Science.gov

Sample records for layered carbon lattices

  1. Josephson vortex lattice in layered superconductors

    SciTech Connect

    Koshelev, A. E.; Dodgson, M. J. W.

    2013-09-15

    Many superconducting materials are composed of weakly coupled conducting layers. Such a layered structure has a very strong influence on the properties of vortex matter in a magnetic field. This review focuses on the properties of the Josephson vortex lattice generated by the magnetic field applied in the direction of the layers. The theoretical description is based on the Lawrence-Doniach model in the London limit, which takes only the phase degree of freedom of the superconducting order parameter into account. In spite of its simplicity, this model leads to an amazingly rich set of phenomena. We review in detail the structure of an isolated vortex line and various properties of the vortex lattice, in both dilute and dense limits. In particular, we extensively discuss the influence of the layered structure and thermal fluctuations on the selection of lattice configurations at different magnetic fields.

  2. Buried Porous Silicon-Germanium Layers in Monocrystalline Silicon Lattices

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W. (Inventor); George, Thomas (Inventor); Jones, Eric W. (Inventor)

    1998-01-01

    Monocrystalline semiconductor lattices with a buried porous semiconductor layer having different chemical composition is discussed and monocrystalline semiconductor superlattices with a buried porous semiconductor layers having different chemical composition than that of its monocrystalline semiconductor superlattice are discussed. Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si-Ge layers followed by patterning into mesa structures. The mesa structures are strain etched resulting in porosification of the Si-Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si-Ge layers produced in a similar manner emitted visible light at room temperature.

  3. Layer Anti-Ferromagnetism on Bilayer Honeycomb Lattice

    PubMed Central

    Tao, Hong-Shuai; Chen, Yao-Hua; Lin, Heng-Fu; Liu, Hai-Di; Liu, Wu-Ming

    2014-01-01

    Bilayer honeycomb lattice, with inter-layer tunneling energy, has a parabolic dispersion relation, and the inter-layer hopping can cause the charge imbalance between two sublattices. Here, we investigate the metal-insulator and magnetic phase transitions on the strongly correlated bilayer honeycomb lattice by cellular dynamical mean-field theory combined with continuous time quantum Monte Carlo method. The procedures of magnetic spontaneous symmetry breaking on dimer and non-dimer sites are different, causing a novel phase transition between normal anti-ferromagnet and layer anti-ferromagnet. The whole phase diagrams about the magnetism, temperature, interaction and inter-layer hopping are obtained. Finally, we propose an experimental protocol to observe these phenomena in future optical lattice experiments. PMID:24947369

  4. A theoretical study of a carbon lattice system for lithium intercalated carbon anodes

    SciTech Connect

    Scanlon, L.G.; Storch, D.M.; Newton, J.H.; Sandi, G.

    1997-09-01

    A theoretical study was performed using computational chemistry to describe the intermolecular forces between graphite layers as well as spacing and conformation. It was found that electron correlation and a diffuse basis set were important for this calculation. In addition, the high reactivity of edge sites in lithium intercalated carbon anodes was also investigated. In this case, the reactive sites appear to strongly correlate with the relative distribution of the total atomic spin densities as well as total atomic charges. The spacing of graphite layers and lithium ion separation within an {open_quotes}approximated{close_quotes} lithium intercalated carbon anode was also investigated. The spacing of the carbon layers used in this investigation agrees most closely for that found in disordered carbon lattices.

  5. Beyond the simple hexagonal Abrikosov vortex lattice in layered superconductors

    NASA Astrophysics Data System (ADS)

    Feinberg, D.; Ettouhami, A. M.

    1993-01-01

    In layered superconductors as high-Tc materials but also organic superconductors, chalcogenides and superlattices, the simple concept of an distorted hexagonal lattice of straight vortices becomes unsufficient. Due to anisotropy and short coherence lengths, quite new vortex structures may arise. Some of them, as staircase vortices, simply add a modulation in the direction of vortex lines. This phenomenon is reviewed, together with the resulting lock-in transition, especially when the effects of the layered structure are weak. More exotic structures like a decomposed vortex lattice can also occur in specific situations: they involve two perpendicular sublattices, one parallel and one normal to the layers. We propose that extended defects as twin boundaries or irradiation tracks can trigger such a structure even in moderately anisotropic compounds as Y:123.

  6. Lattice-Matched Semiconductor Layers on Single Crystalline Sapphire Substrate

    NASA Technical Reports Server (NTRS)

    Choi, Sang; King, Glen; Park, Yeonjoon

    2009-01-01

    SiGe is an important semiconductor alloy for high-speed field effect transistors (FETs), high-temperature thermoelectric devices, photovoltaic solar cells, and photon detectors. The growth of SiGe layer is difficult because SiGe alloys have different lattice constants from those of the common Si wafers, which leads to a high density of defects, including dislocations, micro-twins, cracks, and delaminations. This innovation utilizes newly developed rhombohedral epitaxy of cubic semiconductors on trigonal substrates in order to solve the lattice mismatch problem of SiGe by using trigonal single crystals like sapphire (Al2O3) as substrate to give a unique growth-orientation to the SiGe layer, which is automatically controlled at the interface upon sapphire (0001). This technology is different from previous silicon on insulator (SOI) or SGOI (SiGe on insulator) technologies that use amorphous SiO2 as the growth plane. A cubic semiconductor crystal is a special case of a rhombohedron with the inter-planar angle, alpha = 90 deg. With a mathematical transformation, all rhombohedrons can be described by trigonal crystal lattice structures. Therefore, all cubic lattice constants and crystal planes (hkl) s can be transformed into those of trigonal crystal parameters. These unique alignments enable a new opportunity of perfect lattice matching conditions, which can eliminate misfit dislocations. Previously, these atomic alignments were thought to be impossible or very difficult. With the invention of a new x-ray diffraction measurement method here, growth of cubic semiconductors on trigonal crystals became possible. This epitaxy and lattice-matching condition can be applied not only to SiGe (111)/sapphire (0001) substrate relations, but also to other crystal structures and other materials, including similar crystal structures which have pointgroup rotational symmetries by 120 because the cubic (111) direction has 120 rotational symmetry. The use of slightly miscut (less than

  7. nBn and pBp infrared detectors with graded barrier layer, graded absorption layer, or chirped strained layer super lattice absorption layer

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D. (Inventor); Ting, David Z. (Inventor); Hill, Cory J. (Inventor); Bandara, Sumith V. (Inventor)

    2010-01-01

    An nBn detector is described where for some embodiments the barrier layer has a concentration gradient, for some embodiments the absorption layer has a concentration gradient, and for some embodiments the absorption layer is a chirped strained layer super lattice. The use of a graded barrier or absorption layer, or the use of a chirped strained layer super lattice for the absorption layer, allows for design of the energy bands so that the valence band may be aligned across the device. Other embodiments are described and claimed.

  8. Growth of coincident site lattice matched semiconductor layers and devices on crystalline substrates

    DOEpatents

    Norman, Andrew G; Ptak, Aaron J

    2013-08-13

    Methods of fabricating a semiconductor layer or device and said devices are disclosed. The methods include but are not limited to providing a substrate having a crystalline surface with a known lattice parameter (a). The method further includes growing a crystalline semiconductor layer on the crystalline substrate surface by coincident site lattice matched epitaxy, without any buffer layer between the crystalline semiconductor layer and the crystalline surface of the substrate. The crystalline semiconductor layer will be prepared to have a lattice parameter (a') that is related to the substrate lattice parameter (a). The lattice parameter (a') maybe related to the lattice parameter (a) by a scaling factor derived from a geometric relationship between the respective crystal lattices.

  9. Method of producing buried porous silicon-geramanium layers in monocrystalline silicon lattices

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W. (Inventor); George, Thomas (Inventor); Jones, Eric W. (Inventor)

    1997-01-01

    Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si--Ge layers followed by patterning into mesa structures. The mesa structures are stain etched resulting in porosification of the Si--Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si--Ge layers produced in a similar manner emitted visible light at room temperature.

  10. Layer-by-Layer Assembly of Enzymes on Carbon Nanotubes

    SciTech Connect

    Wang, Jun; Liu, Guodong; Lin, Yuehe

    2008-06-01

    The use of Layer-by-layer techniques for immobilizing several types of enzymes, e.g. glucose oxidase (GOx), horse radish oxidases(HRP), and choline oxidase(CHO) on carbon nanotubes and their applications for biosenseing are presented. The enzyme is immobilized on the negatively charged CNT surface by alternatively assembling a cationic polydiallyldimethyl-ammonium chloride (PDDA) layer and a enzyme layer. The sandwich-like layer structure (PDDA/enzyme/PDDA/CNT) formed by electrostatic assembling provides a favorable microenvironment to keep the bioactivity of enzyme and to prevent enzyme molecule leakage. The morphologies and electrocatalytic acitivity of the resulted enzyme film were characterized using TEM and electrochemical techniques, respectively. It was found that these enzyme-based biosensors are very sensitive, selective for detection of biomolecules, e.g. glucose, choline.

  11. Inverse Melting of Vortex Lattice in Layered Superconductors

    NASA Astrophysics Data System (ADS)

    Wu, W. J.; He, Y. W.; Zhao, Z. G.; Liu, M.; Yang, Y. H.

    Using molecular dynamic simulations for the melting transition of a flux line lattice(FLL) with point disordered pinnings, thermal fluctuations and magnetic interactions between pancake vortices, we study the disorder-driven melting transition from a disentangled and ordered Bragg glass (BG) to an entangled amorphous vortex glass (VG) or a vortex liquid (VL) in the pinning strength-temperature phase diagram. A portion of the BG region is found to be sandwiched in between the VG phase at lower temperatures and VL phase at higher temperatures, exhibiting inverse melting behavior observed recently on BSCCO crystals.

  12. Double layer capacitance of carbon foam electrodes

    NASA Astrophysics Data System (ADS)

    Delnick, F. M.; Ingersoll, D.; Firsich, D.

    We have evaluated a wide variety of microcellular carbon foams prepared by the controlled pyrolysis and carbonization of several polymers including: polyacrylonitrile (PAN), polymethacrylonitrile (PMAN), resorcinol/formaldehyde (RF), divinylbenzene/methacrylonitrile (DVB), phenolics (furfuryl/alcohol), and cellulose polymers such as Rayon. The porosity may be established by several processes including: gelation (1-5), phase separation (1-3,5-8), emulsion (1,9,10), aerogel/xerogel formation (1,11,12,13), replication (14), and activation. In this report we present the complex impedance analysis and double layer charging characteristics of electrodes prepared from one of these materials for double layer capacitor applications, namely activated cellulose derived microcellular carbon foam.

  13. Double layer capacitance of carbon foam electrodes

    SciTech Connect

    Delnick, F.M.; Ingersoll, D.; Firsich, D.

    1993-11-01

    We have evaluated a wide variety of microcellular carbon foams prepared by the controlled pyrolysis and carbonization of several polymers including: polyacrylonitrile (PAN), polymethacrylonitrile (PMAN), resorcinol/formaldehyde (RF), divinylbenzene/methacrylonitrile (DVB), phenolics (furfuryl/alcohol), and cellulose polymers such as Rayon. The porosity may be established by several processes including: Gelation (1-5), phase separation (1-3,5-8), emulsion (1,9,10), aerogel/xerogel formation (1,11,12,13), replication (14) and activation. In this report we present the complex impedance analysis and double layer charging characteristics of electrodes prepared from one of these materials for double layer capacitor applications, namely activated cellulose derived microcellular carbon foam.

  14. Layered solid sorbents for carbon dioxide capture

    SciTech Connect

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2014-11-18

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  15. Triangular lattice of carbon nanotube arrays for negative index of refraction and subwavelength lensing effect

    SciTech Connect

    Wang, Y.; Wang, X.; Rybczynski, J.; Wang, D.Z.; Kempa, K.; Ren, Z.F.

    2005-04-11

    Self-assembly of polystyrene microspheres has been utilized in a two-step masking technique to prepare triangular lattices of catalytic nanodots at low cost. Subsequent triangular lattices of aligned carbon nanotubes on a silicon substrate are achieved by plasma-enhanced chemical vapor deposition. Nickel is used both in the nanodots and in the secondary mask. The triangular lattices of carbon nanotube arrays as two-dimensional photonic crystals show higher geometrical symmetry than the hexagonal lattices previously reported, enabling broader applications including negative index of refraction and subwavelength lensing effect.

  16. Lattice curvature generation in graded InxGa1-xAs/GaAs buffer layers

    NASA Astrophysics Data System (ADS)

    Natali, M.; Romanato, F.; Napolitani, E.; de Salvador, D.; Drigo, A. V.

    2000-10-01

    Position dependent lattice tilts in InGaAs/GaAs(001) compositionally graded buffer layers are investigated. The lateral dependence of the tilt defines a concave buffer layer curvature of up to 3 deg cm-1. The buffer layer curvature is associated with a distribution of the misfit dislocation Burgers vectors that varies nearly linearly across the sample. The origin of this peculiar distribution is discussed and is explained in terms of a Burgers-vector selection rule, which governs the cross slip of gliding threading dislocations and that has been experimentally observed by Capano in Phys. Rev. B 45, 11 768 (1992). A quantitative model of lattice curvature formation is presented that satisfactorily accounts for the main features of the observed buffer layer curvature.

  17. Mode dependent lattice thermal conductivity of single layer graphene

    SciTech Connect

    Wei, Zhiyong; Yang, Juekuan; Bi, Kedong; Chen, Yunfei

    2014-10-21

    Molecular dynamics simulation is performed to extract the phonon dispersion and phonon lifetime of single layer graphene. The mode dependent thermal conductivity is calculated from the phonon kinetic theory. The predicted thermal conductivity at room temperature exhibits important quantum effects due to the high Debye temperature of graphene. But the quantum effects are reduced significantly when the simulated temperature is as high as 1000 K. Our calculations show that out-of-plane modes contribute about 41.1% to the total thermal conductivity at room temperature. The relative contribution of out-of-plane modes has a little decrease with the increase of temperature. Contact with substrate can reduce both the total thermal conductivity of graphene and the relative contribution of out-of-plane modes, in agreement with previous experiments and theories. Increasing the coupling strength between graphene and substrate can further reduce the relative contribution of out-of-plane modes. The present investigations also show that the relative contribution of different mode phonons is not sensitive to the grain size of graphene. The obtained phonon relaxation time provides useful insight for understanding the phonon mean free path and the size effects in graphene.

  18. Anomalous Raman scattering and lattice dynamics in mono- and few-layer WTe2

    NASA Astrophysics Data System (ADS)

    Kim, Younghee; Jhon, Young In; Park, June; Kim, Jae Hun; Lee, Seok; Jhon, Young Min

    2016-01-01

    Tungsten ditelluride (WTe2) is a layered material that exhibits excellent magnetoresistance and thermoelectric behaviors, which are deeply related with its distorted orthorhombic phase that may critically affect the lattice dynamics of this material. Here, we report comprehensive characterization of Raman spectra of WTe2 from bulk to monolayer using experimental and computational methods. We find that mono and bi-layer WTe2 are easily identified by Raman spectroscopy since two or one Raman modes that are observed in higher-layer WTe2 are greatly suppressed below the noise level in the mono- and bi-layer WTe2, respectively. In addition, the frequency of in-plane A17 mode of WTe2 remains almost constant as the layer number decreases, while all the other Raman modes consistently blueshift, which is completely different from the vibrational behavior of hexagonal metal dichalcogenides. First-principles calculation validates experimental results and reveals that anomalous lattice vibrations in WTe2 are attributed to the formation of tungsten chains that make WTe2 structurally one-dimensional.Tungsten ditelluride (WTe2) is a layered material that exhibits excellent magnetoresistance and thermoelectric behaviors, which are deeply related with its distorted orthorhombic phase that may critically affect the lattice dynamics of this material. Here, we report comprehensive characterization of Raman spectra of WTe2 from bulk to monolayer using experimental and computational methods. We find that mono and bi-layer WTe2 are easily identified by Raman spectroscopy since two or one Raman modes that are observed in higher-layer WTe2 are greatly suppressed below the noise level in the mono- and bi-layer WTe2, respectively. In addition, the frequency of in-plane A17 mode of WTe2 remains almost constant as the layer number decreases, while all the other Raman modes consistently blueshift, which is completely different from the vibrational behavior of hexagonal metal dichalcogenides

  19. Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement

    SciTech Connect

    Shuai, Yichen; Zhao, Deyin; Singh Chadha, Arvinder; Zhou, Weidong; Seo, Jung-Hun; Ma, Zhenqiang; Yang, Hongjun; Fan, Shanhui

    2013-12-09

    We present here ultra-compact high-Q Fano resonance filters with displaced lattices between two coupled photonic crystal slabs, fabricated with crystalline silicon nanomembrane transfer printing and aligned e-beam lithography techniques. Theoretically, with the control of lattice displacement between two coupled photonic crystal slabs layers, optical filter Q factors can approach 211 000 000 for the design considered here. Experimentally, Q factors up to 80 000 have been demonstrated for a filter design with target Q factor of 130 000.

  20. Growth of high quality GaN layer on carbon nanotube-graphene network structure as intermediate layer

    NASA Astrophysics Data System (ADS)

    Seo, Taeo Hoon; Park, Ah Hyun; Park, Sungchan; Kim, Myung Jong; Suh, Eun-Kyung

    2015-03-01

    In general, high-quality GaN layers are synthesized on low-temperature (LT) GaN buffer layer on a single crystal sapphire substrate. However, large differences in fundamental properties such as lattice constants and thermal expansion coefficients between GaN layer and sapphire substrate generate high density of threading dislocation (TD) that leads to deterioration of optical and structural properties. Graphene has been attracting much attention due to its excellent physical properties However, direct epitaxial growth of GaN film onto graphene layer on substrates is not easily accessible due to the lack of chemical reactivity on graphene which consisted of C-C bond of sp2 hexagonally arranged carbon atoms with no dangling bonds. In this work, an intermediate layer for the GaN growth on sapphire substrate was constructed by inserting carbon nanotubes and graphene hybrid structure (CGH) Optical and structural properties of GaN layer grown on CGH were compared with those of GaN layer directly grown on sapphire CNTs act as nucleation sites and play a crucial role in the growth of single crystal high-quality GaN on graphene layer. Also, graphene film acts as a mask for epitaxial lateral overgrowth of GaN layer, which can effectively reduce TD density. A grant from the Korea Institute of Science and Technology (KIST) institutional program.

  1. Multi-layer carbon-based coatings for field emission

    DOEpatents

    Sullivan, John P.; Friedmann, Thomas A.

    1998-01-01

    A multi-layer resistive carbon film field emitter device for cold cathode field emission applications. The multi-layered film of the present invention consists of at least two layers of a conductive carbon material, preferably amorphous-tetrahedrally coordinated carbon, where the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure can be a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film can be a plurality of carbon layers, where adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced.

  2. Multi-layer carbon-based coatings for field emission

    DOEpatents

    Sullivan, J.P.; Friedmann, T.A.

    1998-10-13

    A multi-layer resistive carbon film field emitter device for cold cathode field emission applications is disclosed. The multi-layered film of the present invention consists of at least two layers of a conductive carbon material, preferably amorphous-tetrahedrally coordinated carbon, where the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure can be a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film can be a plurality of carbon layers, where adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. 8 figs.

  3. Coincident site lattice-matched growth of semiconductors on substrates using compliant buffer layers

    DOEpatents

    Norman, Andrew

    2016-08-23

    A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a silicon substrate using a compliant buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The compliant buffer material and semiconductor materials may be deposited using coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The coincident site lattice matching epitaxial process, as well as the use of a ductile buffer material, reduce the internal stresses and associated crystal defects within the deposited semiconductor materials fabricated using the disclosed method. As a result, the semiconductor devices provided herein possess enhanced performance characteristics due to a relatively low density of crystal defects.

  4. Engineered oxide thin films as 100% lattice match buffer layers for YBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Akin, Y.; Heiba, Z. K.; Sigmund, W.; Hascicek, Y. S.

    2003-12-01

    One of the most important qualities of buffer layers for RE-BCO coated conductors' growth is close lattice match with RE-BCO. However, there is no natural material with a 100% lattice match with RE-BCO. In this study mixtures of europium oxide (Eu 2O 3) and ytterbium oxide (Yb 2O 3), (Eu 1- uYb u) 2O 3 (0.0⩽ u⩽1.0), were investigated as a candidate buffer layer that could have same lattice parameter as YBa 2Cu 3O 7- δ(YBCO). Because the pseudocubic lattice parameter of Eu 2O 3 is bigger, and that of Yb 2O 3 is smaller than lattice parameter of YBCO, and the mixed oxides with appropriate ratio would have same lattice parameter of YBCO. The mixtures were prepared using metal-organic precursor by sol-gel process, and it was found that all mixed samples are single phase, complete solid solutions, and have same crystal system over the whole range of " u". Lattice parameters of mixed (Eu 1- uYb u) 2O 3 oxide powders were changed between 10.86831 and 10.42828 Å which are lattice parameter of Eu 2O 3 and Yb 2O 3, respectively by changing the ratio of Eu/Yb in the mixture. Phase and lattice parameter analysis revealed that pseudocubic lattice parameter of (Eu 0.893Yb 0.107) 2O 3 is 3.82 Å which is same as the lattice parameter of YBCO. Textured (Eu 0.893Yb 0.107) 2O 3 buffer layers were grown on biaxially textured-Ni (1 0 0) substrates. The solution was prepared from Europium and Ytterbium 2,4-pentadioanate, and was deposited on the Ni substrates using a reel-to-reel sol-gel dip coating system. The textured films were annealed at 1150 °C for 10 min under 4% H 2-Ar gas flow. Extensive texture analysis has been done to characterize the texture of (Eu 0.893Yb 0.107) 2O 3 buffer layers. X-ray diffraction (XRD) of the buffer layer showed strong out-of-plane orientation on Ni tape. The (Eu 0.893Yb 0.107) 2O 3 (2 2 2) pole figure indicated a single cube-on-cube textured structure. The omega and phi scans revealed good out-of-plane and in-plane alignments. The full

  5. Layered transition metal dichalcogenides: promising near-lattice-matched substrates for GaN growth

    PubMed Central

    Gupta, Priti; Rahman, A. A.; Subramanian, Shruti; Gupta, Shalini; Thamizhavel, Arumugam; Orlova, Tatyana; Rouvimov, Sergei; Vishwanath, Suresh; Protasenko, Vladimir; Laskar, Masihhur R.; Xing, Huili Grace; Jena, Debdeep; Bhattacharya, Arnab

    2016-01-01

    Most III-nitride semiconductors are grown on non-lattice-matched substrates like sapphire or silicon due to the extreme difficulty of obtaining a native GaN substrate. We show that several layered transition-metal dichalcogenides are closely lattice-matched to GaN and report the growth of GaN on a range of such layered materials. We report detailed studies of the growth of GaN on mechanically-exfoliated flakes WS2 and MoS2 by metalorganic vapour phase epitaxy. Structural and optical characterization show that strain-free, single-crystal islands of GaN are obtained on the underlying chalcogenide flakes. We obtain strong near-band-edge emission from these layers, and analyse their temperature-dependent photoluminescence properties. We also report a proof-of-concept demonstration of large-area growth of GaN on CVD MoS2. Our results show that the transition-metal dichalcogenides can serve as novel near-lattice-matched substrates for nitride growth. PMID:27025461

  6. Tunable Lattice Constant and Band Gap of Single- and Few-Layer ZnO.

    PubMed

    Lee, Junseok; Sorescu, Dan C; Deng, Xingyi

    2016-04-01

    Single and few-layer ZnO(0001) (ZnO(nL), n = 1-4) grown on Au(111) have been characterized via scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and density functional theory (DFT) calculations. We find that the in-plane lattice constants of the ZnO(nL, n ≤ 3) are expanded compared to that of the bulk wurtzite ZnO(0001). The lattice constant reaches a maximum expansion of 3% in the ZnO(2L) and decreases to the bulk wurtzite ZnO value in the ZnO(4L). The band gap decreases monotonically with increasing number of ZnO layers from 4.48 eV (ZnO(1L)) to 3.42 eV (ZnO(4L)). These results suggest that a transition from a planar to the bulk-like ZnO structure occurs around the thickness of ZnO(4L). The work also demonstrates that the lattice constant and the band gap in ultrathin ZnO can be tuned by controlling the number of layers, providing a basis for further investigation of this material. PMID:27003692

  7. Layered transition metal dichalcogenides: promising near-lattice-matched substrates for GaN growth

    NASA Astrophysics Data System (ADS)

    Gupta, Priti; Rahman, A. A.; Subramanian, Shruti; Gupta, Shalini; Thamizhavel, Arumugam; Orlova, Tatyana; Rouvimov, Sergei; Vishwanath, Suresh; Protasenko, Vladimir; Laskar, Masihhur R.; Xing, Huili Grace; Jena, Debdeep; Bhattacharya, Arnab

    2016-03-01

    Most III-nitride semiconductors are grown on non-lattice-matched substrates like sapphire or silicon due to the extreme difficulty of obtaining a native GaN substrate. We show that several layered transition-metal dichalcogenides are closely lattice-matched to GaN and report the growth of GaN on a range of such layered materials. We report detailed studies of the growth of GaN on mechanically-exfoliated flakes WS2 and MoS2 by metalorganic vapour phase epitaxy. Structural and optical characterization show that strain-free, single-crystal islands of GaN are obtained on the underlying chalcogenide flakes. We obtain strong near-band-edge emission from these layers, and analyse their temperature-dependent photoluminescence properties. We also report a proof-of-concept demonstration of large-area growth of GaN on CVD MoS2. Our results show that the transition-metal dichalcogenides can serve as novel near-lattice-matched substrates for nitride growth.

  8. Anomalous Raman scattering and lattice dynamics in mono- and few-layer WTe2.

    PubMed

    Kim, Younghee; Jhon, Young In; Park, June; Kim, Jae Hun; Lee, Seok; Jhon, Young Min

    2016-01-28

    Tungsten ditelluride (WTe2) is a layered material that exhibits excellent magnetoresistance and thermoelectric behaviors, which are deeply related with its distorted orthorhombic phase that may critically affect the lattice dynamics of this material. Here, we report comprehensive characterization of Raman spectra of WTe2 from bulk to monolayer using experimental and computational methods. We find that mono and bi-layer WTe2 are easily identified by Raman spectroscopy since two or one Raman modes that are observed in higher-layer WTe2 are greatly suppressed below the noise level in the mono- and bi-layer WTe2, respectively. In addition, the frequency of in-plane A1(7) mode of WTe2 remains almost constant as the layer number decreases, while all the other Raman modes consistently blueshift, which is completely different from the vibrational behavior of hexagonal metal dichalcogenides. First-principles calculation validates experimental results and reveals that anomalous lattice vibrations in WTe2 are attributed to the formation of tungsten chains that make WTe2 structurally one-dimensional. PMID:26750205

  9. Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers

    NASA Astrophysics Data System (ADS)

    Gong, Yongji; Shi, Gang; Zhang, Zhuhua; Zhou, Wu; Jung, Jeil; Gao, Weilu; Ma, Lulu; Yang, Yang; Yang, Shubin; You, Ge; Vajtai, Robert; Xu, Qianfan; MacDonald, Allan H.; Yakobson, Boris I.; Lou, Jun; Liu, Zheng; Ajayan, Pulickel M.

    2014-01-01

    Graphene and hexagonal boron nitride are typical conductor and insulator, respectively, while their hybrids hexagonal boron carbonitride are promising as a semiconductor. Here we demonstrate a direct chemical conversion reaction, which systematically converts the hexagonal carbon lattice of graphene to boron nitride, making it possible to produce uniform boron nitride and boron carbonitride structures without disrupting the structural integrity of the original graphene templates. We synthesize high-quality atomic layer films with boron-, nitrogen- and carbon-containing atomic layers with full range of compositions. Using this approach, the electrical resistance, carrier mobilities and bandgaps of these atomic layers can be tuned from conductor to semiconductor to insulator. Combining this technique with lithography, local conversion could be realized at the nanometre scale, enabling the fabrication of in-plane atomic layer structures consisting of graphene, boron nitride and boron carbonitride. This is a step towards scalable synthesis of atomically thin two-dimensional integrated circuits.

  10. Coherent Lattice Vibrations in Mono- and Few-Layer WSe2.

    PubMed

    Jeong, Tae Young; Jin, Byung Moon; Rhim, Sonny H; Debbichi, Lamjed; Park, Jaesung; Jang, Yu Dong; Lee, Hyang Rok; Chae, Dong-Hun; Lee, Donghan; Kim, Yong-Hoon; Jung, Suyong; Yee, Ki Ju

    2016-05-24

    We report the observation of coherent lattice vibrations in mono- and few-layer WSe2 in the time domain, which were obtained by performing time-resolved transmission measurements. Upon the excitation of ultrashort pulses with the energy resonant to that of A excitons, coherent oscillations of the A1g optical phonon and longitudinal acoustic phonon at the M point of the Brillouin zone (LA(M)) were impulsively generated in monolayer WSe2. In multilayer WSe2 flakes, the interlayer breathing mode (B1) is found to be sensitive to the number of layers, demonstrating its usefulness in characterizing layered transition metal dichalcogenide materials. On the basis of temperature-dependent measurements, we find that the A1g optical phonon mode decays into two acoustic phonons through the anharmonic decay process. PMID:27102714

  11. Effect of interfacial layer on water flow in nanochannels: Lattice Boltzmann simulations

    NASA Astrophysics Data System (ADS)

    Jin, Yakang; Liu, Xuefeng; Liu, Zilong; Lu, Shuangfang; Xue, Qingzhong

    2016-04-01

    A novel interfacial model was proposed to understand water flow mechanism in nanochannels. Based on our pore-throat nanochannel model, the effect of interfacial layer on water flow in nanochannels was quantitatively studied using Lattice Boltzmann method (LBM). It is found that both the permeability of nanochannel and water velocity in the nanochannel dramatically decrease with increasing the thickness of interfacial layer. The permeability of nanochannel with pore radius of 10 nm decreases by about three orders of magnitude when the thickness of interfacial layer is changed from 0 nm to 3 nm gradually. Furthermore, it has been demonstrated that the cross-section shape has a great effect on the water flow inside nanochannel and the effect of interfacial layer on the permeability of nanochannel has a close relationship with cross-section shape when the pore size is smaller than 12 nm. Besides, both pore-throat ratio and throat length can greatly affect water flow in nanochannels, and the influence of interfacial layer on water flow in nanochannels becomes more evident with increasing pore-throat ratio and throat length. Our theoretical results provide a simple and effective method to study the flow phenomena in nano-porous media, particularly to quantitatively study the interfacial layer effect in nano-porous media.

  12. Strength, hardness, and lattice vibrations of Z-carbon and W-carbon: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Li, Zhiping; Gao, Faming; Xu, Ziming

    2012-04-01

    The strength, hardness, and lattice vibrations of two superhard carbon allotropies, Z-carbon and W-carbon are investigated by first-principles calculations. Phonon dispersion calculations indicate that Z-carbon and W-carbon are dynamically stable at least up to 300 GPa. The strength calculations reveal that the failure mode in Z-carbon is dominated by the tensile type, and the [010] direction is the weakest one. In W-carbon, the failure mode is dominated by the shear type, and the (101)[111¯] direction is the weakest one. Although the ideal strength of diamond is distinctly greater than that of Z-carbon and W-carbon, the tensile strength and shear strength for Z-carbon and W-carbon show much lower anisotropies than that of diamond. The hardness calculations indicate that the average hardness of Z-carbon is less than that of diamond but greater than that of the W-carbon, M-carbon, and body-centered-tetragonal-C4 carbon. The simulated Raman spectra show that the Ag modes at 1094 cm-1 for Z-carbon and 1109.7 cm-1 for W-carbon are in agreement with that of 1082 cm-1 observed in the experiment of cold-compressed graphite at 9.8 GPa.

  13. Photochemical bonding of epithelial cell-seeded collagen lattice to rat muscle layer for esophageal tissue engineering: a pilot study

    NASA Astrophysics Data System (ADS)

    Chan, Barbara P.; Sato, M.; Vacanti, Joseph P.; Kochevar, Irene E.; Redmond, Robert W.

    2005-04-01

    Bilayered tube structures consist of epithelial cell-seeded collagen lattice and muscle layer have been fabricated for esophageal tissue engineering. Good adhesion between layers in order to facilitate cell infiltration and neovascularization in the collagen lattice is required. Previous efforts include using other bioglues such as fibrin glue and silicone tube as the physical support. However, the former is subjected to chances of transmitting blood-born infectious disease and is time consuming while the latter requires a second surgical procedure. The current project aimed to bond the cell-seeded collagen lattice to muscle layer using photochemical bonding, which has previously been demonstrated a rapid and non-thermal procedure in bonding collagenous tissues. Rat esophageal epithelial cells were seeded on collagen lattice and together with the latissimus dorsi muscle layer, were exposed to a photosensitizer rose Bengal at the bonding surface. An argon laser was used to irradiate the approximated layers. Bonding strength was measured during the peeling test of the collagen layer from the muscle layer. Post-bonding cell viability was assessed using a modified NADH-diaphorase microassay. A pilot in vivo study was conducted by directly bonding the cell-seeded collagen layer onto the muscle flap in rats and the structures were characterized histologically. Photochemical bonding was found to significantly increase the adherence at the bonding interface without compromising the cell viability. This indicates the feasibility of using the technique to fabricate multi-layered structures in the presence of living cells. The pilot animal study demonstrated integration of the collagen lattice with the muscle layer at the bonding interface although the subsequent surgical manipulation disturbed the integration at some region. This means that an additional procedure removing the tube could be avoided if the approximation and thus the bonding are optimized. Cell infiltration

  14. Spectroscopy of dipolar fermions in layered two-dimensional and three-dimensional lattices

    SciTech Connect

    Hazzard, Kaden R. A.; Rey, Ana Maria; Gorshkov, Alexey V.

    2011-09-15

    Motivated by ongoing measurements at JILA, we calculate the recoil-free spectra of dipolar interacting fermions, for example ultracold heteronuclear molecules, in a one-dimensional lattice of two-dimensional layers or ''pancakes'', spectroscopically probing transitions between different internal (e.g., rotational) states. We additionally incorporate p-wave interactions and losses, which are important for reactive molecules such as KRb. Moreover, we consider other sources of spectral broadening: interaction-induced quasiparticle lifetimes and the different polarizabilities of the rotational states used for the spectroscopy. Although our main focus is molecules, some of the calculations are also useful for optical lattice atomic clocks. For example, understanding the p-wave shifts between identical fermions and small dipolar interactions coming from the excited clock state is necessary to reach future precision goals. Finally, we consider the spectra in a deep three-dimensional lattice and show how they give a great deal of information about static correlation functions, including all the moments of the density correlations between nearby sites. The range of correlations measurable depends on spectroscopic resolution and the dipole moment.

  15. An Absorbing Boundary Condition for the Lattice Boltzmann Method Based on the Perfectly Matched Layer.

    PubMed

    Najafi-Yazdi, A; Mongeau, L

    2012-09-15

    The Lattice Boltzmann Method (LBM) is a well established computational tool for fluid flow simulations. This method has been recently utilized for low Mach number computational aeroacoustics. Robust and nonreflective boundary conditions, similar to those used in Navier-Stokes solvers, are needed for LBM-based aeroacoustics simulations. The goal of the present study was to develop an absorbing boundary condition based on the perfectly matched layer (PML) concept for LBM. The derivation of formulations for both two and three dimensional problems are presented. The macroscopic behavior of the new formulation is discussed. The new formulation was tested using benchmark acoustic problems. The perfectly matched layer concept appears to be very well suited for LBM, and yielded very low acoustic reflection factor. PMID:23526050

  16. An Absorbing Boundary Condition for the Lattice Boltzmann Method Based on the Perfectly Matched Layer

    PubMed Central

    Najafi-Yazdi, A.; Mongeau, L.

    2012-01-01

    The Lattice Boltzmann Method (LBM) is a well established computational tool for fluid flow simulations. This method has been recently utilized for low Mach number computational aeroacoustics. Robust and nonreflective boundary conditions, similar to those used in Navier-Stokes solvers, are needed for LBM-based aeroacoustics simulations. The goal of the present study was to develop an absorbing boundary condition based on the perfectly matched layer (PML) concept for LBM. The derivation of formulations for both two and three dimensional problems are presented. The macroscopic behavior of the new formulation is discussed. The new formulation was tested using benchmark acoustic problems. The perfectly matched layer concept appears to be very well suited for LBM, and yielded very low acoustic reflection factor. PMID:23526050

  17. Local atomic arrangements and lattice distortions in layered Ge-Sb-Te crystal structures

    PubMed Central

    Lotnyk, Andriy; Ross, Ulrich; Bernütz, Sabine; Thelander, Erik; Rauschenbach, Bernd

    2016-01-01

    Insights into the local atomic arrangements of layered Ge-Sb-Te compounds are of particular importance from a fundamental point of view and for data storage applications. In this view, a detailed knowledge of the atomic structure in such alloys is central to understanding the functional properties both in the more commonly utilized amorphous–crystalline transition and in recently proposed interfacial phase change memory based on the transition between two crystalline structures. Aberration-corrected scanning transmission electron microscopy allows direct imaging of local arrangement in the crystalline lattice with atomic resolution. However, due to the non-trivial influence of thermal diffuse scattering on the high-angle scattering signal, a detailed examination of the image contrast requires comparison with theoretical image simulations. This work reveals the local atomic structure of trigonal Ge-Sb-Te thin films by using a combination of direct imaging of the atomic columns and theoretical image simulation approaches. The results show that the thin films are prone to the formation of stacking disorder with individual building blocks of the Ge2Sb2Te5, Ge1Sb2Te4 and Ge3Sb2Te6 crystal structures intercalated within randomly oriented grains. The comparison with image simulations based on various theoretical models reveals intermixed cation layers with pronounced local lattice distortions, exceeding those reported in literature. PMID:27220411

  18. Local atomic arrangements and lattice distortions in layered Ge-Sb-Te crystal structures.

    PubMed

    Lotnyk, Andriy; Ross, Ulrich; Bernütz, Sabine; Thelander, Erik; Rauschenbach, Bernd

    2016-01-01

    Insights into the local atomic arrangements of layered Ge-Sb-Te compounds are of particular importance from a fundamental point of view and for data storage applications. In this view, a detailed knowledge of the atomic structure in such alloys is central to understanding the functional properties both in the more commonly utilized amorphous-crystalline transition and in recently proposed interfacial phase change memory based on the transition between two crystalline structures. Aberration-corrected scanning transmission electron microscopy allows direct imaging of local arrangement in the crystalline lattice with atomic resolution. However, due to the non-trivial influence of thermal diffuse scattering on the high-angle scattering signal, a detailed examination of the image contrast requires comparison with theoretical image simulations. This work reveals the local atomic structure of trigonal Ge-Sb-Te thin films by using a combination of direct imaging of the atomic columns and theoretical image simulation approaches. The results show that the thin films are prone to the formation of stacking disorder with individual building blocks of the Ge2Sb2Te5, Ge1Sb2Te4 and Ge3Sb2Te6 crystal structures intercalated within randomly oriented grains. The comparison with image simulations based on various theoretical models reveals intermixed cation layers with pronounced local lattice distortions, exceeding those reported in literature. PMID:27220411

  19. Local atomic arrangements and lattice distortions in layered Ge-Sb-Te crystal structures

    NASA Astrophysics Data System (ADS)

    Lotnyk, Andriy; Ross, Ulrich; Bernütz, Sabine; Thelander, Erik; Rauschenbach, Bernd

    2016-05-01

    Insights into the local atomic arrangements of layered Ge-Sb-Te compounds are of particular importance from a fundamental point of view and for data storage applications. In this view, a detailed knowledge of the atomic structure in such alloys is central to understanding the functional properties both in the more commonly utilized amorphous–crystalline transition and in recently proposed interfacial phase change memory based on the transition between two crystalline structures. Aberration-corrected scanning transmission electron microscopy allows direct imaging of local arrangement in the crystalline lattice with atomic resolution. However, due to the non-trivial influence of thermal diffuse scattering on the high-angle scattering signal, a detailed examination of the image contrast requires comparison with theoretical image simulations. This work reveals the local atomic structure of trigonal Ge-Sb-Te thin films by using a combination of direct imaging of the atomic columns and theoretical image simulation approaches. The results show that the thin films are prone to the formation of stacking disorder with individual building blocks of the Ge2Sb2Te5, Ge1Sb2Te4 and Ge3Sb2Te6 crystal structures intercalated within randomly oriented grains. The comparison with image simulations based on various theoretical models reveals intermixed cation layers with pronounced local lattice distortions, exceeding those reported in literature.

  20. Local lattice distortions in spherical carbon nanoparticles as studied by HRTEM image analysis.

    PubMed

    Romeo, M; Arnault, J C; Ehret, G; Banhart, F; Le Normand, F

    2002-08-01

    The study of lattice distortions in structures with spherical or cylindrical geometry is of growing interest in the field of carbon nanoparticles (onions, nanotubes, etc.). We report an image analysis procedure entirely performed in reciprocal space which provides a global map of the inter-shell distances in carbon nanoparticles. This procedure is applied to carbon nanoparticles with a size of 100 nm that are generated under CVD conditions and exhibit positive as well as negative curvature of the basal lattice planes. These nanoparticles are subjected to intense electron irradiation under the beam of a high-voltage electron microscope with an acceleration voltage of 1.25 MeV. We observe a compression in their centre and a dilation of the outer shells. The reciprocal-space analysis of the high-resolution electron microscopy images opens the way to investigate the stability and equilibrium structure of carbon nanoparticles and to conclude on the formation mechanism. PMID:12213022

  1. Single pentagon in a hexagonal carbon lattice revealed by scanning tunneling microscopy

    SciTech Connect

    An, B.; Fukuyama, S.; Yokogawa, K.; Yoshimura, M.; Egashira, M.; Korai, Y.; Mochida, I.

    2001-06-04

    The electronic structure of a single pentagon in a hexagonal carbon lattice has been revealed on an atomic scale by scanning tunneling microscopy. The pentagon is located at the apex of the conical protuberance of the graphitic particle. The enhanced charge density localized at each carbon atom in the pentagon is identified, and the ringlike pattern of the ({radical}3{times}{radical}3)R30{degree} superstructure of graphite is clearly observed around the pentagon. {copyright} 2001 American Institute of Physics.

  2. Lattice Boltzmann method for short-pulsed laser transport in a multi-layered medium

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Yi, Hong-Liang; Tan, He-Ping

    2015-04-01

    We construct a lattice Boltzmann method (LBM) for transient radiative transfer in one-dimensional multi-layered medium with distinct refractive index in each layer. The left boundary is irradiated normally by a short-pulsed laser. The Fresnel interfaces conditions, which incorporate reflection and refraction, are used at the boundaries and the interfaces. Based on the Fresnel's law and Snell's law, the interfacial intensity formulas are introduced. The collimated and diffuse intensities are treated individually. At a transient time step, the collimated component is first solved by LBM and then embedded into the transient radiative transfer equation as a source term. To keep the consistency of the directions in all the layers, angular interpolation of the intensities at the interfaces is adopted. The transient radiative transfer in a two-layer medium is first investigated, and the time-resolved results are validated by comparing with those by the Monte Carlo method (MCM). Of particular interest, the angular intensities along the slab at different times are presented to illustrate a variety of interesting phenomena, and the discontinuous nature of the intensity at the interfaces is discussed. The effects of various parameters on the time-resolved signals are examined.

  3. Nucleation, Growth, and Strain Relaxation of Lattice-Mismatched III-V Semiconductor Epitaxial Layers

    NASA Technical Reports Server (NTRS)

    Welser, R. E.; Guido, L. J.

    1994-01-01

    We have investigated the early stages of evolution of highly strained 2-D InAs layers and 3-D InAs islands grown by metal-organic chemical vapor deposition (MOCVD) on (100) and (111) B GaAs substrates. The InAs epilayer / GaAs substrate combination has been chosen because the lattice-mismatch is severe (approx. 7.20%), yet these materials are otherwise very similar. By examining InAs-on-GaAs composites Instead of the more common In(x)Ga(1-x)As alloy, we remove an additional degree of freedom (x) and thereby simplify data interpretation. A matrix of experiments is described in which the MOCVD growth parameters -- susceptor temperature, TMIn flux, and AsH3 flux -- have been varied over a wide range. Scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and electron microprobe analysis have been employed to observe the thin film surface morphology. In the case of 3-D growth, we have extracted activation energies and power-dependent exponents that characterize the nucleation process. As a consequence, optimized growth conditions have been identified for depositing approx. 250 A thick (100) and (111)B oriented InAs layers with relatively smooth surfaces. Together with preliminary data on the strain relaxation of these layers, the above results on the evolution of thin InAs films indicate that the (111)B orientation is particularly promising for yielding lattice-mismatched films that are fully relaxed with only misfit dislocations at the epilayer / substrate interface.

  4. Nucleation, growth, and strain relaxation of lattice-mismatched 3-5 semiconductor epitaxial layers

    NASA Technical Reports Server (NTRS)

    Welser, R. E.; Guido, L. J.

    1994-01-01

    We have investigated the early stages of evolution of highly strained 2-D InAs layers and 3-D InAs islands grown by metal-organic chemical vapor deposition (MOCVD) on (100) and (111)B GaAs substrates. The InAs epilayer/GaAs substrate combination has been chosen because the lattice-mismatch is severe (approximately 7.2 percent), yet these materials are otherwise very similar. By examining InAs-on-GaAs composites instead of the more common In(x)Ga(1-x)As alloy we remove an additional degree of freedom (x) and thereby simplify data interpretation. A matrix of experiments is described in which the MOCVD growth parameters - susceptor temperature, Thin flux, and AsH3 flux - have been varied over a wide range. Scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and electron microprobe analysis have been employed to observe the thin film surface morphology. In the case of 3-D growth, we have extracted activation energies and power-dependent exponents that characterize the nucleation process. As a consequence, optimized growth conditions have been identified for depositing approximately 250 A thick (100) and (111)B oriented InAs layers with relatively smooth surfaces. Together with preliminary data on the strain relaxation of these layers, the above results on the evolution of thin InAs films indicate that the (111)B orientation is particularly promising for yielding lattice-mismatched films that are fully relaxed with only misfit dislocations at the epilayer/substrate interface.

  5. Anisotropic Lattice Deformation of InAs Self-Assembled Quantum Dots Embedded in GaNAs Strain Compensating Layers

    NASA Astrophysics Data System (ADS)

    Matsumura, N.; Muto, S.; Ganapathy, S.; Suemune, I.; Numata, K.; Yabuta, K.

    2006-01-01

    Lattice deformations of InAs self-assembled quantum dots, which were grown on (001)GaAs substrates and embedded in GaNAs strain compensating layers (SCLs), were examined with an ion-channeling method in Rutherford backscattering spectrometry. The channeling experiments demonstrated that the increase of the nitrogen concentrations in the GaNAs SCLs caused the indium lattice displacements along the [001] growth direction while those parallel to the (001) crystal plane were kept unchanged.

  6. Nonlinear Dynamics of Layered Structures and the Generalized Sine-Lattice Equations

    NASA Astrophysics Data System (ADS)

    Soboleva, Tatyana; Zeltser, Alexander; Kivshar, Yuri; Turitsyn, Sergei

    1995-07-01

    We analyze nonlinear waves in layered (anisotropic) structures with strong interlayer interaction. One of the important physical examples of nonlinear modes in such structures is the so-called supersolitons, localized excitations of the density of a vortex lattice propagating in a system of interacting (parallel) long Josephson junctions. We show that the dynamics of these structures may be described by the so-called sine-lattice (SL) equation first introduced by S. Takeno and S. Homma [J. Phys. Soc. Jpn. 55 (1986) 65] and its various generalizations, e.g. those which include a transverse degree of freedom or more general types of the interlayer (nonlinear) interactions described by periodic Jacobi elliptic functions. We analyze nonlinear localized waves in such generalized SL equations analytically and numerically, and show that, in general, density waves may be of three types, namely kinks, dynamical solitons, and envelope solitons. We investigate also the transverse stability of quasi-one-dimensional solitons in the framework of the effective modified Boussinesq equation valid for both small amplitudes and continuous approximation, as well as investigate numerically the effects of perturbations (dissipation or point-like impurities) on the dynamics of π -kinks.

  7. Turbulent boundary layer control through spanwise wall oscillation using Kagome lattice structures

    NASA Astrophysics Data System (ADS)

    Bird, James; Santer, Matthew; Morrison, Jonathan

    2015-11-01

    It is well established that a reduction in skin-friction and turbulence intensity can be achieved by applying in-plane spanwise forcing to a surface beneath a turbulent boundary layer. It has also been shown in DNS (M. Quadrio, P. Ricco, & C. Viotti; J. Fluid Mech; 627, 161, 2009), that this phenomenon is significantly enhanced when the forcing takes the form of a streamwise travelling wave of spanwise perturbation. In the present work, this type of forcing is generated by an active surface comprising a compliant structure, based on a Kagome lattice geometry, supporting a membrane skin. The structural design ensures negligible wall normal displacement while facilitating large in-plane velocities. The surface is driven pneumatically, achieving displacements of 3 mm approximately, at frequencies in excess of 70 Hz for a turbulent boundary layer at Reτ ~ 1000 . As the influence of this forcing on boundary layer is highly dependent on the wavenumber and frequency of the travelling wave, a flat surface was designed and optimised to allow these forcing parameters to be varied, without reconfiguration of the experiment. Simultaneous measurements of the fluid and surface motion are presented, and notable skin-friction drag reduction is demonstrated. Airbus support agreement IW202838 is gratefully acknowledged.

  8. Substrate/layer interface of amorphous-carbon hard coatings

    NASA Astrophysics Data System (ADS)

    Böhme, O.; Cebollada, A.; Yang, S.; Teer, D. G.; Albella, J. M.; Román, E.

    2000-08-01

    A combined study of the crystalline structure, the chemical interaction, and diffusion processes of the substrate/layer interface of amorphous-carbon hard coatings is presented. The structure of the coatings and their gradient layer interface to a chromium buffer layer has been investigated on two substrates [Si(100) and tool steel] using x-ray diffraction (XRD). Chemical interaction and diffusion processes at the interfaces and within the layers were analyzed by Auger electron spectroscopy and x-ray photoemission spectroscopy depth profiles. The chromium buffer layer revealed similar textured structure on both substrates. The subsequent gradient layer was determined (within XRD limits) to be amorphous and composed of an amorphous-carbon and chromium-carbide composite. The chromium carbide maintains the same stoichiometry (Cr3C2), regardless of the gradually changing chromium content. No large-scale interdiffusion was measured, either between or within the layers.

  9. Intrinsic half-metallicity in fractal carbon nitride honeycomb lattices.

    PubMed

    Wang, Aizhu; Zhao, Mingwen

    2015-09-14

    Fractals are natural phenomena that exhibit a repeating pattern "exactly the same at every scale or nearly the same at different scales". Defect-free molecular fractals were assembled successfully in a recent work [Shang et al., Nature Chem., 2015, 7, 389-393]. Here, we adopted the feature of a repeating pattern in searching two-dimensional (2D) materials with intrinsic half-metallicity and high stability that are desirable for spintronics applications. Using first-principles calculations, we demonstrate that the electronic properties of fractal frameworks of carbon nitrides have stable ferromagnetism accompanied by half-metallicity, which are highly dependent on the fractal structure. The ferromagnetism increases gradually with the increase of fractal order. The Curie temperature of these metal-free systems estimated from Monte Carlo simulations is considerably higher than room temperature. The stable ferromagnetism, intrinsic half-metallicity, and fractal characteristics of spin distribution in the carbon nitride frameworks open an avenue for the design of metal-free magnetic materials with exotic properties. PMID:26105981

  10. Microscopic Model Calculations for the Magnetization Process of Layered Triangular-Lattice Quantum Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Yamamoto, Daisuke; Marmorini, Giacomo; Danshita, Ippei

    2015-01-01

    Magnetization processes of spin-1 /2 layered triangular-lattice antiferromagnets (TLAFs) under a magnetic field H are studied by means of a numerical cluster mean-field method with a scaling scheme. We find that small antiferromagnetic couplings between the layers give rise to several types of extra quantum phase transitions among different high-field coplanar phases. Especially, a field-induced first-order transition is found to occur at H ≈0.7 Hs, where Hs is the saturation field, as another common quantum effect of ideal TLAFs in addition to the well-established one-third plateau. Our microscopic model calculation with appropriate parameters shows excellent agreement with experiments on Ba3CoSb2O9 [T. Susuki et al., Phys. Rev. Lett. 110, 267201 (2013)]. Given this fact, we suggest that the Co2 + -based compounds may allow for quantum simulations of intriguing properties of this simple frustrated model, such as quantum criticality and supersolid states.

  11. Microscopic model calculations for the magnetization process of layered triangular-lattice quantum antiferromagnets.

    PubMed

    Yamamoto, Daisuke; Marmorini, Giacomo; Danshita, Ippei

    2015-01-16

    Magnetization processes of spin-1/2 layered triangular-lattice antiferromagnets (TLAFs) under a magnetic field H are studied by means of a numerical cluster mean-field method with a scaling scheme. We find that small antiferromagnetic couplings between the layers give rise to several types of extra quantum phase transitions among different high-field coplanar phases. Especially, a field-induced first-order transition is found to occur at H≈0.7H_{s}, where H_{s} is the saturation field, as another common quantum effect of ideal TLAFs in addition to the well-established one-third plateau. Our microscopic model calculation with appropriate parameters shows excellent agreement with experiments on Ba_{3}CoSb_{2}O_{9} [T. Susuki et al., Phys. Rev. Lett. 110, 267201 (2013)]. Given this fact, we suggest that the Co^{2+}-based compounds may allow for quantum simulations of intriguing properties of this simple frustrated model, such as quantum criticality and supersolid states. PMID:25635561

  12. Lattice Strain Mapping of Platinum Nanoparticles on Carbon and SnO2 Supports

    NASA Astrophysics Data System (ADS)

    Daio, Takeshi; Staykov, Aleksandar; Guo, Limin; Liu, Jianfeng; Tanaka, Masaki; Matthew Lyth, Stephen; Sasaki, Kazunari

    2015-08-01

    It is extremely important to understand the properties of supported metal nanoparticles at the atomic scale. In particular, visualizing the interaction between nanoparticle and support, as well as the strain distribution within the particle is highly desirable. Lattice strain can affect catalytic activity, and therefore strain engineering via e.g. synthesis of core-shell nanoparticles or compositional segregation has been intensively studied. However, substrate-induced lattice strain has yet to be visualized directly. In this study, platinum nanoparticles decorated on graphitized carbon or tin oxide supports are investigated using spherical aberration-corrected scanning transmission electron microscopy (Cs-corrected STEM) coupled with geometric phase analysis (GPA). Local changes in lattice parameter are observed within the Pt nanoparticles and the strain distribution is mapped. This reveals that Pt nanoparticles on SnO2 are more highly strained than on carbon, especially in the region of atomic steps in the SnO2 lattice. These substrate-induced strain effects are also reproduced in density functional theory simulations, and related to catalytic oxygen reduction reaction activity. This study suggests that tailoring the catalytic activity of electrocatalyst nanoparticles via the strong metal-support interaction (SMSI) is possible. This technique also provides an experimental platform for improving our understanding of nanoparticles at the atomic scale.

  13. Lattice Strain Mapping of Platinum Nanoparticles on Carbon and SnO2 Supports

    PubMed Central

    Daio, Takeshi; Staykov, Aleksandar; Guo, Limin; Liu, Jianfeng; Tanaka, Masaki; Matthew Lyth, Stephen; Sasaki, Kazunari

    2015-01-01

    It is extremely important to understand the properties of supported metal nanoparticles at the atomic scale. In particular, visualizing the interaction between nanoparticle and support, as well as the strain distribution within the particle is highly desirable. Lattice strain can affect catalytic activity, and therefore strain engineering via e.g. synthesis of core-shell nanoparticles or compositional segregation has been intensively studied. However, substrate-induced lattice strain has yet to be visualized directly. In this study, platinum nanoparticles decorated on graphitized carbon or tin oxide supports are investigated using spherical aberration-corrected scanning transmission electron microscopy (Cs-corrected STEM) coupled with geometric phase analysis (GPA). Local changes in lattice parameter are observed within the Pt nanoparticles and the strain distribution is mapped. This reveals that Pt nanoparticles on SnO2 are more highly strained than on carbon, especially in the region of atomic steps in the SnO2 lattice. These substrate-induced strain effects are also reproduced in density functional theory simulations, and related to catalytic oxygen reduction reaction activity. This study suggests that tailoring the catalytic activity of electrocatalyst nanoparticles via the strong metal-support interaction (SMSI) is possible. This technique also provides an experimental platform for improving our understanding of nanoparticles at the atomic scale. PMID:26283473

  14. Lattice Strain Mapping of Platinum Nanoparticles on Carbon and SnO2 Supports.

    PubMed

    Daio, Takeshi; Staykov, Aleksandar; Guo, Limin; Liu, Jianfeng; Tanaka, Masaki; Lyth, Stephen Matthew; Sasaki, Kazunari

    2015-01-01

    It is extremely important to understand the properties of supported metal nanoparticles at the atomic scale. In particular, visualizing the interaction between nanoparticle and support, as well as the strain distribution within the particle is highly desirable. Lattice strain can affect catalytic activity, and therefore strain engineering via e.g. synthesis of core-shell nanoparticles or compositional segregation has been intensively studied. However, substrate-induced lattice strain has yet to be visualized directly. In this study, platinum nanoparticles decorated on graphitized carbon or tin oxide supports are investigated using spherical aberration-corrected scanning transmission electron microscopy (Cs-corrected STEM) coupled with geometric phase analysis (GPA). Local changes in lattice parameter are observed within the Pt nanoparticles and the strain distribution is mapped. This reveals that Pt nanoparticles on SnO2 are more highly strained than on carbon, especially in the region of atomic steps in the SnO2 lattice. These substrate-induced strain effects are also reproduced in density functional theory simulations, and related to catalytic oxygen reduction reaction activity. This study suggests that tailoring the catalytic activity of electrocatalyst nanoparticles via the strong metal-support interaction (SMSI) is possible. This technique also provides an experimental platform for improving our understanding of nanoparticles at the atomic scale. PMID:26283473

  15. Numerical simulation of polarization beam splitter with triangular lattice of multi-walled carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Wu, Xingxing; Yun, Maojin; Wang, Mei; Liu, Chao; Li, Kai; Qin, Xiheng; Kong, Weijin; Dong, Lifeng

    2015-12-01

    A kind of polarization beam splitter with triangular lattice of multi-walled carbon nanotube arrays is designed and simulated. In the employed structure transverse-electric (TE) light is confined in the line defect with photonic band gap effect, while transverse-magnetic (TM) light is guided through it with extremely low diffraction. The performance of the designed polarization beam splitter is evaluated by utilizing optical properties of multi-walled carbon nanotubes, finite element modeling of wave propagation and transmission through periodic arrays. Simulation results indicate that the designed polarization beam splitter has low loss and less cross talk, and thereby may have practical applications in the integrated optical field.

  16. Carbon additives for electrical double layer capacitor electrodes

    NASA Astrophysics Data System (ADS)

    Weingarth, D.; Cericola, D.; Mornaghini, F. C. F.; Hucke, T.; Kötz, R.

    2014-11-01

    Electrochemical double layer capacitors (EDLCs) are inherently high power devices when compared to rechargeable batteries. While capacitance and energy storage ability are mainly increased by optimizing the electrode active material or the electrolyte, the power capability could be improved by including conductive additives in the electrode formulations. This publication deals with the use of four different carbon additives - two carbon blacks and two graphites - in standard activated carbon based EDLC electrodes. The investigations include: (i) physical characterization of carbon powder mixtures such as surface area, press density, and electrical resistivity measurements, and (ii), electrochemical characterization via impedance spectroscopy and cyclic voltammetry of full cells made with electrodes containing 5 wt.% of carbon additive and compared to cells made with pure activated carbon electrodes in organic electrolyte. Improved cell performance was observed in both impedance and cyclic voltammetry responses. The results are discussed considering the main characteristics of the different carbon additives, and important considerations about electrode structure and processability are drawn.

  17. Role of lattice structure and low temperature resistivity in fast-electron-beam filamentation in carbon

    NASA Astrophysics Data System (ADS)

    Dance, R. J.; Butler, N. M. H.; Gray, R. J.; MacLellan, D. A.; Rusby, D. R.; Scott, G. G.; Zielbauer, B.; Bagnoud, V.; Xu, H.; Robinson, A. P. L.; Desjarlais, M. P.; Neely, D.; McKenna, P.

    2016-01-01

    The influence of low temperature (eV to tens-of-eV) electrical resistivity on the onset of the filamentation instability in fast-electron transport is investigated in targets comprising of layers of ordered (diamond) and disordered (vitreous) carbon. It is shown experimentally and numerically that the thickness of the disordered carbon layer influences the degree of filamentation of the fast-electron beam. Strong filamentation is produced if the thickness is of the order of 60 μm or greater, for an electron distribution driven by a sub-picosecond, mid-1020 Wcm‑2 laser pulse. It is shown that the position of the vitreous carbon layer relative to the fast-electron source (where the beam current density and background temperature are highest) does not have a strong effect because the resistive filamentation growth rate is high in disordered carbon over a wide range of temperatures up to the Spitzer regime.

  18. Dynamic behaviors of liquid droplets on a gas diffusion layer surface: Hybrid lattice Boltzmann investigation

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Huang, Jun-Jie

    2015-07-01

    Water management is one of the key issues in proton exchange membrane fuel cells. Fundamentally, it is related to dynamic behaviors of droplets on a gas diffusion layer (GDL) surface, and consequently they are investigated in this work. A two-dimensional hybrid method is employed to implement numerical simulations, in which the flow field is solved by using the lattice Boltzmann method and the interface between droplet and gas is captured by solving the Cahn-Hilliard equation directly. One or two liquid droplets are initially placed on the GDL surface of a gas channel, which is driven by the fully developed Poiseuille flow. At a fixed channel size, the effects of viscosity ratio of droplet to gas ( μ ∗ ), Capillary number (Ca, ratio of gas viscosity to surface tension), and droplet interaction on the dynamic behaviors of droplets are systematically studied. By decreasing viscosity ratio or increasing Capillary number, the single droplet can detach from the GDL surface easily. On the other hand, when two identical droplets stay close to each other or a larger droplet is placed in front of a smaller droplet, the removal of two droplets is promoted.

  19. Carbon vaporization into a nonequilibrium, stagnation-point boundary layer

    NASA Technical Reports Server (NTRS)

    Suzuki, T.

    1978-01-01

    The heat transfer to the stagnation point of an ablating carbonaceous heat shield, where both the gas-phase boundary layer and the heterogeneous surface reactions are not in chemical equilibrium, is examined. Specifically, the nonequilibrium changes in the mass fraction profiles of carbon species calculated for frozen flow are studied. A set of equations describing the steady-state, nonequilibrium laminar boundary layer in the axisymmetric stagnation region, over an ablating graphite surface, is solved, with allowance for the effects of finite rate of carbon vaporization.

  20. Lattice-mismatched In(0. 40)Al(0. 60)As window layers for indium phosphide solar cells

    SciTech Connect

    Jain, R.K.; Landis, G.A.; Wilt, D.M.; Flood, D.J.

    1993-11-01

    The efficiency of indium phosphide (InP) solar cells is limited by its high surface recombination velocity (approximately 10(exp 7) cm/s). This might be reduced by a wide-bandgap window layer. The performance of InP solar cells with wide-bandgap (1.8 eV) lattice-mismatched In(0.40)Al(0.60)As as a window layer was calculated. Because the required window layer thickness is less than the critical layer thickness, growth of strained (pseudomorphic) layers without interfacial misfit dislocations should be possible. Calculations using the PC-lD numerical code showed that the efficiencies of baseline and optimized p(+)n (p-on-n) cells are increased to more than 22 and 24 percent, (air mass zero (AMO), 25 C), respectively for a lattice-mismatched In(0.40)Al(0.60)As window layer of 10-nm thickness. Currently, most cell development work has been focused on n(+)p (n-on-p) structures although comparatively little improvement has been found for n(+)p cells.

  1. Lattice-mismatched In(0.40)Al(0.60)As window layers for indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.; Wilt, David M.; Flood, Dennis J.

    1993-01-01

    The efficiency of indium phosphide (InP) solar cells is limited by its high surface recombination velocity (approximately 10(exp 7) cm/s). This might be reduced by a wide-bandgap window layer. The performance of InP solar cells with wide-bandgap (1.8 eV) lattice-mismatched In(0.40)Al(0.60)As as a window layer was calculated. Because the required window layer thickness is less than the critical layer thickness, growth of strained (pseudomorphic) layers without interfacial misfit dislocations should be possible. Calculations using the PC-lD numerical code showed that the efficiencies of baseline and optimized p(+)n (p-on-n) cells are increased to more than 22 and 24 percent, (air mass zero (AMO), 25 C), respectively for a lattice-mismatched In(0.40)Al(0.60)As window layer of 10-nm thickness. Currently, most cell development work has been focused on n(+)p (n-on-p) structures although comparatively little improvement has been found for n(+)p cells.

  2. Plasma polymerized thin coating as a protective layer of carbon nanotubes grafted on carbon fibers

    NASA Astrophysics Data System (ADS)

    Einig, A.; Rumeau, P.; Desrousseaux, S.; Magga, Y.; Bai, J. B.

    2013-04-01

    Nanoparticles addition is widely studied to improve properties of carbon fiber reinforced composites. Here, hybrid carbon fiber results from grafting of carbon nanotubes (CNT) by Chemical Vapor Deposition (CVD) on the carbon fiber for mechanical reinforcement and conductive properties. Both tows and woven fabrics made of the hybrid fibers are added to the matrix for composite processing. However handling hybrid fibers may induce unwilling health risk due to eventual CNT release and a protective layer is required. A thin coating layer is deposited homogeneously by low pressure plasma polymerization of an organic monomer without modifying the morphology and the organization of grafted CNTs. The polymeric layer effect on the electrical behavior of hybrid fiber is assessed by conductivity measurements. Its influence on the mechanical properties is also studied regarding the interface adhesion between fiber and matrix. The protective role of layer is demonstrated by means of friction constraints applied to the hybrid fiber.

  3. Carbon transport in the bottom boundary layer. Final report

    SciTech Connect

    Agrawal, Y.C.

    1998-10-05

    This report summarizes the activities and findings from a field experiment devised to estimate the rates and mechanisms of transport of carbon across the continental shelves. The specific site chosen for the experiment was the mid-Atlantic Bight, a region off the North Carolina coast. The experiment involved a large contingent of scientists from many institutions. The specific component of the program was the transport of carbon in the bottom boundary layer. The postulate mechanisms of transport of carbon in the bottom boundary layer are: resuspension and advection, downward deposition, and accumulation. The high turbulence levels in the bottom boundary layer require the understanding of the coupling between turbulence and bottom sediments. The specific issues addressed in the work reported here were: (a) What is the sediment response to forcing by currents and waves? (b) What is the turbulence climate in the bottom boundary layer at this site? and (c) What is the rate at which settling leads to carbon sequestering in bottom sediments at offshore sites?

  4. Energy dissipation in intercalated carbon nanotube forests with metal layers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vertically aligned carbon nanotube (CNT) forests were synthesized to study their quasi-static mechanical properties in a layered configuration with metallization. The top and bottom surfaces of CNT forests were metalized with Ag, Fe, and In using paste, sputtering, and thermal evaporation, respectiv...

  5. Self-assembled two-dimensional protein arrays in bionanotechnology: from S-layers to designed lattices.

    PubMed

    Baneyx, François; Matthaei, James F

    2014-08-01

    Although the crystalline S-layer arrays that form the exoskeleton of many archaea and bacteria have been studied for decades, a long-awaited crystal structure coupled with a growing understanding of the S-layer assembly process are injecting new excitement in the field. The trend is amplified by computational strategies that allow for in silico design of protein building blocks capable of self-assembling into 2D lattices and other prescribed quaternary structures. We review these and other recent developments toward achieving unparalleled control over the geometry, chemistry and function of protein-based 2D objects from the nanoscale to the mesoscale. PMID:24832073

  6. Carbon and nitrogen abundances determined from transition layer lines

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, Erika; Mena-Werth, Jose

    1992-01-01

    The possibility of determining relative carbon, nitrogen, and silicon abundances from the emission-line fluxes in the lower transition layers between stellar chromospheres and coronae is explored. Observations for main-sequence and luminosity class IV stars with presumably solar element abundances show that for the lower transition layers Em = BT sup -gamma. For a given carbon abundance the constants gamma and B in this relation can be determined from the C II and C IV emission-line fluxes. From the N V and S IV lines, the abundances of these elements relative to carbon can be determined from their surface emission-line fluxes. Ratios of N/C abundances determined in this way for some giants and supergiants agree within the limits of errors with those determined from molecular bands. For giants, an increase in the ratio of N/C at B-V of about 0.8 is found, as expected theoretically.

  7. Lattice constants of pure methane and carbon dioxide hydrates at low temperatures. Implementing quantum corrections to classical molecular dynamics studies

    NASA Astrophysics Data System (ADS)

    Costandy, Joseph; Michalis, Vasileios K.; Tsimpanogiannis, Ioannis N.; Stubos, Athanassios K.; Economou, Ioannis G.

    2016-03-01

    We introduce a simple correction to the calculation of the lattice constants of fully occupied structure sI methane or carbon dioxide pure hydrates that are obtained from classical molecular dynamics simulations using the TIP4PQ/2005 water force field. The obtained corrected lattice constants are subsequently used in order to obtain isobaric thermal expansion coefficients of the pure gas hydrates that exhibit a trend that is significantly closer to the experimental behavior than previously reported classical molecular dynamics studies.

  8. Energy dissipation in intercalated carbon nanotube forests with metal layers

    NASA Astrophysics Data System (ADS)

    Boddu, Veera M.; Brenner, Matthew W.

    2016-02-01

    Vertically aligned carbon nanotube (CNT) forests were synthesized to study their quasi-static mechanical properties in a layered configuration with metallization. The top and bottom surfaces of CNT forests were metalized with Ag, Fe, and In using paste, sputtering, and thermal evaporation, respectively. Stacks of one, two, and three layers of these forests were assembled and compressed to measure their mechanical properties. The samples were strain limited to 0.7, and the results indicate that energy dissipation is approximately linear with respect to the number of layers and relatively independent of metal type. The energy per unit volume was approximately the same for all samples. Successive stacking of CNT forests reduces local buckling events, which is enhanced with a thick Ag deposition on the CNT forest surface. Young's modulus was also observed to increase as the number of layers was increased. These results are useful in the design of composite materials for high energy absorption and high stiffness applications.

  9. Effects of dislocation strain on the epitaxy of lattice-mismatched AlGaInP layers

    NASA Astrophysics Data System (ADS)

    Mukherjee, K.; Beaton, D. A.; Mascarenhas, A.; Bulsara, M. T.; Fitzgerald, E. A.

    2014-04-01

    Strain fields arising from a non-uniform distribution of misfit dislocations in an underlying compositionally graded buffer are shown to be sufficiently strong to modify indium incorporation in III-phosphide light emitting layers. Composition fluctuations (xIn±0.02) in lattice-mismatched (AlyGa1-y)xIn1-xP thin films with length-scales of 5-10 μm and a broadened light emission spectra are observed. Cathodoluminescence, photoluminescence and wavelength dispersive x-ray spectroscopies are used in this analysis to generate spatial maps of luminescence spectra and element distributions in metal-organic chemical vapor deposition (MOCVD) grown films. It is seen that these fluctuations due to misfit dislocations are hard to eliminate via growth-kinetics alone but can be lowered through the use of miscut substrates or spacer layers between the graded buffer layer and the active layer. A link between crosshatch surface-roughness and group-III atom distribution under group-V rich growth conditions in both AlInP and GaInP films is also demonstrated. In summary, the interaction of the dislocation strain field with the growth surface can affect the optical characteristics of lattice-mismatched LEDs even if the final threading dislocation density is low.

  10. Persistence Length Control of the Polyelectrolyte Layer-by-Layer Self-Assembly on Carbon Nanotubes

    SciTech Connect

    Huang, S J; Artyukhin, A B; Wang, Y; Ju, J; Stroeve, P; Noy, A

    2005-04-30

    One-dimensional inorganic materials such as carbon nanotubes1 and semiconductor nanowires have been central to important advances in materials science in the last decade. Unique mechanical and electronic properties of these molecular-scale wires enabled a variety of applications ranging from novel composite materials, to electronic circuits, to new sensors. Often, these applications require non-covalent modification of carbon nanotubes with organic compounds, DNA and biomolecules, and polymers to change nanotube properties or to add new functionality. We recently demonstrated a versatile and flexible strategy for non-covalent modification of carbon nanotubes using layer-by-layer self-assembly of polyelectrolytes. Researchers used this technique extensively for modification of flat surfaces, micro-, and nano-particles; however, little is known about the mechanism and the factors influencing layer-by-layer self-assembly in one-dimensional nanostructures. The exact conformation of polyelectrolyte chains deposited on single-walled carbon nanotubes (SWNT) is still unknown. There are two possible configurations: flexible polymers wrapping around the nanotube and stretched, rigid chains stacked parallel to the nanotube axis. Several factors, such as polymer rigidity, surface curvature, and strength of polymer-surface interactions, can determine the nature of assembly. Persistence length of the polymer chain should be one of the critical parameters, since it determines the chain's ability to wrap around the nanotube. Indeed, computer simulations for spherical substrates show that polymer rigidity and substrate surface curvature can influence the deposition process. Computational models also show that the persistence length of the polymer must fall below the threshold values determined by target surface curvature in order to initiate polyelectrolyte deposition process. Although these models described the effects of salt concentration and target surface curvature, they

  11. Toroidal order in a partially disordered state on a layered triangular lattice: implication to UNi4B

    NASA Astrophysics Data System (ADS)

    Hayami, Satoru; Kusunose, Hiroaki; Motome, Yukitoshi

    2015-03-01

    A partial disorder on a layered triangular lattice is theoretically investigated from a viewpoint of toroidal ordering and magnetoelectric effects. We consider an extended periodic Anderson model including a site-dependent antisymmetric spin-orbit coupling between conduction and localized electrons. We show that, by the mean-field approximation, the model exhibits a coplanar vortex-lattice-type magnetic order as observed in a hexagonal uranium compound UNi4B, in the parameter region with intermediate hybridization and electron correlation. This peculiar state accommodates a toroidal order, which leads to the linear magnetoelectric effect. We discuss the implications of our results to UNi4B, focusing on the possible source of the site-dependent antisymmetric spin-orbit coupling.

  12. Effect of compression on water transport in gas diffusion layer of polymer electrolyte membrane fuel cell using lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Jeon, Dong Hyup; Kim, Hansang

    2015-10-01

    The effect of the compression ratio on the dynamic behavior of liquid water transport in a gas diffusion layer (GDL) is studied both experimentally and numerically. We experimentally study the emergence and growth of liquid droplets in a channel at various compression ratios by adopting a direct visualization device. The results of the experiment show that water breakthrough occurs at the channel for a low compression ratio, whereas it is observed at the channel/rib interface for a high compression ratio. To determine the mechanism of water transport in the GDL, a multiphase lattice Boltzmann method (LBM) is developed for a simplified porous structure of the GDL. The observation of lattice Boltzmann (LB) simulation shows that the compression ratio significantly affects the water transport in the GDL. The results indicate that the lower compression ratio reduces the water saturation in the GDL. The simulation and experimental result are similar.

  13. The reactivity of lattice carbon and nitrogen species in molybdenum (oxy)carbonitrides prepared by single-source routes

    SciTech Connect

    AlShalwi, M.; Hargreaves, J.S.J.; Liggat, J.J.; Todd, D.

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Molybdenum (oxy)carbonitrides have been prepared from single source routes. Black-Right-Pointing-Pointer Nitrogen species are more reactive than carbon species within the carbonitrides. Black-Right-Pointing-Pointer The reactivity of nitrogen species is a function of carbonitride composition. -- Abstract: Molybdenum (oxy)carbonitrides of different compositions have been prepared from hexamethylenetetramine molybdate and ethylenediamine molybdate precursors and the reactivity of the lattice carbon and nitrogen species within them has been determined by temperature programmed reduction and thermal volatilisation studies. Nitrogen is found to be much more reactive than carbon and the nature of its reactivity is influenced by composition with the presence of carbon enhancing the reactivity of nitrogen. The difference in reactivity observed indicates that molybdenum carbonitrides are not suitable candidates as reagents for which the simultaneous loss of nitrogen and carbon from the lattice would be desirable.

  14. Carbon nanotube forests growth using catalysts from atomic layer deposition

    SciTech Connect

    Chen, Bingan; Zhang, Can; Esconjauregui, Santiago; Xie, Rongsi; Zhong, Guofang; Robertson, John; Bhardwaj, Sunil; Cepek, Cinzia

    2014-04-14

    We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage.

  15. Carbon Nanostructure Examined by Lattice Fringe Analysis of High Resolution Transmission Electron Microscopy Images

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.; Tomasek, Aaron J.; Street, Kenneth; Thompson, William K.; Hull, David R.

    2003-01-01

    The dimensions of graphitic layer planes directly affect the reactivity of soot towards oxidation and growth. Quantification of graphitic structure could be used to develop and test correlations between the soot nanostructure and its reactivity. Based upon transmission electron microscopy images, this paper provides a demonstration of the robustness of a fringe image analysis code for determining the level of graphitic structure within nanoscale carbon, i.e., soot. Results, in the form of histograms of graphitic layer plane lengths, are compared to their determination through Raman analysis.

  16. Carbon Nanostructure Examined by Lattice Fringe Analysis of High Resolution Transmission Electron Microscopy Images

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.; Tomasek, Aaron J.; Street, Kenneth; Thompson, William K.

    2002-01-01

    The dimensions of graphitic layer planes directly affect the reactivity of soot towards oxidation and growth. Quantification of graphitic structure could be used to develop and test correlations between the soot nanostructure and its reactivity. Based upon transmission electron microscopy images, this paper provides a demonstration of the robustness of a fringe image analysis code for determining the level of graphitic structure within nanoscale carbon, i.e. soot. Results, in the form of histograms of graphitic layer plane lengths, are compared to their determination through Raman analysis.

  17. Tilt-modulus enhancement of the vortex lattice in the layered superconductor 2 H -NbSe sub 2

    SciTech Connect

    Koorevaar, P.; Aarts, J.; Berghuis, P.; Kes, P.H. )

    1990-07-01

    The field dependence of the pinning force has been studied in thin single crystals of the layered superconductor 2{ital H}-NbSe{sub 2} in fields directed perpendicular to the layers. At high fields a peak effect is observed which sets in at about {ital B}{sub co}{approx}0.8{ital B}{sub {ital c}2}. Below this field the pinning force agrees well with the theory of two-dimensional collective pinning. The onset of the peak is triggered by the transition to three-dimensional flux-line lattice (FLL) disorder at the field {ital B}{sub co}. Comparison of the crossover field with the criterion set by the collective-pinning theory reveals that the tilt modulus of the FLL in a layered superconductor is considerably reduced. The reduction factor corresponds very well to recent theoretical predictions. These results are of importance for the prediction of depinning and flux-line lattice melting in all kinds of anisotropic superconductors.

  18. Interaction of magnetoacoustic waves with flux-line lattice in superconducting-ferrite layered structure

    SciTech Connect

    Sayko, G.V.; Bugaev, A.S.; Popkov, A.F.

    1994-12-31

    The authors consider vortex lattice interaction with transverse surface magnetoacoustic wave in high-{Tc} superconductor-ferrite structure. It has been found that the magnetoacoustic waves excited in the ferrite can be efficiently coupled with vortex structure in superconducting film. The nonlinear effect of vortex drift as well as the possibility of the wave amplification are discussed.

  19. Layer-by-layer assembled carbon nanotube-acetylcholinesterase/biopolymer renewable interfaces: SPR and electrochemical characterization.

    PubMed

    Zhang, Yuanyuan; Arugula, Mary A; Kirsch, Jeffrey S; Yang, Xiaoyun; Olsen, Eric; Simonian, Aleksandr L

    2015-02-01

    Developing simple, reliable, and cost-effective methods of renewing an inhibited biocatalyst (e.g., enzymatic interfaces) on biosensors is needed to advance multiuse, reusable sensor applications. We report a method for the renewal of layer-by-layer (LbL) self-assembled inhibition-based enzymatic interfaces in multiwalled carbon nanotube (MWCNT) armored acetylcholinesterase (AChE) biosensors. The self-assembly process of MWCNT dispersed enzymes/biopolymers was investigated using surface plasmon resonance (SPR). The LbL fabrication consisted of alternating cushion layers of positively charged CNT-polyethylenimine (CNT-PEI) and negatively charged CNT-deoxyribonucleic acid (CNT-DNA) and a functional interface consisting of alternating layers of CNT-PEI and negatively charged CNT-acetylcholine esterase (CNT-AChE, pH 7.4). The observed SPR response signal increased while assembling the different layers, indicating the buildup of multiple layers on the Au surface. A partial desorption of the top enzymatic layer in the LbL structure was observed with a desorption strategy employing alkaline treatment. This indicates that the strong interaction of CNT-biopolymer conjugates with the Au surface was a result of both electrostatic interactions between biopolymers and the surface binding energy from CNTs: the closer the layers are to the Au surface, the stronger the interactions. In contrast, a similar LbL assembly of soluble enzyme/polyelectrolytes resulted in stronger desorption on the surface after the alkaline treatment; this led to the investigation of AChE layer removal, permanently inhibited after pesticide exposure on glassy carbon (GC) electrodes, while keeping the cushion layers intact. The desorption strategy permitted the SPR and electrochemical electrode surfaces to be regenerated multiple times by the subsequent self-assembly of fresh PEI/AChE layers. Flow-mode electrochemical amperometric analysis demonstrated good stability toward the determination of

  20. Phase structure of the anisotropic antiferromagnetic Heisenberg model on a layered triangular lattice: Spiral state and deconfined spin liquid

    SciTech Connect

    Nakane, Kazuya; Kamijo, Takeshi; Ichinose, Ikuo

    2011-02-01

    In the present paper, we study a spin-1/2 antiferromagnetic (AF) Heisenberg model on layered anisotropic triangular lattice and obtain its phase structure. We use the Schwinger bosons for representing spin operators and also a coherent-state path integral for calculating physical quantities. Finite-temperature properties of the system are investigated by means of the numerical Monte-Carlo simulations. A detailed phase diagram of the system is obtained by calculating internal energy, specific heat, spin correlation functions, etc. There are AF Neel, paramagnetic, and spiral states. Turning on the plaquette term (i.e., the Maxwell term on a lattice) of an emergent U(1) gauge field that flips a pair of parallel spin-singlet bonds, we found that there appears a phase that is regarded as a deconfined spin-liquid state, though 'transition' to this phase from the paramagnetic phase is not of second order but a crossover. In that phase, the emergent gauge boson is a physical gapless excitation coupled with spinons. These results support our previous study on an AF Heisenberg model on a triangular lattice at vanishing temperature.

  1. The effect of neutron irradiation and annealing temperature on the electrical properties and lattice constant of epitaxial gallium nitride layers

    SciTech Connect

    Boyko, V. M.; Verevkin, S. S.; Kolin, N. G. Korulin, A. V.; Merkurisov, D. I.; Polyakov, A. Y.; Chevychelov, V. A.

    2011-01-15

    Effect of irradiation with high reactor-neutron fluences ({Phi} = 1.5 Multiplication-Sign 10{sup 17}-8 Multiplication-Sign 10{sup 19} cm{sup -2}) and subsequent heat treatments in the temperature range 100-1000 Degree-Sign C on the electrical properties and lattice constant of epitaxial GaN layers grown on an Al{sub 2}O{sub 3} substrate is considered. It is shown that, with the neutron fluence increasing to (1-2) Multiplication-Sign 10{sup 18} cm{sup -2}, the resistivity of the material grows to values of about 10{sup 10} {Omega} cm because of the formation of radiation defects, and, with the fluence raised further, the resistivity passes through a maximum and then decreases to 2 Multiplication-Sign 10{sup 6} {Omega} cm at 300 K, which is accounted for by the appearance of a hopping conductivity via deep defects in the overlapping outer parts of disordered regions. With the neutron fluence raised to 8 Multiplication-Sign 10{sup 19} cm{sup -2}, the lattice constant c increases by 0.38% at a nearly unchanged parameter a. Heat treatment of irradiated samples at temperatures as high as 1000 Degree-Sign C does not fully restore the lattice constant and the electrical parameters of the material.

  2. Selective Oxidation of Amorphous Carbon Layers without Damaging Embedded Single Wall Carbon Nanotube Bundles

    NASA Astrophysics Data System (ADS)

    Choi, Young Chul; Lim, Seong Chu

    2013-11-01

    Single wall carbon nanotubes (SWCNTs) were synthesized by arc discharge, and then purified by selective oxidation of amorphous carbon layers that were found to encase SWCNT bundles and catalyst metal particles. In order to remove selectively the amorphous carbon layers with SWCNTs being intact, we have systematically investigated the thermal treatment conditions; firstly, setting the temperature by measuring the activation energies of SWCNTs and amorphous carbon layers, and then, secondly, finding the optimal process time. As a consequence, the optimal temperature and time for the thermal treatment was found to be 460 °C and 20 min, respectively. The complete elimination of surrounding amorphous carbon layers makes it possible to efficiently disperse the SWCNT bundles, resulting in high absorbance of SWCNT-ink. The SWCNTs which were thermal-treated at optimized temperature (460 °C) and duration (20 min) showed much better crystallinity, dispersibility, and transparent conducting properties, compared with as-synthesized and the nanotubes thermal-treated at different experimental conditions.

  3. Method of depositing multi-layer carbon-based coatings for field emission

    DOEpatents

    Sullivan, J.P.; Friedmann, T.A.

    1999-08-10

    A novel field emitter device is disclosed for cold cathode field emission applications, comprising a multi-layer resistive carbon film. The multi-layered film of the present invention is comprised of at least two layers of a resistive carbon material, preferably amorphous-tetrahedrally coordinated carbon, such that the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure comprises a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film comprises a plurality of carbon layers, wherein adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. Field emitters made according the present invention display improved electron emission characteristics in comparison to conventional field emitter materials. 8 figs.

  4. Method of depositing multi-layer carbon-based coatings for field emission

    DOEpatents

    Sullivan, John P.; Friedmann, Thomas A.

    1999-01-01

    A novel field emitter device for cold cathode field emission applications, comprising a multi-layer resistive carbon film. The multi-layered film of the present invention is comprised of at least two layers of a resistive carbon material, preferably amorphous-tetrahedrally coordinated carbon, such that the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure comprises a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film comprises a plurality of carbon layers, wherein adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. Field emitters made according the present invention display improved electron emission characteristics in comparison to conventional field emitter materials.

  5. Layer-by-layer electrostatic self-assembly of single-wall carbon nanotube polyelectrolytes.

    PubMed

    Paloniemi, Hanna; Lukkarinen, Marjo; Aäritalo, Timo; Areva, Sami; Leiro, Jarkko; Heinonen, Markku; Haapakka, Keijo; Lukkari, Jukka

    2006-01-01

    We have used anionic and cationic single-wall carbon nanotube polyelectrolytes (SWNT-PEs), prepared by the noncovalent adsorption of ionic naphthalene or pyrene derivatives on nanotube sidewalls, for the layer-by-layer self-assembly to prepare multilayers from carbon nanotubes with polycations, such as poly(diallyldimethylammonium) or poly(allylamine hydrochloride) (PDADMA or PAH, respectively), and polyanions (poly(styrenesulfonate), PSS). This is a general and powerful technique for the fabrication of thin carbon nanotube films of arbitrary composition and architecture and allows also an easy preparation of all-SWNT (SWNT/SWNT) multilayers. The multilayers were characterized with vis-near-IR spectroscopy, X-ray photoelectron spectroscopy (XPS), surface plasmon resonance (SPR) measurements, atomic force microscopy (AFM), and imaging ellipsometry. The charge compensation in multilayers is mainly intrinsic, which shows the electrostatic nature of the self-assembly process. The multilayer growth is linear after the initial layers, and in SWNT/polyelectrolyte films it can be greatly accelerated by increasing the ionic strength in the SWNT solution. However, SWNT/SWNT multilayers are much more inert to the effect of added electrolyte. In SWNT/SWNT multilayers, the adsorption results in the deposition of 1-3 theoretical nanotube monolayers per adsorbed layer, whereas the nominal SWNT layer thickness is 2-3 times higher in SWNT/polyelectrolyte films prepared with added electrolyte. AFM images show that the multilayers contain a random network of nanotube bundles lying on the surface. Flexible polyelectrolytes (e.g., PDADMA, PSS) probably surround the nanotubes and bind them together. On macroscopic scale, the surface roughness of the multilayers depends on the components and increases with the film thickness. PMID:16378403

  6. Carbon transport in the bottom boundary layer. Final report

    SciTech Connect

    Lohrenz, S.E.; Asper, V.L.

    1997-09-01

    The authors objective was to characterize distributions of chloropigment fluorescence in relation to physical processes in the benthic boundary layer in support of the Department of Energy (DOE) Ocean Margins Program`s (OMP) goal of quantifying carbon transport across the continental shelf. Their approach involved participation in the Ocean Margins Program (OMP) field experiment on the continental shelf off Cape Hatteras by conducting multi-sensor fluorescence measurements of photosynthetic pigments. Specific tasks included (1) pre- and post-deployment calibration of multiple fluorescence sensors in conjunction with Woods Hole personnel; (2) collection and analysis of photosynthetic pigment concentrations and total particulate carbon in water column samples to aid in interpretation of the fluorescence time-series during the field experiment; (3) collaboration in the analysis and interpretation of 1994 and 1996 time-series data in support of efforts to quantify pigment and particulate organic carbon transport on the continental shelf off Cape Hatteras. This third component included analysis of data obtained with a multi-sensor fiber-optic fluorometer in the benthic boundary layer of the inner shelf off Cape Hatteras during summer 1994.

  7. Analysis of alignment effect on carbon nanotube layer in nanocomposites

    NASA Astrophysics Data System (ADS)

    Joshi, Preeti; Upadhyay, S. H.

    2015-02-01

    In this work, effect of various alignments of double walled carbon nanotubes (DWCNTs) in composite is evaluated for axial, lateral and through plane properties. Layers of DWCNTs are incorporated in the matrix. Four models with different layer combinations are analysed using 3D representative volume element. The highest value of axial modulus is observed for composite in which DWCNTs are aligned in direction of loading. Enhancement in lateral stiffness is observed for the models in which layers are aligned in plane perpendicular direction. Through plane stiffness is improved in vertically aligned DWCNT composite. It is observed that both axial and lateral moduli of composite behave non-linearly with respect to DWCNT volume fraction. This is because of the effect of agglomeration, due to the higher content of DWCNT in the composite. The proposed simulation is based on the experimentally adopted alignment of carbon nanotubes. DWCNT based composites with specific properties along various directions can be designed by controlling the volume fractions and alignment of the DWCNT sheets.

  8. Application of continuum percolation theory for modeling single- and two-phase characteristics of anisotropic carbon paper gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Behzad; Cheng, Ping

    2016-03-01

    Percolation theory is used to model intrinsic and relative permeabilities as well as tortuosity in anisotropic carbon paper gas diffusion layers (GDL) and compared with existing results from lattice-Boltzmann (LB) simulations and experimental measurements. Although single- and two-phase characteristics of the carbon paper GDL are mainly affected by medium geometrical and topological properties, e.g., pore-size distribution, connectivity, and pore geometry, analyzing capillary pressure curves implies that the pore-size distribution of the carbon paper GDL is very narrow. This suggests that its effect on tortuosity and wetting- and nonwetting-phase relative permeabilities is trivial. However, integrated effects of pore geometry, surface area, connectivity, and tortuosity on intrinsic permeability might be substantial. Universal power laws from percolation theory predict the tortuosity-porosity and relative permeability-saturation curves accurately, indicating both characteristics not affected by the pore-size distribution. The permeability-porosity relationship, however, conforms to nonuniversality.

  9. Toward a stabilized lattice framework and surface structure of layered lithium-rich cathode materials with Ti modification.

    PubMed

    Wang, Sihui; Li, Yixiao; Wu, Jue; Zheng, Bizhu; McDonald, Matthew J; Yang, Yong

    2015-04-21

    Layered lithium-rich oxides have several serious shortcomings such as fast voltage fading and poor cyclic stability of energy density which greatly hinder their practical applications. Fabrication of a stable framework of layered lithium-rich oxides during charging-discharging is crucial for addressing the above problems. In this work, we show that Ti modification is a promising way to realize this target with bifunctional roles. For example, it is able to substitute Mn in the lattice framework and form a stable surface layer. It therefore leads to an improved retention of energy density of the Ti-modified Li1.2Mn0.54-xTixNi0.13Co0.13O2 (x = 0.04, 0.08, and 0.15) materials during cycling. The evolution of dQ/dV curves show that the layered/spinel phase transformation is suppressed owing to the introduction of strong Ti-O bonds in the framework. In addition, SEM, TEM, and EIS results confirm that a more uniform and stable interface layer is formed on Ti-modified Li1.2Mn0.54-xTixNi0.13Co0.13O2 (x = 0.04, 0.08, and 0.15) materials compared with the Ti-free counterpart. The stable interface layer on the lithium-rich oxides is also beneficial for further reducing side reactions, resulting in stable interface layer resistance. Therefore, the improved cycling performance of the material is due to both contribution of the more stable framework and enhanced electrode/electrolyte interface by Ti modification. PMID:25790778

  10. Electrophoretic Deposition of Carbon Nitride Layers for Photoelectrochemical Applications.

    PubMed

    Xu, Jingsan; Shalom, Menny

    2016-05-25

    Electrophoretic deposition (EPD) is used for the growth of carbon nitride (C3N4) layers on conductive substrates. EPD is fast, environmentally friendly, and allows the deposition of negatively charged C3N4 with different compositions and chemical properties. In this method, C3N4 can be deposited on various conductive substrates ranging from conductive glass and carbon paper to nickel foam possessing complex 3D geometries. The high flexibility of this approach enables us to readily tune the photophysical and photoelectronic properties of the C3N4 electrodes. The advantage of this method was further illustrated by the tailored construction of a heterostructure between two complementary C3N4, with marked photoelectrochemical activity. PMID:27148889

  11. Characterization of few-layered graphene grown by carbon implantation

    SciTech Connect

    Lee, Kin Kiong; McCallum, Jeffrey C.; Jamieson, David N.

    2014-02-21

    Graphene is considered to be a very promising material for applications in nanotechnology. The properties of graphene are strongly dependent on defects that occur during growth and processing. These defects can be either detrimental or beneficial to device performance depending on defect type, location and device application. Here we present experimental results on formation of few-layered graphene by carbon ion implantation into nickel films and characteristics of graphene devices formed by graphene transfer and lithographic patterning. Micro-Raman spectroscopy was used to determine the number of graphene layers formed and identify defects arising from the device processing. The graphene films were cleaned by annealing in vacuum. Transport properties of cleaned graphene films were investigated by fabrication of back-gated field-effect transistors, which exhibited high hole and electron mobility of 1935 and 1905 cm2/Vs, respectively.

  12. Ultralight anisotropic foams from layered aligned carbon nanotube sheets.

    PubMed

    Faraji, Shaghayegh; Stano, Kelly L; Yildiz, Ozkan; Li, Ang; Zhu, Yuntian; Bradford, Philip D

    2015-10-28

    In this work, we present large scale, ultralight aligned carbon nanotube (CNT) structures which have densities an order of magnitude lower than CNT arrays, have tunable properties and exhibit resiliency after compression. By stacking aligned sheets of carbon nanotubes and then infiltrating with a pyrolytic carbon (PyC), resilient foam-like materials were produced that exhibited complete recovery from 90% compressive strain. With density as low as 3.8 mg cm(-3), the foam structure is over 500 times less dense than bulk graphite. Microscopy revealed that PyC coated the junctions among CNTs, and also increased CNT surface roughness. These changes in the morphology explain the transition from inelastic behavior to foam-like recovery of the layered CNT sheet structure. Mechanical and thermal properties of the foams were tuned for different applications through variation of PyC deposition duration while dynamic mechanical analysis showed no change in mechanical properties over a large temperature range. Observation of a large and linear electrical resistance change during compression of the aligned CNT/carbon (ACNT/C) foams makes strain/pressure sensors a relevant application. The foams have high oil absorption capacities, up to 275 times their own weight, which suggests they may be useful in water treatment and oil spill cleanup. Finally, the ACNT/C foam's high porosity, surface area and stability allow for demonstration of the foams as catalyst support structures. PMID:26419855

  13. Optically transparent carbon nanotube film electrode for thin layer spectroelectrochemistry.

    PubMed

    Wang, Tingting; Zhao, Daoli; Alvarez, Noe; Shanov, Vesselin N; Heineman, William R

    2015-10-01

    Carbon nanotube (CNT) film was evaluated as an optically transparent electrode (OTE) for thin layer spectroelectrochemistry. Chemically inert CNT arrays were synthesized by chemical vapor deposition (CVD) using thin films of Fe and Co as catalysts. Vertically aligned CNT arrays were drawn onto a quartz slide to form CNT films that constituted the OTE. Adequate conductivity and transparency make this material a good OTE for spectroelectrochemistry. These properties could be varied by the number of layers of CNTs used to form the OTE. Detection in the UV/near UV region down to 200 nm can be achieved using these transparent CNT films on quartz. The OTE was characterized by transmission electron microscopy, scanning electron microscopy, Raman spectroscopy, UV-visible spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and thin layer spectroelectrochemistry. Ferricyanide, tris(2,2'-bipyridine) ruthenium(II) chloride, and cytochrome c were used as representative redox probes for thin layer spectroelectrochemistry using the CNT film OTE, and the results correlated well with their known properties. Direct electron transfer of cytochrome c was achieved on the CNT film electrode. PMID:26291731

  14. Carbon sequestration via aqueous olivine mineral carbonation: role of passivating layer formation

    SciTech Connect

    Hamdallah Bearat; Michael J. McKelvy; Andrew V.G. Chizmeshya; Deirdre Gormley; Ryan Nunez; R.W. Carpenter; Kyle Squires; George H. Wolf

    2006-08-01

    CO{sub 2} sequestration via carbonation of widely available low-cost minerals, such as olivine, can permanently dispose of CO{sub 2} in an environmentally benign and a geologically stable form. The paper reports the results of studies of the mechanisms that limit aqueous olivine carbonation reactivity under the optimum sequestration reaction conditions observed to date: 1 M NaCl + 0.64 M NaHCO{sub 3} at T {approx} 185{sup o}C and P{sub CO{sub 2}} {approx} 135 bar. A reaction limiting silica-rich passivating layer (PL) forms on the feedstock grains, slowing carbonate formation and raising process cost. The morphology and composition of the passivating layers are investigated using scanning and transmission electron microscopy and atomic level modeling. Postreaction analysis of feedstock particles, recovered from stirred autoclave experiments at 1500 rpm, provides unequivocal evidence of local mechanical removal (chipping) of PL material, suggesting particle abrasion. This is corroborated by the observation that carbonation increases dramatically with solid particle concentration in stirred experiments. Multiphase hydrodynamic calculations are combined with experiment to better understand the associated slurry-flow effects. Large-scale atomic-level simulations of the reaction zone suggest that the PL possesses a 'glassy' but highly defective SiO{sub 2} structure that can permit diffusion of key reactants. Mitigating passivating layer effectiveness is critical to enhancing carbonation and lowering sequestration process cost. 30 refs., 7 figs.

  15. Lattice constants of pure methane and carbon dioxide hydrates at low temperatures. Implementing quantum corrections to classical molecular dynamics studies.

    PubMed

    Costandy, Joseph; Michalis, Vasileios K; Tsimpanogiannis, Ioannis N; Stubos, Athanassios K; Economou, Ioannis G

    2016-03-28

    We introduce a simple correction to the calculation of the lattice constants of fully occupied structure sI methane or carbon dioxide pure hydrates that are obtained from classical molecular dynamics simulations using the TIP4PQ/2005 water force field. The obtained corrected lattice constants are subsequently used in order to obtain isobaric thermal expansion coefficients of the pure gas hydrates that exhibit a trend that is significantly closer to the experimental behavior than previously reported classical molecular dynamics studies. PMID:27036466

  16. Lattice Boltzmann simulation of electrostatic double layer interaction force for nanoparticles

    NASA Astrophysics Data System (ADS)

    Shi, Grace X.; Jin, Yan; Lazouskaya, Volha; Wang, Chao; Wang, Lian-Ping

    2011-11-01

    Modeling the transport and retention of nanoparticles (NPs) through soil porous media requires an accurate description of the electrostatic interaction force between a nanoparticle and soil grain. In this study, we apply the lattice Boltzmann method to directly solve the nonlinear Poisson Boltzmann (PB) equation for several geometric configurations including plate-plate, NP-plate, and NP-NP interactions, for any surface potentials and interaction distances and for different boundary conditions. Interaction energy and force are then derived from the simulations. For the case of plate-plate interaction, the simulation results are compared to the exact solution of the nonlinear PB equation. It is shown that the linear PB solution is valid when the nondimensional surface potential is less than one, and that the linear PB solution over-predicts the interaction force for intermediate gap distances but under-predicts the force for small gap distances. For NP-plate and NP-NP interactions, an axisymmetric lattice Boltzmann formulation is developed to solve the governing equations. The results will be compared to the classic approximate expressions of interaction force to evaluate their validity and to study the effect of nanoparticle size. Work supported by NSF and USDA.

  17. Anomalous Lattice Vibrations of Single- and Few-Layer MoS{sub 2}

    SciTech Connect

    Lee, Changgu; Yan, Hugen; Brus, Louis; Heinz, Tony; Hone, James; Ryu, Sunmin

    2010-01-01

    Molybdenum disulfide (MoS{sub 2}) of single- and few-layer thickness was exfoliated on SiO{sub 2}/Si substrate and characterized by Raman spectroscopy. The number of S−Mo−S layers of the samples was independently determined by contact-mode atomic force microscopy. Two Raman modes, E{sup 1}{sub 2g} and A{sub 1g}, exhibited sensitive thickness dependence, with the frequency of the former decreasing and that of the latter increasing with thickness. The results provide a convenient and reliable means for determining layer thickness with atomic-level precision. The opposite direction of the frequency shifts, which cannot be explained solely by van der Waals interlayer coupling, is attributed to Coulombic interactions and possible stacking-induced changes of the intralayer bonding. This work exemplifies the evolution of structural parameters in layered materials in changing from the three-dimensional to the two-dimensional regime.

  18. Generation of a functional monomolecular protein lattice consisting of an s-layer fusion protein comprising the variable domain of a camel heavy chain antibody.

    PubMed

    Pleschberger, Magdalena; Neubauer, Angela; Egelseer, Eva M; Weigert, Stefan; Lindner, Brigitte; Sleytr, Uwe B; Muyldermans, Serge; Sára, Margit

    2003-01-01

    Crystalline bacterial cell surface layer (S-layer) proteins are composed of a single protein or glycoprotein species. Isolated S-layer subunits frequently recrystallize into monomolecular protein lattices on various types of solid supports. For generating a functional protein lattice, a chimeric protein was constructed, which comprised the secondary cell wall polymer-binding region and the self-assembly domain of the S-layer protein SbpA from Bacillus sphaericus CCM 2177, and a single variable region of a heavy chain camel antibody (cAb-Lys3) recognizing lysozyme as antigen. For construction of the S-layer fusion protein, the 3'-end of the sequence encoding the C-terminally truncated form rSbpA(31)(-)(1068) was fused via a short linker to the 5'-end of the sequence encoding cAb-Lys3. The functionality of the fused cAb-Lys3 in the S-layer fusion protein was proved by surface plasmon resonance measurements. Dot blot assays revealed that the accessibility of the fused functional sequence for the antigen was independent of the use of soluble or assembled S-layer fusion protein. Recrystallization of the S-layer fusion protein into the square lattice structure was observed on peptidoglycan-containing sacculi of B. sphaericus CCM 2177, on polystyrene or on gold chips precoated with thiolated secondary cell wall polymer, which is the natural anchoring molecule for the S-layer protein in the bacterial cell wall. Thereby, the fused cAb-Lys3 remained located on the outer S-layer surface and accessible for lysozyme binding. Together with solid supports precoated with secondary cell wall polymers, S-layer fusion proteins comprising rSbpA(31)(-)(1068) and cAbs directed against various antigens shall be exploited for building up monomolecular functional protein lattices as required for applications in nanobiotechnology. PMID:12643755

  19. Ab initio lattice dynamics and thermochemistry of layered bismuth telluride (Bi2Te3)

    NASA Astrophysics Data System (ADS)

    Zurhelle, Alexander F.; Deringer, Volker L.; Stoffel, Ralf P.; Dronskowski, Richard

    2016-03-01

    We present density-functional theory calculations of the lattice dynamics of bismuth telluride, yielding force constants, mean-square displacements and partial densities of phonon states which corroborate and complement previous nuclear inelastic scattering experiments. From these data, we derive an element- and energy-resolved view of the vibrational anharmonicity, quantified by the macroscopic Grüneisen parameter γ which results in 1.56. Finally, we calculate thermochemical properties in the quasiharmonic approximation, especially the heat capacity at constant pressure and the enthalpy of formation for bismuth telluride; the latter arrives at ▵H f (Bi2Te3)  =  -102 kJ mol-1 at 298 K.

  20. Ab initio lattice dynamics and thermochemistry of layered bismuth telluride (Bi2Te3).

    PubMed

    Zurhelle, Alexander F; Deringer, Volker L; Stoffel, Ralf P; Dronskowski, Richard

    2016-03-23

    We present density-functional theory calculations of the lattice dynamics of bismuth telluride, yielding force constants, mean-square displacements and partial densities of phonon states which corroborate and complement previous nuclear inelastic scattering experiments. From these data, we derive an element- and energy-resolved view of the vibrational anharmonicity, quantified by the macroscopic Grüneisen parameter γ which results in 1.56. Finally, we calculate thermochemical properties in the quasiharmonic approximation, especially the heat capacity at constant pressure and the enthalpy of formation for bismuth telluride; the latter arrives at ΔHf (Bi2Te3)  =  -102 kJ mol(-1) at 298 K. PMID:26894844

  1. Active Layer Soil Carbon and Nutrient Mineralization, Barrow, Alaska, 2012

    DOE Data Explorer

    Stan D. Wullschleger; Holly M. Vander Stel; Colleen Iversen; Victoria L. Sloan; Richard J. Norby; Mallory P. Ladd; Jason K. Keller; Ariane Jong; Joanne Childs; Deanne J. Brice

    2015-10-29

    This data set consists of bulk soil characteristics as well as carbon and nutrient mineralization rates of active layer soils manually collected from the field in August, 2012, frozen, and then thawed and incubated across a range of temperatures in the laboratory for 28 day periods in 2013-2015. The soils were collected from four replicate polygons in each of the four Areas (A, B, C, and D) of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Soil samples were coincident with the established Vegetation Plots that are located in center, edge, and trough microtopography in each polygon. Data included are 1) bulk soil characteristics including carbon, nitrogen, gravimetric water content, bulk density, and pH in 5-cm depth increments and also by soil horizon, 2) carbon, nitrogen, and phosphorus mineralization rates for soil horizons incubated aerobically (and in one case both aerobically and anaerobically) for 28 days at temperatures that included 2, 4, 8, and 12 degrees C. Additional soil and incubation data are forthcoming. They will be available when published as part of another paper that includes additional replicate analyses.

  2. Lattice-matched HfN buffer layers for epitaxy of GaN on Si

    SciTech Connect

    Armitage, Robert; Yang, Qing; Feick, Henning; Gebauer, Joerg; Weber, Eicke R.; Shinkai, Satoko; Sasaki, Katsutaka

    2002-05-08

    Gallium nitride is grown by plasma-assisted molecular-beam epitaxy on (111) and (001) silicon substrates using sputter-deposited hafnium nitride buffer layers. Wurtzite GaN epitaxial layers are obtained on both the (111) and (001) HfN/Si surfaces, with crack-free thickness up to 1.2 (mu)m. Initial results for GaN grown on the (111) surface show a photoluminescence peak width of 17 meV at 11 K, and an asymmetric x-ray rocking curve width of 20 arcmin. Wurtzite GaN on HfN/Si(001) shows reduced structural quality and peculiar low-temperature luminescence features. However, growth on the (001) surface results in nearly stress-free films, suggesting that much thicker crack-free layers could be obtained.

  3. High quality InAlN single layers lattice-matched to GaN grown by molecular beam epitaxy

    SciTech Connect

    Gacevic, Z.; Fernandez-Garrido, S.; Calleja, E.; Estrade, S.

    2011-07-18

    We report on properties of high quality {approx}60 nm thick InAlN layers nearly in-plane lattice-matched to GaN, grown on c-plane GaN-on-sapphire templates by plasma-assisted molecular beam epitaxy. Excellent crystalline quality and low surface roughness are confirmed by X-ray diffraction, transmission electron microscopy, and atomic force microscopy. High annular dark field observations reveal a periodic in-plane indium content variation (8 nm period), whereas optical measurements evidence certain residual absorption below the band-gap. The indium fluctuation is estimated to be {+-} 1.2% around the nominal 17% indium content via plasmon energy oscillations assessed by electron energy loss spectroscopy with sub-nanometric spatial resolution.

  4. Carbon Doping of Compound Semiconductor Epitaxial Layers Grown by Metalorganic Chemical Vapor Deposition Using Carbon Tetrachloride.

    NASA Astrophysics Data System (ADS)

    Cunningham, Brian Thomas

    1990-01-01

    A dilute mixture of CCl_4 in high purity H_2 has been used as a carbon dopant source for rm Al_ {x}Ga_{1-x}As grown by low pressure metalorganic chemical vapor deposition (MOCVD). To understand the mechanism for carbon incorporation from CCl_4 doping and to provide experimental parameters for the growth of carbon doped device structures, the effects of various crystal growth parameters on CCl _4 doping have been studied, including growth temperature, growth rate, V/III ratio, Al composition, and CCl_4 flow rate. Although CCl _4 is an effective p-type dopant for MOCVD rm Al_{x}Ga_ {1-x}As, injection of CCl_4 into the reactor during growth of InP resulted in no change in the carrier concentration or carbon concentration. Abrupt, heavy carbon doping spikes in GaAs have been obtained using CCl_4 without a dopant memory effect. By annealing samples with carbon doping spikes grown within undoped, n-type, and p-type GaAs, the carbon diffusion coefficient in GaAs at 825 ^circC has been estimated and has been found to depend strongly on the GaAs background doping. Heavily carbon doped rm Al_{x}Ga _{1-x}As/GaAs superlattices have been found to be more stable against impurity induced layer disordering (IILD) than Mg or Zn doped superlattices, indicating that the low carbon diffusion coefficient limits the IILD process. Carbon doping has been used in the base region on an Npn AlGaAs/GaAs heterojunction bipolar transistor (HBT). Transistors with 3 x 10 μm self-aligned emitter fingers have been fabricated which exhibit a current gain cutoff frequency of f_ {rm t} = 26 GHz.

  5. Ultralight anisotropic foams from layered aligned carbon nanotube sheets

    NASA Astrophysics Data System (ADS)

    Faraji, Shaghayegh; L. Stano, Kelly; Yildiz, Ozkan; Li, Ang; Zhu, Yuntian; Bradford, Philip D.

    2015-10-01

    In this work, we present large scale, ultralight aligned carbon nanotube (CNT) structures which have densities an order of magnitude lower than CNT arrays, have tunable properties and exhibit resiliency after compression. By stacking aligned sheets of carbon nanotubes and then infiltrating with a pyrolytic carbon (PyC), resilient foam-like materials were produced that exhibited complete recovery from 90% compressive strain. With density as low as 3.8 mg cm-3, the foam structure is over 500 times less dense than bulk graphite. Microscopy revealed that PyC coated the junctions among CNTs, and also increased CNT surface roughness. These changes in the morphology explain the transition from inelastic behavior to foam-like recovery of the layered CNT sheet structure. Mechanical and thermal properties of the foams were tuned for different applications through variation of PyC deposition duration while dynamic mechanical analysis showed no change in mechanical properties over a large temperature range. Observation of a large and linear electrical resistance change during compression of the aligned CNT/carbon (ACNT/C) foams makes strain/pressure sensors a relevant application. The foams have high oil absorption capacities, up to 275 times their own weight, which suggests they may be useful in water treatment and oil spill cleanup. Finally, the ACNT/C foam's high porosity, surface area and stability allow for demonstration of the foams as catalyst support structures.In this work, we present large scale, ultralight aligned carbon nanotube (CNT) structures which have densities an order of magnitude lower than CNT arrays, have tunable properties and exhibit resiliency after compression. By stacking aligned sheets of carbon nanotubes and then infiltrating with a pyrolytic carbon (PyC), resilient foam-like materials were produced that exhibited complete recovery from 90% compressive strain. With density as low as 3.8 mg cm-3, the foam structure is over 500 times less dense than

  6. Diameter Dependence of Lattice Thermal Conductivity of Single-Walled Carbon Nanotubes: Study from Ab Initio.

    PubMed

    Yue, Sheng-Ying; Ouyang, Tao; Hu, Ming

    2015-01-01

    The effects of temperature, tube length, defects, and surface functionalization on the thermal conductivity (κ) of single-walled carbon nanotubes (SWCNTs) were well documented in literature. However, diameter dependence of thermal conductivity of SWCNTs received less attentions. So far, diverse trends of the diameter dependence have been discussed by different methods and all the previous results were based on empirical interatomic potentials. In this paper, we emphasize to clarify accurate κ values of SWCNTs with different diameters and in-plane κ of graphene. All the studies were under the framework of anharmonic lattice dynamics and Boltzmann transport equation (BTE) based on first principle calculations. We try to infer the right trend of diameter dependent thermal conductivity of SWCNTs. We infer that graphene is the limitation as SWCNT with an infinite diameter. We analyzed the thermal conductivity contributions from each phonon mode in SWCNTs to explain the trend. Meanwhile, we also identify the extremely low thermal conductivity of ultra-thin SWCNTs. PMID:26490342

  7. Diameter Dependence of Lattice Thermal Conductivity of Single-Walled Carbon Nanotubes: Study from Ab Initio

    PubMed Central

    Yue, Sheng-Ying; Ouyang, Tao; Hu, Ming

    2015-01-01

    The effects of temperature, tube length, defects, and surface functionalization on the thermal conductivity (κ) of single-walled carbon nanotubes (SWCNTs) were well documented in literature. However, diameter dependence of thermal conductivity of SWCNTs received less attentions. So far, diverse trends of the diameter dependence have been discussed by different methods and all the previous results were based on empirical interatomic potentials. In this paper, we emphasize to clarify accurate κ values of SWCNTs with different diameters and in-plane κ of graphene. All the studies were under the framework of anharmonic lattice dynamics and Boltzmann transport equation (BTE) based on first principle calculations. We try to infer the right trend of diameter dependent thermal conductivity of SWCNTs. We infer that graphene is the limitation as SWCNT with an infinite diameter. We analyzed the thermal conductivity contributions from each phonon mode in SWCNTs to explain the trend. Meanwhile, we also identify the extremely low thermal conductivity of ultra-thin SWCNTs. PMID:26490342

  8. Graphene coated with controllable N-doped carbon layer by molecular layer deposition as electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, Yao; Gao, Zhe; Zhang, Bin; Zhao, Shichao; Qin, Yong

    2016-05-01

    In this work, graphene is coated with nitrogen-doped carbon layer, which is produced by a carbonization process of aromatic polyimide (PI) films deposited on the surfaces of graphene by molecular layer deposition (MLD). The utilization of MLD not only allows uniform coating of PI layers on the surfaces of pristine graphene without any surface treatment, but also enables homogenous dispersion of doped nitrogen atoms in the carbonized products. The as-prepared N-doped carbon layer coated graphene (NC-G) exhibited remarkable capacitance performance as electrode materials for supercapacitor, showing a high specific capacitance of 290.2 F g-1 at current density of 1 A g-1 in 6 M KOH aqueous electrolyte, meanwhile maintaining good rate performance and stable cycle capability. The NC-G synthesized by this way represents an alternative promising candidate as electrode material for supercapacitors.

  9. The importance of a surface organic layer in simulating permafrost thermal and carbon dynamics

    NASA Astrophysics Data System (ADS)

    Jafarov, Elchin; Schaefer, Kevin

    2016-03-01

    Permafrost-affected soils contain twice as much carbon as currently exists in the atmosphere. Studies show that warming of the perennially frozen ground could initiate significant release of the frozen soil carbon into the atmosphere. Initializing the frozen permafrost carbon with the observed soil carbon distribution from the Northern Circumpolar Soil Carbon Database reduces the uncertainty associated with the modeling of the permafrost carbon feedback. To improve permafrost thermal and carbon dynamics we implemented a dynamic surface organic layer with vertical carbon redistribution, and introduced dynamic root growth controlled by active layer thickness, which improved soil carbon exchange between frozen and thawed pools. These changes increased the initial amount of simulated frozen carbon from 313 to 560 Gt C, consistent with observed frozen carbon stocks, and increased the spatial correlation of the simulated and observed distribution of frozen carbon from 0.12 to 0.63.

  10. Limiting factors for carbon based chemical double layer capacitors

    NASA Technical Reports Server (NTRS)

    Rose, M. Frank; Johnson, C.; Owens, T.; Stevens, B.

    1993-01-01

    The Chemical Double Layer (CDL) capacitor improves energy storage density dramatically when compared with conventional electrolytic capacitors. When compared to batteries, the CDL Capacitor is much less energy dense; however, the power density is orders of magnitude better. As a result, CDL-battery combinations present an interesting pulse power system with many potential applications. Due to the nature of the CDL it is inherently a low voltage device. The applications of the CDL can be tailored to auxiliary energy and burst mode storages which require fast charge/discharge cycles. Typical of the applications envisioned are power system backup, directed energy weapons concepts, electric automobiles, and electric actuators. In this paper, we will discuss some of the general characteristics of carbon-based CDL technology describing the structure, performance parameters, and methods of construction. Further, analytical and experimental results which define the state of the art are presented and described in terms of impact on applications.

  11. The outer layers of cool, non-Mira carbon stars

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.

    1991-01-01

    The outer layers and near circumstellar envelope (CSE) of a typical carbon star have been studied using available data from theoretical and empirical models. An attempt is made to match the density-velocity structure of the photosphere-chromosphere region to values from the radio CO observations, which arise from the outer CSE. It is concluded that the stellar atmosphere includes a relatively thin high-temperature region close to hydrostatic equilibrium and a much more extended cooler region of outflowing gas and dust. To extend the outer photosphere and chromosphere to match the mass loss density appears to require an injection of energy and momentum by some mechanism rather close to the stellar surface.

  12. Multifunctional carbon nanotube thin film composites by layer-by-layer assembly technique

    NASA Astrophysics Data System (ADS)

    Shim, Bong Sup

    Polymeric layer-by-layer (LBL) assembly offers a pathway for multifunctional/multicomponent materials with molecular-scale control of stratified structures. Among the wide variety nanoscale building blocks such as nanowires and nanodots, single-walled carbon nanotubes (SWNTs) are regarded as one of the most versatile because of their superior mechanical and electrical properties as well as geometrical perfection. In this thesis, LBL assembled SWNT thin film nanocomposites with high mechanical strength/toughness and with high electrical/optical properties are presented. Exceptional exfoliation state of SWNTs and controlled nm-thick layered structures are the basis for achieving tunable physical properties. Highly anisotropic features of SWNTs are translated into 2 dimensional alignments by meniscus combing technique during LBL assemblies. Advanced LBL assemblies by dewetting methods are also introduced, which significantly accelerate the process with improved lateral organization of nanowires. Furthermore, SWNT composite coating on commodity cotton yarns produced intelligent electronic textiles (e-textiles) with intrinsic humidity sensibility. This e-textile has been further combined with antigen/antibody sensing capability in order to develop a selective albumin biosensor which provides a direct route for the application of these materials as wearable biomonitoring and telemedicine sensors.

  13. Development of spin-on carbon hardmasks with comparable etch resistance to Amorphous Carbon Layer (ACL)

    NASA Astrophysics Data System (ADS)

    Cheon, Hwan-Sung; Yoon, Kyong-Ho; Kim, Min-Soo; Oh, Seung Bae; Song, Jee-Yun; Tokareva, Nataliya; Kim, Jong-Seob; Chang, Tuwon

    2008-11-01

    In recent microlithography of semiconductor fabrication, spin-on hardmask (SOH) process continue to gain popularity as it replaces the traditional SiON/ACL hardmask scheme which suffers from high CoO, low productivity, particle contamination, and layer alignment issues. In the SOH process, organic polymer with high carbon content is spin-cast to form a carbon hardmask film. In the previous papers, we reported the development of organic SOH materials and their application in sub-70 nm lithography. In this paper, we describe the synthesis of organic polymers with very high carbon contents (>92 wt.%) and the evaluation of the spin-coated films for the hardmask application. The high carbon content of the polymer ensures improved etch resistance which amounts to >90% of ACL's resistance. However, as the carbon content of the polymers increases, the solubility in common organic solvents becomes lower. Here we report the strategies to improve the solubility of the high carbon content resins and optimization of the film properties for the SOH application.

  14. Growth of metal-free carbon nanotubes on glass substrate with an amorphous carbon catalyst layer.

    PubMed

    Seo, Jae Keun; Choi, Won Seok; Kim, Hee Dong; Lee, Jae-Hyeoung; Choi, Eun Chang; Kim, Hyung Jin; Hong, Byungyou

    2011-12-01

    We have investigated the direct growth of metal-free carbon nanotubes (CNTs) on glass substrates with microwave-plasma enhanced chemical vapor deposition (MPECVD). Amorphous carbon (a-C) films were used as a catalyst layer to grow metal-free CNTs. The a-C films were deposited on Corning glass substrates using RF magnetron sputtering with the use of a carbon target (99.99%) at room temperature. They were pretreated with hydrogen plasma using a microwave PECVD at 600 degrees C. Then, CNTs were prepared using microwave PECVD with a mixture of methane (CH4) and hydrogen (H2) gases. The CNTs were grown at different substrate temperatures (400 degrees C, 500 degrees C, and 600 degrees C) for 30 minutes. Other conditions were fixed. The growth trends of CNTs against substrate temperature were observed by field emission scanning electron microscopy (FE-SEM). The structure of a-C catalyst layer and grown CNTs were measured by Raman spectroscopy. High-resolution transmission electron microscopy (HR-TEM) images showed that the CNTs had bamboo-like multi-walled structures. Energy dispersive spectroscopy (EDS) measurements confirmed that the CNTs consisted of only carbon. PMID:22409050

  15. Anisotropy measurement of pyrolytic carbon layers of coated particles

    SciTech Connect

    Vesyolkin, Ju. A. Ivanov, A. S.; Trushkina, T. V.

    2015-12-15

    Equipment at the National Research Center Kurchatov Institute intended for the anisotropy determination of pyrolytic carbon layers in coated particles (CPs) of the GT-MGR reactor is tested and calibrated. The dependence of the anisotropy coefficient on the size of the measurement region is investigated. The results of measuring the optical anisotropy factor (OPTAF) for an aluminum mirror, rutile crystal, and available CP samples with the known characteristics measured previously using ORNL equipment (United States) are presented. In addition, measurements of CP samples prepared at VNIINM are performed. A strong dependence of the data on the preparation quality of metallographic sections is found. Our investigations allow us to make the conclusion on the working capacity of the existing equipment for measuring the anisotropy of pyrolytic carbon CP coatings using the equipment at the Kurchatov Institute with the relative error of about 1%. It is shown that the elimination of the errors caused by the stochastic fluctuations in a measuring path by mathematical processing of the signal allows us to decrease the relative error of OPTAF measurements to ∼0.3%.

  16. Anisotropy measurement of pyrolytic carbon layers of coated particles

    NASA Astrophysics Data System (ADS)

    Vesyolkin, Ju. A.; Ivanov, A. S.; Trushkina, T. V.

    2015-12-01

    Equipment at the National Research Center Kurchatov Institute intended for the anisotropy determination of pyrolytic carbon layers in coated particles (CPs) of the GT-MGR reactor is tested and calibrated. The dependence of the anisotropy coefficient on the size of the measurement region is investigated. The results of measuring the optical anisotropy factor (OPTAF) for an aluminum mirror, rutile crystal, and available CP samples with the known characteristics measured previously using ORNL equipment (United States) are presented. In addition, measurements of CP samples prepared at VNIINM are performed. A strong dependence of the data on the preparation quality of metallographic sections is found. Our investigations allow us to make the conclusion on the working capacity of the existing equipment for measuring the anisotropy of pyrolytic carbon CP coatings using the equipment at the Kurchatov Institute with the relative error of about 1%. It is shown that the elimination of the errors caused by the stochastic fluctuations in a measuring path by mathematical processing of the signal allows us to decrease the relative error of OPTAF measurements to ~0.3%.

  17. Local boundary reflections in lattice Boltzmann schemes: Spurious boundary layers and their impact on the velocity, diffusion and dispersion

    NASA Astrophysics Data System (ADS)

    Ginzburg, Irina; Roux, Laetitia; Silva, Goncalo

    2015-10-01

    This work demonstrates that in advection-diffusion Lattice Boltzmann schemes, the local mass-conserving boundary rules, such as bounce-back and local specular reflection, may modify the transport coefficients predicted by the Chapman-Enskog expansion when they enforce to zero not only the normal, but also the tangential boundary flux. In order to accommodate it to the bulk solution, the system develops a Knudsen-layer correction to the non-equilibrium part of the population solution. Two principal secondary effects-(i) decrease in the diffusion coefficient, and (ii) retardation of the average advection velocity, obtained in a closed analytical form, are proportional, respectively, to freely assigned diagonal weights for equilibrium mass and velocity terms. In addition, due to their transverse velocity gradients, the boundary layers affect the longitudinal diffusion coefficient similarly to Taylor dispersion, as they grow as the square of the Péclet number. These numerical artifacts can be eliminated or reduced by a proper space distribution of the free-tunable collision eigenvalue in two-relaxation-time schemes.

  18. Electronic structure and lattice dynamics at the interface of single layer FeSe and SrTiO3

    NASA Astrophysics Data System (ADS)

    Ahmed, Towfiq; Balatsky, Alexander; Zhu, Jian-Xin

    Recent discovery of high-temperature superconductivity with the superconducting energy gap opening at temperatures close to or above the liquid nitrogen boiling point in the single-layer FeSe grown on SrTiO3 has attracted significant interest. It suggests that the interface effects can be utilized to enhance the superconductivity. It has been shown recently that the coupling between the electrons in FeSe and vibrational modes at the interface play an important role. Here we report on a detailed study of electronic structure and lattice dynamics in the single-layer FeSe/SrTiO3 interface by using the state-of-art electronic structure method within the density functional theory. The nature of the vibrational modes at the interface and their coupling to the electronic degrees of freedom are analyzed. In addition, the effect of hole and electron doping in SrTiO3 on the electron-mode coupling strength is also considered. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396, and was supported by the DOE Office of Basic Energy Sciences.

  19. Magnetic, thermoelectric, and electronic properties of layered oxides and carbon materials

    NASA Astrophysics Data System (ADS)

    Caudillo, Roman

    The structure and physical properties of layered oxides and carbon materials were studied. Two layered carbon materials were studied: carbon nanotubes (CNTs) synthesized by electron irradiation from amorphous carbon in situ in a transmission electron microscope (TEM) and a carbon and silver nanocomposite consisting of graphitic carbon nanospheres encapsulating Ag nanoparticles. In the CNT experiments, the effect of electron irradiation in the TEM is shown to alter drastically their structure and properties, even being able to transform amorphous carbon into a CNT. This suggests a possible alternative synthesis technique for the production of CNTs, in addition to providing a method for tailoring their properties. The structure and magnetic properties of the carbon and silver nanocomposite was characterized with x-ray diffraction, scanning and transmission electron microscopy techniques, and magnetic susceptibility measurements with a superconducting quantum interference device (SQUID) magnetometer. While the sp2 bonding gives a graphene sheet its mechanical properties, the p pi electrons are responsible for its electronic and magnetic properties. In a flat graphene sheet the ppi electrons are itinerant, but in a narrow ppi band. The introduction of curvature to the graphene sheets that encapsulate the Ag nanoparticles is demonstrated to narrow the ppi band sufficiently to result in "ferromagnetic" behavior. A model that is able to explain spin localization and ferrimagnetic spin-spin interactions in graphitic materials with positive curvature is presented. Layered oxides from the family of the P2 NaxCoO 2 structure were synthesized and their properties studied. Na xCoO2 has a rich phase diagram ranging form a promising Na-rich thermoelectric composition to the hydrated Na-poor composition Na 0.33CoO2 1.3H2O that is superconductive. Intermediate to these two Na compositions exists an insulating phase with x ≈ 0.5 that presents a variety of interesting structural

  20. Nitrogen-incorporated ultrananocrystalline diamond and multi-layer-graphene-like hybrid carbon films.

    PubMed

    Tzeng, Yonhua; Yeh, Shoupu; Fang, Wei Cheng; Chu, Yuehchieh

    2014-01-01

    Nitrogen-incorporated ultrananocrystalline diamond (N-UNCD) and multi-layer-graphene-like hybrid carbon films have been synthesized by microwave plasma enhanced chemical vapor deposition (MPECVD) on oxidized silicon which is pre-seeded with diamond nanoparticles. MPECVD of N-UNCD on nanodiamond seeds produces a base layer, from which carbon structures nucleate and grow perpendicularly to form standing carbon platelets. High-resolution transmission electron microscopy and Raman scattering measurements reveal that these carbon platelets are comprised of ultrananocrystalline diamond embedded in multilayer-graphene-like carbon structures. The hybrid carbon films are of low electrical resistivity. UNCD grains in the N-UNCD base layer and the hybrid carbon platelets serve as high-density diamond nuclei for the deposition of an electrically insulating UNCD film on it. Biocompatible carbon-based heaters made of low-resistivity hybrid carbon heaters encapsulated by insulating UNCD for possible electrosurgical applications have been demonstrated. PMID:24681781

  1. Nitrogen-incorporated ultrananocrystalline diamond and multi-layer-graphene-like hybrid carbon films

    PubMed Central

    Tzeng, Yonhua; Yeh, Shoupu; Fang, Wei Cheng; Chu, Yuehchieh

    2014-01-01

    Nitrogen-incorporated ultrananocrystalline diamond (N-UNCD) and multi-layer-graphene-like hybrid carbon films have been synthesized by microwave plasma enhanced chemical vapor deposition (MPECVD) on oxidized silicon which is pre-seeded with diamond nanoparticles. MPECVD of N-UNCD on nanodiamond seeds produces a base layer, from which carbon structures nucleate and grow perpendicularly to form standing carbon platelets. High-resolution transmission electron microscopy and Raman scattering measurements reveal that these carbon platelets are comprised of ultrananocrystalline diamond embedded in multilayer-graphene-like carbon structures. The hybrid carbon films are of low electrical resistivity. UNCD grains in the N-UNCD base layer and the hybrid carbon platelets serve as high-density diamond nuclei for the deposition of an electrically insulating UNCD film on it. Biocompatible carbon-based heaters made of low-resistivity hybrid carbon heaters encapsulated by insulating UNCD for possible electrosurgical applications have been demonstrated. PMID:24681781

  2. Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser

    NASA Astrophysics Data System (ADS)

    Aravazhi, Shanmugam; Geskus, Dimitri; van Dalfsen, Koop; Vázquez-Córdova, Sergio A.; Grivas, Christos; Griebner, Uwe; García-Blanco, Sonia M.; Pollnau, Markus

    2013-05-01

    Single-crystalline KY1- x-y-z GdxLuyYbz(WO4)2 layers are grown onto undoped KY(WO4)2 substrates by liquid-phase epitaxy. The purpose of co-doping the KY(WO4)2 layer with suitable fractions of Gd3+ and Lu3+ is to achieve lattice-matched layers that allow us to engineer a high refractive-index contrast between waveguiding layer and substrate for obtaining tight optical mode confinement and simultaneously accommodate a large range of Yb3+ doping concentrations by replacing Lu3+ ions of similar ionic radius for a variety of optical amplifier or laser applications. Crack-free layers, up to a maximum lattice mismatch of ~0.08 %, are grown with systematic variations of Y3+, Gd3+, Lu3+, and Yb3+ concentrations, their refractive indices are measured at several wavelengths, and Sellmeier dispersion curves are derived. The influence of co-doping on the spectroscopy of Yb3+ is investigated. As evidenced by the experimental results, the lattice constants, refractive indices, and transition cross-sections of Yb3+ in these co-doped layers can be approximated with good accuracy by weighted averages of data from the pure compounds. The obtained information is exploited to fabricate a twofold refractive-index-engineered sample consisting of a highly Yb3+-doped tapered channel waveguide embedded in a passive planar waveguide, and a cladding-side-pumped channel waveguide laser is demonstrated.

  3. Numerical modeling of carrier gas flow in atomic layer deposition vacuum reactor: A comparative study of lattice Boltzmann models

    SciTech Connect

    Pan, Dongqing; Chien Jen, Tien; Li, Tao; Yuan, Chris

    2014-01-15

    This paper characterizes the carrier gas flow in the atomic layer deposition (ALD) vacuum reactor by introducing Lattice Boltzmann Method (LBM) to the ALD simulation through a comparative study of two LBM models. Numerical models of gas flow are constructed and implemented in two-dimensional geometry based on lattice Bhatnagar–Gross–Krook (LBGK)-D2Q9 model and two-relaxation-time (TRT) model. Both incompressible and compressible scenarios are simulated and the two models are compared in the aspects of flow features, stability, and efficiency. Our simulation outcome reveals that, for our specific ALD vacuum reactor, TRT model generates better steady laminar flow features all over the domain with better stability and reliability than LBGK-D2Q9 model especially when considering the compressible effects of the gas flow. The LBM-TRT is verified indirectly by comparing the numerical result with conventional continuum-based computational fluid dynamics solvers, and it shows very good agreement with these conventional methods. The velocity field of carrier gas flow through ALD vacuum reactor was characterized by LBM-TRT model finally. The flow in ALD is in a laminar steady state with velocity concentrated at the corners and around the wafer. The effects of flow fields on precursor distributions, surface absorptions, and surface reactions are discussed in detail. Steady and evenly distributed velocity field contribute to higher precursor concentration near the wafer and relatively lower particle velocities help to achieve better surface adsorption and deposition. The ALD reactor geometry needs to be considered carefully if a steady and laminar flow field around the wafer and better surface deposition are desired.

  4. Coherent Control of the Optical Absorption in a Plasmonic Lattice Coupled to a Luminescent Layer

    NASA Astrophysics Data System (ADS)

    Pirruccio, Giuseppe; Ramezani, Mohammad; Rodriguez, Said Rahimzadeh-Kalaleh; Rivas, Jaime Gómez

    2016-03-01

    We experimentally demonstrate the coherent control, i.e., phase-dependent enhancement and suppression, of the optical absorption in an array of metallic nanoantennas covered by a thin luminescent layer. The coherent control is achieved by using two collinear, counterpropagating, and phase-controlled incident waves with wavelength matching the absorption spectrum of dye molecules coupled to the array. Symmetry arguments shed light on the relation between the relative phase of the incident waves and the excitation efficiency of the optical resonances of the system. This coherent control is associated with a phase-dependent distribution of the electromagnetic near fields in the structure which enables a significant reduction of the unwanted dissipation in the metallic structures.

  5. Coherent Control of the Optical Absorption in a Plasmonic Lattice Coupled to a Luminescent Layer.

    PubMed

    Pirruccio, Giuseppe; Ramezani, Mohammad; Rodriguez, Said Rahimzadeh-Kalaleh; Rivas, Jaime Gómez

    2016-03-11

    We experimentally demonstrate the coherent control, i.e., phase-dependent enhancement and suppression, of the optical absorption in an array of metallic nanoantennas covered by a thin luminescent layer. The coherent control is achieved by using two collinear, counterpropagating, and phase-controlled incident waves with wavelength matching the absorption spectrum of dye molecules coupled to the array. Symmetry arguments shed light on the relation between the relative phase of the incident waves and the excitation efficiency of the optical resonances of the system. This coherent control is associated with a phase-dependent distribution of the electromagnetic near fields in the structure which enables a significant reduction of the unwanted dissipation in the metallic structures. PMID:27015478

  6. Clocking the anisotropic lattice dynamics of multi-walled carbon nanotubes by four-dimensional ultrafast transmission electron microscopy

    PubMed Central

    Cao, Gaolong; Sun, Shuaishuai; Li, Zhongwen; Tian, Huanfang; Yang, Huaixin; Li, Jianqi

    2015-01-01

    Recent advances in the four-dimensional ultrafast transmission electron microscope (4D-UTEM) with combined spatial and temporal resolutions have made it possible to directly visualize structural dynamics of materials at the atomic level. Herein, we report on our development on a 4D-UTEM which can be operated properly on either the photo-emission or the thermionic mode. We demonstrate its ability to obtain sequences of snapshots with high spatial and temporal resolutions in the study of lattice dynamics of the multi-walled carbon nanotubes (MWCNTs). This investigation provides an atomic level description of remarkable anisotropic lattice dynamics at the picosecond timescales. Moreover, our UTEM measurements clearly reveal that distinguishable lattice relaxations appear in intra-tubular sheets on an ultrafast timescale of a few picoseconds and after then an evident lattice expansion along the radial direction. These anisotropic behaviors in the MWCNTs are considered arising from the variety of chemical bonding, i.e. the weak van der Waals bonding between the tubular planes and the strong covalent sp2-hybridized bonds in the tubular sheets. PMID:25672762

  7. High-Performance Carbon Nanotube/Polymer Composite Fiber from Layer-by-Layer Deposition.

    PubMed

    Wu, Min Le; Chen, Yun; Zhang, Liang; Zhan, Hang; Qiang, Lei; Wang, Jian Nong

    2016-03-30

    So far, preparation of high-performance carbon nanotube (CNT)/polymer composites still faces big challenges mainly due to the limited control of CNT dispersion, fraction, and alignment in polymers. Here, a new "layer-by-layer deposition" method is put forward for preparing CNT/polymer composite fibers using poly(vinyl alcohol) (PVA) as an exemplary polymer. This is based on the continuous production of a hollow cylindrical CNT assembly from a high temperature reactor and its shrinking by a PVA-containing solution and deposition on a removable substrate wire. The in situ mixing of the two composite components at the molecular level allows CNTs to disperse and PVA to infiltrate into the fiber efficiently. As a result, remarkable effects of the CNT reinforcement on the PVA matrix are observed, including a strength improvement from ∼50 to 1255 MPa and electrical conductivity from ∼0 to 1948 S cm(-1). The new method offers good controllability of CNT dispersion and fraction in the polymer matrix, variability for making composite fibers using different polymers, and suitability for scaled up production. This study thus provides a new research direction for preparing CNT-reinforced composites and future performance maximization. PMID:26959406

  8. Power generation using carbon mesh cathodes with different diffusion layers in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Luo, Yong; Zhang, Fang; Wei, Bin; Liu, Guangli; Zhang, Renduo; Logan, Bruce E.

    An inexpensive carbon material, carbon mesh, was examined to replace the more expensive carbon cloth usually used to make cathodes in air-cathode microbial fuel cells (MFCs). Three different diffusion layers were tested using carbon mesh: poly(dimethylsiloxane) (PDMS), polytetrafluoroethylene (PTFE), and Goretex cloth. Carbon mesh with a mixture of PDMS and carbon black as a diffusion layer produced a maximum power density of 1355 ± 62 mW m -2 (normalized to the projected cathode area), which was similar to that obtained with a carbon cloth cathode (1390 ± 72 mW m -2). Carbon mesh with a PTFE diffusion layer produced only a slightly lower (6.6%) maximum power density (1303 ± 48 mW m -2). The Coulombic efficiencies were a function of current density, with the highest value for the carbon mesh and PDMS (79%) larger than that for carbon cloth (63%). The cost of the carbon mesh cathode with PDMS/Carbon or PTFE (excluding catalyst and binder costs) is only 2.5% of the cost of the carbon cloth cathode. These results show that low cost carbon materials such as carbon mesh can be used as the cathode in an MFC without reducing the performance compared to more expensive carbon cloth.

  9. Atomic migration of carbon in hard turned layers of carburized bearing steel

    SciTech Connect

    Bedekar, Vikram; Poplawsky, Jonathan D.; Guo, Wei; Shivpuri, Rajiv; Scott Hyde, R.

    2016-01-01

    In grain finement and non-equilibrium there is carbon segregation within grain boundaries alters the mechanical performance of hard turning layers in carburized bearing steel. Moreover, an atom probe tomography (APT) study on the nanostructured hard turning layers reveals carbon migration to grain boundaries as a result of carbide decomposition during severe plastic deformation. In addition, samples exposed to different cutting speeds show that the carbon migration rate increases with the cutting speed. For these two effects lead to an ultrafine carbon network structure resulting in increased hardness and thermal stability in the severely deformed surface layer.

  10. Development of carbon free diffusion layer for activated carbon air cathode of microbial fuel cells.

    PubMed

    Yang, Wulin; Kim, Kyoung-Yeol; Logan, Bruce E

    2015-12-01

    The fabrication of activated carbon air cathodes for larger-scale microbial fuel cells requires a diffusion layer (DL) that is highly resistant to water leakage, oxygen permeable, and made using inexpensive materials. A hydrophobic polyvinylidene fluoride (PVDF) membrane synthesized using a simple phase inversion process was examined as a low cost ($0.9/m(2)), carbon-free DL that prevented water leakage at high pressure heads compared to a polytetrafluoroethylene/carbon black DL ($11/m(2)). The power density produced with a PVDF (20%, w/v) DL membrane of 1400±7mW/m(2) was similar to that obtained using a wipe DL [cloth coated with poly(dimethylsiloxane)]. Water head tolerance reached 1.9m (∼19kPa) with no mesh supporter, and 2.1m (∼21kPa, maximum testing pressure) with a mesh supporter, compared to 0.2±0.05m for the wipe DL. The elimination of carbon black from the DL greatly simplified the fabrication procedure and further reduced overall cathode costs. PMID:26342345

  11. Highly stable perovskite solar cells with an all-carbon hole transport layer.

    PubMed

    Wang, Feijiu; Endo, Masaru; Mouri, Shinichiro; Miyauchi, Yuhei; Ohno, Yutaka; Wakamiya, Atsushi; Murata, Yasujiro; Matsuda, Kazunari

    2016-06-01

    Nano-carbon materials (carbon nanotubes, graphene, and graphene oxide) have potential application for photovoltaics because of their excellent optical and electronic properties. Here, we demonstrate that a single-walled carbon nanotubes/graphene oxide buffer layer greatly improves the photovoltaic performance of organo-lead iodide perovskite solar cells. The carbon nanotubes/graphene oxide buffer layer works as an efficient hole transport/electron blocking layer. The photovoltaic conversion efficiency of 13.3% was achieved in the organo-lead iodide perovskite solar cell due to the complementary properties of carbon nanotubes and graphene oxide. Furthermore, the great improvement of photovoltaic performance stability in the perovskite solar cells using carbon nanotubes/graphene oxide/polymethyl methacrylate was demonstrated in comparison with that using a typical organic hole transport layer of 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene. PMID:27232674

  12. Antiferromagnetic Kondo lattice in the layered compounds Re2NiGa9Ge2 (Re =Ce, Pr, Sm)

    NASA Astrophysics Data System (ADS)

    Zhu, Yanglin; Liu, Jinyu; Hu, Jin; Adams, Daniel; Spinu, Leonard; Mao, Zhiqiang

    Intermetallic compounds containing rare-earth/actinide elements with 4f/5f electrons have formed a special family of strongly correlated materials, i.e. heavy fermion systems. We have recently found a new layered rare earth intermetallic system showing moderate heavy fermion behavior: Re2NiGa9Ge2 (Re =Ce, Sm, Pr). The Re =Ce and Sm members were previously synthesized, while their electronic properties have not been reported. We have recently grown single crystals of Re2NiGa9Ge2 (Re =Ce, Sm, Pr) and characterized their electronic and magnetic properties. We find all these materials are antiferromagnetic, with TN = 2.5 K, 5 K, 3.4 K respectively for Re =Ce, Pr and Sm. Moreover, they also exhibit large values of electronic specific coefficient: γ ~ 101 mJ mol-Ce-1 K-2 for Re =Ce, 368 mJ mol-Pr-1 K-2 for Re =Pr, and 196.4 mJ mol-Sm-1 K-2 for Re =Sm, indicating enhanced Kondo effect and the presence of AFM Kondo lattice. Our findings suggest that Re2NiGa9Ge2 (Re =Ce, Pr, Sm) could be interesting candidate materials for exploring novel exotic properties of correlated electrons through external parameter tuning such as chemical substitution and pressure.

  13. Highly stable perovskite solar cells with an all-carbon hole transport layer

    NASA Astrophysics Data System (ADS)

    Wang, Feijiu; Endo, Masaru; Mouri, Shinichiro; Miyauchi, Yuhei; Ohno, Yutaka; Wakamiya, Atsushi; Murata, Yasujiro; Matsuda, Kazunari

    2016-06-01

    Nano-carbon materials (carbon nanotubes, graphene, and graphene oxide) have potential application for photovoltaics because of their excellent optical and electronic properties. Here, we demonstrate that a single-walled carbon nanotubes/graphene oxide buffer layer greatly improves the photovoltaic performance of organo-lead iodide perovskite solar cells. The carbon nanotubes/graphene oxide buffer layer works as an efficient hole transport/electron blocking layer. The photovoltaic conversion efficiency of 13.3% was achieved in the organo-lead iodide perovskite solar cell due to the complementary properties of carbon nanotubes and graphene oxide. Furthermore, the great improvement of photovoltaic performance stability in the perovskite solar cells using carbon nanotubes/graphene oxide/polymethyl methacrylate was demonstrated in comparison with that using a typical organic hole transport layer of 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene.Nano-carbon materials (carbon nanotubes, graphene, and graphene oxide) have potential application for photovoltaics because of their excellent optical and electronic properties. Here, we demonstrate that a single-walled carbon nanotubes/graphene oxide buffer layer greatly improves the photovoltaic performance of organo-lead iodide perovskite solar cells. The carbon nanotubes/graphene oxide buffer layer works as an efficient hole transport/electron blocking layer. The photovoltaic conversion efficiency of 13.3% was achieved in the organo-lead iodide perovskite solar cell due to the complementary properties of carbon nanotubes and graphene oxide. Furthermore, the great improvement of photovoltaic performance stability in the perovskite solar cells using carbon nanotubes/graphene oxide/polymethyl methacrylate was demonstrated in comparison with that using a typical organic hole transport layer of 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene. Electronic supplementary information (ESI

  14. Assembling carbon quantum dots to a layered carbon for high-density supercapacitor electrodes.

    PubMed

    Chen, Guanxiong; Wu, Shuilin; Hui, Liwei; Zhao, Yuan; Ye, Jianglin; Tan, Ziqi; Zeng, Wencong; Tao, Zhuchen; Yang, Lihua; Zhu, Yanwu

    2016-01-01

    It is found that carbon quantum dots (CQDs) self-assemble to a layer structure at ice crystals-water interface with freeze- drying. Such layers interconnect with each other, forming a free-standing CQD assembly, which has an interlayer distance of about 0.366 nm, due to the existence of curved carbon rings other than hexagons in the assembly. CQDs are fabricated by rupturing C60 by KOH activation with a production yield of ~15 wt.%. The CQDs obtained have an average height of 1.14 nm and an average lateral size of 7.48 nm, and are highly soluble in water. By packaging annealed CQD assembly to high density (1.23 g cm(-3)) electrodes in supercapacitors, a high volumetric capacitance of 157.4 F cm(-3) and a high areal capacitance of 0.66 F cm(-2) (normalized to the loading area of electrodes) are demonstrated in 6 M KOH aqueous electrolyte with a good rate capability. PMID:26754463

  15. Assembling carbon quantum dots to a layered carbon for high-density supercapacitor electrodes

    PubMed Central

    Chen, Guanxiong; Wu, Shuilin; Hui, Liwei; Zhao, Yuan; Ye, Jianglin; Tan, Ziqi; Zeng, Wencong; Tao, Zhuchen; Yang, Lihua; Zhu, Yanwu

    2016-01-01

    It is found that carbon quantum dots (CQDs) self-assemble to a layer structure at ice crystals-water interface with freeze- drying. Such layers interconnect with each other, forming a free-standing CQD assembly, which has an interlayer distance of about 0.366 nm, due to the existence of curved carbon rings other than hexagons in the assembly. CQDs are fabricated by rupturing C60 by KOH activation with a production yield of ~15 wt.%. The CQDs obtained have an average height of 1.14 nm and an average lateral size of 7.48 nm, and are highly soluble in water. By packaging annealed CQD assembly to high density (1.23 g cm−3) electrodes in supercapacitors, a high volumetric capacitance of 157.4 F cm−3 and a high areal capacitance of 0.66 F cm−2 (normalized to the loading area of electrodes) are demonstrated in 6 M KOH aqueous electrolyte with a good rate capability. PMID:26754463

  16. Statistical mechanical lattice models of endohedral and exohedral xenon adsorption in carbon nanotubes and comparison with Monte-Carlo simulations

    NASA Astrophysics Data System (ADS)

    Dunne, Lawrence J.; Manos, George; Rekabi, Mahdi

    2009-01-01

    Adsorption of xenon in carbon nanotubes has been investigated by Kuznetsova et al. [A. Kuznetsova, J.T. Yates Jr., J. Liu, R.E. Smalley, J. Chem. Phys. 112 (2000) 9590] and Simonyan et al. [V. Simonyan, J.K. Johnson, A Kuznetsova, J.T. Yates Jr., J. Chem. Phys. 114 (2001) 4180] where endohedral adsorption isotherms show a step-like structure. A matrix method is used for calculation of the statistical mechanics of a lattice model of xenon endohedral adsorption which reproduces the isotherm structure while exohedral adsorption is treated by mean-field theory.

  17. Investigation on the lattice site location of the excess arsenic atoms in GaAs layers grown by low temperature molecular beam epitaxy

    SciTech Connect

    Yu, Kin Man; Liliental-Weber, Z.

    1991-11-01

    We have measured the excess As atoms present in gaze layers grown by molecular beam epitaxy at low substrate temperatures using particle induced x-ray emission technique. The amount of excess As atoms in layers grown by MBE at 200{degrees}C were found to be {approximately} 4 {times} 10{sup 20} cm{sup {minus}2}. Subsequent annealing of the layers under As overpressure at 600{degrees}C did not result in any substantial As loss. However, transmission electron microscopy revealed that As precipitates (2-5nm in diameter) were present in the annealed layers. The lattice location of the excess As atoms in the as grown layers was investigated by ion channeling methods. Angular scans were performed in the <110> axis of the crystal. Our results strongly suggest that a large fraction of these excess As atoms are located in an interstitial position close to an As row. These As intersitials'' are located at a site slightly displaced from the tetrahedral site in a diamond cubic lattice. No interstitial As signal is observed in the annealed layers.

  18. Investigation on the lattice site location of the excess arsenic atoms in GaAs layers grown by low temperature molecular beam epitaxy

    SciTech Connect

    Yu, Kin Man; Liliental-Weber, Z.

    1991-11-01

    We have measured the excess As atoms present in gaze layers grown by molecular beam epitaxy at low substrate temperatures using particle induced x-ray emission technique. The amount of excess As atoms in layers grown by MBE at 200{degrees}C were found to be {approximately} 4 {times} 10{sup 20} cm{sup {minus}2}. Subsequent annealing of the layers under As overpressure at 600{degrees}C did not result in any substantial As loss. However, transmission electron microscopy revealed that As precipitates (2-5nm in diameter) were present in the annealed layers. The lattice location of the excess As atoms in the as grown layers was investigated by ion channeling methods. Angular scans were performed in the <110> axis of the crystal. Our results strongly suggest that a large fraction of these excess As atoms are located in an interstitial position close to an As row. These As ``intersitials`` are located at a site slightly displaced from the tetrahedral site in a diamond cubic lattice. No interstitial As signal is observed in the annealed layers.

  19. Design and application of carbon nanomaterials for photoactive and charge transport layers in organic solar cells

    NASA Astrophysics Data System (ADS)

    Jin, Sunghwan; Jun, Gwang Hoon; Jeon, Seokwoo; Hong, Soon Hyung

    2016-04-01

    Commercialization of organic solar cell (OSC) has faltered due to their low power conversion efficiency (PCE) compared to inorganic solar cell. Low electrical conductivity, low charge mobility, and short-range light absorption of most organic materials limit the PCE of OSCs. Carbon nanomaterials, especially carbon nanotubes (CNTs) and graphenes, are of great interest for use in OSC applications due to their high electrical conductivity, mobility, and unique optical properties for enhancing the performance of OSCs. In this review, recent progress toward the integration of carbon nanomaterials into OSCs is described. The role of carbon nanomaterials and strategies for their integration into various layers of OSCs, including the photoactive layer and charge transport layer, are discussed. Based on these, we also discuss the prospects of carbon nanomaterials for specific OSC layers to maximize the PCE.

  20. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers

    NASA Astrophysics Data System (ADS)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-01

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  1. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers.

    PubMed

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-01-01

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes. PMID:25692264

  2. Synthesis of Organized Layered Carbon by Self-Templating of Dithiooxamide.

    PubMed

    Xu, Jingsan; Zhu, Jixin; Yang, Xiaofei; Cao, Shaowen; Yu, Jiaguo; Shalom, Menny; Antonietti, Markus

    2016-08-01

    An unusual small molecule, dithiooxamide is used to produce nanostructured carbon via direct pyrolysis. The carbon shows a unique 2D-layer assembled structure and is in situ dual-heteroatom (N and S)-doped, meanwhile having relatively high surface area. These carbon materials can be further decorated with inorganic parts via a precomplexing approach. The functionalized carbon and the hybrid nanomaterials demonstrate remarkable performance for lithium-ion storage. PMID:27187106

  3. Method of evaluating the integrity of the outer carbon layer of triso-coated reactor fuel particles

    DOEpatents

    Caputo, Anthony J.; Costanzo, Dante A.; Lackey, Jr., Walter J.; Layton, Frank L.; Stinton, David P.

    1980-01-01

    This invention relates to a method for determining defective final layers of carbon on triso-coated fuel particles and the like. Samples of the particles are subjected to a high temperature treatment with gaseous chlorine and thereafter radiographed. The chlorine penetrates through any defective carbon layer and reacts with the underlying silicon carbide resulting in the volatilization of the silicon as SiCl.sub.4 leaving carbon as a porous layer. This porous carbon layer is easily detected by the radiography.

  4. Lattice-Boltzmann Simulations of Multiphase Flows in Gas-Diffusion-Layer (GDL) of a PEM Fuel Cell

    SciTech Connect

    Mukherjeea, Shiladitya; Cole, J Vernon; Jainb, Kunal; Gidwania, Ashok

    2008-11-01

    Improved power density and freeze-thaw durability in automotive applications of Proton Exchange Membrane Fuel Cells (PEMFCs) requires effective water management at the membrane. This is controlled by a porous hydrophobic gas-diffusion-layer (GDL) inserted between the membrane catalyst layer and the gas reactant channels. The GDL distributes the incoming gaseous reactants on the catalyst surface and removes excess water by capillary action. There is, however, limited understanding of the multiphase, multi-component transport of liquid water, vapor and gaseous reactants within these porous materials. This is due primarily to the challenges of in-situ diagnostics for such thin (200 -“ 300 {microns}), optically opaque (graphite) materials. Transport is typically analyzed by fitting Darcy's Law type expressions for permeability, in conjunction with capillary pressure relations based on formulations derived for media such as soils. Therefore, there is significant interest in developing predictive models for transport in GDLs and related porous media. Such models could be applied to analyze and optimize systems based on the interactions between cell design, materials, and operating conditions, and could also be applied to evaluating material design concepts. Recently, the Lattice Boltzmann Method (LBM) has emerged as an effective tool in modeling multiphase flows in general, and flows through porous media in particular. This method is based on the solution of a discrete form of the well-known Boltzmann Transport Equation (BTE) for molecular distribution, tailored to recover the continuum Navier-Stokes flow. The kinetic theory basis of the method allows simple implementation of molecular forces responsible for liquid-gas phase separation and capillary effects. The solution advances by a streaming and collision type algorithm that makes it suitable to implement for domains with complex boundaries. We have developed both single and multiphase LB models and applied them to

  5. Suppression of tin precipitation in SiSn alloy layers by implanted carbon

    SciTech Connect

    Gaiduk, P. I.; Lundsgaard Hansen, J. Nylandsted Larsen, A.

    2014-06-09

    By combining transmission electron microscopy and Rutherford backscattering spectrometry, we have identified carbon related suppression of dislocations and tin precipitation in supersaturated molecular-beam epitaxial grown SiSn alloy layers. Secondary ion mass spectrometry has exposed the accumulation of carbon in the SiSn layers after high temperature carbon implantation and high temperature thermal treatment. Strain-enhanced separation of point defects and formation of dopant-defect complexes are suggested to be responsible for the effects. The possibility for carbon assisted segregation-free high temperature growth of heteroepitaxial SiSn/Si and GeSn/Si structures is argued.

  6. Advanced nanostructured carbon materials for electrical double layer capacitors

    NASA Astrophysics Data System (ADS)

    Jänes, A.; Kurig, H.; Thomberg, T.; Lust, E.

    2007-12-01

    Thermodynamical and electrochemical characteristics for the non-aqueous electrolyte mid nanostructured carbide-derived carbon (CDC), activated carbon cloth (ACC) or commercial activated nanoporous carbon RP-20 (from Kuraray Chemical Co.) interface have been established by XRD, Raman spectroscopy, BET, cyclic voltammetry and electrochemical impedance spectroscopy. The gas adsorption measurement data have been used for the obtaining the specific surface area, pore size distribution, nanopore volume and other characteristics, dependent on the nanostructured carbon used (nanopores are pores in the range of 2 nm and below — i.e. micropores according to IUPAC classification).

  7. Carbon nano-chain and carbon nano-fibers based gas diffusion layers for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kannan, Arunachala M.; Munukutla, Lakshmi

    Gas diffusion layers (GDL) for proton exchange membrane fuel cell have been developed using a partially ordered graphitized nano-carbon chain (Pureblack ® carbon) and carbon nano-fibers. The GDL samples' characteristics such as, surface morphology, surface energy, bubble-point pressure and pore size distribution were characterized using electron microscope, inverse gas chromatograph, gas permeability and mercury porosimetry, respectively. Fuel cell performance of the GDLs was evaluated using single cell with hydrogen/air at ambient pressure, 70 °C and 100% RH. The GDLs with combination of vapor grown carbon nano-fibers with Pureblack carbon showed significant improvement in mechanical robustness as well as fuel cell performance. The micro-porous layer of the GDLs as seen under scanning electron microscope showed excellent surface morphology showing the reinforcement with nano-fibers and the surface homogeneity without any cracks.

  8. Optical properties of spray coated layers with carbon nanotubes and graphene nanoplatelets

    NASA Astrophysics Data System (ADS)

    Lorenc, Zofia; Krzeminski, Jakub; Wroblewski, Grzegorz; Salbut, Leszek

    2016-04-01

    Carbon nanotubes as well as graphene are allotropic forms of carbon. Graphene is a two dimensional (2D) form of atomic-scale, hexagonal lattice, while carbon nanotube is a cylindrical nanostructure composed of a rolled sheet of graphene lattice at specific and discrete angles. Both of discussed materials have a high potential for modern engineering, especially in organic and printed electronics. High transparency in the visible part of the electromagnetic spectrum and low electrical resistance are desirable features in various applications and may be fulfilled with studied carbon nanomaterials. They have chances to become an important technological improvement in customers electronic devices by applying them to electrodes production in flexible screens and light sources. Graphene end carbon nanotubes are conceptually similar. However, characteristic properties of these two substances are different. In the article authors present the results of the transmission in visible electromagnetic spectrum characteristics of different samples. This parameter and the resistance of electrodes are tested, analysed and compared. Characteristics of optical transmittance against resistance with the optimal point of that relationship are presented in paper. Moreover, dependency of graphene nanoplatelets agglomerates arrangement against type of nano-fillers is shown. Two groups of tested inks contain graphene nanoplatelets with different fillers diameters. The third group contains carbon nanotubes. Described parameters are important for production process and results of analysis can be used by technologists working with elastic electronics.

  9. TECHNICAL NOTE: Design and development of electromagnetic absorbers with carbon fiber composites and matching dielectric layers

    NASA Astrophysics Data System (ADS)

    Neo, C. P.; Varadan, V. K.

    2001-10-01

    Radar absorbing materials are designed and developed with carbon fibers and suitable matching layers. Complex permittivities of carbon fiber composite are predicted on the basis that the modulus of permittivity obeys a logarithmic law of mixtures and the dielectric loss tangents are related through a linear law of mixtures. Linear regression analysis performed on the data points provides the constants which are used to predict the effective permittivities of carbon fiber composite at different frequencies. Using the free space measurement system, complex permittivities of the lossy dielectric at different frequencies are obtained. These complex permittivities are used to predict the reflectivity of a thin lossy dielectric layer on carbon fiber composite substrate. The predicted results agree quite well with the measured data. It is interesting to note that the thin lossy dielectric layer, about 0.03 mm thick, has helped to reduce the reflectivity of the 5.2 mm thick carbon fiber composite considerably.

  10. Detection of the first order phase transition in water with carbon nanotube layer

    NASA Astrophysics Data System (ADS)

    Samuilov, Vladimir; Poklonski, Nikolay

    2014-03-01

    We have developed a new generation of the icing conditions sensors. These sensors are based on the detection of a molecular thin layer of absorbed water molecules, transforming into ice by detection of nonmonotonic variation of the resistance of the carbon nanotube sensor. Carbon nanotube layers could be utilized as an inexpensive and effective sensors of humidity and icing conditions, suitable for applications in aviation and different industries.

  11. Carbon-Nanotube Conductive Layers for Thin-Film Solar Cells

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2005-01-01

    Thin, transparent layers comprising mats of carbon nanotubes have been proposed for providing lateral (that is, inplane) electrical conductivities for collecting electric currents from the front surfaces of the emitter layers of thin-film solar photovoltaic cells. Traditionally, thin, semitransparent films of other electrically conductive materials (usually, indium tin oxide, zinc oxide, or cadmium sulfide) have been used for this purpose. As in the cases of the traditional semitransparent conductive films, the currents collected by the nanotube layers would, in turn, be further collected by front metal contact stripes. Depending on details of a specific solar-cell design, the layer of carbon nanotubes would be deposited in addition to, or instead of, a semitransparent layer of one of these traditional conductive materials (see figure). The proposal is expected to afford the following advantages: The electrical conductivity of the carbon- nanotube layer would exceed that of the corresponding semitransparent layer of traditional electrically conductive material. The greater electrical conductivity of the carbon-nanotube layer would make it possible to retain adequate lateral electrical conductivity while reducing the thickness of, or eliminating entirely, the traditional semitransparent conductive layer. As a consequence of thinning or elimination of the traditional semitransparent conductive layer, less light would be absorbed, so that more of the incident light would be available for photovoltaic conversion. The greater electrical conductivity of the carbon-nanotube layer would make it possible to increase the distance between front metal contact stripes, in addition to (or instead of) thinning or eliminating the layer of traditional semitransparent conductive material. Consequently, the fraction of solar-cell area shadowed by front metal contact stripes would be reduced again, making more of the incident light available for photovoltaic conversion. The electrical

  12. Atomic Layer Deposition on Carbon Nanotubes and their Assemblies

    NASA Astrophysics Data System (ADS)

    Stano, Kelly Lynn

    Global issues related to energy and the environment have motivated development of advanced material solutions outside of traditional metals ceramics, and polymers. Taking inspiration from composites, where the combination of two or more materials often yields superior properties, the field of organic-inorganic hybrids has recently emerged. Carbon nanotube (CNT)-inorganic hybrids have drawn widespread and increasing interest in recent years due to their multifunctionality and potential impact across several technologically important application areas. Before the impacts of CNT-inorganic hybrids can be realized however, processing techniques must be developed for their scalable production. Optimization in chemical vapor deposition (CVD) methods for synthesis of CNTs and vertically aligned CNT arrays has created production routes both high throughput and economically feasible. Additionally, control of CVD parameters has allowed for growth of CNT arrays that are able to be drawn into aligned sheets and further processed to form a variety of aligned 1, 2, and 3-dimensional bulk assemblies including ribbons, yarns, and foams. To date, there have only been a few studies on utilizing these bulk assemblies for the production of CNT-inorganic hybrids. Wet chemical methods traditionally used for fabricating CNT-inorganic hybrids are largely incompatible with CNT assemblies, since wetting and drying the delicate structures with solvents can destroy their structure. It is therefore necessary to investigate alternative processing strategies in order to advance the field of CNT-inorganic hybrids. In this dissertation, atomic layer deposition (ALD) is evaluated as a synthetic route for the production of large-scale CNT-metal oxide hybrids as well as pure metal oxide architectures utilizing CNT arrays, ribbons, and ultralow density foams as deposition templates. Nucleation and growth behavior of alumina was evaluated as a function of CNT surface chemistry. While highly graphitic

  13. Electrodeposition of catalytic and magnetic gold nanoparticles on dendrimer-carbon nanotube layer-by-layer films.

    PubMed

    Siqueira, José R; Gabriel, Rayla C; Zucolotto, Valtencir; Silva, Anielle C A; Dantas, Noelio O; Gasparotto, Luiz H S

    2012-11-01

    Magnetic and catalytic gold nanoparticles were electrodeposited through potential pulse on dendrimer-carbon nanotube layer-by-layer (LbL) films. A plasmon absorption band at about 550 nm revealed the presence of nanoscale gold in the film. The location of the Au nanoparticles in the film was clearly observed by selecting the magnetic force microscopy mode. To our knowledge, this is the first report on the electrochemical synthesis of magnetic Au nanoparticles. In addition to the magnetic properties, the Au nanoparticles also exhibited high catalytic activity towards ethanol and glycerol oxidation in alkaline medium. PMID:23007196

  14. Influence of the temperature and duration of the annealing on the lattice structure and growth of the Mg-Al spinel layer

    NASA Astrophysics Data System (ADS)

    Zhang, Hailiang; Zhang, Mingfu; Han, Jiecai; Ying, Guobing; Guo, Huaixin; Xu, Chenghai; Shen, Haitao; Song, Ningning

    2011-03-01

    In this paper, MgO film is successfully grown on polycrystalline and monocrystalline alumina substrates using sol-gel method, and polycrystalline and monocrystalline Mg-Al spinels are fabricated by solid state reaction, respectively. The influence of annealing temperature and time on the lattice structure and growth of the formed Mg-Al spinel layer has been investigated. It is indicated that the annealing temperature and time on the as-synthesized polycrystalline Mg-Al spinel has more significant influence than that of single crystal Mg-Al spinel. The thickness of the Mg-Al spinel layer increases with the annealing temperature, both for polycrystalline and for monocrystalline alumina substrates. And the significantly intercrystalline diffusion of Mg 2+ ions and Al 3+ ions results in a quicker growth velocity of the Mg-Al spinel layer than that of intracrystalline diffusion.

  15. Experiments on passive hypersonic boundary layer control using ultrasonically absorptive carbon-carbon material with random microstructure

    NASA Astrophysics Data System (ADS)

    Wagner, Alexander; Kuhn, Markus; Martinez Schramm, Jan; Hannemann, Klaus

    2013-10-01

    For the first time, the influence of ultrasonically absorptive carbon-carbon material on hypersonic laminar to turbulent boundary layer transition was investigated experimentally. A 7° half-angle blunted cone with a nose radius of 2.5 mm and a total length of 1,077 mm was tested at zero angle of attack in the High Enthalpy Shock Tunnel Göttingen of the German Aerospace Center (DLR) at Mach 7.5. One-third of the metallic model surface in circumferential direction was replaced by DLR in-house manufactured ultrasonically absorptive carbon-carbon material with random microstructure for passive transition control. The remaining model surface consisted of polished steel and served as reference surface. The model was equipped with coaxial thermocouples to determine the transition location by means of surface heat flux distribution. Flush-mounted piezoelectric fast-response pressure transducers were used to measure the pressure fluctuations in the boundary layer associated with second-mode instabilities. The free-stream unit Reynolds number was varied over a range of Re m = 1.5 × 106 m-1 to Re m = 6.4 × 106 m-1 at a stagnation enthalpy of h 0 ≈ 3.2 MJ/kg and a wall temperature ratio of T w/ T 0 ≈ 0.1. The present study revealed a clear damping of the second-mode instabilities and a delay of boundary layer transition along the ultrasonically absorptive carbon-carbon insert.

  16. Effect of Alloying, Heat Treatment and Carbon Content on White Layer Formation in Machining of Steels

    SciTech Connect

    Han, Sangil; Melkote, Shreyes N; Riester, Laura

    2005-01-01

    This paper describes an experimental investigation of the effects of alloying, carbon content, and heat treatment on white layer formation in machining of steels. The investigation is carried out by machining steels that differ in alloying, heat treatment and carbon content, via orthogonal cutting tests performed with low cBN content tools. The depth of white layer and its hardness are measured for every case. Specifically, the thickness and hardness of white layer produced in cutting AISI 1045 and AISI 4340 annealed steels are compared to determine the effect of alloying on white layer formation. The effect of heat treatment on white layer formation and its hardness are investigated by machining annealed and hardened (53 HRC) AISI 4340 steels. The effect of carbon content on white layer formation is investigated by cutting hardened AISI 52100 and AISI 4340 steels of the same hardness (53 HRC). The results of the study show that alloying, heat treatment, and carbon content influence white layer formation and its hardness.

  17. Suppression of segregation of the phosphorus δ-doping layer in germanium by incorporation of carbon

    NASA Astrophysics Data System (ADS)

    Yamada, Michihiro; Sawano, Kentarou; Uematsu, Masashi; Shimizu, Yasuo; Inoue, Koji; Nagai, Yasuyoshi; Itoh, Kohei M.

    2016-03-01

    The successful formation of abrupt phosphorus (P) δ-doping profiles in germanium (Ge) is reported. When the P δ-doping layers were grown by molecular beam epitaxy (MBE) directly on Ge wafers whose surfaces had residual carbon impurities, more than a half the phosphorus atoms were confined successfully within a few nm of the initial doping position even after the growth of Ge capping layers on the top. On the other hand, the same P layers grown on Ge buffer layers that had much less carbon showed significantly broadened P concentration profiles. Current-voltage characteristics of Au/Ti/Ge capping/P δ-doping/n-Ge structures having the abrupt P δ-doping layers with carbon assistance showed excellent ohmic behaviors when P doses were higher than 1 × 1014 cm-2 and the capping layer thickness was as thin as 5 nm. Therefore, the insertion of carbon around the P doping layer is a useful way of realizing ultrashallow junctions in Ge.

  18. Long wavelength emitting GaInN quantum wells on metamorphic GaInN buffer layers with enlarged in-plane lattice parameter

    SciTech Connect

    Däubler, J. Passow, T.; Aidam, R.; Köhler, K.; Kirste, L.; Kunzer, M.; Wagner, J.

    2014-09-15

    Metamorphic (i.e., linear composition graded) GaInN buffer layers with an increased in-plane lattice parameter, grown by plasma-assisted molecular beam epitaxy, were used as templates for metal organic vapor phase epitaxy (MOVPE) grown GaInN/GaInN quantum wells (QWs), emitting in the green to red spectral region. A composition pulling effect was observed allowing considerable higher growth temperatures for the QWs for a given In composition. The internal quantum efficiency (IQE) of the QWs was determined by temperature and excitation power density dependent photoluminescence (PL) spectroscopy. An increase in IQE by a factor of two was found for green emitting QWs grown on metamorphic GaInN buffer compared to reference samples grown on standard GaN buffer layers. The ratio of room temperature to low temperature intensity PL of the red emitting QWs were found to be comparable to the PL efficiency of green emitting QWs, both grown on metamorphic GaInN buffers. The excitation density and well width dependence of the IQE indicate a reduction of the quantum confined Stark effect upon growth on GaInN buffer layers with increased in-plane lattice parameter.

  19. Investigation of the electrospun carbon web as the catalyst layer for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wei, Guanjie; Fan, Xinzhuang; Liu, Jianguo; Yan, Chuanwei

    2014-12-01

    Polyacrylonitrile (PAN) carbon nonwoven web consisting of 100-200 nm ultrafine fibers has been developed by electrospinning and subsequent carbonization process at 1000 °C for different times. The surface morphology, composition, structure, and electrical conductivity of the electrospun carbon webs (ECWs) as well as their electrochemical properties toward vanadium redox couples have been characterized. With the increasing of carbonization time, the electrochemical reversibility of the vanadium redox couples on the ECW is enhanced greatly. As the carbonization time increases up to 120 min, the hydrogen evolution is facilitated while the reversibility is promoted a little bit further. The excellent performance of ECW may be attributed to the conversion of fibers carbon structure and improvement of electrical conductivity. Due to the good electrochemical activity and freestanding 3-dimensional structure, the ECW carbonized for 90 min is used as catalyst layer in vanadium redox flow battery (VRFB) and enhances the cell performance.

  20. Towards Lego Snapping; Integration of Carbon Nanotubes and Few-Layer Graphene

    NASA Astrophysics Data System (ADS)

    Nasseri, Mohsen; Boland, Mathias; Farrokhi, M. Javad; Strachan, Douglas

    Integration of semiconducting, conducting, and insulating nanomaterials into precisely aligned complicated systems is one of the main challenges to the ultimate size scaling of electronic devices, which is a key goal in nanoscience and nanotechnology. This integration could be made more effective through controlled alignment of the crystallographic lattices of the nanoscale components. Of the vast number of materials of atomically-thin materials, two of the sp2 bonded carbon structures, graphene and carbon nanotubes, are ideal candidates for this type of application since they are built from the same backbone carbon lattice. Here we report carbon nanotube and graphene hybrid nanostructures fabricated through their catalytic synthesis and etching. The growth formations we have investigated through various high-resolution microscopy techniques provide evidence of lego-snapped interfaces between nanotubes and graphene into device-relevant orientations. We will finish with a discussion of the various size and energy regimes relevant to these lego-snapped interfaces and their implications on developing these integrated formations.

  1. Carbon transport in the bottom boundary layer. Final report

    SciTech Connect

    Walsh, I.D.

    1998-11-01

    The central goal of DOE`s Ocean Margin Program (OMP) has been to determine whether continental shelves are quantitatively significant in removing carbon dioxide from the atmosphere and isolating it via burial in sediments or exporting it to the open ocean. The purpose of this research was to recover and process samples from two sediment traps deployed on the continental slope in conjunction with the OMP physical oceanography mooring program.

  2. The Effect of Carbon Layer Variations in Carbon/Porous Silicon Composite Rugate Filters for End-of-Service-Life Indicators

    NASA Astrophysics Data System (ADS)

    Gofus, John Stephen, III

    Carbon/porous silicon composite rugate filters, for use as end-of service-life indicators in gas mask filters, are more capable of increased sensitivity to volatile organic chemical vapors than porous silicon sensors alone. Compositional variations of the carbon layer within these composite materials have not been well studied. At low carbon content, the carbonized surface will not effectively mimic the active carbon used in gas mask filters. At high carbon content, there is increased noise and a broader, less intense rugate stop band, reducing the signal to noise level of the sensor response. The focus of this thesis is the optimization of the carbon layer in the carbon/porous silicon composite rugate filters. To accomplish this, porous silicon rugate filters were etched and then carbonized using varying concentrations of the poly(furfuryl alcohol) precursor. Variations in the carbon layer were then analyzed via spectral analysis, elemental analysis, and nitrogen adsorption/desorption isotherms. At concentrations greater than 50% furfuryl alcohol there is minimal difference observed in the carbon layer on the porous silicon surface. Samples were also shown to have a minimal increase in sensitivity at concentrations greater than 50% furfuryl alcohol, and an increased signal-to-noise with increased furfuryl alcohol concentration. It is shown that the optimal carbon layer for volatile organic vapor sensing is achieved by using a furfuryl alcohol concentration of 50% furfuryl alcohol (in ethanol) during carbon layer synthesis.

  3. Two-dimensional silicon-carbon hybrids with a honeycomb lattice: New family for two-dimensional photovoltaic materials

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Ren, Jun; Fu, HuiXia; Ding, ZiJing; Li, Hui; Meng, Sheng

    2015-10-01

    We predict a series of new two-dimensional (2D) inorganic materials made of silicon and carbon elements (2D Si x C1- x ) based on density functional theory. Our calculations on optimized structure, phonon dispersion, and finite temperature molecular dynamics confirm the stability of 2D Si x C1- x sheets in a two-dimensional, graphene-like, honeycomb lattice. The electronic band gaps vary from zero to 2.5 eV as the ratio x changes in 2D Si x C1- x changes, suggesting a versatile electronic structure in these sheets. Interestingly, among these structures Si0.25C0.75 and Si0.75C0.25 with graphene-like superlattices are semimetals with zero band gap as their π and π* bands cross linearly at the Fermi level. Atomic structural searches based on particle-swarm optimization show that the ordered 2D Si x C1- x structures are energetically favorable. Optical absorption calculations demonstrate that the 2D silicon-carbon hybrid materials have strong photoabsorption in visible light region, which hold promising potential in photovoltaic applications. Such unique electronic and optical properties in 2D Si x C1- x have profound implications in nanoelectronic and photovoltaic device applications.

  4. Preferential formation of 13C- 18O bonds in carbonate minerals, estimated using first-principles lattice dynamics

    NASA Astrophysics Data System (ADS)

    Schauble, Edwin A.; Ghosh, Prosenjit; Eiler, John M.

    2006-05-01

    Equilibrium constants for internal isotopic exchange reactions of the type: Ca12C18O16O2+Ca13C16O3↔Ca13C18O16O2+Ca12C16O3 for individual CO 32- groups in the carbonate minerals calcite (CaCO 3), aragonite (CaCO 3), dolomite (CaMg(CO 3) 2), magnesite (MgCO 3), witherite (BaCO 3), and nahcolite (NaHCO 3) are calculated using first-principles lattice dynamics. Calculations rely on density functional perturbation theory (DFPT) with norm-conserving planewave pseudopotentials to determine the vibrational frequencies of isotopically substituted crystals. Our results predict an ˜0.4‰ excess of 13C18O16O22- groups in all studied carbonate minerals at room-temperature equilibrium, relative to what would be expected in a stochastic mixture of carbonate isotopologues with the same bulk 13C/ 12C, 18O/ 16O, and 17O/ 16O ratios. The amount of excess 13C18O16O22- decreases with increasing temperature of equilibration, from 0.5‰ at 0 °C to <0.1‰ at 300 °C, suggesting that measurements of multiply substituted isotopologues of carbonate could be used to infer temperatures of ancient carbonate mineral precipitation and alteration events, even where the δ 18O of coexisting fluids is uncertain. The predicted temperature sensitivity of the equilibrium constant is ˜0.003‰/°C at 25 °C. Estimated equilibrium constants for the formation of 13C18O16O22- are remarkably uniform for the variety of minerals studied, suggesting that temperature calibrations will also be applicable to carbonate minerals not studied here without greatly compromising accuracy. A related equilibrium constant for the reaction: Ca12C18O16O2+Ca12C17O16O2↔Ca12C18O17O16O+Ca12C16O3 in calcite indicates formation of 0.1‰ excess 12C 18O 17O 16O 2- at 25 °C. In a conventional phosphoric acid reaction of carbonate to form CO 2 for mass-spectrometric analysis, molecules derived from 13C18O16O22- dominate (˜96%) the mass 47 signal, and 12C 18O 17O 16O 2- contributes most of the remainder (3%). This suggests

  5. Zero lattice mismatch and twin-free single crystalline ScN buffer layers for GaN growth on silicon

    NASA Astrophysics Data System (ADS)

    Lupina, L.; Zoellner, M. H.; Niermann, T.; Dietrich, B.; Capellini, G.; Thapa, S. B.; Haeberlen, M.; Lehmann, M.; Storck, P.; Schroeder, T.

    2015-11-01

    We report the growth of thin ScN layers deposited by plasma-assisted molecular beam epitaxy on Sc2O3/Y2O3/Si(111) substrates. Using x-ray diffraction, Raman spectroscopy, and transmission electron microscopy, we find that ScN films grown at 600 °C are single crystalline, twin-free with rock-salt crystal structure, and exhibit a direct optical band gap of 2.2 eV. A high degree of crystalline perfection and a very good lattice matching between ScN and GaN (misfit < 0.1%) makes the ScN/Sc2O3/Y2O3 buffer system a very promising template for the growth of high quality GaN layers on silicon.

  6. Zero lattice mismatch and twin-free single crystalline ScN buffer layers for GaN growth on silicon

    SciTech Connect

    Lupina, L.; Zoellner, M. H.; Dietrich, B.; Capellini, G.; Niermann, T.; Lehmann, M.; Thapa, S. B.; Haeberlen, M.; Storck, P.; Schroeder, T.

    2015-11-16

    We report the growth of thin ScN layers deposited by plasma-assisted molecular beam epitaxy on Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3}/Si(111) substrates. Using x-ray diffraction, Raman spectroscopy, and transmission electron microscopy, we find that ScN films grown at 600 °C are single crystalline, twin-free with rock-salt crystal structure, and exhibit a direct optical band gap of 2.2 eV. A high degree of crystalline perfection and a very good lattice matching between ScN and GaN (misfit < 0.1%) makes the ScN/Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3} buffer system a very promising template for the growth of high quality GaN layers on silicon.

  7. Layer-by-layer assembled films of multi-walled carbon nanotubes with chitosan and cellulose nanocrystals.

    PubMed

    Trigueiro, João Paulo Campos; Silva, Glaura Goulart; Pereira, Fabiano Vargas; Lavall, Rodrigo Lassarote

    2014-10-15

    Chitosan solutions and cellulose nanocrystal suspensions were used to produce highly stable aqueous dispersions of multi-walled carbon nanotubes (MWCNTs). The different MWCNT dispersions, presenting positive and negative charges, were used to prepare multilayered hybrid thin films through electrostatic layer-by-layer (LBL) self-assembly. The MWCNTs are well dispersed and homogeneously distributed on each layer of chitosan and cellulose nanocrystals of the films. The nanotubes are densely packed in each multilayer, forming a random network. The surface of the LBL film exhibited a uniform and relatively smooth surface with a mean roughness value of ∼5.8±0.4nm. Electrochemical characterization revealed a decrease in two orders of magnitude in the film resistance as the number of bilayers increased from 5 to 20, which is a consequence of an increase in the amount of conductive material (MWCNT). The thin films with up to 20 bilayers exhibited transmittance higher than 90% in the visible range. The results presented in this work demonstrate the viability of the LBL technique for the deposition of active materials using the biopolymer pair chitosan/cellulose nanocrystals. The obtained films can be employed for the design of transparent and biocompatible carbon nanostructured based electrodes. PMID:25086396

  8. Production of three-dimensional quantum dot lattice of Ge/Si core-shell quantum dots and Si/Ge layers in an alumina glass matrix.

    PubMed

    Buljan, M; Radić, N; Sancho-Paramon, J; Janicki, V; Grenzer, J; Bogdanović-Radović, I; Siketić, Z; Ivanda, M; Utrobičić, A; Hübner, R; Weidauer, R; Valeš, V; Endres, J; Car, T; Jerčinović, M; Roško, J; Bernstorff, S; Holy, V

    2015-02-13

    We report on the formation of Ge/Si quantum dots with core/shell structure that are arranged in a three-dimensional body centered tetragonal quantum dot lattice in an amorphous alumina matrix. The material is prepared by magnetron sputtering deposition of Al2O3/Ge/Si multilayer. The inversion of Ge and Si in the deposition sequence results in the formation of thin Si/Ge layers instead of the dots. Both materials show an atomically sharp interface between the Ge and Si parts of the dots and layers. They have an amorphous internal structure that can be crystallized by an annealing treatment. The light absorption properties of these complex materials are significantly different compared to films that form quantum dot lattices of the pure Ge, Si or a solid solution of GeSi. They show a strong narrow absorption peak that characterizes a type II confinement in accordance with theoretical predictions. The prepared materials are promising for application in quantum dot solar cells. PMID:25605224

  9. Microstructure and properties of pure iron/copper composite cladding layers on carbon steel

    NASA Astrophysics Data System (ADS)

    Wan, Long; Huang, Yong-xian; Lü, Shi-xiong; Huang, Ti-fang; Lü, Zong-liang

    2016-08-01

    In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid-solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation (LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.

  10. Chemical vapour deposition growth and Raman characterization of graphene layers and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lai, Y.-C.; Rafailov, P. M.; Vlaikova, E.; Marinova, V.; Lin, S. H.; Yu, P.; Yu, S.-C.; Chi, G. C.; Dimitrov, D.; Sveshtarov, P.; Mehandjiev, V.; Gospodinov, M. M.

    2016-02-01

    Single-layer graphene films were grown by chemical vapour deposition (CVD) on Cu foil. The CVD process was complemented by plasma enhancement to grow also vertically aligned multiwalled carbon nanotubes using Ni nanoparticles as catalyst. The obtained samples were characterized by Raman spectroscopy analysis. Nature of defects in the samples and optimal growth conditions leading to achieve high quality of graphene and carbon nanotubes are discussed.

  11. Study of microstructure of surface layers of low-carbon steel after turning and ultrasonic finishing

    NASA Astrophysics Data System (ADS)

    Kovalevskaya, Zh. G.; Ivanov, Yu. F.; Perevalova, O. B.; Klimenov, V. A.; Uvarkin, P. V.

    2013-01-01

    Profilometry and optical and transmission electron microscopy are used to examine the microstructure of surface layers of a low-carbon ferrite-pearlite steel subjected to turning and ultrasonic finishing. It is shown that turning peaks and valleys have different microstructures, which stipulates manifestation of technological hereditary when processing surfaces of machined parts. Ultrasonic finishing causes the severe plastic deformation of the surface layer, which favors the elimination of a technological heredity that is acquired during turning.

  12. Single-layer nano-carbon film, diamond film, and diamond/nano-carbon composite film field emission performance comparison

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoping; Wang, Jinye; Wang, Lijun

    2016-05-01

    A series of single-layer nano-carbon (SNC) films, diamond films, and diamond/nano-carbon (D/NC) composite films have been prepared on the highly doped silicon substrate by using microwave plasma chemical vapor deposition techniques. The films were characterised by scanning electron microscopy, Raman spectroscopy, and field emission I-V measurements. The experimental results indicated that the field emission maximum current density of D/NC composite films is 11.8-17.8 times that of diamond films. And the field emission current density of D/NC composite films is 2.9-5 times that of SNC films at an electric field of 3.0 V/μm. At the same time, the D/NC composite film exhibits the advantage of improved reproducibility and long term stability (both of the nano-carbon film within the D/NC composite cathode and the SNC cathode were prepared under the same experimental conditions). And for the D/NC composite sample, a high current density of 10 mA/cm2 at an electric field of 3.0 V/μm was obtained. Diamond layer can effectively improve the field emission characteristics of nano-carbon film. The reason may be due to the diamond film acts as the electron acceleration layer.

  13. Crystallinity Modulation of Layered Carbon Nitride for Enhanced Photocatalytic Activities.

    PubMed

    Wang, Jianhai; Shen, Yanfei; Li, Ying; Liu, Songqin; Zhang, Yuanjian

    2016-08-22

    As an emerging metal-free semiconductor, covalently bonded carbon nitride (CN) has attracted much attention in photocatalysis. However, drawbacks such as a high recombination rate of excited electrons and holes hinder its potential applications. Tailoring the crystallinity of semiconductors is an important way to suppress unwanted charge recombination, but has rarely been applied to CN so far. Herein, a simple method to synthesize CN of high crystallinity by protonation of specific intermediate species during conventional polymerization is reported. Interestingly, the as-obtained CN exhibited improved photocatalytic activities of up to seven times those of the conventional bulk CN. This approach, with only a slight change to the conventional method, provides a facile way to effectively regulate the crystallinity of bulk CN to improve its photocatalytic activities and sheds light on large-scale industrial applications of CN with high efficiency for sustainable energy. PMID:27436164

  14. DNA biosensors based on layer-by-layer self-assembled multilayer films of carbon nanotubes and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Xiao, Yiyun; Dai, Zhao; Zhang, Jimei; Pang, Jiechun; Xu, Shichao; Zheng, Guo

    2009-07-01

    A novel DNA biosensor based on layer-by-layer self-assembled multi-walled carbon nanotubes (MWNTs) and gold nano-particles (GNPs) was presented in this paper, in which the probe HS-ssDNA oligonucleotides, MWNTs and GNPs were all covalently immobilized by chemical Au-Sulphide bonding. Firstly, the super short MWNTs were prepared and modified with thio groups which could be self-assembled onto the surface of Au elcetrode by Au-sulphide bonding, then the GNPs were chemically adhered to the surfaces of MWNTs by forming Au-sulphide bonding again, at last the selfassamble of probe DNA oligonucleotides were also covalently immobilized via Au-sulphide bonding between thio groups at the ends of the DNA oligonucleotides and GNPs. Hybridization between the probe HS-ssDNA oligonucleotides and target DNA oligonucleotides was confirmed by the changes in the voltammetric peak of an anionic intercalator, anthraquinone-2,6-disulfonic acid (AQDS) as a hybridization indicator. The cyclic voltammetric and differential pulse voltammetry responses demonstrated that the DNA biosensors based on Layer-by-layer self-assembled multilayer films of MWNTs and NGPs offer a higher hybridization efficiency and selectivity compared to those based on only random MWNTs or GNPs.

  15. Fabrication of carbon layer coated FE-nanoparticles using an electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Bin; Jeun, Joon Pyo; Kang, Phil Hyun; Oh, Seung-Hwan

    2016-01-01

    A novel synthesis of carbon encapsulated Fe nanoparticles was developed in this study. Fe chloride (III) and polyacrylonitrile (PAN) were used as precursors. The crosslinking of PAN molecules and the nucleation of Fe nanoparticles were controlled by the electron beam irradiation dose. Stabilization and carbonization processes were carried out using a vacuum furnace at 275 °C and 1000 °C, respectively. Micro structures were evaluated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Fe nanoparticles were formed with diameters of 100 nm, and the Fe nanoparticles were encapsulated by carbon layers. As the electron beam irradiation dose increased, it was observed that the particle sizes decreased.

  16. Carbon Surface Layers on a High-Rate LiFePO4

    SciTech Connect

    Gabrisch, Heike; Wilcox, James D.; Doeff, Marca M.

    2005-09-06

    Transmission electron microscopy (TEM) was used to image particles of a high-rate LiFePO4 sample containing a small amount of in situ carbon. The particle morphology is highly irregular, with a wide size distribution. Nevertheless, coatings, varying from about 5-10 nm in thickness, could readily be detected on surfaces of particles as well as on edges of agglomerates. Elemental mapping using Energy Filtered TEM (EFTEM) indicates that these very thin surface layers are composed of carbon. These observations have important implications for the design of high-rate LiFePO4 materials in which, ideally, a minimal amount of carbon coating is used.

  17. Bonding of copper surface in ambient air using propylene carbonate as passivation layer

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiyuan; Yu, Min; Phillips, Oluwadamilola; Liu, Lisha; Jin, Yufeng

    2015-07-01

    Bonding of a copper surface in a nonvacuum environment has been studied for the purpose of reducing manufacturing costs. Cu-Cu bonding in ambient air is demonstrated by using propylene carbonate (PPC) as a passivation layer. The decomposition of the PPC passivation layer during bonding would protect the copper surface from oxidation by providing a shielding gas atmosphere between the copper surface and the air. Further, the PPC passivation layer would also overcome the degradation of copper surface during storage in the atmosphere.

  18. High-pressure layered structure of carbon disulfide

    NASA Astrophysics Data System (ADS)

    Naghavi, S. Shahab; Crespo, Yanier; MartoÅák, Roman; Tosatti, Erio

    2015-06-01

    Solid CS2 is superficially similar to CO2, with the same C m c a molecular crystal structure at low pressures, which has suggested similar phases also at high pressures. We carried out an extensive first-principles evolutionary search in order to identify the zero-temperature lowest-enthalpy structures of CS2 for increasing pressure up to 200 GPa. Surprisingly, the molecular C m c a phase does not evolve into β -cristobalite as in CO2 but transforms instead into phases HP2 and HP1, both recently described in high-pressure SiS2. HP1 in particular, with a wide stability range, is a layered P 21/c structure characterized by pairs of edge-sharing tetrahedra and is theoretically more robust than all other CS2 phases discussed so far. Its predicted Raman spectrum and pair correlation function agree with experiment better than those of β -cristobalite, and further differences are predicted between their respective IR spectra. The band gap of HP1-CS2 is calculated to close under pressure, yielding an insulator-metal transition near 50 GPa, in agreement with experimental observations. However, the metallic density of states remains modest above this pressure, suggesting a different origin for the reported superconductivity.

  19. Chemical-thermal quantitative methodology for carbon speciation in damage layers on building surfaces.

    PubMed

    Ghedini, Nadia; Sabbioni, Cristina; Bonazza, Alessandra; Gobbi, Giancarlo

    2006-02-01

    The issue of environment protection, including the conservation of the monumental heritage worldwide, is related to atmospheric pollution, and its future therefore depends on air pollutant reduction. Carbonaceous particles emitted by combustion processes are the main factors responsible for the blackening of buildings. The identification and evaluation of the carbon species constituting the noncarbonate fraction of total carbon in damage layers, particularly in urban areas, are required in orderto investigate atmospheric deposition on building surfaces. Since noncarbonate carbon contains organic and elemental carbon originating from various human activities, its measurement and speciation are crucial to the protection and conservation of monuments and ancient masonry, playing an important role both in the proposal of mitigation strategies and in the definition of conservation treatments. The availability of a correct, accurate, and reproducible analytical method for a complete carbon balance is essential in studying the effects of atmospheric pollutants on the environment, including those affecting cultural heritage. A chemical-thermal methodology was set up, and its sensitivity, accuracy, repeatability, and reproducibility were tested on appropriate standard samples of composition similar to the black crusts on stones and mortars. The results indicate thatthe technique satisfactorily distinguishes among carbon species, particularly those of anthropogenic origin, allowing a reliable evaluation of their quantities in damage layers. In view of the difficulties encountered in applying the thermo-optical methods adopted for the measurement of carbon filters, the proposed methodology contributes to filling the current gap in suitable and reliable analytical procedures in the field of cultural heritage protection. PMID:16509340

  20. Chemical-thermal quantitative methodology for carbon speciation in damage layers on building surfaces

    SciTech Connect

    Nadia Ghedini; Cristina Sabbioni; Alessandra Bonazza; Giancarlo Gobbi

    2006-02-01

    Carbonaceous particles emitted by combustion processes are the main factors responsible for the blackening of buildings. The identification and evaluation of the carbon species constituting the noncarbonate fraction of total carbon in damage layers, particularly in urban areas, are required in order to investigate atmospheric deposition on building surfaces. Since noncarbonate carbon contains organic and elemental carbon originating from various human activities, its measurement and speciation are crucial to the protection and conservation of monuments and ancient masonry, playing an important role both in the proposal of mitigation strategies and in the definition of conservation treatments. The availability of a correct, accurate, and reproducible analytical method for a complete carbon balance is essential in studying the effects of atmospheric pollutants on the environment, including those affecting cultural heritage. A chemical-thermal methodology was set up, and its sensitivity, accuracy, repeatability, and reproducibility were tested on appropriate standard samples of composition similar to the black crusts on stones and mortars. The results indicate that the technique satisfactorily distinguishes among carbon species, particularly those of anthropogenic origin, allowing a reliable evaluation of their quantities in damage layers. In view of the difficulties encountered in applying the thermo-optical methods adopted for the measurement of carbon filters, the proposed methodology contributes to filling the current gap in suitable and reliable analytical procedures in the field of cultural heritage protection. 24 refs., 1 fig., 4 tabs.

  1. Optimisation of a carbon doped buffer layer for AlGaN/GaN HEMT devices

    NASA Astrophysics Data System (ADS)

    Gamarra, Piero; Lacam, Cedric; Tordjman, Maurice; Splettstösser, Jörg; Schauwecker, Bernd; di Forte-Poisson, Marie-Antoinette

    2015-03-01

    This work reports on the optimisation of carbon doping GaN buffer layer (BL) for AlGaN/GaN HEMT (high electron mobility transistor) structures, grown by low pressure metal-organic vapour phase epitaxy (LP-MOVPE) on 3 in. SiC semi-insulating substrates. The incorporation of carbon impurities in GaN is studied as a function of the growth conditions, without using an external carbon source. We observed that the C incorporation can be effectively controlled over more than one order of magnitude by tuning the reactor pressure and the growth temperature, without degradation of the crystalline properties of the GaN layers. HEMT structures with a specific barrier design were grown with different carbon dopings in the GaN BL and processed into transistors to evaluate the impact of the BL doping on the device performances. A significant improvement of the HEMT drain leakage current and of the breakdown voltage was obtained by increasing the carbon incorporation in the GaN BL. The RF performances of the devices show a trade-off between leakage currents and trapping phenomena which are enhanced by the use of carbon doping, limiting the delivered output power. An output power as high as 6.5 W/mm with a Power Added Efficiency of 70% has been achieved at 2 GHz by the HEMT structures with the lowest carbon doping in the BL.

  2. EXAMINATION OF DISLOCATIONS IN LATTICE-MISMATCHED GaInAs/BUFFER LAYER/GaAs FOR III-V PHOTOVOLTAICS

    SciTech Connect

    Levander, A.; Geisz, J.

    2007-01-01

    Dislocations act as sites for nonradiative electron/hole pair recombination, which reduces the effi ciency of photovoltaics. Lattice-matched materials can be grown on top of one another without forming a high density of dislocations. However, when the growth of lattice-mismatched (LMM) materials is attempted, many dislocations result from the relaxation of strain in the crystal structure. In an attempt to reduce the number of dislocations that propagate into a solar device when using LMM materials, a compositionally step-graded buffer is placed between the two LMM materials. In order to confi ne the dislocations to the buffer layer and therefore increase material quality and device effi ciency, the growth temperature and thickness of the buffer layer were varied. A GaInP compositionally graded buffer and GaInAs p-n junction were grown on a GaAs substrate in a metal-organic chemical vapor deposition (MOCVD) system. A multibeam optical stress sensor (MOSS) and X-ray diffraction (XRD) were used to characterize the strain in the epilayers. Electrical and optoelectronic properties were measured using a probe station and multimeter setup, solar simulator, and a quantum effi ciency instrument. It was determined that device functionality was highly dependent on the growth temperature of the graded buffer. As growth temperature increased, so did the dislocation density in the device despite an increase in the dislocation velocity, which should have increased the dislocation annihilation rate and the diffusion of dislocations to the edge of the crystal. The thickness of the graded buffer also affected device effi ciency with thinner samples performing poorly. The thinner graded buffer layers had high internal resistances from reduced carrier concentrations. In terms of effi ciency, the empirically derived recipe developed by the scientists at the National Renewable Energy Laboratory (NREL) produced the highest quality cells.

  3. Thermal properties of carbon nanowall layers measured by a pulsed photothermal technique

    NASA Astrophysics Data System (ADS)

    Achour, A.; Belkerk, B. E.; Ait Aissa, K.; Vizireanu, S.; Gautron, E.; Carette, M.; Jouan, P.-Y.; Dinescu, G.; Brizoual, L. Le; Scudeller, Y.; Djouadi, M.-A.

    2013-02-01

    We report the thermal properties of carbon nanowall layers produced by expanding beam radio-frequency plasma. The thermal properties of carbon nanowalls, grown at 600 °C on aluminium nitride thin-film sputtered on fused silica, were measured with a pulsed photo-thermal technique. The apparent thermal conductivity of the carbon at room temperature was found to increase from 20 to 80 Wm-1 K-1 while the thickness varied from 700 to 4300 nm, respectively. The intrinsic thermal conductivity of the carbon nanowalls attained 300 Wm-1 K-1 while the boundary thermal resistance with the aluminium nitride was 3.6 × 10-8 Km2 W-1. These results identify carbon nanowalls as promising material for thermal management applications.

  4. Carbon deposition on multi-layer mirrors by extreme ultra violet ray irradiation

    NASA Astrophysics Data System (ADS)

    Matsunari, S.; Aoki, T.; Murakami, K.; Gomei, Y.; Terashima, S.; Takase, H.; Tanabe, M.; Watanabe, Y.; Kakutani, Y.; Niibe, M.; Fukuda, Y.

    2007-03-01

    Organic gases cause carbon depositions on the multi-layer mirrors by Extreme Ultra Violet (EUV) light irradiations in EUV lithography tool. The dependences on organic gas species, organic gas pressure and EUV light intensity in the carbon deposition were researched in order to understand this reaction. EUV light was irradiated on a (Si/Mo) multilayer mirror sample injecting organic gas like buthane, buthanol, methyl propionate, hexane, perfluoro octane, decane, decanol, methyl nonanoate, diethyl benzene, dimethyl phthalate and hexadecane. X-ray photoelectron spectroscopy measurements revealed that organic gases with heavier molecule weight or higher boiling temperature caused faster carbon deposition rates. Carbon deposition rates increased linearly with organic gas pressures. Dependence on EUV light intensity was estimated from comparisons between an EUV light profile and carbon distributions on irradiated samples. Carbon deposition rates increased rapidly, but became saturated at higher EUV light intensities. Three chemical reactions, an adsorption, a desorption and a carbon deposition by EUV light irradiation, were taken into account to explain the behavior of the carbon deposition. Electron irradiation on a mirror sample revealed that photoelectrons emitting from the mirror surface played an important role in carbon deposition.

  5. From spent Mg/Al layered double hydroxide to porous carbon materials.

    PubMed

    Laipan, Minwang; Zhu, Runliang; Chen, Qingze; Zhu, Jianxi; Xi, Yunfei; Ayoko, Godwin A; He, Hongping

    2015-12-30

    Adsorption has been considered as an efficient method for the treatment of dye effluents, but proper disposal of the spent adsorbents is still a challenge. This work attempts to provide a facile method to reutilize the spent Mg/Al layered double hydroxide (Mg/Al-LDH) after the adsorption of orange II (OII). Herein, the spent hybrid was carbonized under the protection of nitrogen, and then washed with acid to obtain porous carbon materials. Thermogravimetric analysis results suggested that the carbonization could be well achieved above 600°C, as mass loss of the spent hybrid gradually stabilized. Therefore, the carbonization process was carried out at 600, 800, and 1000°C, respectively. Scanning electron microscope showed that the obtained carbon materials possessed a crooked flaky morphology. Nitrogen adsorption-desorption results showed that the carbon materials had large BET surface area and pore volume, e.g., 1426 m(2)/g and 1.67 cm(3)/g for the sample carbonized at 800°C. Moreover, the pore structure and surface chemistry compositions were tunable, as they were sensitive to the temperature. Toluene adsorption results demonstrated that the carbon materials had high efficiency in toluene removal. This work provided a facile approach for synthesizing porous carbon materials using spent Mg/Al-LDH. PMID:26257095

  6. Validation of the numerical model of single-layer composites reinforced with carbon fiber and aramid

    NASA Astrophysics Data System (ADS)

    Sava, Mihaela; Hadǎr, Anton; Pǎrǎuşanu, Ioan; Petrescu, Horia-Alexandru; Baciu, Florin; Marinel, Stǎnescu Marius

    2016-06-01

    In this work we studied the experimental validation of the model and finite element analysis for a single layer of composite materials reinforced with carbon (denoted as C), aramid (K) and carbon-aramid (C-K) fibers. In the literature there are not many details about the differences that arise between transversal and longitudinal characteristics of composite materials reinforced with fabric, compared to those with unidirectional fibers. In order to achieve carbon and aramid composites we used twill fabric and for carbon-aramid plain fabric, as shown in Figure 1. In order to observe the static behavior of the considered specimens, numerical simulations were carried out in addition to the experimental determination of the characteristics of these materials. Layered composites are obviously the most widespread formula for getting advanced composite structures. It allows a unique variety of material and structural combinations leading to optimal design in a wide range of applications [1,2]. To design and verify the material composites it is necessary to know the basic mechanical constants of the materials. Almost all the layered composites consider that the every layer is an orthotropic material, so there are nine independent constants of material corresponding to the three principal directions: Young modulus E1, E2 and E3, shear modulus G12, G23 and G13, and major poison ratios ν12, ν23, ν13. Experimental determinations were performed using traction tests and strain gauges. For each of the three above mentioned materials, five samples were manufactured.

  7. Surface growth for molten silicon infiltration into carbon millimeter-sized channels: Lattice-Boltzmann simulations, experiments and models

    NASA Astrophysics Data System (ADS)

    Sergi, Danilo; Camarano, Antonio; Molina, José Miguel; Ortona, Alberto; Narciso, Javier

    2016-01-01

    The process of liquid silicon (Si) infiltration is investigated for channels with radii from 0.25[mm] to 0.75[mm] drilled in compact carbon (C) preforms. The advantage of this setup is that the study of the phenomenon results can be simplified. For comparison purposes, attempts are made in order to work out a framework for evaluating the accuracy of simulations. The approach relies on dimensionless numbers involving the properties of the surface reaction. It turns out that complex hydrodynamic behavior derived from second Newton law can be made consistent with Lattice-Boltzmann (LB) simulations. The experiments give clear evidence that the growth of silicon carbide (SiC) proceeds in two different stages and basic mechanisms are highlighted. LB simulations prove to be an effective tool for the description of the growing phase. Namely, essential experimental constraints can be implemented. As a result, the existing models are useful to gain more insight on the process of reactive infiltration into porous media in the first stage of penetration, i.e. up to pore closure because of surface growth. A way allowing one to implement the resistance from chemical reaction in Darcy law is also proposed.

  8. Modeling the diffusion effects through the iron carbonate layer in the carbon dioxide corrosion of carbon steel

    SciTech Connect

    Rajappa, S.; Zhang, R.; Gopal, M.

    1998-12-31

    A mechanistic model was developed for predicting carbon dioxide corrosion rates of carbon steel pipes in multiphase flow conditions. The model incorporates the chemistry, thermodynamics of carbon dioxide dissolution, multiphase mass transfer, electrochemical kinetics on the metal surface and the presence of a corrosion product film. The predicted corrosion rates show good agreement with the experimental results.

  9. Rapid exchange between atmospheric CO2 and carbonate anion intercalated within magnesium rich layered double hydroxide.

    PubMed

    Sahoo, Pathik; Ishihara, Shinsuke; Yamada, Kazuhiko; Deguchi, Kenzo; Ohki, Shinobu; Tansho, Masataka; Shimizu, Tadashi; Eisaku, Nii; Sasai, Ryo; Labuta, Jan; Ishikawa, Daisuke; Hill, Jonathan P; Ariga, Katsuhiko; Bastakoti, Bishnu Prasad; Yamauchi, Yusuke; Iyi, Nobuo

    2014-10-22

    The carbon cycle, by which carbon atoms circulate between atmosphere, oceans, lithosphere, and the biosphere of Earth, is a current hot research topic. The carbon cycle occurring in the lithosphere (e.g., sedimentary carbonates) is based on weathering and metamorphic events so that its processes are considered to occur on the geological time scale (i.e., over millions of years). In contrast, we have recently reported that carbonate anions intercalated within a hydrotalcite (Mg0.75Al0.25(OH)2(CO3)0.125·yH2O), a class of a layered double hydroxide (LDH), are dynamically exchanging on time scale of hours with atmospheric CO2 under ambient conditions. (Ishihara et al., J. Am. Chem. Soc. 2013, 135, 18040-18043). The use of (13)C-labeling enabled monitoring by infrared spectroscopy of the dynamic exchange between the initially intercalated (13)C-labeled carbonate anions and carbonate anions derived from atmospheric CO2. In this article, we report the significant influence of Mg/Al ratio of LDH on the carbonate anion exchange dynamics. Of three LDHs of various Mg/Al ratios of 2, 3, or 4, magnesium-rich LDH (i.e., Mg/Al ratio = 4) underwent extremely rapid exchange of carbonate anions, and most of the initially intercalated carbonate anions were replaced with carbonate anions derived from atmospheric CO2 within 30 min. Detailed investigations by using infrared spectroscopy, scanning electron microscopy, powder X-ray diffraction, elemental analysis, adsorption, thermogravimetric analysis, and solid-state NMR revealed that magnesium rich LDH has chemical and structural features that promote the exchange of carbonate anions. Our results indicate that the unique interactions between LDH and CO2 can be optimized simply by varying the chemical composition of LDH, implying that LDH is a promising material for CO2 storage and/or separation. PMID:25275963

  10. Magnetic and electrode properties, structure and phase relations of the layered triangular-lattice tellurate Li{sub 4}NiTeO{sub 6}

    SciTech Connect

    Zvereva, Elena A.; Nalbandyan, Vladimir B.; Evstigneeva, Maria A.; Koo, Hyun-Joo; Whangbo, Myung-Hwan; Ushakov, Arseni V.; Medvedev, Boris S.; Medvedeva, Larisa I.; Gridina, Nelly A.; Yalovega, Galina E.; Churikov, Alexei V.; Vasiliev, Alexander N.; Büchner, Bernd

    2015-05-15

    We examined the magnetic properties of layered oxide Li{sub 4}NiTeO{sub 6} by magnetic susceptibility, magnetization and ESR measurements and density functional calculations, and characterized phase relations, crystal structure and electrochemical properties of Li{sub 4}NiTeO{sub 6}. The magnetization and ESR data indicate the absence of a long-range magnetic order down to 1.8 K, and the magnetic susceptibility data the presence of dominant antiferromagnetic interactions. These observations are well accounted for by density functional calculations, which show that the spin exchanges of the LiNiTeO{sub 6} layers in Li{sub 4}NiTeO{sub 6} are strongly spin frustrated. The electrochemical charging of Li{sub 4}NiTeO{sub 6} takes place at constant potential of ca. 4.2 V vs. Li/Li{sup +} indicating two-phase process as confirmed by X-rays. The starting phase is only partially recovered on discharge due to side reactions. - Graphical abstract: No long-range magnetic order due to frustration in 2D triangular lattice antiferromagnet Li{sub 4}NiTeO{sub 6}. - Highlights: • Li{sub 4}NiTeO{sub 6} is 2D triangular lattice magnet with no long-range order down to 1.8 K. • Intralayer exchange interactions are antiferromagnetic and strongly spin frustrated. • The electrochemical Li extraction proceeds in a two-phase mode at 4.2 V vs. Li/Li{sup +}. • The electrochemical charge–discharge is only partially reversible. • Li{sub 2}O–NiO{sub y}–TeO{sub x} phase relations are reported; Li{sub 4}NiTeO{sub 6} is essentially stoichiometric.

  11. Crystallographic growth and alignment of carbon nanotubes on few-layer graphene

    NASA Astrophysics Data System (ADS)

    Arash, Aram; Hunley, Patrick D.; Nasseri, Mohsen; Boland, Mathias J.; Sundararajan, Abhishek; Hudak, Bethany M.; Guiton, Beth S.; Strachan, Douglas R.

    2015-03-01

    Hybrid carbon nanotube and graphene structures are emerging as an exciting material system built from a common sp2 carbon backbone. Such hybrid systems have promise for use in improving the performance of energy storage and high-speed electronic applications. Towards the attainment of such hybrid materials, the catalytic growth and crystallographic alignment of these integrated structures are investigated along with the atomic-scale features of their interfaces. The catalytic activity of nanoparticles to form carbon nanotubes on the surface of few-layer graphene is tuned through precise feedstock application. Through careful materials synthesis, the interfaces of these hybrid carbon nanotube - graphene systems are investigated through ultra-high resolution electron microscopy.

  12. Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67.

    PubMed

    Torad, Nagy L; Salunkhe, Rahul R; Li, Yunqi; Hamoudi, Hicham; Imura, Masataka; Sakka, Yoshio; Hu, Chi-Chang; Yamauchi, Yusuke

    2014-06-23

    Nanoporous carbons (NPCs) have large specific surface areas, good electrical and thermal conductivity, and both chemical and mechanical stability, which facilitate their use in energy storage device applications. In the present study, highly graphitized NPCs are synthesized by one-step direct carbonization of cobalt-containing zeolitic imidazolate framework-67 (ZIF-67). After chemical etching, the deposited Co content can be completely removed to prepare pure NPCs with high specific surface area, large pore volume, and intrinsic electrical conductivity (high content of sp(2) -bonded carbons). A detailed electrochemical study is performed using cyclic voltammetry and galvanostatic charge-discharge measurements. Our NPC is very promising for efficient electrodes for high-performance supercapacitor applications. A maximum specific capacitance of 238 F g(-1) is observed at a scan rate of 20 mV s(-1) . This value is very high compared to previous works on carbon-based electric double layer capacitors. PMID:24788922

  13. Layer-by-layer electrodeposition of redox polymers and enzymes on screen-printed carbon electrodes for the preparation of reagentless biosensors.

    PubMed

    Gao, Qiang; Yang, Xiurong

    2004-01-01

    Layer-by-layer electrodeposition of redox polymer/enzyme composition films on screen-printed carbon electrodes for fabrication of reagentless enzyme biosensors has been proposed and the resulting films were found to be very stable and rigid. PMID:14737317

  14. Layered graphitic carbon host formation during liquid-free solid state growth of metal pyrophosphates.

    PubMed

    Díaz, Carlos; Valenzuela, María Luisa; Lavayen, Vladimir; O'Dwyer, Colm

    2012-06-01

    We report a successful ligand- and liquid-free solid state route to form metal pyrophosphates within a layered graphitic carbon matrix through a single step approach involving pyrolysis of previously synthesized organometallic derivatives of a cyclotriphosphazene. In this case, we show how single crystal Mn(2)P(2)O(7) can be formed on either the micro- or the nanoscale in the complete absence of solvents or solutions by an efficient combustion process using rationally designed macromolecular trimer precursors, and present evidence and a mechanism for layered graphite host formation. Using in situ Raman spectroscopy, infrared spectroscopy, X-ray diffraction, high resolution electron microscopy, thermogravimetric and differential scanning calorimetric analysis, and near-edge X-ray absorption fine structure examination, we monitor the formation process of a layered, graphitic carbon in the matrix. The identification of thermally and electrically conductive graphitic carbon host formation is important for the further development of this general ligand-free synthetic approach for inorganic nanocrystal growth in the solid state, and can be extended to form a range of transition metals pyrophosphates. For important energy storage applications, the method gives the ability to form oxide and (pyro)phosphates within a conductive, intercalation possible, graphitic carbon as host-guest composites directly on substrates for high rate Li-ion battery and emerging alternative positive electrode materials. PMID:22587306

  15. Manganese oxide nanowires wrapped with nitrogen doped carbon layers for high performance supercapacitors.

    PubMed

    Li, Ying; Mei, Yuan; Zhang, Lin-Qun; Wang, Jian-Hai; Liu, An-Ran; Zhang, Yuan-Jian; Liu, Song-Qin

    2015-10-01

    In this study, manganese oxide nanowires wrapped by nitrogen-doped carbon layers (MnO(x)@NCs) were prepared by carbonization of poly(o-phenylenediamine) layer coated onto MnO2 nanowires for high performance supercapacitors. The component and structure of the MnO(x)@NCs were controlled through carbonization procedure under different temperatures. Results demonstrated that this composite combined the high conductivity and high specific surface area of nitrogen-doped carbon layers with the high pseudo-capacitance of manganese oxide nanowires. The as-prepared MnO(x)@NCs exhibited superior capacitive properties in 1 M Na2SO4 aqueous solution, such as high conductivity (4.167×10(-3) S cm(-1)), high specific capacitance (269 F g(-1) at 10 mV s(-1)) and long cycle life (134 F g(-1) after 1200 cycles at a scan rate of 50 mV s(-1)). It is reckoned that the present novel hybrid nanowires can serve as a promising electrode material for supercapacitors and other electrochemical devices. PMID:26070189

  16. Effect of diffuse layer and pore shapes in mesoporous carbon supercapacitors

    SciTech Connect

    Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent; Qiao, Rui

    2010-01-01

    In the spirit of the theoretical evolution from the Helmholtz model to the Gouy Chapman Stern model for electric double-layer capacitors, we explored the effect of a diffuse layer on the capacitance of mesoporous carbon supercapacitors by solving the Poisson Boltzmann (PB) equation in mesopores of diameters from 2 to 20 nm. To evaluate the effect of pore shape, both slit and cylindrical pores were considered. We found that the diffuse layer does not affect the capacitance significantly. For slit pores, the area-normalized capacitance is nearly independent of pore size, which is not experimentally observed for template carbons. In comparison, for cylindrical pores, PB simulations produce a trend of slightly increasing area-normalized capacitance with pore size, similar to that depicted by the electric double-cylinder capacitor model proposed earlier. These results indicate that it is appropriate to approximate the pore shape of mesoporous carbons as being cylindrical and the electric double-cylinder capacitor model should be used for mesoporous carbons as a replacement of the traditional Helmholtz model.

  17. Characterization of transfer layers on steel surfaces sliding against diamondlike carbon in dry nitrogen

    SciTech Connect

    Erdemir, A.; Bindal, C.; Pagan, J.; Wilbur, P.

    1995-03-01

    Transfer layers on sliding steel surfaces play important roles in tribological performance of diamondlike carbon films. This study investigated the nature of transfer layers formed on M50 balls during sliding against diamondlike carbon (DLC) films (1.5 {mu}m thick) prepared by ion-beam deposition. Long-duration sliding tests were performed with steel balls sliding against the DLC coatings in dry nitrogen at room temperature and zero humidity. Test results indicated that the friction coefficients of test pairs were initially 0.12 but decreased steadily with sliding distance to 0.02-0.03 and remained constant throughout the tests, which lasted for more than 250,000 sliding cycles (30 km). This low-friction regime appeared to coincide with the formation of a carbon-rich transfer layer on the sliding surfaces of M50 balls. Micro-laser-Raman spectroscopy and electron microscopy were used to elucidate the structure and chemistry of these transfer layers and to reveal their possible role in the wear and friction behavior of DLC-coated surfaces.

  18. Amperometric Choline Biosensor Fabricated through Electrostatic Assembly of Bienzyme/Polyelectrolyte Hybrid Layers on Carbon Nanotubes

    SciTech Connect

    Wang, Jun; Liu, Guodong; Lin, Yuehe

    2006-03-01

    We report a flow injection amperometric choline biosensors based on the electrostatic assembly of an enzyme of choline oxidase (ChO) and a bi-enzyme of ChO and horseradish peroxidase (HRP) onto multi-wall carbon nanotubes (MWCNT) modified glassy carbon (GC) electrodes. These choline biosensors were fabricated by immobilization of enzymes on the negatively charged MWCNT surface through alternatively assembling a cationic polydiallydiimethylammonium chloride (PDDA) layer and an enzyme layer. Using this layer-by-layer assembling approach, bioactive nanocomposite film of a PDDA/ChO/PDDA/HRP/PDDA/CNT (ChO/HRP/CNT) and a PDDA/ChO/PDDA/ CNT (ChO/ CNT) were fabricated on GC surface, respectively. Owning to the electrocatalytic effect of carbon nanotubes, the measurement of faradic responses resulting from enzymatic reactions has been realized at low potential with acceptable sensitivity. It is found the ChO/HRP/CNT biosensor is more sensitive than the ChO/CNT one. Experimental parameters affecting the sensitivity of biosensors, e.g. applied potential, flow rate, etc. were optimized and potential interference was examined. The response time for this choline biosensor is fast (less than a few seconds). The linear range of detection for the choline biosensor is from 5 x 10-5 to 5 x 10-3 M and the detection limit is determined to be about 1.0 x 10-5 M.

  19. Accurate Estimation of the Fine Layering Effect on the Wave Propagation in the Carbonate Rocks

    NASA Astrophysics Data System (ADS)

    Bouchaala, F.; Ali, M. Y.

    2014-12-01

    The attenuation caused to the seismic wave during its propagation can be mainly divided into two parts, the scattering and the intrinsic attenuation. The scattering is an elastic redistribution of the energy due to the medium heterogeneities. However the intrinsic attenuation is an inelastic phenomenon, mainly due to the fluid-grain friction during the wave passage. The intrinsic attenuation is directly related to the physical characteristics of the medium, so this parameter is very can be used for media characterization and fluid detection, which is beneficial for the oil and gas industry. The intrinsic attenuation is estimated by subtracting the scattering from the total attenuation, therefore the accuracy of the intrinsic attenuation is directly dependent on the accuracy of the total attenuation and the scattering. The total attenuation can be estimated from the recorded waves, by using in-situ methods as the spectral ratio and frequency shift methods. The scattering is estimated by assuming the heterogeneities as a succession of stacked layers, each layer is characterized by a single density and velocity. The accuracy of the scattering is strongly dependent on the layer thicknesses, especially in the case of the media composed of carbonate rocks, such media are known for their strong heterogeneity. Previous studies gave some assumptions for the choice of the layer thickness, but they showed some limitations especially in the case of carbonate rocks. In this study we established a relationship between the layer thicknesses and the frequency of the propagation, after certain mathematical development of the Generalized O'Doherty-Anstey formula. We validated this relationship through some synthetic tests and real data provided from a VSP carried out over an onshore oilfield in the emirate of Abu Dhabi in the United Arab Emirates, primarily composed of carbonate rocks. The results showed the utility of our relationship for an accurate estimation of the scattering

  20. Structure and properties of titanium surface layers after electron beam alloying with powder mixtures containing carbon

    NASA Astrophysics Data System (ADS)

    Lenivtseva, O. G.; Bataev, I. A.; Golkovskii, M. G.; Bataev, A. A.; Samoilenko, V. V.; Plotnikova, N. V.

    2015-11-01

    The structure and tribological properties of commercially pure titanium (cp-Ti) samples after non-vacuum electron beam surface alloying with carbon were studied. Two types of powders were used to introduce carbon in surface layer of cp-Ti: titanium carbide (TiC) and mixture of pure titanium and graphite ("Ti + C"). Single layer and multilayer coatings were studied. Application of electron beam for alloying provided cladding rate of 4.5 m2/h. The thickness of the clad coatings was 1.6-2.0 mm. The main phases received after "Ti + C" powder cladding were α-titanium, TiC, and retained graphite. In the samples obtained by cladding of TiC, graphite was not observed. A factor determining the microhardness and tribological properties of the cladded layer was the volume fraction of TiC. Maximum coating microhardness of 8 GPa was obtained by cladding of single layer of TiC powder or two layers of the "Ti + C" mixture. Two types of tests were carried out to evaluate the wear resistance of the samples. In friction tests against loose abrasive particles, the wear rate of the best samples was 9.3 times lower than that of cp-Ti. In wear tests using fixed abrasive particles, the relative wear resistance of the best samples was 2.3 times higher than that of cp-Ti.

  1. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition.

    PubMed

    Wang, Guizhen; Gao, Zhe; Tang, Shiwei; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Lin, Shiwei; Feng, Yuhong; Zhou, Lei; Qin, Yong

    2012-12-21

    In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications. PMID:23171130

  2. Mass Conservation in Modeling Moisture Diffusion in Multi-Layer Carbon Composite Structures

    NASA Technical Reports Server (NTRS)

    Nurge, Mark A.; Youngquist, Robert C.; Starr, Stanley O.

    2009-01-01

    Moisture diffusion in multi-layer carbon composite structures is difficult to model using finite difference methods due to the discontinuity in concentrations between adjacent layers of differing materials. Applying a mass conserving approach at these boundaries proved to be effective at accurately predicting moisture uptake for a sample exposed to a fixed temperature and relative humidity. Details of the model developed are presented and compared with actual moisture uptake data gathered over 130 days from a graphite epoxy composite sandwich coupon with a Rohacell foam core.

  3. Enzyme and Mediator-coadsorbed Carbon Felt Electrode for Electrochemical Detection of Glucose Covered with Polymer Layers Based on Layer-by-Layer Technique.

    PubMed

    Yabuki, Soichi; Hirata, Yoshiki

    2015-01-01

    Glucose dehydrogenase (GlDH) and ferrocene were coadsorbed on a carbon felt (CF) sheet (5 × 10 mm, 2 mm thickness), which was used to construct an electrode for the electrochemical detection of glucose. A potential of +0.3 V vs. Ag/AgCl was applied on the base CF, and the current was measured. After the addition of glucose, the current increased and reached a steady state within 50 s. The current response was proportional to the glucose concentration up to 20 μM, with a lower detection limit of 1 μM. The surface of the CF electrode was covered by layers of polystyrene sulfonate and poly-L-lysine using layer-by-layer technique. Again the current response was proportional to glucose concentration up to 20 μM, with a lower detection limit of 2 μM. The oxidation current owing to electrochemical interferents such as L-ascorbate and acetaminophen was 1/8 times of the current observed on the unprotected electrode. In addition, the protection imparted stability to the electrode. Our work demonstrates that a GlDH/ferrocene CF electrode, protected with polystyrene sulfonate and poly-L-lysine, could be used for the electrochemical detection of glucose. PMID:26165293

  4. Layer-by-layer carbon nanotube bio-templates for in situ monitoring of the metabolic activity of nitrifying bacteria

    NASA Astrophysics Data System (ADS)

    Loh, Kenneth J.; Guest, Jeremy S.; Ho, Genevieve; Lynch, Jerome P.; Love, Nancy G.

    2009-03-01

    Despite the wide variety of effective disinfection and wastewater treatment techniques for removing organic and inorganic wastes, pollutants such as nitrogen remain in wastewater effluents. If left untreated, these nitrogenous wastes can adversely impact the environment by promoting the overgrowth of aquatic plants, depleting dissolved oxygen, and causing eutrophication. Although nitrification/denitrification processes are employed during advanced wastewater treatment, effective and efficient operation of these facilities require information of the pH, dissolved oxygen content, among many other parameters, of the wastewater effluent. In this preliminary study, a biocompatible CNT-based nanocomposite is proposed and validated for monitoring the biological metabolic activity of nitrifying bacteria in wastewater effluent environments (i.e., to monitor the nitrification process). Using carbon nanotubes and a pH-sensitive conductive polymer (i.e., poly(aniline) emeraldine base), a layer-by-layer fabrication technique is employed to fabricate a novel thin film pH sensor that changes its electrical properties in response to variations in ambient pH environments. Laboratory studies are conducted to evaluate the proposed nanocomposite's biocompatibility with wastewater effluent environments and its pH sensing performance.

  5. Reagentless biosensor based on layer-by-layer assembly of functional multiwall carbon nanotubes and enzyme-mediator biocomposite*

    PubMed Central

    Zhou, Xing-hua; Xi, Feng-na; Zhang, Yi-ming; Lin, Xian-fu

    2011-01-01

    A simple and controllable layer-by-layer (LBL) assembly method was proposed for the construction of reagentless biosensors based on electrostatic interaction between functional multiwall carbon nanotubes (MWNTs) and enzyme-mediator biocomposites. The carboxylated MWNTs were wrapped with polycations poly(allylamine hydrochloride) (PAH) and the resulting PAH-MWNTs were well dispersed and positively charged. As a water-soluble dye methylene blue (MB) could mix well with horseradish peroxidase (HRP) to form a biocompatible and negatively-charged HRP-MB biocomposite. A (PAH-MWNTs/HRP-MB)n bionanomultilayer was then prepared by electrostatic LBL assembly of PAH-MWNTs and HRP-MB on a polyelectrolyte precursor film-modified Au electrode. Due to the excellent biocompatibility of HRP-MB biocomposite and the uniform LBL assembly, the immobilized HRP could retain its natural bioactivity and MB could efficiently shuttle electrons between HRP and the electrode. The incorporation of MWNTs in the bionanomultilayer enhanced the surface coverage concentration of the electroactive enzyme and increased the catalytic current response of the electrode. The proposed biosensor displayed a fast response (2 s) to hydrogen peroxide with a low detection limit of 2.0×10−7 mol/L (S/N=3). This work provided a versatile platform in the further development of reagentless biosensors. PMID:21634040

  6. Layer-by-layer assembly of multifunctional porous N-doped carbon nanotube hybrid architectures for flexible conductors and beyond.

    PubMed

    Zhao, Songfang; Gao, Yongju; Li, Jinhui; Zhang, Guoping; Zhi, Chunyi; Deng, Libo; Sun, Rong; Wong, Ching-Ping

    2015-04-01

    Coassemble diverse functional nanomaterials with carbon nanotubes (CNTs) to form three-dimensional (3D) porous CNTs hybrid architectures (CHAs) are potentially desirable for applications in energy storage, flexible conductors, and catalysis, because of diverse functionalities and synergistic effects in the CHAs. Herein, we report a scalable strategy to incorporate various functional nanomaterials with N-doped CNTs (N-CNTs) into such 3D porous CHAs on the polyurethane (PU) sponge skeletons via layer-by-layer (LbL) assembly. To investigate their properties and applications, the specific CHAs based on N-CNTs and Ag nanoparticles (NPs), denoted as PU-(N-CNTs/Ag NPs)n, are developed. The unique binary structure enables these specific CHAs conductors to possess reliable mechanical and electrical performance under various elastic deformations as well as excellent hydrophilicity. Moreover, they are employed as strain-gauge sensor and heterogeneous catalyst, respectively. The sensor could detect continuous signal, static signal, and pulse signal with superior sustainability and reversibility, indicating an important branch of electromechanical devices. Furthermore, the synergistic effects among N-CNTs, Ag NPs, and porous structure endow the CHAs with excellent performance in catalysis. We have a great expectation that LbL assembly can afford a universal route for incorporating diverse functional materials into one structure. PMID:25749434

  7. Carbon nanotubes supported cerium dioxide and platinum nanohybrids: Layer-by-layer synthesis and enhanced electrocatalytic activity for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Lou, Xinyuan; Chen, Jiayi; Wang, Mengdi; Gu, Jialei; Wu, Ping; Sun, Dongmei; Tang, Yawen

    2015-08-01

    We successfully synthesize carbon nanotubes (CNTs) supported cerium dioxide and platinum (Pt/CeO2/CNTs) nanohybrids via layer-by-layer assembly. The composition, morphology and structure of the as-prepared Pt/CeO2/CNTs nanohybrids are characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectrometer (EDX), selected-area electron diffraction (SAED), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and inductively coupled plasma atomic emission spectrometry (ICP-AES). By comparison of the electrocatalytic properties of the Pt/CeO2/CNTs with the Pt/CNTs, we systematically investigate the promotion effect of CeO2 on the Pt/CeO2/CNTs catalysts towards methanol oxidation. It is found that the introduction of CeO2 not only enhances the electrocatalytic activity and stability of the Pt/CeO2/CNTs catalyst for methanol oxidation but also minimizes the CO poisoning, probably accounting for the good oxygen carrying capacity of CeO2 and its high stability in acidic solution.

  8. Two perspectives on the coupled carbon, water and energy exchange in the planetary boundary layer

    NASA Astrophysics Data System (ADS)

    Combe, M.; Vilà-Guerau de Arellano, J.; Ouwersloot, H. G.; Jacobs, C. M. J.; Peters, W.

    2015-01-01

    Understanding the interactions between the land surface and the atmosphere is key to modelling boundary-layer meteorology and cloud formation, as well as carbon cycling and crop yield. In this study we explore these interactions in the exchange of water, heat and CO2 in a cropland-atmosphere system at the diurnal and local scale. To that end, we couple an atmospheric mixed-layer model (MXL) to two land-surface schemes developed from two different perspectives: while one land-surface scheme (A-gs) simulates vegetation from an atmospheric point of view, the other (GECROS) simulates vegetation from a carbon-storage point of view. We calculate surface fluxes of heat, moisture and carbon, as well as the resulting atmospheric state and boundary-layer dynamics, over a maize field in the Netherlands, on a day for which we have a rich set of observations available. Particular emphasis is placed on understanding the role of upper-atmosphere conditions like subsidence in comparison to the role of surface forcings like soil moisture. We show that the atmospheric-oriented model (MXL-A-gs) outperforms the carbon storage-oriented model (MXL-GECROS) on this diurnal scale. We find this performance is partly due to the difference of scales at which the models were made to run. Most importantly, this performance strongly depends on the sensitivity of the modelled stomatal conductance to water stress, which is implemented differently in each model. This sensitivity also influences the magnitude of the surface fluxes of CO2, water and heat (surface control) and subsequently impacts the boundary-layer growth and entrainment fluxes (upper atmosphere control), which alter the atmospheric state. These findings suggest that observed CO2 mole fractions in the boundary layer can reflect strong influences of both the surface and upper-atmosphere conditions, and the interpretation of CO2 mole fraction variations depends on the assumed land-surface coupling. We illustrate this with a sensitivity

  9. Controlling single and few-layer graphene crystals growth in a solid carbon source based chemical vapor deposition

    SciTech Connect

    Papon, Remi; Sharma, Subash; Shinde, Sachin M.; Vishwakarma, Riteshkumar; Tanemura, Masaki; Kalita, Golap

    2014-09-29

    Here, we reveal the growth process of single and few-layer graphene crystals in the solid carbon source based chemical vapor deposition (CVD) technique. Nucleation and growth of graphene crystals on a polycrystalline Cu foil are significantly affected by the injection of carbon atoms with pyrolysis rate of the carbon source. We observe micron length ribbons like growth front as well as saturated growth edges of graphene crystals depending on growth conditions. Controlling the pyrolysis rate of carbon source, monolayer and few-layer crystals and corresponding continuous films are obtained. In a controlled process, we observed growth of large monolayer graphene crystals, which interconnect and merge together to form a continuous film. On the other hand, adlayer growth is observed with an increased pyrolysis rate, resulting few-layer graphene crystal structure and merged continuous film. The understanding of monolayer and few-layer crystals growth in the developed CVD process can be significant to grow graphene with controlled layer numbers.

  10. Atomic layer deposition on suspended single-walled carbon nanotubes via gas-phase noncovalent functionalization.

    PubMed

    Farmer, Damon B; Gordon, Roy G

    2006-04-01

    Alternating exposures of nitrogen dioxide gas and trimethylaluminum vapor are shown to functionalize the surfaces of single-walled carbon nanotubes with a self-limited monolayer. Functionalized nanotube surfaces are susceptible to atomic layer deposition of continuous, radially isotropic material. This allows for the creation of coaxial nanotube structures of multiple materials with precisely controlled diameters. Functionalization involves only weak physical bonding, avoiding covalent modification, which should preserve the unique optical, electrical, and mechanical properties of the nanotubes. PMID:16608267

  11. Investigation of electrical and impact properties of carbon fiber reinforced polymer matrix composites with carbon nanotube buckypaper layers

    NASA Astrophysics Data System (ADS)

    Hill, Christopher Brandon

    Carbon fiber reinforced composite materials have become commonplace in many industries including aerospace, automotive, and sporting goods. Previous research has determined a coupling relationship between the mechanical and electrical properties of these materials where the application of electrical current has been shown to improve their mechanical strengths. The next generations of these composites have started to be produced with the addition of nanocarbon buckypaper layers which provide even greater strength and electrical conductivity potentials. The focus of this current research was to characterize these new composites and compare their electro-mechanical coupling capabilities to those composites which do not contain any nonocarbons.

  12. Assessment of carbon layer growth induced by resists outgassing in multi e-beams lithography

    NASA Astrophysics Data System (ADS)

    Marusic, JC; Pourteau, ML; Cêtre, S.; Pain, L.; Mebiene-Engohang, AP; David, S.; Labau, S.; Boussey, J.

    2014-10-01

    The development of multiple e-beam lithography equipment is seen as an alternative for next generation lithography. However, similarly to EUV lithography, this technology faces important challenges in controlling the contamination of the optics due to deposition of carbon layer induced by the outgassed chemical species from resist under electron bombardment. An experimental setup was designed and built at LETI to study the outgassed species and observe the carbon layer. In this setup, resist coated wafers 100 mm size are exposed under a 5 kV e-beam gun. During exposure, byproducts from outgassed species are monitored with a Residual Gas Analyzer (RGA). The identification of outgassed chemical species is done with an ex-situ TD-GC-MS analysis (ThermoDesorption-Gaz Chromatography-Mass Spectrometry). In a second part of this investigation, we observed the contamination carbon layer growth induced by the outgassing. Thereby, we fabricated a device which consists of a silicon membrane with micro-machined apertures. During e-beam exposure, this device simulates the multiple parallel beams of the optic system of a maskless lithography tool. The deposited contamination layer on device is then observed and thickness measured under SEM. In this paper, we present the results of outgassing and contamination on 3 chemically amplified resists showing that contamination is not directly dependent of the overall outgassing rate but on first order of the outgassing from Photo Acid Generator (PAG). It also reports on the performance in reducing outgassing and contamination of applying a top-coat layer on top of the resist and shows that reduction is more important for contamination than for outgassing.

  13. Low-cost photoelectrocatalyst based on a nanoporous oxide layer of low-carbon steel

    NASA Astrophysics Data System (ADS)

    Rangaraju, Raghu R.; Raja, K. S.; Panday, A.; Misra, M.

    2010-11-01

    Low-carbon steel is a commonly used structural material in a wide variety of applications. An anodic oxide layer of this inexpensive alloy has been noted to have interesting photoelectrochemical behaviour similar to that of α-Fe2O3 prepared using other expensive starting materials. An ordered nanoporous oxide layer has been grown on to the low-carbon steel surface by a simple electrochemical anodization process in different electrolytes such as ethylene glycol containing 0.05M NH4F and 3-10 vol% water and 0.5M phosphoric acid solution containing 0.05M NH4F. After anodization, the nanoporous anodic oxide layer has been transformed to α-Fe2O3 by a low-temperature annealing process. Photoelectrochemical characterization of the anodic iron oxide materials has been carried out in 1M KOH electrolyte under a solar simulated illumination using Air Mass (AM) 1.5. The ordered nanoporous oxide layer prepared in ethylene glycol-based electrolyte showed a photocurrent density of about 85 µA cm-2 at 0.4 VAg/AgCl. Whereas the anodic iron oxide prepared by anodization of the low-carbon steel in 0.5M H3PO4 + 0.05M NaF solution showed a photocurrent density of 800 µA cm-2 at 0.4 VAg/AgCl. The improved photoactivity of the phosphate-modified oxide layer could be attributed to the high charge carrier concentration, low charge transfer resistance and better ability to expend holes in the oxygen evolution reaction.

  14. Topological defects in electric double layers of ionic liquids at carbon interfaces

    SciTech Connect

    Black, Jennifer M.; Okatan, Mahmut Baris; Feng, Guang; Cummings, Peter T.; Kalinin, Sergei V.; Balke, Nina

    2015-06-07

    The structure and properties of the electrical double layer in ionic liquids is of interest in a wide range of areas including energy storage, catalysis, lubrication, and many more. Theories describing the electrical double layer for ionic liquids have been proposed, however a full molecular level description of the double layer is lacking. To date, studies have been predominantly focused on ion distributions normal to the surface, however the 3D nature of the electrical double layer in ionic liquids requires a full picture of the double layer structure not only normal to the surface, but also in plane. Here we utilize 3D force mapping to probe the in plane structure of an ionic liquid at a graphite interface and report the direct observation of the structure and properties of topological defects. The observation of ion layering at structural defects such as step-edges, reinforced by molecular dynamics simulations, defines the spatial resolution of the method. Observation of defects allows for the establishment of the universality of ionic liquid behavior vs. separation from the carbon surface and to map internal defect structure. In conclusion, these studies offer a universal pathway for probing the internal structure of topological defects in soft condensed matter on the nanometer level in three dimensions.

  15. Topological defects in electric double layers of ionic liquids at carbon interfaces

    DOE PAGESBeta

    Black, Jennifer M.; Okatan, Mahmut Baris; Feng, Guang; Cummings, Peter T.; Kalinin, Sergei V.; Balke, Nina

    2015-06-07

    The structure and properties of the electrical double layer in ionic liquids is of interest in a wide range of areas including energy storage, catalysis, lubrication, and many more. Theories describing the electrical double layer for ionic liquids have been proposed, however a full molecular level description of the double layer is lacking. To date, studies have been predominantly focused on ion distributions normal to the surface, however the 3D nature of the electrical double layer in ionic liquids requires a full picture of the double layer structure not only normal to the surface, but also in plane. Here wemore » utilize 3D force mapping to probe the in plane structure of an ionic liquid at a graphite interface and report the direct observation of the structure and properties of topological defects. The observation of ion layering at structural defects such as step-edges, reinforced by molecular dynamics simulations, defines the spatial resolution of the method. Observation of defects allows for the establishment of the universality of ionic liquid behavior vs. separation from the carbon surface and to map internal defect structure. In conclusion, these studies offer a universal pathway for probing the internal structure of topological defects in soft condensed matter on the nanometer level in three dimensions.« less

  16. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery

    NASA Astrophysics Data System (ADS)

    Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-05-01

    Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery.Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a

  17. Synthesis and electrochemical properties of niobium pentoxide deposited on layered carbide-derived carbon

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanfang (John); Maloney, Ryan; Lukatskaya, Maria R.; Beidaghi, Majid; Dyatkin, Boris; Perre, Emilie; Long, Donghui; Qiao, Wenming; Dunn, Bruce; Gogotsi, Yury

    2015-01-01

    Herein we report on the hydrothermal synthesis of niobium pentoxide on carbide-derived carbon (Nb2O5/CDC) with a layered structure. The presence of phenylphosphonic acid guides the deposition during preparation, leading to the formation of amorphous Nb2O5 particles which are 4-10 nm in diameter and homogeneously distributed on the CDC framework. Electrochemical testing of the Nb2O5/CDC electrode indicated that the highest capacitance and Coulombic efficiency occurred using an electrolyte comprised of 1 M lithium perchlorate in ethylene carbonate/dimethyl carbonate. Subsequent heat treatment of Nb2O5/CDC in CO2 environment led to crystallization of the Nb2O5, allowing reversible Li+ intercalation/de-intercalation. For sweep rates corresponding to charging and discharging in under 3 min, a volumetric charge of 180 C cm-3 and Coulombic efficiency of 99.2% were attained.

  18. Synthesis of carbon nano-structures using organic-molecule intercalated taeniolite layered silicates

    NASA Astrophysics Data System (ADS)

    Maezumi, Takaaki; Wada, Noboru

    2015-03-01

    By calcinating organic-molecule intercalated taeniolite layered silicates, carbon nano-structures were made between the 2:1 layered silicate sheets. Raman scattering, XRD, TGA and SEM were used to characterize the samples. Large taeniolite crystals (NaLiMg2Si4O10F) were first prepared by melting appropriate chemicals at high temperatures using a platinum crucible. Then, the taeniolite crystals made were cation-exchanged with Li+, K+, NH4+,Ca2+ + and Mg2+ in salt solution. Finally, various organic molecules such as ethylene glycol, pyridine and so on were intercalated into the taeniolite crystals, and calcinated under a N2 atmosphere at about 1000K. The resulting crystals are usually gray or black. X-ray (00l) diffraction patterns suggested that the carbon structures may be monolayer thick (i.e., graphene-like). Raman scattering spectra which exhibited a sharp G-band peak with a high G-band/D-band ratio indicated that the carbon structures were relatively well crystallized. Cation and organic-molecule dependence on the carbon structures will be discussed. In addition, evidence for stage-2 taeniolite will be presented.

  19. Microbial respiration per unit microbial biomass depends on litter layer carbon-to-nitrogen ratio

    NASA Astrophysics Data System (ADS)

    Spohn, M.

    2015-02-01

    Soil microbial respiration is a central process in the terrestrial carbon (C) cycle. In this study, I tested the effect of the carbon-to-nitrogen (C:N) ratio of soil litter layers on microbial respiration in absolute terms and per unit microbial biomass C. For this purpose, a global data set on microbial respiration per unit microbial biomass C - termed the metabolic quotient (qCO2) - was compiled from literature data. It was found that qCO2 in the soil litter layers was positively correlated with the litter C:N ratio and was negatively correlated with the litter nitrogen (N) concentration. The positive relation between qCO2 and the litter C:N ratio resulted from an increase in respiration with the C:N ratio in combination with no significant effect of the litter C:N ratio on the soil microbial biomass C concentration. The results suggest that soil microorganisms respire more C both in absolute terms and per unit microbial biomass C when decomposing N-poor substrate. The reasons for the observed relationship between qCO2 and the litter layer C:N ratio could be microbial N mining, overflow respiration or the inhibition of oxidative enzymes at high N concentrations. In conclusion, the results show that qCO2 increases with the litter layer C:N ratio. Thus, the findings indicate that atmospheric N deposition, leading to decreased litter C:N ratios, might decrease microbial respiration in soils.

  20. Does the vertical profile of ethane contain more insight into mixing layer height than carbon monoxide?

    NASA Astrophysics Data System (ADS)

    Herndon, Scott; Yacovitch, Tara; Pusede, Sally; Diskin, Glenn; DiGangi, Joshua; Sachse, Glenn; Crawford, James

    2015-04-01

    To improve the interpretation of satellite data measurements near the surface, the DISCOVER-AQ project embarked on a four year campaign to produce an integrated dataset of airborne and surface based measurements at various locations in North America. One of the key metrics when pursuing the the goal of measuring the surface air quality from space is the mixing layer height. The measurement phase in 2014 included the novel 1-Hz Aerodyne Research, Inc. fast Ethane Spectrometer to distinguish the methane emissions from thermogenic (oil&gas) and biogenic sources in the Denver-Julesberg basin. A second potential use of ethane as a determinant of mixing layer height is revealed in the analysis of 213 vertical profiles collected at 7 points during 21 flights. The findings are evaluated relative to other in-situ metrics, such as carbon monoxide and remote sensing attributions of mixing layer height.

  1. Multi-layer stretchable pressure sensors using ionic liquids and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Vatani, Morteza; Vatani, Mohamad; Choi, J. W.

    2016-02-01

    A stretchable and pressure sensitive polymer capable of detecting strains was developed through the incorporation of 1-ethyl-3-methylimidazolium tetrafluoroborate as an ionic liquid (IL) into a stretchable photopolymer. The developed IL/polymer composite showed both a field effect characteristic and piezoresistivity by embedding the composite between two layers of carbon nanotube (CNT)-based stretchable electrodes. A multi-layer pressure sensitive taxel was formed using a hybrid manufacturing process, where two electrode layers were fabricated by screen printing and the IL/polymer composite was formed by casting using a mold. A composite material for the electrodes was developed through the dispersion of CNTs into a highly stretchable photo/thermal crosslinkable prepolymer. The fabricated sensor was evaluated with different forces ranging from 0 to 140 g. The experiment results showed that the developed stretchable sensor had good repeatability and reliability in detecting applied pressures.

  2. Electrostatic Layer-By-Layer Self-Assembled Graphene/Multi-Walled Carbon Nanotubes Hybrid Multilayers as Efficient 'All Carbon' Supercapacitors.

    PubMed

    Gupta, Sanju; Heintzman, Eli; Price, Carson

    2016-05-01

    In this work, covalently bonded graphene/carbon nanotube (Gr/CNT) conjoined materials are fabricated as engineered three-dimensional hybrid multilayer supercapacitors for high-performance integrated electrochemical energy storage. Stable aqueous dispersion of polymer-modified graphene sheets are prepared in the presence of cationic poly(ethyleneimine), PEI (PEI-Gr) for sequential or electrostatic layer-by-layer (E-LBL) self-assembly with negatively charged acid-oxidized or functionalized multi-walled CNT (fMWCNT), forming (PEI-Gr/fMWCNT)n architecture as "all carbon" super-capacitor, where n = 1, 2, 4, 6, 9, 12 and 15. These films possess an interconnected network of mesoporous nanocarbon structure with well-defined interfaces allowing sufficient surface adsorption and faster ion transport due to short diffusion distances. They exhibit nearly rectangular cyclic voltammograms at an exceedingly high scan rate of 1 V/s with an average specific capacitance of -450 F g(-1) and specific energy density of 75.5 Wh kg(-1) based on electrode weight, measured at a current density of 0.3 A g(-1), comparable to that of Ni metal hydride battery and charged/discharged within a few seconds or a minute. This is attributed to the maximized synergistic effect of the highest specific surface areas by preventing re-aggregation of PEI-Gr or PEI-rGO via fMWCNT as spacers. We also determined relative contributions of the interfacial capacitance (C(dl)) and charge transfer (R(ct)) properties of the hybrids and investigated interfacial properties by SECM technique. PMID:27483821

  3. Enhancement of dopamine sensing by layer-by-layer assembly of PVI-dmeOs and Nafion on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cui, Hui-Fang; Cui, Yu-Han; Sun, Yu-Long; Zhang, Kuan; Zhang, Wei-De

    2010-05-01

    In this study, carbon nanotubes (CNTs) were modified to further improve their performance in electrochemical sensing of dopamine (DA) levels. After a redox polymer, poly(vinylimidazole) complexed with Os(4, 4'-dimethyl- 2, 2-bipyridine)2Cl (termed PVI-dmeOs) was electrodeposited on multi-wall CNTs (MWCNTs), Nafion and PVI-dmeOs films were successfully layer-by-layer (LBL) assembled on the hydrophilic surface of the as-prepared PVI-dmeOs/CNTs nanocomposites through electrostatic interactions. The LBL assembly was proved by scanning electron microscopy (SEM), electrochemistry and UV-vis spectroscopy measurements. LBL assembly of Nafion/PVI-dmeOs films on CNTs significantly enhanced their linear sweep voltammetry (LSV) response sensitivity to DA, with a maximum enhancement for three Nafion/PVI-dmeOs film-modified MWCNTs. The LSV peak current density of (Nafion/PV I-dmeOs)3/CNT electrodes in response to 10 and 50 µM DA solutions was about 7.3 and 3.9 times those for bare CNTs. At the (Nafion/PV I-dmeOs)3/CNT electrodes, the limit of detection (LOD) (signal-to-noise ratio: 3) was 0.05 µM DA, the linear range was 0.1-10 µM DA (with a linear regression coefficient of 0.97) and the DA-sensing sensitivity was 8.15 µA cm - 2 µM - 1. The newly fabricated (Nafion/PV I-dmeOs)3/CNT electrodes may be developed as an ideal biosensor for direct and in situ measurement of DA levels.

  4. An electrochemical double layer capacitor using an activated carbon electrode with gel electrolyte binder

    SciTech Connect

    Osaka, Tetsuya, Liu, X.; Nojima, Masashi; Momma, Toshiyuki

    1999-05-01

    An electric double layer capacitor (EDLC) was prepared with an activated carbon powder electrode with poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) based gel electrolyte. Ethylene carbonate (EC) and propylene carbonate (PC) were used as plasticizer and tetraethylammonium tetrafluoroborate (TEABF{sub 4}) was used as the supporting electrolyte. An optimized gel electrolyte of PVdF-HFP/PC/EC/TEABF{sub 4} - 23/31/35/11 mass ratio exhibited high ionic conductivity of 5 {times} 10{sup {minus}3} S/cm, high electrode capacitance, and good mechanical strength. An electrode consisting of activated carbon (AC) with the gel electrolyte as the binder (AC/PVdF-HFP based gel, 7/3 mass ratio) showed a higher specific capacitance and a lower ion diffusion resistance within the electrode than a carbon electrode, prepared with PVdF-HFP binder without plasticizer. This suggests that an electrode mixed with the gel electrolyte has a lower ion diffusion resistance inside the electrode. The highest specific capacitance of 123 F/g was achieved with an electrode containing AC with a specific surface area of 2500 m{sup 2}/g. A coin-type EDLC cell with optimized components showed excellent cycleability exceeding 10{sup 4} cycles with ca. 100% coulombic efficiency achieved when charging and discharging was repeated between 1.0 and 2.5 V at 1.66 mA/cm{sup 2}.

  5. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery.

    PubMed

    Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-06-01

    Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery. PMID:27181758

  6. Double layer oxidation resistant coating for carbon fiber reinforced silicon carbide matrix composites

    NASA Astrophysics Data System (ADS)

    Zheng, X. H.; Du, Y. G.; Xiao, J. Y.; Zhang, W. J.; Zhang, L. C.

    2009-01-01

    Double layer coatings, with celsian-Y 2SiO 5 as inner layer and Y 2Si 2O 7 as outer layer, were prepared by microwave sintering on the surface of carbon fiber reinforced silicon carbide matrix composite. Both celsian, Y 2SiO 5 and Y 2Si 2O 7 were synthesized by in situ method using BAS glass, Y 2O 3 and SiO 2 as staring materials. The sintering temperature was 1500 °C, and little damage was induced to the composite. The composition and micrograph of the fired coating were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The oxidation and thermal shock resistance of samples with doubled-layered coating were characterized at 1400 °C in air. After 150 min oxidation and thermal cycling between 1400 °C and room temperature for 15 times, the weight loss of double layer-coated sample was 1.22% and there were no cracks in the coating.

  7. Distinct temperature sensitivity of soil carbon decomposition in forest organic layer and mineral soil

    PubMed Central

    Xu, Wenhua; Li, Wei; Jiang, Ping; Wang, Hui; Bai, Edith

    2014-01-01

    The roles of substrate availability and quality in determining temperature sensitivity (Q10) of soil carbon (C) decomposition are still unclear, which limits our ability to predict how soil C storage and cycling would respond to climate change. Here we determined Q10 in surface organic layer and subsurface mineral soil along an elevation gradient in a temperate forest ecosystem. Q10 was calculated by comparing the times required to respire a given amount of soil C at 15 and 25°C in a 350-day incubation. Results indicated that Q10 of the organic layer was 0.22–0.71 (absolute difference) higher than Q10 of the mineral soil. Q10 in both the organic layer (2.5–3.4) and the mineral soil (2.1–2.8) increased with decreasing substrate quality during the incubation. This enhancement of Q10 over incubation time in both layers suggested that Q10 of more labile C was lower than that of more recalcitrant C, consistent with the Arrhenius kinetics. No clear trend of Q10 was found along the elevation gradient. Because the soil organic C pool of the organic layer in temperate forests is large, its higher temperature sensitivity highlights its importance in C cycling under global warming. PMID:25270905

  8. Recent developments in the layer-by-layer assembly of polyaniline and carbon nanomaterials for energy storage and sensing applications. From synthetic aspects to structural and functional characterization

    NASA Astrophysics Data System (ADS)

    Marmisollé, Waldemar A.; Azzaroni, Omar

    2016-05-01

    The construction of hybrid polymer-inorganic nanoarchitectures for electrochemical purposes based on the layer-by-layer assembly of conducting polymers and carbon nanomaterials has become increasingly popular over the last decade. This explosion of interest is primarily related to the increasing mastery in the design of supramolecular constructs using simple wet chemical approaches. Concomitantly, this continuous research activity paved the way to the rapid development of nanocomposites or ``nanoblends'' readily integrable into energy storage and sensing devices. In this sense, the layer-by-layer (LbL) assembly technique has allowed us to access three-dimensional (3D) multicomponent carbon-based network nanoarchitectures displaying addressable electrical, electrochemical and transport properties in which conducting polymers, such as polyaniline, and carbon nanomaterials, such as carbon nanotubes or nanographene, play unique roles without disrupting their inherent functions - complementary entities coexisting in harmony. Over the last few years the level of functional sophistication reached by LbL-assembled carbon-based 3D network nanoarchitectures, and the level of knowledge related to how to design, fabricate and optimize the properties of these 3D nanoconstructs have advanced enormously. This feature article presents and discusses not only the recent advances but also the emerging challenges in complex hybrid nanoarchitectures that result from the layer-by-layer assembly of polyaniline, a quintessential conducting polymer, and diverse carbon nanomaterials. This is a rapidly developing research area, and this work attempts to provide an overview of the diverse 3D network nanoarchitectures prepared up to now. The importance of materials processing and LbL integration is explored within each section and while the overall emphasis is on energy storage and sensing applications, the most widely-used synthetic strategies and characterization methods for ``nanoblend

  9. Recent developments in the layer-by-layer assembly of polyaniline and carbon nanomaterials for energy storage and sensing applications. From synthetic aspects to structural and functional characterization.

    PubMed

    Marmisollé, Waldemar A; Azzaroni, Omar

    2016-05-21

    The construction of hybrid polymer-inorganic nanoarchitectures for electrochemical purposes based on the layer-by-layer assembly of conducting polymers and carbon nanomaterials has become increasingly popular over the last decade. This explosion of interest is primarily related to the increasing mastery in the design of supramolecular constructs using simple wet chemical approaches. Concomitantly, this continuous research activity paved the way to the rapid development of nanocomposites or "nanoblends" readily integrable into energy storage and sensing devices. In this sense, the layer-by-layer (LbL) assembly technique has allowed us to access three-dimensional (3D) multicomponent carbon-based network nanoarchitectures displaying addressable electrical, electrochemical and transport properties in which conducting polymers, such as polyaniline, and carbon nanomaterials, such as carbon nanotubes or nanographene, play unique roles without disrupting their inherent functions - complementary entities coexisting in harmony. Over the last few years the level of functional sophistication reached by LbL-assembled carbon-based 3D network nanoarchitectures, and the level of knowledge related to how to design, fabricate and optimize the properties of these 3D nanoconstructs have advanced enormously. This feature article presents and discusses not only the recent advances but also the emerging challenges in complex hybrid nanoarchitectures that result from the layer-by-layer assembly of polyaniline, a quintessential conducting polymer, and diverse carbon nanomaterials. This is a rapidly developing research area, and this work attempts to provide an overview of the diverse 3D network nanoarchitectures prepared up to now. The importance of materials processing and LbL integration is explored within each section and while the overall emphasis is on energy storage and sensing applications, the most widely-used synthetic strategies and characterization methods for "nanoblend

  10. Layer-By-Layer Assembled Hybrid Film of Carbon Nanotubes/Iron Oxide Nanocrystals for Reagentless Electrochemical Detection of H2O2

    SciTech Connect

    Miao, Yuqing; Wang, Hua; Shao, Yuyan; Tang, Zhiwen; Wang, Jun; Lin, Yuehe

    2009-04-01

    A new approach to construct a reagentless H2O2 electrochemical sensor is described. Iron oxide magnetic nanocystals (IOMNs), as peroxidase mimetics, were employed to assemble a multilayer structure layer by layer. Polythionin was electrodeposited onto the glassy carbon electrode surface to introduce amino groups. Carboxyl functionalized multi-walled carbon nanotubes, amino functionalized IOMNs, and thionin monomers were anchored onto a polythionin-functionalized GC surface in order by carbodiimide or glutaraldehyde chemistry. The resulting multilayer construction with three layers of IOMNs and thionin mediator exhibits excellent electrochemical response to the reduction of H2O2, whereas such a modified electrode with one layer construction only yields a slight response to H2O2 of the same concentration. The tethered MWCNs enlarge the amount of immobilized IOMNs and effectively shuttle electrons between the electrode and the thionin.

  11. Temperature Oscillation Modulated Self-Assembly of Periodic Concentric Layered Magnesium Carbonate Microparticles

    PubMed Central

    Li, Shihong; Wang, Zheng Jim; Chang, Ting-Tung

    2014-01-01

    Intriguing patterns of periodic, concentric, layered, mineral microstructure are present in nature and organisms, yet they have elusive geneses. We hypothesize temperature oscillation can be an independent factor that causes the self-assembly of such patterns in mineral phases synthesized in solution. Static experiments verify that rhythmic concentric multi-layered magnesium carbonate microhemispheres can be synthesized from bicarbonate solution by temperature oscillation, without use of a chemical template, additive or gel-diffusion system. Appropriate reactant concentration and initial pH value can restrain the competitive growth of other mineral generations. Polarized light microscopy images indicate the microhemispheres are crystalline and the crystallinity increases with incubation time. The thickness of a single mineral layer of microhemisphere in microscale is precisely controlled by the waveform parameters of the temperature oscillation, while the layer number, which can reach tens to about one hundred, is constrained by the temperature oscillation period number. FT-IR spectra show that these microhemispheres synthesized under different conditions can be identified as the basic form of magnesium carbonate, hydromagnesite (Mg5(CO3)4(OH)2⋅4H2O). SEM images exhibit the characteristic microscopic texture of the alternating dark and light rings of these microhemispheres. TEM images and ED patterns suggest the nanoflakes of microhemispheres are present in polycrystalline form with some degree of oriented assembly. The temperature oscillation modulated self-assembly may offer a new mechanism to understand the formation of layered microstructure of minerals in solution, and provide a non-invasive and programmable means to synthesize hierarchically ordered materials. PMID:24520410

  12. Temperature oscillation modulated self-assembly of periodic concentric layered magnesium carbonate microparticles.

    PubMed

    Li, Shihong; Wang, Zheng Jim; Chang, Ting-Tung

    2014-01-01

    Intriguing patterns of periodic, concentric, layered, mineral microstructure are present in nature and organisms, yet they have elusive geneses. We hypothesize temperature oscillation can be an independent factor that causes the self-assembly of such patterns in mineral phases synthesized in solution. Static experiments verify that rhythmic concentric multi-layered magnesium carbonate microhemispheres can be synthesized from bicarbonate solution by temperature oscillation, without use of a chemical template, additive or gel-diffusion system. Appropriate reactant concentration and initial pH value can restrain the competitive growth of other mineral generations. Polarized light microscopy images indicate the microhemispheres are crystalline and the crystallinity increases with incubation time. The thickness of a single mineral layer of microhemisphere in microscale is precisely controlled by the waveform parameters of the temperature oscillation, while the layer number, which can reach tens to about one hundred, is constrained by the temperature oscillation period number. FT-IR spectra show that these microhemispheres synthesized under different conditions can be identified as the basic form of magnesium carbonate, hydromagnesite (Mg5(CO3)4(OH)2 ⋅ 4H2O). SEM images exhibit the characteristic microscopic texture of the alternating dark and light rings of these microhemispheres. TEM images and ED patterns suggest the nanoflakes of microhemispheres are present in polycrystalline form with some degree of oriented assembly. The temperature oscillation modulated self-assembly may offer a new mechanism to understand the formation of layered microstructure of minerals in solution, and provide a non-invasive and programmable means to synthesize hierarchically ordered materials. PMID:24520410

  13. Carbon doped GaN buffer layer using propane for high electron mobility transistor applications: Growth and device results

    SciTech Connect

    Li, X.; Nilsson, D.; Danielsson, Ö.; Pedersen, H.; Janzén, E.; Forsberg, U.; Bergsten, J.; Rorsman, N.

    2015-12-28

    The creation of a semi insulating (SI) buffer layer in AlGaN/GaN High Electron Mobility Transistor (HEMT) devices is crucial for preventing a current path beneath the two-dimensional electron gas (2DEG). In this investigation, we evaluate the use of a gaseous carbon gas precursor, propane, for creating a SI GaN buffer layer in a HEMT structure. The carbon doped profile, using propane gas, is a two stepped profile with a high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) epitaxial layer closest to the substrate and a lower doped layer (3 × 10{sup 16 }cm{sup −3}) closest to the 2DEG channel. Secondary Ion Mass Spectrometry measurement shows a uniform incorporation versus depth, and no memory effect from carbon doping can be seen. The high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) does not influence the surface morphology, and a roughness root-mean-square value of 0.43 nm is obtained from Atomic Force Microscopy. High resolution X-ray diffraction measurements show very sharp peaks and no structural degradation can be seen related to the heavy carbon doped layer. HEMTs are fabricated and show an extremely low drain induced barrier lowering value of 0.1 mV/V, demonstrating an excellent buffer isolation. The carbon doped GaN buffer layer using propane gas is compared to samples using carbon from the trimethylgallium molecule, showing equally low leakage currents, demonstrating the capability of growing highly resistive buffer layers using a gaseous carbon source.

  14. Electrochemical and spectroelectrochemical behavior of the TCNQ(0/)(-) couple on a glassy carbon electrode. Layer-by-layer nucleation and growth.

    PubMed

    Gómez, L; Rodríguez-Amaro, R

    2006-08-15

    On the basis of the electrochemical results obtained for thin films of 7,7,8,8- tetracyanoquinodimethane (TCNQ) on a glassy carbon electrode, the reduction and oxidation of the [TCNQ](0/)(-) couple in KCl aqueous media occurs via a mechanism involving layer-by-layer nucleation and growth. In situ recorded UV-visible spectroelectrochemical data allow two different crystal structures for the oxidized form of TCNQ to be discriminated. PMID:16893249

  15. Formation of Diffusion Layers by Anode Plasma Electrolytic Nitrocarburizing of Low-Carbon Steel

    NASA Astrophysics Data System (ADS)

    Kusmanov, S. A.; Kusmanova, Yu. V.; Naumov, A. R.; Belkin, P. N.

    2015-08-01

    The structure of the low-carbon steel after plasma electrolytic nitrocarburizing in the electrolyte containing acetonitrile was investigated. The cross-sectional microstructure, composition, and phase constituents of a modified layer under different processing conditions were characterized. It is shown that the electrolyte that contained ammonium chloride and acetonitrile provides the saturation of steel with nitrogen and carbon and the formation of the Fe4N and FeN0.05 nitrides, Fe4C carbide and other phases. The nitrogen diffusion decreases the austenitization temperature and results in the formation of martensite after the sample cooling in the electrolyte. The formation of a carbon and nitrogen source in a vapor-gas envelope (VGE) is investigated. The proposed mechanism includes evaporation of acetonitrile in the VGE, its adsorption on an anode with the following thermal decomposition, and also the acetonitrile reduction to amine with subsequent hydrolysis to ethanol that is determined with the use of chromatographic method. The aqueous solution that contained 10 wt.% NH4Cl and 10 wt.% CH3CN allows one to obtain the nitrocarburized layer with the thickness of 0.22 mm and microhardness up to 740 HV during 10 min at 850 °C. This treatment regime leads to the decrease in the surface roughness of steel R a from 1.01 μm to 0.17 μm.

  16. Shielding the chemical reactivity using graphene layers for controlling the surface properties of carbon materials.

    PubMed

    Sedykh, A E; Gordeev, E G; Pentsak, E O; Ananikov, V P

    2016-02-14

    Graphene can efficiently shield chemical interactions and gradually decrease the binding to reactive defect areas. In the present study, we have used the observed graphene shielding effect to control the reactivity patterns on the carbon surface. The experimental findings show that a surface coating with a tiny carbon layer of 1-2 nm thickness is sufficient to shield the defect-mediated reactivity and create a surface with uniform binding ability. The shielding effect was directly observed using a combination of microscopy techniques and evaluated with computational modeling. The theoretical calculations indicate that a few graphene layers can drastically reduce the binding energy of the metal centers to the surface defects by 40-50 kcal mol(-1). The construction of large carbon areas with controlled surface reactivity is extremely difficult, which is a key limitation in many practical applications. Indeed, the developed approach provides a flexible and simple tool to change the reactivity patterns on large surface areas within a few minutes. PMID:26796642

  17. Stable carbon isotope ratios of toluene in the boundary layer and the lower free troposphere

    NASA Astrophysics Data System (ADS)

    Wintel, J.; Hösen, E.; Koppmann, R.; Krebsbach, M.

    2013-04-01

    Measurements of stable carbon isotope ratios in VOC are a powerful tool to identify sources or to track both dynamical and chemical processes. During the field campaign ZEPTER-2 in autumn 2008 whole air samples were collected on board a Zeppelin NT airship in the planetary boundary layer and the lower free troposphere over south-west Germany. These samples were analysed with respect to VOC mixing ratios and stable carbon isotope ratios using a gas chromatograph combustion isotope ratio mass spectrometer. In this study we present the results for toluene, one of the major anthropogenic pollutants. In the boundary layer we observed rather fresh emissions mixing into the background and derived a toluene source isotope ratio of δ13C = -28.2 ± 0.5 ‰. Using the concept of the effective kinetic isotope effect, we were able to separate the effects of dilution processes and photochemical degradation in the free troposphere. We estimated the photochemical age of toluene in the atmosphere in two different ways (using isotope ratios and mixing ratios, respectively). The results differ strongly in the planetary boundary layer, probably due to mixing processes, but are compatible with each other in the free troposphere.

  18. Thin crystalline 3C-SiC layer growth through carbonization of differently oriented Si substrates

    NASA Astrophysics Data System (ADS)

    Severino, A.; D'Arrigo, G.; Bongiorno, C.; Scalese, S.; La Via, F.; Foti, G.

    2007-07-01

    The growth of thin cubic silicon carbide (3C-SiC) buffer layers in an horizontal hot-wall chemical vapor deposition reactor, through the carbonization of differently oriented Si surfaces, is presented. A qualitative and quantitative study has been performed on statistical parameters related to voids due to the buffer layer growth on the different substrate orientations emphasizing shape, size, and density as a function of the substrate orientation. Variation in the void parameters can be attributed to the atomic packing density related to the substrate orientations, which were (100) Si, (111) Si, and (110) Si in this study. Scanning electron microscopy and transmission electron microscopy were performed to analyze the surface and the crystalline quality of the 3C-SiC films grown and, eventually, an empirical model for the carbonization of Si surfaces formulated. Large platens characterize the 3C-SiC films with shapes related to the orientations of the substrate. These platens derive from the two-dimensional growth of different SiC islands which enlarge during the process due to the continuous reaction between Si and C atoms. The interior part of platens was characterized by the presence of a pure crystalline material with the presence of small tilts affecting some grains in the 3C-SiC layer in order to relief the stress generated with the substrate.

  19. Influence of depositional setting and sedimentary fabric on mechanical layer evolution in carbonate aquifers

    USGS Publications Warehouse

    Graham, Wall B.R.

    2006-01-01

    Carbonate aquifers in fold-thrust belt settings often have low-matrix porosity and permeability, and thus groundwater flow pathways depend on high porosity and permeability fracture and fault zones. Methods from sedimentology and structural geology are combined to understand the evolution of fracture controlled flow pathways and determine their spatial distribution. Through this process bed-parallel pressure-solution surfaces (PS1) are identified as a fracture type which influences fragmentation in peritidal and basinal carbonate, and upon shearing provides a major flow pathway in fold - thrust belt carbonate aquifers. Through stratigraphic analysis and fracture mapping, depositional setting is determined to play a critical role in PS1 localization and spacing where peritidal strata have closer spaced and less laterally continuous PS1 than basinal strata. In the peritidal platform facies, units with planar lamination have bed-parallel pressure-solution seams along mudstone laminae. In contrast, burrowed units of peritidal strata have solution seams with irregular and anastamosing geometries. Laminated units with closely spaced bed-parallel solution seams are more fragmented than bioturbated units with anastamosing solution seams. In the deeper-water depositional environment, pelagic settling and turbidity currents are the dominant sedimentation processes, resulting in laterally continuous deposits relative to the peritidal platform environment. To quantify the fracture patterns in the basinal environment, mechanical layer thickness values were measured from regions of low to high bed dip. The results define a trend in which mechanical layer thickness decreases as layer dip increases. A conceptual model is presented that emphasizes the link between sedimentary and structural fabric for the peritidal and basinal environments, where solution seams localize in mud-rich intervals, and the resulting pressure-solution surface geometry is influenced by sedimentary geometry

  20. The development of chloride ion selective polypyrrole thin film on a layer-by-layer carbon nanotube working electrode

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Lynch, Jerome

    2011-04-01

    A chloride ion selective thin film sensor is proposed for measuring chloride ion concentration, which is an environmental parameter correlated to corrosion. In this work, electrochemical polymerization of Polypyrrole (PPy) doped with chloride ions was achieved on the top of a carbon nanotube (CNT) thin film as a working electrode in an electrochemical cell. The underlying CNT layer conjugated with doped PPy thin film can form a multifunctional "selfsensing" material platform for chloride ion detection in a concrete environment. The paper presents the first type of work using CNT and PPy as hybrid materials for chloride ion sensing. Electrochemical polymerization of PPy results in oxidation that yields an average of one positive charge distributed over four pyrrole units. This positive charge is compensated by negatively-charged chloride ions in the supporting electrolyte. In effect, the chloride ion-doped PPy has become molecularly imprinted with chloride ions thereby providing it with some degree of perm-selectivity for chloride ions. The detection limit of the fabricated chloride ion-doped PPy thin film can reach 10-8 M and selectivity coefficients are comparable to those in the literature. The reported work aims to lay a strong foundation for detecting chloride ion concentrations in the concrete environment.

  1. Conductive surface modification of LiFePO4 with nitrogen doped carbon layers for lithium-ion batteries

    SciTech Connect

    Yoon, Sukeun; Liao, Chen; Sun, Xiao-Guang; Bridges, Craig A; Unocic, Raymond R; Nanda, Jagjit; Dai, Sheng; Paranthaman, Mariappan Parans

    2012-01-01

    The LiFePO4 rod surface modified with nitrogen doped carbon layer has been prepared using hydrothermal processing followed by post-annealing in the presence of an ionic liquid. The coated LiFePO4 rod exhibits good capacity retention and high rate capability as the nitrogen doped carbon improves conductivity and prevents aggregation of the rod during cycling.

  2. Ultracold Quantum Gases in Hexagonal Optical Lattices

    NASA Astrophysics Data System (ADS)

    Sengstock, Klaus

    2010-03-01

    Hexagonal structures occur in a vast variety of systems, ranging from honeycombs of bees in life sciences to carbon nanotubes in material sciences. The latter, in particular its unfolded two-dimensional layer -- Graphene -- has rapidly grown to one of the most discussed topics in condensed-matter physics. Not only does it show proximity to various carbon-based materials but also exceptional properties owing to its unusual energy spectrum. In quantum optics, ultracold quantum gases confined in periodic light fields have shown to be very general and versatile instruments to mimic solid state systems. However, so far nearly all experiments were performed in cubic lattice geometries only. Here we report on the first experimental realization of ultracold quantum gases in a state-dependent, two-dimensional, Graphene-like optical lattice with hexagonal symmetry. The lattice is realized via a spin-dependent optical lattice structure with alternating σ^+ and σ^- -sites and thus constitutes a so called `magnetic'-lattice with `antiferromagnetic'-structure. Atoms with different spin orientation can be loaded to specific lattice sites or -- depending on the parameters -- to the whole lattice. As a consequence e.g. superpositions of a superfluid spin component with a different spin component in the Mott-insulating phase can be realized as well as spin-dependent transport properties, disorder etc. After preparing an antiferromagnetically ordered state we e.g. measure sustainable changes of the transport properties of the atoms. This manifests in a significant reduction of the tunneling as compared to a single-component system. We attribute this observation to a partial tunneling blockade for one spin component induced by population in another spin component localized at alternating lattice sites. Within a Gutzwiller-Ansatz we calculate the phase diagrams for the mixed spin-states and find very good agreement with our experimental results. Moreover, by state-resolved recording

  3. Ultra-Thin Optically Transparent Carbon Electrodes Produced from Layers of Adsorbed Proteins

    PubMed Central

    Alharthi, Sarah A.; Benavidez, Tomas E.; Garcia, Carlos D.

    2013-01-01

    This work describes a simple, versatile, and inexpensive procedure to prepare optically transparent carbon electrodes, using proteins as precursors. Upon adsorption, the protein-coated substrates were pyrolyzed under reductive conditions (5% H2) to form ultra-thin, conductive electrodes. Because proteins spontaneously adsorb to interfaces forming uniform layers, the proposed method does not require a precise control of the preparation conditions, specialized instrumentation, or expensive precursors. The resulting electrodes were characterized by a combination of electrochemical, optical, and spectroscopic means. As a proof-of-concept, the optically-transparent electrodes were also used as substrate for the development of an electrochemical glucose biosensor. The proposed films represent a convenient alternative to more sophisticated, and less available, carbon-based nanomaterials. Furthermore, these films could be formed on a variety of substrates, without classical limitations of size or shape. PMID:23421732

  4. Ordered carbon nanotube growth on graphene and few-layer graphene

    NASA Astrophysics Data System (ADS)

    Hunley, D. Patrick; Johnson, Stephen; Stieha, Joseph; Sundararajan, Abhishek; Meacham, Aaron; Strachan, Douglas

    2011-03-01

    Carbon nanotubes are grown on graphene and few-layer graphene films through chemical vapor deposition. The nanotube growth is found to depend on the thickness of the few-layer graphene films. The thinnest films show significant alignment of the nanotubes with the crystallographic axes of the graphene. This alignment is compared to the orientation of the crystallographic etch tracks, permitting the orientation of the nanotubes to be determined. Related nanotube/graphene structures will also be presented and discussed. Supported in part by NSF Award No. DMR-0805136, the Kentucky NSF EPSCoR program, the University of Kentucky Center for Advanced Materials, and the University of Kentucky Center for Nanoscale Science and Engineering.

  5. Modeling and optimization of atomic layer deposition processes on vertically aligned carbon nanotubes.

    PubMed

    Yazdani, Nuri; Chawla, Vipin; Edwards, Eve; Wood, Vanessa; Park, Hyung Gyu; Utke, Ivo

    2014-01-01

    Many energy conversion and storage devices exploit structured ceramics with large interfacial surface areas. Vertically aligned carbon nanotube (VACNT) arrays have emerged as possible scaffolds to support large surface area ceramic layers. However, obtaining conformal and uniform coatings of ceramics on structures with high aspect ratio morphologies is non-trivial, even with atomic layer deposition (ALD). Here we implement a diffusion model to investigate the effect of the ALD parameters on coating kinetics and use it to develop a guideline for achieving conformal and uniform thickness coatings throughout the depth of ultra-high aspect ratio structures. We validate the model predictions with experimental data from ALD coatings of VACNT arrays. However, the approach can be applied to predict film conformality as a function of depth for any porous topology, including nanopores and nanowire arrays. PMID:24778944

  6. Modeling and optimization of atomic layer deposition processes on vertically aligned carbon nanotubes

    PubMed Central

    Yazdani, Nuri; Chawla, Vipin; Edwards, Eve; Wood, Vanessa

    2014-01-01

    Summary Many energy conversion and storage devices exploit structured ceramics with large interfacial surface areas. Vertically aligned carbon nanotube (VACNT) arrays have emerged as possible scaffolds to support large surface area ceramic layers. However, obtaining conformal and uniform coatings of ceramics on structures with high aspect ratio morphologies is non-trivial, even with atomic layer deposition (ALD). Here we implement a diffusion model to investigate the effect of the ALD parameters on coating kinetics and use it to develop a guideline for achieving conformal and uniform thickness coatings throughout the depth of ultra-high aspect ratio structures. We validate the model predictions with experimental data from ALD coatings of VACNT arrays. However, the approach can be applied to predict film conformality as a function of depth for any porous topology, including nanopores and nanowire arrays. PMID:24778944

  7. Nanobubbles stability and multiwall carbon nanotubes straightening on few-layer graphene surfaces

    NASA Astrophysics Data System (ADS)

    Al-Harthi, S. H.; Al-Barwani, M.; Elzain, M.; Al-Naamani, N.; Hysen, T.

    2011-08-01

    The formation of nanobubbles, straightening, and orientation of multiwalled carbon nanotubes (MWCNTs) are investigated by preparing thin films employing dip casting of colloidal solutions on few-layer graphene (FLG) surfaces. In contrast to what is known, it is observed that nanobubbles are formed on an ultrathin dewetted layer of 0.5 nm thickness and exhibit unusual stability at ultrahigh vacuum conditions. Further, nanobubble rings are observed at atmospheric pressure. The results provide direct experimental evidence of the interaction between MWCNTs and nanobubbles at air-liquid-solid triple contact line and at lower step edge of the FLG, which together lead to the alignment of MWCNTs. Due to the balance between the surface tension forces and the strain forces arising from tube bending, MWCNTs attained straight rod-like shape. This enabled us to evaluate the elastic modulus of the MWCNT as E = 0.9 TPa.

  8. Cross-plane heat transfer through single-layer carbon structures.

    PubMed

    Zhang, Huaichen; Nedea, Silvia V; Rindt, Camilo C M; Smeulders, David M J

    2016-02-21

    Graphene-based nano-structures have been recently proposed to function as additives to improve the conductivity of thermally sluggish phase change materials (PCMs). Based on the existing research studies, the improvement is dependent not only on the matrix material, but also on the geometry of the carbon structure. To gain more insight into the nano-scale thermal transport problem, we launched the current pilot research using water as the matrix material, to represent the hydroxyl-group-rich sugar alcohols as PCMs. We have found that the heat conduction across a graphene layer to water is much faster than the heat conduction to the graphene layer itself. Also, the high graphene-water thermal contact resistance fails to acknowledge the fast thermal kinetics of the low frequency phonons. In the investigation of the geometry effect, the cross-plane heat transfer coefficient is found to decrease with decreasing CNT diameter except CNT(9,9). PMID:26818392

  9. Effect of longitudinal heat conduction on the catalytic ignition of carbon monoxide in a boundary layer

    NASA Astrophysics Data System (ADS)

    Treviño, C.; Méndez, F.; Prince, J. C.; Higuera, F. J.

    2000-06-01

    The catalytic ignition of dry carbon monoxide and air in a boundary layer flow over a palladium plate is studied in this paper. The heterogeneous reaction mechanism is modelled with the dissociative adsorption of the molecular oxygen and the non-dissociative adsorption of CO, together with a surface reaction of the Langmuir-Hinshelwood type and the desorption reaction of the adsorbed product, CO2(s). The critical condition for catalytic ignition, represented by the ignition Damköhler number, has been deduced using high activation energy asymptotics of the desorption kinetics of the most efficiently adsorbed reactant, CO(s). Longitudinal heat conduction along the plate has been considered and its influence on the ignition temperature has been evaluated. This influence is rather weak, indicating that the flat plate boundary layer flow configuration is a robust device to determine the critical conditions for catalytic ignition.

  10. Aerosol black carbon characteristics over Central India: Temporal variation and its dependence on mixed layer height

    NASA Astrophysics Data System (ADS)

    Kompalli, Sobhan Kumar; Babu, S. Suresh; Moorthy, K. Krishna; Manoj, M. R.; Kumar, N. V. P. Kiran; Shaeb, K. Hareef Baba; Joshi, Ashok Kumar

    2014-10-01

    In a first of its kind study over the Indian region, concurrent and extensive measurements of black carbon (BC) concentration and atmospheric boundary layer parameters are used to quantify the role of atmospheric boundary layer in producing temporal changes in BC. During this study, 18 months (2011-12) data of continuous measurements of BC aerosols, made over a semi-urban location, Nagpur, in Central India are used along with concurrent measurements of vertical profiles of atmospheric thermodynamics, made using weekly ascents of GPS aided Radiosonde for a period of 1 year. From the balloon data, mixed layer heights and ventilation coefficients are estimated, and the monthly and seasonal changes in BC mass concentration are examined in the light of the boundary layer changes. Seasonally, the BC mass concentration was highest (~ 4573 ± 1293 ng m- 3) in winter (December-February), and lowest (~ 1588 ± 897 ng m- 3) in monsoon (June-September), while remained moderate (~ 3137 ± 1446 ng m- 3) in pre-monsoon (March-May), and post-monsoon (~ 3634 ± 813 ng m- 3) (October-November) seasons. During the dry seasons, when the rainfall is scanty or insignificantly small, the seasonal variations in BC concentrations have a strong inverse relationship with mixed layer height and ventilation coefficient. However, the lowest BC concentrations do not occur during the season when the mixed layer height (MLH) is highest or the ventilation coefficient is the highest; rather it occurs when the rainfall is strong (during summer monsoon season) and airmass changes to primarily of marine origin.

  11. Nonlinear dynamics of bi-layered graphene sheet, double-walled carbon nanotube and nanotube bundle

    NASA Astrophysics Data System (ADS)

    Gajbhiye, Sachin O.; Singh, S. P.

    2016-05-01

    Due to strong van der Waals (vdW) interactions, the graphene sheets and nanotubes stick to each other and form clusters of these corresponding nanostructures, viz. bi-layered graphene sheet (BLGS), double-walled carbon nanotube (DWCNT) and nanotube bundle (NB) or ropes. This research work is concerned with the study of nonlinear dynamics of BLGS, DWCNT and NB due to nonlinear interlayer vdW forces using multiscale atomistic finite element method. The energy between two adjacent carbon atoms is represented by the multibody interatomic Tersoff-Brenner potential, whereas the nonlinear interlayer vdW forces are represented by Lennard-Jones 6-12 potential function. The equivalent nonlinear material model of carbon-carbon bond is used to model it based on its force-deflection relation. Newmark's algorithm is used to solve the nonlinear matrix equation governing the motion of the BLGS, DWCNT and NB. An impulse and harmonic excitations are used to excite these nanostructures under cantilevered, bridged and clamped boundary conditions. The frequency responses of these nanostructures are computed, and the dominant resonant frequencies are identified. Along with the forced vibration of these structures, the eigenvalue extraction problem of armchair and zigzag NB is also considered. The natural frequencies and corresponding mode shapes are extracted for the different length and boundary conditions of the nanotube bundle.

  12. Wafer-scale synthesis of multi-layer graphene by high-temperature carbon ion implantation

    SciTech Connect

    Kim, Janghyuk; Lee, Geonyeop; Kim, Jihyun

    2015-07-20

    We report on the synthesis of wafer-scale (4 in. in diameter) high-quality multi-layer graphene using high-temperature carbon ion implantation on thin Ni films on a substrate of SiO{sub 2}/Si. Carbon ions were bombarded at 20 keV and a dose of 1 × 10{sup 15 }cm{sup −2} onto the surface of the Ni/SiO{sub 2}/Si substrate at a temperature of 500 °C. This was followed by high-temperature activation annealing (600–900 °C) to form a sp{sup 2}-bonded honeycomb structure. The effects of post-implantation activation annealing conditions were systematically investigated by micro-Raman spectroscopy and transmission electron microscopy. Carbon ion implantation at elevated temperatures allowed a lower activation annealing temperature for fabricating large-area graphene. Our results indicate that carbon-ion implantation provides a facile and direct route for integrating graphene with Si microelectronics.

  13. Carbon nano-onions (multi-layer fullerenes): chemistry and applications

    PubMed Central

    Bartelmess, Juergen

    2014-01-01

    Summary This review focuses on the development of multi-layer fullerenes, known as carbon nano-onions (CNOs). First, it briefly summarizes the most important synthetic pathways for their preparation and their properties and it gives the reader an update over new developments in the recent years. This is followed by a discussion of the published synthetic procedures for CNO functionalization, which are of major importance when elucidating future applications and addressing drawbacks for possible applications, such as poor solubility in common solvents. Finally, it gives an overview over the fields of application, in which CNO materials were successfully implemented. PMID:25383308

  14. Fabrication process of carbon nanotube field effect transistors using atomic layer deposition passivation for biosensors.

    PubMed

    Nakashima, Yasuhiro; Ohno, Yutaka; Kishimoto, Shigeru; Okochi, Mina; Honda, Hiroyuki; Mizutani, Takashi

    2010-06-01

    Fabrication process of the carbon nanotube (CNT) field effect transistors (FETs) for biosensors was studied. Atomic layer deposition (ALD) of HfO2 was applied to the deposition of the passivation/gate insulator film. The CNT-FETs did not show the drain current degradation after ALD passivation even though the passivation by Si3N4 deposited by plasma-enhanced chemical vapor deposition (PECVD) resulted in a significant drain current decrease. This indicates the advantage of the present ALD technique in terms of the damage suppression. The biosensing operation was confirmed using thus fabricated CNT-FETs. PMID:20355371

  15. Biosensors Fabricated through Electrostatic Assembly of Enzymes/Polyelectrolyte Hybrid Layers on Carbon Nanotubes

    SciTech Connect

    Lin, Yuehe; Liu, Guodong; Wang, Jun

    2006-06-01

    Carbon nanotubes (CNTs) have emerged as new class of nanomaterials that is receiving considerable interest because of their unique structure, mechanical, and electronic properties. One promising application of CNTs is to fabricate highly sensitive chemo/biosensors.1-4 For construction of these CNT-based sensors, the CNTs first have to be modified with some molecules specific to the interests. Generally, covalent binding, affinity, and electrostatic interaction have been utilized for the modification of CNTs. Among them, the electrostatic method is attractive due to its simplicity and high efficiency. In present work, we have developed highly sensitively amperometric biosensors for glucose, choline, organophosphate pesticide (OPP) and nerve agents (NAs) based on electrostatically assembling enzymes on the surface of CNTs. All these biosensors were fabricated by immobilization of enzymes on the negatively charged CNTs surface through alternately assembling a cationic poly(diallydimethylammonium chloride) (PDDA) layer and an enzyme layer. Using this layer-by-layer (LBL) technique, a bioactive nanocomposite film was fabricated on the electrode surface. Owing to the electrocatalytic effect of CNTs, an amplified electrochemical signal was achieved, which leads to low detections limits for glucose, choline, and OPP and NAs.

  16. Transparent actuators and robots based on single-layer superaligned carbon nanotube sheet and polymer composites.

    PubMed

    Chen, Luzhuo; Weng, Mingcen; Zhang, Wei; Zhou, Zhiwei; Zhou, Yi; Xia, Dan; Li, Jiaxin; Huang, Zhigao; Liu, Changhong; Fan, Shoushan

    2016-03-28

    Transparent actuators have been attracting emerging interest recently, as they demonstrate potential applications in the fields of invisible robots, tactical displays, variable-focus lenses, and flexible cellular phones. However, previous technologies did not simultaneously realize macroscopic transparent actuators with advantages of large-shape deformation, low-voltage-driven actuation and fast fabrication. Here, we develop a fast approach to fabricate a high-performance transparent actuator based on single-layer superaligned carbon nanotube sheet and polymer composites. Various advantages of single-layer nanotube sheets including high transparency, considerable conductivity, and ultra-thin dimensions together with selected polymer materials completely realize all the above required advantages. Also, this is the first time that a single-layer nanotube sheet has been used to fabricate actuators with high transparency, avoiding the structural damage to the single-layer nanotube sheet. The transparent actuator shows a transmittance of 72% at the wavelength of 550 nm and bends remarkably with a curvature of 0.41 cm(-1) under a DC voltage for 5 s, demonstrating a significant advance in technological performances compared to previous conventional actuators. To illustrate their great potential usage, a transparent wiper and a humanoid robot "hand" were elaborately designed and fabricated, which initiate a new direction in the development of high-performance invisible robotics and other intelligent applications with transparency. PMID:26959343

  17. A carbon-13 NMR spin-lattice relaxation study of the molecular conformation of the nootropic drug 2-oxopyrrolidin-1-ylacetamide

    NASA Astrophysics Data System (ADS)

    Baldo, M.; Grassi, A.; Guidoni, L.; Nicolini, M.; Pappalardo, G. C.; Viti, V.

    The spin-lattice relaxation times ( T1) of carbon-13 resonances of the drug 2-oxopyrrolidin- 1-ylacetamide ( 2OPYAC) were determined in CDCl 3 + DMSO and H 2O solutions to investigate the internal conformational flexibility. The measured T1s for the hydrogen-bearing carbon atoms of the 2-pyrrolidone ring fragment were diagnostic of a rigid conformation with respect to the acetamide linked moiety. The model of anisotropic reorientation of a rigid body was used to analyse the measured relaxation data in terms of a single conformation. Owing to the small number of T1 data available the fitting procedure for each of the possible conformations failed. The structure corresponding to the rigid conformation was therefore considered to be the one that is strongly stabilized by internal hydrogen bonding as predicted on the basis of theoretical MO ab initio quantum chemical calculations.

  18. Photocatalytic activity of porous multiwalled carbon nanotube-TiO2 composite layers for pollutant degradation.

    PubMed

    Zouzelka, Radek; Kusumawati, Yuly; Remzova, Monika; Rathousky, Jiri; Pauporté, Thierry

    2016-11-01

    TiO2 nanoparticles are suitable building blocks nanostructures for the synthesis of porous functional thin films. Here we report the preparation of films using brookite, P25 titania and anatase pristine nanoparticles and of nanocomposite layers combining anatase nanoparticles and multi-walled carbon nanotube (MWCNT) at various concentrations. The structure and phase composition of the layers were characterized by X-ray diffraction and Raman spectroscopy. Their morphology and texture properties were determined by scanning electron microscopy and krypton adsorption experiments, respectively. Additionally to a strong absorption in the UV range, the composites exhibited light absorption in the visible range as well. The photocatalytic performance of the layers was tested in the degradation of aqueous solutions of 4-chlorophenol serving as a model of an eco-persistent pollutant. Besides the determination of the decrease in the concentration of 4-chlorophenol, also the formation of intermediate degradation products, namely hydroquinone and benzoquinone, was followed. The presence of MWCNTs had a beneficial effect on the photocatalytic performance, a marked increase in the photocatalytic degradation rate constant being observed even at very low concentrations of MWCNTs. Compared to a P25 reference layer, the first order rate reaction constant increased by about 100% for the composite films containing MWCNTs at concentrations above 0.6 wt%. The key parameters for the enhancement of the photocatalytic performance are discussed. The presence of carbon nanotubes influences beneficially the degradation of 4-chlorophenol by an attack of the primarily photoproduced hydroxyl radicals onto the 4-chlorophenol molecules. The degradation due to the direct charge transfer is practically not influenced at all. PMID:27262272

  19. Novel growth method of carbon nanotubes using catalyst-support layer developed by alumina grit blasting.

    PubMed

    Watanabe, Hiromichi; Ishii, Juntaro; Ota, Keishin

    2016-08-19

    We propose an efficient method of growing carbon nanotube (CNT) arrays on a variety of metals, alloys, and carbon materials using chemical vapor deposition (CVD) assisted by a simple surface treatment of the materials. The main feature of this method is the application of grit blasting with fine alumina particles to the development of a catalyst-support layer required for the growth of CNTs on various conductive materials, including ultra-hard metals such as tungsten. Auger electron spectroscopy shows that grit blasting can form a non-continuous layer where alumina nanoparticles are embedded as residues in the blasting media left on the treated surfaces. This work reveals that such a non-continuous alumina layer can behave as the catalyst-support layer, which is generally prepared by sputter or a vacuum evaporation coating process that considerably restricts the practical applications of CNTs. We have attempted to grow CNTs on grit-blasted substrates of eighteen conventionally used conductive materials using CVD together with a floating iron catalyst. The proposed method was successful in growing multi-walled CNT arrays on the grit-blasted surfaces of all the examined materials, demonstrating its versatility. Furthermore, we found that the group IV metal oxide films thermally grown on the as-received substrates can support the catalytic activity of iron nanoparticles in the CVD process just as well as the alumina film developed by grit blasting. Spectral emissivity of the CNT arrays in the visible and infrared wavelength ranges has been determined to assess the applicability of the CNT arrays as a black coating media. PMID:27389659

  20. Novel growth method of carbon nanotubes using catalyst-support layer developed by alumina grit blasting

    NASA Astrophysics Data System (ADS)

    Watanabe, Hiromichi; Ishii, Juntaro; Ota, Keishin

    2016-08-01

    We propose an efficient method of growing carbon nanotube (CNT) arrays on a variety of metals, alloys, and carbon materials using chemical vapor deposition (CVD) assisted by a simple surface treatment of the materials. The main feature of this method is the application of grit blasting with fine alumina particles to the development of a catalyst-support layer required for the growth of CNTs on various conductive materials, including ultra-hard metals such as tungsten. Auger electron spectroscopy shows that grit blasting can form a non-continuous layer where alumina nanoparticles are embedded as residues in the blasting media left on the treated surfaces. This work reveals that such a non-continuous alumina layer can behave as the catalyst-support layer, which is generally prepared by sputter or a vacuum evaporation coating process that considerably restricts the practical applications of CNTs. We have attempted to grow CNTs on grit-blasted substrates of eighteen conventionally used conductive materials using CVD together with a floating iron catalyst. The proposed method was successful in growing multi-walled CNT arrays on the grit-blasted surfaces of all the examined materials, demonstrating its versatility. Furthermore, we found that the group IV metal oxide films thermally grown on the as-received substrates can support the catalytic activity of iron nanoparticles in the CVD process just as well as the alumina film developed by grit blasting. Spectral emissivity of the CNT arrays in the visible and infrared wavelength ranges has been determined to assess the applicability of the CNT arrays as a black coating media.

  1. Evolution Of Lattice Structure And Chemical Composition Of The Surface Reconstruction Layer In Li1.2Ni0.2Mn0.6O2 Cathode Material For Lithium Ion Batteries

    SciTech Connect

    Yan, Pengfei; Nie, Anmin; Zheng, Jianming; Zhou, Yungang; Lu, Dongping; Zhang, Xiaofeng; Xu, Rui; Belharouak, Ilias; Zu, Xiaotao; Xiao, Jie; Amine, Khalil; Liu, Jun; Gao, Fei; Shahbazian-Yassar, Reza; Zhang, Jiguang; Wang, Chong M.

    2015-01-14

    Voltage and capacity fading of layer structured lithium and manganese rich (LMR) transition metal oxide is directly related to the structural and composition evolution of the material during the cycling of the battery. However, understanding such evolution at atomic level remains elusive. Based on atomic level structural imaging, elemental mapping of the pristine and cycled samples and density functional theory calculations, it is found that accompanying the hoping of Li ions is the simultaneous migration of Ni ions towards the surface from the bulk lattice, leading to the gradual depletion of Ni in the bulk lattice and thickening of a Ni enriched surface reconstruction layer (SRL). Furthermore, Ni and Mn also exhibit concentration partitions within the thin layer of SRL in the cycled samples where Ni is almost depleted at the very surface of the SRL, indicating the preferential dissolution of Ni ions in the electrolyte. Accompanying the elemental composition evolution, significant structural evolution is also observed and identified as a sequential phase transition of C2/m →I41→Spinel. For the first time, it is found that the surface facet terminated with pure cation is more stable than that with a mixture of cation and anion. These findings firmly established how the elemental species in the lattice of LMR cathode transfer from the bulk lattice to surface layer and further into the electrolyte, clarifying the long standing confusion and debate on the structure and chemistry of the surface layer and their correlation with the voltage fading and capacity decaying of LMR cathode. Therefore, this work provides critical insights for designing of cathode materials with both high capacity and voltage stability during cycling.

  2. GO-induced assembly of gelatin toward stacked layer-like porous carbon for advanced supercapacitors.

    PubMed

    Zhang, Xiaomeng; Jiao, Yanqing; Sun, Li; Wang, Lei; Wu, Aiping; Yan, Haijing; Meng, Meichen; Tian, Chungui; Jiang, Baojiang; Fu, Honggang

    2016-01-28

    Layer-like nanocarbons with high surface area and good conductivity are promising materials for supercapacitors due to their good ability for effective charge-transfer and mass-transfer. In this paper, stacked layer-like porous carbon containing RGO (reduced graphene oxides) (LPCG) was constructed via the GO-induced assembly of gelatin followed by carbonization and activation processes. Under suitable conditions, LPCG-based materials with a thickness of about 100 nm and a high specific surface area (up to 1476 m(2) g(-1)) could be obtained. In the materials, the closed combination of RGO and porous carbon can be observed, which is favourable for the development of the synergistic effects of both components. The presence of GO can not only enhance the conductivity of LPCG-based materials, but also is essential for the formation of a thin carbon sheet with a stacked structure. Otherwise, the plate-like, non-stacked carbon with a thickness of about 500 nm could be formed in the absence of RGO. The porous structure along with the presence of RGO allows rapid charge-transfer and easy access and diffusion of electrolyte ions. As a result, the materials exhibited a high discharge specific capacitance (455 F g(-1) at 0.5 A g(-1), 366 F g(-1) at 1 A g(-1)), good rate capability (221 F g(-1) at density 30 A g(-1)) and good cycling stability. In aqueous electrolytes, the energy density could be up to 9.32 W h kg(-1) at a relatively low power density of 500 W kg(-1) with a good cycling stability (>96% over 5000 cycles). It was found that (1) the rational combination of RGO and porous carbon is essential for enhancing the capacitance performance and improving the cycling stability and (2) the high conductivity is favorable for improving the rate performance of the materials. The LPCG-based materials have extensive potential for practical applications in energy storage and conversion devices. PMID:26755198

  3. Establishment of theoretical model and experimental equipment for researching on carbon contamination of EUV multi-layer mirror

    NASA Astrophysics Data System (ADS)

    Gong, Xuepeng; Lu, Qipeng; Lu, Guoqing

    2015-02-01

    Carbon contamination on extreme ultraviolet (EUV) multi-layer mirror is a seriously restrictive factor for lithography quality, chip output and life of lithography machine. In order to estimate the carbon contamination of EUV multi-layer and study the mechanism of carbon contamination deeply, an effective theoretical model of the carbon deposition on the multi-layer surface and experimental equipment for studying the carbon contamination are established. The theoretical model describes the transport of residual hydrocarbons to the irradiated area and the subsequent dissociation of the hydrocarbon by direct EUV radiation and secondary electron excitation, and indicates that the direct EUV radiation is the primary reason to dissociate the hydrocarbon, and makes the carbon deposited on the surface of multi-layer. Various carbon deposition states are simulated by the theoretical model, and some effective simulated results are obtained. Optical design scheme and structure design scheme of the experimental equipment are presented. The optical system includes two spherical multi-layer mirrors and a plane mirror multi-layer mirror. Ray trace and EUV intensity on sample are calculated, the light spot on sample is about Φ10mm and the EUV intensity is about 0.126mW/mm2. Structure of the experimental equipment includes adjusting mechanism of two spherical mirrors, rotary mechanism of plane mirror, alignment mechanism of EUV source, adjusting mechanism of sample, and so on. After testing, linear resolution and angle resolution of two spherical mirrors adjusting mechanism are 1μm and 5μrad respectively; linear displacement and linear resolution of sample adjusting mechanism are 50mm and 1μm respectively. The structure design scheme meets the requirement of the carbon contamination experiment.

  4. From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites.

    PubMed

    Zaman, Izzuddin; Kuan, Hsu-Chiang; Dai, Jingfei; Kawashima, Nobuyuki; Michelmore, Andrew; Sovi, Alex; Dong, Songyi; Luong, Lee; Ma, Jun

    2012-08-01

    In spite of extensive studies conducted on carbon nanotubes and silicate layers for their polymer-based nanocomposites, the rise of graphene now provides a more promising candidate due to its exceptionally high mechanical performance and electrical and thermal conductivities. The present study developed a facile approach to fabricate epoxy-graphene nanocomposites by thermally expanding a commercial product followed by ultrasonication and solution-compounding with epoxy, and investigated their morphologies, mechanical properties, electrical conductivity and thermal mechanical behaviour. Graphene platelets (GnPs) of 3.57 ± 0.50 nm in thickness were created after the expanded product was dispersed in tetrahydrofuran using 60 min ultrasonication. Since epoxy resins cured by various hardeners are widely used in industries, we chose two common hardeners: polyoxypropylene (J230) and 4,4'-diaminodiphenylsulfone (DDS). DDS-cured nanocomposites showed a better dispersion and exfoliation of GnPs, a higher improvement (573%) in fracture energy release rate and a lower percolation threshold (0.612 vol%) for electrical conductivity, because DDS contains benzene groups which create π-π interactions with GnPs promoting a higher degree of dispersion and exfoliation of GnPs during curing. This research pointed out a potential trend where GnPs would replace carbon nanotubes and silicate layers for many applications of polymer nanocomposites. PMID:22706725

  5. Distribution and landscape controls of organic layer thickness and carbon within the Alaskan Yukon River Basin

    USGS Publications Warehouse

    Pastick, Neal J.; Rigge, Matthew B.; Wylie, Bruce K.; Jorgenson, M. Torre; Rose, Joshua R.; Johnson, Kristofer D.; Ji, Lei

    2014-01-01

    Understanding of the organic layer thickness (OLT) and organic layer carbon (OLC) stocks in subarctic ecosystems is critical due to their importance in the global carbon cycle. Moreover, post-fire OLT provides an indicator of long-term successional trajectories and permafrost susceptibility to thaw. To these ends, we 1) mapped OLT and associated uncertainty at 30 m resolution in the Yukon River Basin (YRB), Alaska, employing decision tree models linking remotely sensed imagery with field and ancillary data, 2) converted OLT to OLC using a non-linear regression, 3) evaluate landscape controls on OLT and OLC, and 4) quantified the post-fire recovery of OLT and OLC. Areas of shallow (2 = 0.68; OLC: R2 = 0.66), where an average of 16 cm OLT and 5.3 kg/m2 OLC were consumed by fires. Strong predictors of OLT included climate, topography, near-surface permafrost distributions, soil wetness, and spectral information. Our modeling approach enabled us to produce regional maps of OLT and OLC, which will be useful in understanding risks and feedbacks associated with fires and climate feedbacks.

  6. Layer-by-Layer Polyelectrolyte Assisted Growth of 2D Ultrathin MoS2 Nanosheets on Various 1D Carbons for Superior Li-Storage.

    PubMed

    Qu, Qunting; Qian, Feng; Yang, Siming; Gao, Tian; Liu, Weijie; Shao, Jie; Zheng, Honghe

    2016-01-20

    Transitional metal sulfide/carbon hybrids with well-defined structures could not only maximize the functional properties of each constituent but engender some unique synergistic effects, holding great promise for applications in Li-ion batteries and supercapacitors and for catalysis. Herein, a facile and versatile approach is developed to controllably grow 2D ultrathin MoS2 nanosheets with a large quantity of exposed edges onto various 1D carbons, including carbon nanotubes (CNTs), electrospun carbon nanofibers, and Te-nanowire-templated carbon nanofibers. The typical approach involves the employment of layer-by-layer (LBL) self-assembled polyelectrolyte, which controls spatially the uniform growth and orientation of ultrathin MoS2 nanosheets on these 1D carbons irrespective of their surface properties. Such unique structures of the as-prepared CNTs@MoS2 hybrid are significantly favorable for the fast diffusions of both Li-ions and electrons, satisfying the kinetic requirements of high-power lithium ion batteries. As a result, CNTs@MoS2 hybrids exhibit excellent electrochemical performances for lithium storage, including a high reversible capacity (1027 mAh g(-1)), high-rate capability (610 mAh g(-1) at 5 C), and excellent cycling stability (negligible capacity loss after 200 continuous cycles). PMID:26709711

  7. Single- and Two-Layer Coatings of Metal Blends onto Carbon Steel: Mechanical, Wear, and Friction Characterizations

    NASA Astrophysics Data System (ADS)

    Yilbas, Bekir Sami; Kumar, Aditya; Bhushan, Bharat

    2014-01-01

    Single- and two-layer coatings were deposited onto carbon steel using a high-velocity oxy-fuel deposition gun. The two-layer coating consisted of a top layer of tungsten carbide cobalt/nickel alloy blend that provides wear resistance and a bottom layer of iron/molybdenum blend that provides corrosion resistance. The morphological changes in the single- and two-layer coatings were examined using scanning electron microscopy. The residual stresses formed on the surface of various coatings were determined from x-ray diffraction data. Nanomechanical properties were measured using the nanoindentation technique. Microhardness and fracture toughness were measured incorporating the microindentation tests. Macrowear and macrofriction characteristics were measured using the pin-on-disk testing apparatus. The goal of this study was to ensure that the mechanical properties, friction, and wear resistance of the two-layer coating are similar to that of the single-layer coating.

  8. Ammonia, hydrogen sulfide, carbon dioxide and particulate matter emissions from California high-rise layer houses

    NASA Astrophysics Data System (ADS)

    Lin, X.-J.; Cortus, E. L.; Zhang, R.; Jiang, S.; Heber, A. J.

    2012-01-01

    Ammonia and hydrogen sulfide are hazardous substances that are regulated by the U.S. Environmental Protection Agency through community right-to-know legislation (EPCRA, EPA, 2011). The emissions of ammonia and hydrogen sulfide from large commercial layer facilities are of concern to legislators and nearby neighbors. Particulate matter (PM 10 and PM 2.5) released from layer houses are two of seven criteria pollutants for which EPA has set National Ambient Air Quality Standards as required by the Clean Air Act. Therefore, it is important to quantify the baseline emissions of these pollutants. The emissions of ammonia, hydrogen sulfide, carbon dioxide and PM from two California high-rise layer houses were monitored for two years from October 2007 to October 2009. Each house had 32,500 caged laying hens. The monitoring site was setup in compliance with a U.S. EPA-approved quality assurance project plan. The results showed the average daily mean emission rates of ammonia, hydrogen sulfide and carbon dioxide were 0.95 ± 0.67 (standard deviation) g d -1 bird -1, 1.27 ± 0.78 mg d -1 bird -1 and 91.4 ± 16.5 g d -1 bird -1, respectively. The average daily mean emission rates of PM 2.5, PM 10 and total suspended particulate (TSP) were 5.9 ± 12.6, 33.4 ± 27.4, and 78.0 ± 42.7 mg d -1 bird -1, respectively. It was observed that ammonia emission rates in summer were lower than in winter because the high airflow stabilized the manure by drying it. The reductions due to lower moisture content were greater than the increases due to higher temperature. However, PM 10 emission rates in summer were higher than in winter because the drier conditions coupled with higher internal air velocities increased PM 10 release from feathers, feed and manure.

  9. Electrochemical characteristics of discrete, uniform, and monodispersed hollow mesoporous carbon spheres in double-layered supercapacitors.

    PubMed

    Chen, Xuecheng; Kierzek, Krzysztof; Wenelska, Karolina; Cendrowski, Krzystof; Gong, Jiang; Wen, Xin; Tang, Tao; Chu, Paul K; Mijowska, Ewa

    2013-11-01

    Core-shell-structured mesoporous silica spheres were prepared by using n-octadecyltrimethoxysilane (C18TMS) as the surfactant. Hollow mesoporous carbon spheres with controllable diameters were fabricated from core-shell-structured mesoporous silica sphere templates by chemical vapor deposition (CVD). By controlling the thickness of the silica shell, hollow carbon spheres (HCSs) with different diameters can be obtained. The use of ethylene as the carbon precursor in the CVD process produces the materials in a single step without the need to remove the surfactant. The mechanism of formation and the role played by the surfactant, C18TMS, are investigated. The materials have large potential in double-layer supercapacitors, and their electrochemical properties were determined. HCSs with thicker mesoporous shells possess a larger surface area, which in turn increases their electrochemical capacitance. The samples prepared at a lower temperature also exhibit increased capacitance as a result of the Brunauer-Emmett-Teller (BET) area and larger pore size. PMID:23929713

  10. GO-induced assembly of gelatin toward stacked layer-like porous carbon for advanced supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaomeng; Jiao, Yanqing; Sun, Li; Wang, Lei; Wu, Aiping; Yan, Haijing; Meng, Meichen; Tian, Chungui; Jiang, Baojiang; Fu, Honggang

    2016-01-01

    Layer-like nanocarbons with high surface area and good conductivity are promising materials for supercapacitors due to their good ability for effective charge-transfer and mass-transfer. In this paper, stacked layer-like porous carbon containing RGO (reduced graphene oxides) (LPCG) was constructed via the GO-induced assembly of gelatin followed by carbonization and activation processes. Under suitable conditions, LPCG-based materials with a thickness of about 100 nm and a high specific surface area (up to 1476 m2 g-1) could be obtained. In the materials, the closed combination of RGO and porous carbon can be observed, which is favourable for the development of the synergistic effects of both components. The presence of GO can not only enhance the conductivity of LPCG-based materials, but also is essential for the formation of a thin carbon sheet with a stacked structure. Otherwise, the plate-like, non-stacked carbon with a thickness of about 500 nm could be formed in the absence of RGO. The porous structure along with the presence of RGO allows rapid charge-transfer and easy access and diffusion of electrolyte ions. As a result, the materials exhibited a high discharge specific capacitance (455 F g-1 at 0.5 A g-1, 366 F g-1 at 1 A g-1), good rate capability (221 F g-1 at density 30 A g-1) and good cycling stability. In aqueous electrolytes, the energy density could be up to 9.32 W h kg-1 at a relatively low power density of 500 W kg-1 with a good cycling stability (>96% over 5000 cycles). It was found that (1) the rational combination of RGO and porous carbon is essential for enhancing the capacitance performance and improving the cycling stability and (2) the high conductivity is favorable for improving the rate performance of the materials. The LPCG-based materials have extensive potential for practical applications in energy storage and conversion devices.Layer-like nanocarbons with high surface area and good conductivity are promising materials for

  11. Cryogenic THD and DT layer implosions with high density carbon ablators in near-vacuum hohlraums

    DOE PAGESBeta

    Meezan, N. B.; Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.; MacKinnon, A. J.; Döppner, T.; Ho, D. D.; Jones, O. S.; Khan, S. F.; Ma, T.; et al

    2015-06-02

    High Density Carbon (HDC or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a DT layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a THD layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightlymore » oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 x 10¹⁵ neutrons, 40% of the 1D simulated yield.« less

  12. Cryogenic THD and DT layer implosions with high density carbon ablators in near-vacuum hohlraums

    SciTech Connect

    Meezan, N. B.; Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.; MacKinnon, A. J.; Döppner, T.; Ho, D. D.; Jones, O. S.; Khan, S. F.; Ma, T.; Milovich, J. L.; Pak, A. E.; Ross, J. S.; Thomas, C. A.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Field, J. E.; Haan, S. W.; Izumi, N.; Kyrala, G. A.; Moody, J. D.; Patel, P. K.; Ralph, J. E.; Rygg, J. R.; Sepke, S. M.; Spears, B. K.; Tommasini, R.; Town, R. P. J.; Biener, J.; Bionta, R. M.; Bond, E. J.; Caggiano, J. A.; Eckart, M. J.; Gatu Johnson, M.; Grim, G. P.; Hamza, A. V.; Hartouni, E. P.; Hatarik, R.; Hoover, D. E.; Kilkenny, J. D.; Kozioziemski, B. J.; Kroll, J. J.; McNaney, J. M.; Nikroo, A.; Sayre, D. B.; Stadermann, M.; Wild, C.; Yoxall, B. E.; Landen, O. L.; Hsing, W. W.; Edwards, M. J.

    2015-06-02

    High Density Carbon (HDC or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a DT layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a THD layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightly oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 x 10¹⁵ neutrons, 40% of the 1D simulated yield.

  13. Effective diffusivity in partially-saturated carbon-fiber gas diffusion layers: Effect of local saturation and application to macroscopic continuum models

    NASA Astrophysics Data System (ADS)

    García-Salaberri, Pablo A.; Gostick, Jeff T.; Hwang, Gisuk; Weber, Adam Z.; Vera, Marcos

    2015-11-01

    Macroscopic continuum models are an essential tool to understand the complex transport phenomena that take place in gas diffusion layers (GDLs) used in polymer electrolyte fuel cells (PEFCs). Previous work has shown that macroscopic models require effective properties obtained under uniform saturation conditions to get a consistent physical formulation. This issue, mostly unappreciated in the open literature, is addressed in detail in this work. To this end, lattice Boltzmann simulations were performed on tomographic images of dry and water-invaded carbon-paper GDL subsamples with nearly uniform porosity and saturation distributions. The computed effective diffusivity shows an anisotropic dependence on local porosity similar to that reported for morphologically analogous GDLs. In contrast, the dependence on local saturation is rather isotropic, following a nearly quadratic power law. The capability of the local correlations to recover the layer-scale properties obtained from inhomogeneous GDLs is checked by global averaging. Good agreement is found between the upscaled results and the diffusivity data of the GDL from which the present subsamples were taken, as well as other global data presented in the literature. A higher blockage effect of local saturation is, however, expected for the under-the-rib region in operating PEFCs.

  14. Transparent actuators and robots based on single-layer superaligned carbon nanotube sheet and polymer composites

    NASA Astrophysics Data System (ADS)

    Chen, Luzhuo; Weng, Mingcen; Zhang, Wei; Zhou, Zhiwei; Zhou, Yi; Xia, Dan; Li, Jiaxin; Huang, Zhigao; Liu, Changhong; Fan, Shoushan

    2016-03-01

    Transparent actuators have been attracting emerging interest recently, as they demonstrate potential applications in the fields of invisible robots, tactical displays, variable-focus lenses, and flexible cellular phones. However, previous technologies did not simultaneously realize macroscopic transparent actuators with advantages of large-shape deformation, low-voltage-driven actuation and fast fabrication. Here, we develop a fast approach to fabricate a high-performance transparent actuator based on single-layer superaligned carbon nanotube sheet and polymer composites. Various advantages of single-layer nanotube sheets including high transparency, considerable conductivity, and ultra-thin dimensions together with selected polymer materials completely realize all the above required advantages. Also, this is the first time that a single-layer nanotube sheet has been used to fabricate actuators with high transparency, avoiding the structural damage to the single-layer nanotube sheet. The transparent actuator shows a transmittance of 72% at the wavelength of 550 nm and bends remarkably with a curvature of 0.41 cm-1 under a DC voltage for 5 s, demonstrating a significant advance in technological performances compared to previous conventional actuators. To illustrate their great potential usage, a transparent wiper and a humanoid robot ``hand'' were elaborately designed and fabricated, which initiate a new direction in the development of high-performance invisible robotics and other intelligent applications with transparency.Transparent actuators have been attracting emerging interest recently, as they demonstrate potential applications in the fields of invisible robots, tactical displays, variable-focus lenses, and flexible cellular phones. However, previous technologies did not simultaneously realize macroscopic transparent actuators with advantages of large-shape deformation, low-voltage-driven actuation and fast fabrication. Here, we develop a fast approach to

  15. Revisiting the Rectifier: New Observations of Covariance Between Terrestrial Carbon Cycling and Boundary Layer Depth (Invited)

    NASA Astrophysics Data System (ADS)

    Denning, S.; McGrath-Spangler, E. L.

    2013-12-01

    Covariance between land-surface carbon fluxes and vertical mixing in the atmosphere is among the strongest determinants of the spatial distribution of atmospheric CO2 in the lower troposphere. Differences in the magnitude of this "CO2 rectifier effect" among different tracer transport models has been shown to explain most of the variability in estimates of terrestrial carbon sinks over the northern (vs tropical) continents. We present a new analysis of the magnitude of the CO2 rectifier using a climatology of PBL depth estimated using vertical profiles of LIDAR backscatter from the CALIPSO satellite. Millions of separate soundings of PBL depth were matched with hourly estimates of photosynthesis and ecosystem respiration from the Simple Biosphere Model (SiB3) at the same locations and times over more than 6 years. Strong covariance between net carbon flux and atmospheric mixing were observed over the northern continents, especially over Boreal Asia. Negative covariance is observed over monsoon regions, which is especially strong over India. Covariance of net carbon flux with the reciprocal of PBL depth has the units of CO2 tendency (ppm per month), and can be expressed as rectifier forcing. Satellite sampling of this quantity reveals spatially-coherent patterns as strong as +/- 10 ppm per month over Siberia and India. We computed rectifier forcing with NASA's Modern Era Reanalysis (MERRA) for the same locations and times sampled by CALIPSO from 2006-2012. Comparison of the MERRA and CALIPSO data reveal that the spatial patterns and magnitudes are similar over the northern continents, but much weaker in MERRA than CALIPSO over the tropics. Using MERRA to compute the rectifier effect for SiB fluxes in GEOS-Chem allows us to establish a quantitative relationship between rectifier forcing and response that is evaluated against the CALIPSO boundary layer data. We propose a framework for model intercomparison and evaluation that can leverage the rich new data set.

  16. Carbon uptake, microbial community structure, and mineralization of layered mats from Imperial Geyser, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Woycheese, K. M.; Grabenstatter, J.; Haddad, A.; Ricci, J. N.; Johnson, H.; Berelson, W.; Spear, J. R.; Caporaso, J. G.; International Geobiology Course 2011

    2011-12-01

    Layered microbial mats provide an analog for early microbial communities, and remain one of the few microbiological structures consistently preserved in the geologic record. Despite this, growth rates, metabolic capabilities, and methods of mineralization in modern communities are poorly understood. Imperial Geyser, an alkaline siliceous hot spring in Yellowstone National Park, provides a useful setting to study these parameters. Mat and water samples (T = 64-40 °C) were collected for 13C analysis and 13C-spiked bicarbonate and acetate incubation experiments. Carbon isotopes were measured for the stream water, pore water and biomass. We experimentally determined rates of bicarbonate uptake, acetate uptake and mineral content. Bicarbonate uptake rates ranged from 0 - 0.4% per day, while acetate uptake rates ranged from 0 - 2.0% per day. These results indicate that the mat biomass is capable of turnover in about 300 days resulting in potential growth rates of 1-2 cm/year. Organic carbon content (% dry weight) ranged from 2 to 16%, and decreased with depth in the mat. The mineral content of these mats is predominantly amorphous SiO2. An inverse correlation between mineral percent and bicarbonate uptake rate was observed, suggesting that there may be a link between metabolism and the prevention of mineralization. Comparing the 13C and carbon uptake rates with 16S rDNA pyrosequencing data we were able to hypothesize the carbon fixation pathways and heterotrophic interactions occurring in this environment. In general, two patterns of 13C values were observed. The first pattern was characterized by increased heterotrophy with depth. In the other, preliminary evidence supporting a photoheterotrophic lifestyle for Roseiflexus spp. was found.

  17. Imaging Fourier transform spectroscopy of the boundary layer plume from laser irradiated polymers and carbon materials

    NASA Astrophysics Data System (ADS)

    Acosta, Roberto I.

    The high-energy laser (HEL) lethality community needs for enhanced laser weapons systems requires a better understanding of a wide variety of emerging threats. In order to reduce the dimensionality of laser-materials interaction it is necessary to develop novel predictive capabilities of these events. The objective is to better understand the fundamentals of laser lethality testing by developing empirical models from hyperspectral imagery, enabling a robust library of experiments for vulnerability assessments. Emissive plumes from laser irradiated fiberglass reinforced polymers (FRP), poly(methyl methacrylate) (PMMA) and porous graphite targets were investigated primarily using a mid-wave infrared (MWIR) imaging Fourier transform spectrometer (FTS). Polymer and graphite targets were irradiated with a continuous wave (cw) fiber lasers. Data was acquired with a spectral resolution of 2 cm-1 and spatial resolution as high as 0.52 mm2 per pixel. Strong emission from H2O, CO, CO2 and hydrocarbons were observed in the MWIR between 1900-4000 cm-1. A single-layer radiative transfer model was developed to estimate spatial maps of temperature and column densities of CO and CO2 from the hyperspectral imagery of the boundary layer plume. The spectral model was used to compute the absorption cross sections of CO and CO2, using spectral line parameters from the high temperature extension of the HITRAN. Also, spatial maps of gas-phase temperature and methyl methacrylate (MMA) concentration were developed from laser irradiated carbon black-pigmented PMMA at irradiances of 4-22 W/cm2. Global kinetics interplay between heterogeneous and homogeneous combustion kinetics are shown from experimental observations at high spatial resolutions. Overall the boundary layer profile at steady-state is consistent with CO being mainly produced at the surface by heterogeneous reactions followed by a rapid homogeneous combustion in the boundary layer towards buoyancy.

  18. Four-Dimensional Lung Treatment Planning in Layer-Stacking Carbon Ion Beam Treatment: Comparison of Layer-Stacking and Conventional Ungated/Gated Irradiation

    SciTech Connect

    Mori, Shinichiro; Kanematsu, Nobuyuki; Asakura, Hiroshi; Sharp, Gregory C.; Kumagai, Motoki; Dobashi, Suguru; Nakajima, Mio; Yamamoto, Naoyoshi; Kandatsu, Susumu; Baba, Masayuki

    2011-06-01

    Purpose: We compared four-dimensional (4D) layer-stacking and conventional carbon ion beam distribution in the treatment of lung cancer between ungated and gated respiratory strategies using 4DCT data sets. Methods and Materials: Twenty lung patients underwent 4DCT imaging under free-breathing conditions. Using planning target volumes (PTVs) at respective respiratory phases, two types of compensating bolus were designed, a full single respiratory cycle for the ungated strategy and an approximately 30% duty cycle for the exhalation-gated strategy. Beams were delivered to the PTVs for the ungated and gated strategies, PTV(ungated) and PTV(gated), respectively, which were calculated by combining the respective PTV(Tn)s by layer-stacking and conventional irradiation. Carbon ion beam dose distribution was calculated as a function of respiratory phase by applying a compensating bolus to 4DCT. Accumulated dose distributions were calculated by applying deformable registration. Results: With the ungated strategy, accumulated dose distributions were satisfactorily provided to the PTV, with D95 values for layer-stacking and conventional irradiation of 94.0% and 96.2%, respectively. V20 for the lung and Dmax for the spinal cord were lower with layer-stacking than with conventional irradiation, whereas Dmax for the skin (14.1 GyE) was significantly lower (21.9 GyE). In addition, dose conformation to the GTV/PTV with layer-stacking irradiation was better with the gated than with the ungated strategy. Conclusions: Gated layer-stacking irradiation allows the delivery of a carbon ion beam to a moving target without significant degradation of dose conformity or the development of hot spots.

  19. Lattice Boltzmann methods applied to large-scale three-dimensional virtual cores constructed from digital optical borehole images of the karst carbonate Biscayne aquifer in southeastern Florida

    USGS Publications Warehouse

    Michael Sukop; Cunningham, Kevin J.

    2014-01-01

    Digital optical borehole images at approximately 2 mm vertical resolution and borehole caliper data were used to create three-dimensional renderings of the distribution of (1) matrix porosity and (2) vuggy megaporosity for the karst carbonate Biscayne aquifer in southeastern Florida. The renderings based on the borehole data were used as input into Lattice Boltzmann methods to obtain intrinsic permeability estimates for this extremely transmissive aquifer, where traditional aquifer test methods may fail due to very small drawdowns and non-Darcian flow that can reduce apparent hydraulic conductivity. Variogram analysis of the borehole data suggests a nearly isotropic rock structure at lag lengths up to the nominal borehole diameter. A strong correlation between the diameter of the borehole and the presence of vuggy megaporosity in the data set led to a bias in the variogram where the computed horizontal spatial autocorrelation is strong at lag distances greater than the nominal borehole size. Lattice Boltzmann simulation of flow across a 0.4 × 0.4 × 17 m (2.72 m3 volume) parallel-walled column of rendered matrix and vuggy megaporosity indicates a high hydraulic conductivity of 53 m s−1. This value is similar to previous Lattice Boltzmann calculations of hydraulic conductivity in smaller limestone samples of the Biscayne aquifer. The development of simulation methods that reproduce dual-porosity systems with higher resolution and fidelity and that consider flow through horizontally longer renderings could provide improved estimates of the hydraulic conductivity and help to address questions about the importance of scale.

  20. Lattice Boltzmann methods applied to large-scale three-dimensional virtual cores constructed from digital optical borehole images of the karst carbonate Biscayne aquifer in southeastern Florida

    NASA Astrophysics Data System (ADS)

    Sukop, Michael C.; Cunningham, Kevin J.

    2014-11-01

    Digital optical borehole images at approximately 2 mm vertical resolution and borehole caliper data were used to create three-dimensional renderings of the distribution of (1) matrix porosity and (2) vuggy megaporosity for the karst carbonate Biscayne aquifer in southeastern Florida. The renderings based on the borehole data were used as input into Lattice Boltzmann methods to obtain intrinsic permeability estimates for this extremely transmissive aquifer, where traditional aquifer test methods may fail due to very small drawdowns and non-Darcian flow that can reduce apparent hydraulic conductivity. Variogram analysis of the borehole data suggests a nearly isotropic rock structure at lag lengths up to the nominal borehole diameter. A strong correlation between the diameter of the borehole and the presence of vuggy megaporosity in the data set led to a bias in the variogram where the computed horizontal spatial autocorrelation is strong at lag distances greater than the nominal borehole size. Lattice Boltzmann simulation of flow across a 0.4 × 0.4 × 17 m (2.72 m3 volume) parallel-walled column of rendered matrix and vuggy megaporosity indicates a high hydraulic conductivity of 53 m s-1. This value is similar to previous Lattice Boltzmann calculations of hydraulic conductivity in smaller limestone samples of the Biscayne aquifer. The development of simulation methods that reproduce dual-porosity systems with higher resolution and fidelity and that consider flow through horizontally longer renderings could provide improved estimates of the hydraulic conductivity and help to address questions about the importance of scale.

  1. Lattice QCD

    SciTech Connect

    Bornyakov, V.G.

    2005-06-01

    Possibilities that are provided by a lattice regularization of QCD for studying nonperturbative properties of QCD are discussed. A review of some recent results obtained from computer calculations in lattice QCD is given. In particular, the results for the QCD vacuum structure, the hadron mass spectrum, and the strong coupling constant are considered.

  2. Modified Separator Using Thin Carbon Layer Obtained from Its Cathode for Advanced Lithium Sulfur Batteries.

    PubMed

    Liu, Naiqiang; Huang, Bicheng; Wang, Weikun; Shao, Hongyuan; Li, Chengming; Zhang, Hao; Wang, Anbang; Yuan, Keguo; Huang, Yaqin

    2016-06-29

    The realization of a practical lithium sulfur battery system, despite its high theoretical specific capacity, is severely limited by fast capacity decay, which is mainly attributed to polysulfide dissolution and shuttle effect. To address this issue, we designed a thin cathode inactive material interlayer modified separator to block polysulfides. There are two advantages for this strategy. First, the coating material totally comes from the cathode, thus avoids the additional weights involved. Second, the cathode inactive material modified separator improve the reversible capacity and cycle performance by combining gelatin to chemically bond polysulfides and the carbon layer to physically block polysulfides. The research results confirm that with the cathode inactive material modified separator, the batteries retain a reversible capacity of 644 mAh g(-1) after 150 cycles, showing a low capacity decay of about 0.11% per circle at the rate of 0.5C. PMID:27267483

  3. Tantalum as a buffer layer in diamond-like carbon coated artificial hip joints.

    PubMed

    Kiuru, Mirjami; Alakoski, Esa; Tiainen, Veli-Matti; Lappalainen, Reijo; Anttila, Asko

    2003-07-15

    The acid resistance of tantalum coated and uncoated human hip joint prostheses was studied with commercial CrCoMo acetabular cups. The samples were exposed to 10% HCl solution and the quantities of dissolved Cr, Co, and Mo were measured with proton-induced X-ray emission (PIXE). The absolute quantities were obtained with the use of Cr and Se solution standards. Tantalum coatings (thicknesses 4-6 microm) were prepared in vacuum with magnetron sputtering. Tantalum coating decreased the corrosion rate by a factor of 10(6). As a spinoff from recent wear tests on artificial hip joints it was shown that tantalum has excellent mechanical properties as an intermediate layer of diamond-like carbon (DLC) coatings. When tantalum was tested together with DLC on three metal-on-metal hip joint pairs in a hip simulator, no observable defects occurred during 15 million walking cycles with a periodic 50-300-kg load (Paul curve). PMID:12808604

  4. From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Zaman, Izzuddin; Kuan, Hsu-Chiang; Dai, Jingfei; Kawashima, Nobuyuki; Michelmore, Andrew; Sovi, Alex; Dong, Songyi; Luong, Lee; Ma, Jun

    2012-07-01

    In spite of extensive studies conducted on carbon nanotubes and silicate layers for their polymer-based nanocomposites, the rise of graphene now provides a more promising candidate due to its exceptionally high mechanical performance and electrical and thermal conductivities. The present study developed a facile approach to fabricate epoxy-graphene nanocomposites by thermally expanding a commercial product followed by ultrasonication and solution-compounding with epoxy, and investigated their morphologies, mechanical properties, electrical conductivity and thermal mechanical behaviour. Graphene platelets (GnPs) of 3.57 +/- 0.50 nm in thickness were created after the expanded product was dispersed in tetrahydrofuran using 60 min ultrasonication. Since epoxy resins cured by various hardeners are widely used in industries, we chose two common hardeners: polyoxypropylene (J230) and 4,4'-diaminodiphenylsulfone (DDS). DDS-cured nanocomposites showed a better dispersion and exfoliation of GnPs, a higher improvement (573%) in fracture energy release rate and a lower percolation threshold (0.612 vol%) for electrical conductivity, because DDS contains benzene groups which create π-π interactions with GnPs promoting a higher degree of dispersion and exfoliation of GnPs during curing. This research pointed out a potential trend where GnPs would replace carbon nanotubes and silicate layers for many applications of polymer nanocomposites.In spite of extensive studies conducted on carbon nanotubes and silicate layers for their polymer-based nanocomposites, the rise of graphene now provides a more promising candidate due to its exceptionally high mechanical performance and electrical and thermal conductivities. The present study developed a facile approach to fabricate epoxy-graphene nanocomposites by thermally expanding a commercial product followed by ultrasonication and solution-compounding with epoxy, and investigated their morphologies, mechanical properties, electrical

  5. Field emission properties of hybrid few-layer graphene-carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lei Qi, Jun; Zhang, Fu; Xia Zhang, Li; Cao, Jian; Cai Feng, Ji

    2014-04-01

    Few-layer graphene (FLG) and carbon nanotube (CNT) hybrid is prepared by in situ growth of FLG on the walls of CNTs, using PECVD, without catalyst. The amount and size of FLG can be controlled by total gas pressure and growth time. The field emission (FE) characteristics of CNTs coated with different-density FLG were studied, and an FE phenomenon schematic and electrostatic field equipotential model of these FLG-CNTs were proposed. These results show that the geometrical morphology of FLG plays an important role in the FE property of hybrid FLG-CNTs. The medium-density FLG on the CNTs exhibits excellent FE properties, with a low turn-on electric field and threshold field, as well as large field enhancement factor, which are much better than those of the as-grown CNTs. The excellent FE properties of the FLG-CNT hybrids make them promising candidates for high-performance FE emitters.

  6. Carbon-Nanotube-Based Electrochemical Double-Layer Capacitor Technologies for Spaceflight Applications

    NASA Technical Reports Server (NTRS)

    Arepalli, S.; Fireman, H.; Huffman, C.; Maloney, P.; Nikolaev, P.; Yowell, L.; Kim, K.; Kohl, P. A.; Higgins, C. D.; Turano, S. P.

    2005-01-01

    Electrochemical double-layer capacitors, or supercapacitors, have tremendous potential as high-power energy sources for use in low-weight hybrid systems for space exploration. Electrodes based on single-wall carbon nanotubes (SWCNTs) offer exceptional power and energy performance due to the high surface area, high conductivity, and the ability to functionalize the SWCNTs to optimize capacitor properties. This paper will report on the preparation of electrochemical capacitors incorporating SWCNT electrodes and their performance compared with existing commercial technology. Preliminary results indicate that substantial increases in power and energy density are possible. The effects of nanotube growth and processing methods on electrochemical capacitor performance is also presented. The compatibility of different SWCNTs and electrolytes was studied by varying the type of electrolyte ions that accumulate on the high-surface-area electrodes.

  7. Effect of π-π+ stacking on the layering of ionic liquids confined to an amorphous carbon surface.

    PubMed

    Gong, Xiao; Kozbial, Andrew; Rose, Franck; Li, Lei

    2015-04-01

    In the current paper, AFM studies were conducted on nanometer-thick ionic liquids (ILs) confined to an amorphous carbon (AC) surface, which is critical to the design of the next-generation media lubricant for hard disk drives (HDDs). The results indicated that the existence of the delocalized ring in the cation is critical to layering of ILs. Extended layering was observed only when there is imidazolium ring in the cation. When the imidazolium ring is replaced by an aliphatic moiety, "drop-on-layer" (dewetting) structure was observed. On the basis of the experimental results, we proposed that π-π+ stacking between sp(2) carbon in the AC and the imidazolium cation in the ILs is the key to the extended layering of ILs at the ILs/AC interface. PMID:25808335

  8. Multifunctional Nitrogen-Doped Loofah Sponge Carbon Blocking Layer for High-Performance Rechargeable Lithium Batteries.

    PubMed

    Gu, Xingxing; Tong, Chuan-Jia; Rehman, Sarish; Liu, Li-Min; Hou, Yanglong; Zhang, Shanqing

    2016-06-29

    Low-cost, long-life, and high-performance lithium batteries not only provide an economically viable power source to electric vehicles and smart electricity grids but also address the issues of the energy shortage and environmental sustainability. Herein, low-cost, hierarchically porous, and nitrogen-doped loofah sponge carbon (N-LSC) derived from the loofah sponge has been synthesized via a simple calcining process and then applied as a multifunctional blocking layer for Li-S, Li-Se, and Li-I2 batteries. As a result of the ultrahigh specific area (2551.06 m(2) g(-1)), high porosity (1.75 cm(3) g(-1)), high conductivity (1170 S m(-1)), and heteroatoms doping of N-LSC, the resultant Li-S, Li-Se, and Li-I2 batteries with the N-LSC-900 membrane deliver outstanding electrochemical performance stability in all cases, i.e., high reversible capacities of 623.6 mA h g(-1) at 1675 mA g(-1) after 500 cycles, 350 mA h g(-1) at 1356 mA g(-1) after 1000 cycles, and 150 mA h g(-1) at 10550 mA g(-1) after 5000 cycles, respectively. The successful application to Li-S, Li-Se, and Li-I2 batteries suggests that loofa sponge carbon could play a vital role in modern rechargeable battery industries as a universal, cost-effective, environmentally friendly, and high-performance blocking layer. PMID:27250732

  9. Mesoscopic modeling of cancer photothermal therapy using single-walled carbon nanotubes and near infrared radiation: insights through an off-lattice Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Gong, Feng; Hongyan, Zhang; Papavassiliou, Dimitrios V.; Bui, Khoa; Lim, Christina; Duong, Hai M.

    2014-05-01

    Single-walled carbon nanotubes (SWNTs) are promising heating agents in cancer photothermal therapy when under near infrared radiation, yet few efforts have been focused on the quantitative understanding of the photothermal energy conversion in biological systems. In this article, a mesoscopic study that takes into account SWNT morphologies (diameter and aspect ratio) and dispersions (orientation and concentration), as well as thermal boundary resistance, is performed by means of an off-lattice Monte Carlo simulation. Results indicate that SWNTs with orientation perpendicular to the laser, smaller diameter and better dispersion have higher heating efficiency in cancer photothermal therapy. Thermal boundary resistances greatly inhibit thermal energy transfer away from SWNTs, thereby affecting their heating efficiency. Through appropriate interfacial modification around SWNTs, compared to the surrounding healthy tissue, a higher temperature of the cancer cell can be achieved, resulting in more effective cancer photothermal therapy. These findings promise to bridge the gap between macroscopic and microscopic computational studies of cancer photothermal therapy.

  10. In situ synthesis carbonated hydroxyapatite layers on enamel slices with acidic amino acids by a novel two-step method.

    PubMed

    Wu, Xiaoguang; Zhao, Xu; Li, Yi; Yang, Tao; Yan, Xiujuan; Wang, Ke

    2015-09-01

    In situ fabrication of carbonated hydroxyapatite (CHA) remineralization layer on an enamel slice was completed in a novel, biomimetic two-step method. First, a CaCO3 layer was synthesized on the surface of demineralized enamel using an acidic amino acid (aspartic acid or glutamate acid) as a soft template. Second, at the same concentration of the acidic amino acid, rod-like carbonated hydroxyapatite was produced with the CaCO3 layer as a sacrificial template and a reactant. The morphology, crystallinity and other physicochemical properties of the crystals were characterized using field emission scanning electron microscopy (FESEM), Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD) and energy-dispersive X-ray analysis (EDAX), respectively. Acidic amino acid could promote the uniform deposition of hydroxyapatite with rod-like crystals via absorption of phosphate and carbonate ions from the reaction solution. Moreover, compared with hydroxyapatite crystals coated on the enamel when synthesized by a one-step method, the CaCO3 coating that was synthesized in the first step acted as an active bridge layer and sacrificial template. It played a vital role in orienting the artificial coating layer through the template effect. The results show that the rod-like carbonated hydroxyapatite crystals grow into bundles, which are similar in size and appearance to prisms in human enamel, when using the two-step method with either aspartic acid or acidic glutamate (20.00 mmol/L). PMID:26046278

  11. One-step synthesis of hierarchically porous carbons for high-performance electric double layer supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Haitao; Zhang, Lei; Chen, Jun; Su, Hai; Liu, Fangyan; Yang, Weiqing

    2016-05-01

    With plenty of unique porous structure at micro-/nano scale, hierarchically porous carbons (HPCs) are promising for usage in advanced electric double layer supercapacitors (EDLCs) as the electrode materials. However, wide-range adoption of HPC for practical application is largely shadowed by its extremely complex synthesis process with considerably low production efficiency. Herein we reported a simple template-free, one-step sintering method, to massively produce the HPCs for high-performance EDLCs. Resorting to the 3D structure modification of the wide pore size distribution, high surface area of HPCs (up to 3000 m2 g-1) was achieved. By using 1 M Na2SO4 as electrolyte, the as-fabricated HPCs based EDLCs can be operated reversibly over a wide voltage window of 1.6 V with superior specific capacitance of 240 F g-1 under a current density of 0.5 A g-1. In the meanwhile, the EDLCs exhibit excellent rate capability (high power density of 16 kW kg-1 at 10.2 Wh kg-1) and long-term cycling stability with 9% loss of its initial capacitance after 2000 cycles. This output performance distinguished itself among most of the carbon-based EDLCs with neutral aqueous electrolyte. Thus, the template-free one-step sintering method produced HPCs for EDLCs represents a new approach for high-performance energy storage.

  12. Aligned Carbon Nanotube Array Functionalization for Enhanced Atomic Layer Deposition of Platinum Electrocatalysts

    SciTech Connect

    Dameron, A. A.; Pylypenko, S.; Bult, J. B.; Neyerlin, K. C.; Engtrakul, C.; Bochert, C.; Leong, G. J.; Frisco, S. L.; Simpson, L.; Dinh, H. N.; Pivovar, B.

    2012-04-15

    Uniform metal deposition onto high surface area supports is a key challenge of developing successful efficient catalyst materials. Atomic layer deposition (ALD) circumvents permeation difficulties, but relies on gas-surface reactions to initiate growth. Our work demonstrates that modified surfaces within vertically aligned carbon nanotube (CNT) arrays, from plasma and molecular precursor treatments, can lead to improved catalyst deposition. Gas phase functionalization influences the number of ALD nucleation sites and the onset of ALD growth and, in turn, affects the uniformity of the coating along the length of the CNTs within the aligned arrays. The induced chemical changes for each functionalization route are identified by X-ray photoelectron and Raman spectroscopies. The most effective functionalization routes increase the prevalence of oxygen moieties at defect sites on the carbon surfaces. The striking effects of the functionalization are demonstrated with ALD Pt growth as a function of surface treatment and ALD cycles examined by electron microscopy of the arrays and the individual CNTs. Finally, we demonstrate applicability of these materials as fuel cell electrocatalysts and show that surface functionalization affects their performance towards oxygen reduction reaction.

  13. Bimodal Latex Effect on Spin-Coated Thin Conductive Polymer-Single-Walled Carbon Nanotube Layers.

    PubMed

    Moradi, Mohammad-Amin; Larrakoetxea Angoitia, Katalin; van Berkel, Stefan; Gnanasekaran, Karthikeyan; Friedrich, Heiner; Heuts, Johan P A; van der Schoot, Paul; van Herk, Alex M

    2015-11-10

    We synthesize two differently sized poly(methyl methacrylate-co-tert-butyl acrylate) latexes by emulsion polymerization and mix these with a sonicated single-walled carbon nanotube (SWCNT) dispersion, in order to prepare 3% SWCNT composite mixtures. We spin-coat these mixtures at various spin-speed rates and spin times over a glass substrate, producing a thin, transparent, solid, conductive layer. Keeping the amount of SWCNTs constant, we vary the weight fraction of our smaller 30-nm latex particles relative to the larger 70-nm-sized ones. We find a maximum in the electrical conductivity up to 370 S/m as a function of the weight fraction of smaller particles, depending on the overall solid content, the spin speed, and the spin time. This maximum occurs at 3-5% of the smaller latex particles. We also find a more than 2-fold increase in conductivity parallel to the radius of spin-coating than perpendicular to it. Atomic force microscopy points at the existence of lanes of latex particles in the spin-coated thin layer, while large-area transmission electron microscopy demonstrates that the SWCNTs are aligned over a grid fixed on the glass substrate during the spin-coating process. We extract the conductivity distribution on the surface of the thin film and translate this into the direction of the SWCNTs in it. PMID:26491888

  14. Inkjet printing of carbon supported platinum 3-D catalyst layers for use in fuel cells

    NASA Astrophysics Data System (ADS)

    Taylor, André D.; Kim, Edward Y.; Humes, Virgil P.; Kizuka, Jeremy; Thompson, Levi T.

    We present a method of using inkjet printing (IJP) to deposit catalyst materials onto gas diffusion layers (GDLs) that are made into membrane electrode assemblies (MEAs) for polymer electrolyte fuel cell (PEMFC). Existing ink deposition methods such as spray painting or screen printing are not well suited for ultra low (<0.5 mg Pt cm -2) loadings. The IJP method can be used to deposit smaller volumes of water based catalyst ink solutions with picoliter precision provided the solution properties are compatible with the cartridge design. By optimizing the dispersion of the ink solution we have shown that this technique can be successfully used with catalysts supported on different carbon black (i.e. XC-72R, Monarch 700, Black Pearls 2000, etc.). Our ink jet printed MEAs with catalyst loadings of 0.020 mg Pt cm -2 have shown Pt utilizations in excess of 16,000 mW mg -1 Pt which is higher than our traditional screen printed MEAs (800 mW mg -1 Pt). As a further demonstration of IJP versatility, we present results of a graded distribution of Pt/C catalyst structure using standard Johnson Matthey (JM) catalyst. Compared to a continuous catalyst layer of JM Pt/C (20% Pt), the graded catalyst structure showed enhanced performance.

  15. Stable Carbon Isotope Ratios of Toluene in the Boundary Layer and the Lower Troposphere

    NASA Astrophysics Data System (ADS)

    Wintel, J.; Hösen, E.; Bühler, F.; Heuser, H.-P.; Knieling, P.; Koppmann, R.; Krebsbach, M.; Linke, C.; Spahn, H.

    2012-04-01

    Large amounts of Volatile Organic Compounds (VOC) are emitted into the atmosphere by various sources at the surface. Since these emissions permanently mix with each other and also are chemically processed in a large number of reactions, measurements of VOC concentrations in the troposphere are not easy to interpret. Additional measurements of stable carbon isotope ratios in VOC provide further useful information. They allow the determination of the photochemical age of the corresponding compound and, making use of the concept of the effective Kinetic Isotope Effect (KIE), to separate the effects of mixing and chemical processing. Whole air samples were taken in the boundary layer and the lower troposphere onboard a zeppelin over the Lake Constance region in late autumn 2008 and analysed in the laboratory using a GC-C-IRMS (Gas Chromatograph - Combustion - Isotope Ratio Mass Spectrometer). The GC-C-IRMS was characterised carefully to estimate the precision as well as the effect of sample humidity on the measurement results. The major ion signal was used to derive VOC mixing ratios. We present stable isotope ratios (δ13C) and mixing ratios of toluene as an example compound and apply the aforementioned concepts of interpretation. The results show that the evolution of air masses in the boundary layer was characterised mainly by mixing, whereas the air masses in the free troposphere show significant influence of chemical processing.

  16. Characterization and organic electric-double-layer-capacitor application of KOH activated coal-tar-pitch-based carbons: Effect of carbonization temperature

    NASA Astrophysics Data System (ADS)

    Choi, Poo Reum; Lee, Eunji; Kwon, Soon Hyung; Jung, Ji Chul; Kim, Myung-Soo

    2015-12-01

    The present study reports the influence of pre-carbonization on the properties of KOH-activated coal tar pitch (CTP). The change of crystallinity and pore structure of pre-carbonized CTPs as well as their activated carbons (ACs) as function of pre-carbonization temperature are investigated. The crystallinity of pre-carbonized CTPs increases with increasing the carbonization temperature up to 600 °C, but a disorder occurs during the carbonization around 700 °C and an order happens gradually with increasing the carbonization temperatures in range of 800-1000 °C. The CTPs pre-carbonized at high temperatures are more difficult to be activated with KOH than those pre-carbonized at low temperatures due to the increase of micro-crystalline size and the decrease of surface functional groups. The micro-pores and meso-pores are well developed at around 1.0 nm and 2.4 nm, respectively, as the ACs are pre-carbonized at temperatures of 500-600 °C, exhibiting high specific capacitances as electrode materials for electric double layer capacitor (EDLC). Although the specific surface area (SSA) and pore volume of ACs pre-carbonized at temperatures of 900-1000 °C are extraordinary low (non-porous) as compared to those of AC pre-carbonized at 600 °C, their specific capacitances are comparable to each other. The large specific capacitances with low SSA ACs can be attributed to the structural change resulting from the electrochemical activation during the 1st charge above 2.0 V.

  17. Surface modification of nitrogen-doped carbon nanotubes by ozone via atomic layer deposition

    SciTech Connect

    Lushington, Andrew; Liu, Jian; Tang, Yongji; Li, Ruying; Sun, Xueliang

    2014-01-15

    The use of ozone as an oxidizing agent for atomic layer deposition (ALD) processes is rapidly growing due to its strong oxidizing capabilities. However, the effect of ozone on nanostructured substrates such as nitrogen-doped multiwalled carbon nanotubes (NCNTs) and pristine multiwalled carbon nanotubes (PCNTs) are not very well understood and may provide an avenue toward functionalizing the carbon nanotube surface prior to deposition. The effects of ALD ozone treatment on NCNTs and PCNTs using 10 wt. % ozone at temperatures of 150, 250, and 300 °C are studied. The effect of ozone pulse time and ALD cycle number on NCNTs and PCNTs was also investigated. Morphological changes to the substrate were observed by scanning electron microscopy and high resolution transmission electron microscopy. Brunauer-Emmett-Teller measurements were also conducted to determine surface area, pore size, and pore size distribution following ozone treatment. The graphitic nature of both NCNTs and PCNTs was determined using Raman analysis while x-ray photoelectron spectroscopy (XPS) was employed to probe the chemical nature of NCNTs. It was found that O{sub 3} attack occurs preferentially to the outermost geometric surface of NCNTs. Our research also revealed that the deleterious effects of ozone are found only on NCNTs while little or no damage occurs on PCNTs. Furthermore, XPS analysis indicated that ALD ozone treatment on NCNTs, at elevated temperatures, results in loss of nitrogen content. Our studies demonstrate that ALD ozone treatment is an effective avenue toward creating low nitrogen content, defect rich substrates for use in electrochemical applications and ALD of various metal/metal oxides.

  18. Identification and characterisation of a calcium carbonate-binding protein, blue mussel shell protein (BMSP), from the nacreous layer.

    PubMed

    Suzuki, Michio; Iwashima, Ai; Tsutsui, Naoaki; Ohira, Tsuyoshi; Kogure, Toshihiro; Nagasawa, Hiromichi

    2011-11-01

    The nacreous layer of molluscan shells consists of a highly organised, layered structure comprising calcium carbonate aragonite crystals, each surrounded by an organic matrix. In the Japanese pearl oyster Pinctada fucata, the Pif protein from the nacreous layer functions in aragonite binding, and plays a key role in nacre formation. Here, we investigated whether the blue mussel Mytilus galloprovincialis also has a protein with similar functions in the nacreous layer. By using a calcium carbonate-binding assay, we identified the novel protein blue mussel shell protein (BMSP) 100 that can bind calcium carbonate crystals of both aragonite and calcite. When the entire sequence of a cDNA encoding BMSP 100 was determined, it was found that BMSP is a preproprotein consisting of a signal peptide and two proteins, BMSP 120 and BMSP 100. BMSP 120 contains four von Willebrand factor A (VWA) domains and one chitin-binding domain, thus suggesting that it has a role in maintaining structure within the matrix. Immunohistochemical analysis revealed that BMSP 100 is present throughout the nacreous layer with dense localisation in the myostracum. Posttranslational modification analysis indicated that BMSP 100 is phosphorylated and glycosylated. These results suggest that there is a common molecular mechanism between P. fucata and M. galloprovincialis that underlies the nacreous layer formation. PMID:21932217

  19. Morphology and crystallinity control of ultrathin TiO2 layers deposited on carbon nanotubes by temperature-step atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Guerra-Nuñez, Carlos; Zhang, Yucheng; Li, Meng; Chawla, Vipin; Erni, Rolf; Michler, Johann; Park, Hyung Gyu; Utke, Ivo

    2015-06-01

    Carbon nanotubes (CNTs) coated with titanium oxide (TiO2) have generated considerable interest over the last decade and become a promising nanomaterial for a wide range of energy applications. The efficient use of the outstanding electrical properties of this nanostructure relies heavily on the quality of the interface and the thickness and morphology of the TiO2 layer. However, complete surface coverage of the chemically inert CNTs and appropriate control of the morphology of the TiO2 layer have not been achieved so far. Here, we report a new strategy to obtain ultrathin TiO2 coatings deposited by ``Temperature-step'' Atomic Layer Deposition (TS-ALD) with complete surface coverage of non-functionalized multiwall carbon nanotubes (MWCNTs) and controlled morphology and crystallinity of the TiO2 film. This strategy consists of adjusting the temperature during the ALD deposition to obtain the desired morphology. Complete coverage of long non-functionalized MWCNTs with conformal anatase layers was obtained by using a low temperature of 60 °C during the nucleation stage followed by an increase to 220 °C during the growth stage. This resulted in a continuous and amorphous TiO2 layer, covered with a conformal anatase coating. Starting with the deposition at 220 °C and reducing to 60 °C resulted in sporadic crystal grains at the CNT/TiO2 interface covered with an amorphous TiO2 layer. The results were accomplished through an extensive study of nucleation and growth of titanium oxide films on MWCNTs, of which a detailed characterization is presented in this work.Carbon nanotubes (CNTs) coated with titanium oxide (TiO2) have generated considerable interest over the last decade and become a promising nanomaterial for a wide range of energy applications. The efficient use of the outstanding electrical properties of this nanostructure relies heavily on the quality of the interface and the thickness and morphology of the TiO2 layer. However, complete surface coverage of the

  20. Method and apparatus for detecting the presence and thickness of carbon and oxide layers on EUV reflective surfaces

    DOEpatents

    Malinowski, Michael E.

    2005-01-25

    The characteristics of radiation that is reflected from carbon deposits and oxidation formations on highly reflective surfaces such as Mo/Si mirrors can be quantified and employed to detect and measure the presence of such impurities on optics. Specifically, it has been shown that carbon deposits on a Mo/Si multilayer mirror decreases the intensity of reflected HeNe laser (632.8 nm) light. In contrast, oxide layers formed on the mirror should cause an increase in HeNe power reflection. Both static measurements and real-time monitoring of carbon and oxide surface impurities on optical elements in lithography tools should be achievable.

  1. Morphology and crystallinity control of ultrathin TiO2 layers deposited on carbon nanotubes by temperature-step atomic layer deposition.

    PubMed

    Guerra-Nuñez, Carlos; Zhang, Yucheng; Li, Meng; Chawla, Vipin; Erni, Rolf; Michler, Johann; Park, Hyung Gyu; Utke, Ivo

    2015-06-28

    Carbon nanotubes (CNTs) coated with titanium oxide (TiO2) have generated considerable interest over the last decade and become a promising nanomaterial for a wide range of energy applications. The efficient use of the outstanding electrical properties of this nanostructure relies heavily on the quality of the interface and the thickness and morphology of the TiO2 layer. However, complete surface coverage of the chemically inert CNTs and appropriate control of the morphology of the TiO2 layer have not been achieved so far. Here, we report a new strategy to obtain ultrathin TiO2 coatings deposited by "Temperature-step" Atomic Layer Deposition (TS-ALD) with complete surface coverage of non-functionalized multiwall carbon nanotubes (MWCNTs) and controlled morphology and crystallinity of the TiO2 film. This strategy consists of adjusting the temperature during the ALD deposition to obtain the desired morphology. Complete coverage of long non-functionalized MWCNTs with conformal anatase layers was obtained by using a low temperature of 60 °C during the nucleation stage followed by an increase to 220 °C during the growth stage. This resulted in a continuous and amorphous TiO2 layer, covered with a conformal anatase coating. Starting with the deposition at 220 °C and reducing to 60 °C resulted in sporadic crystal grains at the CNT/TiO2 interface covered with an amorphous TiO2 layer. The results were accomplished through an extensive study of nucleation and growth of titanium oxide films on MWCNTs, of which a detailed characterization is presented in this work. PMID:26018433

  2. Magnetic dead layers in NiFe/Ta and NiFe/Si/diamond-like carbon films

    NASA Astrophysics Data System (ADS)

    Leng, Qunwen; Han, Hua; Mao, Ming; Hiner, Craig; Ryan, Francis

    2000-05-01

    NiFe, Ta films were fabricated by ion beam deposition (IBD) and diamond-like carbon (DLC) films by ion beam chemical vapor deposition (IB-CVD) and filtered cathodic arc (FCA) process. Magnetic dead layers at interfaces of Ta/NiFe/Tn and NiFe/Si/DLC trilayer films were determined by characterizing magnetic flux loss using a B-H loop tracer. Dependence of magnetic dead layer on ion beam voltage and thicknesses of Ta, DLC, and Si layers was investigated. It is found that the thickness of magnetic dead layer increases monotonously with increasing ion beam voltage for Ta and DLC film depositions. The magnetic dead layer of 4-6 Å thick forms at Ta/NiFe and NiFe/Ta interfaces at an ion beam voltage of 1000 V, which can be attributed to the atomic intermixing of incoming energetic adatoms with atoms of grown films at interfaces. Direct ion beam deposition of the DLC film in NiFe/Si/DLC layered structure gives rise to a magnetic thickness loss of 12-18 Å. Transmission electron microscopy cross-sectional observations have confirmed the formation of an amorphous-like interfacial layer, as a result of carbonization or silicidation of NiFe at interfaces of the trilayer film.

  3. FTIR monitoring of the growth of the carbonate containing apatite layers from simulated and natural body fluids

    NASA Astrophysics Data System (ADS)

    Stoch, A.; Jastrz ębski, W.; Brożek, A.; Trybalska, B.; Cichocińska, M.; Szarawara, E.

    1999-11-01

    The aim of this work is to perform such a chemical modification of the implant that in vivo conditions on its surface, heterogeneous nucleation of apatite from the body fluid could be easily induced and then its growth successfully performed. The laboratory experiments were carried out with carbon-carbon biocomposites and carbon needled clothes. The surface of carbon was coated with the sol-gel silica or calcium silicate layer and then, under physiological conditions, thermostatically soaked in the synthetic or natural body fluid. Successive steps of the apatite growth were monitored by infrared spectroscopy. It was found that the nucleation and growth of carbonate containing apatite took place at the surface and was more effective on silica-calcium than on silica substrate. The natural body fluid, compared with synthetic body fluid much enhanced the apatite precipitation. This observation supports suggestion that also proteins can act as nucleation centres.

  4. Wear Resistance of Carbon Steels and Structure Parameters of Their Surface Layer After High Current Density Sliding

    NASA Astrophysics Data System (ADS)

    Fadin, V. V.; Aleutdinova, M. I.

    2016-04-01

    Dry sliding of carbon steels under the action of an AC current of a contact density higher than 100 A/cm2 is realized. It is shown that the contact layer is easily deteriorated in high-carbon steels. This becomes evident as lower wear resistance compared to that of low-carbon steels. There are signs of a developing liquid phase on the worn surface. Using the methods of Auger spectroscopy and X-ray diffraction analysis, it is demonstrated that a high content of carbon in the initial steel structure gives rise to formation of a large amount of γ-Fe (and)as well to a high concentration of carbon near the sliding surface.

  5. Lattice Cubes

    ERIC Educational Resources Information Center

    Parris, Richard

    2011-01-01

    Given a segment that joins two lattice points in R[superscript 3], when is it possible to form a lattice cube that uses this segment as one of its twelve edges? A necessary and sufficient condition is that the length of the segment be an integer. This paper presents an algorithm for finding such a cube when the prime factors of the length are…

  6. Black carbon concentrations and sources in the marine boundary layer of the tropical Atlantic Ocean using four methodologies

    EPA Science Inventory

    Combustion-derived aerosols in the marine boundary layer have been poorly studied, especially in remote environments such as the open Atlantic Ocean. The tropical Atlantic has the potential to contain a high concentration of aerosols, such as black carbon, due to the African emis...

  7. Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium-sulfur batteries.

    PubMed

    Yang, Xi; Zhang, Long; Zhang, Fan; Huang, Yi; Chen, Yongsheng

    2014-05-27

    Because of advantages such as excellent electronic conductivity, high theoretical specific surface area, and good mechanical flexibility, graphene is receiving increasing attention as an additive to improve the conductivity of sulfur cathodes in lithium-sulfur (Li-S) batteries. However, graphene is not an effective substrate material to confine the polysulfides in cathodes and stable the cycling. Here, we designed and synthesized a graphene-based layered porous carbon material for the impregnation of sulfur as cathode for Li-S battery. In this composite, a thin layer of porous carbon uniformly covers both surfaces of the graphene and sulfur is highly dispersed in its pores. The high specific surface area and pore volume of the porous carbon layers not only can achieve a high sulfur loading in highly dispersed amorphous state, but also can act as polysulfide reservoirs to alleviate the shuttle effect. When used as the cathode material in Li-S batteries, with the help of the thin porous carbon layers, the as-prepared materials demonstrate a better electrochemical performance and cycle stability compared with those of graphene/sulfur composites. PMID:24749945

  8. Evidence of double layer/capacitive charging in carbon nanomaterial-based solid contact polymeric ion-selective electrodes.

    PubMed

    Cuartero, Maria; Bishop, Josiah; Walker, Raymart; Acres, Robert G; Bakker, Eric; De Marco, Roland; Crespo, Gaston A

    2016-08-11

    This paper presents the first direct spectroscopic evidence for double layer or capacitive charging of carbon nanomaterial-based solid contacts in all-solid-state polymeric ion-selective electrodes (ISEs). Here, we used synchrotron radiation-X-ray photoelectron spectroscopy (SR-XPS) and SR valence band (VB) spectroscopy in the elucidation of the charging mechanism of the SCs. PMID:27405722

  9. Effect of Carbon in the Dielectric Fluid and Workpieces on the Characteristics of Recast Layers Machined by Electrical Discharge Machining

    NASA Astrophysics Data System (ADS)

    Muttamara, Apiwat; Kanchanomai, Chaosuan

    2016-06-01

    Electrical discharge machining (EDM) is a popular non-traditional machining technique that is usually performed in kerosene. Carbon from the kerosene is mixed into the recast layer during EDM, increasing its hardness. EDM can be performed in deionized water, which causes decarburization. We studied the effects of carbon in the dielectric fluid and workpiece on the characteristics of recast layers. Experiments were conducted using gray cast iron and mild steel workpieces in deionized water or kerosene under identical operating conditions. Scanning electron microscopy revealed that the recast layer formed on gray iron was rougher than that produced on mild steel. Moreover, the dispersion of graphite flakes in the gray iron seemed to cause subsurface cracks, even when EDM was performed in deionized water. Dendritic structures and iron carbides were found in the recast layer of gray iron treated in deionized water. Kerosene caused more microcracks to form and increased surface roughness compared with deionized water. The microcrack length per unit area of mild steel treated in deionized water was greater than that treated in kerosene, but the cracks formed in kerosene were wider. The effect of the diffusion of carbon during cooling on the characteristics of the recast layer was discussed.

  10. A two-step etching route to ultrathin carbon nanosheets for high performance electrical double layer capacitors

    NASA Astrophysics Data System (ADS)

    Ding, Bing; Wang, Jie; Wang, Ya; Chang, Zhi; Pang, Gang; Dou, Hui; Zhang, Xiaogang

    2016-05-01

    Two-dimensional (2D) carbon materials have attracted intense research interest for electrical double layer capacitors (EDLCs) due to their high aspect ratio and large surface area. Herein, we propose an exfoliation-chlorination route for preparing ultrathin carbon nanosheets by using ternary layered carbide Ti3AlC2 as the precursor. Due to the large intersheet space of exfoliated layered carbide (MXene), the as-prepared carbon nanosheets exhibit a thickness of 3-4 nm and a large specific surface area of 1766 m2 g-1 with hierarchical porosity. These features significantly improve the ion-accessible surface area for charge storage and shorten the ion transport length in the thin dimension. As a result, the carbon nanosheets show a high specific capacitance (220 F g-1 at 0.5 A g-1), remarkable high power capability (79% capacitance retention at 20 A g-1) when measured in a symmetrical two-electrode configuration in an aqueous electrolyte. The method described in this work provides a new route to prepare 2D electrode materials from a bulk precursor, thus exploiting their full potential for EDLCs.Two-dimensional (2D) carbon materials have attracted intense research interest for electrical double layer capacitors (EDLCs) due to their high aspect ratio and large surface area. Herein, we propose an exfoliation-chlorination route for preparing ultrathin carbon nanosheets by using ternary layered carbide Ti3AlC2 as the precursor. Due to the large intersheet space of exfoliated layered carbide (MXene), the as-prepared carbon nanosheets exhibit a thickness of 3-4 nm and a large specific surface area of 1766 m2 g-1 with hierarchical porosity. These features significantly improve the ion-accessible surface area for charge storage and shorten the ion transport length in the thin dimension. As a result, the carbon nanosheets show a high specific capacitance (220 F g-1 at 0.5 A g-1), remarkable high power capability (79% capacitance retention at 20 A g-1) when measured in a

  11. Multi-scale fracture networks within layered shallow water tight carbonates

    NASA Astrophysics Data System (ADS)

    Panza, Elisa; Agosta, Fabrizio; Rustichelli, Andrea; Vinciguerra, Sergio; Zambrano, Miller; Prosser, Giacomo; Tondi, Emanuele

    2015-04-01

    The work is aimed at deciphering the contribution of background deformation and persistent fracture zones on the fluid flow properties of tight platform carbonates. Taking advantage of 3D exposures present in the Murge area of southern Italy, the fracture networks crosscutting at different scales the layered Cretaceous limestone of the Altamura Fm. were analyzed. The rock multi-layer is characterized by 10's of cm-thick, sub-horizontal, laterally continuous carbonate beds. Each bed commonly represents a shallowing-upward peritidal cycle made up of homogeneous micritic limestones grading upward to cm-thick stromatolitic limestones and/or fenestral limestones. The bed interfaces are formed by sharp maximum flooding surfaces. Porosity measurements carried out on 40 limestone samples collected from a single carbonate bed show values ranging between 0,5% and 5,5%. Background deformation includes both stratabound and non-stratabound fractures. The former elements consist of bed-perpendicular joints and sheared joints, which are confined within a single bed and often displace small, bed-parallel stylolites. Non-stratabound fractures consist of incipient, cm offset, sub-vertical strike-slip faults, which crosscut the bed interfaces. The aforementioned elements are often confined within individual bed-packages, which are identified by presence of pronounced surfaces locally marked by veneers of reddish clayey paleosoils. Persistent fracture zones consist of 10's of m-high, 10's of cm-offset strike-slip faults that offset the bed-package interfaces and are confined within individual bed-packages association. Laterally discontinuous, cm- to a few m-thick paleokarstic breccia levels separate the different bed-packages associations. Persistent fracture zones include asymmetric fractured damage zones and mm-thick veneers of discontinuous fault rocks. The fracture networks that pervasively crosscut the study limestone multi-layer are investigated by mean of scanline and scanarea

  12. Electron beam evaporated carbon doping of InGaAs layers grown by gas source molecular beam epitaxy

    SciTech Connect

    Salokatve, A.; Toivonen, M.; Asonen, H.; Pessa, M.; Likonen, J.

    1996-12-31

    The authors have studied carbon doping of GaInAs grown by gas-source molecular beam epitaxy. Graphite was used as a source material for carbon evaporation. GaInAs was studied due to its importance as a base layer in InP-based heterojunction bipolar transistors. They show that useful p-type acceptor concentrations can be achieved by evaporation from graphite source for GaInAs grown by gas-source molecular beam epitaxy. Secondary ion mass spectroscopy and Van der Pauw Hall measurements were used to characterize the carbon and net acceptor concentrations of their GaInAs layers. The effect of rapid thermal annealing on acceptor concentrations and Hall mobilities was also studied.

  13. Removal of Metal-Oxide Layers Formed on Stainless and Carbon Steel Surfaces by Excimer Laser Irradiation in Various Atmospheres

    SciTech Connect

    Kameo, Yutaka; Nakashima, Mikio; Hirabayashi, Takakuni

    2002-02-15

    To apply the laser ablation technique for decontamination of metal wastes contaminated with radioactive nuclides, the effect of irradiation atmospheres on removal of oxide layers on steel surfaces by laser ablation was studied. Based on the assumption that the absorption of laser light follows the Lambert-Beer law, ablation parameters, such as absorption length and threshold fluence for ablation, of sintered Fe{sub 2}O{sub 3} and stainless and carbon steels were measured in He, O{sub 2}, Kr, or SF{sub 6} atmospheres. The results indicated that SF{sub 6} was the most effective gas of all irradiation atmospheres studied for the exclusive removal of oxide layers formed on stainless and carbon steel samples in high-temperature pressurized water. Secondary ion mass spectroscopic measurement and scanning electron microscopic observation confirmed that no oxide layer existed on the steel samples after the exclusive removal with laser irradiation.

  14. Effect of layers of carbon-nanotube-patterned substrate on GaN-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Shan, Liang; Wei, Tongbo; Sun, Yuanping; Zhang, Yonghui; Xiong, Zhuo; Zhen, Aigong; Wang, Junxi; Wei, Yang; Li, Jinmin

    2015-06-01

    In this paper, the high-performance GaN-based light-emitting diodes (LEDs) with coated carbon nanotubes (CNTs) on sapphire substrates, fabricated by metal-organic chemical vapor deposition (MOCVD), were demonstrated. The different layers of a CNT-patterned sapphire substrate (CNPSS) grown by an optimized growth process were discussed. Results of X-ray diffraction (XRD) showed the threading dislocations to be suppressed, thus the crystal quality of the GaN film was improved by introducing the carbon nanotube films. The LEDs with a CNPSS exhibited lower reverse-bias current and divergent angle, and larger enhancement of the light output power (LOP) compared with the conventional LEDs. With the increase in the number of layers of CNTs, the CNPSS-LED exhibited better crystal quality and photoelectric property, but more layers of CNTs also absorbed more light. There is a trade-off between the crystalline quality of the LED and light absorption.

  15. A SnO2-samarium doped ceria additional anode layer in a direct carbon fuel cell

    NASA Astrophysics Data System (ADS)

    Yu, Baolong; Zhao, Yicheng; Li, Yongdan

    2016-02-01

    The role of a SnO2-samarium doped ceria (SDC) additional anode layer in a direct carbon fuel cell (DCFC) with SDC-(Li0.67Na0.33)2CO3 composite electrolyte and lithiated NiO-SDC-(Li0.67Na0.33)2CO3 composite cathode is investigated and compared with a NiO-SDC extra anode layer. Catalytic grown carbon fiber mixed with (Li0.67Na0.33)2CO3 is used as a fuel. At 750 °C, the maximum power outputs of 192 and 143 mW cm-2 are obtained by the cells with SnO2-SDC and NiO-SDC layers, respectively. In the SnO2-SDC layer, the reduction of SnO2 and the oxidation of Sn happen simultaneously during the cell operation, and the Sn/SnO2 redox cycle provides an additional route for fuel conversion. The formation of an insulating dense interlayer between the anode and electrolyte layers, which usually happens in DCFCs with metal anodes, is avoided in the cell with the SnO2-SDC layer, and the stability of the cell is improved consequently.

  16. Gas diffusion layers coated with a microporous layer containing hydrophilic carbon nanotubes for performance enhancement of polymer electrolyte fuel cells under both low and high humidity conditions

    NASA Astrophysics Data System (ADS)

    Kitahara, Tatsumi; Nakajima, Hironori; Okamura, Kosuke

    2015-06-01

    Gas diffusion layers (GDLs) coated with a hydrophobic microporous layer (MPL) composed of carbon black and polytetrafluoroethylene (PTFE) have been commonly used to improve the water management characteristics of polymer electrolyte fuel cells (PEFCs). However, the hydrophobic MPL coated GDL designed to prevent dehydration of the membrane under low humidity conditions is generally inferior at reducing flooding under high humidity conditions. It is therefore important to develop a robust MPL coated GDL that can enhance the PEFC performance regardless of the humidity conditions. In the present study, a GDL coated with an MPL containing hydrophilic carbon nanotubes (CNTs) was developed. The less hydrophobic pores incorporating CNTs are effective at conserving the membrane humidity under low humidity conditions. The MPL with CNTs is also effective at expelling excess water from the catalyst layer while maintaining oxygen flow pathways from the GDL substrate, allowing the mean flow pore diameter to be decreased to 2 μm without reducing the ability of the MPL to prevent flooding under high humidity conditions. An MPL coated GDL with a CNT content of 4 mass% exhibits significantly higher performance under both low and high humidity conditions than a hydrophobic MPL coated GDL.

  17. Protein-mediated layer-by-layer synthesis of TiO₂(B)/anatase/carbon coating on nickel foam as negative electrode material for lithium-ion battery.

    PubMed

    Wang, Xiaobo; Yan, Yong; Hao, Bo; Chen, Ge

    2013-05-01

    Through an aqueous, protein-mediated layer-by-layer titania deposition process, we have fabricated a protamine/titania composite layer on nickel foam. The coating was composed of amorphous carbon and TiO2(B)/anatase nanoparticles and formed upon organic pyrolysis under a reducing atmosphere (5% H2-Ar mixture). X-ray diffraction analyses, Auger electron spectroscopy, and high-resolution transmission electron microscopy revealed that the obtained coatings contained fine monoclinic TiO2(B) and anatase nanocrystals, along with amorphous carbon. Moreover, the coating can be used as a binder-free negative electrode material for lithium-ion batteries and exhibits high reversible capacity and fast charge-discharge properties; a reversible capacity of 245 mAh g(-1) was obtained at a current density of 50 mA g(-1), and capacities of 167 and 143 mAh g(-1) were obtained at current densities of 1 and 2 A g(-1), respectively. PMID:23597025

  18. Influence of lattice parameters on the dielectric constant of tetragonal ZrO2 and La-doped ZrO2 crystals in thin films deposited by atomic layer deposition on Ge(001)

    NASA Astrophysics Data System (ADS)

    Wiemer, C.; Debernardi, A.; Lamperti, A.; Molle, A.; Salicio, O.; Lamagna, L.; Fanciulli, M.

    2011-12-01

    In ZrO2 crystals, the highest dielectric constant (k) is ascribed to the tetragonal phase. By the use of density functional theory and synchrotron radiation x-ray diffraction, we show how the a and c lattice parameters of the tetragonal phase influence the resulting k. Highest k values are obtained at increasing both a and c, while k is reduced for compressive strained cells. The determination of a and c on La-doped ZrO2 and ZrO2 thin films deposited by atomic layer deposition on Ge (001) allowed us to elucidate the influence of La doping and Ge diffusion on the k value.

  19. Determination of nitrogen to carbon abundance ratios from transition layer emission lines

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, Erika

    1992-01-01

    We have finished studying the nitrogen to carbon abundance ratios for stars with different effective temperatures T(sub eff) and luminosities using transition layer emission lines and using spectra available in the IUE archives. The N/C abundance ratio determinations using transition layer emission lines are as accurate as the photospheric abundance determinations as found by comparison of results obtained by both methods for the same stars. Our measurements confirm photospheric abundance determinations in regions of the HR diagram where they can be obtained. Our studies have extended the temperature range to higher temperatures. They have shown the exact positions in the HR diagram where the mixing due to the outer convection zones reaches deep enough to bring nuclear processed material to the surface. This occurs at effective temperatures which are higher by delta log T(sub eff) approximately 0.04 or roughly 400 K than expected theoretically. Since the depth of the convection zone increases rapidly with decreasing T(sub eff) this may indicate considerable overshoot beyond the lower boundary of the convection zone. Our N/C abundance ratio determinations from transition layer emission lines have confirmed that the actual enrichment observed for some cool giants is larger than expected theoretically, again indicating a larger degree of mixing in several stars either from below or from above. For the supergiants it probably indicates overshoot above the convective core in the progenitor main sequence stars. For the more massive giants this may also be the case, though we did not find a correlation between delta log N/C and the absolute magnitudes, but these are rather uncertain. As byproducts of these studies we also found anomalies in Si/C and N/C abundance ratios for F giants which can be understood as the relict of surface abundance changes for their main sequence progenitors due to diffusion. This anomaly disappears for G giants, for which the depths of the

  20. Carbon corrosion of proton exchange membrane fuel cell catalyst layers studied by scanning transmission X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Hitchcock, Adam P.; Berejnov, Viatcheslav; Lee, Vincent; West, Marcia; Colbow, Vesna; Dutta, Monica; Wessel, Silvia

    2014-11-01

    Scanning Transmission X-ray Microscopy (STXM) at the C 1s, F 1s and S 2p edges has been used to investigate degradation of proton exchange membrane fuel cell (PEM-FC) membrane electrode assemblies (MEA) subjected to accelerated testing protocols. Quantitative chemical maps of the catalyst, carbon support and ionomer in the cathode layer are reported for beginning-of-test (BOT), and end-of-test (EOT) samples for two types of carbon support, low surface area carbon (LSAC) and medium surface area carbon (MSAC), that were exposed to accelerated stress testing with upper potentials (UPL) of 1.0, 1.2, and 1.3 V. The results are compared in order to characterize catalyst layer degradation in terms of the amounts and spatial distributions of these species. Pt agglomeration, Pt migration and corrosion of the carbon support are all visualized, and contribute to differing degrees in these samples. It is found that there is formation of a distinct Pt-in-membrane (PTIM) band for all EOT samples. The cathode thickness shrinks due to loss of the carbon support for all MSAC samples that were exposed to the different upper potentials, but only for the most aggressive testing protocol for the LSAC support. The amount of ionomer per unit volume significantly increases indicating it is being concentrated in the cathode as the carbon corrosion takes place. S 2p spectra and mapping of the cathode catalyst layer indicates there are still sulfonate groups present, even in the most damaged material.

  1. Construction of flame retardant nanocoating on ramie fabric via layer-by-layer assembly of carbon nanotube and ammonium polyphosphate

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Yan, Hongqiang; Peng, Mao; Wang, Lili; Ding, Hongliang; Fang, Zhengping

    2013-03-01

    A new flame retardant nanocoating has been constructed by the alternate adsorption of polyelectrolyte amino-functionalized multiwall carbon nanotube (MWNT-NH2) and ammonium polyphosphate (APP) onto flexible and porous ramie fabric. Scanning electron microscopy indicates that the adsorbed carbon nanotube coating is a randomly oriented and overlapped network structure, which is a promising candidate for flame retardancy applications. Attenuated total reflection Fourier transform infrared spectroscopy and energy-dispersive X-ray analysis confirm that the APP is successfully incorporated into the multilayers sequentially. Assessment of the thermal and flammability properties for the pristine and nanocoated ramie fabrics shows that the thermal stability, flame retardancy and residual char are enhanced as the concentration of MWNT-NH2 suspension and number of deposition cycles increases. The enhancements are mostly attributed to the barrier effect of intumescent network structure, which is composed of MWNT-NH2 and the absorbed APP.

  2. Construction of flame retardant nanocoating on ramie fabric via layer-by-layer assembly of carbon nanotube and ammonium polyphosphate.

    PubMed

    Zhang, Tao; Yan, Hongqiang; Peng, Mao; Wang, Lili; Ding, Hongliang; Fang, Zhengping

    2013-04-01

    A new flame retardant nanocoating has been constructed by the alternate adsorption of polyelectrolyte amino-functionalized multiwall carbon nanotube (MWNT-NH2) and ammonium polyphosphate (APP) onto flexible and porous ramie fabric. Scanning electron microscopy indicates that the adsorbed carbon nanotube coating is a randomly oriented and overlapped network structure, which is a promising candidate for flame retardancy applications. Attenuated total reflection Fourier transform infrared spectroscopy and energy-dispersive X-ray analysis confirm that the APP is successfully incorporated into the multilayers sequentially. Assessment of the thermal and flammability properties for the pristine and nanocoated ramie fabrics shows that the thermal stability, flame retardancy and residual char are enhanced as the concentration of MWNT-NH2 suspension and number of deposition cycles increases. The enhancements are mostly attributed to the barrier effect of intumescent network structure, which is composed of MWNT-NH2 and the absorbed APP. PMID:23459988

  3. Sub-5 nm nanostructures fabricated by atomic layer deposition using a carbon nanotube template.

    PubMed

    Woo, Ju Yeon; Han, Hyo; Kim, Ji Weon; Lee, Seung-Mo; Ha, Jeong Sook; Shim, Joon Hyung; Han, Chang-Soo

    2016-07-01

    The fabrication of nanostructures having diameters of sub-5 nm is very a important issue for bottom-up nanofabrication of nanoscale devices. In this work, we report a highly controllable method to create sub-5 nm nano-trenches and nanowires by combining area-selective atomic layer deposition (ALD) with single-walled carbon nanotubes (SWNTs) as templates. Alumina nano-trenches having a depth of 2.6 ∼ 3.0 nm and SiO2 nano-trenches having a depth of 1.9 ∼ 2.2 nm fully guided by the SWNTs have been formed on SiO2/Si substrate. Through infilling ZnO material by ALD in alumina nano-trenches, well-defined ZnO nanowires having a thickness of 3.1 ∼ 3.3 nm have been fabricated. In order to improve the electrical properties of ZnO nanowires, as-fabricated ZnO nanowires by ALD were annealed at 350 °C in air for 60 min. As a result, we successfully demonstrated that as-synthesized ZnO nanowire using a specific template can be made for various high-density resistive components in the nanoelectronics industry. PMID:27188268

  4. Carbon materials with quasi-graphene layers: The dielectric, percolation properties and the electronic transport mechanism

    NASA Astrophysics Data System (ADS)

    Lu, Ming-Ming; Yuan, Jie; Wen, Bo; Liu, Jia; Cao, Wen-Qiang; Cao, Mao-Sheng

    2013-03-01

    We investigate the dielectric properties of multi-walled carbon nanotubes (MWCNTs) and graphite filling in SiO2 with the filling concentration of 2-20 wt.% in the frequency range of 102-107 Hz. MWCNTs and graphite have general electrical properties and percolation phenomena owing to their quasi-structure made up of graphene layers. Both permittivity ɛ and conductivity σ exhibit jumps around the percolation threshold. Variations of dielectric properties of the composites are in agreement with the percolation theory. All the percolation phenomena are determined by hopping and migrating electrons, which are attributed to the special electronic transport mechanism of the fillers in the composites. However, the twin-percolation phenomenon exists when the concentration of MWCNTs is between 5-10 wt.% and 15-20 wt.% in the MWCNTs/SiO2 composites, while in the graphite/SiO2 composites, there is only one percolation phenomenon in the graphite concentration of 10-15 wt.%. The unique twin-percolation phenomenon of MWCNTs/SiO2 is described and attributed to the electronic transfer mechanism, especially the network effect of MWCNTs in the composites. The network formation plays an essential role in determining the second percolation threshold of MWCNTs/SiO2.

  5. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications

    PubMed Central

    Park, Dong-Wook; Schendel, Amelia A.; Mikael, Solomon; Brodnick, Sarah K.; Richner, Thomas J.; Ness, Jared P.; Hayat, Mohammed R.; Atry, Farid; Frye, Seth T.; Pashaie, Ramin; Thongpang, Sanitta; Ma, Zhenqiang; Williams, Justin C.

    2014-01-01

    Neural micro-electrode arrays that are transparent over a broad wavelength spectrum from ultraviolet to infrared could allow for simultaneous electrophysiology and optical imaging, as well as optogenetic modulation of the underlying brain tissue. The long-term biocompatibility and reliability of neural micro-electrodes also require their mechanical flexibility and compliance with soft tissues. Here we present a graphene-based, carbon-layered electrode array (CLEAR) device, which can be implanted on the brain surface in rodents for high-resolution neurophysiological recording. We characterize optical transparency of the device at >90% transmission over the ultraviolet to infrared spectrum and demonstrate its utility through optical interface experiments that use this broad spectrum transparency. These include optogenetic activation of focal cortical areas directly beneath electrodes, in vivo imaging of the cortical vasculature via fluorescence microscopy and 3D optical coherence tomography. This study demonstrates an array of interfacing abilities of the CLEAR device and its utility for neural applications. PMID:25327513

  6. Sub-5 nm nanostructures fabricated by atomic layer deposition using a carbon nanotube template

    NASA Astrophysics Data System (ADS)

    Woo, Ju Yeon; Han, Hyo; Kim, Ji Weon; Lee, Seung-Mo; Ha, Jeong Sook; Shim, Joon Hyung; Han, Chang-Soo

    2016-07-01

    The fabrication of nanostructures having diameters of sub-5 nm is very a important issue for bottom-up nanofabrication of nanoscale devices. In this work, we report a highly controllable method to create sub-5 nm nano-trenches and nanowires by combining area-selective atomic layer deposition (ALD) with single-walled carbon nanotubes (SWNTs) as templates. Alumina nano-trenches having a depth of 2.6 ∼ 3.0 nm and SiO2 nano-trenches having a depth of 1.9 ∼ 2.2 nm fully guided by the SWNTs have been formed on SiO2/Si substrate. Through infilling ZnO material by ALD in alumina nano-trenches, well-defined ZnO nanowires having a thickness of 3.1 ∼ 3.3 nm have been fabricated. In order to improve the electrical properties of ZnO nanowires, as-fabricated ZnO nanowires by ALD were annealed at 350 °C in air for 60 min. As a result, we successfully demonstrated that as-synthesized ZnO nanowire using a specific template can be made for various high-density resistive components in the nanoelectronics industry.

  7. Seasonal variability of black carbon mass in the tropical tropopause layer

    NASA Astrophysics Data System (ADS)

    Spackman, J. R.; Gao, R. S.; Schwarz, J. P.; Watts, L. A.; Fahey, D. W.; Pfister, L.; Bui, T. P.

    2011-05-01

    While most black carbon (BC)-containing particles are removed in the lower troposphere in the tropics, some are lofted to higher altitudes via convection where they may be distributed globally throughout the tropical tropopause layer (TTL). Single-particle measurements of BC aerosol were made from the NASA WB-57F aircraft during both the dry (February 2006) and wet (August 2007) seasons in Central America. BC mass loadings declined sharply with increasing altitude from the ground to 5 km. In the TTL, they were up to six times higher in the wet relative to the dry season. The variability in BC mass was examined using convective-influence back trajectories to determine the source regions. The seasonal differences in the vertical profiles are explained by long-range transport of (1) low-BC air from the southern hemisphere in the dry season and (2) high-BC air from biomass-burning or pollution sources in Africa and Asia advected by the Asian monsoon circulation in the wet season.

  8. Determining water content in activated carbon for double-layer capacitor electrodes

    NASA Astrophysics Data System (ADS)

    Egashira, Minato; Izumi, Takuma; Yoshimoto, Nobuko; Morita, Masayuki

    2016-09-01

    Karl-Fisher titration is used to estimate water contents in activated carbon and the distribution of impurity-level water in an activated carbon-solvent system. Normalization of the water content of activated carbon is attempted using vacuum drying after immersion in water was controlled. Although vacuum drying at 473 K and 24 h can remove large amounts of water, a substantial amount of water remains in the activated carbon. The water release to propylene carbonate is less than that to acetonitrile. The degradation of capacitor cell capacitance for activated carbon with some amount of water differs according to the electrolyte solvent type: acetonitrile promotes greater degradation than propylene carbonate does.

  9. Atomic layer deposition of Co3O4 on carbon nanotubes/carbon cloth for high-capacitance and ultrastable supercapacitor electrode.

    PubMed

    Guan, Cao; Qian, Xu; Wang, Xinghui; Cao, Yanqiang; Zhang, Qing; Li, Aidong; Wang, John

    2015-03-01

    Co3O4 nanolayers have been successfully deposited on a flexible carbon nanotubes/carbon cloth (CC) substrate by atomic layer deposition. Much improved capacitance and ultra-long cycling life are achieved when the CNTs@Co3O4/CC is tested as a supercapacitor electrode. The improvement can be from the mechanically robust CC/CNTs substrate, the uniform coated high capacitance materials of Co3O4 nanoparticles, and the unique hierarchical structure. The flexible electrode of CNTs@Co3O4/CC with high areal capacitance and excellent cycling ability promises great potential for developing high-performance flexible supercapacitors. PMID:25665549

  10. Atomic layer deposition of Co3O4 on carbon nanotubes/carbon cloth for high-capacitance and ultrastable supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Guan, Cao; Qian, Xu; Wang, Xinghui; Cao, Yanqiang; Zhang, Qing; Li, Aidong; Wang, John

    2015-03-01

    Co3O4 nanolayers have been successfully deposited on a flexible carbon nanotubes/carbon cloth (CC) substrate by atomic layer deposition. Much improved capacitance and ultra-long cycling life are achieved when the CNTs@Co3O4/CC is tested as a supercapacitor electrode. The improvement can be from the mechanically robust CC/CNTs substrate, the uniform coated high capacitance materials of Co3O4 nanoparticles, and the unique hierarchical structure. The flexible electrode of CNTs@Co3O4/CC with high areal capacitance and excellent cycling ability promises great potential for developing high-performance flexible supercapacitors.

  11. Carbon film growth on model MLM cap layer: interaction of selected hydrocarbon vapor with Ru(10-10) surface

    NASA Astrophysics Data System (ADS)

    Yakshinskiy, B. V.; Bartynski, R. A.

    2010-04-01

    The aim of this work is to explore the thermal and non-thermal interaction of toluene, benzene and isobutene vapor with a crystalline Ru(10-10) surface, a model surface for Ru capping layers used in EUV lithography. Our main objective is to provide insights into the basic processes that affect the reflectivity of Ru-coated Mo/Si multilayer mirrors that are exposed to EUV radiation. A low energy electron beam is employed to mimic excitations initiated by EUV radiation. Temperature programmed desorption (TPD), x-ray photoelectron spectroscopy (XPS), low energy ion scattering (LEIS), and electron-stimulated desorption (ESD) are used to analyze the surface reactions. Pyrolysis of a chemisorbed hydrocarbon layer on the Ru surface leads to the dehydrogenation and buildup a self-limited carbon monolayer. Carbon film growth on the Ru(10-10) crystalline surface under 100 eV electron bombardment in hydrocarbon vapor is measured over a range of pressures and temperatures near 300 K. The carbon growth rate is ~10 times higher in the presence of toluene vapor than in the presence of benzene or isobutene vapor. The estimations of the adsorption energy, the steadystate coverage of the molecules on the surface and the cross-sections for electron-stimulated dissociation are presented. A graphene-like carbon layer is probed as possible way to reduce the surface contamination rate.

  12. Characteristics and analysis of 4H-SiC PiN diodes with a carbon-implanted drift layer

    NASA Astrophysics Data System (ADS)

    Jiangmei, Feng; Huajun, Shen; Xiaohua, Ma; Yun, Bai; Jia, Wu; Chengzhan, Li; Kean, Liu; Xinyu, Liu

    2016-04-01

    The characteristics of 4H-SiC PiN diodes with a carbon-implanted drift layer was investigated and the reason of characteristics improvement was analyzed. The forward voltage drops of the diodes with carbon-implanted drift layer were around 3.3 V, which is lower than that of devices without carbon implantation, the specific-on resistance was decreased from 9.35 to 4.38 mΩ·cm2 at 100 A/cm2, and the reverse leakage current was also decreased. The influence of carbon incorporation in the SiC crystalline grids was studied by using deep-level transient spectroscopy (DLTS). The DLTS spectra revealed that the Z 1/2 traps, which were regarded as the main lifetime limiting defects, were dramatically reduced. It is proposed that the reduction of Z 1/2 traps can achieve longer carrier lifetime in the drift layer, which is beneficial to the performance of bipolar devices. Project supported by the Opening Project of Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences.

  13. A two-step etching route to ultrathin carbon nanosheets for high performance electrical double layer capacitors.

    PubMed

    Ding, Bing; Wang, Jie; Wang, Ya; Chang, Zhi; Pang, Gang; Dou, Hui; Zhang, Xiaogang

    2016-06-01

    Two-dimensional (2D) carbon materials have attracted intense research interest for electrical double layer capacitors (EDLCs) due to their high aspect ratio and large surface area. Herein, we propose an exfoliation-chlorination route for preparing ultrathin carbon nanosheets by using ternary layered carbide Ti3AlC2 as the precursor. Due to the large intersheet space of exfoliated layered carbide (MXene), the as-prepared carbon nanosheets exhibit a thickness of 3-4 nm and a large specific surface area of 1766 m(2) g(-1) with hierarchical porosity. These features significantly improve the ion-accessible surface area for charge storage and shorten the ion transport length in the thin dimension. As a result, the carbon nanosheets show a high specific capacitance (220 F g(-1) at 0.5 A g(-1)), remarkable high power capability (79% capacitance retention at 20 A g(-1)) when measured in a symmetrical two-electrode configuration in an aqueous electrolyte. The method described in this work provides a new route to prepare 2D electrode materials from a bulk precursor, thus exploiting their full potential for EDLCs. PMID:27181616

  14. Structural modifications of graphyne layers consisting of carbon atoms in the sp- and sp{sup 2}-hybridized states

    SciTech Connect

    Belenkov, E. A.; Mavrinskii, V. V.; Belenkova, T. E.; Chernov, V. M.

    2015-05-15

    A model scheme is proposed for obtaining layered compounds consisting of carbon atoms in the sp- and (vnsp){sup 2}-hybridized states. This model is used to find the possibility of existing the following seven basic structural modifications of graphyne: α-, β1-, β2-, β3-, γ1-, γ2-, and γ3-graphyne. Polymorphic modifications β3 graphyne and γ3 graphyne are described. The basic structural modifications of graphyne contain diatomic polyyne chains and consist only of carbon atoms in two different crystallographically equivalent states. Other nonbasic structural modifications of graphyne can be formed via the elongation of the carbyne chains that connect three-coordinated carbon atoms and via the formation of graphyne layers with a mixed structure consisting of basic layer fragments, such as α-β-graphyne, α-γ-graphyne, and β-γ-graphyne. The semiempirical quantum-mechanical MNDO, AM1, and PM3 methods and ab initio STO6-31G basis calculations are used to find geometrically optimized structures of the basic graphyne layers, their structural parameters, and energies of their sublimation. The energy of sublimation is found to be maximal for γ2-graphyne, which should be the most stable structural modification of graphyne.

  15. Dynamic layer-by-layer self-assembly of multi-walled carbon nanotubes on quartz wool for on-line separation of lysozyme in egg white.

    PubMed

    Du, Zhuo; Zhang, Suling; Zhou, Chanyuan; Liu, Miao; Li, Gongke

    2012-05-30

    The multi-walled carbon nanotubes (MWNTs) coated quartz wool (MWNTs/QW) prepared by dynamic layer-by-layer self-assembly was used as solid-phase extraction (SPE) absorbent for on-line separation and preconcentration of lysozyme in egg white. The coating procedures were performed continuously in a flow system operated by a set of sequential injection devices. The quartz wool was placed in a microcolumn forming a loose packing to guarantee the minimized flow impedance and the intimate contact between proteins and absorbent surface. Various parameters affecting SPE efficiency including the volume, pH, ionic strength and flow rate of sample and eluent were systematically studied. The feasibility of the proposed method was validated by successfully applied to the separation of lysozyme in egg white. PMID:22608421

  16. Si-rich layer formation on olivine surfaces during reaction with water and supercritical carbon dioxide under conditions relevant for geologic carbon storage

    NASA Astrophysics Data System (ADS)

    Johnson, N. C.; Jackson, A.; Maher, K.; Bird, D. K.; Brown, G. E.

    2013-12-01

    The reaction of Mg-silicate minerals (i.e. olivine) with carbon dioxide (CO2) is a promising method for secure, long-term, geologic carbon storage. Several technical challenges must be overcome before implementing mineral carbonation technology on a large scale, one of which is slow reaction kinetics. This study probes surface reaction limitations of olivine carbonation, specifically the formation of a passivating, Si-rich layer on olivine surfaces upon exposure to water and CO2 under sequestration conditions (elevated temperature and pressure). A series of batch reactions were performed at 60°C and 100 bar CO2 pressure in Dickson-style rocker bombs, varying the length of reaction and the amount of mixing (rocking). The initial aqueous phase was spiked with 29Si. Fluid samples were taken periodically and analyzed for cation content, alkalinity, and dissolved inorganic carbon. At the end of each experiment, the solid products were analyzed with a Sensitive High Resolution Ion Microprobe Reverse Geometry (SHRIMP-RG) in order to measure the amount of 29Si incorporated into the Si-rich layer on reacted olivine grains. We also cut cross sections of reacted grains from each experiment using a Focused Ion Beam (FIB) which were thinned to <100nm and imaged using Transmission Electron Microscopy (TEM). SHRIMP-RG results show incorporation of 29Si on olivine grain surfaces reacted for 19 days with no mixing, and TEM images of olivine grains from the same experiment show an amorphous, Si-rich layer that is 30nm thick. Similarly, SHRIMP-RG results for olivine grains reacted for 19 days with mixing indicate 29SiO2 precipitation and TEM images reveal a Si-rich layer 60nm thick. In both experiments, EDS (energy dispersive spectroscopy) data show a step change in composition from the bulk rock to the surface layer in addition to the sharp crystalline/amorphous interface visible in the TEM images. Olivine from the unmixed experiment also has a slow decrease in Mg relative to Si

  17. Effects of carbon-to-zeolite ratio on layered bed H{sub 2} PSA for coke oven gas

    SciTech Connect

    Lee, C.H.; Yang, J.; Ahn, H.

    1999-03-01

    Effects of carbon-to-zeolite ratio on a layered bed H{sub 2} PSA using activated carbon and zeolite 5A were studied experimentally and theoretically. Coke oven gas (56.,4 vol.% H{sub 2}, 26.6 vol.% CH{sub 4}, 8.4 vol.% CO, 5.5 vol. % N{sub 2}, and 3.1 vol.% CO{sub 2}) was used as a feed gas for the seven-step two-bed PSA process incorporating a backfill step. In these experiments, the effects of three operating variables such as adsorption pressure, feed rate and purge rate on the performance of a layered bed PSA were investigated. The layered bed gave better purity than the single-adsorbent bed at the same operating condition, except at low purge rate. Since every component had its own front velocity at each layer, a carbon-to-zeolite ratio affected product purity at a given recovery or throughput. Moreover, for a high-purity H{sub 2} product from coke oven gas, an optimum carbon-to-zeolite ratio had to be determined to control a leading wavefront of N{sub 2}. In layered bed PSA processes, the temperature variations inside the bed reflected a kind of inflection or plateau at which a roll-up phenomenon occurred and showed the dynamics of adsorption well at each step during a cycle. Simulated results of the dynamic model incorporating mass, energy and momentum balances agreed well with the PSA experimental results.

  18. Freestanding aligned carbon nanotube array grown on a large-area single-layered graphene sheet for efficient dye-sensitized solar cell.

    PubMed

    Qiu, Longbin; Wu, Qiong; Yang, Zhibin; Sun, Xuemei; Zhang, Yuanbo; Peng, Huisheng

    2015-03-01

    A novel carbon nanomaterial with aligned carbon nanotubes (CNTs) chemically bonded to a single-layered, large area graphene sheet is designed and fabricated, showing remarkable electronic and electrocatalytic properties. When the carbon nanomaterial is used as a counter electrode, the resulting dye-sensitized solar cell exhibits ≈11% enhancement of energy conversion efficiency than aligned CNT array. PMID:24889384

  19. Effect of Amount of Carbon on the Reduction Efficiency of Iron Ore-Coal Composite Pellets in Multi-layer Bed Rotary Hearth Furnace (RHF)

    NASA Astrophysics Data System (ADS)

    Mishra, Srinibash; Roy, Gour Gopal

    2016-08-01

    The effect of carbon-to-hematite molar ratio has been studied on the reduction efficiency of iron ore-coal composite pellet reduced at 1523 K (1250 °C) for 20 minutes in a laboratory scale multi-layer bed rotary hearth furnace (RHF). Reduced pellets have been characterized through weight loss measurement, estimation of porosity, shrinkage, qualitative and quantitative phase analysis by XRD. Performance parameters such as the degree of reduction, metallization, carbon efficiency, productivity, and compressive strength have been calculated to compare the process efficacy at different carbon levels in the pellets. Pellets with optimum carbon-to-hematite ratio (C/Fe2O3 molar ratio = 1.66) that is much below the stoichiometric carbon required for direct reduction of hematite yielded maximum reduction, better carbon utilization, and productivity for all three layers. Top layer exhibited maximum reduction at comparatively lower carbon level (C/Fe2O3 molar ratio <2.33) in the pellet, while bottom layer exceeded top layer reduction at higher carbon level (C/Fe2O3 molar ratio >2.33). Correlation between degree of reduction and metallization indicated non-isothermal kinetics influenced by heat and mass transfer in multi-layer bed RHF. Compressive strength of the partially reduced pellet with optimum carbon content (C/Fe2O3 molar ratio = 1.66) showed that they could be potentially used as an alternate feed in a blast furnace or any other smelting reactor.

  20. Effect of Amount of Carbon on the Reduction Efficiency of Iron Ore-Coal Composite Pellets in Multi-layer Bed Rotary Hearth Furnace (RHF)

    NASA Astrophysics Data System (ADS)

    Mishra, Srinibash; Roy, Gour Gopal

    2016-04-01

    The effect of carbon-to-hematite molar ratio has been studied on the reduction efficiency of iron ore-coal composite pellet reduced at 1523 K (1250 °C) for 20 minutes in a laboratory scale multi-layer bed rotary hearth furnace (RHF). Reduced pellets have been characterized through weight loss measurement, estimation of porosity, shrinkage, qualitative and quantitative phase analysis by XRD. Performance parameters such as the degree of reduction, metallization, carbon efficiency, productivity, and compressive strength have been calculated to compare the process efficacy at different carbon levels in the pellets. Pellets with optimum carbon-to-hematite ratio (C/Fe2O3 molar ratio = 1.66) that is much below the stoichiometric carbon required for direct reduction of hematite yielded maximum reduction, better carbon utilization, and productivity for all three layers. Top layer exhibited maximum reduction at comparatively lower carbon level (C/Fe2O3 molar ratio <2.33) in the pellet, while bottom layer exceeded top layer reduction at higher carbon level (C/Fe2O3 molar ratio >2.33). Correlation between degree of reduction and metallization indicated non-isothermal kinetics influenced by heat and mass transfer in multi-layer bed RHF. Compressive strength of the partially reduced pellet with optimum carbon content (C/Fe2O3 molar ratio = 1.66) showed that they could be potentially used as an alternate feed in a blast furnace or any other smelting reactor.

  1. Room temperature performance of 4 V aqueous hybrid supercapacitor using multi-layered lithium-doped carbon negative electrode

    NASA Astrophysics Data System (ADS)

    Makino, Sho; Yamamoto, Rie; Sugimoto, Shigeyuki; Sugimoto, Wataru

    2016-09-01

    Water-stable multi-layered lithium-doped carbon (LixC6) negative electrode using poly(ethylene oxide) (PEO)-lithium bis(trifluoromethansulfonyl)imide (LiTFSI) polymer electrolyte containing N-methyl-N-propylpiperidinium bis(trifluoromethansulfonyl)imide (PP13TFSI) ionic liquid was developed. Electrochemical properties at 60 °C of the aqueous hybrid supercapacitor using activated carbon positive electrode and a multi-layered LixC6 negative electrode (LixC6 | PEO-LiTFSI | LTAP) without PP13TFSI exhibited performance similar to that using Li anode (Li | PEO-LiTFSI | LTAP). A drastic decrease in ESR was achieved by the addition of PP13TFSI to PEO-LiTFSI, allowing room temperature operation. The ESR of the multi-layered LixC6 negative electrode with PEO-LiTFSI-PP13TFSI at 25 °C was 801 Ω cm2, which is 1/6 the value of the multi-layered Li negative electrode with PEO-LiTFSI (5014 Ω cm2). Charge/discharge test of the aqueous hybrid supercapacitor using multi-layered LixC6 negative electrode with PEO-LiTFSI-PP13TFSI at 25 °C afforded specific capacity of 20.6 mAh (g-activated carbon)-1 with a working voltage of 2.7-3.7 V, and good long-term capability up to 3000 cycles. Furthermore, an aqueous hybrid supercapacitor consisting of a high capacitance RuO2 nanosheet positive electrode and multi-layered LixC6 negative electrode with PEO-LiTFSI-PP13TFSI showed specific capacity of 196 mAh (g-RuO2)-1 and specific energy of 625 Wh (kg-RuO2)-1 in 2.0 M acetic acid-lithium acetate buffered solution at 25 °C.

  2. Black carbon concentrations and sources in the marine boundary layer of the tropical Atlantic Ocean using four methodologies

    NASA Astrophysics Data System (ADS)

    Pohl, K.; Cantwell, M.; Herckes, P.; Lohmann, R.

    2014-07-01

    Combustion-derived aerosols in the marine boundary layer have been poorly studied, especially in remote environments such as the open Atlantic Ocean. The tropical Atlantic has the potential to contain a high concentration of aerosols, such as black carbon, due to the African emission plume of biomass and agricultural burning products. Atmospheric particulate matter samples across the tropical Atlantic boundary layer were collected in the summer of 2010 during the southern hemispheric dry season when open fire events were frequent in Africa and South America. The highest black carbon concentrations were detected in the Caribbean Sea and within the African plume, with a regional average of 0.6 μg m-3 for both. The lowest average concentrations were measured off the coast of South America at 0.2 to 0.3 μg m-3. Samples were quantified for black carbon using multiple methods to provide insights into the form and stability of the carbonaceous aerosols (i.e., thermally unstable organic carbon, soot like, and charcoal like). Soot-like aerosols composed up to 45% of the carbonaceous aerosols in the Caribbean Sea to as little as 4% within the African plume. Charcoal-like aerosols composed up to 29% of the carbonaceous aerosols over the oligotrophic Sargasso Sea, suggesting that non-soot-like particles could be present in significant concentrations in remote environments. To better apportion concentrations and forms of black carbon, multiple detection methods should be used, particularly in regions impacted by biomass burning emissions.

  3. Carbon-tolerant solid oxide fuel cells using NiTiO3 as an anode internal reforming layer

    NASA Astrophysics Data System (ADS)

    Wang, Zhiquan; Wang, Zhenbin; Yang, Wenqiang; Peng, Ranran; Lu, Yalin

    2014-06-01

    In this work, adding a NiTiO3 (NTO) reforming layer is firstly adopted as a low cost method to improve the carbon tolerance in solid oxide fuel cells. XRD patterns suggest that NTO has a good chemical compatibility with the YSZ electrolyte, and NTO can be totally reduced to Ni and TiO2 when exposing to the H2 atmosphere. Maximum power densities for the cells with the NTO layers at 700 °C are 270 mWcm-2 with wet H2 fuel, and 236 mWcm-2 with wet methane fuel, respectively. Improved discharging stability for the cells with NTO layers has also been observed. The current density remains unchanged for the cells with NTO layers during a 26 h test, while it drops to zero within 1 h for the cells without NTO. Above electro-performance and long term stability tests suggest that fabricating a NTO reforming layer on the anode surface is an efficient and inexpensive method to realize highly carbon tolerant SOFCs.

  4. Methane and carbon dioxide increases in the urban boundary layer: Inferences from whole-column infrared absorbance measurements

    SciTech Connect

    Gurney, K.R.; Hansen, A.D.A.; Rosen, H.

    1988-01-01

    Using the sun as an infrared source, we determined the total atmospheric column absorbance of methane and carbon dioxide spectral lines in the 8- to 10-..mu..m infrared region. At our laboratory located in an urban region, these absorbances showed fluctuations larger than can be accounted for by known variabilities in the background atmosphere. We interpret these observations in terms of large changes in concentration of methane and carbon dioxide within the urban boundary layer. These increases could affect the radiative balance in urban locations and contribute to the urban heat island. copyright American Geophysical Union 1988

  5. Deep soil layer is fundamental for evaluating carbon accumulation in agroecosystems

    NASA Astrophysics Data System (ADS)

    Dal Ferro, Nicola; Morari, Francesco; Simonetti, Gianluca; Polese, Riccardo; Berti, Antonio

    2015-04-01

    Soil organic carbon (SOC) is essential to secure key ecosystem services such as the provision of food and other biomass production, the filtering, buffering and transformation capacity and the climate regulation. It has been estimated that approximately 57% of the globally emitted C (8.7 Gt y-1) to the atmosphere is adsorbed by biospheric C pools, ascertaining the potential soil C sink capacity of managed ecosystems at 55 to 78 Gt, of which only 50 to 66% attainable. Therefore it is essential the full knowledge of soil management practices that can affect SOC dynamics and, in turn, climate change. Several studies focussed on the evaluation of the best cropping management practices to accumulate C in the soil profile. Nevertheless, in most cases soil analyses were made in the topsoil (generally in the 0-30 cm layer), ignoring the effect of C translocation in the deeper soil profile as a result of tillage practices, crop root deepening etc. In this context, in a long-term experiment established in the early 1960s, we quantified the SOC accumulation within the soil profile (0-90 cm) and evaluate the effects of different cropping system on SOC dynamics. The experiment is located at the experimental farm of the University of Padova, in northeastern Italy. The trial compares four rotations with three levels of mineral fertilisation and with or without organic fertilisation. The rotations considered are: continuous crops (grain maize, forage maize, winter wheat and permanent meadow); two-year (maize-wheat); four-year (sugarbeet, soybean, wheat, maize) and six-year (maize, sugarbeet, maize, wheat, alfalfa, alfalfa) with different levels of mineral, organic and mixed fertilisations. Crops with superficially developed rooting systems (e.g. permanent meadow) highly increased SOC only in the topsoil. This effect was enhanced by the contribution of organic amendment-C. Root-derived carbon played a pivotal role also in the deepest soil profile (60-90 cm) by increasing the SOC

  6. Acoustic characterization of void distributions across carbon-fiber composite layers

    NASA Astrophysics Data System (ADS)

    Tayong, Rostand B.; Smith, Robert A.; Pinfield, Valerie J.

    2016-02-01

    Carbon Fiber Reinforced Polymer (CFRP) composites are often used as aircraft structural components, mostly due to their superior mechanical properties. In order to improve the efficiency of these structures, it is important to detect and characterize any defects occurring during the manufacturing process, removing the need to mitigate the risk of defects through increased thicknesses of structure. Such defects include porosity, which is well-known to reduce the mechanical performance of composite structures, particularly the inter-laminar shear strength. Previous work by the authors has considered the determination of porosity distributions in a fiber-metal laminate structure [1]. This paper investigates the use of wave-propagation modeling to invert the ultrasonic response and characterize the void distribution within the plies of a CFRP structure. Finite Element (FE) simulations are used to simulate the ultrasonic response of a porous composite laminate to a typical transducer signal. This simulated response is then applied as input data to an inversion method to calculate the distribution of porosity across the layers. The inversion method is a multi-dimensional optimization utilizing an analytical model based on a normal-incidence plane-wave recursive method and appropriate mixture rules to estimate the acoustical properties of the structure, including the effects of plies and porosity. The effect of porosity is defined through an effective wave-number obtained from a scattering model description. Although a single-scattering approach is applied in this initial study, the limitations of the method in terms of the considered porous layer, percentage porosity and void radius are discussed in relation to single- and multiple-scattering methods. A comparison between the properties of the modeled structure and the void distribution obtained from the inversion is discussed. This work supports the general study of the use of ultrasound methods with inversion to

  7. Investigation of carbonized layer on surface of NaAlSi glass fibers

    NASA Astrophysics Data System (ADS)

    Pentjuss, E.; Lusis, A.; Bajars, G.; Gabrusenoks, J.

    2013-12-01

    There are presented and discussed experimental results about carbonate shell on the sodium rich alumosilicate (NaAlSi) glass fibers and carbonization in wet air atmosphere and water uptake kinetic of such fiber fabrics. The analyzes of water uptake kinetic by regression technique, leaching and heating of carbonized glass fabrics helped to separate stages of fast and slow processes between fiber and carbonate shell and air atmosphere. The shell contains mixture of trona and hydrated sodium carbonate. Heating converts both substances to sodium carbonate. The weight uptake after heating encounters two fast exponential processes associated with water absorption on the surface of carbonated shell and its diffusion into volume. The slow process associates with CO2 and H2O absorption from air, hydration and sodium carbonate conversion to trona.

  8. 'Bucky gel' of multiwalled carbon nanotubes as electrodes for high performance, flexible electric double layer capacitors.

    PubMed

    Singh, Manoj K; Kumar, Yogesh; Hashmi, S A

    2013-11-22

    We report the preparation of a gelled form of multiwalled carbon nanotubes (MWCNTs) with an ionic liquid 1-butyl-1-methyl pyrrolidinium bis(trifluoromethane sulfonyl)imide (BMPTFSI)), referred to as 'bucky gel', to be used as binderless electrodes in electrical double layer capacitors (EDLCs). The characteristics of gelled MWCNTs are compared with pristine MWCNTs using transmission electron microscopy, x-ray diffraction and Raman studies. A gel polymer electrolyte film consisting of a blend of poly(vinylidene fluoride-co-hexafluoropropylene) and BMPTFSI, exhibiting a room temperature ionic conductivity of 1.5 × 10(-3) S cm(-1), shows its suitability as an electrolyte/separator in flexible EDLCs. The performance of EDLCs, assembled with bucky gel electrodes, using impedance spectroscopy, cyclic voltammetry and charge-discharge analyses, are compared with those fabricated with pristine MWCNT-electrodes. An improvement in specific capacitance (from 19.6 to 51.3 F g(-1)) is noted when pristine MWCNTs are replaced by gelled MWCNT-binderless electrodes. Although the rate performance of the EDLCs with gelled MWCNT-electrodes is reduced, the pulse power of the device is sufficiently high (~10.5 kW kg(-1)). The gelled electrodes offer improvements in energy and power densities from 2.8 to 8.0 Wh kg(-1) and 2.0 to 4.7 kW kg(-1), respectively. Studies indicate that the gel formation of MWCNTs with ionic liquid is an excellent route to obtain high-performance EDLCs. PMID:24157648

  9. Stable carbon isotope ratios of toluene in the boundary layer and the lower free troposphere

    NASA Astrophysics Data System (ADS)

    Wintel, J.; Hösen, E.; Koppmann, R.; Krebsbach, M.; Hofzumahaus, A.; Rohrer, F.

    2013-11-01

    During the field campaign ZEPTER-2 in autumn 2008 whole air samples were collected on board a Zeppelin NT airship in the planetary boundary layer (PBL) and the lower free troposphere (LFT) over south-west Germany using the ZEppelin Based Isotope Sampler (ZEBIS). These samples were analysed with respect to volatile organic compound (VOC) mixing ratios and stable carbon isotope ratios using a gas chromatograph combustion isotope ratio mass spectrometer (GC-C-IRMS). In this study we present results for toluene, one of the major anthropogenic pollutants, which emphasise the viability of isotope ratio measurements in VOC for atmospheric research, especially to study VOC sources or to track both dynamical and chemical processes. In situ measurements of CO mixing ratios on board the Zeppelin NT were used to allocate the air samples either to the PBL or the LFT. In the PBL we observed rather fresh emissions mixing into the background air. We estimated a toluene source isotope ratio of δ13C = -28.2 ± 0.5‰. Samples from the PBL and the LFT were clearly distinguishable by means of their mixing ratio and isotope ratio signatures. Using the concept of the effective kinetic isotope effect, we were able to separate the effects of dilution processes and photochemical degradation in the free troposphere. We calculated the photochemical age of toluene in the atmosphere in two different ways using isotope ratios and mixing ratios. The results differ strongly in the PBL, probably due to mixing processes, but are compatible with each other in the LFT. Here, they correlate with a slope of 0.90±0.31.

  10. Fabrication of particular structures of hexagonal boron nitride and boron-carbon-nitrogen layers by anisotropic etching

    NASA Astrophysics Data System (ADS)

    Vishwakarma, Riteshkumar; Sharma, Subash; Shinde, Sachin M.; Sharma, Kamal P.; Thangaraja, Amutha; Kalita, Golap; Tanemura, Masaki

    2016-05-01

    Anisotropic etching of hexagonal boron nitride (h-BN) and boron-carbon-nitrogen (BCN) basal plane can be an exciting platform to develop well-defined structures with interesting properties. Here, we developed an etching process of atomically thin h-BN and BCN layers to fabricate nanoribbons (NRs) and other distinct structures by annealing in H2 and Ar gas mixture. BCN and h-BN films are grown on Cu foil by chemical vapor deposition (CVD) using solid camphor and ammonia borane as carbon, nitrogen and boron source, respectively. Formation of micron size well-defined etched holes and NRs are obtained in both h-BN and BCN layers by the post growth annealing process. The etching process of h-BN and BCN basal plane to fabricate NRs and other structures with pronounced edges can open up new possibilities in 2D hybrid materials.

  11. Global Distribution of Total Inorganic Carbon and Total Alkalinity below the Deepest Winter Mixed Layer Depths

    SciTech Connect

    Goyet, C.; Healy, R.; Ryan, J.; Kozyr, A.

    2000-05-01

    Modeling the global ocean-atmosphere carbon dioxide system is becoming increasingly important to greenhouse gas policy. These models require initialization with realistic three-dimensional (3-D) oceanic carbon fields. This report presents an approach to establishing these initial conditions from an extensive global database of ocean carbon dioxide (CO{sub 2}) system measurements and well-developed interpolation methods.

  12. Stable, Microfabricated Thin Layer Chromatography Plates without Volume Distortion on Patterned, Carbon and Al2O3-Primed Carbon Nanotube Forests

    SciTech Connect

    Jensen, David S.; Kanyal, Supriya S.; Gupta, Vipul; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Vanfleet, Richard; Davis, Robert C.; Linford, Matthew R.

    2012-09-28

    In a recent report (Song, J.; et al., Advanced Functional Materials 2011, 21, 1132-1139) some of us described the fabrication of thin layer chromatography (TLC) plates from patterned carbon nanotube (CNT) forests, which were directly infiltrated/coated with silicon by low pressure chemical vapor deposition (LPCVD) of silicon using SiH4. Following infiltration, the nanotubes were removed from the assemblies and the silicon simultaneously converted to SiO2 in a high temperature oxidation step. However, while straightforward, this process had some shortcomings, not the least of which was some distortion of the lithographically patterned features during the volume expansion that accompanied oxidation. Herein we overcome theis issue and also take substantial steps forward in the microfabrication of TLC plates by showing: (i) A new method for creating an adhesion promotion layer on CNT forests by depositing a few nanometers of carbon followed by atomic layer deposition (ALD) of Al2O3. This method for appears to be new, and X-ray photoelectron spectroscopy confirms the expected presence of oxygen after carbon deposition. ALD of Al2O3 alone and in combination with the carbon on patterned CNT forests was also explored as an adhesion promotion layer for CNT forest infiltration. (ii) Rapid, conformal deposition of an inorganic material that does not require subsequent oxidation: fast pseudo-ALD growth of SiO2 via alumina catalyzed deposition of tris(tert-butoxy)silanol onto the carbon/Al2O3-primed CNT forests. (iii) Faithful reproduction of the features in the masks used to microfabricate the TLC plates (M-TLC) this advance springs from the previous two points. (iv) A bonded (amino) phase on a CNT-templated microfabricated TLC plate. (v) Fast, highly efficient (125,000 - 225,000 N/m) separations of fluorescent dyes on M-TLC plates. (vi) Extensive characterization of our new materials by TEM, SEM, EDAX, DRIFT, and XPS. (vii) A substantially lower process temperature for the

  13. Sedimentary sources of old high molecular weight dissolved organic carbon from the ocean margin benthic nepheloid layer

    SciTech Connect

    Guo, L. Santschi, P.H.

    2000-02-01

    Average {sup 14}C ages of dissolved organic carbon (DOC) in the ocean are 3--6,000 years, and are influenced by old DOC from continental margins. However, sources of DOC from terrestrial, autochthonous, and sedimentary organic carbon seem to be too young to be responsible for the old DOC observed in the ocean. Since colloidal organic carbon (COC, i.e., high molecular weight DOC), which is chemically very similar to that of bulk DOC, can be effectively isolated from seawater using cross-flow ultrafiltration, it can hold clues to sources and pathways of DOC turnover in the ocean. Radiocarbon measurements on COC in the water column and benthic nepheloid layer (BNL) from two continental margin areas (the Middle Atlantic Bight and the Gulf of Mexico) and controlled laboratory experiments were carried out to study sources of old DOC in the ocean margin areas. Vertical distributions of suspended particulate matter (SPM), particulate organic carbon (POC), nitrogen (PON), and DOC in the water column and bottom waters near the sediment-water interface all demonstrate a well developed benthic nepheloid layer in both ocean margin areas. COC from the BNL was much older than COC from the overlying water column. These results, together with strong concentration gradients of SPM, POC, PON, and DOC, suggest a sedimentary source for organic carbon species and possibly for old COC as well in BNL waters. This is confirmed by the results from controlled laboratory experiments. The heterogeneity of {Delta}{sup 14}C signatures in bulk SOC thus points to a preferential release of old organic components from sediment resuspension, which can be the transport mechanism of the old benthic COC observed in ocean margin areas. Old COC from continental margin nepheloid layers may thus be a potential source of old DOC to the deep ocean.

  14. Probing the Interfacial Interaction in Layered-Carbon-Stabilized Iron Oxide Nanostructures: A Soft X-ray Spectroscopic Study.

    PubMed

    Zhang, Hui; Liu, Jinyin; Zhao, Guanqi; Gao, Yongjun; Tyliszczak, Tolek; Glans, Per-Anders; Guo, Jinghua; Ma, Ding; Sun, Xu-Hui; Zhong, Jun

    2015-04-22

    We have stabilized the iron oxide nanoparticles (NPs) of various sizes on layered carbon materials (Fe-oxide/C) that show excellent catalytic performance. From the characterization of X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy (XES), scanning transmission X-ray microscopy (STXM) and X-ray magnetic circular dichroism spectroscopy (XMCD), a strong interfacial interaction in the Fe-oxide/C hybrids has been observed between the small iron oxide NPs and layered carbon in contrast to the weak interaction in the large iron oxide NPs. The interfacial interaction between the NPs and layered carbon is found to link with the improved catalytic performance. In addition, the Fe L-edge XMCD spectra show that the large iron oxide NPs are mainly γ-Fe2O3 with a strong ferromagnetic property, whereas the small iron oxide NPs with strong interfacial interaction are mainly α-Fe2O3 or amorphous Fe2O3 with a nonmagnetic property. The results strongly suggest that the interfacial interaction plays a key role for the catalytic performance, and the experimental findings may provide guidance toward rational design of high-performance catalysts. PMID:25839786

  15. The effects of cell assembly compression on the performance of carbon electrochemical double-layer capacitor electrodes

    NASA Astrophysics Data System (ADS)

    Gourdin, Gerald; Jiang, Thomas; Smith, Patricia; Qu, Deyang

    2012-10-01

    Our previous work concluded that the application of force altered the physical structure of the activated carbon electrodes, which resulted in a decrease in the accessible surface area and a displacement of the electrolyte. In this work, the response that different carbon material electrodes exhibit to an applied force was evaluated. Activated carbon powders possess different porous structures, which would exhibit different behaviors when subjected to an applied force and after the release of that force. Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) were used to characterize the response behaviors of the different carbons. Furthermore, a porosimetry analysis was conducted on the carbon material of the electrode before and after the application of force. It was concluded that the application of force shifted the pore distribution toward overall smaller pores through a compression of the porous structure of the carbon. This resulted in a decrease in the more easily accessible surface area, which was exhibited as a decrease in the capacitance values as calculated from the cyclic voltammetry data. There was no longer sufficient time to access the now smaller powers at the given time scale of the cyclic voltammetry analysis, which negatively impacted the formation of the double layer.

  16. Application of Polypyrrole Multi-Walled Carbon Nanotube Composite Layer for Detection of Mercury, Lead and Iron Ions Using Surface Plasmon Resonance Technique

    PubMed Central

    Sadrolhosseini, Amir Reza; Noor, A. S. M.; Bahrami, Afarin; Lim, H. N.; Talib, Zainal Abidin; Mahdi, Mohd. Adzir

    2014-01-01

    Polypyrrole multi-walled carbon nanotube composite layers were used to modify the gold layer to measure heavy metal ions using the surface plasmon resonance technique. The new sensor was fabricated to detect trace amounts of mercury (Hg), lead (Pb), and iron (Fe) ions. In the present research, the sensitivity of a polypyrrole multi-walled carbon nanotube composite layer and a polypyrrole layer were compared. The application of polypyrrole multi-walled carbon nanotubes enhanced the sensitivity and accuracy of the sensor for detecting ions in an aqueous solution due to the binding of mercury, lead, and iron ions to the sensing layer. The Hg ion bonded to the sensing layer more strongly than did the Pb and Fe ions. The limitation of the sensor was calculated to be about 0.1 ppm, which produced an angle shift in the region of 0.3° to 0.6°. PMID:24733263

  17. Application of polypyrrole multi-walled carbon nanotube composite layer for detection of mercury, lead and iron ions using surface plasmon resonance technique.

    PubMed

    Sadrolhosseini, Amir Reza; Noor, A S M; Bahrami, Afarin; Lim, H N; Talib, Zainal Abidin; Mahdi, Mohd Adzir

    2014-01-01

    Polypyrrole multi-walled carbon nanotube composite layers were used to modify the gold layer to measure heavy metal ions using the surface plasmon resonance technique. The new sensor was fabricated to detect trace amounts of mercury (Hg), lead (Pb), and iron (Fe) ions. In the present research, the sensitivity of a polypyrrole multi-walled carbon nanotube composite layer and a polypyrrole layer were compared. The application of polypyrrole multi-walled carbon nanotubes enhanced the sensitivity and accuracy of the sensor for detecting ions in an aqueous solution due to the binding of mercury, lead, and iron ions to the sensing layer. The Hg ion bonded to the sensing layer more strongly than did the Pb and Fe ions. The limitation of the sensor was calculated to be about 0.1 ppm, which produced an angle shift in the region of 0.3° to 0.6°. PMID:24733263

  18. Fabrication of multi-walled carbon nanotube layers with selected properties via electrophoretic deposition: physicochemical and biological characterization

    NASA Astrophysics Data System (ADS)

    Benko, Aleksandra; Przekora, Agata; Wesełucha-Birczyńska, Aleksandra; Nocuń, Marek; Ginalska, Grażyna; Błażewicz, Marta

    2016-04-01

    The aim of the study was to fabricate and extensively characterize a layer of carbon nanotubes deposited on the surface of titanium, in order to prove that, by selecting proper type of carbon nanotubes and altering different parameters of the electrophoretic deposition process, we are able to obtain products having a different influence on cells—either favouring or inhibiting their survival. In the study, a novel mixture of solvents was used to suspend as-received tubes and then applied in the electrophoretic deposition. High charging capability and high yield of the obtained deposits are promising results when considering up-scaling the process. The surface of the obtained multi-walled carbon nanotubes-coated titanium samples was characterized using SEM, AFM, XPS and Raman microspectroscopy. The carbon nanotube layer showed nanorough topography and was formed of randomly and loosely distributed tubes, and XPS study revealed that there was a significant amount of C-O bonds. These properties were found to be favourable to osteoblast survival, spreading and growth.

  19. Microscale characterisation of stochastically reconstructed carbon fiber-based Gas Diffusion Layers; effects of anisotropy and resin content

    NASA Astrophysics Data System (ADS)

    Yiotis, Andreas G.; Kainourgiakis, Michael E.; Charalambopoulou, Georgia C.; Stubos, Athanassios K.

    2016-07-01

    A novel process-based methodology is proposed for the stochastic reconstruction and accurate characterisation of Carbon fiber-based matrices, which are commonly used as Gas Diffusion Layers in Proton Exchange Membrane Fuel Cells. The modeling approach is efficiently complementing standard methods used for the description of the anisotropic deposition of carbon fibers, with a rigorous model simulating the spatial distribution of the graphitized resin that is typically used to enhance the structural properties and thermal/electrical conductivities of the composite Gas Diffusion Layer materials. The model uses as input typical pore and continuum scale properties (average porosity, fiber diameter, resin content and anisotropy) of such composites, which are obtained from X-ray computed microtomography measurements on commercially available carbon papers. This information is then used for the digital reconstruction of realistic composite fibrous matrices. By solving the corresponding conservation equations at the microscale in the obtained digital domains, their effective transport properties, such as Darcy permeabilities, effective diffusivities, thermal/electrical conductivities and void tortuosity, are determined focusing primarily on the effects of medium anisotropy and resin content. The calculated properties are matching very well with those of Toray carbon papers for reasonable values of the model parameters that control the anisotropy of the fibrous skeleton and the materials resin content.

  20. Experimental studies and physically substantiated model of carbon dioxide emission from the exposed cultural layer of Velikii Novgorod

    NASA Astrophysics Data System (ADS)

    Smagin, A. V.; Dolgikh, A. V.; Karelin, D. V.

    2016-04-01

    The results of quantitative assessment and modeling of carbon dioxide emission from urban pedolithosediments (cultural layer) in the central part of Velikii Novgorod are discussed. At the first stages after the exposure of the cultural layer to the surface in archaeological excavations, very high CO2 emission values reaching 10-15 g C/(m2 h) have been determined. These values exceed the normal equilibrium emission from the soil surface by two orders of magnitude. However, they should not be interpreted as indications of the high biological activity of the buried urban sediments. A model based on physical processes shows that the measured emission values can be reliably explained by degassing of the soil water and desorption of gases from the urban sediments. This model suggests the diffusion mechanism of the transfer of carbon dioxide from the cultural layer into the atmosphere; in addition, it includes the equations to describe nonequilibrium interphase interactions (sorption-desorption and dissolution-degassing of CO2) with the first-order kinetics. With the use of statistically reliable data on physical parameters—the effective diffusion coefficient as dependent on the aeration porosity, the effective solubility, the Henry constant for the CO2 sorption, and the kinetic constants of the CO2 desorption and degassing of the soil solution—this model reproduces the experimental data on the dynamics of CO2 emission from the surface of the exposed cultural layer obtained by the static chamber method.

  1. Black carbon concentrations across the tropical Atlantic boundary layer using three methods

    NASA Astrophysics Data System (ADS)

    Pohl, K.; Lohmann, R.; Cantwell, M.; Herckes, P.

    2012-12-01

    24 particulate black carbon (BC) samples were quantified using three methods: a chemo-thermal oxidation at 375°C (CTO-375), a thermal optical transition method (Sunset Method), and pyrene fluorescence loss (PFL). BC samples were taken using a high-volume air sampler aboard the R/V Endeavor during the summer of 2010 in the Equatorial Atlantic Ocean in order to sample the aeolian "hotspot" plume of aerosols that extend from the African continent. Models have shown that annual elemental carbon (EC) deposition fluxes in this area could be as high as 25μg cm-2 a-1, which may be a significant contribution to the overall carbon budget as well as climate forcing simulations. Expected BC concentrations for this area, based on a global BC inventory using the MOGUNTIA global transport model, range between 0.01-1μg/m3 depending on season. The CTO-375 processed samples were run on an IRMS to get the total organic carbon (TOC), BC concentrations, and δ13C isotope ratios. BC was detected in every sample and concentrations ranged between 0.16-9.97μg/m3. BC concentrations were highest off the coast of the US and Caribbean islands but were lower (0.16-0.26μg/m3) in the African plume sampled between 1-5°N and 21-29°W. BC comprised between 13-81% of the TOC pool and δ13C isotopes between the TOC and BC for each sample differed by no more than 3‰. The TOC and BC pools average was -28.9‰ and -28.1‰ respectively, suggesting a C4 plant origin. A different isotope trend was evident for samples 16-19 (African plume). Their δ13C average was -23.1‰ for TOC, suggesting a mostly marine origin of the organic carbon or a mix of marine with C3 and C4 plants. This supports the observed lower BC/TOC ratio in these samples (13-50%). EC concentrations determined by the Sunset Method ranged between 0-0.32μg/m3, with EC being detected in only 8 of the 24 samples. In general, EC was found above the detection limit near the United States coastline or in the "hotspot" plume off Africa

  2. Equilibrium Lattice Relaxation and Misfit Dislocations in Step-Graded In x Ga1- x As/GaAs (001) and In x Al1- x As/GaAs (001) Metamorphic Buffer Layers

    NASA Astrophysics Data System (ADS)

    Kujofsa, Tedi; Ayers, John E.

    2016-06-01

    The inclusion of metamorphic buffer layers (MBLs) in the design of lattice-mismatched semiconductor heterostructures is important in enhancing reliability and performance of optoelectronic and electronic devices through proper control of threading dislocations; threading dislocation can be reduced by allowing the distribution of the misfit dislocations throughout the MBL, rather than concentrating them at the interface where substrate defects and tangling can pin dislocations or otherwise reduce their mobility. Compositionally graded layers have been particularly used for this purpose and in this work we considered heterostructures involving a step-graded In x Ga1- x As or In x Al1- x As epitaxial layer on a GaAs (001) substrate. For each structure type, we present minimum energy calculations including (i) the surface and (ii) average in-plane strain and (iii) the misfit dislocation density profile with various grading coefficients (thickness and indium composition variation). In both types of structures, the average in-plane strain and misfit dislocation density profile scale with the average grading coefficient, but In x Al1- x As structures with a greater average elastic stiffness constants exhibit slightly higher average compressive in-plane strain (absolute valued) which is associated with higher misfit dislocation densities. However, the rate of change in the normalized relaxation percentage per unit thickness of each step with respect to the lattice mismatch of the step is lower in the In x Al1- x As material system. The difference of the in-plane strain is small (<3%), however, so that these material systems are virtually interchangeable in terms of their mechanical behavior (<5.1% change in elastic constants).

  3. Eight combinatorial stacks of three layers of carbon black/PVA-carbon black/EVA composite as a vapor detector array.

    PubMed

    Setasuwon, Paisan; Menbangpung, Laongdao; Sahasithiwat, Somboon

    2008-01-01

    Eight specimens of combinatorial stacking of 3 layers of carbon black/PVA-carbon black/EVA composite were prepared on substrate with interdigitated electrode. They were subjected to 15 solvent vapors with dielectric constants from 2-80,and their responses were processed for calculation of resolution factor (RF). If the detector responses are assumed to have a normal distribution, RF values of 1.0, 2.0, and 3.0 indicate the 76, 92, and 98% confidence, respectively, of correctly identifying one analyte from the other of a specific pair. Of the possible 105 pairs, 99 pairs have RF values of more than 3, 5 pairs have RF values of more than 1, and only one pair has an RF value of less than 1. The resolution factor was affected by both the dielectric constant and boiling point of tested solvents. Employing Fisher linear discrimination improves all RF values greater than 3, making confidence in resolving the pair reach almost 100%. Contributions from each combination were studied, and it was shown that diversity by combinatorial stacking is essential to the improvement of RF value. All of these capabilities are derived from combinatorial stacking of 3 layers of just two simple carbon black/polymer composites. PMID:18855459

  4. Electron beam-induced nanopatterning of multilayer graphene and amorphous carbon films with metal layers

    SciTech Connect

    Rodriguez-Manzo, Julio A.; Banhart, Florian

    2011-05-02

    Thin Co and Ni lamellae grow under electron irradiation of metal crystals supported on multilayer graphene or amorphous carbon films. The lateral growth of a lamella from a source crystal is achieved by directing an electron beam to the periphery of the metal crystal and moving the beam over the surrounding carbon. Patterns of linear, branched, or ringlike metal lamellae can be created. The patterning is carried out in situ in a transmission electron microscope, allowing simultaneous structuring and imaging. The process is driven by the metal-carbon interaction at a beam-activated carbon surface.

  5. Y{sub 2}O{sub 3}:Yb/Er nanotubes: Layer-by-layer assembly on carbon-nanotube templates and their upconversion luminescence properties

    SciTech Connect

    Huang, Weishi; Shen, Jianfeng; Wan, Lei; Chang, Yu; Ye, Mingxin

    2012-11-15

    Graphical abstract: Well-shaped Y{sub 2}O{sub 3}:Yb/Er nanotubes have been successfully synthesized on a large scale via layer-by-layer assembly on carbon nanotubes templates followed by a subsequent heat treatment process. The as-prepared Y{sub 2}O{sub 3}:Yb/Er nanotubes show a strong red emission corresponding to the {sup 4}F{sub 9/2}–{sup 4}I{sub 15/2} transition of the Er{sup 3+} ions under excitation at 980 nm. Display Omitted Highlights: ► Well-shaped Y{sub 2}O{sub 3}:Yb/Er nanotubes have been successfully synthesized. ► CNTs were used as templates for Y{sub 2}O{sub 3}:Yb/Er nanotubes. ► LBL assembly and calcination were used for preparation of Y{sub 2}O{sub 3}:Yb/Er nanotubes. ► The as-prepared Y{sub 2}O{sub 3}:Yb/Er nanotubes show a strong red emission. -- Abstract: Well-shaped Y{sub 2}O{sub 3}:Yb/Er nanotubes have been successfully synthesized on a large scale via layer-by-layer (LBL) assembly on carbon nanotubes (CNTs) templates followed by a subsequent heat treatment process. The crystal structure, element analysis, morphology and upconversion luminescence properties were characterized. XRD results demonstrate that the diffraction peaks of the samples calcinated at 800 °C or above can be indexed to the pure cubic phase of Y{sub 2}O{sub 3}. SEM images indicate that a large quantity of uniform and rough nanotubes with diameters of about 30–60 nm can be observed. The as-prepared Y{sub 2}O{sub 3}:Yb/Er nanotubes show a strong red emission corresponding to the {sup 4}F{sub 9/2}–{sup 4}I{sub 15/2} transition of the Er{sup 3+} ions under excitation at 980 nm, which have potential applications in such fields as nanoscale devices, molecular catalysts, nanobiotechnology, photonics and optoelectronics.

  6. Sol-gel processed thin-layer ruthenium oxide/carbon black supercapacitors: A revelation of the energy storage issues

    NASA Astrophysics Data System (ADS)

    Panić, V. V.; Dekanski, A. B.; Stevanović, R. M.

    Hydrous ruthenium oxide/carbon black nanocomposites were prepared by impregnation of the carbon blacks by differently aged inorganic RuO 2 sols, i.e. of different particle size. Commercial Black Pearls 2000 ® (BP) and Vulcan ® XC-72 R (XC) carbon blacks were used. Capacitive properties of BP/RuO 2 and XC/RuO 2 composites were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in H 2SO 4 solution. Capacitance values and capacitance distribution through the composite porous layer were found different if high- (BP) and low- (XC) surface-area carbons are used as supports. The aging time (particle size) of Ru oxide sol as well as the concentration of the oxide solid phase in the impregnating medium influenced the capacitive performance of prepared composites. While the capacitance of BP-supported oxide decreases with the aging time, the capacitive ability of XC-supported oxide is promoted with increasing oxide particle size. The increase in concentration of the oxide solid phase in the impregnating medium caused an improvement of charging/discharging characteristics due to pronounced pseudocapacitance contribution of the increasing amount of inserted oxide. The effects of these variables in the impregnation process on the energy storage capabilities of prepared nanocomposites are envisaged as a result of intrinsic way of population of the pores of carbon material by hydrous Ru oxide particle.

  7. Preparation of hierarchical porous carbon from waste printed circuit boards for high performance electric double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Du, Xuan; Wang, Li; Zhao, Wei; Wang, Yi; Qi, Tao; Li, Chang Ming

    2016-08-01

    Renewable clean energy and resources recycling have become inevitable choices to solve worldwide energy shortages and environmental pollution problems. It is a great challenge to recycle tons of waste printed circuit boards (PCB) produced every year for clean environment while creating values. In this work, low cost, high quality activated carbons (ACs) were synthesized from non-metallic fractions (NMF) of waste PCB to offer a great potential for applications of electrochemical double-layer capacitors (EDLCs). After recovering metal from waste PCB, hierarchical porous carbons were produced from NMF by carbonization and activation processes. The experimental results exhibit that some pores were formed after carbonization due to the escape of impurity atoms introduced by additives in NMF. Then the pore structure was further tailored by adjusting the activation parameters. Roles of micropores and non-micropores in charge storage were investigated when the hierarchical porous carbons were applied as electrode of EDLCs. The highest specific capacitance of 210 F g-1 (at 50 mA g-1) and excellent rate capability were achieved when the ACs possessing a proper micropores/non-micropores ratio. This work not only provides a promising method to recycle PCB, but also investigates the structure tailoring arts for a rational hierarchical porous structure in energy storage/conversion.

  8. Efficiency enhancement of solution-processed inverted organic solar cells with a carbon-nanotube-doped active layer

    NASA Astrophysics Data System (ADS)

    Lin, Wen-Kai; Su, Shui-Hsiang; Yeh, Meng-Cheng; Huang, Yang-Chan; Yokoyama, Meiso

    2016-01-01

    Solution-processed titanium-doped ZnO (TZO) is synthesized by the sol-gel method to be the electron-transporting layer (ETL) in an inverted organic solar cell (IOSC). Carbon nanotubes (CNTs) are doped into an active layer of poly(3-hexylthiophene):[6,6]-phenyl C 61 butyric acid methyl ester (P3HT:PCBM). The addition of CNTs in the P3HT:PCBM composite increases the conjugation length of P3HT:PCBM:CNTs, which simultaneously enhances the capacity of the composite to absorb solar energy radiation. Vanadium oxide (V2O5) was spin-coated onto the active layer to be a hole-transporting layer (HTL). The power conversion efficiency (PCE) results indicate that the V2O5 nanobelt structure possesses better phase separation and provides a more efficient surface area for the P3HT:PCBM:CNT active layer to increase photocurrent. The optimized IOSCs exhibited an open circuit voltage (Voc), a short-circuit current density (Jsc), a fill factor (FF), and a PCE of 0.55 V, 6.50 mA/cm2, 58.34%, and 2.20%, respectively, under simulated AM1.5G illumination of 100 mW/cm2.

  9. Selective Breaking of Hydrogen Bonds of Layered Carbon Nitride for Visible Light Photocatalysis.

    PubMed

    Kang, Yuyang; Yang, Yongqiang; Yin, Li-Chang; Kang, Xiangdong; Wang, Lianzhou; Liu, Gang; Cheng, Hui-Ming

    2016-08-01

    Selective breaking of the hydrogen bonds of graphitic carbon nitride can introduce favorable features, including increased band tails close to the band edges and the creation of abundant pores. These features can simultaneously improve the three basic processes of photocatalysis. As a consequence, the photocatalytic hydrogen-generation activity of carbon nitride under visible light is drastically increased by tens of times. PMID:27167996

  10. Competition between the Direct Exchange Interaction and Superexchange Interaction in Layered Compounds LiCrSe2, LiCrTe2, and NaCrTe2 with a Triangular Lattice.

    PubMed

    Kobayashi, Shintaro; Ueda, Hiroaki; Michioka, Chishiro; Yoshimura, Kazuyoshi

    2016-08-01

    Physical properties of new S = 3/2 triangular-lattice compounds LiCrSe2, LiCrTe2, and NaCrTe2 have been investigated by X-ray diffraction and magnetic measurements. These compounds crystallize in the ordered NiAs-type structure, where alkali metal ions and Cr atoms stack alternately. Despite their isomorphic structures, magnetic properties of these three compounds are different; NaCrTe2 has an A-type spin structure with ferromagnetic layers, LiCrTe2 is likely to exhibit a helical spin structure, and LiCrSe2 shows a first-order-like phase transition from the paramagnetic trigonal phase to the antiferromagnetic monoclinic phase. In these compounds and the other chromium chalcogenides with a triangular lattice, we found a general relationship between the Curie-Weiss temperature and magnetic structures. This relation indicates that the competition between the antiferromagnetic direct d-d exchange interaction and the ferromagnetic superexchange interaction plays an important role in determining the ground state of chromium chalcogenides. PMID:27400024

  11. Optimal deposition conditions of TiN barrier layers for the growth of vertically aligned carbon nanotubes onto metallic substrates

    NASA Astrophysics Data System (ADS)

    García-Céspedes, J.; Álvarez-García, J.; Zhang, X.; Hampshire, J.; Bertran, E.

    2009-05-01

    Plasma enhanced chemical deposition (PECVD) has proven over the years to be the preferred method for the growth of vertically aligned carbon nanotubes and nanofibres (VACNTs and VACNFs, respectively). In particular, carbon nanotubes (CNTs) grown on metallic surfaces present a great potential for high power applications, including low resistance electrical contacts, high power switches, electron guns or supercapacitors. Nevertheless, the deposition of CNTs onto metallic substrates is challenging, due to the intrinsic incompatibility between such substrates and the metallic precursor layers required to promote the growth of CNTs. In particular, the formation of CNT films is assisted by the presence of a nanometric (10-100 nm) monolayer of catalyst clusters, which act as nucleation sites for CNTs. The nanometric character of the precursor layer, together with the high growth temperature involved during the PECVD process (~700 °C), strongly favours the in-diffusion of the catalyst nanoclusters into the bulk of the metallic substrate, which results in a dramatic reduction in the nucleation of CNTs. In order to overcome this problem, it is necessary to coat the metallic substrate with a diffusion barrier layer, prior to the growth of the catalyst precursor. Unlike other conventional ceramic barrier layers, TiN provides high electrical conductivity, thus being a promising candidate for use as barrier material in applications involving low resistance contacts. In this work we investigate the anti-diffusion properties of TiN sputtered coatings and its potential applicability to the growth of CNTs onto copper substrates, using Fe as catalyst material. The barrier and catalyst layers were deposited by magnetron sputtering. Auger electron spectroscopy was used to determine the diffusivity of Fe into TiN. Morphological characterization of the CNTs coatings was performed on scanning and transmission electron microscopes. Raman spectroscopy and x-ray diffraction were employed to

  12. Fabrication and optoelectronic properties of novel films based on functionalized multiwalled carbon nanotubes and (phthalocyaninato)ruthenium(II) via coordination bonded layer-by-layer self-assembly.

    PubMed

    Zhao, Wei; Tong, Bin; Shi, Jianbing; Pan, Yuexiu; Shen, Jinbo; Zhi, Junge; Chan, Wai Kin; Dong, Yuping

    2010-10-19

    4-(2-(4-pyridinyl)Ethynyl)benzenic diazonium salt (PBD) was used to modify multiwalled carbon nanotubes (MWCNTs) by the self-assembly technique. After the decomposition of the diazonium group in PBD under UV irradiation, the PBD monolayer film covalently anchored on multiwalled carbon nanotubes is very stable. The obtained pyridine-modified MWCNTs (Py(Ar)-MWCNTs) have good solubility in common organic solvents. Furthermore, the layer-by-layer (LBL) self-assembled fully conjugated films of Py(Ar)-MWCNTs and (phthalocyaninato)ruthenium(II) (RuPc) were fabricated on the PBD-modified substrates, and characterized using UV-vis absorption spectroscopy, scanning electron microscopy (SEM), and electrochemistry. The UV-vis analysis results indicate that the LBL RuPc/Py(Ar)-MWCNTs self-assembled multilayer films with axial ligands between the ruthenium atom and pyridine group were successfully fabricated, and the progressive assembly runs regularly with almost equal amounts of deposition in each cycle. A top view SEM image shows a random and homogeneous distribution of Py(Ar)-MWCNTs over the PBD-modified silicon substrate, which indicates well independence between all Py(Ar)-MWCNTs. Moreover, the opto-electronic conversion was also studied by assembling RuPc/Py(Ar)-MWCNTs multilayer films on PBD-modified ITO substrate. Under illumination, the LBL self-assembled films on ITO showed an effective photoinduced charge transfer because of their conjugated structure and the ITO current density changed with the number of bilayer. As the number of bilayers was increased, the photocurrent increases and reaches its maximum value (∼300 nA/cm(2)) at nine bilayers. These results allow us to design novel materials for applications in optoelectronic devices by using LBL self-assembly techniques. PMID:20853832

  13. Design and Analysis for the Carbon Fiber Composite Support Structure for Layer 0 of the D0 Silicon Micro Tracker

    SciTech Connect

    Daly, C.H.; Tuttle, Mark E.; Kuykendall, William; /Washington U., Seattle

    2009-01-01

    The support structures for the new Layer 0 (Figures 1, 2, 3) of the Run 2b silicon tracker in D0 were designed and fabricated at the University of Washington. These structures were required to have minimum mass, yet be very rigid so as to meet the high precision requirements placed on the position of the silicon detector chips. They also have to provide for cooling to remove the heat generated by the sensors and signal processing electronics and to keep the sensors at the desired operating temperature (below -5 C). All of these requirements were best met by carbon fiber/epoxy composite technology. State of the art carbon fiber materials have extremely high Young's moduli and high thermal conductivity. Appropriate fiber lay-ups and fabrication methods have been developed and used successfully to produce both various prototype structures and the structures used in the production Layer 0. The geometry of these structures was determined mainly by the geometry of the sensors themselves. The structures incorporated a complete cooling system consisting of extruded PEEK coolant tubes and distribution manifolds made from carbon fiber composites. In order to determine the mechanical and thermal performance of the structures, detailed FEA analyses of L0 have been carried out and are described.

  14. Dye sensitized solar cell based on platinum decorated multiwall carbon nanotubes as catalytic layer on the counter electrode

    SciTech Connect

    Mathew, Ambily; Rao, G. Mohan; Munichandraiah, N.

    2011-11-15

    Graphical abstract: I-V characteristics of the DSSCs with Pt CE and Pt/MWCNT CE measured at 100 mW/cm{sup 2}. It shows relatively better performance with Pt/MWCNT counter electrodes. Highlights: {yields} Synthesis of multiwalled carbon nanotubes by pyrolysis. {yields} Synthesis of Pt/MWCNT composite by chemical reduction. {yields} Fabrication DSSC using Pt/MWCNT as catalytic layer on the counter electrode. {yields} Study of catalytic activity by Electrochemical Impedance Spectroscopy. -- Abstract: In this study we have employed multiwall carbon nanotubes (MWCNT), decorated with platinum as catalytic layer for the reduction of tri-iodide ions in dye sensitized solar cell (DSSC). MWCNTs have been prepared by a simple one step pyrolysis method using ferrocene as the catalyst and xylene as the carbon source. Platinum decorated MWCNTs have been prepared by chemical reduction method. The as prepared MWCNTs and Pt/MWCNTs have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In combination with a dye adsorbed TiO{sub 2} photoanode and an organic liquid electrolyte, Pt/MWCNT composite showed an enhanced short circuit current density of 16.12 mA/cm{sup 2} leading to a cell efficiency of 6.50% which is comparable to that of Platinum.

  15. Solid oxide fuel cell bi-layer anode with gadolinia-doped ceria for utilization of solid carbon fuel

    NASA Astrophysics Data System (ADS)

    Kellogg, Isaiah D.; Koylu, Umit O.; Dogan, Fatih

    Pyrolytic carbon was used as fuel in a solid oxide fuel cell (SOFC) with a yttria-stabilized zirconia (YSZ) electrolyte and a bi-layer anode composed of nickel oxide gadolinia-doped ceria (NiO-GDC) and NiO-YSZ. The common problems of bulk shrinkage and emergent porosity in the YSZ layer adjacent to the GDC/YSZ interface were avoided by using an interlayer of porous NiO-YSZ as a buffer anode layer between the electrolyte and the NiO-GDC primary anode. Cells were fabricated from commercially available component powders so that unconventional production methods suggested in the literature were avoided, that is, the necessity of glycine-nitrate combustion synthesis, specialty multicomponent oxide powders, sputtering, or chemical vapor deposition. The easily-fabricated cell was successfully utilized with hydrogen and propane fuels as well as carbon deposited on the anode during the cyclic operation with the propane. A cell of similar construction could be used in the exhaust stream of a diesel engine to capture and utilize soot for secondary power generation and decreased particulate pollution without the need for filter regeneration.

  16. Incorporating nanoporous polyaniline into layer-by-layer ionic liquid-carbon nanotube-graphene paper: towards freestanding flexible electrodes with improved supercapacitive performance

    NASA Astrophysics Data System (ADS)

    Sun, Yimin; Fang, Zheng; Wang, Chenxu; Zhou, Aijun; Duan, Hongwei

    2015-09-01

    The growing demand for lightweight and flexible supercapacitor devices necessitates innovation in electrode materials and electrode configuration. We have developed a new type of three-dimensional (3D) flexible nanohybrid electrode by incorporating nanoporous polyaniline (PANI) into layer-by-layer ionic liquid (IL) functionalized carbon nanotube (CNT)-graphene paper (GP), and explored its practical application as a freestanding flexible electrode in a supercapacitor. Our results have demonstrated that the surface modification of graphene nanosheets and CNTs by hydrophilic IL molecules makes graphene and CNTs well-dispersed in aqueous solution, and also improves the hydrophility of the assembled graphene-based paper. Furthermore, the integration of highly conductive one-dimensional (1D) CNTs with two-dimensional (2D) graphene nanosheets leads to 3D sandwich-structured nanohybrid paper with abundant interconnected pores, which is preferred for fast mass and electron transport kinetics. For in situ electropolymerization of PANI on paper electrodes, the IL functionalized CNT-GP (IL-CNT-GP) offers large surface area and interlayer spacing and the unique π surface of graphene and CNTs for efficient and stable loading of PANI. A key finding is that the structural integration of multiple components in this 3D freestanding flexible sheet electrode gives rise to a synergic effect, leading to a high capacitance of 725.6 F g-1 at a current density of 1 A g-1 and good cycling stability by retaining 90% of the initial specific capacitance after 5000 cycles.

  17. Dendrimer-carbon nanotube layer-by-layer film as an efficient host matrix for electrogeneration of PtCo electrocatalysts.

    PubMed

    Gasparotto, Luiz H S; Castelhano, André L B; Silva, Anielle C A; Dantas, Noelio O; Oliveira, Osvaldo N; Siqueira, José R

    2014-02-14

    In this paper we demonstrate that layer-by-layer (LbL) films of polyamidoamine (PAMAM) dendrimers and single-walled carbon nanotubes (SWCNTs) are efficient for controlling the morphology of electrogenerated cobalt (Co) and the platinum-cobalt (PtCo) alloy. While Co grew to the micrometer scale and poorly covered the ITO substrate, with the LbL matrix it was kept in the nanoscale regime and provided full substrate coverage. Pt-decorated Co nanoparticles were then generated by applying a single potential pulse in a solution containing simultaneously Co and Pt ions. Segregation of Pt and Co deposits was observed in field emission gun (FEG) images, but the PtCo alloy was probably formed to some extent according to X-ray diffraction analysis. The PtCo-LbL hybrid exhibited superior catalytic activity toward H2O2 reduction compared to the Pt-modified LbL film, which opens new prospects for applications in biosensing and fuel cells. PMID:24352729

  18. Investigation of the microstructure in the catalyst layer and effects of both perfluorosulfonate ionomer and PTFE-loaded carbon on the catalyst layer of polymer electrolyte fuel cells

    SciTech Connect

    Uchida, Makoto; Aoyama, Yuko; Eda, Nobuo; Ohta, Akira

    1995-12-01

    Effects of a perfluorosulfonate ionomer (PFSI) and of a polytetrafluoroethylene (PTFE) loaded carbon (PTFE-C) on the catalyst layer in the electrode of a polymer electrolyte fuel cell (PEFC) prepared by a new method based on the process of PFSI-colloid formation were investigated by electrochemical techniques and a mercury pore sizer. The microstructure of the catalyst layer and its effect on the PEFC performance were affected by the contents of both PFSI and PTFE-C. The catalyst layer has two distinctive pore distributions with a boundary of ca. 0.04 {micro}m. The volume of larger pore (secondary pore) decreased with an increase of the PFSI content and increased with an increase of the PTFE-C content. The volume of the smaller pore (primary pore) was independent of the content of both PFSI and PTFE-C. The PFSI as well as the PTFE existed only in the secondary pore. The content of PFSI affected the performance of PEFC in the whole current density range. On the other hand, the content of PTFE-C influenced it greatly at high current density due to its gas feeding faculty. In the PEFC, reaction sites were found to exist in the secondary pore coated with the macromolecule PFSI. The hydrophobic PTFE-C works to supply the reaction gas to the reaction sites covered with the PFSI in the secondary pore, and to exhaust the product water from there. The high performance of PEFC at high current density was achieved with the best mixture of the PFSI and the PTFE-C.

  19. [Soil organic carbon mineralization of Black Locust forest in the deep soil layer of the hilly region of the Loess Plateau, China].

    PubMed

    Ma, Xin-Xin; Xu, Ming-Xiang; Yang, Kai

    2012-11-01

    The deep soil layer (below 100 cm) stores considerable soil organic carbon (SOC). We can reveal its stability and provide the basis for certification of the deep soil carbon sinks by studying the SOC mineralization in the deep soil layer. With the shallow soil layer (0-100 cm) as control, the SOC mineralization under the condition (temperature 15 degrees C, the soil water content 8%) of Black Locust forest in the deep soil layer (100-400 cm) of the hilly region of the Loess Plateau was studied. The results showed that: (1) There was a downward trend in the total SOC mineralization with the increase of soil depth. The total SOC mineralization in the sub-deep soil (100-200 cm) and deep soil (200-400 cm) were equivalent to approximately 88.1% and 67.8% of that in the shallow layer (0-100 cm). (2) Throughout the carbon mineralization process, the same as the shallow soil, the sub-deep and deep soil can be divided into 3 stages. In the rapid decomposition phase, the ratio of the mineralization or organic carbon to the total mineralization in the sub-deep and deep layer (0-10 d) was approximately 50% of that in the shallow layer (0-17 d). In the slow decomposition phase, the ratio of organic carbon mineralization to total mineralization in the sub-deep, deep layer (11-45 d) was 150% of that in the shallow layer (18-45 d). There was no significant difference in this ratio among these three layers (46-62 d) in the relatively stable stage. (3) There was no significant difference (P > 0.05) in the mineralization rate of SOC among the shallow, sub-deep, deep layers. The stability of SOC in the deep soil layer (100-400 cm) was similar to that in the shallow soil layer and the SOC in the deep soil layer was also involved in the global carbon cycle. The change of SOC in the deep soil layer should be taken into account when estimating the effects of soil carbon sequestration in the Hilly Region of the Loess Plateau, China. PMID:23323422

  20. Polymer network/carbon layer on monolith support and monolith catalytic reactor

    DOEpatents

    Nordquist, Andrew Francis; Wilhelm, Frederick Carl; Waller, Francis Joseph; Machado, Reinaldo Mario

    2003-08-26

    The present invention relates to an improved monolith catalytic reactor and a monolith support. The improvement in the support resides in a polymer network/carbon coating applied to the surface of a porous substrate and a catalytic metal, preferably a transition metal catalyst applied to the surface of the polymer network/carbon coating. The monolith support has from 100 to 800 cells per square inch and a polymer network/carbon coating with surface area of from 0.1 to 15 m.sup.2 /gram as measured by adsorption of N.sub.2 or Kr using the BET method.

  1. Characterization of the passivation layer on disordered carbons in lithium-ion cells

    SciTech Connect

    Guidotti, R.; Johnson, B.

    1995-12-01

    Intercalation anodes of graphite or disordered carbon in rechargeable Li-ion batteries (based on aprotic organic solvents) develop a passivating film during the first intercalation of Li{sup +}. The formation of this film reduces the cycling efficiency and results in excessive consumption of Li{sup +}. The exact nature of this film is not well defined, although there are many similarities in properties to the films that form on Li anodes under similar cycling conditions. In this study we report on characterization studies of films formed during galvanostatic cycling of disordered carbons derived from polymethylacryolintrile (PMAN) in a 1M LiPF{sub 6} solution in ethylene carbonateldimethyl carbonate solution (1:1 by vol.). Complementary tests were also conducted with glass carbon, where intercalation cannot occur. Complex-impedance spectroscopy was the primary measurement technique, supplemented by cyclic voltammetry.

  2. Influence of tree cover on herbaceous layer development and carbon and water fluxes in a Portuguese cork-oak woodland

    NASA Astrophysics Data System (ADS)

    Dubbert, Maren; Mosena, Alexander; Piayda, Arndt; Cuntz, Matthias; Correia, Alexandra Cristina; Pereira, Joao Santos; Werner, Christiane

    2014-08-01

    Facilitation and competition between different vegetation layers may have a large impact on small-scale vegetation development. We propose that this should not only influence overall herbaceous layer yield but also species distribution and understory longevity, and hence the ecosystems carbon uptake capacity especially during spring. We analyzed the effects of trees on microclimate and soil properties (water and nitrate content) as well as the development of an herbaceous community layer regarding species composition, aboveground biomass and net water and carbon fluxes in a cork-oak woodland in Portugal, between April and November 2011. The presence of trees caused a significant reduction in photosynthetic active radiation of 35 mol m-2 d-1 and in soil temperature of 5 °C from April to October. At the same time differences in species composition between experimental plots located in open areas and directly below trees could be observed: species composition and abundance of functional groups became increasingly different between locations from mid April onwards. During late spring drought adapted native forbs had significantly higher cover and biomass in the open area while cover and biomass of grasses and nitrogen fixing forbs was highest under the trees. Further, evapotranspiration and net carbon exchange decreased significantly stronger under the tree crowns compared to the open during late spring and the die back of herbaceous plants occurred earlier and faster under trees. This was most likely caused by interspecific competition for water between trees and herbaceous plants, despite the more favorable microclimate conditions under the trees during the onset of summer drought.

  3. Analyses of 2-DEG characteristics in GaN HEMT with AlN/GaN super-lattice as barrier layer grown by MOCVD

    PubMed Central

    2012-01-01

    GaN-based high-electron mobility transistors (HEMTs) with AlN/GaN super-lattices (SLs) (4 to 10 periods) as barriers were prepared on (0001) sapphire substrates. An innovative method of calculating the concentration of two-dimensional electron gas (2-DEG) was brought up when AlN/GaN SLs were used as barriers. With this method, the energy band structure of AlN/GaN SLs was analyzed, and it was found that the concentration of 2-DEG is related to the thickness of AlN barrier and the thickness of the period; however, it is independent of the total thickness of the AlN/GaN SLs. In addition, we consider that the sheet carrier concentration in every SL period is equivalent and the 2-DEG concentration measured by Hall effect is the average value in one SL period. The calculation result fitted well with the experimental data. So, we proposed that our method can be conveniently applied to calculate the 2-DEG concentration of HEMT with the AlN/GaN SL barrier. PMID:22348545

  4. Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Huang, Ming; Mi, Rui; Liu, Hao; Li, Fei; Zhao, Xiao Li; Zhang, Wei; He, Shi Xuan; Zhang, Yu Xin

    2014-12-01

    Three-dimensional carbon nanotubes@MnO2 core-shell nanostructures grown on Ni foam for binder-free capacitor electrodes have been fabricated by a floating catalyst chemical vapor deposition process and a facile hydrothermal approach. Ultrathin layered MnO2 nanosheets are uniformly coated on the surface of the carbon nanotubes (CNTs), directly grown on Ni foam. This unique well-designed binder-free electrode exhibits a high specific capacitance (325.5 F g-1 at a current density of 0.3 A g-1), good rate capability (70.7% retention), and excellent cycling stability (90.5% capacitance retention after 5000 cycles), due to the high conductivity of the close contact between CNTs and Ni foam, as well as the moderate specific surface area of the CNTs@MnO2 core-shell nanostructures. The developed synthetic strategy may provide design guidelines for constructing advanced binder-free supercapacitors electrode.

  5. Activated carbon made from cow dung as electrode material for electrochemical double layer capacitor

    NASA Astrophysics Data System (ADS)

    Bhattacharjya, Dhrubajyoti; Yu, Jong-Sung

    2014-09-01

    Cow dung is one of the most abundant wastes generated on earth and has been traditionally used as fertilizer and fuel in most of the developing countries. In this study activated carbon is synthesized from cow dung by a modified chemical activation method, where partially carbonized cow dung is treated with KOH in different ratio. The synthesized activated carbon possesses irregular surface morphology with high surface area in the range of 1500-2000 m2 g-1 with proper amount of micropore and mesopore volume. In particular, we demonstrate that the surface morphology and porosity parameters change with increase in KOH ratio. These activated carbons are tested as electrode material in two-electrode symmetric supercapacitor system in non-aqueous electrolyte and found to exhibit high specific capacitance with excellent retention of it at high current density and for long term operation. In particular, the activated carbon synthesized at 2:1 ratio of KOH and the pre-carbonized char shows the best performance with specific capacitance of 124 F g-1 at 0.1 A g-1 and retains up to 117 F g-1 at 1.0 A g-1 current density. The performance is attributed to high surface area along with optimum amount of micropore and mesopore volume.

  6. Simultaneous shunt protection and back contact formation for CdTe solar cells with single wall carbon nanotube layers

    NASA Astrophysics Data System (ADS)

    Phillips, Adam B.; Khanal, Rajendra R.; Song, Zhaoning; Watthage, Suneth C.; Kormanyos, Kenneth R.; Heben, Michael J.

    2015-12-01

    Thin film photovoltaic (PV) devices and modules prepared by commercial processes can be severely compromised by through-device low resistance electrical pathways. The defects can be due to thin or missing semiconductor material, metal diffusion along grain boundaries, or areas containing diodes with low turn-on potentials. We report the use of single wall carbon nanotube (SWCNT) layers to enable both protection against these defects and back contact formation for CdTe PV devices. Samples prepared with a SWCNT back contact exhibited good efficiency and did not require shunt protection, while devices prepared without shunt protection using a standard metal back contact performed poorly. We describe the mechanism by which the SWCNT layer functions. In addition to avoiding the need for shunt protection by other means, the SWCNT film also provides a route to higher short circuit currents.

  7. Improvement in the Characteristics of Electric Double Layer Capacitor Using a Mixture of Arc Black and Carbon Nanoballoon

    NASA Astrophysics Data System (ADS)

    Okabe, Yuta; Izumi, Harutaka; Suda, Yoshiyuki; Tanoue, Hideto; Takikawa, Hirofumi; Ue, Hitoshi; Shimizu, Kazuki

    2013-11-01

    Carbon nanomaterials with different structures were mixed for an electric double layer capacitor (EDLC) electrode. We used two kinds of carbon nanomaterial: arc black (AcB) and a carbon nanoballoon (CNB). Arc black was synthesized by arc discharge. CNB was produced by heating the prepared AcB at 2400 °C. AcB mostly consists of an amorphous component and has a large specific surface area. On the other hand, CNB has a graphitic surface and a high conductivity. To utilize their characteristics, AcB and CNB were used as the main materials of the EDLC electrode in weight ratios of 1:1, 2:1, and 1:2. The obtained EDLC electrode was filled with 1 M H2SO4 as the electrolyte. As a result, by mixing AcB and CNB, both the power and energy densities became higher than those of AcB or CNB alone. The EDLC mixed in 1:1 weight ratio of AcB and CNB showed the highest performance, with a higher electric power density than activated carbon (AC).

  8. Effects of multiple polyaniline layers immobilized on carbon nanotube and glutaraldehyde on performance and stability of biofuel cell

    NASA Astrophysics Data System (ADS)

    Christwardana, Marcelinus; Kwon, Yongchai

    2015-12-01

    Enzymatic biofuel cell (EBC) employing new catalyst for anode electrode is fabricated. The new catalyst consists of glucose oxidase (GOx), polyaniline (PANI) and carbon nanotube (CNT) that are multiply stacked together and finally the stack layer is surrounded by glutaraldehyde (GA) (GA/[GOx/PANI/CNT]n). To evaluate how the GA/[GOx/PANI/CNT]n layer affects EBC performance and stability, electrochemical characterizations are implemented. Regarding optimization, GA/[GOx/PANI/CNT]3 is determined. For elucidating reaction mechanism between glucose and flavin adenine dinucleotide (FAD) of GA/[GOx/PANI/CNT]3, associated investigations are performed. In the evaluations, drop in reduction current peak of FAD is observed with provisions of glucose and O2, while glucose does not influence FAD reaction without O2, confirming O2 makes mediator role. When the GA/[GOx/PANI/CNT]3 layer is adopted, superior catalytic activity and EBC performance are gained (electron transfer rate constant of 5.1 s-1, glucose sensitivity of 150 ìA mM-1 cm-2, and EBC maximum power density (MPD) of 0.29 mW cm-2). Regarding EBC stability, MPD of EBC adopting GA/[GOx/PANI/CNT]3 maintains up to 93% of their initial value even after four weeks. Although GA is little effective for improving EBC performance, EBC stability is helped by GA due to its adhesion promotion capability with [GOx/PANI/CNT]n layer.

  9. Lattice gas and lattice Boltzmann computational physics

    SciTech Connect

    Chen, S.

    1993-05-01

    Recent developments of the lattice gas automata method and its extension to the lattice Boltzmann method have provided new computational schemes for solving a variety of partial differential equations and modeling different physics systems. The lattice gas method, regarded as the simplest microscopic and kinetic approach which generates meaningful macroscopic dynamics, is fully parallel and can be easily programmed on parallel machines. In this talk, the author will review basic principles of the lattice gas and lattice Boltzmann method, its mathematical foundation and its numerical implementation. A detailed comparison of the lattice Boltzmann method with the lattice gas technique and other traditional numerical schemes, including the finite-difference scheme and the pseudo-spectral method, for solving the Navier-Stokes hydrodynamic fluid flows, will be discussed. Recent achievements of the lattice gas and the the lattice Boltzmann method and their applications in surface phenomena, spinodal decomposition and pattern formation in chemical reaction-diffusion systems will be presented.

  10. Lattice matched semiconductor growth on crystalline metallic substrates

    DOEpatents

    Norman, Andrew G; Ptak, Aaron J; McMahon, William E

    2013-11-05

    Methods of fabricating a semiconductor layer or device and said devices are disclosed. The methods include but are not limited to providing a metal or metal alloy substrate having a crystalline surface with a known lattice parameter (a). The methods further include growing a crystalline semiconductor alloy layer on the crystalline substrate surface by coincident site lattice matched epitaxy. The semiconductor layer may be grown without any buffer layer between the alloy and the crystalline surface of the substrate. The semiconductor alloy may be prepared to have a lattice parameter (a') that is related to the lattice parameter (a). The semiconductor alloy may further be prepared to have a selected band gap.

  11. The seasonal cycle of the mixing layer height and its impact on black carbon concentrations in the Kathmandu Valley (Nepal)

    NASA Astrophysics Data System (ADS)

    Mues, Andrea; Rupakheti, Maheswar; Hoor, Peter; Bozem, Heiko; Münkel, Christoph; Lauer, Axel; Butler, Tim

    2016-04-01

    The properties and the vertical structure of the mixing layer as part of the planetary boundary layer are of key importance for local air quality. They have a substantial impact on the vertical dispersion of pollutants in the lower atmosphere and thus on their concentrations near the surface. In this study, ceilometer measurements taken within the framework of the SusKat project (Sustainable Atmosphere for the Kathmandu Valley) are used to investigate the mixing layer height in the Kathmandu Valley, Nepal. The applied method is based on the assumption that the aerosol concentration is nearly constant in the vertical and distinctly higher within the mixing layer than in the air above. Thus, the height with the steepest gradient within the ceilometer backscatter profile marks the top of the mixing layer. Ceilometer and black carbon (BC) measurements conducted from March 2013 through February 2014 provide a unique and important dataset for the analysis of the meteorological and air quality conditions in the Kathmandu Valley. In this study the mean diurnal cycle of the mixing layer height in the Kathmandu Valley for each season (pre-monsoon, monsoon, post-monsoon and winter season) and its dependency on the meteorological situation is investigated. In addition, the impact of the mixing layer height on the BC concentration is analyzed and compared to the relevance of other important processes such as emissions, horizontal advection and deposition. In all seasons the diurnal cycle is typically characterized by low mixing heights during the night, gradually increasing after sun rise reaching to maximum values in the afternoon before decreasing again. Seasonal differences can be seen particularly in the height of the mixing layer, e.g. from on average 153/1200 m (pre-monsoon) to 241/755 m (monsoon season) during the night/day, and the duration of enhanced mixing layer heights during daytime (around 12 hours (pre-monsoon season) to 8 hours (winter)). During the monsoon

  12. Area of Lattice Polygons

    ERIC Educational Resources Information Center

    Scott, Paul

    2006-01-01

    A lattice is a (rectangular) grid of points, usually pictured as occurring at the intersections of two orthogonal sets of parallel, equally spaced lines. Polygons that have lattice points as vertices are called lattice polygons. It is clear that lattice polygons come in various shapes and sizes. A very small lattice triangle may cover just 3…

  13. The ocean quasi-homogeneous layer model and global cycle of carbon dioxide in system of atmosphere-ocean

    NASA Astrophysics Data System (ADS)

    Glushkov, Alexander; Glushkov, Alexander; Loboda, Nataliya; Khokhlov, Valery; Serbov, Nikoly; Svinarenko, Andrey

    The purpose of this paper is carrying out the detailed model of the CO2 global turnover in system of "atmosphere-ocean" with using the ocean quasi-homogeneous layer model. Practically all carried out models are functioning in the average annual regime and accounting for the carbon distribution in bio-sphere in most general form (Glushkov et al, 2003). We construct a modified model for cycle of the carbon dioxide, which allows to reproduce a season dynamics of carbon turnover in ocean with account of zone ocean structure (up quasi-homogeneous layer, thermocline and deepest layer). It is taken into account dependence of the CO2 transfer through the bounder between atmosphere and ocean upon temperature of water and air, wind velocity, buffer mechanism of the CO2 dissolution. The same program is realized for atmosphere part of whole system. It is obtained a tempo-ral and space distribution for concentration of non-organic carbon in ocean, partial press of dissolute CO2 and value of exchange on the border between atmosphere and ocean. It is estimated a role of the wind intermixing of the up ocean layer. The increasing of this effect leads to increasing the plankton mass and further particles, which are transferred by wind, contribute to more quick immersion of microscopic shells and organic material. It is fulfilled investigation of sen-sibility of the master differential equations system solutions from the model parameters. The master differential equa-tions system, describing a dynamics of the CO2 cycle, is numerically integrated by the four order Runge-Cutt method under given initial values of valuables till output of solution on periodic regime. At first it is indicated on possible real-zation of the chaos scenario in system. On our data, the difference of the average annual values for the non-organic car-bon concentration in the up quasi-homogeneous layer between equator and extreme southern zone is 0.15 mol/m3, be-tween the equator and extreme northern zone is 0

  14. Transmission Electron Microscope Measures Lattice Parameters

    NASA Technical Reports Server (NTRS)

    Pike, William T.

    1996-01-01

    Convergent-beam microdiffraction (CBM) in thermionic-emission transmission electron microscope (TEM) is technique for measuring lattice parameters of nanometer-sized specimens of crystalline materials. Lattice parameters determined by use of CBM accurate to within few parts in thousand. Technique developed especially for use in quantifying lattice parameters, and thus strains, in epitaxial mismatched-crystal-lattice multilayer structures in multiple-quantum-well and other advanced semiconductor electronic devices. Ability to determine strains in indivdual layers contributes to understanding of novel electronic behaviors of devices.

  15. Bosonic edge states in gapped honeycomb lattices

    NASA Astrophysics Data System (ADS)

    Guo, Huaiming; Niu, Yuekun; Chen, Shu; Feng, Shiping

    2016-03-01

    By quantum Monte Carlo simulations of bosons in gapped honeycomb lattices, we show the existence of bosonic edge states. For a single layer honeycomb lattice, bosonic edge states can be controlled to appear, cross the gap, and merge into bulk states by an on-site potential applied on the outermost sites of the boundary. On a bilayer honeycomb lattice, A bosonic edge state traversing the gap at half filling is demonstrated. The topological origin of the bosonic edge states is discussed with pseudo Berry curvature. The results will simulate experimental studies of these exotic bosonic edge states with ultracold bosons trapped in honeycomb optical lattices.

  16. Vortex lattice of surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Dzedolik, Igor V.; Lapayeva, Svetlana; Pereskokov, Vladislav

    2016-07-01

    We theoretically investigate the formation of a plasmon polariton vortex lattice on a metal surface following the interference of surface plasmon polaritons (SPPs). The plasmon polariton vortex lattice is formed by the interference of the SPP transverse-magnetic mode (TM-mode) and electric mode (E-mode) in the presence of the inhomogeneity with a curvilinear boundary on the surface of the metal layer. The SPP vortex lattice can be controlled by changing the configuration of the boundary. Weak nonlinearity of the metal permittivity does not change the interference pattern, but it increases the propagation length of the SPPs and, therefore, the area of the vortex lattice too.

  17. [Calcium-oxygen modified amorphous and nanocrystalline carbon layers as biomaterials].

    PubMed

    Dorner-Reisel, A; Schürer, C; Nischan, C; Klemm, V; Irmer, G; Müller, E

    2002-01-01

    Undoped and Ca-O-modified diamond-like carbon coatings were deposited by a direct current discharge. Hardness and Young's modulus of Ca-O-modified DLCs were reduced in comparison with the undoped DLC, but the adherence of the Ca-O-modified films is improved. Ca-O-modified DLCs have a higher fraction of nano-crystalline regions with carbon in sp2 hybridisation. In addition, an increased oxygen content and CaCO3 was identified in Ca-O-modified DLCs. While mouse fibroblasts of the type L929 attach and grow on unmodified diamond-like carbon coatings synthesized by the decomposition of hydrocarbon, the addition of CaO-H2O into the precursor gas improves the coatings biological acceptance by the cells. PMID:12451874

  18. Few-layer graphene growth from polystyrene as solid carbon source utilizing simple APCVD method

    NASA Astrophysics Data System (ADS)

    Ahmadi, Shahrokh; Afzalzadeh, Reza

    2016-07-01

    This research article presents development of an economical, simple, immune and environment friendly process to grow few-layer graphene by controlling evaporation rate of polystyrene on copper foil as catalyst and substrate utilizing atmospheric pressure chemical vapor deposition (APCVD) method. Evaporation rate of polystyrene depends on molecular structure, amount of used material and temperature. We have found controlling rate of evaporation of polystyrene by controlling the source temperature is easier than controlling the material weight. Atomic force microscopy (AFM) as well as Raman Spectroscopy has been used for characterization of the layers. The frequency of G‧ to G band ratio intensity in some samples varied between 0.8 and 1.6 corresponding to few-layer graphene. Topography characterization by atomic force microscopy confirmed Raman results.

  19. Fabrication and modeling of electrochemical double-layer capacitors using carbon nano-onion electrode structures

    NASA Astrophysics Data System (ADS)

    Parigi, Fabio

    Electrochemical capacitors or ultracapacitors (UCs) that are commercially available today overcome battery limitations in terms of charging time (from tens of minutes to seconds) and limited lifetime (from a few thousand cycles up to more than one million) but still lack specific energy and energy density (2-5% of a lithium ion battery). The latest innovations in carbon nanomaterials, such as carbon nanotubes as an active electrode material for UCs, can provide up to five times as much energy and deliver up to seven times more power than today's activated carbon electrodes. Further improvements in UC power density have been achieved by using state-of-the-art carbon nano-onions (CNOs) for ultracapacitor electrodes. CNO UCs could exhibit up to five times the power density of single-wall CNT UCs and could substantially contribute to reducing the size of an energy storage system as well as the volume and weight, thus improving device performance. This dissertation describes the fabrication of CNO electrodes as part of an UC device, the measurement and analysis of the new electrode's performance as an energy storage component, and development of a new circuit model that accurately describes the CNO UC electrical behavior. The novel model is based on the impedance spectra of CNO UCs and cyclic voltammetry measurements. Further, the model was validated using experimental data and simulation. My original contributions are the fabrication process for reliable and repeatable electrode fabrication and the modeling of a carbon nano-onion ultracapacitor. The carbon nano-onion ultracapacitor model, composed of a resistor, an inductor, a capacitor (RLC), and a constant phase element (CPE), was developed along with a parameter extraction procedure for the benefit of other users. The new model developed, proved to be more accurate than previously reported UC models.

  20. Outer layers of a carbon star: The view from the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.; Ensman, Lisa M.; Alexander, D. R.; Avrett, E. H.; Brown, A.; Carpenter, K. G.; Eriksson, K.; Gustafsson, B.; Jorgensen, U. G.; Judge, Philip D.

    1995-01-01

    To advance our understanding of the relationship between stellar chromospheres and mass loss, which is a common property of carbon stars and other asymptotic giant branch stars, we have obtained ultraviolet spectra of the nearby N-type carbon star UU Aur using the Hubble Space Telescope (HST). In this paper we describe the HST observations, identify spectral features in both absorption and emission, and attempt to infer the velocity field in the chromosphere, upper troposphere, and circumstellar envelope from spectral line shifts. A mechanism for producing fluoresced emission to explain a previously unobserved emission line is proposed. Some related ground-based observations are also described.

  1. Graphitic-Carbon Layers on Oxides: Toward Stable Heterogeneous Catalysts for Biomass Conversion Reactions.

    PubMed

    Xiong, Haifeng; Schwartz, Thomas J; Andersen, Nalin I; Dumesic, James A; Datye, Abhaya K

    2015-06-26

    Conversion of biomass-derived molecules involves catalytic reactions under harsh conditions in the liquid phase (e.g., temperatures of 250 °C and possibly under either acidic or basic conditions). Conventional oxide-supported catalysts undergo pore structure collapse and surface area reduction leading to deactivation under these conditions. Here we demonstrate an approach to deposit graphitic carbon to protect the oxide surface. The heterogeneous catalysts supported on the graphitic carbon/oxide composite exhibit excellent stability (even under acidic conditions) for biomass conversion reactions. PMID:25973732

  2. Effects of microstructure on carbon support in the catalyst layer on the performance of polymer electrolyte fuel cells

    SciTech Connect

    Uchida, Makoto; Fukuoka, Yuko; Sugawara, Yasushi

    1996-12-31

    In the case of the Polymer-electrolyte fuel cells (PEFCs), the reaction sites exist on the platinum (Pt) surface covered with PFSI. Though PFSI membrane is used as an electrolyte of the PEFC, the membrane does not soak deeply into the electrodes as a liquid electrolyte does. Therefore, PFSI solution was impregnated into the catalyst layers to increase the contact areas between Pt and PFSI. In our previous work we proposed a new preparation method of the M&E assembly which emphasized the colloid formation of the PFSI to optimize the network of PFSIs in the catalyst layer and also to simplify the fabrication process of the M&E assembly. Following this work, we focused on the microstructure of the catalyst layer. The importance of the morphological properties of the gas-diffusion electrodes on performance has been reported in several papers. The catalyst layer was claimed to have had two distinctive pore distributions with a boundary of ca. 0.1 {mu}m. The smaller pore (primary pore) was identified with the space in and between the primary particles in the agglomerate of the carbon support and the larger one (secondary pore) was that between the agglomerates. In our recent work, we reported that the PFSI was distributed only in the secondary pores, and the reaction sites were therefore limited to that location. The results indicated that the PEFC system required a particular design rather than a conventional one for the fuel cells with liquid electrolytes. We proposed that novel structure and/or preparation methods of the catalyst layer were keys to higher utilization of Pt.

  3. Structural, optical and compositional stability of MoS2 multi-layer flakes under high dose electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Rotunno, E.; Fabbri, F.; Cinquanta, E.; Kaplan, D.; Longo, M.; Lazzarini, L.; Molle, A.; Swaminathan, V.; Salviati, G.

    2016-06-01

    MoS2 multi-layer flakes, exfoliated from geological molybdenite, have been exposed to high dose electron irradiation showing clear evidence of crystal lattice and stoichiometry modifications. A massive surface sulfur depletion is induced together with the consequent formation of molybdenum nanoislands. It is found that a nanometric amorphous carbon layer, unwillingly deposited during the transmission electron microscope experiments, prevents the formation of the nanoislands. In the absence of the carbon layer, the formation of molybdenum grains proceeds both on the top and bottom surfaces of the flake. If carbon is present on both the surfaces then the formation of Mo grains is completely prevented.

  4. Atomic and Molecular Layer Deposition for Enhanced Lithium Ion Battery Electrodes and Development of Conductive Metal Oxide/Carbon Composites

    NASA Astrophysics Data System (ADS)

    Travis, Jonathan

    The performance and safety of lithium-ion batteries (LIBs) are dependent on interfacial processes at the positive and negative electrodes. For example, the surface layers that form on cathodes and anodes are known to affect the kinetics and capacity of LIBs. Interfacial reactions between the electrolyte and the electrodes are also known to initiate electrolyte combustion during thermal runaway events that compromise battery safety. Atomic layer deposition (ALD) and molecular layer deposition (MLD) are thin film deposition techniques based on sequential, self-limiting surface reactions. ALD and MLD can deposit ultrathin and conformal films on high aspect ratio and porous substrates such as composite particulate electrodes in lithium-ion batteries. The effects of electrode surface modification via ALD and MLD are studied using a variety of techniques. It was found that sub-nm thick coatings of Al2O 3 deposited via ALD have beneficial effects on the stability of LIB anodes and cathodes. These same Al2O3 ALD films were found to improve the safety of graphite based anodes through prevention of exothermic solid electrolyte interface (SEI) degradation at elevated temperatures. Ultrathin and conformal metal alkoxide polymer films known as "metalcones" were grown utilizing MLD techniques with trimethylaluminum (TMA) or titanium tetrachloride (TiCl4) and organic diols or triols, such as ethylene glycol (EG), glycerol (GL) or hydroquinone (HQ), as the reactants. Pyrolysis of these metalcone films under inert gas conditions led to the development of conductive metal oxide/carbon composites. The composites were found to contain sp2 carbon using micro-Raman spectroscopy in the pyrolyzed films with pyrolysis temperatures ≥ 600°C. Four point probe measurements demonstrated that the graphitic sp2 carbon domains in the metalcone films grown using GL and HQ led to significant conductivity. The pyrolysis of conformal MLD films to obtain conductive metal oxide/carbon composite films

  5. CARBON MONOXIDE FLUXES OF DIFFERENT SOIL LAYERS IN UPLAND CANADIAN BOREAL FORESTS

    EPA Science Inventory

    Dark or low-light carbon monoxide fluxes at upland Canadian boreal forest sites were measured on-site with static chambers and with a laboratory incubation technique using cores from different depths at the same sites. Three different upland black spruce sites, burned in 1987,199...

  6. Catalyzed double layer cathodes for high performance and long life molten carbonate fuel cells

    SciTech Connect

    Bischoff, M.; Jantsch, U.; Rohland, B.

    1996-12-31

    NiO/LiCoO{sub 2} double layer cathodes (DLCs) were prepared with a thin highly active LiCoO{sub 2}-layer by a new double layer tape casting/sintering procedure. The resulting metallic porous precursor plates were mounted into the MCFC and heated up by a special procedure to form LiCoO{sub 2} from air, Co and Li{sub 2}CO{sub 3} in a solid/gas reaction. MCFCs with highly active NiO/LiCoO{sub 2}-DLCs can operate over prolonged periods of time with a Ni-precipitation which is 10% lower than one finds with state of the art NiO cathodes. According to LiCoO{sub 2}-cathodes have theoretical life times of more than 100 000 hours at nonpressurized conditions. MCFCs with new NiO/LiCoO{sub 2} double layer cathodes (DLC) were investigated with regard to variable parameters of their microstructure. From the agglomerate model of the porous MCFC cathode, the dependence of the polarization resistance from the radius of the agglomerates and the inner agglomerate surface area was calculated.

  7. Preparation and photovoltaic properties of layered TiO2/carbon nanotube/TiO2 photoanodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Barberio, M.; Grosso, D. R.; Imbrogno, A.; Xu, F.

    2016-03-01

    In this paper, we report on the realization of photoanodes for dye sensitized solar cells based on composites of carbon nanotubes and titanium dioxide nanoparticles. Our results show the best photovoltaics performance for carbon nanotubes weight percentages between 0.2% and 0.4%. Photoanodes realized in three-layer configuration, TiO2/carbon nanotube/TiO2, show a cell efficiency of 10.5% and a fill factor of 70%, values 2.4 times greater with respect to that of classical TiO2 anode. The presence of carbon nanotubes enhances the charge transport, strongly reducing the electron/hole recombination in the anode bulk, while the double layer of TiO2 increases the dye adsorption limiting the reduction caused by the presence of carbon nanotubes.

  8. Synthesis of metal-incorporated graphitic microporous carbon terminated with highly-ordered graphene walls—Controlling the number of graphene layers by ambient-temperature metal sputtering

    NASA Astrophysics Data System (ADS)

    Banerjee, Arghya Narayan; Min, Bong-Ki; Joo, Sang Woo

    2013-03-01

    Metal-incorporated, graphitic microporous carbon, containing highly ordered graphene layers, has been converted from highly thin amorphous carbon film by a metal nanoparticle sputtering process at ambient substrate temperature. A standard direct-current magnetron sputtering system is used in this purpose. The process consists of a dual effect of activation and graphitization of amorphous carbon to graphitic microporous carbon. The sputtering plasma, containing energetic ions and sub-atomic particles, act as dry-etchant to activate the a:C film to transform it into microporous carbon. Whereas, the inelastic 'knock-on' collision between metal nanoparticles/ions and the nuclei of C atoms manifests the atom displacement and re-arrangement into ordered structure to form graphitic domains within the microporous carbon network. The average number of graphene layer formation has been controlled by adjusting the sputtering voltage and current, as the carbon atom displacement rate is dependent on the irradiation current density. Raman spectroscopy and scanning transmission electron microscopy confirms the high controllability of the number of graphene layer formation as a function of sputtering parameters. The method is simple, cost-effective and compatible with modern solid-state device fabrication processing, as it comprises vacuum-based physical vapor deposition techniques, and also, can be adopted easily for transitional metal incorporation into graphene and other carbon nanostructures for potential hydrogen storage and related clean energy applications.

  9. Electrically conductive PVC layers filled with active carbon containing H+-conducting porous structures of sulfuric acid complexes of cyclams on fabrics

    NASA Astrophysics Data System (ADS)

    Tsivadze, A. Yu.; Fridman, A. Ya.; Morozova, E. M.; Sokolova, N. P.; Voloshchuk, A. M.; Petukhova, G. A.; Bardyshev, I. I.; Gorbunov, A. M.; Novikov, A. K.; Polyakova, I. Ya.; Titova, V. N.; Yavich, A. A.; Petrova, N. V.; Krasil'nikova, O. K.

    2015-07-01

    Electrically conductive PVC layers are synthesized. The layers are filled with active carbons containing porous H+-conductive structures of hydroxyethylcyclam/sulfuric acid complexes crosslinked with cellulose fabric. They are interlaid with layers based on the same structures containing added benzene and hexane adsorbates and solvates. It is found that upon anode or cathode polarization of the layers as H+-conductive electrochemical bridges in air and in the vapor and liquid phases of benzene and hexane, either the electroreduction of H+ to H2 or the electrooxidation of H2O to O2 occurs in the areas of contact between active carbon particles and the complexes. The dependences of rates of H2 and O2 formation on the voltage are studied. The magnitudes of overvoltage and the constants of electrochemical reactions are found to depend on the composition of a layer.

  10. Carbon nanosheet-titania nanocrystal composites from reassembling of exfoliated graphene oxide layers with colloidal titania nanoparticles

    SciTech Connect

    Liu Yongjun; Aizawa, Mami; Peng Wenqing; Wang Zhengming; Hirotsu, Takahiro

    2013-01-15

    Nanoporous composites of carbon nanosheets (CNS) and titania nanoparticles (NPs) were synthesized by reassembling of delaminated graphite oxide (GO) layers with titania clear sol (TCS), and their structural and porous properties were examined by various physico-chemical methods such as XRD, TG/DTA, FT-IR, Raman, FE-SEM/TEM, and low temperature N{sub 2} adsorption. It was found that the facile approach, which utilizes the electrostatic attraction between the negatively charged GO layers and the positively charged TCS particles, leads to a well composed CNS and ultrafine TiO{sub 2} NPs material whose titania amount reaches up to 71 wt%. The titania phase in these composite materials is mainly anatase, which is resistible against high temperature calcination, but also contains a little amount of rutile and brookite depending on synthesis condition. The porosity of the composite is improved and partially affected by the size distributions of TiO{sub 2} NPs. The unique structure, better porosity, and compatible surface affinity of these composites bring about an adsorption concentration-promoted photocatalytic effects toward organic dyes by successfully combining both properties of CNS and titania NPs. - Graphical Abstract: Carbon nanosheet-titania nanocrystal composites can be synthesized by a facile delamination-reassembling method from graphene oxide and colloidal titania. Highlights: Black-Right-Pointing-Pointer A facile delamination-reassembling method for graphene oxide-titania nanocomposite. Black-Right-Pointing-Pointer A nanoporous composite containing mixed phase titania nanocrystals. Black-Right-Pointing-Pointer Partition effect of carbon nanosheets preventing TiO{sub 2} nanoparticles from aggregating. Black-Right-Pointing-Pointer Adsorption concentration-promoted photocatalysis.

  11. Toward Two-Dimensional All-Carbon Heterostructures via Ion Beam Patterning of Single-Layer Graphene

    PubMed Central

    2015-01-01

    Graphene has many claims to fame: it is the thinnest possible membrane, it has unique electronic and excellent mechanical properties, and it provides the perfect model structure for studying materials science at the atomic level. However, for many practical studies and applications the ordered hexagon arrangement of carbon atoms in graphene is not directly suitable. Here, we show that the atoms can be locally either removed or rearranged into a random pattern of polygons using a focused ion beam (FIB). The atomic structure of the disordered regions is confirmed with atomic-resolution scanning transmission electron microscopy images. These structural modifications can be made on macroscopic scales with a spatial resolution determined only by the size of the ion beam. With just one processing step, three types of structures can be defined within a graphene layer: chemically inert graphene, chemically active amorphous 2D carbon, and empty areas. This, along with the changes in properties, gives promise that FIB patterning of graphene will open the way for creating all-carbon heterostructures to be used in fields ranging from nanoelectronics and chemical sensing to composite materials. PMID:26161575

  12. "Egg-Box"-Assisted Fabrication of Porous Carbon with Small Mesopores for High-Rate Electric Double Layer Capacitors.

    PubMed

    Kang, Danmiao; Liu, Qinglei; Gu, Jiajun; Su, Yishi; Zhang, Wang; Zhang, Di

    2015-11-24

    Here we report a method to fabricate porous carbon with small mesopores around 2-4 nm by simple activation of charcoals derived from carbonization of seaweed consisting of microcrystalline domains formed by the "egg-box" model. The existence of mesopores in charcoals leads to a high specific surface area up to 3270 m(2) g(-1), with 95% surface area provided by small mesopores. This special pore structure shows high adaptability when used as electrode materials for an electric double layer capacitor, especially at high charge-discharge rate. The gravimetric capacitance values of the porous carbon are 425 and 210 F g(-1) and volumetric capacitance values are 242 and 120 F cm(-3) in 1 M H2SO4 and 1 M TEA BF4/AN, respectively. The capacitances even remain at 280 F g(-1) (160 F cm(-3)) at 100 A g(-1) and 156 F g(-1) (90 F cm(-3)) at 50 A g(-1) in the aqueous and organic electrolytes, demonstrating excellent high-rate capacitive performance. PMID:26418602

  13. Imaging of oil layers, curvature and contact angle in a mixed-wet and a water-wet carbonate rock

    NASA Astrophysics Data System (ADS)

    Singh, Kamaljit; Bijeljic, Branko; Blunt, Martin J.

    2016-03-01

    We have investigated the effect of wettability of carbonate rocks on the morphologies of remaining oil after sequential oil and brine injection in a capillary-dominated flow regime at elevated pressure. The wettability of Ketton limestone was altered in situ using an oil phase doped with fatty acid which produced mixed-wet conditions (the contact angle where oil contacted the solid surface, measured directly from the images, θ=180°, while brine-filled regions remained water-wet), whereas the untreated rock (without doped oil) was weakly water-wet (θ=47 ± 9°). Using X-ray micro-tomography, we show that the brine displaces oil in larger pores during brine injection in the mixed-wet system, leaving oil layers in the pore corners or sandwiched between two brine interfaces. These oil layers, with an average thickness of 47 ± 17 µm, may provide a conductive flow path for slow oil drainage. In contrast, the oil fragments into isolated oil clusters/ganglia during brine injection under water-wet conditions. Although the remaining oil saturation in a water-wet system is about a factor of two larger than that obtained in the mixed-wet rock, the measured brine-oil interfacial area of the disconnected ganglia is a factor of three smaller than that of oil layers.

  14. A Novel Layered Sedimentary Rocks Structure of the Oxygen-Enriched Carbon for Ultrahigh-Rate-Performance Supercapacitors.

    PubMed

    Zhang, Lin-Lin; Li, Huan-Huan; Shi, Yan-Hong; Fan, Chao-Ying; Wu, Xing-Long; Wang, Hai-Feng; Sun, Hai-Zhu; Zhang, Jing-Ping

    2016-02-17

    In this paper, gelatin as a natural biomass was selected to successfully prepare an oxygen-enriched carbon with layered sedimentary rocks structure, which exhibited ultrahigh-rate performance and excellent cycling stability as supercapacitors. The specific capacitance reached 272.6 F g(-1) at 1 A g(-1) and still retained 197.0 F g(-1) even at 100 A g(-1) (with high capacitance retention of 72.3%). The outstanding electrochemical performance resulted from the special layered structure with large surface area (827.8 m(2) g(-1)) and high content of oxygen (16.215 wt %), which effectively realized the synergistic effects of the electrical double-layer capacitance and pseudocapacitance. Moreover, it delivered an energy density of 25.3 Wh kg(-1) even with a high power density of 34.7 kW kg(-1) and ultralong cycling stability (with no capacitance decay even over 10,000 cycles at 2 A g(-1)) in a symmetric supercapacitor, which are highly desirable for their practical application in energy storage devices and conversion. PMID:26815316

  15. What is below the support layer affects carbon nanotube growth: an iron catalyst reservoir yields taller nanotube carpets.

    PubMed

    Shawat, E; Mor, V; Oakes, L; Fleger, Y; Pint, C L; Nessim, G D

    2014-01-01

    Here we demonstrate an approach to enhance the growth of vertically aligned carbon nanotubes (CNTs) by including a catalyst reservoir underneath the thin-film alumina catalyst underlayer. This reservoir led to enhanced CNT growth due to the migration of catalytic material from below the underlayer up to the surface through alumina pinholes during processing. This led to the formation of large Fe particles, which in turn influenced the morphology evolution of the catalytic iron surface layer through Ostwald ripening. With inclusion of this catalyst reservoir, we observed CNT growth up to 100% taller than that observed without the catalyst reservoir consistently across a wide range of annealing and growth durations. Imaging studies of catalyst layers both for different annealing times and for different alumina support layer thicknesses demonstrate that the surface exposure of metal from the reservoir leads to an active population of smaller catalyst particles upon annealing as opposed to a bimodal catalyst size distribution that appears without inclusion of a reservoir. Overall, the mechanism for growth enhancement we present here demonstrates a new route to engineering efficient catalyst structures to overcome the limitations of CNT growth processes. PMID:24323364

  16. Chaos in the honeycomb optical-lattice unit cell

    NASA Astrophysics Data System (ADS)

    Porter, Max D.; Reichl, L. E.

    2016-01-01

    Natural and artificial honeycomb lattices are of great interest because the band structure of these lattices, if properly constructed, contains a Dirac point. Such lattices occur naturally in the form of graphene and carbon nanotubes. They have been created in the laboratory in the form of semiconductor 2DEGs, optical lattices, and photonic crystals. We show that, over a wide energy range, gases (of electrons, atoms, or photons) that propagate through these lattices are Lorentz gases and the corresponding classical dynamics is chaotic. Thus honeycomb lattices are also of interest for understanding eigenstate thermalization and the conductor-insulator transition due to dynamic Anderson localization.

  17. High pseudocapacitive cobalt carbonate hydroxide films derived from CoAl layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Lu, Zhiyi; Zhu, Wei; Lei, Xiaodong; Williams, Gareth R.; O'Hare, Dermot; Chang, Zheng; Sun, Xiaoming; Duan, Xue

    2012-05-01

    A thin nanosheet of mesoporous cobalt carbonate hydroxide (MPCCH) has been fabricated from a CoAl-LDH nanosheet following removal of the Al cations by alkali etching. The basic etched electrode exhibits enhanced specific capacitance (1075 F g-1 at 5 mA cm-2) and higher rate capability and cycling stability (92% maintained after 2000 cycles).A thin nanosheet of mesoporous cobalt carbonate hydroxide (MPCCH) has been fabricated from a CoAl-LDH nanosheet following removal of the Al cations by alkali etching. The basic etched electrode exhibits enhanced specific capacitance (1075 F g-1 at 5 mA cm-2) and higher rate capability and cycling stability (92% maintained after 2000 cycles). Electronic supplementary information (ESI) available: Detailed experimental procedure, specific capacitance calculation, EDS and FTIR results, electrochemical results of CoAl-LDH and SEM image. See DOI: 10.1039/c2nr30617d

  18. Electrochemistry of Layered Graphitic Carbon Nitride Synthesised from Various Precursors: Searching for Catalytic Effects.

    PubMed

    Yew, Ying Teng; Lim, Chee Shan; Eng, Alex Yong Sheng; Oh, Junghoon; Park, Sungjin; Pumera, Martin

    2016-02-16

    Graphitic carbon nitride (g-C3 N4 ), synthesised by pyrolysis of different precursors (dicyandiamide, melamine and urea) under varying reaction conditions (air and nitrogen gas) is subjected to electrochemical studies for the elucidation of the inherent catalytic efficiency of the pristine material. Contrary to popular belief, pristine g-C3 N4 shows negligible, if any, enhancement in its electrochemical behaviour in this comprehensive study. Voltammetric analysis reveals g-C3 N4 to display similar catalytic efficiency to the unmodified glassy carbon electrode surface on which the bulk material was deposited. This highlights the non-catalytic nature of the pristine material and challenges the feasibility of using g-C3 N4 as a heterogeneous catalyst to deliver numerous promised applications. PMID:26774082

  19. Deuterium retention in codeposited layers and carbon materials exposed to high flux D-plasma

    NASA Astrophysics Data System (ADS)

    Arkhipov, I. I.; Gorodetsky, A. E.; Zalavutdinov, R. Kh; Zakharov, A. P.; Burtseva, T. A.; Mazul, I. V.; Khripunov, B. I.; Shapkin, V. V.; Petrov, V. B.

    A ceramic BCN target with samples of dense RG-Ti-91 without boron, RG-Ti-B with boron (0.1 at.%) and porous POCO AXF-5Q graphites was exposed in a stationary D-plasma of the `Lenta' device with an ion energy of 200 eV and an ion flux of (3 - 6) × 10 17 D/cm 2s at 1040 and 1400 K to a fluence of ˜1 × 10 22 D/cm 2. Codeposited layers were obtained for comparison on the target surface. Thermal desorption spectroscopy (TDS) showed that the amount of deuterium in RG-Ti after exposure at 1040 K was more than an order of magnitude higher than in POCO (9 × 10 17 and 7 × 10 16 D/cm 2, respectively). The retention took place preferentially in a surface layer about 100 μm thick. The bulk deuterium concentration in both RG-Ti and POCO was lower than 1 appm. The irradiated RG-Ti surface was subjected to strong erosion and consisted of `columnar' grains covered with TiC at their tips. The deuterium in RG-Ti irradiated at 1400 K was located in the surface layer (1.5 × 10 16 D/cm 2). The value of the bulk concentration did not exceed 0.1 appm while in POCO it was equal to about 20 appm. TDS for deuterium in RG-Ti demonstrated a spectrum similar to that for codeposited layers on a target surface. The differences in deuterium retention in the graphites are explained on the basis of structural differences. Considering tritium inventory assessment for ITER, dense graphites like RG-Ti are preferred for working divertor plates at high temperatures.

  20. Irreversible membrane fouling abatement through pre-deposited layer of hierarchical porous carbons.

    PubMed

    Hamad, Juma Z; Dua, Rubal; Kurniasari, Novita; Kennedy, Maria D; Wang, Peng; Amy, Gary L

    2014-11-15

    In this work, dual-templated hierarchical porous carbons (HPCs), produced from a coupled ice-hard templating approach, are shown to be a highly effective solution to the commonly occurring problem of irreversible fouling of low-pressure membranes used for pre-treatment in wastewater reuse. For the first time, dual-templated HPCs, along with their respective counterparts - single-templated meso-porous carbon (MPCs) (without macropores) - are tested in terms of their fouling reduction capacity and ability to remove different effluent organic matter fractions present in wastewater and compared with a commercially available powdered activated carbon (PAC). The synthesized HPCs provided exceptional fouling abatement, a 4-fold higher fouling reduction as compared to the previously reported best performing commercial PAC and ∼2.5-fold better fouling reduction than their respective mesoporous counterpart. Thus, it is shown that not only mesoporosity, but macroporosity is also necessary to achieve high fouling reduction, thus emphasizing the need for dual templating. In the case of HPCs, the pre-deposition technique is also found to outperform the traditional sorbent-feed mixing approach, mainly in terms of removal of fouling components. Based on their superior performance, a high permeability (ultra-low-pressure) membrane consisting of the synthesized HPC pre-deposited on a large pore size membrane support (0.45 μm membrane), is shown to give excellent pre-treatment performance for wastewater reuse application. PMID:25128660

  1. Layered carbon nanotube-polyelectrolyte electrodes outperform traditional neural interface materials.

    PubMed

    Jan, Edward; Hendricks, Jeffrey L; Husaini, Vincent; Richardson-Burns, Sarah M; Sereno, Andrew; Martin, David C; Kotov, Nicholas A

    2009-12-01

    The safety, function, and longevity of implantable neuroprosthetic and cardiostimulating electrodes depend heavily on the electrical properties of the electrode-tissue interface, which in many cases requires substantial improvement. While different variations of carbon nanotube materials have been shown to be suitable for neural excitation, it is critical to evaluate them versus other materials used for bioelectrical interfacing, which have not been done in any study performed so far despite strong interest to this area. In this study, we carried out this evaluation and found that composite multiwalled carbon nanotube-polyelectrolyte (MWNT-PE) multilayer electrodes substantially outperform in one way or the other state-of-the-art neural interface materials available today, namely activated electrochemically deposited iridium oxide (IrOx) and poly(3,4-ethylenedioxythiophene) (PEDOT). Our findings provide the concrete experimental proof to the much discussed possibility that carbon nanotube composites can serve as excellent new material for neural interfacing with a strong possibility to lead to a new generation of implantable electrodes. PMID:19785391

  2. Ion beam analysis of tungsten layers in EUROFER model systems and carbon plasma facing components

    NASA Astrophysics Data System (ADS)

    Ström, Petter; Petersson, Per; Rubel, Marek; Primetzhofer, Daniel; Brezinsek, Sebastijan; Kreter, Arkadi; Unterberg, Bernhard; Sergienko, Gennady; Sugiyama, Kazuyoshi

    2016-03-01

    The tungsten enriched surface layers in two fusion-relevant EUROFER steel model samples, consisting of an iron-tungsten mixture exposed to sputtering by deuterium ions, were studied by Rutherford backscattering spectrometry and medium energy ion scattering. Exposure conditions were the same for the two samples and the total amount of tungsten atoms per unit area in the enriched layers were similar (2 · 1015 and 2.4 · 1015 atoms/cm2 respectively), despite slightly different initial atomic compositions. A depth profile featuring exponential decrease in tungsten content towards higher depths with 10-20 at.% of tungsten at the surface and a decay constant between 0.05 and 0.08 Å-1 was indicated in one sample, whereas only the total areal density of tungsten atoms was measured in the other. In addition, two different beams, iodine and chlorine, were employed for elastic recoil detection analysis of the deposited layer on a polished graphite plate from a test limiter in the TEXTOR tokamak following experiments with tungsten hexafluoride injection. The chlorine beam was preferred for tungsten analysis, mainly because it (as opposed to the iodine beam) does not give rise to problems with overlap of forward scattered beam particles and recoiled tungsten in the spectrum.

  3. Antiferromagnetic Kondo lattice in the layered compound CePd1 -xBi2 and comparison to the superconductor LaPd1 -xBi2

    NASA Astrophysics Data System (ADS)

    Han, Fei; Wan, Xiangang; Phelan, Daniel; Stoumpos, Constantinos C.; Sturza, Mihai; Malliakas, Christos D.; Li, Qing'an; Han, Tian-Heng; Zhao, Qingbiao; Chung, Duck Young; Kanatzidis, Mercouri G.

    2015-07-01

    The layered compound CePd1 -xBi2 with the tetragonal ZrCuSi2-type structure was obtained from excess Bi flux. Magnetic susceptibility data of CePd1 -xBi2 show an antiferromagnetic ordering below 6 K and are anisotropic along the c axis and the a b plane. The anisotropy is attributed to crystal-electric-field (CEF) effects and a CEF model which is able to describe the susceptibility data is given. An enhanced Sommerfeld coefficient γ of 0.191 J mol Ce -1 K -2 obtained from specific-heat measurement suggests a moderate Kondo effect in CePd1 -xBi2. Other than the antiferromagnetic peak at 6 K, the resistivity curve shows a shoulderlike behavior around 75 K which could be attributed to the interplay between Kondo and CEF effects. Magnetoresistance and Hall-effect measurements suggest that the interplay reconstructs the Fermi-surface topology of CePd1 -xBi2 around 75 K. Electronic structure calculations reveal that the Pd vacancies are important to the magnetic structure and enhance the CEF effects which quench the orbital moment of Ce at low temperatures.

  4. Antiferromagnetic Kondo lattice in the layered compound CePd1–xBi₂ and comparison to the superconductor LaPd1–xBi₂

    DOE PAGESBeta

    Han, Fei; Wan, Xiangang; Phelan, Daniel; Stoumpos, Constantinos C.; Sturza, Mihai; Malliakas, Christos D.; Li, Qing'an; Han, Tian-Heng; Zhao, Qingbiao; Chung, Duck Young; et al

    2015-07-13

    The layered compound CePd1–xBi₂ with the tetragonal ZrCuSi₂-type structure was obtained from excess Bi flux. Magnetic susceptibility data of CePd1–xBi₂ show an antiferromagnetic ordering below 6 K and are anisotropic along the c axis and the ab plane. The anisotropy is attributed to crystal-electric-field (CEF) effects and a CEF model which is able to describe the susceptibility data is given. An enhanced Sommerfeld coefficient γ of 0.191 J mol Ce⁻¹ K⁻² obtained from specific-heat measurement suggests a moderate Kondo effect in CePd1–xBi₂. Other than the antiferromagnetic peak at 6 K, the resistivity curve shows a shoulderlike behavior around 75 Kmore » which could be attributed to the interplay between Kondo and CEF effects. Magnetoresistance and Hall-effect measurements suggest that the interplay reconstructs the Fermi-surface topology of CePd1–xBi₂ around 75 K. Electronic structure calculations reveal that the Pd vacancies are important to the magnetic structure and enhance the CEF effects which quench the orbital moment of Ce at low temperatures.« less

  5. Lattice distortions in layered type arsenides LnTAs 2 ( Ln=La-Nd, Sm, Gd, Tb; T=Ag, Au): Crystal structures, electronic and magnetic properties

    NASA Astrophysics Data System (ADS)

    Rutzinger, D.; Bartsch, C.; Doerr, M.; Rosner, H.; Neu, V.; Doert, Th.; Ruck, M.

    2010-03-01

    The lanthanide coinage-metal diarsenides LnTAs 2 ( Ln=La, Ce-Nd, Sm; T=Ag, Au) have been reinvestigated and their structures have been refined from single crystal X-ray data. Two different distortion variants of the HfCuSi 2 type are found: PrAgAs 2, NdAgAs 2, SmAgAs 2, GdAgAs 2, TbAgAs 2, NdAuAs 2 and SmAuAs 2 crystallize as twofold superstructures in space group Pmcn with the As atoms of their planar layers forming zigzag chains, whereas LaAgAs 2, CeAgAs 2 and PrAuAs 2 adopt a fourfold superstructure (space group Pmca) with cis-trans chains of As atoms. The respective atomic positions can be derived from the HfCuSi 2 type by group-subgroup relations. The compounds with zigzag chains of As atoms exhibit metallic behaviour while those with cis-trans chains are semiconducting as measured on powder pellets. The majority of the compounds including 4 f elements show antiferromagnetic ordering at TN<20 K.

  6. Electronic and material characterization of silicon-germanium and silicon-germanium-carbon epitaxial layers

    NASA Astrophysics Data System (ADS)

    Peterson, Jeffrey John

    This dissertation presents results of material and electronic characterization of strained SiGe and SiGeC epitaxial layers grown on (100) silicon using Atmospheric Pressure Chemical Vapor Deposition and Reduced Pressure Chemical Vapor Deposition. Fabrication techniques for SiGe and SiGeC are also presented. Materials characterization of epitaxial SiGe and SiGeC was done to characterize crystallinity using visual, microscopic, and Rutherford Backscattering (RBS) characterization. Surface roughness was characterized and found to correspond roughly with epitaxial crystal quality. Spectroscopic ellipsometry was used to study epitaxial layer composition and thickness, requiring development of models for nSiGe and nSiGeC versus composition (the first published for nSiGeC) and generation of ellipsometric nomograms. X-ray diffraction (XRD) measurements of epitaxial strain and relaxation showed Ge composition dominates the stress, although strain compensation due to C was observed. XRD, Raman, and Fourier Transform Infrared (FTIR) characterization were done to characterize substitutional C in SiGeC epitaxial layers, finding that C incorporation into SiGeC saturates for C contents >1%. Fabrication techniques for SiGe and SiGeC were examined. Low thermal budget processing of strained layers were investigated as well as fabrication techniques using advantageous material properties of SiGe and SiGeC. Ti/Al contacts were developed and characterized for electrical contact to SiGe and SiGeC. Schottky contacts of Pt silicide on SiGe and SiGeC was done; formation and resistivity were characterized. Four separate resistivity characterization structures have been fabricated using mesa-etch and Si etch-stop techniques. A NPN Heterojunction Bipolar transistor has been fabricated using successive mesa-etches and SiGe (or SiGeC) etch-stops. Electronic characterization of in-situ doped SiGe and SiGeC epitaxial layers was done to determine resistivity, mobility, and bandgap. Resistivities

  7. Modeling the effects of fire severity and climate warming on active layer and soil carbon dynamics of black spruce forests across the landscape in interior Alaska

    USGS Publications Warehouse

    Genet, H.; McGuire, Anthony David; Barrett, K.; Breen, A.; Euskirchen, E.S.; Johnstone, J.F.; Kasischke, E.S.; Melvin, A.M.; Bennett, A.; Mack, M.C.; Rupp, T.S.; Schuur, A.E.G.; Turetsky, M.R.; Yuan, F.

    2013-01-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layer caused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness

  8. Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska

    NASA Astrophysics Data System (ADS)

    Genet, H.; McGuire, A. D.; Barrett, K.; Breen, A.; Euskirchen, E. S.; Johnstone, J. F.; Kasischke, E. S.; Melvin, A. M.; Bennett, A.; Mack, M. C.; Rupp, T. S.; Schuur, A. E. G.; Turetsky, M. R.; Yuan, F.

    2013-12-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layer caused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness

  9. Suppression of interlaminar damage in carbon/epoxy laminates by use of interleaf layers

    SciTech Connect

    Tanimoto, Toshio . Dept. of Materials Science Ceramic Technology)

    1994-10-15

    Carbon fiber reinforced plastics (CFRP) have been widely used as a structural material. In general, fiber orientation angle of each lamina in these laminates is variously chosen in order to taylor a material which meets the particular requirement for the material properties in arbitrary direction of laminate. Quasi-isotropic lamination, in which the laminate consisted of laminae with fiber orientation of 0[degree], +45[degree], [minus]45[degree] and 90[degree] to loading axis, is most commonly employed in the actual application. However, quasi-isotropic carbon/epoxy laminates are known to develop the interlaminar stress concentrations near the free edge region. These laminates have a strong tendency to delaminate near the edges when subjected to axial in-plane loading. Such a free edge delamination under loading in the plane of the laminate is a unique problem to laminated composites. This paper summarizes the author's investigation which was performed to reduce the free edge interlaminar stresses in the laminate by incorporating interleaf films between plies and thus to improve the mechanical properties of these materials. In their previous work, the authors have shown that these laminates exhibit a high vibration damping capability. Loss factor values for these CFRP/interleaf laminates which were measured in cantilever beam tests, are 5 to 50 times as large as that for conventional CFRP. In this paper, discussion will be provided on the mechanical properties of the interleaved quasi-isotropic carbon/epoxy laminate, [0/[+-]45/90][sub s], with a special emphasis on the optimum design of interply locations to incorporate the interleaf films for the particular requirement such as static strength, elastic modulus, fatigue resistance and so on.

  10. Understanding Long-Term Boreal Soil Carbon Accumulation: Insight from a Dynamic Layered Soil Model

    NASA Astrophysics Data System (ADS)

    Carrasco, J. J.; Harden, J. W.; Neff, J. C.

    2004-12-01

    Despite repeated fire disturbance, low-lying boreal forests have managed to accumulate large and globally significant stocks of C. Furthermore, boreal soils have historically occupied discontinuous and continuous permafrost zones and currently are experiencing a warming climate. Combined, these factors may result in loss of permafrost and increase in decomposition of the soil C. However, before attempting to assess the potential for future change in boreal soil C, the decadal to millennial mechanisms of soil C cycling and accumulation must be well understood. To that end, we developed a dynamic layered long-term soil C model to specifically address: 1) the influence of the soil thermal regime, 2) substrate recalcitrance through humification, and 3) the role of permafrost on the preservation and accumulation of boreal soil C. We included radiocarbon in our model so that we could compare soil C stocks as well as radiocarbon distribution to observations from a well studied Old Black Spruce (OBS) site in Manitoba, Canada. Using parameters from the literature, our results indicate that the accumulation of boreal soil C is dependent on the interaction between the soil thermal regime and humification. While these factors account for much of the soil C accumulation observed at OBS, the weighted average radiocarbon in the modeled deep soil was too new, suggesting a lack of preservation and accumulation of old soil C. However, upon inclusion of a permafrost layer for several centuries, not only the C accumulation and distribution between shallow and deep soil layers improved, but the weighted average radiocarbon markedly improved with respect to the OBS site. Our results suggest that: 1) in the absence of permafrost, deep soil C turnover time is on the order of 200-300 y rather than the previous estimates of up to and greater than 1000 y and 2) the legacy from recent shifts in boreal climate and permafrost must be considered when evaluating current observations.

  11. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel

    NASA Astrophysics Data System (ADS)

    Gao, Shan; Lin, Yue; Jiao, Xingchen; Sun, Yongfu; Luo, Qiquan; Zhang, Wenhua; Li, Dianqi; Yang, Jinlong; Xie, Yi

    2016-01-01

    Electroreduction of CO2 into useful fuels, especially if driven by renewable energy, represents a potentially ‘clean’ strategy for replacing fossil feedstocks and dealing with increasing CO2 emissions and their adverse effects on climate. The critical bottleneck lies in activating CO2 into the CO2•- radical anion or other intermediates that can be converted further, as the activation usually requires impractically high overpotentials. Recently, electrocatalysts based on oxide-derived metal nanostructures have been shown to enable CO2 reduction at low overpotentials. However, it remains unclear how the electrocatalytic activity of these metals is influenced by their native oxides, mainly because microstructural features such as interfaces and defects influence CO2 reduction activity yet are difficult to control. To evaluate the role of the two different catalytic sites, here we fabricate two kinds of four-atom-thick layers: pure cobalt metal, and co-existing domains of cobalt metal and cobalt oxide. Cobalt mainly produces formate (HCOO-) during CO2 electroreduction; we find that surface cobalt atoms of the atomically thin layers have higher intrinsic activity and selectivity towards formate production, at lower overpotentials, than do surface cobalt atoms on bulk samples. Partial oxidation of the atomic layers further increases their intrinsic activity, allowing us to realize stable current densities of about 10 milliamperes per square centimetre over 40 hours, with approximately 90 per cent formate selectivity at an overpotential of only 0.24 volts, which outperforms previously reported metal or metal oxide electrodes evaluated under comparable conditions. The correct morphology and oxidation state can thus transform a material from one considered nearly non-catalytic for the CO2 electroreduction reaction into an active catalyst. These findings point to new opportunities for manipulating and improving the CO2 electroreduction properties of metal systems

  12. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel.

    PubMed

    Gao, Shan; Lin, Yue; Jiao, Xingchen; Sun, Yongfu; Luo, Qiquan; Zhang, Wenhua; Li, Dianqi; Yang, Jinlong; Xie, Yi

    2016-01-01

    Electroreduction of CO2 into useful fuels, especially if driven by renewable energy, represents a potentially 'clean' strategy for replacing fossil feedstocks and dealing with increasing CO2 emissions and their adverse effects on climate. The critical bottleneck lies in activating CO2 into the CO2(•-) radical anion or other intermediates that can be converted further, as the activation usually requires impractically high overpotentials. Recently, electrocatalysts based on oxide-derived metal nanostructures have been shown to enable CO2 reduction at low overpotentials. However, it remains unclear how the electrocatalytic activity of these metals is influenced by their native oxides, mainly because microstructural features such as interfaces and defects influence CO2 reduction activity yet are difficult to control. To evaluate the role of the two different catalytic sites, here we fabricate two kinds of four-atom-thick layers: pure cobalt metal, and co-existing domains of cobalt metal and cobalt oxide. Cobalt mainly produces formate (HCOO(-)) during CO2 electroreduction; we find that surface cobalt atoms of the atomically thin layers have higher intrinsic activity and selectivity towards formate production, at lower overpotentials, than do surface cobalt atoms on bulk samples. Partial oxidation of the atomic layers further increases their intrinsic activity, allowing us to realize stable current densities of about 10 milliamperes per square centimetre over 40 hours, with approximately 90 per cent formate selectivity at an overpotential of only 0.24 volts, which outperforms previously reported metal or metal oxide electrodes evaluated under comparable conditions. The correct morphology and oxidation state can thus transform a material from one considered nearly non-catalytic for the CO2 electroreduction reaction into an active catalyst. These findings point to new opportunities for manipulating and improving the CO2 electroreduction properties of metal systems

  13. Raman evidence of the formation of LT-LiCoO 2 thin layers on NiO in molten carbonate at 650°C

    NASA Astrophysics Data System (ADS)

    Mendoza, L.; Baddour-Hadjean, R.; Cassir, M.; Pereira-Ramos, J. P.

    2004-03-01

    The structural evolution of thin layers of Co 3O 4 elaborated on nickel-based substrates in the Li 2CO 3-Na 2CO 3 carbonate eutectic at 650 °C as a function of time immersion is reported. Raman microspectrometry has been applied in order to provide more information on the nature of the protective cobalt oxide layers. The typical Raman fingerprint of the LT-LiCoO 2 compound has been obtained, with four well defined bands at 449, 484, 590 and 605 cm -1, while XRD data are unable to distinguish the layered phase (HT) from the spinel one (LT). The mechanical stability of such films does not exceed 10 h in direct contact with the molten carbonate bulk at 650 °C; nevertheless, these conditions are much more corrosive than in a molten carbonate fuel cell (MCFC).

  14. Carbon and nitrogen abundance determinations from transition layer lines. [giant stars

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, Erika; Mena-Werth, Jose

    1988-01-01

    For red giants a smooth increase in the nitrogen to carbon abundance ratio for increasing B-V as is expected for the first dredge up phase when the outer convection zone deepens is found. An average increase in the nitrogen to silicon ratio for B-V = 0.6 which goes back to almost solar values for cool giants with B - V approximately 1.0 is reported. It looks as if Si would be enriched for deeper mixing contrary to expectations from standard evolution theory.

  15. Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors

    SciTech Connect

    Simon, P.; Gogotsi, Y.

    2010-06-21

    Electrochemical capacitors, also known as supercapacitors, are energy storage devices that fill the gap between batteries and dielectric capacitors. Thanks to their unique features, they have a key role to play in energy storage and harvesting, acting as a complement to or even a replacement of batteries which has already been achieved in various applications. One of the challenges in the supercapacitor area is to increase their energy density. Some recent discoveries regarding ion adsorption in microporous carbon exhibiting pores in the nanometre range can help in designing the next generation of high-energy-density supercapacitors.

  16. Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors.

    PubMed

    Simon, Patrice; Gogotsi, Yury

    2010-07-28

    Electrochemical capacitors, also known as supercapacitors, are energy storage devices that fill the gap between batteries and dielectric capacitors. Thanks to their unique features, they have a key role to play in energy storage and harvesting, acting as a complement to or even a replacement of batteries which has already been achieved in various applications. One of the challenges in the supercapacitor area is to increase their energy density. Some recent discoveries regarding ion adsorption in microporous carbon exhibiting pores in the nanometre range can help in designing the next generation of high-energy-density supercapacitors. PMID:20566518

  17. A carbon nanotube-infused polysulfone membrane with polyvinyl alcohol layer for treating oil-containing waste water

    PubMed Central

    Maphutha, Selby; Moothi, Kapil; Meyyappan, M.; Iyuke, Sunny E.

    2013-01-01

    A carbon nanotube (CNT) integrated polymer composite membrane with a polyvinyl alcohol barrier layer has been prepared to separate oil from water for treatment of oil-containing waste water. The CNTs were synthesised using chemical vapour deposition, and a phase inversion method was employed for the blending of the CNTs in the polymer composite solution for casting of the membrane. Relative to the baseline polymer, an increase of 119% in the tensile strength, 77% in the Young's modulus and 258% in the toughness is seen for a concentration of 7.5% CNTs in the polymer composite. The permeate through the membrane shows oil concentrations below the acceptable 10 mg/L limit with an excellent throughput and oil rejection of over 95%. PMID:23518875

  18. Curvature Effect on the Capacitance of Electric Double Layers at Ionic Liquid/Onion-Like Carbon Interfaces

    SciTech Connect

    Feng, Guang; Jiang, Deen; Cummings, Peter T

    2012-01-01

    Recent experiments have revealed that onion-like carbons (OLCs) offer high energy density and charging/discharging rates when used as the electrodes in supercapacitors. To understand the physical origin of this phenomenon, molecular dynamics simulations were performed for a room-temperature ionic liquid near idealized spherical OLCs with radii ranging from 0.356 to 1.223 nm. We find that the surface charge density increases almost linearly with the potential applied on electric double layers (EDLs) near OLCs. This leads to a nearly flat shape of the differential capacitance versus the potential, unlike the bell or camel shape observed on planar electrodes. Moreover, our simulations reveal that the capacitance of EDLs on OLCs increases with the curvature or as the OLC size decreases, in agreement with experimental observations. The curvature effect is explained by dominance of charge overscreening over a wide potential range and increased ion density per unit area of electrode surface as the OLC becomes smaller.

  19. Facile method to control the diameter and density of carbon nanotubes by using a catalyst-embedded supporting layer

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Woong; Han, Jaeseok; Im, Hyunsik; Choi, WonChel; Park, Young S.; Yoon, Seok-Beom

    2015-06-01

    We have investigated an effective method to control the diameter and the density of carbon nanotubes (CNTs) by introducing a catalyst-embedded supporting layer (CSL) prepared by using rf-magnetron sputtering with a mixed target consisting of Fe and Al2O3. The type of CNTs was changed from single-walled CNTs with a diameter of 0.85 ~ 1.55 nm to multi-walled CNTs with increasing rf-magnetron sputtering power. The controllability of the diameter and the density of the CNTs was confirmed to have been improved by using the rf power during the sputtering of the CSL and the concentration of Fe in the mixed target, respectively.

  20. Effect of pore morphology on the electrochemical properties of electric double layer carbon cryogel supercapacitors

    NASA Astrophysics Data System (ADS)

    Batalla García, Betzaida; Feaver, Aaron M.; Zhang, Qifeng; Champion, Richard D.; Cao, Guozhong; Fister, Tim T.; Nagle, Ken P.; Seidler, Gerald T.

    2008-07-01

    In this study, a group of carbon cryogels have been synthesized using resorcinol formaldehyde as precursors, and altered via catalysis and activation, to obtain varied nanostructures and pore size distributions. To understand the relation between structure and electrochemical properties, an alternate approach to de Levi's cylindrical pore, transmission line method was utilized. Using electrochemical impedance spectroscopy, the capacitor can be studied as a dielectric system composed of a porous electrode and the electrolyte (tetraethylammonium tetrafluoroborate in propylene carbonate). The complex capacitance and power are used to study the behavior of the system below the relaxation frequency f0 (φ=-45°). Therefore, the relaxation of the capacitor system at the low frequency range, f

  1. Atomic Layer Deposition of ZnO on Multi-walled Carbon Nanotubes and Its Use for Synthesis of CNT-ZnO Heterostructures.

    PubMed

    Li, X L; Li, C; Zhang, Y; Chu, D P; Milne, W I; Fan, H J

    2010-01-01

    In this article, direct coating of ZnO on PECVD-grown multi-walled carbon nanotubes (MWCNTs) is achieved using atomic layer deposition (ALD). Transmission electron microscopy investigation shows that the deposited ZnO shell is continuous and uniform, in contrast to the previously reported particle morphology. The ZnO layer has a good crystalline quality as indicated by Raman and photoluminescence (PL) measurements. We also show that such ZnO layer can be used as seed layer for subsequent hydrothermal growth of ZnO nanorods, resulting in branched CNT-inorganic hybrid nanostructures. Potentially, this method can also apply to the fabrication of ZnO-based hybrid nanostructures on other carbon nanomaterials. PMID:21124621

  2. Atomic Layer Deposition of ZnO on Multi-walled Carbon Nanotubes and Its Use for Synthesis of CNT-ZnO Heterostructures

    NASA Astrophysics Data System (ADS)

    Li, X. L.; Li, C.; Zhang, Y.; Chu, D. P.; Milne, W. I.; Fan, H. J.

    2010-11-01

    In this article, direct coating of ZnO on PECVD-grown multi-walled carbon nanotubes (MWCNTs) is achieved using atomic layer deposition (ALD). Transmission electron microscopy investigation shows that the deposited ZnO shell is continuous and uniform, in contrast to the previously reported particle morphology. The ZnO layer has a good crystalline quality as indicated by Raman and photoluminescence (PL) measurements. We also show that such ZnO layer can be used as seed layer for subsequent hydrothermal growth of ZnO nanorods, resulting in branched CNT-inorganic hybrid nanostructures. Potentially, this method can also apply to the fabrication of ZnO-based hybrid nanostructures on other carbon nanomaterials.

  3. Thermally-induced single-crystal-to-single-crystal transformations from a 2D two-fold interpenetrating square lattice layer to a 3D four-fold interpenetrating diamond framework and its application in dye-sensitized solar cells.

    PubMed

    Gao, Song; Fan, Rui Qing; Wang, Xin Ming; Wei, Li Guo; Song, Yang; Du, Xi; Xing, Kai; Wang, Ping; Yang, Yu Lin

    2016-07-28

    In this work, a rare 2D → 3D single-crystal-to-single-crystal transformation (SCSC) is observed in metal-organic coordination complexes, which is triggered by thermal treatment. The 2D two-fold interpenetrating square lattice layer [Cd(IBA)2]n (1) is irreversibly converted into a 3D four-fold interpenetrating diamond framework {[Cd(IBA)2(H2O)]·2.5H2O}n (2) (HIBA = 4-(1H-imidazol-1-yl)benzoic acid). Consideration is given to these two complexes with different interpenetrating structures and dimensionality, and their influence on photovoltaic properties are studied. Encouraged by the UV-visible absorption and HOMO-LUMO energy states matched for sensitizing TiO2, the two complexes are employed in combination with N719 in dye-sensitized solar cells (DSSCs) to compensate absorption in the ultraviolet and blue-violet region, offset competitive visible light absorption of I3(-) and reducing charge the recombination of injected electrons. After co-sensitization with 1 and 2, the device co-sensitized by 1/N719 and 2/N719 to yield overall efficiencies of 7.82% and 8.39%, which are 19.94% and 28.68% higher than that of the device sensitized only by N719 (6.52%). Consequently, high dimensional interpenetrating complexes could serve as excellent co-sensitizers and have application in DSSCs. PMID:27356177

  4. Rational Design of Efficient Electrocatalysts for Hydrogen Evolution Reaction: Single Layers of WS2 Nanoplates Anchored to Hollow Nitrogen-Doped Carbon Nanofibers.

    PubMed

    Yu, Sunmoon; Kim, Jaehoon; Yoon, Ki Ro; Jung, Ji-Won; Oh, Jihun; Kim, Il-Doo

    2015-12-30

    To exploit the benefits of nanostructuring for enhanced hydrogen evolution reaction (HER), we employed coaxial electrospinning to synthesize single-layered WS2 nanoplates anchored to hollow nitrogen-doped carbon nanofibers (WS2@HNCNFs) as efficient electrocatalysts. For comparison, bulk WS2 powder and single layers of WS2 embedded in nitrogen-doped carbon nanofibers (WS2@NCNFs) were synthesized and electrochemically tested. The distinctive design of the WS2@HNCNFs enables remarkable electrochemical performances showing a low overpotential with reduced charge transfer resistance, a small Tafel slope, and excellent durability. The experimental results highlight the importance of nanostructure engineering in electrocatalysts for enhanced HER. PMID:26654256

  5. Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska

    SciTech Connect

    Genet, Helene; McGuire, A. David; Barrett, K.; Breen, Amy; Euskirchen, Eugenie S; Johnstone, J. F.; Kasischke, Eric S.; Melvin, A. M.; Bennett, A.; Mack, M. C.; Rupp, Scott T.; Schuur, Edward; Turetsky, M. R.; Yuan, Fengming

    2013-01-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layercaused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness

  6. Stabilizing a high-temperature electrochemical silver-carbonate CO2 capture membrane by atomic layer deposition of a ZrO2 overcoat.

    PubMed

    Zhang, Peng; Tong, Jingjing; Jee, Youngseok; Huang, Kevin

    2016-07-28

    A high-selectivity and high-flux electrochemical silver-carbonate dual-phase membrane was coated with a nanoscaled ZrO2 layer by atomic layer deposition (ALD) for stable CO2 capture at high-temperature (≥800 °C); the latter has an important implication for direct dry methane reforming with the captured CO2 and O2 for syngas production. PMID:27417536

  7. High Power Electric Double-Layer Capacitors based on Room-Temperature Ionic Liquids and Nanostructured Carbons

    NASA Astrophysics Data System (ADS)

    Perez, Carlos R.

    The efficient storage of electrical energy constitutes both a fundamental challenge for 21st century science and an urgent requirement for the sustainability of our technological civilization. The push for cleaner renewable forms of energy production, such as solar and wind power, strongly depends on a concomitant development of suitable storage methods to pair with these intermittent sources, as well as for mobile applications, such as vehicles and personal electronics. In this regard, Electrochemical Double-Layer Capacitors (supercapacitors) represent a vibrant area of research due to their environmental friendliness, long lifetimes, high power capability, and relative underdevelopment when compared to electrochemical batteries. Currently supercapacitors have gravimetric energies one order of magnitude lower than similarly advanced batteries, while conversly enjoying a similar advantage over them in terms of power. The challenge is to increase the gravimentric energies and conserve the high power. On the material side, research focuses on highly porous supports and electrolytes, the critical components of supercapacitors. Through the use of electrolyte systems with a wider electrochemical stability window, as well as properly tailored carbon nanomaterials as electrodes, significant improvements in performance are possible. Room Temperature Ionic Liquids and Carbide-Derived Carbons are promising electrolytes and electrodes, respectively. RTILs have been shown to be stable at up to twice the voltage of organic solvent-salt systems currently employed in supercapacitors, and CDCs are tunable in pore structure, show good electrical conductivity, and superior demonstrated capability as electrode material. This work aims to better understand the interplay of electrode and electrolyte parameters, such as pore structure and ion size, in the ultimate performance of RTIL-based supercapacitors in terms of power, energy, and temperature of operation. For this purpose, carbon

  8. Phase diagram and transformations of iron pentacarbonyl to nm layered hematite and carbon-oxygen polymer under pressure

    SciTech Connect

    Ryu, Young Jay; Kim, Minseob; Yoo, Choong -Shik

    2015-10-12

    In this study, we present the phase diagram of Fe(CO)5, consisting of three molecular polymorphs (phase I, II and III) and an extended polymeric phase that can be recovered at ambient condition. The phase diagram indicates a limited stability of Fe(CO)5 within a pressure-temperature dome formed below the liquid- phase II- polymer triple point at 4.2 GPa and 580 K. The limited stability, in turn, signifies the temperature-induced weakening of Fe-CO back bonds, which eventually leads to the dissociation of Fe-CO at the onset of the polymerization of CO. The recovered polymer is a composite of novel nm-lamellar layers of crystalline hematite Fe2O3 and amorphous carbon-oxygen polymers. These results, therefore, demonstrate the synthesis of carbon-oxygen polymer by compressing Fe(CO)5, which advocates a novel synthetic route to develop atomistic composite materials by compressing organometallic compounds.

  9. Potential Carbon Transport: Linking Soil Aggregate Stability and Sediment Enrichment for Updating the Soil Active Layer within Intensely Managed Landscapes

    NASA Astrophysics Data System (ADS)

    Wacha, K.; Papanicolaou, T.; Abban, B. K.; Wilson, C. G.

    2014-12-01

    Currently, many biogeochemical models lack the mechanistic capacity to accurately simulate soil organic carbon (SOC) dynamics, especially within intensely managed landscapes (IMLs) such as those found in the U.S. Midwest. These modeling limitations originate by not accounting for downslope connectivity of flowpathways initiated and governed by landscape processes and hydrologic forcing, which induce dynamic updates to the soil active layer (generally top 20-30cm of soil) with various sediment size fractions and aggregates being transported and deposited along the downslope. These hydro-geomorphic processes, often amplified in IMLs by tillage events and seasonal canopy, can greatly impact biogeochemical cycles (e.g., enhanced mineralization during aggregate breakdown) and in turn, have huge implications/uncertainty when determining SOC budgets. In this study, some of these limitations were addressed through a new concept, Potential Carbon Transport (PCT), a term which quantifies a maximum amount of material available for transport at various positions of the landscape, which was used to further refine a coupled modeling framework focused on SOC redistribution through downslope/lateral connectivity. Specifically, the size fractions slaked from large and small aggregates during raindrop-induced aggregate stability tests were used in conjunction with rainfall-simulated sediment enrichment ratio (ER) experiments to quantify the PCT under various management practices, soil types and landscape positions. Field samples used in determining aggregate stability and the ER experiments were collected/performed within the historic Clear Creek Watershed, home of the IML Critical Zone Observatory, located in Southeastern Iowa.

  10. A simple strategy for synthesizing highly luminescent carbon nanodots and application as effective down-shifting layers.

    PubMed

    Han, Xugen; Zhong, Sihua; Pan, Wei; Shen, Wenzhong

    2015-02-13

    We propose a novel strategy to prepare highly luminescent carbon nanodots (C-dots) by employing a hydrothermal method with citric acid as the carbon source and ethylenediamine as the nitrogen source, together with adding moderate ammonia water (AW) to achieve both appropriate inner structure and excellent N passivation. The effect of pH value and AW amount on the luminescence properties has been thoroughly investigated. The photoluminescence quantum yield of the resultant C-dots reaches as high as 84.8%, which is of 10.56% higher than that of the C-dots synthesized in the absence of AW in the reaction precursors. We have further combined the highest luminescent C-dots with polyvinyl alcohol to form luminescent down-shifting layers on silicon nanowire solar cells. An effective enhancement of short-circuit current density has been realized and the contribution of the down-shifting has been extracted quantitatively from the deterioration of surface reflectance and the gain of the optical absorption redistribution by means of a theoretical model on external quantum efficiency analysis. PMID:25611852

  11. Phase diagram and transformations of iron pentacarbonyl to nm layered hematite and carbon-oxygen polymer under pressure

    DOE PAGESBeta

    Ryu, Young Jay; Kim, Minseob; Yoo, Choong -Shik

    2015-10-12

    In this study, we present the phase diagram of Fe(CO)5, consisting of three molecular polymorphs (phase I, II and III) and an extended polymeric phase that can be recovered at ambient condition. The phase diagram indicates a limited stability of Fe(CO)5 within a pressure-temperature dome formed below the liquid- phase II- polymer triple point at 4.2 GPa and 580 K. The limited stability, in turn, signifies the temperature-induced weakening of Fe-CO back bonds, which eventually leads to the dissociation of Fe-CO at the onset of the polymerization of CO. The recovered polymer is a composite of novel nm-lamellar layers ofmore » crystalline hematite Fe2O3 and amorphous carbon-oxygen polymers. These results, therefore, demonstrate the synthesis of carbon-oxygen polymer by compressing Fe(CO)5, which advocates a novel synthetic route to develop atomistic composite materials by compressing organometallic compounds.« less

  12. Influence of Different Defects in Vertically Aligned Carbon Nanotubes on TiO2 Nanoparticle Formation through Atomic Layer Deposition.

    PubMed

    Acauan, Luiz; Dias, Anna C; Pereira, Marcelo B; Horowitz, Flavio; Bergmann, Carlos P

    2016-06-29

    The chemical inertness of carbon nanotubes (CNT) requires some degree of "defect engineering" for controlled deposition of metal oxides through atomic layer deposition (ALD). The type, quantity, and distribution of such defects rules the deposition rate and defines the growth behavior. In this work, we employed ALD to grow titanium oxide (TiO2) on vertically aligned carbon nanotubes (VACNT). The effects of nitrogen doping and oxygen plasma pretreatment of the CNT on the morphology and total amount of TiO2 were systematically studied using transmission electron microscopy, Raman spectroscopy, and thermogravimetric analysis. The induced chemical changes for each functionalization route were identified by X-ray photoelectron and Raman spectroscopies. The TiO2 mass fraction deposited with the same number of cycles for the pristine CNT, nitrogen-doped CNT, and plasma-treated CNT were 8, 47, and 80%, respectively. We demonstrate that TiO2 nucleation is dependent mainly on surface incorporation of heteroatoms and their distribution rather than structural defects that govern the growth behavior. Therefore, selecting the best way to functionalize CNT will allow us to tailor TiO2 distribution and hence fabricate complex heterostructures. PMID:27269125

  13. Double blanket effect caused by two layers of black carbon aerosols escalates warming in the Brahmaputra River Valley

    PubMed Central

    Rahul, P. R. C.; Bhawar, R. L.; Ayantika, D. C.; Panicker, A. S.; Safai, P. D.; Tharaprabhakaran, V.; Padmakumari, B.; Raju, M. P.

    2014-01-01

    First ever 3-day aircraft observations of vertical profiles of Black Carbon (BC) were obtained during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) conducted on 30th August, 4th and 6th September 2009 over Guwahati (26°11′N, 91°44′E), the largest metropolitan city in the Brahmaputra River Valley (BRV) region. The results revealed that apart from the surface/near surface loading of BC due to anthropogenic processes causing a heating of 2 K/day, the large-scale Walker and Hadley atmospheric circulations associated with the Indian summer monsoon help in the formation of a second layer of black carbon in the upper atmosphere, which generates an upper atmospheric heating of ~2 K/day. Lofting of BC aerosols by these large-scale circulating atmospheric cells to the upper atmosphere (4–6 Km) could also be the reason for extreme climate change scenarios that are being witnessed in the BRV region. PMID:24419075

  14. Influence of the ionomer/carbon ratio for low-Pt loading catalyst layer prepared by reactive spray deposition technology

    NASA Astrophysics Data System (ADS)

    Yu, Haoran; Roller, Justin M.; Mustain, William E.; Maric, Radenka

    2015-06-01

    Proton exchange membrane fuel cell (PEMFC) catalyst layers (CLs) were fabricated by direct deposition of the catalyst onto Nafion® membranes using reactive spray deposition technique (RSDT) to reduce platinum (Pt) loading and reduce the number of catalyst synthesis and processing steps. Nitrogen adsorption, mercury porosimetry, and scanning electron microscopy (SEM) were used to investigate the effects of ionomer/carbon ratio (I/C) on the surface area, pore structure and morphology of the CLs; cyclic voltammetry and polarization curves were used to determine the electrochemically active area (ECSA) and PEMFC performance. The BET surface area and pore volume of the CLs decreased continuously with increasing I/C ratio regardless of the catalyst loading. Bimodal distribution of pores with diameters ranging from 1.7 to 10 nm and from 30 to 100 nm were observed from the pore-size distribution of the CLs. The catalyst-coated membrane (CCM) with an I/C ratio of 0.3 showed the highest ECSA of 62 m2 gPt-1 and the best performance at 0.6 V for oxygen (1400 mA cm-2) and air (650 mA cm-2) among all RSDT samples. The optimum I/C ratio is lower compared to ink-based methods, and Pt nanoparticles showed improved distribution on the carbon surface. The RSDT process shows promise in achieving better ionomer coverage and penetration in the CL microstructure, enhancing the performance of low Pt-loading PEMFCs.

  15. Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    DOEpatents

    Farahmandi, C.J.; Dispennette, J.M.; Blank, E.; Kolb, A.C.

    1999-01-19

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH{sub 3}CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals. 32 figs.

  16. Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    DOEpatents

    Farahmandi, C. J.; Dispennette, J. M.; Blank, E.; Kolb, A. C.

    1999-05-25

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH[sub 3]CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals. 32 figs.

  17. Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    DOEpatents

    Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward; Kolb, Alan C.

    1999-01-19

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.

  18. Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    DOEpatents

    Farahmandi, C Joseph [San Diego, CA; Dispennette, John M [Oceanside, CA; Blank, Edward [San Diego, CA; Kolb, Alan C [Rancho Santa Fe, CA

    1999-05-25

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.

  19. Phase Diagram and Transformations of Iron Pentacarbonyl to nm Layered Hematite and Carbon-Oxygen Polymer under Pressure

    PubMed Central

    Ryu, Young Jay; Kim, Minseob; Yoo, Choong-Shik

    2015-01-01

    We present the phase diagram of Fe(CO)5, consisting of three molecular polymorphs (phase I, II and III) and an extended polymeric phase that can be recovered at ambient condition. The phase diagram indicates a limited stability of Fe(CO)5 within a pressure-temperature dome formed below the liquid- phase II- polymer triple point at 4.2 GPa and 580 K. The limited stability, in turn, signifies the temperature-induced weakening of Fe-CO back bonds, which eventually leads to the dissociation of Fe-CO at the onset of the polymerization of CO. The recovered polymer is a composite of novel nm-lamellar layers of crystalline hematite Fe2O3 and amorphous carbon-oxygen polymers. These results, therefore, demonstrate the synthesis of carbon-oxygen polymer by compressing Fe(CO)5, which advocates a novel synthetic route to develop atomistic composite materials by compressing organometallic compounds. PMID:26456761

  20. Reduced graphene oxide with ultrahigh conductivity as carbon coating layer for high performance sulfur@reduced graphene oxide cathode

    NASA Astrophysics Data System (ADS)

    Zhao, Hongbin; Peng, Zhenhuan; Wang, Wenjun; Chen, Xikun; Fang, Jianhui; Xu, Jiaqiang

    2014-01-01

    We developed hydrogen iodide (HI) reduction of rGO and surfactant-assisted chemical reaction- deposition method to form hybrid material of sulfur (S) encapsulated in reduced graphene oxide (rGO) sheets for rechargeable lithium batteries. The surfactant-assisted chemical reaction-deposition method strategy provides intimate contact between the S and graphene oxide. Chemical reduced rGO with high conductivity as carbon coating layer prevented the dissolution of polysulfide ions and improved the electron transfer. This novel core-shell structured S@rGO composites with high S content showed high reversible capacity, good discharge capacity retention and enhanced rate capability used as cathodes in rechargeable Li/S cells. We demonstrated here that an electrode prepared from a S@rGO with up to 85 wt% S maintains a stable discharge capacity of about 980 mAh g-1 at 0.05 C and 570 mAh g-1 at 1C after 200 cycles charge/discharge. These results emphasize the importance of rGO with high electrical conductivity after HI-reduced rGO homogeneously coating on the surface of S, therefore, effectively alleviating the shuttle phenomenon of polysulfides in organic electrolyte. Our surfactant-assisted chemical reaction-HI reduction approach should offer a new technique for the design and synthesis of battery electrodes based on highly conducting carbon materials.

  1. Raman spectrometry of carbon nanotubes using an Al-catalyst supported layer on nickel film deposited on silicon substrate

    NASA Astrophysics Data System (ADS)

    Saengpeng, J.; Pakdee, U.; Chiangga, S.; Rattanasakulthong, W.

    2015-07-01

    Carbon nanotubes (CNTs) were grown on Ni catalyst with Al catalyst supported layer prepared on silicon substrate at different temperatures by TCVD. TEM images clearly showed the multi-wall structure of carbon nanotubes (MWCNTs) and SEM images revealed that the average diameters of MWCNTs were 116, 121, 142 and 162 nm for the growing temperatures of 600, 700, 800 and 900°C, respectively. The increase of tube diameter was due to the difference of Ni particle size and distribution after pretreatment. Raman spectrum revealed the two peaks of the D and G band at 1282- 1290 and 1588-1598 cm-1, respectively. The tubes grown at 800°C showed a shoulder peak of G band at 1598 cm-1. The minimum of defect induced disorder (ID/IG) of 1.19 was found at 800°C whereas the maximum disorder of 1.70 was observed at 600°C. All results confirm that the tube growth at 800°C shows the minimum imperfective disorder and the tube diameter can be manipulated by the Ni particle size and distribution.

  2. A simple strategy for synthesizing highly luminescent carbon nanodots and application as effective down-shifting layers

    NASA Astrophysics Data System (ADS)

    Han, Xugen; Zhong, Sihua; Pan, Wei; Shen, Wenzhong

    2015-02-01

    We propose a novel strategy to prepare highly luminescent carbon nanodots (C-dots) by employing a hydrothermal method with citric acid as the carbon source and ethylenediamine as the nitrogen source, together with adding moderate ammonia water (AW) to achieve both appropriate inner structure and excellent N passivation. The effect of pH value and AW amount on the luminescence properties has been thoroughly investigated. The photoluminescence quantum yield of the resultant C-dots reaches as high as 84.8%, which is of 10.56% higher than that of the C-dots synthesized in the absence of AW in the reaction precursors. We have further combined the highest luminescent C-dots with polyvinyl alcohol to form luminescent down-shifting layers on silicon nanowire solar cells. An effective enhancement of short-circuit current density has been realized and the contribution of the down-shifting has been extracted quantitatively from the deterioration of surface reflectance and the gain of the optical absorption redistribution by means of a theoretical model on external quantum efficiency analysis.

  3. Dendron growth from vertically aligned single-walled carbon nanotube thin layer arrays for photovoltaic devices.

    PubMed

    Bissett, Mark Alexander; Köper, Ingo; Quinton, Jamie Scott; Shapter, Joe George

    2011-04-01

    Single-walled carbon nanotube arrays attached to conductive transparent electrodes have previously shown promise for use in photovoltaic devices, whilst still retaining light transmission. Here, chemical modification of these thin (<200 nm) arrays with PAMAM-type dendrons has been undertaken to enhance the photoresponse of these devices. The effect of modification on the electrode was measured by differential pulse voltammetry to detect the dendrons, and the effect on the nanotubes was measured by Raman spectroscopy. Solar simulator illumination of the cells was performed to measure the effect of the nanotube modification on the cell power, and determine the optimal modification. Electrochemical impedance spectroscopy was also used to investigate the equivalent electronic circuit elements of the cells. The optimal dendron modification occurred with the second generation (G-2.0), which gave a 70% increase in power over the unmodified nanotube array. PMID:21347484

  4. Hierarchically Structured Hole Transport Layers of Spiro-OMeTAD and Multiwalled Carbon Nanotubes for Perovskite Solar Cells.

    PubMed

    Lee, Jiyong; Menamparambath, Mini Mol; Hwang, Jae-Yeol; Baik, Seunghyun

    2015-07-20

    The low electrical conductivity of spiro-OMeTAD hole transport layers impedes further enhancements of the power conversion efficiency (PCE) of perovskite solar cells. We embedded multiwalled carbon nanotubes (MWNTs) in spiro-OMeTAD (spiro-OMeTAD/MWNTs) to increase carrier mobility and conductivity. However, direct electrical contact between CH3 NH3 PbI3 and the MWNTs created pathways for undesirable back-electron transfer, owing to the large work function of MWNTs, limiting enhancements of the PCE. A hierarchical structure of pure spiro-OMeTAD and spiro-OMeTAD/MWNTs was designed to block back-electron transfer and fully exploit the enhanced charge transport of spiro-OMeTAD/MWNTs. The enhanced fill factor, short-circuit current density, open-circuit voltage, and PCE (15.1 %) were achieved by using this hierarchical hole transport layer structure (MWNT concentration=2 wt %). The perovskite solar cells were fabricated by a low-temperature solution process, further decreasing their per-Watt cost. PMID:26013428

  5. Enzyme biosensor based on plasma-polymerized film-covered carbon nanotube layer grown directly on a flat substrate.

    PubMed

    Muguruma, Hitoshi; Hoshino, Tatsuya; Matsui, Yasunori

    2011-07-01

    We report a novel approach to fabrication of an amperometric biosensor with an enzyme, a plasma-polymerized film (PPF), and carbon nanotubes (CNTs). The CNTs were grown directly on an island-patterned Co/Ti/Cr layer on a glass substrate by microwave plasma enhanced chemical vapor deposition. The as-grown CNTs were subsequently treated by nitrogen plasma, which changed the surface from hydrophobic to hydrophilic in order to obtain an electrochemical contact between the CNTs and enzymes. A glucose oxidase (GOx) enzyme was then adsorbed onto the CNT surface and directly treated with acetonitrile plasma to overcoat the GOx layer with a PPF. This fabrication process provides a robust design of CNT-based enzyme biosensor, because of all processes are dry except the procedure for enzyme immobilization. The main novelty of the present methodology lies in the PPF and/or plasma processes. The optimized glucose biosensor revealed a high sensitivity of 38 μA mM(-1) cm(-2), a broad linear dynamic range of 0.25-19 mM (correlation coefficient of 0.994), selectivity toward an interferent (ascorbic acid), and a fast response time of 7 s. The background current was much smaller in magnitude than the current due to 10 mM glucose response. The low limit of detection was 34 μM (S/N = 3). All results strongly suggest that a plasma-polymerized process can provide a new platform for CNT-based biosensor design. PMID:21678995

  6. Using ammonium bicarbonate as pore former in activated carbon catalyst layer to enhance performance of air cathode microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Li, Da; Qu, Youpeng; Liu, Jia; He, Weihua; Wang, Haiman; Feng, Yujie

    2014-12-01

    The rolling catalyst layers in air cathode microbial fuel cells (MFCs) are prepared by introducing NH4HCO3 as pore former (PF) with four PF/activated carbon mass ratios of 0.1, 0.2, 0.3 and 1.0. The maximum power density of 892 ± 8 mW m-2 is obtained by cathodes with the mass ratio of 0.2, which is 33% higher than that of the control reactor (without PF, 671 ± 22 mW m-2). Pore analysis indicates the porosity increases by 38% and the major pore range concentrates between 0.5 μm-0.8 μm which likely facilitates to enrich the active reaction sites compared to 0.8 μm-3.0 μm in the control and other PF-cathodes. In addition, pore structure endows the cathode improved exchange current density by 2.4 times and decreased charge transfer resistance by 44%, which are the essential reasons to enhance the oxygen reduction. These results show that addition of NH4HCO3 proves an effective way to change the porosity and pore distribution of catalyst layers and then enhance the MFC performance.

  7. Carbon Flow and Metabolic Specialization in the Tissue Layers of the Crassulacean Acid Metabolism Plant, Peperomia camptotricha1

    PubMed Central

    Nishio, John N.; Ting, Irwin P.

    1987-01-01

    Leaves of Peperomia camptotricha contain three distinct upper tissue layers and a one-cell thick lower epidermis. Light and dark CO2 fixation rates and the activity of ribulose bisphosphate carboxylase/oxygenase and several C4 enzymes were determined in the three distinct tissue layers. The majority of the C4 enzyme activity and dark CO2 fixation was associated with the spongy mesophyll, including the lower epidermis; and the least activity was found in the median palisade mesophyll. In contrast, the majority of the C3 activity, that is ribulose bisphosphate carboxylase/oxygenase and light CO2 fixation, was located in the palisade mesophyll. In addition, the diurnal flux in titratable acidity was greatest in the spongy mesophyll and lowest in the palisade mesophyll. The spatial separation of the C3 and C4 phases of carbon fixation in P. camptotricha suggests that this Crassulacean acid metabolism plant may have low photorespiratory rates when it exhibits daytime gas exchange (that is, when it is well watered). The results also indicate that this plant may be on an evolutionary path between a true Crassulacean acid metabolism plant and a true C4 plant. PMID:16665487

  8. Impact of the atomic layer deposition precursors diffusion on solid-state carbon nanotube based supercapacitors performances.

    PubMed

    Fiorentino, Giuseppe; Vollebregt, Sten; Tichelaar, F D; Ishihara, Ryoichi; Sarro, Pasqualina M

    2015-02-13

    A study on the impact of atomic layer deposition (ALD) precursors diffusion on the performance of solid-state miniaturized nanostructure capacitor array is presented. Three-dimensional nanostructured capacitor array based on double conformal coating of multiwalled carbon nanotubes (MWCNTs) bundles is realized using ALD to deposit Al2O3 as dielectric layer and TiN as high aspect-ratio conformal counter-electrode on 2 μm long MWCNT bundles. The devices have a small footprint (from 100 μm(2) to 2500 μm(2)) and are realized using an IC wafer-scale manufacturing process with high reproducibility (≤0.3E-12F deviation). To evaluate the enhancement of the electrode surface, the measured capacitance values are compared to a lumped circuital model. The observed discrepancies are explained with a partial coating of the CNT, that determine a limited use of the available electrode surface area. To analyze the CNT coating effectiveness, the ALD precursors diffusions inside the CNT bundle is studied using a Knudsen diffusion mechanism. PMID:25604841

  9. Supercritical carbon dioxide-assisted rapid synthesis of few-layer black phosphorus for hydrogen peroxide sensing.

    PubMed

    Yan, Shancheng; Wang, Bojun; Wang, Zhulan; Hu, Dong; Xu, Xin; Wang, Junzhuan; Shi, Yi

    2016-06-15

    Solutions with large-scale dispersions of 2D black phosphorus (BP), often referred to as phosphorene, are obtained through solvent exfoliation. But, rapid phosphorene synthesis remains a challenge. Furthermore, although the chemical sensing capability of BP-based sensors has been theoretically predicted, its experimental verification remains lacking. In this study, we demonstrate the use of supercritical carbon dioxide-assisted rapid synthesis (5h) of few-layer BP. In addition, we construct a non-enzymatic hydrogen peroxide (H2O2) sensor based on few-layer BP for the first time to utilize BP degradation under ambient conditions. The proposed H2O2 sensor exhibits a considerably lower detection limit of 1 × 10(-7) M compared with the general detection limit of 1 × 10(-7) M-5 × 10(-5)M via electrochemical methods. Overall, the results of this study will not only expand the coverage of BP research but will also identify the important sensing characteristics of BP. PMID:26802750

  10. Cobalt Ferrite Bearing Nitrogen-Doped Reduced Graphene Oxide Layers Spatially Separated with Microporous Carbon as Efficient Oxygen Reduction Electrocatalyst.

    PubMed

    Kashyap, Varchaswal; Singh, Santosh K; Kurungot, Sreekumar

    2016-08-17

    The present work discloses how high-quality dispersion of fine particles of cobalt ferrite (CF) could be attained on nitrogen-doped reduced graphene oxide (CF/N-rGO) and how this material in association with a microporous carbon phase could deliver significantly enhanced activity toward electrochemical oxygen reduction reaction (ORR). Our study indicates that the microporous carbon phase plays a critical role in spatially separating the layers of CF/N-rGO and in creating a favorable atmosphere to ensure the seamless distribution of the reactants to the active sites located on CF/N-rGO. In terms of the ORR current density, the heat-treated hybrid catalyst at 150 °C (CF/N-rGO-150) is found to be clearly outperforming (7.4 ± 0.5 mA/cm(2)) the state-of-the-art 20 wt % Pt-supported carbon catalyst (PtC) (5.4 ± 0.5 mA/cm(2)). The mass activity and stability of CF-N-rGO-150 are distinctly superior to PtC even after 5000 electrochemical cycles. As a realistic system level exploration of the catalyst, testing of a primary zinc-air battery could be demonstrated using CF/N-rGO-150 as the cathode catalyst. The battery is giving a galvanostatic discharge time of 15 h at a discharge current density of 20 mA/cm(2) and a specific capacity of ∼630 mAh g(-1) in 6 M KOH by using a Zn foil as the anode. Distinctly, the battery performance of this system is found to be superior to that of PtC in less concentrated KOH solution as the electrolyte. PMID:27464229

  11. Diurnal and vertical variability of the sensible heat and carbon dioxide budgets in the atmospheric surface layer

    USGS Publications Warehouse

    Casso-Torralba, P.; de Arellano, J. V. -G.; Bosveld, F.; Soler, M.R.; Vermeulen, A.; Werner, C.; Moors, E.

    2008-01-01

    The diurnal and vertical variability of heat and carbon dioxide (CO2) in the atmospheric surface layer are studied by analyzing measurements from a 213 in tower in Cabauw (Netherlands). Observations of thermodynamic variables and CO2 mixing ratio as well as vertical profiles of the turbulent fluxes are used to retrieve the contribution of the budget terms in the scalar conservation equation. On the basis of the daytime evolution of turbulent fluxes, we calculate the budget terms by assuming that turbulent fluxes follow a linear profile with height. This assumption is carefully tested and the deviation ftom linearity is quantified. The budget calculation allows us to assess the importance of advection of heat and CO2 during day hours for three selected days. It is found that, under nonadvective conditions, the diurnal variability of temperature and CO2 is well reproduced from the flux divergence measurements. Consequently, the vertical transport due to the turbulent flux plays a major role in the daytime evolution of both scalars and the advection is a relatively small contribution. During the analyzed days with a strong contribution of advection of either heat or carbon dioxide, the flux divergence is still an important contribution to the budget. For heat, the quantification of the advection contribution is in close agreement with results from a numerical model. For carbon dioxide, we qualitatively corroborate the results with a Lagrangian transport model. Our estimation of advection is compared with, traditional estimations based on the Net Ecosystem-atmosphere Exchange (NEE). Copyright 2008 by the American Geophysical Union.

  12. Coupled Vadose Zone and Atmospheric Surface-Layer Transport of CO2 from Geologic Carbon Sequestration Sites

    SciTech Connect

    Oldenburg, Curtis M.; Unger, Andre J.A.

    2004-03-29

    Geologic carbon dioxide (CO{sub 2}) sequestration is being considered as a way to offset fossil-fuel-related CO{sub 2} emissions to reduce the rate of increase of atmospheric CO{sub 2} concentrations. The accumulation of vast quantities of injected carbon dioxide (CO{sub 2}) in geologic sequestration sites may entail health and environmental risks from potential leakage and seepage of CO{sub 2} into the near-surface environment. We are developing and applying a coupled subsurface and atmospheric surface-layer modeling capability built within the framework of the integral finite difference reservoir simulator TOUGH2. The overall purpose of modeling studies is to predict CO{sub 2} concentration distributions under a variety of seepage scenarios and geologic, hydrologic, and atmospheric conditions. These concentration distributions will provide the basis for determining above-ground and near-surface instrumentation needs for carbon sequestration monitoring and verification, as well as for assessing health, safety, and environmental risks. A key feature of CO{sub 2} is its large density ({rho} = 1.8 kg m{sup -3}) relative to air ({rho} = 1.2 kg m{sup -3}), a property that may allow small leaks to cause concentrations in air above the occupational exposure limit of 4 percent in low-lying and enclosed areas such as valleys and basements where dilution rates are low. The approach we take to coupled modeling involves development of T2CA, a TOUGH2 module for modeling the multicomponent transport of water, brine, CO{sub 2}, gas tracer, and air in the subsurface. For the atmospheric surface-layer advection and dispersion, we use a logarithmic vertical velocity profile to specify constant time-averaged ambient winds, and atmospheric dispersion approaches to model mixing due to eddies and turbulence. Initial simulations with the coupled model suggest that atmospheric dispersion quickly dilutes diffuse CO{sub 2} seepage fluxes to negligible concentrations, and that rainfall

  13. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells.

    PubMed

    Habisreutinger, Severin N; Leijtens, Tomas; Eperon, Giles E; Stranks, Samuel D; Nicholas, Robin J; Snaith, Henry J

    2014-10-01

    Organic-inorganic perovskite solar cells have recently emerged at the forefront of photovoltaics research. Power conversion efficiencies have experienced an unprecedented increase to reported values exceeding 19% within just four years. With the focus mainly on efficiency, the aspect of stability has so far not been thoroughly addressed. In this paper, we identify thermal stability as a fundamental weak point of perovskite solar cells, and demonstrate an elegant approach to mitigating thermal degradation by replacing the organic hole transport material with polymer-functionalized single-walled carbon nanotubes (SWNTs) embedded in an insulating polymer matrix. With this composite structure, we achieve JV scanned power-conversion efficiencies of up to 15.3% with an average efficiency of 10 ± 2%. Moreover, we observe strong retardation in thermal degradation as compared to cells employing state-of-the-art organic hole-transporting materials. In addition, the resistance to water ingress is remarkably enhanced. These are critical developments for achieving long-term stability of high-efficiency perovskite solar cells. PMID:25226226

  14. Trap-limited carrier recombination in single-walled carbon nanotube heterojunctions with fullerene acceptor layers

    NASA Astrophysics Data System (ADS)

    Ferguson, Andrew J.; Dowgiallo, Anne-Marie; Bindl, Dominick J.; Mistry, Kevin S.; Reid, Obadiah G.; Kopidakis, Nikos; Arnold, Michael S.; Blackburn, Jeffrey L.

    2015-06-01

    Single-walled carbon nanotube (SWCNT)-fullerene (C60) bilayers represent an attractive "donor-acceptor" binary system for solar photoconversion, where the kinetics of photoinduced processes depend critically on the properties of the interface between the two materials. Using photoconductivity measurements we identify the kinetic scheme that describes the free carrier kinetics in such bilayers where the dominant SWCNT species is the (7,5) semiconducting nanotube. Following charge separation, the carrier kinetics, covering up to four orders of magnitude in volumetric hole density, are described by a recombination process that is limited by capture and emission at traps or states at the SWCNT-C60 interface. The high-frequency mobility of holes in the (7,5) SWCNT phase is lower than in multichiral films, potentially due to differences in SWCNT defect density for nanotubes that have been purified more aggressively. The results obtained here provide fundamental insights into the transport and recombination of both charges and excitons within SWCNT thin films and bilayers, and point to several potential ways to improve SWCNT-C60 photovoltaic devices.

  15. Development and Characterization of Gas Diffusion Layer Using Carbon Slurry Dispersed by Ammonium Lauryl Sulfate for Proton Exchange Member Fuel Cells

    NASA Astrophysics Data System (ADS)

    Villacorta, Rashida

    Gas diffusion layers (GDLs) are a critical and essential part of proton exchange membrane fuel cells (PEMFCs). They carry out various important functions such as transportation of reactants to and from the reaction sites. The material properties and structural characteristics of the substrate and the microporous layer strongly influence fuel cell performance. The microporous layer of the GDLs was fabricated with the carbon slurry dispersed in water containing ammonium lauryl sulfate (ALS) using the wire rod coating method. GDLs were fabricated with different materials to compose the microporous layer and evaluated the effects on PEMFC power output performance. The consistency of the carbon slurry was achieved by adding 25 wt. % of PTFE, a binding agent with a 75:25 ratio of carbon (Pureblack and vapor grown carbon fiber). The GDLs were investigated in PEMFC under various relative humidity (RH) conditions using H2/O2 and H2/Air. GDLs were also fabricated with the carbon slurry dispersed in water containing sodium dodecyl sulfate (SDS) and multiwalled carbon nanotubes (MWCNTs) with isopropyl alcohol (IPA) based for fuel cell performance comparison. MWCNTs and SDS exhibits the highest performance at 60% and 70% RH with a peak power density of 1100 mW.cm-2 and 850 mW.cm-2 using air and oxygen as an oxidant. This means that the gas diffusion characteristics of these two samples were optimum at 60 and 70 % RH with high limiting current density range. It was also found that the composition of the carbon slurry, specifically ALS concentration has the highest peak power density of 1300 and 500mW.cm-2 for both H2/O 2 and H2/Air at 100% RH. However, SDS and MWCNTs demonstrates the lowest power density using air and oxygen as an oxidants at 100% RH.

  16. Preparation of carbon nanotubes as the conductive coating layer on flexible thermal-resistant substrate by permeating method and its residual stress analysis

    NASA Astrophysics Data System (ADS)

    Kuo, Wen-Kai; Huang, Szu-Chun; Yu, Hsin Her

    2013-04-01

    A polyarylate (PAR) substrate was first prepared by hot pressing and then carbon nanotubes (CNTs) were coated on its surface by a low-temperature spraying method. In order to eliminate the residual stress and enhance the adhesive ability between the substrate and the coated CNT layer, an optimal thermo-permeating process is proposed. The relationship between the thickness of the permeating layer and the residual stress of coating layers was investigated. Triple-layer structure models were provided to evaluate the residual stress of coating layers. The experimental results show that if the sample was treated by the optimal thermo-permeating process, its residual stress was dramatically reduced from 1.7×103 MPa to 0.45 Pa; meanwhile, its adhesive ability was intensively enhanced from 1B to 5B according to ASTM D3359 adhesion classifications.

  17. Preparation of carbon nanotubes as the conductive coating layer on flexible thermal-resistant substrate by permeating method and its residual stress analysis

    NASA Astrophysics Data System (ADS)

    Kuo, Wen-Kai; Huang, Szu-Chun; Yu, Hsin Her

    2014-03-01

    A polyarylate (PAR) substrate was first prepared by hot pressing and then carbon nanotubes (CNTs) were coated on its surface by a low-temperature spraying method. In order to eliminate the residual stress and enhance the adhesive ability between the substrate and the coated CNT layer, an optimal thermo-permeating process is proposed. The relationship between the thickness of the permeating layer and the residual stress of coating layers was investigated. Triple-layer structure models were provided to evaluate the residual stress of coating layers. The experimental results show that if the sample was treated by the optimal thermo-permeating process, its residual stress was dramatically reduced from 1.7×103 MPa to 0.45 Pa; meanwhile, its adhesive ability was intensively enhanced from 1B to 5B according to ASTM D3359 adhesion classifications.

  18. Carbon exchange variability over Amazon Basin using coupledhydrometeorological-mixed layer PBL-carbon dioxide assimilation modeling system forced by satellite-derived surface radiation and precipitation

    NASA Astrophysics Data System (ADS)

    Grose, Andrew

    2004-12-01

    A hydrometeorological model is modified to include a simple slab model of the mixed layer for the estimation of CO2 fluxes in Amazonia. Three carbon assimilation models are examined for use in the FSU hydromet model, of which the NCAR LSM module is chosen because respiration rates are provided and CO2, latent and sensible heat fluxes are coupled through stomatal resistance. Initial calculations of NEP show a necessity for modeling canopy-boundary layer interactions to reproduce observed morning effluxes at forest tower sites at Manaus and Jaru. CO2 concentrations in five layers in and above the canopy are modeled with associated fluxes. Sensible heat fluxes are consistently overestimated until canopy heat capacity is taken into account. Estimations of canopy heat storage are found using observed differences between net incoming radiation and latent and sensible heat fluxes, or observed total residual energy. Calibration of fluxes at three tower sites is conducted using modeled total residual energy at the forest sites and modified photosynthesis parameters at the pasture site. The forcing parameters of downwelling solar radiation (K ↓) and temperature are found to exert the most influence over modeled CO2 fluxes at the tower sites. Model application over the basin shows that while vegetation type is the primary factor controlling CO2 fluxes area-wide, K ↓ is the primary forcing variable that produces spatial and temporal variability of CO2 fluxes. Modeled CO2 fluxes show mean monthly uptake values in the range of 1-3 mumol m-2 s-1 and diurnal progressions of large coherent areas of CO2 effluxes over the forest, progressing from SE to NW in December, and from NE to SW in June. Inspection of area-wide modeled fluxes near tower sites shows that the use of ECMWF winds and temperatures creates a spurious nocturnal stability that produces much larger morning efflux magnitudes than observations suggest. Comparison of CO2 fluxes at nearly 20,000 forest points within

  19. XPS analysis by exclusion of a-carbon layer on silicon carbide nanowires by a gold catalyst-supported metal-organic chemical vapor deposition method.

    PubMed

    Nam, Sang-Hun; Kim, Myoung-Hwa; Hyun, Jae-Sung; Kim, Young Dok; Boo, Jin-Hyo

    2010-04-01

    Silicon carbide (SiC) nano-structures would be favorable for application in high temperature, high power, and high frequency nanoelectronic devices. In this study, we have deposited cubic-SiC nanowires on Au-deposited Si(001) substrates using 1,3-disilabutane as a single molecular precursor through a metal-organic chemical vapor deposition (MOCVD) method. The general deposition pressure and temperature were 3.0 x 10(-6) Torr and 1000 degrees C respectively, with the deposition carried out for 1 h. Au played an important role as a catalyst in growing the SiC nanowires. SiC nanowires were grown using a gold catalyst, with amorphous carbon surrounding the final SiC nanowire. Thus, the first step involved removal of the remaining SiO2, followed by slicing of the amorphous carbon into thin layers using a heating method. Finally, the thinly sliced amorphous carbon is perfectly removed using an Ar sputtering method. As a result, this method may provide more field emission properties for the SiC nanowires that are normally inhibited by the amorphous carbon layer. Therefore, exclusion of the amorphous carbon layer is expected to improve the overall emission properties of SiC nanowires. PMID:20355494

  20. Possible Future Changes in Permafrost and Active Layer Thickness in Northern Eurasia and their Relation to Permafrost Carbon Pool

    NASA Astrophysics Data System (ADS)

    Marchenko, S. S.; Romanovsky, V. E.; Chapman, W. L.; Walsh, J. E.

    2012-12-01

    Recent observations indicate a warming of permafrost in many northern regions with the resulting degradation of ice-rich and carbon-rich permafrost. Permafrost temperature has increased by 1 to 3 deg C in northern Eurasia during the last 30 years. To assess possible changes in the permafrost thermal state and the active layer thickness we implemented the GIPL2 (Geophysical Institute Permafrost Lab) transient model for the entire Northern Eurasia for the 1981-2100 time period. Input parameters to the model are spatial datasets of mean monthly air temperature, snow properties or SWE, prescribed vegetation and thermal properties of the multilayered soil column, and water content. The climate scenario was derived from an ensemble of five IPCC Global Circulation Models (GCM) ECHAM5, GFDL21, CCSM, HADcm and CCCMA. The outputs from these five models have been scaled down to 25 km spatial resolution with monthly temporal resolution, based on the composite (mean) output of the five models, using the IPCC SRES A1B CO2 emission scenario through the end of current century. Historic ground temperature measurements in shallow boreholes (3.2 m in depth) from more than 120 weather stations located within the continuous, discontinuous, and sporadic permafrost zones were available for the initial model validation and calibration. To prescribe the thermal properties we used the map of soil characteristics for whole of Russia (Stolbovoi & Savin, 2002) and the map of Soil Carbon Pools, CO2 and CH4 emissions (Tarnocai et al., 2009) and also the soil structure descriptions available for some locations. We estimated dynamics of the seasonally thawed volume of soils within the two upper meters for the entire North Eurasia. The model results indicate 1,200 km3 of seasonally unfrozen soils within the two upper meters within 10,800,000 km2 of northern Eurasian permafrost domain during the last two decades of the 20th century. Our projections have shown that unfrozen volume of soil within two

  1. Resonant Carbon K -Edge Soft X-Ray Scattering from Lattice-Free Heliconical Molecular Ordering: Soft Dilative Elasticity of the Twist-Bend Liquid Crystal Phase

    NASA Astrophysics Data System (ADS)

    Zhu, Chenhui; Tuchband, Michael R.; Young, Anthony; Shuai, Min; Scarbrough, Alyssa; Walba, David M.; Maclennan, Joseph E.; Wang, Cheng; Hexemer, Alexander; Clark, Noel A.

    2016-04-01

    Resonant x-ray scattering shows that the bulk structure of the twist-bend liquid crystal phase, recently discovered in bent molecular dimers, has spatial periodicity without electron density modulation, indicating a lattice-free heliconical nematic precession of orientation that has helical glide symmetry. In situ study of the bulk helix texture of the dimer CB7CB shows an elastically confined temperature-dependent minimum helix pitch, but a remarkable elastic softness of pitch in response to dilative stresses. Scattering from the helix is not detectable in the higher temperature nematic phase.

  2. Morphological evolution of carbon nanofibers encapsulating SnCo alloys and its effect on growth of the solid electrolyte interphase layer.

    PubMed

    Shin, Jungwoo; Ryu, Won-Hee; Park, Kyu-Sung; Kim, Il-Doo

    2013-08-27

    Two distinctive one-dimensional (1-D) carbon nanofibers (CNFs) encapsulating irregularly and homogeneously segregated SnCo nanoparticles were synthesized via electrospinning of polyvinylpyrrolidone (PVP) and polyacrylonitrile (PAN) polymers containing Sn-Co acetate precursors and subsequent calcination in reducing atmosphere. CNFs synthesized with PVP, which undergoes structural degradation of the polymer during carbonization processes, exhibited irregular segregation of heterogeneous alloy particles composed of SnCo, Co3Sn2, and SnO with a size distribution of 30-100 nm. Large and exposed multiphase SnCo particles in PVP-driven amorphous CNFs (SnCo/PVP-CNFs) kept decomposing liquid electrolyte and were partly detached from CNFs during cycling, leading to a capacity fading at the earlier cycles. The closer study of solid electrolyte interphase (SEI) layers formed on the CNFs reveals that the gradual growth of fiber radius due to continuous increment of SEI layer thickness led to capacity fading. In contrast, SnCo particles in PAN-driven CNFs (SnCo/PAN-CNFs) showed dramatically reduced crystallite sizes (<10 nm) of single phase SnCo nanoparticles which were entirely embedded in dense, semicrystalline, and highly conducting 1-D carbon matrix. The growth of SEI layer was limited and saturated during cycling. As a result, SnCo/PAN-CNFs showed much improved cyclability (97.9% capacity retention) and lower SEI layer thickness (86 nm) after 100 cycles compared to SnCo/PVP-CNFs (capacity retention, 71.9%; SEI layer thickness, 593 nm). This work verifies that the thermal behavior of carbon precursor is highly responsible for the growth mechanism of SEI layer accompanied with particles detachment and cyclability of alloy particle embedded CNFs. PMID:23875909

  3. Atomic-layer-deposition alumina induced carbon on porous NixCo1 - xO nanonets for enhanced pseudocapacitive and Li-ion storage performance

    NASA Astrophysics Data System (ADS)

    Guan, Cao; Wang, Yadong; Zacharias, Margit; Wang, John; Fan, Hong Jin

    2015-01-01

    A unique composite nanonet of metal oxide@carbon interconnected sheets is obtained by atomic layer deposition (ALD)-assisted fabrication. In this nanonet structure, mesoporous metal oxide nanosheets are covered by a layer of amorphous carbon nanoflakes. Specifically, quasi-vertical aligned and mesoporous NixCo1 - xO nanosheets are first fabricated directly on nickel foam substrates by a hydrothermal method. Then, an ALD-enabled carbon coating method is applied for the growth of carbon nanoflakes on the surface of the nanosheets. The thus formed 3D hierarchical structure of NixCo1 - xO@carbon composite flakes have a higher surface area, better electrical conductivity and structure stability than the bare NixCo1 - xO. The application of such composite nanomaterials is demonstrated as electrodes for a supercapacitor and a lithium-ion battery. In both tests, the composite electrode shows enhancement in capacity and cycling stability. This effective composite nanostructure design of metal oxides@carbon flakes could provide a promising method to construct high-performance materials for energy and environment applications.

  4. Corrosion resistance of 316L stainless steel with surface layer of Ni 2Al 3 or NiAl in molten carbonates

    NASA Astrophysics Data System (ADS)

    Moon, Youngjoon; Lee, Dokyol

    Double layers of nickel and aluminum are electroplated on a 316L stainless steel (316L SS) plate, which is routinely used as a separator in molten carbonate fuel cell (MCFC) stacks, and then heat-treated at 650 or 800 °C for 1 h. This results in the respective formation of a surface layer of Ni 2Al 3 or NiAl intermetallic compound, which are known to be highly corrosion-resistant in molten carbonate electrolyte. The corrosion behaviour of each plate in a molten electrolyte of (Li 0.62K 0.38) 2CO 3 or (Li 0.52Na 0.48) 2CO 3 is evaluated through immersion tests and polarisation measurements. The surface layer of Ni 2Al 3 or NiAl maintains good adhesion to the stainless steel substrate and no corrosion product is detected in any of the plates with a surface layer after immersion tests. Polarisation measurements reveal that, regardless of experimental conditions, the corrosion potentials of the plates with a surface layer shift to more positive values and the passive currents are lower than that for a bare SS plate. The corrosion rate of the NiAl surface layer is slightly lower than that of Ni 2Al 3.

  5. Carbon xerogel microspheres and monoliths from resorcinol-formaldehyde mixtures with varying dilution ratios: preparation, surface characteristics, and electrochemical double-layer capacitances.

    PubMed

    Zapata-Benabithe, Zulamita; Carrasco-Marín, Francisco; de Vicente, Juan; Moreno-Castilla, Carlos

    2013-05-21

    Carbon xerogels in the form of microspheres and monoliths were obtained from the sol-gel polymerization of resorcinol and formaldehyde in the presence of potassium carbonate as catalyst, using water as solvent and two different molar dilution ratios. The objectives of this study were as follows: to investigate the effect of the dilution ratio, polymerization reaction time, and temperature on the rheological properties of the sols used to prepare the carbon xerogel microspheres and monoliths; and to determine the influence of their preparation methods and shapes on their surface characteristics and electrochemical double-layer (EDL) capacitance. An increase in the molar dilution ratio produced a decrease in the apparent activation energy of the sol-gel transition. Carbon xerogel microspheres were steam-activated at different burnoff percentages. The morphology, surface area, porosity, and surface chemistry of samples were determined. The main difference between the carbon xerogel microspheres and monoliths was that the latter are largely mesoporous. Better electrochemical behavior was shown by carbon xerogels in monolith than in microsphere form, but higher gravimetric and volumetric capacitances were found in activated carbon xerogel microspheres than in carbon xerogel monoliths. PMID:23617279

  6. Exotic damping ring lattices

    SciTech Connect

    Palmer, R.B.

    1987-05-01

    This paper looks at, and compares three types of damping ring lattices: conventional, wiggler lattice with finite ..cap alpha.., wiggler lattice with ..cap alpha.. = 0, and observes the attainable equilibrium emittances for the three cases assuming a constraint on the attainable longitudinal impedance of 0.2 ohms. The emittance obtained are roughly in the ratio 4:2:1 for these cases.

  7. Fibrous Containment for Improved Laboratory Handling and Uniform Nanocoating of Milligram Quantities of Carbon Nanotubes by Atomic Layer Deposition

    PubMed Central

    Devine, Christina K.; Oldham, Christopher J.; Jur, Jesse S.; Gong, Bo; Parsons, Gregory N.

    2011-01-01

    The presence of nanostructured materials in the work place is bringing attention to the importance of safe practices for nanomaterial handling. We explored novel fiber containment methods to improve the handling of carbon nanotube (CNT) powders in the laboratory, while simultaneously allowing highly uniform and controlled atomic layer deposition (ALD) coatings on the nanotubes, down to less than 4 nm on some CNT materials. Moreover, the procedure yields uniform coatings on milligram quantities of nanotubes using a conventional viscous flow reactor system, circumventing the need for specialized fluidized bed or rotary ALD reactors for lab-scale studies. We explored both fiber bundles and fiber baskets as possible containment methods and conclude that the baskets are more suitable for coating studies. An extended precursor and reactant dose and soak periods allowed the gases to diffuse through the fiber containment, and the ALD coating thickness scaled linearly with the number of ALD cycles. The extended dose period produced thicker coatings compared with typical doses onto CNT controls not encased in the fibers, suggesting some effects due to the extended reactant dose. Film growth was compared on a range of single wall NTs, double wall NTs, and acid functionalized multiwall NTs and we found that ultrathin coatings were most readily controlled on the multi-walled NTs. PMID:22070742

  8. Charge transfer at junctions of a single layer of graphene and a metallic single walled carbon nanotube.

    PubMed

    Paulus, Geraldine L C; Wang, Qing Hua; Ulissi, Zachary W; McNicholas, Thomas P; Vijayaraghavan, Aravind; Shih, Chih-Jen; Jin, Zhong; Strano, Michael S

    2013-06-10

    Junctions between a single walled carbon nanotube (SWNT) and a monolayer of graphene are fabricated and studied for the first time. A single layer graphene (SLG) sheet grown by chemical vapor deposition (CVD) is transferred onto a SiO₂/Si wafer with aligned CVD-grown SWNTs. Raman spectroscopy is used to identify metallic-SWNT/SLG junctions, and a method for spectroscopic deconvolution of the overlapping G peaks of the SWNT and the SLG is reported, making use of the polarization dependence of the SWNT. A comparison of the Raman peak positions and intensities of the individual SWNT and graphene to those of the SWNT-graphene junction indicates an electron transfer of 1.12 × 10¹³ cm⁻² from the SWNT to the graphene. This direction of charge transfer is in agreement with the work functions of the SWNT and graphene. The compression of the SWNT by the graphene increases the broadening of the radial breathing mode (RBM) peak from 3.6 ± 0.3 to 4.6 ± 0.5 cm⁻¹ and of the G peak from 13 ± 1 to 18 ± 1 cm⁻¹, in reasonable agreement with molecular dynamics simulations. However, the RBM and G peak position shifts are primarily due to charge transfer with minimal contributions from strain. With this method, the ability to dope graphene with nanometer resolution is demonstrated. PMID:23281165

  9. Tracing the boundary layer sources of carbon monoxide in the Asian summer monsoon anticyclone using WRF-Chem

    NASA Astrophysics Data System (ADS)

    Yan, Renchang; Bian, Jianchun

    2015-07-01

    The Asian summer monsoon (ASM) anticyclone is a dominant feature of the circulation in the upper troposphere-lower stratosphere (UTLS) during boreal summer, which is found to have persistent maxima in carbon monoxide (CO). This enhancement is due to the upward transport of air with high CO from the planetary boundary layer (PBL), and confinement within the anticyclonic circulation. With rapid urbanization and industrialization, CO surface emissions are relatively high in the ASM region, especially in India and East China. To reveal the transport pathway of CO surface emissions over these two regions, and investigate the contribution of these to the CO distribution within the ASM anticyclone, a source sensitivity experiment was performed using the Weather Research and Forecasting (WRF) with chemistry model (WRF-Chem). According to the experiment results, the CO within the ASM anticyclone mostly comes from India, while the contribution from East China is insignificant. The result ismainly caused by the different transportation mechanisms. In India, CO transportation is primarily affected by convection. The surface air with high CO over India is directly transported to the upper troposphere, and then confined within the ASM anticyclone, leading to a maximum value in the UTLS region. The CO transportation over East China is affected by deep convection and large-scale circulation, resulting mainly in transportation to Korea, Japan, and the North Pacific Ocean, with little upward transport to the anticyclone, leading to a high CO value at 215 hPa over these regions.

  10. Tedlar bag sampling technique for vertical profiling of carbon dioxide through the atmospheric boundary layer with high precision and accuracy.

    PubMed

    Schulz, Kristen; Jensen, Michael L; Balsley, Ben B; Davis, Kenneth; Birks, John W

    2004-07-01

    Carbon dioxide is the most important greenhouse gas other than water vapor, and its modulation by the biosphere is of fundamental importance to our understanding of global climate change. We have developed a new technique for vertical profiling of CO2 and meteorological parameters through the atmospheric boundary layer and well into the free troposphere. Vertical profiling of CO2 mixing ratios allows estimates of landscape-scale fluxes characteristic of approximately100 km2 of an ecosystem. The method makes use of a powered parachute as a platform and a new Tedlar bag air sampling technique. Air samples are returned to the ground where measurements of CO2 mixing ratios are made with high precision (< or =0.1%) and accuracy (< or =0.1%) using a conventional nondispersive infrared analyzer. Laboratory studies are described that characterize the accuracy and precision of the bag sampling technique and that measure the diffusion coefficient of CO2 through the Tedlar bag wall. The technique has been applied in field studies in the proximity of two AmeriFlux sites, and results are compared with tower measurements of CO2. PMID:15296321

  11. Phosphorus-Doped Carbon Nitride Tubes with a Layered Micro-nanostructure for Enhanced Visible-Light Photocatalytic Hydrogen Evolution.

    PubMed

    Guo, Shien; Deng, Zhaopeng; Li, Mingxia; Jiang, Baojiang; Tian, Chungui; Pan, Qingjiang; Fu, Honggang

    2016-01-26

    Phosphorus-doped hexagonal tubular carbon nitride (P-TCN) with the layered stacking structure was obtained from a hexagonal rod-like single crystal supramolecular precursor (monoclinic, C2/m). The production process of P-TCN involves two steps: 1) the precursor was prepared by self-assembly of melamine with cyanuric acid from in situ hydrolysis of melamine under phosphorous acid-assisted hydrothermal conditions; 2) the pyrolysis was initiated at the center of precursor under heating, thus giving the hexagonal P-TCN. The tubular structure favors the enhancement of light scattering and active sites. Meanwhile, the introduction of phosphorus leads to a narrow band gap and increased electric conductivity. Thus, the P-TCN exhibited a high hydrogen evolution rate of 67 μmol h(-1) (0.1 g catalyst, λ >420 nm) in the presence of sacrificial agents, and an apparent quantum efficiency of 5.68 % at 420 nm, which is better than most of bulk g-C3 N4 reported. PMID:26692105

  12. Direct formation of anatase TiO2 nanoparticles on carbon nanotubes by atomic layer deposition and their photocatalytic properties.

    PubMed

    Huang, Sheng-Hsin; Liao, Shih-Yun; Wang, Chih-Chieh; Kei, Chi-Chung; Gan, Jon-Yiew; Perng, Tsong-Pyng

    2016-10-01

    TiO2 with different morphology was deposited on acid-treated multi-walled carbon nanotubes (CNTs) by atomic layer deposition at 100 °C-300 °C to form a TiO2@CNT structure. The TiO2 fabricated at 100 °C was an amorphous film, but became crystalline anatase nanoparticles when fabricated at 200 °C and 300 °C. The saturation growth rates of TiO2 nanoparticles at 300 °C were about 1.5 and 0.4 Å/cycle for substrate-enhanced growth and linear growth processes, respectively. It was found that the rate constants for methylene blue degradation by the TiO2@CNT structure formed at 300 °C were more suitable to fit with second-order reaction. The size of 9 nm exhibited the best degradation efficiency, because of the high specific area and appropriate diffusion length for the electrons and holes. PMID:27576914

  13. Fiber containment for improved laboratory handling and uniform nanocoating of milligram quantities of carbon nanotubes by atomic layer deposition.

    PubMed

    Devine, Christina K; Oldham, Christopher J; Jur, Jesse S; Gong, Bo; Parsons, Gregory N

    2011-12-01

    The presence of nanostructured materials in the workplace is bringing attention to the importance of safe practices for nanomaterial handling. We explored novel fiber containment methods to improve the handling of carbon nanotube (CNT) powders in the laboratory while simultaneously allowing highly uniform and controlled atomic layer deposition (ALD) coatings on the nanotubes, down to less than 4 nm on some CNT materials. Moreover, the procedure yields uniform coatings on milligram quantities of nanotubes using a conventional viscous flow reactor system, circumventing the need for specialized fluidized bed or rotary ALD reactors for laboratory-scale studies. We explored both fiber bundles and fiber baskets as possible containment methods and conclude that the baskets are more suitable for coating studies. An extended precursor and reactant dose and soak periods allowed the gases to diffuse through the fiber containment, and the ALD coating thickness scaled linearly with the number of ALD cycles. The extended dose period produced thicker coatings compared to typical doses on CNT controls not encased in the fibers, suggesting some effects due to the extended reactant dose. Film growth was compared on a range of single-walled NTs, double-walled NTs, and acid-functionalized multiwalled NTs, and we found that ultrathin coatings were most readily controlled on the multiwalled NTs. PMID:22070742

  14. Synthesis of carbon nanotube-nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing.

    PubMed

    Choi, Taejin; Kim, Soo Hyeon; Lee, Chang Wan; Kim, Hangil; Choi, Sang-Kyung; Kim, Soo-Hyun; Kim, Eunkyoung; Park, Jusang; Kim, Hyungjun

    2015-01-15

    A useful strategy has been developed to fabricate carbon-nanotube-nickel (CNT-Ni) nanocomposites through atomic layer deposition (ALD) of Ni and chemical vapor deposition (CVD) of functionalized CNTs. Various techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), were used to characterize the morphology and the structure of as-prepared samples. It was confirmed that the products possess uniform Ni nanoparticles that are constructed by finely controlled deposition of Ni onto oxygen or bromine functionalized CNT surface. Electrochemical studies indicate that the CNT-Ni nanocomposites exhibit high electrocatalytic activity for glucose oxidation in alkaline solutions, which enables the products to be used in enzyme-free electrochemical sensors for glucose determination. It was demonstrated that the CNT-Ni nanocomposite-based glucose biosensor offers a variety of merits, such as a wide linear response window for glucose concentrations of 5 μM-2 mM, short response time (3 s), a low detection limit (2 μM), high sensitivity (1384.1 μA mM(-1) cm(-2)), and good selectivity and repeatability. PMID:25113051

  15. Excess carbon in silicon carbide

    SciTech Connect

    Shen, X; Oxley, Mark P.; Puzyrev, Y; Tuttle, B R; Duscher, Gerd; Pantelides, Sokrates T.

    2010-01-01

    The application of SiC in electronic devices is currently hindered by low carrier mobility at the SiC/SiO{sub 2} interfaces. Recently, it was reported that 4H-SiC/SiO{sub 2} interfaces might have a transition layer on the SiC substrate side with C/Si ratio as high as 1.2, suggesting that carbon is injected into the SiC substrate during oxidation or other processing steps. We report finite-temperature quantum molecular dynamics simulations that explore the behavior of excess carbon in SiC. For SiC with 20% excess carbon, we find that, over short time ({approx} 24 ps), carbon atoms bond to each other and form various complexes, while the silicon lattice is largely unperturbed. These results, however, suggest that at macroscopic times scale, C segregation is likely to occur; therefore a transition layer with 20% extra carbon would not be stable. For a dilute distribution of excess carbon, we explore the pairing of carbon interstitials and show that the formation of dicarbon interstitial cluster is kinetically very favorable, which suggests that isolated carbon clusters may exist inside SiC substrate.

  16. Thick (>20 µm) and high-resistivity carbon-doped GaN-buffer layers grown by metalorganic vapor phase epitaxy on n-type GaN substrates

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Tomonobu; Terano, Akihisa; Mochizuki, Kazuhiro

    2016-05-01

    To improve the performance of GaN power devices, we have investigated the crystalline quality of thick (>20 µm) carbon-doped GaN layers on n-type GaN substrates and templates. The surface morphologies and X-ray rocking curves of carbon-doped GaN layers were improved by using GaN substrates. However, the crystalline quality degraded when the carbon concentration was too high (1 × 1020 cm‑3), even in the case of GaN substrates. High breakdown voltages (approximately 7 kV under a lateral configuration) were obtained for the carbon-doped GaN layers on n-type GaN substrates when the carbon concentration was 5 × 1019 cm‑3. These results indicate that lateral power devices with high breakdown voltage can be fabricated by using thick carbon-doped GaN buffer layers, even on n-type GaN substrates.

  17. Carbon gel assisted low temperature liquid-phase synthesis of C-LiFePO4/graphene layers with high rate and cycle performances

    NASA Astrophysics Data System (ADS)

    Tang, Hongwei; Si, Yanli; Chang, Kun; Fu, Xiaoning; li, Bao; Shangguan, Enbo; Chang, Zhaorong; Yuan, Xiao-Zi; Wang, Haijiang

    2015-11-01

    Nano-scale LiFePO4/graphene oxide (GO) as cathode materials for lithium ion batteries has been successfully synthesized via a one-step carbon gel assisted liquid-phase approach at a low-temperature (108 °C) and normal pressure. C-LiFePO4/graphene layers (G) composites, composed of LiFePO4, amorphous carbon and graphene layers, are then produced after rapid high temperature carbon treatment. Interface tunnel effect, produced by the intimate contact of LiFePO4 particles with amorphous carbon and graphene layers, greatly improves the properties of the composites. Electrochemical tests indicate that the optimal amount of GO addition is 1 wt.% in terms of achieving a high electrochemical performance of the C-LiFePO4/G composites. Discharge capacity of the C-LiFePO4/G composites is 160.0 mAh g-1 at 0.2 C. When the current rate is further increased to 60 C, the discharge capacity of C-LiFePO4/G can reach 68 mAh g-1. At a high current rate of 20 C, the capacity attenuation rate of the C-LiFePO4/G electrode is only 9.6% after 200 cycles, showing excellent high-rate discharge capability and cycle performance. This is achieved under a facile synthesis condition of a simple procedure, low temperature, and normal pressure.

  18. Materials based on carbon-filled porous layers of PVC cyclam derivatives cross-linked with the surfaces of asbestos fabric fibers

    NASA Astrophysics Data System (ADS)

    Tzivadze, A. Yu.; Fridman, A. Ya.; Morozova, E. M.; Sokolova, N. P.; Voloshchuk, A. M.; Petukhova, G. A.; Bardishev, I. I.; Gorbunov, A. M.; Novikov, A. K.; Polyakova, I. Ya.; Titova, V. N.; Yavich, A. A.; Petrova, N. V.

    2016-08-01

    The synthesis of bilayer materials with porous upper layers composed of PVC hydroxyethylcyclam derivatives filled with carbon and a layer consisting of hydroxyethylcyclam, cross-linked via Si-O-C groups with the silica chains of a developed surface of asbestos fabric, is described. The aza-crown groups in these materials are bound with aqua complexes of H2SO4 or NaOH. The structure of the materials is examined, their adsorption characteristics are determined, and the rate of motion of H+ or OH- ions in electrochemical bridges is measured, while the formation of H2 and O2 in their cathodic and anodic polarization is determined as a function of voltage. It is shown that the upper layer of these materials is adsorption-active and electronand H+- or OH-- conductive, while the bottom layer is only H+- or OH-- conductive; through it, the upper layer is supplied with the H+ or OH- ions needed for the regeneration of the aqua complexes broken down to H2 and O2 on carbon particles.

  19. Influence of head size on the development of metallic wear and on the characteristics of carbon layers in metal-on-metal hip joints

    PubMed Central

    Sprecher, Christoph M; Wimmer, Markus A; Milz, Stefan; Taeger, Georg

    2009-01-01

    Background and purpose Particles originating from the articulating surfaces of hip endoprostheses often induce an inflammatory response, which can be related to implant failure. We therefore analyzed the metal content in capsular tissue from 44 McKee-Farrar metal-on-metal hip prostheses (with 3 different head sizes) and we also analyzed the morphological structure of layers located on articulating surfaces. Methods Atomic absorption spectrometry (AAS) was used to analyze the metal content in capsular tissue. Visually detectable carbon layers located on the articulating surfaces were evaluated using scanning electron microscopy (SEM), energy-dispersive Xray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). Results Metallic debris was detected in all capsular tissue samples but no statistically significant differences in metal content were found in relation to implant head size. The morphological characteristics of the different layer zones allowed an exact analysis of contact and non-contact areas. Furthermore, surface layers appear to have a protective function because they can prevent sharp-edged particles from damaging the prostheses surface. Interpretation The implant head size does not appear to influence the amount of metallic debris. The layers obviously act like a lubricating agent because the protection function does not occur in regions without layers where the metal surface often shows numerous scratches. As layers are not generated immediately after the implantation of hip prostheses, these findings may at least partially explain the high amount of wear early after implantation. PMID:19421914

  20. A novel facile synthesis and characterization of heterostructures composed of carbon nanotubes and few-layer molybdenum disulfide sheets containing organic interlayers

    NASA Astrophysics Data System (ADS)

    Lenenko, Natalia D.; Zaikovskii, Vladimir I.; Golub, Alexandre S.

    2014-12-01

    A novel convenient room-temperature method for surface covering of carbon nanotubes (CNTs) with few-layer MoS2 shell was developed. For this purpose, liquid-phase single-layer dispersions of molybdenum disulfide produced by chemical exfoliation of its compound with lithium, LiMoS2, were applied. As evidenced by XRD and TEM studies, the dispersed MoS2 layers readily attach to the outer CNT surface and tend to envelop it. Measuring the interlayer distances in the vicinity of the MoS2-CNT interface showed, that deposited particles typically contain 1-3 (rarely, up to 10) MoS2 layers, which are in close contact with graphitic CNT walls. Similar deposition performed in the presence of cationic polymers containing polydiallyldimethylammonium units was found to lead to incorporation of polymer molecules in the sulfide shell of CNT in the form of 0.5 nm thick organic interlayers between the layers of MoS2. The same sequence of the layers of MoS2 and the polymer is also realized in the absence of CNT due to self-organization of the components. The method presented in this work has a great potential for designing other nanohybrid structures with participation of layered metal sulfides.