Sample records for layered double metal

  1. Tests on Double Layer Metalization

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1983-01-01

    28 page report describes experiments in fabrication of integrated circuits with double-layer metalization. Double-layer metalization requires much less silicon "real estate" and allows more flexibility in placement of circuit elements than does single-layer metalization.

  2. Polysulfide intercalated layered double hydroxides for metal capture applications

    DOEpatents

    Kanatzidis, Mercouri G.; Ma, Shulan

    2017-04-04

    Polysulfide intercalated layered double hydroxides and methods for their use in vapor and liquid-phase metal capture applications are provided. The layered double hydroxides comprise a plurality of positively charged host layers of mixed metal hydroxides separated by interlayer spaces. Polysulfide anions are intercalated in the interlayer spaces.

  3. Progress in MOSFET double-layer metalization

    NASA Technical Reports Server (NTRS)

    Gassaway, J. D.; Trotter, J. D.; Wade, T. E.

    1980-01-01

    Report describes one-year research effort in VLSL fabrication. Four activities are described: theoretical study of two-dimensional diffusion in SOS (silicon-on-sapphire); setup of sputtering system, furnaces, and photolithography equipment; experiments on double layer metal; and investigation of two-dimensional modeling of MOSFET's (metal-oxide-semiconductor field-effect transistors).

  4. Surface plasmon dispersion engineering via double-metallic AU/AG layers for nitride light-emitting diodes

    DOEpatents

    Tansu, Nelson; Zhao, Hongping; Zhang, Jing; Liu, Guangyu

    2014-04-01

    A double-metallic deposition process is used whereby adjacent layers of different metals are deposited on a substrate. The surface plasmon frequency of a base layer of a first metal is tuned by the surface plasmon frequency of a second layer of a second metal formed thereon. The amount of tuning is dependent upon the thickness of the metallic layers, and thus tuning can be achieved by varying the thicknesses of one or both of the metallic layers. In a preferred embodiment directed to enhanced LED technology in the green spectrum regime, a double-metallic Au/Ag layer comprising a base layer of gold (Au) followed by a second layer of silver (Ag) formed thereon is deposited on top of InGaN/GaN quantum wells (QWs) on a sapphire/GaN substrate.

  5. Electrochemistry with double electrical layers in frictional interaction metal-polymer tribolink

    NASA Astrophysics Data System (ADS)

    Volchenko, N. A.; Krasin, P. S.; Volchenko, D. A.; Voznyi, A. V.

    2018-03-01

    The materials of the article illustrate the estimation of the energy loading of a metal friction element in a “metal-electrolyte-polymer” friction pair while forming various types of double electrical layers with the release of its thermal stabilization state. The rapidity of the processes of oxidation and reduction of the working surfaces of friction pairs during their electrothermomechanical frictional interaction leaves an imprint on all other additional processes that subsequently lead to the thermostabilizing and steady state of the metal friction element. Depending on the type of a brake device, the metal friction element has a different metal consumption and the temperature range varies. In addition, it is shown that the materials of the friction pair play an important role in the formation of electric tribosystems, namely: chemical elements that make up the materials, their valence, and the predominant type of intrinsic conductivity, as well as the sign of the electric charge of the friction pair elements that determines the laws of triboelectricity. Thus, an in-depth approach to the evaluation of the thermal stabilization state of a metal element in a “metal-electrolyte” friction pair is shown due to double electric layers that promote the emergence of current densities of different directions.

  6. Characterization of the Electric Double Layer Formation Dynamics of a Metal/Ionic Liquid/Metal Structure.

    PubMed

    Schmidt, Elliot; Shi, Sha; Ruden, P Paul; Frisbie, C Daniel

    2016-06-15

    Although ionic liquids (ILs) have been used extensively in recent years as a high-capacitance "dielectric" in electric double layer transistors, the dynamics of the double layer formation have remained relatively unexplored. Better understanding of the dynamics and relaxation processes involved in electric double layer formation will guide device optimization, particularly with regard to switching speed. In this paper, we explore the dynamical characteristics of an IL in a metal/ionic liquid/metal (M/IL/M) capacitor. In particular, we examine a Au/IL/Au structure where the IL is 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate. The experiments consist of frequency-dependent impedance measurements and time-dependent current vs voltage measurements for applied linear voltage ramps and abrupt voltage steps. The parameters of an equivalent circuit model are determined by fits to the impedance vs frequency data and subsequently verified by calculating the current vs voltage characteristics for the applied potential profiles. The data analysis indicates that the dynamics of the structure are characterized by a wide distribution of relaxation times spanning the range of less than microseconds to longer than seconds. Possible causes for these time scales are discussed.

  7. Capacitance of the Double Layer Formed at the Metal/Ionic-Conductor Interface: How Large Can It Be?

    NASA Astrophysics Data System (ADS)

    Skinner, Brian; Loth, M. S.; Shklovskii, B. I.

    2010-03-01

    The capacitance of the double layer formed at a metal/ionic-conductor interface can be remarkably large, so that the apparent width of the double layer is as small as 0.3 Å. Mean-field theories fail to explain such large capacitance. We propose an alternate theory of the ionic double layer which allows for the binding of discrete ions to their image charges in the metal. We show that at small voltages the capacitance of the double layer is limited only by the weak dipole-dipole repulsion between bound ions, and is therefore very large. At large voltages the depletion of bound ions from one of the capacitor electrodes triggers a collapse of the capacitance to the mean-field value.

  8. Superfluidity of dipolar excitons in a transition metal dichalcogenide double layer

    NASA Astrophysics Data System (ADS)

    Berman, Oleg L.; Kezerashvili, Roman Ya.

    2017-09-01

    We study formation and superfluidity of dipolar excitons in double layer heterostructures formed by two transition metal dichalcogenide (TMDC) atomically thin layers. Considering screening effects for an electron-hole interaction via the harmonic oscillator approximation for the Keldysh potential, the analytical expressions for the exciton energy spectrum and the mean field critical temperature Tc for the superfluidity are obtained. It is shown that binding energies of A excitons are larger than for B excitons. The mean field critical temperature for a two-component dilute exciton system in a TMDC double layer is analyzed and shown that the latter is an increasing function of the factor Q , determined by the effective masses of A and B excitons and their reduced mass. Comparison of the calculations for Tc performed by employing the Coulomb and Keldysh interactions demonstrates the importance of screening effects in TMDC.

  9. Teaching the Double Layer.

    ERIC Educational Resources Information Center

    Bockris, J. O'M.

    1983-01-01

    Suggests various methods for teaching the double layer in electrochemistry courses. Topics addressed include measuring change in absolute potential difference (PD) at interphase, conventional electrode potential scale, analyzing absolute PD, metal-metal and overlap electron PDs, accumulation of material at interphase, thermodynamics of electrified…

  10. Solvent-free synthesis of new metal phosphites with double-layered, pillared-layered, and framework structures

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Zhang, Wei; Shi, Zhonghua; Chen, Yaoqiang; Lin, Zhien

    2014-12-01

    Three new metal phosphites, formulated as (H3O)2·Mn2(HPO3)3 (1), Co(bpy) (H2O) (HPO3) (2), and H2tmpda·Zn3(HPO3)4 (3), have been synthesized under solvent-free conditions, where bpy = 4,4‧-bipyridine, and tmpda = N,N,N‧,N‧-tetramethyl-1,3-propanediamine. Compound 1 has a double-layered structure with a thickness of 5.68 Å. Compound 2 has an inorganic-organic hybrid framework with cobalt phosphite layers pillared by bpy ligands. Compound 3 has a three-dimensional open-framework structure containing 8-ring channels. The temperature dependence of the magnetic susceptibility of compounds 1 and 2 were also investigated.

  11. Design technology co-optimization for 14/10nm metal1 double patterning layer

    NASA Astrophysics Data System (ADS)

    Duan, Yingli; Su, Xiaojing; Chen, Ying; Su, Yajuan; Shao, Feng; Zhang, Recco; Lei, Junjiang; Wei, Yayi

    2016-03-01

    Design and technology co-optimization (DTCO) can satisfy the needs of the design, generate robust design rule, and avoid unfriendly patterns at the early stage of design to ensure a high level of manufacturability of the product by the technical capability of the present process. The DTCO methodology in this paper includes design rule translation, layout analysis, model validation, hotspots classification and design rule optimization mainly. The correlation of the DTCO and double patterning (DPT) can optimize the related design rule and generate friendlier layout which meets the requirement of the 14/10nm technology node. The experiment demonstrates the methodology of DPT-compliant DTCO which is applied to a metal1 layer from the 14/10nm node. The DTCO workflow proposed in our job is an efficient solution for optimizing the design rules for 14/10 nm tech node Metal1 layer. And the paper also discussed and did the verification about how to tune the design rule of the U-shape and L-shape structures in a DPT-aware metal layer.

  12. Double layer effects on metal nucleation in deep eutectic solvents.

    PubMed

    Abbott, Andrew P; Barron, John C; Frisch, Gero; Gurman, Stephen; Ryder, Karl S; Fernando Silva, A

    2011-06-07

    The electrodeposition of zinc has been studied in two deep eutectic solvents. Unlike the metals studied to date in these liquids, zinc electrodeposition is not mass transport limited and the morphology of the deposit differs in the two liquids. This study shows that changing the concentration of solute affects the physical properties of the liquid to different extents although this is found to not effect the morphology of the metal deposited. EXAFS was used to show that the speciation of zinc was the same in both liquids. Double layer capacitance studies showed differences between the two liquids and these are proposed to be due to the adsorption of a species on the electrode which is thought to be chloride. The differences in zinc morphology is attributed to blocking of certain crystal faces leading to deposition of small platelet shaped crystals in the glycol based liquid.

  13. Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding.

    PubMed

    Wang, Heyan; Lu, Zhengang; Liu, Yeshu; Tan, Jiubin; Ma, Limin; Lin, Shen

    2017-04-15

    We report a nested multi-ring array metallic mesh (NMA-MM) that shows a highly uniform diffraction pattern theoretically and experimentally. Then a high-performance transparent electromagnetic interference (EMI) shielding structure is constituted by the double-layer interlaced NMA-MMs separated by transparent quartz-glass substrate. Experimental results show that double-layer interlaced NMA-MM structure exhibits a shielding effectiveness (SE) of over 27 dB in the Ku-band, with a maximal SE of 37 dB at 12 GHz, normalized optical transmittance of 90%, and minimal image quality degradation due to the interlaced arrangement. It thus shows great potential for practical applications in transparent EMI shielding devices.

  14. Double Layers in Astrophysics

    NASA Technical Reports Server (NTRS)

    Williams, Alton C. (Editor); Moorehead, Tauna W. (Editor)

    1987-01-01

    Topics addressed include: laboratory double layers; ion-acoustic double layers; pumping potential wells; ion phase-space vortices; weak double layers; electric fields and double layers in plasmas; auroral double layers; double layer formation in a plasma; beamed emission from gamma-ray burst source; double layers and extragalactic jets; and electric potential between plasma sheet clouds.

  15. Solid-state chelation of metal ions by ethylenediaminetetraacetate intercalated in a layered double hydroxide.

    PubMed

    Tarasov, Konstantin A; O'Hare, Dermot; Isupov, Vitaly P

    2003-03-24

    The solid-state chelation of transition metal ions (Co(2+), Ni(2+), and Cu(2+)) from aqueous solutions into the lithium aluminum layered double hydroxide ([LiAl(2)(OH)(6)]Cl x 0.5H(2)O or LDH) which has been pre-intercalated with EDTA (ethylenediaminetetraacetate) ligand has been investigated. The intercalated metal cations form [M(edta)](2)(-) complexes between the LDH layers as indicated by elemental analysis, powder X-ray diffraction, and IR and UV-vis spectroscopies. If metal chloride or nitrate salts are used in the reaction with the LDH then co-intercalation of either the Cl(-) or NO(3)(-) anions is observed. In the case of metal acetate salts the cations intercalate without the accompanying anion. This can be explained by the different intercalation selectivity of the anions in relation to the LDH. In the latter case the introduction of the positive charge into LDH structure was compensated for by the release from the solid of the equivalent quantity of lithium and hydrogen cations. Time-resolved in-situ X-ray diffraction measurements have revealed that the chelation/intercalation reactions proceed very quickly. The rate of the reaction found for nickel acetate depends on concentration as approximately k[Ni(Ac)(2)](3).

  16. Electric-field control of conductance in metal quantum point contacts by electric-double-layer gating

    NASA Astrophysics Data System (ADS)

    Shibata, K.; Yoshida, K.; Daiguji, K.; Sato, H.; , T., Ii; Hirakawa, K.

    2017-10-01

    An electric-field control of quantized conductance in metal (gold) quantum point contacts (QPCs) is demonstrated by adopting a liquid-gated electric-double-layer (EDL) transistor geometry. Atomic-scale gold QPCs were fabricated by applying the feedback-controlled electrical break junction method to the gold nanojunction. The electric conductance in gold QPCs shows quantized conductance plateaus and step-wise increase/decrease by the conductance quantum, G0 = 2e2/h, as EDL-gate voltage is swept, demonstrating a modulation of the conductance of gold QPCs by EDL gating. The electric-field control of conductance in metal QPCs may open a way for their application to local charge sensing at room temperature.

  17. The electric double layer at a metal electrode in pure water

    NASA Astrophysics Data System (ADS)

    Brüesch, Peter; Christen, Thomas

    2004-03-01

    Pure water is a weak electrolyte that dissociates into hydronium ions and hydroxide ions. In contact with a charged electrode a double layer forms for which neither experimental nor theoretical studies exist, in contrast to electrolytes containing extrinsic ions like acids, bases, and solute salts. Starting from a self-consistent solution of the one-dimensional modified Poisson-Boltzmann equation, which takes into account activity coefficients of point-like ions, we explore the properties of the electric double layer by successive incorporation of various correction terms like finite ion size, polarization, image charge, and field dissociation. We also discuss the effect of the usual approximation of an average potential as required for the one-dimensional Poisson-Boltzmann equation, and conclude that the one-dimensional approximation underestimates the ion density. We calculate the electric potential, the ion distributions, the pH-values, the ion-size corrected activity coefficients, and the dissociation constants close to the electric double layer and compare the results for the various model corrections.

  18. Anion-intercalated layered double hydroxides modified test strips for detection of heavy metal ions.

    PubMed

    Wang, Nan; Sun, Jianchao; Fan, Hai; Ai, Shiyun

    2016-01-01

    In this work, a novel approach for facile and rapid detection of heavy metal ions using anion-intercalated layered double hydroxides (LDHs) modified test strips is demonstrated. By intercalating Fe(CN)6(4-) or S(2-) anions into the interlayers of LDHs on the filter paper, various heavy metal ions can be easily detected based on the color change before and after reaction between the anions and the heavy metal ions. Upon the dropping of heavy metal ions solutions to the test strips, the colors of the test strips changed instantly, which can be easily observed by naked eyes. With the decrease of the concentration, the color depth changed obviously. The lowest detection concentration can be up to 1×10(-6) mol L(-1). Due to the easily intercalation of anions into the interlayer of the LDHs on test trips, this procedure provides a general method for the construction of LDHs modified test strips for detection of heavy metal ions. The stability of the prepared test strips is investigated. Furthermore, all the results were highly reproducible. The test strips may have potential applications in environmental monitoring fields. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Modified Back Contact Interface of CZTSe Thin Film Solar Cells: Elimination of Double Layer Distribution in Absorber Layer.

    PubMed

    Zhang, Zhaojing; Yao, Liyong; Zhang, Yi; Ao, Jianping; Bi, Jinlian; Gao, Shoushuai; Gao, Qing; Jeng, Ming-Jer; Sun, Guozhong; Zhou, Zhiqiang; He, Qing; Sun, Yun

    2018-02-01

    Double layer distribution exists in Cu 2 SnZnSe 4 (CZTSe) thin films prepared by selenizing the metallic precursors, which will degrade the back contact of Mo substrate to absorber layer and thus suppressing the performance of solar cell. In this work, the double-layer distribution of CZTSe film is eliminated entirely and the formation of MoSe 2 interfacial layer is inhibited successfully. CZTSe film is prepared by selenizing the precursor deposited by electrodeposition method under Se and SnSe x mixed atmosphere. It is found that the insufficient reaction between ZnSe and Cu-Sn-Se phases in the bottom of the film is the reason why the double layer distribution of CZTSe film is formed. By increasing Sn content in the metallic precursor, thus making up the loss of Sn because of the decomposition of CZTSe and facilitate the diffusion of liquid Cu 2 Se, the double layer distribution is eliminated entirely. The crystallization of the formed thin film is dense and the grains go through the entire film without voids. And there is no obvious MoSe 2 layer formed between CZTSe and Mo. As a consequence, the series resistance of the solar cell reduces significantly to 0.14 Ω cm 2 and a CZTSe solar cell with efficiency of 7.2% is fabricated.

  20. Metallicity of Ca 2Cu 6P 5 with single and double copper-pnictide layers

    DOE PAGES

    Li, Li; Parker, David; Chi, Miaofang; ...

    2016-02-16

    We report thermodynamic and transport properties, and also theoretical calculations, for Cu-based compound Ca 2Cu 6P 5 and compare with CaCu 2-δP 2. Both materials have layers of edge-sharing copper pnictide tetrahedral CuP 4, similar to Fe–As and Fe–Se layers (with FeAs 4, FeSe 4) in the iron-based superconductors. Despite the presence of this similar transition-metal pnictide layer, we find that both Ca 2Cu 6P 5 and CaCu 2-δP 2 have temperature-independent magnetic susceptibility and show metallic behavior with no evidence of either magnetic ordering or superconductivity down to 1.8 K CaCu 2-δP 2 is slightly off-stoichiometric, with δ =more » 0.14. Theoretical calculations suggest that unlike Fe 3d-based magnetic materials with a large density of states (DOS) at the Fermi surface, Cu have comparatively low DOS, with the majority of the 3d spectral weight located well below Fermi level. The room-temperature resistivity value of Ca 2Cu 6P 5 is only 9 μΩ-cm, due to a substantial plasma frequency and an inferred electron-phonon coupling λ of 0.073 (significantly smaller than that of metallic Cu). Also, microscopy result shows that Cu–Cu distance along the c-axis within the double layers can be very short (2.5 Å), even shorter than metallic elemental copper bond (2.56 Å). The value of dρ/dT for CaCu 2-δP 2 at 300 K is approximately three times larger than in Ca 2Cu 6P 5, which suggests the likelihood of stronger electron-phonon coupling. Lastly, this study shows that the details of Cu–P layers and bonding are important for their transport characteristics. In addition, it emphasizes the remarkable character of the DOS of ‘122’ iron-based materials, despite much structural similarities.« less

  1. Laboratory observation of multiple double layer resembling space plasma double layer

    NASA Astrophysics Data System (ADS)

    Alex, Prince; Arumugam, Saravanan; Sinha, Suraj

    2017-10-01

    Perceptible double layer consisting of more than one layers were produced in laboratory using a double discharge plasma setup. The confinement of oppositely charged particles in each layer with sharply defined luminous boarder is attributed to the self-organization scenario. This structure is generated in front of a positively biased electrode when the electron drift velocity (νd) exceeds 1.3 times the electron thermal velocity (νte) . Stable multiple double layer structures were observed only between 1.3 νte <=νd <= 3 νte. At νd = 1.3 νte, oscillations were excited in the form of large amplitude burst followed by a high frequency stable oscillation. Beyond νd = 3 νte, multiple double layer begins to collapse which is characterized by an emergence in turbulence. Long range dependence in the corresponding electrostatic potential fluctuations indicates the role of self-organized criticality in the emergence of turbulence. The algebraic decaying tale of the autocorrelation function and power law behavior in the power spectrum are consistent with the observation.

  2. Layered double hydroxide stability. 1. Relative stabilities of layered double hydroxides and their simple counterparts

    NASA Technical Reports Server (NTRS)

    Boclair, J. W.; Braterman, P. S.

    1999-01-01

    Solutions containing di- and trivalent metal chlorides [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+; M(III) = Al3+, Fe3+] were titrated with NaOH to yield hydrotalcite-like layered double hydroxides (LDH), [[M(II)]1-x[M(III)]x(OH)2][Cl]x yH2O, by way of M(III) hydroxide/hydrous oxide intermediates. Analysis of the resultant titration curves yields nominal solubility constants for the LDH. The corresponding LDH stabilities are in the order Mg < Mn < Co approximately Ni < Zn for M(II) and Al < Fe for M(III). The stability of LDH relative to the separate metal hydroxides/hydrous oxides is discussed.

  3. Vapor phase hydrogenation of furfural over nickel mixed metal oxide catalysts derived from layered double hydroxides

    DOE PAGES

    Sulmonetti, Taylor P.; Pang, Simon H.; Claure, Micaela Taborga; ...

    2016-03-09

    The hydrogenation of furfural is investigated over various reduced nickel mixed metal oxides derived from layered double hydroxides (LDHs) containing Ni-Mg-Al and Ni-Co-Al. Upon reduction, relatively large Ni(0) domains develop in the Ni-Mg-Al catalysts, whereas in the Ni-Co-Al catalysts smaller metal particles of Ni(0) and Co(0), potentially as alloys, are formed, as evidenced by XAS, XPS, STEM and EELS. All the reduced Ni catalysts display similar selectivities towards major hydrogenation products (furfuryl alcohol and tetrahydrofurfuryl alcohol), though the side products varied with the catalyst composition. The 1.1Ni-0.8Co-Al catalyst showed the greatest activity per titrated site when compared to the othermore » catalysts, with promising activity compared to related catalysts in the literature. In conclusion, the use of base metal catalysts for hydrogenation of furanic compounds may be a promising alternative to the well-studied precious metal catalysts for making biomass-derived chemicals if catalyst selectivity can be improved in future work by alloying or tuning metal-oxide support interactions.« less

  4. Vapor phase hydrogenation of furfural over nickel mixed metal oxide catalysts derived from layered double hydroxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulmonetti, Taylor P.; Pang, Simon H.; Claure, Micaela Taborga

    2016-05-01

    The hydrogenation of furfural is investigated over various reduced nickel mixed metal oxides derived from layered double hydroxides (LDHs) containing Ni-Mg-Al and Ni-Co-Al. Upon reduction, relatively large Ni(0) domains develop in the Ni-Mg-Al catalysts, whereas in the Ni-Co-Al catalysts smaller metal particles of Ni(0) and Co(0), potentially as alloys, are formed, as evidenced by XAS, XPS, STEM and EELS. All the reduced Ni catalysts display similar selectivities towards major hydrogenation products (furfuryl alcohol and tetrahydrofurfuryl alcohol), though the side products varied with the catalyst composition. The 1.1Ni-0.8Co-Al catalyst showed the greatest activity per titrated site when compared to the othermore » catalysts, with promising activity compared to related catalysts in the literature. The use of base metal catalysts for hydrogenation of furanic compounds may be a promising alternative to the well-studied precious metal catalysts for making biomass-derived chemicals if catalyst selectivity can be improved in future work by alloying or tuning metal-oxide support interactions.« less

  5. Modified Back Contact Interface of CZTSe Thin Film Solar Cells: Elimination of Double Layer Distribution in Absorber Layer

    PubMed Central

    Zhang, Zhaojing; Yao, Liyong; Bi, Jinlian; Gao, Shoushuai; Gao, Qing; Jeng, Ming‐Jer; Sun, Guozhong; Zhou, Zhiqiang; He, Qing; Sun, Yun

    2017-01-01

    Abstract Double layer distribution exists in Cu2SnZnSe4 (CZTSe) thin films prepared by selenizing the metallic precursors, which will degrade the back contact of Mo substrate to absorber layer and thus suppressing the performance of solar cell. In this work, the double‐layer distribution of CZTSe film is eliminated entirely and the formation of MoSe2 interfacial layer is inhibited successfully. CZTSe film is prepared by selenizing the precursor deposited by electrodeposition method under Se and SnSex mixed atmosphere. It is found that the insufficient reaction between ZnSe and Cu‐Sn‐Se phases in the bottom of the film is the reason why the double layer distribution of CZTSe film is formed. By increasing Sn content in the metallic precursor, thus making up the loss of Sn because of the decomposition of CZTSe and facilitate the diffusion of liquid Cu2Se, the double layer distribution is eliminated entirely. The crystallization of the formed thin film is dense and the grains go through the entire film without voids. And there is no obvious MoSe2 layer formed between CZTSe and Mo. As a consequence, the series resistance of the solar cell reduces significantly to 0.14 Ω cm2 and a CZTSe solar cell with efficiency of 7.2% is fabricated. PMID:29610727

  6. Double layers and circuits in astrophysics

    NASA Technical Reports Server (NTRS)

    Alfven, Hannes

    1986-01-01

    As the rate of energy release in a double layer with voltage delta V is P approx I delta V, a double layer must be treated as a part of a circuit which delivers the current I. As neither double layer nor circuit can be derived from magnetofluid models of a plasma, such models are useless for treating energy transfer by means of double layers. They must be replaced by particle models and circuit theory. A simple circuit is suggested which is applied to the energizing of auroral particles, to solar flares, and to intergalactic double radio sources. Application to the heliospheric current systems leads to the prediction of two double layers on the Sun's axis which may give radiations detectable from Earth. Double layers in space should be classified as a new type of celestial object (one example is the double radio sources). It is tentatively suggested in X-ray and Gamma-ray bursts may be due to exploding double layers (although annihilation is an alternative energy source). A study of how a number of the most used textbooks in astrophysics treat important concepts like double layers, critical velocity, pinch effects and circuits is made.

  7. Effective self-purification of polynary metal electroplating wastewaters through formation of layered double hydroxides.

    PubMed

    Zhou, Ji Zhi; Wu, Yue Ying; Liu, Chong; Orpe, Ajay; Liu, Qiang; Xu, Zhi Ping; Qian, Guang Ren; Qiao, Shi Zhang

    2010-12-01

    Heavy metal ions (Ni(2+), Zn(2+), and Cr(3+)) can be effectively removed from real polynary metal ions-bearing electroplating wastewaters by a carbonation process, with ∼99% of metal ions removed in most cases. The synchronous formation of layered double hydroxide (LDH) precipitates containing these metal ions was responsible for the self-purification of wastewaters. The constituents of formed polynary metals-LDHs mainly depended on the Ni(2+):Zn(2+):Cr(3+) molar ratio in wastewaters. LDH was formed at pH of 6.0-8.0 when the Ni(2+)/Zn(2+) molar ratio ≥ 1 where molar fraction of trivalent metal in the wastewaters was 0.2-0.4, otherwise ZnO, hydrozincite, or amorphous precipitate was observed. In the case of LDH formation, the residual concentration of Ni(2+), Zn(2+), and Cr(3+) in the treated wastewaters was very low, about 2-3, ∼2, and ∼1 mg/L, respectively, at 20-80 °C and pH of 6.0-8.0, indicating the effective incorporation of heavy metal ions into the LDH matrix. Furthermore, the obtained LDH materials were used to adsorb azoic dye GR, with the maximum adsorption amount of 129-134 mg/g. We also found that the obtained LDHs catalyzed more than 65% toluene to decompose at 350 °C under ambient pressure. Thus the current research has not only shown effective recovery of heavy metal ions from the electroplating wastewaters in an environmentally friendly process but also demonstrated the potential utilization of recovered materials.

  8. Non-mean-field theory of anomalously large double layer capacitance

    NASA Astrophysics Data System (ADS)

    Loth, M. S.; Skinner, Brian; Shklovskii, B. I.

    2010-07-01

    Mean-field theories claim that the capacitance of the double layer formed at a metal/ionic conductor interface cannot be larger than that of the Helmholtz capacitor, whose width is equal to the radius of an ion. However, in some experiments the apparent width of the double layer capacitor is substantially smaller. We propose an alternate non-mean-field theory of the ionic double layer to explain such large capacitance values. Our theory allows for the binding of discrete ions to their image charges in the metal, which results in the formation of interface dipoles. We focus primarily on the case where only small cations are mobile and other ions form an oppositely charged background. In this case, at small temperature and zero applied voltage dipoles form a correlated liquid on both contacts. We show that at small voltages the capacitance of the double layer is determined by the transfer of dipoles from one electrode to the other and is therefore limited only by the weak dipole-dipole repulsion between bound ions so that the capacitance is very large. At large voltages the depletion of bound ions from one of the capacitor electrodes triggers a collapse of the capacitance to the much smaller mean-field value, as seen in experimental data. We test our analytical predictions with a Monte Carlo simulation and find good agreement. We further argue that our “one-component plasma” model should work well for strongly asymmetric ion liquids. We believe that this work also suggests an improved theory of pseudocapacitance.

  9. Simulation of plasma double-layer structures

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.; Joyce, G.

    1982-01-01

    Electrostatic plasma double layers are numerically simulated by means of a magnetized 2 1/2 dimensional particle in cell method. The investigation of planar double layers indicates that these one dimensional potential structures are susceptible to periodic disruption by instabilities in the low potential plasmas. Only a slight increase in the double layer thickness with an increase in its obliqueness to the magnetic field is observed. Weak magnetization results in the double layer electric field alignment of accelerated particles and strong magnetization results in their magnetic field alignment. The numerical simulations of spatially periodic two dimensional double layers also exhibit cyclical instability. A morphological invariance in two dimensional double layers with respect to the degree of magnetization implies that the potential structures scale with Debye lengths rather than with gyroradii. Electron beam excited electrostatic electron cyclotron waves and (ion beam driven) solitary waves are present in the plasmas adjacent to the double layers.

  10. Single-Layer Limit of Metallic Indium Overlayers on Si(111).

    PubMed

    Park, Jae Whan; Kang, Myung Ho

    2016-09-09

    Density-functional calculations are used to identify one-atom-thick metallic In phases grown on the Si(111) surface, which have long been sought in quest of the ultimate two-dimensional (2D) limit of metallic properties. We predict two metastable single-layer In phases, one sqrt[7]×sqrt[3] phase with a coverage of 1.4 monolayer (ML; here 1 ML refers to one In atom per top Si atom) and the other sqrt[7]×sqrt[7] phase with 1.43 ML, which indeed agree with experimental evidences. Both phases reveal quasi-1D arrangements of protruded In atoms, leading to 2D-metallic but anisotropic band structures and Fermi surfaces. This directional feature contrasts with the free-electron-like In-overlayer properties that are known to persist up to the double-layer thickness, implying that the ultimate 2D limit of In overlayers may have been achieved in previous studies of double-layer In phases.

  11. Structural Differentiation between Layered Single (Ni) and Double Metal Hydroxides (Ni–Al LDHs) Using Wavelet Transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siebecker, Matthew G.; Sparks, Donald L.

    2017-09-07

    Layered double hydroxides (LDHs) are anionic clays important in disciplines such as environmental chemistry, geochemistry, and materials science. Developments in signal processing of extended X-ray absorption fine structure (EXAFS) data, such as wavelet transformation (WT), have been used to identify transition metals and Al present in the hydroxide sheets of LDHs. The WT plots of LDHs should be distinct from those of isostructural single metal hydroxides. However, no direct comparison of these minerals appears in the literature using WT. This work systematically analyzes a suite of Ni-rich mineral standards, including Ni–Al LDHs, single metal Ni hydroxides, and Ni-rich silicates usingmore » WT. The results illustrate that the WT plots for α-Ni(OH)2 and Ni–Al LDHs are often indistinguishable from each other, with similar two-component plots for the different mineral types. This demonstrates that the WT of the first metal shell often cannot be used to differentiate an LDH from a single metal hydroxide. Interlayer anions adsorbed to the hydroxide sheet of α-Ni(OH)2 affect the EXAFS spectra and are not visible in the FT but are clearly resolved and discrete in the WT.« less

  12. Nanoplasmonic sensing of metal-halide complex formation and the electric double layer capacitor.

    PubMed

    Dahlin, Andreas B; Zahn, Raphael; Vörös, Janos

    2012-04-07

    Many nanotechnological devices are based on implementing electrochemistry with plasmonic nanostructures, but these systems are challenging to understand. We present a detailed study of the influence of electrochemical potentials on plasmon resonances, in the absence of surface coatings and redox active molecules, by synchronized voltammetry and spectroscopy. The experiments are performed on gold nanodisks and nanohole arrays in thin gold films, which are fabricated by improved methods. New insights are provided by high resolution spectroscopy and variable scan rates. Furthermore, we introduce new analytical models in order to understand the spectral changes quantitatively. In contrast to most previous literature, we find that the plasmonic signal is caused almost entirely by the formation of ionic complexes on the metal surface, most likely gold chloride in this study. The refractometric sensing effect from the ions in the electric double layer can be fully neglected, and the charging of the metal gives a surprisingly small effect for these systems. Our conclusions are consistent for both localized nanoparticle plasmons and propagating surface plasmons. We consider the results in this work especially important in the context of combined electrochemical and optical sensors. This journal is © The Royal Society of Chemistry 2012

  13. Layered transition metal carboxylates: efficient reusable heterogeneous catalyst for epoxidation of olefins.

    PubMed

    Sen, Rupam; Bhunia, Susmita; Mal, Dasarath; Koner, Subratanath; Miyashita, Yoshitaro; Okamoto, Ken-Ichi

    2009-12-01

    Layered metal carboxylates [M(malonato)(H(2)O)(2)](n) (M = Ni(II) and Mn(II)) that have a claylike structure have been synthesized hydrothermally and characterized. The interlayer separation in these layered carboxylates is comparable to that of the intercalation distance of the naturally occurring clay materials or layered double hydroxides (LDHs). In this study, we have demonstrated that, instead of intercalating the metal complex into layers of the clay or LDH, layered transition metal carboxylates, [M(malonato)(H(2)O)(2)](n), as such can be used as a recyclable heterogeneous catalyst in olefin epoxidation reaction. Metal carboxylates [M(malonato)(H(2)O)(2)](n) exhibit excellent catalytic performance in olefin epoxidation reaction.

  14. The double layers in the plasma sheet boundary layer during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Guo, J.; Yu, B.

    2014-11-01

    We studied the evolutions of double layers which appear after the magnetic reconnection through two-dimensional electromagnetic particle-in-cell simulation. The simulation results show that the double layers are formed in the plasma sheet boundary layer after magnetic reconnection. At first, the double layers which have unipolar structures are formed. And then the double layers turn into bipolar structures, which will couple with another new weak bipolar structure. Thus a new double layer or tripolar structure comes into being. The double layers found in our work are about several ten Debye lengths, which accords with the observation results. It is suggested that the electron beam formed during the magnetic reconnection is responsible for the production of the double layers.

  15. Nonlocal Poisson-Fermi double-layer models: Effects of nonuniform ion sizes on double-layer structure

    NASA Astrophysics Data System (ADS)

    Xie, Dexuan; Jiang, Yi

    2018-05-01

    This paper reports a nonuniform ionic size nonlocal Poisson-Fermi double-layer model (nuNPF) and a uniform ionic size nonlocal Poisson-Fermi double-layer model (uNPF) for an electrolyte mixture of multiple ionic species, variable voltages on electrodes, and variable induced charges on boundary segments. The finite element solvers of nuNPF and uNPF are developed and applied to typical double-layer tests defined on a rectangular box, a hollow sphere, and a hollow rectangle with a charged post. Numerical results show that nuNPF can significantly improve the quality of the ionic concentrations and electric fields generated from uNPF, implying that the effect of nonuniform ion sizes is a key consideration in modeling the double-layer structure.

  16. Mixed metal oxides for dye-sensitized solar cell using zinc titanium layered double hydroxide as precursor

    NASA Astrophysics Data System (ADS)

    Liu, Jianqiang; Qin, Yaowei; Zhang, Liangji; Xiao, Hongdi; Song, Jianye; Liu, Dehe; Leng, Mingzhe; Hou, Wanguo; Du, Na

    2013-12-01

    Mixed metal oxides (MMO) are always obtained from layered double hydroxide (LDH) by thermal decomposition. In the present work, a zinc titanium LDH with the zinc titanium molar ratio of 4.25 was prepared by urea method and ZnO-based mixed oxides were obtained by calcining at or over 500°C. The MMO was used as electrodes for dye sensitized solar cell (DSSC). The cells constructed by films of prepared composite materials using a N719 as dye were prepared. The efficiency values of these cells are 0.691%, 0.572% and 0.302% with MMO prepared at 500, 600 and 700°C, respectively.

  17. Double layers and circuits in astrophysics

    NASA Technical Reports Server (NTRS)

    Alfven, H.

    1986-01-01

    A simple circuit is applied to the energizing of auroral particles, to solar flares, and to intergalactic double radio sources. Application to the heliospheric current systems leads to the prediction of two double layers on the Sun's axis which may give radiations detectable from Earth. Double layers in space should be classified as a new type of celestial object. It is suggested that X-ray and gamma-ray bursts may be due to exploding double layers (although annihilation is an alternative energy source). The way the most used textbooks in astrophysics treat concepts like double layers, critical velocity, pinch effects and circuits was studied. It is found that students using these textbooks remain essentially ignorant of even the existence of these, although some of the phenomena were discovered 50 yr ago.

  18. The scaling of oblique plasma double layers

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.

    1983-01-01

    Strong oblique plasma double layers are investigated using three methods, i.e., electrostatic particle-in-cell simulations, numerical solutions to the Poisson-Vlasov equations, and analytical approximations to the Poisson-Vlasov equations. The solutions to the Poisson-Vlasov equations and numerical simulations show that strong oblique double layers scale in terms of Debye lengths. For very large potential jumps, theory and numerical solutions indicate that all effects of the magnetic field vanish and the oblique double layers follow the same scaling relation as the field-aligned double layers.

  19. Layering and Ordering in Electrochemical Double Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yihua; Kawaguchi, Tomoya; Pierce, Michael S.

    Electrochemical double layers (EDL) form at electrified interfaces. While Gouy-Chapman model describes moderately charged EDL, formation of Stern layers was predicted for highly charged EDL. Our results provide structural evidence for a Stern layer of cations, at potentials close to hydrogen evolution in alkali fluoride and chloride electrolytes. Layering was observed by x-ray crystal truncation rods and atomic-scale recoil responses of Pt(111) surface layers. Ordering in the layer is confirmed by glancing-incidence in-plane diffraction measurements.

  20. Layered double hydroxide stability. 2. Formation of Cr(III)-containing layered double hydroxides directly from solution

    NASA Technical Reports Server (NTRS)

    Boclair, J. W.; Braterman, P. S.; Jiang, J.; Lou, S.; Yarberry, F.

    1999-01-01

    Solutions containing divalent metal [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+] chlorides and CrCl3 6H2O were titrated with NaOH to yield, for M(II) = Zn, Co, and Ni, hydrotalcite-like layered double hydroxides (LDHs), [[M(II)]1-z[Cr(III)]z(OH)2][Cl]z yH2O, in a single step, without intermediate formation of chromium hydroxide. Analysis of the resultant titration curves yields solubility constants for these compounds. These are in the order Zn < Ni approximately Co, with a clear preference for formation of the phase with z = 1/3. With Mg2+ as chloride, titration gives a mixture of Cr(OH)3 and Mg(OH)2, but the metal sulfates give Mg2Cr(OH)6 1/2(SO4) by a two-step process. Titrimetric and spectroscopic evidence suggests short-range cation order in the one-step LDH systems.

  1. Enhanced spin-torque in double tunnel junctions using a nonmagnetic-metal spacer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, C. H.; Cheng, Y. H.; Ko, C. W.

    2015-10-12

    This study proposes an enhancement in the spin-transfer torque of a magnetic tunnel junction (MTJ) designed with double-barrier layer structure using a nonmagnetic metal spacer, as a replacement for the ferromagnetic material, which is traditionally used in these double-barrier stacks. Our calculation results show that the spin-transfer torque and charge current density of the proposed double-barrier MTJ can be as much as two orders of magnitude larger than the traditional double-barrier one. In other words, the proposed double-barrier MTJ has a spin-transfer torque that is three orders larger than that of the single-barrier stack. This improvement may be attributed tomore » the quantum-well states that are formed in the nonmagnetic metal spacer and the resonant tunneling mechanism that exists throughout the system.« less

  2. The Electrical Double Layer and Its Structure

    NASA Astrophysics Data System (ADS)

    Stojek, Zbigniew

    At any electrode immersed in an electrolyte solution, a specific interfacial region is formed. This region is called the double layer. The electrical properties of such a layer are important, since they significantly affect the electrochemical measurements. In an electrical circuit used to measure the current that flows at a particular working electrode, the double layer can be viewed as a capacitor. Figure I.1.1 depicts this situation where the electrochemical cell is represented by an electrical circuit and capacitor C d corresponds to the differential capacity of the double layer. To obtain a desired potential at the working electrodes, the double-layer capacitor must be first appropriately charged, which means that a capacitive current, not related to the reduction or oxidation of the substrates, flows in the electrical circuit. While this capacitive current carries some information concerning the double layer and its structure, and in some cases can be used for analytical purposes, in general, it interferes with electrochemical investigations. A variety of methods are used in electrochemistry to depress, isolate, or filter the capacitive current.

  3. Investigation of the superconducting proximity effect (SPE) and magnetic dead layers (MDL) in thin film double layers

    NASA Astrophysics Data System (ADS)

    Tateishi, Go

    When a thin superconducting film (S film) is condensed onto a thin normal conducting film (N film), the first layers of the S film loose their superconductivity. This phenomenon is generally called the "superconducting proximity effect (SPE)". As an investigation of SPE we focus on the transition temperature of extremely thin NS double layers in the thin regime. Normal metal is condensed on top of insulating Sb, then Pb is deposited on it in small steps. The transition temperature is plotted in an inverse Tc-reduction 1/Delta T c =1/(Ts - Tc) versus Pb thickness graph. To compare our experimental results with the theoretical prediction, a numerical calculation of the SN double layer is performed by our group using the linear gap equation. As a result, there are large discrepancies between the experimental and theoretical results generally. The results of the NS double layers can be divided into three groups in terms of their discrepancies between experiment and theory.(1) Non-coupling (Tc = 0 K): N= Mg, Ag, Cu, Au. There are large deviations between experiment and theory by a factor to the order of 2.5. (2) Weak coupling (Tc is low (< 2.5 K)) : N=Cd, Zn, Al. Deviation is present, but only by a factor of 1.5. (3) Intermediate coupling (T c is around half of Pb's (≈ 4.5 K)) : N=In, Sn. The experimental results agree with the theory. Next, we examine the detection of the magnetic dead layer (MDL) of Ni thin films in terms of the anomalous Hall effect (AHE) with several non-magnetic metal substrates. In our results, when Ni film is contact with a polyvalent metal substrate film, the sandwich film has around 2 to 3.5 at.lay. of magnetic dead layers. However we have not observed the magnetic dead Ni layers with the alkali and noble metal substrate film. Finally, we revisit the Pb/Ni system to measure the magnetic scattering of Ni with the method of Weak Localization (WL) to compare with the dephasing rate due to the Tc-reduction. In this series, we use only very thin

  4. Study of plasmonics in hybrids made from a quantum emitter and double metallic nanoshell dimer

    NASA Astrophysics Data System (ADS)

    Guo, Jiaohan; Black, Kevin; Hu, Jiawen; Singh, Mahi

    2018-05-01

    We developed a theory for the fluorescence (FL) for quantum emitter and double metallic nanoshell dimer hybrids using the density matrix method. The dimer is made from two identical double metallic nanoshells, which are made of a dielectric core, a gold metallic shell and a dielectric spacer layer. The quantum emitters are deposited on the surface of the spacer layers of the dimers due to the electrostatic absorptions. We consider that dimer hybrids are surrounded by biological cells. This can be achieved by injecting them into human or animal cells. The surface plasmon polaritons (SPP) are calculated for the dimer using Maxwell’s equations in the static wave approximation. The calculated SPP energy agrees with experimental data from Zhai et al (2017 Plasmonics 12 263) for the dimer made from a silica core, a gold metallic nanoshell and a silica spacer layer. We have also obtained an analytical expression of the FL using the density matrix method. We compare our theory with FL experimental data from Zhai et al (2017 Plasmonics 12 263) where the FL spectrum was measured by varying the thickness of the spacer layer from 9 nm to 40 nm. A good agreement between theory and experiment is found. We have shown that the enhancement of the FL increases as the thickness of the spacer layer decreases. We have also found that the enhancement of the FL increases as the distance between the double metallic nanoshells in the dimer decreases. These are interesting findings which are consistent with the experiments of Zhai et al (2017 Plasmonics 12 263) and can be used to control the FL enhancement in the FL-based biomedical imaging and cancer treatment. These interesting findings may also be useful in the fabrication of nanosensors and nanoswitches for applications in medicine.

  5. Electron temperature differences and double layers

    NASA Technical Reports Server (NTRS)

    Chan, C.; Hershkowitz, N.; Lonngren, K. E.

    1983-01-01

    Electron temperature differences across plasma double layers are studied experimentally. It is shown that the temperature differences across a double layer can be varied and are not a result of thermalization of the bump-on-tail distribution. The implications of these results for electron thermal energy transport in laser-pellet and tandem-mirror experiments are also discussed.

  6. Selectivity Enhancement by Using Double-Layer MOX-Based Gas Sensors Prepared by Flame Spray Pyrolysis (FSP).

    PubMed

    Rebholz, Julia; Grossmann, Katharina; Pham, David; Pokhrel, Suman; Mädler, Lutz; Weimar, Udo; Barsan, Nicolae

    2016-09-06

    Here we present a novel concept for the selective recognition of different target gases with a multilayer semiconducting metal oxide (SMOX)-based sensor device. Direct current (DC) electrical resistance measurements were performed during exposure to CO and ethanol as single gases and mixtures of highly porous metal oxide double- and single-layer sensors obtained by flame spray pyrolysis. The results show that the calculated resistance ratios of the single- and double-layer sensors are a good indicator for the presence of specific gases in the atmosphere, and can constitute some building blocks for the development of chemical logic devices. Due to the inherent lack of selectivity of SMOX-based gas sensors, such devices could be especially relevant for domestic applications.

  7. Selectivity Enhancement by Using Double-Layer MOX-Based Gas Sensors Prepared by Flame Spray Pyrolysis (FSP)

    PubMed Central

    Rebholz, Julia; Grossmann, Katharina; Pham, David; Pokhrel, Suman; Mädler, Lutz; Weimar, Udo; Barsan, Nicolae

    2016-01-01

    Here we present a novel concept for the selective recognition of different target gases with a multilayer semiconducting metal oxide (SMOX)-based sensor device. Direct current (DC) electrical resistance measurements were performed during exposure to CO and ethanol as single gases and mixtures of highly porous metal oxide double- and single-layer sensors obtained by flame spray pyrolysis. The results show that the calculated resistance ratios of the single- and double-layer sensors are a good indicator for the presence of specific gases in the atmosphere, and can constitute some building blocks for the development of chemical logic devices. Due to the inherent lack of selectivity of SMOX-based gas sensors, such devices could be especially relevant for domestic applications. PMID:27608028

  8. In Situ Transformation of MOFs into Layered Double Hydroxide Embedded Metal Sulfides for Improved Electrocatalytic and Supercapacitive Performance.

    PubMed

    Yilmaz, Gamze; Yam, Kah Meng; Zhang, Chun; Fan, Hong Jin; Ho, Ghim Wei

    2017-07-01

    Direct adoption of metal-organic frameworks (MOFs) as electrode materials shows impoverished electrochemical performance owing to low electrical conductivity and poor chemical stability. In this study, we demonstrate self-templated pseudomorphic transformation of MOF into surface chemistry rich hollow framework that delivers highly reactive, durable, and universal electrochemically active energy conversion and storage functionalities. In situ pseudomorphic transformation of MOF-derived hollow rhombic dodecahedron template and sulfurization of nickel cobalt layered double hydroxides (NiCo-LDHs) lead to the construction of interlayered metal sulfides (NiCo-LDH/Co 9 S 8 ) system. The embedment of metal sulfide species (Co 9 S 8 ) at the LDH intergalleries offers optimal interfacing of the hybrid constituent elements and materials stability. The hybrid NiCo-LDH/Co 9 S 8 system collectively presents an ideal porous structure, rich redox chemistry, and high electrical conductivity matrix. This leads to a significant enhancement in its complementary electrocatalytic hydrogen evolution and supercapacitive energy storage properties. This work establishes the potential of MOF derived scaffold for designing of novel class hybrid inorganic-organic functional materials for electrochemical applications and beyond. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Research on liquid impact forming technology of double-layered tubes

    NASA Astrophysics Data System (ADS)

    Sun, Changying; Liu, Jianwei; Yao, Xinqi; Huang, Beixing; Li, Yuhan

    2018-03-01

    A double-layered tube is widely used and developed in various fields because of its perfect comprehensive performance and design. With the advent of the era of a double-layered tube, the requirements for double layered tube forming quality, manufacturing cost and forming efficiency are getting higher, so forming methods of a double-layered tube are emerged in an endless stream, the forming methods of a double-layered tube have a great potential in the future. The liquid impact forming technology is a combination of stamping technology and hydroforming technology. Forming a double-layered tube has huge advantages in production cost, quality and efficiency.

  10. Organic doping of rotated double layer graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, Lijin; Jaiswal, Manu, E-mail: manu.jaiswal@iitm.ac.in

    2016-05-06

    Charge transfer techniques have been extensively used as knobs to tune electronic properties of two- dimensional systems, such as, for the modulation of conductivity \\ mobility of single layer graphene and for opening the bandgap in bilayer graphene. The charge injected into the graphene layer shifts the Fermi level away from the minimum density of states point (Dirac point). In this work, we study charge transfer in rotated double-layer graphene achieved by the use of organic dopant, Tetracyanoquinodimethane. Naturally occurring bilayer graphene has a well-defined A-B stacking whereas in rotated double-layer the two graphene layers are randomly stacked with differentmore » rotational angles. This rotation is expected to significantly alter the interlayer interaction. Double-layer samples are prepared using layer-by-layer assembly of chemical vapor deposited single-layer graphene and they are identified by characteristic resonance in the Raman spectrum. The charge transfer and distribution of charges between the two graphene layers is studied using Raman spectroscopy and the results are compared with that for single-layer and A-B stacked bilayer graphene doped under identical conditions.« less

  11. Capacitance of carbon-based electrical double-layer capacitors.

    PubMed

    Ji, Hengxing; Zhao, Xin; Qiao, Zhenhua; Jung, Jeil; Zhu, Yanwu; Lu, Yalin; Zhang, Li Li; MacDonald, Allan H; Ruoff, Rodney S

    2014-01-01

    Experimental electrical double-layer capacitances of porous carbon electrodes fall below ideal values, thus limiting the practical energy densities of carbon-based electrical double-layer capacitors. Here we investigate the origin of this behaviour by measuring the electrical double-layer capacitance in one to five-layer graphene. We find that the capacitances are suppressed near neutrality, and are anomalously enhanced for thicknesses below a few layers. We attribute the first effect to quantum capacitance effects near the point of zero charge, and the second to correlations between electrons in the graphene sheet and ions in the electrolyte. The large capacitance values imply gravimetric energy storage densities in the single-layer graphene limit that are comparable to those of batteries. We anticipate that these results shed light on developing new theoretical models in understanding the electrical double-layer capacitance of carbon electrodes, and on opening up new strategies for improving the energy density of carbon-based capacitors.

  12. Double-atomic layer of Tl on Si(111): Atomic arrangement and electronic properties

    NASA Astrophysics Data System (ADS)

    Mihalyuk, Alexey N.; Bondarenko, Leonid V.; Tupchaya, Alexandra Y.; Gruznev, Dimitry V.; Chou, Jyh-Pin; Hsing, Cheng-Rong; Wei, Ching-Ming; Zotov, Andrey V.; Saranin, Alexander A.

    2018-02-01

    Metastable double-atomic layer of Tl on Si(111) has recently been found to display interesting electric properties, namely superconductivity below 0.96 K and magnetic-field-induced transition into an insulating phase intermediated by a quantum metal state. In the present work, using a set of experimental techniques, including low-energy electron diffraction, scanning tunneling microscopy, angle-resolved photoelectron spectroscopy, in a combination with density-functional-theory calculations, we have characterized atomic and electronic properties of the Tl double layer on Si(111). The double Tl layer has been concluded to contain ∼ 2.4 monolayer of Tl. A top Tl layer has a '1 × 1' basic structure and displays 6 × 6 moiré pattern which originates from various residence sites of Tl atoms. Upon cooling below ∼ 140 K, the 6 × 6 moiré pattern changes to that having a 6√{ 3} × 6√{ 3} periodicity. However, the experimentally determined electron band dispersions show a 1 × 1 periodicity. The calculated band structure unfolded into the 1 × 1 surface Brillouin zone reproduces well the main features of the photoelectron spectra.

  13. A new hydrodynamic analysis of double layers

    NASA Technical Reports Server (NTRS)

    Hora, Heinrich

    1987-01-01

    A genuine two-fluid model of plasmas with collisions permits the calculation of dynamic (not necessarily static) electric fields and double layers inside of plasmas including oscillations and damping. For the first time a macroscopic model for coupling of electromagnetic and Langmuir waves was achieved with realistic damping. Starting points were laser-produced plasmas showing very high dynamic electric fields in nonlinear force-produced cavitous and inverted double layers in agreement with experiments. Applications for any inhomogeneous plasma as in laboratory or in astrophysical plasmas can then be followed up by a transparent hydrodynamic description. Results are the rotation of plasmas in magnetic fields and a new second harmonic resonance, explanation of the measured inverted double layers, explanation of the observed density-independent, second harmonics emission from laser-produced plasmas, and a laser acceleration scheme by the very high fields of the double layers.

  14. A fluid description of plasma double-layers

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Crawford, F. W.

    1979-01-01

    The space-charge double-layer that forms between two plasmas with different densities and thermal energies was investigated using three progressively realistic models which are treated by fluid theory, and take into account four species of particles: electrons and ions reflected by the double-layer, and electrons and ions transmitted through it. The two plasmas are assumed to be cold, and the self-consistent potential, electric field and space-charge distributions within the double-layer are determined. The effects of thermal velocities are taken into account for the reflected particles, and the modifications to the cold plasma solutions are established. Further modifications due to thermal velocities of the transmitted particles are examined. The applicability of a one dimensional fluid description, rather than plasma kinetic theory, is discussed. Theoretical predictions are compared with double layer potentials and lengths deduced from laboratory and space plasma experiments.

  15. Langmuir probe measurements of double-layers in a pulsed discharge

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Crawford, F. W.

    1980-01-01

    Langmuir probe measurements were carried out which confirm the occurrence of double-layers in an argon positive column. Pulsing the discharge current permitted probe measurements to be performed in the presence of the double-layer. Supplementary evidence, obtained from DC and pulsed discharges, indicated that the double-layers formed in the two modes of operation were similar. The double-layers observed were weak and stable; their relation to other classes of double-layers are discussed, and directions for future work are suggested.

  16. Metal deposition using seed layers

    DOEpatents

    Feng, Hsein-Ping; Chen, Gang; Bo, Yu; Ren, Zhifeng; Chen, Shuo; Poudel, Bed

    2013-11-12

    Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material.

  17. Transition from single to multiple double layers. [of plasma

    NASA Technical Reports Server (NTRS)

    Chan, C.; Hershkowitz, N.

    1982-01-01

    Laboratory results are presented to define parameters which allow the boundary conditions to control the characteristics of double layers of plasma. It is shown that multiple double layers arise when the ratio of Debye length to system length decreases, a result which is in line with boundary layer theory. The significance of inclusion of the system length is noted to render BGK treatments of double layers, wherein the length is neglected, invalid.

  18. Mesoporous mixed metal oxides derived from P123-templated Mg-Al layered double hydroxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Jun, E-mail: zhqw1888@sohu.co; College of Chemical Engineering, Harbin Institute of Technology, Harbin 150001; Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, 150001

    2010-11-15

    We report the preparation of mesoporous mixed metal oxides (MMOs) through a soft template method. Different amounts of P123 were used as structure directing agent to synthesize P123-templated Mg-Al layered double hydroxides (LDHs). After calcination of as-synthesized LDHs at 500 {sup o}C, the ordered mesopores were obtained by removal of P123. The mesoporous Mg-Al MMOs fabricated by using 2 wt% P123 exhibited a high specific surface area of 108.1 m{sup 2}/g, and wide distribution of pore size (2-18 nm). An investigation of the 'memory effect' of the mesoporous MMOs revealed that they were successfully reconstructed to ibuprofen intercalated LDHs havingmore » different gallery heights, which indicated different intercalation capacities. Due to their mesoporosity these unique MMOs have particular potential as drug or catalyst carriers. - Graphical abstract: Ordered mesoporous Mg-Al MMOs can be obtained through the calcination of P123-templated Mg-Al-CO{sub 3} LDHs. The pore diameter is 2.2 nm. At the presence of ibuprofen, the Mg-Al MMOs can recover to Mg-Al-IBU LDHs, based on its 'remember effect'. Display Omitted« less

  19. Double-diffusive layers in the Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Carniel, Sandro; Sclavo, Mauro; Kantha, Lakshmi; Prandke, Hartmut

    2008-01-01

    A microstructure profiler was deployed to make turbulence measurements in the upper layers of the southern Adriatic Sea in the Mediterranean during the Naval Research Laboratory (NRL) DART06A (Dynamics of the Adriatic in Real Time) winter cruise in March 2006. Measurements in the Po river plume along the Italian coast near the Gargano promontory displayed classic double-diffusive layers and staircase structures resulting from the relatively colder and fresher wintertime Po river outflow water masses overlying warmer and more saline water masses from the Adriatic Sea. We report here on the water mass and turbulence structure measurements made both in the double-diffusive interfaces and the adjoining mixed layers in the water columns undergoing double-diffusive convection (DDC). This dataset augments the relatively sparse observations available hitherto on the diffusive layer type of DDC. Measured turbulence diffusivities are consistent with those from earlier theoretical and experimental formulations, suggesting that the wintertime Po river plume is a convenient and easily accessible place to study double diffusive convective processes of importance to mixing in the interior of many regions of the global oceans.

  20. Double layer drainage performance of porous asphalt pavement

    NASA Astrophysics Data System (ADS)

    Ji, Yangyang; Xie, Jianguang; Liu, Mingxi

    2018-06-01

    In order to improve the design reliability of the double layer porous asphalt pavement, the 3D seepage finite element method was used to study the drainage capacity of double layer PAC pavements with different geometric parameters. It revealed that the effect of pavement drainage length, slope, permeability coefficient and structure design on the drainage capacity. The research of this paper can provide reference for the design of double layer porous asphalt pavement in different rainfall intensity areas, and provide guides for the related engineering design.

  1. Numerically simulated two-dimensional auroral double layers

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.; Joyce, G.

    1983-01-01

    A magnetized 2 1/2-dimensional particle-in-cell system which is periodic in one direction and bounded by reservoirs of Maxwellian plasma in the other is used to numerically simulate electrostatic plasma double layers. For the cases of both oblique and two-dimensional double layers, the present results indicate periodic instability, Debye length rather than gyroradii scaling, and low frequency electrostatic turbulence together with electron beam-excited electrostatatic electron-cyclotron waves. Estimates are given for the thickness of auroral doule layers, as well as the separations within multiple auroral arcs. Attention is given to the temporal modulation of accelerated beams, and the possibilities for ion precipitation and ion conic production by the double layer are hypothesized. Simulations which include the atmospheric backscattering of electrons imply the action of an ionospheric sheath which accelerates ionospheric ions upward.

  2. Vibrational Stark Effect to Probe the Electric-Double Layer of the Ionic Liquid-Metal Electrodes

    NASA Astrophysics Data System (ADS)

    Garcia Rey, Natalia; Moore, Alexander Knight; Toyouchi, Shuichi; Dlott, Dana

    2017-06-01

    Vibrational sum frequency generation (VSFG) spectroscopy is used to study the effect of room temperature ionic liquids (RTILs) in situ at the electrical double layer (EDL). RTILs have been recognized as electrolytes without solvent for applications in batteries, supercapacitors and electrodeposition^{1}. The molecular response of the RTIL in the EDL affects the performance of these devices. We use the vibrational Stark effect on CO as a probe to detect the changes in the electric field affected by the RTIL across the EDL on metal electrodes. The Stark effect is a shift in the frequency in response to an externally applied electric field and also influenced by the surrounding electrolyte and electrode^{2}. The CO Stark shift is monitored by the CO-VSFG spectra on Pt or Ag in a range of different imidazolium-based RTILs electrolytes, where their composition is tuned by exchanging the anion, the cation or the imidazolium functional group. We study the free induction decay (FID)^{3} of the CO to monitor how the RTIL structure and composition affect the vibrational relaxation of the CO. Combining the CO vibrational Stark effect and the FID allow us to understand how the RTIL electrochemical response, molecular orientation response and collective relaxation affect the potential drop of the electric field across the EDL, and, in turn, how determines the electrical capacitance or reactivity of the electrolyte/electrode interface. ^{1}Fedorov, M. V.; Kornyshev, A. A., Ionic Liquids at Electrified Interfaces. Chem. Rev. 2014, 114, 2978-3036. ^{2} (a) Lambert, D. K., Vibrational Stark Effect of Adsorbates at Electrochemical Interfaces. Electrochim. Acta 1996, 41, 623-630. (b) Oklejas, V.; Sjostrom, C.; Harris, J. M., SERS Detection of the Vibrational Stark Effect from Nitrile-Terminated SAMs to Probe Electric Fields in the Diffuse Double-Layer. J. Am. Chem. Soc. 2002, 124, 2408-2409. ^{3}Symonds, J. P. R.; Arnolds, H.; Zhang, V. L.; Fukutani, K.; King, D. A

  3. Atomically thin transition metal layers: Atomic layer stabilization and metal-semiconductor transition

    NASA Astrophysics Data System (ADS)

    Hwang, Jeongwoon; Oh, Young Jun; Kim, Jiyoung; Sung, Myung Mo; Cho, Kyeongjae

    2018-04-01

    We have performed first-principle calculations to explore the possibility of synthesizing atomically thin transition metal (TM) layers. Buckled structures as well as planar structures of elemental 2D TM layers result in significantly higher formation energies compared with sp-bonded elemental 2D materials with similar structures, such as silicene and phosphorene. It is shown that the TM layers can be stabilized by surface passivation with HS, C6H5S2, or O, and O passivation is most effective. The surface oxygen passivation can improve stability leading to thermodynamically stable TM monolayers except Au, which is the most non-reactive metal element. Such stabilized TM monolayers also show an electronic structure transition from metallic state of free-standing TM layer to semiconducting O-passivated Mo and W monolayers with band gaps of 0.20-1.38 eV.

  4. Preferential growth of short aligned, metallic-rich single-walled carbon nanotubes from perpendicular layered double hydroxide film.

    PubMed

    Zhao, Meng-Qiang; Tian, Gui-Li; Zhang, Qiang; Huang, Jia-Qi; Nie, Jing-Qi; Wei, Fei

    2012-04-07

    Direct bulk growth of single-walled carbon nanotubes (SWCNTs) with required properties, such as diameter, length, and chirality, is the first step to realize their advanced applications in electrical and optical devices, transparent conductive films, and high-performance field-effect transistors. Preferential growth of short aligned, metallic-rich SWCNTs is a great challenge to the carbon nanotube community. We report the bulk preferential growth of short aligned SWCNTs from perpendicular Mo-containing FeMgAl layered double hydroxide (LDH) film by a facile thermal chemical vapor deposition with CH(4) as carbon source. The growth of the short aligned SWCNTs showed a decreased growth velocity with an initial value of 1.9 nm s(-1). Such a low growth velocity made it possible to get aligned SWCNTs shorter than 1 μm with a growth duration less than 15 min. Raman spectra with different excitation wavelengths indicated that the as-grown short aligned SWCNTs showed high selectivity of metallic SWCNTs. Various kinds of materials, such as mica, quartz, Cu foil, and carbon fiber, can serve as the substrates for the growth of perpendicular FeMoMgAl LDH films and also the growth of the short aligned SWCNTs subsequently. These findings highlight the easy route for bulk preferential growth of aligned metallic-rich SWCNTs with well defined length for further bulk characterization and applications. This journal is © The Royal Society of Chemistry 2012

  5. Enrichment of rare earth metal ions by the highly selective adsorption of phytate intercalated layered double hydroxide.

    PubMed

    Jin, Cheng; Liu, Huimin; Kong, Xianggui; Yan, Hong; Lei, Xiaodong

    2018-02-27

    Phytate intercalated MgAl layered double hydroxide (MgAl-LDH) was prepared by an anion exchange method with the precursor NO 3 - containing MgAl-LDH. The final as-synthesized product [Mg 0.69 Al 0.31 (OH) 2 ] (phytateNa 6 ) 0.05 (NO 3 ) 0.01 ·mH 2 O (phytate-LDH) has highly selective adsorption ability for some metal ions and can be used to enrich rare earth metal ions in mixed solution, such as Pr 3+ and Ce 3+ from a mixed solution of them with Pb 2+ and Co 2+ . At first, phytate-LDH has good adsorption performance for these ions in single metal ion solutions. At low concentration (below 10 mg L -1 ), all the capture rates of the four metal ions were more than 97%, for highly toxic Pb 2+ it was even up to nearly 100%, and a high capture rate (99.87%) was maintained for Pb 2+ at a high concentration (100 mg L -1 ). When all the four metal ions are co-existing in aqueous solution, the selectivity order is Pb 2+ ≫ Pr 3+ ≈ Ce 3+ > Co 2+ . In a solution containing mixtures of the three metal ions of Pr 3+ , Ce 3+ , and Co 2+ , the selectivity order is Pr 3+ ≈ Ce 3+ ≫ Co 2+ , and in a solution containing mixtures of Pr 3+ with Co 2+ and Ce 3+ with Co 2+ , the selectivity orders are Pr 3+ ≫ Co 2+ and Ce 3+ ≫ Co 2+ , respectively. The high selectivity and adsorption capacities for Pb 2+ , Co 2+ , Pr 3+ , and Ce 3+ result in the efficient removal of Pb 2+ and enrichment of the rare earth metal ions Pr 3+ and Ce 3+ by phytate-LDH. Based on the elemental analysis, it is found that the difference of the adsorption capacities is mainly due to the different coordination number of them with phytate-LDH. With molecular simulation, we believe that the adsorption selectivity is due to the difference of the binding energy between the metal ion and phytate-LDH. Therefore, the phytate-LDH is promising for the enrichment and/or purification of the rare earth metal ions and removal of toxic metal ions from waste water.

  6. Structure and nano-mechanical characteristics of surface oxide layers on a metallic glass.

    PubMed

    Caron, A; Qin, C L; Gu, L; González, S; Shluger, A; Fecht, H-J; Louzguine-Luzgin, D V; Inoue, A

    2011-03-04

    Owing to their low elastic moduli, high specific strength and excellent processing characteristics in the undercooled liquid state, metallic glasses are promising materials for applications in micromechanical systems. With miniaturization of metallic mechanical components down to the micrometer scale, the importance of a native oxide layer on a glass surface is increasing. In this work we use TEM and XPS to characterize the structure and properties of the native oxide layer grown on Ni(62)Nb(38) metallic glass and their evolution after annealing in air. The thickness of the oxide layer almost doubled after annealing. In both cases the oxide layer is amorphous and consists predominantly of Nb oxide. We investigate the friction behavior at low loads and in ambient conditions (i.e. at T = 295 K and 60% air humidity) of both as-cast and annealed samples by friction force microscopy. After annealing the friction coefficient is found to have significantly increased. We attribute this effect to the increase of the mechanical stability of the oxide layer upon annealing.

  7. Plasmons in spatially separated double-layer graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Bagheri, Mehran; Bahrami, Mousa

    2014-05-01

    Motivated by innovative progresses in designing multi-layer graphene nanostructured materials in the laboratory, we theoretically investigate the Dirac plasmon modes of a spatially separated double-layer graphene nanoribbon system, made up of a vertically offset armchair and metallic graphene nanoribbon pair. We find striking features of the collective excitations in this novel Coulomb correlated system, where both nanoribbons are supposed to be either intrinsic (undoped/ungated) or extrinsic (doped/gated). In the former, it is shown the low-energy acoustical and the high-energy optical plasmon modes are tunable only by the inter-ribbon charge separation. In the later, the aforementioned plasmon branches are modified by the added doping factor. As a result, our model could be useful to examine the existence of a linear Landau-undamped low-energy acoustical plasmon mode tuned via the inter-ribbon charge separation as well as doping. This study might also be utilized for devising novel quantum optical waveguides based on the Coulomb coupled graphene nanoribbons.

  8. The effect of a nonmagnetic cap layer on the spin-polarized tunneling and magnetoresistance in double-barrier planar junctions

    NASA Astrophysics Data System (ADS)

    Xie, Zheng-Wei; Li, Bo-Zang; Li, Yu-Xian

    2003-10-01

    Within the framework of the free-electron model, the tunneling magnetoresistance (TMR) and tunneling conductance (TC) in double magnetic tunnel junctions (DMTJ) with nonmagnetic cap layer, i.e. the NM/FM/I/NM/(FM)/I/FM/NM junction is investigated. FM, NM and I represent the ferromagnetic metal, nonmagnetic metal and insulator, respectively, NM(FM) indicates that the middle layer can be NM or FM. Our results show that, due to the spin-dependent interfacial potential barriers, the influences of the thickness of the FM layer on TC and TMR in DMTJ are large, and when the thicknesses of these two FM layers are suitable a large TMR can be obtained. (

  9. NiMn layered double hydroxide nanosheets/NiCo2O4 nanowires with surface rich high valence state metal oxide as an efficient electrocatalyst for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Yang, Liting; Chen, Lin; Yang, Dawen; Yu, Xu; Xue, Huaiguo; Feng, Ligang

    2018-07-01

    High valence transition metal oxide is significant for anode catalyst of proton membrane water electrolysis technique. Herein, we demonstrate NiMn layered double hydroxide nanosheets/NiCo2O4 nanowires hierarchical nanocomposite catalyst with surface rich high valence metal oxide as an efficient catalyst for oxygen evolution reaction. A low overpotential of 310 mV is needed to drive a 10 mA cm-2 with a Tafel slope of 99 mV dec-1, and a remarkable stability during 8 h is demonstrated in a chronoamperometry test. Theoretical calculation displays the change in the rate-determining step on the nanocomposite electrode in comparison to NiCo2O4 nanowires alone. It is found high valence Ni and Mn oxide in the catalyst system can efficiently facilitate the charge transport across the electrode/electrolyte interface. The enhanced electrical conductivity, more accessible active sites and synergistic effects between NiMn layered double hydroxide nanosheets and NiCo2O4 nanowires can account for the excellent oxygen evolution reaction. The catalytic performance is comparable to most of the best non-noble catalysts and IrO2 noble catalyst, indicating the promising applications in water-splitting technology. It is an important step in the development of hierarchical nanocomposites by surface valence state tuning as an alternative to noble metals for oxygen evolution reaction.

  10. Antiferroelectricity in lanthanum doped zirconia without metallic capping layers and post-deposition/-metallization anneals

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Gaskell, Anthony Arthur; Dopita, Milan; Kriegner, Dominik; Tasneem, Nujhat; Mack, Jerry; Mukherjee, Niloy; Karim, Zia; Khan, Asif Islam

    2018-05-01

    We report the effects of lanthanum doping/alloying on antiferroelectric (AFE) properties of ZrO2. Starting with pure ZrO2, an increase in La doping leads to the narrowing of the AFE double hysteresis loops and an increase in the critical voltage/electric field for AFE → ferroelectric transition. At higher La contents, the polarization-voltage characteristics of doped/alloyed ZrO2 resemble that of a non-linear dielectric without any discernible AFE-type hysteresis. X-ray diffraction based analysis indicates that the increased La content while preserving the non-polar, parent AFE, tetragonal P42/nmc phase leads to a decrease in tetragonality and the (nano-)crystallite size and an increase in the unit cell volume. Furthermore, antiferroelectric behavior is obtained in the as-deposited thin films without requiring any capping metallic layers and post-deposition/-metallization anneals due to which our specific atomic layer deposition system configuration crystallizes and stabilizes the AFE tetragonal phase during growth.

  11. A novel method to delaminate nitrate-intercalated MgAl layered double hydroxides in water and application in heavy metals removal from waste water.

    PubMed

    Rahman, Mir Tamzid; Kameda, Tomohito; Kumagai, Shogo; Yoshioka, Toshiaki

    2018-07-01

    Nitrate-intercalated MgAl layered double hydroxide (LDH) was successfully delaminated in water by a facile and effective method upon reflux at 120 °C for 24 h followed by sonication at 40 °C for 5 h. This process is environmentally friendly since water is the only solvent used. The delaminated nanosheets were characterized by microscopic, spectroscopic, and particle size analyses. The delamination process successfully produced octahedron-shaped single-layer nanosheets 50-150 nm in size. X-ray photoelectron spectroscopy (XPS) data confirmed that the surface elements and their chemical status are consistent with the basic layer of MgAl LDH. The delaminated nanosheets displayed higher adsorption capacity for removing heavy metals from waste water than the original powdered LDH. After treating the waste water, a sharp and intense peak in the X-ray powder diffraction (XRD) pattern of the precipitate confirms the restacking of the LDH nanosheets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Double-layered cell transfer technology for bone regeneration

    PubMed Central

    Akazawa, Keiko; Iwasaki, Kengo; Nagata, Mizuki; Yokoyama, Naoki; Ayame, Hirohito; Yamaki, Kazumasa; Tanaka, Yuichi; Honda, Izumi; Morioka, Chikako; Kimura, Tsuyoshi; Komaki, Motohiro; Kishida, Akio; Izumi, Yuichi; Morita, Ikuo

    2016-01-01

    For cell-based medicine, to mimic in vivo cellular localization, various tissue engineering approaches have been studied to obtain a desirable arrangement of cells on scaffold materials. We have developed a novel method of cell manipulation called “cell transfer technology”, enabling the transfer of cultured cells onto scaffold materials, and controlling cell topology. Here we show that using this technique, two different cell types can be transferred onto a scaffold surface as stable double layers or in patterned arrangements. Various combinations of adherent cells were transferred to a scaffold, amniotic membrane, in overlapping bilayers (double-layered cell transfer), and transferred cells showed stability upon deformations of the material including folding and trimming. Transplantation of mesenchymal stem cells from periodontal ligaments (PDLSC) and osteoblasts, using double-layered cell transfer significantly enhanced bone formation, when compared to single cell type transplantation. Our findings suggest that this double-layer cell transfer is useful to produce a cell transplantation material that can bear two cell layers. Moreover, the transplantation of an amniotic membrane with PDLSCs/osteoblasts by cell transfer technology has therapeutic potential for bone defects. We conclude that cell transfer technology provides a novel and unique cell transplantation method for bone regeneration. PMID:27624174

  13. Double layers without current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, F.W.; Sun, Y.C.

    1980-11-01

    The steady-state solution of the nonlinear Vlasov-Poisson equations is reduced to a nonlinear eigenvalue problem for the case of double-layer (potential drop) boundary conditions. Solutions with no relative electron-ion drifts are found. The kinetic stability is discussed. Suggestions for creating these states in experiments and computer simulations are offered.

  14. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation.

    PubMed

    Gong, Ming; Li, Yanguang; Wang, Hailiang; Liang, Yongye; Wu, Justin Z; Zhou, Jigang; Wang, Jian; Regier, Tom; Wei, Fei; Dai, Hongjie

    2013-06-12

    Highly active, durable, and cost-effective electrocatalysts for water oxidation to evolve oxygen gas hold a key to a range of renewable energy solutions, including water-splitting and rechargeable metal-air batteries. Here, we report the synthesis of ultrathin nickel-iron layered double hydroxide (NiFe-LDH) nanoplates on mildly oxidized multiwalled carbon nanotubes (CNTs). Incorporation of Fe into the nickel hydroxide induced the formation of NiFe-LDH. The crystalline NiFe-LDH phase in nanoplate form is found to be highly active for oxygen evolution reaction in alkaline solutions. For NiFe-LDH grown on a network of CNTs, the resulting NiFe-LDH/CNT complex exhibits higher electrocatalytic activity and stability for oxygen evolution than commercial precious metal Ir catalysts.

  15. Observation of a stationary, current-free double layer in a plasma

    NASA Technical Reports Server (NTRS)

    Hairapetian, G.; Stenzel, R. L.

    1990-01-01

    A stationary, current-free, potential double layer is formed in a two-electron-population plasma due to self-consistent separation of the two electron species. The position and amplitude of the double layer are controlled by the relative densities of the two electron populations. The steady-state double layer traps the colder electrons on the high potential side, and generates a neutralized, monoenergetic ion beam on the low potential side. The field-aligned double layer is annihilated when an electron current is drawn through the plasma.

  16. Multi-layer thin-film electrolytes for metal supported solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Haydn, Markus; Ortner, Kai; Franco, Thomas; Uhlenbruck, Sven; Menzler, Norbert H.; Stöver, Detlev; Bräuer, Günter; Venskutonis, Andreas; Sigl, Lorenz S.; Buchkremer, Hans-Peter; Vaßen, Robert

    2014-06-01

    A key to the development of metal-supported solid oxide fuel cells (MSCs) is the manufacturing of gas-tight thin-film electrolytes, which separate the cathode from the anode. This paper focuses the electrolyte manufacturing on the basis of 8YSZ (8 mol.-% Y2O3 stabilized ZrO2). The electrolyte layers are applied by a physical vapor deposition (PVD) gas flow sputtering (GFS) process. The gas-tightness of the electrolyte is significantly improved when sequential oxidic and metallic thin-film multi-layers are deposited, which interrupt the columnar grain structure of single-layer electrolytes. Such electrolytes with two or eight oxide/metal layers and a total thickness of about 4 μm obtain leakage rates of less than 3 × 10-4 hPa dm3 s-1 cm-2 (Δp: 100 hPa) at room temperature and therefore fulfill the gas tightness requirements. They are also highly tolerant with respect to surface flaws and particulate impurities which can be present on the graded anode underground. MSC cell tests with double-layer and multilayer electrolytes feature high power densities more than 1.4 W cm-2 at 850 °C and underline the high potential of MSC cells.

  17. Water transport and desalination through double-layer graphyne membranes.

    PubMed

    Akhavan, Mojdeh; Schofield, Jeremy; Jalili, Seifollah

    2018-05-16

    Non-equilibrium molecular dynamics simulations of water-salt solutions driven through single and double-layer graphyne membranes by a pressure difference created by rigid pistons are carried out to determine the relative performance of the membranes as filters in a reverse osmosis desalination process. It is found that the flow rate of water through a graphyne-4 membrane is twice that of a graphyne-3 membrane for both single and double-layer membranes. Although the addition of a second layer to a single-layer membrane reduces the membrane permeability, the double-layer graphyne membranes are still two or three orders of magnitude more permeable than commercial reverse osmosis membranes. The minimum reduction in flow rate for double-layer membranes occurs at a layer spacing of 0.35 nm with an AA stacking configuration, while at a spacing of 0.6 nm the flow rate is close to zero due to a high free energy barrier for permeation. This is caused by the difference in the environments on either side of the membrane sheets and the formation of a compact two-dimensional layer of water molecules in the interlayer space which slows down water permeation. The distribution of residence times of water molecules in the interlayer region suggests that at the critical layer spacing of 0.6 nm, a cross-over occurs in the mechanism of water flow from the collective movement of hydrogen-bonded water sheets to the permeation of individual water molecules. All membranes are demonstrated to have a high salt rejection fraction and the double-layered graphyne-4 membranes can further increase the salt rejection by trapping ions that have passed through the first membrane from the feed solution in the interlayer space.

  18. Influence of electrical double-layer interaction on coal flotation.

    PubMed

    Harvey, Paul A; Nguyen, Anh V; Evans, Geoffrey M

    2002-06-15

    In the early 1930s it was first reported that inorganic electrolytes enhance the floatability of coal and naturally hydrophobic minerals. To date, explanations of coal flotation in electrolytes have not been entirely clear. This research investigated the floatability of coal in NaCl and MgCl2 solutions using a modified Hallimond tube to examine the role of the electrical double-layer interaction between bubbles and particles. Flotation of coal was highly dependent on changes in solution pH, type of electrolyte, and electrolyte concentration. Floatability of coal in electrolyte solutions was seen not to be entirely controlled by the electrical double-layer interaction. Coal flotation in low electrolyte concentration solutions decreases with increase in concentration, not expected from the theory since the electrical double layer is compressed, resulting in diminishing the (electrical double layer) repulsion between the bubble and the coal particles. Unlike in low electrolyte concentration solutions, coal flotation in high electrolyte concentration solutions increases with increase in electrolyte concentration. Again, this behavior of coal flotation in high electrolyte concentration solutions cannot be quantitatively explained using the electrical double-layer interaction. Possible mechanisms are discussed in terms of the bubston (i.e., bubble stabilized by ions) phenomenon, which explains the existence of the submicron gas bubbles on the hydrophobic coal surface.

  19. Electric Double-Layer Interaction between Dissimilar Charge-Conserved Conducting Plates.

    PubMed

    Chan, Derek Y C

    2015-09-15

    Small metallic particles used in forming nanostructured to impart novel optical, catalytic, or tribo-rheological can be modeled as conducting particles with equipotential surfaces that carry a net surface charge. The value of the surface potential will vary with the separation between interacting particles, and in the absence of charge-transfer or electrochemical reactions across the particle surface, the total charge of each particle must also remain constant. These two physical conditions require the electrostatic boundary condition for metallic nanoparticles to satisfy an equipotential whole-of-particle charge conservation constraint that has not been studied previously. This constraint gives rise to a global charge conserved constant potential boundary condition that results in multibody effects in the electric double-layer interaction that are either absent or are very small in the familiar constant potential or constant charge or surface electrochemical equilibrium condition.

  20. Incorporation of rare-earth ions in Mg-Al layered double hydroxides: intercalation with an [Eu(EDTA)] - chelate

    NASA Astrophysics Data System (ADS)

    Li, Cang; Wang, Ge; Evans, David G.; Duan, Xue

    2004-12-01

    Reaction of an aqueous slurry of an Mg 2Al-NO 3 layered double hydroxide with a four-fold excess of Na[Eu(EDTA)] gives a material which analyses for Mg 0.68Al 0.32(OH) 2[Eu(EDTA)] 0.10(CO 3) 0.11·0.66H 2O. The interlayer spacing of the material is 13.8 Å, corresponding to a gallery height of 9.0 Å, which accords with the maximal dimensions (9-10 Å) of the anion in metal-EDTA complex salts as determined by single crystal X-ray diffraction. Geometrical considerations show that the charge density on the layered double hydroxide layers is too high to be balanced by intercalation of [Eu(EDTA)] - alone, necessitating the co-intercalation of carbonate ions which have a much higher charge density.

  1. Challenges facing lithium batteries and electrical double-layer capacitors.

    PubMed

    Choi, Nam-Soon; Chen, Zonghai; Freunberger, Stefan A; Ji, Xiulei; Sun, Yang-Kook; Amine, Khalil; Yushin, Gleb; Nazar, Linda F; Cho, Jaephil; Bruce, Peter G

    2012-10-01

    Energy-storage technologies, including electrical double-layer capacitors and rechargeable batteries, have attracted significant attention for applications in portable electronic devices, electric vehicles, bulk electricity storage at power stations, and "load leveling" of renewable sources, such as solar energy and wind power. Transforming lithium batteries and electric double-layer capacitors requires a step change in the science underpinning these devices, including the discovery of new materials, new electrochemistry, and an increased understanding of the processes on which the devices depend. The Review will consider some of the current scientific issues underpinning lithium batteries and electric double-layer capacitors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Increased upstream ionization due to formation of a double layer.

    PubMed

    Thakur, S Chakraborty; Harvey, Z; Biloiu, I A; Hansen, A; Hardin, R A; Przybysz, W S; Scime, E E

    2009-01-23

    We report observations that confirm a theoretical prediction that formation of a current-free double layer in a plasma expanding into a chamber of larger diameter is accompanied by an increase in ionization upstream of the double layer. The theoretical model argues that the increased ionization is needed to balance the difference in diffusive losses upstream and downstream of the expansion region. In our expanding helicon source experiments, we find that the upstream plasma density increases sharply at the same antenna frequency at which the double layer appears.

  3. It Takes Two to Tango-Double-Layer Selective Contacts in Perovskite Solar Cells for Improved Device Performance and Reduced Hysteresis.

    PubMed

    Kegelmann, Lukas; Wolff, Christian M; Awino, Celline; Lang, Felix; Unger, Eva L; Korte, Lars; Dittrich, Thomas; Neher, Dieter; Rech, Bernd; Albrecht, Steve

    2017-05-24

    Solar cells made from inorganic-organic perovskites have gradually approached market requirements as their efficiency and stability have improved tremendously in recent years. Planar low-temperature processed perovskite solar cells are advantageous for possible large-scale production but are more prone to exhibiting photocurrent hysteresis, especially in the regular n-i-p structure. Here, a systematic characterization of different electron selective contacts with a variety of chemical and electrical properties in planar n-i-p devices processed below 180 °C is presented. The inorganic metal oxides TiO 2 and SnO 2 , the organic fullerene derivatives C 60 , PCBM, and ICMA, as well as double-layers with a metal oxide/PCBM structure are used as electron transport materials (ETMs). Perovskite layers deposited atop the different ETMs with the herein applied fabrication method show a similar morphology according to scanning electron microscopy. Further, surface photovoltage spectroscopy measurements indicate comparable perovskite absorber qualities on all ETMs, except TiO 2 , which shows a more prominent influence of defect states. Transient photoluminescence studies together with current-voltage scans over a broad range of scan speeds reveal faster charge extraction, less pronounced hysteresis effects, and higher efficiencies for devices with fullerene compared to those with metal oxide ETMs. Beyond this, only double-layer ETM structures substantially diminish hysteresis effects for all performed scan speeds and strongly enhance the power conversion efficiency up to a champion stabilized value of 18.0%. The results indicate reduced recombination losses for a double-layer TiO 2 /PCBM contact design: First, a reduction of shunt paths through the fullerene to the ITO layer. Second, an improved hole blocking by the wide band gap metal oxide. Third, decreased transport losses due to an energetically more favorable contact, as implied by photoelectron spectroscopy measurements

  4. Comparative study of the synthesis of layered transition metal molybdates

    NASA Astrophysics Data System (ADS)

    Mitchell, S.; Gómez-Avilés, A.; Gardner, C.; Jones, W.

    2010-01-01

    Mixed metal oxides (MMOs) prepared by the mild thermal decomposition of layered double hydroxides (LDHs) differ in their reactivity on exposure to aqueous molybdate containing solutions. In this study, we investigate the reactivity of some T-Al containing MMOs ( T=Co, Ni, Cu or Zn) towards the formation of layered transition metal molybdates (LTMs) possessing the general formula AT2(OH)(MoO 4) 2·H 2O, where A=NH 4+, Na + or K +. The phase selectivity of the reaction was studied with respect to the source of molybdate, the ratio of T to Mo and the reaction pH. LTMs were obtained on reaction of Cu-Al and Zn-Al containing MMOs with aqueous solutions of ammonium heptamolybdate. Rehydration of these oxides in the presence of sodium or potassium molybdate yielded a rehydrated LDH phase as the only crystalline product. The LTM products obtained by the rehydration of MMO precursors were compared with LTMs prepared by direct precipitation from the metal salts in order to study the influence of preparative route on their chemical and physical properties. Differences were noted in the composition, morphology and thermal properties of the resulting products.

  5. Copper Benzenetricarboxylate Metal-Organic Framework Nucleation Mechanisms on Metal Oxide Powders and Thin Films formed by Atomic Layer Deposition.

    PubMed

    Lemaire, Paul C; Zhao, Junjie; Williams, Philip S; Walls, Howard J; Shepherd, Sarah D; Losego, Mark D; Peterson, Gregory W; Parsons, Gregory N

    2016-04-13

    Chemically functional microporous metal-organic framework (MOF) crystals are attractive for filtration and gas storage applications, and recent results show that they can be immobilized on high surface area substrates, such as fiber mats. However, fundamental knowledge is still lacking regarding initial key reaction steps in thin film MOF nucleation and growth. We find that thin inorganic nucleation layers formed by atomic layer deposition (ALD) can promote solvothermal growth of copper benzenetricarboxylate MOF (Cu-BTC) on various substrate surfaces. The nature of the ALD material affects the MOF nucleation time, crystal size and morphology, and the resulting MOF surface area per unit mass. To understand MOF nucleation mechanisms, we investigate detailed Cu-BTC MOF nucleation behavior on metal oxide powders and Al2O3, ZnO, and TiO2 layers formed by ALD on polypropylene substrates. Studying both combined and sequential MOF reactant exposure conditions, we find that during solvothermal synthesis ALD metal oxides can react with the MOF metal precursor to form double hydroxy salts that can further convert to Cu-BTC MOF. The acidic organic linker can also etch or react with the surface to form MOF from an oxide metal source, which can also function as a nucleation agent for Cu-BTC in the mixed solvothermal solution. We discuss the implications of these results for better controlled thin film MOF nucleation and growth.

  6. Meissner effect in normal-superconducting proximity-contact double layers

    NASA Astrophysics Data System (ADS)

    Higashitani, Seiji; Nagai, Katsuhiko

    1995-02-01

    The Meissner effect in normal-superconducting proximity-contact double layers is discussed in the clean limit. The diamagnetic current is calculated using the quasi-classical Green's function. We obtain the quasi-classical Green's function linear in the vector potential in the proximity-contact double layers with a finite reflection coefficient at the interface. It is found that the diamagnetic current in the clean normal layer is constant in space, therefore, the magnetic field linearly decreases in the clean normal layer. We give an explicit expression for the screening length in the clean normal layer and study its temperature dependence. We show that the temperature dependence in the clean normal layer is considerably different from that in the dirty normal layer and agrees with a recent experiment in Au-Nb system.

  7. Method of adhesion between an oxide layer and a metal layer

    DOEpatents

    Jennison, Dwight R.; Bogicevic, Alexander; Kelber, Jeffry A.; Chambers, Scott A.

    2004-09-14

    A method of controlling the wetting characteristics and increasing the adhesion between a metal and an oxide layer. By introducing a negatively-charged species to the surface of an oxide layer, layer-by-layer growth of metal deposited onto the oxide surface is promoted, increasing the adhesion strength of the metal-oxide interface. The negatively-charged species can either be deposited onto the oxide surface or a compound can be deposited that dissociates on, or reacts with, the surface to form the negatively-charged species. The deposited metal adatoms can thereby bond laterally to the negatively-charged species as well as vertically to the oxide surface as well as react with the negatively charged species, be oxidized, and incorporated on or into the surface of the oxide.

  8. Current-free double layers: A review

    NASA Astrophysics Data System (ADS)

    Singh, Nagendra

    2011-12-01

    During the last decade, there has been an upsurge in the research on current-free DLs (CFDLs). Research includes theory, laboratory measurements, and various applications of CFDLs ranging from plasma thrusters to acceleration of charged particles in space and astrophysical plasmas. The purpose of this review is to present a unified understanding of the basic plasma processes, which lead to the formation of CFDLs. The review starts with the discussion on early research on electric fields and double layers (DLs) and ion acceleration in planar plasma expansion. The review continues with the formation of DLs and rarefaction shocks (RFS) in expanding plasma with two electron populations with different temperatures. The basic theory mitigating the formation of a CFDL by two-electron temperature population is reviewed; we refer to such CFDLs as double layers structures formation by two-temperature electron populations (TET-CFDLs). Application of TET-CFDLS to ion acceleration in laboratory and space plasmas was discussed including the formation of stationary steady-state DLs. A quite different type of CFDLs forms in a helicon plasma device (HPD), in which plasma abruptly expands from a narrow plasma source tube into a wide diffusion tube with abruptly diverging magnetic fields. The formation mechanism of the CFDL in HPD, referred here as current free double layer structure in helicon plasma device (HPD-CFDL), and its applications are reviewed. The formation of a TET-CFDL is due to the self-consistent separation of the two electron populations parallel to the ambient magnetic field. In contrast, a HPD-CFDL forms due to self-consistent separation of electrons and ion perpendicular to the abruptly diverging magnetic field in conjunction with the conducting wall of the expansion chamber in the HPD. One-dimensional theoretical models of CFDLs based on steady-state solution of Vlasov-Poisson system of equations are briefly discussed. Applications of CFDLs ranging from helicon

  9. Photon induced non-linear quantized double layer charging in quaternary semiconducting quantum dots.

    PubMed

    Nair, Vishnu; Ananthoju, Balakrishna; Mohapatra, Jeotikanta; Aslam, M

    2018-03-15

    Room temperature quantized double layer charging was observed in 2 nm Cu 2 ZnSnS 4 (CZTS) quantum dots. In addition to this we observed a distinct non-linearity in the quantized double layer charging arising from UV light modulation of double layer. UV light irradiation resulted in a 26% increase in the integral capacitance at the semiconductor-dielectric (CZTS-oleylamine) interface of the quantum dot without any change in its core size suggesting that the cause be photocapacitive. The increasing charge separation at the semiconductor-dielectric interface due to highly stable and mobile photogenerated carriers cause larger electrostatic forces between the quantum dot and electrolyte leading to an enhanced double layer. This idea was supported by a decrease in the differential capacitance possible due to an enhanced double layer. Furthermore the UV illumination enhanced double layer gives us an AC excitation dependent differential double layer capacitance which confirms that the charging process is non-linear. This ultimately illustrates the utility of a colloidal quantum dot-electrolyte interface as a non-linear photocapacitor. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The mesospheric metal layer topside: Examples of simultaneous metal observations

    NASA Astrophysics Data System (ADS)

    Höffner, J.; Friedman, J. S.

    2005-09-01

    We show examples of common volume observations of three metals by lidar focusing on the altitude of the topside of the meteoric metal layer as described by Höffner and Friedman (H&F) [The mesospheric metal layer topside: a possible connection to meteoroids, Atmos. Chem. Phys. 4 (2004) 801 808]. In contrast to H&F, we will focus on time scales of a few hours and less whereas the previous study examined the seasonally averaged climatological state on time scales of several days or weeks, and we examine the entire topside, whereas H&F focused on data at 113 km. The examples, taken under different observation conditions in 1997 and 1998 at Kühlungsborn, Germany (54°N, 15°E), show that the metal layers can often be observed at altitudes as high as 130 km if the signal is integrated over a period of several hours. Under such conditions it is possible to derive reasonably good metal abundance ratios from nocturnally averaged data, which, in turn, allow the discussion of metal abundance ratios to broaden from a single altitude as discussed in H&F to an altitude range extending as high as 130 km. The examples herein show, for the first time, that it is possible to track the transition in the metal abundance ratios from the main layer to an altitude region that has not been studied in the past by lidar. On shorter time scales, small structures are detectable and observable, sometimes above 120 km, resulting in, on average, a broad but weak topside layer above 105 km. In particular, the example of 26 27 October 1997, obtained during enhanced meteor activity, is an indication that this broad layer may result from meteor ablation occurring in this altitude range during the observation. Ratios of metal densities for Ca, Fe, K, and Na are remarkably consistent above about 110 km and in close agreement with the results of H&F. They are less consistent with ratios measured in individual meteor trails and appear to have little relation to the ratios measured in CI meteorites

  11. Double layer mixed matrix membrane adsorbers improving capacity and safety hemodialysis

    NASA Astrophysics Data System (ADS)

    Saiful; Borneman, Z.; Wessling, M.

    2018-05-01

    Double layer mixed matrix membranes adsorbers have been developed for blood toxin removal by embedding activated carbon into cellulose acetate macroporous membranes. The membranes are prepared by phase inversion method via water vapor induced phase separation followed by an immersion precipitation step. Double layer MMM consisting of an active support and a separating layer. The active support layer consists of activated carbon particles embedded in macroporous cellulose acetate; the separating layer consists of particle free cellulose acetate. The double layer membrane possess an open and interconnected macroporous structure with a high loading of activated carbon available for blood toxins removal. The MMM AC has a swelling degree of 6.5 %, porosity of 53 % and clean water flux of 800 Lm-2h-1bar-1. The prepared membranes show a high dynamic Creatinine (Crt) removal during hemodilysis process. The Crt removal by adsorption contributes to amore than 83 % of the total removal. The double layer adsorptive membrane proves hemodialysis membrane can integrated with adsorption, in which blood toxins are removed in one step.

  12. Hybrid magnetic materials formed by ferritin intercalated into a layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Clemente-León, Miguel; Coronado, Eugenio; Primo, Vicent; Ribera, Antonio; Soriano-Portillo, Alejandra

    2008-12-01

    A hybrid magnetic material formed by ferritin intercalated into a layered double hydroxide (LDH) of Mg and Al (Mg/Al molar ratio 2) is prepared and characterized through powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, electron probe microanalysis (EPMA) and high resolution transmission electron microscopy (HRTEM). One observes an enhancement in the thermal stability of the ferritin molecules when they are inserted in the layered material. Magnetic measurements of the hybrid material exhibit the typical superparamagnetic behaviour of the ferritin molecule. On the other hand, the intercalation of ferritin into the LDH guarantees a homogeneous dispersion of the ferritin molecules, which do not aggregate even after calcination of the sample. This feature allows obtaining well-dispersed magnetic metal oxide nanoparticles upon calcination of the hybrid material.

  13. Parallel electric fields in extragalactic jets - Double layers and anomalous resistivity in symbiotic relationships

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.

    1986-01-01

    After examining the properties of Coulomb-collision resistivity, anomalous (collective) resistivity, and double layers, a hybrid anomalous-resistivity/double-layer model is introduced. In this model, beam-driven waves on both sides of a double layer provide electrostatic plasma-wave turbulence that greatly reduces the mobility of charged particles. These regions then act to hold open a density cavity within which the double layer resides. In the double layer, electrical energy is dissipated with 100 percent efficiency into high-energy particles, creating conditions optimal for the collective emission of polarized radio waves.

  14. Synthesis, characterization and application of two-dimensional layered metal hydroxides for environmental remediation purposes

    NASA Astrophysics Data System (ADS)

    Machingauta, Cleopas

    Two-dimensional layered nano composites, which include layered double hydroxides (LDHs), hydroxy double salts (HDSs) and layered hydroxide salts (LHSs) are able to intercalate different molecular species within their gallery space. These materials have a tunable structural composition which has made them applicable as fire retardants, adsorbents, catalysts, catalyst support materials, and ion exchangers. Thermal treatment of these materials results in destruction of the layers and formation of mixed metal oxides (MMOs) and spinels. MMOs have the ability to adsorb anions from solution and may also regenerate layered structures through a phenomenon known as memory effect. Zinc-nickel hydroxy nitrate was used for the uptake of a series of halogenated acetates (HAs). HAs are pollutants introduced into water systems as by-products of water chlorination and pesticide degradation; their sequestration from water is thus crucial. Optimization of layered materials for controlled uptake requires an understanding of their ion-exchange kinetics and thermodynamics. Exchange kinetics of these anions was monitored using ex-situ PXRD, UV-vis, HPLC and FTIR. It was revealed that exchange rates and uptake efficiencies are related to electronic spatial extents and the charge on carboxyl-oxygen atoms. In addition, acetate and nitrate-based HDSs were used to explore how altering the hydroxide layer affects uptake of acetate/nitrate ions. Changing the metal identities affects the interaction of the anions with the layers. From FTIR, we observed that nitrates coordinate in a D3h and Cs/C 2v symmetry; the nitrates in D3h symmetry were easily exchangeable. Interlayer hydrogen bonding was also revealed to be dependent on metal identity. Substituting divalent cations with trivalent cations produces materials with a higher charge density than HDSs and LHSs. A comparison of the uptake efficiency of zinc-aluminum, zinc-gallium and zinc-nickel hydroxy nitrates was performed using trichloroacetic

  15. Enhancement of the coercivity in Co-Ni layered double hydroxides by increasing basal spacing.

    PubMed

    Zhang, Cuijuan; Tsuboi, Tomoya; Namba, Hiroaki; Einaga, Yasuaki; Yamamoto, Takashi

    2016-09-14

    The magnetic properties of layered double hydroxides (LDH) containing transition metal ions can still develop, compared with layered metal hydroxide salts which exhibit structure-dependent magnetism. In this article, we report the preparation of a hybrid magnet composed of Co-Ni LDH and n-alkylsulfonate anions (Co-Ni-CnSO3 LDH). As Co-Ni LDH is anion-exchangeable, we can systematically control the interlayer spacing by intercalating n-alkylsulfonates with different carbon numbers. The magnetic properties were examined with temperature- and field-dependent magnetization measurements. As a result, we have revealed that the coercive field depends on the basal spacing. It is suggested that increasing the basal spacing varies the competition between the in-plane superexchange interactions and long-range out-of-plane dipolar interactions. Moreover, a jump in the coercive field at around 20 Å of the basal spacing is assumed to be the modification of the magnetic ordering in Co-Ni-CnSO3 LDH.

  16. Graphene Double-Layer Capacitor with ac Line-Filtering Performance

    NASA Astrophysics Data System (ADS)

    Miller, John R.; Outlaw, R. A.; Holloway, B. C.

    2010-09-01

    Electric double-layer capacitors (DLCs) can have high storage capacity, but their porous electrodes cause them to perform like resistors in filter circuits that remove ripple from rectified direct current. We have demonstrated efficient filtering of 120-hertz current with DLCs with electrodes made from vertically oriented graphene nanosheets grown directly on metal current collectors. This design minimized electronic and ionic resistances and produced capacitors with RC time constants of less than 200 microseconds, in contrast with ~1 second for typical DLCs. Graphene nanosheets have a preponderance of exposed edge planes that greatly increases charge storage as compared with that of designs that rely on basal plane surfaces. Capacitors constructed with these electrodes could be smaller than the low-voltage aluminum electrolyte capacitors that are typically used in electronic devices.

  17. Graphene double-layer capacitor with ac line-filtering performance.

    PubMed

    Miller, John R; Outlaw, R A; Holloway, B C

    2010-09-24

    Electric double-layer capacitors (DLCs) can have high storage capacity, but their porous electrodes cause them to perform like resistors in filter circuits that remove ripple from rectified direct current. We have demonstrated efficient filtering of 120-hertz current with DLCs with electrodes made from vertically oriented graphene nanosheets grown directly on metal current collectors. This design minimized electronic and ionic resistances and produced capacitors with RC time constants of less than 200 microseconds, in contrast with ~1 second for typical DLCs. Graphene nanosheets have a preponderance of exposed edge planes that greatly increases charge storage as compared with that of designs that rely on basal plane surfaces. Capacitors constructed with these electrodes could be smaller than the low-voltage aluminum electrolyte capacitors that are typically used in electronic devices.

  18. Study on dynamic deformation synchronized measurement technology of double-layer liquid surfaces

    NASA Astrophysics Data System (ADS)

    Tang, Huiying; Dong, Huimin; Liu, Zhanwei

    2017-11-01

    Accurate measurement of the dynamic deformation of double-layer liquid surfaces plays an important role in many fields, such as fluid mechanics, biomechanics, petrochemical industry and aerospace engineering. It is difficult to measure dynamic deformation of double-layer liquid surfaces synchronously for traditional methods. In this paper, a novel and effective method for full-field static and dynamic deformation measurement of double-layer liquid surfaces has been developed, that is wavefront distortion of double-wavelength transmission light with geometric phase analysis (GPA) method. Double wavelength lattice patterns used here are produced by two techniques, one is by double wavelength laser, and the other is by liquid crystal display (LCD). The techniques combine the characteristics such as high transparency, low reflectivity and fluidity of liquid. Two color lattice patterns produced by laser and LCD were adjusted at a certain angle through the tested double-layer liquid surfaces simultaneously. On the basis of the refractive indexes difference of two transmitted lights, the double-layer liquid surfaces were decoupled with GPA method. Combined with the derived relationship between phase variation of transmission-lattice patterns and out-of plane heights of two surfaces, as well as considering the height curves of the liquid level, the double-layer liquid surfaces can be reconstructed successfully. Compared with the traditional measurement method, the developed method not only has the common advantages of the optical measurement methods, such as high-precision, full-field and non-contact, but also simple, low cost and easy to set up.

  19. Delaminating and restacking MgAl-layered double hydroxide monitored and characterized by a range of instrumental methods

    NASA Astrophysics Data System (ADS)

    Muráth, Szabolcs; Somosi, Zoltán; Tóth, Ildikó Y.; Tombácz, Etelka; Sipos, Pál; Pálinkó, István

    2017-07-01

    The delamination-restacking properties of MgAl-layered double hydroxide (MgAl-LDH) were studied in various solvents. The LDH samples were successfully delaminated in polar amides (formamide, N-methylformamide, N-methylacetamide). Usually, delamination was finalized by ultrasonic treatment. As rehydrating solutions, numerous Na-salts with single-, double- and triple-charged anions were used. Reconstruction was accomplished with anions of one or two negative charges, but triple-charged ones generally disrupted the rebuilding process, likely, because their salts with the metals of the LDH are very stable, and the thin layers can more readily transform to salts than the ordered materials. Samples and delamination-restacking processes were characterized by X-ray diffractometry (XRD), infrared spectroscopy (IR), dynamic light scattering (DLS), scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX).

  20. Pd/Ni-WO3 anodic double layer gasochromic device

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland; Liu, Ping

    2004-04-20

    An anodic double layer gasochromic sensor structure for optical detection of hydrogen in improved response time and with improved optical absorption real time constants, comprising: a glass substrate; a tungsten-doped nickel oxide layer coated on the glass substrate; and a palladium layer coated on the tungsten-doped nickel oxide layer.

  1. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition

    PubMed Central

    Nakayama, Hirokazu; Hayashi, Aki

    2014-01-01

    The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids. PMID:25080007

  2. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition.

    PubMed

    Nakayama, Hirokazu; Hayashi, Aki

    2014-07-30

    The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids.

  3. Resin infusion of layered metal/composite hybrid and resulting metal/composite hybrid laminate

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J. (Inventor); Grimsley, Brian W. (Inventor); Weiser, Erik S. (Inventor); Jensen, Brian J. (Inventor)

    2009-01-01

    A method of fabricating a metal/composite hybrid laminate is provided. One or more layered arrangements are stacked on a solid base to form a layered structure. Each layered arrangement is defined by a fibrous material and a perforated metal sheet. A resin in its liquid state is introduced along a portion of the layered structure while a differential pressure is applied across the laminate structure until the resin permeates the fibrous material of each layered arrangement and fills perforations in each perforated metal sheet. The resin is cured thereby yielding a metal/composite hybrid laminate.

  4. Universal biomimetic preparation and immobilization of layered double hydroxide films and adsorption behavior

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Zhang, Wenpeng; Chen, Zilin

    2017-01-01

    Preparation and immobilization of layered double hydroxides (LDHs) film onto multiple substrates is important and challenging in functional materials fields by date. In this work, a simple and universal polydopamine (PD)-based layer-by-layer assembly strategy was developed for the immobilization of LDHs film onto surfaces such as polypropylene chip, glass slides and metal coins. The surface of substrates was firstly modified by polydopamine functionalization, and then LDHs film was synthesized via urea method and directly immobilized on the PD layer by in situ growing strategy in one step. The PD layer as well as the final LDHs film was characterized by energy dispersive X-ray spectroscopy, scanning electron microscope, infrared spectroscopy, X-ray diffraction pattern and X-ray photoelectron spectra. It has been demonstrated the formation of the dense and homogeneous nanoscaled LDHs film with 400 nm thickness. Adsorption behavior of the fabricated NiAl-LDHs film toward anionic dyes and pharmaceuticals was further assessed. To demonstrate their extensive application, fast and high efficient adsorption of anionic dyes and pharmaceuticals was achieved by NiAl-LDHs-modified polypropylene centrifugal tube.

  5. Influence of the charge double layer on solid oxide fuel cell stack behavior

    NASA Astrophysics Data System (ADS)

    Whiston, Michael M.; Bilec, Melissa M.; Schaefer, Laura A.

    2015-10-01

    While the charge double layer effect has traditionally been characterized as a millisecond phenomenon, longer timescales may be possible under certain operating conditions. This study simulates the dynamic response of a previously developed solid oxide fuel cell (SOFC) stack model that incorporates the charge double layer via an equivalent circuit. The model is simulated under step load changes. Baseline conditions are first defined, followed by consideration of minor and major deviations from the baseline case. This study also investigates the behavior of the SOFC stack with a relatively large double layer capacitance value, as well as operation of the SOFC stack under proportional-integral (PI) control. Results indicate that the presence of the charge double layer influences the SOFC stack's settling time significantly under the following conditions: (i) activation and concentration polarizations are significantly increased, or (ii) a large value of the double layer capacitance is assumed. Under normal (baseline) operation, on the other hand, the charge double layer effect diminishes within milliseconds, as expected. It seems reasonable, then, to neglect the charge double layer under normal operation. However, careful consideration should be given to potential variations in operation or material properties that may give rise to longer electrochemical settling times.

  6. Strategy for synthesizing quantum dot-layered double hydroxide nanocomposites and their enhanced photoluminescence and photostability.

    PubMed

    Cho, Seungho; Jung, Sungwook; Jeong, Sanghwa; Bang, Jiwon; Park, Joonhyuck; Park, Youngrong; Kim, Sungjee

    2013-01-08

    Layered double hydroxide-quantum dot (LDH-QD) composites are synthesized via a room temperature LDH formation reaction in the presence of QDs. InP/ZnS (core/shell) QD, a heavy metal free QD, is used as a model constituent. Interactions between QDs (with negative zeta potentials), decorated with dihydrolipoic acids, and inherently positively charged metal hydroxide layers of LDH during the LDH formations are induced to form the LDH-QD composites. The formation of the LDH-QD composites affords significantly enhanced photoluminescence quantum yields and thermal- and photostabilities compared to their QD counterparts. In addition, the fluorescence from the solid LDH-QD composite preserved the initial optical properties of the QD colloid solution without noticeable deteriorations such as red-shift or deep trap emission. Based on their advantageous optical properties, we also demonstrate the pseudo white light emitting diode, down-converted by the LDH-QD composites.

  7. Double layer of platinum electrodes: Non-monotonic surface charging phenomena and negative double layer capacitance

    NASA Astrophysics Data System (ADS)

    Huang, Jun; Zhou, Tao; Zhang, Jianbo; Eikerling, Michael

    2018-01-01

    In this study, a refined double layer model of platinum electrodes accounting for chemisorbed oxygen species, oriented interfacial water molecules, and ion size effects in solution is presented. It results in a non-monotonic surface charging relation and a peculiar capacitance vs. potential curve with a maximum and possibly negative values in the potential regime of oxide-formation.

  8. Planar heterostructures of single-layer transition metal dichalcogenides: Composite structures, Schottky junctions, tunneling barriers, and half metals

    NASA Astrophysics Data System (ADS)

    Aras, Mehmet; Kılıç, ćetin; Ciraci, S.

    2017-02-01

    Planar composite structures formed from the stripes of transition metal dichalcogenides joined commensurately along their zigzag or armchair edges can attain different states in a two-dimensional (2D), single-layer, such as a half metal, 2D or one-dimensional (1D) nonmagnetic metal and semiconductor. Widening of stripes induces metal-insulator transition through the confinements of electronic states to adjacent stripes, that results in the metal-semiconductor junction with a well-defined band lineup. Linear bending of the band edges of the semiconductor to form a Schottky barrier at the boundary between the metal and semiconductor is revealed. Unexpectedly, strictly 1D metallic states develop in a 2D system along the boundaries between stripes, which pins the Fermi level. Through the δ doping of a narrow metallic stripe one attains a nanowire in the 2D semiconducting sheet or narrow band semiconductor. A diverse combination of constituent stripes in either periodically repeating or finite-size heterostructures can acquire critical fundamental features and offer device capacities, such as Schottky junctions, nanocapacitors, resonant tunneling double barriers, and spin valves. These predictions are obtained from first-principles calculations performed in the framework of density functional theory.

  9. Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers

    DOE PAGES

    Anasori, Babak; Shi, Chenyang; Moon, Eun Ju; ...

    2016-02-24

    In this paper, a transition from metallic to semiconducting-like behavior has been demonstrated in two-dimensional (2D) transition metal carbides by replacing titanium with molybdenum in the outer transition metal (M) layers of M 3C 2 and M 4C 3 MXenes. The MXene structure consists of n + 1 layers of near-close packed M layers with C or N occupying the octahedral site between them in an [MX] nM arrangement. Recently, two new families of ordered 2D double transition metal carbides MXenes were discovered, M' 2M"C 2 and M' 2M" 2C 3 – where M' and M" are two different earlymore » transition metals, such as Mo, Cr, Ta, Nb, V, and Ti. The M' atoms only occupy the outer layers and the M" atoms fill the middle layers. In other words, M' atomic layers sandwich the middle M"–C layers. Using X-ray atomic pair distribution function (PDF) analysis on Mo 2TiC 2 and Mo 2Ti 2C 3 MXenes, we present the first quantitative analysis of structures of these novel materials and experimentally confirm that Mo atoms are in the outer layers of the [MC] nM structures. The electronic properties of these Mo-containing MXenes are compared with their Ti 3C 2 counterparts, and are found to be no longer metallic-like conductors; instead the resistance increases mildly with decreasing temperatures. Density functional theory (DFT) calculations suggest that OH terminated Mo–Ti MXenes are semiconductors with narrow band gaps. Measurements of the temperature dependencies of conductivities and magnetoresistances have confirmed that Mo 2TiC 2T x exhibits semiconductor-like transport behavior, while Ti 3C 2T x is a metal. Finally, this finding opens new avenues for the control of the electronic and optical applications of MXenes and for exploring new applications, in which semiconducting properties are required.« less

  10. Automated solid-phase extraction of phenolic acids using layered double hydroxide-alumina-polymer disks.

    PubMed

    Ghani, Milad; Palomino Cabello, Carlos; Saraji, Mohammad; Manuel Estela, Jose; Cerdà, Víctor; Turnes Palomino, Gemma; Maya, Fernando

    2018-01-26

    The application of layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks for solid-phase extraction is reported for the first time. Al 2 O 3 is embedded in a polymer matrix followed by an in situ metal-exchange process to obtain a layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disk with excellent flow-through properties. The extraction performance of the prepared disks is evaluated as a proof of concept for the automated extraction using sequential injection analysis of organic acids (p-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, gallic acid) following an anion-exchange mechanism. After the solid-phase extraction, phenolic acids were quantified by reversed-phase high-performance liquid chromatography with diode-array detection using a core-shell silica-C18 stationary phase and isocratic elution (acetonitrile/0.5% acetic acid in pure water, 5:95, v/v). High sensitivity and reproducibility were obtained with limits of detection in the range of 0.12-0.25 μg/L (sample volume, 4 mL), and relative standard deviations between 2.9 and 3.4% (10 μg/L, n = 6). Enrichment factors of 34-39 were obtained. Layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks had an average lifetime of 50 extractions. Analyte recoveries ranged from 93 to 96% for grape juice and nonalcoholic beer samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Accretion onto neutron stars with the presence of a double layer

    NASA Technical Reports Server (NTRS)

    Williams, A. C.; Weisskopf, M. C.; Elsner, R. F.; Darbro, W.; Sutherland, P. G.

    1986-01-01

    It is known from laboratory experiments that double layers can form in plasmas, usually in the presence of an electric current. It is argued that a double layer may be present in the accretion column of a neutron star in a binary system. It is suggested that the double layer may be the predominant deceleration mechanism for the accreting ions, especially for sources with X-ray luminosities of less than about 10 to the 37th erg/s. Previous models have involved either a collisionless shock or an assumed gradual deceleration of the accreting ions to thermalize the energy of the infalling matter.

  12. Accretion onto neutron stars with the presence of a double layer

    NASA Technical Reports Server (NTRS)

    Williams, A. C.; Weisskopf, M. C.; Elsner, R. F.; Darbro, W.; Sutherland, P. G.

    1987-01-01

    It is known, from laboratory experiments, that double layers will form in plasmas, usually in the presence of an electric current. It is argued that a double layer may be present in the accretion column of a neutron star in a binary system. It is suggested that the double layer may be the predominant deceleration mechanism for the accreting ions, especially for sources with X-ray luminosities of less than about 10 to the 37th erg/s. Previous models have involved either a collisionless shock or an assumed gradual deceleration of the accreting ions to thermalize the energy of the infalling matter.

  13. Double-layer versus single-layer bone-patellar tendon-bone anterior cruciate ligament reconstruction: a prospective randomized study with 3-year follow-up.

    PubMed

    Mei, Xiaoliang; Zhang, Zhenxiang; Yang, Jingwen

    2016-12-01

    To evaluate the clinical results of a randomized controlled trial of single-layer versus double-layer bone-patellar tendon-bone (BPTB) anterior cruciate ligament (ACL) reconstruction. Fifty-eight subjects who underwent primary ACL reconstruction with a BPTB allograft were prospectively randomized into two groups: single-layer reconstruction (n = 31) and double-layer reconstruction (n = 27). The following evaluation methods were used: clinical examination, KT-1000 arthrometer measurement, muscle strength, Tegner activity score, Lysholm score, subjective rating scale regarding patient satisfaction and sports performance level, graft retear, contralateral ACL tear, and additional meniscus surgery. Forty-eight subjects (24 in single-layer group and 24 in double-layer group) who were followed up for 3 years were evaluated. Preoperatively, there were no differences between the groups. At 3-year follow-up, the Lachman and pivot-shift test results were better in the double-layer group (P = 0.019 and P < 0.0001, respectively). KT measurements were better in the double-layer group (mean 2.9 versus 1.5 mm; P = 0.0025). The Tegner score was also better in the double-layer group (P = 0.024). There were no significant differences in range of motion, muscle strength, Lysholm score, subjective rating scale, graft retear, and secondary meniscal tear. In ACL reconstruction, double-layer BPTB reconstruction was significantly better than single-layer reconstruction regarding anterior and rotational stability at 3-year follow-up. The results of KT measurements and the Lachman and pivot-shift tests were significantly better in the double-layer group, whereas there was no difference in the anterior drawer test results. The Tegner score was also better in the double-layer group; however, there were no differences in the other subjective findings.

  14. Double layered tailorable advanced blanket insulation

    NASA Technical Reports Server (NTRS)

    Falstrup, D.

    1983-01-01

    An advanced flexible reusable surface insulation material for future space shuttle flights was investigated. A conventional fly shuttle loom with special modifications to weave an integral double layer triangular core fabric from quartz yarn was used. Two types of insulating material were inserted into the cells of the fabric, and a procedure to accomplish this was developed. The program is follow up of a program in which single layer rectangular cell core fabrics are woven and a single type of insulating material was inserted into the cells.

  15. Transition from moving to stationary double layers in a single-ended Q machine

    NASA Technical Reports Server (NTRS)

    Song, Bin; Merlino, R. L.; D'Angelo, N.

    1990-01-01

    Large-amplitude (less than about 100 percent) relaxation oscillations in the plasma potential are known to be generated when the cold endplate of a single-ended Q machine is biased positively. These oscillations are associated with double layers that form near the hot plate (plasma source) and travel toward the endplate at about the ion-acoustic velocity. At the endplate they dissolve and then form again near the hot plate, the entire process repeating itself in a regular manner. By admitting a sufficient amount of neutral gas into the system, the moving double layers were slowed down and eventually stopped. The production of stationary double layers requires an ion source on the high-potential side of the double layers. These ions are provided by ionization of the neutral gas by electrons that are accelerated through the double layer. The dependence of the critical neutral gas pressure required for stationary double-layer formation on endplate voltage, magnetic field strength, and neutral atom mass has been examined. These results are discussed in terms of a simple model of ion production and loss, including ion losses across the magnetic field.

  16. A review of molecular modelling of electric double layer capacitors.

    PubMed

    Burt, Ryan; Birkett, Greg; Zhao, X S

    2014-04-14

    Electric double-layer capacitors are a family of electrochemical energy storage devices that offer a number of advantages, such as high power density and long cyclability. In recent years, research and development of electric double-layer capacitor technology has been growing rapidly, in response to the increasing demand for energy storage devices from emerging industries, such as hybrid and electric vehicles, renewable energy, and smart grid management. The past few years have witnessed a number of significant research breakthroughs in terms of novel electrodes, new electrolytes, and fabrication of devices, thanks to the discovery of innovative materials (e.g. graphene, carbide-derived carbon, and templated carbon) and the availability of advanced experimental and computational tools. However, some experimental observations could not be clearly understood and interpreted due to limitations of traditional theories, some of which were developed more than one hundred years ago. This has led to significant research efforts in computational simulation and modelling, aimed at developing new theories, or improving the existing ones to help interpret experimental results. This review article provides a summary of research progress in molecular modelling of the physical phenomena taking place in electric double-layer capacitors. An introduction to electric double-layer capacitors and their applications, alongside a brief description of electric double layer theories, is presented first. Second, molecular modelling of ion behaviours of various electrolytes interacting with electrodes under different conditions is reviewed. Finally, key conclusions and outlooks are given. Simulations on comparing electric double-layer structure at planar and porous electrode surfaces under equilibrium conditions have revealed significant structural differences between the two electrode types, and porous electrodes have been shown to store charge more efficiently. Accurate electrolyte and

  17. A terahertz in-line polarization converter based on through-via connected double layer slot structures

    PubMed Central

    Woo, Jeong Min; Hussain, Sajid; Jang, Jae-Hyung

    2017-01-01

    A terahertz (THz) in-line polarization converter that yields a polarization conversion ratio as high as 99.9% is demonstrated at 1 THz. It has double-layer slot structures oriented in orthogonal directions that are electrically connected by 1/8-wavelngth-long through-via holes beside the slot structures. The slots on the front metal-plane respond to the incident THz wave with polarization orthogonal to the slots and generates a circulating surface current around the slots. The surface current propagates along a pair of through-via holes that function as a two-wire transmission line. The propagating current generates a surface current around the backside slot structures oriented orthogonal to the slot structures on the front metal layer. The circulating current generates a terahertz wave polarized orthogonal to the backside slot structures and the 90° polarization conversion is completed. The re-radiating THz wave with 90° converted polarization propagates in the same direction as the incident THz wave. PMID:28211498

  18. Double layers and double wells in arbitrary degenerate plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari-Moghanjoughi, M.

    Using the generalized hydrodynamic model, the possibility of variety of large amplitude nonlinear excitations is examined in electron-ion plasma with arbitrary electron degeneracy considering also the ion temperature effect. A new energy-density relation is proposed for plasmas with arbitrary electron degeneracy which reduces to the classical Boltzmann and quantum Thomas-Fermi counterparts in the extreme limits. The pseudopotential method is employed to find the criteria for existence of nonlinear structures such as solitons, periodic nonlinear structures, and double-layers for different cases of adiabatic and isothermal ion fluids for a whole range of normalized electron chemical potential, η{sub 0}, ranging from dilutemore » classical to completely degenerate electron fluids. It is observed that there is a Mach-speed gap in which no large amplitude localized or periodic nonlinear excitations can propagate in the plasma under consideration. It is further revealed that the plasma under investigation supports propagation of double-wells and double-layers the chemical potential and Mach number ranges of which are studied in terms of other plasma parameters. The Mach number criteria for nonlinear waves are shown to significantly differ for cases of classical with η{sub 0} < 0 and quantum with η{sub 0} > 0 regimes. It is also shown that the localized structure propagation criteria possess significant dissimilarities for plasmas with adiabatic and isothermal ions. Current research may be generalized to study the nonlinear structures in plasma containing positrons, multiple ions with different charge states, and charged dust grains.« less

  19. Reversible Heating in Electric Double Layer Capacitors

    NASA Astrophysics Data System (ADS)

    Janssen, Mathijs; van Roij, René

    2017-03-01

    A detailed comparison is made between different viewpoints on reversible heating in electric double layer capacitors. We show in the limit of slow charging that a combined Poisson-Nernst-Planck and heat equation, first studied by d'Entremont and Pilon [J. Power Sources 246, 887 (2014), 10.1016/j.jpowsour.2013.08.024], recovers the temperature changes as predicted by the thermodynamic identity of Janssen et al. [Phys. Rev. Lett. 113, 268501 (2014), 10.1103/PhysRevLett.113.268501], and disagrees with the approximative model of Schiffer et al. [J. Power Sources 160, 765 (2006), 10.1016/j.jpowsour.2005.12.070] that predominates the literature. The thermal response to the adiabatic charging of supercapacitors contains information on electric double layer formation that has remained largely unexplored.

  20. Dynamical features and electric field strengths of double layers driven by currents. [in auroras

    NASA Technical Reports Server (NTRS)

    Singh, N.; Thiemann, H.; Schunk, R. W.

    1985-01-01

    In recent years, a number of papers have been concerned with 'ion-acoustic' double layers. In the present investigation, results from numerical simulations are presented to show that the shapes and forms of current-driven double layers evolve dynamically with the fluctuations in the current through the plasma. It is shown that double layers with a potential dip can form even without the excitation of ion-acoustic modes. Double layers in two-and one-half-dimensional simulations are discussed, taking into account the simulation technique, the spatial and temporal features of plasma, and the dynamical behavior of the parallel potential distribution. Attention is also given to double layers in one-dimensional simulations, and electrical field strengths predicted by two-and one-half-dimensional simulations.

  1. Topological defects in electric double layers of ionic liquids at carbon interfaces

    DOE PAGES

    Black, Jennifer M.; Okatan, Mahmut Baris; Feng, Guang; ...

    2015-06-07

    The structure and properties of the electrical double layer in ionic liquids is of interest in a wide range of areas including energy storage, catalysis, lubrication, and many more. Theories describing the electrical double layer for ionic liquids have been proposed, however a full molecular level description of the double layer is lacking. To date, studies have been predominantly focused on ion distributions normal to the surface, however the 3D nature of the electrical double layer in ionic liquids requires a full picture of the double layer structure not only normal to the surface, but also in plane. Here wemore » utilize 3D force mapping to probe the in plane structure of an ionic liquid at a graphite interface and report the direct observation of the structure and properties of topological defects. The observation of ion layering at structural defects such as step-edges, reinforced by molecular dynamics simulations, defines the spatial resolution of the method. Observation of defects allows for the establishment of the universality of ionic liquid behavior vs. separation from the carbon surface and to map internal defect structure. In conclusion, these studies offer a universal pathway for probing the internal structure of topological defects in soft condensed matter on the nanometer level in three dimensions.« less

  2. Synergetic effect of double-step blocking layer for the perovskite solar cell

    NASA Astrophysics Data System (ADS)

    Kim, Jinhyun; Hwang, Taehyun; Lee, Sangheon; Lee, Byungho; Kim, Jaewon; Kim, Jaewook; Gil, Bumjin; Park, Byungwoo

    2017-10-01

    In an organometallic CH3NH3PbI3 (MAPbI3) perovskite solar cell, we have demonstrated a vastly compact TiO2 layer synthesized by double-step deposition, through a combination of sputter and solution deposition to minimize the electron-hole recombination and boost the power conversion efficiency. As a result, the double-step strategy allowed outstanding transmittance of blocking layer. Additionally, crystallinity and morphology of the perovskite film were significantly modified, provoking enhanced photon absorption and solar cell performance with the reduced recombination rate. Thereby, this straightforward double-step strategy for the blocking layer exhibited 12.31% conversion efficiency through morphological improvements of each layer.

  3. Electrodynamics of frictional interaction in tribolink “metal-polymer”

    NASA Astrophysics Data System (ADS)

    Volchenko, N. A.; Krasin, P. S.; Volchenko, A. I.; Zhuravlev, D. Yu

    2018-03-01

    The materials of the article illustrate the estimation of the energy loading of a metal friction element in the metal-electrolyte-polymer friction pair while forming various types of double electrical layers with the release of its thermal stabilization state. The energy loading of the contact spots of the microprotrusions of the friction pairs of braking devices depends to a large extent on the electrical, thermal and chemical fields that are of a different nature to an allowable temperature and are above the surface layers of the polymer patch. The latter is significantly influenced by double electrical layers that are formed at the boundaries of the phases “metal-metal”, “metal-polymer”, “metal-semiconductor”, “semiconductor-semiconductor” and “metal-electrolyte”. When two electrically conducting phases come into contact with electrothermomechanical friction, a difference in electrical potentials arises, which is due to the formation of a double electric layer, that is an asymmetric distribution of charged particles near the phase boundary. The structure of the double electric layer does not matter for the magnitude of the reversible electrode potential, which is determined by the variation of the isobaric-isothermal potential of the corresponding electrochemical reaction.

  4. Two-dimensional quasi-double-layers in two-electron-temperature, current-free plasmas

    NASA Astrophysics Data System (ADS)

    Merino, Mario; Ahedo, Eduardo

    2013-02-01

    The expansion of a plasma with two disparate electron populations into vacuum and channeled by a divergent magnetic nozzle is analyzed with an axisymmetric model. The purpose is to study the formation and two-dimensional shape of a current-free double-layer in the case when the electric potential steepening can still be treated within the quasineutral approximation. The properties of this quasi-double-layer are investigated in terms of the relative fraction of the high-energy electron population, its radial distribution when injected into the nozzle, and the geometry and intensity of the applied magnetic field. The two-dimensional double layer presents a curved shape, which is dependent on the natural curvature of the equipotential lines in a magnetically expanded plasma and the particular radial distribution of high-energy electrons at injection. The double layer curvature increases the higher the nozzle divergence is, the lower the magnetic strength is, and the more peripherally hot electrons are injected. A central application of the study is the operation of a helicon plasma thruster in space. To this respect, it is shown that the curvature of the double layer does not increment the thrust, it does not modify appreciably the downstream divergence of the plasma beam, but it increases the magnetic-to-pressure thrust ratio. The present study does not attempt to cover current-free double layers involving plasmas with multiple populations of positive ions.

  5. Solder for oxide layer-building metals and alloys

    DOEpatents

    Kronberg, James W.

    1992-01-01

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel. The comosition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than aproximatley 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300.degree. C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  6. Solder for oxide layer-building metals and alloys

    DOEpatents

    Kronberg, J.W.

    1992-09-15

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel is disclosed. The composition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than approximately 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300 C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  7. Structure of bayerite-based lithium-aluminum layered double hydroxides (LDHs): observation of monoclinic symmetry.

    PubMed

    Britto, Sylvia; Kamath, P Vishnu

    2009-12-21

    The double hydroxides of Li with Al, obtained by the imbibition of Li salts into bayerite and gibbsite-Al(OH)(3), are not different polytypes of the same symmetry but actually crystallize in two different symmetries. The bayerite-derived double hydroxides crystallize with monoclinic symmetry, while the gibbsite-derived hydroxides crystallize with hexagonal symmetry. Successive metal hydroxide layers in the bayerite-derived LDHs are translated by the vector ( approximately -1/3, 0, 1) with respect to each other. The exigency of hydrogen bonding drives the intercalated Cl(-) ion to a site with 2-fold coordination, whereas the intercalated water occupies a site with 6-fold coordination having a pseudotrigonal prismatic symmetry. The nonideal nature of the interlayer sites has implications for the observed selectivity of Li-Al LDHs toward anions of different symmetries.

  8. Frequency Characteristics of the MAGLEV Double-layered Propulsion Coil

    NASA Astrophysics Data System (ADS)

    Ema, Satoshi

    The MAGLEV (magnetically levitated vehicle) is now well along in development testing at Yamanashi Test Line. The MAGLEV power source needs to supply a variable voltage and variable frequency to propulsion coils, which installed on outdoor guideway. The output voltage of the electric power converter contains many higher harmonics, which causes many troubles such as inductive interference. Accordingly, it is necessary to clarify the frequency characteristics of the propulsion coils and the power feeding circuit. In view of this situation, experiments and the theoretical analysis concerning the frequency characteristics of the propulsion coils with single-layer arrangement and the power feeding circuit at Miyazaki Test Line had been performed by the author. But the arrangement of the propulsion coils had been changed in Yamanashi Test Line from the single-layered coils to the double-layered coils for the stability of the super-conducting magnet on board. Thus, experiments and investigations concerning the frequency characteristics(resonance characteristics)of the propulsion coils with double-layer arrangement at Yamanashi Test Line have been performed but a theoretical analysis had not been done enough. A theoretical analysis was therefore done in this paper by applying the inverted L equivalent circuit with mutual inductance and capacitance to the propulsion coil, from which the positive and zero phase characteristics of the double-layered propulsion coils were analyzed.

  9. The dynamics of layered and non-layered oscillatory double-diffusive convection

    NASA Astrophysics Data System (ADS)

    Moll, Ryan D.

    Oscillatory double diffusive convection (ODDC) is a double diffusive instability that occurs in fluids that are unstably stratified in temperature and stably stratified in chemical composition. Regions unstable to ODDC are common in the interiors of stars and giant planets, and knowing thermal and compositional transport through these regions is important for stellar and planetary evolution models. Using 3D direct numerical simulations, Rosenblum et al. 2011 first showed that ODDC can either lead to the spontaneous formation of convective layers, or remain in a state dominated by large scale gravity waves. Subsequent studies focused on identifying the conditions for layer formation (Mirouh et al. 2012), and quantifying transport through layered systems (Wood et al. 2013). This document includes 3 works that build on the results of these earlier studies. The subject of the first is transport through non-layered ODDC and shows that in the absence of layered convection, ODDC is dominated by large scale gravity waves that grow to the size of the domain. We find that while these gravity waves induce small amounts of turbulent mixing, turbulent transport through non-layered systems is not significant for the purposes of astrophysical modeling (unlike in layered convection). The second study pertains to ODDC in the presence of Coriolis forces, and shows that rotating systems can be categorized depending on the strength of the rotation. We find that in the slowly rotating regime, the presence of rotation does not significantly affect qualitative behavior, but leads to modest reductions in thermal and compositional transport, while in the fast rotation regime qualitative behaviors are radically different, and systems are dominated by vortices that affect thermal and compositional transport in complex ways. In the final work we study simulations of ODDC at non-layered parameters that are forced into a layered configuration by initial conditions. Our results show that

  10. Methotrexate intercalated ZnAl-layered double hydroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Manjusha; Dasgupta, Sudip; Soundrapandian, Chidambaram

    2011-09-15

    The anticancerous drug methotrexate (MTX) has been intercalated into an ZnAl-layered double hydroxide (LDH) using an anion exchange technique to produce LDH-MTX hybrids having particle sizes in the range of 100-300 nm. X-ray diffraction studies revealed increases in the basal spacings of ZnAl-LDH-MTX hybrid on MTX intercalation. This was corroborated by the transmission electron micrographs, which showed an increase in average interlayer spacing from 8.9 A in pristine LDH to 21.3 A in LDH-MTX hybrid. Thermogravimetric analyses showed an increase in the decomposition temperature for the MTX molecule in the LDH-MTX hybrid indicating enhanced thermal stability of the drug moleculemore » in the LDH nanovehicle. The cumulative release profile of MTX from ZnAl-LDH-MTX hybrids in phosphate buffer saline (PBS) at pH 7.4 was successfully sustained for 48 h following Rigter-Peppas model release kinetics via diffusion. - Graphical abstract: ZnAl-layered double hydroxide intercalated with methotrexate ({approx}34% loading) promises the possibility of use of ZnAl-LDH material as drug carrier and in controlled delivery. Highlights: > ZnAl-layered double hydroxide methotrexate nanohybrid has been synthesized. > XRD and TEM studies on nanohybrid revealed successful intercalation of methotrexate. > TG and CHN analyses showed {approx}34 wt% of methotrexate loading into the nanohybrid. > Possibility of use of ZnAl-LDH material as drug carrier and in delivery.« less

  11. Durability of nickel-metal hydride (Ni-MH) battery cathode using nickel-aluminum layered double hydroxide/carbon (Ni-Al LDH/C) composite

    NASA Astrophysics Data System (ADS)

    Béléké, Alexis Bienvenu; Higuchi, Eiji; Inoue, Hiroshi; Mizuhata, Minoru

    2014-02-01

    We report the durability of the optimized nickel-aluminum layered double hydroxide/carbon (Ni-Al LDH/C) composite prepared by liquid phase deposition (LPD) as cathode active materials in nickel metal hydride (Ni-MH) secondary battery. The positive electrode was used for charge-discharge measurements under two different current: 5 mA for 300 cycles in half-cell conditions, and 5.8 mA for 569 cycles in battery regime, respectively. The optimized Ni-Al LDH/C composite exhibits a good lifespan and stability with the capacity retention above 380 mA h gcomp-1 over 869 cycles. Cyclic voltammetry shows that the α-Ni(OH)2/γ-NiOOH redox reaction is maintained even after 869 cycles, and the higher current regime is beneficial in terms of materials utilization. X-ray diffraction (XRD) patterns of the cathode after charge and discharge confirms that the α-Ni(OH)2/γ-NiOOH redox reaction occurs without any intermediate phase.

  12. Reversible Heating in Electric Double Layer Capacitors.

    PubMed

    Janssen, Mathijs; van Roij, René

    2017-03-03

    A detailed comparison is made between different viewpoints on reversible heating in electric double layer capacitors. We show in the limit of slow charging that a combined Poisson-Nernst-Planck and heat equation, first studied by d'Entremont and Pilon [J. Power Sources 246, 887 (2014)JPSODZ0378-775310.1016/j.jpowsour.2013.08.024], recovers the temperature changes as predicted by the thermodynamic identity of Janssen et al. [Phys. Rev. Lett. 113, 268501 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.268501], and disagrees with the approximative model of Schiffer et al. [J. Power Sources 160, 765 (2006)JPSODZ0378-775310.1016/j.jpowsour.2005.12.070] that predominates the literature. The thermal response to the adiabatic charging of supercapacitors contains information on electric double layer formation that has remained largely unexplored.

  13. Interlayer tunneling in double-layer quantum hall pseudoferromagnets.

    PubMed

    Balents, L; Radzihovsky, L

    2001-02-26

    We show that the interlayer tunneling I-V in double-layer quantum Hall states displays a rich behavior which depends on the relative magnitude of sample size, voltage length scale, current screening, disorder, and thermal lengths. For weak tunneling, we predict a negative differential conductance of a power-law shape crossing over to a sharp zero-bias peak. An in-plane magnetic field splits this zero-bias peak, leading instead to a "derivative" feature at V(B)(B(parallel)) = 2 pi Planck's over 2 pi upsilon B(parallel)d/e phi(0), which gives a direct measurement of the dispersion of the Goldstone mode corresponding to the spontaneous symmetry breaking of the double-layer Hall state.

  14. 2 p -insulator heterointerfaces: Creation of half-metallicity and anionogenic ferromagnetism via double exchange

    NASA Astrophysics Data System (ADS)

    Zhang, Baomin; Cao, Chonglong; Li, Guowei; Li, Feng; Ji, Weixiao; Zhang, Shufeng; Ren, Miaojuan; Zhang, Haikun; Zhang, Rui-Qin; Zhong, Zhicheng; Yuan, Zhe; Yuan, Shengjun; Blake, Graeme R.

    2018-04-01

    We use first-principles calculations to predict the occurrence of half-metallicity and anionogenic ferromagnetism at the heterointerface between two 2p insulators, taking the KO2/BaO2 (001) interface as an example. Whereas a sharp heterointerface is semiconducting, a heterointerface with a moderate concentration of swapped K and Ba atoms is half-metallic and ferromagnetic at ambient pressure due to the double exchange mechanism. The K-Ba swap renders the interfacial K-O and Ba-O atomic layers electron-doped and hole-doped, respectively. Our findings pave the way to realize metallicity and ferromagnetism at the interface between two 2 p insulators, and such systems can constitute a new family of heterostructures with novel properties, expanding studies on heterointerfaces from 3 d insulators to 2 p insulators.

  15. Highly Selective and Efficient Removal of Heavy Metals by Layered Double Hydroxide Intercalated with the MoS4(2-) Ion.

    PubMed

    Ma, Lijiao; Wang, Qing; Islam, Saiful M; Liu, Yingchun; Ma, Shulan; Kanatzidis, Mercouri G

    2016-03-02

    The MoS4(2-) ion was intercalated into magnesium-aluminum layered double hydroxide (MgAl-NO3-LDH) to produce a single phase material of Mg0.66Al0.34(OH)2(MoS4)0.17·nH2O (MgAl-MoS4-LDH), which demonstrates highly selective binding and extremely efficient removal of heavy metal ions such as Cu(2+), Pb(2+), Ag(+), and Hg(2+). The MoS4-LDH displays a selectivity order of Co(2+), Ni(2+), Zn(2+) < Cd(2+) ≪ Pb(2+) < Cu(2+) < Hg(2+) < Ag(+) for the metal ions. The enormous capacities for Hg(2+) (∼500 mg/g) and Ag(+) (450 mg/g) and very high distribution coefficients (Kd) of ∼10(7) mL/g place the MoS4-LDH at the top of materials known for such removal. Sorption isotherm for Ag(+) agrees with the Langmuir model suggesting a monolayer adsorption. It can rapidly lower the concentrations of Cu(2+), Pb(2+), Hg(2+), and Ag(+) from ppm levels to trace levels of ≤1 ppb. For the highly toxic Hg(2+) (at ∼30 ppm concentration), the adsorption is exceptionally rapid and highly selective, showing a 97.3% removal within 5 min, 99.7% removal within 30 min, and ∼100% removal within 1 h. The sorption kinetics for Cu(2+), Ag(+), Pb(2+), and Hg(2+) follows a pseudo-second-order model suggesting a chemisorption with the adsorption mechanism via M-S bonding. X-ray diffraction patterns of the samples after adsorption demonstrate the coordination and intercalation structures depending on the metal ions and their concentration. After the capture of heavy metals, the crystallites of the MoS4-LDH material retain the original hexagonal prismatic shape and are stable at pH ≈ 2-10. The MoS4-LDH material is thus promising for the remediation of heavy metal polluted water.

  16. Ceramic TBS/porous metal compliant layer

    NASA Technical Reports Server (NTRS)

    Tolokan, Robert P.; Jarrabet, G. P.

    1992-01-01

    Technetics Corporation manufactures metal fiber materials and components used in aerospace applications. Our technology base is fiber metal porous sheet material made from sinter bonded metal fibers. Fiber metals have percent densities (metal content by volume) from 10 to 65 percent. Various topics are covered and include the following: fiber metal materials, compliant layer thermal bayer coatings (TBC's), pad properties, ceramic/pad TBC design, thermal shock rig, fabrication, and applications.

  17. ZIF-67-derived hollow nanocages with layered double oxides shell as high-Efficiency catalysts for CO oxidation

    NASA Astrophysics Data System (ADS)

    Kong, Wenpeng; Li, Jing; Chen, Yao; Ren, Yuqing; Guo, Yonghua; Niu, Shengli; Yang, Yanzhao

    2018-04-01

    Constructing non-precious hybrid metal oxides with specific morphology as cost-effective and highly efficient catalysts is a promising way for the automotive exhaust purification. In this work, we report a facile strategy for the fabrication of a unique hollow Co-Ni layered double oxides (HLDO) nanocages by using zeolitic imidazole frameworks (ZIFs) as template. The synthesis of intermediate core-shell and hollow Co-Ni layered double hydroxides (HLDH) nanoflakes as well as the corresponding Co-Ni oxides products were successfully controlled, and the formation process was also explained. Among ZIF-67-derived oxides, HLDO exhibits excellent catalytic activities (complete conversion of CO into CO2 at 118 °C) and long-term stability for CO oxidation. The remarkable catalytic activities of HLDO can be attributed to high surface area (258 m2 g-1) inherited from the HLDH, which could provide more active sites for CO oxidation. In addition, active oxygen species indicated by the O 1 s XPS spectrum and improved synergistic effect between NiO and Co3O4 reflected by H2-TPR, further explain the enhanced performance of the HLDO catalysts. The presented strategy for controlled design and synthesis of hollow multicomponent metal oxides will provide prospects in developing highly effective catalysts.

  18. Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model

    USGS Publications Warehouse

    Tonkin, J.W.; Balistrieri, L.S.; Murray, J.W.

    2004-01-01

    Manganese oxides are important scavengers of trace metals and other contaminants in the environment. The inclusion of Mn oxides in predictive models, however, has been difficult due to the lack of a comprehensive set of sorption reactions consistent with a given surface complexation model (SCM), and the discrepancies between published sorption data and predictions using the available models. The authors have compiled a set of surface complexation reactions for synthetic hydrous Mn oxide (HMO) using a two surface site model and the diffuse double layer SCM which complements databases developed for hydrous Fe (III) oxide, goethite and crystalline Al oxide. This compilation encompasses a range of data observed in the literature for the complex HMO surface and provides an error envelope for predictions not well defined by fitting parameters for single or limited data sets. Data describing surface characteristics and cation sorption were compiled from the literature for the synthetic HMO phases birnessite, vernadite and ??-MnO2. A specific surface area of 746 m2g-1 and a surface site density of 2.1 mmol g-1 were determined from crystallographic data and considered fixed parameters in the model. Potentiometric titration data sets were adjusted to a pH1EP value of 2.2. Two site types (???XOH and ???YOH) were used. The fraction of total sites attributed to ???XOH (??) and pKa2 were optimized for each of 7 published potentiometric titration data sets using the computer program FITEQL3.2. pKa2 values of 2.35??0.077 (???XOH) and 6.06??0.040 (???YOH) were determined at the 95% confidence level. The calculated average ?? value was 0.64, with high and low values ranging from 1.0 to 0.24, respectively. pKa2 and ?? values and published cation sorption data were used subsequently to determine equilibrium surface complexation constants for Ba2+, Ca2+, Cd 2+, Co2+, Cu2+, Mg2+, Mn 2+, Ni2+, Pb2+, Sr2+ and Zn 2+. In addition, average model parameters were used to predict additional

  19. Ternary metal-rich sulfide with a layered structure

    DOEpatents

    Franzen, Hugo F.; Yao, Xiaoqiang

    1993-08-17

    A ternary Nb-Ta-S compound is provided having the atomic formula, Nb.sub.1.72 Ta.sub.3.28 S.sub.2, and exhibiting a layered structure in the sequence S-M3-M2-M1-M2-M3-S wherein S represents sulfur layers and M1, M2, and M3 represent Nb/Ta mixed metal layers. This sequence generates seven sheets stacked along the [001] direction of an approximate body centered cubic crystal structure with relatively weak sulfur-to-sulfur van der Waals type interactions between adjacent sulfur sheets and metal-to-metal bonding within and between adjacent mixed metal sheets.

  20. Sandwich-like graphene/polypyrrole/layered double hydroxide nanowires for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Xuejin; Zhang, Yu; Xing, Wei; Li, Li; Xue, Qingzhong; Yan, Zifeng

    2016-11-01

    Electrode design in nanoscale is considered to be ultra-important to construct a superb capacitor. Herein, a sandwich-like composite was made by combining graphene/polypyrrole (GPPY) with nickel-aluminum layered double hydroxide nanowires (NiAl-NWs) via a facile hydrothermal method. This sandwich-like architecture is promising in energy storage applications due to three unique features: (1) the conductive GPPY substrate not only effectively prevents the layered double hydroxides species from aggregating, but also considerably facilitates the electron transmission; (2) the ultrathin NiAl-NWs ensure a maximum exposure of active Ni2+, which can improve the efficiency of rapid redox reactions even at high current densities; (3) the sufficient space between anisotropic NiAl-NWs can accommodate a large volume change of the nanowires to avoid their collapse or distortion during the reduplicative redox reactions. Keeping all these unique features in mind, when the as-prepared composite was applied to supercapacitors, it presented an enhanced capacitive performance in terms of high specific capacitance (845 F g-1), excellent rate performance (67% retained at 30 A g-1), remarkable cyclic stability (92% maintained after 5000 cycles) and large energy density (40.1 Wh·Kg-1). This accomplishment in the present work inspires an innovative strategy of nanoscale electrode design for high-rate performance supercapacitor electrodes containing pseuducapacitive metal oxide.

  1. Facile synthesis of 3D MnNi-layered double hydroxides (LDH)/graphene composites from directly graphites for pseudocapacitor and their electrochemical analysis

    NASA Astrophysics Data System (ADS)

    Lee, Ilbok; Jeong, Gyoung Hwa; An, Soyeon; Kim, Sang-Wook; Yoon, Songhun

    2018-01-01

    Herein, MnNi-layered double hydroxides (LDH) were imbibed within the interlayers of graphene nanosheets. The anionic surfactant, sodium dodecyl sulfate played a role of graphite exfoliator adding interaction with metal cations. Using this process, layered MnNi-LDH-graphene nanocomposite was prepared without formation of graphene oxide. When applied into pseudocapacitor electrode, LDH-graphene with optimal ratio between Mn and Ni exhibited very stable cycle with 90% at 1400 cycles and high energy 47.29 Wh kg-1 at the power density of 7473 W kg-1, which was attributed to highly stable layered LDH structure within conductive graphene layers.

  2. Micromachined mold-type double-gated metal field emitters

    NASA Astrophysics Data System (ADS)

    Lee, Yongjae; Kang, Seokho; Chun, Kukjin

    1997-12-01

    Electron field emitters with double gates were fabricated using micromachining technology and the effect of the electric potential of the focusing gate (or second gate) was experimentally evaluated. The molybdenum field emission tip was made by filling a cusplike mold formed when a conformal film was deposited on the hole-trench that had been patterned on stacked metals and dielectric layers. The hole-trench was patterned by electron beam lithography and reactive ion etching. Each field emitter has a 0960-1317/7/4/009/img1 diameter extraction gate (or first gate) and a 0960-1317/7/4/009/img2 diameter focusing gate (or second gate). To make a path for the emitted electrons, silicon bulk was etched anisotropically in KOH and EDP (ethylene-diamine pyrocatechol) solution successively. The I - V characteristics and anode current change due to the focusing gate potential were measured.

  3. Two-dimensional potential double layers and discrete auroras

    NASA Technical Reports Server (NTRS)

    Kan, J. R.; Lee, L. C.; Akasofu, S.-I.

    1979-01-01

    This paper is concerned with the formation of the acceleration region for electrons which produce the visible auroral arc and with the formation of the inverted V precipitation region. The former is embedded in the latter, and both are associated with field-aligned current sheets carried by plasma sheet electrons. It is shown that an electron current sheet driven from the plasma sheet into the ionosphere leads to the formation of a two-dimensional potential double layer. For a current sheet of a thickness less than the proton gyrodiameter solutions are obtained in which the field-aligned potential drop is distributed over a length much greater than the Debye length. For a current sheet of a thickness much greater than the proton gyrodiameter solutions are obtained in which the potential drop is confined to a distance on the order of the Debye length. The electric field in the two-dimensional double-layer model is the zeroth-order field inherent to the current sheet configuration, in contrast to those models in which the electric field is attributed to the first-order field due to current instabilities or turbulences. The maximum potential in the two-dimensional double-layer models is on the order of the thermal energy of plasma sheet protons, which ranges from 1 to 10 keV.

  4. Biomechanical evaluation of knotless anatomical double-layer double-row rotator cuff repair: a comparative ex vivo study.

    PubMed

    Hepp, Pierre; Osterhoff, Georg; Engel, Thomas; Marquass, Bastian; Klink, Thomas; Josten, Christoph

    2009-07-01

    The layered configuration of the rotator cuff tendon is not taken into account in classic rotator cuff tendon repair techniques. The mechanical properties of (1) the classic double-row technique, (2) a double-layer double-row (DLDR) technique in simple suture configuration, and (3) a DLDR technique in mattress suture configuration are significantly different. Controlled laboratory study. Twenty-four sheep shoulders were assigned to 3 repair groups of full-thickness infraspinatus tears: group 1, traditional double-row repair; group 2, DLDR anchor repair with simple suture configuration; and group 3, DLDR knotless repair with mattress suture configuration. After ultrasound evaluation of the repair, each specimen was cyclically loaded with 10 to 100 N for 50 cycles. Each specimen was then loaded to failure at a rate of 1 mm/s. There were no statistically significant differences among the 3 testing groups for the mean footprint area. The cyclic loading test revealed no significant difference among the 3 groups with regard to elongation. For the load-to-failure test, groups 2 and 3 showed no differences in ultimate tensile load when compared with group 1. However, when compared to group 2, group 3 was found to have significantly higher values regarding ultimate load, ultimate elongation, and energy absorbed. The DLDR fixation techniques may provide strength of initial repair comparable with that of commonly used double-row techniques. When compared with the knotless technique with mattress sutures, simple suture configuration of DLDR repair may be too weak. Knotless DLDR rotator cuff repair may (1) restore the footprint by the use of double-row principles and (2) enable restoration of the shape and profile. Double-layer double-row fixation in mattress suture configuration has initial fixation strength comparable with that of the classic double-row fixation and so may potentially improve functional results of rotator cuff repair.

  5. Effect of layered manufacturing techniques, alloy powders, and layer thickness on metal-ceramic bond strength.

    PubMed

    Ekren, Orhun; Ozkomur, Ahmet; Ucar, Yurdanur

    2018-03-01

    Direct metal laser sintering (DMLS) and direct metal laser melting (DMLM) have become popular for fabricating the metal frameworks of metal-ceramic restorations. How the type of layered manufacturing device, layer thickness, and alloy powder may affect the bond strength of ceramic to metal substructure is unclear. The purpose of this in vitro study was to evaluate the bond strength of dental porcelain to metal frameworks fabricated using different layered manufacturing techniques (DMLS and DMLM), Co-Cr alloy powders, and layer thicknesses and to evaluate whether a correlation exists between the bond strength and the number of ceramic remnants on the metal surface. A total of 75 bar-shaped metal specimens (n=15) were fabricated using either DMLS or DMLM. The powder alloys used were Keramit NP-S and EOS-Cobalt-Chrome SP-2 with layer thicknesses of 20 μm and 30 μm. After ceramic application, the metal-ceramic bond strength was evaluated with a 3-point-bend test. Three-way ANOVA followed by the Tukey honest significance difference test were used for statistical analysis (α=.05). De-bonding surface microstructure was observed with scanning electron microscopy. Energy dispersive spectroscopy analysis was conducted to evaluate the correlation between ceramic remnants on the metal surface and bond strength values. The mean bond strength value of DMLS was significantly higher than that of DMLM. While no statistically significant difference was found between layer thicknesses, alloy powders closely affected bond strength. Statistical comparisons revealed that the highest bond strength could be achieved with DMLS-Cobalt-Chrome SP2-20μm, and the lowest bond strength was observed in DMLS-Keramit NP-S-20μm (P≤.05). No correlation was found between porcelain remnants on the metal surface and bond strength values. The layered manufacturing device and the alloy powders evaluated in the current study closely affected the bond strength of dental porcelain to a metal framework

  6. Laser modification of macroscopic properties of metal surface layer

    NASA Astrophysics Data System (ADS)

    Kostrubiec, Franciszek

    1995-03-01

    Surface laser treatment of metals comprises a number of diversified technological operations out of which the following can be considered the most common: oxidation and rendering surfaces amorphous, surface hardening of steel, modification of selected physical properties of metal surface layers. In the paper basic results of laser treatment of a group of metals used as base materials for electric contacts have been presented. The aim of the study was to test the usability of laser treatment from the viewpoint of requirements imposed on materials for electric contacts. The results presented in the paper refer to two different surface treatment technologies: (1) modification of infusible metal surface layer: tungsten and molybdenum through laser fusing of their surface layer and its crystallization, and (2) modification of surface layer properties of other metals through laser doping of their surface layer with foreign elements. In the paper a number of results of experimental investigations obtained by the team under the author's supervision are presented.

  7. Improved Electrochemical Cycling Durability in a Nickel Oxide Double-Layered Film.

    PubMed

    Hou, Shuai; Zhang, Xiang; Tian, Yanlong; Zhao, Jiupeng; Geng, Hongbin; Qu, Huiying; Zhang, Hangchuan; Zhang, Kun; Wang, Binsheng; Gavrilyuk, Alexander; Li, Yao

    2017-11-16

    For the first time, a crystalline-amorphous double-layered NiO x film has been prepared by reactive radio frequency magnetron sputtering. This film has exhibited improved electrochemical cycling durability, whereas other electrochromic parameters have been maintained at the required level, namely, a short coloration/bleaching time (0.8 s/1.1 s) and an enhanced transmittance modulation range (62.2 %) at λ=550 nm. Additionally, the double-layered film has shown better reversibility than that of amorphous and crystalline single-layered films. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Chemical solution seed layer for rabits tapes

    DOEpatents

    Goyal, Amit; Paranthaman, Mariappan; Wee, Sung-Hun

    2014-06-10

    A method for making a superconducting article includes the steps of providing a biaxially textured substrate. A seed layer is then deposited. The seed layer includes a double perovskite of the formula A.sub.2B'B''O.sub.6, where A is rare earth or alkaline earth metal and B' and B'' are different rare earth or transition metal cations. A superconductor layer is grown epitaxially such that the superconductor layer is supported by the seed layer.

  9. A Chemical-Adsorption Strategy to Enhance the Reaction Kinetics of Lithium-Rich Layered Cathodes via Double-Shell Surface Modification.

    PubMed

    Guo, Lichao; Li, Jiajun; Cao, Tingting; Wang, Huayu; Zhao, Naiqin; He, Fang; Shi, Chunsheng; He, Chunnian; Liu, Enzuo

    2016-09-21

    Sluggish surface reaction kinetics hinders the power density of Li-ion battery. Thus, various surface modification techniques have been applied to enhance the electronic/ionic transfer kinetics. However, it is challenging to obtain a continuous and uniform surface modification layer on the prime particles with structure integration at the interface. Instead of classic physical-adsorption/deposition techniques, we propose a novel chemical-adsorption strategy to synthesize double-shell modified lithium-rich layered cathodes with enhanced mass transfer kinetics. On the basis of experimental measurement and first-principles calculation, MoO2S2 ions are proved to joint the layered phase via chemical bonding. Specifically, the Mo-O or Mo-S bonds can flexibly rotate to bond with the cations in the layered phase, leading to the good compatibility between the thiomolybdate adsorption layer and layered cathode. Followed by annealing treatment, the lithium-excess-spinel inner shell forms under the thiomolybdate adsorption layer and functions as favorable pathways for lithium and electron. Meanwhile, the nanothick MoO3-x(SO4)x outer shell protects the transition metal from dissolution and restrains electrolyte decomposition. The double-shell modified sample delivers an enhanced discharge capacity almost twice as much as that of the unmodified one at 1 A g(-1) after 100 cycles, demonstrating the superiority of the surface modification based on chemical adsorption.

  10. Modeling electrical double-layer effects for microfluidic impedance spectroscopy from 100 kHz to 110 GHz.

    PubMed

    Little, Charles A E; Orloff, Nathan D; Hanemann, Isaac E; Long, Christian J; Bright, Victor M; Booth, James C

    2017-07-25

    Broadband microfluidic-based impedance spectroscopy can be used to characterize complex fluids, with applications in medical diagnostics and in chemical and pharmacological manufacturing. Many relevant fluids are ionic; during impedance measurements ions migrate to the electrodes, forming an electrical double-layer. Effects from the electrical double-layer dominate over, and reduce sensitivity to, the intrinsic impedance of the fluid below a characteristic frequency. Here we use calibrated measurements of saline solution in microfluidic coplanar waveguide devices at frequencies between 100 kHz and 110 GHz to directly measure the double-layer admittance for solutions of varying ionic conductivity. We successfully model the double-layer admittance using a combination of a Cole-Cole response with a constant phase element contribution. Our analysis yields a double-layer relaxation time that decreases linearly with solution conductivity, and allows for double-layer effects to be separated from the intrinsic fluid response and quantified for a wide range of conducting fluids.

  11. Overlapping double etch technique for evaluation of metallic alloys to stress corrosion cracking

    DOEpatents

    Steeves, Arthur F.; Stewart, James C.

    1981-01-01

    A double overlapping etch zone technique for evaluation of the resistance of metallic alloys to stress corrosion cracking. The technique involves evaluating the metallic alloy along the line of demarcation between an overlapping double etch zone and single etch zone formed on the metallic alloy surface.

  12. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface

    PubMed Central

    Favaro, Marco; Jeong, Beomgyun; Ross, Philip N.; Yano, Junko; Hussain, Zahid; Liu, Zhi; Crumlin, Ethan J.

    2016-01-01

    The electrochemical double layer plays a critical role in electrochemical processes. Whilst there have been many theoretical models predicting structural and electrical organization of the electrochemical double layer, the experimental verification of these models has been challenging due to the limitations of available experimental techniques. The induced potential drop in the electrolyte has never been directly observed and verified experimentally, to the best of our knowledge. In this study, we report the direct probing of the potential drop as well as the potential of zero charge by means of ambient pressure X-ray photoelectron spectroscopy performed under polarization conditions. By analyzing the spectra of the solvent (water) and a spectator neutral molecule with numerical simulations of the electric field, we discern the shape of the electrochemical double layer profile. In addition, we determine how the electrochemical double layer changes as a function of both the electrolyte concentration and applied potential. PMID:27576762

  13. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface

    DOE PAGES

    Favaro, Marco; Jeong, Beomgyun; Ross, Philip N.; ...

    2016-08-31

    The electrochemical double layer plays a critical role in electrochemical processes. Whilst there have been many theoretical models predicting structural and electrical organization of the electrochemical double layer, the experimental verification of these models has been challenging due to the limitations of available experimental techniques. The induced potential drop in the electrolyte has never been directly observed and verified experimentally, to the best of our knowledge. In this study, we report the direct probing of the potential drop as well as the potential of zero charge by means of ambient pressure X-ray photoelectron spectroscopy performed under polarization conditions. By analyzingmore » the spectra of the solvent (water) and a spectator neutral molecule with numerical simulations of the electric field, we discern the shape of the electrochemical double layer profile. In addition, we determine how the electrochemical double layer changes as a function of both the electrolyte concentration and applied potential.« less

  14. Compressive and rarefactive double layers in non-uniform plasma with q-nonextensive distributed electrons

    NASA Astrophysics Data System (ADS)

    Shan, S. Ali; Saleem, H.

    2018-05-01

    Electrostatic solitary waves and double layers (DLs) formed by the coupled ion acoustic (IA) and drift waves have been investigated in non-uniform plasma using q-nonextensive distribution function for the electrons and assuming ions to be cold Ti< Te. It is found that both compressive and rarefactive nonlinear structures (solitary waves and DLs) are possible in such a system. The steeper gradients are supportive for compressive solitary (and double layers) and destructive for rarefactive ones. The q-nonextensivity parameter q and the magnitudes of gradient scale lengths of density and temperature have significant effects on the amplitude of the double layers (and double layers) as well as on the speed of these structures. This theoretical model is general which has been applied here to the F-region ionosphere for illustration.

  15. Influence of nonelectrostatic ion-ion interactions on double-layer capacitance

    NASA Astrophysics Data System (ADS)

    Zhao, Hui

    2012-11-01

    Recently a Poisson-Helmholtz-Boltzmann (PHB) model [Bohinc , Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.85.031130 85, 031130 (2012)] was developed by accounting for solvent-mediated nonelectrostatic ion-ion interactions. Nonelectrostatic interactions are described by a Yukawa-like pair potential. In the present work, we modify the PHB model by adding steric effects (finite ion size) into the free energy to derive governing equations. The modified PHB model is capable of capturing both ion specificity and ion crowding. This modified model is then employed to study the capacitance of the double layer. More specifically, we focus on the influence of nonelectrostatic ion-ion interactions on charging a double layer near a flat surface in the presence of steric effects. We numerically compute the differential capacitance as a function of the voltage under various conditions. At small voltages and low salt concentrations (dilute solution), we find out that the predictions from the modified PHB model are the same as those from the classical Poisson-Boltzmann theory, indicating that nonelectrostatic ion-ion interactions and steric effects are negligible. At moderate voltages, nonelectrostatic ion-ion interactions play an important role in determining the differential capacitance. Generally speaking, nonelectrostatic interactions decrease the capacitance because of additional nonelectrostatic repulsion among excess counterions inside the double layer. However, increasing the voltage gradually favors steric effects, which induce a condensed layer with crowding of counterions near the electrode. Accordingly, the predictions from the modified PHB model collapse onto those computed by the modified Poisson-Boltzmann theory considering steric effects alone. Finally, theoretical predictions are compared and favorably agree with experimental data, in particular, in concentrated solutions, leading one to conclude that the modified PHB model adequately predicts the diffuse

  16. Control of crystallite and particle size in the synthesis of layered double hydroxides: Macromolecular insights and a complementary modeling tool.

    PubMed

    Galvão, Tiago L P; Neves, Cristina S; Caetano, Ana P F; Maia, Frederico; Mata, Diogo; Malheiro, Eliana; Ferreira, Maria J; Bastos, Alexandre C; Salak, Andrei N; Gomes, José R B; Tedim, João; Ferreira, Mário G S

    2016-04-15

    Zinc-aluminum layered double hydroxides with nitrate intercalated (Zn(n)Al-NO3, n=Zn/Al) is an intermediate material for the intercalation of different functional molecules used in a wide range of industrial applications. The synthesis of Zn(2)Al-NO3 was investigated considering the time and temperature of hydrothermal treatment. By examining the crystallite size in two different directions, hydrodynamic particle size, morphology, crystal structure and chemical species in solution, it was possible to understand the crystallization and dissolution processes involved in the mechanisms of crystallite and particle growth. In addition, hydrogeochemical modeling rendered insights on the speciation of different metal cations in solution. Therefore, this tool can be a promising solution to model and optimize the synthesis of layered double hydroxide-based materials for industrial applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Overlapping double etch technique for evaluation of metallic alloys to stress corrosion cracking

    DOEpatents

    Not Available

    1980-05-28

    A double overlapping etch zone technique for evaluation of the resistance of metallic alloys to stress corrosion cracking is described. The technique involves evaluating the metallic alloy along the line of demarcation between an overlapping double etch zone and single etch zone formed on the metallic alloy surface.

  18. The Role of Superthermal Electrons in the Formation of Double Layers and their Application in Space Plasmas

    NASA Astrophysics Data System (ADS)

    Singh, N.

    2014-12-01

    It is now widely recognized that superthermal electrons commonly exist with the thermal population in most space plasmas. When plasmas consisting of such electron population expand, double layers (DLs) naturally forma due to charge separation; the more mobile superthermal electrons march ahead of the thermal population, leaving a positive charge behind and generating electric fields. Under certain conditions such fields evolve into thin double layers or shocks. The double layers accelerate ions. Such double-layer formation was first invoked to explain expansion of laser produced plasmas. Since then it has been studied in laboratory experiments, and applied to (i) polar wind acceleration,(ii) the existence of low-altitude double layers in the auroral acceleration, (iii) a possible mechanism for the origination of the solar wind, (iv) the helicon double layer thrusters, and (v) the deceleration of electrons after their acceleration in solar flare events. The role of superthermal-electron driven double layers, also known as the low-altitude auroral double layers in the upward current region, in the upward acceleration of ionospheric ions is well-known. In the auroral application the upward moving superthermal electrons consist of backscattered downgoing primary energetic electrons as well as the secondary electrons. Similarly we suggest that such double layers might play roles in the acceleration of ions in the solar wind across the coronal transition region, where the superthermal electrons are supplied by magnetic reconnection events. We will present a unified theoretical view of the superthermal electron-driven double layers and their applications. We will summarize theoretical, experimental, simulation and observational results highlighting the common threads running through the various existing studies.

  19. Tribological Properties of TiO2/SiO2 Double Layer Coatings Deposited on CP-Ti

    NASA Astrophysics Data System (ADS)

    Çomakli, O.; Yazici, M.; Yetim, T.; Yetim, A. F.; Çelik, A.

    In the present paper, the influences of different double layer on wear and scratch performances of commercially pure Titanium (CP-Ti) were investigated. TiO2/SiO2 and SiO2/TiO2 double layer coatings were deposited on CP-Ti by sol-gel dip coating process and calcined at 750∘C. The phase structure, cross-sectional morphology, composition, wear track morphologies, adhesion properties, hardness and roughness of uncoated and coated samples were characterized with X-ray diffraction, scanning electron microscopy (SEM), nano-indentation technique, scratch tester and 3D profilometer. Also, the tribological performances of all samples were investigated by a pin-on-disc tribo-tester against Al2O3 ball. Results showed that hardness, elastic modulus and adhesion resistance of double layer coated samples were higher than untreated CP-Ti. It was found that these properties of TiO2/SiO2 double layer coatings have higher than SiO2/TiO2 double layer coating. Additionally, the lowest friction coefficient and wear rates were obtained from TiO2/SiO2 double layer coatings. Therefore, it was seen that phase structure, hardness and film adhesion are important factors on the tribological properties of double layer coatings.

  20. Application of Electric Double-layer Capacitors for Energy Storage on Electric Railway

    NASA Astrophysics Data System (ADS)

    Hase, Shin-Ichi; Konishi, Takeshi; Okui, Akinobu; Nakamichi, Yoshinobu; Nara, Hidetaka; Uemura, Tadashi

    The methods to stabilize power sources, which are the measures against voltage drop, power loading fluctuation, regeneration power lapse and so on, have been important issues in DC feeding circuits. Therefore, an energy storage medium that uses power efficiently and reduces above-mentioned problems is much concerned about. In recent years, development of energy storage medium is remarkable for drive-power supplies of electric vehicles. A number of applications of energy storage, for instance, battery and flywheel, have been investigated so far. A large-scale electric double-layer capacitor which is rapidly charged and discharged and offers long life, maintenance-free, low pollution and high efficiency, has been developed in wide range. We have compared the ability to charge batteries and electric double-layer capacitors. Therefore, we carried out fundamental studies about electric double-layer capacitors and its control. And we produced a prototype of energy storage for the DC electric railway system that consists of electric double-layer capacitors, diode bridge rectifiers, chopper system and PWM converters. From the charge and discharge tests of the prototype, useful information was obtained. This paper describes its characteristics and experimental results of energy storage system.

  1. A Double-Layered Covered Biliary Metal Stent for the Management of Unresectable Malignant Biliary Obstruction: A Multicenter Feasibility Study.

    PubMed

    Park, Jin-Seok; Jeong, Seok; Lee, Don Haeng; Moon, Jong Ho; Lee, Kyu Taek; Dong, Seok Ho

    2016-11-15

    The covered self-expandable metal stent (CMS) was developed to prevent tumor ingrowth-induced stent occlusion during the treatment of malignant biliary obstruction. However, complications such as cholecystitis, pancreatitis, and stent migration can occur after the endoscopic insertion of CMSs. The aim of the present study was to assess the efficacy and safety of a double-layered CMS (DCMS) for the management of malignant bile duct obstruction. DCMSs were endoscopically introduced into 59 patients with unresectable malignant extrahepatic biliary obstruction at four tertiary referral centers, and the patient medical records were retrospectively reviewed. Both the technical and functional success rates were 100%. Procedure-related complications including pancreatitis, cholangitis, stent migration, and liver abscess occurred in five patients (8.5%). The median follow-up period was 265 days (range, 31 to 752 days). Cumulative stent patency rates were 68.2% and 40.8% at 6 and 12 months, respectively. At the final follow-up, the rate of stent occlusion was 33.9% (20/59), and the median stent patency period was 276 days (range, 2 to 706 days). The clinical outcomes of DCMSs were comparable to the outcomes previously reported for CMSs with respect to stent patency period and complication rates.

  2. Acoustic wave-driven oxidized liquid metal-based energy harvester

    NASA Astrophysics Data System (ADS)

    Jeon, Jinpyo; Chung, Sang Kug; Lee, Jeong-Bong; Doo, Seok Joo; Kim, Daeyoung

    2018-06-01

    We report an oxidized liquid metal droplet-based energy harvester that converts acoustic energy into electrical energy by modulating an electrical double layer that originates from the deformation of the oxidized liquid metal droplet. Gallium-based liquid metal alloy has been developed for various applications owing to the outstanding material properties, such as its high electrical conductivity (metallic property) and unlimited deformability (liquid property). In this study, we demonstrated energy harvesting using an electrical double layer between the acoustic wave-modulated liquid metal droplet and two electrodes. The proposed energy harvester consisted of top and bottom electrodes covered with the dielectric layer and a Gallium-based liquid metal droplet placed between the electrodes. When we applied an external bias voltage and acoustic wave to the proposed device, the contact area between the liquid metal droplet and the electrodes changed, leading to the variation of the capacitance in the electrical double layer and the generation of electrical output current. Using the proposed energy harvester, the maximum output current of 41.2 nA was generated with an applied acoustic wave of 30 Hz. In addition, we studied the relationships between the maximum output current and a variety of factors, such as the size of the liquid metal droplet, the thickness of the hydrophobic layer, and the distance between the top and bottom electrode plates.

  3. Layered double hydroxide materials coated carbon electrode: New challenge to future electrochemical power devices

    NASA Astrophysics Data System (ADS)

    Djebbi, Mohamed Amine; Braiek, Mohamed; Namour, Philippe; Ben Haj Amara, Abdesslem; Jaffrezic-Renault, Nicole

    2016-11-01

    Layered double hydroxides (LDHs) have been widely used in the past years due to their unique physicochemical properties and promising applications in electroanalytical chemistry. The present paper is going to focus exclusively on magnesium-aluminum and zinc-aluminum layered double hydroxides (MgAl & ZnAl LDHs) in order to investigate the property and structure of active cation sites located within the layer structure. The MgAl and ZnAl LDH nanosheets were prepared by the constant pH co-precipitation method and uniformly supported on carbon-based electrode materials to fabricate an LDH electrode. Characterization by powder x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy revealed the LDH form and well-crystallized materials. Wetting surface properties (hydrophilicity and hydrophobicity) of both prepared LDHs were recorded by contact angle measurement show hydrophilic character and basic property. The electrochemical performance of these hybrid materials was investigated by mainly cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry techniques to identify the oxidation/reduction processes at the electrode/electrolyte interface and the effect of the divalent metal cations in total reactivity. The hierarchy of the modified electrode proves that the electronic conductivity of the bulk material is considerably dependent on the divalent cation and affects the limiting parameter of the overall redox process. However, MgAl LDH shows better performance than ZnAl LDH, due to the presence of magnesium cations in the layers. Following the structural, morphological and electrochemical behavior studies of both synthesized LDHs, the prepared LDH modified electrodes were tested through microbial fuel cell configuration, revealing a remarkable, potential new pathway for high-performance and cost-effective electrode use in electrochemical power devices.

  4. Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices.

    PubMed

    Black, Jennifer M; Come, Jeremy; Bi, Sheng; Zhu, Mengyang; Zhao, Wei; Wong, Anthony T; Noh, Joo Hyon; Pudasaini, Pushpa R; Zhang, Pengfei; Okatan, Mahmut Baris; Dai, Sheng; Kalinin, Sergei V; Rack, Philip D; Ward, Thomas Zac; Feng, Guang; Balke, Nina

    2017-11-22

    Ionic liquid gating of transition metal oxides has enabled new states (magnetic, electronic, metal-insulator), providing fundamental insights into the physics of strongly correlated oxides. However, despite much research activity, little is known about the correlation of the structure of the liquids in contact with the transition metal oxide surface, its evolution with the applied electric potential, and its correlation with the measured electronic properties of the oxide. Here, we investigate the structure of an ionic liquid at a semiconducting oxide interface during the operation of a thin film transistor where the electrical double layer gates the device using experiment and theory. We show that the transition between the ON and OFF states of the amorphous indium gallium zinc oxide transistor is accompanied by a densification and preferential spatial orientation of counterions at the oxide channel surface. This process occurs in three distinct steps, corresponding to ion orientations, and consequently, regimes of different electrical conductivity. The reason for this can be found in the surface charge densities on the oxide surface when different ion arrangements are present. Overall, the field-effect gating process is elucidated in terms of the interfacial ionic liquid structure, and this provides unprecedented insight into the working of a liquid gated transistor linking the nanoscopic structure to the functional properties. This knowledge will enable both new ionic liquid design as well as advanced device concepts.

  5. Conventional En Masse Repair Versus Separate Double-Layer Double-Row Repair for the Treatment of Delaminated Rotator Cuff Tears.

    PubMed

    Kim, Yang-Soo; Lee, Hyo-Jin; Jin, Hong-Ki; Kim, Sung-Eun; Lee, Jin-Woo

    2016-05-01

    The rotator cuff tendon is known to exert a shear force between the superficial and deep layers. Owing to this characteristic, separate repair of delaminated rotator cuff tears has been introduced for the restoration of the physiological biomechanics of the rotator cuff. However, whether conventional en masse repair or separate repair is superior is controversial in terms of outcomes. To compare clinical outcomes between conventional en masse repair and separate double-layer double-row repair for the treatment of delaminated rotator cuff tears. Randomized controlled study; Level of evidence, 2. Between August 2007 and March 2014, a total of 82 patients who underwent arthroscopic rotator cuff repair of a delaminated tear were enrolled and randomized into 2 groups. In group 1 (n = 48), arthroscopic conventional en masse repair was performed. In group 2 (n = 34), separate double-layer double-row repair was performed. The American Shoulder and Elbow Surgeons score, Constant score, Simple Shoulder Test score, and visual analog scale (VAS) score for pain and range of motion (ROM) were assessed before surgery; at 3, 6, and 12 months after surgery; and at the last follow-up visit. Magnetic resonance imaging (MRI) was performed at 12 months postoperatively to examine the retear rate and pattern. There was no significant difference between groups in the preoperative demographic data, including patient age, sex, symptom duration, tear size, and functional scores (P > .05). The mean follow-up period was 25.9 ± 1.2 months. Significant improvements in functional and pain scores were observed in both groups at the last follow-up visit. However, no significant differences in functional scores and ROM were found between the 2 groups at each time point, except that group 2 had significantly lower VAS pain scores (P < .05) at 3, 6, and 12 months postoperatively. Eight (17%) of 48 patients in group 1 and 6 (18%) of 34 patients in group 2 showed retears on MRI at 12-month follow-up (P

  6. Bioassembled layered silicate-metal nanoparticle hybrids.

    PubMed

    Drummy, Lawrence F; Jones, Sharon E; Pandey, Ras B; Farmer, B L; Vaia, Richard A; Naik, Rajesh R

    2010-05-01

    Here we report on the bioenabled assembly of layered nanohybrids using peptides identified with regard to their affinity to the nanoparticle surface. A dodecamer peptide termed M1, determined from a phage peptide display library, was found to bind to the surface of a layered aluminosilicate (montmorillonite, MMT). Fusion of a metal binding domain to the M1 peptide or the M1 peptide by itself was able to direct the growth of metal nanoparticles, such as gold and cobalt-platinum, respectively, on the MMT. This method of producing hybrid nanoclay materials will have utility in catalytic, optical, biomedical, and composite materials applications.

  7. Recent progress in layered double hydroxide based materials for electrochemical capacitors: design, synthesis and performance.

    PubMed

    Zhao, Mingming; Zhao, Qunxing; Li, Bing; Xue, Huaiguo; Pang, Huan; Chen, Changyun

    2017-10-19

    As representative two-dimensional (2D) materials, layered double hydroxides (LDHs) have received increasing attention in electrochemical energy storage and conversion because of the facile tunability between their composition and morphology. The high dispersion of active species in layered arrays, the simple exfoliation into monolayer nanosheets and chemical modification offer the LDHs an opportunity as active electrode materials in electrochemical capacitors (ECs). LDHs are favourable in providing large specific surface areas, good transport features as well as attractive physicochemical properties. In this review, our purpose is to provide a detailed summary of recent developments in the synthesis and electrochemical performance of the LDHs. Their composites with carbon (carbon quantum dots, carbon black, carbon nanotubes/nanofibers, graphene/graphene oxides), metals (nickel, platinum, silver), metal oxides (TiO 2 , Co 3 O 4 , CuO, MnO 2 , Fe 3 O 4 ), metal sulfides/phosphides (CoS, NiCo 2 S 4 , NiP), MOFs (MOF derivatives) and polymers (PEDOT:PSS, PPy (polypyrrole), P(NIPAM-co-SPMA) and PET) are also discussed in this review. The relationship between structures and electrochemical properties as well as the associated charge-storage mechanisms is discussed. Moreover, challenges and prospects of the LDHs for high-performance ECs are presented. This review sheds light on the sustainable development of ECs with LDH based electrode materials.

  8. Detection of internal fields in double-metal terahertz resonators

    DOE PAGES

    Mitrofanov, Oleg; Han, Zhanghua; Ding, Fei; ...

    2017-02-06

    (THz) plasmonic double-metal resonators enable enhanced light-matter coupling by utilizing strong localization of the resonant field. The closed resonator design however restricts investigations of the light-matter interaction effects. We propose and demonstrate a method for spatial mapping and spectroscopic analysis of the internal resonant THz fields in plasmonic double-metal THz resonators. We use the aperture-type scanning near-field THz time-domain microscopy and the concept of image charges to probe the THz fields confined within the resonator. The experimental method opens doors to studies of light-matter coupling in deeply sub-wavelength volumes at THz frequencies.

  9. Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics.

    PubMed

    Munje, Rujuta D; Muthukumar, Sriram; Panneer Selvam, Anjan; Prasad, Shalini

    2015-09-30

    An ultra-sensitive and highly specific electrical double layer (EDL) modulated biosensor, using nanoporous flexible substrates for wearable diagnostics is demonstrated with the detection of the stress biomarker cortisol in synthetic and human sweat. Zinc oxide thin film was used as active region in contact with the liquid i.e. synthetic and human sweat containing the biomolecules. Cortisol detection in sweat was accomplished by measuring and quantifying impedance changes due to modulation of the double layer capacitance within the electrical double layer through the application of a low orthogonally directed alternating current (AC) electric field. The EDL formed at the liquid-semiconductor interface was amplified in the presence of the nanoporous flexible substrate allowing for measuring the changes in the alternating current impedance signal due to the antibody-hormone interactions at diagnostically relevant concentrations. High sensitivity of detection of 1 pg/mL or 2.75 pmol cortisol in synthetic sweat and 1 ng/mL in human sweat is demonstrated with these novel biosensors. Specificity in synthetic sweat was demonstrated using a cytokine IL-1β. Cortisol detection in human sweat was demonstrated over a concentration range from 10-200 ng/mL.

  10. Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics

    NASA Astrophysics Data System (ADS)

    Munje, Rujuta D.; Muthukumar, Sriram; Panneer Selvam, Anjan; Prasad, Shalini

    2015-09-01

    An ultra-sensitive and highly specific electrical double layer (EDL) modulated biosensor, using nanoporous flexible substrates for wearable diagnostics is demonstrated with the detection of the stress biomarker cortisol in synthetic and human sweat. Zinc oxide thin film was used as active region in contact with the liquid i.e. synthetic and human sweat containing the biomolecules. Cortisol detection in sweat was accomplished by measuring and quantifying impedance changes due to modulation of the double layer capacitance within the electrical double layer through the application of a low orthogonally directed alternating current (AC) electric field. The EDL formed at the liquid-semiconductor interface was amplified in the presence of the nanoporous flexible substrate allowing for measuring the changes in the alternating current impedance signal due to the antibody-hormone interactions at diagnostically relevant concentrations. High sensitivity of detection of 1 pg/mL or 2.75 pmol cortisol in synthetic sweat and 1 ng/mL in human sweat is demonstrated with these novel biosensors. Specificity in synthetic sweat was demonstrated using a cytokine IL-1β. Cortisol detection in human sweat was demonstrated over a concentration range from 10-200 ng/mL.

  11. Monolayer and/or few-layer graphene on metal or metal-coated substrates

    DOEpatents

    Sutter, Peter Werner; Sutter, Eli Anguelova

    2015-04-14

    Disclosed is monolayer and/or few-layer graphene on metal or metal-coated substrates. Embodiments include graphene mirrors. In an example, a mirror includes a substrate that has a surface exhibiting a curvature operable to focus an incident beam onto a focal plane. A graphene layer conformally adheres to the substrate, and is operable to protect the substrate surface from degradation due to the incident beam and an ambient environment.

  12. Influence of metal bonding layer on strain transfer performance of FBG

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Chen, Weimin; Zhang, Peng; Liu, Li; Shu, Yuejie; Wu, Jun

    2013-01-01

    Metal bonding layer seriously affects the strain transfer performance of Fiber Bragg Grating (FBG). Based on the mode of FBG strain transfer, the influence of the length, the thickness, Poisson's ratio, elasticity modulus of metal bonding layer on the strain transfer coefficient of FBG is analyzed by numerical simulation. FBG is packaged to steel wire using metal bonding technology of FBG. The tensile tests of different bonding lengths and elasticity modulus are carried out. The result shows the strain transfer coefficient of FBGs are 0.9848,0.962 and their average strain sensitivities are 1.076 pm/μɛ,1.099 pm/μɛ when the metal bonding layer is zinc, whose lengths are 15mm, 20mm, respectively. The strain transfer coefficient of FBG packaged by metal bonding layer raises 8.9 percent compared to epoxy glue package. The preliminary experimental results show that the strain transfer coefficient increases with the length of metal bonding layer, decreases with the thickness of metal bonding layer and the influence of Poisson's ratio can be ignored. The experiment result is general agreement with the analysis and provides guidance for metal package of FBG.

  13. Dynamics of multiple double layers in high pressure glow discharge in a simple torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar Paul, Manash, E-mail: manashkr@gmail.com; Sharma, P. K.; Thakur, A.

    2014-06-15

    Parametric characterization of multiple double layers is done during high pressure glow discharge in a toroidal vessel of small aspect ratio. Although glow discharge (without magnetic field) is known to be independent of device geometry, but the toroidal boundary conditions are conducive to plasma growth and eventually the plasma occupy the toroidal volume partially. At higher anode potential, the visibly glowing spots on the body of spatially extended anode transform into multiple intensely luminous spherical plasma blob structures attached to the tip of the positive electrode. Dynamics of multiple double layers are observed in argon glow discharge plasma in presencemore » of toroidal magnetic field. The radial profiles of plasma parameters measured at various toroidal locations show signatures of double layer formation in our system. Parametric dependence of double layer dynamics in presence of toroidal magnetic field is presented here.« less

  14. Energy and structure of bonds in the interaction of organic anions with layered double hydroxide nanosheets: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Tsukanov, A. A.; Psakhie, S. G.

    2016-01-01

    The application of hybrid and hierarchical nanomaterials based on layered hydroxides and oxyhydroxides of metals is a swiftly progressing field in biomedicine. Layered double hydroxides (LDH) possess a large specific surface area, significant surface electric charge and biocompatibility. Their physical and structural properties enable them to adsorb various kinds of anionic species and to transport them into cells. However, possible side effects resulting from the interaction of LDH with anions of the intercellular and intracellular medium need to be considered, since such interaction can potentially disrupt ion transport, signaling processes, apoptosis, nutrition and proliferation of living cells. In the present paper molecular dynamics is used to determine the energies of interaction of organic anions (aspartic acid, glutamic acid and bicarbonate) with a fragment of layered double hydroxide Mg/Al-LDH. The average number of hydrogen bonds between the anions and the hydroxide surface and characteristic binding configurations are determined. Possible effects of LDH on the cell resulting from binding of protein fragments and replacement of native intracellular anions with delivered anions are considered.

  15. Oxide film on metal substrate reduced to form metal-oxide-metal layer structure

    NASA Technical Reports Server (NTRS)

    Youngdahl, C. A.

    1967-01-01

    Electrically conductive layer of zirconium on a zirconium-oxide film residing on a zirconium substrate is formed by reducing the oxide in a sodium-calcium solution. The reduced metal remains on the oxide surface as an adherent layer and seems to form a barrier that inhibits further reaction.

  16. Capattery double layer capacitor life performance

    NASA Astrophysics Data System (ADS)

    Evans, David A.; Clark, Nancy H.; Baca, W. E.; Miller, John R.; Barker, Thomas B.

    Double layer capacitors (DLCs) have received increased use in computer memory backup applications for consumer products during the past ten years. Their extraordinarily high capacitance density along with their maintenance-free operation makes them particularly suited for these products. These same features also make DLCs very attractive in military type applications. Unfortunately, lifetime performance data has not been reported in the literature for any DLC component. Our objective in this study was to investigate the effects that voltage and temperature have on the properties and performance of single and series-connected DLCs as a function of time. Evans model RE110474, 0.47-farad, 11.0-volt Capatteries were evaluated. These components have a tantalum package, use welded construction, and contain a glass-to-metal seal, all incorporated to circumvent the typical DLC failure modes of electrolyte loss and container corrosion. A five-level, two-factor Central Composite Design was used in the study. Single and series-connected Capatteries rated at 85 C, 11.0-volts operation were subjected to test temperatures between 25 and 95 C, and voltages between 0 and 12.9 volts (9 test conditions). Measured responses included capacitance, equivalent series resistance, and discharge time. Data were analyzed using a regression analysis to obtain response functions relating DLC properties to their voltage, temperature, and test time history. These results are described and should aid system and component engineers in using DLCs in critical applications.

  17. Megavolt parallel potentials arising from double-layer streams in the Earth's outer radiation belt.

    PubMed

    Mozer, F S; Bale, S D; Bonnell, J W; Chaston, C C; Roth, I; Wygant, J

    2013-12-06

    Huge numbers of double layers carrying electric fields parallel to the local magnetic field line have been observed on the Van Allen probes in connection with in situ relativistic electron acceleration in the Earth's outer radiation belt. For one case with adequate high time resolution data, 7000 double layers were observed in an interval of 1 min to produce a 230,000 V net parallel potential drop crossing the spacecraft. Lower resolution data show that this event lasted for 6 min and that more than 1,000,000 volts of net parallel potential crossed the spacecraft during this time. A double layer traverses the length of a magnetic field line in about 15 s and the orbital motion of the spacecraft perpendicular to the magnetic field was about 700 km during this 6 min interval. Thus, the instantaneous parallel potential along a single magnetic field line was the order of tens of kilovolts. Electrons on the field line might experience many such potential steps in their lifetimes to accelerate them to energies where they serve as the seed population for relativistic acceleration by coherent, large amplitude whistler mode waves. Because the double-layer speed of 3100  km/s is the order of the electron acoustic speed (and not the ion acoustic speed) of a 25 eV plasma, the double layers may result from a new electron acoustic mode. Acceleration mechanisms involving double layers may also be important in planetary radiation belts such as Jupiter, Saturn, Uranus, and Neptune, in the solar corona during flares, and in astrophysical objects.

  18. Double Layer Structure and Electrode Kinetics.

    DTIC Science & Technology

    1980-09-30

    Extensive double layer studies were made at the water- membrane and water-mercury interfaces. The effect of the neu- tral compound phloretin , which can...used to determine the nature of the phloretin adsorption isotherm. A boxcar integration method was developed which allows us to measure short-lived...235-252. 5. R. de Levie, S. K. Rangarajan, P. F. Seelig and 0. S. Andersen, On the adsorption of phloretin onto a black lipid membrane, Biophys. J. 25

  19. Transition metal-catalyzed process for addition of amines to carbon-carbon double bonds

    DOEpatents

    Hartwig, John F.; Kawatsura, Motoi; Loeber, Oliver

    2002-01-01

    The present invention is directed to a process for addition of amines to carbon-carbon double bonds in a substrate, comprising: reacting an amine with a compound containing at least one carbon-carbon double bond in the presence a transition metal catalyst under reaction conditions effective to form a product having a covalent bond between the amine and a carbon atom of the former carbon-carbon double bond. The transition metal catalyst comprises a Group 8 metal and a ligand containing one or more 2-electron donor atoms. The present invention is also directed to enantioselective reactions of amine compounds with compounds containing carbon-carbon double bonds, and a calorimetric assay to evaluate potential catalysts in these reactions.

  20. Ion-acoustic double-layers in a magnetized plasma with nonthermal electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rios, L. A.; Galvão, R. M. O.; Instituto de Física, Universidade de São Paulo, 05508-900 São Paulo

    2013-11-15

    In the present work we investigate the existence of obliquely propagating ion-acoustic double layers in magnetized two-electron plasmas. The fluid model is used to describe the ion dynamics, and the hot electron population is modeled via a κ distribution function, which has been proved to be appropriate for modeling non-Maxwellian plasmas. A quasineutral condition is assumed to investigate these nonlinear structures, which leads to the formation of double-layers propagating with slow ion-acoustic velocity. The problem is investigated numerically, and the influence of parameters such as nonthermality is discussed.

  1. Biodiesel synthesis using calcined layered double hydroxide catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumaker, J. Link; Crofcheck, Czarena; TAckett, S. Adam

    2008-01-01

    The catalytic properties of calcined Li-Al, Mg-Al and Mg-Fe layered double hydroxides (LDHs) were examined in two transesterification reactions, namely, the reaction of glyceryl tributyrate with methanol, and the reaction of soybean oil with methanol. While the Li-Al catalysts showed high activity in these reactions at the reflux temperature of methanol, the Mg-Fe and Mg-Al catalysts exhibited much lower methyl ester yields. CO2 TPD measurements revealed the presence of sites of weak, medium and strong basicity on both Mg-Al and Li-Al catalysts, the latter showing higher concentrations of medium and strong base sites; by implication, these are the main sitesmore » active in transesterification catalyzed by calcined Li-Al LDHs. Maximum activity was observed for the Li-Al catalysts when a calcination temperature of 450-500 aC was applied, corresponding to decomposition of the layered double hydroxide to the mixed oxide without formation of crystalline lithium aluminate phases.« less

  2. Maglev performance of a double-layer bulk high temperature superconductor above a permanent magnet guideway

    NASA Astrophysics Data System (ADS)

    Deng, Z.; Wang, J.; Zheng, J.; Lin, Q.; Zhang, Y.; Wang, S.

    2009-05-01

    In order to improve the performance of the present high temperature superconducting (HTS) maglev vehicle system, the maglev performance of single- and double-layer bulk high temperature superconductors (HTSC) was investigated above a permanent magnet guideway (PMG). It is found that the maglev performance of a double-layer bulk HTSC is not a simple addition of each layer's levitation and guidance force. Moreover, the applied magnetic field at the position of the upper layer bulk HTSC is not completely shielded by the lower layer bulk HTSC either. 53.5% of the levitation force and 27.5% of the guidance force of the upper layer bulk HTSC are excited in the double-layer bulk HTSC arrangement in the applied field-cooling condition and working gap, bringing a corresponding improvement of 16.9% and 8.8% to the conventional single-layer bulk HTSC. The present research implies that the cost performance of upper layer bulk HTSC is a little low for the whole HTS maglev system.

  3. Deconstruction of Lignin Model Compounds and Biomass-Derived Lignin using Layered Double Hydroxide Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chmely, S. C.; McKinney, K. A.; Lawrence, K. R.

    2013-01-01

    Lignin is an underutilized value stream in current biomass conversion technologies because there exist no economic and technically feasible routes for lignin depolymerization and upgrading. Base-catalyzed deconstruction (BCD) has been applied for lignin depolymerization (e.g., the Kraft process) in the pulp and paper industry for more than a century using aqueous-phase media. However, these efforts require treatment to neutralize the resulting streams, which adds significantly to the cost of lignin deconstruction. To circumvent the need for downstream treatment, here we report recent advances in the synthesis of layered double hydroxide and metal oxide catalysts to be applied to the BCDmore » of lignin. These catalysts may prove more cost-effective than liquid-phase, non-recyclable base, and their use obviates downstream processing steps such as neutralization. Synthetic procedures for various transition-metal containing catalysts, detailed kinetics measurements using lignin model compounds, and results of the application of these catalysts to biomass-derived lignin will be presented.« less

  4. Electric Double Layer electrostatics of spherical polyelectrolyte brushes with pH-dependent charge density

    NASA Astrophysics Data System (ADS)

    Li, Hao; Chen, Guang; Sinha, Shayandev; Das, Siddhartha; Soft Matter, Interfaces,; Energy Laboratory (Smiel) Team

    Understanding the electric double layer (EDL) electrostatics of spherical polyelectrolyte (PE) brushes, which are spherical particles grafted with PE layers, is essential for appropriate use of PE-grfated micro-nanoparticles for targeted drug delivery, oil recovery, water harvesting, emulsion stabilization, emulsion breaking, etc. Here we elucidate the EDL electrostatics of spherical PE brushes for the case where the PE exhibits pH-dependent charge density. This pH-dependence necessitates the consideration of explicit hydrogen ion concentration, which in turn dictates the distribution of monomers along the length of the grafted PE. This monomer distribution is shown to be a function of the nature of the sphere (metallic or a charged or uncharged dielectric or a liquid-filled sphere). All the calculations are performed for the case where the PE electrostatics can be decoupled from the PE elastic and excluded volume effects. Initial predictions are also provided for the case where such decoupling is not possible.

  5. Polymer/graphite oxide composites as high-performance materials for electric double layer capacitors

    NASA Astrophysics Data System (ADS)

    Tien, Chien-Pin; Teng, Hsisheng

    A single graphene sheet represents a carbon material with the highest surface area available to accommodating molecules or ions for physical and chemical interactions. Here we demonstrate in an electric double layer capacitor the outstanding performance of graphite oxide for providing a platform for double layer formation. Graphite oxide is generally the intermediate compound for obtaining separated graphene sheets. Instead of reduction with hydrazine, we incorporate graphite oxide with a poly(ethylene oxide)-based polymer and anchor the graphene oxide sheets with poly(propylene oxide) diamines. This polymer/graphite oxide composite shows in a "dry" gel-electrolyte system a double layer capacitance as high as 130 F g -1. The polymer incorporation developed here can significantly diversify the application of graphene-based materials in energy storage devices.

  6. Characteristic Features of Double Layers in Rotating, Magnetized Plasma Contaminated with Dust Grains with Varying Charges

    NASA Astrophysics Data System (ADS)

    Paul, Jaydeep; Nag, Apratim; Devi, Karabi; Das, Himadri Sekhar

    2018-03-01

    The evolution and the characteristic features of double layers in a plasma under slow rotation and contaminated with dust grains with varying charges under the effect of an external magnetic field are studied. The Coriolis force resulting from the slow rotation is responsible for the generation of an equivalent magnetic field. A comparatively new pseudopotential approach has been used to derive the small amplitude double layers. The effect of the relative electron-ion concentration, as well as the temperature ratio, on the formation of the double layers has also been investigated. The study reveals that compressive, as well as rarefactive, double layers can be made to co-exist in plasma by controlling the dust charge fluctuation effect supplemented by variations of the plasma constituents. The effectiveness of slow rotation in causing double layers to exist has also emanated from the study. The results obtained could be of interest because of their possible applications in both laboratories and space.

  7. Enhanced electron mobility at the two-dimensional metallic surface of BaSnO3 electric-double-layer transistor at low temperatures

    NASA Astrophysics Data System (ADS)

    Fujiwara, Kohei; Nishihara, Kazuki; Shiogai, Junichi; Tsukazaki, Atsushi

    2017-05-01

    Wide-bandgap oxides exhibiting high electron mobility hold promise for the development of useful electronic and optoelectronic devices as well as for basic research on two-dimensional electron transport phenomena. A perovskite-type tin oxide, BaSnO3, is currently one of such targets owing to distinctly high mobility at room temperature. The challenge to overcome towards the use of BaSnO3 thin films in applications is suppression of dislocation scattering, which is one of the dominant scattering origins for electron transport. Here, we show that the mobility of the BaSnO3 electric-double-layer transistor reaches 300 cm2 V-1 s-1 at 50 K. The improved mobility indicates that charged dislocation scattering is effectively screened by electrostatically doped high-density charge carriers. We also observed metallic conduction persisting down to 2 K, which is attributed to the transition to the degenerate semiconductor. The experimental verification of bulk-level mobility at the densely accumulated surface sheds more light on the importance of suppression of dislocation scattering by interface engineering in doped BaSnO3 thin films for transparent electrode applications.

  8. Fabrication and performance of a double layered Mn-Co-Ni-O/Mn-Co-Ni-Cu-O thin film detector

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Yin, Yiming; Yao, Niangjuan; Jiang, Lin; Qu, Yue; Wu, Jing; Gao, Y. Q.; Huang, Jingguo; Huang, Zhiming

    2018-01-01

    A thermal sensitive infrared and THz detector was fabricated by a double layered Mn-Co-Ni-O/Mn-Co-Ni-Cu-O films. The Mn-Co-Ni-O material, as one type of transition metal oxides, has long been used as a candidate for thermal sensors or infrared detectors. The resistivity of a most important Mn-Co-Ni-O thin film, Mn1. 96Co0.96Ni0.48O4(MCN) , is about 200 Ω·cm at room temperature, which ranges about 2 orders larger than that of VOx detectors. Therefore, the thickness of a typical squared Mn-Co-Ni-O IR detector should be about 10 μm, which is too large for focal plane arrays applications. To reduce the resistivity of Mn-Co-Ni-O thin film, 1/6 of Co element was replaced by Cu. Meanwhile, a cover layer of MCN film was deposited onto the Mn-Co-Ni-Cu-O film to improve the long term stability. The detector fabricated by the double layered Mn-Co-Ni-O/Mn-Co-Ni-Cu-O films showed large response to blackbody and 170 GHz radiation. The NEP of the detector was estimated to be the order of 10-8 W/Hz0. 5. By applying thermal isolation structure and additional absorption materials, the detection performance can be largely improved by 1-2 orders according to numerical estimation. The double layered Mn-Co-Ni-O film detector shows great potentials in applications in large scale IR detection arrays, and broad-band imaging.

  9. Carrier mobility and scattering lifetime in electric double-layer gated few-layer graphene

    NASA Astrophysics Data System (ADS)

    Piatti, E.; Galasso, S.; Tortello, M.; Nair, J. R.; Gerbaldi, C.; Bruna, M.; Borini, S.; Daghero, D.; Gonnelli, R. S.

    2017-02-01

    We fabricate electric double-layer field-effect transistor (EDL-FET) devices on mechanically exfoliated few-layer graphene. We exploit the large capacitance of a polymeric electrolyte to study the transport properties of three, four and five-layer samples under a large induced surface charge density both above and below the glass transition temperature of the polymer. We find that the carrier mobility shows a strong asymmetry between the hole and electron doping regime. We then employ ab initio density functional theory (DFT) calculations to determine the average scattering lifetime from the experimental data. We explain its peculiar dependence on the carrier density in terms of the specific properties of the electrolyte we used in our experiments.

  10. Bioinspired metal-cell wall-metal sandwich structure on an individual bacterial cell scaffold.

    PubMed

    Zhang, Xiaoliang; Yu, Mei; Liu, Jianhua; Li, Songmei

    2012-08-25

    Pd nanoparticles were introduced to individual Bacillus cells and dispersedly anchored on both the inside and outside of the cell walls. The anchored nanoparticles served as "seeds" to drive the formation of double metallic layers forming a metal-cell wall-metal sandwich structure at the single-cell level.

  11. Frictional Magneto-Coulomb Drag in Graphene Double-Layer Heterostructures.

    PubMed

    Liu, Xiaomeng; Wang, Lei; Fong, Kin Chung; Gao, Yuanda; Maher, Patrick; Watanabe, Kenji; Taniguchi, Takashi; Hone, James; Dean, Cory; Kim, Philip

    2017-08-04

    Coulomb interaction between two closely spaced parallel layers of conductors can generate the frictional drag effect by interlayer Coulomb scattering. Employing graphene double layers separated by few-layer hexagonal boron nitride, we investigate density tunable magneto- and Hall drag under strong magnetic fields. The observed large magnetodrag and Hall-drag signals can be related with Laudau level filling status of the drive and drag layers. We find that the sign and magnitude of the drag resistivity tensor can be quantitatively correlated to the variation of magnetoresistivity tensors in the drive and drag layers, confirming a theoretical formula for magnetodrag in the quantum Hall regime. The observed weak temperature dependence and ∼B^{2} dependence of the magnetodrag are qualitatively explained by Coulomb scattering phase-space argument.

  12. ZnO buffer layer for metal films on silicon substrates

    DOEpatents

    Ihlefeld, Jon

    2014-09-16

    Dramatic improvements in metallization integrity and electroceramic thin film performance can be achieved by the use of the ZnO buffer layer to minimize interfacial energy between metallization and adhesion layers. In particular, the invention provides a substrate metallization method utilizing a ZnO adhesion layer that has a high work of adhesion, which in turn enables processing under thermal budgets typically reserved for more exotic ceramic, single-crystal, or metal foil substrates. Embodiments of the present invention can be used in a broad range of applications beyond ferroelectric capacitors, including microelectromechanical systems, micro-printed heaters and sensors, and electrochemical energy storage, where integrity of metallized silicon to high temperatures is necessary.

  13. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2013-10-22

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  14. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2015-04-28

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  15. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2014-09-16

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  16. Self-consistent electrostatic simulations of reforming double layers in the downward current region of the aurora

    NASA Astrophysics Data System (ADS)

    Gunell, H.; Andersson, L.; De Keyser, J.; Mann, I.

    2015-10-01

    The plasma on a magnetic field line in the downward current region of the aurora is simulated using a Vlasov model. It is found that an electric field parallel to the magnetic fields is supported by a double layer moving toward higher altitude. The double layer accelerates electrons upward, and these electrons give rise to plasma waves and electron phase-space holes through beam-plasma interaction. The double layer is disrupted when reaching altitudes of 1-2 Earth radii where the Langmuir condition no longer can be satisfied due to the diminishing density of electrons coming up from the ionosphere. During the disruption the potential drop is in part carried by the electron holes. The disruption creates favourable conditions for double layer formation near the ionosphere and double layers form anew in that region. The process repeats itself with a period of approximately 1 min. This period is determined by how far the double layer can reach before being disrupted: a higher disruption altitude corresponds to a longer repetition period. The disruption altitude is, in turn, found to increase with ionospheric density and to decrease with total voltage. The current displays oscillations around a mean value. The period of the oscillations is the same as the recurrence period of the double layer formations. The oscillation amplitude increases with increasing voltage, whereas the mean value of the current is independent of voltage in the 100 to 800 V range covered by our simulations. Instead, the mean value of the current is determined by the electron density at the ionospheric boundary.

  17. Preparation of pH-Responsive Hollow Capsules via Layer-by-Layer Assembly of Exfoliated Layered Double Hydroxide Nanosheets and Polyelectrolytes.

    PubMed

    Katagiri, Kiyofumi; Shishijima, Yoshinori; Koumoto, Kunihito; Inumaru, Kei

    2018-01-01

    pH-Responsive smart capsules were developed by the layer-by-layer assembly with a colloidtemplating technique. Polystyrene (PS) particles were employed as core templates. Acid-soluble inorganic nanosheets were prepared from Mg-Al layered double hydroxide (LDH) by an exfoliation technique. LDH nanosheets and anionic polyelectrolytes were alternatively deposited on PS core particles by the layer-by-layer assembly using electrostatic interaction. Hollow capsules were obtained by the removal of the PS core particles. The hollow capsules obtained thus were collapsed at acidic conditions by dissolution of LDH nanosheets in the hollow shells. The dissolution rate, i.e., the responsiveness of capsule, is tunable according to the strength of acids.

  18. Plasmonic enhancement of second-harmonic generation of dielectric layer embedded in metal-dielectric-metal structure

    NASA Astrophysics Data System (ADS)

    Kang, Byungjun; Imakita, Kenji; Fujii, Minoru; Hayashi, Shinji

    2018-03-01

    The enhancement of second-harmonic generation from a dielectric layer embedded in a metal-dielectric-metal structure upon excitation of surface plasmon polaritons is demonstrated experimentally. The metal-dielectric-metal structure consisting of a Gex(SiO2)1-x layer sandwiched by two Ag layers was prepared, and the surface plasmon polaritons were excited in an attenuated total reflection geometry. The measured attenuated total reflection spectra exhibited two reflection dips corresponding to the excitation of two different surface plasmon polariton modes. Strong second-harmonic signals were observed under the excitation of these surface plasmon polariton modes. The results demonstrate that the second-harmonic intensity of the Gex(SiO2)1-x layer is highly enhanced relative to that of the single layer deposited on a substrate. Under the excitation of one of the two surface plasmon polariton modes, the estimated enhancement factor falls in a range between 39.9 and 171, while under the excitation of the other surface plasmon polariton mode, it falls in a range between 3.96 and 84.6.

  19. Performance of Electric Double-Layer Capacitor Simulators

    NASA Astrophysics Data System (ADS)

    Funabiki, Shigeyuki; Kodama, Shinsuke; Yamamoto, Masayoshi

    This paper proposes a simulator of EDLC, which realizes the performance equivalent to electric double-layer capacitors (EDLCs). The proposed simulator consists of an electrolytic capacitor and a two-quadrant chopper working as a current source. Its operation principle is described in the first place. The voltage dependence of capacitance of EDLCs is taken into account. The performance of the proposed EDLC simulator is verified by computer simulations.

  20. Observation of warm, higher energy electrons transiting a double layer in a helicon plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Yung-Ta, E-mail: ysung2@wisc.edu; Li, Yan; Scharer, John E.

    2015-03-15

    Measurements of an inductive RF helicon argon plasma double layer with two temperature electron distributions including a fast (>80 eV) tail are observed at 0.17 mTorr Ar pressure. The fast, untrapped electrons observed downstream of the double layer have a higher temperature (13 eV) than the trapped (T{sub e} = 4 eV) electrons. The reduction of plasma potential and density observed in the double layer region would require an upstream temperature ten times the measured 4 eV if occurring via Boltzmann ambipolar expansion. The experimental observation in Madison helicon experiment indicates that fast electrons with substantial density fractions can be created at low helicon operating pressures.

  1. Strategy for improved frequency response of electric double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Wada, Yoshifumi; Pu, Jiang; Takenobu, Taishi

    2015-10-01

    We propose a strategy for improving the response speed of electric double-layer capacitors (EDLCs) and electric double-layer transistors (EDLTs), based on an asymmetric structure with differently sized active materials and gate electrodes. We validate the strategy analytically by a classical calculation and experimentally by fabricating EDLCs with asymmetric Au electrodes (1:50 area ratio and 7.5 μm gap distance). The performance of the EDLCs is compared with that of conventional symmetric EDLCs. Our strategy dramatically improved the cut-off frequency from 14 to 93 kHz and this improvement is explained by fast charging of smaller electrodes. Therefore, this approach is particularly suitable to EDLTs, potentially expanding the applicability to medium speed (kHz-MHz) devices.

  2. Accessing the biocompatibility of layered double hydroxide by intramuscular implantation: histological and microcirculation evaluation

    PubMed Central

    Cunha, Vanessa Roberta Rodrigues; de Souza, Rodrigo Barbosa; da Fonseca Martins, Ana Maria Cristina Rebello Pinto; Koh, Ivan Hong Jun; Constantino, Vera Regina Leopoldo

    2016-01-01

    Biocompatibility of layered double hydroxides (LDHs), also known as hydrotalcite-like materials or double metal hydroxides, was investigated by in vivo assays via intramuscular tablets implantation in rat abdominal wall. The tablets were composed by chloride ions intercalated into LDH of magnesium/aluminum (Mg2Al-Cl) and zinc/aluminum (Zn2Al-Cl). The antigenicity and tissue integration capacity of LDHs were assessed histologically after 7 and 28 days post-implantation. No fibrous capsule nearby the LDH was noticed for both materials as well any sign of inflammatory reactions. Sidestream Dark Field imaging, used to monitor in real time the microcirculation in tissues, revealed overall integrity of the microcirculatory network neighboring the tablets, with no blood flow obstruction, bleeding and/or increasing of leukocyte endothelial adhesion. After 28 days Mg2Al-Cl promoted multiple collagen invaginations (mostly collagen type-I) among its fragments while Zn2Al-Cl induced predominantly collagen type–III. This work supports previous results in the literature about LDHs compatibility with living matter, endorsing them as functional materials for biomedical applications. PMID:27480483

  3. Accessing the biocompatibility of layered double hydroxide by intramuscular implantation: histological and microcirculation evaluation.

    PubMed

    Cunha, Vanessa Roberta Rodrigues; de Souza, Rodrigo Barbosa; da Fonseca Martins, Ana Maria Cristina Rebello Pinto; Koh, Ivan Hong Jun; Constantino, Vera Regina Leopoldo

    2016-08-02

    Biocompatibility of layered double hydroxides (LDHs), also known as hydrotalcite-like materials or double metal hydroxides, was investigated by in vivo assays via intramuscular tablets implantation in rat abdominal wall. The tablets were composed by chloride ions intercalated into LDH of magnesium/aluminum (Mg2Al-Cl) and zinc/aluminum (Zn2Al-Cl). The antigenicity and tissue integration capacity of LDHs were assessed histologically after 7 and 28 days post-implantation. No fibrous capsule nearby the LDH was noticed for both materials as well any sign of inflammatory reactions. Sidestream Dark Field imaging, used to monitor in real time the microcirculation in tissues, revealed overall integrity of the microcirculatory network neighboring the tablets, with no blood flow obstruction, bleeding and/or increasing of leukocyte endothelial adhesion. After 28 days Mg2Al-Cl promoted multiple collagen invaginations (mostly collagen type-I) among its fragments while Zn2Al-Cl induced predominantly collagen type-III. This work supports previous results in the literature about LDHs compatibility with living matter, endorsing them as functional materials for biomedical applications.

  4. Metal-phthalocyanine ordered layers on Au(110): Metal-dependent adsorption energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massimi, Lorenzo, E-mail: lorenzo.massimi@uniroma1.it; Angelucci, Marco; Gargiani, Pierluigi

    2014-06-28

    Iron-phthalocyanine and cobalt-phthalocyanine chains, assembled along the Au(110)-(1×2) reconstructed channels, present a strong interaction with the Au metallic states, via the central metal ion. X-ray photoemission spectroscopy from the metal-2p core-levels and valence band high-resolution ultraviolet photoelectron spectroscopy bring to light signatures of the interaction of the metal-phthalocyanine single-layer with gold. The charge transfer from Au to the molecule causes the emerging of a metal-2p core level component at lower binding energy with respect to that measured in the molecular thin films, while the core-levels associated to the organic macrocycle (C and N 1s) are less influenced by the adsorption,more » and the macrocycles stabilize the interaction, inducing a strong interface dipole. Temperature Programmed Desorption experiments and photoemission as a function of temperature allow to estimate the adsorption energy for the thin-films, mainly due to the molecule-molecule van der Waals interaction, while the FePc and CoPc single-layers remain adsorbed on the Au surface up to at least 820 K.« less

  5. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOEpatents

    Haaland, C.M.; Deeds, W.E.

    1999-07-13

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output. 5 figs.

  6. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOEpatents

    Haaland, Carsten M.; Deeds, W. Edward

    1999-01-01

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output.

  7. Electrical power generation by mechanically modulating electrical double layers.

    PubMed

    Moon, Jong Kyun; Jeong, Jaeki; Lee, Dongyun; Pak, Hyuk Kyu

    2013-01-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system in the near future.

  8. Effect of metal shielding on a wireless power transfer system

    NASA Astrophysics Data System (ADS)

    Li, Jiacheng; Huang, Xueliang; Chen, Chen; Tan, Linlin; Wang, Wei; Guo, Jinpeng

    2017-05-01

    In this paper, the effect of non-ferromagnetic metal shielding (NFMS) material on the resonator of wireless power transfer (WPT) is studied by modeling, simulation and experimental analysis. And, the effect of NFMS material on the power transfer efficiency (PTE) of WPT systems is investigated by circuit model. Meanwhile, the effect of ferromagnetic metal shielding material on the PTE of WPT systems is analyzed through simulation. A double layer metal shield structure is designed. Experimental results demonstrate that by applying the novel double layer metal shielding method, the system PTE increases significantly while the electromagnetic field of WPT systems declines dramatically.

  9. Layered assembly of graphene oxide and Co-Al layered double hydroxide nanosheets as electrode materials for supercapacitors.

    PubMed

    Wang, Lei; Wang, Dong; Dong, Xin Yi; Zhang, Zhi Jun; Pei, Xian Feng; Chen, Xin Jiang; Chen, Biao; Jin, Jian

    2011-03-28

    An innovative strategy of fabricating electrode material by layered assembling two kinds of one-atom-thick sheets, carboxylated graphene oxide (GO) and Co-Al layered double hydroxide nanosheet (Co-Al LDH-NS) for the application as a pseudocapacitor is reported. The Co-Al LDH-NS/GO composite exhibits good energy storage properties.

  10. Emergence of a Stern Layer from the Incorporation of Hydration Interactions into the Gouy-Chapman Model of the Electrical Double Layer.

    PubMed

    Brown, Matthew A; Bossa, Guilherme Volpe; May, Sylvio

    2015-10-27

    In one of the most commonly used phenomenological descriptions of the electrical double layer, a charged solid surface and a diffuse region of mobile ions are separated from each other by a thin charge-depleted Stern layer. The Stern layer acts as a capacitor that improves the classical Gouy-Chapman model by increasing the magnitude of the surface potential and limiting the maximal counterion concentration. We show that very similar Stern-like properties of the diffuse double layer emerge naturally from adding a nonelectrostatic hydration repulsion to the electrostatic Coulomb potential. The interplay of electrostatic attraction and hydration repulsion of the counterions and the surface leads to the formation of a diffuse counterion layer that remains well separated from the surface. In addition, hydration repulsions between the ions limit and control the maximal ion concentration and widen the width of the diffuse double layer. Our mean-field model, which we express in terms of electrostatic and hydration potentials, is physically consistent and conceptually similar to the classical Gouy-Chapman model. It allows the incorporation of ion specificity, accounts for hydration properties of charged surfaces, and predicts Stern layer properties, which we analyze in terms of the effective size of the hydrated counterions.

  11. Double-Layered Atmospheric Pressure Plasma Jet

    NASA Astrophysics Data System (ADS)

    Choi, Jaegu; Matsuo, Keita; Yoshida, Hidekazu; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori

    2009-08-01

    In this paper, we present a double-layered atmospheric pressure plasma jet (DLAPPJ) that is expected to improve conventional single-layered atmospheric pressure plasma jets. With the additional introduction of nitrogen gas into the outer nozzle between the inner and outer tubes, the plasma plume is boosted, resulting in a brighter and longer plasma torch, which may have more radicals and which may broaden the application range of atmospheric pressure plasma jets. The characteristics of the proposed device were investigated with the measurement of the visible torch length, wettability tests and optical emission spectroscopy. The results obtained imply that the DLAPPJ can be used for target-based plasma treatments, that is, (a) oxidation-related applications, such as surface treatment, biological decontamination and apoptosis induction, and (b) nitrification-related applications such as NO generation for wound healing and surface modification, by controlling radicals in plasmas.

  12. Morphologies, Preparations and Applications of Layered Double Hydroxide Micro-/Nanostructures

    PubMed Central

    Kuang, Ye; Zhao, Lina; Zhang, Shuai; Zhang, Fazhi; Dong, Mingdong; Xu, Sailong

    2010-01-01

    Layered double hydroxides (LDHs), also well-known as hydrotalcite-like layered clays, have been widely investigated in the fields of catalysts and catalyst support, anion exchanger, electrical and optical functional materials, flame retardants and nanoadditives. This feature article focuses on the progress in micro-/nanostructured LDHs in terms of morphology, and also on the preparations, applications, and perspectives of the LDHs with different morphologies. PMID:28883378

  13. Efficient double-emitting layer inverted organic light-emitting devices with different spacer layers

    NASA Astrophysics Data System (ADS)

    Nie, Qu-yang; Zhang, Fang-hui

    2017-09-01

    Double-emitting layer inverted organic light-emitting devices (IOLEDs) with different spacer layers were investigated, where 2,20,7,70-tetrakis(carbazol-9-yl)-9,9-spirobifluorene (CBP), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthroline (Bphen) and 4,40,400-tris(N-carbazolyl)-triphenylamine (TCTA) were used as spacer layers, respectively, and GIr1 and R-4b were used as green and red guest phosphorescent materials, respectively. The results show that the device with BCP spacer layer has the best performance. The maximum current efficiency of the BCP spacer layer device reaches up to 24.15 cd·A-1 when the current density is 3.99 mA·cm-2, which is 1.23 times bigger than that of the CBP spacer layer device. The performance is better than that of corresponding conventional device observably. The color coordinate of the device with BCP spacer layer only changes from (0.625 1, 0.368 0) to (0.599 5, 0.392 8) when the driving voltage increases from 6 V to 10 V, so it shows good stability in color coordinate, which is due to the adoption of the co-doping evaporation method for cladding luminous layer and the effective restriction of spacer layer to carriers in emitting layer.

  14. Investigation of the dye-sensitized solar cell designed by a series of mixed metal oxides based on ZnAl-layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Zhu, Yatong; Wang, Dali; Yang, Xiaoyu; Liu, Sha; Liu, Dong; Liu, Jie; Xiao, Hongdi; Hao, Xiaotao; Liu, Jianqiang

    2017-10-01

    In this paper, the anode materials for dye-sensitized solar cell (DSSC) were prepared by a facile calcination method using the ZnAl-layered double hydroxide (LDH) as a precursor. The ZnAl-LDHs with different molar ratios (Zn:Al = 2, 4, 6, 8) were prepared by the urea method and the mixed metal oxides (MMO) were prepared by calcining the LDHs at 500 °C. A series of cells were assembled by the corresponding MMOs and different dyes (N3 and N719). The basic parameters were investigated by X-ray diffraction, scanning electron microscope, thermogravimetric and differential thermal analysis, nitrogen sorption analysis and UV-Vis absorption spectrum. The photovoltaic performance of DSSCs was measured by electrochemical method. It could be seen that ZnAl molar ratios and different dyes had great influence on the efficiency of DSSC. The efficiency improved explicitly with increasing ZnAl molar ratio and the DSSC made of N3 showed better efficiency than that of N719. The best efficiency of N3 conditions reached 0.55% when the ratio of ZnAl-LDH precursor was 8:1.

  15. DC voltage fields generated by RF plasmas and their influence on film growth morphology through static attraction to metal wetting layers: Beyond ion bombardment effects

    NASA Astrophysics Data System (ADS)

    Butcher, K. S. A.; Terziyska, P. T.; Gergova, R.; Georgiev, V.; Georgieva, D.; Binsted, P. W.; Skerget, S.

    2017-01-01

    It is shown that attractive electrostatic interactions between regions of positive charge in RF plasmas and the negative charge of metal wetting layers, present during compound semiconductor film growth, can have a greater influence than substrate temperature on film morphology. Using GaN and InN film growth as examples, the DC field component of a remote RF plasma is demonstrated to electrostatically affect metal wetting layers to the point of actually determining the mode of film growth. Examples of enhanced self-seeded nanopillar growth are provided in the case where the substrate is directly exposed to the DC field generated by the plasma. In another case, we show that electrostatic shielding of the DC field from the substrate can result in the growth of Ga-face GaN layers from gallium metal wetting layers at 490 °C with root-mean-square roughness values as low as 0.6 nm. This study has been carried out using a migration enhanced deposition technique with pulsed delivery of the metal precursor allowing the identification of metal wetting layers versus metal droplets as a function of the quantity of metal source delivered per cycle. It is also shown that electrostatic interactions with the plasma can affect metal rich growth limits, causing metal droplet formation for lower metal flux than would otherwise occur. Accordingly, film growth rates can be increased when shielding the substrate from the positive charge region of the plasma. For the example shown here, growth rates were more than doubled using a shielding grid.

  16. Polymer thin film as coating layer to prevent corrosion of metal/metal oxide film

    NASA Astrophysics Data System (ADS)

    Sarkar, Suman; Kundu, Sarathi

    2018-04-01

    Thin film of polymer is used as coating layer and the corrosion of metal/metal oxide layer is studied with the variation of the thickness of the coating layer. The thin layer of polystyrene is fabricated using spin coating method on copper oxide (CuO) film which is deposited on glass substrate using DC magnetron sputtering technique. Thickness of the polystyrene and the CuO layers are determined using X-ray reflectivity (XRR) technique. CuO thin films coated with the polystyrene layer are exposed to acetic acid (2.5 v/v% aqueous CH3COOH solution) environments and are subsequently analyzed using UV-Vis spectroscopy and atomic force microscopy (AFM). Surface morphology of the film before and after interaction with the acidic environment is determined using AFM. Results obtained from the XRR and UV-Vis spectroscopy confirm that the thin film of polystyrene acts as an anticorrosion coating layer and the strength of the coating depends upon the polymer layer thickness at a constant acid concentration.

  17. Influence of head size on the development of metallic wear and on the characteristics of carbon layers in metal-on-metal hip joints

    PubMed Central

    Sprecher, Christoph M; Wimmer, Markus A; Milz, Stefan; Taeger, Georg

    2009-01-01

    Background and purpose Particles originating from the articulating surfaces of hip endoprostheses often induce an inflammatory response, which can be related to implant failure. We therefore analyzed the metal content in capsular tissue from 44 McKee-Farrar metal-on-metal hip prostheses (with 3 different head sizes) and we also analyzed the morphological structure of layers located on articulating surfaces. Methods Atomic absorption spectrometry (AAS) was used to analyze the metal content in capsular tissue. Visually detectable carbon layers located on the articulating surfaces were evaluated using scanning electron microscopy (SEM), energy-dispersive Xray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). Results Metallic debris was detected in all capsular tissue samples but no statistically significant differences in metal content were found in relation to implant head size. The morphological characteristics of the different layer zones allowed an exact analysis of contact and non-contact areas. Furthermore, surface layers appear to have a protective function because they can prevent sharp-edged particles from damaging the prostheses surface. Interpretation The implant head size does not appear to influence the amount of metallic debris. The layers obviously act like a lubricating agent because the protection function does not occur in regions without layers where the metal surface often shows numerous scratches. As layers are not generated immediately after the implantation of hip prostheses, these findings may at least partially explain the high amount of wear early after implantation. PMID:19421914

  18. Double-Layer Structured CO2 Adsorbent Functionalized with Modified Polyethyleneimine for High Physical and Chemical Stability.

    PubMed

    Jeon, Sunbin; Jung, Hyunchul; Kim, Sung Hyun; Lee, Ki Bong

    2018-06-18

    CO 2 capture using polyethyleneimine (PEI)-impregnated silica adsorbents has been receiving a lot of attention. However, the absence of physical stability (evaporation and leaching of amine) and chemical stability (urea formation) of the PEI-impregnated silica adsorbent has been generally established. Therefore, in this study, a double-layer impregnated structure, developed using modified PEI, is newly proposed to enhance the physical and chemical stabilities of the adsorbent. Epoxy-modified PEI and diepoxide-cross-linked PEI were impregnated via a dry impregnation method in the first and second layers, respectively. The physical stability of the double-layer structured adsorbent was noticeably enhanced when compared to the conventional adsorbents with a single layer. In addition to the enhanced physical stability, the result of simulated temperature swing adsorption cycles revealed that the double-layer structured adsorbent presented a high potential working capacity (3.5 mmol/g) and less urea formation under CO 2 -rich regeneration conditions. The enhanced physical and chemical stabilities as well as the high CO 2 working capacity of the double-layer structured adsorbent were mainly attributed to the second layer consisting of diepoxide-cross-linked PEI.

  19. Low frequency solitons and double layers in a magnetized plasma with two temperature electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rufai, O. R.; Bharuthram, R.; Singh, S. V.

    2012-12-15

    Finite amplitude non-linear ion-acoustic solitary waves and double layers are studied in a magnetized plasma with cold ions fluid and two distinct groups of Boltzmann electrons, using the Sagdeev pseudo-potential technique. The conditions under which the solitary waves and double layers can exist are found both analytically and numerically. We have shown the existence of negative potential solitary waves and double layers for subsonic Mach numbers, whereas in the unmagnetized plasma they can only in the supersonic Mach number regime. For the plasma parameters in the auroral region, the electric field amplitude of the solitary structures comes out to bemore » 49 mV/m which is in agreement of the Viking observations in this region.« less

  20. Bio-Inspired Aquaporinz Containing Double-Skinned Forward Osmosis Membrane Synthesized through Layer-by-Layer Assembly

    PubMed Central

    Wang, Shuzheng; Cai, Jin; Ding, Wande; Xu, Zhinan; Wang, Zhining

    2015-01-01

    We demonstrated a novel AquaporinZ (AqpZ)-incorporated double-skinned forward osmosis (FO) membrane by layer-by-layer (LbL) assembly strategy. Positively charged poly(ethyleneimine) (PEI) and negatively charged poly(sodium 4-styrenesulfonate) (PSS) were alternately deposited on both the top and bottom surfaces of a hydrolyzed polyacrylonitrile (H-PAN) substrate. Subsequently, an AqpZ-embedded 1,2-dioleloyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dioleoyl-3-trimethylammonium- propane (chloride salt) (DOTAP) supported lipid bilayer (SLB) was formed on PSS-terminated (T-PSS) membrane via vesicle rupture method. The morphology and structure of the biomimetic membranes were characterized by in situ atomic force microscopy (AFM), scanning electron microscope (SEM), Fourier transform infrared spectrometer using the attenuated total reflection technique (ATR-FTIR), and contact angle. Moreover, the FO performance of the resultant membrane was measured by using 2 M MgCl2 solution as draw solution and deionized (DI) water as feed solution, respectively. The membrane with a protein-to-lipid weight ratio (P/L) of 1/50 exhibits 13.2 L/m2h water flux and 3.2 g/m2h reversed flux by using FO mode, as well as 15.6 L/m2h water flux and 3.4 L/m2h reversed flux for PRO mode (the draw solution is placed against the active layer). It was also shown that the SLB layer of the double-skinned FO membrane can increase the surface hydrophilicity and reduce the surface roughness, which leads to an improved anti-fouling performance against humic acid foulant. The current work introduced a new method of fabricating high performance biomimetic FO membrane by combining AqpZ and a double-skinned structure based on LbL assembly. PMID:26266426

  1. Interaction of metal layers with polycrystalline Si

    NASA Technical Reports Server (NTRS)

    Nakamura, K.; Olowolafe, J. O.; Lau, S. S.; Nicolet, M.-A.; Mayer, J. W.; Shima, R.

    1976-01-01

    Solid-phase reactions of metal films deposited on 0.5-micron-thick polycrystalline layers of Si grown by chemical vapor deposition at 640 C were investigated by MeV He-4 backscattering spectrometry, glancing angle X-ray diffraction, and SEM observations. For the metals Al, Ag, and Au, which form simple eutectics, heat treatment at temperatures below the eutectic results in erosion of the poly-Si layer and growth of Si crystallites in the metal film. Crystallite formation is observed at temperatures exceeding 550 C for Ag, at those exceeding 400 C for Al, and at those exceeding 200 C for Au films. For Pd, Ni, and Cr, heat treatment results in silicide formation. The same initial silicides (Pd2Si, Ni2Si, and CrSi2), are formed at similar temperatures on single-crystal substrates.

  2. Thickness dependence of the levitation performance of double-layer high-temperature superconductor bulks above a magnetic rail

    NASA Astrophysics Data System (ADS)

    Sun, R. X.; Zheng, J.; Liao, X. L.; Che, T.; Gou, Y. F.; He, D. B.; Deng, Z. G.

    2014-10-01

    A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems.

  3. Methods of Fabricating a Layer of Metallic Glass-Based Material Using Immersion and Pouring Techniques

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas (Inventor)

    2015-01-01

    Systems and methods in accordance with embodiments of the invention implement layers of metallic glass-based materials. In one embodiment, a method of fabricating a layer of metallic glass includes: applying a coating layer of liquid phase metallic glass to an object, the coating layer being applied in a sufficient quantity such that the surface tension of the liquid phase metallic glass causes the coating layer to have a smooth surface; where the metallic glass has a critical cooling rate less than 1000 K/s; and cooling the coating layer of liquid phase metallic glass to form a layer of solid phase metallic glass.

  4. Double-duct liquid metal magnetohydrodynamic engine

    DOEpatents

    Haaland, Carsten M.

    1995-01-01

    An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has-four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

  5. Double-duct liquid metal magnetohydrodynamic engine

    DOEpatents

    Haaland, Carsten M.

    1997-01-01

    An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

  6. Ambipolar pentacene field-effect transistor with double-layer organic insulator

    NASA Astrophysics Data System (ADS)

    Kwak, Jeong-Hun; Baek, Heume-Il; Lee, Changhee

    2006-08-01

    Ambipolar conduction in organic field-effect transistor is very important feature to achieve organic CMOS circuitry. We fabricated an ambipolar pentacene field-effect transistors consisted of gold source-drain electrodes and double-layered PMMA (Polymethylmethacrylate) / PVA (Polyvinyl Alcohol) organic insulator on the ITO(Indium-tin-oxide)-patterned glass substrate. These top-contact geometry field-effect transistors were fabricated in the vacuum of 10 -6 Torr and minimally exposed to atmosphere before its measurement and characterized in the vacuum condition. Our device showed reasonable p-type characteristics of field-effect hole mobility of 0.2-0.9 cm2/Vs and the current ON/OFF ratio of about 10 6 compared to prior reports with similar configurations. For the n-type characteristics, field-effect electron mobility of 0.004-0.008 cm2/Vs and the current ON/OFF ratio of about 10 3 were measured, which is relatively high performance for the n-type conduction of pentacene field-effect transistors. We attributed these ambipolar properties mainly to the hydroxyl-free PMMA insulator interface with the pentacene active layer. In addition, an increased insulator capacitance due to double-layer insulator structure with high-k PVA layer also helped us to observe relatively good n-type characteristics.

  7. Photovoltaic performance and stability of fullerene/cerium oxide double electron transport layer superior to single one in p-i-n perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Xing, Zhou; Li, Shu-Hui; Wu, Bao-Shan; Wang, Xin; Wang, Lu-Yao; Wang, Tan; Liu, Hao-Ran; Zhang, Mei-Lin; Yun, Da-Qin; Deng, Lin-Long; Xie, Su-Yuan; Huang, Rong-Bin; Zheng, Lan-Sun

    2018-06-01

    Interface engineering that involves in the metal cathodes and the electron transport layers (ETLs) facilitates the simultaneous improvement of device performances and stability in perovskite solar cells (PSCs). Herein, low-temperature solution-processed cerium oxide (CeOx) films are prepared by a facile sol-gel method and employed as the interface layers between [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) and an Ag back contact to form PC61BM/CeOx double ETLs. The introduction of CeOx enables electron extraction to the Ag electrode and protects the underlying perovskite layer and thus improves the device performance and stability of the p-i-n PSCs. The p-i-n PSCs with double PC61BM/CeOx ETLs demonstrate a maximum power conversion efficiency (PCE) of 17.35%, which is superior to those of the devices with either PC61BM or CeOx single ETLs. Moreover, PC61BM/CeOx devices exhibit excellent stability in light soaking, which is mainly due to the chemically stable CeOx interlayer. The results indicate that CeOx is a promising interface modification layer for stable high-efficiency PSCs.

  8. Surface plasmons based terahertz modulator consisting of silicon-air-metal-dielectric-metal layers

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yang, Dongxiao; Qian, Zhenhai

    2018-05-01

    An optically controlled modulator of the terahertz wave, which is composed of a metal-dielectric-metal structure etched with circular loop arrays on both the metal layers and a photoexcited silicon wafer separated by an air layer, is proposed. Simulation results based on experimentally measured complex permittivities predict that modification of complex permittivity of the silicon wafer through excitation laser leads to a significant tuning of transmission characteristics of the modulator, forming the modulation depths of 59.62% and 96.64% based on localized surface plasmon peak and propagating surface plasmon peak, respectively. The influences of the complex permittivity of the silicon wafer and the thicknesses of both the air layer and the silicon wafer are numerically studied for better understanding the modulation mechanism. This study proposes a feasible methodology to design an optically controlled terahertz modulator with large modulation depth, high speed and suitable insertion loss, which is useful for terahertz applications in the future.

  9. Effect of double layers on magnetosphere-ionosphere coupling

    NASA Technical Reports Server (NTRS)

    Lysak, Robert L.; Hudson, Mary K.

    1987-01-01

    The Earth's auroral zone contains dynamic processes occurring on scales from the length of an auroral zone field line which characterizes Alfven wave propagation to the scale of microscopic processes which occur over a few Debye lengths. These processes interact in a time-dependent fashion since the current carried by the Alfven waves can excite microscopic turbulence which can in turn provide dissipation of the Alfven wave energy. This review will first describe the dynamic aspects of auroral current structures with emphasis on consequences for models of microscopic turbulence. A number of models of microscopic turbulence will be introduced into a large-scale model of Alfven wave propagation to determine the effect of various models on the overall structure of auroral currents. In particular, the effects of a double layer electric field which scales with the plasma temperature and Debye length is compared with the effect of anomalous resistivity due to electrostatic ion cyclotron turbulence in which the electric field scales with the magnetic field strength. It is found that the double layer model is less diffusive than in the resistive model leading to the possibility of narrow, intense current structures.

  10. Partial double-layered patella in a nondysplasic adolescent.

    PubMed

    García-Mata, Serafín; Hidalgo-Ovejero, Angel

    2016-11-01

    Double-layered patella (DLP) is a rare patella-formation abnormality reported in association with multiple epiphyseal dysplasia. DLP is one of the five types of bipartite patella, caused by a coronal septum that divides the patella into anterior and posterior segments. Although the double layer of bone has been reported as complete, it may also manifest as partial, as in our case. A 13-year-old male patient attended A&E after accidentally falling and sustaining a direct injury to his left knee, with pain in the anterior surface of the right patella. He was diagnosed with an incomplete vertical fracture of the left patella. An axial view radiography indicated an external partial DLP. No bone dysplasia was found. Computed tomographic scan and MRI showed partial DLP and bone marrow oedema because of the injury in the femoral condyle, but no fracture. The reason for highlighting this type of patella abnormality is to present the case of a patient without bone dysplasia, either partial or incomplete, that has not been reported previously. We also wish to emphasize the importance of not confusing it with a fracture in standard radiographies.

  11. Delivery of doxorubicin and paclitaxel from double-layered microparticles: The effects of layer thickness and dual-drug vs. single-drug loading.

    PubMed

    Lee, Wei Li; Guo, Wei Mei; Ho, Vincent H B; Saha, Amitaksha; Chong, Han Chung; Tan, Nguan Soon; Tan, Ern Yu; Loo, Say Chye Joachim

    2015-11-01

    Double-layered microparticles composed of poly(d,l-lactic-co-glycolic acid, 50:50) (PLGA) and poly(l-lactic acid) (PLLA) were loaded with doxorubicin HCl (DOX) and paclitaxel (PCTX) through a solvent evaporation technique. DOX was localized in the PLGA shell, while PCTX was localized in the PLLA core. The aim of this study was to investigate how altering layer thickness of dual-drug, double-layered microparticles can influence drug release kinetics and their antitumor capabilities, and against single-drug microparticles. PCTX-loaded double-layered microparticles with denser shells retarded the initial release of PCTX, as compared with dual-drug-loaded microparticles. The DOX release from both DOX-loaded and dual-drug-loaded microparticles were observed to be similar with an initial burst. Through specific tailoring of layer thicknesses, a suppressed initial burst of DOX and a sustained co-delivery of two drugs can be achieved over 2months. Viability studies using spheroids of MCF-7 cells showed that controlled co-delivery of PCTX and DOX from dual-drug-loaded double-layered microparticles were better in reducing spheroid growth rate. This study provides mechanistic insights into how by tuning the layer thickness of double-layered microparticles the release kinetics of two drugs can be controlled, and how co-delivery can potentially achieve better anticancer effects. While the release of multiple drugs has been reported to achieve successful apoptosis and minimize drug resistance, most conventional particulate systems can only deliver a single drug at a time. Recently, although a number of formulations (e.g. micellar nanoparticles, liposomes) have been successful in delivering two or more anticancer agents, sustained co-delivery of these agents remains inadequate due to the complex agent loading processes and rapid release of hydrophilic agents. Therefore, the present work reports the multilayered particulate system that simultaneously hosts different drugs, while

  12. Fabrication of quantum dots in undoped Si/Si 0.8Ge 0.2 heterostructures using a single metal-gate layer

    DOE PAGES

    Lu, T. M.; Gamble, J. K.; Muller, R. P.; ...

    2016-08-01

    Enhancement-mode Si/SiGe electron quantum dots have been pursued extensively by many groups for their potential in quantum computing. Most of the reported dot designs utilize multiple metal-gate layers and use Si/SiGe heterostructures with Ge concentration close to 30%. Here, we report the fabrication and low-temperature characterization of quantum dots in the Si/Si 0.8Ge 0.2 heterostructures using only one metal-gate layer. We find that the threshold voltage of a channel narrower than 1 μm increases as the width decreases. The higher threshold can be attributed to the combination of quantum confinement and disorder. We also find that the lower Ge ratiomore » used here leads to a narrower operational gate bias range. The higher threshold combined with the limited gate bias range constrains the device design of lithographic quantum dots. We incorporate such considerations in our device design and demonstrate a quantum dot that can be tuned from a single dot to a double dot. Furthermore, the device uses only a single metal-gate layer, greatly simplifying device design and fabrication.« less

  13. Design and characterization of a biodegradable double-layer scaffold aimed at periodontal tissue-engineering applications.

    PubMed

    Requicha, João F; Viegas, Carlos A; Hede, Shantesh; Leonor, Isabel B; Reis, Rui L; Gomes, Manuela E

    2016-05-01

    The inefficacy of the currently used therapies in achieving the regeneration ad integrum of the periodontium stimulates the search for alternative approaches, such as tissue-engineering strategies. Therefore, the core objective of this study was to develop a biodegradable double-layer scaffold for periodontal tissue engineering. The design philosophy was based on a double-layered construct obtained from a blend of starch and poly-ε-caprolactone (30:70 wt%; SPCL). A SPCL fibre mesh functionalized with silanol groups to promote osteogenesis was combined with a SPCL solvent casting membrane aiming at acting as a barrier against the migration of gingival epithelium into the periodontal defect. Each layer of the double-layer scaffolds was characterized in terms of morphology, surface chemical composition, degradation behaviour and mechanical properties. Moreover, the behaviour of seeded/cultured canine adipose-derived stem cells (cASCs) was assessed. In general, the developed double-layered scaffolds demonstrated adequate degradation and mechanical behaviour for the target application. Furthermore, the biological assays revealed that both layers of the scaffold allow adhesion and proliferation of the seeded undifferentiated cASCs, and the incorporation of silanol groups into the fibre-mesh layer enhance the expression of a typical osteogenic marker. This study allowed an innovative construct to be developed, combining a three-dimensional (3D) scaffold with osteoconductive properties and with potential to assist periodontal regeneration, carrying new possible solutions to current clinical needs. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Influence of Passivation Layers for Metal Grating-Based Quantum Well Infrared Photodetectors

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Fu, Yong-Qi; Yang, Le-Chen; Zhang, Bao-Shun; Li, Hai-Jun; Fu, Kai; Xiong, Min

    2012-06-01

    To improve absorption of quantum well infrared photodetectors (QWIPs), a coupling layer with metallic grating is designed and fabricated above the quantum well. The metal grating is composed of 100 nm Au film on top, and a 20-nm Ti thin layer between the Au film and the sapphire substrate is coated as an adhesion/buffer layer. To protect the photodetector from oxidation and to decrease leakage, a SiO2 film is deposited by means of plasma-enhanced chemical vapor deposition. A value of about 800 nm is an optimized thickness for the SiO2 applied in the metallic grating-based mid-infrared QWIP. In addition, a QWIP passivation layer is studied experimentally. The results demonstrate that the contribution from the layer is positive for metal grating coupling with the quantum well. The closer the permittivity of the two dielectric layers (SiO2 and the passivation layers), and the closer the two transmission peaks, the greater the QWIP enhancement will be.

  15. Meteoric metal layers in the atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Plane, John; Whalley, Charlotte

    Radio occultation measurements from several spacecraft (e.g., Mars Express, Mars Global Sur-veyor) have revealed the presence of a "third" ion layer in the Martian atmosphere, which occurs sporadically around 90 km. Because this is the aerobraking region of the atmosphere, and the layers resemble sporadic E layers observed in the terrestrial atmosphere, it has been proposed that these layers consist of metallic ions (principally Fe+ and Mg+ ). A major problem with this hypothesis is that we have shown recently that metallic ions re-combine rapidly in a CO2 -rich atmosphere, both because of the efficiency of CO2 as the "third body" and because of the very low temperatures (about 140 K). In fact, both Fe+ and Mg+ form CO2 cluster ions about 200 times faster than current Mars models predict. These cluster ions should rapidly be destroyed by dissociative recombination with electrons, so that sporadic layers containing metallic ions would have lifetimes of only minutes. We will present a new laboratory study of all the reactions that appear to be required to solve this problem. Most importantly, we will show that the reactions of molecular magnesium ions (Mg+ .CO2 , MgO2 + and MgO+ ) with atomic O are about 20 times faster than expected. The laboratory will then be used to construct a new model of the Martian upper atmosphere, which demonstrates that the sporadic third layers must largely be composed of Mg+ and not Fe+ . These layers should then have lifetimes of more than 10 hours, in accord with observations from Mars Express made on successive orbits.

  16. Double-trap model for hysteretic current-voltage characteristics of a polystyrene/ZnO nanorods stacked layer

    NASA Astrophysics Data System (ADS)

    Wu, You-Lin; Lin, Jing-Jenn; Lin, Shih-Hung; Sung, Yi-Hsing

    2017-11-01

    Hysteretic current-voltage (I-V) characteristics are quite common in metal-insulator-metal (MIM) devices used for resistive switching random access memory (RRAM). Two types of hysteretic I-V curves are usually observed, figure eight and counter figure eight (counter-clockwise and clockwise in the positive voltage sweep direction, respectively). In this work, a clockwise hysteretic I-V curve was found for an MIM device with polystyrene (PS)/ZnO nanorods stack as an insulator layer. Three distinct regions I ∼ V, I ∼ V2, and I ∼ V0.6 are observed in the double logarithmic plot of the I-V curves, which cannot be explained completely with the conventional trap-controlled space-charge-limited-current (SCLC) model. A model based on the energy band with two separate traps plus local energy variation and trap-controlled SCLC has been developed, which can successfully describe the behavior of the clockwise hysteretic I-V characteristics obtained in this work.

  17. Buffer layers for REBCO films for use in superconducting devices

    DOEpatents

    Goyal, Amit; Wee, Sung-Hun

    2014-06-10

    A superconducting article includes a substrate having a biaxially textured surface. A biaxially textured buffer layer, which can be a cap layer, is supported by the substrate. The buffer layer includes a double perovskite of the formula A.sub.2B'B''O.sub.6, where A is rare earth or alkaline earth metal and B' and B'' are different transition metal cations. A biaxially textured superconductor layer is deposited so as to be supported by the buffer layer. A method of making a superconducting article is also disclosed.

  18. Uptake of Light Elements in Thin Metallic Films

    NASA Astrophysics Data System (ADS)

    Markwitz, Andreas; Waldschmidt, Mathias

    Ion beam analysis was used to investigate the influence of substrate temperature on the inclusion of impurities during the deposition process of thin metallic single and double layers. Thin layers of gold and aluminium were deposited at different temperatures onto thin copper layers evaporated on silicon wafer substrates. The uptake of oxygen in the layers was measured using the highly sensitive non-resonant reaction 16O(d,p)170O at 920 keV. Nuclear reaction analysis was also used to probe for carbon and nitrogen with a limit of detection better than 20 ppm. Hydrogen depth profiles were measured using elastic recoil detection on the nanometer scale. Rutherford backscattering spectroscopy was used to determine the depth profiles of the metallic layers and to study diffusion processes. The combined ion beam analyses revealed an uptake of oxygen in the layers depending on the different metallic cap layers and the deposition temperature. Lowest oxygen values were measured for the Au/Cu layers, whereas the highest amount of oxygen was measured in Al/Cu layers deposited at 300°C. It was also found that with single copper layers produced at various temperatures, oxygen contamination occurred during the evaporation process and not afterwards, for example, as a consequence of the storage of the films under normal conditions for several days. Hydrogen, carbon, and nitrogen were found as impurities in the single and double layered metallic films, a finding that is in agreement with the measured oxidation behaviour of the metallic films.

  19. Metal aminocarboxylate coordination polymers with chain and layered structures.

    PubMed

    Dan, Meenakshi; Rao, C N R

    2005-11-18

    The synthesis and structures of metal aminocarboxylates prepared in acidic, neutral, or alkaline media have been explored with the purpose of isolating coordination polymers with linear chain and two-dimensional layered structures. Metal glycinates of the formulae [CoCl2(H2O)2(CO2CH2NH3)] (I), [MnCl2(CO2CH2NH3)2] (II), and [Cd3Cl6(CO2CH2NH3)4] (III) with one-dimensional chain structures have been obtained by the reaction of the metal salts with glycine in an acidic medium under hydro/solvothermal conditions. These chain compounds contain glycine in the zwitterionic form. 4-Aminobutyric acid transforms to a cyclic amide under such reaction conditions, and the amide forms a chain compound of the formula [CdBr2(C4H7NO)2] (IV). Glycine in the zwitterionic form also forms a two-dimensional layered compound of the formula [Mn(H2O)2(CO2CH2NH3)2]Br2 (V). 6-Aminocaproic acid under alkaline conditions forms layered compounds with metals at room temperature, the metal being coordinated both by the amino nitrogen and the carboxyl oxygen atoms. Of the two layered compounds [Cd{CO2(CH2)5NH2}2]2 H2O (VI) and [Cu{CO2(CH2)5NH2}2]2 H2O (VII), the latter has voids in which water molecules reside.

  20. The design and performance of the nano-carbon based double layers flexible coating for tunable and high-efficiency microwave absorption

    NASA Astrophysics Data System (ADS)

    Zhang, Danfeng; Hao, Zhifeng; Qian, Yannan; Zeng, Bi; Zhu, Haiping; Wu, Qibai; Yan, Chengjie; Chen, Muyu

    2018-05-01

    Nanocarbon-based materials are outstanding microwave absorbers with good dielectric properties. In this study, double-layer silicone resin flexible absorbing coatings, composed of carbon-coated nickel nanoparticles (Ni@C) and carbon nanotubes (CNTs), with low loading and a total thickness of 2 mm, were prepared. The reflection loss (RL) of the double-layer absorbing coatings has measured for frequencies between 2 and 18 GHz using the Arch reflecting testing method. The effects of the thickness and electromagnetic parameters of each layer and of the layer sequence on the absorbing properties were investigated. It is found that the measured bandwidth (RL ≤ - 10 dB) of the optimum double-layer structure in our experiment range achieves 3.70 GHz. The results indicated that the double coating structure composed of different materials has greater synergistic absorption effect on impedance matching than that of same materials with different loading. The maximum RL of S1 (5 wt% CNTs)/S3 (60 wt% Ni@C) double-layer absorbing coating composed of different materials (S1 and S3) was larger than the one achieved using either S1 or S3 alone with the same thickness. This was because double-layer coating provided a suitable matching layer and improve the interfacial impedance. It was also shown that absorbing peak value and frequency position can be adjusted by double-layer coating structure.

  1. Repair of Inaccessible Ventral Dural Defect in Thoracic Spine: Double Layered Duraplasty

    PubMed Central

    Lee, Dong-Hyun; Park, Jeong-Ill; Park, Ki-Su; Cho, Dae-Chul; Sung, Joo-Kyung

    2016-01-01

    We propose a double layered (intradural and epidural patch) duraplasty that utilizes Lyoplant and Duraseal. We examined a 47-year-old woman after decompression for thoracic ossification of posterior longitudinal ligament was performed in another hospital. On postoperative day 7, she complained of weakness in both legs. Postoperative magnetic resonance imaging (MRI) showed cerebrospinal fluid (CSF) collection with cord compression. In the operative field, we found 2 large dural defects on the ventral dura mater. We performed a conventional fat graft with fibrin glue. However, the patient exhibited neurologic deterioration, and a postoperative MRI again showed CSF collection. We performed dorsal midline durotomy and inserted a intradural and epidural Lyoplant patch. She immediately experienced diminishing back pain postoperatively. Her visual analog scale and motor power improved markedly. Postoperative MRIs performed at 2 and 16 months showed no spinal cord compression or CSF leakage to the epidural space. We describe a new technique for double layered duraplasty. Although we do not recommend this technique for all dural repairs, double-layered duraplasty may be useful for repairing large inaccessible dural tears in cases of persistent CSF leakage refractory to conventional management. PMID:27437022

  2. Layered transition metal dichalcogenide electrochemistry: journey across the periodic table.

    PubMed

    Chia, Xinyi; Pumera, Martin

    2018-06-08

    Studies on layered transition metal dichalcogenides (TMDs), in particular for Group VIB TMDs like MoS2 and WS2, have long reached a crescendo in the realms of electrochemical applications initiated by their remarkable catalytic and electronic properties. One area that garnered considerable attention is the fervent pursuit of layered TMDs as electrocatalysts for hydrogen evolution reaction (HER), driven by global efforts towards reducing carbon footprint and attaining hydrogen economy. This Tutorial Review captures the essence of electrochemistry of different classes of layered TMDs and metal chalcogenides across the period table and showcases their tuneable electrochemical and HER catalytic attributes that are governed by the elemental composition, structure and anisotropy. Of interest to the assiduously studied Group VIB TMDs, we describe the role of elemental constituents and material purity in aspects of surface composition and structure, on their electrochemistry. Across families of layered TMDs in the periodic table, we highlight the apparent trends in their electrochemical and electrocatalytic properties through diligent comparison. Inevitably, these trends vary according to the type of chalcogen or transition metal that constitutes the eventual TMD. Beyond layered TMDs, we discuss the electrochemistry and recent progress in HER electrocatalysis of other layered metal chalcogenides that are overshadowed by the success of Group VIB TMDs. At the pinnacle of the emergent applications of layered TMDs, it is prudent to demystify the intrinsic electrochemical behaviour that originates from the participation of the elemental constitution of transition metal or chalcogen. Moreover, knowledge of the catalytic and electronic properties of the various TMD families and emerging trends across the period or down the group is of paramount importance when introducing or refining their prospective uses. The annotations in this Tutorial Review are envisioned to promote

  3. Low temperature double-layer capacitors

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J. (Inventor); West, William C. (Inventor); Smart, Marshall C. (Inventor)

    2011-01-01

    Double-layer capacitors capable of operating at extremely low temperatures (e.g., as low as -75.degree. C.) are disclosed. Electrolyte solutions combining a base solvent (e.g., acetonitrile) and a cosolvent are employed to lower the melting point of the base electrolyte. Example cosolvents include methyl formate, ethyl acetate, methyl acetate, propionitrile, butyronitrile, and 1,3-dioxolane. An optimized concentration (e.g., 0.10 M to 0.75 M) of salt, such as tetraethylammonium tetrafluoroborate, is dissolved into the electrolyte solution. In some cases (e.g., 1,3-dioxolane cosolvent) additives, such as 2% by volume triethylamine, may be included in the solvent mixture to prevent polymerization of the solution. Conventional device form factors and structural elements (e.g., porous carbon electrodes and a polyethylene separator) may be employed.

  4. Double-Layer Gadolinium Zirconate/Yttria-Stabilized Zirconia Thermal Barrier Coatings Deposited by the Solution Precursor Plasma Spray Process

    NASA Astrophysics Data System (ADS)

    Jiang, Chen; Jordan, Eric H.; Harris, Alan B.; Gell, Maurice; Roth, Jeffrey

    2015-08-01

    Advanced thermal barrier coatings (TBCs) with lower thermal conductivity, increased resistance to calcium-magnesium-aluminosilicate (CMAS), and improved high-temperature capability, compared to traditional yttria-stabilized zirconia (YSZ) TBCs, are essential to higher efficiency in next generation gas turbine engines. Double-layer rare-earth zirconate/YSZ TBCs are a promising solution. From a processing perspective, solution precursor plasma spray (SPPS) process with its unique and beneficial microstructural features can be an effective approach to obtaining the double-layer microstructure. Previously durable low-thermal-conductivity YSZ TBCs with optimized layered porosity, called the inter-pass boundaries (IPBs) were produced using the SPPS process. In this study, an SPPS gadolinium zirconate (GZO) protective surface layer was successfully added. These SPPS double-layer TBCs not only retained good cyclic durability and low thermal conductivity, but also demonstrated favorable phase stability and increased surface temperature capabilities. The CMAS resistance was evaluated with both accumulative and single applications of simulated CMAS in isothermal furnaces. The double-layer YSZ/GZO exhibited dramatic improvement in the single application, but not in the continuous one. In addition, to explore their potential application in integrated gasification combined cycle environments, double-layer TBCs were tested under high-temperature humidity and encouraging performance was recorded.

  5. Sol-gel-derived double-layered nanocrystal memory

    NASA Astrophysics Data System (ADS)

    Ko, Fu-Hsiang; You, Hsin-Chiang; Lei, Tan-Fu

    2006-12-01

    The authors have used the sol-gel spin-coating method to fabricate a coexisting hafnium silicate and zirconium silicate double-layered nanocrystal (NC) memories. From transmission electron microscopic and x-ray photoelectron spectroscopic analyses, the authors determined that the hafnium silicate and zirconium silicate NCs formed after annealing at 900°C for 1min. When using channel hot electron injection for charging and band-to-band tunneling-induced hot hole injection for discharging, the NC memories exhibited superior Vth shifting because of the higher probability for trapping the charge carrier.

  6. Improved Mechanical Compatibility and Cytocompatibility of Ta/Ti Double-Layered Composite Coating

    NASA Astrophysics Data System (ADS)

    Ding, Ding; Xie, Youtao; Li, Kai; Huang, Liping; Zheng, Xuebin

    2017-08-01

    In order to improve the mechanical compatibility and cytocompatibility of titanium implants, a composite coating with double layers composed of tantalum and titanium was designed and prepared using plasma spraying technology. In the composite coating, the upper tantalum layer provides a good biocompatibility, and the sublayer of titanium with a porous structure ensures the low elastic modulus. Results show that the fabricated composite coating exhibits a relatively low elastic modulus of 26.7 GPa, which is close to the elastic modulus of human cortical bone. In vitro cytocompatibility evaluation of the composite coating shows that the human bone marrow stromal cells exhibit enhanced adhesion and spreading performance on the double-layered composite coating in comparison with the single-layered titanium coating. In order to eliminate the misgivings of chemical stability of the composite coating in clinical application, electrochemical corrosion of the coating was examined. The results obtained revealed a very weak galvanic corrosion between the tantalum and titanium in the composite coating, which would ensure the safety of the coating in vivo.

  7. Application of double-layered skin phantoms for optical flow imaging during laser tattoo treatments

    NASA Astrophysics Data System (ADS)

    Lee, Byeong-il; Song, Woosub; Kim, Hyejin; Kang, Hyun Wook

    2016-05-01

    The feasible application of double-layered skin phantoms was evaluated to identify artificial blood flow with a Doppler optical coherence tomography (DOCT) system for laser tattoo treatments. Polydimethylsiloxane (PDMS) was used to fabricate the artificial phantoms with flow channels embedded. A double-integrating sphere system with an inverse adding-doubling method quantified both the absorption and the reduced scattering coefficients for epidermis and dermis phantoms. Both OCT and caliper measurements confirmed the double-layered phantom structure (epidermis = 136 ± 17 µm vs. dermis = 3.0 ± 0.1 mm). The DOCT method demonstrated that high flow rates were associated with high image contrast, visualizing the position and the shape of the flow channel. Application of the channel-embedded skin phantoms in conjunction with DOCT can be a reliable technique to assess dynamic variations in the blood flow during and after laser tattoo treatments.

  8. Effectiveness evaluation of double-layered satellite network with laser and microwave hybrid links based on fuzzy analytic hierarchy process

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Rao, Qiaomeng

    2018-01-01

    In order to solve the problem of high speed, large capacity and limited spectrum resources of satellite communication network, a double-layered satellite network with global seamless coverage based on laser and microwave hybrid links is proposed in this paper. By analyzing the characteristics of the double-layered satellite network with laser and microwave hybrid links, an effectiveness evaluation index system for the network is established. And then, the fuzzy analytic hierarchy process, which combines the analytic hierarchy process and the fuzzy comprehensive evaluation theory, is used to evaluate the effectiveness of the double-layered satellite network with laser and microwave hybrid links. Furthermore, the evaluation result of the proposed hybrid link network is obtained by simulation. The effectiveness evaluation process of the proposed double-layered satellite network with laser and microwave hybrid links can help to optimize the design of hybrid link double-layered satellite network and improve the operating efficiency of the satellite system.

  9. Diagnostic study of multiple double layer formation in expanding RF plasma

    NASA Astrophysics Data System (ADS)

    Chakraborty, Shamik; Paul, Manash Kumar; Roy, Jitendra Nath; Nath, Aparna

    2018-03-01

    Intensely luminous double layers develop and then expand in size in a visibly glowing RF discharge produced using a plasma source consisting of a semi-transparent cylindrical mesh with a central electrode, in a linear plasma chamber. Although RF discharge is known to be independent of device geometry in the absence of magnetic field, the initiation of RF discharge using such a plasma source results in electron drift and further expansion of the plasma in the vessel. The dynamics of complex plasma structures are studied through electric probe diagnostics in the expanding RF plasma. The measurements made to study the parametric dependence of evolution of double layer structures are analyzed and presented here. The plasma parameter measurements suggest that the complex potential structures initially form with low potential difference between the layers and then gradually expand producing burst oscillations. The present study provides interesting information about the stability of plasma sheath and charge particle dynamics in it that are important to understand the underlying basic sheath physics along with applications in plasma acceleration and propulsion.

  10. Experimental investigation of current free double layers in helicon plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahu, B. B.; Tarey, R. D.; Ganguli, A.

    2014-02-15

    The paper presents investigations of current free double layer (CFDL) that forms in helicon plasmas. In contrast to the other work reporting on the same subject, in the present investigations the double layer (DL) forms in a mirror-like magnetic field topology. The RF compensated Langmuir probe measurements show multiple DLs, which are in connection with, the abrupt fall of densities along with potential drop of about 24 V and 18 V. The DLs strengths (e ΔV{sub p})/(k T{sub e}) are about 9.5 and 6, and the corresponding widths are about 6 and 5 D lengths. The potential drop is nearly equal tomore » the thermal anisotropies between the two plasma regions forming the DL, which is present in the plateau region of mirror, unlike the earlier studies on the DL formation in the region of strong gradients in the magnetic field. Also, it presents a qualitative discussion on the mechanism of DL formation.« less

  11. Preparation of PLGA/Rose Bengal colloidal particles by double emulsion and layer-by-layer for breast cancer treatment.

    PubMed

    Loya-Castro, María F; Sánchez-Mejía, Mariana; Sánchez-Ramírez, Dante R; Domínguez-Ríos, Rossina; Escareño, Noé; Oceguera-Basurto, Paola E; Figueroa-Ochoa, Édgar B; Quintero, Antonio; Del Toro-Arreola, Alicia; Topete, Antonio; Daneri-Navarro, Adrián

    2018-05-15

    The use of colloidal particles (CPs) in the transport of drugs is developing rapidly thanks to its effectiveness and biosafety, especially in the treatment of various types of cancer. In this study Rose Bengal/PLGA CPs synthesized by double emulsion (W/O/W) and by electrostatic adsorption (layer-by-layer), were characterized and evaluated as potential breast cancer treatment. CPs were evaluated in terms of size, zeta potential, drug release kinetics and cell viability inhibition efficacy with the triple negative breast cancer cell line HCC70. The results showed that both types of CPs can be an excellent alternative to conventional cancer treatment by taking advantage of the enhanced permeation and retention (EPR) effect, manifested by solid tumors; however, the double emulsion CPs showed more suitable delivery times of up to 60% within two days, while layer-by-layer showed fast release of 50% in 90 min. Both types of CPs were capable to decrease cell viability, which encourage us to further testing in in vivo models to prove their efficacy and feasible use in the treatment of triple negative breast cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Auroral-particle precipitation and trapping caused by electrostatic double layers in the ionosphere.

    PubMed

    Albert, R D; Lindstrom, P J

    1970-12-25

    Interpretation of high-resolution angular distribution measurements of the primary auroral electron flux detected by a rocket probe launched into a visible aurora from Fort Churchill in the fall of 1966 leads to the following conclusions. The auroral electron flux is nearly monoenergetic and has a quasi-trapped as well as a precipitating component. The quasi-trapped flux appears to be limited to a region defined by magnetic-mirror points and multiple electrostatic double layers in the ionosphere. The electrostatic field of the double-layer distribution enhances the aurora by lowering the magnetic-mirror points and supplying energy to the primary auroral electrons.

  13. Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices

    DOE PAGES

    Black, Jennifer M.; Come, Jeremy; Bi, Sheng; ...

    2017-10-24

    Ionic liquid gating of transition metal oxides has enabled new states (magnetic, electronic, metal–insulator), providing fundamental insights into the physics of strongly correlated oxides. However, despite much research activity, little is known about the correlation of the structure of the liquids in contact with the transition metal oxide surface, its evolution with the applied electric potential, and its correlation with the measured electronic properties of the oxide. Here, we investigate the structure of an ionic liquid at a semiconducting oxide interface during the operation of a thin film transistor where the electrical double layer gates the device using experiment andmore » theory. We show that the transition between the ON and OFF states of the amorphous indium gallium zinc oxide transistor is accompanied by a densification and preferential spatial orientation of counterions at the oxide channel surface. This process occurs in three distinct steps, corresponding to ion orientations, and consequently, regimes of different electrical conductivity. The reason for this can be found in the surface charge densities on the oxide surface when different ion arrangements are present. Overall, the field-effect gating process is elucidated in terms of the interfacial ionic liquid structure, and this provides unprecedented insight into the working of a liquid gated transistor linking the nanoscopic structure to the functional properties. This knowledge will enable both new ionic liquid design as well as advanced device concepts.« less

  14. Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Jennifer M.; Come, Jeremy; Bi, Sheng

    Ionic liquid gating of transition metal oxides has enabled new states (magnetic, electronic, metal–insulator), providing fundamental insights into the physics of strongly correlated oxides. However, despite much research activity, little is known about the correlation of the structure of the liquids in contact with the transition metal oxide surface, its evolution with the applied electric potential, and its correlation with the measured electronic properties of the oxide. Here, we investigate the structure of an ionic liquid at a semiconducting oxide interface during the operation of a thin film transistor where the electrical double layer gates the device using experiment andmore » theory. We show that the transition between the ON and OFF states of the amorphous indium gallium zinc oxide transistor is accompanied by a densification and preferential spatial orientation of counterions at the oxide channel surface. This process occurs in three distinct steps, corresponding to ion orientations, and consequently, regimes of different electrical conductivity. The reason for this can be found in the surface charge densities on the oxide surface when different ion arrangements are present. Overall, the field-effect gating process is elucidated in terms of the interfacial ionic liquid structure, and this provides unprecedented insight into the working of a liquid gated transistor linking the nanoscopic structure to the functional properties. This knowledge will enable both new ionic liquid design as well as advanced device concepts.« less

  15. Substituted Quaternary Ammonium Salts Improve Low-Temperature Performance of Double-Layer Capacitors

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J.; Smart, Marshall C.; West, William C.

    2011-01-01

    Double-layer capacitors are unique energy storage devices, capable of supporting large current pulses as well as a very high number of charging and discharging cycles. The performance of doublelayer capacitors is highly dependent on the nature of the electrolyte system used. Many applications, including for electric and fuel cell vehicles, back-up diesel generators, wind generator pitch control back-up power systems, environmental and structural distributed sensors, and spacecraft avionics, can potentially benefit from the use of double-layer capacitors with lower equivalent series resistances (ESRs) over wider temperature limits. Higher ESRs result in decreased power output, which is a particular problem at lower temperatures. Commercially available cells are typically rated for operation down to only 40 C. Previous briefs [for example, Low Temperature Supercapacitors (NPO-44386), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), p. 32, and Supercapacitor Electrolyte Solvents With Liquid Range Below 80 C (NPO-44855), NASA Tech Briefs, Vol. 34, No. 1 (January 2010), p. 44] discussed the use of electrolytes that employed low-melting-point co-solvents to depress the freezing point of traditional acetonitrile-based electrolytes. Using these modified electrolyte formulations can extend the low-temperature operational limit of double-layer capacitors beyond that of commercially available cells. This previous work has shown that although the measured capacitance is relatively insensitive to temperature, the ESR can rise rapidly at low temperatures, due to decreased electrolyte conductance within the pores of the high surface- area carbon electrodes. Most of these advanced electrolyte systems featured tetraethylammonium tetrafluoroborate (TEATFB) as the salt. More recent work at JPL indicates the use of the asymmetric quaternary ammonium salt triethylmethylammonium tetrafluoroborate (TEMATFB) or spiro-(l,l')-bipyrrolidium tetrafluoroborate (SBPBF4) in a 1:1 by volume solvent

  16. Inorganic-Organic Coating via Molecular Layer Deposition Enables Long Life Sodium Metal Anode.

    PubMed

    Zhao, Yang; Goncharova, Lyudmila V; Zhang, Qian; Kaghazchi, Payam; Sun, Qian; Lushington, Andrew; Wang, Biqiong; Li, Ruying; Sun, Xueliang

    2017-09-13

    Metallic Na anode is considered as a promising alternative candidate for Na ion batteries (NIBs) and Na metal batteries (NMBs) due to its high specific capacity, and low potential. However, the unstable solid electrolyte interphase layer caused by serious corrosion and reaction in electrolyte will lead to big challenges, including dendrite growth, low Coulombic efficiency and even safety issues. In this paper, we first demonstrate the inorganic-organic coating via advanced molecular layer deposition (alucone) as a protective layer for metallic Na anode. By protecting Na anode with controllable alucone layer, the dendrites and mossy Na formation have been effectively suppressed and the lifetime has been significantly improved. Moreover, the molecular layer deposition alucone coating shows better performances than the atomic layer deposition Al 2 O 3 coating. The novel design of molecular layer deposition protected Na metal anode may bring in new opportunities to the realization of the next-generation high energy-density NIBs and NMBs.

  17. Atomic layer deposition of ZrO2 on W for metal-insulator-metal capacitor application

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Yun; Kim, Hyoungsub; McIntyre, Paul C.; Saraswat, Krishna C.; Byun, Jeong-Soo

    2003-04-01

    A metal-insulator-metal (MIM) capacitor using ZrO2 on tungsten (W) metal bottom electrode was demonstrated and characterized in this letter. Both ZrO2 and W metal were synthesized by an atomic layer deposition (ALD) method. High-quality 110˜115 Å ZrO2 films were grown uniformly on ALD W using ZrCl4 and H2O precursors at 300 °C, and polycrystalline ZrO2 in the ALD regime could be obtained. A 13˜14-Å-thick interfacial layer between ZrO2 and W was observed after fabrication, and it was identified as WOx through angle-resolved x-ray photoelectron spectroscopy analysis with wet chemical etching. The apparent equivalent oxide thickness was 20˜21 Å. An effective dielectric constant of 22˜25 including an interfacial WOx layer was obtained by measuring capacitance and thickness of MIM capacitors with Pt top electrodes. High capacitance per area (16˜17 fF/μm2) and low leakage current (10-7 A/cm2 at ±1 V) were achieved.

  18. 6. DOUBLE METAL DOORS ON WEST SIDE WITH CABLES ENTERING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DOUBLE METAL DOORS ON WEST SIDE WITH CABLES ENTERING GROUND AT NORTH END OF BUILDING. - Chollas Heights Naval Radio Transmitting Facility, Helix House, 6410 Zero Road, San Diego, San Diego County, CA

  19. Molecular dynamics in aluminum layered double hydroxides as studied by 1H T1ρ NMR measurements

    NASA Astrophysics Data System (ADS)

    Vyalikh, Anastasia; Wang, De-Yi; Wagenknecht, Udo; Heinrich, Gert; Scheler, Ulrich

    2011-06-01

    Proton dynamics in pristine and organically-modified layered double hydroxide has been studied by 1H T1ρ. Inverse Laplace transform with spectral resolution results in a correlation of T1ρ and chemical shift. In LDH two contributions are resolved. They are assigned to the metal hydroxides, forming the LDH sheets (4-8 ms), and mobile interlayer water (2 ms). Apparent T1ρ values of OH-protons in surfactant-modified LDH are different in dodecylbenzenesulfonate- (SDBS) and sodium octasulfonate- (C8) modified LDH. This difference is explained by the presence of water in LDH-SDBS. The effects of spin diffusion have been studied by performing 2D 1H RFDR in the LDH-SDBS.

  20. Effects of channel thickness on oxide thin film transistor with double-stacked channel layer

    NASA Astrophysics Data System (ADS)

    Lee, Kimoon; Kim, Yong-Hoon; Yoon, Sung-Min; Kim, Jiwan; Oh, Min Suk

    2017-11-01

    To improve the field effect mobility and control the threshold voltage ( V th ) of oxide thin film transistors (TFTs), we fabricated the oxide TFTs with double-stacked channel layers which consist of thick Zn-Sn-O (ZTO) and very thin In-Zn-O (IZO) layers. We investigated the effects of the thickness of thin conductive layer and the conductivity of thick layer on oxide TFTs with doublestacked channel layer. When we changed the thickness of thin conductive IZO channel layer, the resistivity values were changed. This resistivity of thin channel layer affected on the saturation field effect mobility and the off current of TFTs. In case of the thick ZTO channel layer which was deposited by sputtering in Ar: O2 = 10: 1, the device showed better performances than that which was deposited in Ar: O2 = 1: 1. Our TFTs showed high mobility ( μ FE ) of 40.7 cm2/Vs and V th of 4.3 V. We assumed that high mobility and the controlled V th were caused by thin conductive IZO layer and thick stable ZTO layer. Therefore, this double-stacked channel structure can be very promising way to improve the electrical characteristics of various oxide thin film transistors.

  1. Rare earth zirconium oxide buffer layers on metal substrates

    DOEpatents

    Williams, Robert K.; Paranthaman, Mariappan; Chirayil, Thomas G.; Lee, Dominic F.; Goyal, Amit; Feenstra, Roeland

    2001-01-01

    A laminate article comprises a substrate and a biaxially textured (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer over the substrate, wherein 0layer can be deposited using sol-gel or metal-organic decomposition. The laminate article can include a layer of YBCO over the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer. A layer of CeO.sub.2 between the YBCO layer and the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer can also be include. Further included can be a layer of YSZ between the CeO.sub.2 layer and the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.

  2. Si/Ge double-layered nanotube array as a lithium ion battery anode.

    PubMed

    Song, Taeseup; Cheng, Huanyu; Choi, Heechae; Lee, Jin-Hyon; Han, Hyungkyu; Lee, Dong Hyun; Yoo, Dong Su; Kwon, Moon-Seok; Choi, Jae-Man; Doo, Seok Gwang; Chang, Hyuk; Xiao, Jianliang; Huang, Yonggang; Park, Won Il; Chung, Yong-Chae; Kim, Hansu; Rogers, John A; Paik, Ungyu

    2012-01-24

    Problems related to tremendous volume changes associated with cycling and the low electron conductivity and ion diffusivity of Si represent major obstacles to its use in high-capacity anodes for lithium ion batteries. We have developed a group IVA based nanotube heterostructure array, consisting of a high-capacity Si inner layer and a highly conductive Ge outer layer, to yield both favorable mechanics and kinetics in battery applications. This type of Si/Ge double-layered nanotube array electrode exhibits improved electrochemical performances over the analogous homogeneous Si system, including stable capacity retention (85% after 50 cycles) and doubled capacity at a 3C rate. These results stem from reduced maximum hoop strain in the nanotubes, supported by theoretical mechanics modeling, and lowered activation energy barrier for Li diffusion. This electrode technology creates opportunities in the development of group IVA nanotube heterostructures for next generation lithium ion batteries. © 2011 American Chemical Society

  3. A polygonal double-layer coil design for high-efficiency wireless power transfer

    NASA Astrophysics Data System (ADS)

    Mao, Shitong; Wang, Hao; Mao, Zhi-Hong; Sun, Mingui

    2018-05-01

    In this work, we present a novel coil structure for the design of Wireless Power Transfer (WPT) systems via magnetic resonant coupling. The new coil consists of two layers of flat polygonal windings in square, pentagonal and hexagonal shapes. The double-layer coil can be conveniently fabricated using the print circuit broad (PCB) technology. In our design, we include an angle between the two layers which can be adjusted to change the area of inter-layer overlap. This unique structure is thoroughly investigated with respect to the quality factor Q and the power transfer efficiency (PTE) using the finite element method (FEM). An equivalent circuit is derived and used to explain the properties of the angularly shifted double-layer coil theoretically. Comparative experiments are conducted from which the performance of the new coil is evaluated quantitatively. Our results have shown that an increased shift angle improves the Q-factor, and the optimal PTE is achieved when the angle reaches the maximum. When compared to the pentagonal and hexagonal coils, the square coil achieves the highest PTE due to its lowest parasitic capacitive effects. In summary, our new coil design improves the performance of WPT systems and allows a formal design procedure for optimization in a given application.

  4. Multi-layered nanocomposite dielectrics for high density organic memory devices

    NASA Astrophysics Data System (ADS)

    Kang, Moonyeong; Chung, Kyungwha; Baeg, Kang-Jun; Kim, Dong Ha; Kim, Choongik

    2015-01-01

    We fabricated organic memory devices with metal-pentacene-insulator-silicon structure which contain double dielectric layers comprising 3D pattern of Au nanoparticles (Au NPs) and block copolymer (PS-b-P2VP). The role of Au NPs is to charge/discharge carriers upon applied voltage, while block copolymer helps to form highly ordered Au NP patterns in the dielectric layer. Double-layered nanocomposite dielectrics enhanced the charge trap density (i.e., trapped charge per unit area) by Au NPs, resulting in increase of the memory window (ΔVth).

  5. Electric double-layer capacitance between an ionic liquid and few-layer graphene.

    PubMed

    Uesugi, Eri; Goto, Hidenori; Eguchi, Ritsuko; Fujiwara, Akihiko; Kubozono, Yoshihiro

    2013-01-01

    Ionic-liquid gates have a high carrier density due to their atomically thin electric double layer (EDL) and extremely large geometrical capacitance Cg. However, a high carrier density in graphene has not been achieved even with ionic-liquid gates because the EDL capacitance CEDL between the ionic liquid and graphene involves the series connection of Cg and the quantum capacitance Cq, which is proportional to the density of states. We investigated the variables that determine CEDL at the molecular level by varying the number of graphene layers n and thereby optimising Cq. The CEDL value is governed by Cq at n < 4, and by Cg at n > 4. This transition with n indicates a composite nature for CEDL. Our finding clarifies a universal principle that determines capacitance on a microscopic scale, and provides nanotechnological perspectives on charge accumulation and energy storage using an ultimately thin capacitor.

  6. Electric double-layer capacitance between an ionic liquid and few-layer graphene

    PubMed Central

    Uesugi, Eri; Goto, Hidenori; Eguchi, Ritsuko; Fujiwara, Akihiko; Kubozono, Yoshihiro

    2013-01-01

    Ionic-liquid gates have a high carrier density due to their atomically thin electric double layer (EDL) and extremely large geometrical capacitance Cg. However, a high carrier density in graphene has not been achieved even with ionic-liquid gates because the EDL capacitance CEDL between the ionic liquid and graphene involves the series connection of Cg and the quantum capacitance Cq, which is proportional to the density of states. We investigated the variables that determine CEDL at the molecular level by varying the number of graphene layers n and thereby optimising Cq. The CEDL value is governed by Cq at n < 4, and by Cg at n > 4. This transition with n indicates a composite nature for CEDL. Our finding clarifies a universal principle that determines capacitance on a microscopic scale, and provides nanotechnological perspectives on charge accumulation and energy storage using an ultimately thin capacitor. PMID:23549208

  7. Intracavity double diode structures with GaInP barrier layers for thermophotonic cooling

    NASA Astrophysics Data System (ADS)

    Tiira, Jonna; Radevici, Ivan; Haggren, Tuomas; Hakkarainen, Teemu; Kivisaari, Pyry; Lyytikäinen, Jari; Aho, Arto; Tukiainen, Antti; Guina, Mircea; Oksanen, Jani

    2017-02-01

    Optical cooling of semiconductors has recently been demonstrated both for optically pumped CdS nanobelts and for electrically injected GaInAsSb LEDs at very low powers. To enable cooling at larger power and to understand and overcome the main obstacles in optical cooling of conventional semiconductor structures, we study thermophotonic (TPX) heat transport in cavity coupled light emitters. Our structures consist of a double heterojunction (DHJ) LED with a GaAs active layer and a corresponding DHJ or a p-n-homojunction photodiode, enclosed within a single semiconductor cavity to eliminate the light extraction challenges. Our presently studied double diode structures (DDS) use GaInP barriers around the GaAs active layer instead of the AlGaAs barriers used in our previous structures. We characterize our updated double diode structures by four point probe IV- measurements and measure how the material modifications affect the recombination parameters and coupling quantum efficiencies in the structures. The coupling quantum efficiency of the new devices with InGaP barrier layers is found to be approximately 10 % larger than for the structures with AlGaAs barriers at the point of maximum efficiency.

  8. Improved Efficiency of Polymer Solar Cells by means of Coating Hole Transporting Layer as Double Layer Deposition

    NASA Astrophysics Data System (ADS)

    Chonsut, T.; Kayunkid, N.; Rahong, S.; Rangkasikorn, A.; Wirunchit, S.; Kaewprajak, A.; Kumnorkaew, P.; Nukeaw, J.

    2017-09-01

    Polymer solar cells is one of the promising technologies that gain tremendous attentions in the field of renewable energy. Optimization of thickness for each layer is an important factor determining the efficiency of the solar cells. In this work, the optimum thickness of Poly(3,4-ethylenedioxythione): poly(styrenesulfonate) (PEDOT:PSS), a famous polymer widely used as hole transporting layer in polymer solar cells, is determined through the analyzing of device’s photovoltaic parameters, e.g. short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF) as well as power conversion efficiency (PCE). The solar cells were prepared with multilayer of ITO/PEDOT:PSS/PCDTBT:PC70BM/TiOx/Al by rapid convective deposition. In such preparation technique, the thickness of the thin film is controlled by the deposition speed. The faster deposition speed is used, the thicker film is obtained. Furthermore, double layer deposition of PEDOT:PSS was introduced as an approach to improve solar cell efficiency. The results obviously reveal that, with the increase of PEDOT:PSS thickness, the increments of Jsc and FF play the important role to improve PCE from 3.21% to 4.03%. Interestingly, using double layer deposition of PEDOT:PSS shows the ability to enhance the performance of the solar cells to 6.12% under simulated AM 1.5G illumination of 100 mW/cm2.

  9. Nano- and micro-structuring of fused silica using time-delay adjustable double flash ns-laser radiation

    NASA Astrophysics Data System (ADS)

    Lorenz, Pierre; Zhao, Xiongtao; Ehrhardt, Martin; Zagoranskiy, Igor; Zimmer, Klaus; Han, Bing

    2018-02-01

    Large area, high speed, nanopatterning of surfaces by laser ablation is challenging due to the required high accuracy of the optical and mechanical systems fulfilling the precision of nanopatterning process. Utilization of self-organization approaches can provide an alternative decoupling spot precision and field of machining. The laser-induced front side etching (LIFE) and laser-induced back side dry etching (LIBDE) of fused silica were studied using single and double flash nanosecond laser pulses with a wavelength of 532 nm where the time delay Δτ of the double flash laser pulses was adjusted from 50 ns to 10 μs. The fused silica can be etched at both processes assisted by a 10 nm chromium layer where the etching depth Δz at single flash laser pulses is linear to the laser fluence and independent on the number of laser pulses, from 2 to 12 J/cm2, it is Δz = δLIFE/LIBDE . Φ with δLIFE 16 nm/(J/cm2) and δLIBDE 5.2 nm/(J/cm2) 3 . δLIFE. At double flash laser pulses, the Δz is dependent on the time delay Δτ of the laser pulses and the Δz slightly increased at decreasing Δτ. Furthermore, the surface nanostructuring of fused silica using IPSM-LIFE (LIFE using in-situ pre-structured metal layer) method with a single double flash laser pulse was tested. The first pulse of the double flash results in a melting of the metal layer. The surface tension of the liquid metal layer tends in a droplet formation process and dewetting process, respectively. If the liquid phase life time ΔtLF is smaller than the droplet formation time the metal can be "frozen" in an intermediated state like metal bare structures. The second laser treatment results in a evaporation of the metal and in a partial evaporation and melting of the fused silica surface, where the resultant structures in the fused silica surface are dependent on the lateral geometry of the pre-structured metal layer. A successful IPSM-LIFE structuring could be achieved assisted by a 20 nm molybdenum layer at

  10. Boosted output performance of triboelectric nanogenerator via electric double layer effect

    PubMed Central

    Chun, Jinsung; Ye, Byeong Uk; Lee, Jae Won; Choi, Dukhyun; Kang, Chong-Yun; Kim, Sang-Woo; Wang, Zhong Lin; Baik, Jeong Min

    2016-01-01

    For existing triboelectric nanogenerators (TENGs), it is important to explore unique methods to further enhance the output power under realistic environments to speed up their commercialization. We report here a practical TENG composed of three layers, in which the key layer, an electric double layer, is inserted between a top layer, made of Al/polydimethylsiloxane, and a bottom layer, made of Al. The efficient charge separation in the middle layer, based on Volta's electrophorus, results from sequential contact configuration of the TENG and direct electrical connection of the middle layer to the earth. A sustainable and enhanced output performance of 1.22 mA and 46.8 mW cm−2 under low frequency of 3 Hz is produced, giving over 16-fold enhancement in output power and corresponding to energy conversion efficiency of 22.4%. Finally, a portable power-supplying system, which provides enough d.c. power for charging a smart watch or phone battery, is also successfully developed. PMID:27703165

  11. Homogeneous double-layer amorphous Si-doped indium oxide thin-film transistors for control of turn-on voltage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kizu, Takio, E-mail: KIZU.Takio@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Tsukagoshi, Kazuhito, E-mail: KIZU.Takio@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Aikawa, Shinya

    We fabricated homogeneous double-layer amorphous Si-doped indium oxide (ISO) thin-film transistors (TFTs) with an insulating ISO cap layer on top of a semiconducting ISO bottom channel layer. The homogeneously stacked ISO TFT exhibited high mobility (19.6 cm{sup 2}/V s) and normally-off characteristics after annealing in air. It exhibited normally-off characteristics because the ISO insulator suppressed oxygen desorption, which suppressed the formation of oxygen vacancies (V{sub O}) in the semiconducting ISO. Furthermore, we investigated the recovery of the double-layer ISO TFT, after a large negative shift in turn-on voltage caused by hydrogen annealing, by treating it with annealing in ozone. The recoverymore » in turn-on voltage indicates that the dense V{sub O} in the semiconducting ISO can be partially filled through the insulator ISO. Controlling molecule penetration in the homogeneous double layer is useful for adjusting the properties of TFTs in advanced oxide electronics.« less

  12. A double layer model for solar X-ray and microwave pulsations

    NASA Technical Reports Server (NTRS)

    Tapping, K. F.

    1986-01-01

    The wide range of wavelengths over which quasi-periodic pulsations have been observed suggests that the mechanism causing them acts upon the supply of high energy electrons driving the emission processes. A model is described which is based upon the radial shrinkage of a magnetic flux tube. The concentration of the current, along with the reduction in the number of available charge carriers, can rise to a condition where the current demand exceeds the capacity of the thermal electrons. Driven by the large inductance of the external current circuit, an instability takes place in the tube throat, resulting in the formation of a potential double layer, which then accelerates electrons and ions to MeV energies. The double layer can be unstable, collapsing and reforming repeatedly. The resulting pulsed particle beams give rise to pulsating emission which are observed at radio and X-ray wavelengths.

  13. New technique for heterogeneous vapor-phase synthesis of nanostructured metal layers from low-dimensional volatile metal complexes

    NASA Astrophysics Data System (ADS)

    Badalyan, A. M.; Bakhturova, L. F.; Kaichev, V. V.; Polyakov, O. V.; Pchelyakov, O. P.; Smirnov, G. I.

    2011-09-01

    A new technique for depositing thin nanostructured layers on semiconductor and insulating substrates that is based on heterogeneous gas-phase synthesis from low-dimensional volatile metal complexes is suggested and tried out. Thin nanostructured copper layers are deposited on silicon and quartz substrates from low-dimensional formate complexes using a combined synthesis-mass transport process. It is found that copper in layers thus deposited is largely in a metal state (Cu0) and has the form of closely packed nanograins with a characteristic structure.

  14. Tungstocobaltate-pillared layered double hydroxides: Preparation, characterization, magnetic and catalytic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei Xiaocui; Baicheng College of Higher Medicine, Baicheng 137000; Fu Youzhi

    2008-06-15

    A new polyoxometalate anion-pillared layered double hydroxide (LDH) was prepared by aqueous ion exchange of a Mg-Al LDH precursor in nitrate form with the tungstocobaltate anions [CoW{sub 12}O{sub 40}]{sup 5-}. The physicochemical properties of the product were characterized by the methods of powder X-ray diffraction, elemental analysis, infrared spectroscopy, thermogravimetric analysis and cyclic voltammetry. It was confirmed that [CoW{sub 12}O{sub 40}]{sup 5-} was intercalated between the brucite-type layers of the LDHs without a change in the structure. Magnetic measurement shows the occurrence of antiferromagnetic interactions between the magnetic centers. The investigation of catalytic performance for this sample exhibits high activitymore » for the oxidation of benzaldehyde by hydrogen peroxide. - Graphical abstract: A tungstocobaltate anion [CoW{sub 12}O{sub 40}]{sup 5-} pillared layered double hydroxide (LDH) was prepared by aqueous ion exchange with a Mg-Al LDH precursor in nitrate form, demonstrating that [CoW{sub 12}O{sub 40}]{sup 5-} was intercalated between the brucite-type layers of the LDHs without change in structure. Magnetic measurement shows the occurrence of antiferromagnetic interactions between the magnetic centers. The investigation of catalytic performance for this sample exhibits high activity for the oxidation of benzaldehyde by hydrogen peroxide.« less

  15. Slow electron acoustic double layer (SEADL) structures in bi-ion plasma with trapped electrons

    NASA Astrophysics Data System (ADS)

    Shan, Shaukat Ali; Imtiaz, Nadia

    2018-05-01

    The properties of ion acoustic double layer (IADL) structures in bi-ion plasma with electron trapping are investigated by using the quasi-potential analysis. The κ-distributed trapped electrons number density expression is truncated to some finite order of the electrostatic potential. By utilizing the reductive perturbation method, a modified Schamel equation which describes the evolution of the slow electron acoustic double layer (SEADL) with the modified speed due to the presence of bi-ion species is investigated. The Sagdeev-like potential has been derived which accounts for the effect of the electron trapping and superthermality in a bi-ion plasma. It is found that the superthermality index, the trapping efficiency of electrons, and ion to electron temperature ratio are the inhibiting parameters for the amplitude of the slow electron acoustic double layers (SEADLs). However, the enhanced population of the cold ions is found to play a supportive role for the low frequency DLs in bi-ion plasmas. The illustrations have been presented with the help of the bi-ion plasma parameters in the Earth's ionosphere F-region.

  16. Synthesis and adsorption properties of flower-like layered double hydroxide by a facile one-pot reaction with an eggshell membrane as assistant

    NASA Astrophysics Data System (ADS)

    Li, Songnan; Zhang, Jiawei; Jamil, Saba; Cai, Qinghai; Zang, Shuying

    In this paper, flower-like layered double hydroxides were synthesized with eggshell membrane assistant. The as-prepared samples were characterized by a series of techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy, Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Thermal gravity-differential thermal analysis and Nitrogen sorption/desorption. The resulting layered double hydroxides were composed of nanoplates with edge-to-face particle interactions. The specific surface area and total pore volume of the as-prepared flower-like layered double hydroxides were 160m2/g and 0.65m3/g, respectively. The adsorption capacity of flower-like layered double hydroxides to Congo Red was 258mg/g, which was higher than that of layered double hydroxides synthesized by the traditional method.

  17. Rapid prototyping of a double-layer polyurethane-collagen conduit for peripheral nerve regeneration.

    PubMed

    Cui, Tongkui; Yan, Yongnian; Zhang, Renji; Liu, Li; Xu, Wei; Wang, Xiaohong

    2009-03-01

    A new technique for preparing double-layer polyurethane (PU)-collagen nerve conduits for peripheral nerve repair via a double-nozzle, low-temperature, deposition manufacturing (DLDM) system has been developed. The DLDM system is based on a digital prototyping approach, and uses a combination of thermally induced phase separation and freeze-drying. With this system, two kinds of biomaterials with different properties can be combined to produce scaffold structures with good biocompatibility in the inner layer and with the desired mechanical strength protruded by the outer. The forming precision is high, the wall thickness can be controlled, and a tight connection between the two layers can be achieved. The effects of changing the processing parameters and the material temperature on the structure of the scaffolds have been investigated. Additionally, the effect of material concentration on the mechanical strength and hydrophilic properties of the scaffolds has also been studied. Ideal peripheral nerve repair conduits, comprising an outer microporous layer of PU and internal oriented filaments of collagen, have been manufactured through optimizing the processing parameters and the biomaterial concentrations.

  18. Flexible metal-semiconductor-metal device prototype on wafer-scale thick boron nitride layers grown by MOVPE.

    PubMed

    Li, Xin; Jordan, Matthew B; Ayari, Taha; Sundaram, Suresh; El Gmili, Youssef; Alam, Saiful; Alam, Muhbub; Patriarche, Gilles; Voss, Paul L; Paul Salvestrini, Jean; Ougazzaden, Abdallah

    2017-04-11

    Practical boron nitride (BN) detector applications will require uniform materials over large surface area and thick BN layers. To report important progress toward these technological requirements, 1~2.5 µm-thick BN layers were grown on 2-inch sapphire substrates by metal-organic vapor phase epitaxy (MOVPE). The structural and optical properties were carefully characterized and discussed. The thick layers exhibited strong band-edge absorption near 215 nm. A highly oriented two-dimensional h-BN structure was formed at the film/sapphire interface, which permitted an effective exfoliation of the thick BN film onto other adhesive supports. And this structure resulted in a metal-semiconductor-metal (MSM) device prototype fabricated on BN membrane delaminating from the substrate. MSM photodiode prototype showed low dark current of 2 nA under 100 V, and 100 ± 20% photoconductivity yield for deep UV light illumination. These wafer-scale MOVPE-grown thick BN layers present great potential for the development of deep UV photodetection applications, and even for flexible (opto-) electronics in the future.

  19. Double-layered PTFE-covered nitinol stents: experience in 32 patients with malignant esophageal strictures.

    PubMed

    Park, Jung Gu; Jung, Gyoo-Sik; Oh, Kyung Seung; Park, Seon-Ja

    2010-08-01

    We evaluated the effectiveness of a double-layered polytetrafluoroethylene (PTFE)-covered nitinol stent in the palliative treatment of malignant esophageal strictures. A double-layered PTFE-covered nitinol stent was designed to reduce the propensity to migration of conventional covered stent. The stent consists of an inner PTFE-covered stent and an outer uncovered nitinol stent tube. With fluoroscopic guidance, the stent was placed in 32 consecutive patients with malignant esophageal strictures. During the follow-up period, the technical and clinical success rates, complications, and cumulative patient survival and stent patency were evaluated. Stent placement was technically successful in all patients, and no procedural complications occurred. After stent placement, the symptoms of 30 patients (94%) showed improvement. During the mean follow-up of 103 days (range, 9-348 days), 11 (34%) of 32 patients developed recurrent symptoms due to tumor overgrowth in five patients (16%), tumor ingrowth owing to detachment of the covering material (PTFE) apart from the stent wire in 3 (9%), mucosal hyperplasia in 2 (6%), and stent migration in 1 (3%). Ten of these 11 patients were treated by means of placing a second covered stent. Thirty patients died, 29 as a result of disease progression and 1 from aspiration pneumonia. The median survival period was 92 days. The median period of primary stent patency was 190 days. The double-layered PTFE-covered nitinol stent seems to be effective for the palliative treatment of malignant esophageal strictures. We believe that the double-layer configuration of this stent can contribute to decreasing the stent's migration rate.

  20. Simulation of double layers in a model auroral circuit with nonlinear impedance

    NASA Technical Reports Server (NTRS)

    Smith, R. A.

    1986-01-01

    A reduced circuit description of the U-shaped potential structure of a discrete auroral arc, consisting of the flank transmission line plus parallel-electric-field region, is used to provide the boundary condition for one-dimensional simulations of the double-layer evolution. The model yields asymptotic scalings of the double-layer potential, as a function of an anomalous transport coefficient alpha and of the perpendicular length scale l(a) of the arc. The arc potential phi(DL) scales approximately linearly with alpha, and for alpha fixed phi (DL) about l(a) to the z power. Using parameters appropriate to the auroral zone acceleration region, potentials of phi (DPL) 10 kV scale to projected ionospheric dimensions of about 1 km, with power flows of the order of magnitude of substorm dissipation rates.

  1. Ferroelectric polarization induces electric double layer bistability in electrolyte-gated field-effect transistors.

    PubMed

    Fabiano, Simone; Crispin, Xavier; Berggren, Magnus

    2014-01-08

    The dense surface charges expressed by a ferroelectric polymeric thin film induce ion displacement within a polyelectrolyte layer and vice versa. This is because the density of dipoles along the surface of the ferroelectric thin film and its polarization switching time matches that of the (Helmholtz) electric double layers formed at the ferroelectric/polyelectrolyte and polyelectrolyte/semiconductor interfaces. This combination of materials allows for introducing hysteresis effects in the capacitance of an electric double layer capacitor. The latter is advantageously used to control the charge accumulation in the semiconductor channel of an organic field-effect transistor. The resulting memory transistors can be written at a gate voltage of around 7 V and read out at a drain voltage as low as 50 mV. The technological implication of this large difference between write and read-out voltages lies in the non-destructive reading of this ferroelectric memory.

  2. Fabrication of 4H-SiC lateral double implanted MOSFET on an on-axis semi-insulating substrate without using epi-layer

    NASA Astrophysics Data System (ADS)

    Kim, Hyoung Woo; Seok, Ogyun; Moon, Jeong Hyun; Bahng, Wook; Jo, Jungyol

    2017-12-01

    4H-SiC lateral double implanted metal-oxide-semiconductor field effect transistors (LDIMOSFET) were fabricated on on-axis semi-insulating SiC substrates without using an epi-layer. The LDIMOSFET adopted a current path layer (CPL), which was formed by ion-implantation. The CPL works as a drift region between gate and drain. By using on-axis semi-insulating substrate and optimized CPL parameters, breakdown voltage (BV) of 1093 V and specific on-resistance (R on,sp) of 89.8 mΩ·cm2 were obtained in devices with 20 µm long CPL. Experimentally extracted field-effect channel mobility was 21.7 cm2·V-1·s-1 and the figure-of-merit (BV2/R on,sp) was 13.3 MW/cm2.

  3. Low Temperature Double-layer Capacitors with Improved Energy Density: An Overview of Recent Development Efforts

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J.; West, William C.; Smart, Marshall C.; Korenblit, Yair; Kajdos, Adam; Kvit, Alexander; Jagiello, Jacek; Yushin, Gleb

    2012-01-01

    Electrochemical double-layer capacitors are finding increased use in a wide range of energy storage applications, particularly where high pulse power capabilities are required. Double-layer capacitors store charge at a liquid/solid interface, making them ideal for low temperature power applications, due to the facile kinetic processes associated with the rearrangement of the electrochemical double-layer at these temperatures. Potential low temperature applications include hybrid and electric vehicles, operations in polar regions, high altitude aircraft and aerospace avionics, and distributed environmental and structural health monitoring. State-of-the-art capacitors can typically operate to -40 C, with a subsequent degradation in power performance below room temperature. However, recent efforts focused on advanced electrolyte and electrode systems can enable operation to temperatures as low as -70 C, with capacities similar to room temperature values accompanied by reasonably low equivalent series resistances. This presentation will provide an overview of recent development efforts to extend and improve the wide temperature performance of these devices.

  4. Anomalous transport in discrete arcs and simulation of double layers in a model auroral circuit

    NASA Technical Reports Server (NTRS)

    Smith, Robert A.

    1987-01-01

    The evolution and long-time stability of a double layer (DL) in a discrete auroral arc requires that the parallel current in the arc, which may be considered uniform at the source, be diverted within the arc to charge the flanks of the U-shaped double layer potential structure. A simple model is presented in which this current redistribution is effected by anomalous transport based on electrostatic lower hybrid waves driven by the flank structure itself. This process provides the limiting constraint on the double layer potential. The flank charging may be represented as that of a nonlinear transmission line. A simplified model circuit, in which the transmission line is represented by a nonlinear impedance in parallel with a variable resistor, is incorporated in a one-dimensional simulation model to give the current density at the DL boundaries. Results are presented for the scaling of the DL potential as a function of the width of the arc and the saturation efficiency of the lower hybrid instability mechanism.

  5. Anomalous transport in discrete arcs and simulation of double layers in a model auroral circuit

    NASA Technical Reports Server (NTRS)

    Smith, Robert A.

    1987-01-01

    The evolution and long-time stability of a double layer in a discrete auroral arc requires that the parallel current in the arc, which may be considered uniform at the source, be diverted within the arc to charge the flanks of the U-shaped double-layer potential structure. A simple model is presented in which this current re-distribution is effected by anomalous transport based on electrostatic lower hybrid waves driven by the flank structure itself. This process provides the limiting constraint on the double-layer potential. The flank charging may be represented as that of a nonlinear transmission. A simplified model circuit, in which the transmission line is represented by a nonlinear impedance in parallel with a variable resistor, is incorporated in a 1-d simulation model to give the current density at the DL boundaries. Results are presented for the scaling of the DL potential as a function of the width of the arc and the saturation efficiency of the lower hybrid instability mechanism.

  6. Electrochemical double-layer capacitors based on functionalized graphene

    NASA Astrophysics Data System (ADS)

    Pope, Michael Allan

    Graphene is a promising electrode material for electrochemical double-layer capacitors (EDLCs) used for energy storage due to its high electrical conductivity and theoretical specific surface area. However, the intrinsic capacitance of graphene is known to be low and governed by the electronic side of the interface. Furthermore, graphene tends to aggregate and stack together when processed into thick electrode films. This significantly lowers the ion-accessible specific surface area (SSA). Maximizing both the SSA and the intrinsic capacitance are the main problems addressed in this thesis in an effort to improve the specific capacitance and energy density of EDLCs. In contrast to pristine graphene, functionalized graphene produced by the thermal exfoliation of graphite oxide contains residual functional groups and lattice defects. To study how these properties affect the double-layer capacitance, a model electrode system capable of measuring the intrinsic electrochemical properties of functionalized graphene was developed. To prevent artifacts and uncertainties related to measurements on porous electrodes, the functionalized graphene sheets (FGSs) were assembled as densely tiled monolayers using a Langmuir-Blodgett technique. In this way, charging can be studied in a well-defined 2D geometry. The possibility of measuring and isolating the intrinsic electrochemical properties of FGS monolayers was first demonstrated by comparing capacitance and redox probe measurements carried out on coatings deposited on passivated gold and single crystal graphite substrates. This monolayer system was then used to follow the double-layer capacitance of the FGS/electrolyte interface as the structure and chemistry of graphene was varied by thermal treatments ranging from 300 °C to 2100 °C. Elemental analysis and Raman spectroscopy were used to determine the resulting chemical and structural transformation upon heat treatment. It was demonstrated that intrinsically defective

  7. Large capacitance enhancement induced by metal-doping in graphene-based supercapacitors: a first-principles-based assessment.

    PubMed

    Paek, Eunsu; Pak, Alexander J; Hwang, Gyeong S

    2014-08-13

    Chemically doped graphene-based materials have recently been explored as a means to improve the performance of supercapacitors. In this work, we investigate the effects of 3d transition metals bound to vacancy sites in graphene with [BMIM][PF6] ionic liquid on the interfacial capacitance; these results are compared to the pristine graphene case with particular attention to the relative contributions of the quantum and electric double layer capacitances. Our study highlights that the presence of metal-vacancy complexes significantly increases the availability of electronic states near the charge neutrality point, thereby enhancing the quantum capacitance drastically. In addition, the use of metal-doped graphene electrodes is found to only marginally influence the microstructure and capacitance of the electric double layer. Our findings indicate that metal-doping of graphene-like electrodes can be a promising route toward increasing the interfacial capacitance of electrochemical double layer capacitors, primarily by enhancing the quantum capacitance.

  8. Nickel–cobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets with a 3D nanonetwork structure as supercapacitive materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Tao; Li, Ruiyi; Li, Zaijun, E-mail: zaijunli@263.net

    2014-03-01

    Graphical abstract: The microwave heating reflux approach was developed for the fabrication of nickel–cobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets, in which ammonia and ethanol were used as the precipitator and medium for the synthesis. The obtained composite shows a 3D flowerclusters morphology with nanonetwork structure and largely enhanced supercapacitive performance. - Highlights: • The paper reported the microwave synthesis of nickel–cobalt layered double hydroxide/graphene composite. • The novel synthesis method is rapid, green, efficient and can be well used to the mass production. • The as-synthesized composite offers a 3D flowerclusters morphology with nanonetwork structure. •more » The composite offers excellent supercapacitive performance. • This study provides a promising route to design and synthesis of advanced graphene-based materials with the superiorities of time-saving and cost-effective characteristics. - Abstract: The study reported a novel microwave heating reflux method for the fabrication of nickel–cobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets (GS/NiCo-LDH). Ammonia and ethanol were employed as precipitant and reaction medium for the synthesis, respectively. The resulting GS/NiCo-LDH offers a 3D flowerclusters morphology with nanonetwork structure. Due to the greatly enhanced rate of electron transfer and mass transport, the GS/NiCo-LDH electrode exhibits excellent supercapacitive performances. The maximum specific capacitance was found to be 1980.7 F g{sup −1} at the current density of 1 A g{sup −1}. The specific capacitance can remain 1274.7 F g{sup −1} at the current density of 15 A g{sup −1} and it has an increase of about 2.9% after 1500 cycles. Moreover, the study also provides a promising approach for the design and synthesis of metallic double hydroxides/graphene hybrid materials with time-saving and cost-effective characteristics, which

  9. Buffer layers on biaxially textured metal substrates

    DOEpatents

    Shoup, Shara S.; Paranthamam, Mariappan; Beach, David B.; Kroeger, Donald M.; Goyal, Amit

    2001-01-01

    A method is disclosed for forming a biaxially textured buffer layer on a biaxially oriented metal substrate by using a sol-gel coating technique followed by pyrolyzing/annealing in a reducing atmosphere. This method is advantageous for providing substrates for depositing electronically active materials thereon.

  10. Method of depositing buffer layers on biaxially textured metal substrates

    DOEpatents

    Beach, David B.; Morrell, Jonathan S.; Paranthaman, Mariappan; Chirayil, Thomas; Specht, Eliot D.; Goyal, Amit

    2002-08-27

    A laminate article comprises a substrate and a biaxially textured (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer over the substrate, wherein 0layer can be deposited using sol-gel or metal-organic decomposition. The laminate article can include a layer of YBCO over the (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer. A layer of CeO.sub.2 between the YBCO layer and the (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer can also be include. Further included can be a layer of YSZ between the CeO.sub.2 layer and the (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.

  11. Low resistance barrier layer for isolating, adhering, and passivating copper metal in semiconductor fabrication

    DOEpatents

    Weihs, Timothy P.; Barbee, Jr., Troy W.

    2002-01-01

    Cubic or metastable cubic refractory metal carbides act as barrier layers to isolate, adhere, and passivate copper in semiconductor fabrication. One or more barrier layers of the metal carbide are deposited in conjunction with copper metallizations to form a multilayer characterized by a cubic crystal structure with a strong (100) texture. Suitable barrier layer materials include refractory transition metal carbides such as vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr.sub.3 C.sub.2), tungsten carbide (WC), and molybdenum carbide (MoC).

  12. Plasmon modes in monolayer and double-layer black phosphorus under applied uniaxial strain

    NASA Astrophysics Data System (ADS)

    Saberi-Pouya, S.; Vazifehshenas, T.; Saleh, M.; Farmanbar, M.; Salavati-fard, T.

    2018-05-01

    We study the effects of an applied in-plane uniaxial strain on the plasmon dispersions of monolayer, bilayer, and double-layer black phosphorus structures in the long-wavelength limit within the linear elasticity theory. In the low-energy limit, these effects can be modeled through the change in the curvature of the anisotropic energy band along the armchair and zigzag directions. We derive analytical relations of the plasmon modes under uniaxial strain and show that the direction of the applied strain is important. Moreover, we observe that along the armchair direction, the changes of the plasmon dispersion with strain are different and larger than those along the zigzag direction. Using the analytical relations of two-layer phosphorene systems, we found that the strain-dependent orientation factor of layers could be considered as a means to control the variations of the plasmon energy. Furthermore, our study shows that the plasmonic collective modes are more affected when the strain is applied equally to the layers compared to the case in which the strain is applied asymmetrically to the layers. We also calculate the effect of strain on the drag resistivity in a double-layer black phosphorus structure and obtain that the changes in the plasmonic excitations, due to an applied strain, are mainly responsible for the predicted results. This study can be readily extended to other anisotropic two-dimensional materials.

  13. Enhanced long-distance transport of periodic electron beams in an advanced double layer cone-channel target

    NASA Astrophysics Data System (ADS)

    Ji, Yanling; Duan, Tao; Zhou, Weimin; Li, Boyuan; Wu, Fengjuan; Zhang, Zhimeng; Ye, Bin; Wang, Rong; Wu, Chunrong; Tang, Yongjian

    2018-02-01

    An enhanced long-distance transport of periodic electron beams in an advanced double layer cone-channel target is investigated using two-dimensional particle-in-cell simulations. The target consists of a cone attached to a double-layer hollow channel with a near-critical-density inner layer. The periodic electron beams are generated by the combination of ponderomotive force and longitudinal laser electric field. Then a stable electron propagation is achieved in the double-layer channel over a much longer distance without evident divergency, compared with a normal cone-channel target. Detailed simulations show that the much better long-distance collimation and guidance of energetic electrons is attributed to the much stronger electromagnetic fields at the inner wall surfaces. Furthermore, a continuous electron acceleration is obtained by the more intense laser electric fields and extended electron acceleration length in the channel. Our investigation shows that by employing this advanced target, both the forward-going electron energy flux in the channel and the energy coupling efficiency from laser to electrons are about threefold increased in comparison with the normal case.

  14. Intercalation and controlled release properties of vitamin C intercalated layered double hydroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Xiaorui, E-mail: gxr_1320@sina.com; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189; Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA

    Two drug-inorganic composites involving vitamin C (VC) intercalated in Mg–Al and Mg–Fe layered double hydroxides (LDHs) have been synthesized by the calcination–rehydration (reconstruction) method. Powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), and UV–vis absorption spectroscopy indicate a successful intercalation of VC into the interlayer galleries of the LDH host. Studies of VC release from the LDHs in deionised water and in aqueous CO{sub 3}{sup 2−} solutions imply that Mg{sub 3}Al–VC LDH is a better controlled release system than Mg{sub 3}Fe–VC LDH. Analysis of the release profiles using a number of kinetic models suggests a solution-dependent release mechanism, and amore » diffusion-controlled deintercalation mechanism in deionised water, but an ion exchange process in CO{sub 3}{sup 2−} solution. - Graphical abstract: Vitamin C anions have been intercalated in the interlayer space of layered double hydroxide and released in CO{sub 3}{sup 2−} solution and deionised water. - Highlights: • Vitamin C intercalated Mg–Al and Mg–Fe layered double hydroxides were prepared. • Release property of vitamin C in aqueous CO{sub 3}{sup 2−} solution is better. • Avrami-Erofe’ev and first-order models provide better fit for release results. • Diffusion-controlled and ion exchange processes occur in deionised water. • An ion exchange process occurs in CO{sub 3}{sup 2−} solution.« less

  15. Anomalous electron transport in metal/carbon multijunction devices by engineering of the carbon thickness and selecting metal layer

    NASA Astrophysics Data System (ADS)

    Dwivedi, Neeraj; Dhand, Chetna; Rawal, Ishpal; Kumar, Sushil; Malik, Hitendra K.; Lakshminarayanan, Rajamani

    2017-06-01

    A longstanding concern in the research of amorphous carbon films is their poor electrical conductivity at room temperature which constitutes a major barrier for the development of cost effective electronic and optoelectronic devices. Here, we propose metal/carbon hybrid multijunction devices as a promising facile way to overcome room temperature electron transport issues in amorphous carbon films. By the tuning of carbon thickness and swapping metal layers, we observe giant (upto ˜7 orders) reduction of electrical resistance in metal/carbon multijunction devices with respect to monolithic amorphous carbon device. We engineer the maximum current (electrical resistance) from about 10-7 to 10-3 A (˜107 to 103 Ω) in metal (Cu or Ti)/carbon hybrid multijunction devices with a total number of 10 junctions. The introduction of thin metal layers breaks the continuity of relatively higher resistance carbon layer as well as promotes the nanostructuring of carbon. These contribute to low electrical resistance of metal/carbon hybrid multijunction devices, with respect to monolithic carbon device, which is further reduced by decreasing the thickness of carbon layers. We also propose and discuss equivalent circuit model to explain electrical resistance in monolithic carbon and metal/carbon multijunction devices. Cu/carbon multijunction devices display relatively better electrical transport than Ti/carbon devices owing to low affinity of Cu with carbon that restricts carbide formation. We also observe that in metal/carbon multijunction devices, the transport mechanism changes from Poole-Frenkel/Schottky model to the hopping model with a decrease in carbon thickness. Our approach opens a new route to develop carbon-based inexpensive electronic and optoelectronic devices.

  16. Ionic Liquids as Electrolytes for Electrochemical Double-Layer Capacitors: Structures that Optimize Specific Energy.

    PubMed

    Mousavi, Maral P S; Wilson, Benjamin E; Kashefolgheta, Sadra; Anderson, Evan L; He, Siyao; Bühlmann, Philippe; Stein, Andreas

    2016-02-10

    Key parameters that influence the specific energy of electrochemical double-layer capacitors (EDLCs) are the double-layer capacitance and the operating potential of the cell. The operating potential of the cell is generally limited by the electrochemical window of the electrolyte solution, that is, the range of applied voltages within which the electrolyte or solvent is not reduced or oxidized. Ionic liquids are of interest as electrolytes for EDLCs because they offer relatively wide potential windows. Here, we provide a systematic study of the influence of the physical properties of ionic liquid electrolytes on the electrochemical stability and electrochemical performance (double-layer capacitance, specific energy) of EDLCs that employ a mesoporous carbon model electrode with uniform, highly interconnected mesopores (3DOm carbon). Several ionic liquids with structurally diverse anions (tetrafluoroborate, trifluoromethanesulfonate, trifluoromethanesulfonimide) and cations (imidazolium, ammonium, pyridinium, piperidinium, and pyrrolidinium) were investigated. We show that the cation size has a significant effect on the electrolyte viscosity and conductivity, as well as the capacitance of EDLCs. Imidazolium- and pyridinium-based ionic liquids provide the highest cell capacitance, and ammonium-based ionic liquids offer potential windows much larger than imidazolium and pyridinium ionic liquids. Increasing the chain length of the alkyl substituents in 1-alkyl-3-methylimidazolium trifluoromethanesulfonimide does not widen the potential window of the ionic liquid. We identified the ionic liquids that maximize the specific energies of EDLCs through the combined effects of their potential windows and the double-layer capacitance. The highest specific energies are obtained with ionic liquid electrolytes that possess moderate electrochemical stability, small ionic volumes, low viscosity, and hence high conductivity, the best performing ionic liquid tested being 1-ethyl-3

  17. Synthesis, characterization, and efficacy of antituberculosis isoniazid zinc aluminum-layered double hydroxide based nanocomposites

    PubMed Central

    Saifullah, Bullo; El Zowalaty, Mohamed Ezzat; Arulselvan, Palanisamy; Fakurazi, Sharida; Webster, Thomas J; Geilich, Benjamin Mahler; Hussein, Mohd Zobir

    2016-01-01

    The chemotherapy for tuberculosis (TB) is complicated by its long-term treatment, its frequent drug dosing, and the adverse effects of anti-TB drugs. In this study, we have developed two nanocomposites (A and B) by intercalating the anti-TB drug isoniazid (INH) into Zn/Al-layered double hydroxides. The average size of the nanocomposites was found to bê164 nm. The efficacy of the Zn/Al-layered double hydroxides intercalated INH against Mycobacterium tuberculosis was increased by approximately three times more than free INH. The nanocomposites were also found to be active against Gram-positive and -negative bacteria. Compared to the free INH, the nanodelivery formulation was determined to be three times more biocompatible with human normal lung fibroblast MRC-5 cells and 3T3 fibroblast cells at a very high concentration of 50 µg/mL for up to 72 hours. The in vitro release of INH from the Zn/Al-layered double hydroxides was found to be sustained in human body-simulated buffer solutions of pH 4.8 and 7.4. This research is a step forward in making the TB chemotherapy patient friendly. PMID:27486322

  18. Dual-Layered Film Protected Lithium Metal Anode to Enable Dendrite-Free Lithium Deposition.

    PubMed

    Yan, Chong; Cheng, Xin-Bing; Tian, Yang; Chen, Xiang; Zhang, Xue-Qiang; Li, Wen-Jun; Huang, Jia-Qi; Zhang, Qiang

    2018-06-01

    Lithium metal batteries (such as lithium-sulfur, lithium-air, solid state batteries with lithium metal anode) are highly considered as promising candidates for next-generation energy storage systems. However, the unstable interfaces between lithium anode and electrolyte definitely induce the undesired and uncontrollable growth of lithium dendrites, which results in the short-circuit and thermal runaway of the rechargeable batteries. Herein, a dual-layered film is built on a Li metal anode by the immersion of lithium plates into the fluoroethylene carbonate solvent. The ionic conductive film exhibits a compact dual-layered feature with organic components (ROCO 2 Li and ROLi) on the top and abundant inorganic components (Li 2 CO 3 and LiF) in the bottom. The dual-layered interface can protect the Li metal anode from the corrosion of electrolytes and regulate the uniform deposition of Li to achieve a dendrite-free Li metal anode. This work demonstrates the concept of rational construction of dual-layered structured interfaces for safe rechargeable batteries through facile surface modification of Li metal anodes. This not only is critically helpful to comprehensively understand the functional mechanism of fluoroethylene carbonate but also affords a facile and efficient method to protect Li metal anodes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Solution processed metal oxide thin film hole transport layers for high performance organic solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.

    2017-01-10

    A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.

  20. Theoretical Study of Monolayer and Double-Layer Waveguide Love Wave Sensors for Achieving High Sensitivity.

    PubMed

    Li, Shuangming; Wan, Ying; Fan, Chunhai; Su, Yan

    2017-03-22

    Love wave sensors have been widely used for sensing applications. In this work, we introduce the theoretical analysis of the monolayer and double-layer waveguide Love wave sensors. The velocity, particle displacement and energy distribution of Love waves were analyzed. Using the variations of the energy repartition, the sensitivity coefficients of Love wave sensors were calculated. To achieve a higher sensitivity coefficient, a thin gold layer was added as the second waveguide on top of the silicon dioxide (SiO₂) waveguide-based, 36 degree-rotated, Y-cut, X-propagating lithium tantalate (36° YX LiTaO₃) Love wave sensor. The Love wave velocity was significantly reduced by the added gold layer, and the flow of wave energy into the waveguide layer from the substrate was enhanced. By using the double-layer structure, almost a 72-fold enhancement in the sensitivity coefficient was achieved compared to the monolayer structure. Additionally, the thickness of the SiO₂ layer was also reduced with the application of the gold layer, resulting in easier device fabrication. This study allows for the possibility of designing and realizing robust Love wave sensors with high sensitivity and a low limit of detection.

  1. Light scattering management of dye-sensitized solar cells based on double-layered photoanodes aided by uniform TiO{sub 2} aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakhshayesh, A.M., E-mail: bakhshayesh@alum.sharif.edu

    2016-01-15

    Highlights: • A new architecture of double-layered TiO{sub 2} electrodes is presented. • The electrode contains two alternate layers of TiO{sub 2} nanoparticles and aggregates. • The aggregates layers are deposited onto the nanocrystalline layer. • The new design showed improved efficiency compared to conventional cells. - Abstract: This study presents a new double-layered TiO{sub 2} film containing a nanocrystalline under-layer and a uniform, sponge-like light scattering over-layer for dye-sensitized solar cells (DSCs) application. The over-layer is composed of 2-μm-diameter uniform aggregates, containing small nanoparticles with the average grain size of 20 nm. X-ray diffraction reveals that the light scatteringmore » layer has a mixture of anatase and rutile phases, whereas the nanocrystalline layer has a pure anatase phase. Ultraviolet–visible (UV–vis) spectra show that the light scattering layer has lower band gap energy than the nanocrystalline under-layer, extending the absorption of TiO{sub 2} into visible region. Diffuse reflectance spectroscopy demonstrates that the double-layered electrode enjoyed better light scattering ability. The double-layered DSC shows the highest power conversion efficiency of 7.69% and incident photon-to-current efficiency of 88% as a result of higher light harvesting and less recombination which is demonstrated by electrochemical impedance spectroscopy.« less

  2. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery

    NASA Astrophysics Data System (ADS)

    Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-05-01

    Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery.Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a

  3. Optical trapping forces of a focused azimuthally polarized Bessel-Gaussian beam on a double-layered sphere

    NASA Astrophysics Data System (ADS)

    Wu, F. P.; Zhang, B.; Liu, Z. L.; Tang, Y.; Zhang, N.

    2017-12-01

    We calculate the trapping forces exerted by a highly focused Bessel-Gaussian beam on a double-layered sphere by means of vector diffraction integral, T-matrix method and Maxwell stress tensor integral. The Bessel-Gaussian beam is azimuthally polarized. Numerical results predicate that the double-layered sphere with air core can be stably trapped in three-dimensions. The trapping forces and efficiencies are dependent on the refraction index and size of the inner core. The trapping efficiency can be optimized by choosing the refraction indices of the inner core and outer layer. Our computational method can be easily modified for other laser beams and particles with arbitrary geometries and multilayers.

  4. Energy dissipation in intercalated carbon nanotube forests with metal layers

    USDA-ARS?s Scientific Manuscript database

    Vertically aligned carbon nanotube (CNT) forests were synthesized to study their quasi-static mechanical properties in a layered configuration with metallization. The top and bottom surfaces of CNT forests were metalized with Ag, Fe, and In using paste, sputtering, and thermal evaporation, respectiv...

  5. In situ synthesized heteropoly acid/polyaniline/graphene nanocomposites to simultaneously boost both double layer- and pseudo-capacitance for supercapacitors.

    PubMed

    Cui, Zhiming; Guo, Chun Xian; Yuan, Weiyong; Li, Chang Ming

    2012-10-05

    It is challenging to simultaneously increase double layer- and pseudo-capacitance for supercapacitors. Phosphomolybdic acid/polyaniline/graphene nanocomposites (PMo(12)-PANI/GS) were prepared by using PMo(12) as a bifunctional reagent for not only well dispersing graphene for high electrochemical double layer capacitance but also in situ chemically polymerizing aniline for high pseudocapacitance, resulting in a specific capacitance of 587 F g(-1), which is ~1.5 and 6 times higher than that of PANI/GS (392 F g(-1)) and GS (103 F g(-1)), respectively. The nanocomposites also exhibit good reversibility and stability. Other kinds of heteropolyacids such as molybdovanadophosphoric acids (PMo(12-x)V(x), x = 1, 2 and 3) were also used to prepare PMo(12-x)V(x)-PANI/GS nanocomposites, also showing enhanced double layer- and pseudo-capacitance. This further proves the proposed concept to simultaneously boost both double layer- and pseudo-capacitance and demonstrates that it could be a universal approach to significantly improve the capacitance for supercapacitors.

  6. Melt layer behavior of metal targets irradiatead by powerful plasma streams

    NASA Astrophysics Data System (ADS)

    Bandura, A. N.; Byrka, O. V.; Chebotarev, V. V.; Garkusha, I. E.; Makhlaj, V. A.; Solyakov, D. G.; Tereshin, V. I.; Wuerz, H.

    2002-12-01

    In this paper melt layer erosion of metal targets under pulsed high-heat loads is studied. Experiments with steel, copper, aluminum and titanium samples were carried out in two plasma accelerator devices with different time durations of the heat load. The surfaces of the resolidified melt layers show a considerable roughness with microcraters and ridge like relief on the surface. For each material the mass loss was determined. Melt layer erosion by melt motion was clearly identified. However it is masked by boiling, bubble expansion and bubble collapse and by formation of a Kelvin-Helmholtz instability. The experimental results can be used for validation of numerical codes which model melt layer erosion of metallic armour materials in off-normal events, in tokamaks.

  7. Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Daojin; Cai, Zhao; Bi, Yongmin

    Nickel-iron layered double hydroxide (NiFe-LDH) nanosheets have shown optimal oxygen evolution reaction (OER) performance; however, the role of the intercalated ions in the OER activity remains unclear. In this work, we show that the activity of the NiFe-LDHs can be tailored by the intercalated anions with different redox potentials. The intercalation of anions with low redox potential (high reducing ability), such as hypophosphites, leads to NiFe-LDHs with low OER overpotential of 240 mV and a small Tafel slope of 36.9 mV/dec, whereas NiFe-LDHs intercalated with anions of high redox potential (low reducing ability), such as fluorion, show a high overpotentialmore » of 370 mV and a Tafel slope of 80.8 mV/dec. The OER activity shows a surprising linear correlation with the standard redox potential. Density functional theory calculations and X-ray photoelectron spectroscopy analysis indicate that the intercalated anions alter the electronic structure of metal atoms which exposed at the surface. Anions with low standard redox potential and strong reducing ability transfer more electrons to the hydroxide layers. Finally, this increases the electron density of the surface metal sites and stabilizes their high-valence states, whose formation is known as the critical step prior to the OER process.« less

  8. Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets

    DOE PAGES

    Zhou, Daojin; Cai, Zhao; Bi, Yongmin; ...

    2018-02-02

    Nickel-iron layered double hydroxide (NiFe-LDH) nanosheets have shown optimal oxygen evolution reaction (OER) performance; however, the role of the intercalated ions in the OER activity remains unclear. In this work, we show that the activity of the NiFe-LDHs can be tailored by the intercalated anions with different redox potentials. The intercalation of anions with low redox potential (high reducing ability), such as hypophosphites, leads to NiFe-LDHs with low OER overpotential of 240 mV and a small Tafel slope of 36.9 mV/dec, whereas NiFe-LDHs intercalated with anions of high redox potential (low reducing ability), such as fluorion, show a high overpotentialmore » of 370 mV and a Tafel slope of 80.8 mV/dec. The OER activity shows a surprising linear correlation with the standard redox potential. Density functional theory calculations and X-ray photoelectron spectroscopy analysis indicate that the intercalated anions alter the electronic structure of metal atoms which exposed at the surface. Anions with low standard redox potential and strong reducing ability transfer more electrons to the hydroxide layers. Finally, this increases the electron density of the surface metal sites and stabilizes their high-valence states, whose formation is known as the critical step prior to the OER process.« less

  9. Synthesis and Stabilization of Supported Metal Catalysts by Atomic Layer Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Junling; Elam, Jeffrey W.; Stair, Peter C.

    2013-03-12

    Supported metal nanoparticles are among the most important cata-lysts for many practical reactions, including petroleum refining, automobile exhaust treatment, and Fischer–Tropsch synthesis. The catalytic performance strongly depends on the size, composition, and structure of the metal nanoparticles, as well as the underlying support. Scientists have used conventional synthesis methods including impregnation, ion exchange, and deposition–precipitation to control and tune these factors, to establish structure–performance relationships, and to develop better catalysts. Meanwhile, chemists have improved the stability of metal nanoparticles against sintering by the application of protective layers, such as polymers and oxides that encapsulate the metal particle. This often leadsmore » to decreased catalytic activity due to a lack of precise control over the thickness of the protective layer. A promising method of catalyst synthesis is atomic layer deposition (ALD). ALD is a variation on chemical vapor deposition in which metals, oxides, and other materials are deposited on surfaces by a sequence of self-limiting reactions. The self-limiting character of these reactions makes it possible to achieve uniform deposits on high-surface-area porous solids. Therefore, design and synthesis of advanced catalysts on the nanoscale becomes possible through precise control over the structure and composition of the underlying support, the catalytic active sites, and the protective layer. In this Account, we describe our advances in the synthesis and stabilization of supported metal catalysts by ALD. After a short introduction to the technique of ALD, we show several strategies for metal catalyst synthesis by ALD that take advantage of its self-limiting feature. Monometallic and bimetallic catalysts with precise control over the metal particle size, composition, and structure were achieved by combining ALD sequences, surface treatments, and deposition temperature control. Next

  10. Diverse and tunable electronic structures of single-layer metal phosphorus trichalcogenides for photocatalytic water splitting

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Li, Xi-Bo; Wang, Da; Lau, Woon-Ming; Peng, Ping; Liu, Li-Min

    2014-02-01

    The family of bulk metal phosphorus trichalcogenides (APX3, A = MII, M_{0.5}^IM_{0.5}^{III}; X = S, Se; MI, MII, and MIII represent Group-I, Group-II, and Group-III metals, respectively) has attracted great attentions because such materials not only own magnetic and ferroelectric properties, but also exhibit excellent properties in hydrogen storage and lithium battery because of the layered structures. Many layered materials have been exfoliated into two-dimensional (2D) materials, and they show distinct electronic properties compared with their bulks. Here we present a systematical study of single-layer metal phosphorus trichalcogenides by density functional theory calculations. The results show that the single layer metal phosphorus trichalcogenides have very low formation energies, which indicates that the exfoliation of single layer APX3 should not be difficult. The family of single layer metal phosphorus trichalcogenides exhibits a large range of band gaps from 1.77 to 3.94 eV, and the electronic structures are greatly affected by the metal or the chalcogenide atoms. The calculated band edges of metal phosphorus trichalcogenides further reveal that single-layer ZnPSe3, CdPSe3, Ag0.5Sc0.5PSe3, and Ag0.5In0.5PX3 (X = S and Se) have both suitable band gaps for visible-light driving and sufficient over-potentials for water splitting. More fascinatingly, single-layer Ag0.5Sc0.5PSe3 is a direct band gap semiconductor, and the calculated optical absorption further convinces that such materials own outstanding properties for light absorption. Such results demonstrate that the single layer metal phosphorus trichalcogenides own high stability, versatile electronic properties, and high optical absorption, thus such materials have great chances to be high efficient photocatalysts for water-splitting.

  11. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers.

    PubMed

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-18

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  12. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers

    NASA Astrophysics Data System (ADS)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-01

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  13. Analytical and Numerical Modeling of Tsunami Wave Propagation for double layer state in Bore

    NASA Astrophysics Data System (ADS)

    Yuvaraj, V.; Rajasekaran, S.; Nagarajan, D.

    2018-04-01

    Tsunami wave enters into the river bore in the landslide. Tsunami wave propagation are described in two-layer states. The velocity and amplitude of the tsunami wave propagation are calculated using the double layer. The numerical and analytical solutions are given for the nonlinear equation of motion of the wave propagation in a bore.

  14. Optical transparency of graphene layers grown on metal surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rut’kov, E. V.; Lavrovskaya, N. P.; Sheshenya, E. S., E-mail: sheshenayket@gmail.ru

    It is shown that, in contradiction with the fundamental results obtained for free graphene, graphene films grown on the Rh(111) surface to thicknesses from one to ~(12–15) single layers do not absorb visible electromagnetic radiation emitted from the surface and influence neither the brightness nor true temperature of the sample. At larger thicknesses, such absorption occurs. This effect is observed for the surfaces of other metals, specifically, Pt(111), Re(1010), and Ni(111) and, thus, can be considered as being universal. It is thought that the effect is due to changes in the electronic properties of thin graphene layers because of electronmore » transfer between graphene and the metal substrate.« less

  15. Suppressing longitudinal double-layer oscillations by using elliptically polarized laser pulses in the hole-boring radiation pressure acceleration regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Dong; Yan, X. Q.; Key Laboratory of High Energy Density Physics Simulation, Ministry of Education, Peking University, Beijing 100871

    It is shown that well collimated mono-energetic ion beams with a large particle number can be generated in the hole-boring radiation pressure acceleration regime by using an elliptically polarized laser pulse with appropriate theoretically determined laser polarization ratio. Due to the J Multiplication-Sign B effect, the double-layer charge separation region is imbued with hot electrons that prevent ion pileup, thus suppressing the double-layer oscillations. The proposed mechanism is well confirmed by Particle-in-Cell simulations, and after suppressing the longitudinal double-layer oscillations, the ion beams driven by the elliptically polarized lasers own much better energy spectrum than those by circularly polarized lasers.

  16. Solar Cycle Response and Long-Term Trends in the Mesospheric Metal Layers

    NASA Technical Reports Server (NTRS)

    Dawkins, E. C. M.; Plane, J. M. C.; Chipperfield, M.; Feng, W.; Marsh, D. R.; Hoffner, J.; Janches, D.

    2016-01-01

    The meteoric metal layers (Na, Fe, and K) which form as a result of the ablation of incoming meteors act as unique tracers for chemical and dynamical processes that occur within the upper mesosphere lower thermosphere region. In this work, we examine whether these metal layers are sensitive Fe indicators of decadal long-term changes within the upper atmosphere. Output from a whole-atmosphere climate model is used to assess the response of the Na, K, and Fe layers across a 50 year period (1955-2005). At short timescales, the K layer has previously been shown to exhibit a very different seasonal behavior compared to the other metals. Here we show that this unusual behavior is also exhibited at longer time scales (both the 11 year solar cycle and 50 year periods), where K displays a much more pronounced response to atmospheric temperature changes than either Na or Fe. The contrasting solar cycle behavior of the K and Na layers predicted by the model is confirmed using satellite and lidar observations for the period 2004-2013.

  17. Sol-Gel Deposited Double Layer TiO₂ and Al₂O₃ Anti-Reflection Coating for Silicon Solar Cell.

    PubMed

    Jung, Jinsu; Jannat, Azmira; Akhtar, M Shaheer; Yang, O-Bong

    2018-02-01

    In this work, the deposition of double layer ARC on p-type Si solar cells was carried out by simple spin coating using sol-gel derived Al2O3 and TiO2 precursors for the fabrication of crystalline Si solar cells. The first ARC layer was created by freshly prepared sol-gel derived Al2O3 precursor using spin coating technique and then second ARC layer of TiO2 was deposited with sol-gel derived TiO2 precursor, which was finally annealed at 400 °C. The double layer Al2O3/TiO2 ARC on Si wafer exhibited the low average reflectance of 4.74% in the wavelength range of 400 and 1000 nm. The fabricated solar cells based on double TiO2/Al2O3 ARC attained the conversion efficiency of ~13.95% with short circuit current (JSC) of 35.27 mA/cm2, open circuit voltage (VOC) of 593.35 mV and fill factor (FF) of 66.67%. Moreover, the fabricated solar cells presented relatively low series resistance (Rs) as compared to single layer ARCs, resulting in the high VOC and FF.

  18. A methodology for double patterning compliant split and design

    NASA Astrophysics Data System (ADS)

    Wiaux, Vincent; Verhaegen, Staf; Iwamoto, Fumio; Maenhoudt, Mireille; Matsuda, Takashi; Postnikov, Sergei; Vandenberghe, Geert

    2008-11-01

    Double Patterning allows to further extend the use of water immersion lithography at its maximum numerical aperture NA=1.35. Splitting of design layers to recombine through Double Patterning (DP) enables an effective resolution enhancement. Single polygons may need to be split up (cut) depending on the pattern density and its 2D content. The split polygons recombine at the so-called 'stitching points'. These stitching points may affect the yield due to the sensitivity to process variations. We describe a methodology to ensure a robust double patterning by identifying proper split- and design- guidelines. Using simulations and experimental data, we discuss in particular metal1 first interconnect layers of random LOGIC and DRAM applications at 45nm half-pitch (hp) and 32nm hp where DP may become the only timely patterning solution.

  19. Electron Scattering at Surfaces of Epitaxial Metal Layers

    NASA Astrophysics Data System (ADS)

    Chawla, Jasmeet Singh

    In the field of electron transport in metal films and wires, the 'size effect' refers to the increase in the resistivity of the films and wires as their critical dimensions (thickness of film, width and height of wires) approach or become less than the electron mean free path lambda, which is, for example, 39 nm for bulk copper at room temperature. This size-effect is currently of great concern to the semiconductor industry because the continued downscaling of feature sizes has already lead to Cu interconnect wires in this size effect regime, with a reported 2.5 times higher resistivity for 40 nm wide Cu wires than for bulk Cu. Silver is a possible alternate material for interconnect wires and titanium nitride is proposed as a gate metal in novel field-effect-transistors. Therefore, it is important to develop an understanding of how the growth, the surface morphology, and the microstructure of ultrathin (few nanometers) Cu, Ag and TiN layers affect their electrical properties. This dissertation aims to advance the scientific knowledge of electron scattering at surfaces (external surfaces and grain boundaries), that are, the primary reasons for the size-effect in metal conductors. The effect of surface and grain boundary scattering on the resistivity of Cu thin films and nanowires is separately quantified using (i) in situ transport measurements on single-crystal, atomically smooth Cu(001) layers, (ii) textured polycrystalline Cu(111) layers and patterned wires with independently varying grain size, thickness and line width, and (iii) in situ grown interfaces including Cu-Ta, Cu-MgO, Cu-vacuum and Cu-oxygen. In addition, the electron surface scattering is also measured in situ for single-crystal Ag(001), (111) twinned epitaxial Ag(001), and single-crystal TiN(001) layers. Cu(001), Ag(001), and TiN(001) layers with a minimum continuous thickness of 4, 3.5 and 1.8 nm, respectively, are grown by ultra-high vacuum magnetron sputter deposition on MgO(001) substrates with

  20. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide

    PubMed Central

    Zhao, Zhao; Zhang, Haijun; Yuan, Hongtao; Wang, Shibing; Lin, Yu; Zeng, Qiaoshi; Xu, Gang; Liu, Zhenxian; Solanki, G. K.; Patel, K. D.; Cui, Yi; Hwang, Harold Y.; Mao, Wendy L.

    2015-01-01

    Layered transition-metal dichalcogenides have emerged as exciting material systems with atomically thin geometries and unique electronic properties. Pressure is a powerful tool for continuously tuning their crystal and electronic structures away from the pristine states. Here, we systematically investigated the pressurized behavior of MoSe2 up to ∼60 GPa using multiple experimental techniques and ab-initio calculations. MoSe2 evolves from an anisotropic two-dimensional layered network to a three-dimensional structure without a structural transition, which is a complete contrast to MoS2. The role of the chalcogenide anions in stabilizing different layered patterns is underscored by our layer sliding calculations. MoSe2 possesses highly tunable transport properties under pressure, determined by the gradual narrowing of its band-gap followed by metallization. The continuous tuning of its electronic structure and band-gap in the range of visible light to infrared suggest possible energy-variable optoelectronics applications in pressurized transition-metal dichalcogenides. PMID:26088416

  1. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide

    DOE PAGES

    Zhao, Zhao; Zhang, Haijun; Yuan, Hongtao; ...

    2015-06-19

    Layered transition-metal dichalcogenides have emerged as exciting material systems with atomically thin geometries and unique electronic properties. Pressure is a powerful tool for continuously tuning their crystal and electronic structures away from the pristine states. Here, we systematically investigated the pressurized behavior of MoSe 2 up to ~60 GPa using multiple experimental techniques and ab-initio calculations. MoSe 2 evolves from an anisotropic two-dimensional layered network to a three-dimensional structure without a structural transition, which is a complete contrast to MoS 2. The role of the chalcogenide anions in stabilizing different layered patterns is underscored by our layer sliding calculations. MoSemore » 2 possesses highly tunable transport properties under pressure, determined by the gradual narrowing of its band-gap followed by metallization. The continuous tuning of its electronic structure and band-gap in the range of visible light to infrared suggest possible energy-variable optoelectronics applications in pressurized transition-metal dichalcogenides.« less

  2. Ray-theory approach to electrical-double-layer interactions.

    PubMed

    Schnitzer, Ory

    2015-02-01

    A novel approach is presented for analyzing the double-layer interaction force between charged particles in electrolyte solution, in the limit where the Debye length is small compared with both interparticle separation and particle size. The method, developed here for two planar convex particles of otherwise arbitrary geometry, yields a simple asymptotic approximation limited to neither small zeta potentials nor the "close-proximity" assumption underlying Derjaguin's approximation. Starting from the nonlinear Poisson-Boltzmann formulation, boundary-layer solutions describing the thin diffuse-charge layers are asymptotically matched to a WKBJ expansion valid in the bulk, where the potential is exponentially small. The latter expansion describes the bulk potential as superposed contributions conveyed by "rays" emanating normally from the boundary layers. On a special curve generated by the centers of all circles maximally inscribed between the two particles, the bulk stress-associated with the ray contributions interacting nonlinearly-decays exponentially with distance from the center of the smallest of these circles. The force is then obtained by integrating the traction along this curve using Laplace's method. We illustrate the usefulness of our theory by comparing it, alongside Derjaguin's approximation, with numerical simulations in the case of two parallel cylinders at low potentials. By combining our result and Derjaguin's approximation, the interaction force is provided at arbitrary interparticle separations. Our theory can be generalized to arbitrary three-dimensional geometries, nonideal electrolyte models, and other physical scenarios where exponentially decaying fields give rise to forces.

  3. Electrically pumped 1.3 microm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer.

    PubMed

    Tanabe, Katsuaki; Guimard, Denis; Bordel, Damien; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2010-05-10

    An electrically pumped InAs/GaAs quantum dot laser on a Si substrate has been demonstrated. The double-hetero laser structure was grown on a GaAs substrate by metal-organic chemical vapor deposition and layer-transferred onto a Si substrate by GaAs/Si wafer bonding mediated by a 380-nm-thick Au-Ge-Ni alloy layer. This broad-area Fabry-Perot laser exhibits InAs quantum dot ground state lasing at 1.31 microm at room temperature with a threshold current density of 600 A/cm(2). (c) 2010 Optical Society of America.

  4. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery.

    PubMed

    Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-06-07

    Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery.

  5. Parity-Forbidden Transitions and Their Impact on the Optical Absorption Properties of Lead-Free Metal Halide Perovskites and Double Perovskites.

    PubMed

    Meng, Weiwei; Wang, Xiaoming; Xiao, Zewen; Wang, Jianbo; Mitzi, David B; Yan, Yanfa

    2017-07-06

    Using density functional theory calculations, we analyze the optical absorption properties of lead (Pb)-free metal halide perovskites (AB 2+ X 3 ) and double perovskites (A 2 B + B 3+ X 6 ) (A = Cs or monovalent organic ion, B 2+ = non-Pb divalent metal, B + = monovalent metal, B 3+ = trivalent metal, X = halogen). We show that if B 2+ is not Sn or Ge, Pb-free metal halide perovskites exhibit poor optical absorptions because of their indirect band gap nature. Among the nine possible types of Pb-free metal halide double perovskites, six have direct band gaps. Of these six types, four show inversion symmetry-induced parity-forbidden or weak transitions between band edges, making them not ideal for thin-film solar cell applications. Only one type of Pb-free double perovskite shows optical absorption and electronic properties suitable for solar cell applications, namely, those with B + = In, Tl and B 3+ = Sb, Bi. Our results provide important insights for designing new metal halide perovskites and double perovskites for optoelectronic applications.

  6. Curie temperature behavior in half-metallic ferromagnetic double perovskites within the electronic correlation picture

    NASA Astrophysics Data System (ADS)

    Estrada, F.; Guzmán, E. J.; Navarro, O.; Avignon, M.

    2018-05-01

    The half-metallic ferromagnetic compound Sr2FeMoO6 is considered a fundamental material to understand the role of electronic parameters controlling the half-metallic ground state and high Curie temperature in double perovskite. We present an electronic approach using the Green's function technique and the renormalization perturbation expansion method to study the thermodynamical properties of double perovskites. The model is based on a correlated electron picture with localized Fe spins and conduction electrons interacting with the local spins via a double-exchange-type mechanism. Electron correlations within the conduction band are also included in order to study the Curie temperature TC. Our results show an increases of TC by increasing the carrier density in La-doped Sr2FeMoO6 compounds in contrast to the case of uncorrelated itinerant electrons.

  7. Effect of double-layer application on dentin bond durability of one-step self-etch adhesives.

    PubMed

    Taschner, M; Kümmerling, M; Lohbauer, U; Breschi, L; Petschelt, A; Frankenberger, R

    2014-01-01

    The aim of this in vitro study was 1) to analyze the influence of a double-layer application technique of four one-step self-etch adhesive systems on dentin and 2) to determine its effect on the stability of the adhesive interfaces stored under different conditions. Four different one-step self-etch adhesives were selected for the study (iBondSE, Clearfil S(3) Bond, XenoV(+), and Scotchbond Universal). Adhesives were applied according to manufacturers' instructions or with a double-layer application technique (without light curing of the first layer). After bonding, resin-dentin specimens were sectioned for microtensile bond strength testing in accordance with the nontrimming technique and divided into 3 subgroups of storage: a) 24 hours (immediate bond strength, T0), b) six months (T6) in artificial saliva at 37°C, or c) five hours in 10 % NaOCl at room temperature. After storage, specimens were stressed to failure. Fracture mode was assessed under a light microscope. At T0, iBond SE showed a significant increase in microtensile bond strength when the double-application technique was applied. All adhesive systems showed reduced bond strengths after six months of storage in artificial saliva and after storage in 10% NaOCl for five hours; however at T6, iBond SE, Clearfil S(3) Bond, and XenoV(+) showed significantly higher microtensile bond strength results for the double-application technique compared with the single-application technique. Scotchbond Universal showed no difference between single- or double-application, irrespective of the storage conditions. The results of this study show that improvements in bond strength of one-step self-etch adhesives by using the double-application technique are adhesive dependent.

  8. Atomic Layer Deposition Alumina-Passivated Silicon Nanowires: Probing the Transition from Electrochemical Double-Layer Capacitor to Electrolytic Capacitor.

    PubMed

    Gaboriau, Dorian; Boniface, Maxime; Valero, Anthony; Aldakov, Dmitry; Brousse, Thierry; Gentile, Pascal; Sadki, Said

    2017-04-19

    Silicon nanowires were coated by a 1-5 nm thin alumina layer by atomic layer deposition (ALD) in order to replace poorly reproducible and unstable native silicon oxide by a highly conformal passivating alumina layer. The surface coating enabled probing the behavior of symmetric devices using such electrodes in the EMI-TFSI electrolyte, allowing us to attain a large cell voltage up to 6 V in ionic liquid, together with very high cyclability with less than 4% capacitance fade after 10 6 charge/discharge cycles. These results yielded fruitful insights into the transition between an electrochemical double-layer capacitor behavior and an electrolytic capacitor behavior. Ultimately, thin ALD dielectric coatings can be used to obtain hybrid devices exhibiting large cell voltage and excellent cycle life of dielectric capacitors, while retaining energy and power densities close to the ones displayed by supercapacitors.

  9. Layer-by-layer self-assembled two-dimensional MXene/layered double hydroxide composites as cathode for alkaline hybrid batteries

    NASA Astrophysics Data System (ADS)

    Dong, Xiaowan; Zhang, Yadi; Ding, Bing; Hao, Xiaodong; Dou, Hui; Zhang, Xiaogang

    2018-06-01

    Multifarious layered materials have received extensive concern in the field of energy storage due to their distinctive two-dimensional (2D) structure. However, the natural tendency to be re-superimposed and the inherent disadvantages of a single 2D material significantly limit their performance. In this work, the delaminated Ti3C2Tx (d-Ti3C2Tx)/cobalt-aluminum layered double hydroxide (Ti3C2Tx/CoAl-LDH) composites are prepared by layer-by-layer self-assembly driven by electrostatic interaction. The alternate Ti3C2Tx and CoAl-LDH layers prevent each other from restacking and the obtained Ti3C2Tx/CoAl-LDH heterostructure combine the advantages of high electron conductivity of Ti3C2Tx and high electrochemical activity of CoAl-LDH, thus effectively improving the electrochemical reactivity of electrode materials and accelerating the kinetics of Faraday reaction. As a consequence, as a cathode for alkaline hybrid battery, the Ti3C2Tx/CoAl-LDH electrode exhibits a high specific capacity of 106 mAh g-1 at a current density of 0.5 A g-1 and excellent rate capability (78% at 10 A g-1), with an excellent cycling stability of 90% retention after 5000 cycles at 4 A g-1. This work provides an alternative route to design advanced 2D electrode materials, thus exploiting their full potentials for alkaline hybrid batteries.

  10. Diverse and tunable electronic structures of single-layer metal phosphorus trichalcogenides for photocatalytic water splitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jian; Beijing Computational Science Research Center, Beijing 100084; College of Electrical and Information Engineering, Hunan Institute of Engineering, Xiangtan 411105, Hunan

    2014-02-07

    The family of bulk metal phosphorus trichalcogenides (APX{sub 3}, A = M{sup II}, M{sub 0.5}{sup I}M{sub 0.5}{sup III}; X = S, Se; M{sup I}, M{sup II}, and M{sup III} represent Group-I, Group-II, and Group-III metals, respectively) has attracted great attentions because such materials not only own magnetic and ferroelectric properties, but also exhibit excellent properties in hydrogen storage and lithium battery because of the layered structures. Many layered materials have been exfoliated into two-dimensional (2D) materials, and they show distinct electronic properties compared with their bulks. Here we present a systematical study of single-layer metal phosphorus trichalcogenides by density functionalmore » theory calculations. The results show that the single layer metal phosphorus trichalcogenides have very low formation energies, which indicates that the exfoliation of single layer APX{sub 3} should not be difficult. The family of single layer metal phosphorus trichalcogenides exhibits a large range of band gaps from 1.77 to 3.94 eV, and the electronic structures are greatly affected by the metal or the chalcogenide atoms. The calculated band edges of metal phosphorus trichalcogenides further reveal that single-layer ZnPSe{sub 3}, CdPSe{sub 3}, Ag{sub 0.5}Sc{sub 0.5}PSe{sub 3}, and Ag{sub 0.5}In{sub 0.5}PX{sub 3} (X = S and Se) have both suitable band gaps for visible-light driving and sufficient over-potentials for water splitting. More fascinatingly, single-layer Ag{sub 0.5}Sc{sub 0.5}PSe{sub 3} is a direct band gap semiconductor, and the calculated optical absorption further convinces that such materials own outstanding properties for light absorption. Such results demonstrate that the single layer metal phosphorus trichalcogenides own high stability, versatile electronic properties, and high optical absorption, thus such materials have great chances to be high efficient photocatalysts for water-splitting.« less

  11. Introducing Fe 2+ into Nickel-Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Zhao; Zhou, Daojin; Wang, Maoyu

    Exploring materials with regulated local structures and understanding how the atomic motifs govern the reactivity and durability of catalysts are a critical challenge for designing advanced catalysts. Here we report the tuning of the local atomic structure of nickel–iron layered double hydroxides (NiFe–LDHs) by partially substituting Ni 2+ with Fe 2+ to introduce Fe–O–Fe moieties. These Fe 2+–containing NiFe–LDHs exhibit enhanced oxygen evolution reaction (OER) activity with an ultralow overpotential of 195 mV at the current density of 10 mA/cm 2, which is among the best OER catalytic performance reported to date. In–situ X–ray absorption, Raman, and electrochemical analysis jointlymore » reveal that the Fe–O–Fe motifs could stabilize high–valent metal sites at low overpotentials, thereby enhancing the OER activity. Lastly, these results reveal the importance of tuning the local atomic structure for designing high efficiency electrocatalysts.« less

  12. Introducing Fe2+ into Nickel-Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity.

    PubMed

    Cai, Zhao; Zhou, Daojin; Wang, Maoyu; Bak, Seongmin; Wu, Yueshen; Wu, Zishan; Tian, Yang; Xiong, Xuya; Li, Yaping; Liu, Wen; Siahrostami, Samira; Kuang, Yun; Yang, Xiao-Qing; Duan, Haohong; Feng, Zhenxing; Wang, Hailiang; Sun, Xiaoming

    2018-06-11

    Exploring materials with regulated local structures and understanding how the atomic motifs govern the reactivity and durability of catalysts are a critical challenge for designing advanced catalysts. Here we report the tuning of the local atomic structure of nickel-iron layered double hydroxides (NiFe-LDHs) by partially substituting Ni2+ with Fe2+ to introduce Fe-O-Fe moieties. These Fe2+-containing NiFe-LDHs exhibit enhanced oxygen evolution reaction (OER) activity with an ultralow overpotential of 195 mV at the current density of 10 mA/cm2, which is among the best OER catalytic performance reported to date. In-situ X-ray absorption, Raman, and electrochemical analysis jointly reveal that the Fe-O-Fe motifs could stabilize high-valent metal sites at low overpotentials, thereby enhancing the OER activity. These results reveal the importance of tuning the local atomic structure for designing high efficiency electrocatalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Introducing Fe 2+ into Nickel-Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity

    DOE PAGES

    Cai, Zhao; Zhou, Daojin; Wang, Maoyu; ...

    2018-06-11

    Exploring materials with regulated local structures and understanding how the atomic motifs govern the reactivity and durability of catalysts are a critical challenge for designing advanced catalysts. Here we report the tuning of the local atomic structure of nickel–iron layered double hydroxides (NiFe–LDHs) by partially substituting Ni 2+ with Fe 2+ to introduce Fe–O–Fe moieties. These Fe 2+–containing NiFe–LDHs exhibit enhanced oxygen evolution reaction (OER) activity with an ultralow overpotential of 195 mV at the current density of 10 mA/cm 2, which is among the best OER catalytic performance reported to date. In–situ X–ray absorption, Raman, and electrochemical analysis jointlymore » reveal that the Fe–O–Fe motifs could stabilize high–valent metal sites at low overpotentials, thereby enhancing the OER activity. Lastly, these results reveal the importance of tuning the local atomic structure for designing high efficiency electrocatalysts.« less

  14. Long-Term Outcomes of Double-Layered Polytetrafluoroethylene Membrane-Covered Self-Expandable Segmental Metallic Stents (Uventa) in Patients with Chronic Ureteral Obstructions: Is It Really Safe?

    PubMed

    Kim, Myong; Hong, Bumsik; Park, Hyung Keun

    2016-12-01

    To evaluate the long-term clinical efficacy and safety of double-layered polytetrafluoroethylene membrane-covered self-expandable segmental metallic stents (Uventa) in patients with chronic ureteral obstruction. In a retrospective study, a total of 50 ureter units (44 patients) with chronic obstructions were included from July 2010 to May 2015. Indications for Uventa placement were primary stenting for malignant ureteral obstruction, failed conventional polymeric Double-J stent (PS), or percutaneous nephrostomy (PCN) technique, with comorbidities or fears limiting PS/PCN changes, or with irritation or pain due to PS/PCN. Patients underwent Uventa stent placement using the antegrade or retrograde approach. There were no immediate procedure-related complications, and all stents were placed in the proper sites. During the median follow-up of 30.9 (interquartile range [IQR], 8.1-49.0) months, the primary (no obstruction and no additional intervention) and overall success (no obstruction and no additional intervention except supplementary Uventa) was 30.0% and 34.0%, respectively. Moreover, 14 of 50 ureter units (28.0%) experienced major complications (≥Clavien-Dindo class IIIb), such as ureteroarterial fistula (three cases, 6.0%), ureteroenteric fistula (three, 6.0%), ureterovaginal fistula (one, 2.0%), ureter perforation (one, 2.0%), uncontrollable bleeding (one, 2.0%), and complete obstruction (five, 10.0%). On univariate analysis, major complications were associated with female (odds ratio [OR] = 6.000), cervical cancer (OR = 4.667), ureteral stricture length (≥6.0 cm, OR = 4.583), and placement duration (≥24.0 months, OR = 20.429; all p < 0.05). In long-term follow-up, the Uventa stent demonstrated poor treatment outcomes with frequent major complications in patients with chronic ureteral obstructions.

  15. Sensing performance analysis on Fano resonance of metallic double-baffle contained MDM waveguide coupled ring resonator

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Luo, Pei; Liu, Xiaofei; Di, Yuanjian; Han, Shuaitao; Cui, Xingning; He, Lei

    2018-05-01

    Based on the transmission property and the photon localization characteristic of the surface plasmonic sub-wavelength structure, a metallic double-baffle contained metal-dielectric-metal (MDM) waveguide coupled ring resonator is proposed. Like the electromagnetically induced transparency (EIT), the Fano resonance can be achieved by the interference between the metallic double-baffle resonator and the ring resonator. Based on the coupled mode theory, the transmission property is analyzed. Through the numerical simulation by the finite element method (FEM), the quantitative analysis on the influences of the radius R of the ring and the coupling distance g between the metallic double-baffle resonator and the ring resonator for the figure of merit (FOM) is performed. And after the structure parameter optimization, the sensing performance of the waveguide structure is discussed. The simulation results show that the FOM value of the optimized structure can attain to 5.74 ×104 and the sensitivity of resonance wavelength with refractive index drift is about 825 nm/RIU. The range of the detected refractive index is suitable for all gases. The waveguide structure can provide effective theoretical references for the design of integrated plasmonic devices.

  16. Determination of effective mechanical properties of a double-layer beam by means of a nano-electromechanical transducer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hocke, Fredrik; Pernpeintner, Matthias; Gross, Rudolf, E-mail: rudolf.gross@wmi.badw.de

    We investigate the mechanical properties of a doubly clamped, double-layer nanobeam embedded into an electromechanical system. The nanobeam consists of a highly pre-stressed silicon nitride and a superconducting niobium layer. By measuring the mechanical displacement spectral density both in the linear and the nonlinear Duffing regime, we determine the pre-stress and the effective Young's modulus of the nanobeam. An analytical double-layer model quantitatively corroborates the measured values. This suggests that this model can be used to design mechanical multilayer systems for electro- and optomechanical devices, including materials controllable by external parameters such as piezoelectric, magnetostrictive, or in more general multiferroicmore » materials.« less

  17. Reduce on the Cost of Photovoltaic Power Generation for Polycrystalline Silicon Solar Cells by Double Printing of Ag/Cu Front Contact Layer

    NASA Astrophysics Data System (ADS)

    Peng, Zhuoyin; Liu, Zhou; Chen, Jianlin; Liao, Lida; Chen, Jian; Li, Cong; Li, Wei

    2018-06-01

    With the development of photovoltaic industry, the cost of photovoltaic power generation has become the significant issue. And the metallization process has decided the cost of original materials and photovoltaic efficiency of the solar cells. Nowadays, double printing process has been introduced instead of one-step printing process for front contact of polycrystalline silicon solar cells, which can effectively improve the photovoltaic conversion efficiency of silicon solar cells. Here, the relative cheap Cu paste has replaced the expensive Ag paste to form Ag/Cu composite front contact of silicon solar cells. The photovoltaic performance and the cost of photovoltaic power generation have been investigated. With the optimization on structure and height of Cu finger layer for Ag/Cu composite double-printed front contact, the silicon solar cells have exhibited a photovoltaic conversion efficiency of 18.41%, which has reduced 3.42 cent per Watt for the cost of photovoltaic power generation.

  18. A compact quantum correction model for symmetric double gate metal-oxide-semiconductor field-effect transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Edward Namkyu; Shin, Yong Hyeon; Yun, Ilgu, E-mail: iyun@yonsei.ac.kr

    2014-11-07

    A compact quantum correction model for a symmetric double gate (DG) metal-oxide-semiconductor field-effect transistor (MOSFET) is investigated. The compact quantum correction model is proposed from the concepts of the threshold voltage shift (ΔV{sub TH}{sup QM}) and the gate capacitance (C{sub g}) degradation. First of all, ΔV{sub TH}{sup QM} induced by quantum mechanical (QM) effects is modeled. The C{sub g} degradation is then modeled by introducing the inversion layer centroid. With ΔV{sub TH}{sup QM} and the C{sub g} degradation, the QM effects are implemented in previously reported classical model and a comparison between the proposed quantum correction model and numerical simulationmore » results is presented. Based on the results, the proposed quantum correction model can be applicable to the compact model of DG MOSFET.« less

  19. A Van der Waals-like theory of plasma double layers

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Davis, V. A.

    1989-01-01

    A theory describing plasma double layers in terms of multiple roots of the charge density expression is presented. The theory presented uses the fact that equilibrium plasmas shield small potential perturbations linearly; for high potentials, the shielding decreases. The approach is analogous to Van der Waals' theory of simple fluids in which inclusion of approximate expressions for both excluded volume and long range attractive forces sufficiently describes the first-order liquid-gas phase transition.

  20. Pulsed laser deposition of functionalized Mg-Al layered double hydroxide thin films

    NASA Astrophysics Data System (ADS)

    Vlad, A.; Birjega, R.; Tirca, I.; Matei, A.; Mardare, C. C.; Hassel, A. W.; Nedelcea, A.; Dinescu, M.; Zavoianu, R.

    2018-02-01

    In this paper, magnesium-aluminium layered double hydroxide (LDH) has been functionalized with sodium dodecyl sulfate (DS) and deposited as thin film by pulsed laser deposition (PLD). Mg, Al-LDH powders were prepared by co-precipitation and used as reference material. Intercalation of DS as an anionic surfactant into the LDHs host layers has been prepared in two ways: co-precipitation (P) and reconstruction (R). DS intercalation occurred in LDH powder via both preparation methods. The films deposited via PLD, in particular at 532 and 1064 nm, preserve the organic intercalated layered structure of the targets prepared from these powders. The results reveal the ability of proposed deposition technique to produce functional composite organo-modified LDHs thin films.

  1. Plasmonically sensitized metal-oxide electron extraction layers for organic solar cells.

    PubMed

    Trost, S; Becker, T; Zilberberg, K; Behrendt, A; Polywka, A; Heiderhoff, R; Görrn, P; Riedl, T

    2015-01-16

    ZnO and TiOx are commonly used as electron extraction layers (EELs) in organic solar cells (OSCs). A general phenomenon of OSCs incorporating these metal-oxides is the requirement to illuminate the devices with UV light in order to improve device characteristics. This may cause severe problems if UV to VIS down-conversion is applied or if the UV spectral range (λ < 400 nm) is blocked to achieve an improved device lifetime. In this work, silver nanoparticles (AgNP) are used to plasmonically sensitize metal-oxide based EELs in the vicinity (1-20 nm) of the metal-oxide/organic interface. We evidence that plasmonically sensitized metal-oxide layers facilitate electron extraction and afford well-behaved highly efficient OSCs, even without the typical requirement of UV exposure. It is shown that in the plasmonically sensitized metal-oxides the illumination with visible light lowers the WF due to desorption of previously ionosorbed oxygen, in analogy to the process found in neat metal oxides upon UV exposure, only. As underlying mechanism the transfer of hot holes from the metal to the oxide upon illumination with hν < Eg is verified. The general applicability of this concept to most common metal-oxides (e.g. TiOx and ZnO) in combination with different photoactive organic materials is demonstrated.

  2. Hydrothermal syntheses, characterizations and crystal structures of a new lead(II) carboxylate-phosphonate with a double layer structure and a new nickel(II) carboxylate-phosphonate containing a hydrogen-bonded 2D layer with intercalation of ethylenediamines

    NASA Astrophysics Data System (ADS)

    Song, Jun-Ling; Mao, Jiang-Gao; Sun, Yan-Qiong; Zeng, Hui-Yi; Kremer, Reinhard K.; Clearfield, Abraham

    2004-03-01

    Hydrothermal reactions of N, N-bis(phosphonomethyl)aminoacetic acid (HO 2CCH 2N(CH 2PO 3H 2) 2) with metal(II) salts afforded two new metal carboxylate-phosphonates, namely, Pb 2[O 2CCH 2N(CH 2PO 3)(CH 2PO 3H)]·H 2O ( 1) and {NH 3CH 2CH 2NH 3}{Ni[O 2CCH 2N(CH 2PO 3H) 2](H 2O) 2} 2 ( 2). Among two unique lead(II) ions in the asymmetric unit of complex 1, one is five coordinated by five phosphonate oxygen atoms from 5 ligands, whereas the other one is five-coordinated by a tridentate chelating ligand (1 N and 2 phosphonate O atoms) and two phosphonate oxygen atoms from two other ligands. The carboxylate group of the ligand remains non-coordinated. The bridging of above two types of lead(II) ions through phosphonate groups resulted in a <002> double layer with the carboxylate group of the ligand as a pendant group. These double layers are further interlinked via hydrogen bonds between the carboxylate groups into a 3D network. The nickel(II) ion in complex 2 is octahedrally coordinated by a tetradentate chelating ligand (two phosphonate oxygen atoms, one nitrogen and one carboxylate oxygen atoms) and two aqua ligands. These {Ni[O 2CCH 2N(CH 2PO 3H) 2][H 2O] 2} - anions are further interlinked via hydrogen bonds between non-coordinated phosphonate oxygen atoms to form a <800> hydrogen bonded 2D layer. The 2H-protonated ethylenediamine cations are intercalated between two layers, forming hydrogen bonds with the non-coordinated carboxylate oxygen atoms. Results of magnetic measurements for complex 2 indicate that there is weak Curie-Weiss behavior with θ=-4.4 K indicating predominant antiferromagnetic interaction between the Ni(II) ions. Indication for magnetic low-dimension magnetism could not be detected.

  3. Two-photon absorption in layered transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Dong, Ningning; Zhang, Saifeng; Li, Yuanxin; Wang, Jun

    2018-02-01

    Two-dimensional (2D) layered transition metal dichalcogenides (TMDCs) exhibit unique nonlinear optical (NLO) features and have becoming intriguing and promising candidate materials for photonic and optoelectronic devices with high performance and unique functions. Owing to layered geometry and the thickness-dependent bandgap, we studied the ultrafast NLO properties of a range of TMDCs. TMDCs with high-quality layered nanosheets were prepared through chemical vapor deposition (CVD) technique and vapor-phase growth method. Saturable absorption, two photon absorption (TPA) and two photon pumped frequency up-converted luminescence were observed from these 2D nanostructures. The exciting results open up the door to 2D photonic devices, such as passive mode-lockers, Q-switchers, optical limiters, light emitters, etc.

  4. Effect of double-layer application on bond quality of adhesive systems.

    PubMed

    Fujiwara, Satoshi; Takamizawa, Toshiki; Barkmeier, Wayne W; Tsujimoto, Akimasa; Imai, Arisa; Watanabe, Hidehiko; Erickson, Robert L; Latta, Mark A; Nakatsuka, Toshiyuki; Miyazaki, Masashi

    2018-01-01

    The aim of this study was to determine the effect of double-layer application of universal adhesives on the bond quality and compare to other adhesive systems. Two universal adhesives used were in this study: Scotchbond Universal (SU), [3M ESPE] and Prime & Bond elect (PE), [Dentsply Caulk]. The conventional single-step self-etch adhesives G-ӕnial Bond (GB), [GC Corporation.] and BeautiBond (BB), [Shofu Inc.], and a two-step self-etch adhesive, Optibond XTR (OX), [Kerr Corporation], were used as comparison adhesives. Shear bond strengths (SBS) and shear fatigue strengths (SFS) to human enamel and dentin were measured in single application mode and double application mode. For each test condition, 15 specimens were prepared for SBS testing and 30 specimens for SFS testing. Enamel and dentin SBS of the universal adhesives in the double application mode were significantly higher than those of the single application mode. In addition, the universal adhesives in the double application mode had significantly higher dentin SFS values than those of the single application mode. The two-step self-etch adhesive OX tended to have lower bond strengths in the double application mode, regardless of the test method or adherent substrate. The double application mode is effective in enhancing SBS and SFS of universal adhesives, but not conventional two-step self-etch adhesives. These results suggest that, although the double application mode may enhance the bonding quality of a universal adhesive, it may be counter-productive for two-step self-etch adhesives in clinical use. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Layer-by-layer modification of thin-film metal-semiconductor multilayers with ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Romashevskiy, S. A.; Tsygankov, P. A.; Ashitkov, S. I.; Agranat, M. B.

    2018-05-01

    The surface modifications in a multilayer thin-film structure (50-nm alternating layers of Si and Al) induced by a single Gaussian-shaped femtosecond laser pulse (350 fs, 1028 nm) in the air are investigated by means of atomic-force microscopy (AFM), scanning electron microscopy (SEM), and optical microscopy (OM). Depending on the laser fluence, various modifications of nanometer-scale metal and semiconductor layers, including localized formation of silicon/aluminum nanofoams and layer-by-layer removal, are found. While the nanofoams with cell sizes in the range of tens to hundreds of nanometers are produced only in the two top layers, layer-by-layer removal is observed for the four top layers under single pulse irradiation. The 50-nm films of the multilayer structure are found to be separated at their interfaces, resulting in a selective removal of several top layers (up to 4) in the form of step-like (concentric) craters. The observed phenomenon is associated with a thermo-mechanical ablation mechanism that results in splitting off at film-film interface, where the adhesion force is less than the bulk strength of the used materials, revealing linear dependence of threshold fluences on the film thickness.

  6. Enhanced stability of thin film transistors with double-stacked amorphous IWO/IWO:N channel layer

    NASA Astrophysics Data System (ADS)

    Lin, Dong; Pi, Shubin; Yang, Jianwen; Tiwari, Nidhi; Ren, Jinhua; Zhang, Qun; Liu, Po-Tsun; Shieh, Han-Ping

    2018-06-01

    In this work, bottom-gate top-contact thin film transistors with double-stacked amorphous IWO/IWO:N channel layer were fabricated. Herein, amorphous IWO and N-doped IWO were deposited as front and back channel layers, respectively, by radio-frequency magnetron sputtering. The electrical characteristics of the bi-layer-channel thin film transistors (TFTs) were examined and compared with those of single-layer-channel (i.e., amorphous IWO or IWO:N) TFTs. It was demonstrated to exhibit a high mobility of 27.2 cm2 V‑1 s‑1 and an on/off current ratio of 107. Compared to the single peers, bi-layer a-IWO/IWO:N TFTs showed smaller hysteresis and higher stability under negative bias stress and negative bias temperature stress. The enhanced performance could be attributed to its unique double-stacked channel configuration, which successfully combined the merits of the TFTs with IWO and IWO:N channels. The underlying IWO thin film provided percolation paths for electron transport, meanwhile, the top IWO:N layer reduced the bulk trap densities. In addition, the IWO channel/gate insulator interface had reduced defects, and IWO:N back channel surface was insensitive to the ambient atmosphere. Overall, the proposed bi-layer a-IWO/IWO:N TFTs show potential for practical applications due to its possibly long-term serviceability.

  7. Fresnel coefficients and Fabry-Perot formula for spatially dispersive metallic layers

    NASA Astrophysics Data System (ADS)

    Pitelet, Armel; Mallet, Émilien; Centeno, Emmanuel; Moreau, Antoine

    2017-07-01

    The repulsion between free electrons inside a metal makes its optical response spatially dispersive, so that it is not described by Drude's model but by a hydrodynamic model. We give here fully analytic results for a metallic slab in this framework, thanks to a two-mode cavity formalism leading to a Fabry-Perot formula, and show that a simplification can be made that preserves the accuracy of the results while allowing much simpler analytic expressions. For metallic layers thicker than 2.7 nm modified Fresnel coefficients can actually be used to accurately predict the response of any multilayer with spatially dispersive metals (for reflection, transmission, or the guided modes). Finally, this explains why adding a small dielectric layer [Y. Luo et al., Phys. Rev. Lett. 111, 093901 (2013), 10.1103/PhysRevLett.111.093901] allows one to reproduce the effects of nonlocality in many cases, and especially for multilayers.

  8. Purse-string double-layer closure: a novel technique for repairing the uterine incision during cesarean section.

    PubMed

    Turan, Cem; Büyükbayrak, Esra Esim; Yilmaz, Aylin Onan; Karsidag, Yasemin Karageyim; Pirimoglu, Meltem

    2015-04-01

    To compare the classical double-layer uterine closure to a double-layer purse-string uterine closure (Turan technique) in cesarean section regarding short- and long-term results. Patients were randomized into either the double-layer purse-string uterine closure arm (study group, 84 patients) or the classical double-layer uterine closure arm (control group, 84 patients). For short-term comparison, a detailed transvaginal ultrasound examination was planned in all patients 6 weeks after the operation and a wedge-shaped defect in the uterine incision scar was accepted as uterine scar defect and recorded. For the long-term comparison, subsequent pregnancies of these patients were followed up for any complication. The number of patients with ultrasonographically visible uterine scar defect was 12 (23.5% of all scar defects) in the study group whereas it was 39 (76.5% of all scar defects) in the control group (P < 0.001, χ(2) = 15.42). Demographic data, operation time, hospitalization time, preoperative and postoperative hemoglobin values were not significantly different between the groups. During the 2-year of the follow-up period, five patients in the study group and six patients in the control group became pregnant again. No complication during their pregnancies and second cesarean operation were encountered. With the Turan technique, the uterine incision length becomes shorter, and the frequency of uterine scar defect is lower regarding short-term results. More data is needed for long-term results. ClinicalTrials.gov NCT01287611. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  9. Layered Metal Nanoparticle Structures on Electrodes for Sensing, Switchable Controlled Uptake/Release, and Photo-electrochemical Applications.

    PubMed

    Tel-Vered, Ran; Kahn, Jason S; Willner, Itamar

    2016-01-06

    Layered metal nanoparticle (NP) assemblies provide highly porous and conductive composites of unique electrical and optical (plasmonic) properties. Two methods to construct layered metal NP matrices are described, and these include the layer-by-layer deposition of NPs, or the electropolymerization of monolayer-functionalized NPs, specifically thioaniline-modified metal NPs. The layered NP composites are used as sensing matrices through the use of electrochemistry or surface plasmon resonance (SPR) as transduction signals. The crosslinking of the metal NP composites with molecular receptors, or the imprinting of molecular recognition sites into the electropolymerized NP matrices lead to selective and chiroselective sensing interfaces. Furthermore, the electrosynthesis of redox-active, imprinted, bis-aniline bridged Au NP composites yields electrochemically triggered "sponges" for the switchable uptake and release of electron-acceptor substrates, and results in conductive surfaces of electrochemically controlled wettability. Also, photosensitizer-relay-crosslinked Au NP composites, or electrochemically polymerized layered semiconductor quantum dot/metal NP matrices on electrodes, are demonstrated as functional nanostructures for photoelectrochemical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Anisotropy in layered half-metallic Heusler alloy superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azadani, Javad G.; Munira, Kamaram; Sivakumar, Chockalingam

    2016-01-28

    We show that when two Heusler alloys are layered in the [001], [110], or [111] directions for various thicknesses to form a superlattice, the Slater-Pauling rule may still be satisfied and the resulting superlattice is often half-metallic with gaps comparable to or larger than those of its constituents. In addition, uniaxial magnetocrystalline anisotropy is induced because of the differences in the electronic structure of the two Heuslers in the superlattice. Various full-full, full-half, and half-half Heusler superlattices are studied, and potential half-metallic superlattices with perpendicular magnetocrystalline anisotropy are identified.

  11. Efficient drug delivery using SiO2-layered double hydroxide nanocomposites.

    PubMed

    Li, Li; Gu, Zi; Gu, Wenyi; Liu, Jian; Xu, Zhi Ping

    2016-05-15

    MgAl-layered double hydroxide (MgAl-LDH) nanoparticles have great potentials in drug and siRNA delivery. In this work, we used a nanodot-coating strategy to prepare SiO2 dot-coated layered double hydroxide (SiO2@MgAl-LDH) nanocomposites with good dispersibility and controllable size for drug delivery. The optimal SiO2@MgAl-LDH nanocomposite was obtained by adjusting synthetic parameters including the mass ratio of MgAl-LDH to SiO2, the mixing temperature and time. The optimal SiO2@MgAl-LDH nanocomposite was shown to have SiO2 nanodots (10-15nm in diameter) evenly deposited on the surface of MgAl-LDHs (110nm in diameter) with the plate-like morphology and the average hydrodynamic diameter of 170nm. We further employed SiO2@MgAl-LDH nanocomposite as a nanocarrier to deliver methotrexate (MTX), a chemotherapy drug, to the human osteosarcoma cell (U2OS) and found that MTX delivered by SiO2@MgAl-LDH nanocomposite apparently inhibited the U2OS cell growth. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Determination of Surface Potential and Electrical Double-Layer Structure at the Aqueous Electrolyte-Nanoparticle Interface

    NASA Astrophysics Data System (ADS)

    Brown, Matthew A.; Abbas, Zareen; Kleibert, Armin; Green, Richard G.; Goel, Alok; May, Sylvio; Squires, Todd M.

    2016-01-01

    The structure of the electrical double layer has been debated for well over a century, since it mediates colloidal interactions, regulates surface structure, controls reactivity, sets capacitance, and represents the central element of electrochemical supercapacitors. The surface potential of such surfaces generally exceeds the electrokinetic potential, often substantially. Traditionally, a Stern layer of nonspecifically adsorbed ions has been invoked to rationalize the difference between these two potentials; however, the inability to directly measure the surface potential of dispersed systems has rendered quantitative measurements of the Stern layer potential, and other quantities associated with the outer Helmholtz plane, impossible. Here, we use x-ray photoelectron spectroscopy from a liquid microjet to measure the absolute surface potentials of silica nanoparticles dispersed in aqueous electrolytes. We quantitatively determine the impact of specific cations (Li+ , Na+ , K+ , and Cs+ ) in chloride electrolytes on the surface potential, the location of the shear plane, and the capacitance of the Stern layer. We find that the magnitude of the surface potential increases linearly with the hydrated-cation radius. Interpreting our data using the simplest assumptions and most straightforward understanding of Gouy-Chapman-Stern theory reveals a Stern layer whose thickness corresponds to a single layer of water molecules hydrating the silica surface, plus the radius of the hydrated cation. These results subject electrical double-layer theories to direct and falsifiable tests to reveal a physically intuitive and quantitatively verified picture of the Stern layer that is consistent across multiple electrolytes and solution conditions.

  13. Entropic effects in the electric double layer of model colloids with size-asymmetric monovalent ions

    NASA Astrophysics Data System (ADS)

    Guerrero-García, Guillermo Iván; González-Tovar, Enrique; Olvera de la Cruz, Mónica

    2011-08-01

    The structure of the electric double layer of charged nanoparticles and colloids in monovalent salts is crucial to determine their thermodynamics, solubility, and polyion adsorption. In this work, we explore the double layer structure and the possibility of charge reversal in relation to the size of both counterions and coions. We examine systems with various size-ratios between counterions and coions (ion size asymmetries) as well as different total ion volume fractions. Using Monte Carlo simulations and integral equations of a primitive-model electric double layer, we determine the highest charge neutralization and electrostatic screening near the electrified surface. Specifically, for two binary monovalent electrolytes with the same counterion properties but differing only in the coion's size surrounding a charged nanoparticle, the one with largest coion size is found to have the largest charge neutralization and screening. That is, in size-asymmetric double layers with a given counterion's size the excluded volume of the coions dictates the adsorption of the ionic charge close to the colloidal surface for monovalent salts. Furthermore, we demonstrate that charge reversal can occur at low surface charge densities, given a large enough total ion concentration, for systems of monovalent salts in a wide range of ion size asymmetries. In addition, we find a non-monotonic behavior for the corresponding maximum charge reversal, as a function of the colloidal bare charge. We also find that the reversal effect disappears for binary salts with large-size counterions and small-size coions at high surface charge densities. Lastly, we observe a good agreement between results from both Monte Carlo simulations and the integral equation theory across different colloidal charge densities and 1:1-elec-trolytes with different ion sizes.

  14. Novel electric double-layer capacitor with a coaxial fiber structure.

    PubMed

    Chen, Xuli; Qiu, Longbin; Ren, Jing; Guan, Guozhen; Lin, Huijuan; Zhang, Zhitao; Chen, Peining; Wang, Yonggang; Peng, Huisheng

    2013-11-26

    A coaxial electric double-layer capacitor fiber is developed from the aligned carbon nanotube fiber and sheet, which functions as two electrodes with a polymer gel sandwiched between them. The unique coaxial structure enables a rapid transportation of ions between the two electrodes with a high electrochemical performance. These energy storage fibers are also flexible and stretchable, and can be woven into and widely used for electronic textiles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. ZnS-Sb2S3@C Core-Double Shell Polyhedron Structure Derived from Metal-Organic Framework as Anodes for High Performance Sodium Ion Batteries.

    PubMed

    Dong, Shihua; Li, Caixia; Ge, Xiaoli; Li, Zhaoqiang; Miao, Xianguang; Yin, Longwei

    2017-06-27

    Taking advantage of zeolitic imidazolate framework (ZIF-8), ZnS-Sb 2 S 3 @C core-double shell polyhedron structure is synthesized through a sulfurization reaction between Zn 2+ dissociated from ZIF-8 and S 2- from thioacetamide (TAA), and subsequently a metal cation exchange process between Zn 2+ and Sb 3+ , in which carbon layer is introduced from polymeric resorcinol-formaldehyde to prevent the collapse of the polyhedron. The polyhedron composite with a ZnS inner-core and Sb 2 S 3 /C double-shell as anode for sodium ion batteries (SIBs) shows us a significantly improved electrochemical performance with stable cycle stability, high Coulombic efficiency and specific capacity. Peculiarly, introducing a carbon shell not only acts as an important protective layer to form a rigid construction and accommodate the volume changes, but also improves the electronic conductivity to optimize the stable cycle performance and the excellent rate property. The architecture composed of ZnS inner core and a complex Sb 2 S 3 /C shell not only facilitates the facile electrolyte infiltration to reduce the Na-ion diffusion length to improve the electrochemical reaction kinetics, but also prevents the structure pulverization caused by Na-ion insertion/extraction. This approach to prepare metal sulfides based on MOFs can be further extended to design other nanostructured systems for high performance energy storage devices.

  16. Excitation mechanism of surface plasmon polaritons in a double-layer wire grid structure

    NASA Astrophysics Data System (ADS)

    Motogaito, Atsushi; Nakajima, Tomoyasu; Miyake, Hideto; Hiramatsu, Kazumasa

    2017-12-01

    We characterize the optical properties of a double-layer wire grid structure and investigate in detail the excitation mechanism of surface plasmon polaritons (SPPs). Angular spectra for the transmittance of the transverse magnetic polarized light that are obtained through the experiment reveal two peaks. In addition, simulated mapping of the transmittance and the magnetic field distribution indicate that SPPs are excited in two areas of the wire grid structures: at the interface between the Au layer and the resist layer or the glass substrate and at the interface between the Au layer and air. The experimental data are consistent with the transmittance mapping result and the distribution of the magnetic field. Accordingly, we constructed a model of SPPs propagation. We consider that SPPs excited at the interface between the Au layer and the resist layer or the glass substrate strongly contribute to the extraordinary transmission observed in the wire grid structures.

  17. Two-Dimensional Layered Double Hydroxides for Reactions of Methanation and Methane Reforming in C1 Chemistry

    PubMed Central

    Li, Panpan; Altaf, Naveed; Zhu, Mingyuan; Li, Jiangbing; Dai, Bin; Wang, Qiang

    2018-01-01

    CH4 as the paramount ingredient of natural gas plays an eminent role in C1 chemistry. CH4 catalytically converted to syngas is a significant route to transmute methane into high value-added chemicals. Moreover, the CO/CO2 methanation reaction is one of the potent technologies for CO2 valorization and the coal-derived natural gas production process. Due to the high thermal stability and high extent of dispersion of metallic particles, two-dimensional mixed metal oxides through calcined layered double hydroxides (LDHs) precursors are considered as the suitable supports or catalysts for both the reaction of methanation and methane reforming. The LDHs displayed compositional flexibility, small crystal sizes, high surface area and excellent basic properties. In this paper, we review previous works of LDHs applied in the reaction of both methanation and methane reforming, focus on the LDH-derived catalysts, which exhibit better catalytic performance and thermal stability than conventional catalysts prepared by impregnation method and also discuss the anti-coke ability and anti-sintering ability of LDH-derived catalysts. We believe that LDH-derived catalysts are promising materials in the heterogeneous catalytic field and provide new insight for the design of advance LDH-derived catalysts worthy of future research. PMID:29385064

  18. Influence of boundary on the effect of double-layer polarization and the electrophoretic behavior of soft biocolloids.

    PubMed

    Yeh, Li-Hsien; Fang, Kuo-Ying; Hsu, Jyh-Ping; Tseng, Shiojenn

    2011-12-01

    The electrophoresis of a soft particle comprising a rigid core and a charged porous membrane layer in a narrow space is modeled. This simulates, for example, the capillary electrophoresis of biocolloids such as cells and microorganisms, and biosensor types of device. We show that, in addition to the boundary effect, the effects of double-layer polarization (DLP) and the electroosmotic retardation flow can be significant, yielding interesting electrophoretic behaviors. For example, if the friction coefficient of the membrane layer and/or the boundary is large, then the DLP effect can be offset by the electroosmotic retardation flow, making the particle mobility to decrease with increasing double layer thickness, which is qualitatively consistent with many experimental observations in the literature, but has not been explained clearly in previous analyses. In addition, depending upon the thickness of double layer, the friction of the membrane layer of a particle can either retard or accelerate its movement, an interesting result which has not been reported previously. This work is the first attempt to show solid evidence for the influence of a boundary on the effect of DLP and the electrophoretic behavior of soft particles. The model proposed is verified by the experimental data in the literature. The results of numerical simulation provide valuable information for the design of bio-analytical apparatus such as nanopore-based sensing applications and for the interpretation of relevant experimental data. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Effect of temperature degeneracy and Landau quantization on drift solitary waves and double layers

    NASA Astrophysics Data System (ADS)

    Shan, Shaukat Ali; Haque, Q.

    2018-01-01

    The linear and nonlinear drift ion acoustic waves have been investigated in an inhomogeneous, magnetized, dense degenerate, and quantized magnetic field plasma. The linear drift ion acoustic wave propagation along with the nonlinear structures like double layers and solitary waves has been found to be strongly dependent on the drift speed, magnetic field quantization parameter β, and the temperature degeneracy. The graphical illustrations show that the frequency of linear waves and the amplitude of the solitary waves increase with the increase in temperature degeneracy and Landau quantization effect, while the amplitude of the double layers decreases with the increase in η and T. The relevance of the present study is pointed out in the plasma environment of fast ignition inertial confinement fusion, the white dwarf stars, and short pulsed petawatt laser technology.

  20. Environmentally friendly power generator based on moving liquid dielectric and double layer effect

    PubMed Central

    Huynh, D. H.; Nguyen, T. C.; Nguyen, P. D.; Abeyrathne, C. D.; Hossain, Md. S.; Evans, R.; Skafidas, E.

    2016-01-01

    An electrostatic power generator converts mechanical energy to electrical energy by utilising the principle of variable capacitance. This change in capacitance is usually achieved by varying the gap or overlap between two parallel metallic plates. This paper proposes a novel electrostatic micro power generator where the change in capacitance is achieved by the movement of an aqueous solution of NaCl. A significant change in capacitance is achieved due to the higher than air dielectric constant of water and the Helmholtz double layer capacitor formed by ion separation at the electrode interfaces. The proposed device has significant advantages over traditional electrostatic devices which include low bias voltage and low mechanical frequency of operation. This is critical if the proposed device is to have utility in harvesting power from the environment. A figure of merit exceeding 10000(108μW)/(mm2HzV2) which is two orders of magnitude greater than previous devices, is demonstrated for a prototype operating at a bias voltage of 1.2 V and a droplet frequency of 6 Hz. Concepts are presented for large scale power harvesting. PMID:27255577

  1. Environmentally friendly power generator based on moving liquid dielectric and double layer effect.

    PubMed

    Huynh, D H; Nguyen, T C; Nguyen, P D; Abeyrathne, C D; Hossain, Md S; Evans, R; Skafidas, E

    2016-06-03

    An electrostatic power generator converts mechanical energy to electrical energy by utilising the principle of variable capacitance. This change in capacitance is usually achieved by varying the gap or overlap between two parallel metallic plates. This paper proposes a novel electrostatic micro power generator where the change in capacitance is achieved by the movement of an aqueous solution of NaCl. A significant change in capacitance is achieved due to the higher than air dielectric constant of water and the Helmholtz double layer capacitor formed by ion separation at the electrode interfaces. The proposed device has significant advantages over traditional electrostatic devices which include low bias voltage and low mechanical frequency of operation. This is critical if the proposed device is to have utility in harvesting power from the environment. A figure of merit exceeding 10000(10(8)μW)/(mm(2)HzV(2)) which is two orders of magnitude greater than previous devices, is demonstrated for a prototype operating at a bias voltage of 1.2 V and a droplet frequency of 6 Hz. Concepts are presented for large scale power harvesting.

  2. Conditions for double layers in the earth's magnetosphere and perhaps in other astrophysical objects

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.

    1987-01-01

    It is suggested that the features which govern the formation of the double layers are: (1) the divergence of the magnetospheric electric field, (2) the ionospheric conductivity, and (3) the current-voltage characteristics of auroral magnetic field lines. Also considered are conditions in other astrophysical objects that could lead to the formation of DLs in a manner analogous to what occurs in the earth's auroral zones. It is noted that two processes can drive divergent Pedersen currents within a collisional conducting layer: (1) sheared plasma flow applied anywhere along the magnetic field lines connected to the conducting layer and (2) a neutral flow with shear within the conducting layer.

  3. Metallic conduction induced by direct anion site doping in layered SnSe2

    PubMed Central

    Kim, Sang Il; Hwang, Sungwoo; Kim, Se Yun; Lee, Woo-Jin; Jung, Doh Won; Moon, Kyoung-Seok; Park, Hee Jung; Cho, Young-Jin; Cho, Yong-Hee; Kim, Jung-Hwa; Yun, Dong-Jin; Lee, Kyu Hyoung; Han, In-taek; Lee, Kimoon; Sohn, Yoonchul

    2016-01-01

    The emergence of metallic conduction in layered dichalcogenide semiconductor materials by chemical doping is one of key issues for two-dimensional (2D) materials engineering. At present, doping methods for layered dichalcogenide materials have been limited to an ion intercalation between layer units or electrostatic carrier doping by electrical bias owing to the absence of appropriate substitutional dopant for increasing the carrier concentration. Here, we report the occurrence of metallic conduction in the layered dichalcogenide of SnSe2 by the direct Se-site doping with Cl as a shallow electron donor. The total carrier concentration up to ~1020 cm−3 is achieved by Cl substitutional doping, resulting in the improved conductivity value of ~170 S·cm−1 from ~1.7 S·cm−1 for non-doped SnSe2. When the carrier concentration exceeds ~1019 cm−3, the conduction mechanism is changed from hopping to degenerate conduction, exhibiting metal-insulator transition behavior. Detailed band structure calculation reveals that the hybridized s-p orbital from Sn 5s and Se 4p states is responsible for the degenerate metallic conduction in electron-doped SnSe2. PMID:26792630

  4. Metallic conduction induced by direct anion site doping in layered SnSe2.

    PubMed

    Kim, Sang Il; Hwang, Sungwoo; Kim, Se Yun; Lee, Woo-Jin; Jung, Doh Won; Moon, Kyoung-Seok; Park, Hee Jung; Cho, Young-Jin; Cho, Yong-Hee; Kim, Jung-Hwa; Yun, Dong-Jin; Lee, Kyu Hyoung; Han, In-taek; Lee, Kimoon; Sohn, Yoonchul

    2016-01-21

    The emergence of metallic conduction in layered dichalcogenide semiconductor materials by chemical doping is one of key issues for two-dimensional (2D) materials engineering. At present, doping methods for layered dichalcogenide materials have been limited to an ion intercalation between layer units or electrostatic carrier doping by electrical bias owing to the absence of appropriate substitutional dopant for increasing the carrier concentration. Here, we report the occurrence of metallic conduction in the layered dichalcogenide of SnSe2 by the direct Se-site doping with Cl as a shallow electron donor. The total carrier concentration up to ~10(20) cm(-3) is achieved by Cl substitutional doping, resulting in the improved conductivity value of ~170 S · cm(-1) from ~1.7 S · cm(-1) for non-doped SnSe2. When the carrier concentration exceeds ~10(19) cm(-3), the conduction mechanism is changed from hopping to degenerate conduction, exhibiting metal-insulator transition behavior. Detailed band structure calculation reveals that the hybridized s-p orbital from Sn 5s and Se 4p states is responsible for the degenerate metallic conduction in electron-doped SnSe2.

  5. Plasmonically sensitized metal-oxide electron extraction layers for organic solar cells

    PubMed Central

    Trost, S.; Becker, T.; Zilberberg, K.; Behrendt, A.; Polywka, A.; Heiderhoff, R.; Görrn, P.; Riedl, T.

    2015-01-01

    ZnO and TiOx are commonly used as electron extraction layers (EELs) in organic solar cells (OSCs). A general phenomenon of OSCs incorporating these metal-oxides is the requirement to illuminate the devices with UV light in order to improve device characteristics. This may cause severe problems if UV to VIS down-conversion is applied or if the UV spectral range (λ < 400 nm) is blocked to achieve an improved device lifetime. In this work, silver nanoparticles (AgNP) are used to plasmonically sensitize metal-oxide based EELs in the vicinity (1–20 nm) of the metal-oxide/organic interface. We evidence that plasmonically sensitized metal-oxide layers facilitate electron extraction and afford well-behaved highly efficient OSCs, even without the typical requirement of UV exposure. It is shown that in the plasmonically sensitized metal-oxides the illumination with visible light lowers the WF due to desorption of previously ionosorbed oxygen, in analogy to the process found in neat metal oxides upon UV exposure, only. As underlying mechanism the transfer of hot holes from the metal to the oxide upon illumination with hν < Eg is verified. The general applicability of this concept to most common metal-oxides (e.g. TiOx and ZnO) in combination with different photoactive organic materials is demonstrated. PMID:25592174

  6. Sloshing instability and electrolyte layer rupture in liquid metal batteries

    NASA Astrophysics Data System (ADS)

    Weber, Norbert; Beckstein, Pascal; Herreman, Wietze; Horstmann, Gerrit Maik; Nore, Caroline; Stefani, Frank; Weier, Tom

    2017-05-01

    Liquid metal batteries (LMBs) are discussed today as a cheap grid scale energy storage, as required for the deployment of fluctuating renewable energies. Built as stable density stratification of two liquid metals separated by a thin molten salt layer, LMBs are susceptible to short-circuit by fluid flows. Using direct numerical simulation, we study a sloshing long wave interface instability in cylindrical cells, which is already known from aluminium reduction cells. After characterising the instability mechanism, we investigate the influence of cell current, layer thickness, density, viscosity, conductivity and magnetic background field. Finally we study the shape of the interface and give a dimensionless parameter for the onset of sloshing as well as for the short-circuit.

  7. Optimization of one-dimensional photonic crystals with double layer magneto-active defect

    NASA Astrophysics Data System (ADS)

    Mikhailova, T. V.; Berzhansky, V. N.; Shaposhnikov, A. N.; Karavainikov, A. V.; Prokopov, A. R.; Kharchenko, Yu. M.; Lukienko, I. M.; Miloslavskaya, O. V.; Kharchenko, M. F.

    2018-04-01

    Success of practical implementation of one-dimensional photonic crystals with magneto-active layers is evaluated in high values of magneto-optical (MO) quality factor Q and figure of merit F. The article relates to optimization of one-dimensional photonic crystals with double layer magneto-active (MA) defect of composition Bi1.0Y0.5Gd1.5Fe4.2Al0.8O12/Bi2.8Y0.2Fe5O12 located between the nongarnet dielectric Bragg mirrors. The structure design was performed by changing the number of layer pairs in Bragg mirrors m and the optical thickness of MA defect lM to achieve high values of MO characteristics. Theoretical predictions were confirmed by experimental investigation of eight synthesized configurations with m = 4 and m = 7. We have demonstrated the maximum Q = 15.1 deg and F = 7.5% at 624 nm for structure with m = 4 and lM = (2.5·λ0/2), where λ0 = 690 nm is the photonic band gap center. Configurations with m = 3 can also provide their effectiveness in realization. Maximum MO activity was achieved for configurations with m = 7. The structures with lM = (0.8·λ0/2) and lM = (2.5·λ0/2) showed respectively the specific Faraday rotation -113 deg/μm (that exceeds in 62 times the Faraday rotation of MA double layer film) at 654 nm and absolute Faraday rotation -20.6 deg at 626 nm.

  8. Improved Mobility and Bias Stability of Thin Film Transistors Using the Double-Layer a-InGaZnO/a-InGaZnO:N Channel.

    PubMed

    Yu, H; Zhang, L; Li, X H; Xu, H Y; Liu, Y C

    2016-04-01

    The amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) were demonstrated based on a double-layer channel structure, where the channel is composed of an ultrathin nitro-genated a-IGZO (a-IGZO:N) layer and an undoped a-IGZO layer. The double-layer channel device showed higher saturation mobility and lower threshold-voltage shift (5.74 cm2/Vs, 2.6 V) compared to its single-layer counterpart (0.17 cm2/Vs, 7.23 V). The improvement can be attributed to three aspects: (1) improved carrier transport properties of the channel by the a-IGZO:N layer with high carrier mobility and the a-IGZO layer with high carrier concentration, (2) reduced interfacial trap density between the active channel and the gate insulator, and (3) higher surface flatness of the double-layer channel. Our study reveals key insights into double-layer channel, involving selecting more suitable electrical property for back-channel layer and more suitable interface modification for active layer. Meanwhile, room temperature fabrication amorphous TFTs offer certain advantages on better flexibility and higher uniformity over a large area.

  9. Effect of double layers on magnetosphere-ionosphere coupling

    NASA Technical Reports Server (NTRS)

    Lysak, Robert L.; Hudson, Mary K.

    1987-01-01

    The dynamic aspects of auroral current structures are reviewed with emphasis on consequences for models of microscopic turbulence (MT). A number of models of MT are introduced into a large-scale model of Alfven wave propagation to determine the effect of various models on the overall structure of auroral currents. The effect of a double layer (DL) electric field which scales with the plasma temperature and the Debye length is compared with the effect of anomalous resistivity due to electrostatic ion cyclotron turbulence in which the electric field scales with the magnetic field strength. It is shown that the DL model is less diffusive than the resistive model, indicating the possibility of narrow intense current structures.

  10. Ultralow power switching in a silicon-rich SiNy/SiNx double-layer resistive memory device.

    PubMed

    Kim, Sungjun; Chang, Yao-Feng; Kim, Min-Hwi; Bang, Suhyun; Kim, Tae-Hyeon; Chen, Ying-Chen; Lee, Jong-Ho; Park, Byung-Gook

    2017-07-26

    Here we demonstrate low-power resistive switching in a Ni/SiN y /SiN x /p ++ -Si device by proposing a double-layered structure (SiN y /SiN x ), where the two SiN layers have different trap densities. The LRS was measured to be as low as 1 nA at a voltage of 1 V, because the SiN x layer maintains insulating properties for the LRS. The single-layered device suffers from uncontrollability of the conducting path, accompanied by the inherent randomness of switching parameters, weak immunity to breakdown during the reset process, and a high operating current. On the other hand, for a double-layered device, the effective conducting path in each layer, which can determine the operating current, can be well controlled by the I CC during the initial forming and set processes. A one-step forming and progressive reset process is observed for a low-power mode, which differs from the high-power switching mode that shows a two-step forming and reset process. Moreover, nonlinear behavior in the LRS, whose origin can be attributed to the P-F conduction and F-N tunneling driven by abundant traps in the silicon-rich SiN x layer, would be beneficial for next-generation nonvolatile memory applications by using a conventional passive SiN x layer as an active dielectric.

  11. Synthesis, structure refinement and chromate sorption characteristics of an Al-rich bayerite-based layered double hydroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britto, Sylvia, E-mail: sylviabritto11@gmail.com; Kamath, P. Vishnu

    2014-07-01

    “Imbibition” of Zn{sup 2+} ions into the cation vacancies of bayerite–Al(OH){sub 3} and NO{sub 3}{sup −} ions into the interlayer gallery yields an Al-rich layered double hydroxide with Al/Zn ratio ∼3. NO{sub 3}{sup −} ions are intercalated with their molecular planes inclined at an angle to the plane of the metal hydroxide slab and bonded to it by hydrogen bonds. Rietveld refinement of the structure shows that the monoclinic symmetry of the precursor bayerite is preserved in the product, showing that the imbibition is topochemical in nature. The nitrate ion is labile and is quantitatively replaced by CrO{sub 4}{sup 2−}more » ions from solution. The uptake of CrO{sub 4}{sup 2−} ions follows a Langmuir adsorption isotherm, thus showing that the hydroxide is a candidate material for green chemistry applications for the removal of CrO{sub 4}{sup 2−} ions from waste water. Rietveld refinement of the structure of the hydroxide after CrO{sub 4}{sup 2−} inclusion reveals that the CrO{sub 4}{sup 2−} ion is intercalated with one of its 2-fold axes parallel to the b-crystallographic axis of the crystal, also the principal 2 axis of the monoclinic cell. - Graphical abstract: The structure of the [Zn–Al4-nitrate] LDH viewed along the a-axis. - Highlights: • Synthesis of Al-rich layered double hydroxide with Al/Zn ratio ∼3. • Rietveld refinement indicates that the imbibition of Zn into Al(OH){sub 3} is topochemical in nature. • The uptake of CrO{sub 4}{sup 2−} ions follows a Langmuir adsorption isotherm.« less

  12. A Prospective Randomized Clinical Trial of Single vs. Double Layer Closure of Hysterotomy at the Time of Cesarean Delivery: The Effect on Uterine Scar Thickness.

    PubMed

    Bamberg, Christian; Dudenhausen, Joachim W; Bujak, Verena; Rodekamp, Elke; Brauer, Martin; Hinkson, Larry; Kalache, Karim; Henrich, Wolfgang

    2018-06-01

     We undertook a randomized clinical trial to examine the outcome of a single vs. a double layer uterine closure using ultrasound to assess uterine scar thickness.  Participating women were allocated to one of three uterotomy suture techniques: continuous single layer unlocked suturing, continuous locked single layer suturing, or double layer suturing. Transvaginal ultrasound of uterine scar thickness was performed 6 weeks and 6 - 24 months after Cesarean delivery. Sonographers were blinded to the closure technique.  An "intent-to-treat" and "as treated" ANOVA analysis included 435 patients (n = 149 single layer unlocked suturing, n = 157 single layer locked suturing, and n = 129 double layer suturing). 6 weeks postpartum, the median scar thickness did not differ among the three groups: 10.0 (8.5 - 12.3 mm) single layer unlocked vs. 10.1 (8.2 - 12.7 mm) single layer locked vs. 10.8 (8.1 - 12.8 mm) double layer; (p = 0.84). At the time of the second follow-up, the uterine scar was not significantly (p = 0.06) thicker if the uterus had been closed with a double layer closure 7.3 (5.7 - 9.1 mm), compared to single layer unlocked 6.4 (5.0 - 8.8 mm) or locked suturing techniques 6.8 (5.2 - 8.7 mm). Women who underwent primary or elective Cesarean delivery showed a significantly (p = 0.03, p = 0.02, "as treated") increased median scar thickness after double layer closure vs. single layer unlocked suture.  A double layer closure of the hysterotomy is associated with a thicker myometrium scar only in primary or elective Cesarean delivery patients. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Hybrid Materials Based on Magnetic Layered Double Hydroxides: A Molecular Perspective.

    PubMed

    Abellán, Gonzalo; Martí-Gastaldo, Carlos; Ribera, Antonio; Coronado, Eugenio

    2015-06-16

    Design of functional hybrids lies at the very core of synthetic chemistry as it has enabled the development of an unlimited number of solids displaying unprecedented or even improved properties built upon the association at the molecular level of quite disparate components by chemical design. Multifunctional hybrids are a particularly appealing case among hybrid organic/inorganic materials. Here, chemical knowledge is used to deploy molecular components bearing different functionalities within a single solid so that these properties can coexist or event interact leading to unprecedented phenomena. From a molecular perspective, this can be done either by controlled assembly of organic/inorganic molecular tectons into an extended architecture of hybrid nature or by intercalation of organic moieties within the empty channels or interlamellar space offered by inorganic solids with three-dimensional (MOFs, zeolites, and mesoporous hosts) or layered structures (phosphates, silicates, metal dichalcogenides, or anionic clays). This Account specifically illustrates the use of layered double hydroxides (LDHs) in the preparation of magnetic hybrids, in line with the development of soft inorganic chemistry processes (also called "Chimie Douce"), which has significantly contributed to boost the preparation hybrid materials based on solid-state hosts and subsequent development of applications. Several features sustain the importance of LDHs in this context. Their magnetism can be manipulated at a molecular level by adequate choice of constituting metals and interlayer separation for tuning the nature and extent of magnetic interactions across and between planes. They display unparalleled versatility in accommodating a broad range of anionic species in their interlamellar space that encompasses not only simple anions but chemical systems of increasing dimensionality and functionalities. Their swelling characteristics allow for their exfoliation in organic solvents with high

  14. Jet Formation and Penetration Study of Double-Layer Shaped Charge

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Jiang, Jian-Wei; Wang, Shu-You; Liu, Han

    2018-04-01

    A theoretical analysis on detonation wave propagation in a double-layer shaped charge (DLSC) is performed. Numerical simulations using the AUTODYN software are carried out to compare the distinctions between jet formations in DLSC and ordinary shaped charge (OSC), in particular, the OSC made using a higher detonation velocity explosive, which is treated as the outer layer charge in the DLSC. The results show that the improved detonation velocity ratio and radial charge percentage of outer-to-inner layer charge are conducive to the formation of a convergent detonation wave, which contributes to enhancement of jet tip velocity in DLSC. The thickness and mass percentages of liner flowing into jet in DLSC closely follow the exponential distribution along the radial direction, but the percentages in DLSC and the mass of effective jet, which have significant influence on the penetration depth, are lower than those in OSC with the outer layer charge. This implies that the total charge energy is the major factor controlling the effective jet formation, which is confirmed by the verification tests using flash X-ray system and following penetration tests. The numerical simulation and test results compare well, while penetration test results indicate that the performance of DLSC is not better than that of OSC with the outer layer charge, due to the differences in jet formation.

  15. Two-Dimensional Phosphorene-Derived Protective Layers on a Lithium Metal Anode for Lithium-Oxygen Batteries.

    PubMed

    Kim, Youngjin; Koo, Dongho; Ha, Seongmin; Jung, Sung Chul; Yim, Taeeun; Kim, Hanseul; Oh, Seung Kyo; Kim, Dong-Min; Choi, Aram; Kang, Yongku; Ryu, Kyoung Han; Jang, Minchul; Han, Young-Kyu; Oh, Seung M; Lee, Kyu Tae

    2018-05-04

    Lithium-oxygen (Li-O 2 ) batteries are desirable for electric vehicles because of their high energy density. Li dendrite growth and severe electrolyte decomposition on Li metal are, however, challenging issues for the practical application of these batteries. In this connection, an electrochemically active two-dimensional phosphorene-derived lithium phosphide is introduced as a Li metal protective layer, where the nanosized protective layer on Li metal suppresses electrolyte decomposition and Li dendrite growth. This suppression is attributed to thermodynamic properties of the electrochemically active lithium phosphide protective layer. The electrolyte decomposition is suppressed on the protective layer because the redox potential of lithium phosphide layer is higher than that of electrolyte decomposition. Li plating is thermodynamically unfavorable on lithium phosphide layers, which hinders Li dendrite growth during cycling. As a result, the nanosized lithium phosphide protective layer improves the cycle performance of Li symmetric cells and Li-O 2 batteries with various electrolytes including lithium bis(trifluoromethanesulfonyl)imide in N,N-dimethylacetamide. A variety of ex situ analyses and theoretical calculations support these behaviors of the phosphorene-derived lithium phosphide protective layer.

  16. Lateral amorphous selenium metal-insulator-semiconductor-insulator-metal photodetectors using ultrathin dielectric blocking layers for dark current suppression

    NASA Astrophysics Data System (ADS)

    Chang, Cheng-Yi; Pan, Fu-Ming; Lin, Jian-Siang; Yu, Tung-Yuan; Li, Yi-Ming; Chen, Chieh-Yang

    2016-12-01

    We fabricated amorphous selenium (a-Se) photodetectors with a lateral metal-insulator-semiconductor-insulator-metal (MISIM) device structure. Thermal aluminum oxide, plasma-enhanced chemical vapor deposited silicon nitride, and thermal atomic layer deposited (ALD) aluminum oxide and hafnium oxide (ALD-HfO2) were used as the electron and hole blocking layers of the MISIM photodetectors for dark current suppression. A reduction in the dark current by three orders of magnitude can be achieved at electric fields between 10 and 30 V/μm. The effective dark current suppression is primarily ascribed to electric field lowering in the dielectric layers as a result of charge trapping in deep levels. Photogenerated carriers in the a-Se layer can be transported across the blocking layers to the Al electrodes via Fowler-Nordheim tunneling because a high electric field develops in the ultrathin dielectric layers under illumination. Since the a-Se MISIM photodetectors have a very low dark current without significant degradation in the photoresponse, the signal contrast is greatly improved. The MISIM photodetector with the ALD-HfO2 blocking layer has an optimal signal contrast more than 500 times the contrast of the photodetector without a blocking layer at 15 V/μm.

  17. Electrophoretic formation of semiconductor layers with adjustable band gap

    NASA Astrophysics Data System (ADS)

    Shindrov, Alexander; Yuvchenko, Sergey; Vikulova, Maria; Tretyachenko, Elena; Zimnyakov, Dmitry; Gorokhovsky, Alexander

    2017-11-01

    The ceramic layers of the potassium polytitanates modified by transition metal salts were electrophoretically deposited onto the surface of glassy substrate coated with indium-tin oxide. The deposition allows obtaining a dense ceramic layer formed by composite agglomerates consisting of nanoscale particles with average size of 130-190 nm. The optical absorption spectra of the coatings modified in the mixtures of aqueous solutions of different transition metal salts were investigated. It was recognized that a bandgap value of these composites can be adjusted in a range from 1.4 to 2.3 eV depending the chemical composition of layered double hydroxide obtained during modification. This might be very promising for optoelectronic applications of such coatings due to an explicit control of optical properties.

  18. Structure of an electric double layer containing a 2:2 valency dimer electrolyte

    DOE PAGES

    Silvestre-Alcantara, Whasington; Henderson, Douglas; Wu, Jianzhong; ...

    2014-12-05

    In this study, the structure of a planar electric double layer formed by a 2:2 valency dimer electrolyte in the vicinity of a uniformly charged planar hard electrode is investigated using density functional theory and Monte Carlo simulations. The dimer electrolyte consists of a mixture of charged divalent dimers and charged divalent monomers in a dielectric continuum. A dimer is constructed by two tangentially tethered rigid spheres, one of which is divalent and positively charged and the other neutral, whereas the monomer is a divalent and negatively charged rigid sphere. The density functional theory reproduces well the simulation results formore » (i) the singlet distributions of the various ion species with respect to the electrode, and (ii) the mean electrostatic potential. Lastly, comparison with earlier results for a 2:1/1:2 dimer electrolyte shows that the double layer structure is similar when the counterion has the same valency.« less

  19. Bifunctional sensor of pentachlorophenol and copper ions based on nanostructured hybrid films of humic acid and exfoliated layered double hydroxide via a facile layer-by-layer assembly.

    PubMed

    Yuan, Shuang; Peng, Dinghua; Hu, Xianluo; Gong, Jingming

    2013-06-27

    A new, highly sensitive bifunctional electrochemical sensor for the simultaneous determination of pentachlorophenol (PCP) and copper ions (Cu(2+)) has been developed, where organic-inorganic hybrid ultrathin films were fabricated by alternate assembly of humic acid (HA) and exfoliated Mg-Al-layered double hydroxide (LDH) nanosheets onto ITO substrates via a layer-by-layer (LBL) approach. The multilayer films were then characterized by means of UV-vis spectrometry, scanning electron microscopy (SEM), and atomic force microscope (AFM). These films were found to have a relatively smooth surface with almost equal amounts of HA incorporated in each cycle. Its electrochemical performance was systematically investigated. Our results demonstrate that such a newly designed (LDH/HA)n multilayer films, combining the individual properties of HA (dual recognition ability for organic herbicides and metal ions) together with LDH nanosheets (a rigid inorganic matrix), can be applied to the simultaneous analysis of PCP and Cu(II) without interference from each other. The LBL assembled nanoarchitectures were further investigated by X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (IR), which provides insight for bifunctional sensing behavior. Under the optimized conditions, the detection limit was found to be as low as 0.4 nM PCP, well below the guideline value of PCP in drinking water (3.7 nM) set by the United States Environmental Protection Agency (U.S. EPA), and 2.0 nM Cu(2+), much below the guideline value (2.0 mg L(-1), ~31.2 nM) from the World Health Organization (WHO), respectively. Toward the goal for practical applications, this simple and cost-effective probe was further evaluated by monitoring PCP and Cu(II) in water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Longitudinal transvaginal ultrasound evaluation of cesarean scar niche incidence and depth in the first two years after single- or double-layer uterotomy closure: a randomized controlled trial.

    PubMed

    Bamberg, Christian; Hinkson, Larry; Dudenhausen, Joachim W; Bujak, Verena; Kalache, Karim D; Henrich, Wolfgang

    2017-12-01

    Cesarean deliveries are the most common abdominal surgery procedure globally, and the optimal way to suture the hysterotomy remains a matter of debate. The aim of this study was to assess the incidence of cesarean scar niches and the depth after single- or double-layer uterine closure. We performed a randomized controlled trial in which women were allocated to three uterotomy suture techniques: continuous single-layer unlocked, continuous locked single-layer, or double-layer sutures. Transvaginal ultrasound was performed six weeks and 6-24 months after cesarean delivery [Clinicaltrials.gov (NCT02338388)]. The study included 435 women. Six weeks after delivery, the incidence of niche was not significantly different between the groups (p = 0.52): 40% for single-layer unlocked, 32% for single-layer locked and 43% for double-layer sutures. The mean ± SD niche depths were 3.0 ± 1.4 mm for single-layer unlocked, 3.6 ± 1.7 mm for single-layer locked and 3.3 ± 1.3 mm for double-layer sutures (p = 1.0). There were no significant differences (p = 0.58) in niche incidence between the three groups at the second ultrasound follow up: 30% for single-layer unlocked, 23% for single-layer locked and 29% for double-layer sutures. The mean ± SD niche depth was 3.1 ± 1.5 mm after single-layer unlocked, 2.8 ± 1.5 mm after single-layer locked and 2.5 ± 1.2 mm after double-layer sutures (p = 0.61). There was a trend (p = 0.06) for the residual myometrium thickness to be thicker after double-layer repair at the long-term follow up. The incidence of cesarean scar niche formation and the niche depth was independent of the hysterotomy closure technique. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.

  1. Transparent-conductive-oxide (TCO) buffer layer effect on the resistive switching process in metal/TiO2/TCO/metal assemblies

    NASA Astrophysics Data System (ADS)

    Filatova, E. O.; Baraban, A. P.; Konashuk, A. S.; Konyushenko, M. A.; Selivanov, A. A.; Sokolov, A. A.; Schaefers, F.; Drozd, V. E.

    2014-11-01

    The effect of a transparent conductive oxide (TCO) buffer layer on the insulator matrix and on the resistive switching process in the metal/TiO2/TCO/metal assembly was studied depending on the material of the TCO (ITO-(In2O3)0.9(SnO2)0.1 or SnO2 or ZnO). For the first time electro-physical studies and near edge x-ray absorption fine structure (NEXAFS) studies were carried out jointly and at the same point of the sample, providing direct experimental evidence that the switching process strongly influences the lowest unoccupied bands and the local atomic structure of the TiO2 layers. It was established that a TCO layer in a metal/TiO2/TCO/metal assembly is an additional source of oxygen vacancies for the TiO2 film. The RL (RH) states are achieved presumably with the formation (rupture) of the electrically conductive path of oxygen vacancies. Inserting an Al2O3 thin layer between the TiO2 and TCO layers to some extent restricts the processes of migration of the oxygen ions and vacancies, and does not allow the anti-clockwise bipolar resistive switching in a Au/TiO2/Al2O3/ITO/Au assembly. The greatest value of the ratio RH/RL is observed for the assembly with a SnO2 buffer layer that will provide the maximum set of intermediate states (recording analog data) and increase the density of information recording in this case.

  2. Superplastic Forming/Diffusion Bonding Without Interlayer of 5A90 Al-Li Alloy Hollow Double-Layer Structure

    NASA Astrophysics Data System (ADS)

    Jiang, Shaosong; Jia, Yong; Lu, Zhen; Shi, Chengcheng; Zhang, Kaifeng

    2017-09-01

    The hollow double-layer structure of 5A90 Al-Li alloy was fabricated by SPF/DB process in this study. The characteristics and mechanism of 5A90 Al-Li alloy with respect to superplasticity and diffusion bonding were investigated. Tensile tests showed that the optimal elongation of tensile specimens was 243.97% at the temperature of 400 °C and the strain rate of 0.001 s-1. Effect of the surface roughness, bonding temperature and bonding time to determine the microstructure and mechanical properties of diffusion bonding joints was investigated, and the optimum bonding parameters were 540 °C/2.5 h/Ra18. Through the finite element simulation, it could be found that the SPF/DB process of hollow double-layer structure was feasible. The hollow double-layer structure of 5A90 Al-Li alloy was manufactured, showing that the thickness distribution of the bonding area was uniform and the thinnest part was the round corner. The SEM images of diffusion bonding joints showed that sound bonding interfaces were obtained in which no discontinuity existed.

  3. Double counting in the density functional plus dynamical mean-field theory of transition metal oxides

    NASA Astrophysics Data System (ADS)

    Dang, Hung

    2015-03-01

    Recently, the combination of density functional theory (DFT) and dynamical mean-field theory (DMFT) has become a widely-used beyond-mean-field approach for strongly correlated materials. However, not only is the correlation treated in DMFT but also in DFT to some extent, a problem arises as the correlation is counted twice in the DFT+DMFT framework. The correction for this problem is still not well-understood. To gain more understanding of this ``double counting'' problem, I provide a detailed study of the metal-insulator transition in transition metal oxides in the subspace of oxygen p and transition metal correlated d orbitals using DFT+DMFT. I will show that the fully charge self-consistent DFT+DMFT calculations with the standard ``fully-localized limit'' (FLL) double counting correction fail to predict correctly materials such as LaTiO3, LaVO3, YTiO3 and SrMnO3 as insulators. Investigations in a wide range of the p- d splitting, the d occupancy, the lattice structure and the double counting correction itself will be presented to understand the reason behind this failure. I will also show that if the double counting correction is chosen to reproduce the p- d splitting consistent with experimental data, the DFT+DMFT approach can still give reasonable results in comparison with experiments.

  4. Design, fabrication and characterization of a double layer solid oxide fuel cell (DLFC)

    NASA Astrophysics Data System (ADS)

    Wang, Guangjun; Wu, Xiangying; Cai, Yixiao; Ji, Yuan; Yaqub, Azra; Zhu, Bin

    2016-11-01

    A double layer solid oxide fuel cell (DLSOFC) without using the electrolyte (layer) has been designed by integrating advantages of positive electrode material of lithium ion battery(LiNi0.8Co0.15Al0.05O2) and oxygen-permeable membranes material (trace amount cobalt incorporated terbium doped ceria, TDC + Co) based on the semiconductor physics principle. Instead of using an electrolyte layer, the depletion layer between the anode and cathode served as an electronic insulator to block the electrons but to maintain the electrolyte function for ionic transport. Thus the device with two layers can realize the function of SOFC and at the same time avoids the electronic short circuiting problem. Such novel DLFC showed good performance at low temperatures, for instance, a maximum power density of 230 mWcm-2 was achieved at 500 °C. The working principle of the new device is presented.

  5. Energy loss from internal reflection off metal layers on glass

    NASA Astrophysics Data System (ADS)

    McDowell, M. W.; Bezuidenhout, D. F.; Klee, H. W.; Theron, E.

    1983-12-01

    The reflection characteristics of metal layers are considered for the situation where the electromagnetic radiation is incident from the glass side. Theoretical and measured reflectance values are presented which indicate that for some metals the reflection has a strong dependence on the refractive index of the incident medium. Some examples are given of recent cases where the above results were an important consideration in the choice of the metallic reflecting material. These results indicate that aluminium should not be automatically considered the best choice for the visible region nor gold for the infra-red.

  6. [Clinical research of arthroscopic separate double-layer suture bridge technique for delaminated rotator cuff tear].

    PubMed

    Ren, Jiangtao; Xu, Cong; Liu, Xianglin; Wang, Jiansong; Li, Zhihuai; Lü, Yongming

    2017-10-01

    To explore the effectiveness of the arthroscopic separate double-layer suture bridge technique in treatment of the delaminated rotator cuff tear. Between May 2013 and May 2015, 54 patients with the delaminated rotator cuff tears were recruited in the study. They were randomly allocated into 2 groups to receive repair either using arthroscopic separate double-layer suture bridge technique (trial group, n =28) or using arthroscopic whole-layer suture bridge technique (control group, n =26). There was no significant difference in gender, age, injured side, tear type, and preoperative visual analogue scale (VAS) score, Constants score, American Shoulder and Elbow Surgeons (ASES) score, University of California Los Angeles (UCLA) score, and the range of motion of shoulder joint between 2 groups ( P >0.05). Postoperative functional scores, range of motion, and recurrence rate of tear in 2 groups were observed and compared. The operation time was significant longer in trial group than in control group ( t =8.383, P =0.000). All incisions healed at stage Ⅰ without postoperative complication. All the patients were followed up 12 months. At 12 months postoperatively, the UCLA score, ASES score, VAS score, Constant score, and the range of motion were significantly improved when compared with the preoperative values in 2 groups ( P <0.05). However there was no significant difference in above indexes between 2 groups ( P >0.05). Four cases (14.3%) of rotator cuff tear recurred in trial group while 5 cases (19.2%) in control group, showing no significant difference ( χ 2 =0.237, P =0.626). Compared with the arthroscopic whole-layer suture bridge technique, arthroscopic separate double-layer suture bridge technique presents no significant difference in the shoulder function score, the range of motion, and recurrence of rotator cuff tear, while having a longer operation time.

  7. Evidence of current free double layer in high density helicon discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganguli, A.; Sahu, B. B.; Tarey, R. D.

    2013-01-15

    This paper investigates the formation of double layer (DL) in helicon plasmas. In the experiment, argon plasma production is using the excitation of m = -1 helicon mode with magnetic mirror field with high mirror ratio of {approx}1:1.7. We have specifically used the radio frequency compensated Langmuir probe (LP) to measure the relevant plasma parameters simultaneously so as to investigate the details about the plasma production. The DL, which consists of both warm and bulk populations towards higher potential region and only dense bulk plasmas towards the lower potential region downstream the antenna, is present in the transition region. LPmore » measurements also show an abrupt fall of density along with a potential drop of about 20 V and (e {Delta}V{sub p}/k T{sub e}) Almost-Equal-To 12 within a few cm. The potential drop is equal to the difference of the electron temperatures between the two plasma regions forming the DL, which is present in the plateau region of mirror, unlike in several prior studies on the DL formation in the region of strong gradients in the magnetic field. The DL is strong, current-free, electric double-layer with estimated thickness of about 10 Debye lengths.« less

  8. Numerical simulation of current-free double layers created in a helicon plasma device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Sathyanarayan; Singh, Nagendra

    2012-09-15

    Two-dimensional simulations reveal that when radially confined source plasma with magnetized electrons and unmagnetized ions expands into diverging magnetic field B, a current-free double layer (CFDL) embedded in a conical density structure forms, as experimentally measured in the Australian helicon plasma device (HPD). The magnetized electrons follow the diverging B while the unmagnetized ions tend to flow directly downstream of the source, resulting in a radial electric field (E{sub Up-Tack }) structure, which couples the ion and electron flows. Ions are transversely (radially) accelerated by E{sub Up-Tack} on the high potential side of the double layer in the CFDL. Themore » accelerated ions are trapped near the conical surface, where E{sub Up-Tack} reverses direction. The potential structure of the CFDL is U-shaped and the plasma density is enhanced on the conical surface. The plasma density is severely depleted downstream of the parallel potential drop ({phi}{sub Double-Vertical-Line Double-Vertical-Line o}) in the CFDL; the density depletion and the potential drop are related by quasi-neutrality condition, including the divergence in the magnetic field and in the plasma flow in the conical structure. The potential and density structures, the CFDL spatial size, its electric field strengths and the electron and ion velocities and energy distributions in the CFDL are found to be in good agreements with those measured in the Australian experiment. The applicability of our results to measured axial potential profiles in magnetic nozzle experiments in HPDs is discussed.« less

  9. Effects of ion concentration on thermally-chargeable double-layer supercapacitors

    NASA Astrophysics Data System (ADS)

    Lim, Hyuck; Lu, Weiyi; Chen, Xi; Qiao, Yu

    2013-11-01

    The concept of thermally-chargeable supercapacitor was discussed and validated experimentally. As two double-layer supercapacitor-type devices were placed at different temperatures and connected, due to the thermal dependence of surface charge structures, the electrode potentials became different, and thermal energy could be harvested and stored as electric energy. The important effect of ion concentration was investigated. The results were quite different from the prediction of conventional surface theory, which should be attributed to the unique behaviors of the ions confined in the nanoporous electrodes.

  10. Effects of ion concentration on thermally-chargeable double-layer supercapacitors.

    PubMed

    Lim, Hyuck; Lu, Weiyi; Chen, Xi; Qiao, Yu

    2013-11-22

    The concept of thermally-chargeable supercapacitor was discussed and validated experimentally. As two double-layer supercapacitor-type devices were placed at different temperatures and connected, due to the thermal dependence of surface charge structures, the electrode potentials became different, and thermal energy could be harvested and stored as electric energy. The important effect of ion concentration was investigated. The results were quite different from the prediction of conventional surface theory, which should be attributed to the unique behaviors of the ions confined in the nanoporous electrodes.

  11. Double layers in contactor plasmas

    NASA Technical Reports Server (NTRS)

    Cooke, David L.

    1990-01-01

    The concept of using a hollow cathode to establish a low impedance contact between a spacecraft and the ambient plasma continues to gain in popularity, and is often then referred to as a plasma contactor. A growing number of studies indicate that large contact currents can be supported with small potential difference between the contactor and the ambient plasma. Results will be presented from a simple one-dimensional spherical model that obtains potentials from the solution of Poisson's equation, and particle densities from a turning point formalism that includes particle angular momentum. The neglect of collisions and magnetic field limits the realism. However, the results illustrate the effect of double layers that can form at the interface between contactor and ambient plasmas, when there is any voltage differential between the contactor and the ambient. The I-V characteristic of this model shows the usual space charge depends upon collection when the contactor flux is lower than some threshold; independence of I from variation in V when the flux is slightly greater than that threshold, and (numerical ?) instability for excessive flux suggesting the possibility of negative resistance. Even if a real I-V characteristic does not exhibit negative resistance, flat spots or high resistance regions may still be troublesome (or useful) to the total circuit.

  12. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods-A review

    NASA Astrophysics Data System (ADS)

    Theiss, Frederick L.; Ayoko, Godwin A.; Frost, Ray L.

    2016-10-01

    Co-precipitation is a common method for the preparation of layered double hydroxides (LDHs) and related materials. This review article is aimed at providing newcomers to the field with some examples of the types of co-precipitation reactions that have been reported previously and to briefly investigate some of the properties of the products of these reactions. Due to the sheer volume of literature on the subject, the authors have had to limit this article to the synthesis of Mg/Al, Zn/Al and Ca/Al LDHs by co-precipitation and directly related methods. LDHs have been synthesised from various reagents including metal salts, oxides and hydroxides. Co-precipitation is also useful for the direct synthesis of LDHs with a wide range of interlayer anions and various bases have been successfully employed to prepare LDHs. Examples of other synthesis techniques including the urea method, hydrothermal synthesis and various mechanochemical methods that are undoubtedly related to co-precipitation have also been included in this review. The effect of post synthesis hydrothermal has also been summarised.

  13. Stuffed MO layer as a diffusion barrier in metallizations for high temperature electronics

    NASA Technical Reports Server (NTRS)

    Boah, J. K.; Russell, V.; Smith, D. P.

    1981-01-01

    Auger electron spectroscopy was employed to characterize the diffusion barrier properties of molybdenum in the CrSi2/Mo/Au metallization system. The barrier action of Mo was demonstrated to persist even after 2000 hours annealing time at 300 C in a nitrogen ambient. At 340 C annealing temperature, however, rapid interdiffusion was observed to have occurred between the various metal layers after only 261 hours. The presence of controlled amounts of oxygen in the Mo layer is believed to be responsible for suppressing the short circuit interdiffusion between the thin film layers. Above 340 C, its is believed that the increase in the oxygen mobility led to deterioration of its stuffing action, resulting in the rapid interdiffusion of the thin film layers along grain boundaries.

  14. Evaluation of molecular dynamics simulation methods for ionic liquid electric double layers.

    PubMed

    Haskins, Justin B; Lawson, John W

    2016-05-14

    We investigate how systematically increasing the accuracy of various molecular dynamics modeling techniques influences the structure and capacitance of ionic liquid electric double layers (EDLs). The techniques probed concern long-range electrostatic interactions, electrode charging (constant charge versus constant potential conditions), and electrolyte polarizability. Our simulations are performed on a quasi-two-dimensional, or slab-like, model capacitor, which is composed of a polarizable ionic liquid electrolyte, [EMIM][BF4], interfaced between two graphite electrodes. To ensure an accurate representation of EDL differential capacitance, we derive new fluctuation formulas that resolve the differential capacitance as a function of electrode charge or electrode potential. The magnitude of differential capacitance shows sensitivity to different long-range electrostatic summation techniques, while the shape of differential capacitance is affected by charging technique and the polarizability of the electrolyte. For long-range summation techniques, errors in magnitude can be mitigated by employing two-dimensional or corrected three dimensional electrostatic summations, which led to electric fields that conform to those of a classical electrostatic parallel plate capacitor. With respect to charging, the changes in shape are a result of ions in the Stern layer (i.e., ions at the electrode surface) having a higher electrostatic affinity to constant potential electrodes than to constant charge electrodes. For electrolyte polarizability, shape changes originate from induced dipoles that soften the interaction of Stern layer ions with the electrode. The softening is traced to ion correlations vertical to the electrode surface that induce dipoles that oppose double layer formation. In general, our analysis indicates an accuracy dependent differential capacitance profile that transitions from the characteristic camel shape with coarser representations to a more diffuse

  15. Laser Induced Fluorescence Studies of Electrostatic Double Layers in an Expanding Helicon Plasma

    NASA Astrophysics Data System (ADS)

    Carr, Jerry, Jr.

    We report the first evidence of a laboratory double layer (DL) collapsing in the presence of an instability studied by Chakraborty Thakur et al. 1 with the use of time resolved laser induced fluorescence (LIF) studies. Higher time resolution studies then provided the first statistically validated proof of the correlation between the ion acoustic instability and a DL. Time-frequency analysis in the form of time resolved cross power spectra and continuous wavelet transforms were used to provide insight into beam formation. The implications of this work is that in the creation of strong DLs in expanding plasmas for plasma propulsion or other applications may be self-limited through instability growth. Over the past decade, experimental and theoretical studies have demonstrated the formation of stable, electrostatic, current-free double layers (CFDLs) in plasmas with a strong density gradient; typically a result of a divergent magnetic field. In this work, we present evidence for the formation of multiple double layers within a single divergent magnetic field structure. Downstream of the divergent magnetic field, multiple accelerated ion populations are observed through laser induced fluorescence measurements of the ion velocity distribution function. The formation of the multiple double layer structure is a strong function of the neutral gas pressure in the experiment. The similarity of the accelerated ion populations observed in these laboratory experiments to ion populations observed in reconnection outflow regions in the magnetosphere and in numerical simulations is also described. If ion energization during magnetic reconnection also results solely from acceleration in electric fields, these observations imply a prediction that the ion heating, i.e., the broadening of ion velocity distribution functions, reported in magnetic reconnection experiments is more accurately described by a superposition of differently accelerated ion populations. Therefore, the ion

  16. Effect of double layer thickness on magnetoelectric coupling in multiferroic BaTiO3-Bi0.95Gd0.05FeO3 multilayers

    NASA Astrophysics Data System (ADS)

    Hohenberger, S.; Lazenka, V.; Temst, K.; Selle, S.; Patzig, C.; Höche, T.; Grundmann, M.; Lorenz, M.

    2018-05-01

    The effect of double-layer thickness and partial substitution of Bi3+ by Gd3+ is demonstrated for multiferroic BaTiO3–BiFeO3 2–2 heterostructures. Multilayers of 15 double layers of BaTiO3 and Bi0.95Gd0.05FeO3 were deposited onto (0 0 1) oriented SrTiO3 substrates by pulsed laser deposition with various double layer thicknesses. X-ray diffraction and high resolution transmission electron microscopy investigations revealed a systematic strain tuning with layer thickness via coherently strained interfaces. The multilayers show increasingly enhanced magnetoelectric coupling with reduced double layer thickness. The maximum magnetoelectric coupling coefficient was measured to be as high as 50.8 V cm‑1 Oe‑1 in 0 T DC bias magnetic field at room temperature, and 54.9 V cm‑1 Oe‑1 above 3 T for the sample with the thinnest double layer thickness of 22.5 nm. This enhancement is accompanied by progressively increasing perpendicular magnetic anisotropy and compressive out-of-plane strain. To understand the origin of the enhanced magnetoelectric coupling in such multilayers, the temperature and magnetic field dependency of is discussed. The magnetoelectric performance of the Gd3+ substituted samples is found to be slightly enhanced when compared to unsubstituted BaTiO3–BiFeO3 multilayers of comparable double-layer thickness.

  17. Thermal Rayleigh-Marangoni convection in a three-layer liquid-metal-battery model.

    PubMed

    Köllner, Thomas; Boeck, Thomas; Schumacher, Jörg

    2017-05-01

    The combined effects of buoyancy-driven Rayleigh-Bénard convection (RC) and surface tension-driven Marangoni convection (MC) are studied in a triple-layer configuration which serves as a simplified model for a liquid metal battery (LMB). The three-layer model consists of a liquid metal alloy cathode, a molten salt separation layer, and a liquid metal anode at the top. Convection is triggered by the temperature gradient between the hot electrolyte and the colder electrodes, which is a consequence of the release of resistive heat during operation. We present a linear stability analysis of the state of pure thermal conduction in combination with three-dimensional direct numerical simulations of the nonlinear turbulent evolution on the basis of a pseudospectral method. Five different modes of convection are identified in the configuration, which are partly coupled to each other: RC in the upper electrode, RC with internal heating in the molten salt layer, and MC at both interfaces between molten salt and electrode as well as anticonvection in the middle layer and lower electrode. The linear stability analysis confirms that the additional Marangoni effect in the present setup increases the growth rates of the linearly unstable modes, i.e., Marangoni and Rayleigh-Bénard instability act together in the molten salt layer. The critical Grashof and Marangoni numbers decrease with increasing middle layer thickness. The calculated thresholds for the onset of convection are found for realistic current densities of laboratory-sized LMBs. The global turbulent heat transfer follows scaling predictions for internally heated RC. The global turbulent momentum transfer is comparable with turbulent convection in the classical Rayleigh-Bénard case. In summary, our studies show that incorporating Marangoni effects generates smaller flow structures, alters the velocity magnitudes, and enhances the turbulent heat transfer across the triple-layer configuration.

  18. Thermal Rayleigh-Marangoni convection in a three-layer liquid-metal-battery model

    NASA Astrophysics Data System (ADS)

    Köllner, Thomas; Boeck, Thomas; Schumacher, Jörg

    2017-05-01

    The combined effects of buoyancy-driven Rayleigh-Bénard convection (RC) and surface tension-driven Marangoni convection (MC) are studied in a triple-layer configuration which serves as a simplified model for a liquid metal battery (LMB). The three-layer model consists of a liquid metal alloy cathode, a molten salt separation layer, and a liquid metal anode at the top. Convection is triggered by the temperature gradient between the hot electrolyte and the colder electrodes, which is a consequence of the release of resistive heat during operation. We present a linear stability analysis of the state of pure thermal conduction in combination with three-dimensional direct numerical simulations of the nonlinear turbulent evolution on the basis of a pseudospectral method. Five different modes of convection are identified in the configuration, which are partly coupled to each other: RC in the upper electrode, RC with internal heating in the molten salt layer, and MC at both interfaces between molten salt and electrode as well as anticonvection in the middle layer and lower electrode. The linear stability analysis confirms that the additional Marangoni effect in the present setup increases the growth rates of the linearly unstable modes, i.e., Marangoni and Rayleigh-Bénard instability act together in the molten salt layer. The critical Grashof and Marangoni numbers decrease with increasing middle layer thickness. The calculated thresholds for the onset of convection are found for realistic current densities of laboratory-sized LMBs. The global turbulent heat transfer follows scaling predictions for internally heated RC. The global turbulent momentum transfer is comparable with turbulent convection in the classical Rayleigh-Bénard case. In summary, our studies show that incorporating Marangoni effects generates smaller flow structures, alters the velocity magnitudes, and enhances the turbulent heat transfer across the triple-layer configuration.

  19. Preparation of hierarchical porous carbon from waste printed circuit boards for high performance electric double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Du, Xuan; Wang, Li; Zhao, Wei; Wang, Yi; Qi, Tao; Li, Chang Ming

    2016-08-01

    Renewable clean energy and resources recycling have become inevitable choices to solve worldwide energy shortages and environmental pollution problems. It is a great challenge to recycle tons of waste printed circuit boards (PCB) produced every year for clean environment while creating values. In this work, low cost, high quality activated carbons (ACs) were synthesized from non-metallic fractions (NMF) of waste PCB to offer a great potential for applications of electrochemical double-layer capacitors (EDLCs). After recovering metal from waste PCB, hierarchical porous carbons were produced from NMF by carbonization and activation processes. The experimental results exhibit that some pores were formed after carbonization due to the escape of impurity atoms introduced by additives in NMF. Then the pore structure was further tailored by adjusting the activation parameters. Roles of micropores and non-micropores in charge storage were investigated when the hierarchical porous carbons were applied as electrode of EDLCs. The highest specific capacitance of 210 F g-1 (at 50 mA g-1) and excellent rate capability were achieved when the ACs possessing a proper micropores/non-micropores ratio. This work not only provides a promising method to recycle PCB, but also investigates the structure tailoring arts for a rational hierarchical porous structure in energy storage/conversion.

  20. Measurements of electrostatic double layer potentials with atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Giamberardino, Jason

    The aim of this thesis is to provide a thorough description of the development of theory and experiment pertaining to the electrostatic double layer (EDL) in aqueous electrolytic systems. The EDL is an important physical element of many systems and its behavior has been of interest to scientists for many decades. Because many areas of science and engineering move to test, build, and understand systems at smaller and smaller scales, this work focuses on nanoscopic experimental investigations of the EDL. In that vein, atomic force microscopy (AFM) will be introduced and discussed as a tool for making high spatial resolution measurements of the solid-liquid interface, culminating in a description of the development of a method for completely characterizing the EDL. This thesis first explores, in a semi-historical fashion, the development of the various models and theories that are used to describe the electrostatic double layer. Later, various experimental techniques and ideas are addressed as ways to make measurements of interesting characteristics of the EDL. Finally, a newly developed approach to measuring the EDL system with AFM is introduced. This approach relies on both implementation of existing theoretical models with slight modifications as well as a unique experimental measurement scheme. The model proposed clears up previous ambiguities in definitions of various parameters pertaining to measurements of the EDL and also can be used to fully characterize the system in a way not yet demonstrated.

  1. The Equivalent Electrokinetic Circuit Model of Ion Concentration Polarization Layer: Electrical Double Layer, Extended Space Charge and Electro-convection

    NASA Astrophysics Data System (ADS)

    Cho, Inhee; Huh, Keon; Kwak, Rhokyun; Lee, Hyomin; Kim, Sung Jae

    2016-11-01

    The first direct chronopotentiometric measurement was provided to distinguish the potential difference through the extended space charge (ESC) layer which is formed with the electrical double layer (EDL) near a perm-selective membrane. From this experimental result, the linear relationship was obtained between the resistance of ESC and the applied current density. Furthermore, we observed the step-wise distributions of relaxation time at the limiting current regime, confirming the existence of ESC capacitance other than EDL's. In addition, we proposed the equivalent electrokinetic circuit model inside ion concentration polarization (ICP) layer under rigorous consideration of EDL, ESC and electro-convection (EC). In order to elucidate the voltage configuration in chronopotentiometric measurement, the EC component was considered as the "dependent voltage source" which is serially connected to the ESC layer. This model successfully described the charging behavior of the ESC layer with or without EC, where both cases determined each relaxation time, respectively. Finally, we quantitatively verified their values utilizing the Poisson-Nernst-Planck equations. Therefore, this unified circuit model would provide a key insight of ICP system and potential energy-efficient applications.

  2. Half-metallic antiferromagnetism in double perovskite BiPbCrCuO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weng, Ke-Chuan; Wang, Y. K., E-mail: kant@ntnu.edu.tw

    2015-05-07

    The electronic structure and magnetic properties of BiPbCrCuO{sub 6} double perovskite are investigated based on first-principles density functional calculations with generalized gradient approximation (GGA) and GGA incorporated with Coulomb correlation interaction U (GGA + U). The results suggest the half-metallic (HM) and antiferromagnetic (AFM) properties of BiPbCrCuO{sub 6} double perovskite. The HM-AFM property of the double perovskite is caused by the double-exchange mechanism between neighboring Cr{sup 5+}(t{sub 2g}{sup 1}↓) and Cu{sup 2+}(t{sub 2g}{sup 3}↑t{sub 2g}{sup 3}↓e{sub g}{sup 2}↑e{sub g}↓) via the intermediate O{sup 2−}(2s{sup 2}2p{sup 6}) ion.

  3. Evaluation of double-layer density modulated Si thin films as Li-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Taha Demirkan, Muhammed; Yurukcu, Mesut; Dursun, Burcu; Demir-Cakan, Rezan; Karabacak, Tansel

    2017-10-01

    Double-layer density modulated silicon thin films which contain alternating low and high density Si film layers were fabricated by magnetron sputtering. Two different samples consisting of alternating layers of high-density/low-density and low-density/high-density Si thin film layers were investigated as anode electrodes in Li-ion batteries. Si thin film in which the terminating layer at the top is low density Si layer-quoted as low-density/high-density film (LD/HD)- exhibits better performance than Si thin film that has high density layer at the top, -quoted as high-density/low-density (HD/LD). A highly stabilized cycling performance with the specific charge capacities of 2000 mAh g-1 at the 150th cycle at C/2 current density, and 1200 mAh g-1 at the 240th cycle at 10 C current density were observed for the LD/HD Si anode in the presence of fluoroethylene carbonate (FEC) electrolyte additive.

  4. Upstream ionization instability associated with a current-free double layer.

    PubMed

    Aanesland, A; Charles, C; Lieberman, M A; Boswell, R W

    2006-08-18

    A low frequency instability has been observed using various electrostatic probes in a low-pressure expanding helicon plasma. The instability is associated with the presence of a current-free double layer (DL). The frequency of the instability increases linearly with the potential drop of the DL, and simultaneous measurements show their coexistence. A theory for an upstream ionization instability has been developed, which shows that electrons accelerated through the DL increase the ionization upstream and are responsible for the observed instability. The theory is in good agreement with the experimental results.

  5. Double stenting with silicone and metallic stents for malignant airway stenosis.

    PubMed

    Matsumoto, Keitaro; Yamasaki, Naoya; Tsuchiya, Tomoshi; Miyazaki, Takuro; Kamohara, Ryotaro; Hatachi, Go; Nagayasu, Takeshi

    2017-08-01

    For severe malignant airway stenosis, there are several types of commercially available airway stents, and each has its own advantages and disadvantages. We herein describe the safety and efficacy of combination stenting with silicone and metallic stents for patients with extended malignant airway stenosis. Seven patients with malignant airway stenosis were treated via combination stenting with a silicone stent and a metallic stent for extended airway stenosis from the central to peripheral airways. Five patients were diagnosed with advanced esophageal cancer, two of whom had tracheoesophageal fistulas. One patient had adenoid cystic carcinoma, and another had mediastinal tumor. There were no specific complications related to the double stenting. Combination stenting with silicone and metallic stents proved to be a safe option for patients with severe, extended, and complicated malignant airway stenosis.

  6. An experimental investigation of alternative propellants for the helicon double layer thruster

    NASA Astrophysics Data System (ADS)

    Charles, C.; Boswell, R. W.; Laine, R.; MacLellan, P.

    2008-09-01

    Ion energy distribution functions are measured using a retarding field energy analyser located 7.5 cm downstream of a helicon double layer plasma source, respectively, operating with four molecular gases: nitrogen (N2), methane (CH4), ammonia (NH3) and nitrous oxide (N2O). For radiofrequency powers of a few hundred watts, and a magnetic field diverging from about 0.013 T (130 G) in the source to about 0.001 T (10 G) in the exhaust, an ion beam is detected for each propellant over a very similar operating pressure range (~0.023 Pa (0.17 mTorr) to ~0.267 Pa (2 mTorr)), as a result of spontaneous electric double layer formation near the exit of the plasma source. The characteristics of the ion beam versus operating pressure closely follow those previously obtained in argon, xenon and hydrogen. The ion beam exhaust velocity in space is found to be in the 17-19 km s-1 range in N2, 21-27 km s-1 range in CH4 and NH3 and 14-16 km s-1 range in N2O.

  7. Anion-exchange membranes derived from quaternized polysulfone and exfoliated layered double hydroxide for fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wan; Liang, Na; Peng, Pai

    2017-02-15

    Layered double hydroxides (LDH) are prepared by controlling urea assisted homogeneous precipitation conditions. Morphology and crystallinity of LDHs are confirmed by X-ray diffraction and scanning electron microscope. After LDHs are incorporated into quaternized polysulfone membranes, transmission electron microscope is used to observe the exfoliated morphology of LDH sheets in the membranes. The properties of the nanocomposite membranes, including water uptake, swelling ratio, mechanical property and ionic conductivity are investigated. The nanocomposite membrane containing 5% LDH sheets shows more balanced performances, exhibiting an ionic conductivity of 2.36×10{sup −2} S cm{sup −1} at 60 °C. - Graphical abstract: Anion-exchange membrane based onmore » quaternized polysulfone and exfoliated layered double hydroxide is optically transparent and has good ionic properties.« less

  8. In situ distributions and characteristics of heavy metals in full-scale landfill layers.

    PubMed

    He, Pin-Jing; Xiao, Zheng; Shao, Li-Ming; Yu, Ji-Yu; Lee, Duu-Jong

    2006-10-11

    The leachate from methanogenic landfill normally contains low concentrations of heavy metals. Little samples had ever been collected from the full-scale landfill piles owing to technical difficulty for well drilling. We drilled two wells in Hangzhou Tianziling landfill, 20 m and 32 m in depth each, and collected solid samples of waste age of 1-4 years from both wells. The total amounts, the sequentially extracted amounts, and the chemical binding forms of heavy metals of the samples collected at different depths were measured. With the correlation between leachate production amount and the yearly rainfall amount, the leached ratio of the heavy metals were estimated only 0.13%, 1.8%, 0.15%, and 0.19% of Cu, Cd, Pb, and Zn, respectively. The heavy metals amounts in the main compositions of MSW, like glass, food waste, paper, coal cinders, were measured using fresh MSW samples. Afterward, the contents of heavy metals initially landfilled were estimated. A positive correlation was noted between the measured and the estimated initial contents of heavy metals, indicating that the low migration of heavy metals in landfill layers. However, among the metals investigated, Zn has shown better mobility inside landfill layers. Acid volatile sulfide (AVS) and the simultaneously extracted metals (SEM) were measured for all collected samples with optimal reaction conditions identified to yield nearly perfect sulfide recovery as follows: 100 g wet samples, 80 mL min(-1) N(2) flow rate, reaction time of 150 min. The SEM/AVS ratios ranged 25-45, indicating that the AVS was insufficient to immobilize the SEM. Sequential extraction using six-fraction scheme revealed that the sum of exchangeable and the avid soluble fractions of heavy metals follow: Zn>Cd>Cu, Ni, Pb>Cr. The insoluble fraction of heavy metals in MSW was high, for instance, over 80% for Cr and Pb high insoluble fractions of heavy metals in the landfilled MSW and the sorption capability of the methanogenic landfill layers

  9. The finite layer method for modelling the sound transmission through double walls

    NASA Astrophysics Data System (ADS)

    Díaz-Cereceda, Cristina; Poblet-Puig, Jordi; Rodríguez-Ferran, Antonio

    2012-10-01

    The finite layer method (FLM) is presented as a discretisation technique for the computation of noise transmission through double walls. It combines a finite element method (FEM) discretisation in the direction perpendicular to the wall with trigonometric functions in the two in-plane directions. It is used for solving the Helmholtz equation at the cavity inside the double wall, while the wall leaves are modelled with the thin plate equation and solved with modal analysis. Other approaches to this problem are described here (and adapted where needed) in order to compare them with the FLM. They range from impedance models of the double wall behaviour to different numerical methods for solving the Helmholtz equation in the cavity. For the examples simulated in this work (impact noise and airborne sound transmission), the former are less accurate than the latter at low frequencies. The main advantage of FLM over the other discretisation techniques is the possibility of extending it to multilayered structures without changing the interpolation functions and with an affordable computational cost. This potential is illustrated with a calculation of the noise transmission through a multilayered structure: a double wall partially filled with absorbing material.

  10. Structure of oxides prepared by decomposition of layered double Mg–Al and Ni–Al hydroxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherepanova, Svetlana V.; Novosibirsk State University, Novosibirsk; Leont’eva, Natalya N., E-mail: n_n_leonteva@list.ru

    2015-05-15

    Abstracts: Thermal decomposition of Mg–Al and Ni–Al layered double hydroxides LDH at temperatures lower than 800 °C leads to the formation of oxides with different structures. Mg–Al oxide has a very defective structure and consists of octahedral layers as in periclase MgO and mixed octahedral–tetrahedral layers as in spinel MgAl{sub 2}O{sub 4}. Mixed Ni–Al oxide has a sandwich-like structure, consisting of a core with Al-doped NiO-like structure and some surface layers with spinel NiAl{sub 2}O{sub 4} structure epitaxial connected with the core. Suggested models were verified by simulation of X-ray diffraction patterns using DIFFaX code, as well as HRTEM, IR-,more » UV-spectroscopies, and XPS. - Graphical abstract: In the Mg–Al layered double hydroxide Al{sup 3+} ions migrate into interlayers during decomposition. The Mg–Al oxide represents sequence of octahedral and octahedral–tetrahedral spinel layers with vacancies. The Ni–Al oxide has a sandwich-like structure with NiO-like core and surface spinel layers as a result of migration of Al{sup 3+} ions on the surface. The models explain the presence and absence of “memory effect” for the Mg–Al and Ni–Al oxides, respectively. - Highlights: • We study products of Mg(Ni)–Al LDH decomposition by calcination at 500(400)–800 °C. • In Mg–Al/Ni–Al LDH Al ions migrate into interlayers/on the surface during decomposition. • Mg–Al oxide represents sequence of periclase- and spinel-like layers with vacancies. • Ni–Al oxide has a sandwich-like structure with NiO-like core and surface spinel layers. • The models explain the presence/absence of “memory effect” for Mg–Al/Ni–Al oxides.« less

  11. Electrical Double Layer Capacitance in a Graphene-embedded Al2O3 Gate Dielectric

    PubMed Central

    Ki Min, Bok; Kim, Seong K.; Jun Kim, Seong; Ho Kim, Sung; Kang, Min-A; Park, Chong-Yun; Song, Wooseok; Myung, Sung; Lim, Jongsun; An, Ki-Seok

    2015-01-01

    Graphene heterostructures are of considerable interest as a new class of electronic devices with exceptional performance in a broad range of applications has been realized. Here, we propose a graphene-embedded Al2O3 gate dielectric with a relatively high dielectric constant of 15.5, which is about 2 times that of Al2O3, having a low leakage current with insertion of tri-layer graphene. In this system, the enhanced capacitance of the hybrid structure can be understood by the formation of a space charge layer at the graphene/Al2O3 interface. The electrical properties of the interface can be further explained by the electrical double layer (EDL) model dominated by the diffuse layer. PMID:26530817

  12. Performance limits of tunnel transistors based on mono-layer transition-metal dichalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Xiang-Wei, E-mail: xwjiang@semi.ac.cn; Li, Shu-Shen; Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026

    2014-05-12

    Performance limits of tunnel field-effect transistors based on mono-layer transition metal dichalcogenides are investigated through numerical quantum mechanical simulations. The atomic mono-layer nature of the devices results in a much smaller natural length λ, leading to much larger electric field inside the tunneling diodes. As a result, the inter-band tunneling currents are found to be very high as long as ultra-thin high-k gate dielectric is possible. The highest on-state driving current is found to be close to 600 μA/μm at V{sub g} = V{sub d} = 0.5 V when 2 nm thin HfO{sub 2} layer is used for gate dielectric, outperforming most of the conventional semiconductor tunnelmore » transistors. In the five simulated transition-metal dichalcogenides, mono-layer WSe{sub 2} based tunnel field-effect transistor shows the best potential. Deep analysis reveals that there is plenty room to further enhance the device performance by either geometry, alloy, or strain engineering on these mono-layer materials.« less

  13. A novel porous anionic metal–organic framework with pillared double-layer structure for selective adsorption of dyes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Shu-Nan; Han, Yi; Wang, Bin

    2016-01-15

    A novel porous anionic metal–organic framework, (Me{sub 2}NH{sub 2}){sub 2}[Zn{sub 2}L{sub 1.5}bpy]·2DMF (BUT-201; H{sub 4}L=4,8-disulfonaphthalene-2,6-dicarboxylic acid; bpy=4,4-bipyridine; DMF=N,N-dimethylformamide), with pillared double-layer structure has been synthesized through the reaction of a sulfonated carboxylic acid ligand and Zn(NO{sub 3}){sub 2}·6H{sub 2}O with 4,4-bipyridine as a co-ligand. It is found that BUT-201 can rapidly adsorb cationic dyes with a smaller size such as Methylene Blue (MB) and Acriflavine Hydrochloride (AH) by substitution of guest (CH{sub 3}){sub 2}NH{sub 2}{sup +}, but has no adsorption towards the cationic dyes with a lager size such as Methylene Violet (MV), the anionic dyes like C. I. Acidmore » Yellow 1 (AY1) and neutral dyes like C. I. Solvent Yellow 7 (SY7), respectively. The results show that the adsorption behavior of BUT-201 relates not only to the charge but also to the size/shape of dyes. Furthermore, the adsorbed dyes can be gradually released in the methanol solution of LiNO{sub 3}. - Graphical abstract: A porous anionic metal–organic framework (BUT-201) can selectively adsorb the cationic dyes by cationic guest molecule substitution, and the adsorbed dyes can be gradually released in the methanol solution of LiNO{sub 3}. - Highlights: • An anionic metal-organic framework (BUT-201) has been synthesized and characterized. • BUT-201 has a three-dimensional (3D) pillared double-layer structure. • BUT-201 can selectively and rapidly adsorb cationic dyes. • The adsorbed dyes can be gradually released in the methanol solution of LiNO{sub 3}.« less

  14. The importance of proper crystal-chemical and geometrical reasoning demonstrated using layered single and double hydroxides

    PubMed Central

    Richardson, Ian G.

    2013-01-01

    Atomistic modelling techniques and Rietveld refinement of X-ray powder diffraction data are widely used but often result in crystal structures that are not realistic, presumably because the authors neglect to check the crystal-chemical plausibility of their structure. The purpose of this paper is to reinforce the importance and utility of proper crystal-chemical and geometrical reasoning in structural studies. It is achieved by using such reasoning to generate new yet fundamental information about layered double hydroxides (LDH), a large, much-studied family of compounds. LDH phases are derived from layered single hydroxides by the substitution of a fraction (x) of the divalent cations by trivalent. Equations are derived that enable calculation of x from the a parameter of the unit cell and vice versa, which can be expected to be of widespread utility as a sanity test for extant and future structure determinations and computer simulation studies. The phase at x = 0 is shown to be an α form of divalent metal hydroxide rather than the β polymorph. Crystal-chemically sensible model structures are provided for β-Zn(OH)2 and Ni- and Mg-based carbonate LDH phases that have any trivalent cation and any value of x, including x = 0 [i.e. for α-M(OH)2·mH2O phases]. PMID:23719702

  15. Multiple and configurable optical logic systems based on layered double hydroxides and chromophore assemblies.

    PubMed

    Shi, Wenying; Fu, Yi; Li, Zhixiong; Wei, Min

    2015-01-14

    Multiple and configurable fluorescence logic gates were fabricated via self-assembly of layered double hydroxides and various chromophores. These logic gates were operated by observation of different emissions with the same excitation wavelength, which achieve YES, NOT, AND, INH and INHIBIT logic operations, respectively.

  16. Organic double layer element driven by triboelectric nanogenerator: Study of carrier behavior by non-contact optical method

    NASA Astrophysics Data System (ADS)

    Chen, Xiangyu; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2016-02-01

    By using optical electric-field-induced second-harmonic generation (EFISHG) technique, we studied carrier behavior caused by contact electrification (CE) in an organic double-layer element. This double-layer sample was half suspended in the open air, where one electrode (anode or cathode) was connected with a Cu foil for electrification while the other electrode was floated. Results showed two distinct carrier behaviors, depending on the (anode or cathode) connections to the Cu foil, and these carrier behaviors were analyzed based on the Maxwell-Wagner model. The double-layer sample works as a simple solar cell device. The photovoltaic effect and CE process have been proved to be two paralleled effects without strong interaction with each other, while photoconductivity changing in the sample can enhance the relaxation of CE induced charges. By probing the carrier behavior in this half-suspended device, the EFISHG technique has been demonstrated to be an effective non-contact method for clarifying the CE effect on related energy harvesting devices and electronics devices. Meanwhile, the related physical analysis in this letter is also useful for elucidating the fundamental characteristic of hybrid energy system based on solar cell and triboelectric nanogenerator.

  17. Laminated metal composite formed from low flow stress layers and high flow stress layers using flow constraining elements and making same

    DOEpatents

    Syn, C.K.; Lesuer, D.R.

    1995-07-04

    A laminated metal composite of low flow stress layers and high flow stress layers is described which is formed using flow constraining elements, preferably in the shape of rings, individually placed around each of the low flow stress layers while pressure is applied to the stack to bond the layers of the composite together, to thereby restrain the flow of the low flow stress layers from the stack during the bonding. The laminated metal composite of the invention is made by the steps of forming a stack of alternate layers of low flow stress layers and high flow stress layers with each layer of low flow stress material surrounded by an individual flow constraining element, such as a ring, and then applying pressure to the top and bottom surfaces of the resulting stack to bond the dissimilar layers together, for example, by compression rolling the stack. In a preferred embodiment, the individual flow constraining elements surrounding the layers of low flow stress material are formed of a material which may either be the same material as the material comprising the high flow stress layers, or have similar flow stress characteristics to the material comprising the high flow stress layers. Additional sacrificial layers may be added to the top and bottom of the stack to avoid damage to the stack during the bonding step; and these additional layers may then be removed after the bonding step. 5 figs.

  18. Laminated metal composite formed from low flow stress layers and high flow stress layers using flow constraining elements and making same

    DOEpatents

    Syn, Chol K.; Lesuer, Donald R.

    1995-01-01

    A laminated metal composite of low flow stress layers and high flow stress layers is described which is formed using flow constraining elements, preferably in the shape of rings, individually placed around each of the low flow stress layers while pressure is applied to the stack to bond the layers of the composite together, to thereby restrain the flow of the low flow stress layers from the stack during the bonding. The laminated metal composite of the invention is made by the steps of forming a stack of alternate layers of low flow stress layers and high flow stress layers with each layer of low flow stress material surrounded by an individual flow constraining element, such as a ring, and then applying pressure to the top and bottom surfaces of the resulting stack to bond the dissimilar layers together, for example, by compression rolling the stack. In a preferred embodiment, the individual flow constraining elements surrounding the layers of low flow stress material are formed of a material which may either be the same material as the material comprising the high flow stress layers, or have similar flow stress characteristics to the material comprising the high flow stress layers. Additional sacrificial layers may be added to the top and bottom of the stack to avoid damage to the stack during the bonding step; and these additional layers may then be removed after the bonding step.

  19. Bacteria encapsulated in layered double hydroxides: towards an efficient bionanohybrid for pollutant degradation.

    PubMed

    Halma, Matilte; Mousty, Christine; Forano, Claude; Sancelme, Martine; Besse-Hoggan, Pascale; Prevot, Vanessa

    2015-02-01

    A soft chemical process was successfully used to immobilize Pseudomonas sp. strain ADP (ADP), a well-known atrazine (herbicide) degrading bacterium, within a Mg2Al-layered double hydroxide host matrix. This approach is based on a simple, quick and ecofriendly direct coprecipitation of metal salts in the presence of a colloidal suspension of bacteria in water. It must be stressed that by this process the mass ratio between inorganic and biological components was easily tuned ranging from 2 to 40. This ratio strongly influenced the biological activity of the bacteria towards atrazine degradation. The better results were obtained for ratios of 10 or lower, leading to an enhanced atrazine degradation rate and percentage compared to free cells. Moreover the biohybrid material maintained this biodegradative activity after four cycles of reutilization and 3 weeks storage at 4°C. The ADP@MgAl-LDH bionanohybrid materials were completely characterized by X-ray diffraction (XRD), FTIR spectroscopy, thermogravimetric analysis and scanning and transmission electronic microscopy (SEM and TEM) evidencing the successful immobilization of ADP within the inorganic matrix. This synthetic approach could be readily extended to other microbial whole-cell immobilization of interest for new developments in biotechnological systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Polymer coated CaAl-layered double hydroxide nanomaterials for potential calcium supplement.

    PubMed

    Kim, Tae-Hyun; Lee, Jeong-A; Choi, Soo-Jin; Oh, Jae-Min

    2014-12-05

    We have successfully prepared layered double hydroxide (LDH) nanomaterials containing calcium and aluminum ions in the framework (CaAl-LDH). The surface of CaAl-LDH was coated with enteric polymer, Eudragit®L 100 in order to protect nanomaterials from fast dissolution under gastric condition of pH 1.2. The X-ray diffraction patterns, Fourier transform infrared spectroscopy, scanning electron and transmission electron microscopy revealed that the pristine LDH was well prepared having hydrocalumite structure, and that the polymer effectively coated the surface of LDH without disturbing structure. From thermal analysis, it was determined that only a small amount (less than 1%) of polymer was coated on the LDH surface. Metal dissolution from LDH nanomaterials was significantly reduced upon Eudragit®L 100 coating at pH 1.2, 6.8 and 7.4, which simulates gastric, enteric and plasma conditions, respectively, and the dissolution effect was the most suppressed at pH 1.2. The LDH nanomaterials did not exhibit any significant cytotoxicity up to 1000 μg/mL and intracellular calcium concentration significantly increased in LDH-treated human intestinal cells. Pharmacokinetic study demonstrated absorption efficiency of Eudragit®L 100 coated LDH following oral administration to rats. Moreover, the LDH nanomaterials did not cause acute toxic effect in vivo. All the results suggest the great potential of CaAl-LDH nanomaterials as a calcium supplement.

  1. Bose-Einstein condensation and superfluidity of dipolar excitons in a phosphorene double layer

    NASA Astrophysics Data System (ADS)

    Berman, Oleg L.; Gumbs, Godfrey; Kezerashvili, Roman Ya.

    2017-07-01

    We study the formation of dipolar excitons and their superfluidity in a phosphorene double layer. The analytical expressions for the single dipolar exciton energy spectrum and wave function are obtained. It is predicted that a weakly interacting gas of dipolar excitons in a double layer of black phosphorus exhibits superfluidity due to the dipole-dipole repulsion between the dipolar excitons. In calculations are employed the Keldysh and Coulomb potentials for the interaction between the charge carriers to analyze the influence of the screening effects on the studied phenomena. It is shown that the critical velocity of superfluidity, the spectrum of collective excitations, concentrations of the superfluid and normal component, and mean-field critical temperature for superfluidity are anisotropic and demonstrate the dependence on the direction of motion of dipolar excitons. The critical temperature for superfluidity increases if the exciton concentration and the interlayer separation increase. It is shown that the dipolar exciton binding energy and mean-field critical temperature for superfluidity are sensitive to the electron and hole effective masses. The proposed experiment to observe a directional superfluidity of excitons is addressed.

  2. Manipulating electronic and mechanical properties at metal-ceramic interfaces with a nanomolecular layer

    NASA Astrophysics Data System (ADS)

    Kwan, Matthew P.

    This work demonstrates that inserting nanomolecular layers (NMLs) can profoundly change and/or lead to novel electronic and mechanical properties of metal-ceramic interfaces. The first set of results demonstrate that organophosphonate NMLs up to 1.8 nm thick can alter metal work functions by +/- 0.6 eV. This work function change is a strong function of the NML terminal groups (methyl, mercaptan, carboxylic acid, or phosphonic acid), morphology (up right, lying down, or mixed orientation), and the nature of the bonding (covalent, polar, or Van der Waals) between NML and the adjacent layers. Additionally, while NML-ceramic bond type and strength can influence and counteract the effect of NML morphology, the metal-NML bond appears to be independent of the morphology of the NML underlayer. The second set of results demonstrate that inserting an organosilane NML at a metal-ceramic interface can lead to multifold fracture toughening under both static (stress corrosion) and cyclic loads (fatigue) tested in four-point bend. Nanolayer-induced interface strengthening during static loading activates metal plasticity above the metal yield strength, leading to two-fold fracture toughening. Metal plasticity-induced toughening increases as temperature is increased up to 85 °C due to decreasing yield stress. In the fatigue fracture tests I report for the first time a loading-frequency-dependent tripling in fracture toughening in the 75-300 Hz range upon inserting a mercapto-silane NML at the weakest interface of a ceramic-polymer-metal-ceramic stack. This unusual behavior arises from the NML strengthened interface enabling load transfer to- and plasticity in the polymer layer, while the fatigue toughening magnitude and frequency range are determined by polymer rheology.

  3. Ultrasonically assisted solvothermal synthesis of novel Ni/Al layered double hydroxide for capturing of Cd(II) from contaminated water

    NASA Astrophysics Data System (ADS)

    Rahmanian, Omid; Maleki, Mohammad Hassan; Dinari, Mohammad

    2017-11-01

    A novel adsorbent of nickel aluminum layered double hydroxide (Ni/Al-LDH) was prepared through the precipitation of metal nitrates by ultrasonically assisted solvothermal method. The surface morphology, chemical structure and thermal properties of this compound were examined by X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) techniques. The XRD, TEM and FE-SEM results established that the synthesized LDH have a well-ordered layer structure with good crystalline nature. Then it was applied to remove excessive Cd(II) ions from water and the effects of contact time, pH and adsorbent dose were examined at initial Cd(II) concentration of 10 mg/L. Results show that the time required to reach equilibrium was fast (40 min) and working pH solution was neutral (pH 7). Langmuir and Freundlich model of adsorption isotherms were explored; the results show that the Freundlich model was better fitted than that Langmuir model. This results predicting a multilayer adsorption of Cd(II) on LDH. The equilibrium kinetic adsorption data were fixed to the pseudo-second order kinetic equation.

  4. Reciprocity in spatial evolutionary public goods game on double-layered network

    NASA Astrophysics Data System (ADS)

    Kim, Jinho; Yook, Soon-Hyung; Kim, Yup

    2016-08-01

    Spatial evolutionary games have mainly been studied on a single, isolated network. However, in real world systems, many interaction topologies are not isolated but many different types of networks are inter-connected to each other. In this study, we investigate the spatial evolutionary public goods game (SEPGG) on double-layered random networks (DRN). Based on the mean-field type arguments and numerical simulations, we find that SEPGG on DRN shows very rich interesting phenomena, especially, depending on the size of each layer, intra-connectivity, and inter-connected couplings, the network reciprocity of SEPGG on DRN can be drastically enhanced through the inter-connected coupling. Furthermore, SEPGG on DRN can provide a more general framework which includes the evolutionary dynamics on multiplex networks and inter-connected networks at the same time.

  5. Reciprocity in spatial evolutionary public goods game on double-layered network

    PubMed Central

    Kim, Jinho; Yook, Soon-Hyung; Kim, Yup

    2016-01-01

    Spatial evolutionary games have mainly been studied on a single, isolated network. However, in real world systems, many interaction topologies are not isolated but many different types of networks are inter-connected to each other. In this study, we investigate the spatial evolutionary public goods game (SEPGG) on double-layered random networks (DRN). Based on the mean-field type arguments and numerical simulations, we find that SEPGG on DRN shows very rich interesting phenomena, especially, depending on the size of each layer, intra-connectivity, and inter-connected couplings, the network reciprocity of SEPGG on DRN can be drastically enhanced through the inter-connected coupling. Furthermore, SEPGG on DRN can provide a more general framework which includes the evolutionary dynamics on multiplex networks and inter-connected networks at the same time. PMID:27503801

  6. Crystal and Magnetic Structures in Layered, Transition Metal Dihalides and Trihalides

    DOE PAGES

    McGuire, Michael A.

    2017-04-27

    Materials composed of two dimensional layers bonded to one another through weak van der Waals interactions often exhibit strongly anisotropic behaviors and can be cleaved into very thin specimens and sometimes into monolayer crystals. Interest in such materials is driven by the study of low dimensional physics and the design of functional heterostructures. Binary compounds with the compositions MX 2 and MX 3 where M is a metal cation and X is a halogen anion often form such structures. Magnetism can be incorporated by choosing a transition metal with a partially filled d-shell for M, enabling ferroic responses for enhancedmore » functionality. Here we give a brief overview of binary transition metal dihalides and trihalides, summarizing their crystallographic properties and long-range-ordered magnetic structures, focusing on those materials with layered crystal structures and partially filled d-shells required for combining low dimensionality and cleavability with magnetism.« less

  7. Organic-inorganic perovskites containing trivalent metal halide layers: the templating influence of the organic cation layer.

    PubMed

    Mitzi, D B

    2000-12-25

    Thin sheetlike crystals of the metal-deficient perovskites (H2AEQT)M2/3I4 [M = Bi or Sb; AEQT = 5,5"'-bis-(aminoethyl)-2,2':5',2'':5'',2'''-quaterthiophene] were formed from slowly cooled ethylene glycol/2-butanol solutions containing the bismuth(III) or antimony(III) iodide and AEQT.2HI salts. Each structure was refined in a monoclinic (C2/m) subcell, with the lattice parameters a = 39.712(13) A, b = 5.976(2) A, c = 6.043(2) A, beta = 92.238(5) degrees, and Z = 2 for M = Bi and a = 39.439(7) A, b = 5.952(1) A, c = 6.031(1) A, beta = 92.245(3) degrees, and Z = 2 for M = Sb. The trivalent metal cations locally adopt a distorted octahedral coordination, with M-I bond lengths ranging from 3.046(1) to 3.218(3) A (3.114 A average) for M = Bi and 3.012(1) to 3.153(2) A (3.073 A average) for M = Sb. The new organic-inorganic hybrids are the first members of a metal-deficient perovskite family consisting of (Mn+)2/nV(n-2)/nX4(2-) sheets, where V represents a vacancy (generally left out of the formula) and the metal cation valence, n, is greater than 2. The organic layers in the AEQT-based organic-inorganic hybrids feature edge-to-face aromatic interactions among the rigid, rodlike quaterthiophene moieties, which may help to stabilize the unusual metal-deficient layered structures.

  8. Methotrexate intercalated ZnAl-layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Chakraborty, Manjusha; Dasgupta, Sudip; Soundrapandian, Chidambaram; Chakraborty, Jui; Ghosh, Swapankumar; Mitra, Manoj K.; Basu, Debabrata

    2011-09-01

    The anticancerous drug methotrexate (MTX) has been intercalated into an ZnAl-layered double hydroxide (LDH) using an anion exchange technique to produce LDH-MTX hybrids having particle sizes in the range of 100-300 nm. X-ray diffraction studies revealed increases in the basal spacings of ZnAl-LDH-MTX hybrid on MTX intercalation. This was corroborated by the transmission electron micrographs, which showed an increase in average interlayer spacing from 8.9 Å in pristine LDH to 21.3 Å in LDH-MTX hybrid. Thermogravimetric analyses showed an increase in the decomposition temperature for the MTX molecule in the LDH-MTX hybrid indicating enhanced thermal stability of the drug molecule in the LDH nanovehicle. The cumulative release profile of MTX from ZnAl-LDH-MTX hybrids in phosphate buffer saline (PBS) at pH 7.4 was successfully sustained for 48 h following Rigter-Peppas model release kinetics via diffusion.

  9. Metal-ion retention properties of water-soluble amphiphilic block copolymer in double emulsion systems (w/o/w) stabilized by non-ionic surfactants.

    PubMed

    Palencia, Manuel; Rivas, Bernabé L

    2011-11-15

    Metal-ion retention properties of water-soluble amphiphilic polymers in presence of double emulsion were studied by diafiltration. Double emulsion systems, water-in-oil-in-water, with a pH gradient between external and internal aqueous phases were prepared. A poly(styrene-co-maleic anhydride) (PSAM) solution at pH 6.0 was added to the external aqueous phase of double emulsion and by application of pressure a divalent metal-ion stream was continuously added. Metal-ions used were Cu(2+) and Cd(2+) at the same pH of polymer solution. According to our results, metal-ion retention is mainly the result of polymer-metal interaction. Interaction between PSMA and reverse emulsion globules is strongly controlled by amount of metal-ions added in the external aqueous phase. In addition, as metal-ion concentration was increased, a negative effect on polymer retention capacity and promotion of flocculation phenomena were produced. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Double-layered collagen graft to the radial forearm free flap donor sites without skin graft.

    PubMed

    Park, Tae-Jun; Kim, Hong-Joon; Ahn, Kang-Min

    2015-12-01

    Radial forearm free flap is the most reliable flap for intraoral soft tissue reconstruction after cancer ablation surgery. However, unesthetic scar of the donor site and the need for a second donor site for skin graft are major disadvantages of the forearm flap. The purpose of this study was to report the clinical results of double-layered collagen graft to the donor site of the forearm free flap without skin graft. Twenty-two consecutive patients who underwent oral cancer ablation and forearm reconstruction between April 2010 and November 2013 were included in this study. Male to female ratio was 12:10, and average age was 61.0 years old (27-84). Double-layered collagen was grafted to the donor site of the forearm free flap and healed for secondary intention. Upper silicone had been trimmed at the periphery during secondary intention, and dry dressing was used. Postoperative scar healing and esthetic results and function were evaluated. An average follow-up period was 34.9 months. The scar area was decreased to 63.9 % in average. The complete healing was obtained between 1.5 and 3 months according to the defect size. There was no functional defect or impairment 3 months after operation. All patients were satisfied with the esthetic results. Three patients died of recurred cancer. Double-layered collagen graft was successfully performed in this study. Without the thigh skin graft, patients had experienced less painful postoperative healing periods and discomfort.

  11. Simultaneous control of thermoelectric properties in p- and n-type materials by electric double-layer gating: New design for thermoelectric device

    NASA Astrophysics Data System (ADS)

    Takayanagi, Ryohei; Fujii, Takenori; Asamitsu, Atsushi

    2015-05-01

    We report a novel design of a thermoelectric device that can control the thermoelectric properties of p- and n-type materials simultaneously by electric double-layer gating. Here, p-type Cu2O and n-type ZnO were used as the positive and negative electrodes of the electric double-layer capacitor structure. When a gate voltage was applied between the two electrodes, holes and electrons accumulated on the surfaces of Cu2O and ZnO, respectively. The thermopower was measured by applying a thermal gradient along the accumulated layer on the electrodes. We demonstrate here that the accumulated layers worked as a p-n pair of the thermoelectric device.

  12. Enhancing the performance of blue GaN-based light emitting diodes with double electron blocking layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Yao; Liang, Meng; Fu, Jiajia

    2015-03-15

    In this work, novel double Electron Blocking Layers for InGaN/GaN multiple quantum wells light-emitting diodes were proposed to mitigate the efficiency droop at high current density. The band diagram and carriers distributions were investigated numerically. The results indicate that due to a newly formed holes stack in the p-GaN near the active region, the hole injection has been improved and an uniform carriers distribution can be achieved. As a result, in our new structure with double Electron Blocking Layers, the efficiency droop has been reduced to 15.5 % in comparison with 57.3 % for the LED with AlGaN EBL atmore » the current density of 100 A/cm{sup 2}.« less

  13. Synthesis of Novel Double-Layer Nanostructures of SiC–WOxby a Two Step Thermal Evaporation Process

    PubMed Central

    2009-01-01

    A novel double-layer nanostructure of silicon carbide and tungsten oxide is synthesized by a two-step thermal evaporation process using NiO as the catalyst. First, SiC nanowires are grown on Si substrate and then high density W18O49nanorods are grown on these SiC nanowires to form a double-layer nanostructure. XRD and TEM analysis revealed that the synthesized nanostructures are well crystalline. The growth of W18O49nanorods on SiC nanowires is explained on the basis of vapor–solid (VS) mechanism. The reasonably better turn-on field (5.4 V/μm) measured from the field emission measurements suggest that the synthesized nanostructures could be used as potential field emitters. PMID:20596292

  14. Theoretical analysis and coating thickness determination of a dual layer metal coated FBG sensor for sensitivity enhancement at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Ramalingam, Rajinikumar; Atrey, M. D.

    2017-12-01

    Use of Fiber Bragg Grating (FBG) sensor is very appealing for sensing low temperature and strain in superconducting magnets because of their miniature size and the possibility of accommodating many sensors in a single fiber. The main drawback is their low intrinsic thermal sensitivity at low temperatures below 120 K. Approaching cryogenic temperatures, temperature changes lower than a few degrees Kelvin cannot be resolved, since they do not cause an appreciable shift of the wavelength diffracted by a bare FBG sensor. To improve the thermal sensitivity and thermal inertia below 77 K, the Bare FBG (BFBG) sensor can be coated with high thermal expansion coefficient materials. In this work, different metal were considered for coating the FBG sensor. For theoretical investigation, a double layered circular thick wall tube model has been considered to study the effect on sensitivity due to the mechanical properties like Young’s modulus, Thermal expansion coefficient, Poisson’s ratio of selected materials at a various cryogenic temperatures. The primary and the secondary coating thickness for a dual layer metal coated FBG sensor have been determined from the above study. The sensor was then fabricated and tested at cryogenic temperature range from 4-300 K. The cryogenic temperature characteristics of the tested sensors are reported.

  15. Role of nanorods insertion layer in ZnO-based electrochemical metallization memory cell

    NASA Astrophysics Data System (ADS)

    Mangasa Simanjuntak, Firman; Singh, Pragya; Chandrasekaran, Sridhar; Juanda Lumbantoruan, Franky; Yang, Chih-Chieh; Huang, Chu-Jie; Lin, Chun-Chieh; Tseng, Tseung-Yuen

    2017-12-01

    An engineering nanorod array in a ZnO-based electrochemical metallization device for nonvolatile memory applications was investigated. A hydrothermally synthesized nanorod layer was inserted into a Cu/ZnO/ITO device structure. Another device was fabricated without nanorods for comparison, and this device demonstrated a diode-like behavior with no switching behavior at a low current compliance (CC). The switching became clear only when the CC was increased to 75 mA. The insertion of a nanorods layer induced switching characteristics at a low operation current and improve the endurance and retention performances. The morphology of the nanorods may control the switching characteristics. A forming-free electrochemical metallization memory device having long switching cycles (>104 cycles) with a sufficient memory window (103 times) for data storage application, good switching stability and sufficient retention was successfully fabricated by adjusting the morphology and defect concentration of the inserted nanorod layer. The nanorod layer not only contributed to inducing resistive switching characteristics but also acted as both a switching layer and a cation diffusion control layer.

  16. Comparison of the metal-to-ceramic bond strengths of four noble alloys with press-on-metal and conventional porcelain layering techniques.

    PubMed

    Khmaj, Mofida R; Khmaj, Abdulfatah B; Brantley, William A; Johnston, William M; Dasgupta, Tridib

    2014-11-01

    New noble alloys for metal ceramic restorations introduced by manufacturers are generally lower-cost alternatives to traditional higher-gold alloys. Information about the metal-to-ceramic bond strength for these alloys, which is needed for rational clinical selection, is often lacking. The purpose of this study was to evaluate the bond strength of 4 recently introduced noble alloys by using 2 techniques for porcelain application. Aquarius Hard (high-gold: 86.1 gold, 8.5 platinum, 2.6 palladium, 1.4 indium; values in wt. %), Evolution Lite (reduced-gold: 40.3 gold, 39.3 palladium, 9.3 indium, 9.2 silver, 1.8 gallium), Callisto 75 Pd (palladium-silver containing gold: 75.2 palladium, 7.1 silver, 2.5 gold, 9.3 tin, 1.0 indium), and Aries, (conventional palladium-silver: 63.7 palladium, 26.0 silver, 7.0 tin, 1.8 gallium, 1.5 indium) were selected for bonding to leucite-containing veneering porcelains. Ten metal ceramic specimens that met dimensional requirements for International Organization for Standardization (ISO) Standard 9693 were prepared for each alloy by using conventional porcelain layering and press-on-metal methods. The 3-point bending test in ISO Standard 9693 was used to determine bond strength. Values were compared with 2-way ANOVA (maximum likelihood analysis, SAS Mixed Procedure) and the Tukey test (α=.05). Means (standard deviations) for bond strength with conventional porcelain layering were as follows: Aquarius Hard (50.7 ±5.5 MPa), Evolution Lite (40.2 ±3.3 MPa), Callisto 75 Pd (37.2 ±3.9 MPa), and Aries (34.0 ±4.9 MPa). For the press-on-metal technique, bond strength results were as follows: Aquarius Hard (33.7 ±11.5 MPa), Evolution Lite (34.9 ±4.5 MPa), Callisto 75 Pd (37.2 ±11.9 MPa), and Aries (30.7 ±10.8 MPa). From statistical analyses, the following 3 significant differences were found for metal-to-ceramic bond strength: the bond strength for Aquarius Hard was significantly higher for conventional porcelain layers compared with

  17. Directional Emission from Metal-Dielectric-Metal Structures: Effect of Mixed Metal Layers, Dye Location and Dielectric Thickness.

    PubMed

    Choudhury, Sharmistha Dutta; Badugu, Ramachandram; Ray, Krishanu; Lakowicz, Joseph R

    2015-02-12

    Metal-dielectric-metal (MDM) structures provide directional emission close to the surface normal, which offers opportunities for new design formats in fluorescence based applications. The directional emission arises due to near-field coupling of fluorophores with the optical modes present in the MDM substrate. Reflectivity simulations and dispersion diagrams provide a basic understanding of the mode profiles and the factors that affect the coupling efficiency and the spatial distribution of the coupled emission. This work reveals that the composition of the metal layers, the location of the dye in the MDM substrate and the dielectric thickness are important parameters that can be chosen to tune the color of the emission wavelength, the angle of observation, the angular divergence of the emission and the polarization of the emitted light. These features are valuable for displays and optical signage.

  18. Directional Emission from Metal-Dielectric-Metal Structures: Effect of Mixed Metal Layers, Dye Location and Dielectric Thickness

    PubMed Central

    Choudhury, Sharmistha Dutta; Badugu, Ramachandram; Ray, Krishanu; Lakowicz, Joseph R.

    2015-01-01

    Metal-dielectric-metal (MDM) structures provide directional emission close to the surface normal, which offers opportunities for new design formats in fluorescence based applications. The directional emission arises due to near-field coupling of fluorophores with the optical modes present in the MDM substrate. Reflectivity simulations and dispersion diagrams provide a basic understanding of the mode profiles and the factors that affect the coupling efficiency and the spatial distribution of the coupled emission. This work reveals that the composition of the metal layers, the location of the dye in the MDM substrate and the dielectric thickness are important parameters that can be chosen to tune the color of the emission wavelength, the angle of observation, the angular divergence of the emission and the polarization of the emitted light. These features are valuable for displays and optical signage. PMID:25844110

  19. Hybrid Dye-Sensitized Solar Cells Consisting of Double Titania Layers for Harvesting Light with Wide Range of Wavelengths

    NASA Astrophysics Data System (ADS)

    Sadamasu, Kengo; Inoue, Takafumi; Ogomi, Yuhei; Pandey, Shyam S.; Hayase, Shuzi

    2011-02-01

    We report a hybrid dye-sensitized solar cell consisting of double titania layers (top and bottom layers) stained with two dyes. A top layer fabricated on a glass was mechanically pressed with a bottom layer fabricated on a glass cloth. The glass cloth acts as a supporter of a porous titania layer as well as a holder of electrolyte. The incident photon to current efficiency (IPCE) curve had two peaks corresponding to those of the two dyes, which demonstrates that electrons are collected from both the top and bottom layers.

  20. FTIR spectroscopy structural analysis of the interaction between Lactobacillus kefir S-layers and metal ions

    NASA Astrophysics Data System (ADS)

    Gerbino, E.; Mobili, P.; Tymczyszyn, E.; Fausto, R.; Gómez-Zavaglia, A.

    2011-02-01

    FTIR spectroscopy was used to structurally characterize the interaction of S-layer proteins extracted from two strains of Lactobacillus kefir (the aggregating CIDCA 8348 and the non-aggregating JCM 5818) with metal ions (Cd +2, Zn +2, Pb +2 and Ni +2). The infrared spectra indicate that the metal/protein interaction occurs mainly through the carboxylate groups of the side chains of Asp and Glut residues, with some contribution of the NH groups belonging to the peptide backbone. The frequency separation between the νCOO - anti-symmetric and symmetric stretching vibrations in the spectra of the S-layers in presence of the metal ions was found to be ca. 190 cm -1 for S-layer CIDCA 8348 and ca. 170 cm -1 for JCM 5818, denoting an unidentate coordination in both cases. Changes in the secondary structures of the S-layers induced by the interaction with the metal ions were also noticed: a general trend to increase the amount of β-sheet structures and to reduce the amount of α-helices was observed. These changes allow the proteins to adjust their structure to the presence of the metal ions at minimum energy expense, and accordingly, these adjustments were found to be more important for the bigger ions.

  1. A critical overview of definitions and determination techniques of the internal resistance using lithium-ion, lead-acid, nickel metal-hydride batteries and electrochemical double-layer capacitors as examples

    NASA Astrophysics Data System (ADS)

    Piłatowicz, Grzegorz; Marongiu, Andrea; Drillkens, Julia; Sinhuber, Philipp; Sauer, Dirk Uwe

    2015-11-01

    The internal resistance (Ri) is one of the key parameters that determine the current state of electrochemical storage systems (ESS). It is crucial for estimating cranking capability in conventional cars, available power in modern hybrid and electric vehicles and for determining commonly used factors such as state-of-health (SoH) and state-of-function (SoF). However, ESS are complex and non-linear systems. Their Ri depends on many parameters such as current rate, temperature, SoH and state-of-charge (SoC). It is also a fact that no standardized methodologies exist and many different definitions and ways of Ri determination are being used. Nevertheless, in many cases authors are not aware of the consequences that occur when different Ri definitions are being used, such as possible misinterpretations, doubtful comparisons and false figures of merit. This paper focuses on an application-oriented separation between various Ri definitions and highlights the differences between them. The investigation was based on the following technologies: lead-acid, lithium-ion and nickel metal-hydride batteries as well as electrochemical double-layer capacitors. It is not the target of this paper to provide a standardized definition of Ri but to give researchers, engineers and manufacturers a possibility to understand what the term Ri means in their own work.

  2. Metallic layer-by-layer photonic crystals for linearly-polarized thermal emission and thermophotovoltaic device including same

    DOEpatents

    Lee, Jae-Hwang; Ho, Kai-Ming; Constant, Kristen P.

    2016-07-26

    Metallic thermal emitters consisting of two layers of differently structured nickel gratings on a homogeneous nickel layer are fabricated by soft lithography and studied for polarized thermal radiation. A thermal emitter in combination with a sub-wavelength grating shows a high extinction ratio, with a maximum value close to 5, in a wide mid-infrared range from 3.2 to 7.8 .mu.m, as well as high emissivity up to 0.65 at a wavelength of 3.7 .mu.m. All measurements show good agreement with theoretical predictions. Numerical simulations reveal that a high electric field exists within the localized air space surrounded by the gratings and the intensified electric-field is only observed for the polarizations perpendicular to the top sub-wavelength grating. This result suggests how the emissivity of a metal can be selectively enhanced at a certain range of wavelengths for a given polarization.

  3. Significance of the double-layer capacitor effect in polar rubbery dielectrics and exceptionally stable low-voltage high transconductance organic transistors.

    PubMed

    Wang, Chao; Lee, Wen-Ya; Kong, Desheng; Pfattner, Raphael; Schweicher, Guillaume; Nakajima, Reina; Lu, Chien; Mei, Jianguo; Lee, Tae Hoon; Wu, Hung-Chin; Lopez, Jeffery; Diao, Ying; Gu, Xiaodan; Himmelberger, Scott; Niu, Weijun; Matthews, James R; He, Mingqian; Salleo, Alberto; Nishi, Yoshio; Bao, Zhenan

    2015-12-14

    Both high gain and transconductance at low operating voltages are essential for practical applications of organic field-effect transistors (OFETs). Here, we describe the significance of the double-layer capacitance effect in polar rubbery dielectrics, even when present in a very low ion concentration and conductivity. We observed that this effect can greatly enhance the OFET transconductance when driven at low voltages. Specifically, when the polar elastomer poly(vinylidene fluoride-co-hexafluoropropylene) (e-PVDF-HFP) was used as the dielectric layer, despite a thickness of several micrometers, we obtained a transconductance per channel width 30 times higher than that measured for the same organic semiconductors fabricated on a semicrystalline PVDF-HFP with a similar thickness. After a series of detailed experimental investigations, we attribute the above observation to the double-layer capacitance effect, even though the ionic conductivity is as low as 10(-10) S/cm. Different from previously reported OFETs with double-layer capacitance effects, our devices showed unprecedented high bias-stress stability in air and even in water.

  4. Significance of the double-layer capacitor effect in polar rubbery dielectrics and exceptionally stable low-voltage high transconductance organic transistors

    PubMed Central

    Wang, Chao; Lee, Wen-Ya; Kong, Desheng; Pfattner, Raphael; Schweicher, Guillaume; Nakajima, Reina; Lu, Chien; Mei, Jianguo; Lee, Tae Hoon; Wu, Hung-Chin; Lopez, Jeffery; Diao, Ying; Gu, Xiaodan; Himmelberger, Scott; Niu, Weijun; Matthews, James R.; He, Mingqian; Salleo, Alberto; Nishi, Yoshio; Bao, Zhenan

    2015-01-01

    Both high gain and transconductance at low operating voltages are essential for practical applications of organic field-effect transistors (OFETs). Here, we describe the significance of the double-layer capacitance effect in polar rubbery dielectrics, even when present in a very low ion concentration and conductivity. We observed that this effect can greatly enhance the OFET transconductance when driven at low voltages. Specifically, when the polar elastomer poly(vinylidene fluoride-co-hexafluoropropylene) (e-PVDF-HFP) was used as the dielectric layer, despite a thickness of several micrometers, we obtained a transconductance per channel width 30 times higher than that measured for the same organic semiconductors fabricated on a semicrystalline PVDF-HFP with a similar thickness. After a series of detailed experimental investigations, we attribute the above observation to the double-layer capacitance effect, even though the ionic conductivity is as low as 10–10 S/cm. Different from previously reported OFETs with double-layer capacitance effects, our devices showed unprecedented high bias-stress stability in air and even in water. PMID:26658331

  5. Double-wells and double-layers in dusty Fermi-Dirac plasmas: Comparison with the semiclassical Thomas-Fermi counterpart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari-Moghanjoughi, M.

    Based on the quantum hydrodynamics (QHD) model, a new relationship between the electrostatic-potential and the electron-density in the ultradense plasma is derived. Propagation of arbitrary amplitude nonlinear ion waves is, then, investigated in a completely degenerate dense dusty electron-ion plasma, using this new energy relation for the relativistic electrons, in the ground of quantum hydrodynamics model and the results are compared to the case of semiclassical Thomas-Fermi dusty plasma. Based on the standard pseudopotential approach, it is remarked that the Fermi-Dirac plasma, in contrast to the Thomas-Fermi counterpart, accommodates a wide variety of nonlinear excitations such as positive/negative-potential ion solitarymore » and periodic waves, double-layers, and double-wells. It is also remarked that the relativistic degeneracy parameter which relates to the mass-density of plasma has significant effects on the allowed matching-speed range in Fermi-Dirac dusty plasmas.« less

  6. Multi-layer topological transmissions of spoof surface plasmon polaritons.

    PubMed

    Pan, Bai Cao; Zhao, Jie; Liao, Zhen; Zhang, Hao Chi; Cui, Tie Jun

    2016-03-04

    Spoof surface plasmon polaritons (SPPs) in microwave frequency provide a high field confinement in subwavelength scale and low-loss and flexible transmissions, which have been widely used in novel transmission waveguides and functional devices. To play more important roles in modern integrated circuits and systems, it is necessary and helpful for the SPP modes to propagate among different layers of devices and chips. Owing to the highly confined property and organized near-field distribution, we show that the spoof SPPs could be easily transmitted from one layer into another layer via metallic holes and arc-shaped transitions. Such designs are suitable for both the ultrathin and flexible single-strip SPP waveguide and double-strip SPP waveguide for active SPP devices. Numerical simulations and experimental results demonstrate the broadband and high-efficiency multi-layer topological transmissions with controllable absorption that is related to the superposition area of corrugated metallic strips. The transmission coefficient of single-strip SPP waveguide is no worse than -0.8 dB within frequency band from 2.67 GHz to 10.2 GHz while the transmission of double-strip SPP waveguide keeps above -1 dB within frequency band from 2.26 GHz to 11.8 GHz. The proposed method will enhance the realizations of highly complicated plasmonic integrated circuits.

  7. Atomic layer deposition to prevent metal transfer from implants: An X-ray fluorescence study

    NASA Astrophysics Data System (ADS)

    Bilo, Fabjola; Borgese, Laura; Prost, Josef; Rauwolf, Mirjam; Turyanskaya, Anna; Wobrauschek, Peter; Kregsamer, Peter; Streli, Christina; Pazzaglia, Ugo; Depero, Laura E.

    2015-12-01

    We show that Atomic Layer Deposition is a suitable coating technique to prevent metal diffusion from medical implants. The metal distribution in animal bone tissue with inserted bare and coated Co-Cr alloys was evaluated by means of micro X-ray fluorescence mapping. In the uncoated implant, the migration of Co and Cr particles from the bare alloy in the biological tissues is observed just after one month and the number of particles significantly increases after two months. In contrast, no metal diffusion was detected in the implant coated with TiO2. Instead, a gradient distribution of the metals was found, from the alloy surface going into the tissue. No significant change was detected after two months of aging. As expected, the thicker is the TiO2 layer, the lower is the metal migration.

  8. Abrupt Depletion Layer Approximation for the Metal Insulator Semiconductor Diode.

    ERIC Educational Resources Information Center

    Jones, Kenneth

    1979-01-01

    Determines the excess surface change carrier density, surface potential, and relative capacitance of a metal insulator semiconductor diode as a function of the gate voltage, using the precise questions and the equations derived with the abrupt depletion layer approximation. (Author/GA)

  9. Chromium oxide as a metal diffusion barrier layer: An x-ray absorption fine structure spectroscopy study

    NASA Astrophysics Data System (ADS)

    Ahamad Mohiddon, Md.; Lakshun Naidu, K.; Ghanashyam Krishna, M.; Dalba, G.; Ahmed, S. I.; Rocca, F.

    2014-01-01

    The interaction at the interface between chromium and amorphous Silicon (a-Si) films in the presence of a sandwich layer of chromium oxide is investigated using X-ray absorption fine structure (XAFS) spectroscopy. The oxidized interface was created, in situ, prior to the deposition of a 400 nm tick a-Si layer over a 50 nm tick Cr layer. The entire stack of substrate/metallic Cr/Cr2O3/a-Si was then annealed at temperatures from 300 up to 700 °C. Analysis of the near edge and extended regions of each XAFS spectrum shows that only a small fraction of Cr is able to diffuse through the oxide layer up to 500 °C, while the remaining fraction is buried under the oxide layer in the form of metallic Cr. At higher temperatures, diffusion through the oxide layer is enhanced and the diffused metallic Cr reacts with a-Si to form CrSi2. At 700 °C, the film contains Cr2O3 and CrSi2 without evidence of unreacted metallic Cr. The activation energy and diffusion coefficient of Cr are quantitatively determined in the two temperature regions, one where the oxide acts as diffusion barrier and another where it is transparent to Cr diffusion. It is thus demonstrated that chromium oxide can be used as a diffusion barrier to prevent metal diffusion into a-Si.

  10. Temperature aspect of degradation of electrochemical double-layer capacitors (EDLC)

    NASA Astrophysics Data System (ADS)

    Baek, Dong-Cheon; Kim, Hyun-Ho; Lee, Soon-Bok

    2015-03-01

    Electric double layer capacitors (EDLC) cells have a process variation and temperature dependency in capacitance so that balancing is required when they are connected in series, which includes electronic voltage management based on capacitance monitoring. This paper measured temperature aspect of capacitance periodically to monitor health and degradation behavior of EDLC stressed under high temperatures and zero below temperatures respectively, which enables estimation of the state of health (SOH) regardless of temperature. At high temperature, capacitance saturation and delayed expression of degradation was observed. After cyclic stress at zero below temperature, less effective degradation and time recovery phenomenon were occurred.

  11. High voltage electrochemical double layer capacitors using conductive carbons as additives

    NASA Astrophysics Data System (ADS)

    Michael, M. S.; Prabaharan, S. R. S.

    We describe here an interesting approach towards electrochemical capacitors (ECCs) using graphite materials (as being used as conductive additives in rechargeable lithium-ion battery cathodes) in a Li + containing organic electrolyte. The important result is that we achieved a voltage window of >4 V, which is rather large, compared to the standard window of 2.5 V for ordinary electric double layer capacitors (DLCs). The capacitor performance was evaluated by cyclic voltammetry (CV) and galvanostatic charge/discharge techniques. From charge-discharge studies of the symmetrical device (for instance, SFG6 carbon electrode), a specific capacitance of up to 14.5 F/g was obtained at 16 mA/cm 2 current rate and at a low current rate (3 mA/cm 2), a higher value was obtained (63 F/g). The specific capacitance decreased about 25% after 1000 cycles compared to the initial discharge process. The performances of these graphites are discussed in the light of both double layer capacitance (DLC) and pseudocapacitance (battery-like behavior). The high capacitance obtained was not only derived from the current-transient capacitive behavior but is also attributed to pseudocapacitance associated with some kind of faradaic reaction, which could probably occur due to Li + intercalation/deintercalation reactions into graphitic layers of the carbons used. The ac impedance (electrochemical impedances spectroscopy, EIS) measurements were also carried out to evaluate the capacitor parameters such as equivalent series resistance (ESR) and frequency dependent capacitance ( Cfreq). Cyclic voltammetry measurements were also performed to evaluate the cycling behavior of the carbon electrodes and the non-rectangular shaped voltammograms revealed the non-zero time constant [ τ( RC)≠0] confirming that the current contains a transient as well as steady-state components.

  12. Theory of the formation of the electric double layer at the ion exchange membrane-solution interface.

    PubMed

    Moya, A A

    2015-02-21

    This work aims to extend the study of the formation of the electric double layer at the interface defined by a solution and an ion-exchange membrane on the basis of the Nernst-Planck and Poisson equations, including different values of the counter-ion diffusion coefficient and the dielectric constant in the solution and membrane phases. The network simulation method is used to obtain the time evolution of the electric potential, the displacement electric vector, the electric charge density and the ionic concentrations at the interface between a binary electrolyte solution and a cation-exchange membrane with total co-ion exclusion. The numerical results for the temporal evolution of the interfacial electric potential and the surface electric charge are compared with analytical solutions derived in the limit of the shortest times by considering the Poisson equation for a simple cationic diffusion process. The steady-state results are justified from the Gouy-Chapman theory for the diffuse double layer in the limits of similar and high bathing ionic concentrations with respect to the fixed-charge concentration inside the membrane. Interesting new physical insights arise from the interpretation of the process of the formation of the electric double layer at the ion exchange membrane-solution interface on the basis of a membrane model with total co-ion exclusion.

  13. Towards understanding the effects of van der Waals strengths on the electric double-layer structures and capacitive behaviors

    NASA Astrophysics Data System (ADS)

    Yang, Huachao; Bo, Zheng; Yang, Jinyuan; Yan, Jianhua; Cen, Kefa

    2017-10-01

    Solid-liquid interactions are considered to play a crucial role in charge storage capability of electric double-layer capacitors (EDLCs). In this work, effects of van der Waals (VDW) strengths on the EDL structures and capacitive performances within two representative electrolytes of solvated aqueous solutions and solvent-free ionic liquids are illuminated by molecular dynamics simulations. Single crystalline metals with similar lattice constant but diverse VDW potentials are employed as electrodes. Upon enhancing VDW strengths, capacitance of aqueous electrolytes first increases conspicuously by ∼34.0% and then descends, manifesting a non-monotonic trend, which goes beyond traditional perspectives. Such unusual observation is interpreted by the excluded-volume effects stemmed from ion-solvent competitions. Stimulated by predominant coulombic interactions, more ions are aggregated at the interface despite of the increasing VDW potentials, facilitating superior screening efficiency and capacitance. However, further enhancing strengths preferentially attracts more solvents instead of ions to the electrified surface, which in turn strikingly repels ions from Helmholtz layers, deteriorating electrode capacitance. An essentially similar feather is also recognized for ionic liquids, while the corresponding mechanisms are prominently ascribed to the suppressed ionic separations issued from cation-anion competitions. We highlight that constructing electrode materials with a moderate-hydrophilicity could further advance the performances of EDLCs.

  14. Efficient coupling of double-metal terahertz quantum cascade lasers to flexible dielectric-lined hollow metallic waveguides.

    PubMed

    Wallis, R; Degl'Iinnocenti, R; Jessop, D S; Ren, Y; Klimont, A; Shah, Y D; Mitrofanov, O; Bledt, C M; Melzer, J E; Harrington, J A; Beere, H E; Ritchie, D A

    2015-10-05

    The growth in terahertz frequency applications utilising the quantum cascade laser is hampered by a lack of targeted power delivery solutions over large distances (>100 mm). Here we demonstrate the efficient coupling of double-metal quantum cascade lasers into flexible polystyrene lined hollow metallic waveguides via the use of a hollow copper waveguide integrated into the laser mounting block. Our approach exhibits low divergence, Gaussian-like emission, which is robust to misalignment error, at distances > 550 mm, with a coupling efficiency from the hollow copper waveguide into the flexible waveguide > 90%. We also demonstrate the ability to nitrogen purge the flexible waveguide, increasing the power transmission by up to 20% at 2.85 THz, which paves the way for future fibre based terahertz sensing and spectroscopy applications.

  15. Investigation of magnetic transitions through ultrasonic measurements in double-layered CMR manganite La1.2Sr1.8Mn2O7

    NASA Astrophysics Data System (ADS)

    Reddy, Y. S.; Vishnuvardhan Reddy, C.

    2014-03-01

    A polycrystalline, double-layered, colossal magnetoresistive manganite La1.2Sr1.8Mn2O7 is synthesized by sol-gel process and its magnetic and ultrasonic properties were investigated in the temperature range 80-300 K. The sample has Curie temperature at 124 K, where the sample exhibits a transition from paramagnetic insulator to ferromagnetic metallic state. The longitudinal sound velocity measurements show a significant hardening of sound velocity below TC, which may be attributed to the coupling between ferromagnetic spins and longitudinal acoustic phonons. The magnetization and ultrasonic studies reveal the presence of secondary transition at ≈ 260 K in this sample. The present sound velocity measurement results confirm the reliability of ultrasonic investigations as an independent tool to probe magnetic transitions in manganites.

  16. Mechanochemical approach for synthesis of layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqing; Li, Shuping

    2013-06-01

    In this paper, a mechanochemical approach is used to prepare layered double hydroxides (LDHs). This approach involves manually grinding the precursor, nitrates and then the hydrothermal treatment. The study indicates that grinding leads to the incomplete formation of LDHs phase, LDHs-M. The reaction degree of precursor salts to LDHs after grinding depends on the melting points of the precursors. As expected, hydrothermal treatment is beneficial for the good crystallization and regularity of LDHs. Especially, the effect of hydrothermal treatment has been emphatically explored. The hydration of LDHs-M, increment of zeta potentials and the complete exchange of NO3- by CO32- anions occur successively or in parallel during the hydrothermal treatment. It can be found that combination of grinding and hydrothermal treatment gives rise to the formation of uniform and monodispersed particles of LDHs.

  17. Layered double hydroxide-enhanced luminescence in a Fenton-like system for selective sensing of cobalt in Hela cells

    NASA Astrophysics Data System (ADS)

    Yu, Mei; Yuan, Zhiqin; Lu, Chao

    2017-09-01

    This work presented a facile and eco-friendly method for the determination of cobalt ions (Co(II)) in living cells based on layered double hydroxides (Mg-Al CO3-LDHs) enhanced chemiluminescence (CL) emission of a Co(II)-hydrogen peroxide-sodium hydroxide system. The enhanced CL emission was attributed to the large specific surface area of Mg-Al CO3-LDHs, which facilitates the generation of an excited-stated intermediate. The proposed method displayed high selectivity toward Co(II) over other metal ions. Under the optimal conditions, the increased CL intensity showed a linear response versus Co(II) concentration in the range of 5.0-1000 nM with a detection limit of 3.7 nM (S/N = 3). The relative standard deviation for nine repeated measurements of 100 nM Co(II) was 3.2%. Furthermore, the proposed method was successfully applied to detect Co(II) in living cell samples, and the results were agreed with those obtained by the standard ICP-MS method.

  18. Development of an Anti-Corrosion Conductive Nano Carbon Coating Layer on Metal Bipolar Plates.

    PubMed

    Yeo, Kiho; Kim, Juyong; Kim, Jongryoul

    2018-09-01

    For automotive applications of polymer electrolyte membrane fuel cells, the enhancement of the corrosion resistance of metal bipolar plates has been a critical issue with regard to the lifespan of fuel cell stacks. In this paper, we present a novel method for increasing the lifespan by means of a conductive carbon coating on bipolar plates. Conductive carbon films were plasma coated onto metal bipolar plates in a vacuum at various temperatures. As a result, 316L stainless plates with a 10-nm-thick carbon coating layer on a 20-nm-thick CrN undercoat layer showed-contact resistance of 10.71 mΩcm2@10 kgf/cm2 and a corrosion current of 0.5 μA/cm2@0.6 V. This thin coating layer with high conductivity and excellent corrosion resistance suggests a new, effective coating method for the mass production of metal bipolar plates.

  19. Real-time monitoring of enzyme activity in a mesoporous silicon double layer

    PubMed Central

    Orosco, Manuel M.; Pacholski, Claudia; Sailor, Michael J.

    2009-01-01

    A double layer mesoporous silicon with different pore sizes functions as a nano-reactor that can isolate, filter and quantify the kinetics of enzyme reactions in real-time by optical reflectivity. This tiny reactor may be used to rapidly characterize a variety of isolated enzymes in a label-free manner. Activity of certain protease enzymes is often an indicator of disease states such as cancer1,2, stroke2, and neurodegeneracy3, and thus, there is a need for rapid assays that can characterize the kinetics and substrate specificity of enzymatic reactions. Nanostructured membranes can efficiently separate biomolecules4 but coupling a sensitive detection method remains difficult. Here we report a single mesoporous nano-reactor that can isolate and quantify in real-time the reaction products of proteases. The reactor consists of two layers of porous films electrochemically prepared from crystalline silicon. The upper layer with large pore sizes traps the protease enzymes and acts as the reactor while the lower layer with smaller pore sizes excludes the large proteins and captures the reaction products. Infiltration of the digested fragments into the lower layer produces a measurable change in optical reflectivity and this allows label-free quantification of enzyme kinetics in real-time within a volume of approximately 5 nanoliters. PMID:19350037

  20. Mode propagation in optical nanowaveguides with dielectric cores and surrounding metal layers.

    PubMed

    Lapchuk, Anatoly S; Shin, Dongho; Jeong, Ho-Seop; Kyong, Chun Su; Shin, Dong-Ik

    2005-12-10

    The mode spectrum in an optical nanowaveguide consisting of a dielectric-core layer surrounded by two identical metal layers is investigated. A simple model based on mode matching to predict the properties of mode propagation in such optical nanowaveguides is proposed. It is shown that quasi-TM00 and quasi-TM10 modes supported by an optical microstrip line do not have a cutoff frequency, regardless of the size of the metal strips, the thickness of the dielectric slab, and the cross-sectional shape. The transverse size of the TM00 mode supported by a nanosized microstrip line was found to be approximately equal to the transverse dimension of the microstrip line. In closed rectangular and elliptical nanowaveguides, i.e., in which all dielectric surfaces are covered with metal films, the cross-sectional shape of the waveguide should be stretched along one side to produce propagation conditions for the fundamental mode.

  1. Isolation and characterization of nanosheets containing few layers of the Aurivillius family of oxides and metal-organic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sreedhara, M.B.; Prasad, B.E.; Moirangthem, Monali

    2015-04-15

    Nanosheets containing few-layers of ferroelectric Aurivillius family of oxides, Bi{sub 2}A{sub n−1}B{sub n}O{sub 3n+3} (where A=Bi{sup 3+}, Ba{sup 2+} etc. and B=Ti{sup 4+}, Fe{sup 3+} etc.) with n=3, 4, 5, 6 and 7 have been prepared by reaction with n-butyllithium, followed by exfoliation in water. The few-layer samples have been characterized by Tyndall cones, atomic force microscopy, optical spectroscopy and other techniques. The few-layer species have a thickness corresponding to a fraction of the c-parameter along which axis the perovskite layers are stacked. Magnetization measurements have been carried out on the few-layer samples containing iron. Few-layer species of a fewmore » layered metal-organic compounds have been obtained by ultrasonication and characterized by Tyndall cones, atomic force microscopy, optical spectroscopy and magnetic measurements. Significant changes in the optical spectra and magnetic properties are found in the few-layer species compared to the bulk samples. Few-layer species of the Aurivillius family of oxides may find uses as thin layer dielectrics in photovoltaics and other applications. - Graphical abstract: Exfoliation of the layered Aurivillius oxides into few-layer nanosheets by chemical Li intercalation using n-BuLi followed by reaction in water. Exfoliation of the layered metal-organic compounds into few-layer nanosheets by ultrasonication. - Highlights: • Few-layer nanosheets of Aurivillius family of oxides with perovskite layers have been generated by lithium intercalation. • Few-layer nanosheets of few layered metal-organic compounds have been generated by ultrasonication. • Few-layer nanosheets of the Aurivillius oxides have been characterized by AFM, TEM and optical spectroscopy. • Aurivillius oxides containing Fe show layer dependent magnetic properties. • Exfoliated few-layer metal-organic compounds show changes in spectroscopic and magnetic properties compared with bulk materials.« less

  2. The role of double TiO 2 layers at the interface of FeSe/SrTiO 3 superconductors

    DOE PAGES

    Zou, Ke; Bozovic, Ian; Mandal, Subhasish; ...

    2016-05-16

    We determine the surface reconstruction of SrTiO 3 used to achieve superconducting FeSe films in experiments, which is different from the 1×1 TiO 2-terminated SrTiO 3 assumed by most previous theoretical studies. In particular, we identify the existence of a double TiO 2 layer at the FeSe/SrTiO 3 interface that plays two important roles. First, it facilitates the epitaxial growth of FeSe. Second, ab initio calculations reveal a strong tendency for electrons to transfer from an oxygen deficient SrTiO 3 surface to FeSe when the double TiO 2 layer is present. The double layer helps to remove the hole pocketmore » in the FeSe at the Γ point of the Brillouin zone and leads to a band structure characteristic of superconducting samples. The characterization of the interface structure presented here is a key step towards the resolution of many open questions about this superconductor.« less

  3. Design of latex-layered double hydroxide composites by tuning the aggregation in suspensions.

    PubMed

    Pavlovic, Marko; Rouster, Paul; Bourgeat-Lami, Elodie; Prevot, Vanessa; Szilagyi, Istvan

    2017-01-25

    Colloidal stability of polymeric latex particles was studied in the presence of oppositely charged layered double hydroxide (LDH) platelets of different interlayer anions. Adsorption of the LDH particles led to charge neutralization and to overcharging of the latex at appropriate concentrations. Mixing stable colloidal suspensions of individual particles results in rapid aggregation once the LDH adsorption neutralizes the negative charges of the polymer spheres, while stable suspensions were observed at high and low LDH doses. The governing interparticle interactions included repulsive electrical double layer forces as well as van der Waals and patch-charge attractions, whose strength depended on the amount of LDH particles adsorbed on the latex surface. The type of the LDH interlayer anions did not affect the colloidal stability of the samples. Structural investigation of the obtained latex-LDH composites revealed that the polymer spheres were completely coated with the inorganic platelets once their concentration was sufficiently high. These results are especially important for designing synthetic routes for hybrid systems in suspensions, where stable colloids are required for uniform film-formation and for the homogeneous distribution of the inorganic filler within the composite materials.

  4. Prediction of transmittance spectra for transparent composite electrodes with ultra-thin metal layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Zhao; Alford, T. L., E-mail: TA@asu.edu; Khorasani, Arash Elhami

    2015-11-28

    Recent interest in indium-free transparent composite-electrodes (TCEs) has motivated theoretical and experimental efforts to better understand and enhance their electrical and optical properties. Various tools have been developed to calculate the optical transmittance of multilayer thin-film structures based on the transfer-matrix method. However, the factors that affect the accuracy of these calculations have not been investigated very much. In this study, two sets of TCEs, TiO{sub 2}/Au/TiO{sub 2} and TiO{sub 2}/Ag/TiO{sub 2}, were fabricated to study the factors that affect the accuracy of transmittance predictions. We found that the predicted transmittance can deviate significantly from measured transmittance for TCEs thatmore » have ultra-thin plasmonic metal layers. The ultrathin metal layer in the TCE is typically discontinuous. When light interacts with the metallic islands in this discontinuous layer, localized surface plasmons are generated. This causes extra light absorption, which then leads to the actual transmittance being lower than the predicted transmittance.« less

  5. An Artificial Lithium Protective Layer that Enables the Use of Acetonitrile-Based Electrolytes in Lithium Metal Batteries.

    PubMed

    Trinh, Ngoc Duc; Lepage, David; Aymé-Perrot, David; Badia, Antonella; Dollé, Mickael; Rochefort, Dominic

    2018-04-23

    The resurgence of the lithium metal battery requires innovations in technology, including the use of non-conventional liquid electrolytes. The inherent electrochemical potential of lithium metal (-3.04 V vs. SHE) inevitably limits its use in many solvents, such as acetonitrile, which could provide electrolytes with increased conductivity. The aim of this work is to produce an artificial passivation layer at the lithium metal/electrolyte interface that is electrochemically stable in acetonitrile-based electrolytes. To produce such a stable interface, the lithium metal was immersed in fluoroethylene carbonate (FEC) to generate a passivation layer via the spontaneous decomposition of the solvent. With this passivation layer, the chemical stability of lithium metal is shown for the first time in 1 m LiPF 6 in acetonitrile. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Construction of hierarchically porous graphitized carbon-supported NiFe layered double hydroxides with a core-shell structure as an enhanced electrocatalyst for the oxygen evolution reaction.

    PubMed

    Ni, Yuanman; Yao, Lihua; Wang, Yin; Liu, Bing; Cao, Minhua; Hu, Changwen

    2017-08-17

    The oxygen evolution reaction (OER) is a vital half-reaction in water splitting and metal-air batteries. Developing earth-abundant, highly efficient and durable OER catalysts has faced huge challenges until now, because OER is a strict kinetic sluggish process. Herein, we report the construction of hierarchically porous graphitized carbon (HPGC) supported NiFe layered double hydroxides (LDHs) with a core-shell structure (denoted as HPGC@NiFe) by a facile strategy. The HPGC was first obtained by pyrolysing phenolic resin nanospheres with FeCl 3 and ZnCl 2 as the catalyst and the activator, respectively. Then the NiFe LDH arrays were directly grown on the HPGC by a one-step hydrothermal method. The as-synthesized HPGC@NiFe reveals excellent OER properties with a low onset potential, a lower overpotential of 265 mV (corresponding to the current density at 10 mA cm -2 ) and a small Tafel slope (56 mV per decade). And its catalytic activity is even superior to that of the start-of-the-art noble-metal catalyst IrO 2 /C. Notably, the HPGC@NiFe electrode shows admirable stability measured by performing 2000 cycle CVs and long-term electrolysis for 50 h. The prominent performance can be attributed to the synergistic effect between the NiFe-LDHs and the hierarchically porous graphitized carbon, in which the former can increase the exposure of the active sites, while the latter can increase the charge transfer efficiency. Our research implies the possibility for the development of low-cost layered double hydroxides as a promising candidate in electrochemical energy storage and conversion equipment.

  7. Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High Concentration Electrolyte Layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianming; Yan, Pengfei; Mei, Donghai

    2016-02-08

    Lithium (Li) metal has been extensively investigated as an anode for rechargeable battery applications due to its ultrahigh specific capacity and the lowest redox potential. However, significant challenges including dendrite growth and low Coulombic efficiency are still hindering the practical applications of rechargeable Li metal batteries. Here, we demonstrate that long-term cycling of Li metal batteries can be realized by the formation of a transient high concentration electrolyte layer near the surface of Li metal anode during high rate discharge process. The highly concentrated Li+ ions in this transient layer will immediately solvate with the available solvent molecules and facilitatemore » the formation of a stable and flexible SEI layer composed of a poly(ethylene carbonate) framework integrated with other organic/inorganic lithium salts. This SEI layer largely suppresses the corrosion of Li metal anode by free organic solvents and enables the long-term operation of Li metal batteries. The fundamental findings in this work provide a new direction for the development and operation of Li metal batteries that could be operated at high current densities for a wide range of applications.« less

  8. Direct thrust measurement of a permanent magnet helicon double layer thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, K.; Lafleur, T.; Charles, C.

    2011-04-04

    Direct thrust measurements of a permanent magnet helicon double layer thruster have been made using a pendulum thrust balance and a high sensitivity laser displacement sensor. At the low pressures used (0.08 Pa) an ion beam is detected downstream of the thruster exit, and a maximum thrust force of about 3 mN is measured for argon with an rf input power of about 700 W. The measured thrust is proportional to the upstream plasma density and is in good agreement with the theoretical thrust based on the maximum upstream electron pressure.

  9. Ionic polymer-metal composite actuators based on triple-layered polyelectrolytes composed of individually functionalized layers.

    PubMed

    Lee, Jang-Woo; Yoo, Young-Tai; Lee, Jae Yeol

    2014-01-22

    Ionic polymer-metal composite (IPMC) actuators based on two types of triple-layered Nafion composite membranes were prepared via consecutive solution recasting and electroless plating methods. The triple-layered membranes are composed of a Nafion layer containing an amphiphilic organic molecule (10-camphorsulfonic acid; CSA) in the middle section (for fast and large ion conduction) and two Nafion/modified inorganic composite layers in the outer sections (for large accumulation/retention of mobile ions). For construction of the two types of IPMCs, sulfonated montmorillonite (MMT) and polypyrrole (PPy)-coated alumina fillers were incorporated into the outer layers. Both the triple-layered IPMCs exhibited 42% higher tip displacements at the maximum deflections with a negligible back-relaxation, 50-74% higher blocking forces, and more rapid responses under 3 V dc, compared with conventional single-layered Nafion-IPMCs. Improvements in cyclic displacement under a rectangular voltage input of 3 V at 1 Hz were also made in the triple-layered configurations. Compared with single-layered IPMCs consisting of the identical compositions with the respective outer composite layers, the bending rates and energy efficiencies of both the triple-layered IPMCs were significantly higher, although the blocking forces were a bit lower. These remarkable improvements were attributed to higher capacitances and Young's moduli as well as a more efficient transport of mobile ions and water through the middle layer (Nafion/CSA) and a larger accumulation/retention of the mobile species in the outer functionalized inorganic composite layers. Especially, the triple-layered IPMC with the PPy-modified alumina registered the best actuation performance among all the samples, including a viable actuation even at a low voltage of 1.5 V due to involving efficient redox reactions of PPy with the aid of hygroscopic alumina.

  10. Solitary waves and double layers in a dusty electronegative plasma.

    PubMed

    Mamun, A A; Shukla, P K; Eliasson, B

    2009-10-01

    A dusty electronegative plasma containing Boltzmann electrons, Boltzmann negative ions, cold mobile positive ions, and negatively charged stationary dust has been considered. The basic features of arbitrary amplitude solitary waves (SWs) and double layers (DLs), which have been found to exist in such a dusty electronegative plasma, have been investigated by the pseudopotential method. The small amplitude limit has also been considered in order to study the small amplitude SWs and DLs analytically. It has been shown that under certain conditions, DLs do not exist, which is in good agreement with the experimental observations of Ghim and Hershkowitz [Y. Ghim (Kim) and N. Hershkowitz, Appl. Phys. Lett. 94, 151503 (2009)].

  11. In situ ceramic layer growth on coated fuel particles dispersed in a zirconium metal matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrani, Kurt A; Silva, G W Chinthaka M; Kiggans, Jim

    2013-01-01

    The extent and nature of the chemical interaction between the outermost coating layer of coated fuel particles embedded in zirconium metal during fabrication of metal matrix microencapsulated fuels was examined. Various particles with outermost coating layers of pyrocarbon, SiC, and ZrC have been investigated in this study. ZrC-Zr interaction was least substantial while PyC-Zr reaction can be exploited to produce a ZrC layer at the interface in an in situ manner. The thickness of the ZrC layer in the latter case can be controlled by adjusting the time and temperature during processing. The kinetics of ZrC layer growth is significantlymore » faster from what is predicted using literature carbon diffusivity data in ZrC. SiC-Zr interaction is more complex and results in formation of various chemical phases in a layered aggregate morphology at the interface.« less

  12. Long range wetting transparency on top of layered metal dielectric substrates

    DTIC Science & Technology

    2015-11-20

    multi-layered stacks were deposited onto glass substrates ( silica -based Micro cover glass , 22mmx22mm from VWR (48366-067), index of refraction n...necessarily endorsed by the United States Government. Long-range wetting transparency on top of layered metal-dielectric substrates M. A...as far as ~100 nm beneath the water/MgF2 interface. We refer to this phenomenon as long range wetting transparency . The latter effect cannot be

  13. Changes of electrical conductivity of the metal surface layer by the laser alloying with foreign elements

    NASA Astrophysics Data System (ADS)

    Kostrubiec, Franciszek; Pawlak, Ryszard; Raczynski, Tomasz; Walczak, Maria

    1994-09-01

    Laser treatment of the surface of materials is of major importance for many fields technology. One of the latest and most significant methods of this treatment is laser alloying consisting of introducing foreign atoms into the metal surface layer during the reaction of laser radiation with the surface. This opens up vast possibilities for the modification of properties of such a layer (obtaining layers of increased microhardness, increased resistance to electroerosion in an electric arc, etc.). Conductivity of the material is a very important parameter in case of conductive materials used for electrical contacts. The paper presents the results of studies on change in electrical conductivity of the surface layer of metals alloyed with a laser. A comparative analysis of conductivity of base metal surface layers prior to and following laser treatment has been performed. Depending on the base metal and the alloying element, optical treatment parameters allowing a required change in the surface layer conductivity have been selected. A very important property of the contact material is its resistance to plastic strain. It affects the real value of contact surface coming into contact and, along with the material conductivity, determines contact resistance and the amount of heat generated in place of contact. These quantities are directly related to the initiation and the course of an arc discharge, hence they also affect resistance to electroerosion. The parameter that reflects plastic properties with loads concentrated on a small surface, as is the case with a reciprocal contact force of two real surfaces with their irregularities being in contact, is microhardness. In the paper, the results of investigations into microhardness of modified surface layers compared with base metal microhardness have been presented.

  14. Nucleation and Early Stages of Layer-by-Layer Growth of Metal Organic Frameworks on Surfaces

    PubMed Central

    2015-01-01

    High resolution atomic force microscopy (AFM) is used to resolve the evolution of crystallites of a metal organic framework (HKUST-1) grown on Au(111) using a liquid-phase layer-by-layer methodology. The nucleation and faceting of individual crystallites is followed by repeatedly imaging the same submicron region after each cycle of growth and we find that the growing surface is terminated by {111} facets leading to the formation of pyramidal nanostructures for [100] oriented crystallites, and triangular [111] islands with typical lateral dimensions of tens of nanometres. AFM images reveal that crystallites can grow by 5–10 layers in each cycle. The growth rate depends on crystallographic orientation and the morphology of the gold substrate, and we demonstrate that under these conditions the growth is nanocrystalline with a morphology determined by the minimum energy surface. PMID:26709359

  15. Core–Shell Nanoparticle Coating as an Interfacial Layer for Dendrite-Free Lithium Metal Anodes

    DOE PAGES

    Liu, Wei; Li, Weiyang; Zhuo, Denys; ...

    2017-02-08

    Lithium metal based batteries represent a major challenge and opportunity in enabling a variety of devices requiring high-energy-density storage. However, dendritic lithium growth has limited the practical application of lithium metal anodes. Here we report a nanoporous, flexible and electrochemically stable coating of silica@poly(methyl methacrylate) (SiO 2@PMMA) core–shell nanospheres as an interfacial layer on lithium metal anode. This interfacial layer is capable of inhibiting Li dendrite growth while sustaining ionic flux through it, which is attributed to the nanoscaled pores formed among the nanospheres. Lastly, enhanced Coulombic efficiencies during lithium charge/discharge cycles have been achieved at various current densities andmore » areal capacities.« less

  16. Core–Shell Nanoparticle Coating as an Interfacial Layer for Dendrite-Free Lithium Metal Anodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wei; Li, Weiyang; Zhuo, Denys

    Lithium metal based batteries represent a major challenge and opportunity in enabling a variety of devices requiring high-energy-density storage. However, dendritic lithium growth has limited the practical application of lithium metal anodes. Here we report a nanoporous, flexible and electrochemically stable coating of silica@poly(methyl methacrylate) (SiO 2@PMMA) core–shell nanospheres as an interfacial layer on lithium metal anode. This interfacial layer is capable of inhibiting Li dendrite growth while sustaining ionic flux through it, which is attributed to the nanoscaled pores formed among the nanospheres. Lastly, enhanced Coulombic efficiencies during lithium charge/discharge cycles have been achieved at various current densities andmore » areal capacities.« less

  17. Influence of double- and triple-layer antireflection coatings on the formation of photocurrents in multijunction III–V solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musalinov, S. B.; Anzulevich, A. P.; Bychkov, I. V.

    2017-01-15

    The results of simulation by the transfer-matrix method of TiO{sub 2}/SiO{sub 2} double-layer and TiO{sub 2}/Si{sub 3}N{sub 4}/SiO{sub 2} triple-layer antireflection coatings for multijunction InGaP/GaAs/Ge heterostructure solar cells are presented. The TiO{sub 2}/SiO{sub 2} double-layer antireflection coating is experimentally developed and optimized. The experimental spectral dependences of the external quantum yield of the InGaP/GaAs/Ge heterostructure solar cell and optical characteristics of antireflection coatings, obtained in the simulation, are used to determine the photogenerated current densities of each subcell in the InGaP/GaAs/Ge solar cell under AM1.5D irradiation conditions (1000 W/m{sup 2}) and for the case of zero reflection loss. It ismore » shown in the simulation that the optimized TiO{sub 2}/Si{sub 3}N{sub 4}/SiO{sub 2} triple-layer antireflection coating provides a 2.3 mA/cm{sup 2} gain in the photocurrent density for the Ge subcell under AM1.5D conditions in comparison with the TiO{sub 2}/SiO{sub 2} double-layer antireflection coating under consideration. This thereby provides an increase in the fill factor of the current–voltage curve and in the output electric power of the multijunction solar cell.« less

  18. Rate of Bubble Coalescence following Quasi-Static Approach: Screening and Neutralization of the Electric Double Layer

    PubMed Central

    Katsir, Yael; Marmur, Abraham

    2014-01-01

    Air-bubble coalescence in aqueous electrolytic solutions, following quasi-static approach, was studied in order to understand its slow rate in purified water and high rate in electrolytic solutions. The former is found to be due to surface charges, originating from the speciation of dissolved CO2, which sustain the electric double layer repulsion. Rapid coalescence in electrolytic solutions is shown to occur via two different mechanisms: (1) neutralization of the carbonaceous, charged species by acids; or (2) screening of the repulsive charge effects by salts and bases. The results do not indicate any ion specificity. They can be explained within the DLVO theory for the van der Waals and electric double layer interactions between particles, in contrast to observations of coalescence following dynamic approach. The present conclusions should serve as a reference point to understanding the dynamic behavior. PMID:24589528

  19. Synthesis of mesoporous triple-metal nanosorbent from layered double hydroxide as an efficient new sorbent for removal of dye from water and wastewater.

    PubMed

    Kostić, Miloš; Radović, Miljana; Velinov, Nena; Najdanović, Slobodan; Bojić, Danijela; Hurt, Andrew; Bojić, Aleksandar

    2018-09-15

    In this study, co-precipitation synthesis of the mesoporous triple-metal nanosorbent from Fe, Cu, Ni layered double hydroxide (FeCuNi-LDH), on the basis of the data obtained from the TG analysis was carried out. The FTIR spectroscopy and XRD results confirm the formation of CuO, NiO and Fe 2 O 3 nanoparticles, while the EDX analysis does not show significant variations on the surface in elemental composition. BET analysis shows that FeCuNi-280 (FeCuNi-LDH calcinated at 280 °C) with mesoporous structure, has larger surface area compared to FeCuNi-LDH and FeCuNi-550 (FeCuNi-LDH calcinated at 550 °C). The value of pH PZC of FeCuNi-280 is found to be 8.66. Obtained FeCuNi-280 material showed the ability for efficient removal of dye Reactive Blue 19 (RB19) from water, with a very high sorption capacity of 480.79 mg/g at optimal conditions: the sorbent dose of 0.6 g/dm 3 , stirring speed of 280 rpm and pH 2. The kinetics results of the sorption process were well fitted by pseudo-second order and Chrastil model, and the sorption isotherm was well described by Sips, Langmuir and Brouers-Sotolongo model. FeCuNi-280 was easily regenerated with aqueous solution of NaOH, and reutilization was successfully done in five sorption cycles. The present study show that easy-to-prepare, relatively inexpensive nanosorbent FeCuNi-280 is among the best sorbents for the removal of RB19 dye from water solution and wastewater from textile industry in wide range of pH. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Broadband integrated polarization rotator using three-layer metallic grating structures

    DOE PAGES

    Fan, Ren -Hao; Liu, Dong; Peng, Ru -Wen; ...

    2018-01-05

    In this work, we demonstrate broadband integrated polarization rotator (IPR) with a series of three-layer rotating metallic grating structures. This transmissive optical IPR can conveniently rotate the polarization of linearly polarized light to any desired directions at different spatial locations with high conversion efficiency, which is nearly constant for different rotation angles. The linear polarization rotation originates from multi-wave interference in the three-layer grating structure. As a result, we anticipate that this type of IPR will find wide applications in analytical chemistry, biology, communication technology, imaging, etc.

  1. Broadband integrated polarization rotator using three-layer metallic grating structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Ren -Hao; Liu, Dong; Peng, Ru -Wen

    In this work, we demonstrate broadband integrated polarization rotator (IPR) with a series of three-layer rotating metallic grating structures. This transmissive optical IPR can conveniently rotate the polarization of linearly polarized light to any desired directions at different spatial locations with high conversion efficiency, which is nearly constant for different rotation angles. The linear polarization rotation originates from multi-wave interference in the three-layer grating structure. As a result, we anticipate that this type of IPR will find wide applications in analytical chemistry, biology, communication technology, imaging, etc.

  2. Synthesis of layered double hydroxide nanosheets by coprecipitation using a T-type microchannel reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pang, Xiujiang; Sun, Meiyu; Ma, Xiuming

    The synthesis of Mg{sub 2}Al–NO{sub 3} layered double hydroxide (LDH) nanosheets by coprecipitation using a T-type microchannel reactor is reported. Aqueous LDH nanosheet dispersions were obtained. The LDH nanosheets were characterized by X-ray diffraction, transmission electron microscopy, atomic force microscopy and particle size analysis, and the transmittance and viscosity of LDH nanosheet dispersions were examined. The two-dimensional LDH nanosheets consisted of 1–2 brucite-like layers and were stable for ca. 16 h at room temperature. In addition, the co-assembly between LDH nanosheets and dodecyl sulfate (DS) anions was carried out, and a DS intercalated LDH nanohybrid was obtained. To the bestmore » of our knowledge, this is the first report of LDH nanosheets being directly prepared in bulk aqueous solution. This simple, cheap method can provide naked LDH nanosheets in high quantities, which can be used as building blocks for functional materials. - Graphical abstract: Layered double hydroxide (LDH) nanosheets were synthesized by coprecipitation using a T-type microchannel reactor, and could be used as basic building blocks for LDH-based functional materials. Display Omitted - Highlights: • LDH nanosheets were synthesized by coprecipitation using a T-type microchannel reactor. • Naked LDH nanosheets were dispersed in aqueous media. • LDH nanosheets can be used as building blocks for functional materials.« less

  3. Design, Simulation and Fabrication of A MEMS-based Double-layer Spiral Planar Inductor with Patterned Permalloy as Magnetic Layers

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaomin; Cheng, Ping; Chen, Mingming; Ding, Guifu

    2018-03-01

    There have been significant efforts to boost the inductance value by adopting the sandwich structures using permalloy magnetic shielding layers. However, this structure will introduce high ac conductor losses and high eddy currents. In order to solve these problems, patterned permalloy can solve this problem effectively. According to the simulation results based on the application of finite element method in the frequency domain, the optimum permalloy pattern is which the blank of the permalloy are perpendicular to the coil inside. The double-layer planar inductor has a size of l5×1.5×0.1mm consisted of 13-turn spiral Cu coil for each layer and a 20μm-thick patterned permalloy magnetic shielding layer. The inductor shows a higher inductance than the traditional planar inductor. The patterned permalloy made the inductor more stable in high frequency than the none-patterned. And the inductor has an inductance of 1.3μH and quality factor of 2.8 at 1.5MHz, with an inductance per unit of 578nH/mm2, which is much higher than that in the reported literatures.

  4. Electric Double Layer Composed of an Antagonistic Salt in an Aqueous Mixture: Local Charge Separation and Surface Phase Transition

    NASA Astrophysics Data System (ADS)

    Yabunaka, Shunsuke; Onuki, Akira

    2017-09-01

    We examine an electric double layer containing an antagonistic salt in an aqueous mixture, where the cations are small and hydrophilic but the anions are large and hydrophobic. In this situation, a strong coupling arises between the charge density and the solvent composition. As a result, the anions are trapped in an oil-rich adsorption layer on a hydrophobic wall. We then vary the surface charge density σ on the wall. For σ >0 the anions remain accumulated, but for σ <0 the cations are attracted to the wall with increasing |σ |. Furthermore, the electric potential drop Ψ (σ ) is nonmonotonic when the solvent interaction parameter χ (T ) exceeds a critical value χc determined by the composition and the ion density in the bulk. This leads to a first-order phase transition between two kinds of electric double layers with different σ and common Ψ . In equilibrium such two-layer regions can coexist. The steric effect due to finite ion sizes is crucial in these phenomena.

  5. Numerical modeling of heat transfer during hydrogen absorption in thin double-layered annular ZrCo beds

    NASA Astrophysics Data System (ADS)

    Cui, Yehui; Zeng, Xiangguo; Kou, Huaqin; Ding, Jun; Wang, Fang

    2018-06-01

    In this work a three-dimensional (3D) hydrogen absorption model was proposed to study the heat transfer behavior in thin double-layered annular ZrCo beds. Numerical simulations were performed to investigate the effects of conversion layer thickness, thermal conductivity, cooling medium and its flow velocity on the efficiency of heat transfer. Results reveal that decreasing the layer thickness and improving the thermal conductivity enhance the ability of heat transfer. Compared with nitrogen and helium, water appears to be a better medium for cooling. In order to achieve the best efficiency of heat transfer, the flow velocity needs to be maximized.

  6. Synthesising methods of layered double hydroxides and its use in the fabrication of dye Sensitised solar cell (DSSC): A short review

    NASA Astrophysics Data System (ADS)

    George, Giphin; Saravanakumar, M. P.

    2017-11-01

    The layered double hydroxides (LDH) which are anionic clay substances comprising of stacked cationic layers and interlayer anions. The cationic sheets contain octahedral structure consisting the divalent and trivalent ions in the center and hydroxyl bunches in the corners, gathered by three bonding with the neighbouring octahedra on every side of the layer. The ratio between the quantity of cations and OH- ions is 2:1, so a positive charge shows up on the layer because of the presence of trivalent cations. The interlayer space gives the compensation anions and water molecules, assuring a balanced out layered structure. The LDH materials were successfully synthesised from magnesium, aluminium, zinc and chromium chloride salts utilizing the co-precipitation technique. A Zn-Al LDH was researched as a potential sorbent material. This article reviews the recent advances in the preparation and intercalation of layered double hydroxides and its application in the fabrication of Dye Sensitized Solar Cell (DSSC).

  7. Highly efficient solution-processed phosphorescent organic light-emitting devices with double-stacked hole injection layers

    NASA Astrophysics Data System (ADS)

    Chen, Yuehua; Hao, Lin; Zhang, Xinwen; Zhang, Xiaolin; Liu, Mengjiao; Zhang, Mengke; Wang, Jiong; Lai, Wen-Yong; Huang, Wei

    2017-08-01

    In this paper, solution-processed nickel oxide (NiOx) is used as hole-injection layers (HILs) in solution-processed phosphorescent organic light-emitting diodes (PhOLEDs). Serious exciton quenching is verified at the NiOx/emitting layer (EML) interface, resulting in worse device performance. The device performance is significantly improved by inserting a layer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) between the EML and NiOx. The solution-processed blue PhOLED with the double-stacked NiOx/PEDOT:PSS HILs shows a maximum current efficiency of 30.5 cd/A, which is 75% and 30% higher than those of the devices with a single NiOx HIL and a PEDOT:PSS HIL, respectively. Improvement of device efficiency can be attributed to reducing exciton quenching of the PEDOT:PSS layer as well as the electron blocking effect of the NiOx layer.

  8. Polydopamine-coated, nitrogen-doped, hollow carbon-sulfur double-layered core-shell structure for improving lithium-sulfur batteries.

    PubMed

    Zhou, Weidong; Xiao, Xingcheng; Cai, Mei; Yang, Li

    2014-09-10

    To better confine the sulfur/polysulfides in the electrode of lithium-sulfur (Li/S) batteries and improve the cycling stability, we developed a double-layered core-shell structure of polymer-coated carbon-sulfur. Carbon-sulfur was first prepared through the impregnation of sulfur into hollow carbon spheres under heat treatment, followed by a coating polymerization to give a double-layered core-shell structure. From the study of scanning transmission electron microscopy (STEM) images, we demonstrated that the sulfur not only successfully penetrated through the porous carbon shell but also aggregated along the inner wall of the carbon shell, which, for the first time, provided visible and convincing evidence that sulfur preferred diffusing into the hollow carbon rather than aggregating in/on the porous wall of the carbon. Taking advantage of this structure, a stable capacity of 900 mA h g(-1) at 0.2 C after 150 cycles and 630 mA h g(-1) at 0.6 C after 600 cycles could be obtained in Li/S batteries. We also demonstrated the feasibility of full cells using the sulfur electrodes to couple with the silicon film electrodes, which exhibited significantly improved cycling stability and efficiency. The remarkable electrochemical performance could be attributed to the desirable confinement of sulfur through the unique double-layered core-shell architectures.

  9. An extremely simple thermocouple made of a single layer of metal.

    PubMed

    Liu, Haixiao; Sun, Weiqiang; Xu, Shengyong

    2012-06-26

    A novel temperature sensor consisting of a single layer of metal (Ni, Pd, W, or Pt) is constructed. Its configuration challenges a long-established concept and may lead to development of a new category of devices. Reliable two-dimensional mapping of local temperatures is demonstrated using an array of these sensors. These single-metal thermocouples (SMTCs) can be readily applied on flexible substrates or at high temperatures. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. X-ray Study of the Electric Double Layer at the n-Hexane/Nanocolloidal Silica Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tikhonov,A.

    The spatial structure of the transition region between an insulator and an electrolyte solution was studied with x-ray scattering. The electron-density profile across the n-hexane/silica sol interface (solutions with 5, 7, and 12 nm colloidal particles) agrees with the theory of the electrical double layer and shows separation of positive and negative charges. The interface consists of three layers, i.e., a compact layer of Na{sup +}, a loose monolayer of nanocolloidal particles as part of a thick diffuse layer, and a low-density layer sandwiched between them. Its structure is described by a model in which the potential gradient at themore » interface reflects the difference in the potentials of 'image forces' between the cationic Na{sup +} and anionic nanoparticles and the specific adsorption of surface charge. The density of water in the large electric field ({approx}10{sup 9}-10{sup 10} V/m) of the transition region and the layering of silica in the diffuse layer is discussed.« less

  11. Local, global, and nonlinear screening in twisted double-layer graphene

    DOE PAGES

    Lu, Chih -Pin; Rodriguez-Vega, Martin; Li, Guohong; ...

    2016-06-02

    One-atom-thick crystalline layers and their vertical heterostructures carry the promise of designer electronic materials that are unattainable by standard growth techniques. To realize their potential it is necessary to isolate them from environmental disturbances, in particular those introduced by the substrate. However, finding and characterizing suitable substrates, and minimizing the random potential fluctuations they introduce, has been a persistent challenge in this emerging field. In this paper, we show that Landau-level (LL) spectroscopy offers the unique capability to quantify both the reduction of the quasiparticles’ lifetime and the long-range inhomogeneity due to random potential fluctuations. Harnessing this technique together withmore » direct scanning tunneling microscopy and numerical simulations we demonstrate that the insertion of a graphene buffer layer with a large twist angle is a very effective method to shield a 2D system from substrate interference that has the additional desirable property of preserving the electronic structure of the system under study. Finally, we further show that owing to its remarkable nonlinear screening capability a single graphene buffer layer provides better shielding than either increasing the distance to the substrate or doubling the carrier density and reduces the amplitude of the potential fluctuations in graphene to values even lower than the ones in AB-stacked bilayer graphene.« less

  12. Local, global, and nonlinear screening in twisted double-layer graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Chih -Pin; Rodriguez-Vega, Martin; Li, Guohong

    One-atom-thick crystalline layers and their vertical heterostructures carry the promise of designer electronic materials that are unattainable by standard growth techniques. To realize their potential it is necessary to isolate them from environmental disturbances, in particular those introduced by the substrate. However, finding and characterizing suitable substrates, and minimizing the random potential fluctuations they introduce, has been a persistent challenge in this emerging field. In this paper, we show that Landau-level (LL) spectroscopy offers the unique capability to quantify both the reduction of the quasiparticles’ lifetime and the long-range inhomogeneity due to random potential fluctuations. Harnessing this technique together withmore » direct scanning tunneling microscopy and numerical simulations we demonstrate that the insertion of a graphene buffer layer with a large twist angle is a very effective method to shield a 2D system from substrate interference that has the additional desirable property of preserving the electronic structure of the system under study. Finally, we further show that owing to its remarkable nonlinear screening capability a single graphene buffer layer provides better shielding than either increasing the distance to the substrate or doubling the carrier density and reduces the amplitude of the potential fluctuations in graphene to values even lower than the ones in AB-stacked bilayer graphene.« less

  13. Modified secondary lithium metal batteries with the polyaniline-carbon nanotube composite buffer layer.

    PubMed

    Zhang, Ding; Yin, Yanli; Liu, Changhong; Fan, Shoushan

    2015-01-07

    A modified secondary lithium metal battery inserted with a polyaniline-carbon nanotube nanoporous composite buffer layer was fabricated. This unique and simple design of battery has the great potential to decrease the safety risk of the secondary Li metal battery in cycles of recharging processes and improve its cycle life in the future.

  14. Large area nanoscale metal meshes for use as transparent conductive layers.

    PubMed

    Jin, Yuanhao; Li, Qunqing; Chen, Mo; Li, Guanhong; Zhao, Yudan; Xiao, Xiaoyang; Wang, Jiaping; Jiang, Kaili; Fan, Shoushan

    2015-10-21

    We report on the experimental realization of using super-aligned carbon nanotubes (SACNTs) as etching masks for the fabrication of large area nanoscale metal meshes. This method can easily be extended to different metals on both rigid and flexible substrates. The as-fabricated metal meshes, including the ones made of gold, copper, and aluminum, are suitable for use as transparent conductive layers (TCLs). The metal meshes, which are similar to the SACNT networks in their dimensional features of tens of nanometers, exhibit compatible performance in terms of optical transmittance and sheet resistance. Moreover, because the metal meshes are fabricated as an integrated material, there is no junction resistance between the interconnected metal nanostructures, which markedly lowers their sheet resistance at high temperatures. The fabrication of such an effective etching mask involves a simple drawing process of the SACNT networks prepared and a common deposition process. This approach should be easy to extend to various research fields and has broad prospects in commercial applications.

  15. Control of fluorescence in quantum emitter and metallic nanoshell hybrids for medical applications

    NASA Astrophysics Data System (ADS)

    Singh, Mahi R.; Guo, Jiaohan; J. Cid, José M.; De Hoyos Martinez, Jesús E.

    2017-03-01

    We study the light emission from a quantum emitter and double metallic nanoshell hybrid systems. Quantum emitters act as local sources which transmit their light efficiently due to a double nanoshell near field. The double nanoshell consists of a dielectric core and two outer nanoshells. The first nanoshell is made of a metal, and the second spacer nanoshell is made of a dielectric material or human serum albumin. We have calculated the fluorescence emission for a quantum emitter-double nanoshell hybrid when it is injected in an animal or a human body. Surface plasmon polariton resonances in the double nanoshell are calculated using Maxwell's equations in the quasi-static approximation, and the fluorescence emission is evaluated using the density matrix method in the presence of dipole-dipole interactions. We have compared our theory with two fluorescence experiments in hybrid systems in which the quantum emitter is Indocyanine Green or infrared fluorescent molecules. The outer spacer nanoshell of double metallic nanoshells consists of silica and human serum albumin with variable thicknesses. Our theory explains the enhancement of fluorescence spectra in both experiments. We find that the thickness of the spacer nanoshell layer increases the enhancement when the fluorescence decreases. The enhancement of the fluorescence depends on the type of quantum emitter, spacer layer, and double nanoshell. We also found that the peak of the fluorescence spectrum can be shifted by changing the shape and the size of the nanoshell. The fluorescence spectra can be switched from one peak to two peaks by removing the degeneracy of excitonic states in the quantum emitter. Hence, using these properties, one can use these hybrids as sensing and switching devices for applications in medicine.

  16. Effect of layer number and metal-chloride dopant on multiple layers of graphene/porous Si solar cells

    NASA Astrophysics Data System (ADS)

    Shin, Dong Hee; Kim, Jong Min; Jang, Chan Wook; Kim, Ju Hwan; Kim, Sung; Choi, Suk-Ho

    2018-03-01

    Porous silicon (PSi) is an attractive building block for Si-based solar cells due to its low reflectance. Here, PSi is prepared by metal-assisted chemical etching of a Si wafer on which Au nanoparticles are formed by sputtering for 5 s. The layer number (Ln) of graphene is varied to optimize multiple layers of graphene/PSi Schottky junction solar cells because the sheet resistance, work function, transmittance, and reflectance of graphene strongly depend on Ln. At Ln = 2, the best condition for the highest power conversion efficiency (PCE), various metal chlorides are employed as dopants for graphene. The PCE is maximally enhanced to 9.15% by doping the graphene with RhCl3 and is reduced by only 20% of its original value (absolutely from 9.15% to 7.23%) during 10 days in air. These results are very meaningful in that even a single doping for graphene can be effective for achieving high PCE from graphene/PSi solar cells by controlling Ln.

  17. Superionic state in double-layer capacitors with nanoporous electrodes.

    PubMed

    Kondrat, S; Kornyshev, A

    2011-01-19

    In recent experiments (Chmiola et al 2006 Science 313 1760; Largeot et al 2008 J. Am. Chem. Soc. 130 2730) an anomalous increase of the capacitance with a decrease of the pore size of a carbon-based porous electric double-layer capacitor has been observed. We explain this effect by image forces which exponentially screen out the electrostatic interactions of ions in the interior of a pore. Packing of ions of the same sign becomes easier and is mainly limited by steric interactions. We call this state 'superionic' and suggest a simple model to describe it. The model reveals the possibility of a voltage-induced first order transition between a cation(anion)-deficient phase and a cation(anion)-rich phase which manifests itself in a jump of capacitance as a function of voltage.

  18. Bio-sensing based on plasmon-coupling caused by rotated sub-micrometer gratings in metal-dielectric interfacial layers

    NASA Astrophysics Data System (ADS)

    Csete, M.; Sipos, Á.; Szalai, A.; Mathesz, A.; Deli, M. A.; Veszelka, Sz.; Schmatulla, A.; Kőházi-Kis, A.; Osvay, K.; Marti, O.; Bor, Zs.

    2007-09-01

    Novel plasmonic sensor chips are prepared by generating sub-micrometer periodic patterns in the interfacial layers of bimetal-polymer films via master-grating based interference method. Poly-carbonate films spin-coated onto vacuum evaporated silver-gold bimetallic layers are irradiated by the two interfering UV beams of a Nd:YAG laser. It is proven by pulsed force mode AFM that periodic adhesion pattern corresponds to the surface relief gratings, consisting of sub-micrometer droplet arrays and continuous polymer stripes, induced by p- and s-polarized beams, respectively. The characteristic periods are the same, but more complex and larger amplitude adhesion modulation is detectable on the droplet arrays. The polar and azimuthal angle dependence of the resonance characteristic of plasmons is studied by combining the prism- and grating-coupling methods in a modified Kretschmann arrangement, illuminating the structured metal-polymer interface by a frequency doubled Nd:YAG laser through a semi-cylinder. It is proven that the grating-coupling results in double-peaked plasmon resonance curves on both of the droplet arrays and line gratings, when the grooves are rotated to an appropriate azimuthal angle, and the modulation amplitude of the structure is sufficiently large. Streptavidin seeding is performed to demonstrate that small amount of protein can be detected monitoring the shift of the secondary resonance minima. The available high concentration sensitivity is explained by the promotion of protein adherence in the structure's valleys due to the enhanced adhesion. The line-shaped polymer gratings resulting in narrow resonance peaks are utilized to demonstrate the effect of therapeutic molecules on Amyloid-Β peptide, a pathogenic factor in Alzheimer disease.

  19. Permanent Magnet Synchronous Motor Driven by PWM Inverter with Voltage Booster with Regenerating Capability Augmented by Double-Layer Capacitor

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kichiro; Shinohara, Katsuji; Furukawa, Shinya

    An interior permanent magnet (IPM) motor drive system which has regenerating capability augmented by double-layer capacitors is proposed. The motor is driven by a PWM inverter with voltage booster. The voltage booster is used to control the dc link voltage in high speed region to improve the system efficiency. Furthermore, the double-layer capacitor as a storage element is combined with the PWM inverter with voltage booster to gain the efficiency for the regenerating operation. In this system, normally, the regenerative power does not return to a battery directly but is stored in the double-layer capacitors for the next motoring action to suppress the excessive regenerative current to battery, and the regenerative power returns to the battery when the regenerative energy is larger than a certain value. The charging current to the battery is controlled to a constant value to extend the life-time of the battery. The transient and steady state characteristics of the system for 1.5kW IPM motor are investigated by both simulation and experiment. Finally, the effectiveness of the system is demonstrated by the simulated and experimental results.

  20. Layered double hydroxide-based nanomaterials as highly efficient catalysts and adsorbents.

    PubMed

    Li, Changming; Wei, Min; Evans, David G; Duan, Xue

    2014-11-01

    Layered double hydroxides (LDHs) are a class of anion clays consisting of brucite-like host layers and interlayer anions, which have attracted increasing interest in the fields of catalysis/adsorption. By virtue of the versatility in composition, morphology, and architecture of LDH materials, as well as their unique structural properties (intercalation, topological transformation, and self-assembly with other functional materials), LDHs display great potential in the design and fabrication of nanomaterials applied in photocatalysis, heterogeneous catalysis, and adsorption/separation processes. Taking advantage of the structural merits and various control synthesis strategies of LDHs, the active center structure (e.g., crystal facets, defects, geometric and electronic states, etc.) and macro-nano morphology can be facilely manipulated for specific catalytic/adsorbent processes with largely enhanced performances. In this review, the latest advancements in the design and preparation of LDH-based functional nanomaterials for sustainable development in catalysis and adsorption are summarized. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.