effects of additive printing methods on cell discharge capacity, cycle life, and internal resistance are discussed. Fully printed cells have demonstrated average discharge capacities of 0.548 mAh/cm2, energy densities of 8.20 mWh/cm3, and specific energies of 2.46 mWh/g with some cells achieving over 1000 cycles without catastrophic failure. Layer-by-layer printed devices exhibited decreased DC internal resistance and longer cycle life over previous mechanically assembled cells.

  17. Nanomechanics of layer-by-layer polyelectrolyte complexes: a manifestation of ionic cross-links and fixed charges.

    PubMed

    Han, Biao; Chery, Daphney R; Yin, Jie; Lu, X Lucas; Lee, Daeyeon; Han, Lin

    2016-01-28

    This study investigates the roles of two distinct features of ionically cross-linked polyelectrolyte networks - ionic cross-links and fixed charges - in determining their nanomechanical properties. The layer-by-layer assembled poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) network is used as the model material. The densities of ionic cross-links and fixed charges are modulated through solution pH and ionic strength (IS), and the swelling ratio, elastic and viscoelastic properties are quantified via an array of atomic force microscopy (AFM)-based nanomechanical tools. The roles of ionic cross-links are underscored by the distinctive elastic and viscoelastic nanomechanical characters observed here. First, as ionic cross-links are highly sensitive to solution conditions, the instantaneous modulus, E0, exhibits orders-of-magnitude changes upon pH- and IS-governed swelling, distinctive from the rubber elasticity prediction based on permanent covalent cross-links. Second, ionic cross-links can break and self-re-form, and this mechanism dominates force relaxation of PAH/PAA under a constant indentation depth. In most states, the degree of relaxation is >90%, independent of ionic cross-link density. The importance of fixed charges is highlighted by the unexpectedly more elastic nature of the network despite low ionic cross-link density at pH 2.0, IS 0.01 M. Here, the complex is a net charged, loosely cross-linked, where the degree of relaxation is attenuated to ≈50% due to increased elastic contribution arising from fixed charge-induced Donnan osmotic pressure. In addition, this study develops a new method for quantifying the thickness of highly swollen polymer hydrogel films. It also underscores important technical considerations when performing nanomechanical tests on highly rate-dependent polymer hydrogel networks. These results provide new insights into the nanomechanical characters of ionic polyelectrolyte complexes, and lay the ground for further

  18. The use of native chemical functional groups presented by wound beds for the covalent attachment of polymeric microcarriers of bioactive factors

    PubMed Central

    Jain, Rishabh; Agarwal, Ankit; Kierski, Patricia R.; Schurr, Michael J.; Murphy, Christopher J.; McAnulty, Jonathan F.; Abbott, Nicholas L.

    2012-01-01

    The development of versatile methods that provide spatial and temporal control over the presentation of physical and biochemical cues on wound beds can lead to new therapeutic approaches that expedite wound healing by favorably influencing cellular behaviors. Towards that goal, we report that native chemical functional groups presented by wound beds can be utilized for direct covalent attachment of polymeric microbeads. Specifically, we demonstrated the covalent attachment of maleimide-functionalized and catechol-functionalized microbeads, made of either polystyrene (non-degradable) or poly(lactic-co-glycolic acid) ((PLGA), degradable), to sulfhydryl and amine groups present on porcine dermis used here as an ex vivo model wound bed. A pronounced increase (10–70 fold) in the density and persistence of the covalently reactive microbeads was observed relative to microbeads that adsorb via non-covalent interactions. Complementary characterization of the surface chemistry of the ex vivo wound beds using Raman microspectroscopy provides support for our conclusion that the increased adherence of the maleimide-functionalized beads results from their covalent bond formation with sulfhydryl groups on the wound bed. The attachment of maleimide-functionalized microbeads to wounds created in live wild-type and diabetic mice led to observations of differential immobilization of microbeads on them and were consistent with anticipated differences in the presentation of sulfhydryl groups on the two different wound types. Finally, the incorporation of maleimide-functionalized microbeads in wounds created in wild-type mice did not impair the rate of wound closure relative to an untreated wound. Overall, the results presented in this paper enable a general and facile approach to the engineering of wound beds in which microbeads are covalently immobilized to wound beds. Such immobilized microbeads could be used in future studies to release bioactive factors (e.g., antimicrobial

  19. The Effect of Covalently-Attached ATRP-Synthesized Polymers on Membrane Stability and Cytoprotection in Human Erythrocytes

    PubMed Central

    Clafshenkel, William P.; Murata, Hironobu; Andersen, Jill; Creeger, Yehuda; Russell, Alan J.

    2016-01-01

    Erythrocytes have been described as advantageous drug delivery vehicles. In order to ensure an adequate circulation half-life, erythrocytes may benefit from protective enhancements that maintain membrane integrity and neutralize oxidative damage of membrane proteins that otherwise facilitate their premature clearance from circulation. Surface modification of erythrocytes using rationally designed polymers, synthesized via atom-transfer radical polymerization (ATRP), may further expand the field of membrane-engineered red blood cells. This study describes the fate of ATRP-synthesized polymers that were covalently attached to human erythrocytes as well as the effect of membrane engineering on cell stability under physiological and oxidative conditions in vitro. The biocompatible, membrane-reactive polymers were homogenously retained on the periphery of modified erythrocytes for at least 24 hours. Membrane engineering stabilized the erythrocyte membrane and effectively neutralized oxidative species, even in the absence of free-radical scavenger-containing polymers. The targeted functionalization of Band 3 protein by NHS-pDMAA-Cy3 polymers stabilized its monomeric form preventing aggregation in the presence of the crosslinking reagent, bis(sulfosuccinimidyl)suberate (BS3). A free radical scavenging polymer, NHS-pDMAA-TEMPO˙, provided additional protection of surface modified erythrocytes in an in vitro model of oxidative stress. Preserving or augmenting cytoprotective mechanisms that extend circulation half-life is an important consideration for the use of red blood cells for drug delivery in various pathologies, as they are likely to encounter areas of imbalanced oxidative stress as they circuit the vascular system. PMID:27331401

  20. Perfluorinated poly(dimethylsiloxane) via the covalent attachment of perfluoroalkylsilanes on the oxidized surface: Effects on zeta-potential values

    NASA Astrophysics Data System (ADS)

    Sun, Peiling; Horton, J. Hugh

    2013-04-01

    Poly(dimethylsiloxane) (PDMS) is a widely-used polymer in microfluidic devices due to its range of physical and chemical properties suitable for molding micron-sized features. However, its hydrophobicity also leads to some limitations: it poorly supports electro-osmotic flow, and can be incompatible with biomolecules and with many organic solvents. Surface modification is commonly used to vary PDMS surface properties to make it more suitable for specific microfluidic applications. Here, we report on the surface modification of PDMS using perfluoroalkane-triethoxysilanes, via the covalent attachment of triethoxysilane groups on plasma-oxidized PDMS. A device constructed from such fluorinated materials could be used for separating fluorous-tagged proteins or peptides. Modified PDMS were characterized using a range of surface analytical methods. In particular, zeta- (ζ-) potential values at the interfaces of both modified and unmodified PDMS and under varying pH conditions were measured, as ζ-potential is an essential parameter to support electroosmotic flow (EOF), a common pumping method in microfluidic devices. The results showed the length of fluorinated alkane chain has significant effect on the density of surface modifying species and topography following modification. In addition, the perfluorinated modification increases the magnitude of the ζ-potential at the PDMS interface when compared to that of native PDMS, increasing the electro-osmotic flow rate, over a wide pH range. The modified surface is resistant to the diffusion of PDMS oligomers that affects other PDMS surface modification processes.

  1. Development of a Dehalogenase-Based Protein Fusion Tag Capable of Rapid, Selective and Covalent Attachment to Customizable Ligands

    PubMed Central

    Encell, Lance P; Friedman Ohana, Rachel; Zimmerman, Kris; Otto, Paul; Vidugiris, Gediminas; Wood, Monika G; Los, Georgyi V; McDougall, Mark G; Zimprich, Chad; Karassina, Natasha; Learish, Randall D; Hurst, Robin; Hartnett, James; Wheeler, Sarah; Stecha, Pete; English, Jami; Zhao, Kate; Mendez, Jacqui; Benink, Hélène A; Murphy, Nancy; Daniels, Danette L; Slater, Michael R; Urh, Marjeta; Darzins, Aldis; Klaubert, Dieter H; Bulleit, Robert F; Wood, Keith V

    2012-01-01

    Our fundamental understanding of proteins and their biological significance has been enhanced by genetic fusion tags, as they provide a convenient method for introducing unique properties to proteins so that they can be examinedin isolation. Commonly used tags satisfy many of the requirements for applications relating to the detection and isolation of proteins from complex samples. However, their utility at low concentration becomes compromised if the binding affinity for a detection or capture reagent is not adequate to produce a stable interaction. Here, we describe HaloTag® (HT7), a genetic fusion tag based on a modified haloalkane dehalogenase designed and engineered to overcome the limitation of affinity tags by forming a high affinity, covalent attachment to a binding ligand. HT7 and its ligand have additional desirable features. The tag is relatively small, monomeric, and structurally compatible with fusion partners, while the ligand is specific, chemically simple, and amenable to modular synthetic design. Taken together, the design features and molecular evolution of HT7 have resulted in a superior alternative to common tags for the overexpression, detection, and isolation of target proteins. PMID:23248739

  2. Enzymatic amplification-free nucleic acid hybridisation sensing on nanostructured thick-film electrodes by using covalently attached methylene blue.

    PubMed

    García-González, Raquel; Costa-García, Agustín; Fernández-Abedul, M Teresa

    2015-09-01

    Amplification-free (referring to enzymatic amplification step) detection methodologies are increasing in biosensor development due to the need of faster and simpler protocols. However, for maintaining sensitivity without this step, highly detectable molecules or very sensitive detection techniques are required. The nanostructuration of transducer surfaces with carbon nanotubes (CNTs), gold nanoparticles (AuNPs) or both in nanohybrid configurations has been employed in this work for DNA hybridisation sensing purposes. Methylene blue (MB), covalently attached to single stranded DNA, (ssDNA) was incubated with a complementary sequence immobilized on nanostructured screen-printed electrodes (AuSPEs). Although CNTs can increase notoriously the signal of the marker, adsorptive properties should also be considered when bioassays are performed because non-specific adsorption (NSA) phenomena are magnified. In this work, strategies for decreasing NSA were thoroughly evaluated for the detection of Mycoplasma pneumoniae (MP) on CNTs-nanostructured screen-printed electrodes. Among them, the employ of UV-radiation or long incubation times (72h) allowed obtaining higher signals for the complementary strand with respect to the non-complementary one. The use of CNTs/AuNPs nanohybrids, together with the use of streptavidin-biotin (ST-B) interaction allows the higher differentiation (with a 3.5 ratio) in the genosensing of M. pneumoniae. PMID:26003686

  3. Development of a dehalogenase-based protein fusion tag capable of rapid, selective and covalent attachment to customizable ligands.

    PubMed

    Encell, Lance P; Friedman Ohana, Rachel; Zimmerman, Kris; Otto, Paul; Vidugiris, Gediminas; Wood, Monika G; Los, Georgyi V; McDougall, Mark G; Zimprich, Chad; Karassina, Natasha; Learish, Randall D; Hurst, Robin; Hartnett, James; Wheeler, Sarah; Stecha, Pete; English, Jami; Zhao, Kate; Mendez, Jacqui; Benink, Hélène A; Murphy, Nancy; Daniels, Danette L; Slater, Michael R; Urh, Marjeta; Darzins, Aldis; Klaubert, Dieter H; Bulleit, Robert F; Wood, Keith V

    2012-01-01

    Our fundamental understanding of proteins and their biological significance has been enhanced by genetic fusion tags, as they provide a convenient method for introducing unique properties to proteins so that they can be examinedin isolation. Commonly used tags satisfy many of the requirements for applications relating to the detection and isolation of proteins from complex samples. However, their utility at low concentration becomes compromised if the binding affinity for a detection or capture reagent is not adequate to produce a stable interaction. Here, we describe HaloTag® (HT7), a genetic fusion tag based on a modified haloalkane dehalogenase designed and engineered to overcome the limitation of affinity tags by forming a high affinity, covalent attachment to a binding ligand. HT7 and its ligand have additional desirable features. The tag is relatively small, monomeric, and structurally compatible with fusion partners, while the ligand is specific, chemically simple, and amenable to modular synthetic design. Taken together, the design features and molecular evolution of HT7 have resulted in a superior alternative to common tags for the overexpression, detection, and isolation of target proteins. PMID:23248739

  4. Selective growth of graphene in layer-by-layer via chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Park, Jaehyun; An, Hyosub; Choi, Dong-Chul; Hussain, Sajjad; Song, Wooseok; An, Ki-Seok; Lee, Won-Jun; Lee, Naesung; Lee, Wan-Gyu; Jung, Jongwan

    2016-07-01

    Selective and precise control of the layer number of graphene remains a critical issue for the practical applications of graphene. First, it is highly challenging to grow a continuous and uniform few-layer graphene since once the monolayer graphene fully covers a copper (Cu) surface, the growth of the second layer stops, resulting in mostly nonhomogeneous films. Second, from the selective adlayer growth point of view, there is no clear pathway for achieving this. We have developed the selective growth of a graphene adlayer in layer-by-layer via chemical vapor deposition (CVD) which makes it possible to stack graphene on a specific position. The key idea is to deposit a thin Cu layer (~40 nm thick) on pre-grown monolayer graphene and to apply additional growth. The thin Cu atop the graphene/Cu substrate acts as a catalyst to decompose methane (CH4) gas during the additional growth. The adlayer is grown selectively on the pre-grown graphene, and the thin Cu is removed through evaporation during CVD, eventually forming large-area and uniform double layer graphene. With this technology, highly uniform graphene films with precise thicknesses of 1 to 5 layers and graphene check patterns with 1 to 3 layers were successfully demonstrated. This method provides precise LBL growth for a uniform graphene film and a technique for the design of new graphene devices.Selective and precise control of the layer number of graphene remains a critical issue for the practical applications of graphene. First, it is highly challenging to grow a continuous and uniform few-layer graphene since once the monolayer graphene fully covers a copper (Cu) surface, the growth of the second layer stops, resulting in mostly nonhomogeneous films. Second, from the selective adlayer growth point of view, there is no clear pathway for achieving this. We have developed the selective growth of a graphene adlayer in layer-by-layer via chemical vapor deposition (CVD) which makes it possible to stack graphene

  5. Protein adsorption on polyanion/polycation layer-by-layer assembled polyelectrolyte films.

    PubMed

    Yang, Jen Ming; Tsai, Rong-Ze; Hsu, Chih-Chin

    2016-06-01

    As layer-by-layer self-assembly deposition (LbL) is a versatile technique for surface modification, protein adsorption on the LbL modified glass is evaluated in this study. At the beginning, glass slides was silanized by 3-aminopropyltriethoxysilane (APTES). Sodium alginate (Alg), poly(γ-glutamic acid) (PGA) and poly(aspartic acid) (PAsp) were selected as polyanion electrolytes and chitosan (CS) was used as the polycation electrolyte. Both polyanion and polycation electrolytes alternately deposited on the silanized glass slide surface by the LbL technique to get three different polyanion/chitosan series of LbL films ([Alg/CS], [PGA/CS], and [PAsp/CS]). Three kinds of kinetic model including pseudo-first-order, second-order kinetic and intraparticle diffusion model were used to evaluate the adsorption of albumin on the three different polyanion/chitosan series of LbL films. It is found that the adsorption of albumin on the polyanion/chitosan series of LbL films can be described well with the pseudo-second-order kinetic mechanism. To make sure if the pseudo-second-order kinetic mechanism of protein adsorbed on the other polyanion/polycation LbL films is also suitable, poly(allylamine hydrochloride) (PAH) and poly(L-lysine) (PLL) are used as two other polycations. The [polyanion/PAH] and [polyanion/PLL] series of LbL films were prepared with the same LbL technique for albumin, fibrinogen, and fibronectin adsorption. From the results, it is found that albumin, fibrinogen, and fibronectin adsorption on the various polyanion/polycation LbL films can be described well with the pseudo-second-order kinetic mechanism. The protein adsorbed at equilibrium and rate constant of protein adsorbed on the various LbL films can be determined. PMID:26938325

  6. [Electrochemical sensor for acetaminophen based on layer-by-layer self assembly technique].

    PubMed

    Ru, Hui-ying; Xu, Fen; Sun, Li-xian; Liu, Qing-shan; Liu, Na

    2011-10-01

    A novel type of carbon nanotube-coated Au nanoparticle and [bmim]BF4 composite modified glassy carbon electrode was fabricated by a layer-by-layer self-assembly technique. The electrochemical performance of acetaminophen (ACOP) on the modified electrode was investigated by cyclic voltammetry. The Nafion/GNPs/RTIL/MWNTs/GC electrode showed an excellent electrocatalytic activity for the oxidation of ACOP and accelerated electron transfer between the electrode and ACOP. For ACOP, the reversible electrochemical process was observed on the Nafion/GNPs/RTIL/MWNTs/GC electrode, while irreversible electrochemical process occurred on the GC electrode. For the Nafion/GNPs/RTIL/MWNTs/GC electrode, the anodic peak potential of ACOP was moved from 0.562 V to 0.413 V, with a potential drop of 149 mV. At the same time, the reduction peak potential was 0.384 V, and the potential difference was only 29 mV. It was shown that the modified electrode possessed higher electrocatalytic activity and more sensitive effect for the detection of ACOP than both MWNTs/GC electrode and GC electrode. The effects of the different experimental conditions on the electrochemical behaviors of ACOP were explored. Under the optimum conditions of preparation and experimental, the linear calibration curves of ACOP were obtained in a wide range of 2 x 10(-1) to 4.0 x 10(-4) mol x L(-1) with a correlation coefficient 0.999 2 and a detection limit of 2.6 x 10(-8) mol x L(-1) (the ratio of signal to noise, 3:1). The recovery rate was 97.9%-100.8%. This method can be used to determine ACOP in paracetamol tablets with satisfactory results. PMID:22242455

  7. Tissue Integration of Growth Factor-Eluting Layer-by-Layer Polyelectrolyte Multilayer Coated Implants

    PubMed Central

    Macdonald, Mara L.; Samuel, Raymond E.; Shah, Nisarg J.; Padera, Robert; Beben, Yvette M.; Hammond, Paula T.

    2011-01-01

    Drug eluting coatings that can direct the host tissue response to implanted medical devices have the potential to ameliorate both the medical and financial burden of complications from implantation. However, because many drugs useful in this arena are biologic in nature, a paucity of delivery strategies for biologics, including growth factors, currently limits the control that can be exerted on the implantation environment. Layer-by-Layer (LbL) polyelectrolyte multilayer films are highly attractive as ultrathin biologic reservoirs, due to conformal coating of difficult geometries, aqueous processing likely to preserve fragile protein function, and tenability of incorporation and release profiles. Herein, we describe the first LbL films capable of microgram-scale release of the biologic Bone Morphogenetic Protein 2 (BMP-2), which is capable of directing the host tissue response to create bone from native progenitor cells. Ten micrograms of BMP-2 are released over a period of two weeks in vitro; less than 1% is released in the first 3 hours (compared with commercial collagen matrices which can release up to 60% of BMP-2, too quickly to induce differentiation). BMP-2 released from LbL films retains its ability to induce bone differentiation in MC3T3 E1S4 preosteoblasts, as measured by induction of alkaline phosphatase and stains for calcium (via Alizarin Red) and calcium matrix (via Von Kossa). In vivo, BMP-2 film coated scaffolds were compared with film coated scaffolds lacking BMP-2. BMP-2 coatings implanted intramuscularly were able to initiate host progenitor cells to differentiate into bone, which matured and expanded from four to nine weeks as measured by MicroCT and histology. Such LbL films represent new steps towards controlling and tuning host response to implanted medical devices, which may ultimately increase the success of implanted devices, provide alternative new approaches toward bone wound healing, and lay the foundation for development of a multi

  8. The effect of electrostatic heparin/collagen layer-by-layer coating degradation on the biocompatibility

    NASA Astrophysics Data System (ADS)

    Chen, Jialong; Huang, Nan; Li, Quanli; Chu, Chun H.; Li, Jun; Maitz, Manfred F.

    2016-01-01

    Electrostatic layer-by-layer coatings of heparin and collagen have been suggested before to improve the biocompatibility of blood-contacting devices. However, to our knowledge, there have been no systematic studies about the effect of degradation of this coating on its biocompatibility, anticoagulant properties and the cyto-compatibility. The purpose of this study was to design an in vitro experiment in this regard that can assess the degradation behavior and the biocompatibility change of the coating. The coating degradation in physiological saline (PS) under static and dynamic condition was monitored by DR-FTIR, SEM, AFM and water contact angle, moreover, heparin densities on the topmost surface and the release heparin every day were measured by toluidine blue O (TBO) assay. The results showed that the degradation rate of the coating in is much faster under flow and shear conditions than during static incubation, and only very limited collagen and heparin remain on the surface after 15 days incubation in dynamic condition. With the degradation, the hemocompatibility of the coating got worse, especially when incubated under dynamic conditions. The degradation products of the coating do not lead to coagulation but behave -as heparin- anticoagulant. The compatibility of the coating to endothelial cells improved within 15d incubation in static medium, but it for degradation under dynamic conditions, it improved for 5d but at 15d incubation, it was almost as low as for the bare substrate. These results highlight the necessity for appropriate testing of newly developed coatings not only in the initial state but also after extended exposure to a physiological ambient.

  9. Bioactive coronary stent coating based on layer-by-layer technology for siRNA release.

    PubMed

    Hossfeld, S; Nolte, A; Hartmann, H; Recke, M; Schaller, M; Walker, T; Kjems, J; Schlosshauer, B; Stoll, D; Wendel, H-P; Krastev, R

    2013-05-01

    One procedure to treat stenotic coronary arteries is the percutaneous transluminal coronary angioplasty (PTCA). In recent years, drug-eluting stents (DESs) have demonstrated elaborate ways to improve outcomes of intravascular interventions. To enhance DESs, the idea has evolved to design stents that elute specific small interfering RNA (siRNA) for better vascular wall regeneration. Layer-by-layer (LbL) technology offers the possibility of incorporating siRNA nanoplexes (NPs) to achieve bioactive medical implant coatings. The LbL technique was used to achieve hyaluronic acid/chitosan (HA/Chi) films with incorporated Chi-siRNA NPs. The multilayer growth was monitored by quartz crystal microbalance. The coating on the stents and its thickness were analyzed using fluorescence and scanning electron microscopy. All stents showed a homogeneous coating, and the polyelectrolyte multilayers (PEMs) were not disrupted after ethylene oxide sterilization or expansion. The in vitro uptake of fluorescent-labeled NPs from PEMs in primary human endothelial cells (ECs) was analyzed by flow cytometry for 2, 6 and 9 days. Furthermore, stents coated with HA/Chi and Chi-siRNA NPs were expanded into porcine arteries and showed ex vivo delivery of NPs. The films showed no critical results in terms of hemocompatibility. This study demonstrates that Chi-siRNA NPs can be incorporated into PEMs consisting of HA and Chi. We conclude that the NPs were delivered to ECs under in vitro conditions. Furthermore, under ex vivo conditions, NPs were transferred into porcine artery walls. Due to their good hemocompatibility, they might make an innovative tool for achieving bioactive coatings for coronary stents. PMID:23333865

  10. Fabrication of biofuel cell containing enzyme catalyst immobilized by layer-by-layer method

    NASA Astrophysics Data System (ADS)

    Hyun, Kyu Hwan; Han, Sang Won; Koh, Won-Gun; Kwon, Yongchai

    2015-07-01

    Enzymatic biofuel cell (EBC) employing a layer-by-layer (LbL) structure consisting of multiple layers of glucose oxidase (GOx) and poly(ethyleneimine) (PEI) at carbon nanotube (CNT) ([GOx/PEI]n/CNT) is fabricated. The [GOx/PEI]n/CNT serves as anode catalyst for promoting glucose reaction, while Pt is employed as cathode catalyst. To evaluate effect of [GOx/PEI]n/CNT on EBC performance and stability, several characterizations are conducted. The optimal GOx/PEI layer is determined electrochemically, and it turns out that [GOx/PEI]2/CNT is the best. Electron transfer rate constant of the optimal layer is 11.3 s-1, its glucose sensitivity is 83 μAmM-1cm-2, and maximum power density of EBC adopting [GOx/PEI]2/CNT is 1.34 mWcm-2. The values are superior to those of other reference structures, indicating that the [GOx/PEI]2/CNT can produce excellent reactivity, followed by improved EBC performance. In terms of redox reaction mechanism of flavin adenine dinucleotide (FAD) within [GOx/PEI]2/CNT, glucose does not affect the redox reaction of FAD, while oxygen serves as mediator in transferring electrons and protons produced by glucose oxidation into those for reduction reaction of FAD. It is also found that the [GOx/PEI]2/CNT is confined by surface reaction and the reaction is quasi-reversible. Regarding long-term stability, [GOx/PEI]2/CNT maintains ∼83% of initial activity even after two weeks.

  11. Cross-linked Bioreducible Layer-by-layer Films for Increased Cell Adhesion and Transgene Expression

    PubMed Central

    Blacklock, Jenifer; Sievers, Torsten K.; Handa, Hitesh; You, Ye-Zi; Oupický, David; Mao, Guangzhao; Möhwald, Helmuth

    2010-01-01

    The effect of cross-linking layer-by-layer (LbL) films consisting of bioreducible poly(2-dimethylaminoethyl methacrylate) (rPDMAEMA) and DNA is examined with regards to rigidity, biodegradability, cell adhesion, and transfection activity using 1,5-diiodopentane (DIP) cross-linker. DIP chemically reacts with the tertiary amines of rPDMAEMA, altering the chemical composition of these LbL films. The result is a change in surface morphology, film swelling behavior and film rigidity, measured with AFM and ellipsometry. It is found that the apparent Young’s modulus is increased more than four times its original value upon cross-linking. Cross-linking mass is additionally confirmed with quartz crystal microbalance with dissipation (QCM-D). Comprehensive analyses of these experimental values were investigated to calculate the degree of cross-linking using the rubber elasticity theory and the Flory-Rehner theory. Additionally, the Flory-Huggins parameter, χ, was calculated. Good agreement in the two methods yields a cross-linking density of ~0.82 mmol/cm3. The Flory-Huggins parameter increased upon cross-linking from 1.07 to 1.2, indicating increased hydrophobicity of the network and formation of bulk water droplets within the films. In addition, the effects of cross-linking on film disassembly by 1,4-dithiothreitol (DTT) is found to be insignificant despite the alteration in film rigidity. Mouse fibroblast cells and smooth muscle cells are used to study the effect of cross-linking on cell adhesion and cell transfection activity. In vitro transfection activity up to seven days is quantified using secreted alkaline phosphatase (SEAP) DNA. Film cross-linking is found to enhance cell adhesion and prolong the duration of cellular transfection. These results contribute to the development of bioreducible polymer coatings for localized gene delivery. PMID:20369813

  12. Layer-by-Layer Assembled Multilayer Films for Transcutaneous Drug and Vaccine Delivery

    PubMed Central

    Su, Xingfang; Kim, Byeong-Su; Kim, Sara R.; Hammond, Paula T.; Irvine, Darrell J.

    2011-01-01

    We describe protein- and oligonucleotide-loaded layer-by-layer (LbL)-assembled multiplayer films incorporating a hydrolytically degradable polymer for transcutaneous drug or vaccine delivery. Films were constructed based on electrostatic interactions between a cationic poly(β-amino ester) (denoted Poly-1) with a model protein antigen, ovalbumin (ova), and/or immunostimulatory CpG (Cytosine–phosphate diester—Guanine rich) DNA oligonucleotide adjuvant molecules. Linear growth of nanoscale Poly-1/ova bilayers was observed. Dried ova protein-loaded films rapidly deconstructed when rehydrated in saline solutions, releasing ova as non-aggregated/non-degraded protein, suggesting that the structure of biomolecules integrated into these multilayer films are preserved during release. Using confocal fluorescence microscopy and an in vivo murine ear skin model, we demonstrated delivery of ova from LbL films into barrier-disrupted skin, uptake of the protein by skin-resident antigen-presenting cells (Langerhans cells), and transport of the antigen to the skin-draining lymph nodes. Dual incorporation of ova and CpG oligonucleotides into the nanolayers of LbL films enabled dual release of the antigen and adjuvant with distinct kinetics for each component; ova was rapidly released while CpG was released in a relatively sustained manner. Applied as skin patches, these films delivered ova and CpG to Langerhans Cells in the skin. To our knowledge, this is the first demonstration of LbL films applied for the delivery of biomolecules into skin. This approach provides a new route for storage of vaccines and other immunotherapeutics in a solid-state thin film for subsequent delivery into the immunologically-rich milieu of the skin. PMID:19824655

  13. Strength improvement via coating of a cylindrical hole by layer-by-layer assembled polymer particles.

    PubMed

    Wu, Shuqing; Garfield, Lucas B; Rupert, Nicholas E; Grady, Brian P; Funkhouser, Gary P

    2010-04-01

    Negatively charged colloidal poly(methyl methacrylate-co-butyl acrylate) (P(MMA-BA)) particles and positively charged dissolved poly(ethyleneimine) (PEI) were adsorbed onto a cement block using a layer-by-layer (LBL) assembly technique. The block was fashioned so as to have a cylindrical hole running from one face to another along the long axis of the rectangular block, and a fluid containing either of the two charged materials was pumped through the block. The result was a film tens of micrometers thick, and the pressure required to crack the cement block was measured after one end of the hole was sealed. Latex particles with a T(g) near the use temperature showed the maximum improvement in the cracking stress of the blocks. In a multilayer coating with identically sized particles, the cracking stress of the blocks increased to an improvement of 25% and then dropped off with increasing number of layers, even though the relationship between film thickness and the number of layers was linear. An improvement of about 30% in the cracking stress of the coated blocks was obtained when using multiple layers with different particle sizes. The effects of the number of layers and particle size on the cracking stress suggest that both the morphology and the thickness of the film play a role in performance. Tests done under confinement, e.g., with an external stress applied to the outside of the blocks, suggest that not only does a film-forming mechanism contribute to performance but that filling of microcracks in the rock may also play a role. PMID:20423142

  14. Conductive paper fabricated by layer-by-layer assembly of polyelectrolytes and ITO nanoparticles.

    PubMed

    Peng, C Q; Thio, Y S; Gerhardt, R A

    2008-12-17

    A new salt-free approach was developed for fabricating conductive paper by layer-by-layer (LBL) assembly of conductive indium tin oxide (ITO) nanoparticles and polyelectrolytes onto wood fibers. Subsequent to the coating procedure, the fibers were manufactured into conductive paper using traditional paper making methods. The wood fibers were first coated with polyethyleneimine (PEI) and then LBL assembled with poly(sodium 4-styrenesulfonate) (PSS) and ITO for several bilayers. The surface charge intensity of both the ITO nanoparticles and the coated wood fibers were evaluated by measuring the zeta-potential of the nanoparticles and short fibers, respectively. The ITO nanoparticles were found to preferentially aggregate on defects on the fiber surfaces and formed interconnected paths, which led to the formation of conductive percolation paths throughout the whole paper. With ten bilayer coatings, the as-made paper was made DC conductive, and its sigma(dc) was measured to be 5.2 x 10(-6) S cm(-1) in the in-plane (IP) direction, while the conductivity was 1.9 x 10(-8) S cm(-1) in the through-the-thickness (TT) direction. The percolation phenomena in these LBL-assembled ITO-coated paper fibers was evaluated using scanning electron microscopy (SEM), current atomic force microscopy (I-AFM), and impedance measurements. The AC electrical properties are reported for frequencies ranging from 0.01 Hz to 1 MHz. A clear transition from insulating to conducting behavior is observed in the AC conductivity. PMID:19942775

  15. Layer-by-layer deposited organic/inorganic hybrid multilayer films containing noncentrosymmetrically orientated azobenzene chromophores.

    PubMed

    Kang, En-Hua; Bu, Tianjia; Jin, Pengcheng; Sun, Junqi; Yang, Yanqiang; Shen, Jiacong

    2007-07-01

    Organic/inorganic hybrid multilayer films with noncentrosymmetrically orientated azobenzene chromophores were fabricated by the sequential deposition of ZrO2 layers by a surface sol-gel process and subsequent layer-by-layer (LbL) adsorption of the nonlinear optical (NLO)-active azobenzene-containing polyanion PAC-azoBNS and poly(diallyldimethylammonium chloride) (PDDA). Noncentrosymmetric orientation of the NLO-active azobenzene chromophores was achieved because of the strong repulsion between the negatively charged ZrO(2) and the sulfonate groups of the azobenzene chromophore in PAC-azoBNS. Regular deposition of ZrO(2)/PAC-azoBNS/PDDA multilayer films was verified by UV-vis absorption spectroscopy and quartz crystal microbalance measurements. Both UV-vis absorption spectroscopy and transmission second harmonic generation (SHG) measurements confirmed the noncentrosymmetric orientation of the azobenzene chromophores in the as-prepared ZrO2/PAC-azoBNS/PDDA multilayer films. The square root of the SHG signal (I(2omega)(1/2)) increases with the increase of the azobenzene graft ratio in PAC-azoBNS as the number of deposition cycles of the ZrO(2)/PAC-azoBNS/PDDA films remains the same, while the second-order susceptibility chi(zzz)(2) of the film decreases with the increase of the azobenzene graft ratio. Furthermore, the present method was successfully extended to realize the noncentrosymmetric orientation of azobenzene chromophores in multilayer films when small organic azobenzene compounds with carboxylic acid and/or hydroxyl groups at one end and sulfonate groups at the other end were used. The present method was characterized by its simplicity and flexibility in film preparation, and it is anticipated to be a facile way to fabricate second-order nonlinear optical film materials. PMID:17555337

  16. Layer-by-layer fabrication of AgCl-PANI hybrid nanocomposite films for electronic tongues.

    PubMed

    Manzoli, Alexandra; Shimizu, Flavio M; Mercante, Luiza A; Paris, Elaine C; Oliveira, Osvaldo N; Correa, Daniel S; Mattoso, Luiz H C

    2014-11-28

    The fabrication of nanostructured films with tailored properties is essential for many applications, particularly with materials such as polyaniline (PANI) whose electrical characteristics may be easily tuned. In this study we report the one-step synthesis of AgCl-PANI nanocomposites that could form layer-by-layer (LbL) films with poly(sodium 4-styrenesulfonate) (PSS) and be used for electronic tongues (e-tongues). The first AgCl-PANI layer was adsorbed on a quartz substrate according to a nucleation-and-growth mechanism explained using the Johnson-Mehl-Avrami (JMA) model, revealing a 3D film growth confirmed by atomic force microscopy (AFM) measurements for the AgCl-PANI/PSS LbL films. In contrast to conventional PANI-containing films, the AgCl-PANI/PSS LbL films deposited on interdigitated electrodes exhibited electrical resistance that was practically unaffected by changes in pH from 4 to 9, and therefore these films can be used in e-tongues for both acidic and basic media. With a sensor array made of AgCl-PANI/PSS LbL films with different numbers of bilayers, we demonstrated the suitability of the AgCl-PANI nanocomposite for an e-tongue capable of clearly discriminating the basic tastes from salt, acid and umami solutions. Significantly, the hybrid AgCl-PANI nanocomposite is promising for any application in which PANI de-doping at high pH is to be avoided. PMID:25298297

  17. Novel layer-by-layer interfacial [Ni(salen)]-polyelectrolyte hybrid films.

    PubMed

    Patrício, Sónia; Cruz, Ana I; Biernacki, Krzysztof; Ventura, João; Eaton, Peter; Magalhães, Alexandre L; Moura, Cosme; Hillman, A Robert; Freire, Cristina

    2010-07-01

    A novel multilayer film containing a cationic phosphonium-derivatized Ni(salen)-type complex and poly(sodium-4-styrenesulfonate (NaPSS) was assembled onto quartz, mica, and metal surfaces using the layer-by-layer (LbL) technique. Spectroscopic (UV-vis) and gravimetric (QCM) responses for the multilayer films show regular stepwise growth and the signature of strong electrostatic interactions between the component layers. The gravimetric responses indicate the presence of substantial additional (net neutral) material in the PSS layers, which XPS shows is not polyelectrolyte or salt, so charge compensation is intrinsic; we deduce the presence of space-filling solvent. Direct electrostatic interaction of the two-component layers is enhanced by a secondary noncovalent interaction between the delocalized pi-systems of the two components. Permeability of the film to the redox probe [Fe(CN)(6)](3-/4-) was studied by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Qualitatively similar results were obtained in the absence and presence of a precursor PSS/PAH multilayer, but with a general shift in kinetic and diffusional processes to longer time scales (lower frequencies) in the presence of the precursor layer and with increasing numbers of PSS/[Ni(salen)] bilayers. Quantitatively, the EIS data were interpreted using a capillary membrane model (CMM) to yield values of coverage, apparent charge transfer resistance, double-layer capacitance, pore size, and diffusion coefficient. The coverage values were consistent with a model in which there are no preferential growth sites and the surface charge density is independent of the number of bilayers. PMID:20476725

  18. Layer-by-layer electrostatic self-assembly of single-wall carbon nanotube polyelectrolytes.

    PubMed

    Paloniemi, Hanna; Lukkarinen, Marjo; Aäritalo, Timo; Areva, Sami; Leiro, Jarkko; Heinonen, Markku; Haapakka, Keijo; Lukkari, Jukka

    2006-01-01

    We have used anionic and cationic single-wall carbon nanotube polyelectrolytes (SWNT-PEs), prepared by the noncovalent adsorption of ionic naphthalene or pyrene derivatives on nanotube sidewalls, for the layer-by-layer self-assembly to prepare multilayers from carbon nanotubes with polycations, such as poly(diallyldimethylammonium) or poly(allylamine hydrochloride) (PDADMA or PAH, respectively), and polyanions (poly(styrenesulfonate), PSS). This is a general and powerful technique for the fabrication of thin carbon nanotube films of arbitrary composition and architecture and allows also an easy preparation of all-SWNT (SWNT/SWNT) multilayers. The multilayers were characterized with vis-near-IR spectroscopy, X-ray photoelectron spectroscopy (XPS), surface plasmon resonance (SPR) measurements, atomic force microscopy (AFM), and imaging ellipsometry. The charge compensation in multilayers is mainly intrinsic, which shows the electrostatic nature of the self-assembly process. The multilayer growth is linear after the initial layers, and in SWNT/polyelectrolyte films it can be greatly accelerated by increasing the ionic strength in the SWNT solution. However, SWNT/SWNT multilayers are much more inert to the effect of added electrolyte. In SWNT/SWNT multilayers, the adsorption results in the deposition of 1-3 theoretical nanotube monolayers per adsorbed layer, whereas the nominal SWNT layer thickness is 2-3 times higher in SWNT/polyelectrolyte films prepared with added electrolyte. AFM images show that the multilayers contain a random network of nanotube bundles lying on the surface. Flexible polyelectrolytes (e.g., PDADMA, PSS) probably surround the nanotubes and bind them together. On macroscopic scale, the surface roughness of the multilayers depends on the components and increases with the film thickness. PMID:16378403

  19. Effect of pirfenidone delivered using layer-by-layer thin film on excisional wound healing.

    PubMed

    Mandapalli, Praveen Kumar; Labala, Suman; Bojja, Jagadeesh; Venuganti, Venkata Vamsi Krishna

    2016-02-15

    The aim of this study was to evaluate the effect of a new anti-fibrotic agent, pirfenidone (PFD), delivered using polyelectrolyte multilayer films on excisional wound healing. Polyelectrolyte multilayer films were prepared by layer-by-layer (LbL) sequential adsorption of chitosan and sodium alginate. The UV-spectrophotometer, FTIR and differential scanning calorimeter were used to characterize the LbL thin films. The PFD was entrapped within the LbL thin films and its effect on excisional wound healing was studied in C57BL/6. The total protein, collagen content and TGF-β expression within the wound tissue were determined after application of PFD using LbL thin films, chitosan hydrogel and polyethylene glycol hydrogel. UV-spectrophotometer and FTIR studies showed a sequential adsorption of chitosan and alginate polymer layers to form LbL thin films. The thickness of LbL thin films with 15 bilayers was found to be 15 ± 2 μm. HPLC analysis showed a PFD loading efficiency of 1.0 ± 0.1mg in 1cm(2) area of LbL thin film. In vivo wound healing studies in C57BL/6 mice showed an accelerated (<9 days) wound contraction after treatment with the PFD compared with blank LbL thin film and commercial povidone-iodine gel (12 days). The collagen content within the wound tissue was significantly (p<0.05) less after treatment with PFD compared with blank film application. Western blot analysis showed gradual decrease in TGF-β expression within the wound tissue after treatment with PFD. This study for the first time demonstrated that new anti-fibrotic agent PFD loaded in LbL thin films can be utilized for excisional wound healing. PMID:26723907

  20. Layer-by-Layer Enabled Nanomaterials for Chemical Sensing and Energy Conversion

    NASA Astrophysics Data System (ADS)

    Paterno, Leonardo G.; Soler, Maria A. G.

    2013-06-01

    The layer-by-layer (LbL) technique is a wet chemical method for the assembly of ultrathin films, with thicknesses up to 100 nm. This method is based on the successive transfer of molecular layers to a solid substrate that is dipped into cationic and anionic solutions in an alternating fashion. The adsorption is mainly driven by electrostatic interactions so that many molecular and nanomaterial systems can be engineered under this method. Moreover, it is inexpensive, can be easily performed, and does not demand sophisticated equipment or clean rooms. The most explored use of the LbL technique is to build up molecular devices for chemical sensing and energy conversion. Both applications require ultrathin films where specific elements must be organized with high control of thickness and spatial distribution, preferably in the nanolength and mesolength scales. In chemical sensors, the LbL technique is employed to assemble specific sensoactive materials such as conjugated polymers, enzymes, and immunological elements onto appropriated electrodes. Molecular recognition events are thus transduced by the assembled sensoactive layer. In energy-conversion devices, the LbL technique can be employed to fabricate different device's parts including electrodes, active layers, and auxiliary layers. In both applications, the devices' performance can be fully modulated and improved by simply varying film thickness and molecular architecture. The present review article highlights the main features of the LbL technique and provides a brief description of different (bio)chemical sensors, solar cells, and organic light-emitting diodes enabled by the LbL approach.

  1. Layer-by-layer assembly of aquaporin Z-incorporated biomimetic membranes for water purification.

    PubMed

    Wang, Miaoqi; Wang, Zhining; Wang, Xida; Wang, Shuzheng; Ding, Wande; Gao, Congjie

    2015-03-17

    We fabricated a biomimetic nanofiltration (NF) membrane by immobilizing an Aquaporin Z (AqpZ)-incorporated supported lipid bilayer (SLB) on a layer-by-layer (LbL) complex polyelectrolyte membrane to achieve excellent permeability and salt rejection with a high stability. The polyelectrolyte membranes were prepared by LbL assembly of poly(ethylenimine) (PEI) with positive charges and poly(sodium 4-styrenesulfonate) (PSS) with negative charges alternately on a porous hydrolyzed polyacrylonitrile (H-PAN) substrate. AqpZ-incorporated 1,2-dioleloyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dioleoyl-3-trimethylammo-nium-propane (chloride salt) (DOTAP) vesicles with positive charges were deposited on the H-PAN/PEI/PSS polyelectrolytes membrane surface. The resulting biomimetic membrane exhibited a high flux of 22 L·m(-2)·h(-1) (LMH), excellent MgCl2 rejection of ∼97% and NaCl rejection of ∼75% under an operation pressure of 0.4 MPa. Due to the attractive electrostatic interaction between SLB and the polyelectrolyte membrane, the biomimetic membrane showed satisfactory stability and durability as well as stable NF flux and rejection for at least 36 h. In addition, the AqpZ-containing biomimetic membrane was immersed in a 0.24 mM (critical micellar concentration, CMC) Triton X-100 solution for 5 min. The flux and rejection were slightly influenced by the Triton X-100 treatment. The current investigation demonstrated that the AqpZ-incorporated biomimetic membranes fabricated by the LbL method led to excellent separation performances and robust structures that withstand a high operation pressure for a relatively long time. PMID:25730158

  2. Layer-by-layer Assembly of Thick, Cu2+-Chelating Films

    PubMed Central

    Wijeratne, Salinda; Bruening, Merlin L.; Baker, Gregory L.

    2013-01-01

    Layer-by-layer adsorption of protonated poly(allylamine) (PAH) and deprotonated poly(N,N-dicarboxymethylallyl amine) (PDCMAA) yields thick films with a high density of iminodiacetic acid (IDA) ligands that bind metal ions. When film deposition occurs at pH 3.0, PAH/PDCMAA bilayer thicknesses reach 200 nm, and Cu2+ binding capacities are ~2.5 mmoles per cm3 of film. (PAH/PDCMAA)10 films deposited at pH 3.0 are 4- to 8-fold thicker than films formed at pH 5.0, 7.0, or 9.0, presumably because of the low charge density on PDCMAA chains at pH 3.0. However, with normalization to film thickness, all films bind similar amounts of Cu2+ from pH 4.1 solutions of CuSO4. In μm-thick films, equilibration of binding sites with Cu2+ requires ~4 h due to a low Cu2+ diffusion coefficient (~2.6×10−12 cm2/sec). Sorption isotherms determined at several temperatures show that Cu2+ binding is endothermic with a positive entropy (binding constants increase with increasing temperature), presumably because metal-ion complexation involves displacement of both a proton from IDA and water molecules from Cu2+. (PAH/PDCMAA)10 films retain their binding capacity over 4 absorption/elution cycles and may prove useful in metal-ion scavenging, catalysis, and protein binding. PMID:24044576

  3. Fabrication of polyelectrolyte multilayered nano-capsules using a continuous layer-by-layer approach.

    PubMed

    Elizarova, Iuliia S; Luckham, Paul F

    2016-05-15

    The layer-by-layer approach is a highly versatile method for the fabrication of multilayered polymeric films and capsules. It has been widely investigated in research for various polyelectrolyte pairs and core template particles. However, the fabrication of nano-sized capsules at the larger scale is difficult and time consuming, due to the necessity of washing and centrifugation steps before the deposition of each polyelectrolyte layer. This results not only in a very long fabrication time, but also in the partial loss of particles during those intermediate steps. In this study, we introduced a continuous approach for the fabrication of multilayer polyelectrolyte based nano-capsules using calcium phosphate core nanoparticles and a tubular flow type reactor with the potential for synthesizing tens of milligrams of capsules per hour. Adsorption of the polyelectrolyte layer occurred in the tubing where particles and polyelectrolyte solution of choice were mixed, creating a layer of polyelectrolyte on the particles. After this, these newly surfaced-modified particles passed into the next segment of tubing, where they were mixed with a second polyelectrolyte of opposite charge. This process can be continuously repeated until the desired number of layers is achieved. One potential problem with this method concerned the presence of any excess polyelectrolyte in the tubing, so careful control of the amount of polymer added was crucial. It was found that slightly under dosing the amount of added polyelectrolyte ensured that negligible unadsorbed polyelectrolyte remained in solution. The particles created at each deposition step were stable, as they all had a zeta potential of greater than ±25mV. Furthermore the zeta potential measurements showed that charge reversal occurred at each stage. Having achieved the necessary number of polyelectrolyte layers, the calcium phosphate cores were easily removed via dissolution in either hydrochloric or acetic acid. PMID:26939072

  4. Logical enzyme triggered (LET) layer-by-layer nanocapsules for drug delivery system

    NASA Astrophysics Data System (ADS)

    Kelley, Marie-Michelle

    Breast cancer is the second leading cause of morbidity and mortality among women in the United States. Early detection and treatment methods have resulted in 100% 5-year survival rates for stage 0-I breast cancer. Unfortunately, the 5-year survival rate of metastatic breast cancer (stage IV) is reduced fivefold. The most challenging issues of metastatic breast cancer treatment are the ability to selectively target the adenoma and adenocarcinoma cells both in their location of origin and as they metastasize following initial treatment. Multilayer/Layer-by-Layer (LbL) nanocapsules have garnered vast interest as anticancer drug delivery systems due to their ability to be easily modified, their capacity to encapsulate a wide range of chemicals and proteins, and their improved pharmacokinetics. Multilayer nanocapsule formation requires the layering of opposing charged polyelectrolytic polymers over a removable core nanoparticle. Our goal is to have a programmable nanocapsules degrade only after receiving and validating specific breast cancer biomarkers. The overall objective is to fabricate a novel programmable LbL nanocapsule with a specific logical system that will enhance functions pertinent to drug delivery systems. Our central hypothesis is that LbL technology coupled with extracellular matrix (ECM) protein substrates will result in a logical enzyme triggered LbL nanocapsule drug delivery system. This platform represents a novel approach toward a logically regulated nano-encapsulated cancer therapy that can selectively follow and deliver chemotherapeutics to cancer cells. The rationale for this project is to overcome a crucial limitation of existing drug delivery systems where chemotherapeutic can be erroneously delivered to non-carcinogenic cells.

  5. Surface activation of CNT Webs towards layer by layer assembly of biosensors.

    PubMed

    Musameh, Mustafa; Huynh, Chi P; Hickey, Mark; Kyratzis, Ilias Louis

    2016-04-25

    Several surface activation methods such as chemical, electrochemical and plasma have been used for enhancing the electrochemical performance of carbon based electrodes for various applications. However, some of these surface activation methods may not be useful depending on the chemical and physical properties of the activated surface. Herein we investigate the surface activation of carbon nanotube (CNT) webs by electrochemical and plasma techniques to enhance their electrochemical performance and enable the fabrication of a biosensor using the layer-by-layer (LBL) approach. The pretreated CNT webs were characterized by SEM, TEM, Raman, XPS and electrochemical methods. TEM images and Raman analysis showed an increase in the level of surface defects upon pretreatment with higher number of defects after electrochemical pretreatment. XPS analysis showed an increase in the level of oxygen functional groups after pretreatment (4 to 5 times increase) which resulted in enhanced water wettability especially for plasma pretreated CNT webs. The pretreated CNT web electrodes also showed an enhanced electrochemical activity towards the oxidation and reduction of different redox probes with higher sensitivity for the electrochemically pretreated CNT web electrode that was accompanied by a higher level of noise in amperometric measurements. A highly linear response was obtained for the untreated and the electrochemically pretreated CNT web electrodes towards the amperometric detection of NADH (R(2) of 0.9996 and 0.9986 respectively) while a non-linear response was observed for the plasma pretreated CNT web electrode (R(2) of 0.8538). The pretreated CNT web electrodes enabled the fabrication of a LBL biosensor for alcohol detection with highest operational stability obtained for the plasma pretreated CNT web surface. PMID:26818435

  6. Photoactive layer-by-layer films of cellulose phosphate and titanium dioxide containing phosphotungstic acid

    NASA Astrophysics Data System (ADS)

    Ullah, Sajjad; Acuña, José Javier Sáez; Pasa, André Avelino; Bilmes, Sara A.; Vela, Maria Elena; Benitez, Guillermo; Rodrigues-Filho, Ubirajara Pereira

    2013-07-01

    A versatile layer-by-layer (LbL) procedure for the preparation of highly dispersed, adherent and porous multilayer films of TiO2 nanoparticles (NPs) and phosphotungstic acid (HPW) on a variety of substrates at room temperature was developed based on the use of cellulose phosphate (CP) as an efficient and non-conventional polyelectrolyte. UV/vis absorption spectroscopy confirmed the linear and regular growth of the films with the number of immersion cycles and a strong adsorption ability of CP towards TiO2 NPs. FTIR spectroscopy showed that HPW binds to the surface of TiO2 through the oxygen atom at the corner of the Keggin structure. XPS results showed that the interaction between TiO2 and CP is through Ti-O-P linkage. A model is proposed for the TiO2-HPW interaction based on XPS and FTIR results. FEG/SEM study of the surface morphology revealed a porous film structure with a homogenous distribution of the TiO2 NPs induced by CP. HRTEM studies showed that the resulting composite films consist of crystalline anatase and rutile phases and poly-nano-crystalline HPW with a semi-crystalline TiO2-HPW interface. These CP/TiO2 and CP/TiO2/HPW LbL films showed good photoactivity against both saturated and unsaturated species, for instance, stearic acid (SA), crystal violet (CV) and methylene blue (MB) under UV irradiation. The CP/HPW films formed on bacterial cellulose (BC) showed good photochromic response which is enhanced in presence of TiO2 due to an interfacial electron transfer from TiO2 to HPW. This simple and environmentally safe method can be used to form coatings on a variety of surfaces with photoactive TiO2 and TiO2/HPW films.

  7. Assembly-Controlled Permeability of Layer-by-Layer Polymeric Microcapsules Using a Tapered Fluidized Bed.

    PubMed

    Noi, Ka Fung; Roozmand, Ali; Björnmalm, Mattias; Richardson, Joseph J; Franks, George V; Caruso, Frank

    2015-12-23

    Nano- and microcapsules engineered through layer-by-layer (LbL) assembly are finding an increasingly large number of applications as catalysts, electrochemical biosensors, bioreactors, artificial cells and drug delivery vehicles. While centrifugation-based LbL assembly is the most common method for coating template particles and preparing capsules, it is a batch process and requires frequent intervention that renders the system challenging to automate and scale up. Here, we report the use of a tapered fluidized bed (TFB) for the preparation of multilayered polymer capsules. This is a significant improvement over our recent approach of fluidizing particles in cylindrical fluidized beds (CFB) for LbL assembly. We demonstrate that TFB is compatible with particles <3 μm in diameter (an order-of-magnitude improvement compared with CFB), which can be fluidized with minimal entrainment. Additionally, layering materials were expanded to include both electrostatic and hydrogen-bonding polymer pairs (e.g., poly(allylamine hydrochloride) (PAH) and poly(styrenesulfonate) (PSS), and thiol-modified poly(methacrylic acid) (PMASH) and poly(N-vinylpyrrolidone) (PVPON), respectively). Finally, differences between capsules prepared via centrifugation-based and TFB LbL assembly were investigated. The obtained TFB microcapsules demonstrate increased film thickness and roughness compared with those prepared using centrifugation-based LbL assembly. Furthermore, PMASH microcapsules exhibit lower swelling and permeability when prepared via TFB LbL assembly compared with centrifugation-based LbL assembly due to enhanced multilayer deposition, entanglement, and cross-linking. Therefore, polymeric capsules fabricated via TFB LbL assembly may be useful for encapsulation and retention of relatively low molecular weight (∼20 kDa) hydrophilic biomacromolecules to passively or responsively release the payload for drug delivery applications. PMID:26651354

  8. Improved pharmacokinetics and enhanced tumor growth inhibition using a nanostructured lipid carrier loaded with doxorubicin and modified with a layer-by-layer polyelectrolyte coating.

    PubMed

    Mussi, Samuel V; Parekh, Gaurav; Pattekari, Pravin; Levchenko, Tatyana; Lvov, Yuri; Ferreira, Lucas A M; Torchilin, Vladimir P

    2015-11-10

    A nanostructured lipid carrier (NLC) loaded with doxorubicin (DOX) has been shown to be cytotoxic against the human cancer cell lines A549 and MCF-7/Adr. In attempts to improve formulation characteristics, enhance pharmacokinetics and antitumor effects, we modified the surface of these NLC with an alternating layer-by-layer (LbL) assembly of polycation and polyanion polyelectrolytes and an additional coating with PEG using a simple method of core shell attachment. The formulation had a narrow size distribution, longer residence in the blood, lower accumulation in the liver, higher accumulation in tumors and a significant tumor growth inhibition effect. Thus, NLC-DOX nanopreparations complexes modified by LbL coating have the potential to enhance the anticancer effects of DOX against tumors. PMID:26325314

  9. Part I. improve flame retardant textile. Part II. novel approach layer-by-layer processing for flame retardant textile.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this presentation, new approaches for flame retardant textile by using supercritical carbon dioxide (scCO2) and layer-by-layer processing will be discussed. Due to its environmentally benign character, the scCO2 is considered in green chemistry as a substitute for organic solvents in chemical rea...

  10. Part I. Improved flame retardant textiles. Part II. Novel approach to layer-by-layer processing for flame retardant textiles.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this presentation, new approaches for flame retardant textile by using supercritical carbon dioxide (scCO2) and layer-by-layer processing will be discussed. Due to its environmentally benign character, the scCO2 is considered in green chemistry as a substitute for organic solvents in chemical re...