Sample records for layered sodium lanthanum

  1. Investigation on the co-luminescence effect of europium (III)-lanthanum(III)-dopamine-sodium dodecylbenzene sulfonate system and its application.

    PubMed

    Si, Hailin; Zhao, Fang; Cai, Huan

    2013-01-01

    A novel luminescence, enhancement phenomenon in the europium(III)-dopamine-sodium dodecylbenzene sulfonate system was observed when lanthanum(III) was added. Based on this, a sensitive co-luminescence method was established for the determination of dopamine. The luminescence signal for the europium (III)-lanthanum(III)-dopamine-sodium dodecylbenzene sulfonate system was monitored at λ(ex) = 300 nm, λ(em) = 618 nm and pH 8.3. Under optimized conditions, the enhanced luminescence signal responded linearly to the concentration of dopamine in the range 1.0 × 10(-10)-5.0 × 10(-7) mol/L with a correlation coefficient of 0.9993 (n = 11). The detection limit (3σ) was 2.7 × 10(-11) mol/L and the relative standard deviation for 11 parallel measurements of 3.0 × 10(-8) mol/L dopamine was 1.9%. The presented method was successfully applied for the estimation of dopamine in samples of pharmaceutical preparations, human serum and urine. The possible luminescence enhancement mechanism of the system is discussed briefly. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Metallic behavior of lanthanum disilicide

    NASA Technical Reports Server (NTRS)

    Long, Robert G.; Bost, M. C.; Mahan, John E.

    1988-01-01

    Polycrystalline thin films of LaSi2 were prepared by reaction of sputter-deposited lanthanum layers with silicon wafers. Samples of the low-temperature tetragonal and the high-temperature orthorhombic phases were separately obtained. The room-temperature intrinsic resistivities were 24 and 57 microohm cm for the low- and high-temperature structures, respectively. Although lanthanum disilicide had been previously reported to be a semiconductor, classical metallic behavior was found for both phases.

  3. Theoretical and experimental studies of the atmospheric sodium layer

    NASA Technical Reports Server (NTRS)

    Richter, E. S.; Sechrist, C. F., Jr.

    1978-01-01

    Atmospheric atomic sodium was studied with a laser radar system. Photocount data were processed using a digital filter to obtain continuous estimates of the sodium concentration versus altitude. Wave-like structures in the sodium layer were observed, and there was evidence for the presence of a standing wave in the layer. The bottomside of the layer was observed to undulate with a period of about 2 1/2 hours, and the layer was observed to broaden through the night. A meteor ablation-cluster ion theory of sodium was developed. The theory shows good agreement with existing atmospheric observations as well as laboratory measurements of rate constants.

  4. An effective method to screen sodium-based layered materials for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Zhang, Zihe; Yao, Sai; Chen, An; Zhao, Xudong; Zhou, Zhen

    2018-03-01

    Due to the high cost and insufficient resource of lithium, sodium-ion batteries are widely investigated for large-scale applications. Typically, insertion-type materials possess better cyclic stability than alloy-type and conversion-type ones. Therefore, in this work, we proposed a facile and effective method to screen sodium-based layered materials based on Materials Project database as potential candidate insertion-type materials for sodium ion batteries. The obtained Na-based layered materials contains 38 kinds of space group, which reveals that the credibility of our screening approach would not be affected by the space group. Then, some important indexes of the representative materials, including the average voltage, volume change and sodium ion mobility, were further studied by means of density functional theory computations. Some materials with extremely low volume changes and Na diffusion barriers are promising candidates for sodium ion batteries. We believe that our classification algorithm could also be used to search for other alkali and multivalent ion-based layered materials, to accelerate the development of battery materials.

  5. Synthesis and characterization of lanthanum doped zinc oxide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Vinod; Sonia,; Suman,

    La doped ZnO (Zn{sub 1-x}La{sub x}O, x = 0, 3, 6 and 9) were prepared via chemical co-precipitation method using Zinc Acetate, Lanthanum Acetate and Sodium Hydroxide at 50°C. Hydrate nanoparticles were annealed in air at 300°C for 3 hours. The synthesized samples have been characterized by powder X-ray diffraction and UV–Visible spectrophotometer. The XRD measurement revealsthat the prepared nanoparticles have different microstructure without changing a hexagonal wurtzite structure. The result shows the change in nanoparticles size with the increment of lanthanum concentration for lower concentration for x = 0 to 6 and decreases at x = 9.

  6. Density response of the mesospheric sodium layer to gravity wave perturbations

    NASA Technical Reports Server (NTRS)

    Shelton, J. D.; Gardner, C. S.; Sechrist, C. F., Jr.

    1980-01-01

    Lidar observations of the mesospheric sodium layer often reveal wavelike features moving through the layer. It is often assumed that these features are a layer density response to gravity waves. Chiu and Ching (1978) described the approximate form of the linear response of atmospheric layers to gravity waves. In this paper, their results are used to predict the response of the sodium layer to gravity waves. These simulations are compared with experimental observations and a good correlation is found between the two. Because of the thickness of the sodium layer and the density gradients found in it, a linear model of the layer response is not always adequate to describe gravity wave-sodium layer interactions. Inclusion of nonlinearities in the layer response is briefly discussed. Experimental data is seen to contain features consistent with the predicted nonlinearities.

  7. Lanthanum-hexaboride carbon composition for use in corrosive hydrogen-fluorine environments

    DOEpatents

    Holcombe, Cressie E.; Kovach, Louis; Taylor, Albert J.

    1981-01-01

    The present invention relates to a structural composition useful in corrosive hydrogen-fluorine environments at temperatures in excess of 1400.degree. K. The composition is formed of a isostatically pressed and sintered or a hot-pressed mixture of lanthanum hexaboride particles and about 10-30 vol. % carbon. The lanthanum-hexaboride reacts with the high-temperature fluorine-containing bases to form an adherent layer of corrosion-inhibiting lanthanum trifluoride on exposed surfaces of the composition. The carbon in the composite significantly strengthens the composite, enhances thermal shock resistance, and significantly facilitates the machining of the composition.

  8. Lanthanum-hexaboride carbon composition for use in corrosive hydrogen-fluorine environments

    DOEpatents

    Holcombe, C.E. Jr.; Kovach, L.; Taylor, A.J.

    1980-01-22

    The present invention relates to a structural composition useful in corrosive hydrogen-fluorine environments at temperatures in excess of 1400/sup 0/K. The composition is formed of a isostatically pressed and sintered or a hot-pressed mixture of lanthanum hexaboride particles and about 10 to 30 vol% carbon. The lanthanum-hexaboride reacts with the high-temperature fluorine-containing gases to form an adherent layer of corrosion-inhibiting lanthanum trifluoride on exposed surfaces of the composition. The carbon in the composite significantly strengthens the composite, enhances thermal shock resistance, and significantly facilitates the machining of the composition.

  9. A high-capacity, low-cost layered sodium manganese oxide material as cathode for sodium-ion batteries.

    PubMed

    Guo, Shaohua; Yu, Haijun; Jian, Zelang; Liu, Pan; Zhu, Yanbei; Guo, Xianwei; Chen, Mingwei; Ishida, Masayoshi; Zhou, Haoshen

    2014-08-01

    A layered sodium manganese oxide material (NaMn3 O5 ) is introduced as a novel cathode materials for sodium-ion batteries. Structural characterizations reveal a typical Birnessite structure with lamellar stacking of the synthetic nanosheets. Electrochemical tests reveal a particularly large discharge capacity of 219 mAh g(-1) in the voltage rang of 1.5-4.7 V vs. Na/Na(+) . With an average potential of 2.75 V versus sodium metal, layered NaMn3 O5 exhibits a high energy density of 602 Wh kg(-1) , and also presents good rate capability. Furthermore, the diffusion coefficient of sodium ions in the layered NaMn3 O5 electrode is investigated by using the galvanostatic intermittent titration technique. The results greatly contribute to the development of room-temperature sodium-ion batteries based on earth-abundant elements. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Antiferroelectricity in lanthanum doped zirconia without metallic capping layers and post-deposition/-metallization anneals

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Gaskell, Anthony Arthur; Dopita, Milan; Kriegner, Dominik; Tasneem, Nujhat; Mack, Jerry; Mukherjee, Niloy; Karim, Zia; Khan, Asif Islam

    2018-05-01

    We report the effects of lanthanum doping/alloying on antiferroelectric (AFE) properties of ZrO2. Starting with pure ZrO2, an increase in La doping leads to the narrowing of the AFE double hysteresis loops and an increase in the critical voltage/electric field for AFE → ferroelectric transition. At higher La contents, the polarization-voltage characteristics of doped/alloyed ZrO2 resemble that of a non-linear dielectric without any discernible AFE-type hysteresis. X-ray diffraction based analysis indicates that the increased La content while preserving the non-polar, parent AFE, tetragonal P42/nmc phase leads to a decrease in tetragonality and the (nano-)crystallite size and an increase in the unit cell volume. Furthermore, antiferroelectric behavior is obtained in the as-deposited thin films without requiring any capping metallic layers and post-deposition/-metallization anneals due to which our specific atomic layer deposition system configuration crystallizes and stabilizes the AFE tetragonal phase during growth.

  11. Corrosion resistance and blood compatibility of lanthanum ion implanted pure iron by MEVVA

    NASA Astrophysics Data System (ADS)

    Zhu, Shengfa; Huang, Nan; Shu, Hui; Wu, Yanping; Xu, Li

    2009-10-01

    Pure iron is a potential material applying for coronary artery stents based on its biocorrodible and nontoxic properties. However, the degradation characteristics of pure iron in vivo could reduce the mechanical stability of iron stents prematurely. The purpose of this work was to implant the lanthanum ion into pure iron specimens by metal vapor vacuum arc (MEVVA) source at an extracted voltage of 40 kV to improve its corrosion resistance and biocompatibility. The implanted fluence was up to 5 × 10 17 ions/cm 2. The X-ray photoelectron spectroscopy (XPS) was used to characterize the chemical state and depth profiles of La, Fe and O elements. The results showed lanthanum existed in the +3 oxidation state in the surface layer, most of the oxygen combined with lanthanum and form a layer of oxides. The lanthanum ion implantation layer could effectively hold back iron ions into the immersed solution and obviously improved the corrosion resistance of pure iron in simulated body fluids (SBF) solution by the electrochemical measurements and static immersion tests. The systematic evaluation of blood compatibility, including in vitro platelets adhesion, prothrombin time (PT), thrombin time (TT), indicated that the number of platelets adhesion, activation, aggregation and pseudopodium on the surface of the La-implanted samples were remarkably decreased compared with pure iron and 316L stainless steel, the PT and TT were almost the same as the original plasma. It was obviously showed that lanthanum ion implantation could effectively improve the corrosion resistance and blood compatibility of pure iron.

  12. Fabrication of Nanosized Lanthanum Zirconate Powder and Deposition of Thermal Barrier Coating by Plasma Spray Process

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Jagdeesh, N.; Pathak, L. C.

    2016-07-01

    The present manuscript discusses our findings on fabrication of nanosized lanthanum zirconate powder for thermal barrier coating application and its coating by plasma spray on nickel-based superalloy substrate. Single-phase La2Zr2O7 coating of thickness of the order of 45 µm on the Ni-Cr-Al bond coat coated Ni-based superalloy substrate was deposited by plasma spray process. The layers at the interface did not show spallation and inter diffusion was very less. The microstructure, interface, porosity, and mechanical properties of different layers are investigated. The lanthanum zirconate hardness and modulus were 10.5 and 277 GPa, respectively. The load depth curve for lanthanum zirconate showed good elastic recovery around 74%.

  13. Encephalopathy caused by lanthanum carbonate.

    PubMed

    Fraile, Pilar; Cacharro, Luis Maria; Garcia-Cosmes, Pedro; Rosado, Consolacion; Tabernero, Jose Matias

    2011-06-01

    Lanthanum carbonate is a nonaluminum, noncalcium phosphate-binding agent, which is widely used in patients with end-stage chronic kidney disease. Until now, no significant side-effects have been described for the clinical use of lanthanum carbonate, and there are no available clinical data regarding its tissue stores. Here we report the case of a 59-year-old patient who was admitted with confusional syndrome. The patient received 3750 mg of lanthanum carbonate daily. Examinations were carried out, and the etiology of the encephalopathy of the patient could not be singled out. The lanthanum carbonate levels in serum and cerebrospinal fluid were high, and the syndrome eased after the drug was removed. The results of our study confirm that, in our case, the lanthanum carbonate did cross the blood-brain barrier (BBB). Although lanthanum carbonate seems a safe drug with minimal absorption, this work reveals the problem derived from the increase of serum levels of lanthanum carbonate, and the possibility that it may cross the BBB. Further research is required on the possible pathologies that increase serum levels of lanthanum carbonate, as well as the risks and side-effects derived from its absorption.

  14. Buffer layer enhanced stability of sodium-ion storage

    NASA Astrophysics Data System (ADS)

    Wang, Xusheng; Yang, Zhanhai; Wang, Chao; Chen, Dong; Li, Rui; Zhang, Xinxiang; Chen, Jitao; Xue, Mianqi

    2017-11-01

    Se-Se buffer layers are introduced into tin sequences as SnSe2 single crystal to enhance the cycling stability for long-term sodium-ion storage by blazing a trail of self-defence strategy to structural pulverization especially at high current density. Specifically, under half-cell test, the SnSe2 electrodes could yield a high discharge capacity of 345 mAh g-1 after 300 cycles at 1 A g-1 and a high discharge capacity of 300 mAh g-1 after 2100 cycles at 5 A g-1 with stable coulombic efficiency and no capacity fading. Even with the ultrafast sodium-ion storage at 10 A g-1, the cycling stability still makes a positive response and a high discharge capacity of 221 mAh g-1 is demonstrated after 2700 cycles without capacity fading. The full-cell test for the SnSe2 electrodes also demonstrates the superior cycling stability. The flexible and tough Se-Se buffer layers are favourable to accommodate the sodium-ion intercalation process, and the autogenous Na2Se layers could confine the structural pulverization of further sodiated tin sequences by the slip along the Na2Se-NaxSn interfaces.

  15. Lidar observations of wave-like structure in the atmospheric sodium layer

    NASA Technical Reports Server (NTRS)

    Rowlett, J. R.; Gardner, C. S.; Richter, E. S.; Sechrist, C. F., Jr.

    1978-01-01

    The University of Illinois (Urbana) lidar system has been developed to study the atmospheric sodium layer near 90 km altitude through the mechanism of resonance scattering. The photocount data are processed using digital smoothing filters to obtain continuous estimates of the sodium density versus altitude. The filter cutoff frequency is related to the height resolution and accuracy of the estimated profile. Lidar photocount data processed using this filtering technique show wave-like structures in the sodium layer which move downward with time. The waves have typical wavelengths of 3-15 km and phase velocities of less than 1 m/sec. The movement of these structures seems to be independent of the motion of the bottomside of the layer, which also has been observed to move up or down by as much as 2 km over a period of a few hours.

  16. Materials system for intermediate temperature solid oxide fuel cells based on doped lanthanum-gallate electrolyte

    NASA Astrophysics Data System (ADS)

    Gong, Wenquan

    2005-07-01

    The objective of this work was to identify a materials system for intermediate temperature solid oxide fuel cells (IT-SOFCs). Towards this goal, alternating current complex impedance spectroscopy was employed as a tool to study electrode polarization effects in symmetrical cells employing strontium and magnesium doped lanthanum gallate (LSGM) electrolyte. Several cathode materials were investigated including strontium doped lanthanum manganite (LSM), Strontium and iron doped lanthanum cobaltate (LSCF), LSM-LSGM, and LSCF-LSGM composites. Investigated Anode materials included nickel-gadolinium or lanthanum doped cerium oxide (Ni-GDC, or Ni-LDC) composites. The ohmic and the polarization resistances of the symmetrical cells were obtained as a function of temperature, time, thickness, and the composition of the electrodes. Based on these studies, the single phase LSM electrode had the highest polarization resistance among the cathode materials. The mixed-conducting LSCF electrode had polarization resistance orders of magnitude lower than that of the LSM-LSGM composite electrodes. Although incorporating LSGM in the LSCF electrode did not reduce the cell polarization resistance significantly, it could reduce the thermal expansion coefficient mismatch between the LSCF electrodes and LSGM electrolyte. Moreover, the polarization resistance of the LSCF electrode decreased asymptotically as the electrode thickness was increased thus suggesting that the electrode thickness needed not be thicker than this asymptotic limit. On the anode side of the IT-SOFC, Ni reacted with LSGM electrolyte, and lanthanum diffusion occurred from the LSGM electrolyte to the GDC barrier layer, which was between the LSGM electrolyte and the Ni-composite anode. However, LDC served as an effective barrier layer. Ni-LDC (70 v% Ni) anode had the largest polarization resistance, while all other anode materials, i.e. Ni-LDC (50 v% Ni), Ni-GDC (70 v% NO, and Ni-GDC (50 v% Ni), had similar polarization

  17. Lanthanum

    MedlinePlus

    ... levels of phosphate in the blood can cause bone problems. Lanthanum is in a clsas of medications ... to your pharmacist or contact your local garbage/recycling department to learn about take-back programs in ...

  18. Daytime lidar measurements of tidal winds in the mesospheric sodium layer at Urbana, Illinois

    NASA Technical Reports Server (NTRS)

    Kwon, K. H.; Senft, D. C.; Gardner, C. S.; Voelz, D. G.; Sechrist, C. F., Jr.; Roesler, F. L.

    1986-01-01

    For more than 15 years lidar systems have been used to study the chemistry and dynamics of the mesospheric sodium layer. Because the layer is an excellent tracer of atmospheric wave motions, sodium lidar has proven to be particularly useful for studying the influence of gravity waves and tides on mesospheric dynamics. These waves, which originate in the troposphere and stratosphere, propagate through the mesosphere and dissipate their energy near the mesopause making important contributions to the momentum and turbulence budget in this region of the atmosphere. Recently, the sodium lidar was modified for daytime operation so that wave phenomena and chemical effects could be monitored throughout the complete diurnal cycle. The results of continuous 24 hour lidar observations of the sodium layer structure are presented alond with measurement of the semidiurnal tidal winds.

  19. METHOD FOR DISSOLVING LANTHANUM FLUORIDE CARRIER FOR PLUTONIUM

    DOEpatents

    Koshland, D.E. Jr.; Willard, J.E.

    1961-08-01

    A method is described for dissolving lanthanum fluoride precipitates which is applicable to lanthanum fluoride carrier precipitation processes for recovery of plutonium values from aqueous solutions. The lanthanum fluoride precipitate is contacted with an aqueous acidic solution containing dissolved zirconium in the tetravalent oxidation state. The presence of the zirconium increases the lanthanum fluoride dissolved and makes any tetravalent plutonium present more readily oxidizable to the hexavalent state. (AEC)

  20. Superconductivity of lanthanum revisited

    NASA Astrophysics Data System (ADS)

    Loeptien, Peter; Zhou, Lihui; Wiebe, Jens; Khajetoorians, Alexander Ako; Wiesendanger, Roland

    2014-03-01

    The thickness dependence of the superconductivity in clean hexagonal lanthanum films grown on tungsten (110) is studied by means of scanning tunneling microscopy (STM) and spectroscopy (STS). Fitting of the measured spectra to BCS theory yields the superconducting energy gaps from which the critical temperatures are determined. For the case of thick, bulk-like films, the bulk energy gap and critical temperature of dhcp lanthanum turn out to be considerably higher as compared to values from the literature measured by other techniques. In thin films the superconductivity is quenched by the boundary condition for the superconducting wavefunction imposed by the substrate and surface, leading to a linear decrease of the superconducting transition temperature as a function of the inverse film thickness. This opens up the possibility to grow lanthanum films with defined superconducting properties.

  1. A cluster ion chemistry for the mesospheric sodium layer

    NASA Technical Reports Server (NTRS)

    Richter, E. S.; Sechrist, C. F., Jr.

    1979-01-01

    A cluster ion chemistry for sodium is developed which relates the Na(+) profile to the Na profile using reactions involving Na(+).N2, Na(+).CO2, and Na(+).H2O. Removal of sodium from the mesosphere is accomplished by the formation of higher order clusters of the form Na(+).(H2O)n which presumably precipitate to the lower atmosphere. This sink is most effective in the 80-85 km altitude range. The chemical equilibrium model is applied to experimental observations of the Na and Na(+) layers.

  2. Lanthanum carbonate: safety data after 10 years.

    PubMed

    Hutchison, Alastair J; Wilson, Rosamund J; Garafola, Svetlana; Copley, John Brian

    2016-12-01

    Despite 10 years of post-marketing safety monitoring of the phosphate binder lanthanum carbonate, concerns about aluminium-like accumulation and toxicity persist. Here, we present a concise overview of the safety profile of lanthanum carbonate and interim results from a 5-year observational database study (SPD405-404; ClinicalTrials.gov identifier: NCT00567723). The pharmacokinetic paradigms of lanthanum and aluminium are different in that lanthanum is minimally absorbed and eliminated via the hepatobiliary pathway, whereas aluminium shows appreciable absorption and is eliminated by the kidneys. Randomised prospective studies of paired bone biopsies revealed no evidence of accumulation or toxicity in patients treated with lanthanum carbonate. Patients treated with lanthanum carbonate for up to 6 years showed no clinically relevant changes in liver enzyme or bilirubin levels. Lanthanum does not cross the intact blood-brain barrier. The most common adverse effects are mild/moderate nausea, diarrhoea and flatulence. An interim Kaplan-Meier analysis of SPD405-404 data from the United States Renal Data System revealed that the median 5-year survival was 51.6 months (95% CI: 49.1, 54.2) in patients who received lanthanum carbonate (test group), 48.9 months (95% CI: 47.3, 50.5) in patients treated with other phosphate binders (concomitant therapy control group) and 40.3 months (95% CI: 38.9, 41.5) in patients before the availability of lanthanum carbonate (historical control group). Bone fracture rates were 5.9%, 6.7% and 6.4%, respectively. After more than 850 000 person-years of worldwide patient exposure, there is no evidence that lanthanum carbonate is associated with adverse safety outcomes in patients with end-stage renal disease. © 2016 Shire Development LLC. Nephrology published by John Wiley & Sons Australia, Ltd on behalf of Asian Pacific Society of Nephrology.

  3. Few-Layer MXenes Delaminated via High-Energy Mechanical Milling for Enhanced Sodium-Ion Batteries Performance.

    PubMed

    Wu, Yuting; Nie, Ping; Wang, Jiang; Dou, Hui; Zhang, Xiaogang

    2017-11-15

    The global availability of sodium makes the exploration of superior sodium-ion batteries attractive for energy storage application. MXenes, as one of the most promising anodes for sodium-ion batteries, have been reported to have many advantages, such as high electronic conductivity and a hydrophilic surface. However, the compact multilayer structure and deficient delamination significantly inhibits their application, requiring high energy and showing decreased storage capacity and poor rate capabilities. Few-layer MXene has been proved to benefit superior electrochemical properties with a better ionic conductivity and two-dimensional layer structure. Herein, we report scale delamination of few-layer MXene nanosheets as anodes for sodium-ion batteries, which are prepared via an organic solvent assist high-energy mechanical-milling method. This approach efficiently prevents the oxidation of MXene and produces few-layer nanosheets structure, facilitating fast electron transport and Na + diffusion. Electrochemical tests demonstrate that the few-layer MXenes show high specific capacity, excellent cycle stability, and good rate performance. Specifically, few-layer MXene nanosheets deliver a high reversible capacity of 267 mA h g -1 at a current density of 0.1 A g -1 . After cycling 1500 cycles at a high rate of 1 A g -1 , a reversible capacity of 76 mA h g -1 could be maintained.

  4. Atmospheric tomography using a fringe pattern in the sodium layer.

    PubMed

    Baharav, Y; Ribak, E N; Shamir, J

    1994-02-15

    We wish to measure and separate the contribution of atmospheric turbulent layers for multiconjugate adaptive optics. To this end, we propose to create a periodic fringe pattern in the sodium layer and image it with a modified Hartmann sensor. Overlapping sections of the fringes are imaged by a lenslet array onto contiguous areas in a large-format camera. Low-layer turbulence causes an overall shift of the fringe pattern in each lenslet, and high-attitude turbulence results in internal deformations in the pattern. Parallel Fourier analysis permits separation of the atmospheric layers. Two mirrors, one conjugate to a ground layer and the other conjugate to a single high-altitude layer, are shown to widen the field of view significantly compared with existing methods.

  5. Pharmacology of the Phosphate Binder, Lanthanum Carbonate

    PubMed Central

    Damment, Stephen JP

    2011-01-01

    Studies were conducted to compare the phosphate-binding efficacy of lanthanum carbonate directly with other clinically used phosphate binders and to evaluate any potential adverse pharmacology. To examine the phosphate-binding efficacy, rats with normal renal function and chronic renal failure received lanthanum carbonate, aluminum hydroxide, calcium carbonate, or sevelamer hydrochloride in several experimental models. Lanthanum carbonate and aluminum hydroxide markedly increased excretion of [32P]-phosphate in feces and reduced excretion in urine in rats with normal renal function (p < 0.05), indicating good dietary phosphate-binding efficacy. In rats with chronic renal failure, lanthanum carbonate and aluminum hydroxide reduced urinary phosphate excretion to a greater degree and more rapidly than calcium carbonate, which in turn was more effective than sevelamer hydrochloride. The potential to induce adverse pharmacological effects was assessed systematically in mice, rats, and dogs with normal renal function using standard in vivo models. There was no evidence of any adverse secondary pharmacological effects of lanthanum carbonate on the central nervous, cardiovascular, respiratory, or gastrointestinal systems. These studies indicate that lanthanum carbonate is the more potent of the currently available dietary phosphate binders. No adverse secondary pharmacological actions were observed in vivo in a systematic evaluation at high doses. PMID:21332344

  6. Antisite occupation induced single anionic redox chemistry and structural stabilization of layered sodium chromium sulfide

    DOE PAGES

    Shadike, Zulipiya; Zhou, Yong -Ning; Chen, Lan -Li; ...

    2017-08-30

    The intercalation compounds with various electrochemically active or inactive elements in the layered structure have been the subject of increasing interest due to their high capacities, good reversibility, simple structures and ease of synthesis. However, their reversible intercalation/deintercalation redox chemistries in all previous compounds involve a single cationic redox reaction or a cumulative cationic and anionic redox reaction. Here we report an anionic redox only chemistry and structural stabilization of layered sodium chromium sulfide. It is discovered that sulfur in sodium chromium sulfide is electrochemical active undergoing oxidation/reduction of sulfur rather than chromium. Significantly, sodium ions can successfully move outmore » and into without changing its lattice parameter c, which is explained in terms of the occurrence of chromium/sodium vacancy antisite during desodiation and sodiation processes. Here, our present work not only enriches the electrochemistry of layered intercalation compounds, but also extends the scope of investigation on high-capacity electrodes.« less

  7. Antisite occupation induced single anionic redox chemistry and structural stabilization of layered sodium chromium sulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadike, Zulipiya; Zhou, Yong -Ning; Chen, Lan -Li

    The intercalation compounds with various electrochemically active or inactive elements in the layered structure have been the subject of increasing interest due to their high capacities, good reversibility, simple structures and ease of synthesis. However, their reversible intercalation/deintercalation redox chemistries in all previous compounds involve a single cationic redox reaction or a cumulative cationic and anionic redox reaction. Here we report an anionic redox only chemistry and structural stabilization of layered sodium chromium sulfide. It is discovered that sulfur in sodium chromium sulfide is electrochemical active undergoing oxidation/reduction of sulfur rather than chromium. Significantly, sodium ions can successfully move outmore » and into without changing its lattice parameter c, which is explained in terms of the occurrence of chromium/sodium vacancy antisite during desodiation and sodiation processes. Here, our present work not only enriches the electrochemistry of layered intercalation compounds, but also extends the scope of investigation on high-capacity electrodes.« less

  8. Field free, directly heated lanthanum boride cathode

    DOEpatents

    Leung, Ka-Ngo; Moussa, D.; Wilde, S.B.

    1987-02-02

    A directly heated cylindrical lanthanum boride cathode assembly is disclosed which minimizes generation of magnetic field which would interfere with electron emission from the cathode. The cathode assembly comprises a lanthanum boride cylinder in electrical contact at one end with a central support shaft which functions as one electrode to carry current to the lanthanum boride cylinder and in electrical contact, at its opposite end with a second electrode which is coaxially position around the central support shaft so that magnetic fields generated by heater current flowing in one direction through the central support shaft are cancelled by an opposite magnetic field generated by current flowing through the lanthanum boride cylinder and the coaxial electrode in a direction opposite to the current flow in the central shaft.

  9. Nanoscale assembly of lanthanum silica with dense and porous interfacial structures.

    PubMed

    Ballinger, Benjamin; Motuzas, Julius; Miller, Christopher R; Smart, Simon; Diniz da Costa, João C

    2015-02-03

    This work reports on the nanoscale assembly of hybrid lanthanum oxide and silica structures, which form patterns of interfacial dense and porous networks. It was found that increasing the molar ratio of lanthanum nitrate to tetraethyl orthosilicate (TEOS) in an acid catalysed sol-gel process alters the expected microporous metal oxide silica structure to a predominantly mesoporous structure above a critical lanthanum concentration. This change manifests itself by the formation of a lanthanum silicate phase, which results from the reaction of lanthanum oxide nanoparticles with the silica matrix. This process converts the microporous silica into the denser silicate phase. Above a lanthanum to silica ratio of 0.15, the combination of growth and microporous silica consumption results in the formation of nanoscale hybrid lanthanum oxides, with the inter-nano-domain spacing forming mesoporous volume. As the size of these nano-domains increases with concentration, so does the mesoporous volume. The absence of lanthanum hydroxide (La(OH)3) suggests the formation of La2O3 surrounded by lanthanum silicate.

  10. Thermodynamic properties of lanthanum in gallium-zinc alloys

    NASA Astrophysics Data System (ADS)

    Dedyukhin, A. S.; Shepin, I. E.; Kharina, E. A.; Shchetinskiy, A. V.; Volkovich, V. A.; Yamshchikov, L. F.

    2016-09-01

    Thermodynamic properties of lanthanum were determined in gallium-zinc alloys of the eutectic and over-eutectic compositions. The electromotive force measurements were used to determine thermodynamic activity and sedimentation technique to measure solubility of lanthanum in liquid metal alloys. Temperature dependencies of lanthanum activity, solubility and activity coefficients in alloys with Ga-Zn mixtures containing 3.64, 15 and 50 wt. % zinc were obtained.

  11. A sodium-ion battery exploiting layered oxide cathode, graphite anode and glyme-based electrolyte

    NASA Astrophysics Data System (ADS)

    Hasa, Ivana; Dou, Xinwei; Buchholz, Daniel; Shao-Horn, Yang; Hassoun, Jusef; Passerini, Stefano; Scrosati, Bruno

    2016-04-01

    Room-temperature rechargeable sodium-ion batteries (SIBs), in view of the large availability and low cost of sodium raw materials, represent an important class of electrochemical systems suitable for application in large-scale energy storage. In this work, we report a novel, high power SIB formed by coupling the layered P2-Na0.7CoO2 cathode with the graphite anode in an optimized ether-based electrolyte. The study firstly addresses the electrochemical optimization of the two electrode materials and then the realization and characterization of the novel SIB based on their combination. The cell represents an original sodium rocking chair battery obtained combining the intercalation/de-intercalation processes of sodium within the cathode and anode layers. We show herein that this battery, favored by suitable electrode/electrolyte combination, offers unique performance in terms of cycle life, efficiency and, especially, power capability.

  12. Lanthanum deposition corresponds to white lesions in the stomach.

    PubMed

    Iwamuro, Masaya; Urata, Haruo; Tanaka, Takehiro; Kawano, Seiji; Kawahara, Yoshiro; Kimoto, Katsuhiko; Okada, Hiroyuki

    2018-05-23

    Although lanthanum deposition in the stomach has been most frequently reported to occur as white lesions, no study has investigated whether the white lesions observed during esophagogastroduodenoscopy are truly lanthanum-related. Here, we retrospectively investigated the amount of lanthanum in endoscopic biopsy specimens. We reviewed four patients showing gastric white spots or annular whitish mucosa in the gastric white lesions (Bw) and peripheral mucosa where the white substance was not endoscopically observed (Bp) during biopsy. We also reviewed three patients with diffuse whitish mucosa and three patients with no whitish lesions. We performed scanning electron microscopy and energy dispersive X-ray spectrometry to quantify the lanthanum elements (wt%) in the biopsy specimens. The amount of lanthanum in the Bw ranged from 0.15-0.31 wt%, whereas that of Bp was 0.00-0.13 wt%. The difference was statistically significant (P < 0.05). The amount of lanthanum in the Bw, endoscopically presented with white spots or annular whitish mucosa, was significantly higher than that of no whitish lesions (0.05-0.14 wt%, P < 0.05). The amount of lanthanum was also higher in the diffuse whitish mucosa (0.21-0.23 wt%) compared with no whitish lesions (P < 0.01). This study is the first to reveal that pathological lanthanum deposition corresponds to the endoscopically observed white lesions in the gastric mucosa. Therefore, during esophagogastroduodenoscopy, physicians should pay attention to possible presence of white lesions in patients treated with oral lanthanum carbonate to ensure prompt identification of associated issues. Copyright © 2018 Elsevier GmbH. All rights reserved.

  13. REDUCTION OF PLUTONIUM TO Pu$sup +3$ BY SODIUM DITHIONITE IN POTASSIUM CARBONATE

    DOEpatents

    Miller, D.R.; Hoekstra, H.R.

    1958-12-16

    Plutonium values are reduced in an alkaline aqueous medlum to the trlvalent state by means of sodium dlthionite. Plutonlum values are also separated from normally assoclated contaminants by metathesizing a lanthanum fluoride carrier precipitate containing plutonium with a hydroxide solution, performing the metathesis in the presence of about 0.2 M sodium dithionite at a temperature of between 40 and 90 icient laborato C.

  14. Chitosan-Sodium Phytate Films with a Strong Water Barrier and Antimicrobial Properties Produced via One-Step-Consecutive-Stripping and Layer-by-Layer-Casting Technologies.

    PubMed

    Yang, Jie; Xiong, Liu; Li, Man; Sun, Qingjie

    2018-06-20

    The pursuit of sustainable functional materials requires the development of materials based on renewable resources and efficient fabrication methods. Here, we first fabricated chitosan-sodium phytate films via one-step-stripping and layer-by-layer-casting technologies. The proposed film-fabrication methods are general, facile, environmentally benign, cost-effective, and easy to scale up. The resultant one-step-stripped film was thin (9 ± 1 μm), soft, transparent, and strong, whereas the thickness of the layer-by-layer-cast film was 70 ± 3 μm. FTIR analysis of the films indicated the formation of interactions between the phosphoric groups in sodium phytate and the amino groups in chitosan. More importantly, the water-vapor-permeability values of the one-step-stripped and cast films were 4-5 orders of magnitude lower than chitosan films reported before. Layer-by-layer-cast films in particular exhibited high tensile strength (49.21 ± 1.12 MPa) and were more than three times stronger than other polyelectrolyte multilayer films. Both types of films remained stable in an acidic environment. Furthermore, the layer-by-layer-assembled films presented greater antimicrobial activity than the stripped films. The developed chitosan-sodium phytate films can enhance several biomedical and environmental applications, such as packaging, drug delivery, diagnostics, microfluidics, and biosensing.

  15. Glass-Like Thermal Conductivity of (010)-Textured Lanthanum-Doped Strontium Niobate Synthesized with Wet Chemical Deposition

    DOE PAGES

    Foley, Brian M.; Brown-Shaklee, Harlan J.; Campion, Michael J.; ...

    2014-11-08

    We have measured the cross-plane thermal conductivity (κ) of (010)-textured, undoped, and lanthanum-doped strontium niobate (Sr 2-xLa xNb 2O 7-δ) thin films via time-domain thermoreflectance. Then the thin films were deposited on (001)-oriented SrTiO 3 substrates via the highly-scalable technique of chemical solution deposition. We find that both film thickness and lanthanum doping have little effect on κ, suggesting that there is a more dominant phonon scattering mechanism present in the system; namely the weak interlayer-bonding along the b-axis in the Sr 2Nb 2O 7 parent structure. We also compare our experimental results with two variations of the minimum-limit modelmore » for κ and discuss the nature of transport in material systems with weakly-bonded layers. The low cross-plane κ of these scalably-fabricated films is comparable to that of similarly layered niobate structures grown epitaxially.« less

  16. Phosphate-binding efficacy of crushed vs. chewed lanthanum carbonate in hemodialysis patients.

    PubMed

    How, Priscilla P; Anattiwong, Prathana; Mason, Darius L; Arruda, Jose A; Lau, Alan H

    2011-01-01

    Lanthanum carbonate, a chewable noncalcium-containing phosphorus (P) binder, is useful for treating secondary hyperparathyroidism in patients who have hypercalcemia and cannot swallow whole tablets. However, some patients cannot chew tablets or prefer to crush and mix them with food. This study was conducted to determine the P-binding efficacy of crushed lanthanum and compare it with chewed lanthanum in hemodialysis (HD) patients. After a 1-week washout period, 11 hemodialysis patients (7 men, 4 women) were randomized to receive, in a crossover fashion, lanthanum 1000 mg 3 times daily chewed with meals and lanthanum 1000 mg 3 times daily crushed into a fine powder, mixed with applesauce and taken with meals, for 4 weeks each. Serum P was measured at the end of each washout (baseline) and weekly during treatment. Changes in serum P from baseline for crushed lanthanum were compared with chewed lanthanum using paired sample t test. Administration of crushed lanthanum resulted in a significant reduction in serum P from baseline (P reduction [mg/dL] for crushed lanthanum in week 1: 2.1 ± 0.4, week 2: 1.7 ± 0.5, week 3: 1.7 ± 0.5, week 4: 1.7 ± 0.4, P<0.05). No statistically significant differences were observed in serum P reduction from baseline and serum P attained during treatment with crushed when compared with chewed lanthanum. Crushed lanthanum is effective in reducing serum P and have similar P-binding efficacy to chewed lanthanum. Crushing lanthanum and mixing it with food can thus be an option for patients who are unable to chew or swallow whole tablets. © 2010 The Authors. Hemodialysis International © 2010 International Society for Hemodialysis.

  17. Comparison of mesospheric sodium layers at different latitudes

    NASA Astrophysics Data System (ADS)

    Liu, Yingjie

    With the support of the Chinese Meridional project in the eastern hemisphere, two brand new sodium fluorescence lidars with the same configuration were respectively set up at Yanqing (40.46(°) N, 115.98(°) E) and Haikou (20.04(°) N, 110.34(°) E) in April, 2010. Based on the observations obtained from 2010 to 2012, comparison of the Na layer at these two latitudes was performed. It reveals a strong correlation in the topside layer between these two sites. Independently of their seasonal characteristics at lower altitudes, they both show an extension to 120 km and above, predominantly during summer. Simultaneous observations at these two sites show that the correlation above 102 km is remarkable in contrast to their different seasonal characteristics below 98 km. It indicates that different processes dominate different height ranges in the Na layer. Meanwhile, it indicates that the topside extension effect is global, combined with the observations at other latitudes. Besides, when the topside layer has an extension, the bottom side layer extends slightly downward, too. Comparison with known meteor showers shows that most of these extensions correspond well to one or more meteor showers, although not one by one. Meteor showers with velocities less than 35 km/s appear to have more influence on these extensions.

  18. Toward laser cooling and trapping lanthanum ions

    NASA Astrophysics Data System (ADS)

    Olmschenk, Steven; Banner, Patrick; Hankes, Jessie; Nelson, Amanda

    2017-04-01

    Trapped atomic ions are a leading candidate for applications in quantum information. For scalability and applications in quantum communication, it would be advantageous to interface ions with telecom light. We present progress toward laser cooling doubly-ionized lanthanum, which should require only infrared, telecom-compatible light. Since the hyperfine structure of this ion has not been measured, we are using optogalavanic spectroscopy in a hollow cathode lamp to measure the hyperfine spectrum of transitions in lanthanum. Using laser ablation to directly produce ions from a solid target, we laser cool and trap barium ions, and explore extending this technique to lanthanum ions. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.

  19. Fuel cells with doped lanthanum gallate electrolyte

    NASA Astrophysics Data System (ADS)

    Feng, Man; Goodenough, John B.; Huang, Keqin; Milliken, Christopher

    Single cells with doped lanthanum gallate electrolyte material were constructed and tested from 600 to 800°C. Both ceria and the electrolyte material were mixed with NiO powder respectively to form composite anodes. Doped lanthanum cobaltite was used exclusively as the cathode material. While high power density from the solid oxide fuel cells at 800°C was achieved. our results clearly indicate that anode overpotential is the dominant factor in the power loss of the cells. Better anode materials and anode processing methods need to be found to fully utilize the high ionic conductivity of the doped lanthanum galiate and achieve higher power density at 800°C from solid oxide fuel cells.

  20. Multifunctionality of nanocrystalline lanthanum ferrite

    NASA Astrophysics Data System (ADS)

    Rai, Atma; Thakur, Awalendra K.

    2016-05-01

    Nanocrystalline lanthanum ferrite has been synthesized by adopting modified Pechini route. No evidence of impurity or secondary phase has been detected up to the detection of error limit of X-ray diffractometer (XRD). Rietveld refinement of X-ray diffraction pattern reveals orthorhombic crystal system with space group Pnma (62).Crystallite size and lattice strain was found to be ˜42.8nm and 0.306% respectively. Optical band gap was found to be 2.109 eV, by UV-Visible diffused reflectance spectrum (DRS). Brunauer-Emmet-Teller (BET) surface area was found to be ˜3.45 m2/g. Magnetization-hysteresis (M-H) loop was recorded at room temperature (300K) reveals weak ferromagnetism in Nanocrystalline lanthanum ferrite. The weak ferromagnetism in lanthanum ferrite is due to the uncompensated antiferromagnetic spin ordering. Ferroelectric loop hysteresis observed at room temperature at 100Hz depicts the presence of ferroelectric ordering in LaFeO3.Simultanious presence of magnetic and ferroelectric ordering at room temperature makes it suitable candidate of Multiferroic family.

  1. Lower thermospheric-enhanced sodium layers observed at low latitude and possible formation: Case studies

    NASA Astrophysics Data System (ADS)

    Xue, X. H.; Dou, X. K.; Lei, J.; Chen, J. S.; Ding, Z. H.; Li, T.; Gao, Q.; Tang, W. W.; Cheng, X. W.; Wei, K.

    2013-05-01

    We report two lower thermospheric-enhanced sodium layer (TeSL) cases observed at a low-latitude station, Lijiang, China (26.7°N, 100.0°E), on 10 March and 10 April 2012, respectively. The TeSLs in the two cases were located at altitudes near 122 and 112 km, respectively. In addition, strong sporadic sodium layers (SSLs) near 100 km accompanied the TeSL observed on 10 March 2012. Both the TeSLs and SSLs exhibited tidal-induced downward motion. The adjacent ground-based and space-borne ionospheric radio observations showed strong Es layers before the appearance of the TeSLs, suggesting an " Es- TeSLs (SSLs)" chain formed through the tidal wind shear mechanism. Assuming that the vertical tidal wavelengths remain unchanged, it is found that in different regions caused by the tidal wind shear, different TeSLs evolution processes are expected: (1) in a tidal-convergence region, a TeSL/SSL with a downward propagation phase is enhanced due to a rapid decrease in the Na+lifetime at the lower altitude; (2) in an ion convergence-divergence interface region, a TeSL/SSL will still follow the tidal downward phase progression, but sodium density does not exhibit evident enhancement; and (3) when a TeSL/SSL enters into a tidal wind-divergence zone, the layer density tends to decrease.

  2. Thermoelectric properties of non-stoichiometric lanthanum sulfides

    NASA Technical Reports Server (NTRS)

    Shapiro, E.; Danielson, L. R.

    1983-01-01

    The lanthanum sulfides are promising candidate materials for high-efficiency thermoelectric applications at temperatures up to 1300 C. The non-stoichiometric lanthanum sulfides (LaS(x), where x is in the range 1.33-1.50) appear to possess the most favorable thermoelectric properties. The Seebeck coefficient and resistivity vary significantly with composition, so that an optimum value of alpha sq/rho (where alpha is the Seebeck coefficient and rho is the resistivity) can be chosen. The thermal conductivity remains approximately constant with stoichiometry, so a material with an optimum value of alpha sq/rho should possess the optimum figure-of-merit. Data for the Seebeck coefficient and electrical resistivity of non-stoichiometric lanthanum sulfides will be pressed, together with structural properties of these materials.

  3. Pseudocapacitive Sodium Storage by Ferroelectric Sn2 P2 S6 with Layered Nanostructure.

    PubMed

    Huang, Sheng; Meng, Chao; Xiao, Min; Ren, Shan; Wang, Shuanjin; Han, Dongmei; Li, Yuning; Meng, Yuezhong

    2018-04-19

    Sodium ion batteries (SIB) are considered promising alternative candidates for lithium ion batteries (LIB) because of the wide availability and low cost of sodium, therefore the development of alternative sodium storage materials with comparable performance to LIB is urgently desired. The sodium ions with larger sizes resist intercalation or alloying because of slow reaction kinetics. Most pseudocapacitive sodium storage materials are based on subtle nanomaterial engineering, which is difficult for large-scale production. Here, ferroelectric Sn 2 P 2 S 6 with layered nanostructure is developed as sodium ion storage material. The ferroelectricity-enhanced pseudocapacitance of sodium ion in the interlayer spacing makes the electrochemical reaction easier and faster, endowing the Sn 2 P 2 S 6 electrode with excellent rate capability and cycle stability. Furthermore, the facile solid state reaction synthesis and common electrode fabrication make the Sn 2 P 2 S 6 that becomes a promising anode material of SIB. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Determination of Protein by Fluorescence Enhancement of Curcumin in Lanthanum-Curcumin-Sodium Dodecyl Benzene Sulfonate-Protein System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Feng; Huang, Wei; Zhang, Yunfeng

    2011-01-01

    We found that the fluorescence intensity of the lanthanum (La(3+))-curcumin (CU) complex can be highly enhanced by proteins in the presence of sodium dodecyl benzene sulphonate (SDBS). Based on this finding, a new fluorimetric method for the determination of protein was developed. Under optimized conditions, the enhanced intensities of fluorescence are quantitatively in proportion to the concentrations of proteins in the range 0.0080-20.0 g mL(-1) for bovine serum albumin (BSA) and 0.00080-20.0 g mL(-1) for human serum albumin (HSA) with excitation of 425 nm, and 0.00020-20.0 g mL(-1) for bovine serum albumin (BSA) and 0.00080-20.0 g mL(-1)for human serum albuminmore » (HSA) with excitation of 280 nm, while corresponding qualitative detection limits (S/N 3) are as low as 5.368, 0.573, 0.049, 0.562 g mL(-1), respectively. Study on reaction mechanism reveals that proteins can bind with La(3+), CU and SDBS through self-assembling function with electrostatic attraction, hydrogen bonding, hydrophobic interaction and van der Waals forces, etc. The proteins form a supermolecular association with multilayer structure, in which La(3+)-CU is clamped between BSA and SDBS. The unique high fluorescence enhancement of CU is resulted through synergic effects of favorable hydrophobic microenvironment provided by BSA and SDBS, and efficient intermolecular energy transfer among BSA, SDBS and CU. In energy transfer process, La(3+) plays a crucial role because it not only shortens the distance between SDBS and CU, but also acts as a "bridge" for transferring the energy from BSA to CU.« less

  5. Efficacy of Sodium Hypochlorite Activated With Laser in Intracanal Smear Layer Removal: An SEM Study

    PubMed Central

    Shahriari, Shahriar; Kasraei, Shahin; Roshanaei, Ghodratollah; Karkeabadi, Hamed; Davanloo, Hossein

    2017-01-01

    Introduction: The purpose of the present study was to evaluate the different concentrations of sodium hypochlorite activated with laser in removing of the smear layer in the apical, middle, and coronal segments of root canal walls by scanning electron microscopy analysis. Methods: Sixty single-rooted human mandibular teeth were decoronated to a standardized length. The samples were prepared by using Race rotary system to size 40, 0.04 taper and divided into 4 equal groups (n = 15). Group 1, irrigated with EDTA 17% and 5.25% NaOCl, groups 2, 3 and 4, 1%, 2.5%, and 5% NaOCl activated with Nd:YAG laser, respectively. Teeth were split longitudinally and subjected to scanning electron microscope (SEM). Data were analyzed by Kruskal-Wallis, Mann-Whitney tests. P value of <0.05 was considered statistically significant. Results: Five percent NaOCl LAI (laser-activated irrigation) showed best smear layer removal in test groups and the difference was statistically significant (P < 0.001). Control group (EDTA 17% and 5.25% NaOCl irrigation) showed significantly better outcomes in comparative with test groups (P < 0.001). In the apical third, compared to coronal and middle third, the canal walls were often contaminated by inorganic debris and smear layer. Conclusion: All different concentrations of sodium hypochlorite activated with laser have a positive effect on removing of smear layer. Sodium hypochlorite activated with laser removed smear layer more effectively at the coronal and middle third compared to the apical third. PMID:28912942

  6. Cytocompatibility of a free machining titanium alloy containing lanthanum.

    PubMed

    Feyerabend, Frank; Siemers, Carsten; Willumeit, Regine; Rösler, Joachim

    2009-09-01

    Titanium alloys like Ti6Al4V are widely used in medical engineering. However, the mechanical and chemical properties of titanium alloys lead to poor machinability, resulting in high production costs of medical products. To improve the machinability of Ti6Al4V, 0.9% of the rare earth element lanthanum (La) was added. The microstructure, the mechanical, and the corrosion properties were determined. Lanthanum containing alloys exhibited discrete particles of cubic lanthanum. The mechanical properties and corrosion resistance were slightly decreased but are still sufficient for many applications in the field of medical engineering. In vitro experiments with mouse macrophages (RAW 264.7) and human bone-derived cells (MG-63, HBDC) were performed and revealed that macrophages showed a dose response below and above a LaCl3 concentration of 200 microM, while MG-63 and HBDC tolerated three times higher concentrations without reduction of viability. The viability of cells cultured on disks of the materials showed no differences between the reference and the lanthanum containing alloy. We therefore propose that lanthanum containing alloy appears to be a good alternative for biomedical applications, where machining of parts is necessary.

  7. Rapidly Synthesized, Few-Layered Pseudocapacitive SnS2 Anode for High-Power Sodium Ion Batteries.

    PubMed

    Thangavel, Ranjith; Samuthira Pandian, Amaresh; Ramasamy, Hari Vignesh; Lee, Yun-Sung

    2017-11-22

    The abundance of sodium resources has recently motivated the investigation of sodium ion batteries (SIBs) as an alternative to commercial lithium ion batteries. However, the low power and low capacity of conventional sodium anodes hinder their practical realization. Although most research has concentrated on the development of high-capacity sodium anodes, anodes with a combination of high power and high capacity have not been widely realized. Herein, we present a simple microwave irradiation technique for obtaining few-layered, ultrathin two-dimensional SnS 2 over graphene sheets in a few minutes. SnS 2 possesses a large number of active surface sites and exhibits high-capacity, rapid sodium ion storage kinetics induced by quick, nondestructive pseudocapacitance. Enhanced sodium ion storage at a high current density (12 A g -1 ), accompanied by high reversibility and high stability, was demonstrated. Additionally, a rationally designed sodium ion full cell coupled with SnS 2 //Na 3 V 2 (PO 4 ) 3 exhibited exceptional performance with high initial Coulombic efficiency (99%), high capacity, high stability, and a retention of ∼53% of the initial capacity even after the current density was increased by a factor of 140. In addition, a high specific energy of ∼140 Wh kg -1 and an ultrahigh specific power of ∼8.3 kW kg -1 (based on the mass of both the anode and cathode) were observed. Because of its outstanding performance and rapid synthesis, few-layered SnS 2 could be a promising candidate for practical realization of high-power SIBs.

  8. Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

    DOEpatents

    Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

    2005-10-18

    An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  9. Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

    DOEpatents

    Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

    2003-09-09

    An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  10. Theoretical and lidar studies of the density response of the mesospheric sodium layer to gravity wave perturbations

    NASA Technical Reports Server (NTRS)

    Shelton, J. D.; Gardner, C. S.

    1981-01-01

    The density response of atmospheric layers to gravity waves is developed in two forms, an exact solution and a perturbation series solution. The degree of nonlinearity in the layer density response is described by the series solution whereas the exact solution gives insight into the nature of the responses. Density perturbation in an atmospheric layer are shown to be substantially greater than the atmospheric density perturbation associated with the propagation of a gravity wave. Because of the density gradients present in atmospheric layers, interesting effects were observed such as a phase reversal in the linear layer response which occurs near the layer peak. Once the layer response is understood, the sodium layer can be used as a tracer of atmospheric wave motions. A two dimensional digital signal processing technique was developed. Both spatial and temporal filtering are utilized to enhance the resolution by decreasing shot noise by more han 10 dB. Many of the features associated with a layer density response to gravity waves were observed in high resolution density profiles of the mesospheric sodium layer. These include nonlinearities as well as the phase reversal in the linear layer response.

  11. Stabilized Lanthanum Sulphur Compounds

    NASA Technical Reports Server (NTRS)

    Reynolds, George H. (Inventor); Elsner, Norbert B. (Inventor); Shearer, Clyde H. (Inventor)

    1985-01-01

    Lanthanum sulfide is maintained in the stable cubic phase form over a temperature range of from 500 C to 1500 C by adding to it small amounts of calcium, barium. or strontium. This novel compound is an excellent thermoelectric material.

  12. Diminiode thermionic energy conversion with lanthanum-hexaboride electrodes

    NASA Technical Reports Server (NTRS)

    Kroeger, E. W.; Bair, V. L.; Morris, J. F.

    1978-01-01

    Thermionic conversion data obtained from a variable gap cesium diminiode with a hot pressed, sintered lanthanum hexaboride emitter and an arc melted lanthanum hexaboride collector are presented. Performance curves cover a range of temperatures: emitter 1500 to 1700 K, collector 750 to 1000 K, and cesium reservoir 370 to 510 K. Calculated values of emitter and collector work functions and barrier index are also given.

  13. Clinical Characteristics of Seven Patients with Lanthanum Phosphate Deposition in the Stomach.

    PubMed

    Murakami, Naoko; Yoshioka, Masao; Iwamuro, Masaya; Nasu, Junichirou; Nose, Soichiro; Shiode, Junji; Okada, Hiroyuki; Yamamoto, Kazuhide

    2017-08-15

    Objective To analyze the clinical characteristics and endoscopic features of patients with lanthanum deposition in the stomach. Patients We retrospectively reviewed seven patients with lanthanum deposition in the stomach who were diagnosed at Okayama Saiseikai General Hospital. We investigated the patient sex, age at diagnosis, medical and medication histories, gastrointestinal symptoms, complications, presence or absence of gastric atrophy, and outcome. We also investigated any changes in the endoscopic features if previous endoscopic images were available. Results Seven patients (six males and one female) had lanthanum deposition. The median age was 65 years (range, 50-79 years). All patients had been undergoing dialysis (continuous ambulatory peritoneal dialysis in one patient, hemodialysis in six patients). The dialysis period ranged from 16 to 73 months (median, 52 months). The patients had all been taking lanthanum carbonate for a period ranging from 5 to 45 months (median, 27 months). Gastric atrophy was noted in 6 patients (85.7%). One patient had difficulty swallowing, and 1 other patient had appetite loss. The other 5 patients were asymptomatic. Endoscopic features included annular whitish mucosa (n = 4), diffuse whitish mucosa (n = 3), and whitish spots (n = 2). Five patients underwent multiple esophagogastroduodenoscopy. The endoscopic features were unchanged in 2 patients, whereas the whitish mucosa became apparent and spread during the course in 3 patients. Conclusion We identified 7 patients with lanthanum deposition in the stomach. All patients showed whitish lesions macroscopically. Although the pathogenicity of gastric lanthanum deposition is uncertain, lanthanum-related lesions in the stomach progressed during continuous lanthanum phosphate intake in several patients.

  14. Efficacy of chewed vs. crushed lanthanum on phosphorus binding in healthy volunteers.

    PubMed

    How, P P; Mason, D L; Arruda, J A; Lau, A H

    2010-05-01

    For effective dietary phosphorous (P) binding, patients are recommended to chew lanthanum tablets completely before swallowing, with or immediately after meals. However, some patients are unable to chew the tablets. It is not known if crushing the tablets prior to taking them with food is as efficacious as chewing them. This study was conducted to compare the efficacy of chewed vs. crushed lanthanum on P binding. 12 healthy subjects were randomized and crossed-over to receive: (A) a standardized meal containing 1 g (32 mmol) of elemental P; (B) a single 1 g oral dose of lanthanum, chewed and taken with the standardized meal; (C) a single 1 g oral dose of lanthanum, crushed into a fine powder using a pestle and mortar, mixed with applesauce, and taken with the standardized meal. Blood and urine samples were collected from baseline to 8 hours after meal completion. The changes in serum P, urinary P excretion and fractional excretion of P (FePi) were compared among treatment arms using ANOVA. Co-administration of lanthanum with meal resulted in a smaller increase in serum P, compared with meal alone (p < 0.05). The smaller increase in serum P was similar for both chewed and crushed lanthanum. The amount of P excreted and FePi were also lower when chewed or crushed lanthanum was administered with meal, compared with meal alone (p = n.s. and p < 0.05, respectively). Both chewed and crushed lanthanum are effective in lowering P absorption after a dietary P load.

  15. Nutritional status and survival of maintenance hemodialysis patients receiving lanthanum carbonate.

    PubMed

    Komaba, Hirotaka; Kakuta, Takatoshi; Wada, Takehiko; Hida, Miho; Suga, Takao; Fukagawa, Masafumi

    2018-04-16

    Hyperphosphatemia and poor nutritional status are associated with increased mortality. Lanthanum carbonate is an effective, calcium-free phosphate binder, but little is known about the long-term impact on mineral metabolism, nutritional status and survival. We extended the follow-up period of a historical cohort of 2292 maintenance hemodialysis patients that was formed in late 2008. We examined 7-year all-cause mortality according to the serum phosphate levels and nutritional indicators in the entire cohort and then compared the mortality rate of the 562 patients who initiated lanthanum with that of the 562 propensity score-matched patients who were not treated with lanthanum. During a mean ± SD follow-up of 4.9 ± 2.3 years, 679 patients died in the entire cohort. Higher serum phosphorus levels and lower nutritional indicators (body mass index, albumin and creatinine) were each independently associated with an increased risk of death. In the propensity score-matched analysis, patients who initiated lanthanum had a 23% lower risk for mortality compared with the matched controls. During the follow-up period, the serum phosphorus levels tended to decrease comparably in both groups, but the lanthanum group maintained a better nutritional status than the control group. The survival benefit associated with lanthanum was unchanged after adjustment for time-varying phosphorus or other mineral metabolism parameters, but was attenuated by adjustments for time-varying indicators of nutritional status. Treatment with lanthanum is associated with improved survival in hemodialysis patients. This effect may be partially mediated by relaxation of dietary phosphate restriction and improved nutritional status.

  16. Barium strontium titanate thin film growth with variation of lanthanum dopant compatibility as sensor prototype in the satellite technology

    NASA Astrophysics Data System (ADS)

    Mulyadi; Wahyuni, Rika; Hardhienata, Hendradi; Irzaman

    2018-05-01

    Electrical properties of barium strontium titanate thin films were investigated. Three layers of barium strontium titanate thin films have been prepared by chemical solution deposition method and spin coating technique at 8000 rpm rotational speed for 30 seconds and temperature of annealing at 850°C for eight hours with temperature increment of 1.67°C/minute. Materials produced by the process of lanthanum dopant with doping variations of 2%, 4% and 6% above type-p silicon (100) substrates. Film obtained was then carried out the characterization using USB 2000 VIS-NIR and tauc plot method. As a result, the barium strontium titanate thin film has the value of band gap energy of 1.58 eV, 1.92 eV and 2.24 eV respectively. The characterization of electrical properties shows that the band gap value of barium strontium titanate thin film with lanthanum dopant was in the range of semiconductor value. Barium strontium titanate thin films with lanthanum dopant are sensitive to temperature changes, so it potentially to be applied to temperature monitoring on satellite technology.

  17. Adsorption and mineralization of REE-lanthanum onto bacterial cell surface.

    PubMed

    Cheng, Yangjian; Zhang, Li; Bian, Xiaojing; Zuo, Hongyang; Dong, Hailiang

    2017-07-11

    A large number of rare earth element mining and application resulted in a series of problems of soil and water pollution. Environmental remediation of these REE-contaminated sites has become a top priority. This paper explores the use of Bacillus licheniformis to adsorb lanthanum and subsequent mineralization process in contaminated water. The maximum adsorption capacity of lanthanum on bacteria was 113.98 mg/g (dry weight) biomass. X-ray diffraction (XRD) and transmission electron microscopy (TEM) data indicated that adsorbed lanthanum on bacterial cell surface occurred in an amorphous form at the initial stage. Scanning electron microscopy with X-ray energy-dispersive spectroscopy (SEM/EDS) results indicated that lanthanum adsorption was correlated with phosphate. The amorphous material was converted into scorpion-like monazite (LaPO 4 nanoparticles) in a month. The above results provide a method of using bacterial surface as adsorption and nucleation sites to treat REE-contaminated water.

  18. Catalytic asymmetric Michael reactions promoted by a lithium-free lanthanum-BINOL complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasai, Hiroaki; Arai, Takayoshi; Shibasaki, Masakatsu

    1994-02-23

    In this communication, we report about a new lithium-free BINOL-lanthanum complex, which is quite effective in catalytic asymmetric Michael reaction. We have succeeded in developing effective asymmetric base catalysts, in particular, asymmetric ester enolate catalysts for asymmetric Michael reactions. Two asymmetric lanthanum complexes are now available, namely, BINOL-lanthanum-lithium complex, which is quite effective in catalytic asymmetric nitrosaldol reactions, and a new lithium-free BINOL-lanthanum ester enolate complex, that is very effective in catalytic asymmetric Michael reactions. The two complexes complement each other in their ability to catalyze asymmetric nitroaldol and asymmetric Michael reactions. 14 refs., 1 fig., 2 tabs.

  19. 40 CFR 721.10370 - Phosphonic acid, p-octyl-, lanthanum (3+) salt (2:1).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphonic acid, p-octyl-, lanthanum... New Uses for Specific Chemical Substances § 721.10370 Phosphonic acid, p-octyl-, lanthanum (3+) salt... substance identified as phosphinic acid, p-octyl-, lanthanum (3+) salt (2:1) (PMN P-10-99; CAS No. 1186211...

  20. 40 CFR 721.10370 - Phosphonic acid, p-octyl-, lanthanum (3+) salt (2:1).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphonic acid, p-octyl-, lanthanum... New Uses for Specific Chemical Substances § 721.10370 Phosphonic acid, p-octyl-, lanthanum (3+) salt... substance identified as phosphinic acid, p-octyl-, lanthanum (3+) salt (2:1) (PMN P-10-99; CAS No. 1186211...

  1. 40 CFR 721.10370 - Phosphonic acid, p-octyl-, lanthanum (3+) salt (2:1).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphonic acid, p-octyl-, lanthanum... New Uses for Specific Chemical Substances § 721.10370 Phosphonic acid, p-octyl-, lanthanum (3+) salt... substance identified as phosphinic acid, p-octyl-, lanthanum (3+) salt (2:1) (PMN P-10-99; CAS No. 1186211...

  2. Delaminated sodium nonatitanate and a method for producing delaminated sodium nonatitanate

    DOEpatents

    Nyman, May D.

    2016-02-02

    A hydrothermal synthesis method of making a delaminated titanate is disclosed. The delaminated titanate has a unique structure or morphology. The delaminated titanate is first formed by forming at a low temperature a layered sodium nonatitanate (SNT), which may be referred to as layered sodium titanate. The layered SNT has a unique morphology. The layered SNT is then synthesized into a delaminated titanate having a unique morphology.

  3. Dipicolinate Complexes of Gallium(III) and Lanthanum(III).

    PubMed

    Weekes, David M; Ramogida, Caterina F; Jaraquemada-Peláez, Maria de Guadalupe; Patrick, Brian O; Apte, Chirag; Kostelnik, Thomas I; Cawthray, Jacqueline F; Murphy, Lisa; Orvig, Chris

    2016-12-19

    Three dipicolinic acid amine-derived compounds functionalized with a carboxylate (H 3 dpaa), phosphonate (H 4 dppa), and bisphosphonate (H 7 dpbpa), as well as their nonfunctionalized analogue (H 2 dpa), were successfully synthesized and characterized. The 1:1 lanthanum(III) complexes of H 2 dpa, H 3 dpaa, and H 4 dppa, the 1:2 lanthanum(III) complex of H 2 dpa, and the 1:1 gallium(III) complex of H 3 dpaa were characterized, including via X-ray crystallography for [La 4 (dppa) 4 (H 2 O) 2 ] and [Ga(dpaa)(H 2 O)]. H 2 dpa, H 3 dpaa, and H 4 dppa were evaluated for their thermodynamic stability with lanthanum(III) via potentiometric and either UV-vis spectrophotometric (H 3 dpaa) or NMR spectrometric (H 2 dpa and H 4 dppa) titrations, which showed that the carboxylate (H 3 dpaa) and phosphonate (H 4 dppa) containing ligands enhanced the lanthanum(III) complex stability by 3-4 orders of magnitude relative to the unfunctionalized ligand (comparing log β ML and pM values) at physiological pH. In addition, potentiometric titrations with H 3 dpaa and gallium(III) were performed, which gave significantly (8 orders of magnitude) higher thermodynamic stability constants than with lanthanum(III). This was predicted to be a consequence of better size matching between the dipicolinate cavity and gallium(III), which was also evident in the aforementioned crystal structures. Because of a potential link between lanthanum(III) and osteoporosis, the ligands were tested for their bone-directing properties via a hydroxyapatite (HAP) binding assay, which showed that either a phosphonate or bisphosphonate moiety was necessary in order to elicit a chemical binding interaction with HAP. The oral activity of the ligands and their metal complexes was also assessed by experimentally measuring log P o/w values using the shake-flask method, and these were compared to a currently prescribed osteoporosis drug (alendronate). Because of the potential therapeutic applications of the radionuclides

  4. Controlling the Laser Guide Star power density distribution at Sodium layer by combining Pre-correction and Beam-shaping

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Wei, Kai; Jin, Kai; Li, Min; Zhang, YuDong

    2018-06-01

    The Sodium laser guide star (LGS) plays a key role in modern astronomical Adaptive Optics Systems (AOSs). The spot size and photon return of the Sodium LGS depend strongly on the laser power density distribution at the Sodium layer and thus affect the performance of the AOS. The power density distribution is degraded by turbulence in the uplink path, launch system aberrations, the beam quality of the laser, and so forth. Even without any aberrations, the TE00 Gaussian type is still not the optimal power density distribution to obtain the best balance between the measurement error and temporal error. To optimize and control the LGS power density distribution at the Sodium layer to an expected distribution type, a method that combines pre-correction and beam-shaping is proposed. A typical result shows that under strong turbulence (Fried parameter (r0) of 5 cm) and for a quasi-continuous wave Sodium laser (power (P) of 15 W), in the best case, our method can effectively optimize the distribution from the Gaussian type to the "top-hat" type and enhance the photon return flux of the Sodium LGS; at the same time, the total error of the AOS is decreased by 36% with our technique for a high power laser and poor seeing.

  5. Calcium and lanthanum solid base catalysts for transesterification

    DOEpatents

    Ng, K. Y. Simon; Yan, Shuli; Salley, Steven O.

    2015-07-28

    In one aspect, a heterogeneous catalyst comprises calcium hydroxide and lanthanum hydroxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In another aspect, a heterogeneous catalyst comprises a calcium compound and a lanthanum compound, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g, and a total basicity of about 13.6 mmol/g. In further another aspect, a heterogeneous catalyst comprises calcium oxide and lanthanum oxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In still another aspect, a process for preparing a catalyst comprises introducing a base precipitant, a neutral precipitant, and an acid precipitant to a solution comprising a first metal ion and a second metal ion to form a precipitate. The process further comprises calcining the precipitate to provide the catalyst.

  6. Characteristics of convective structures of sodium layer in lower thermosphere (105-120 km) at Haikou (19.99°N, 110.34°E), China

    NASA Astrophysics Data System (ADS)

    Jiao, Jing; Yang, Guotao; Wang, Jihong; Zhang, Tiemin; Peng, Hongyan; Xun, Yuchang; Liu, Zhengkuan; Wang, Chi

    2017-11-01

    The atmospheric sodium layer normally occurs in the mesopause (80-105 km) region, but rarely in the lower thermosphere region (>105 km) at low latitude. We observed a kind of peculiar sodium layer in lower thermosphere at Haikou (19.99°N, 110.34°E)-the thermospheric convective sodium layer (TCSL) in a lidargram. The TCSL's sodium density unstably developed over time and appeared as several discontinuous convective shapes vertically. It is the first time convective sodium layer observed in the lower thermosphere region (105-120 km). Based on Haikou lidar data, we obtained 14 TCSL events during 180 nights from March 2010 to August 2012. Most of the apogees of the TCSL events are higher than 108 km. A TCSL event lasts several hours and is composed of several convective structures, with each veitical shape lasting ∼5-30 min. All TCSL events occurred during spring and summer, and generally appear near midnight (22:00-00:00 LT). The TCSL has potential regional feature and appears to be related to the thermospheric sporadic E (Es) layers, winds, and field-aligned ionospheric irregularities (FAI).

  7. Preparation and in vitro evaluation of guar gum based triple-layer matrix tablet of diclofenac sodium

    PubMed Central

    Chavda, H.V.; Patel, M.S.; Patel, C.N.

    2012-01-01

    The objective of the present study was to design an oral controlled drug delivery system for sparingly soluble diclofenac sodium (DCL) using guar gum as triple-layer matrix tablets. Matrix tablet granules containing 30% (D1), 40% (D2) or 50% (D3) of guar gum were prepared by the conventional wet granulation technique. Matrix tablets of diclofenac sodium were prepared by compressing three layers one by one. Centre layer of sandwich like structure was incorporated with matrix granules containing DCL which was covered on either side by guar gum granule layers containing either 70, 80 or 87% of guar gum as release retardant layers. The tablets were evaluated for hardness, thickness, drug content, and drug release studies. To ascertain the kinetics of drug release, the dissolution profiles were fitted to various mathematical models. The in vitro drug release from proposed system was best explained by the Hopfenberg model indicating that the release of drug from tablets displayed heterogeneous erosion. D3G3, containing 87% of guar gum in guar gum layers and 50% of guar gum in DCL matrix granule layer was found to provide the release rate for prolonged period of time. The results clearly indicate that guar gum could be a potential hydrophilic carrier in the development of oral controlled drug delivery systems. PMID:23181081

  8. DISSOLUTION OF LANTHANUM FLUORIDE PRECIPITATES

    DOEpatents

    Fries, B.A.

    1959-11-10

    A plutonium separatory ore concentration procedure involving the use of a fluoride type of carrier is presented. An improvement is given in the derivation step in the process for plutonium recovery by carrier precipitation of plutonium values from solution with a lanthanum fluoride carrier precipitate and subsequent derivation from the resulting plutonium bearing carrier precipitate of an aqueous acidic plutonium-containing solution. The carrier precipitate is contacted with a concentrated aqueous solution of potassium carbonate to effect dissolution therein of at least a part of the precipitate, including the plutonium values. Any remaining precipitate is separated from the resulting solution and dissolves in an aqueous solution containing at least 20% by weight of potassium carbonate. The reacting solutions are combined, and an alkali metal hydroxide added to a concentration of at least 2N to precipitate lanthanum hydroxide concomitantly carrying plutonium values.

  9. Enhancement of Superconductivity of Lanthanum and Yttrium Sesquicarbide

    DOEpatents

    Krupka, M. C.; Giorgi, A. L.; Krikorian, N. H.; Szklarz, E. G.

    1972-06-22

    A method of enhancing the superconductivity of body-centered cubic lanthanum and yttrium sesquicarbide through formation of the sesquicarbides from ternary alloys of novel composition (N/sub x/M/sub 1-x/)C/sub z/, where N is yttrium or lanthanum, M is thorium, any of the Group IV and VI transition metals, or gold, germanium or silicon, and z is approximately 1.2 to 1.6. These ternary sesquicarbides have superconducting transition temperatures as high as 17.0/sup 0/K.

  10. Enhancement of superconductivity of lanthanum and yttrium sesquicarbide

    DOEpatents

    Krupka, M.C.; Giorgi, A.L.; Krikorian, N.H.; Szklarz, E.G.

    1971-06-22

    A method of enhancing the superconductivity of body-centered cubic lanthanum and yttrium sesquicarbide through formation of the sesquicarbides from ternary alloys of novel composition (N/sub x/M/sub 1-x/)C/sub z/, where N is yttrium or lanthanum, M is thorium, any of the Group IV and VI transition metals, or gold, germanium or silicon, and z is approximately 1.2 to 1.6. These ternary sesquicarbides have superconducting transition temperatures as high as 17.0/sup 0/K.

  11. Case study of simultaneous observations of sporadic sodium layer, E-region field-aligned irregularities and sporadic E layer at low latitude of China

    NASA Astrophysics Data System (ADS)

    Xie, H. Y.; Ning, B. Q.; Zhao, X. K.; Hu, L. H.

    2017-03-01

    Using the Na lidar at Haikou (20.0°N, 110.3°E), the VHF coherent radar and the digital ionosonde both at Sanya (18.4°N, 109.6°E), cases of simultaneous observations of sporadic sodium layer (SSL), E-region field-aligned irregularities (FAI) and sporadic E layer (Es) in the mesosphere and lower thermosphere (MLT) region at low latitude of China are studied. It is found that SSL occurs simultaneously or follows the enhancement of Es and FAI. The Es, FAI and SSL descend slowly with time which is mostly controlled by the diurnal tide (DT). Besides, the interaction of gravity wave (GW) with tides can cause oscillations in FAI and SSL. Our observations support the neutralization of ions for SSL formation: when the metallic ions layer descents to the altitudes where models predict, the sodium ions convert rapidly to atomic Na that may form an SSL event. Moreover, the SSL peak density will increase (decrease) in the convergence (divergence) vertical shear region of zonal wind.

  12. SEPARATION OF PLUTONIUM FROM LANTHANUM BY CHELATION-EXTRACTION

    DOEpatents

    James, R.A.; Thompson, S.G.

    1958-12-01

    Plutonium can be separated from a mixture of plutonlum and lanthanum in which the lanthanum to plutonium molal ratio ls at least five by adding the ammonium salt of N-nitrosoarylhydroxylamine to an aqueous solution having a pH between about 3 and 0.2 and containing the plutonium in a valence state of at least +3, to form a plutonium chelate compound of N-nitrosoarylhydroxylamine. The plutonium chelate compound may be recovered from the solution by extracting with an immiscible organic solvent such as chloroform.

  13. A comparative study of layered transition metal oxide cathodes for application in sodium-ion battery.

    PubMed

    Hasa, Ivana; Buchholz, Daniel; Passerini, Stefano; Hassoun, Jusef

    2015-03-11

    Herein, we report a study on P-type layered sodium transition metal-based oxides with a general formula of NaxMO2 (M = Ni, Fe, Mn). We synthesize the materials via coprecipitation followed by annealing in air and rinsing with water, and we examine the electrodes as cathodes for sodium-ion batteries using a propylene carbonate-based electrolyte. We fully investigate the effect of the Ni-to-Fe ratio, annealing temperature, and sodium content on the electrochemical performances of the electrodes. The impact of these parameters on the structural and electrochemical properties of the materials is revealed by X-ray diffraction, scanning electron microscopy, and cyclic voltammetry, respectively. The suitability of this class of P-type materials for sodium battery application is finally demonstrated by cycling tests revealing an excellent electrochemical performance in terms of delivered capacity (i.e., about 200 mAh g(-1)) and charge-discharge efficiency (approaching 100%).

  14. Pervaporation dehydration of ethanol by hyaluronic acid/sodium alginate two-active-layer composite membranes.

    PubMed

    Gao, Chengyun; Zhang, Minhua; Ding, Jianwu; Pan, Fusheng; Jiang, Zhongyi; Li, Yifan; Zhao, Jing

    2014-01-01

    The composite membranes with two-active-layer (a capping layer and an inner layer) were prepared by sequential spin-coatings of hyaluronic acid (HA) and sodium alginate (NaAlg) on the polyacrylonitrile (PAN) support layer. The SEM showed a mutilayer structure and a distinct interface between the HA layer and the NaAlg layer. The coating sequence of two-active-layer had an obvious influence on the pervaporation dehydration performance of membranes. When the operation temperature was 80 °C and water concentration in feed was 10 wt.%, the permeate fluxes of HA/Alg/PAN membrane and Alg/HA/PAN membrane were similar, whereas the separation factor were 1130 and 527, respectively. It was found that the capping layer with higher hydrophilicity and water retention capacity, and the inner layer with higher permselectivity could increase the separation performance of the composite membranes. Meanwhile, effects of operation temperature and water concentration in feed on pervaporation performance as well as membrane properties were studied. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Chlorination of lanthanum oxide.

    PubMed

    Gaviría, Juan P; Navarro, Lucas G; Bohé, Ana E

    2012-03-08

    The reactive system La(2)O(3)(s)-Cl(2)(g) was studied in the temperature range 260-950 °C. The reaction course was followed by thermogravimetry, and the solids involved were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The results showed that the reaction leads to the formation of solid LaOCl, and for temperatures above 850 °C, the lanthanum oxychloride is chlorinated, producing LaCl(3)(l). The formation of the oxychloride progresses through a nucleation and growth mechanism, and the kinetic analysis showed that at temperatures below 325 °C the system is under chemical control. The influence of diffusive processes on the kinetics of production of LaOCl was evaluated by studying the effect of the reactive gas flow rate, the mass of the sample, and the chlorine diffusion through the boundary layer surrounding the solid sample. The conversion curves were analyzed and fitted according to the Johnson-Mehl-Avrami description, and the reaction order with respect to the chlorine partial pressure was obtained by varying this partial pressure between 10 and 70 kPa. The rate equation was obtained, which includes the influence of the temperature, chlorine partial pressure, and reaction degree.

  16. Electrochemical Deposition of Lanthanum Telluride Thin Films and Nanowires

    NASA Astrophysics Data System (ADS)

    Chi, Su (Ike); Farias, Stephen; Cammarata, Robert

    2013-03-01

    Tellurium alloys are characterized by their high performance thermoelectric properties and recent research has shown nanostructured tellurium alloys display even greater performance than bulk equivalents. Increased thermoelectric efficiency of nanostructured materials have led to significant interests in developing thin film and nanowire structures. Here, we report on the first successful electrodeposition of lanthanum telluride thin films and nanowires. The electrodeposition of lanthanum telluride thin films is performed in ionic liquids at room temperature. The synthesis of nanowires involves electrodepositing lanthanum telluride arrays into anodic aluminum oxide (AAO) nanoporous membranes. These novel procedures can serve as an alternative means of simple, inexpensive and laboratory-environment friendly methods to synthesize nanostructured thermoelectric materials. The thermoelectric properties of thin films and nanowires will be presented to compare to current state-of-the-art thermoelectric materials. The morphologies and chemical compositions of the deposited films and nanowires are characterized using SEM and EDAX analysis.

  17. High rate buffer layer for IBAD MgO coated conductors

    DOEpatents

    Foltyn, Stephen R [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM; Arendt, Paul N [Los Alamos, NM

    2007-08-21

    Articles are provided including a base substrate having a layer of an oriented material thereon, and, a layer of hafnium oxide upon the layer of an oriented material. The layer of hafnium oxide can further include a secondary oxide such as cerium oxide, yttrium oxide, lanthanum oxide, scandium oxide, calcium oxide and magnesium oxide. Such articles can further include thin films of high temperature superconductive oxides such as YBCO upon the layer of hafnium oxide or layer of hafnium oxide and secondary oxide.

  18. Nanomechanics and Sodium Permeability of Endothelial Surface Layer Modulated by Hawthorn Extract WS 1442

    PubMed Central

    Peters, Wladimir; Drueppel, Verena; Kusche-Vihrog, Kristina; Schubert, Carola; Oberleithner, Hans

    2012-01-01

    The endothelial glycocalyx (eGC) plays a pivotal role in the physiology of the vasculature. By binding plasma proteins, the eGC forms the endothelial surface layer (ESL) which acts as an interface between bloodstream and endothelial cell surface. The functions of the eGC include mechanosensing of blood flow induced shear stress and thus flow dependent vasodilation. There are indications that levels of plasma sodium concentrations in the upper range of normal and beyond impair flow dependent regulation of blood pressure and may therefore increase the risk for hypertension. Substances, therefore, that prevent sodium induced endothelial dysfunction may be attractive for the treatment of cardiovascular disease. By means of combined atomic force - epifluorescence microscopy we studied the impact of the hawthorn (Crataegus spp.) extract WS 1442, a herbal therapeutic with unknown mechanism of action, on the mechanics of the ESL of ex vivo murine aortae. Furthermore, we measured the impact of WS 1442 on the sodium permeability of endothelial EA.hy 926 cell monolayer. The data show that (i) the ESL contributes by about 11% to the total endothelial barrier resistance for sodium and (ii) WS 1442 strengthens the ESL resistance for sodium up to about 45%. This mechanism may explain some of the vasoprotective actions of this herbal therapeutic. PMID:22253842

  19. Nanomechanics and sodium permeability of endothelial surface layer modulated by hawthorn extract WS 1442.

    PubMed

    Peters, Wladimir; Drüppel, Verena; Drueppel, Verena; Kusche-Vihrog, Kristina; Schubert, Carola; Oberleithner, Hans

    2012-01-01

    The endothelial glycocalyx (eGC) plays a pivotal role in the physiology of the vasculature. By binding plasma proteins, the eGC forms the endothelial surface layer (ESL) which acts as an interface between bloodstream and endothelial cell surface. The functions of the eGC include mechanosensing of blood flow induced shear stress and thus flow dependent vasodilation. There are indications that levels of plasma sodium concentrations in the upper range of normal and beyond impair flow dependent regulation of blood pressure and may therefore increase the risk for hypertension. Substances, therefore, that prevent sodium induced endothelial dysfunction may be attractive for the treatment of cardiovascular disease. By means of combined atomic force-epifluorescence microscopy we studied the impact of the hawthorn (Crataegus spp.) extract WS 1442, a herbal therapeutic with unknown mechanism of action, on the mechanics of the ESL of ex vivo murine aortae. Furthermore, we measured the impact of WS 1442 on the sodium permeability of endothelial EA.hy 926 cell monolayer. The data show that (i) the ESL contributes by about 11% to the total endothelial barrier resistance for sodium and (ii) WS 1442 strengthens the ESL resistance for sodium up to about 45%. This mechanism may explain some of the vasoprotective actions of this herbal therapeutic.

  20. DFT Studies on Interaction between Lanthanum and Hydroxyamide

    NASA Astrophysics Data System (ADS)

    Pati, Anindita; Kundu, T. K.; Pal, Snehanshu

    2018-03-01

    Extraction and separation of individual rare earth elements has been a challenge as they are chemically very similar. Solvent extraction is the most suitable way for extraction of rare earth elements. Acidic, basic, neutral, chelating are the major classes of extractants for solvent extraction of rare earth elements. The coordination complex of chelating extractants is very selective with positively charged metal ion. Hence they are widely used. Hydroxyamide is capable of forming chelates with metal cations. In this present study interactions of hydroxyamide ligand with lanthanum have been investigated using density functional theory (DFT). Two different functional such as raB97XD and B3LYP are applied along with 6-31+G(d,p) basis set for carbon, nitrogen, hydrogen and SDD basis set for lanthanum. Stability of formed complexes has been evaluated based on calculated interaction energies and solvation energies. Frontier orbital (highest occupied molecular orbital or HOMO and lowest unoccupied molecular orbital or LUMO) energies of the molecule have also been calculated. Electronegativity, chemical hardness, chemical softness and chemical potential are also determined for these complexes to get an idea about the reactivity. From the partial charge distribution it is seen that oxygen atoms in hydroxyamide have higher negative charge. The double bonded oxygen atom present in the hydroxyamide structure has higher electron density and so it forms bond with lanthanum but the singly bonded oxygen atom in the hydroxyamide structure is weaker donor atom and so it is less available for interaction with lanthanum.

  1. Lanthanum fluoride nanoparticles for radiosensitization of tumors

    NASA Astrophysics Data System (ADS)

    Kudinov, Konstantin; Bekah, Devesh; Cooper, Daniel; Shastry, Sathvik; Hill, Colin; Bradforth, Stephen; Nadeau, Jay

    2016-03-01

    Dense inorganic nanoparticles have recently been identified as promising radiosensitizers. In addition to dose enhancement through increased attenuation of ionizing radiation relative to biological tissue, scintillating nanoparticles can transfer energy to coupled photosensitizers to amplify production of reactive oxygen species, as well as provide UVvisible emission for optical imaging. Lanthanum fluoride is a transparent material that is easily prepared as nanocrystals, and which can provide radioluminescence at a number of wavelengths through simple substitution of lanthanum ions with other luminescent lanthanides. We have prepared lanthanum fluoride nanoparticles doped with cerium, terbium, or both, that have good spectral overlap with chlorine6 or Rose Bengal photosensitizer molecules. We have also developed a strategy for stable conjugation of the photosensitizers to the nanoparticle surface, allowing for high energy transfer efficiencies on a per molecule basis. Additionally, we have succeeded in making our conjugates colloidally stable under physiological conditions. Here we present our latest results, using nanoparticles and nanoparticle-photosensitizer conjugates to demonstrate radiation dose enhancement in B16 melanoma cells. The effects of nanoparticle treatment prior to 250 kVp x-ray irradiation were investigated through clonogenic survival assays and cell cycle analysis. Using a custom apparatus, we have also observed scintillation of the nanoparticles and conjugates under the same conditions that the cell samples are irradiated.

  2. First-principles study of the solid solution of hydrogen in lanthanum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoellhammer, Gunther; Herzig, Peter; Wolf, Walter

    2011-09-01

    Results from first-principles investigations of the energetical, structural, electronic, and vibrational properties of model structures probing the metal-rich region of the lanthanum-hydrogen system, i.e., the region of the solid solution of hydrogen in lanthanum, are presented. We have studied the site preference and the ordering tendency of hydrogen atoms interstitially bonded in close-packed lanthanum. Spatially separated hydrogen atoms have turned out to exhibit an energetical preference for the occupation of octahedral interstitial sites at low temperature. Indications for a reversal of the site preference in favor of the occupation of tetrahedral interstitial sites at elevated temperature have been found. Linearmore » arrangements consisting of pairs of octahedrally and/or tetrahedrally coordinated hydrogen atoms collinearly bonded to a central lanthanum atom have turned out to be energetically favorable structure elements. Further stabilization is achieved if such hydrogen pairs are in turn linked together so that extended chains of La-H bonds are formed. Pair formation and chain linking counteract the energetical preference for octahedral coordination observed for separated hydrogen atoms.« less

  3. The Statitical and Case studies of the Thermospheric Enhanced Sodium Layers (TeSLs)

    NASA Astrophysics Data System (ADS)

    Xue, X.; Li, G.; She, C. Y.; Dou, X.

    2015-12-01

    We report the thermospheric enhanced sodium layers (TeSLs) observed at low and middle latitude region. Based on the statistical results of the TeSLs observed at Hainan, China (20.0N), a low latitude region, during the year 2011 - 2012, we found a good correlation between the TeSLs and the ionospheric counterparts in E region. For nine of the total 10 TeSLs, which were observed by a sodium lidar, the adjacent ionospheric observations from the COSMIC radio occultation and ionosondes exhibited abrupt perturbations in the RO SNR profiles and spread Es in the ionograms, respectively, indicating the existence of large-scale complex Es. Further, all the TeSLs, which had the co-observations by a VHF radar located nearby, were accompanied by the E region field-aligned irregularity (FAI) echoes. And seven FAIs (7/10) showed evident upwelling structure covering altitudes of 100 -- 140 km, well correlated with the development of the TeSLs. The occurrence of the large-scale complex Es possibly implies the direct altitude modulation of the horizontal Es layers by the atmospheric waves or the strong eastward polarization electric fields, which contribute the formation the FAI structures. In the course of the altitude modulation of the Es layers, sufficient ions (including sodium ions) and electrons could be accumulated in the upper altitude during the upward motion of the FAI plasma and benefits the formation of TeSLs through the chemical reaction. Two TeSL cases observed at Fort Collins, CO (20.0N), a middle latitude region, during day of year (DOY) 177 - 179 and DOY 191 during the year 2003. The enhanced sodium density in the lower thermospheric region provided the simultaneous observations for the horizontal wind and temperature. The TeSLs observed at Fort Collins had the similar feathers, i.e., they appeared at approximately 110 km and propagated with a downward speed of 1.5 - 2.5 km/hr, meanwhile, the higher temperature with approximately 50K increase and strong horizontal

  4. Ames Lab 101: Lanthanum Decanting

    ScienceCinema

    Riedemann, Trevor

    2018-04-27

    Ames Laboratory scientist Trevor Riedemann explains the process that allows Ames Laboratory to produce some of the purest lanthanum in the world. This and other high-purity rare-earth elements are used to create alloys used in various research projects and play a crucial role in the Planck satellite mission.

  5. Novel borothermal route for the synthesis of lanthanum cerium hexaborides and their field emission properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menaka; Patra, Rajkumar; Ghosh, Santanu

    2012-10-15

    The present study describes the development of a simple approach to stabilize polycrystalline lanthanum cerium hexaborides without using any flux and at ambient pressure. The nanostructured lanthanum-cerium borides were synthesized using hydroxide precursors. These precursors (La{sub 1-x}Ce{sub x}(OH){sub 3}, x=0.1, 0.2, 0.3 and 0.5) were synthesized via hydrothermal route in the presence of Tergitol (surfactant, nonylphenol ethoxylate) as a capping agent. The precursors on heating with boron at 1300 Degree-Sign C lead to the formation of nanostructures (cubes, rods and pyramids) of lanthanum cerium hexaboride. We have investigated the field emission behaviour of the hexaboride films fabricated by spin coating.more » It was observed that the pyramidal shaped nanostructures of La{sub 0.5}Ce{sub 0.5}B{sub 6} shows excellent field emission characteristics with high field enhancement factor of 4502. - Graphical abstract: Nanostructured lanthanum cerium hexaboride with efficient field emission have fabricated by low temperature hydroxide precursor mediated route. Highlights: Black-Right-Pointing-Pointer New methodology to prepare lanthanum cerium hexaboride at 1300 Degree-Sign C via borothermal route. Black-Right-Pointing-Pointer Nanostructured lanthanum cerium hexaboride film by spin coating process. Black-Right-Pointing-Pointer Nanopyramids based lanthanum cerium hexaboride shows excellent field emission.« less

  6. Multifunctionality of nanocrystalline lanthanum ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, Atma, E-mail: atma@iitp.ac.in; Thakur, Awalendra K.; Centre for Energy and Environment, Indian Institute of Technology Patna 800013 India

    2016-05-06

    Nanocrystalline lanthanum ferrite has been synthesized by adopting modified Pechini route. No evidence of impurity or secondary phase has been detected up to the detection of error limit of X-ray diffractometer (XRD). Rietveld refinement of X-ray diffraction pattern reveals orthorhombic crystal system with space group Pnma (62).Crystallite size and lattice strain was found to be ∼42.8nm and 0.306% respectively. Optical band gap was found to be 2.109 eV, by UV-Visible diffused reflectance spectrum (DRS). Brunauer-Emmet-Teller (BET) surface area was found to be ∼3.45 m{sup 2}/g. Magnetization-hysteresis (M-H) loop was recorded at room temperature (300K) reveals weak ferromagnetism in Nanocrystalline lanthanummore » ferrite. The weak ferromagnetism in lanthanum ferrite is due to the uncompensated antiferromagnetic spin ordering. Ferroelectric loop hysteresis observed at room temperature at 100Hz depicts the presence of ferroelectric ordering in LaFeO{sub 3}.Simultanious presence of magnetic and ferroelectric ordering at room temperature makes it suitable candidate of Multiferroic family.« less

  7. Sporadic and thermospheric enhanced sodium layers observed by a lidar chain over China

    NASA Astrophysics Data System (ADS)

    Dou, X. K.; Qiu, S. C.; Xue, X. H.; Chen, T. D.; Ning, B. Q.

    2013-10-01

    We report the statistical features of sporadic sodium layers (SSLs) and the thermospheric enhanced sodium layers (TeSLs) observed by a lidar chain located at Beijing (40.2°N, 116.2°E), Hefei (31.8°N, 117.3°E), Wuhan (30.5°N, 114.4°E), and Haikou (19.5°N, 109.1°E). The average SSL occurrence rate was approximately 46.0, 12.3, 13.8, and 15.0 h per SSL at Beijing, Hefei, Wuhan, and Haikou, respectively. However, the TeSLs occurred relatively infrequently and were more likely to appear at low and high latitudinal sites. Both the SSLs and TeSLs at four lidar sites showed evident summer enhancements and correlated well with Es (foEs>4 MHz). The coobservations of SSLs at three lidar site pairs, i.e., Hefei-Beijing, Hefei-Wuhan, and Hefei-Beijing, indicated that a large-scale SSL extended horizontally for at least a few hundred kilometers and exhibited a tidal-induced modulation. Moreover, the SSLs were better correlated for the Hefei-Wuhan and Hefei-Haikou pairs than the Hefei-Beijing pair, which suggested a difference in the dynamical/chemical process in mesosphere and lower thermosphere (MLT) between the Beijing site and the other sites.

  8. Sporadic and Thermospheric Enhanced Sodium Layers Observed by a Lidar Chain over China

    NASA Astrophysics Data System (ADS)

    Xue, X.

    2013-12-01

    We report the statistical features of sporadic sodium layers (SSLs) and the thermospheric enhanced sodium layers (TeSLs) observed by a lidar chain located at Beijing (40.2N,116.2E), Hefei (31.8N, 117.3E), Wuhan (30.5N, 114.4E), and Haikou (19.5N, 109.1E). The average SSL occurrence rate was approximately 46.0, 12.3, 13.8, and 15.0 hr per SSL at Beijing, Hefei, Wuhan, and Haikou, respectively. However, the TeSLs occurred relatively infrequently and were more likely to appear at low and high latitudinal sites. Both the SSLs and TeSLs at four lidar sites showed evident summer enhancements and correlated well with Es (foEs>4MHz). The co-observations of SSLs at three lidar site pairs, i.e., Hefei -- Beijing, Hefei -- Wuhan and Hefei -- Beijing, indicated that a large-scale SSL extended horizontally for at least a few hundred kilometers and exhibited a tidal-induced modulation. Moreover, the SSLs were better correlated for the Hefei -- Wuhan and Hefei -- Haikou pairs than the Hefei -- Beijing pair, which suggested a difference in the dynamical/chemical process in mesosphere and lower thermosphere (MLT) between the Beijing site and the other sites.

  9. Leaching behavior of lanthanum, nickel and iron from spent catalyst using inorganic acids

    NASA Astrophysics Data System (ADS)

    Astuti, W.; Prilitasari, N. M.; Iskandar, Y.; Bratakusuma, D.; Petrus, H. T. B. M.

    2018-01-01

    Highly technological applications of rare earth metals (REs) and scarcity of supply have become an incentive torecover the REs from various resources, which include high grade and low grade ores, as well as recycledwaste materials. Spent hydrocracking catalyst contain lanthanum and a variety of valuable metals such as nickel and iron. This study investigated the recovery of lanthanum, nickel and iron from spent hydrocracking catalyst by leaching using various inorganic acid (sulfuric acid, hydrochloric acid, and nitric acid). The effect of acid concentration, type of acid and leaching temperature was conducted to study the leaching behavior of each valuable metal from spent-catalyst. It has been shown that it is possible to recover more than 90% of lanthanum, however the leaching efficiency of nickel and iron in this process was very low. It can be concluded that the leaching process is selective for lanthanum recovery from hydrocracking spent-catalyst.

  10. Temperature Dependent Electrical and Micromechanical Properties of Lanthanum Titanate with Additions of Yttria

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2003-01-01

    Lanthanum titanate (La2Ti2O7) a layered distorted perovskite (1) with space group Pna2(sub 1) has been shown to have potential as a high temperature piezoelectric (2). However this highly refractory oxide compound must be consolidated at relatively high temperatures approximately 1400 C. Commercial La2Ti207 powders were mechanically alloyed with additions of Y2O3 to lower the consolidation temperature by 300 C and to provide post processing mechanical stability. Temperature dependent electrical, elastic and anelastic behavior were selected as nondestructive means of evaluating the effects of yttria on the properties of this ferroceramic material.

  11. Modulating the Electrochemical Performances of Layered Cathode Materials for Sodium Ion Batteries through Tuning Coulombic Repulsion between Negatively Charged TMO2 Slabs.

    PubMed

    Li, Zheng-Yao; Wang, Huibo; Yang, Wenyun; Yang, Jinbo; Zheng, Lirong; Chen, Dongfeng; Sun, Kai; Han, Songbai; Liu, Xiangfeng

    2018-01-17

    Exploiting advanced layered transition metal oxide cathode materials is of great importance to rechargeable sodium batteries. Layered oxides are composed of negatively charged TMO 2 slabs (TM = transition metal) separated by Na + diffusion layers. Herein, we propose a novel insight, for the first time, to control the electrochemical properties by tuning Coulombic repulsion between negatively charged TMO 2 slabs. Coulombic repulsion can finely tailor the d-spacing of Na ion layers and material structural stability, which can be achieved by employing Na + cations to serve as effective shielding layers between TMO 2 layers. A series of O3-type Na x Mn 1/3 Fe 1/3 Cu 1/6 Mg 1/6 O 2 (x = 1.0, 0.9, 0.8, and 0.7) have been prepared, and Na 0.7 Mn 1/3 Fe 1/3 Cu 1/6 Mg 1/6 O 2 shows the largest Coulombic repulsion between TMO 2 layers, the largest space for Na ion diffusion, the best structural stability, and also the longest Na-O chemical bond with weaker Coulombic attraction, thus leading to the best electrochemical performance. Meanwhile, the thermal stability depends on the Na concentration in pristine materials. Ex situ X-ray absorption (XAS) analysis indicates that Mn, Fe, and Cu ions are all electrochemically active components during insertion and extraction of sodium ion. This study enables some new insights to promote the development of advanced layered Na x TMO 2 materials for rechargeable sodium batteries in the future.

  12. Reversible Adhesion with Polyelectrolyte Brushes Tailored via the Uptake and Release of Trivalent Lanthanum Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farina, Robert; Laugel, Nicolas; Yu, Jing

    Applications of end-tethered polyelectrolyte “brushes” to modify solid surfaces have been developed and studied for their colloidal stabilization and high lubrication properties. Current efforts have expanded into biological realms and stimuli-responsive materials. Our work explores responsive and reversible aspects of polyelectrolyte brush behavior when polyelectrolyte chains interact with oppositely charged multivalent ions and complexes, which act as counterions. There is a significant void in the polyelectrolyte literature regarding interactions with multivalent species. This paper demonstrates that interactions between solid surfaces bearing negatively charged polyelectrolyte brushes are highly sensitive to the presence of trivalent lanthanum, La3+. Lanthanum cations have unique interactionsmore » with polyelectrolyte chains, in part due to their small size and hydration radius which results in a high local charge density. Using La3+ in conjunction with the surface forces apparatus (SFA), adhesion has been observed to reversibly appear and disappear upon the uptake and release, respectively, of these multivalent cations acting as counterions. In media of fixed ionic strength set by monovalent sodium salt, at I0 = 0.003 M and I0 = 0.3 M, the sign of the interaction forces between overlapping brushes changes from repulsive to attractive when La3+ concentrations reach 0.1 mol % of the total ion concentration. These results are also shown to be generally consistent with, but subtlety different from, previous polyelectrolyte brush experiments using trivalent ruthenium hexamine in the role of the multivalent counterion.« less

  13. Formulation and Assessment of a Wash-Primer Containing Lanthanum "Tannate" for Steel Temporary Protection

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Oriana; Selmi, Gonzalo J.; Deyá, Cecilia; Di Sarli, Alejandro; Romagnoli, Roberto

    2018-02-01

    Tannins are polyphenols synthesized by plants and useful for the coating industry as corrosion inhibitors. In addition, lanthanum salts have a great inhibitory effect on steel corrosion. The aim of this study was to obtain lanthanum "tannate" with adequate solubility to be incorporated as the corrosion inhibitor in a wash-primer. The "tannate" was obtained from commercial "Quebracho" tannin and 0.1 M La(NO3)3. The soluble tannin was determined by the Folin-Denis reagent, while the concentration of Lanthanum was obtained by a gravimetric procedure. The protective action of "tannate" on SAE 1010 steel was evaluated by linear polarization curves and corrosion potential measurements. Lanthanum "tannate" was incorporated in a wash-primer formulation and tested by corrosion potential and ionic resistance measurements. The corrosion rate was also determined by the polarization resistance technique. Besides, the primer was incorporated in an alkyd paint system and its anticorrosion performance assessed in the salt spray cabinet and by electrochemical impedance spectroscopy. Results showed that lanthanum "tannate" primer inhibits the development of deleterious iron oxyhydroxides on the steel substrate and incorporated into a paint system had a similar behavior to the primer formulated with zinc tetroxychromate.

  14. High-temperature superconductivity in space-charge regions of lanthanum cuprate induced by two-dimensional doping

    PubMed Central

    Baiutti, F.; Logvenov, G.; Gregori, G.; Cristiani, G.; Wang, Y.; Sigle, W.; van Aken, P. A.; Maier, J.

    2015-01-01

    The exploitation of interface effects turned out to be a powerful tool for generating exciting material properties. Such properties include magnetism, electronic and ionic transport and even superconductivity. Here, instead of using conventional homogeneous doping to enhance the hole concentration in lanthanum cuprate and achieve superconductivity, we replace single LaO planes with SrO dopant planes using atomic-layer-by-layer molecular beam epitaxy (two-dimensional doping). Electron spectroscopy and microscopy, conductivity measurements and zinc tomography reveal such negatively charged interfaces to induce layer-dependent superconductivity (Tc up to 35 K) in the space-charge zone at the side of the planes facing the substrate, where the strontium (Sr) profile is abrupt. Owing to the growth conditions, the other side exhibits instead a Sr redistribution resulting in superconductivity due to conventional doping. The present study represents a successful example of two-dimensional doping of superconducting oxide systems and demonstrates its power in this field. PMID:26481902

  15. Fluoride removal in water by a hybrid adsorbent lanthanum-carbon.

    PubMed

    Vences-Alvarez, Esmeralda; Velazquez-Jimenez, Litza Halla; Chazaro-Ruiz, Luis Felipe; Diaz-Flores, Paola E; Rangel-Mendez, Jose Rene

    2015-10-01

    Various health problems associated with drinking water containing high fluoride levels, have motivated researchers to develop more efficient adsorbents to remove fluoride from water for beneficial concentrations to human health. The objective of this research was to anchor lanthanum oxyhydroxides on a commercial granular activated carbon (GAC) to remove fluoride from water considering the effect of the solution pH, and the presence of co-existing anions and organic matter. The activated carbon was modified with lanthanum oxyhydroxides by impregnation. SEM and XRD were performed in order to determine the crystal structure and morphology of the La(III) particles anchored on the GAC surface. FT-IR and pK(a)'s distribution were determined in order to elucidate both the possible mechanism of the lanthanum anchorage on the activated carbon surface and the fluoride adsorption mechanism on the modified material. The results showed that lanthanum ions prefer binding to carboxyl and phenolic groups on the activated carbon surface. Potentiometric titrations revealed that the modified carbon (GAC-La) possesses positive charge at a pH lower than 9. The adsorption capacity of the modified GAC increased five times in contrast to an unmodified GAC adsorption capacity at an initial F(-) concentration of 20 mg L(-1). Moreover, the presence of co-existing anions had no effect on the fluoride adsorption capacity at concentrations below 30 mg L(-1), that indicated high F(-) affinity by the modified adsorbent material (GAG-La). Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Thermoelectric Properties of Lanthanum Sulfide

    NASA Technical Reports Server (NTRS)

    Wood, C.; Lockwood, R.; Parker, J. B.; Zoltan, A.; Zoltan, L. D.; Danielson, L.; Raag, V.

    1987-01-01

    Report describes measurement of Seebeck coefficient, electrical resistivity, thermal conductivity, and Hall effect in gamma-phase lanthanum sulfide with composition of La3-x S4. Results of study, part of search for high-temperature thermoelectric energy-conversion materials, indicate this sulfide behaves like extrinsic semiconductor over temperature range of 300 to 1,400 K, with degenerate carrier concentration controlled by stoichiometric ratio of La to S.

  17. Fabrication of Lanthanum Telluride 14-1-11 Zintl High-Temperature Thermoelectric Couple

    NASA Technical Reports Server (NTRS)

    Ravi, Vilupanur A.; Li, Billy Chun-Yip; Fleurial, Pierre; Star, Kurt

    2010-01-01

    telluride coupon was diffusion bonded to the metal foil using a thin adhesion layer. (2) Repeating a similar process for the 14-1-11 Zintl p-type leg of the advanced thermoelectric couple. (3) Bonding thick CTE-matched metal plates on the metallized lanthanum telluride and Yb14MnSb11 to form the hot and cold sides of the thermoelectric couple. The calculated conversion efficiency of such an advanced couple would be about 10.5 percent, about 35 percent better than heritage radioisotope thermoelectric technology that relies on Si-Ge alloys. In addition, unlike Si-Ge alloys, these materials can be combined with many other thermoelectric materials optimized for operation at lower temperatures to achieve conversion efficiency in excess of 15 percent (a factor of 2 increase over heritage technology).

  18. Cr(VI) Adsorption on Red Mud Modified by Lanthanum: Performance, Kinetics and Mechanisms

    PubMed Central

    Cui, You-Wei; Li, Jie; Du, Zhao-Fu; Peng, Yong-Zhen

    2016-01-01

    Water pollution caused by the highly toxic metal hexavalent chromium (Cr(VI)) creates significant human health and ecological risks. In this study, a novel adsorbent was used to treat Cr(VI)-containing wastewater; the adsorbent was prepared using red mud (RM) generated from the alumina production industry and the rare earth element lanthanum. This study explored adsorption performance, kinetics, and mechanisms. Results showed that the adsorption kinetics of the RM modified by lanthanum (La-RM), followed the pseudo-second-order model, with a rapid adsorption rate. Cr(VI) adsorption was positively associated with the absorbent dose, pH, temperature, and initial Cr(VI) concentration; coexisting anions had little impact. The maximum Cr(VI) adsorption capacity was 17.35 mg/g. Cr(VI) adsorption on La-RM was a mono-layer adsorption pattern, following the Langmuir isotherm model. Thermodynamic parameters showed the adsorption was spontaneous and endothermic. The adsorption of Cr(VI) on La-RM occurred as a result of LaOCl formation on the RM surface, which in turn further reacted with Cr(VI) in the wastewater. This study highlighted a method for converting industrial waste into a valuable material for wastewater treatment. The novel absorbent could be used as a potential adsorbent for treating Cr(VI)-contaminating wastewater, due to its cost-effectiveness and high adsorption capability. PMID:27658113

  19. Lanthanum tricyanide-catalyzed acyl silane-ketone benzoin additions.

    PubMed

    Tarr, James C; Johnson, Jeffrey S

    2009-09-03

    Lanthanum tricyanide efficiently catalyzes a benzoin-type coupling between acyl silanes and ketones. Yields range from moderate to excellent over a broad substrate scope encompassing aryl, alkyl, electron-rich, and sterically hindered ketones.

  20. Image improvement from a sodium-layer laser guide star adaptive optics system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Max, C. E., LLNL

    1997-06-01

    A sodium-layer laser guide star beacon with high-order adaptive optics at Lick Observatory produced a factor of 2.4 intensity increase and a factor of 2 decrease in full width at half maximum for an astronomical point source, compared with image motion compensation alone. Image full widths at half maximum were identical for laser and natural guide stars (0.3 arc seconds). The Strehl ratio with the laser guide star was 65% of that with a natural guide star. This technique should allow ground-based telescopes to attain the diffraction limit, by correcting for atmospheric distortions.

  1. Lanthanum Tricyanide-Catalyzed Acyl Silane-Ketone Benzoin Additions

    PubMed Central

    Tarr, James C.; Johnson, Jeffrey S.

    2009-01-01

    Lanthanum tricyanide efficiently catalyzes a benzoin-type coupling between acyl silanes and ketones. Yields range from moderate to excellent over a broad substrate scope encompassing aryl, alkyl, electron-rich, and sterically hindered ketones. PMID:19655731

  2. Lanthanum Nitrate As Electrolyte Additive To Stabilize the Surface Morphology of Lithium Anode for Lithium-Sulfur Battery.

    PubMed

    Liu, Sheng; Li, Guo-Ran; Gao, Xue-Ping

    2016-03-01

    Lithium-sulfur (Li-S) battery is regarded as one of the most promising candidates beyond conventional lithium ion batteries. However, the instability of the metallic lithium anode during lithium electrochemical dissolution/deposition is still a major barrier for the practical application of Li-S battery. In this work, lanthanum nitrate, as electrolyte additive, is introduced into Li-S battery to stabilize the surface of lithium anode. By introducing lanthanum nitrate into electrolyte, a composite passivation film of lanthanum/lithium sulfides can be formed on metallic lithium anode, which is beneficial to decrease the reducibility of metallic lithium and slow down the electrochemical dissolution/deposition reaction on lithium anode for stabilizing the surface morphology of metallic Li anode in lithium-sulfur battery. Meanwhile, the cycle stability of the fabricated Li-S cell is improved by introducing lanthanum nitrate into electrolyte. Apparently, lanthanum nitrate is an effective additive for the protection of lithium anode and the cycling stability of Li-S battery.

  3. Beneficial effect of boron in layered sodium-ion cathode materials - The example of Na2/3B0.11Mn0.89O2

    NASA Astrophysics Data System (ADS)

    Vaalma, Christoph; Buchholz, Daniel; Passerini, Stefano

    2017-10-01

    Sodium-ion batteries are regarded as a complementary drop-in technology to lithium-ion batteries because they promise lower cost and a higher degree of environmental friendliness. Among other reasons, these benefits come from the use of manganese-based materials, whose stabilization via cation substitution is intensively studied to improve the electrochemical performance. Although multiple elements have been considered as substituent, surprisingly, boron has not been reported for layered sodium-ion cathode materials up to date. Our investigation of layered Na2/3B0.11Mn0.89O2 reveals an unexpectedly good electrochemical performance, with charge and discharge capacities of more than 175 mAh g-1 at 10 mA g-1 and 135 mAh g-1 at 500 mA g-1. The measured capacities are among the highest ever reported for sodium-based layered oxides in the potential range of 4.0-2.0 V vs. Na/Na+.

  4. Processing Techniques Developed to Fabricate Lanthanum Titanate Piezoceramic Material for High-Temperature Smart Structures

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.; Farmer, Serene C.; Sayir, Ali

    2004-01-01

    Piezoelectric ceramic materials are potential candidates for use as actuators and sensors in intelligent gas turbine engines. For piezoceramics to be applied in gas turbine engines, they will have to be able to function in temperatures ranging from 1000 to 2500 F. However, the maximum use temperature for state-of-the-art piezoceramic materials is on the order of 300 to 400 F. Research activities have been initiated to develop high-temperature piezoceramic materials for gas turbine engine applications. Lanthanum titanate has been shown to have high-temperature piezoelectric properties with Curie temperatures of T(sub c) = 1500 C and use temperatures greater than 1000 C. However, the fabrication of lanthanum titanate poses serious challenges because of the very high sintering temperatures required for densification. Two different techniques have been developed at the NASA Glenn Research Center to fabricate dense lanthanum titanate piezoceramic material. In one approach, lower sintering temperatures were achieved by adding yttrium oxide to commercially available lanthanum titanate powder. Addition of only 0.1 mol% yttrium oxide lowered the sintering temperature by as much as 300 C, to just 1100 C, and dense lanthanum titanate was produced by pressure-assisted sintering. The second approach utilized the same commercially available powders but used an innovative sintering approach called differential sintering, which did not require any additive.

  5. Synthesis-microstructure-performance relationship of layered transition metal oxides as cathode for rechargeable sodium batteries prepared by high-temperature calcination.

    PubMed

    Xie, Man; Luo, Rui; Lu, Jun; Chen, Renjie; Wu, Feng; Wang, Xiaoming; Zhan, Chun; Wu, Huiming; Albishri, Hassan M; Al-Bogami, Abdullah S; El-Hady, Deia Abd; Amine, Khalil

    2014-10-08

    Research on sodium batteries has made a comeback because of concern regarding the limited resources and cost of lithium for Li-ion batteries. From the standpoint of electrochemistry and economics, Mn- or Fe-based layered transition metal oxides should be the most suitable cathode candidates for affordable sodium batteries. Herein, this paper reports a novel cathode material, layered Na1+x(Fey/2Niy/2Mn1-y)1-xO2 (x = 0.1-0.5), synthesized through a facile coprecipitation process combined with subsequent calcination. For such cathode material calcined at 800 °C for 20 h, the Na/Na1+x(Fey/2Niy/2Mn1-y)1-xO2 (x = 0.4) electrode exhibited a good capacity of 99.1 mAh g(-1) (cycled at 1.5-4.0 V) and capacity retention over 87% after 50 cycles. Optimization of this material would make layered transition metal oxides a strong candidate for the Na-ion battery cathode.

  6. Bond layer for a solid oxide fuel cell, and related processes and devices

    DOEpatents

    Wu, Jian; Striker, Todd-Michael; Renou, Stephane; Gaunt, Simon William

    2017-03-21

    An electrically-conductive layer of material having a composition comprising lanthanum and strontium is described. The material is characterized by a microstructure having bimodal porosity. Another concept in this disclosure relates to a solid oxide fuel cell attached to at least one cathode interconnect by a cathode bond layer. The bond layer includes a microstructure having bimodal porosity. A fuel cell stack which incorporates at least one of the cathode bond layers is also described herein, along with related processes for forming the cathode bond layer.

  7. Electrical properties of lanthanum chromite based ceramics in hydrogen and oxidizing atmospheres at high temperatures

    NASA Astrophysics Data System (ADS)

    Schmidt, V. H.

    1981-06-01

    Several results regarding the effect of hydrogen on lanthanum chromite were determined. Thermally-activated diffusion of hydrogen through La(Mg)CrO3 was found with a high activation energy. It was found that its electrical conductivity drops drastically, especially at low temperature, after exposure to hydrogen at high temperature. Also, the curvature of most of the conductivity plots, as well as the inability to observe the Hall effect, lends support to the proposal by Karim and Aldred that the small-polaron model which predicts thermally activated mobility is applicable to doped lanthanum chromite. From differential thermal analysis, an apparent absorption of hydrogen near 3000 C was noticed. Upon cooling the lanthanum chromite in hydrogen and subsequently reheating it in air, desorption occurred near 1700 C. The immediate purpose of this study was to determine whether hydrogen has a deleterious effect on lanthanum chromite in solid oxide fuel cells.

  8. Raman Spectra of High-κ Dielectric Layers Investigated with Micro-Raman Spectroscopy Comparison with Silicon Dioxide

    PubMed Central

    Borowicz, P.; Taube, A.; Rzodkiewicz, W.; Latek, M.; Gierałtowska, S.

    2013-01-01

    Three samples with dielectric layers from high-κ dielectrics, hafnium oxide, gadolinium-silicon oxide, and lanthanum-lutetium oxide on silicon substrate were studied by Raman spectroscopy. The results obtained for high-κ dielectrics were compared with spectra recorded for silicon dioxide. Raman spectra suggest the similarity of gadolinium-silicon oxide and lanthanum-lutetium oxide to the bulk nondensified silicon dioxide. The temperature treatment of hafnium oxide shows the evolution of the structure of this material. Raman spectra recorded for as-deposited hafnium oxide are similar to the results obtained for silicon dioxide layer. After thermal treatment especially at higher temperatures (600°C and above), the structure of hafnium oxide becomes similar to the bulk non-densified silicon dioxide. PMID:24072982

  9. Density Optimization of Lithium Lanthanum Titanate Ceramics for Lightweight Lithium-Air Batteries

    DTIC Science & Technology

    2014-11-01

    Thangadurai V, Weppner W. Lithium lanthanum titanates: a review. Chemistry of Materials. 2003;15:3974–3990. 4. Knauth P. Inorganic solid Li ion conductors...an overview. Solid State Ionics. 2009;180:911–916. 5. Ban CW, Choi GM. The effect of sintering on the grain boundary conductivity of lithium ...lanthanum titanates. Solid State Ionics. 2001;140:285–292. 6. Inada R, Kimura K, Kusakabe K, Tojo T, Sakurai Y. Synthesis and lithium -ion conductivity

  10. Lanthanum halide scintillators for time-of-flight 3-D pet

    DOEpatents

    Karp, Joel S [Glenside, PA; Surti, Suleman [Philadelphia, PA

    2008-06-03

    A Lanthanum Halide scintillator (for example LaCl.sub.3 and LaBr.sub.3) with fast decay time and good timing resolution, as well as high light output and good energy resolution, is used in the design of a PET scanner. The PET scanner includes a cavity for accepting a patient and a plurality of PET detector modules arranged in an approximately cylindrical configuration about the cavity. Each PET detector includes a Lanthanum Halide scintillator having a plurality of Lanthanum Halide crystals, a light guide, and a plurality of photomultiplier tubes arranged respectively peripherally around the cavity. The good timing resolution enables a time-of-flight (TOF) PET scanner to be developed that exhibits a reduction in noise propagation during image reconstruction and a gain in the signal-to-noise ratio. Such a PET scanner includes a time stamp circuit that records the time of receipt of gamma rays by respective PET detectors and provides timing data outputs that are provided to a processor that, in turn, calculates time-of-flight (TOF) of gamma rays through a patient in the cavity and uses the TOF of gamma rays in the reconstruction of images of the patient.

  11. High-efficiency, low-temperature cesium diodes with lanthanum-hexaboride electrodes

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1974-01-01

    Lanthanum hexaboride electrodes in 1700 K cesium diodes may triple power outputs compared with those demonstrated for nuclear thermionic space applications. Still greater relative gains seem possible for emitters below 1700 K. Further improvements in cesium diode performance should result from the lower collector temperatures allowed for earth and low power space duties. Decreased temperatures will lessen thermal transport losses that attend thermionic conversion mechanisms. Such advantages will add to those from collector Carnot and electrode effects. If plasma ignition difficulties impede diode temperature reductions, recycling small fractions of the output power could provide ionization. So high efficiency, low temperature cesium diodes with lanthanum hexaboride electrodes appear feasible.

  12. A statistical study of sporadic sodium layer observed by Sodium lidar at Hefei (31.8° N, 117.3° E)

    NASA Astrophysics Data System (ADS)

    Dou, X.-K.; Xue, X.-H.; Chen, T.-D.; Wan, W.-X.; Cheng, X.-W.; Li, T.; Chen, C.; Qiu, S.; Chen, Z.-Y.

    2009-06-01

    Sodium lidar observations of sporadic sodium layers (SSLs) during the past 3 years at a mid-latitude location (Hefei, China, 31.8° N, 117.3° E) are reported in this paper. From 64 SSL events detected in about 900 h of observation, an SSL occurrence rate of 1 event every 14 h at our location was obtained. This result, combined with previous studies, reveals that the SSL occurrence can be relatively frequent at some mid-latitude locations. Statistical analysis of main parameters for the 64 SSL events was performed. By examining the corresponding data from an ionosonde, a considerable correlation was found with a Pearson coefficient of 0.66 between seasonal variations of SSL and those of sporadic E (Es) during nighttime, which was in line with the research by Nagasawa and Abo (1995). From comparison between observations from the University of Science and Technology of China (USTC) lidar and from Wuhan Institute of Physics and Mathematics (WIPM) lidar (Wuhan, China, 31° N, 114° E), the minimum horizontal range for some events was estimated to be over 500 km.

  13. The CSSL (combined sporadic structures and layers) payload: In situ observations of mesospheric sodium and related parameters

    NASA Technical Reports Server (NTRS)

    Machuga, David W.; Kane, Timothy J.; Wheeler, Timothy F.; Croskey, Charles L.; Mathews, John D.; Mitchell, John D.

    1997-01-01

    The objectives, design and results of the sensor systems for the combined sporadic structures and layers (CSSL) payload are analyzed. The CSSL main objectives were to: validate current models of mesospheric sodium chemistry; explore the relationship between turbulence and Na fluctuations; and to explore the relationship between high latitude electric fields and the formation of Na anomalies.

  14. Poly[[tetra-μ3-acetato-hexa-μ2-acetato­diaqua-μ2-oxalato-tetra­lanthanum(III)] dihydrate

    PubMed Central

    Di, Wen-Jing; Lan, Shao-Min; Zhang, Qun; Liang, Yun-Xiao

    2011-01-01

    The title compound, {[La4(CH3CO2)10(C2O4)(H2O)2]·2H2O}n, exhibits a two-dimensional layered structure with the oxalate and acetate ligands acting as bridges. The asymmetric unit contains two crystallographically independent lanthanum(III) ions, half of an oxalate ligand, five acetate ligands, one coordinated water mol­ecule and one uncoordinated water mol­ecule. The coordination numbers of the two La ions are 9 and 10. Adjacent layers of the structure, which extend parallel to (100), are linked by O–H⋯O hydrogen bonds and are also held together by van der Waals inter­actions between the CH3 groups of the acetate anions. PMID:22064832

  15. First significant image improvement from a sodium-layer laser guide star adaptive optics system at Lick Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivier, S.S.; Max, C.E.; Friedman, H.W.

    1997-07-14

    Atmospheric turbulence severely limits the resolution of ground-based telescopes. Adaptive optics can correct for the aberrations caused by the atmosphere, but requires a bright wavefront reference source in close angular proximity to the object being imaged. Since natural reference stars of the necessary brightness are relatively rare, methods of generating artificial reference beacons have been under active investigation for more than a decade. In this paper, we report the first significant image improvement achieved using a sodium-layer laser guide star as a wavefront reference for a high- order adaptive optics system. An artificial beacon was created by resonant scattering frommore » atomic sodium in the mesosphere, at an altitude of 95 km. Using this laser guide star, an adaptive optics system on the 3 m Shane Telescope at Lick Observatory produced a factor of 2.4 increase in peak intensity and a factor of 2 decrease in full width at half maximum of a stellar image, compared with image motion compensation alone. The Strehl ratio when using the laser guide star as the reference was 65% of that obtained with a natural guide star, and the image full widths at half maximum were identical, 0.3 arc sec, using either the laser or the natural guide star. This sodium-layer laser guide star technique holds great promise for the world`s largest telescopes. 24 refs., 4 figs., 1 tab.« less

  16. Orthophosphate sorption onto lanthanum-treated lignocellulosic sorbents

    Treesearch

    Eun Woo Shin; K. G. Karthikeyan; Mandla A. Tshabalala

    2005-01-01

    Inorganic/organic hybrid adsorbents for removing orthophosphate from water were prepared by lanthanum (La) treatment of bark fiber, a lignocellulosic material obtained from juniper (Juniperusmonosperma). The La was anchored to the juniper bark (JB) fiber by ion exchange with Ca in the bark and was responsible for removing orthophosphate. Two La concentrations (0.01 and...

  17. Orientation and faulted structure of γ'-phases in lanthanum-alloyed Ni-Al-Cr superalloy

    NASA Astrophysics Data System (ADS)

    Nikonenko, Elena; Shergaeva, Lyubov'; Popova, Natalya; Koneva, Nina; Qin, Rongshan; Gromov, Victor; Fedorischeva, Marina

    2017-12-01

    The paper presents the transmission and the scanning electron microscope investigations of thin foils of Ni-Al-Cr-based superalloy, which is obtained by the directional crystallization technique. This superalloy contains γ'- and γ- phases. Additionally, lanthanum is introduced in the superalloy in 0.015, 0.10 and 0.30 wt % concentrations. The superalloy specimens are then subjected to 1273 K annealing during 10 and 25 h. It is shown that γ'-phase is major. In the superalloy, lanthanides La2Ni3 and Al2La are detected along with carbide La2C3 particles located on dislocations of the major phase. The amount of phases in the superalloy depends on its thermal treatment and lanthanum concentration. The investigations include the effect of annealing on scalar density of dislocations in γ'-phase. It is demonstrated that lanthanum alloying modifies the preferred orientation of γ'-phase. Annealing of lanthanum-alloyed superalloy causes the orientation dispersion. In γ'-phase, the correlation is observed between the degree of heterogeneity of solid solution and scalar dislocation density. It is shown that this heterogeneity results in the formation of high-density dislocations in γ'- phase.

  18. [La(UO{sub 2})V{sub 2}O{sub 7}][(UO{sub 2})(VO{sub 4})] the first lanthanum uranyl-vanadate with structure built from two types of sheets based upon the uranophane anion-topology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mer, A.; Obbade, S.; Rivenet, M.

    2012-01-15

    The new lanthanum uranyl vanadate divanadate, [La(UO{sub 2})V{sub 2}O{sub 7}][(UO{sub 2})(VO{sub 4})] was obtained by reaction at 800 Degree-Sign C between lanthanum chloride, uranium oxide (U{sub 3}O{sub 8}) and vanadium oxide (V{sub 2}O{sub 5}) and the structure was determined from single-crystal X-ray diffraction data. This compound crystallizes in the orthorhombic system with space group P2{sub 1}2{sub 1}2{sub 1} and unit-cell parameters a=6.9470(2) A, b=7.0934(2) A, c=25.7464(6) A, V=1268.73(5) A{sup 3}, Z=4. A full matrix least-squares refinement yielded R{sub 1}=0.0219 for 5493 independent reflections. The crystal structure is characterized by the stacking of uranophane-type sheets {sup 2}{sub {infinity}}[(UO{sub 2})(VO{sub 4})]{sup -}more » and double layers {sup 2}{sub {infinity}}[La(UO{sub 2})(V{sub 2}O{sub 7})]{sup +} connected through La-O bonds involving the uranyl oxygen of the uranyl-vanadate sheets. The double layers result from the connection of two {sup 2}{sub {infinity}}[La(UO{sub 2})(VO{sub 4}){sub 2}]{sup -} sheets derived from the uranophane anion-topology by replacing half of the uranyl ions by lanthanum atoms and connected through the formation of divanadate entities. - Graphical abstract: A view of the three-dimensional structure of [La(UO{sub 2})V{sub 2}O{sub 7}][(UO{sub 2})(VO{sub 4})]. Highlights: Black-Right-Pointing-Pointer New lanthanum uranyl vanadate divanadate has been synthesized. Black-Right-Pointing-Pointer Structure was determined from single-crystal X-ray diffraction data. Black-Right-Pointing-Pointer Structure is characterized by uranophane-type sheets and double layers {sup 2}{sub {infinity}}[La(UO{sub 2})(V{sub 2}O{sub 7})]{sup +}.« less

  19. Spectral studies on the interaction between lanthanum ion and the ligand: N,N'-ethylenebis-[2-(o-hydroxyphenolic)glycine].

    PubMed

    Yaqin, Zhao; Binsheng, Yang

    2005-11-01

    The interaction between N,N'-ethylenebis-[2-(o-hydroxyphenolic)glycine] (EHPG) and lanthanum was studied by the difference UV spectra and fluorescence spectra. At pH 7.4, 0.01 M N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid (Hepes), with the addition of 1.0 x 10(-3)M lanthanum, two new peaks were observed at 238 nm and 294 nm by absorptivity spectroscopy compared with blank solution EHPG suggesting the interaction of lanthanum and EHPG. At the same time, the reaction could be measured by fluorescence spectra. The fluorescence intensity of EHPG at 310 nm was significantly decreased in the presence of lanthanum. The 1:1 stoichiometric ratio of EHPG to lanthanum was confirmed by both fluorescence and UV titration curves. In addition, the molar absorptivity of La-EHPG at 238 nm is (1.23+/-0.01)x10(4)cm(-1)M(-1). The conditional binding constant was calculated to be log K(La-EHPG)=12.09+/-0.37 on the basis of the result of UV titration curves.

  20. Order parameters in lanthanum gallate lightly doped with manganese and paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Vazhenin, V. A.; Potapov, A. P.; Artyomov, M. Yu.; Guseva, V. B.

    2010-09-01

    The Cr3+ centers have been revealed, transitions at room temperature have been identified, and spin Hamiltonian parameters have been determined for the Cr3+ and Fe3+ triclinic centers in lanthanum gallate lightly doped with manganese. The principal axes of the fourth-rank fine-structure tensor for the Fe3+ triclinic centers have been established and used to determine the order parameters, i.e., the angles of rotation of oxygen octahedra of lanthanum gallate with respect to the perovskite structure. The order parameter in the rhombohedral phase has been estimated.

  1. Textile Dye Removal from Aqueous Solution using Modified Graphite Waste/Lanthanum/Chitosan Composite

    NASA Astrophysics Data System (ADS)

    Kusrini, E.; Wicaksono, B.; Yulizar, Y.; Prasetyanto, EA; Gunawan, C.

    2018-03-01

    We investigated various pre-treatment processes of graphite waste using thermal, mechanical and chemical methods. The aim of this work is to study the performance of modified graphite waste/lanthanum/chitosan composite (MG) as adsorbent for textile dye removal from aqueous solution. Effect of graphite waste resources, adsorbent size and lanthanum concentration on the dye removal were studied in batch experiments. Selectivity of MG was also investigated. Pre-heated graphite waste (NMG) was conducted at 80°C for 1 h, followed by mechanical crushing of the resultant graphite to 75 μm particle size, giving adsorption performance of ˜58%, ˜67%, ˜93% and ˜98% of the model dye rhodamine B (concentration determined by UV-vis spectroscopy at 554 nm), methyl orange (464 nm), methylene blue (664 nm) and methyl violet (580 nm), respectively from aqueous solution. For this process, the system required less than ˜5 min for adsorbent material to be completely saturated with the adsorbate. Further chemical modification of the pre-treated graphite waste (MG) with lanthanum (0.01 – V 0.03 M) and chitosan (0.5% w/w) did not improve the performance of dye adsorption. Under comparable experimental conditions, as those of the ‘thermal-mechanical-pre-treated-only’ (NMG), modification of graphite waste (MG) with 0.03 M lanthanum and 0.5% w/w chitosan resulted in ˜14%, ˜47%, ˜72% and ˜85% adsorption of rhodamine B, methyl orange, methylene blue and methyl violet, respectively. Selective adsorption of methylene blue at most to ˜79%, followed by methyl orange, methyl violet and rhodamine B with adsorption efficiency ˜67, ˜38, and ˜9% sequentially using MG with 0.03 M lanthanum and 0.5% w/w chitosan.

  2. Formulation of Novel Layered Sodium Carboxymethylcellulose Film Wound Dressings with Ibuprofen for Alleviating Wound Pain

    PubMed Central

    Vinklárková, Lenka; Vetchý, David; Bernatonienė, Jurga

    2015-01-01

    Effective assessment and management of wound pain can facilitate both improvements in healing rates and overall quality of life. From a pharmacological perspective, topical application of nonsteroidal anti-inflammatory drugs in the form of film wound dressings may be a good choice. Thus, the aim of this work was to develop novel layered film wound dressings containing ibuprofen based on partially substituted fibrous sodium carboxymethylcellulose (nonwoven textile Hcel NaT). To this end, an innovative solvent casting method using a sequential coating technique has been applied. The concentration of ibuprofen which was incorporated as an acetone solution or as a suspension in a sodium carboxymethylcellulose dispersion was 0.5 mg/cm2 and 1.0 mg/cm2 of film. Results showed that developed films had adequate mechanical and swelling properties and an advantageous acidic surface pH for wound application. An in vitro drug release study implied that layered films retained the drug for a longer period of time and thus could minimize the frequency of changing the dressing. Films with suspended ibuprofen demonstrated higher drug content uniformity and superior in vitro drug release characteristics in comparison with ibuprofen incorporation as an acetone solution. Prepared films could be potential wound dressings for the effective treatment of wound pain in low exuding wounds. PMID:26090454

  3. Role of the Vascular Wall in Sodium Homeostasis and Salt Sensitivity

    PubMed Central

    Olde Engberink, Rik H.G.; Rorije, Nienke M.G.; Homan van der Heide, Jaap J.; van den Born, Bert-Jan H.

    2015-01-01

    Excessive sodium intake is associated with both hypertension and an increased risk of cardiovascular events, presumably because of an increase in extracellular volume. The extent to which sodium intake affects extracellular volume and BP varies considerably among individuals, discriminating subjects who are salt-sensitive from those who are salt-resistant. Recent experiments have shown that, other than regulation by the kidney, sodium homeostasis is also regulated by negatively charged glycosaminoglycans in the skin interstitium, where sodium is bound to glycosaminoglycans without commensurate effects on extracellular volume. The endothelial surface layer is a dynamic layer on the luminal side of the endothelium that is in continuous exchange with flowing blood. Because negatively charged glycosaminoglycans are abundantly present in this layer, it may act as an intravascular buffer compartment that allows sodium to be transiently stored. This review focuses on the putative role of the endothelial surface layer as a contributor to salt sensitivity, the consequences of a perturbed endothelial surface layer on sodium homeostasis, and the endothelial surface layer as a possible target for the treatment of hypertension and an expanded extracellular volume. PMID:25294232

  4. Lanthanum Deposition in the Stomach in the Absence of Helicobacter pylori Infection.

    PubMed

    Iwamuro, Masaya; Urata, Haruo; Tanaka, Takehiro; Kawano, Seiji; Kawahara, Yoshiro; Kimoto, Katsuhiko; Okada, Hiroyuki

    2018-03-15

    In this case report, we describe two patients who showed a diffusely whitish mucosa in the posterior wall and the lesser curvature of the gastric body. The patients were serologically- and histopathologically-negative for Helicobacter pylori. Random biopsy specimens from the stomach revealed no regenerative changes, intestinal metaplasia, and/or foveolar hyperplasia in either of the patients. Although lanthanum deposition in the gastric mucosa has been reported to occur in close association with H. pylori-associated gastritis, our patients tested negative for H. pylori. These cases suggest that lanthanum deposition presents as whitish lesions in the gastric body in H. pylori-negative patients.

  5. The effect of lanthanum on the fabrication of ZrB{sub 2}-ZrC composites by spark plasma sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyoung Hun; Shim, Kwang Bo

    2003-01-15

    The effect of the addition of the rare earth element, lanthanum, on the sintering characteristics of ZrB{sub 2}-ZrC composites has been analyzed during a spark plasma sintering (SPS) process. Microscopic observation confirmed that lanthanum accelerated mass transport by the formation of the liquid phase between the particles induced by the spark plasma in the initial stage of the SPS process, and then these were recrystallized to form a lanthanum-containing secondary phase at the grain boundaries and at the grain boundary triple junctions. In spite of the strong covalent bonding characteristics of the ZrB{sub 2}-ZrC composite there are many well-developed dislocationmore » structures observed. The fracture toughness of the lanthanum-containing ZrB{sub 2}-ZrC is about 2.56 MPa m{sup 1/2}, which is comparable to that of the pure composite. Therefore, it is concluded that lanthanum is very effective as a sintering aid for the ZrB{sub 2}-ZrC composite without any degradation of the mechanical properties.« less

  6. Electrical properties of lanthanum chromite based ceramics in hydrogen and oxidizing atmospheres at high temperatures. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, V.H.

    1981-06-01

    Several results regarding the effect of hydrogen on lanthanum chromite were determined. Thermally-activated diffusion of hydrogen through La(Mg)CrO/sub 3/ was found with a high activation energy. It was found that its electrical conductivity drops drastically, especially at low temperature, after exposure to hydrogen at high temperature. Also, the curvature of most of the conductivity plots, as well as the inability to observe the Hall effect, lends support to the proposal by Karim and Aldred that the small-polaron model which predicts thermally activated mobility is applicable to doped lanthanum chromite. From differential thermal analysis an apparent absorption of hydrogen near 300/supmore » 0/C was noticed. Upon cooling the lanthanum chromite in hydrogen and subsequently reheating it in air, desorption occurred near 170/sup 0/C. The immediate purpose of this study was to determine whether hydrogen has a deleterious effect on lanthanum chromite in solid oxide fuel cells.« less

  7. Apparatus for detecting leakage of liquid sodium

    DOEpatents

    Himeno, Yoshiaki

    1978-01-01

    An apparatus for detecting the leakage of liquid sodium includes a cable-like sensor adapted to be secured to a wall of piping or other equipment having sodium on the opposite side of the wall, and the sensor includes a core wire electrically connected to the wall through a leak current detector and a power source. An accidental leakage of the liquid sodium causes the corrosion of a metallic layer and an insulative layer of the sensor by products resulted from a reaction of sodium with water or oxygen in the atmospheric air so as to decrease the resistance between the core wire and the wall. Thus, the leakage is detected as an increase in the leaking electrical current. The apparatus is especially adapted for use in detecting the leakage of liquid sodium from sodium-conveying pipes or equipment in a fast breeder reactor.

  8. Electrochemical preparation of nanostructured lanthanum using lanthanum chloride as a precursor in 1-butyl-3-methylimidazolium dicyanamide ionic liquid.

    PubMed

    Zhang, Q B; Yang, C; Hua, Y X; Li, Y; Dong, P

    2015-02-14

    Nanostructured lanthanum was electrochemically prepared on a platinum (Pt) substrate in the room temperature ionic liquid 1-butyl-3-methylimidazolium dicyanamide (BMI-DCA) containing anhydrous LaCl3 at 333 K. The electrochemical reduction behavior of La(iii) was investigated using cyclic voltammetry and chronoamperometry techniques. Cyclic voltammogram revealed that the reduction of La(iii) in BMI-DCA involved an irreversible process controlled by diffusion. Chronoamperometric transient analysis confirmed the diffusion controlled electrodeposition process with the diffusion coefficient of La(iii) species in the range of 10(-10) cm(2) s(-1). The strong complexing capability of DCA(-) anions facilitated the displacement of chloride ligands and induced the solubility of LaCl3. The subsequent coordination of La(iii) and DCA(-) anions forming [La(DCA)4](-) complex anions was monitored by designing amperometric titration experiments. Potentiostatically deposited La-deposits with different nanostructures were characterized by SEM, XRD and XPS analyses. The electrodeposition potential was found to play an important role in controlling the nucleation and growth kinetics of the nanocrystal during the electrodeposition process. Depending on the deposition potential, metallic lanthanum with either nanoparticles or nanoporous structures was obtained.

  9. Preparation and Characterization of Lanthanum-Incorporated Hydroxyapatite Coatings on Titanium Substrates

    PubMed Central

    Lou, Weiwei; Dong, Yiwen; Zhang, Hualin; Jin, Yifan; Hu, Xiaohui; Ma, Jianfeng; Liu, Jinsong; Wu, Gang

    2015-01-01

    Titanium (Ti) has been widely used in clinical applications for its excellent biocompatibility and mechanical properties. However, the bioinertness of the surface of Ti has motivated researchers to improve the physicochemical and biological properties of the implants through various surface modifications, such as coatings. For this purpose, we prepared a novel bioactive material, a lanthanum-incorporated hydroxyapatite (La-HA) coating, using a dip-coating technique with a La-HA sol along with post-heat treatment. The XRD, FTIR and EDX results presented in this paper confirmed that lanthanum was successfully incorporated into the structure of HA. The La-HA coating was composed of rod-like particles which densely compacted together without microcracks. The results of the interfacial shear strength test indicated that the incorporation of lanthanum increased the bonding strength of the HA coating. The mass loss ratios under acidic conditions (pH = 5.5) suggested that the La-HA coatings have better acid resistance. The cytocompatibility of the La-HA coating was also revealed by the relative activity of alkaline phosphatase, cellular morphology and cell proliferation assay in vitro. The present study suggested that La-HA coated on Ti has promising potential for applications in the development of a new type of bioactive coating for metal implants. PMID:26404255

  10. Magnetoresistance measurements in Ferro -- Antiferromagnetic bilayers based on the Ca-doped lanthanum manganite system

    NASA Astrophysics Data System (ADS)

    Gomez, M. E.; Marin, L.; Ramirez, G.; Prieto, P.

    2011-03-01

    We studied the isothermal magnetic field dependence of the resistance behavior in ferromagnetic--antiferromagnetic interface based on the Ca-doped lanthanum manganite system at temperatures below Neel temperature of the antiferromagnetic layer. We studied the influence of the thickness of the AF-layer, tAF , and F-layer, tF , on the ZFC and FC magnetoresistance (MR) in La 2/3 Ca 1/3 Mn O3 (tF) / La 1/3 Ca 2(3 Mn O3 (tAF) bilayers. HFC was 400 Oe and the applied magnetic field, H. We systematically varied the tF and tAF thickness, maintaining constant the total bilayer thickness (d = tF +tAF) . We found that MR has hysteretic behavior as observed in [ La 2/3 Ca 1/3 Mn O3 (tF) / La 1/3 Ca 2(3 Mn O3 (tAF) ]N superlattices, but; MR increases with the increasing field from H=0 to a maximum and then decreases continuously. This behavior also appears for negative fields in both ZFC and FC loops. The position and magnitude of the maximum is not symmetric with respect to the axis H=0. Work supported by CENM-COLCIENCIAS contract RC-0043-(2005).

  11. Synthesis and electrochemical sodium-storage of few-layered MoS2/nitrogen, phosphorus-codoped graphene

    NASA Astrophysics Data System (ADS)

    Xu, Limei; Ma, Lin; Li, Wenyan; Yang, Xinxin; Ling, Yan

    2018-07-01

    Few-layered molybdenum disulfide/nitrogen, phosphorus co-doped graphene composites are synthesized by a quaternary phosphonium salt-assisted hydrothermal and annealing procedure. The prepared composites are analyzed by x-ray powder diffraction, x-ray photoelectron spectra, scanning electronic microscopy, transmission electronic microscopy, Raman spectra and nitrogen adsorption and desorption. Experimental results indicate that the MoS2 nanosheets are of few-layered and defective structures and are well anchored on flexible conductive nitrogen, phosphorus co-doped graphene to constitute mesoporous composites with increased surface areas. Benefiting from the structural merits as well as surface-dominated pseudocapacitive contribution, the composite electrode presents a high electrochemical sodium storage capacity that arrives at 542 mAh g‑1 at a current density of 100 mA g‑1 with an excellent cyclability. Moreover, a superior high-rate capability can also be achieved.

  12. Synthesis and electrochemical sodium-storage of few-layered MoS2/nitrogen, phosphorus-codoped graphene.

    PubMed

    Xu, Limei; Ma, Lin; Li, Wenyan; Yang, Xinxin; Ling, Yan

    2018-07-27

    Few-layered molybdenum disulfide/nitrogen, phosphorus co-doped graphene composites are synthesized by a quaternary phosphonium salt-assisted hydrothermal and annealing procedure. The prepared composites are analyzed by x-ray powder diffraction, x-ray photoelectron spectra, scanning electronic microscopy, transmission electronic microscopy, Raman spectra and nitrogen adsorption and desorption. Experimental results indicate that the MoS 2 nanosheets are of few-layered and defective structures and are well anchored on flexible conductive nitrogen, phosphorus co-doped graphene to constitute mesoporous composites with increased surface areas. Benefiting from the structural merits as well as surface-dominated pseudocapacitive contribution, the composite electrode presents a high electrochemical sodium storage capacity that arrives at 542 mAh g -1 at a current density of 100 mA g -1 with an excellent cyclability. Moreover, a superior high-rate capability can also be achieved.

  13. An Experiment to Study Sporadic Sodium Layers in the Earth's Mesosphere and Lower Thermosphere

    NASA Technical Reports Server (NTRS)

    Swenson, Charles M.

    2002-01-01

    The Utah State University / Space Dynamics Lab was funded under a NASA Grant. This investigation has been part of Rockwell Universities Sudden Atom Layer Investigation (SAL). USU/SDL provided an electron density measurement instrument, the plasma frequency probe, which was launched on the vehicle 21.117 from Puerto-Rico in February of 1998. The instrument successfully measured electron density as designed and measurement techniques included in this version of the Plasma Frequency probe provided valuable insight into the electron density structures associated with sudden sodium layers in a collisional plasma. Electron density data was furnished to Rockwell University but no science meetings were held by Rockwell Data from the instrument was presented to the scientific community at the URSI General Session in 1999. A paper is in preparation for publication in Geophysical Research Letters. The following document provides a summary of the experiment and data obtained as a final report on this grant.

  14. Antioxidant protection mechanism of chick hepatic mitochondria exposed to lanthanum chloride & neodymium chloride treatment.

    PubMed

    Ghosh, N; Chattopadhyay, D; Chatterjee, G C

    1991-05-01

    Acute lanthanum chloride (250 mg/kg body wt) and neodymium chloride (200 mg/kg body wt) administrations resulted in significant enhancement of glutathione level in chick hepatic mitochondria. However, glutathione-s-transferase activity was depressed. There was no alteration in the activity of glutathione reductase. Activity of glucose-6-phosphate dehydrogenase was not altered under lanthanum and neodymium treatment. There was a significant enhancement of intramitochondrial glutathione peroxidase and superoxide dismutase. Lipid peroxidation remains the same as control group of animals.

  15. Eucalyptus tolerance mechanisms to lanthanum and cerium: subcellular distribution, antioxidant system and thiol pools.

    PubMed

    Shen, Yichang; Zhang, Shirong; Li, Sen; Xu, Xiaoxun; Jia, Yongxia; Gong, Guoshu

    2014-12-01

    Guanglin 9 (Eucalyptus grandis × Eucalyptus urophlla) and Eucalyptus grandis 5 are two eucalyptus species which have been found to grow normally in soils contaminated with lanthanum and cerium, but the tolerance mechanisms are not clear yet. In this study, a pot experiment was conducted to investigate the tolerance mechanisms of the eucalyptus to lanthanum and cerium. Cell walls stored 45.40-63.44% of the metals under lanthanum or cerium stress. Peroxidase and catalase activities enhanced with increasing soil La or Ce concentrations up to 200 mg kg(-1), while there were no obvious changes in glutathione and ascorbate concentrations. Non-protein thiols concentrations increased with increasing treatment levels up to 200 mg kg(-1), and then decreased. Phytochelatins concentrations continued to increase under La or Ce stress. Therefore, the two eucalyptus species are La and Ce tolerant plants, and the tolerance mechanisms include cell wall deposition, antioxidant system response, and thiol compound synthesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Enhancement of thermal shock resistance of reaction sintered mullite–zirconia composites in the presence of lanthanum oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, P.; Nath, M.; Ghosh, A.

    2015-03-15

    Mullite–zirconia composites containing 20 wt.% zirconia were prepared by reaction sintering of zircon flour, sillimanite beach sand and calcined alumina. 0 to 8 mol% of La{sub 2}O{sub 3} with respect to zirconia was used as sintering aid. The effect of additive on the various physical, microstructures, mechanical and thermo-mechanical properties was studied. Quantitative phase analysis shows the change in tetragonal zirconia content with incorporation of lanthanum oxide. La{sub 2}O{sub 3} addition has significantly improved the thermal shock resistance of the samples. Samples without additive retained only 20% of initial flexural strength after 5 cycles, whereas samples containing 5 mol% La{submore » 2}O{sub 3} retained almost 78% of its initial flexural strength even after 15 thermal shock cycles. - Highlights: • Mullite–zirconia composites were prepared by reaction sintering route utilizing zircon and sillimanite beach sand. • Lanthanum oxide was used as sintering aid. • The presence of lanthanum oxide decreased the densification temperature. • Lanthanum oxide significantly improved the thermal shock resistance of the composites.« less

  17. The Effect of Smear Layer Removal on Endodontic Outcomes

    DTIC Science & Technology

    2012-06-01

    Sundqvist G. The antibacterial effect of sodium hypochlorite and EDTA in 60 cases of endodontic therapy. Int Endod J 1985;18:35-40. 11. Conner DA, Caplan...outcomes. KEY WORDS: Smear layer, smear layer removal, smear layer creation, EDTA, Sodium hypochlorite , Periapical index INTRODUCTION: The...identified the most efficient process for removal of the smear layer. Normal saline and sodium hypochlorite (NaOCl) have been shown not to remove

  18. Mn-Based Cathode with Synergetic Layered-Tunnel Hybrid Structures and Their Enhanced Electrochemical Performance in Sodium Ion Batteries.

    PubMed

    Wu, Zhen-Guo; Li, Jun-Tao; Zhong, Yan-Jun; Guo, Xiao-Dong; Huang, Ling; Zhong, Ben-He; Agyeman, Daniel-Adjei; Lim, Jin-Myoung; Kim, Du-Ho; Cho, Maeng-Hyo; Kang, Yong-Mook

    2017-06-28

    A synergistic approach for advanced cathode materials is proposed. Sodium manganese oxide with a layered-tunnel hybrid structure was designed, synthesized, and subsequently investigated. The layered-tunnel hybrid structure provides fast Na ion diffusivity and high structural stability thanks to the tunnel phase, enabling high rate capability and greatly improved cycling stability compared to that of the pure P2 layered phase while retaining the high specific capacity of the P2 layered phase. The hybrid structure provided a decent discharge capacity of 133.4 mAh g -1 even at 8 C, which exceeds the reported best rate capability for Mn-based cathodes. It also displayed an impressive cycling stability, maintaining 83.3 mAh g -1 after 700 cycles at 10 C. Theoretical calculation and the potentiostatic intermittent titration technique (PITT) demonstrated that this hybrid structure helps enhance Na ion diffusivity during charge and discharge, attaining, as a result, an unprecendented electrochemical performance.

  19. A meteor ablation-cluster ion atmospheric sodium theory

    NASA Technical Reports Server (NTRS)

    Richter, E. S.; Sechrist, C. F., Jr.

    1979-01-01

    Neutral and ionic forms of sodium form narrow, well-defined layers which peak in the 90-95 km altitude region at midlatitudes. A new theory for the sodium layer is presented, which is found to be in good agreement with existing atmospheric observations as well as available laboratory measurements of rate constants. The layer is believed to result naturally from a meteor ablation source over a chemical sink with vertical transport of Na(+) playing an important role in the layer shape and variation. While the neutral chemistry is believed to consist of chemical equilibrium between Na and NaO, the ion chemistry departs from earlier studies and considers a cluster ion scheme. It is possible that higher-order cluster ions of sodium play a role in the formation of aerosols, through attachment or ion-induced nucleation processes.

  20. Revised energy levels of singly ionized lanthanum

    NASA Astrophysics Data System (ADS)

    Güzelçimen, Feyza; Tonka, Mehdi; Uddin, Zaheer; Bhatti, Naveed Anjum; Windholz, Laurentius; Kröger, Sophie; Başar, Gönül

    2018-05-01

    Based on the experimental wavenumbers of 344 spectral lines from calibrated Fourier transform (FT) spectra as well as wavenumbers of 81 lines from the wavelength tables from literature, the energy of 115 fine structure levels of singly ionized lanthanum has been revised by weighted global fits. The classifications of the lines are provided by numerous previous investigations of lanthanum by different spectroscopic methods and authors. For the high accurate determination of the center of gravity wavenumbers from the experimental spectrum, the hyperfine constants of the involved levels have been taken into account, if possible. For the 94 levels with known hyperfine constants the accuracy of energy values is better than 0.01 cm-1. For 34 levels the magnetic dipole hyperfine constants A have been determined from FT spectra as part of this work. For four of these 34 levels even electric quadrupole hyperfine constants B could be estimated. For levels, which have experimentally unknown hyperfine constants and which are connected only by lines not found in the FT spectra but taken from literature, the uncertainties of energy values are about a factor of 10 higher. A list of all revised level energies together with a compilation of hyperfine structure data is given as well as a list of all lines used.

  1. Carbon-Stabilized Interlayer-Expanded Few-Layer MoSe2 Nanosheets for Sodium Ion Batteries with Enhanced Rate Capability and Cycling Performance.

    PubMed

    Tang, Yongchao; Zhao, Zongbin; Wang, Yuwei; Dong, Yanfeng; Liu, Yang; Wang, Xuzhen; Qiu, Jieshan

    2016-11-30

    Sodium ion batteries (SIBs) have been considered as a promising alternative to lithium ion batteries, owing to the abundant reserve and low-cost accessibility of the sodium source. To date, the pursuit of high-performance anode materials remains a great challenge for the SIBs. In this work, carbon-stabilized interlayer-expanded few-layer MoSe 2 nanosheets (MoSe 2 @C) have been fabricated by an oleic acid (OA) functionalized synthesis-polydopamine (PDA) stabilization-carbonization strategy, and their structural, morphological, and electrochemical properties have been carefully characterized and compared with the carbon-free MoSe 2 . When evaluated as anode for sodium ion half batteries, the MoSe 2 @C exhibits a remarkably enhanced rate capability of 367 mA h g -1 at 5 A g -1 , a high reversible discharge capacity of 445 mA h g -1 at 1 A g -1 , and a long-term cycling stability over 100 cycles. To further explore the potential applications, the MoSe 2 @C is assembled into sodium ion full batteries with Na 3 V 2 (PO 4 ) 3 (NVP) as cathode materials, showing an impressively high reversible capacity of 421 mA h g -1 at 0.2 A g -1 after 100 cycles. Such results are primarily attributed to the unique carbon-stabilized interlayer-expanded few-layer MoSe 2 nanosheets structure, which facilitates the permeation of electrolyte into the inner of MoSe 2 nanosheets, promoting charge transfer efficiency among MoSe 2 nanosheets, and accommodating the volume change from discharge-charge cycling.

  2. Submersible sodium pump

    DOEpatents

    Brynsvold, Glen V.; Lopez, John T.; Olich, Eugene E.; West, Calvin W.

    1989-01-01

    An electromagnetic submerged pump has an outer cylindrical stator with an inner cylindrical conductive core for the submerged pumping of sodium in the cylindrical interstitial volume defined between the stator and core. The cylindrical interstitial volume is typically vertically oriented, and defines an inlet at the bottom and an outlet at the top. The outer stator generates upwardly conveyed toroidal magnetic fields, which fields convey preferably from the bottom of the pump to the top of the pump liquid sodium in the cold leg of a sodium cooled nuclear reactor. The outer cylindrical stator has a vertically disposed duct surrounded by alternately stacked layers of coil units and laminates.

  3. Submersible sodium pump

    DOEpatents

    Brynsvold, G.V.; Lopez, J.T.; Olich, E.E.; West, C.W.

    1989-11-21

    An electromagnetic submerged pump has an outer cylindrical stator with an inner cylindrical conductive core for the submerged pumping of sodium in the cylindrical interstitial volume defined between the stator and core. The cylindrical interstitial volume is typically vertically oriented, and defines an inlet at the bottom and an outlet at the top. The outer stator generates upwardly conveyed toroidal magnetic fields, which fields convey preferably from the bottom of the pump to the top of the pump liquid sodium in the cold leg of a sodium cooled nuclear reactor. The outer cylindrical stator has a vertically disposed duct surrounded by alternately stacked layers of coil units and laminates. 14 figs.

  4. Method for producing dense lithium lanthanum tantalate lithium-ion conducting ceramics

    DOEpatents

    Brown-Shaklee, Harlan James; Ihlefeld, Jon; Spoerke, Erik David; Blea-Kirby, Mia Angelica

    2018-05-08

    A method to produce high density, uniform lithium lanthanum tantalate lithium-ion conducting ceramics uses small particles that are sintered in a pressureless crucible that limits loss of Li2O.

  5. The topside behavior in the mesospheric sodium layer observed by lidar at Yanqing (40.46°N, 115.98°E) and at Haikou (20.01°N, 110.32°E)

    NASA Astrophysics Data System (ADS)

    Liu, Yingjie; Clemesha, Barclay Robert; Wang, Jihong

    2016-04-01

    Due to meteoric ablation, large amounts of metal atoms deposit in the mesopause region, forming the metal layers that can be observed by ground-based lidars. It is widely acknowledged that the meteoric metal layers are normally confined to altitudes of 75-115 km. In fact, the observable upper limit of the topside layer depends largely on the performance of the instruments, the integration time and the observation conditions. With the support of the Chinese Meridional project in the eastern hemisphere, two brand new sodium fluorescence lidars with the same configuration were respectively set up at Yanqing (40.46°N, 115.98°E) and at Haikou (20.01°N, 110.32°E) in April, 2010. They displayed powerful detection capabilities which allow us to study the topside behavior of the mesospheric sodium layer. Based on the observations made at Yanqing between April 2010 and June 2012 and those at Haikou between April 2010 and December 2012, seasonal variations of sodium densities were studied. Comparison between these two sites (~2300 km apart) reveals a strong correlation in the topside sodium layer. Independently of their seasonal characteristics at lower altitudes, they both show an extension to 120 km and above, predominantly during summer. 90 nights of simultaneous observations at these two sites shows that the variation trends of sodium densities above 102 km are remarkably similar in contrast to their different seasonal characteristics below 98 km. At 105 km the correlation coefficient reaches up to 0.71, and almost all of the major peaks can be found one by one with their relative strengths reproduced to a large degree. It indicates that the topside extension effect is global in the mesospheric sodium layer, combined with the observations at other latitudes. Comparison with known meteor showers shows that most of these extensions correspond well to one or more meteor showers, although not one by one. Meteor showers with velocities less than 35 km/s appear to have more

  6. The rare earth element (REE) lanthanum (La) induces hormesis in plants.

    PubMed

    Agathokleous, Evgenios; Kitao, Mitsutoshi; Calabrese, Edward J

    2018-07-01

    Lanthanum is a rare earth element (REE) which has been extensively studied due to its wide application in numerous fields with a potential accumulation in the environment. It has long been known for its potential to stimulate plant growth within a hormetic-biphasic dose response framework. This article provides evidence from a series of high resolution studies published within the last two decades demonstrating a substantial and significant occurrence of lanthanum-induced hormesis in plants. These findings suggest that hormetic responses should be built into the study design of hazard assessment study protocols and included in the risk assessment process. Hormesis also offers the opportunity to substantially improve cost benefit estimates for environmental contaminants, which have the potential to induce beneficial/desirable effects at low doses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Destabilization of yttria-stabilized zirconia induced by molten sodium vanadate-sodium sulfate melts

    NASA Technical Reports Server (NTRS)

    Nagelberg, A. S.; Hamilton, J. C.

    1985-01-01

    The extent of surface destabilization of ZrO2 - 8 wt percent Y2O3 ceramic disks was determined after exposure to molten salt mixtures of sodium sulfate containing up to 15 mole percent sodium metavanadate (NaVO3) at 1173 K. The ceramic surface was observed to transform from the cubic/tetragonal to monoclinic phase, concurrent with chemical changes in the molten salt layer in contact with the ceramic. Significant attack rates were observed in both pure sulfate and metavanadate sulfate melts. The rate of attack was found to be quite sensitive to the mole fraction of vanadate in the molten salt solution and the partial pressure of sulfur trioxide in equilibrium with the salt melt. The observed parabolic rate of attack is interpreted to be caused by a reaction controlled by diffusion in the salt that penetrates into the porous layer formed by the destabilization. The parabolic rate constant in mixed sodium metavanadate - sodium sulfate melts was found to be proportional to the SO3 partial pressure and the square of the metavanadate concentration. In-situ Raman spectroscopic measurements allowed simultaneous observations of the ceramic phases and salt chemistry during the attack process.

  8. Optogalvanic spectroscopy of lanthanum hyperfine structure

    NASA Astrophysics Data System (ADS)

    Nelson, Amanda; Hankes, Jessie; Banner, Patrick; Olmschenk, Steven

    2017-04-01

    Optogalvanic spectroscopy is a sensitive technique to measure optical transitions of atoms and ions produced in a high voltage discharge. Advantages of this technique include a comparatively simple optical setup and the ability to interrogate excited state transitions. Here, we use optogalavanic spectroscopy in a hollow cathode lamp to measure the hyperfine spectrum of several transitions in lanthanum. Hyperfine coefficients are determined for the corresponding energy levels and compared to available previous measurements. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.

  9. Mixed layers of sodium caseinate + dextran sulfate: influence of order of addition to oil-water interface.

    PubMed

    Jourdain, Laureline S; Schmitt, Christophe; Leser, Martin E; Murray, Brent S; Dickinson, Eric

    2009-09-01

    We report on the interfacial properties of electrostatic complexes of protein (sodium caseinate) with a highly sulfated polysaccharide (dextran sulfate). Two routes were investigated for preparation of adsorbed layers at the n-tetradecane-water interface at pH = 6. Bilayers were made by the layer-by-layer deposition technique whereby polysaccharide was added to a previously established protein-stabilized interface. Mixed layers were made by the conventional one-step method in which soluble protein-polysaccharide complexes were adsorbed directly at the interface. Protein + polysaccharide systems gave a slower decay of interfacial tension and stronger dilatational viscoelastic properties than the protein alone, but there was no significant difference in dilatational properties between mixed layers and bilayers. Conversely, shear rheology experiments exhibited significant differences between the two kinds of interfacial layers, with the mixed system giving much stronger interfacial films than the bilayer system, i.e., shear viscosities and moduli at least an order of magnitude higher. The film shear viscoelasticity was further enhanced by acidification of the biopolymer mixture to pH = 2 prior to interface formation. Taken together, these measurements provide insight into the origin of previously reported differences in stability properties of oil-in-water emulsions made by the bilayer and mixed layer approaches. Addition of a proteolytic enzyme (trypsin) to both types of interfaces led to a significant increase in the elastic modulus of the film, suggesting that the enzyme was adsorbed at the interface via complexation with dextran sulfate. Overall, this study has confirmed the potential of shear rheology as a highly sensitive probe of associative electrostatic interactions and interfacial structure in mixed biopolymer layers.

  10. The Mesospheric Sodium Layer as a Remotely, Optically Pumped Magnetometer for Investigation of Birkeland Currents

    NASA Astrophysics Data System (ADS)

    Matzka, J.; Johnsen, M. G.; Hoppe, U. P.; Serrano, A.

    2016-12-01

    By means of optical pumping, it is possible to use the naturally occurring sodium layer in the mesosphere to measure Earth's scalar magnetic field at 90 km above ground. This is an altitude not accessible by other means than rockets, which only will provide point measurements of very short time scales. We are planning to modify the sodium lidar at ALOMAR in Northern Norway to be able, for the first time, to measure and monitor the magnetic field in situ in the high latitude mesosphere over longer time scales. The planned modifications to the lidar instrument will allow alternating between the new magnetometer mode and its present mode for atmospheric temperatures and winds. The technique, which has been proposed earlier for measurements at low or mid-latitudes for studies of Earth's internal magnetic field, will in our project be applied to high latitudes in the auroral zone. This opens for a completely new domain of measurements of externally generated geomagnetic variations related to currents in the magnetosphere-ionosphere system. In particular, we aim to measure the magnetic field variations in close vicinity to Birkeland currents associated with particle precipitation events penetrating to altitudes below 90 km and small-scale, discrete auroral arcs. It is, furthermore, anticipated that it will be possible to detect horizontal current structures in the E-layer on much smaller length scales than it is presently possible from ground observations alone. During the project we plan take advantage of the rich space science infrastructure located in northern Norway, including ALOMAR, EISCAT and the Tromsø Geophysical Observatory magnetometer network. If possible, we also aim to make measurements in conjunction with overpasses of the SWARM satellites.

  11. Comparison of dietary phosphate absorption after single doses of lanthanum carbonate and sevelamer carbonate in healthy volunteers: a balance study.

    PubMed

    Martin, Patrick; Wang, Phillip; Robinson, Antoine; Poole, Lynne; Dragone, Jeffrey; Smyth, Michael; Pratt, Raymond

    2011-05-01

    Lanthanum carbonate and sevelamer carbonate are noncalcium phosphate binders used to treat hyperphosphatemia in patients with chronic kidney disease. This is the first study to compare phosphate absorption from a standardized meal ingested with a typical clinical dose of these binders. Randomized open-label crossover study. Healthy volunteers were confined to a clinical research center during 4 study periods. Of 31 volunteers randomly assigned, 19 completed all treatments and 18 were analyzed in the pharmacodynamic set (1 was excluded because of vomiting). Participants were assigned in random order to meal alone, meal plus lanthanum carbonate (1 tablet containing 1,000 mg of elemental lanthanum), and meal plus sevelamer carbonate (three 800-mg tablets). The gastrointestinal tract was cleared, the meal was ingested (± treatment), and rectal effluent was collected. In a fourth period, volunteers repeated the study procedures while fasting. The primary end point, net phosphate absorption, was analyzed using a mixed-effect linear model. Phosphorus content of effluent and duplicate meal samples were measured using inductively coupled plasma-optical emission spectroscopy. The standard meal contained ∼375 mg of phosphate, 75% of which was absorbed (net absorption, 281.7 ± 14.1 mg [adjusted mean ± standard error]). Lanthanum carbonate decreased net phosphate absorption by 45% (net absorption, 156.0 ± 14.2 mg) compared with 21% (net absorption, 221.8 ± 14.1 mg) for sevelamer carbonate (P < 0.001). Lanthanum carbonate bound 135.1 ± 12.3 mg of phosphate, whereas sevelamer carbonate bound 63.2 ± 12.3 mg, a 71.9-mg difference (95% CI, 40.0-103.8; P < 0.001). Per tablet, this equates to 135 mg of phosphate bound with lanthanum carbonate versus 21 mg with sevelamer carbonate. A single-dose study. In healthy volunteers, 1,000 mg of lanthanum carbonate decreased phosphate absorption by 45% compared with a 21% decrease with 2,400 mg of sevelamer carbonate. Copyright © 2011

  12. Glass formation and crystallization in the alumina-silica-lanthanum phosphate system for ceramics composites

    NASA Astrophysics Data System (ADS)

    Guo, Shuling

    The formation, structure, and dynamics of glasses in the alumina-silica-lanthanum phosphate system and their crystallization were investigated as a function of composition. These are of interest because of their potential as precursors for synthesizing ceramic-matrix-composites via co-crystallization of lanthanum monazite and either mullite or alumina into finely mixed microstructures. The glasses were characterized by X-Ray Diffraction (XRD), Raman spectroscopy, Differential Scanning Calorimetry (DSC), Nuclear Magnetic Resonance (NMR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Electron Energy Loss Spectrometry (EELS). Glass formation from rapidly quenched liquids was easiest and most consistent for compositions containing silica, such as for mullitemonazite compositions, and more difficult for alumina-monazite compositions. For mullite-monazite glasses, the glass transition temperatures increased linearly from 845°C to 906°C with increasing mullite content. An analysis of the glass structure indicated a network consisting of corner-linked aluminate, silicate and phosphate tetrahedra where aluminum played a central role of separating silicon and phosphorous. It was hypothesized that the glass network consisted of domains of aluminum silicate network edged by phosphate tetrahedra. A maximum in the crystallization temperature was attributed to the complexity of the glass network. At relatively mullite-rich compositions, simultaneous and cooperative crystallization of lanthanum phosphate and mullite correlated with the highest crystallization temperatures, and the lowest activation energies of crystallization. This was preceded by amorphous phase segregation in the glass at lower temperatures. An intermediate phase of lanthanum phosphate was discovered with an orthorhombic unit cell. For compositions of high phosphate contents, lanthanum phosphate precipitated first at about 900°C leaving an essentially pure mullite glass

  13. Growth, structural, optical, thermal and dielectric properties of lanthanum chloride—thiourea—L tartaric acid coordinated complex

    NASA Astrophysics Data System (ADS)

    Slathia, Goldy; Bamzai, K. K.

    2017-11-01

    Lanthanum chloride—thiourea—l tartaric acid coordinated complex was grown in the form of single crystal by slow evaporation of supersaturated solutions at room temperature. This coordinated complex crystallizes in orthorhombic crystal system having space group P nma. The crystallinity and purity was tested by powder x-ray diffraction. Fourier transform infra red and Raman spectroscopy analysis provide the evidences on structure and mode of coordination. The scanning electron microscopy (SEM) analysis shows the morphology evolution as brought by the increase in composition of lanthanum chloride. The band transitions due to C=O and C=S chromophores remain active in grown complexes and are recorded in the UV-vis optical spectrum. The thermal effects such as dehydration, melting and decomposition were observed by the thermogravimetric and differential thermo analytical (TGA/DTA) analysis. Electrical properties were studied by dielectric analysis in frequency range 100-30 MHz at various temperatures. Increase in values of dielectric constant was observed with change in lanthanum concentration in the coordinated complex.

  14. The combination of lanthanum chloride and the calcimimetic calindol delays the progression of vascular smooth muscle cells calcification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciceri, Paola; Volpi, Elisa; Brenna, Irene

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer Lanthanum reduces the progression of high phosphate-induced calcium deposition. Black-Right-Pointing-Pointer Calcium receptor agonists and the calcimimetic calindol reduce calcium deposition. Black-Right-Pointing-Pointer Lanthanum and calindol cooperate on reducing calcium deposition. Black-Right-Pointing-Pointer Lanthanum and calindol may interact with the same receptor. -- Abstract: Phosphate (Pi)-binders are commonly used in dialysis patients to control high Pi levels, that associated with vascular calcification (VC). The aim of this study was to investigate the effects of lanthanum chloride (LaCl{sub 3}) on the progression of high Pi-induced VC, in rat vascular smooth muscle cells (VSMCs). Pi-induced Ca deposition was inhibited by LaCl{sub 3}, withmore » a maximal effect at 100 {mu}M (59.0 {+-} 2.5% inhibition). Furthermore, we studied the effects on VC of calcium sensing receptor (CaSR) agonists. Gadolinium chloride, neomycin, spermine, and the calcimimetic calindol significantly inhibited Pi-induced VC (55.9 {+-} 2.2%, 37.3 {+-} 4.7%, 30.2 {+-} 5.7%, and 63.8 {+-} 5.7%, respectively). To investigate the hypothesis that LaCl{sub 3} reduces the progression of VC by interacting with the CaSR, we performed a concentration-response curve of LaCl{sub 3} in presence of a sub-effective concentration of calindol (10 nM). Interestingly, this curve was shifted to the left (IC{sub 50} 9.6 {+-} 2.6 {mu}M), compared to the curve in the presence of LaCl{sub 3} alone (IC{sub 50} 19.0 {+-} 4.8 {mu}M). In conclusion, we demonstrated that lanthanum chloride effectively reduces the progression of high phosphate-induced vascular calcification. In addition, LaCl{sub 3} cooperates with the calcimimetic calindol in decreasing Ca deposition in this in vitro model. These results suggest the potential role of lanthanum in the treatment of VC induced by high Pi.« less

  15. Boundary layers in turbulent convection for air, liquid gallium and liquid sodium

    NASA Astrophysics Data System (ADS)

    Scheel, Janet; Schumacher, Joerg

    2017-11-01

    The scaling of physical quantities that characterize the shape and dynamics of the viscous and thermal boundary layers with respect to the Rayleigh number will be presented for three series of three-dimensional high-resolution direct numerical simulations of Rayleigh-Benard convection (RBC) in a closed cylindrical cell of aspect ratio one. The simulations have been conducted for convection in air at a Prandtl number Pr = 0.7, in liquid gallium at Pr = 0.021 and in liquid sodium at Pr = 0.005. Then we discuss three statistical analysis methods which have been developed to predict the transition of turbulent RBC into the ultimate regime. The methods are based on the large-scale properties of the velocity profile. All three methods indicate that the range of critical Rayleigh numbers is shifted to smaller magnitudes as the Prandtl number becomes smaller. This work is supported by the Priority Programme SPP 1881 of the Deutsche Forschungsgemeinschaft.

  16. Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1995-01-01

    A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO.sub.3 particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr.sub.2 O.sub.3 on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO.sub.3 layer coated with CaO and Cr.sub.2 O.sub.3 surface deposit at from about 1000.degree. C. to 1200.degree. C. to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO.sub.3 layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power.

  17. Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer

    DOEpatents

    Singh, P.; Ruka, R.J.

    1995-02-14

    A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO{sub 3} particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO{sub 3} particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr{sub 2}O{sub 3} on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO{sub 3} layer coated with CaO and Cr{sub 2}O{sub 3} surface deposit at from about 1,000 C to 1,200 C to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO{sub 3} layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power. 5 figs.

  18. Sodium sulfur battery seal

    DOEpatents

    Mikkor, Mati

    1981-01-01

    This disclosure is directed to an improvement in a sodium sulfur battery construction in which a seal between various battery compartments is made by a structure in which a soft metal seal member is held in a sealing position by holding structure. A pressure applying structure is used to apply pressure on the soft metal seal member when it is being held in sealing relationship to a surface of a container member of the sodium sulfur battery by the holding structure. The improvement comprises including a thin, well-adhered, soft metal layer on the surface of the container member of the sodium sulfur battery to which the soft metal seal member is to be bonded.

  19. High-Power Arctic Lidar for observations of Sodium layer and Calcium Ion Cyclotron Resonance Heating

    NASA Astrophysics Data System (ADS)

    Wuerker, R. F.; Foley, J.; Kidd, P.; Wong, A. Y.

    1998-11-01

    The UCLA HIPAS Observatory is located at 64o 54' 22"N, 146o 50' 33" W. It passes under the auroral oval, has a 2.7 m diameter liquid mirror collector (LMT), and two bistatic laser illuminators; a Doubled YAG pumped dye laser and a Doubled (tunable) Alexandrite laser. The first emits 0.1 J - 10 ns pulses at 590nm (Na) at 20 Hz. The second laser emits 0.15 J -10 ns pulses at 393 nm (Ca+) and 391.4 nm (N2) at 10 Hz. New sporadic sodium layers have been observed during the passage of the electrojet and auroras in periods of 20-30 seconds, indicating that sodium is liberated from micrometeors during auroral precipitations. The Laser Induced Fluorescence techniques will be used to observe the acceleration of the Ca+ ions when they are driven by the 80 MW (ERP) 2.85MHz RF array, modulated at the Ca+ ion Cyclotron Frequency. 1. Ionospheric Modifaction and Enviromental Research in the Auroral Region in Plasma Science and the Environment. Publisher: AIP Press, Woodbury, NY. Editors: W. Manheimer, L. Sugiyama, T. Stix; Chapter 3, pgs. 41-75, 1997. Research supported by ONR N00014-96-C-0040

  20. [Pathways of lanthanum ion transport across the posterior epithelium of the cornea in rabbits].

    PubMed

    Virnik, V L

    1985-11-01

    Morphological estimation of the barrier-transport properties of the posterior epithelium in the donor cornea has been performed in the most early time of fanoxic lesions of the cells. Ionized lanthanum, as an effective inhibitor of oxidative phosphorylation and simultaneously--as a marker of transport pathways for particles similar in their size to water molecule, is used in the investigation. The concentration gradient of rare-earth ions is produced by vital injection of lanthanum trichloride into the proper substance (stroma) of the cornea. From the microinjection focus the electron opaque marker is transported through the substrate of the basal substance of the stroma to the posterior epithelium and further along its intercellular and transcellular pathways into the anterior chamber of the eye. The rare-earth ions freely penetrate through the gap and tight junctions. Transcellular transport of lanthanum in the contents of the plasmolemmal microvesicles, vital absorption of the marker on the lateral and luminal parts of the plasmolemma and on the intracellular membranes, lesions of mitochondria and canaliculi of the endoplasmic reticulum of the anoxic character are stated. A suggestion is made on structural preservation of the pathways of convective and dissipative transition of the substance through the posterior epithelium of the cornea during the earliest time of the experimental anoxia.

  1. Effectiveness of chamomile (Matricaria recutita L.), MTAD and sodium hypochlorite irrigants on smear layer.

    PubMed

    Venkataram, V; Gokhale, S T; Kenchappa, M; Nagarajappa, R

    2013-08-01

    Endodontic success depends heavily on effective chemo-mechanical debridement of root canals through the use of instruments and irrigating solutions. To compare the effectiveness of chamomile hydroalcoholic extract, Biopure™ mixture of tetracycline isomer, acid and detergent (MTAD) and 2.5 % sodium hypochlorite (NaOCl) on removal of the smear layer. Randomised controlled trial. Thirty extracted single-rooted, primary human teeth were allocated at random into three experimental groups of 10 teeth each. For each tooth, the canal was prepared using the step-back technique. During instrumentation, 2 ml of the irrigant was used for at least 10 s after each file and 10 ml as a final flush for 2 min for chamomile and NaOCL irrigants. Whereas for MTAD, an initial rinse with 1.3 % NaOCl for a cumulated period of 20 min, and use of MTAD as the final rinse for a period of 5 min was followed. Longitudinal grooves were made on root segments, then split into two halves with a chisel, stored in 2.5 % glutaraldehyde solution and fixed in ethanol series. Specimens were examined for the smear layer according to Hulsmann et al. (Int Endod J 35:668-679, 2002) criteria using a scanning electron microscope. Kruskal-Wallis and Mann-Whitney U tests were used. The most effective result in removal of smear layer occurred with the use of MTAD, followed by chamomile extract. The chamomile extract was found to be significantly more effective than 2.5 % NaOCl solution which had only minor effects. The efficacy of chamomile to remove the smear layer was superior to 2.5 % NaOCl alone, but less effective than MTAD mixture.

  2. Paramagnetic resonance of Mn4+ and Mn2+ centers in lanthanum gallate single crystals

    NASA Astrophysics Data System (ADS)

    Vazhenin, V. A.; Potapov, A. P.; Guseva, V. B.; Artyomov, M. Yu.

    2010-03-01

    An increase in the manganese concentration in lanthanum gallate in the range 0.5-5.0% has been found to result in a complete replacement of individual Mn4+ ions by Mn2+ ions. The relative concentrations and binding energies of individual Mn4+, Mn3+, and Mn2+ ions have been determined. The spin Hamiltonians of the Mn2+ and Mn4+ centers in the rhombohedral and orthorhombic phases, respectively, have been constructed and the orientation of the principal axes of the fine-structure tensor of Mn4+ at room temperature has been found. The possibility of using electron paramagnetic resonance for determining the rotation angles of oxygen octahedra of lanthanum gallate with respect to the perovskite structure has been discussed.

  3. Integration of PLZT and BST family oxides with GaN[Lead Lanthanum Zirconate Titanate, Barium Strontium Titanate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osinsky, A.V.; Fuflyigin, V.N.; Wang, F.

    2000-07-01

    Recent advances in the processing of complex-oxide materials has allowed the authors to monolithically grow ferroelectrics of lead lanthanum zirconate titanate (PLZT) and barium strontium titanate (BST) systems on a GaN/sapphire structure. High quality films of PLZT and BST were grown on GaN/c-Al{sub 2}O{sub 3} in a thickness range of 0.3--5 {micro}m by a sol-gel technique. Field-induced birefringence, as large as 0.02, was measured from a PLZT layer grown on a buffered GaN/sapphire structure. UV illumination was found to result in more symmetrical electrooptic hysteresis loop. BST films on GaN demonstrated a low frequency dielectric constant of up to 800more » with leakage current density as low as 5.5 {center_dot} 10{sup {minus}8} A/cm{sup 2}.« less

  4. Synthesis and characterization of UV-treated Fe-doped bismuth lanthanum titanate-doped TiO2 layers in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Song, Myoung Geun; Bark, Chung Wung

    2016-06-01

    Dye-sensitized solar cells (DSSCs) based on titanium dioxide (TiO2) have been extensively studied because they constitute promising low-cost alternatives to their conventional semiconductor-based counterparts. However, much of the effort aimed at achieving high conversion efficiencies has focused on dye and liquid electrolytes. In this work, we report the photovoltaic characteristics of DSSCs fabricated by mixing TiO2 with Fe-doped bismuth lanthanum titanate (Fe-BLT). These nanosized Fe-BLT powders were prepared by using a high-energy ball-milling process. In addition, we used a UV radiation-ozone (UV-O3) treatment to change the surface wettability of TiO2 from hydrophobic to hydrophilic and thereby prevented the easy separation of the Fe-BLT-mixed TiO2 from the fluorine-doped tin-oxide (FTO) coating glass.

  5. Device for measuring oxygen activity in liquid sodium

    DOEpatents

    Roy, P.; Young, R.S.

    1973-12-01

    A composite ceramic electrolyte in a configuration (such as a closed end tube or a plate) suitable to separate liquid sodium from a reference electrode with a high impedance voltmeter connected to measure EMF between the sodium and the reference electrode as a measure of oxygen activity in the sodium is described. The composite electrolyte consists of zirconiacalcia with a bonded layer of thoria-yttria. The device is used with a gaseous reference electrode on the zirconia-calcia side and liquid sodium on the thoria-yttria side of the electrolyte. (Official Gazette)

  6. Crystal structure of centrosymmetric 12-layer sodium-rich eudialyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozenberg, K. A.; Rastsvetaeva, R. K., E-mail: rast@ns.crys.ras.ru; Verin, I. A.

    2009-05-15

    The structure of a new representative of the eudialyte group with the formula (Na,Sr,K){sub 18}Ca{sub 6}Zr{sub 3}Fe[Si{sub 25}O{sub 72}](OH){sub 2}Cl . H{sub 2}O from the Lovozero massif (Kola Peninsula) was studied by X-ray diffraction. The trigonal unit-cell parameters are a = 14.226 A, c = 30.339 A, sp. gr. R3-barm; the R factor is 0.045 based on 990 reflections. This sample is of interest as a sodium-rich and iron-poor mineral having a rare centrosymmetric structure, in which the M(2) site is occupied predominantly by sodium atoms. The dependence of the formation of centrosymmetric and non-centrosymmetric structures on the composition ofmore » eudialyte-group minerals was analyzed.« less

  7. Higher Strength Lanthanum Carbonate Provides Serum Phosphorus Control With a Low Tablet Burden and Is Preferred by Patients and Physicians: A Multicenter Study

    PubMed Central

    Mehrotra, Rajnish; Martin, Kevin J.; Fishbane, Steven; Sprague, Stuart M.; Zeig, Steven; Anger, Michael

    2008-01-01

    Background and objectives: Management of hyperphosphatemia, a predictor of mortality in chronic kidney disease, is challenging. Nonadherence to dietary phosphate binders, in part, contributes to uncontrolled serum phosphorus levels. This phase IIIb trial assessed the efficacy of increased dosages (3000 to 4500 mg/d) of reformulated lanthanum carbonate (500-, 750-, and 1000-mg tablets) in nonresponders to dosages of up to 3000 mg/d. Design, setting, participants, & measurements: This 8-wk study with a 4-mo open-label extension enrolled 513 patients who were undergoing maintenance hemodialysis. Patients who achieved serum phosphorus control at week 4 with ≤3000 mg/d lanthanum carbonate entered cohort A; nonresponders were randomly assigned to receive 3000, 3750, or 4500 mg/d (cohort B). The primary outcome measure was the control rate for predialysis serum phosphorus levels at the end of week 8, among patients in cohort B. Results: At the end of week 4, 54% of patients achieved serum phosphorus control at dosages ≤3000 mg/d administered as one tablet per meal. Among patients who entered cohort B, control rates of 25, 38, and 32% for patients who were randomly assigned to 3000, 3750, or 4500 mg/d lanthanum carbonate, respectively, were achieved, with no increase in adverse events. Patients and physicians reported significantly higher levels of satisfaction with reformulated lanthanum carbonate compared with previous phosphate binders, partly because of reduced tablet burden with higher dosage strengths. Physicians and patients also expressed a preference for lanthanum carbonate over previous medication. Conclusions: Reformulated lanthanum carbonate is an effective phosphate binder that may reduce daily tablet burden. PMID:18579668

  8. METHOD OF SEPARATING PLUTONIUM FROM LANTHANUM FLUORIDE CARRIER

    DOEpatents

    Watt, G.W.; Goeckermann, R.H.

    1958-06-10

    An improvement in oxidation-reduction type methods of separating plutoniunn from elements associated with it in a neutron-irradiated uranium solution is described. The method relates to the separating of plutonium from lanthanum ions in an aqueous 0.5 to 2.5 N nitric acid solution by 'treating the solution, at room temperature, with ammonium sulfite in an amount sufficient to reduce the hexavalent plutonium present to a lower valence state, and then treating the solution with H/sub 2/O/sub 2/ thereby forming a tetravalent plutonium peroxide precipitate.

  9. CONCENTRATION AND DECONTAMINATION OF SOLUTIONS CONTAINING PLUTONIUM VALUES BY BISMUTH PHOSPHATE CARRIER PRECIPITATION METHODS

    DOEpatents

    Seaborg, G.T.; Thompson, S.G.

    1960-08-23

    A process is given for isolating plutonium present in the tetravalent state in an aqueous solution together with fission products. First, the plutonium and fission products are coprecipitated on a bismuth phosphate carrier. The precipitate obtained is dissolved, and the plutonium in the solution is oxidized to the hexavalent state (with ceric nitrate, potassium dichromate, Pb/ sub 3/O/sub 4/, sodium bismuthate and/or potassium dichromate). Thereafter a carrier for fission products is added (bismuth phosphate, lanthanum fluoride, ceric phosphate, bismuth oxalate, thorium iodate, or thorium oxalate), and the fission-product precipitation can be repeated with one other of these carriers. After removal of the fission-product-containing precipitate or precipitates. the plutonium in the supernatant is reduced to the tetravalent state (with sulfur dioxide, hydrogen peroxide. or sodium nitrate), and a carrier for tetravalent plutonium is added (lanthanum fluoride, lanthanum hydroxide, lanthanum phosphate, ceric phosphate, thorium iodate, thorium oxalate, bismuth oxalate, or niobium pentoxide). The plutonium-containing precipitate is then dissolved in a relatively small volume of liquid so as to obtain a concentrated solution. Prior to dissolution, the bismuth phosphate precipitates first formed can be metathesized with a mixture of sodium hydroxide and potassium carbonate and plutonium-containing lanthanum fluorides with alkali-metal hydroxide. In the solutions formed from a plutonium-containing lanthanum fluoride carrier the plutonium can be selectively precipitated with a peroxide after the pH was adjusted preferably to a value of between 1 and 2. Various combinations of second, third, and fourth carriers are discussed.

  10. Mechanisms for sodium insertion in carbon materials

    NASA Astrophysics Data System (ADS)

    Stevens, David Andrew

    2000-12-01

    This thesis details the mechanisms for sodium insertion into different carbons using both electrochemical and vapour techniques. Room temperature electrochemical measurements were completed to examine the insertion and removal of sodium from soft (graphitizable) and nanoporous hard (non-graphitizable) carbons prepared by the heat treatment of organic precursors to a range of temperatures. The mechanisms identified from these studies were further investigated through a series of in situ x-ray scattering studies on operating electrochemical cells. The results obtained were then compared with x-ray scattering measurements on carbons after exposure to sodium vapour at 890C. This work is primarily driven by the aluminium industry's need to understand how sodium insertion causes carbon cathode blocks in aluminium reduction cells to swell. The results obtained are also of relevance to the lithium-ion battery field as they help to verify mechanisms proposed in the literature for lithium insertion into carbon hosts. Some carbons were also identified that could accommodate large amounts of sodium, making them attractive candidates for anodes in rechargeable sodium ion batteries. For soft carbons, the results showed that both sodium and lithium insert between approximately parallel carbon layers along the sloping voltage region of the electrochemical curves, increasing the average interlayer spacing. The sodium and lithium capacities decreased with increasing carbon heat treatment temperature. For the soft carbons studied, the sodium capacity was found to be consistently lower than the lithium capacity, implying that some lithium-accessible sites were unavailable for sodium insertion. The electrochemical profiles for the hard carbons also contained capacity along a sloping voltage region and, as with the soft carbons, this was shown to result from the insertion of sodium and lithium between approximately parallel carbon layers. In contrast to the soft carbons, however, the

  11. Protonation of a lanthanum phosphide-alkyl occurs at the P-La not the C-La bond: isolation of a cationic lanthanum alkyl complex.

    PubMed

    Izod, Keith; Liddle, Stephen T; Clegg, William

    2004-08-07

    Protonation of the heteroleptic, cyclometalated lanthanum phosphide complex [((Me3Si)2CH)(C6H4-2-CH2NMe2)P]La(THF)[P(C6H4-2-CH2NMe2)(CH(SiMe3)(SiMe2CH2))] with [Et3NH][BPh4] yields the cationic alkyllanthanum complex [(THF)4La[P(C6H4-2-CH2NMe2)(CH(SiMe3)(SiMe2CH2))

  12. Chemical synthesis and supercapacitive properties of lanthanum telluride thin film.

    PubMed

    Patil, S J; Lokhande, A C; Lee, D-W; Kim, J H; Lokhande, C D

    2017-03-15

    Lanthanum telluride (La 2 Te 3 ) thin films are synthesized via a successive ionic layer adsorption and reaction (SILAR) method. The crystal structure, surface morphology and surface wettability properties are investigated using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Field emission scanning electron microscopy (FE-SEM) and contact angle goniometer techniques, respectively. The La 2 Te 3 material exhibits a specific surface area of 51m 2 g -1 determined by Brunauer-Emmett-Teller (BET) method. La 2 Te 3 thin film electrode has a hydrophilic surface which consists of interconnected pine leaf-like flaky arrays that affect the performance of the supercapacitor. The supercapacitive performance of La 2 Te 3 film electrode is evaluated in 1M LiClO 4 /PC electrolyte using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy techniques. La 2 Te 3 film electrode exhibits a specific capacitance of 194Fg -1 at a scan rate of 5mVs -1 and stored energy density of 60Whkg -1 with delivering power density of 7.22kWkg -1 . La 2 Te 3 film electrode showed capacitive retention of 82% over 1000cycles at a scan rate of 100mVs -1 . Further, flexible La 2 Te 3 |LiClO 4 -PVA|La 2 Te 3 supercapacitor cell is fabricated. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Influences of urea and sodium nitrite on surface coating of plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Yeh, Shang-Chun; Tsai, Dah-Shyang; Guan, Sheng-Yong; Chou, Chen-Chia

    2015-11-01

    Urea and sodium nitrite are generally viewed as nitridation additives in the electrolyte for plasma electrolytic oxidation (PEO) of aluminum alloys. We study the influences of these two convenient chemicals in presence of sodium aluminate and find very different effects on film growth. Urea addition enhances the nitrogen content of PEO layer, diminishes the layer thickness, increases the porosity, interferes with the α-alumina formation, and promotes precipitation in the electrolyte. Hence, the electrolytic urea content ought to be maintained less than 45 g dm-3. On the other hand, sodium nitrite behaves like an oxidation additive, more than a nitridation additive. NaNO2 addition effectively introduces nitrogen in the PEO layer at low concentration, yet the nitrogen content of oxide layer decreases with increasing NaNO2 concentration. The effects of NaNO2, such as increasing layer thickness, reducing porosity, promoting α-alumina formation are attributed to oxidation enhancement, not because of nitridation.

  14. High resolution mesospheric sodium properties for adaptive optics applications

    NASA Astrophysics Data System (ADS)

    Pfrommer, T.; Hickson, P.

    2014-05-01

    Context. The performance of laser guide star adaptive optics (AO) systems for large optical and infrared telescopes is affected by variability of the sodium layer, located at altitudes between 80 and 120 km in the upper mesosphere and lower thermosphere. The abundance and density structure of the atomic sodium found in this region is subject to local and global weather effects, planetary and gravity waves and magnetic storms, and is variable on time scales down to tens of milliseconds, a range relevant to AO. Aims: It is therefore important to characterize the structure and dynamical evolution of the sodium region on small, as well as large spatial and temporal scales. Parameters of particular importance for AO are the mean sodium altitude, sodium layer width and the temporal power spectrum of the centroid altitude. Methods: We have conducted a three-year campaign employing a high-resolution lidar system installed on the 6-m Large Zenith Telescope (LZT) located near Vancouver, Canada. During this period, 112 nights of useful data were obtained. Results: The vertical density profile of atomic sodium shows remarkable structure and variability. Smooth Gaussian-shaped profiles rarely occur. Multiple internal layers are frequently found. These layers often have sharp lower edges, with scale heights of just a few hundred meters, and tend to drift downwards at a typical rate of one kilometer every two to three hours. Individual layers can persist for many hours, but their density and internal structure can be highly variable. Sporadic layers are seen reaching peak densities several times the average, often in just a few minutes. Coherent vertical oscillations are often found, typically extending over tens of kilometers in altitude. Regions of turbulence are evident and Kelvin-Helmholtz instability are sometimes seen. The mean value of the centroid altitude is found to be 90.8 ± 0.1 km. The sodium layer width was determined by computing the altitude range that contains a

  15. Metallization pattern on solid electrolyte or porous support of sodium battery process

    DOEpatents

    Kim, Jin Yong; Li, Guosheng; Lu, Xiaochuan; Sprenkle, Vincent L.; Lemmon, John P.

    2016-05-31

    A new battery configuration and process are detailed. The battery cell includes a solid electrolyte configured with an engineered metallization layer that distributes sodium across the surface of the electrolyte extending the active area of the cathode in contact with the anode during operation. The metallization layer enhances performance, efficiency, and capacity of sodium batteries at intermediate temperatures at or below about 200.degree. C.

  16. Phase-separated, epitaxial composite cap layers for electronic device applications and method of making the same

    DOEpatents

    Aytug, Tolga [Knoxville, TN; Paranthaman, Mariappan Parans [Knoxville, TN; Polat, Ozgur [Knoxville, TN

    2012-07-17

    An electronic component that includes a substrate and a phase-separated layer supported on the substrate and a method of forming the same are disclosed. The phase-separated layer includes a first phase comprising lanthanum manganate (LMO) and a second phase selected from a metal oxide (MO), metal nitride (MN), a metal (Me), and combinations thereof. The phase-separated material can be an epitaxial layer and an upper surface of the phase-separated layer can include interfaces between the first phase and the second phase. The phase-separated layer can be supported on a buffer layer comprising a composition selected from the group consisting of IBAD MgO, LMO/IBAD-MgO, homoepi-IBAD MgO and LMO/homoepi-MgO. The electronic component can also include an electronically active layer supported on the phase-separated layer. The electronically active layer can be a superconducting material, a ferroelectric material, a multiferroic material, a magnetic material, a photovoltaic material, an electrical storage material, and a semiconductor material.

  17. Layered double hydroxide using hydrothermal treatment: morphology evolution, intercalation and release kinetics of diclofenac sodium

    NASA Astrophysics Data System (ADS)

    Joy, Mathew; Iyengar, Srividhya J.; Chakraborty, Jui; Ghosh, Swapankumar

    2017-12-01

    The present work demonstrates the possibilities of hydrothermal transformation of Zn-Al layered double hydroxide (LDH) nanostructure by varying the synthetic conditions. The manipulation in washing step before hydrothermal treatment allows control over crystal morphologies, size and stability of their aqueous solutions. We examined the crystal growth process in the presence and the absence of extra ions during hydrothermal treatment and its dependence on the drug (diclofenac sodium (Dic-Na)) loading and release processes. Hexagonal plate-like crystals show sustained release with ˜90% of the drug from the matrix in a week, suggesting the applicability of LDH nanohybrids in sustained drug delivery systems. The fits to the release kinetics data indicated the drug release as a diffusion-controlled release process. LDH with rod-like morphology shows excellent colloidal stability in aqueous suspension, as studied by photon correlation spectroscopy.

  18. A Spinel-integrated P2-type Layered Composite: High-rate Cathode for Sodium-ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianming; Yan, Pengfei; Kan, Wang Hay

    2016-01-14

    Sodium-ion batteries (SIB) are being intensively investigated, owing to the natural abundance and low cost of Na resources. However, the SIBs still suffer from poor rate capability due to the large ionic radius of Na+ ion and the significant kinetic barrier to Na+-ion transport. Here, we present an Fd-3m spinel-integrated P2-type layered composite (P2 + Fd-3m) material as a high-rate cathode for SIBs. The P2 + Fd-3m composite material Na0.50Ni1/6Co1/6Mn2/3O2 shows significantly enhanced discharge capacity, energy density, and rate capability as compared to the pure P2-type counterpart. The composite delivers a high capacity of 85 mA h g-1 when dischargingmore » at a very high current density of 1500 mA g-1 (10C rate) between 2.0 and 4.5 V, validating it as a promising cathode candidate for high-power SIBs. The superior performance is ascribed to the improved kinetics in the presence of the integrated-spinel phase, which facilitates fast electron transport to coordinate with the timely Na+-ion insertion/extraction. The findings of this work also shed light on the importance of developing lattice doping, surface coating, and electrolyte additives to further improve the structural and interfacial stability of P2-type cathode materials and fully realize their practical applications in sodium-ion batteries.« less

  19. Effect of sputtered lanthanum hexaboride film thickness on field emission from metallic knife edge cathodes

    NASA Astrophysics Data System (ADS)

    Kirley, M. P.; Novakovic, B.; Sule, N.; Weber, M. J.; Knezevic, I.; Booske, J. H.

    2012-03-01

    We report experiments and analysis of field emission from metallic knife-edge cathodes, which are sputter-coated with thin films of lanthanum hexaboride (LaB6), a low-work function material. The emission current is found to depend sensitively on the thickness of the LaB6 layer. We find that films thinner than 10 nm greatly enhance the emitted current. However, cathodes coated with a thicker layer of LaB6 are observed to emit less current than the uncoated metallic cathode. This result is unexpected due to the higher work function of the bare metal cathode. We show, based on numerical calculation of the electrostatic potential throughout the structure, that the external (LaB6/vacuum) barrier is reduced with respect to uncoated samples for both thin and thick coatings. However, this behavior is not exhibited at the internal (metal/LaB6) barrier. In thinly coated samples, electrons tunnel efficiently through both the internal and external barrier, resulting in current enhancement with respect to the uncoated case. In contrast, the thick internal barrier in thickly coated samples suppresses current below the value for uncoated samples in spite of the lowered external barrier. We argue that this coating thickness variation stems from a relatively low (no higher than 1018 cm-3) free carrier density in the sputtered polycrystalline LaB6.

  20. Electronic structure and properties of lanthanum

    NASA Astrophysics Data System (ADS)

    Nixon, Lane; Papaconstantopoulos, Dimitrios

    2008-03-01

    The total energy and electronic structure of lanthanum have been calculated in the bcc, fcc, hcp and dhcp structures for pressures up to 50 GPa. The full potential linearized-augmented-planewave method was used with both the local-density and general-gradient approximations. The correct phase ordering has been found, with lattice parameters and bulk moduli in good agreement with experimental data. The GGA method shows excellent agreement overall while the LDA results show larger discrepancies. The calculated strain energies for the fcc and bcc structures demonstrate the respective stable and unstable configurations at ambient conditions. The calculated superconductivity properties under pressure for the fcc structure are also found to agree well with measurements. Both LDA and GGA, with minor differences, reproduce well the experimental results for Tc.

  1. Phase I. Lanthanum-based Start Materials for Hydride Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gschneidner, K. A.; Schmidt, F. A.; Frerichs, A. E.

    The purpose of Phase I of this work is to focus on developing a La-based start material for making nickel-metal (lanthanum)-hydride batteries based on our carbothermic-silicon process. The goal is to develop a protocol for the manufacture of (La 1-xR x)(Ni 1-yM y)(Si z), where R is a rare earth metal and M is a non-rare earth metal, to be utilized as the negative electrode in nickel-metal hydride (NiMH) rechargeable batteries.

  2. Determination of Aluminum in Dialysis Concentrates by Atomic Absorption Spectrometry after Coprecipitation with Lanthanum Phosphate.

    PubMed

    Selvi, Emine Kılıçkaya; Şahin, Uğur; Şahan, Serkan

    2017-01-01

    This method was developed for the determination of trace amounts of aluminum(III) in dialysis concentrates using atomic absorption spectrometry after coprecipitation with lanthanum phosphate. The analytical parameters that influenced the quantitative coprecipitation of analyte including amount of lanthanum, amount of phosfate, pH and duration time were optimized. The % recoveries of the analyte ion were in the range of 95-105 % with limit of detection (3s) of 0.5 µg l -1 . Preconcentration factor was found as 1000 and Relative Standard Deviation (RSD) % value obtained from model solutions was 2.5% for 0.02 mg L -1 . The accuracy of the method was evaluated with standard reference material (CWW-TMD Waste Water). The method was also applied to most concentrated acidic and basic dialysis concentrates with satisfactory results.

  3. PROCESS USING POTASSIUM LANTHANUM SULFATE FOR FORMING A CARRIER PRECIPITATE FOR PLUTONIUM VALUES

    DOEpatents

    Angerman, A.A.

    1958-10-21

    A process is presented for recovering plutonium values in an oxidation state not greater than +4 from fluoride-soluble fission products. The process consists of adding to an aqueous acidic solution of such plutonium values a crystalline potassium lanthanum sulfate precipitate which carries the plutonium values from the solution.

  4. Three-layered radio frequency coil arrangement for sodium MRI of the human brain at 9.4 Tesla.

    PubMed

    Shajan, G; Mirkes, Christian; Buckenmaier, Kai; Hoffmann, Jens; Pohmann, Rolf; Scheffler, Klaus

    2016-02-01

    A multinuclei imaging setup with the capability to acquire both sodium ((23) Na) and proton ((1) H) signals at 9.4 Tesla is presented. The main objective was to optimize coil performance at the (23) Na frequency while still having the ability to acquire satisfactory (1) H images. The setup consisted of a combination of three radio frequency (RF) coils arranged in three layers: the innermost layer was a 27-channel (23) Na receive helmet which was surrounded by a four-channel (23) Na transceiver array. The outer layer consisted of a four-channel (1) H dipole array for B0 shimming and anatomical localization. Transmit and receive performance of the (23) Na arrays was compared to a single-tuned (23) Na birdcage resonator. While the transmit efficiency of the (23) Na transceiver array was comparable to the birdcage, the (23) Na receive array provided substantial signal-to-noise ratio (SNR) gain near the surface and comparable SNR in the center. The utility of this customized setup was demonstrated by (23) Na images of excellent quality. High SNR, efficient transmit excitation and B0 shimming capability can be achieved for (23) Na MRI at 9.4T using novel coil combination. This RF configuration is easily adaptable to other multinuclei applications at ultra high field (≥ 7T). © 2015 Wiley Periodicals, Inc.

  5. A High-Performance Sodium-Ion Full Cell with a Layered Oxide Cathode and a Phosphorous-Based Composite Anode

    DOE PAGES

    Oh, Seung-Min; Oh, Pilgun; Kim, Sang-Ok; ...

    2016-12-29

    A low-cost sodium-ion full cell with a O3-type layered Na[Cu 0.2(Fe 1/3Mn2/3) 0.8]O 2 cathode and an alloy-type P-TiP2-C anode is presented. The cathode is synthesized by an oxalate coprecipitation method and optimized cathodes shows a high specific capacity of 135 mAh g -1 at 0.1C rate with a high rate capability of 90 mAh g-1 at 1C rate and 70 mAh g -1 at 2C rate with good cyclability. The full cell exhibits better capacity retention than the half cell with the cathode due to the elimination of the degradation caused by sodium-metal anode. The dramatically enhanced electrochemical performancemore » of the Na[Cu 0.2(Fe 1/3Mn 2/3) 0.8]O 2 / P-TiP 2-C full cell compared to that of the sample with no Cu is attributed to the structural stabilization imparted by Cu by suppressing the phase change from the O3 structure to the P3 structure during cycling.« less

  6. Influence of Lanthanum Doping on the Structural and Optical Properties of Hematite Nanopowders

    NASA Astrophysics Data System (ADS)

    Justus, J. Sharmila; Dharma Roy, S. Dawn; Raj, A. Moses Ezhil

    2016-10-01

    Rare-earth elements are an attractive class of dopant elements, as they give easily trivalent cations that possibly altering the structure and other properties of the parent nanoparticles and creating multifunctional materials because of their f-electronic configurations. Herein, experimental evidence has been given for a better understanding of the factors that dictate the interactions of La doping on the structure and optical properties of iron oxide nanoparticles. For that, lanthanum doped hematite (α-Fe2O3) nanoparticles were prepared by a facile solution method using iron (III) chloride (FeCl3) as starting precursor and sodium hydroxide (NaOH) as reducing agent without templates at low temperature. As-prepared powders were subsequently calcined in air for 3 hr at 800 °C. Xray diffraction (XRD) technique was used to study the nanocrystal formation of α-Fe2O3 and Fourier Transform Raman (FT-Raman) spectral information identified the chemical bond structure of the nanoparticles. Morphology study of the nanoparticles was identified using Scanning Electron Microscope (SEM) and the incorporated La content was recognized from the Energy Dispersive X-ray Spectroscopy (EDS) analysis. The optical absorption spectrum was recorded in the wavelength range of 200-2000 nm and the optical parameters such as absorption coefficient and optical band gap energy of pure and doped Fe2O3 nanoparticles were determined. Obtained results are interpreted by considering the impregnation of trivalent La cations that replaced Fe cations of the host structure.

  7. Anomalous Hall effect in calcium-doped lanthanum cobaltite and gadolinium

    NASA Astrophysics Data System (ADS)

    Baily, Scott Alan

    The physical origin of the anomalous (proportional to magnetization) Hall effect is not very well understood. While many theories account for a Hall effect proportional to the magnetization of a material, these theories often predict effects significantly smaller than those found in ferromagnetic materials. An even more significant deficiency of the conventional theories is that they predict an anomalous Hall resistivity that is proportional to a power of the resistivity, and in the absence of a metal insulator transition cannot account for the anomalous Hall effect that peaks near TC. Recent models based on a geometric, or Berry, phase have had a great deal of success describing the anomalous Hall effect in double-exchange systems (e.g., lanthanum manganite and chromium dioxide). In gadolinium, as in double-exchange magnets, the exchange interaction is mediated by the conduction electrons and the anomalous Hall effect may therefore resemble that of CrO2 and other metallic double-exchange ferromagnets. Lanthanum cobaltite is similar to manganite in many ways, but a strong double-exchange interaction is not present. Calcium-doped lanthanum cobaltite films were found to have the largest anomalous Hall effect of any ferromagnetic metal. The primary purpose of this study is to gain insight into the origin of the anomalous Hall effect with the hope that these theories can be extended to account for the effect in other materials. The Hall resistivity, magnetoresistance, and magnetization of a Gadolinium single crystal were measured in fields up to 30 T. Cobaltite films were grown via laser ablation and characterized by a variety of techniques. Hall resistivity, magnetoresistance, magnetization, and magnetothermopower of L 1-xCaxCoO3 samples with 0.15 < x < 0.4 were measured in fields up to 7 T. The Gd results suggest that Berry's phase contributes partially to the Hall effect near TC. Berry's phase theories hold promise for explaining the large anomalous Hall effect in

  8. Concentration and time-dependent effect of initial sodium hypochlorite on the ability of QMix and ethylenediaminetetraacetic acid to remove smear layer.

    PubMed

    Aksel, Hacer; Serper, Ahmet

    2017-01-01

    The aim of this study was to compare the ability of 17% ethylenediaminetetraacetic acid (EDTA) and QMix with different concentrations and time exposures of initial sodium hypochlorite (NaOCl) to remove the smear layer from the root canals. Eighty maxillary central incisors were used. After instrumentation, the teeth were divided into eight experimental groups according to the initial and final rinse. About 2.5% and 5% NaOCl were used during instrumentation and for 1 or 3 min was used as postinstrumentation initial irrigants, and 17% EDTA and QMix used as final irrigants. The apical and middle parts of the specimens were observed by scanning electron microscope. Data were analyzed using the Kruskal-Wallis, Mann-Whitney, and Friedman's test. Regardless of the type of final irrigant, QMix allowed more smear layer removal than EDTA after using 5% initial NaOCl for 3 min. In the apical part of the root canal walls, the smear layer was not completely removed. QMix and EDTA were similarly effective in smear layer removal at the middle parts of the root canal regardless of the concentration and time exposure of initial NaOCl, while none of the irrigation protocols was able to remove smear layer at the apical parts.

  9. Phonons and superconductivity in fcc and dhcp lanthanum

    NASA Astrophysics Data System (ADS)

    Baǧcı, S.; Tütüncü, H. M.; Duman, S.; Srivastava, G. P.

    2010-04-01

    We have investigated the structural and electronic properties of lanthanum in the face-centered-cubic (fcc) and double hexagonal-close-packed (dhcp) phases using a generalized gradient approximation of the density functional theory and the ab initio pseudopotential method. It is found that double hexagonal-close-packed is the more stable phase for lanthanum. Differences in the density of states at the Fermi level between these two phases are pointed out and discussed in detail. Using the calculated lattice constant and electronic band structure for both phases, a linear response approach based on the density functional theory has been applied to study phonon modes, polarization characteristics of phonon modes, and electron-phonon interaction. Our phonon results show a softening behavior of the transverse acoustic branch along the Γ-L direction and the Γ-M direction for face-centered-cubic and double hexagonal-close-packed phases, respectively. Thus, the transverse-phonon linewidth shows a maximum at the zone boundary M(L) for the double hexagonal-close-packed phase (face-centered-cubic phase), where the transverse-phonon branch exhibits a dip. The electron-phonon coupling parameter λ is found to be 0.97 (1.06) for the double hexagonal-close-packed phase (face-centered-cubic phase), and the superconducting critical temperature is estimated to be 4.87 (dhcp) and 5.88 K (fcc), in good agreement with experimental values of around 5.0 (dhcp) and 6.0 K (fcc). A few superconducting parameters for the double hexagonal-close-packed phase have been calculated and compared with available theoretical and experimental results. Furthermore, the calculated superconducting parameters for both phases are compared between each other in detail.

  10. Effects of lanthanum carbonate and calcium carbonate on fibroblast growth factor 23 and hepcidin levels in chronic hemodialysis patients.

    PubMed

    Chang, Yu-Ming; Tsai, Shih-Ching; Shiao, Chih-Chung; Liou, Hung-Hsiang; Yang, Chuan-Lan; Tung, Nai-Yu; Hsu, Kua-Sui; Chen, I-Ling; Liu, Mei-Chyn; Kao, Jsun-Liang; Jhen, Rong-Na; Huang, Ya-Ting

    2017-10-01

    Phosphate binders have an impact on fibroblast growth factor 23 (FGF23); however, the effect of phosphate binders on serum hepcidin has not been explored. We conducted a 24-week multicenter randomized controlled trial to investigate the effects of lanthanum carbonate or calcium carbonate monotherapy on serum phosphate, FGF23, and hepcidin levels in chronic hemodialysis patients. Forty-six patients were recruited, and daily dietary phosphorus was controlled between 600-800 mg. Serum calcium, phosphate, albumin, alkaline phosphatase (ALP), FGF23, intact parathyroid hormone (iPTH), hepcidin, high-sensitivity CRP (hsCRP), 25(OH)D, 1,25(OH) 2 D, fetuin-A, and osteopontin were checked as scheduled. Twenty-five patients completed the study. Mean serum FGF23 level was significantly decreased after a 24-week treatment with lanthanum (8677.5 ± 7490.0 vs. 4692.8 ± 5348.3 pg/mL, p = 0.013, n = 13), but not with calcium (n = 12). The reduction of serum hepcidin in lanthanum group was positively correlated with the decrement of serum phosphate (r = 0.631, p = 0.021) and serum hsCRP (r = 0.670, p = 0.012) levels, respectively. Serum ALP, iPTH, vitamin D, fetuin-A, and osteopontin revealed no significant inter- or intragroup differences. In summary, a decrease in serum FGF23 levels and a trend of decline in hepcidin levels were observed only in lanthanum group.

  11. Effect of Duration of Irrigation with Sodium Hypochlorite in Clinical Protocol of MTAD on Removal of Smear Layer and Creating Dentinal Erosion

    PubMed Central

    Lotfi, Mehrdad; Moghaddam, Negar; Vosoughhosseini, Sepideh; Zand, Vahid; Saghiri, Mohammad Ali

    2012-01-01

    Background and aims The aim of the present study was to compare 1.3% sodium hypochlorite (NaOCl) in MTAD (mixture of tetracycline isomer, acid, and detergent) for the removal of the smear layer and induction of canal erosion. Materials and methods 38 maxillary incisors were divided in three experimental groups of 10 and two positive and negative control groups of each 4 teeth, and prepared using rotary files. In test groups, 1.3% NaOCl was used for 5, 10 and 20 minutes during preparation followed by MTAD as the final rinse. In negative control group, 5.25% NaOCl was used for 10 minutes followed by 17% Ethylenediamine Tetra-Acetic Acid (EDTA) as the final rinse. In positive control group, dis-tilled water was used for 10 minutes during preparation and then as the final rinse. The samples were examined under scan-ning electron microscope, and the smear layer and dentinal erosion scores were recorded. Results Five and 10 min groups had significant differences with 20 min group (p < 0.05). In apical third, 5 and 10 min groups had also significant differences with 20 min (p < 0.05). In the coronal thirds, when the time of irrigation with 1.3% NaOCl increased from 5 min to 20 min, erosion also increased significantly. However, 5 and 10 min groups had no signifi-cant differences with negative control group. Conclusion The use of 1.3% sodium hypochlorite for 5 and 10 minutes in the MTAD protocol removes the smear layer in the coronal and middle thirds but does not induce erosion. PMID:22991642

  12. Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries.

    PubMed

    Yabuuchi, Naoaki; Komaba, Shinichi

    2014-08-01

    Large-scale high-energy batteries with electrode materials made from the Earth-abundant elements are needed to achieve sustainable energy development. On the basis of material abundance, rechargeable sodium batteries with iron- and manganese-based positive electrode materials are the ideal candidates for large-scale batteries. In this review, iron- and manganese-based electrode materials, oxides, phosphates, fluorides, etc, as positive electrodes for rechargeable sodium batteries are reviewed. Iron and manganese compounds with sodium ions provide high structural flexibility. Two layered polymorphs, O3- and P2-type layered structures, show different electrode performance in Na cells related to the different phase transition and sodium migration processes on sodium extraction/insertion. Similar to layered oxides, iron/manganese phosphates and pyrophosphates also provide the different framework structures, which are used as sodium insertion host materials. Electrode performance and reaction mechanisms of the iron- and manganese-based electrode materials in Na cells are described and the similarities and differences with lithium counterparts are also discussed. Together with these results, the possibility of the high-energy battery system with electrode materials made from only Earth-abundant elements is reviewed.

  13. Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries

    PubMed Central

    Yabuuchi, Naoaki; Komaba, Shinichi

    2014-01-01

    Large-scale high-energy batteries with electrode materials made from the Earth-abundant elements are needed to achieve sustainable energy development. On the basis of material abundance, rechargeable sodium batteries with iron- and manganese-based positive electrode materials are the ideal candidates for large-scale batteries. In this review, iron- and manganese-based electrode materials, oxides, phosphates, fluorides, etc, as positive electrodes for rechargeable sodium batteries are reviewed. Iron and manganese compounds with sodium ions provide high structural flexibility. Two layered polymorphs, O3- and P2-type layered structures, show different electrode performance in Na cells related to the different phase transition and sodium migration processes on sodium extraction/insertion. Similar to layered oxides, iron/manganese phosphates and pyrophosphates also provide the different framework structures, which are used as sodium insertion host materials. Electrode performance and reaction mechanisms of the iron- and manganese-based electrode materials in Na cells are described and the similarities and differences with lithium counterparts are also discussed. Together with these results, the possibility of the high-energy battery system with electrode materials made from only Earth-abundant elements is reviewed. PMID:27877694

  14. Influence of Smear Layer on the Antimicrobial Activity of a Sodium Hypochlorite/Etidronic Acid Irrigating Solution in Infected Dentin.

    PubMed

    Morago, Ana; Ordinola-Zapata, Ronald; Ferrer-Luque, Carmen María; Baca, Pilar; Ruiz-Linares, Matilde; Arias-Moliz, María Teresa

    2016-11-01

    The aim of this study was to evaluate the influence of the smear layer on the antimicrobial activity of a 2.5% sodium hypochlorite (NaOCl)/9% etidronic acid (HEBP) irrigating solution against bacteria growing inside dentin tubules. Dentin tubules were infected with Enterococcus faecalis by centrifugation. After 5 days of incubation, the smear layer had formed in half of the samples, which were then treated with 2.5% NaOCl either alone or combined with 9% HEBP for 3 minutes. The percentage of dead cells in infected dentinal tubules was measured using confocal laser scanning microscopy and the live/dead technique. The smear layer on the surface of the root canal wall was also observed by scanning electron microscopy. Results of the percentage of dead cells were compared using parametric tests after subjecting data to the normalized Anscombe transformation. The level of significance was P < .05. In the absence of the smear layer, 2.5% NaOCl alone and combined with 9% HEBP showed high antimicrobial activity without significant differences between the 2. The smear layer reduced the antimicrobial activity of 2.5% NaOCl significantly, whereas the solution with HEBP was not affected. No dentin tubules free of the smear layer were obtained in the 2.5% NaOCl group. In the case of 2.5% NaOCl/9% HEBP, 95.40% ± 3.63% of dentin tubules were cleaned. The presence of the smear layer reduced the antimicrobial activity of 2.5% NaOCl. The combination of 2.5% NaOCl/9% HEBP exerted antimicrobial activity that was not reduced by the smear layer. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Fabrication of porous carbon sphere@SnO2@carbon layer coating composite as high performance anode for sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Xin; Sun, Xiaohong; Gao, Zhiwen; Hu, Xudong; Guo, Jingdong; Cai, Shu; Guo, Ruisong; Ji, Huiming; Zheng, Chunming; Hu, Wenbin

    2018-03-01

    SnO2 has triggered lots of research efforts as anode for sodium-ion batteries. However, the volume expansion and poor conductivity lead to an unsatisfactory electrochemical performance for the practical application of SnO2. In this work, a novel carbon-coated SnO2 supported by porous carbon sphere composite is synthesized by hydrothermal process combining with annealing method. The porous carbon sphere@SnO2@carbon layer coating composite anode delivers a reversible capacity of 326 mAh g-1 over 80 cycles at a current density of 50 mA g-1. Even at 1600 mA g-1, a capacity of 82 mAh g-1 is still maintained after 550 cycles. Such excellent performance can be ascribed to the unique structure, which efficiently accommodates volume expansion, enhances conductivity and offers shortened sodium-ion transport pathway. The charge-storage mechanisms can be comprised of diffusion-controlled reaction and pseudocapacitance effect. At high scan rate of 1.0 mV s-1, the capacity contribution of pseudocapacitance effect could reach as high as 78%.

  16. Comprehensive Study of Lanthanum Aluminate High-Dielectric-Constant Gate Oxides for AdvancedCMOS Devices

    PubMed Central

    Suzuki, Masamichi

    2012-01-01

    A comprehensive study of the electrical and physical characteristics of Lanthanum Aluminate (LaAlO3) high-dielectric-constant gate oxides for advanced CMOS devices was performed. The most distinctive feature of LaAlO3 as compared with Hf-based high-k materials is the thermal stability at the interface with Si, which suppresses the formation of a low-permittivity Si oxide interfacial layer. Careful selection of the film deposition conditions has enabled successful deposition of an LaAlO3 gate dielectric film with an equivalent oxide thickness (EOT) of 0.31 nm. Direct contact with Si has been revealed to cause significant tensile strain to the Si in the interface region. The high stability of the effective work function with respect to the annealing conditions has been demonstrated through comparison with Hf-based dielectrics. It has also been shown that the effective work function can be tuned over a wide range by controlling the La/(La + Al) atomic ratio. In addition, gate-first n-MOSFETs with ultrathin EOT that use sulfur-implanted Schottky source/drain technology have been fabricated using a low-temperature process. PMID:28817057

  17. Cost-Effectiveness of First-Line Sevelamer and Lanthanum versus Calcium-Based Binders for Hyperphosphatemia of Chronic Kidney Disease.

    PubMed

    Habbous, Steven; Przech, Sebastian; Martin, Janet; Garg, Amit X; Sarma, Sisira

    2018-03-01

    Phosphate binders are used to treat hyperphosphatemia among patients with chronic kidney disease (CKD). To conduct an economic evaluation comparing calcium-free binders sevelamer and lanthanum with calcium-based binders for patients with CKD. Effectiveness data were obtained from a recent meta-analysis of randomized trials. Effectiveness was measured as life-years gained and translated to quality-adjusted life-years (QALYs) using utility weights from the literature. A Markov model consisting of non-dialysis-dependent (NDD)-CKD, dialysis-dependent (DD)-CKD, and death was developed to estimate the incremental costs and effects of sevelamer and lanthanum versus those of calcium-based binders. A lifetime horizon was used and both costs and effects were discounted at 1.5%. All costs are presented in 2015 Canadian dollars from the Canadian public payer perspective. Results of probabilistic sensitivity analysis were presented using cost-effectiveness acceptability curves. Sensitivity analyses were conducted for risk pooling methods, omission of dialysis costs, and persistence of drug effects on mortality. Sevelamer resulted in an incremental cost-effectiveness ratio of $106,522/QALY for NDD-CKD and $133,847/QALY for DD-CKD cohorts. Excluding dialysis costs, sevelamer was cost-effective in the NDD-CKD cohort ($5,847/QALY) and the DD-CKD cohort ($11,178/QALY). Lanthanum was dominated regardless of whether dialysis costs were included. Existing evidence does not clearly support the cost-effectiveness of non-calcium-containing phosphate binders (sevelamer and lanthanum) relative to calcium-containing phosphate binders in DD-CKD patients. Our study suggests that sevelamer may be cost-effective before dialysis onset. Because of the remaining uncertainty in several clinically relevant outcomes over time in DD-CKD and NDD-CKD patients, further research is encouraged. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier

  18. Room-Temperature Fabricated Thin-Film Transistors Based on Compounds with Lanthanum and Main Family Element Boron.

    PubMed

    Xiao, Peng; Huang, Junhua; Dong, Ting; Xie, Jianing; Yuan, Jian; Luo, Dongxiang; Liu, Baiquan

    2018-06-06

    For the first time, compounds with lanthanum from the main family element Boron (LaB x ) were investigated as an active layer for thin-film transistors (TFTs). Detailed studies showed that the room-temperature fabricated LaB x thin film was in the crystalline state with a relatively narrow optical band gap of 2.28 eV. The atom ration of La/B was related to the working pressure during the sputtering process and the atom ration of La/B increased with the increase of the working pressure, which will result in the freer electrons in the LaB x thin film. LaB x -TFT without any intentionally annealing steps exhibited a saturation mobility of 0.44 cm²·V −1 ·s −1 , which is a subthreshold swing ( SS ) of 0.26 V/decade and a I on / I off ratio larger than 10⁴. The room-temperature process is attractive for its compatibility with almost all kinds of flexible substrates and the LaB x semiconductor may be a new choice for the channel materials in TFTs.

  19. Lick sodium laser guide star: performance during the 1998 LGS observing campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauman, B; Friedman, H; Gavel, D T

    1999-07-19

    The performance of a sodium laser guide star adaptive optics system depends crucially on the characteristics of the laser guide star in the sodium layer. System performance is quite sensitive to sodium layer spot radiance, that is, return per unit sterradian on the sky, hence we have been working to improve projected beam quality via improvements to the laser and changes to the launched beam format. The laser amplifier was reconfigured to a ''bounce-beam'' geometry, which considerably improves wavefront quality and allows a larger round instead of square launch beam aperture. The smaller beacon makes it easier to block themore » unwanted Rayleigh light and improves the accuracy of Hartmann sensor wavefront measurements in the A0 system. We present measurements of the beam quality and of the resulting sodium beacon and compare to similar measurements from last year.« less

  20. Long-term stability of sodium caseinate-stabilized nanoemulsions.

    PubMed

    Yerramilli, Manispuritha; Ghosh, Supratim

    2017-01-01

    Oil-in-water (5 wt%) nanoemulsions were prepared with different concentration (2.5-10 wt%) of sodium caseinate as a sole emulsifier and their long-term storage stability was investigated for 6 months. Previous studies associated with sodium caseinate looked only into nanoemulsion formation; hence the challenges with long-term stability were not addressed. All nanoemulsions displayed an average droplet size <200 nm, which remained unchanged over 6 months. However, all of them displayed rapid creaming due to unabsorbed protein induced depletion flocculation, whose extent increased with protein concentration, although the cream layer formed was weak and re-dispersible upon gentle mixing. Microstructural analysis of the cream layer showed compaction of flocculated nanodroplet network with time leaving the aqueous phase out. Calculation of depletion interaction energy showed an increase in inter-droplet attraction with protein concentration and decrease with a reduction in droplet size, making the nanoemulsions more resistant to flocculation than conventional emulsions. This work aids in understanding the dependence of protein concentration on long-term stability of sodium caseinate-stabilized nanoemulsions.

  1. An ultrastable anode for long-life room-temperature sodium-ion batteries.

    PubMed

    Yu, Haijun; Ren, Yang; Xiao, Dongdong; Guo, Shaohua; Zhu, Yanbei; Qian, Yumin; Gu, Lin; Zhou, Haoshen

    2014-08-18

    Sodium-ion batteries are important alternative energy storage devices that have recently come again into focus for the development of large-scale energy storage devices because sodium is an abundant and low-cost material. However, the development of electrode materials with long-term stability has remained a great challenge. A novel negative-electrode material, a P2-type layered oxide with the chemical composition Na(2/3)Co(1/3)Ti(2/3)O2, exhibits outstanding cycle stability (ca. 84.84 % capacity retention for 3000 cycles, very small decrease in the volume (0.046 %) after 500 cycles), good rate capability (ca. 41 % capacity retention at a discharge/charge rate of 10 C), and a usable reversible capacity of about 90 mAh g(-1) with a safe average storage voltage of approximately 0.7 V in the sodium half-cell. This P2-type layered oxide is a promising anode material for sodium-ion batteries with a long cycle life and should greatly promote the development of room-temperature sodium-ion batteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A comparative scanning electron microscopy evaluation of smear layer removal with apple vinegar and sodium hypochlorite associated with EDTA

    PubMed Central

    CANDEIRO, George Táccio de Miranda; de MATOS, Isabela Barbosa; da COSTA, Clarice Fernandes Eloy; FONTELES, Cristiane Sá Roriz; do VALE, Mônica Sampaio

    2011-01-01

    Objective The purpose of this study was to evaluate by scanning electron microscopy (SEM) the removal of smear layer from the middle and apical root thirds after use of different irrigating solutions. Material and Methods Forty roots of permanent human teeth had their canals instrumented and were randomly assigned to 4 groups (n=10), according to the irrigating solution: apple vinegar (group A), apple vinegar finished with 17% ethylenediaminetetraacetic acid (EDTA) (group B), 1% sodium hypochlorite (NaOCl) finished with 17% EDTA (group C) and saline (group D - control). After chemomechanical preparation, the roots were cleaved longitudinally and their middle and apical thirds were examined by SEM at ×1,000 magnification. Two calibrated examiners (kappa=0.92) analyzed the SEM micrographs qualitatively attributing scores that indicated the efficacy of the solutions in removing the smear layer from the surface of the dentin tubules (1 - poor, 2 - good and 3 - excellent). Data from the control and experimental groups were analyzed by the Kruskal-Wallis and Dunn's test, while the Wilcoxon test was used to compare the middle and apical thirds of the canals within the same group (α=0.05). Results The middle third presented less amount of smear layer than the apical third, regardless of the irrigant. There was statistically significant difference (p=0.0402) among the groups in the middle third. In the apical third, the apple vinegar/EDTA group showed the greatest removal of smear layer (p=0.0373). Conclusion Apple vinegar associated or not with EDTA was effective in removing smear layer when used as an endodontic irrigant. PMID:22231000

  3. Paramagnetic centers in two phases of manganese-doped lanthanum gallate

    NASA Astrophysics Data System (ADS)

    Vazhenin, V. A.; Potapov, A. P.; Guseva, V. B.; Artyomov, M. Yu.

    2009-05-01

    An EPR study of two phases of manganese-doped lanthanum gallate (with a first-order structural transition occurring at 430 K) has revealed Gd3+, Fe3+, and Mn4+ centers at room temperature and 438 K. The parameters of spin Hamiltonians are determined for the Gd3+, Fe3+, and Mn4+ rhombohedral centers in the high-temperature phase (with no other centers found here) and for the monoclinic center Gd3+ in the low-temperature phase. Both in the orthorhombic and in the rhombohedral phase, crystallographic twins (or ferroelastic domains) are observed.

  4. Lanthanum gallate substrates for epitaxial high-temperature superconducting thin films

    NASA Astrophysics Data System (ADS)

    Sandstrom, R. L.; Giess, E. A.; Gallagher, W. J.; Segmuller, A.; Cooper, E. I.

    1988-11-01

    It is demonstrated that lanthanum gallate (LaGaO3) has considerable potential as an electronic substrate material for high-temperature superconducting films. It provides a good lattice and thermal expansion match to YBa2Cu3O(7-x), can be grown in large crystal sizes, is compatible with high-temperature film processing, and has a reasonably low dielectric constant and low dielectric losses. Epitaxial YBa2Cu3O(7-x) films grown on LaGaO3 single-crystal substrates by three techniques have zero resistance between 87 and 91 K.

  5. Oriented conductive oxide electrodes on SiO2/Si and glass

    DOEpatents

    Jia, Quanxi; Arendt, Paul N.

    2001-01-01

    A thin film structure is provided including a silicon substrate with a layer of silicon dioxide on a surface thereof, and a layer of cubic oxide material deposited upon the layer of silicon dioxide by ion-beam-assisted-deposition, said layer of cubic oxide material characterized as biaxially oriented. Preferably, the cubic oxide material is yttria-stabilized zirconia. Additional thin layers of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide are deposited upon the layer of yttria-stabilized zirconia. An intermediate layer of cerium oxide is employed between the yttria-stabilized zirconia layer and the lanthanum strontium cobalt oxide layer. Also, a layer of barium strontium titanium oxide can be upon the layer of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide. Also, a method of forming such thin film structures, including a low temperature deposition of a layer of a biaxially oriented cubic oxide material upon the silicon dioxide surface of a silicon dioxide/silicon substrate is provided.

  6. Synthesis and Stability of Lanthanum Superhydrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geballe, Zachary M.; Liu, Hanyu; Mishra, Ajay K.

    Recent theoretical calculations predict that megabar pressure stabilizes very hydrogen-rich simple compounds having new clathrate-like structures and remarkable electronic properties including room-temperature superconductivity. X-ray diffraction and optical studies demonstrate that superhydrides of lanthanum can be synthesized with La atoms in an fcc lattice at 170 GPa upon heating to about 1000 K. The results match the predicted cubic metallic phase of LaH10 having cages of thirty-two hydrogen atoms surrounding each La atom. Upon decompression, the fcc-based structure undergoes a rhombohedral distortion of the La sublattice. The superhydride phases consist of an atomic hydrogen sublattice with H-H distances of about 1.1more » Å, which are close to predictions for solid atomic metallic hydrogen at these pressures. With stability below 200 GPa, the superhydride is thus the closest analogue to solid atomic metallic hydrogen yet to be synthesized and characterized.« less

  7. Preferable adsorption of phosphate using lanthanum-incorporated porous zeolite: Characteristics and mechanism

    NASA Astrophysics Data System (ADS)

    He, Yinhai; Lin, Hai; Dong, Yingbo; Wang, Liang

    2017-12-01

    The adsorbent, where lanthanum oxide was incorporated onto porous zeolite (La-Z), of preferable adsorption towards phosphate was prepared by hydrothermal synthesis. Based on pH effect results, La-Z would effectively sequestrate phosphate over wider pH range of 3.0-7.0, alkaline conditions were unfavorable for phosphate. The adsorption of phosphate was not significantly influenced by ionic strength and by coexisting anions of chloride, nitrate and sulfate but bicarbonate showed slightly greater negative effects, indicating La-Z possessed highly selectivity to phosphate. Adsorption of phosphate could be well fitted by pseudo-second-order model and the process was mainly controlled by intra-particle diffusion. Equilibrium adsorption demonstrated that Langmuir model was more suitable than Freundlich model for description phosphate adsorption and the adsorption capacity was 17.2 mg P g-1, which exhibited 95% utilization of incorporated La. Over 95% phosphate was eliminated in real effluent treatment when the dose was 2 g L-1. The underlying mechanism for phosphate capture was probed with Zeta potential and X-ray photoelectron spectroscope analysis, and the formation of La-P inner-sphere complexation was testified to be the dominant pathway. All the results suggested that the porous zeolite-supported lanthanum oxide can serve as a promising adsorbent for phosphate removal in realistic application.

  8. Stability indicating high performance thin-layer chromatographic method for simultaneous estimation of pantoprazole sodium and itopride hydrochloride in combined dosage form

    PubMed Central

    Bageshwar, Deepak; Khanvilkar, Vineeta; Kadam, Vilasrao

    2011-01-01

    A specific, precise and stability indicating high-performance thin-layer chromatographic method for simultaneous estimation of pantoprazole sodium and itopride hydrochloride in pharmaceutical formulations was developed and validated. The method employed TLC aluminium plates precoated with silica gel 60F254 as the stationary phase. The solvent system consisted of methanol:water:ammonium acetate; 4.0:1.0:0.5 (v/v/v). This system was found to give compact and dense spots for both itopride hydrochloride (Rf value of 0.55±0.02) and pantoprazole sodium (Rf value of 0.85±0.04). Densitometric analysis of both drugs was carried out in the reflectance–absorbance mode at 289 nm. The linear regression analysis data for the calibration plots showed a good linear relationship with R2=0.9988±0.0012 in the concentration range of 100–400 ng for pantoprazole sodium. Also, the linear regression analysis data for the calibration plots showed a good linear relationship with R2=0.9990±0.0008 in the concentration range of 200–1200 ng for itopride hydrochloride. The method was validated for specificity, precision, robustness and recovery. Statistical analysis proves that the method is repeatable and selective for the estimation of both the said drugs. As the method could effectively separate the drug from its degradation products, it can be employed as a stability indicating method. PMID:29403710

  9. Stability indicating high performance thin-layer chromatographic method for simultaneous estimation of pantoprazole sodium and itopride hydrochloride in combined dosage form.

    PubMed

    Bageshwar, Deepak; Khanvilkar, Vineeta; Kadam, Vilasrao

    2011-11-01

    A specific, precise and stability indicating high-performance thin-layer chromatographic method for simultaneous estimation of pantoprazole sodium and itopride hydrochloride in pharmaceutical formulations was developed and validated. The method employed TLC aluminium plates precoated with silica gel 60F 254 as the stationary phase. The solvent system consisted of methanol:water:ammonium acetate; 4.0:1.0:0.5 (v/v/v). This system was found to give compact and dense spots for both itopride hydrochloride ( R f value of 0.55±0.02) and pantoprazole sodium ( R f value of 0.85±0.04). Densitometric analysis of both drugs was carried out in the reflectance-absorbance mode at 289 nm. The linear regression analysis data for the calibration plots showed a good linear relationship with R 2 =0.9988±0.0012 in the concentration range of 100-400 ng for pantoprazole sodium. Also, the linear regression analysis data for the calibration plots showed a good linear relationship with R 2 =0.9990±0.0008 in the concentration range of 200-1200 ng for itopride hydrochloride. The method was validated for specificity, precision, robustness and recovery. Statistical analysis proves that the method is repeatable and selective for the estimation of both the said drugs. As the method could effectively separate the drug from its degradation products, it can be employed as a stability indicating method.

  10. Layer-by-Layer Self-Assembly of Plexcitonic Nanoparticles

    DTIC Science & Technology

    2013-08-12

    nitrate , trisodium citrate tribasic dihydrate, sodium poly(styrene sulfonate) (PSS, MW ~70,000), poly(diallyldimethyl ammonium chloride ) (PDADMAC...Abstract: Colloidal suspensions of multilayer nanoparticles composed of a silver core, a polyelectrolyte spacer layer (inner shell), and a J-aggregate...multilayer architecture served as a framework for examining the coupling of the localized surface plasmon resonance exhibited by the silver core with

  11. Sodium chloride crystallization from thin liquid sheets, thick layers, and sessile drops in microgravity

    NASA Astrophysics Data System (ADS)

    Fontana, Pietro; Pettit, Donald; Cristoforetti, Samantha

    2015-10-01

    Crystallization from aqueous sodium chloride solutions as thin liquid sheets, 0.2-0.7 mm thick, with two free surfaces supported by a wire frame, thick liquid layers, 4-6 mm thick, with two free surfaces supported by metal frame, and hemispherical sessile drops, 20-32 mm diameter, supported by a flat polycarbonate surface or an initially flat gelatin film, were carried out under microgravity on the International Space Station (ISS). Different crystal morphologies resulted based on the fluid geometry: tabular hoppers, hopper cubes, circular [111]-oriented crystals, and dendrites. The addition of polyethylene glycol (PEG-3350) inhibited the hopper growth resulting in flat-faced surfaces. In sessile drops, 1-4 mm tabular hopper crystals formed on the free surface and moved to the fixed contact line at the support (polycarbonate or gelatin) self-assembling into a shell. Ring formation created by sessile drop evaporation to dryness was observed but with crystals 100 times larger than particles in terrestrially formed coffee rings. No hopper pyramids formed. By choosing solution geometries offered by microgravity, we found it was possible to selectively grow crystals of preferred morphologies.

  12. A Review Over Benefits and Drawbacks of Combining Sodium Hypochlorite with Other Endodontic Materials.

    PubMed

    Mohammadi, Zahed; Shalavi, Sousan; Moeintaghavi, Amir; Jafarzadeh, Hamid

    2017-01-01

    As the root canal system considered to be complex and unpredictable, using root canal irrigants and medicaments are essential in order to enhance the disinfection of the canal. Sodium hypochlorite is the most common irrigant in endodontics. Despite its excellent antimicrobial activity and tissue solubility, sodium hypochlorite lacks some important properties such as substantivity and smear layer removing ability. The aim of this review was to address benefits and drawbacks of combining sodium hypochlorite with other root canal irrigants and medicaments. According to the reviewed articles, NaOCl is the most common irrigation solution in endodontics. However, it has some drawbacks such as inability to remove smear layer. One of the drawbacks of NaOCl is its inability to remove the smear layer and lack of substantivity. The adjunctive use of other materials has been suggested to improve NaOCl efficacy. Nevertheless, further studies are required in this field.

  13. Potential and tension changes induced by sodium removal in dog Purkinje fibres: role of an electrogenic sodium-calcium exchange.

    PubMed Central

    Croaboeuf, E; Gautier, P; Giuraudou, P

    1981-01-01

    1. Isolated dog Purkinje fibres were bathed in K-free media or in the presence of ouabain 10(-4) M in order to depress the electrogenic sodium pump activity. Membrane potential and mechanical tension were recorded in the presence of normal external sodium concentration and during lowering or removal of external Na. 2. Lowering or removal of external Na (Na being replaced by choline, Tris, sucrose or Li) induced a hyperpolarization and a contracture which reached a maximum after 1 or 2 min and then decreased progressively. Using Tris, Em increased from -40 +/- 3 to -72 +/- 10 mV (n = 39). The Na-free contracture and hyperpolarization did not occur in the absence of Na pump depression. 3. Tetrodotoxin (1.2 x 10(-5)M), Mn (4 mM), verapamil (1-4 x 10(-5) M) tetraethylammonium (5 mM), 4-aminopyridine (5 mM) and Cs (20 mM, in the presence of ouabain) did not alter the Na-free contracture and hyperpolarization. On the other hand Mn (20 mM), acid media (external pH less than 6.0) and low temperatures depressed or suppressed both the hyperpolarization and contracture. Lanthanum (0.4 mM) did not suppress the hyperpolarization and the contracture. On the contrary the Na-free contracture was generally increased in the presence of La. 4. Caffeine (10 mM) induced strong contractures with no changes in Em, thus demonstrating the possibility for the Purkinje fibers of developing contractures without concomitant hyperpolarizations. 5. It can be concluded that the Na-free contracture and hyperpolarization are not due to changes in passive conductances but are related to the functioning of an electrogenic Na-Ca exchange mechanism which carries inwardly 1 Ca and outwardly 3 or more Na. Images Fig. 1 PMID:7264984

  14. Investigation of Tank 241-AW-104 Composite Floating Layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meznarich, H. K.; Bolling, S. D.; Lachut, J. S.

    Seven grab samples and one field blank were taken from Tank 241-AW-104 (AW-104) on June 2, 2017, and received at 222-S Laboratory on June 5, 2017. A visible layer with brown solids was observed floating on the top of two surface tank waste samples (4AW-17-02 and 4AW 17 02DUP). The floating layer from both samples was collected, composited, and submitted for chemical analyses and solid phase characterization in order to understand the composition of the floating layer. Tributyl phosphate and tridecane were higher in the floating layer than in the aqueous phase. Density in the floating layer was slightly lowermore » than the mean density of all grab samples. Sodium nitrate and sodium carbonate were major components with a trace of gibbsite and very small size agglomerates were present in the solids of the floating layer. The supernate consisted of organics, soluble salt, and particulates.« less

  15. Evaluation of ethylenediaminetetraacetic acid (EDTA) solution and gel for smear layer removal.

    PubMed

    Dotto, Sidney Ricardo; Travassos, Rosana Maria Coelho; de Oliveira, Elias Pandonor Motcy; Machado, Manoel Eduardo de Lima; Martins, José Luiz

    2007-08-01

    The purpose of this in vitro study was to compare the efficacy of 24% ethylenediaminetetraacetic acid (EDTA) gel and 17% EDTA solution in cleaning dentine walls after root canal instrumentation. Thirty human canine teeth were divided into three groups of 10 teeth each. In Group 1, 1% sodium hypochlorite was used as the irrigating solution; in Group 2, 1% sodium hypochlorite was used with 17% EDTA solution; and in Group 3, 1% sodium hypochlorite was used with 24% EDTA gel. The presence of a smear layer was analysed after instrumentation using scanning electron microscopy. The Kruskal-Wallis test revealed a statistical difference (P < 0.05) between Groups 1 and 2, and also between Groups 1 and 3. No difference was observed between Groups 2 and 3 (P > 0.05). The results indicate that 1% sodium hypochlorite alone does not remove the smear layer and that there was no statistical difference between EDTA gel and EDTA solution in smear layer removal.

  16. MoTe2, A novel anode material for sodium ion battery

    NASA Astrophysics Data System (ADS)

    Panda, Manas Ranjan; Anish Raj, K.; Bao, Qiaoliang; Mitra, Sagar

    2018-04-01

    2D layered transition metal dichalcogenides are considered as a potential anode for sodium-ion batteries due to their high specific capacity, structural stability and its well-developed two-dimensional layers. 2D layered structure Molybdenum ditelluride (MoTe2) provides a superior Na-ion storage properties in sodium ion battery due to its comparative more interlayer spacing (0.699 nm). In the current study MoTe2 polycrystalline powder sample has been prepared by solid state reaction process, the structural and morphological studies have been carried out by XRD, FE-SEM and EDS etc. XRD study revealsthe well crystalline structure of the material having hexagonal structure. FE-SEM and EDS studies depict the uniformflakes like structure of the material. When it is tested as sodium-ion battery anode by applying a potential window 0.1-2.5 V, the material demonstrates a high capacity and high power performances. The as prepared MoTe2 shows an initial discharge capacity of 376 mA h g-1 and a corresponding discharge capacity of 303 mA h g-1 after the 50th cycle at a current density of 500 mA g-1.

  17. A Global Model of Meteoric Sodium

    NASA Technical Reports Server (NTRS)

    Marsh, Daniel R.; Janches, Diego; Feng, Wuhu; Plane, John M. C.

    2013-01-01

    A global model of sodium in the mesosphere and lower thermosphere has been developed within the framework of the National Center for Atmospheric Research's Whole Atmosphere Community Climate Model (WACCM). The standard fully interactive WACCM chemistry module has been augmented with a chemistry scheme that includes nine neutral and ionized sodium species. Meteoric ablation provides the source of sodium in the model and is represented as a combination of a meteoroid input function (MIF) and a parameterized ablation model. The MIF provides the seasonally and latitudinally varying meteoric flux which is modeled taking into consideration the astronomical origins of sporadic meteors and considers variations in particle entry angle, velocity, mass, and the differential ablation of the chemical constituents. WACCM simulations show large variations in the sodium constituents over time scales from days to months. Seasonality of sodium constituents is strongly affected by variations in the MIF and transport via the mean meridional wind. In particular, the summer to winter hemisphere flow leads to the highest sodium species concentrations and loss rates occurring over the winter pole. In the Northern Hemisphere, this winter maximum can be dramatically affected by stratospheric sudden warmings. Simulations of the January 2009 major warming event show that it caused a short-term decrease in the sodium column over the polar cap that was followed by a factor of 3 increase in the following weeks. Overall, the modeled distribution of atomic sodium in WACCM agrees well with both ground-based and satellite observations. Given the strong sensitivity of the sodium layer to dynamical motions, reproducing its variability provides a stringent test of global models and should help to constrain key atmospheric variables in this poorly sampled region of the atmosphere.

  18. Role of phi cells and the endodermis under salt stress in Brassica oleracea.

    PubMed

    Fernandez-Garcia, N; Lopez-Perez, L; Hernandez, M; Olmos, E

    2009-01-01

    Phi cell layers were discovered in the 19th century in a small number of species, including members of the Brassicaceae family. A mechanical role was first suggested for this structure; however, this has never been demonstrated. The main objective of the present work was to analyse the ultrastructure of phi cells, their influence on ion movement from the cortex to the stele, and their contribution to salt stress tolerance in Brassica oleracea. Transmission electron microscopy and X-ray microanalysis studies were used to analyse the subcellular structure and distribution of ions in phi cells and the endodermis under salt stress. Ion movement was analysed using lanthanum as an apoplastic tracer. The ultrastructural results confirm that phi cells are specialized cells showing cell wall ingrowths in the inner tangential cell walls. X-ray microanalysis confirmed a build-up of sodium. Phi thickenings were lignified and lanthanum moved periplasmically at this level. To the best of our knowledge, this is the first study reporting the possible role of the phi cells as a barrier controlling the movement of ions from the cortex to the stele. Therefore, the phi cell layer and endodermis seem to be regulating ion transport in Brassica oleracea under salt stress.

  19. Grain Boundary Engineering of Lithium-Ion-Conducting Lithium Lanthanum Titanate for Lithium-Air Batteries

    DTIC Science & Technology

    2016-01-01

    release; distribution is unlimited. 1 1. Introduction Lithium (Li)- ion batteries are currently one of the leading energy storage device technologies...ARL-TR-7584 ● JAN 2016 US Army Research Laboratory Grain Boundary Engineering of Lithium - Ion - Conducting Lithium Lanthanum...Titanate for Lithium -Air Batteries by Victoria L Blair, Claire V Weiss Brennan, and Joseph M Marsico Approved for public

  20. Effect of chloride incorporation on the crystallization of zirconium-barium-lanthanum-aluminum fluoride glass

    NASA Technical Reports Server (NTRS)

    Neilson, G. F.; Smith, G. L.; Weinberg, M. C.

    1985-01-01

    One aspect of the influence of preparation procedure on the crystallization behavior of a zirconium-barium-lanthanum-aluminum fluoride glass was studied. The crystallization pattern of this glass may be affected by the chlorine concentration within it. In particular, when such glasses are heated at low temperatures, the alpha-Ba-Zr-F6 crystalline phase forms only in those glasses which contain chloride.

  1. Sodium alginate hydrogel-based bioprinting using a novel multinozzle bioprinting system.

    PubMed

    Song, Seung-Joon; Choi, Jaesoon; Park, Yong-Doo; Hong, Soyoung; Lee, Jung Joo; Ahn, Chi Bum; Choi, Hyuk; Sun, Kyung

    2011-11-01

    Bioprinting is a technology for constructing bioartificial tissue or organs of complex three-dimensional (3-D) structure with high-precision spatial shape forming ability in larger scale than conventional tissue engineering methods and simultaneous multiple components composition ability. It utilizes computer-controlled 3-D printer mechanism or solid free-form fabrication technologies. In this study, sodium alginate hydrogel that can be utilized for large-dimension tissue fabrication with its fast gelation property was studied regarding material-specific printing technique and printing parameters using a multinozzle bioprinting system developed by the authors. A sodium alginate solution was prepared with a concentration of 1% (wt/vol), and 1% CaCl(2) solution was used as cross-linker for the gelation. The two materials were loaded in each of two nozzles in the multinozzle bioprinting system that has a total of four nozzles of which the injection speed can be independently controlled. A 3-D alginate structure was fabricated through layer-by-layer printing. Each layer was formed through two phases of printing, the first phase with the sodium alginate solution and the second phase with the calcium chloride solution, in identical printing pattern and speed condition. The target patterns were lattice shaped with 2-mm spacing and two different line widths. The nozzle moving speed was 6.67 mm/s, and the injection head speed was 10 µm/s. For the two different line widths, two injection needles with inner diameters of 260 and 410 µm were used. The number of layers accumulated was five in this experiment. By varying the nozzle moving speed and the injection speed, various pattern widths could be achieved. The feasibility of sodium alginate hydrogel free-form formation by alternate printing of alginate solution and sodium chloride solution was confirmed in the developed multinozzle bioprinting system. © 2011, Copyright the Authors. Artificial Organs © 2011, International

  2. [An investigation of lanthanum and other metals levels in blood, urine and hair among residents in the rare earth mining area of a city in China].

    PubMed

    Bao, T M; Tian, Y; Wang, L X; Wu, T; Lu, L N; Ma, H Y; Wang, L

    2018-02-20

    Objective: To investigate the levels of lanthanum, cerium, praseodymium, and neodymium in the blood, urine, and hair samples from residents in the rare earth mining area of a city in China, and to provide a scientific basis for the control of rare earth pollution and the protection of population health. Methods: A total of 147 residents who had lived in the rare earth mining area of a city for a long time were selected as the exposure group, and 108 residents in Guyang County of this city who lived 91 km away from the rare earth mining area were selected as the control group. Blood, urine, and hair samples were collected from the residents in both groups. Inductively coupled plasma mass spectrometry was used to determine the content of lanthanum, cerium, praseodymium, and neodymium in blood, urine, and hair samples. Results: In the exposure group, the median levels of lanthanum, cerium, praseodymium, and neodymium were 0.854, 1.724, 0.132, and 0.839 μg/L, respectively, in blood samples, 0.420, 0.920, 0.055, and 0.337 μg/L, respectively, in urine samples, and 0.052, 0.106, 0.012, and 0.045 μg/g, respectively, in hair samples. The exposure group had significantly higher levels of the four rare earth elements in blood, urine, and hair samples than the control group ( P <0.01) . Conclusion: The residents in the rare earth mining area of this city have higher content of lanthanum, cerium, praseodymium, and neodymium in blood, urine, and hair than those in the non-mining area; the content of cerium is highest, followed by lanthanum, neodymium, and praseodymium.

  3. Angle resolved x-ray photoelectron spectroscopy (ARXPS) analysis of lanthanum oxide for micro-flexography printing

    NASA Astrophysics Data System (ADS)

    Hassan, S.; Yusof, M. S.; Embong, Z.; Maksud, M. I.

    2016-01-01

    Micro-flexography printing was developed in patterning technique from micron to nano scale range to be used for graphic, electronic and bio-medical device on variable substrates. In this work, lanthanum oxide (La2O3) has been used as a rare earth metal candidate as depositing agent. This metal deposit was embedded on Carbon (C) and Silica (Si) wafer substrate using Magnetron Sputtering technique. The choose of Lanthanum as a target is due to its wide application in producing electronic devices such as thin film battery and printed circuit board. The La2O3 deposited on the surface of Si wafer substrate was then analyzed using Angle Resolve X-Ray Photoelectron Spectroscopy (ARXPS). The position for each synthetic component in the narrow scan of Lanthanum (La) 3d and O 1s are referred to the electron binding energy (eV). The La 3d narrow scan revealed that the oxide species of this particular metal is mainly contributed by La2O3 and La(OH)3. The information of oxygen species, O2- component from O 1s narrow scan indicated that there are four types of species which are contributed from the bulk (O2-), two chemisorb component (La2O3) and La(OH)3 and physisorp component (OH). Here, it is proposed that from the adhesive and surface chemical properties of La, it is suitable as an alternative medium for micro-flexography printing technique in printing multiple fine solid lines at nano scale. Hence, this paper will describe the capability of this particular metal as rare earth metal for use in of micro-flexography printing practice. The review of other parameters contributing to print fine lines will also be described later.

  4. Angle resolved x-ray photoelectron spectroscopy (ARXPS) analysis of lanthanum oxide for micro-flexography printing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, S., E-mail: suhaimihas@uthm.edu.my; Yusof, M. S., E-mail: mdsalleh@uthm.edu.my; Maksud, M. I., E-mail: midris1973@gmail.com

    2016-01-22

    Micro-flexography printing was developed in patterning technique from micron to nano scale range to be used for graphic, electronic and bio-medical device on variable substrates. In this work, lanthanum oxide (La{sub 2}O{sub 3}) has been used as a rare earth metal candidate as depositing agent. This metal deposit was embedded on Carbon (C) and Silica (Si) wafer substrate using Magnetron Sputtering technique. The choose of Lanthanum as a target is due to its wide application in producing electronic devices such as thin film battery and printed circuit board. The La{sub 2}O{sub 3} deposited on the surface of Si wafer substratemore » was then analyzed using Angle Resolve X-Ray Photoelectron Spectroscopy (ARXPS). The position for each synthetic component in the narrow scan of Lanthanum (La) 3d and O 1s are referred to the electron binding energy (eV). The La 3d narrow scan revealed that the oxide species of this particular metal is mainly contributed by La{sub 2}O{sub 3} and La(OH){sub 3}. The information of oxygen species, O{sup 2-} component from O 1s narrow scan indicated that there are four types of species which are contributed from the bulk (O{sup 2−}), two chemisorb component (La{sub 2}O{sub 3}) and La(OH){sub 3} and physisorp component (OH). Here, it is proposed that from the adhesive and surface chemical properties of La, it is suitable as an alternative medium for micro-flexography printing technique in printing multiple fine solid lines at nano scale. Hence, this paper will describe the capability of this particular metal as rare earth metal for use in of micro-flexography printing practice. The review of other parameters contributing to print fine lines will also be described later.« less

  5. Phase equilibrium and preparation, crystallization and viscous sintering of glass in the alumina-silica-lanthanum phosphate system

    NASA Astrophysics Data System (ADS)

    He, Feng

    The phase equilibrium, viscosity of melt-quenched glasses, and processing of sol-gel glasses of the alumina-silica-lanthanum phosphate system were studied. These investigations were directed towards serving the objective of synthesizing nano-structured ceramic-matrix-composites via controlled crystallization of glass precursors. The thermal stability, phase equilibrium, and liquidus temperatures of the alumina- and mullite-lanthanum phosphate systems are determined. An iridium wire heater was constructed to anneal samples up to 2200°C. Phosphorus evaporation losses were significant at high temperatures, especially over 1800°C. The tentative phase diagrams of the two quasi-binary systems were presented. The viscosity of the melt-quenched mullite-lanthanum phosphate glasses was measured by three different methods, including viscous sintering of glass powder compacts, neck formation between two Frenkel glass beads, and thermal analysis of the glass transition. Improved methodologies were developed for applying the interpretative mathematical models to the results of the sintered powder and thermal analytical experiments. Good agreement was found between all three methods for both absolute values and temperature dependence. A sol-gel process was developed as a low temperature route to producing glasses. A unique, single phase mullite gel capable of low temperature (575°C) mullitization was made from tetraethoxysilane and aluminum isopropoxide at room temperature in three days. Low temperature crystallization was attributed to the avoidance of phase segregation during gel formation and annealing. This was greatly enhanced by a combination of low temperature preheating in the amorphous state, a high heating rate during crystallization and low water content. The Al2O3 content in mullite (61-68 mol%) depended on the highest annealing temperature. Two mullite-lanthanum phosphate gels were made based upon modifying the chemical procedures used for the homogeneous single

  6. Melt layer erosion of pure and lanthanum doped tungsten under VDE-like high heat flux loads

    NASA Astrophysics Data System (ADS)

    Yuan, Y.; Greuner, H.; Böswirth, B.; Luo, G.-N.; Fu, B. Q.; Xu, H. Y.; Liu, W.

    2013-07-01

    Heat loads expected for VDEs in ITER were applied in the neutral beam facility GLADIS at IPP Garching. Several ˜3 mm thick rolled pure W and W-1 wt% La2O3 plates were exposed to pulsed hydrogen beams with a central heat flux of 23 MW/m2 for 1.5-1.8 s. The melting thresholds are determined, and melt layer motion as well as material structure evolutions are shown. The melting thresholds of the two W grades are very close in this experimental setup. Lots of big bubbles with diameters from several μm to several 10 μm in the re-solidified layer of W were observed and they spread deeper with increasing heat flux. However, for W-1 wt% La2O3, no big bubbles were found in the corrugated melt layer. The underlying mechanisms referred to the melt layer motion and bubble issues are tentatively discussed based on comparison of the erosion characteristics between the two W grades.

  7. Novel multifunctional titania-silica-lanthanum phosphate nanocomposite coatings through an all aqueous sol-gel process.

    PubMed

    Smitha, Venu Sreekala; Jyothi, Chembolli Kunhatta; Peer, Mohamed A; Pillai, Saju; Warrier, Krishna Gopakumar

    2013-04-07

    A novel nanocomposite coating containing titania, silica and lanthanum phosphate prepared through an all aqueous sol-gel route exhibits excellent self-cleaning ability arising from the synergistic effect of the constituents in the nanocomposite. A highly stable titania-silica-lanthanum phosphate nanocomposite sol having particle size in the range of 30-50 nm has been synthesized starting from a titanyl sulphate precursor, which was further used for the development of photocatalytically active composite coatings on glass. The coatings prepared by the dip coating technique as well as the nanocomposite powders are heat treated and characterized further for their morphology and multifunctionality. The nanocomposite containing 1.5 wt% LaPO4 has shown a surface area as high as 138 m(2) g(-1) and a methylene blue degradation efficiency of 94% in two hours of UV exposure. The composite coating has shown very good homogeneity evidenced by transparency as high as 99.5% and low wetting behaviour. The present novel approach for energy conserving, aqueous derived, self-cleaning coatings may be suitable for large scale industrial applications.

  8. A Review Over Benefits and Drawbacks of Combining Sodium Hypochlorite with Other Endodontic Materials

    PubMed Central

    Mohammadi, Zahed; Shalavi, Sousan; Moeintaghavi, Amir

    2017-01-01

    Introduction: As the root canal system considered to be complex and unpredictable, using root canal irrigants and medicaments are essential in order to enhance the disinfection of the canal. Sodium hypochlorite is the most common irrigant in endodontics. Despite its excellent antimicrobial activity and tissue solubility, sodium hypochlorite lacks some important properties such as substantivity and smear layer removing ability. Objective: The aim of this review was to address benefits and drawbacks of combining sodium hypochlorite with other root canal irrigants and medicaments. Discussion: According to the reviewed articles, NaOCl is the most common irrigation solution in endodontics. However, it has some drawbacks such as inability to remove smear layer. One of the drawbacks of NaOCl is its inability to remove the smear layer and lack of substantivity. Conclusion: The adjunctive use of other materials has been suggested to improve NaOCl efficacy. Nevertheless, further studies are required in this field. PMID:29387282

  9. Mesospheric sodium over Gadanki during Geminid meteor shower 2007

    NASA Astrophysics Data System (ADS)

    Lokanadham, B.; Rakesh Chandra, N.; Bhaskara Rao, S. Vijaya; Raghunath, K.; Yellaiah, G.

    Resonance LIDAR system at Gadanki has been used for observing the mesospheric sodium during the night of 12-13 Dec 2007 when the peak activity of Geminid meteor shower occurred. Geminid meteor shower is observed along with the co-located MST radar in the altitude range 80-110 km. Sodium density profiles have been obtained with a vertical resolution of 300 m and a temporal resolution of 120 s with sodium resonance scattering LIDAR system. The sodium layers were found to exist in the altitude range 90-100 km. The enhanced Geminid meteor rates were recorded with the co-located MST radar in the same altitude range. The sodium concentration in the atmospheric altitude of ~93 km is estimated to be 2000 per cc where the meteoric concentration of Geminid is maximum and reduced to around 800 on the non activity of Geminid. These observations showed that the sodium levels in the E-region are found to be increasing during meteor shower nights at least by a factor of two.

  10. A solid state tunable laser for resonance measurements of atmospheric sodium

    NASA Technical Reports Server (NTRS)

    Philbrick, C. R.; Bufton, J. L.; Gardner, C. S.

    1985-01-01

    The measurement of wave dynamics in the upper mesosphere using a solid-state laser to excite the resonance fluorescence line of sodium is examined. Two Nd:YAG lasers are employed to produce the sodium resonance line. The method involves mixing the 1064 nm radiation with that from a second Nd:YAG operating at 1319 nm in a nonlinear infrared crystal to directly produce 589 nm radiation by sum frequency generation. The use of the transmitter to measure the sodium layer from the Space Shuttle Platform is proposed. A diagram of the laser transmitter is presented.

  11. The origin of current blocking in interfacial conduction in Sr-doped lanthanum gallates

    NASA Astrophysics Data System (ADS)

    Park, Hee Jung

    2018-02-01

    The grain boundary transport of lanthanum gallate has been studied with various doping concentrations, and the origins of blocking on the grain boundary are compared. La1-xSrxGaO3 samples (x = 0.005, 0.01, 0.05 and 0.1) have been prepared and their bulk (grain) and grain boundary resistances been experimentally measured as a function of temperature (T: 200-550 °C) and oxygen partial pressure (Po2) using ac-impedance measurements. In addition, Hebb-Wagner polarization measurements have been conducted to investigate the electrical conductivity of minor charge carriers in the lanthanum gallates. The grain boundary resistance in the low-doped materials (x = 0.005 and 0.01) increases with increasing Po2 while in the highly-doped materials (x = 0.05, 0.1) it hardly depended on Po2. At lower concentrations conduction is mixed and at higher concentrations is found to be predominantly ionic conductivity. The space charge model successfully describes the mixed conduction at the grain boundary at low-doping, but does not explain the predominant ionic conductivity at high-doping. The origin of blocking at high-doping is explained by the crystallographic asymmetry of the grain boundary with respect to the bulk and/or Sr-segregation.

  12. [Separation and purification of an endogenous inhibitor of sodium pump from chansu by thin-layer chromatography and reversed-phase high performance liquid chromatography].

    PubMed

    Li, S Q

    2001-11-01

    An endogenous inhibitor of the sodium pump from the Chinese medication Chansu was purified. The dry substance Chansu was extracted with methanol. The dry residue dissolved in water and filtered subsequently through membrane filters with the exclusion size of 1000 Da, 3000 Da and 10000 Da in a Filtron Pro Vario-3-System and applied to thin-layer chromatographic plate made of Silica gel 60 F254 + 366 developed with a mixture of CHCl3-MeOH-H2O(75:20:5, volume ratio). The fractions with Rf 0.55 inhibiting the sodium pump were purified on an HPLC C18-RP column using a linear H2O-methanol gradient with 220 nm and 300 nm DAD detection. The bioactivity was measured by 86Rb-uptake into human red blood cells. The results showed that a low molecular weight, water soluble compound, which inhibited the sodium pump activity in the red blood cells and had a maximum absorbance at 250 nm was isolated from the Chinese medication Chansu. Several mg of the compound in pure state could be obtained from 1 kg Chansu. It was different from ouabain and proscillaridin A in chemical structure, because ouabain and proscillaridin A show a UV maximum absorption at 220 nm and 300 nm, while the new inhibitor at 250 nm.

  13. Insights into the Dual-Electrode Characteristics of Layered Na0.5Ni0.25Mn0.75O2 Materials for Sodium-Ion Batteries.

    PubMed

    Palanisamy, Manikandan; Kim, Hyun Woo; Heo, Seongwoo; Lee, Eungje; Kim, Youngsik

    2017-03-29

    Sodium-ion batteries are now close to replacing lithium-ion batteries because they provide superior alternative energy storage solutions that are in great demand, particularly for large-scale applications. To that end, the present study is focused on the properties of a new type of dual-electrode material, Na 0.5 Ni 0.25 Mn 0.75 O 2 , synthesized using a mixed hydroxy-carbonate route. Cyclic voltammetry confirms that redox couples, at high and low voltage ranges, are facilitated by the unique features and properties of this dual-electrode, through sodium ion deintercalation/intercalation into the layered Na 0.5 Ni 0.25 Mn 0.75 O 2 material. This material provides superior performance for Na-ion batteries, as evidenced by the fabricated sodium cell that yielded initial charge-discharge capacities of 125/218 mAh g -1 in the voltage range of 1.5-4.4 V at 0.5 C. At a low voltage range (1.5-2.6 V), the anode cell delivered discharge-charge capacities of 100/99 mAh g -1 with 99% capacity retention, which corresponds to highly reversible redox reaction of the Mn 4+/3+ reduction and the Mn 3+/4+ oxidation observed at 1.85 and 2.06 V, respectively. The symmetric Na-ion cell, fabricated using Na 0.5 Ni 0.25 Mn 0.75 O 2 , yielded initial charge-discharge capacities of 196/187 μAh at 107 μA. These results encourage the further development of new types of futuristic sodium-ion-battery-based energy storage systems.

  14. Solid-Solution Sulfides Derived from Tunable Layered Double Hydroxide Precursors/Graphene Aerogel for Pseudocapacitors and Sodium-Ion Batteries.

    PubMed

    Song, Yajie; Li, Hui; Yang, Lan; Bai, Daxun; Zhang, Fazhi; Xu, Sailong

    2017-12-13

    Transition-metal sulfides (TMSs) are suggested as promising electrode materials for electrochemical pseudocapacitors and lithium- and sodium-ion batteries; however, they typically involve mixed composites or conventionally stoichiometric TMSs (such as NiCo 2 S 4 and Ni 2 CoS 4 ). Herein we demonstrate a preparation of solid-solution sulfide (Ni 0.7 Co 0.3 )S 2 supported on three-dimensional graphene aerogel (3DGA) via a sulfuration of NiCo-layered double hydroxide (NiCo-LDH) precursor/3DGA. The electrochemical tests show that the (Ni 0.7 Co 0.3 )S 2 /3DGA electrode exhibits a capacitance of 2165 F g -1 at 1 A g -1 , 2055 F g -1 at 2 A g -1 , and 1478 F g -1 at 10 A g -1 ; preserves 78.5% capacitance retention upon 1000 cycles for pseudocapacitors; and in particular, possesses a relatively high charge capacity of 388.7 mA h g -1 after 50 cycles at 100 mA g -1 as anode nanomaterials for sodium-ion batteries. Furthermore, the electrochemical performances are readily tuned by varying the cationic type of the tunable LDH precursors to prepare different solid-solution sulfides, such as (Ni 0.7 Fe 0.3 )S 2 /3DGA and (Co 0.7 Fe 0.3 )S 2 /3DGA. Our results show that engineering LDH precursors can offer an alternative for preparing diverse transition-metal sulfides for energy storage.

  15. Extraction of rare earth elements from low-grade Bauxite via precipitation reaction

    NASA Astrophysics Data System (ADS)

    Kusrini, E.; Nurani, Y.; Bahari, ZJ

    2018-03-01

    The aim of this research was to determine the optimum hydrometallurgical parameters to extract the rare earth elements (REE) from low-grade bauxite through acid leaching and precipitation reaction. REE or lanthanide recovery by a precipitation method with sodium sulphate and sodium phosphate as precipitation agents is reported where the effect of pH and recovery of REE are described. The metal composition of REE in low-grade bauxite after treatment were analyzed by ICP-OES. The total recovery values of REE elements at the first precipitation reaction using sodium sulphate as the precipitation agent at pH 3.5 showed ~68.2% of lanthanum, ~18.9% cerium, and ~7.8% yttrium. Lanthanum was the rare-earth element present at the highest concentration in the low-grade bauxite after the series treatments. An optimum pH of 3.5 for precipitation of rare-earth elements using sodium sulphate was demonstrated where this method is recommended for the extraction of REE elements from low-grade bauxite.

  16. Utilizing Co 2+/Co 3+ Redox Couple in P2-Layered Na 0.66Co 0.22Mn 0.44Ti 0.34O 2 Cathode for Sodium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qin-Chao; Hu, Enyuan; Pan, Yang

    Developing sodium-ion batteries for large-scale energy storage applications is facing big challenges of the lack of high-performance cathode materials. Here, a series of new cathode materials Na 0.66Co xMn 0.66–xTi 0.34O 2 for sodium-ion batteries are designed and synthesized aiming to reduce transition metal-ion ordering, charge ordering, as well as Na+ and vacancy ordering. An interesting structure change of Na 0.66Co xMn 0.66–xTi 0.34O 2 from orthorhombic to hexagonal is revealed when Co content increases from x = 0 to 0.33. In particular, Na 0.66Co 0.22Mn 0.44Ti 0.34O 2 with a P2-type layered structure delivers a reversible capacity of 120more » mAh g -1 at 0.1 C. When the current density increases to 10 C, a reversible capacity of 63.2 mAh g -1 can still be obtained, indicating a promising rate capability. The low valence Co 2+ substitution results in the formation of average Mn 3.7+ valence state in Na 0.66Co 0.22Mn 0.44Ti 0.34O 2, effectively suppressing the Mn3+-induced Jahn–Teller distortion, and in turn stabilizing the layered structure. X-ray absorption spectroscopy results suggest that the charge compensation of Na 0.66Co 0.22Mn 0.44Ti 0.34O 2 during charge/discharge is contributed by Co 2.2+/Co 3+ and Mn 3.3+/Mn 4+ redox couples. This is the first time that the highly reversible Co 2+/Co 3+ redox couple is observed in P2-layered cathodes for sodium-ion batteries. This finding may open new approaches to design advanced intercalation-type cathode materials.« less

  17. Utilizing Co 2+/Co 3+ Redox Couple in P2-Layered Na 0.66Co 0.22Mn 0.44Ti 0.34O 2 Cathode for Sodium-Ion Batteries

    DOE PAGES

    Wang, Qin-Chao; Hu, Enyuan; Pan, Yang; ...

    2017-07-06

    Developing sodium-ion batteries for large-scale energy storage applications is facing big challenges of the lack of high-performance cathode materials. Here, a series of new cathode materials Na 0.66Co xMn 0.66–xTi 0.34O 2 for sodium-ion batteries are designed and synthesized aiming to reduce transition metal-ion ordering, charge ordering, as well as Na+ and vacancy ordering. An interesting structure change of Na 0.66Co xMn 0.66–xTi 0.34O 2 from orthorhombic to hexagonal is revealed when Co content increases from x = 0 to 0.33. In particular, Na 0.66Co 0.22Mn 0.44Ti 0.34O 2 with a P2-type layered structure delivers a reversible capacity of 120more » mAh g -1 at 0.1 C. When the current density increases to 10 C, a reversible capacity of 63.2 mAh g -1 can still be obtained, indicating a promising rate capability. The low valence Co 2+ substitution results in the formation of average Mn 3.7+ valence state in Na 0.66Co 0.22Mn 0.44Ti 0.34O 2, effectively suppressing the Mn3+-induced Jahn–Teller distortion, and in turn stabilizing the layered structure. X-ray absorption spectroscopy results suggest that the charge compensation of Na 0.66Co 0.22Mn 0.44Ti 0.34O 2 during charge/discharge is contributed by Co 2.2+/Co 3+ and Mn 3.3+/Mn 4+ redox couples. This is the first time that the highly reversible Co 2+/Co 3+ redox couple is observed in P2-layered cathodes for sodium-ion batteries. This finding may open new approaches to design advanced intercalation-type cathode materials.« less

  18. Utilizing Co2+/Co3+ Redox Couple in P2-Layered Na0.66Co0.22Mn0.44Ti0.34O2 Cathode for Sodium-Ion Batteries.

    PubMed

    Wang, Qin-Chao; Hu, Enyuan; Pan, Yang; Xiao, Na; Hong, Fan; Fu, Zheng-Wen; Wu, Xiao-Jing; Bak, Seong-Min; Yang, Xiao-Qing; Zhou, Yong-Ning

    2017-11-01

    Developing sodium-ion batteries for large-scale energy storage applications is facing big challenges of the lack of high-performance cathode materials. Here, a series of new cathode materials Na 0.66 Co x Mn 0.66- x Ti 0.34 O 2 for sodium-ion batteries are designed and synthesized aiming to reduce transition metal-ion ordering, charge ordering, as well as Na + and vacancy ordering. An interesting structure change of Na 0.66 Co x Mn 0.66- x Ti 0.34 O 2 from orthorhombic to hexagonal is revealed when Co content increases from x = 0 to 0.33. In particular, Na 0.66 Co 0.22 Mn 0.44 Ti 0.34 O 2 with a P2-type layered structure delivers a reversible capacity of 120 mAh g -1 at 0.1 C. When the current density increases to 10 C, a reversible capacity of 63.2 mAh g -1 can still be obtained, indicating a promising rate capability. The low valence Co 2+ substitution results in the formation of average Mn 3.7+ valence state in Na 0.66 Co 0.22 Mn 0.44 Ti 0.34 O 2 , effectively suppressing the Mn 3+ -induced Jahn-Teller distortion, and in turn stabilizing the layered structure. X-ray absorption spectroscopy results suggest that the charge compensation of Na 0.66 Co 0.22 Mn 0.44 Ti 0.34 O 2 during charge/discharge is contributed by Co 2.2+ /Co 3+ and Mn 3.3+ /Mn 4+ redox couples. This is the first time that the highly reversible Co 2+ /Co 3+ redox couple is observed in P2-layered cathodes for sodium-ion batteries. This finding may open new approaches to design advanced intercalation-type cathode materials.

  19. Generation of alkali-free and high-proton concentration layer in a soda lime glass using non-contact corona discharge

    NASA Astrophysics Data System (ADS)

    Ikeda, Hiroshi; Sakai, Daisuke; Funatsu, Shiro; Yamamoto, Kiyoshi; Suzuki, Toshio; Harada, Kenji; Nishii, Junji

    2013-08-01

    Formation mechanisms of alkali-free and high-proton concentration surfaces were investigated for a soda lime glass using a corona discharge treatment under an atmospheric pressure. Protons produced by high DC voltage around an anode needle electrode were incorporated into a sodium ion site in the anode side glass. The sodium ion was swept away to the cathode side as a charge carrier. Then it was discharged. The precipitated sodium was transformed to a Na2CO3 powder when the surface contacted with air. The sodium ion in the glass surface layer of the anode side was replaced completely by protons. The concentration of OH groups in the layer was balanced with the amount of excluded sodium ions. The substitution reaction of sodium ions with protons tends to be saturated according to a square root function of time. The alkali depletion layer formation rate was affected by the large difference in mobility between sodium ions and protons in the glass.

  20. Electrochemical performance of LiCoO 2 cathodes by surface modification using lanthanum aluminum garnet

    NASA Astrophysics Data System (ADS)

    Lu, Cheng-Zhang; Chen, Jin-Ming; Cho, Yung-Da; Hsu, Wen-Hsiang; Muralidharan, P.; Fey, George Ting-Kuo

    LiCoO 2 particles were coated with various wt.% of lanthanum aluminum garnets (3LaAlO 3:Al 2O 3) by an in situ sol-gel process, followed by calcination at 1123 K for 12 h in air. X-ray diffraction (XRD) patterns confirmed the formation of a 3LaAlO 3:Al 2O 3 compound and the in situ sol-gel process synthesized 3LaAlO 3:Al 2O 3-coated LiCoO 2 was a single-phase hexagonal α-NaFeO 2-type structure of the core material without any modification. Scanning electron microscope (SEM) images revealed a modification of the surface of the cathode particles. Transmission electron microscope (TEM) images exposed that the surface of the core material was coated with a uniform compact layer of 3LaAlO 3:Al 2O 3, which had an average thickness of 40 nm. Galvanostatic cycling studies demonstrated that the 1.0 wt.% 3LaAlO 3:Al 2O 3-coated LiCoO 2 cathode showed excellent cycle stability of 182 cycles, which was much higher than the 38 cycles sustained by the pristine LiCoO 2 cathode material when it was charged at 4.4 V.

  1. The effect of physiologic aqueous solutions on the perovskite material lead-lanthanum-zirconium titanate (PLZT)

    PubMed Central

    Foster, William J.; Meen, James K.; Fox, Donald A.

    2016-01-01

    Context Perovskite compounds, including Lead-Lanthanum-Zirconium Titanate (PLZT), have wide technological application because of their unique physical properties. The use of PLZT in neuro-prosthetic systems, such as retinal implants, have been discussed in a number of publications. Since inorganic lead is a retinotoxic compound that produces retinal degeneration, the long-term stability of PLZT in aqueous biological solutions must be determined. Objective We evaluated the stability and effects of prolonged immersion of a PLZT-coated crystal in a buffered balanced salt solution. Materials and Methods Scanning Electron Microscopy and Electron Dispersive Spectroscopy (EDS) using a JEOL JSM 5410 microscope equipped with EDS were utilized to evaluate the samples before and after prolonged immersion. Results We found that lead and other constituents of PLZT leached into the surrounding aqueous medium. Discussion By comparing the unit cell of PLZT with that of CaTiO3, which has been found to react with aqueous fluids, Lead is in the same site in PLZT as Ca is in CaTiO3. It is thus reasonable that PLZT will react with aqueous solutions. Conclusion The results suggest that PLZT must either be coated with a protective layer or is not appropriate for long-term in vivo or in vitro biological applications. PMID:22697294

  2. Influence of Sodium Silicate/Sodium Alginate Additives on Discharge Performance of Mg-Air Battery Based on AZ61 Alloy

    NASA Astrophysics Data System (ADS)

    Ma, Jingling; Wang, Guangxin; Li, Yaqiong; Li, Wuhui; Ren, Fengzhang

    2018-04-01

    The application of Mg-air batteries is limited due to passivation and self-corrosion of anode alloys in electrolyte. In effort of solving this problem, the present work studied the influence of sodium silicate (SS)/sodium alginate (SA) on electrochemical behaviors of AZ61 alloy in NaCl solution by circle potentiodynamic polarization and galvanostatic discharge. The corrosion morphology and discharge product were examined by scanning electron microscopy (SEM) and x-ray diffraction (XRD). Results have shown that sodium silicate/sodium alginate inhibitors have an apparent effect on the self-corrosion of AZ61 alloy without affecting its discharge performance. The discharge capacity and the anodic utilization for Mg-air battery in a 0.6 M NaCl + 0.01 M SS +0.04 M SA solution are measured to be 1397 mAhg-1 and 48.2%, respectively. Electrochemical impedance spectroscopy (EIS) and SEM investigation have confirmed that the sodium silicate/sodium alginate inhibitor can obviously decrease the self-corrosion of AZ61 alloy. SEM and XRD diffraction examinations suggest that the inhibiting mechanism is due to the formation of a compact and "cracked mud" layer. AZ61 alloy can be used as the anode for Mg-air battery in a solution of 0.6 M NaCl + 0.01 M SS +0.04 M SA.

  3. Influence of Sodium Silicate/Sodium Alginate Additives on Discharge Performance of Mg-Air Battery Based on AZ61 Alloy

    NASA Astrophysics Data System (ADS)

    Ma, Jingling; Wang, Guangxin; Li, Yaqiong; Li, Wuhui; Ren, Fengzhang

    2018-05-01

    The application of Mg-air batteries is limited due to passivation and self-corrosion of anode alloys in electrolyte. In effort of solving this problem, the present work studied the influence of sodium silicate (SS)/sodium alginate (SA) on electrochemical behaviors of AZ61 alloy in NaCl solution by circle potentiodynamic polarization and galvanostatic discharge. The corrosion morphology and discharge product were examined by scanning electron microscopy (SEM) and x-ray diffraction (XRD). Results have shown that sodium silicate/sodium alginate inhibitors have an apparent effect on the self-corrosion of AZ61 alloy without affecting its discharge performance. The discharge capacity and the anodic utilization for Mg-air battery in a 0.6 M NaCl + 0.01 M SS +0.04 M SA solution are measured to be 1397 mAhg-1 and 48.2%, respectively. Electrochemical impedance spectroscopy (EIS) and SEM investigation have confirmed that the sodium silicate/sodium alginate inhibitor can obviously decrease the self-corrosion of AZ61 alloy. SEM and XRD diffraction examinations suggest that the inhibiting mechanism is due to the formation of a compact and "cracked mud" layer. AZ61 alloy can be used as the anode for Mg-air battery in a solution of 0.6 M NaCl + 0.01 M SS +0.04 M SA.

  4. Recent advances of lanthanum-based perovskite oxides for catalysis

    DOE PAGES

    Zhu, Huiyuan; Zhang, Pengfei; Dai, Sheng

    2015-09-21

    There is a need to reduce the use of noble metal elements especially in the field of catalysis, where noble metals are ubiquitously applied. To this end, perovskite oxides, an important class of mixed oxide, have been attracting increasing attention for decades as potential replacements. Benefiting from the extraordinary tunability of their compositions and structures, perovskite oxides can be rationally tailored and equipped with targeted physical and chemical properties e.g. redox behavior, oxygen mobility, and ion conductivity for enhanced catalysis. Recently, the development of highly efficient perovskite oxide catalysts has been extensively studied. This review article summarizes the recent developmentmore » of lanthanum-based perovskite oxides as advanced catalysts for both energy conversion applications and traditional heterogeneous reactions.« less

  5. Solid oxide fuel cells with apatite-type lanthanum silicate-based electrolyte films deposited by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Xin; Wang, Sea-Fue; Hsu, Yung-Fu; Wang, Chi-Hua

    2018-03-01

    In this study, solid oxide fuel cells (SOFCs) containing high-quality apatite-type magnesium doped lanthanum silicate-based electrolyte films (LSMO) deposited by RF magnetron sputtering are successfully fabricated. The LSMO film deposited at an Ar:O2 ratio of 6:4 on an anode supported NiO/Sm0.2Ce0·8O2-δ (SDC) substrate followed by post-annealing at 1000 °C reveals a uniform and dense c-axis oriented polycrystalline structure, which is well adhered to the anode substrate. A composite SDC/La0·6Sr0·4Co0·2Fe0·8O3-δ cathode layer is subsequently screen-printed on the LSMO deposited anode substrate and fired. The SOFC fabricated with the LSMO film exhibits good mechanical integrity. The single cell with the LSMO layer of ≈2.8 μm thickness reports a total cell resistance of 1.156 and 0.163 Ωcm2, open circuit voltage of 1.051 and 0.982 V, and maximum power densities of 0.212 and 1.490 Wcm-2 at measurement temperatures of 700 and 850 °C, respectively, which are comparable or superior to those of previously reported SOFCs with yttria stabilized zirconia electrolyte films. The results of the present study demonstrate the feasibility of deposition of high-quality LSMO films by RF magnetron sputtering on NiO-SDC anode substrates for the fabrication of SOFCs with good cell performance.

  6. Low-temperature sintering and electrical properties of strontium- and magnesium-doped lanthanum gallate with V2O5 additive

    NASA Astrophysics Data System (ADS)

    Ha, Sang Bu; Cho, Yoon Ho; Ji, Ho-Il; Lee, Jong-Ho; Kang, Yun Chan; Lee, Jong-Heun

    2011-03-01

    The effects of a V2O5 additive on the low-temperature sintering and ionic conductivity of strontium- and magnesium-doped lanthanum gallate (LSGM: La0.8Sr0.2Ga0.8Mg0.2O2.8) are studied. The LSGM powders prepared by the glycine nitrate method are mixed with 0.5-2 at.% of VO5/2 and then sintered at 1100-1400 °C in air for 4 h. The apparent density and phase purity of the LSGM specimens are increased with increasing sintering temperature and VO5/2 concentration due to the enhanced sintering and mass transfer via the intergranular liquid phase. The 1 at.% VO5/2-doped LSGM specimen sintered at 1300 °C exhibits a high oxide ion conductivity of ∼0.027 S cm-1 at 700 °C over a wide range of oxygen partial pressure (PO2 =10-27 - 1 atm), thereby demonstrating its potential as a useful electrolyte for anode-supported solid oxide fuel cells (SOFCs) without the requirement for any buffer layer between the electrolyte and anode.

  7. Study of lanthanum aluminate for cost effective electrolyte material for SOFC

    NASA Astrophysics Data System (ADS)

    Verma, O. N.; Shahi, A. K.; Singh, P.

    2018-05-01

    The perovskite type electrolyte material LaAlO3 (abbreviated LAO) has been prepared by easy processing of auto-combustion synthesis using lanthanum nitrate and aluminium nitrate salts as precursors and citric acid as the fuel. The XRD analysis reveals that as synthesized material exhibits only single phase having rhombohedral structure. The measured density and theoretical density have been deliberated. The temperature dependent electrical conductivity of LAO increases with increasing the temperature which leads to increased mobility of oxide ion. The major contribution of such a significant value of ionic conductivity of LAO can be inferred to grain boundary resistance.

  8. Aquatic ecotoxicity of lanthanum - A review and an attempt to derive water and sediment quality criteria.

    PubMed

    Herrmann, Henning; Nolde, Jürgen; Berger, Svend; Heise, Susanne

    2016-02-01

    Rare earth elements (REE) used to be taken as tracers of geological origin for fluvial transport. Nowadays their increased applications in innovative environmental-friendly technology (e.g. in catalysts, superconductors, lasers, batteries) and medical applications (e.g. MRI contrast agent) lead to man-made, elevated levels in the environment. So far, no regulatory thresholds for REE concentrations and emissions to the environment have been set because information on risks from REE is scarce. However, evidence gathers that REE have to be acknowledged as new, emerging contaminants with manifold ways of entry into the environment, e.g. through waste water from hospitals or through industrial effluents. This paper reviews existing information on bioaccumulation and ecotoxicity of lanthanum in the aquatic environment. Lanthanum is of specific interest as one of the major lanthanides in industrial effluents. This review focuses on the freshwater and the marine environment, and tackles the water column and sediments. From these data, methods to derive quality criteria for sediment and water are discussed and preliminary suggestions are made. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. PTX-loaded three-layer PLGA/CS/ALG nanoparticle based on layer-by-layer method for cancer therapy.

    PubMed

    Wang, Fang; Yuan, Jian; Zhang, Qian; Yang, Siqian; Jiang, Shaohua; Huang, Chaobo

    2018-05-17

    Poly (lactic-co-glycolic acid) (PLGA) nanoparticles are an ideal paclitaxel (PTX)-carrying system due to its biocompatibility and biodegradability. But it possessed disadvantage of drug burst release. In this research, a layer-by-layer deposition of chitosan (CS) and sodium alginate (ALG) was applied to modify the PLGA nanoparticles. The surface charges and morphology of the PLGA, PLGA/CS and PLGA/CS/ALG particles was measured by capillary electrophoresis and SEM and TEM, respectively. The drug encapsulation and loading efficiency were confirmed by ultraviolet spectrophotometer. The nanoparticles were stable and exhibited controlled drug release performance, with good cytotoxicity to human lung carcinoma cells (HepG 2). Cumulatively, our research suggests that this kind of three-layer nanoparticle with LbL-coated shield has great properties to act as a novel drug-loaded system.

  10. Insights into the dual-electrode characteristics of layered Na 0.5Ni 0.25Mn 0.75O 2 materials for sodium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manikandan, Palanisamy; Kim, Hyunwoo; Heo, Seongwoo

    Sodium-ion batteries are now close to replacing lithium-ion batteries because they provide superior alternative energy storage solutions that are in great demand, particularly for large-scale applications. To that end, the present study is focused on the properties of a new type of dual-electrode material, Na 0.5Ni 0.25Mn 0.75O 2, synthesized using a mixed hydroxycarbonate route. Cyclic voltammetry confirms that redox couples, at high and low voltage ranges, are facilitated by the unique features and properties of this dual-electrode, through sodium ion deintercalation/intercalation into the layered Na 0.5Ni 0.25Mn 0.25O 2 material. This material provides superior performance for Na-ion batteries, asmore » evidenced by the fabricated sodium cell that yielded initial charge discharge capacities of 125/218 mAh g -1 in the voltage range of 1.5-4.4 V at 0.5 C. At a low voltage range (1.5-2.6 V), the anode cell delivered discharge charge capacities of 100/99 mAh g -1 with 99% capacity retention, which corresponds to highly reversible redox reaction of the Mn 4+/3+ reduction and the Mn 3+/4+ oxidation observed at 1.85 and 2.06 V, respectively. The symmetric Na-ion cell, fabricated using Na 0.5Ni 0.25Mn 0.25O 2, yielded initial charge discharge capacities of 196/187 μAh at 107 μA. Lastly, these results encourage the further development of new types of futuristic sodium-ion battery-based energy storage systems.« less

  11. Insights into the dual-electrode characteristics of layered Na 0.5Ni 0.25Mn 0.75O 2 materials for sodium-ion batteries

    DOE PAGES

    Manikandan, Palanisamy; Kim, Hyunwoo; Heo, Seongwoo; ...

    2017-03-09

    Sodium-ion batteries are now close to replacing lithium-ion batteries because they provide superior alternative energy storage solutions that are in great demand, particularly for large-scale applications. To that end, the present study is focused on the properties of a new type of dual-electrode material, Na 0.5Ni 0.25Mn 0.75O 2, synthesized using a mixed hydroxycarbonate route. Cyclic voltammetry confirms that redox couples, at high and low voltage ranges, are facilitated by the unique features and properties of this dual-electrode, through sodium ion deintercalation/intercalation into the layered Na 0.5Ni 0.25Mn 0.25O 2 material. This material provides superior performance for Na-ion batteries, asmore » evidenced by the fabricated sodium cell that yielded initial charge discharge capacities of 125/218 mAh g -1 in the voltage range of 1.5-4.4 V at 0.5 C. At a low voltage range (1.5-2.6 V), the anode cell delivered discharge charge capacities of 100/99 mAh g -1 with 99% capacity retention, which corresponds to highly reversible redox reaction of the Mn 4+/3+ reduction and the Mn 3+/4+ oxidation observed at 1.85 and 2.06 V, respectively. The symmetric Na-ion cell, fabricated using Na 0.5Ni 0.25Mn 0.25O 2, yielded initial charge discharge capacities of 196/187 μAh at 107 μA. Lastly, these results encourage the further development of new types of futuristic sodium-ion battery-based energy storage systems.« less

  12. Effect of flowing sodium on corrosion and tensile properties of AISI type 316LN stainless steel at 823 K

    NASA Astrophysics Data System (ADS)

    Sivai Bharasi, N.; Thyagarajan, K.; Shaikh, H.; Balamurugan, A. K.; Bera, Santanu; Kalavathy, S.; Gurumurthy, K.; Tyagi, A. K.; Dayal, R. K.; Rajan, K. K.; Khatak, H. S.

    2008-07-01

    AISI type 316LN stainless steel was exposed to flowing sodium in mass transfer loop (MTL) at 823 K for 16 000 h and then examined for changes in the tensile properties due to the mass transfer and corrosion effects. Comparisons in microstructural and mechanical properties were made between annealed, thermally aged and sodium exposed materials. Microstructural examination of thermally aged and sodium exposed materials revealed precipitation of carbides at the grain boundaries. The sodium exposed samples contained a degraded layer at the surface up to a depth of around 10 μm and a surface carburized layer of about 30 μm. There was about 15% increase in yield strength and a decrease of about 20% in ductility for the sodium exposed material vis-a-vis thermally aged material and this was attributed to carburization effects and microstructural changes.

  13. Generation of alkali-free and high-proton concentration layer in a soda lime glass using non-contact corona discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeda, Hiroshi; Sakai, Daisuke; Nishii, Junji

    2013-08-14

    Formation mechanisms of alkali-free and high-proton concentration surfaces were investigated for a soda lime glass using a corona discharge treatment under an atmospheric pressure. Protons produced by high DC voltage around an anode needle electrode were incorporated into a sodium ion site in the anode side glass. The sodium ion was swept away to the cathode side as a charge carrier. Then it was discharged. The precipitated sodium was transformed to a Na{sub 2}CO{sub 3} powder when the surface contacted with air. The sodium ion in the glass surface layer of the anode side was replaced completely by protons. Themore » concentration of OH groups in the layer was balanced with the amount of excluded sodium ions. The substitution reaction of sodium ions with protons tends to be saturated according to a square root function of time. The alkali depletion layer formation rate was affected by the large difference in mobility between sodium ions and protons in the glass.« less

  14. Performance of strontium- and magnesium-doped lanthanum gallate electrolyte with lanthanum-doped ceria as a buffer layer for IT-SOFCs

    NASA Astrophysics Data System (ADS)

    Lee, Dokyol; Han, Ju-Hyeong; Kim, Eun-Gu; Song, Rak-Hyun; Shin, Dong-Ryul

    La 0.8Sr 0.2Ga 0.8Mg 0.2O 2.8 (LSGM8080) powder, showing the highest electrical conductivity among LSGMs of various compositions, is synthesized using the glycine nitrate process (GNP) and used as the electrolyte for an intermediate-temperature solid oxide fuel cell (IT-SOFC). The LDC (Ce 0.55La 0.45O 1.775) powder is synthesized by a solid-state reaction and employed as the material for a buffer layer to prevent the reaction between the anode and electrolyte materials. The LDC also serves as the skeleton material for the anode. An anode-supported single cell with an active area of 1 cm 2 is constructed for performance evaluation. A single-cell test is performed at 750 and 800 °C. The maximum power density of the cell 459 and 664 mW cm -2 at 750 and 800 °C, respectively.

  15. Nickel container of highly-enriched uranium bodies and sodium

    DOEpatents

    Zinn, Walter H.

    1976-01-01

    A fuel element comprises highly a enriched uranium bodies coated with a nonfissionable, corrosion resistant material. A plurality of these bodies are disposed in layers, with sodium filling the interstices therebetween. The entire assembly is enclosed in a fluid-tight container of nickel.

  16. Enhanced electrocaloric analysis and energy-storage performance of lanthanum modified lead titanate ceramics for potential solid-state refrigeration applications.

    PubMed

    Zhang, Tian-Fu; Huang, Xian-Xiong; Tang, Xin-Gui; Jiang, Yan-Ping; Liu, Qiu-Xiang; Lu, Biao; Lu, Sheng-Guo

    2018-01-10

    The unique properties and great variety of relaxer ferroelectrics make them highly attractive in energy-storage and solid-state refrigeration technologies. In this work, lanthanum modified lead titanate ceramics are prepared and studied. The giant electrocaloric effect in lanthanum modified lead titanate ceramics is revealed for the first time. Large refrigeration efficiency (27.4) and high adiabatic temperature change (1.67 K) are achieved by indirect analysis. Direct measurements of electrocaloric effect show that reversible adiabatic temperature change is also about 1.67 K, which exceeds many electrocaloric effect values in current direct measured electrocaloric studies. Both theoretical calculated and direct measured electrocaloric effects are in good agreements in high temperatures. Temperature and electric field related energy storage properties are also analyzed, maximum energy-storage density and energy-storage efficiency are about 0.31 J/cm 3 and 91.2%, respectively.

  17. Insights into the Effects of Zinc Doping on Structural Phase Transition of P2-Type Sodium Nickel Manganese Oxide Cathodes for High-Energy Sodium Ion Batteries.

    PubMed

    Wu, Xuehang; Xu, Gui-Liang; Zhong, Guiming; Gong, Zhengliang; McDonald, Matthew J; Zheng, Shiyao; Fu, Riqiang; Chen, Zonghai; Amine, Khalil; Yang, Yong

    2016-08-31

    P2-type sodium nickel manganese oxide-based cathode materials with higher energy densities are prime candidates for applications in rechargeable sodium ion batteries. A systematic study combining in situ high energy X-ray diffraction (HEXRD), ex situ X-ray absorption fine spectroscopy (XAFS), transmission electron microscopy (TEM), and solid-state nuclear magnetic resonance (SS-NMR) techniques was carried out to gain a deep insight into the structural evolution of P2-Na0.66Ni0.33-xZnxMn0.67O2 (x = 0, 0.07) during cycling. In situ HEXRD and ex situ TEM measurements indicate that an irreversible phase transition occurs upon sodium insertion-extraction of Na0.66Ni0.33Mn0.67O2. Zinc doping of this system results in a high structural reversibility. XAFS measurements indicate that both materials are almost completely dependent on the Ni(4+)/Ni(3+)/Ni(2+) redox couple to provide charge/discharge capacity. SS-NMR measurements indicate that both reversible and irreversible migration of transition metal ions into the sodium layer occurs in the material at the fully charged state. The irreversible migration of transition metal ions triggers a structural distortion, leading to the observed capacity and voltage fading. Our results allow a new understanding of the importance of improving the stability of transition metal layers.

  18. Insights into the Effects of Zinc Doping on Structural Phase Transition of P2-Type Sodium Nickel Manganese Oxide Cathodes for High-Energy Sodium Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xuehang; Xu, Gui-Liang; Zhong, Guiming

    P2-type sodium nickel manganese oxide-based cathode materials with higher energy densities are prime candidates for applications in rechargeable sodium ion batteries. A systematic study combining in situ high energy X-ray diffraction (HEXRD), ex situ Xray absorption fine spectroscopy (XAFS), transmission electron microscopy (TEM), and solid-state nuclear magnetic resonance (SSNMR) techniques was carried out to gain a deep insight into the structural evolution of P2-Na 0.66Ni 0.33-xZn xMn 0.67O 2 (x = 0, 0.07) during cycling. In situ HEXRD and ex situ TEM measurements indicate that an irreversible phase transition occurs upon sodium insertion-extraction of Na 0.66Ni 0.33Mn 0.67O 2. Zincmore » doping of this system results in a high structural reversibility. XAFS measurements indicate that both materials are almost completely dependent on the Ni 4+/Ni 3+/ Ni 2+ redox couple to provide charge/discharge capacity. SS-NMR measurements indicate that both reversible and irreversible migration of transition metal ions into the sodium layer occurs in the material at the fully charged state. The irreversible migration of transition metal ions triggers a structural distortion, leading to the observed capacity and voltage fading. Our results allow a new understanding of the importance of improving the stability of transition metal layers.« less

  19. Electronic Conductivity of Doped-Lanthanum Gallate Electrolytes

    NASA Astrophysics Data System (ADS)

    Yamaji, Katsuhiko; Xiong, Yue Ping; Kishimoto, Haruo; Horita, Teruhisa; Sakai, Natsuko; Brito, Manuel E.; Yokokawa, Harumi

    Electronic conductivity of doped lanthanum gallate electrolytes were determined by using a Hebb-Wagner type polarization cell. Electronic conductivity of cobalt-doped, La0.8Sr0.2Ga0.8Mg0.15Co0.5O3-δ (LSGMC), and non cobalt-doped, La0.8Sr0.2Ga0.8Mg0.2O2.8 (LSGM8282), were measured as a function of oxygen partial pressures. The electronic conductivity of LSGM8282 showed a linear dependence on p(O2)1/4 in the higher p(O2) region, which is attributed to the electronic hole conductivity. The electronic conductivity of LSGMC showed a linear dependence on p(O2)1/6 in the higher p(O2) region. LSGMC has higher electronic conductivity than LSGM, and the conductivity was not clearly changed with temperatures between 600 and 800 °C. In lower p(O2) region, the electronic conductivity data have poor reproducibility and did not show any dependence on p(O2) because of the degradation of the electrolytes in severe reducing atmospheres.

  20. Crystallization of lanthanum and yttrium aluminosilicate glasses

    NASA Astrophysics Data System (ADS)

    Sadiki, Najim; Coutures, Jean Pierre; Fillet, Catherine; Dussossoy, Jean Luc

    2006-01-01

    The crystallization behaviour of aluminosilicate glasses of lanthanum (LAS) and yttrium (YAS) containing 2-8 mol% of Ln 2O 3 (Ln = La or Y), 12-30 mol% of Al 2O 3, and 64-80 mol% of SiO 2 has been studied by DTA, XRD and SEM-EDX analysis. X-ray diffraction results indicate the presence of the mullite phase and La 2Si 2O 7 in the monoclinic high-temperature G form (group space P2 1/c) for the LAS glasses, and mullite y-Y 2Si 2O 7 in the monoclinic structure (group space C2/m) and a small amount of β-Y 2Si 2O 7 in the orthorhombic structure (space group Pna2) for the YAS. For both cases, very little tridymite phase is observed. The results also show that the values of Tg for YAS are higher than those for LAS glasses. The crystallization of LAS glasses is more difficult than that of YAS. For all samples, we observed only one kind of mullite (Al/Si = 3.14).

  1. METHOD FOR REMOVING SODIUM OXIDE FROM LIQUID SODIUM

    DOEpatents

    Bruggeman, W.H.; Voorhees, B.G.

    1957-12-01

    A method is described for removing sodium oxide from a fluent stream of liquid sodium by coldtrapping the sodium oxide. Apparatus utilizing this method is disclosed in United States Patent No. 2,745,552. Sodium will remain in a molten state at temperatures below that at which sodium oxide will crystallize out and form solid deposits, therefore, the contaminated stream of sodium is cooled to a temperature at which the solubility of sodium oxide in sodium is substantially decreased. Thereafter the stream of sodium is passed through a bed of stainless steel wool maintained at a temperature below that of the stream. The stream is kept in contact with the wool until the sodium oxide is removed by crystal growth on the wool, then the stream is reheated and returned to the system. This method is useful in purifying reactor coolants where the sodium oxide would otherwise deposit out on the walls and eventually plug the coolant tubes.

  2. Characterisation of Ceramic-Coated 316LN Stainless Steel Exposed to High-Temperature Thermite Melt and Molten Sodium

    NASA Astrophysics Data System (ADS)

    Ravi Shankar, A.; Vetrivendan, E.; Shukla, Prabhat Kumar; Das, Sanjay Kumar; Hemanth Rao, E.; Murthy, S. S.; Lydia, G.; Nashine, B. K.; Mallika, C.; Selvaraj, P.; Kamachi Mudali, U.

    2017-11-01

    Currently, stainless steel grade 316LN is the material of construction widely used for core catcher of sodium-cooled fast reactors. Design philosophy for core catcher demands its capability to withstand corium loading from whole core melt accidents. Towards this, two ceramic coatings were investigated for its application as a layer of sacrificial material on the top of core catcher to enhance its capability. Plasma-sprayed thermal barrier layer of alumina and partially stabilised zirconia (PSZ) with an intermediate bond coat of NiCrAlY are selected as candidate material and deposited over 316LN SS substrates and were tested for their suitability as thermal barrier layer for core catcher. Coated specimens were exposed to high-temperature thermite melt to simulate impingement of molten corium. Sodium compatibility of alumina and PSZ coatings were also investigated by exposing samples to molten sodium at 400 °C for 500 h. The surface morphology of high-temperature thermite melt-exposed samples and sodium-exposed samples was examined using scanning electron microscope. Phase identification of the exposed samples was carried out by x-ray diffraction technique. Observation from sodium exposure tests indicated that alumina coating offers better protection compared to PSZ coating. However, PSZ coating provided better protection against high-temperature melt exposure, as confirmed during thermite melt exposure test.

  3. Platelets to rings: Influence of sodium dodecyl sulfate on Zn-Al layered double hydroxide morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yilmaz, Ceren; Unal, Ugur; Koc University, Chemistry Department, Rumelifeneri yolu, Sariyer 34450, Istanbul

    2012-03-15

    In the current study, influence of sodium dodecyl sulfate (SDS) on the crystallization of Zn-Al layered double hydroxide (LDH) was investigated. Depending on the SDS concentration coral-like and for the first time ring-like morphologies were obtained in a urea-hydrolysis method. It was revealed that the surfactant level in the starting solution plays an important role in the morphology. Concentration of surfactant equal to or above the anion exchange capacity of the LDH is influential in creating different morphologies. Another important parameter was the critical micelle concentration (CMC) of the surfactant. Surfactant concentrations well above CMC value resulted in ring-like structures.more » The crystallization mechanism was discussed. - Graphical abstract: Dependence of ZnAl LDH Morphology on SDS concentration. Highlights: Black-Right-Pointing-Pointer In-situ intercalation of SDS in ZnAl LDH was achieved via urea hydrolysis method. Black-Right-Pointing-Pointer Morphology of ZnAl LDH intercalated with SDS depended on the SDS concentration. Black-Right-Pointing-Pointer Ring like morphology for SDS intercalated ZnAl LDH was obtained for the first time. Black-Right-Pointing-Pointer Growth mechanism was discussed. Black-Right-Pointing-Pointer Template assisted growth of ZnAl LDH was proposed.« less

  4. Nanoporous hydroxyapatite/sodium titanate bilayer on titanium implants for improved osteointegration.

    PubMed

    Carradò, A; Perrin-Schmitt, F; Le, Q V; Giraudel, M; Fischer, C; Koenig, G; Jacomine, L; Behr, L; Chalom, A; Fiette, L; Morlet, A; Pourroy, G

    2017-03-01

    The aim of this study was to improve the strength and quality of the titanium-hydroxyapatite interface in order to prevent long-term failure of the implanted devices originating from coating delamination and to test it in an in-vivo model. Ti disks and dental commercial implants were etched in Kroll solution. Thermochemical treatments of the acid-etched titanium were combined with sol-gel hydroxyapatite (HA) coating processes to obtain a nanoporous hydroxyapatite/sodium titanate bilayer. The sodium titanate layer was created by incorporating sodium ions onto the Ti surface during a NaOH alkaline treatment and stabilized using a heat treatment. HA layer was added by dip-coating in a sol-gel solution. The bioactivity was assessed in vitro with murine MC3T3-E1 and human SaOs-2 cells. Functional and histopathological evaluations of the coated Ti implants were performed at 22, 34 and 60days of implantation in a dog lower mandible model. Nanoporous hydroxyapatite/sodium titanate bilayer on titanium implants was sensitive neither to crack propagation nor to layer delamination. The in vitro results on murine MC3T3-E1 and human SaOs-2 cells confirm the advantage of this coating regarding the capacity of cell growth and differentiation. Signs of progressive bone incorporation, such as cancellous bone formed in contact with the implant over the existing compact bone, were notable as early as day 22. Overall, osteoconduction and osteointegration mean scores were higher for test implants compared to the controls at 22 and 34 days. Nanoporous hydroxyapatite/sodium titanate bilayer improves the in-vivo osteoconduction and osteointegration. It prevents the delamination during the screwing and it could increase HA-coated dental implant stability without adhesive failures. The combination of thermochemical treatments with dip coating is a low-cost strategy. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Insertion compounds and composites made by ball milling for advanced sodium-ion batteries

    PubMed Central

    Zhang, Biao; Dugas, Romain; Rousse, Gwenaelle; Rozier, Patrick; Abakumov, Artem M.; Tarascon, Jean-Marie

    2016-01-01

    Sodium-ion batteries have been considered as potential candidates for stationary energy storage because of the low cost and wide availability of Na sources. However, their future commercialization depends critically on control over the solid electrolyte interface formation, as well as the degree of sodiation at the positive electrode. Here we report an easily scalable ball milling approach, which relies on the use of metallic sodium, to prepare a variety of sodium-based alloys, insertion layered oxides and polyanionic compounds having sodium in excess such as the Na4V2(PO4)2F3 phase. The practical benefits of preparing sodium-enriched positive electrodes as reservoirs to compensate for sodium loss during solid electrolyte interphase formation are demonstrated by assembling full C/P′2-Na1[Fe0.5Mn0.5]O2 and C/‘Na3+xV2(PO4)2F3' sodium-ion cells that show substantial increases (>10%) in energy storage density. Our findings may offer electrode design principles for accelerating the development of the sodium-ion technology. PMID:26777573

  6. Performance of planar single cell lanthanum gallate based solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Maffei, N.; Kuriakose, A. K.

    A novel synthesis of high purity, single phase strontium-magnesium doped lanthanum gallate through a nitrate route is described. The prepared powder is formed into planar monolithic elements by uniaxial pressing followed by isostatic pressing and sintering. XRD analysis of the sintered elements reveal no detectable secondary phases. The performance of the electrolyte in solid oxide fuel cells (SOFC) with three different anode/cathode combinations tested at 700°C with respect to the J- V and power density is reported. The data show that the characteristics of this SOFC are strongly dependent on the particular anode/cathode system chosen.

  7. Influence of tellurite on lifetime for samarium doped lanthanum lead borate glass

    NASA Astrophysics Data System (ADS)

    Madhu, A.; Eraiah, B.

    2018-04-01

    Samarium substituted tellurium lanthanum lead borate glass is prepared using melt quenching technique. Luminescence spectra have been recorded upon excitation with 402 nm various transitions from 4G5/2 level, for samarium doped tellurite glasses are studied and also lifetime for all the samples exhibit single exponential behaviour of decay curve. Luminescence spectra of present glasses show quenching effect due to cross-relation channels of samarium ions. The lifetime of glass samples decrease as the tellurite concentration is decreased. So, it evidences that to attain longer lifetime for lasing material one can tune the host by selecting concentration of tellurite.

  8. Effects of soil lanthanum on growth and elemental composition of plants

    NASA Astrophysics Data System (ADS)

    Fastovets, Ilya; Kotelnikova, Anna; Olga, Rogova; Nikolai, Sushkov; Elena, Pashkevich

    2017-04-01

    Effects of soil lanthanum on growth and elemental composition of plants In recent years, lanthanum (La) has been found effective in increasing crop productivity. This results in its growing application in agriculture. However, it is controversial whether lanthanum has beneficial or negative impact on plants (Kabata-Pendias, 2011). In the present study we carried out a pot experiment to understand how soil La affects barley (Hordeum vulgare L., 'Mikhaylovsky' cv.) growth and elemental composition. The pot experiment was conducted in a growbox under artificial light in sod-podzolic soil. The soil was sprayed with LaCl3 solutions to achieve the following concentrations of exogenous La: 0 (control), 10, 20, 50, 100, and 200 mg/kg. The plants were grown for 40 days in 2-litre pots, 6 plants in each pot, with 4 replications per group (24 pots total), and were irrigated with distilled water. Fresh aboveground biomass was weighed, chlorophylls α and β and carotenoids were measured in fresh leaves. Dry leaves, stems and soil were subject to atomic emission (ICP-AES) elemental analysis. Statistical computations involved simulated Kruskal-Wallis and Jonckheere-Terpstra tests as well as Gao modification of Campbell-Skillings test for nonparametric multiple comparisons. Multiple regression and correlation analyzes were also performed. All differences were considered significant at α=0.05. Our results indicate that both leaves and stems of barley readily accumulate La. Leaves accumulate up to 1.2% of soil La concentration, and significantly more La than stems. Significant accumulation of La by stems and leaves was observed in pots with La soil concentrations higher than 50 and 20 mg/kg, respectively. Plant biomass uniformly increases up to 13.5 % compared to the control, and significant increase in plant biomass was observed at concentrations 100 and 200 mg/kg La. Chlorophyll α and β and carotenoid content decrease significantly at 100 mg/kg La compared to the control group

  9. Ionic liquid-mediated synthesis of meso-scale porous lanthanum-transition-metal perovskites with high CO oxidation performance

    DOE PAGES

    Lu, Hanfeng; Zhang, Pengfei; Qiao, Zhen-An; ...

    2015-02-19

    Lanthanum-transition-metal perovskites with robust meso-scale porous frameworks (meso-LaMO 3) are synthesized through use of ionic liquids. The resultant samples demonstrate a rather high activity for CO oxidation, by taking advantage of unique nanostructure-derived benefits. This synthesis strategy opens up a new opportunity for preparing functional mesoporous complex oxides of various compositions.

  10. Ionic liquid-mediated synthesis of meso-scale porous lanthanum-transition-metal perovskites with high CO oxidation performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Hanfeng; Zhang, Pengfei; Qiao, Zhen-An

    Lanthanum-transition-metal perovskites with robust meso-scale porous frameworks (meso-LaMO 3) are synthesized through use of ionic liquids. The resultant samples demonstrate a rather high activity for CO oxidation, by taking advantage of unique nanostructure-derived benefits. This synthesis strategy opens up a new opportunity for preparing functional mesoporous complex oxides of various compositions.

  11. The incorporation of plutonium in lanthanum zirconate pyrochlore

    NASA Astrophysics Data System (ADS)

    Gregg, Daniel J.; Zhang, Yingjie; Middleburgh, Simon C.; Conradson, Steven D.; Triani, Gerry; Lumpkin, Gregory R.; Vance, Eric R.

    2013-11-01

    The incorporation of plutonium (Pu) within lanthanum zirconate pyrochlore was investigated using air, argon, and N2-3.5%H2 sintering atmospheres together with Ca2+ and Sr2+ incorporation for charge compensation. The samples have been characterised in the first instance by X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffuse reflectance spectroscopy (DRS). The results show Pu can be exchanged for La3+ on the A-site with and without charge compensation and for Zr4+ on the B-site. DRS measurements were made over the wavenumber range of 4000-19,000 cm-1 and the Pu in all air- and argon-sintered samples was found to be present as Pu4+ while that in samples sintered in N2-3.5%H2 was present as Pu3+. The Pu valence was confirmed for three of the samples using X-ray near-edge absorption spectroscopy (XANES). Pu valences >4+ were not observed in any of the samples.

  12. REACTOR FUEL SCAVENGING MEANS

    DOEpatents

    Coffinberry, A.S.

    1962-04-10

    A process for removing fission products from reactor liquid fuel without interfering with the reactor's normal operation or causing a significant change in its fuel composition is described. The process consists of mixing a liquid scavenger alloy composed of about 44 at.% plutoniunm, 33 at.% lanthanum, and 23 at.% nickel or cobalt with a plutonium alloy reactor fuel containing about 3 at.% lanthanum; removing a portion of the fuel and scavenger alloy from the reactor core and replacing it with an equal amount of the fresh scavenger alloy; transferring the portion to a quiescent zone where the scavenger and the plutonium fuel form two distinct liquid layers with the fission products being dissolved in the lanthanum-rich scavenger layer; and the clean plutonium-rich fuel layer being returned to the reactor core. (AEC)

  13. Lanthanum chloride impairs spatial memory through ERK/MSK1 signaling pathway of hippocampus in rats.

    PubMed

    Liu, Huiying; Yang, Jinghua; Liu, Qiufang; Jin, Cuihong; Wu, Shengwen; Lu, Xiaobo; Zheng, Linlin; Xi, Qi; Cai, Yuan

    2014-12-01

    Rare earth elements (REEs) are used in many fields for their diverse physical and chemical properties. Surveys have shown that REEs can impair learning and memory in children and cause neurobehavioral defects in animals. However, the mechanism underlying these impairments has not yet been completely elucidated. Lanthanum (La) is often selected to study the effects of REEs. The aim of this study was to investigate the spatial memory impairments induced by lanthanum chloride (LaCl3) and the probable underlying mechanism. Wistar rats were exposed to LaCl3 in drinking water at 0 % (control, 0 mM), 0.25 % (18 mM), 0.50 % (36 mM), and 1.00 % (72 mM) from birth to 2 months after weaning. LaCl3 considerably impaired the spatial learning and memory of rats in the Morris water maze test, damaged the synaptic ultrastructure and downregulated the expression of p-MEK1/2, p-ERK1/2, p-MSK1, p-CREB, c-FOS and BDNF in the hippocampus. These results indicate that LaCl3 exposure impairs the spatial learning and memory of rats, which may be attributed to disruption of the synaptic ultrastructure and inhibition of the ERK/MSK1 signaling pathway in the hippocampus.

  14. Lake responses following lanthanum-modified bentonite clay (Phoslock®) application: an analysis of water column lanthanum data from 16 case study lakes.

    PubMed

    Spears, Bryan M; Lürling, Miquel; Yasseri, Said; Castro-Castellon, Ana T; Gibbs, Max; Meis, Sebastian; McDonald, Claire; McIntosh, John; Sleep, Darren; Van Oosterhout, Frank

    2013-10-01

    Phoslock(®) is a lanthanum (La) modified bentonite clay that is being increasingly used as a geo-engineering tool for the control of legacy phosphorus (P) release from lake bed sediments to overlying waters. This study investigates the potential for negative ecological impacts from elevated La concentrations associated with the use of Phoslock(®) across 16 case study lakes. Impact-recovery trajectories associated with total lanthanum (TLa) and filterable La (FLa) concentrations in surface and bottom waters were quantified over a period of up to 60 months following Phoslock(®) application. Both surface and bottom water TLa and FLa concentrations were <0.001 mg L(-1) in all lakes prior to the application of Phoslock(®). The effects of Phoslock(®) application were evident in the post-application maximum TLa and FLa concentrations reported for surface waters between 0.026 mg L(-1)-2.30 mg L(-1) and 0.002 mg L(-1) to 0.14 mg L(-1), respectively. Results of generalised additive modelling indicated that recovery trajectories for TLa and FLa in surface and bottom waters in lakes were represented by 2nd order decay relationships, with time, and that recovery reached an end-point between 3 and 12 months post-application. Recovery in bottom water was slower (11-12 months) than surface waters (3-8 months), most probably as a result of variation in physicochemical conditions of the receiving waters and associated effects on product settling rates and processes relating to the disturbance of bed sediments. CHEAQS PRO modelling was also undertaken on 11 of the treated lakes in order to predict concentrations of La(3+) ions and the potential for negative ecological impacts. This modelling indicated that the concentrations of La(3+) ions will be very low (<0.0004 mg L(-1)) in lakes of moderately low to high alkalinity (>0.8 mEq L(-1)), but higher (up to 0.12 mg L(-1)) in lakes characterised by very low alkalinity. The effects of elevated La(3+) concentrations following

  15. Electrochemical investigation of MoTe2/rGO composite materials for sodium-ion battery application

    NASA Astrophysics Data System (ADS)

    Panda, Manas Ranjan; Anish Raj, K.; Sarkar, Ananta; Bao, Qiaoliang; Mitra, Sagar

    2018-05-01

    2D layered materials are found to be promising anode materials for renewable energy storage devices like sodium and Li-ion batteries and have become attractive options due to their high specific capacity, abundance and low cost. In this work, we synthesized 2D MoTe2 layers embedded in reduced graphene oxide (rGO) anode material for sodium-ion battery applications. 2D MoTe2 was prepared by a solid-state reaction in vacuum at a temperature of 800 °C. The prepared composite material MoTe2/rGO showed excellent electrochemical performance against the sodium metal. The discharge capacity of MoTe2/rGO was observed to be 280 mAh g-1 at a current rate of 1.0 A g-1 for 100 cycles. rGO plays an important role in embedding the MoTe2 structure, thus improving the electrical and mechanical properties, leading to a superior cycling stability and excellent electrochemical performances of MoTe2 for sodium-ion battery applications.

  16. Temperature-Dependent Electrical and Micromechanical Properties of Lanthanum Titanate with Additions of Yttria

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2010-01-01

    Temperature-dependent elastic properties were determined by establishing continuous flexural vibrations in the material at its lowest resonance frequency of 31tHz. The imaginary part of the complex impedance plotted as a function of frequency and temperature reveals a thermally activated peak, which decreases in magnitude as the temperature increases. Additions of yttria do not degrade the electromechanical in particularly the elastic and anelastic properties of lanthanum titanate. Y2O3/La2Ti2O7 exhibits extremely low internal friction and hence may be more mechanical fatigue-resistant at low strains.

  17. A highly stable (SnOx-Sn)@few layered graphene composite anode of sodium-ion batteries synthesized by oxygen plasma assisted milling

    NASA Astrophysics Data System (ADS)

    Cheng, Deliang; Liu, Jiangwen; Li, Xiang; Hu, Renzong; Zeng, Meiqing; Yang, Lichun; Zhu, Min

    2017-05-01

    The (SnOx-Sn)@few layered graphene ((SnOx-Sn)@FLG) composite has been synthesized by oxygen plasma-assisted milling. Owing to the synergistic effect of rapid plasma heating and ball mill grinding, SnOx (1 ≤ x ≤ 2) nanoparticles generated from the reaction of Sn with oxygen are tightly wrapped by FLG nanosheets which are simultaneously exfoliated from expanded graphite, forming secondary micro granules. Inside the granules, the small size of the SnOx nanoparticles enables the fast kinetics for Na+ transfer. The in-situ formed FLG and residual Sn nanoparticles improve the electrical conductivity of the composite, meanwhile alleviate the aggregation of SnOx nanoparticles and relieve the volume change during the cycling, which is beneficial for the cyclic stability for the Na+ storage. As an anode material for sodium-ion batteries, the (SnOx-Sn)@FLG composite exhibits a high reversible capacity of 448 mAh g-1 at a current density of 100 mA g-1 in the first cycle, with 82.6% capacity retention after 250 cycles. Even when the current density increases to 1000 mA g-1, this composite retains 316.5 mAh g-1 after 250 cycles. With superior Na+ storage stability, the (SnOx-Sn)@FLG composite can be a promising anode material for high performance sodium-ion batteries.

  18. A high dietary intake of sodium glutamate as flavoring (ajinomoto) causes gross changes in retinal morphology and function.

    PubMed

    Ohguro, Hiroshi; Katsushima, Harumi; Maruyama, Ikuyo; Maeda, Tadao; Yanagihashi, Satsuki; Metoki, Tomomi; Nakazawa, Mitsuru

    2002-09-01

    The purpose of this study was to investigate the effects of glutamate accumulation in vitreous on retinal structure and function, due to a diet high in sodium glutamate. Three different diet groups were created, consisting of rats fed on a regular diet (diet A), a moderate excess of sodium glutamate diet (diet B) and a large excess of sodium glutamate diet (diet C). After 1, 3 and 6 months of the administration of these diets, amino acids concentrations in vitreous were analyzed. In addition, retinal morphology and function by electroretinogram (ERG) of three different diet groups were studied. Significant accumulation of glutamate in vitreous was observed in rats following addition of sodium glutamate to the diet as compared to levels with a regular diet. In the retinal morphology, thickness of retinal neuronal layers was remarkably thinner in rats fed on sodium glutamate diets than in those on a regular diet. TdT-dUTP terminal nick-end labelling (TUNEL) staining revealed significant accumulation of the positive staining cells within the retinal ganglion cell layers in retinas from diets B and C as compared with that from diet A. Similar to this, immunohistochemistry demonstrated increased expression of glial fibrillary acidic protein (GFAP) within the retinal inner layers from diets B and C as compared with diet A. Functionally, ERG responses were reduced in rats fed on a sodium glutamate diets as compared with those on a regular diet. The present study suggests that a diet with excess sodium glutamate over a period of several years may increase glutamate concentrations in vitreous and may cause retinal cell destruction.

  19. Fibrillar films obtained from sodium soap fibers and polyelectrolyte multilayers.

    PubMed

    Zawko, Scott A; Schmidt, Christine E

    2011-08-01

    An objective of tissue engineering is to create synthetic polymer scaffolds with a fibrillar microstructure similar to the extracellular matrix. Here, we present a novel method for creating polymer fibers using the layer-by-layer method and sacrificial templates composed of sodium soap fibers. Soap fibers were prepared from neutralized fatty acids using a sodium chloride crystal dissolution method. Polyelectrolyte multilayers (PEMs) of polystyrene sulfonate and polyallylamine hydrochloride were deposited onto the soap fibers, crosslinked with glutaraldehyde, and then the soap fibers were leached with warm water and ethanol. The morphology of the resulting PEM structures was a dense network of fibers surrounded by a nonfibrillar matrix. Microscopy revealed that the PEM fibers were solid structures, presumably composed of polyelectrolytes complexed with residual fatty acids. These fibrillar PEM films were found to support the attachment of human dermal fibroblasts. Copyright © 2011 Wiley Periodicals, Inc.

  20. Super Gas Barrier Thin Films via Layer-by-Layer Assembly of Polyelectrolytes and Clay

    NASA Astrophysics Data System (ADS)

    Priolo, Morgan; Gamboa, Daniel; Grunlan, Jaime

    2010-03-01

    Thin composite films of branched polyethylenimine (PEI), polyacrylic acid (PAA) and sodium montmorillonite clay (MMT) platelets were prepared using layer-by-layer assembly. Film thickness, mass deposited per layer, and barrier were shown to increase exponentially with the number of deposition cycles. After 32 layers (i.e., eight PEI/PAA/PEI/MMT quadlayers) are deposited, the resulting transparent film exhibits an oxygen transmission rate below the detection limit of commercial instrumentation (< 0.005 cm^3/m^2 . day). This level of oxygen barrier is believed to be due to a nano-brick wall microstructure comprised of exfoliated clay bricks in polymeric mortar, where the enhanced spacing between MMT layers, provided by PEI and PAA, creates channels perpendicular concentration gradient that delay the permeating molecule. These films are good candidates for flexible electronics, food, and pharmaceutical packaging due to their transparency, super gas barrier (that rivals SiOx) and lack of metal.

  1. The effect of physiologic aqueous solutions on the perovskite material lead-lanthanum-zirconium titanate (PLZT): potential retinotoxicity.

    PubMed

    Foster, William J; Meen, James K; Fox, Donald A

    2013-03-01

    Perovskite compounds, including lead-lanthanum-zirconium titanate (PLZT), have wide technological application because of their unique physical properties. The use of PLZT in neuro-prosthetic systems, such as retinal implants, has been discussed in a number of publications. Since inorganic lead is a retinotoxic compound that produces retinal degeneration, the long-term stability of PLZT in aqueous biological solutions must be determined. We evaluated the stability and effects of prolonged immersion of a PLZT-coated crystal in a buffered balanced salt solution. Scanning Electron Microscopy and Electron Dispersive Spectroscopy (EDS) using a JEOL JSM 5410 microscope equipped with EDS were utilized to evaluate the samples before and after prolonged immersion. We found that lead and other constituents of PLZT leached into the surrounding aqueous medium. By comparing the unit cell of PLZT with that of CaTiO(3), which has been found to react with aqueous fluids, Lead is in the same site in PLZT as Ca is in CaTiO(3). It is thus reasonable that PLZT will react with aqueous solutions. The results suggest that PLZT must either be coated with a protective layer or is not appropriate for long-term in vivo or in vitro biological applications.

  2. Computational NMR, IR/RAMAN calculations in sodium pravastatin: Investigation of the Self-Assembled Nanostructure of Pravastatin-LDH (Layered Double Hydroxides) Systems

    NASA Astrophysics Data System (ADS)

    Petersen, Philippe; Cunha, Vanessa; Gonçalves, Marcos; Petrilli, Helena; Constantino, Vera; Instituto de Física, Departamento de Física de Materiais e Mecânica Team; Instituto de Química, Departamento de Química Fundamental Team

    2013-03-01

    Layered double hydroxides (LDH) can be used as nanocontainers for immobilization of Pravastatin, in order to obtain suitable drug carriers. The material's structure and spectroscopic properties were analyzed by NMR, IR/RAMAN and supported by theoretical calculations. Density Functional Theory (DFT) calculations were performed using the Gaussian03 package. The geometry optimizations were performed considering the single crystal X-ray diffraction data of tert-octylamonium salt of Pravastatin. Tetramethylsilane (TMS), obtained with the same basis set, was used as reference for calculating the chemical shift of 13C. A scaling factor was used to compare theoretical and experimental harmonic vibrational frequencies. Through the NMR and IR/RAMAN spectra, we were able to make precise assignments of the NMR and IR/RAMAN of Sodium Pravastatin. We acknowledge support from CAPES, INEO and CNPQ.

  3. Development of Mesospheric Sodium Laser Beacon for Atmospheric Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Jeys, T. H.

    1992-01-01

    A solid-state source of long pulse length, sodium-resonance radiation was developed for the purpose of generating an artificial star in the earth's mesospheric sodium layer. This radiation is generated by sum-frequency mixing the output of a 1.064 micron Nd:YAG laser with the output of a 1.319-micron Nd:YAG laser. By operating these lasers at wavelengths very close to the peak of their tuning curves, it is possible to match the wavelength of the sum-frequency radiation to that of the sodium D2 adsorption wavelength. Two pulsed laser systems were constructed, one producing as much as 0.6 J of sodium resonance radiation at a 10-Hz repetition rate and another producing as much as 24 mJ at a 840-Hz repetition rate. In both laser systems, the 1.06-micron and 1.32-micron Nd:YAG lasers are configured as mode-locked master oscillators followed by power amplifiers. Other aspects of this project are presented.

  4. Investigation on the adsorption characteristics of sodium benzoate and taurine on gold nanoparticle film by ATR-FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kumar, Naveen; Thomas, S.; Tokas, R. B.; Kshirsagar, R. J.

    2014-01-01

    Fourier transform infrared (FTIR) spectroscopic studies of sodium benzoate and taurine adsorbed on gold nanoparticle (AuNp) film on silanised glass slides have been studied by attenuated total reflection technique (ATR). The surface morphology of the AuNp films has been measured by Atomic Force Microscopy. The ATR spectra of sodium benzoate and taurine deposited on AuNp film are compared with ATR spectra of their powdered bulk samples. A new red-shifted band appeared along with the symmetric and asymmetric stretches of carboxylate group of sodium benzoate leading to a broadening of the above peaks. Similar behavior is also seen in the case of symmetric and asymmetric stretches of sulphonate group of taurine. The results indicate presence of both chemisorbed and physisorbed layers of both sodium benzoate and taurine on the AuNp film with bottom layer chemically bound to AuNp through carboxylate and sulphonate groups respectively.

  5. Ternary lanthanum sulfide selenides {alpha}-LaS{sub 2-x}Se{sub x} (0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartsch, Christian; Doert, Thomas, E-mail: thomas.doert@chemie.tu-dresden.de

    2012-01-15

    Mixed lanthanum sulfide selenides LaS{sub 2-x}Se{sub x} (0lanthanum chloride and alkali metal polychalcogenides. The LaS{sub 2-x}Se{sub x} compounds crystallize in space group P2{sub 1}/a, no. 14, and adopt the {alpha}-LnS{sub 2} (Ln=Y, La-Lu) structure type with a pronounced site preference for the chalcogen atoms. The mixed chalcogenides form a complete miscible series with lattice parameters a=820-849 pm, b=413-425 pm and c=822-857 pm ({beta} Almost-Equal-To 90 Degree-Sign) following Vegard's rule. Raman signals indicate the presence of mixed X{sub 2}{sup 2-} dianions, a species rarely evidenced in literature, besides the well known anionsmore » S{sub 2}{sup 2-} and Se{sub 2}{sup 2-}. The band gaps of the LaS{sub 2-x}Se{sub x} compounds, determined by optical spectroscopy, decrease nearly linearly with increasing amount of selenium. - Graphical abstract: Raman spectra and site occupancies in the structures of selected lanthanum sulfide selenides. Highlights: Black-Right-Pointing-Pointer Vegard series of mixed lanthanum sulfide selenides LaS{sub 2-x}Se{sub x} (0

  6. Investigating Sodium Storage Mechanisms in Tin Anodes: A Combined Pair Distribution Function Analysis, Density Functional Theory, and Solid-State NMR Approach.

    PubMed

    Stratford, Joshua M; Mayo, Martin; Allan, Phoebe K; Pecher, Oliver; Borkiewicz, Olaf J; Wiaderek, Kamila M; Chapman, Karena W; Pickard, Chris J; Morris, Andrew J; Grey, Clare P

    2017-05-31

    The alloying mechanism of high-capacity tin anodes for sodium-ion batteries is investigated using a combined theoretical and experimental approach. Ab initio random structure searching (AIRSS) and high-throughput screening using a species-swap method provide insights into a range of possible sodium-tin structures. These structures are linked to experiments using both average and local structure probes in the form of operando pair distribution function analysis, X-ray diffraction, and 23 Na solid-state nuclear magnetic resonance (ssNMR), along with ex situ 119 Sn ssNMR. Through this approach, we propose structures for the previously unidentified crystalline and amorphous intermediates. The first electrochemical process of sodium insertion into tin results in the conversion of crystalline tin into a layered structure consisting of mixed Na/Sn occupancy sites intercalated between planar hexagonal layers of Sn atoms (approximate stoichiometry NaSn 3 ). Following this, NaSn 2 , which is predicted to be thermodynamically stable by AIRSS, forms; this contains hexagonal layers closely related to NaSn 3 , but has no tin atoms between the layers. NaSn 2 is broken down into an amorphous phase of approximate composition Na 1.2 Sn. Reverse Monte Carlo refinements of an ab initio molecular dynamics model of this phase show that the predominant tin connectivity is chains. Further reaction with sodium results in the formation of structures containing Sn-Sn dumbbells, which interconvert through a solid-solution mechanism. These structures are based upon Na 5-x Sn 2 , with increasing occupancy of one of its sodium sites commensurate with the amount of sodium added. ssNMR results indicate that the final product, Na 15 Sn 4 , can store additional sodium atoms as an off-stoichiometry compound (Na 15+x Sn 4 ) in a manner similar to Li 15 Si 4 .

  7. Study of the Effect on Ionic Conductivity and Structral Morphology of the SR Doped Lanthanum Gallate Solid Electrolyte

    NASA Astrophysics Data System (ADS)

    Sood, Kapil; Singh, K.; Pandey, O. P.

    2013-07-01

    In the present study, lanthanum gallate and Sr-doped lanthanum gallate samples were prepared by conventional solid state reaction method. The phase conformation has been performed by using X-ray diffraction (XRD) study. The elemental composition has been confirmed using energy dispersive spectroscopy (EDS) analysis. Ac conductivity of the samples has been measured in the frequency range 0.1-106 Hz and from 50-800 °C. The impedance plots among real and complex impedances at particular temperature have been discussed. The behavior shows the effect of bulk and grain boundary effects of the doped sample. The impedance plots with frequency have been analyzed. The plots have been well fitted to equivalent circuit model. The conductivity shows the Arrhenius type of behavior. The activation energy has been calculated from the plots and represents that the conductivity through the material is mainly ionic. The structural morphology of the samples has been investigated using scanning electron microscope (SEM). The micrograph shows that the porosity and grain size both decreases with Sr-doping.

  8. Potentiometric measurement of polymer-membrane electrodes based on lanthanum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saefurohman, Asep, E-mail: saefurohman.asep78@Gmail.com; Buchari,, E-mail: saefurohman.asep78@Gmail.com; Noviandri, Indra, E-mail: saefurohman.asep78@Gmail.com

    2014-03-24

    Quantitative analysis of rare earth elements which are considered as the standard method that has a high accuracy, and detection limits achieved by the order of ppm is inductively coupled plasma atomic emission spectroscopy (ICPAES). But these tools are expensive and valuable analysis of the high cost of implementation. In this study be made and characterized selective electrode for the determination of rare earth ions is potentiometric. Membrane manufacturing techniques studied is based on immersion (liquid impregnated membrane) in PTFE 0.5 pore size. As ionophores to be used tri butyl phosphate (TBP) and bis(2-etylhexyl) hydrogen phosphate. There is no reportmore » previously that TBP used as ionophore in polymeric membrane based lanthanum. Some parameters that affect the performance of membrane electrode such as membrane composition, membrane thickness, and types of membrane materials studied in this research. Manufacturing of Ion Selective Electrodes (ISE) Lanthanum (La) by means of impregnation La membrane in TBP in kerosene solution has been done and showed performance for ISE-La. FTIR spectrum results for PTFE 0.5 pore size which impregnated in TBP and PTFE blank showed difference of spectra in the top 1257 cm{sup −1}, 1031 cm{sup −1} and 794.7 cm{sup −1} for P=O stretching and stretching POC from group −OP =O. The result showed shift wave number for P =O stretching of the cluster (−OP=O) in PTFE-TBP mixture that is at the peak of 1230 cm{sup −1} indicated that no interaction bond between hydroxyl group of molecules with molecular clusters fosforil of TBP or R{sub 3}P = O. The membrane had stable responses in pH range between 1 and 9. Good responses were obtained using 10{sup −3} M La(III) internal solution, which produced relatively high potential. ISE-La showed relatively good performances. The electrode had a response time of 29±4.5 second and could be use for 50 days. The linear range was between 10{sup −5} and 10{sup −1} M.« less

  9. Bi-layered nanocomposite bandages for controlling microbial infections and overproduction of matrix metalloproteinase activity.

    PubMed

    Anjana, J; Mohandas, Annapoorna; Seethalakshmy, S; Suresh, Maneesha K; Menon, Riju; Biswas, Raja; Jayakumar, R

    2018-04-15

    Chronic diabetic wounds is characterised by increased microbial contamination and overproduction of matrix metalloproteases that would degrade the extracellular matrix. A bi-layer bandage was developed, that promotes the inhibition of microbial infections and matrix metalloprotease (MMPs) activity. Bi-layer bandage containing benzalkonium chloride loaded gelatin nanoparticles (BZK GNPs) in chitosan-Hyaluronic acid (HA) as a bottom layer and sodium alendronate containing chitosan as top layer was developed. We hypothesized that the chitosan-gelatin top layer with sodium alendronate could inhibit the MMPs activity, whereas the chitosan-HA bottom layer with BZK GNPs (240±66nm) would enable the elimination of microbes. The porosity, swelling and degradation nature of the prepared Bi-layered bandage was studied. The bottom layer could degrade within 4days whereas the top layer remained upto 7days. The antimicrobial activity of the BZK NPs loaded bandage was determined using normal and clinical strains. Gelatin zymography shows that the proteolytic activity of MMP was inhibited by the bandage. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Cobalt doped lanthanum chromite material suitable for high temperature use

    DOEpatents

    Ruka, Roswell J.

    1986-01-01

    A high temperature, solid electrolyte electrochemical cell, subject to thermal cycling temperatures of between about 25.degree. C. and about 1200.degree. C., capable of electronic interconnection to at least one other electrochemical cell and capable of operating in an environment containing oxygen and a fuel, is made; where the cell has a first and second electrode with solid electrolyte between them, where an improved interconnect material is applied along a portion of a supporting electrode; where the interconnect is made of a chemically modified lanthanum chromite, containing cobalt as the important additive, which interconnect allows for adjustment of the thermal expansion of the interconnect material to more nearly match that of other cell components, such as zirconia electrolyte, and is stable in oxygen containing atmospheres such as air and in fuel environments.

  11. Accomplishment of highly porous-lithium lanthanum titanate through microwave treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakshmi, D.; Nalini, B., E-mail: jyothsnalalin99@gmail.com; Abhilash, K. P.

    Perovskite structured (ABO{sub 3}) lithium lanthanum titanate (LLTO) is a successful electrolyte reported by several scientists in the recent past. It is believed that intercalation and de-intercalation of Li ions inside solid electrolyte can be improved by increasing the porosity of the material. Hence in this research work, an attempt is made to increase the porosity of the LLTO electrolyte by rapid-microwave synthesis route. The microwave prepared LLTO is compared with the sol-gel synthesized LLTO. The prepared samples are analyzed with XRD, SEM, PL and cyclic Voltammetry studies. Morphological analysis proves that microwave synthesized LLTO contains much pores compared tomore » the Sol-gel LLTO. A remarkable difference in its electrochemical property is also demonstrated and analysed with cyclic voltammetric studies and the results are presented.« less

  12. Cobalt doped lanthanum chromite material suitable for high temperature use

    DOEpatents

    Ruka, R.J.

    1986-12-23

    A high temperature, solid electrolyte electrochemical cell, subject to thermal cycling temperatures of between about 25 C and about 1,200 C, capable of electronic interconnection to at least one other electrochemical cell and capable of operating in an environment containing oxygen and a fuel, is made; where the cell has a first and second electrode with solid electrolyte between them, where an improved interconnect material is applied along a portion of a supporting electrode; where the interconnect is made of a chemically modified lanthanum chromite, containing cobalt as the important additive, which interconnect allows for adjustment of the thermal expansion of the interconnect material to more nearly match that of other cell components, such as zirconia electrolyte, and is stable in oxygen containing atmospheres such as air and in fuel environments. 2 figs.

  13. Layered P2-Na 2/3 Co 1/2 Ti 1/2 O 2 as a high-performance cathode material for sodium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabi, Noha; Doubaji, Siham; Hashimoto, Kazuki

    Layered oxides are regarded as promising cathode materials for sodium-ion batteries. We present Na2/3Co1/2Ti1/2O2 as a potential new cathode material for sodium-ion batteries. The crystal features and morphology of the pristine powder were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The cathode material is evaluated in galvanostatic charge-discharge and galvanostatic intermittent titration tests, as well as ex-situ X-ray diffraction analysis. Synthesized by a high-temperature solid state reaction, Na2/3Co1/2Ti1/2O2 crystallizes in P2-type structure with P6(3)/mmc space group. The material presents reversible electrochemical behavior and delivers a specific discharge capacity of 100 mAh g(-1) when tested in Na halfmore » cells between 2.0 and 4.2 V (vs. Na+/Na), with capacity retention of 98% after 50 cycles. Furthermore, the electrochemical cycling of this titanium-containing material evidenced a reduction of the potential jumps recorded in the NaxCoO2 parent phase, revealing a positive impact of Ti substitution for Co. The ex-situ XRD measurements confirmed the reversibility and stability of the material. No structural changes were observed in the XRD patterns, and the P2-type structure was stable during the charge/discharge process between 2.0 and 4.2 V vs. Na+/Na. These outcomes will contribute to the progress of developing low cost electrode materials for sodium-ion batteries. (C) 2017 Elsevier B.V. All rights reserved.« less

  14. Sorbents based on asbestos with a layer of an hydroxyethylcyclam derivative of PVC containing aquacomplexes of sulfuric acid or sodium hydroxide with aza-crown groups

    NASA Astrophysics Data System (ADS)

    Tsivadze, A. Yu.; Fridman, A. Ya.; Morozova, E. M.; Sokolova, N. P.; Voloshchuk, A. M.; Petukhova, G. A.; Bardyshev, I. I.; Gorbunov, A. M.; Polyakova, I. Ya.; Titova, V. N.; Yavich, A. A.; Novikov, A. K.; Petrova, N. V.

    2016-07-01

    Aquacomplexes of sulfuric acid and sodium hydroxide with aza-crown groups are synthesized in cavities of a sorbent from the porous layer of a PVC cyclam-derivative grafted onto fibers of asbestos fabric. The structure of sorbents with complexes is studied and their adsorption characteristics are determined. It is shown that the affinity of the developed surface toward ethanol, benzene, and hexane depends on the nature of complexes in the pore walls, and the volume of cavities formed as a result of the pores on the developed asbestos surface being coated with networks of aza-crown groups is larger than that of cavities with walls of aza-crown groups in the layers of a PVC cyclam derivative. Indicators of H+- and OH--conductivity of sorbents with complexes as electrochemical bridges are determined. It is shown that the major part of H+- and OH--ions moves through complexes with aza-crown groups in the region of cavities formed of pores on the surface of asbestos.

  15. THE PROCESS OF MASS TRANSFER ON THE SOLID-LIQUID BOUNDARY LAYER DURING THE RELEASE OF DICLOFENAC SODIUM AND PAPAVERINE HYDROCHLORIDE FROM TABLETS IN A PADDLE APPARATUS.

    PubMed

    Kasperek, Regina; Zimmer, Lukasz; Poleszak, Ewa

    2016-01-01

    The release study of diclofenac sodium (DIC) and papaverine hydrochloride (PAP) from two formulations of the tablets in the paddle apparatus using different rotation speeds to characterize the process of mass transfer on the solid-liquid boundary layer was carried out. The dissolution process of active substances was described by values of mass transfer coefficients, the diffusion boundary layer thickness and dimensionless numbers (Sh and Re). The values of calculated parameters showed that the release of DIC and PAP from tablets comprising potato starch proceeded faster than from tablets containing HPMC and microcrystalline cellulose. They were obtained by direct dependencies between Sh and Re in the range from 75 rpm to 125 rpm for both substances from all tablets. The description of the dissolution process with the dimensionless numbers make it possible to plan the drug with the required release profile under given in vitro conditions.

  16. Sodium

    MedlinePlus

    Table salt is a combination of two minerals - sodium and chloride Your body needs some sodium to work properly. It helps with the function ... in your body. Your kidneys control how much sodium is in your body. If you have too ...

  17. Investigation on the adsorption characteristics of sodium benzoate and taurine on gold nanoparticle film by ATR-FTIR spectroscopy.

    PubMed

    Kumar, Naveen; Thomas, S; Tokas, R B; Kshirsagar, R J

    2014-01-24

    Fourier transform infrared (FTIR) spectroscopic studies of sodium benzoate and taurine adsorbed on gold nanoparticle (AuNp) film on silanised glass slides have been studied by attenuated total reflection technique (ATR). The surface morphology of the AuNp films has been measured by Atomic Force Microscopy. The ATR spectra of sodium benzoate and taurine deposited on AuNp film are compared with ATR spectra of their powdered bulk samples. A new red-shifted band appeared along with the symmetric and asymmetric stretches of carboxylate group of sodium benzoate leading to a broadening of the above peaks. Similar behavior is also seen in the case of symmetric and asymmetric stretches of sulphonate group of taurine. The results indicate presence of both chemisorbed and physisorbed layers of both sodium benzoate and taurine on the AuNp film with bottom layer chemically bound to AuNp through carboxylate and sulphonate groups respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Solution processed lanthanum aluminate gate dielectrics for use in metal oxide-based thin film transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esro, M.; Adamopoulos, G., E-mail: g.adamopoulos@lancaster.ac.uk; Mazzocco, R.

    2015-05-18

    We report on ZnO-based thin-film transistors (TFTs) employing lanthanum aluminate gate dielectrics (La{sub x}Al{sub 1−x}O{sub y}) grown by spray pyrolysis in ambient atmosphere at 440 °C. The structural, electronic, optical, morphological, and electrical properties of the La{sub x}Al{sub 1−x}O{sub y} films and devices as a function of the lanthanum to aluminium atomic ratio were investigated using a wide range of characterization techniques such as UV-visible absorption spectroscopy, impedance spectroscopy, spectroscopic ellipsometry, atomic force microscopy, x-ray diffraction, and field-effect measurements. As-deposited LaAlO{sub y} dielectrics exhibit a wide band gap (∼6.18 eV), high dielectric constant (k ∼ 16), low roughness (∼1.9 nm), and very low leakage currentsmore » (<3 nA/cm{sup 2}). TFTs employing solution processed LaAlO{sub y} gate dielectrics and ZnO semiconducting channels exhibit excellent electron transport characteristics with hysteresis-free operation, low operation voltages (∼10 V), high on/off current modulation ratio of >10{sup 6}, subthreshold swing of ∼650 mV dec{sup −1}, and electron mobility of ∼12 cm{sup 2} V{sup −1} s{sup −1}.« less

  19. Structural characterization of layered Na0.5Co0.5Mn0.5O2 material as a promising cathode for sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Manikandan, Palanisamy; Heo, Seongwoo; Kim, Hyun Woo; Jeong, Hu Young; Lee, Eungje; Kim, Youngsik

    2017-09-01

    Layered Na0.5Co0.5Mn0.5O2 material is synthesized through a facile mixed hydroxy-carbonate route using (Co0.5Mn0.5)2(OH)2CO3 precursor and well characterized as a hexagonal layered structure under P63/mmc space group. The lattice parameters and unit cell volume (a = 2.8363 Å, c = 11.3152 Å and V = 78.83 Å3) are calculated by Rietveld refinement analysis. A flaky-bundle morphology is obtained to the layered Na0.5Co0.5Mn0.5O2 material with the hexagonal flake size ∼30 nm. Advanced transmission electron microscopic images are revealed the local structure of the layered Na0.5Co0.5Mn0.5O2 material with contrasting bright dots and faint dark dots corresponding to the Co/Mn and Na atoms. Two oxidation and reduction peaks are occurred in a cyclic voltammetric analysis corresponding to Co3+/Co4+ and Mn3+/Mn4+ redox processes. These reversible processes are attributed to the intercalation/de-intercalation of Na+ ions into the host structure of layered Na0.5Co0.5Mn0.5O2 material. Accordingly, the sodium cell is delivered the initial charge-discharge capacity 53/144 mAh g-1 at 0.5 C, which cycling studies are extended to rate capability test at 1 C, 3 C and 5C. Eventually, the Na-ion full-cell is yielded cathode charge-discharge capacity 55/52 mAh g-1 at 0.212 mA and exhibited as a high voltage cathode for Na-ion batteries.

  20. Grain Boundary Engineering of Lithium-Ion-Conducting Lithium Lanthanum Titanate for Lithium-Air Batteries

    DTIC Science & Technology

    2015-01-01

    Tojo T, Sakurai Y. Synthesis and lithium - ion conductivity for perovskite-type Li3/8Sr7/16Ta3/4Zr1/4O3 solid electrolyte by powder-bed sintering...battery performance is limited by the electrolytic membrane, which needs high Li-ionic conductivity. Lithium lanthanum titanate (Li3xLa(2/3)-xTiO3, or...of the A-site ions and lithium ion conductivity in the perovskite solid solution La0.67-xLi3xTiO3 (x=0.11). Journal of Solid State Ionics. 1999;121

  1. Amorphous lithium lanthanum titanate for solid-state microbatteries

    DOE PAGES

    Lee, Jungwoo Z.; Wang, Ziying; Xin, Huolin L.; ...

    2016-12-16

    Lithium lanthanum titanate (LLTO) is a promising solid state electrolyte for solid state batteries due to its demonstrated high bulk ionic conductivity. However, crystalline LLTO has a relatively low grain boundary conductivity, limiting the overall material conductivity. In this work, we investigate amorphous LLTO (a-LLTO) thin films grown by pulsed laser deposition (PLD). By controlling the background pressure and temperature we are able to optimize the ionic conductivity to 3 × 10 –4 S/cm and electronic conductivity to 5 × 10 –11 S/cm. XRD, TEM, and STEM/EELS analysis confirm that the films are amorphous and indicate that oxygen background gasmore » is necessary during the PLD process to decrease the oxygen vacancy concentration, decreasing the electrical conductivity. Amorphous LLTO is deposited onto high voltage LiNi 0.5Mn 1.5O 4 (LNMO) spinel cathode thin films and cycled up to 4.8 V vs. Li showing excellent capacity retention. Finally, these results demonstrate that a-LLTO has the potential to be integrated into high voltage thin film batteries.« less

  2. Consumer awareness of salt and sodium reduction and sodium labeling.

    PubMed

    Kim, M K; Lopetcharat, K; Gerard, P D; Drake, M A

    2012-09-01

    Reduction of dietary sodium by reduction of sodium in foods is a current industry target. Quantitative information on consumer knowledge of sodium and reduction of dietary sodium is limited. The objectives of this study were to characterize consumer knowledge and awareness of sodium and salt reduction in foods. Consumers (n = 489) participated in a quantitative internet survey designed to gather knowledge and attitudes towards dietary sodium, sodium in foods, and health. Eating habits and food consumption characteristics, knowledge of salt and sodium, and interest in health and wellness were probed. Saltiness believe and sodium knowledge indices were calculated based on correct responses to salt levels in food products. Kano analysis was conducted to determine the role of nutrition labels and satisfaction/dissatisfaction of foods. Consumers were aware of the presence of sodium in "salty" foods, and that sodium was part of salt. People who had a family history of certain diseases associated with a higher intake of dietary sodium did not necessarily have more knowledge of the relationship between sodium intake and a specific disease compared to consumers with no family history. Sodium content on the food label panel did not influence consumer dissatisfaction; however, sodium content did not necessarily increase consumer product satisfaction either. The addition of a healthy nutrient (that is, whole grain, fiber) into a current food product was appealing to consumers. For nutrient labeling, a "reduced" claim was more appealing to consumers than a "free" claim for "unhealthy" nutrients such as fat, sodium, and sugar. This study demonstrated the current state of consumer knowledge on sodium and salt reduction, and consumer perception of the relationship between diets high in sodium and many chronic diseases. Information that may contribute to consumer satisfaction on nutrition panel labeling was also determined. © 2012 Institute of Food Technologists®

  3. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium.

    PubMed

    Willbold, Elmar; Gu, Xuenan; Albert, Devon; Kalla, Katharina; Bobe, Katharina; Brauneis, Maria; Janning, Carla; Nellesen, Jens; Czayka, Wolfgang; Tillmann, Wolfgang; Zheng, Yufeng; Witte, Frank

    2015-01-01

    Rare earth elements are promising alloying element candidates for magnesium alloys used as biodegradable devices in biomedical applications. Rare earth elements have significant effects on the high temperature strength as well as the creep resistance of alloys and they improve magnesium corrosion resistance. We focused on lanthanum, neodymium and cerium to produce magnesium alloys with commonly used rare earth element concentrations. We showed that low concentrations of rare earth elements do not promote bone growth inside a 750 μm broad area around the implant. However, increased bone growth was observed at a greater distance from the degrading alloys. Clinically and histologically, the alloys and their corrosion products caused no systematic or local cytotoxicological effects. Using microtomography and in vitro experiments, we could show that the magnesium-rare earth element alloys showed low corrosion rates, both in in vitro and in vivo. The lanthanum- and cerium-containing alloys degraded at comparable rates, whereas the neodymium-containing alloy showed the lowest corrosion rates. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Sodium in diet

    MedlinePlus

    Diet - sodium (salt); Hyponatremia - sodium in diet; Hypernatremia - sodium in diet; Heart failure - sodium in diet ... The body uses sodium to control blood pressure and blood volume. Your body also needs sodium for your muscles and nerves to work ...

  5. PLZT capacitor and method to increase the dielectric constant

    DOEpatents

    Taylor, Ralph S.; Fairchild, Manuel Ray; Balachjandran, Uthamalingam; Lee, Tae H.

    2017-12-12

    A ceramic-capacitor includes a first electrically-conductive-layer, a second electrically-conductive-layer arranged proximate to the first electrically-conductive-layer, and a dielectric-layer interposed between the first electrically-conductive-layer and the second electrically-conductive-layer. The dielectric-layer is formed of a lead-lanthanum-zirconium-titanate material (PLZT), wherein the PLZT is characterized by a dielectric-constant greater than 125, when measured at 25 degrees Celsius and zero Volts bias, and an excitation frequency of ten-thousand Hertz (10 kHz). A method for increasing a dielectric constant of the lead-lanthanum-zirconium-titanate material (PLZT) includes the steps of depositing PLZT to form a dielectric-layer of a ceramic-capacitor, and heating the ceramic-capacitor to a temperature not greater than 300.degree. C.

  6. Barbiturates Block Sodium and Potassium Conductance Increases in Voltage-Clamped Lobster Axons

    PubMed Central

    Blaustein, M. P.

    1968-01-01

    Sodium pentobarbital and sodium thiopental decrease both the peak initial (Na) and late steady-state (K) currents and reduce the maximum sodium and potassium conductance increases in voltage-clamped lobster giant axons. These barbiturates also slow the rate at which the sodium conductance turns on, and shift the normalized sodium conductance vs. voltage curves in the direction of depolarization along the voltage axis. Since pentobarbital (pKa = 8.0) blocks the action potential more effectively at pH 8.5 than at pH 6.7, the anionic form of the drug appears to be active. The data suggest that these drugs affect the axon membrane directly, rather than secondarily through effects on intermediary metabolism. It is suggested that penetration of the lipid layer of the membrane by the nonpolar portion of the barbiturate molecules may cause the decrease in membrane conductances, while electrostatic interactions involving the anionic group on the barbiturate, divalent cations, and "fixed charges" in the membrane could account for the slowing of the rate of sodium conductance turn-on and the shift of the normalized conductance curves along the voltage axis. PMID:5648829

  7. Influence of the foundation layer on the layer-by-layer assembly of poly-L-lysine and poly(styrenesulfonate) and its usage in the fabrication of 3D microscale features.

    PubMed

    Zhou, Dejian; Bruckbauer, Andreas; Batchelor, Matthew; Kang, Dae-Joon; Abell, Chris; Klenerman, David

    2004-10-12

    The layer-by-layer (LBL) assembly of a polypeptide, poly-L-lysine (PLL), with poly(styrenesulfonate) sodium salt (PSS) on flat template-stripped gold (TSG) surfaces precoated with a self-assembled monolayer of alkanethiols terminated with positive (pyridinium), negative (carboxylic acid), and neutral [hexa(ethylene glycol)] groups is investigated. Both the topography and the rate of film thickness growth are found to be strongly dependent on the initial surface foundation layer. LBL assembly of PLL and PSS on patterned TSG surfaces produced by micro contact printing leads to structurally distinct microscale features, including pillars, ridges, and wells, whose height can be controlled with nanometer precision. Copyright 2004 American Chemical Society

  8. Superconducting composite with multilayer patterns and multiple buffer layers

    DOEpatents

    Wu, X.D.; Muenchausen, R.E.

    1993-10-12

    An article of manufacture is described including a substrate, a patterned interlayer of a material selected from the group consisting of magnesium oxide, barium-titanium oxide or barium-zirconium oxide, the patterned interlayer material overcoated with a secondary interlayer material of yttria-stabilized zirconia or magnesium-aluminum oxide, upon the surface of the substrate whereby an intermediate article with an exposed surface of both the overcoated patterned interlayer and the substrate is formed, a coating of a buffer layer selected from the group consisting of cerium oxide, yttrium oxide, curium oxide, dysprosium oxide, erbium oxide, europium oxide, iron oxide, gadolinium oxide, holmium oxide, indium oxide, lanthanum oxide, manganese oxide, lutetium oxide, neodymium oxide, praseodymium oxide, plutonium oxide, samarium oxide, terbium oxide, thallium oxide, thulium oxide, yttrium oxide and ytterbium oxide over the entire exposed surface of the intermediate article, and, a ceramic superconductor. 5 figures.

  9. Inorganic-Organic Coating via Molecular Layer Deposition Enables Long Life Sodium Metal Anode.

    PubMed

    Zhao, Yang; Goncharova, Lyudmila V; Zhang, Qian; Kaghazchi, Payam; Sun, Qian; Lushington, Andrew; Wang, Biqiong; Li, Ruying; Sun, Xueliang

    2017-09-13

    Metallic Na anode is considered as a promising alternative candidate for Na ion batteries (NIBs) and Na metal batteries (NMBs) due to its high specific capacity, and low potential. However, the unstable solid electrolyte interphase layer caused by serious corrosion and reaction in electrolyte will lead to big challenges, including dendrite growth, low Coulombic efficiency and even safety issues. In this paper, we first demonstrate the inorganic-organic coating via advanced molecular layer deposition (alucone) as a protective layer for metallic Na anode. By protecting Na anode with controllable alucone layer, the dendrites and mossy Na formation have been effectively suppressed and the lifetime has been significantly improved. Moreover, the molecular layer deposition alucone coating shows better performances than the atomic layer deposition Al 2 O 3 coating. The novel design of molecular layer deposition protected Na metal anode may bring in new opportunities to the realization of the next-generation high energy-density NIBs and NMBs.

  10. Preparation and characterization of highly water-soluble magnetic Fe3O4 nanoparticles via surface double-layered self-assembly method of sodium alpha-olefin sulfonate

    NASA Astrophysics Data System (ADS)

    Li, Honghong; Qin, Li; Feng, Ying; Hu, Lihua; Zhou, Chunhua

    2015-06-01

    A kind of double-layered self-assembly sodium alpha-olefin sulfonate (AOS) capped Fe3O4 magnetic nanoparticles (Fe3O4-AOS-MN) with highly water-solubility was prepared by a wet co-precipitation method with a pH of 4.8. The resulting Fe3O4-AOS-MN could be dispersed into water to form stable magnetic fluid without other treatments. The result of X-ray diffraction (XRD) indicated that the Fe3O4-AOS-MN maintained original crystalline structure and exhibited a diameter of about 7.5 nm. The iron oxide phase of nanoparticles determined by Raman spectroscopy is Fe3O4. Transmission electron microscopy (TEM) analysis confirmed that the Fe3O4-AOS-MN with spherical morphology were uniformly dispersed in water. FT-IR spectroscopy (FT-IR) and thermo-gravimetric analysis (TGA) verified the successful preparation of Fe3O4-AOS-MN capped with double-layered self-assembled AOS. The corresponding capacities of monolayer chemical absorption and the second-layer self-assembly absorption were respectively 4.07 and 14.71 wt% of Fe3O4-MN, which were much lower than those of other surfactants. Vibrating sample magnetometer (VSM) test result showed Fe3O4-AOS-MN possessed superparamagnetic behavior with the saturation magnetization value of about 44.45 emu/g. The blocking temperature TB of Fe3O4-AOS-MN capped with double-layered AOS is 170 K.

  11. Investigating Sodium Storage Mechanisms in Tin Anodes: A Combined Pair Distribution Function Analysis, Density Functional Theory, and Solid-State NMR Approach

    DOE PAGES

    Stratford, Joshua M.; Mayo, Martin; Allan, Phoebe K.; ...

    2017-05-04

    Here, the alloying mechanism of high-capacity tin anodes for sodium-ion batteries is investigated using a combined theoretical and experimental approach. Ab initio random structure searching (AIRSS) and high-throughput screening using a species-swap method provide insights into a range of possible sodium–tin structures. These structures are linked to experiments using both average and local structure probes in the form of operando pair distribution function analysis, X-ray diffraction, and 23Na solid-state nuclear magnetic resonance (ssNMR), along with ex situ 119Sn ssNMR. Through this approach, we propose structures for the previously unidentified crystalline and amorphous intermediates. The first electrochemical process of sodium insertionmore » into tin results in the conversion of crystalline tin into a layered structure consisting of mixed Na/Sn occupancy sites intercalated between planar hexagonal layers of Sn atoms (approximate stoichiometry NaSn 3). Following this, NaSn 2, which is predicted to be thermodynamically stable by AIRSS, forms; this contains hexagonal layers closely related to NaSn 3, but has no tin atoms between the layers. NaSn 2 is broken down into an amorphous phase of approximate composition Na 1.2Sn. Reverse Monte Carlo refinements of an ab initio molecular dynamics model of this phase show that the predominant tin connectivity is chains. Further reaction with sodium results in the formation of structures containing Sn–Sn dumbbells, which interconvert through a solid-solution mechanism. These structures are based upon Na 5–xSn 2, with increasing occupancy of one of its sodium sites commensurate with the amount of sodium added. ssNMR results indicate that the final product, Na 15Sn 4, can store additional sodium atoms as an off-stoichiometry compound (Na 15+xSn 4) in a manner similar to Li 15Si 4.« less

  12. Investigating Sodium Storage Mechanisms in Tin Anodes: A Combined Pair Distribution Function Analysis, Density Functional Theory, and Solid-State NMR Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratford, Joshua M.; Mayo, Martin; Allan, Phoebe K.

    Here, the alloying mechanism of high-capacity tin anodes for sodium-ion batteries is investigated using a combined theoretical and experimental approach. Ab initio random structure searching (AIRSS) and high-throughput screening using a species-swap method provide insights into a range of possible sodium–tin structures. These structures are linked to experiments using both average and local structure probes in the form of operando pair distribution function analysis, X-ray diffraction, and 23Na solid-state nuclear magnetic resonance (ssNMR), along with ex situ 119Sn ssNMR. Through this approach, we propose structures for the previously unidentified crystalline and amorphous intermediates. The first electrochemical process of sodium insertionmore » into tin results in the conversion of crystalline tin into a layered structure consisting of mixed Na/Sn occupancy sites intercalated between planar hexagonal layers of Sn atoms (approximate stoichiometry NaSn 3). Following this, NaSn 2, which is predicted to be thermodynamically stable by AIRSS, forms; this contains hexagonal layers closely related to NaSn 3, but has no tin atoms between the layers. NaSn 2 is broken down into an amorphous phase of approximate composition Na 1.2Sn. Reverse Monte Carlo refinements of an ab initio molecular dynamics model of this phase show that the predominant tin connectivity is chains. Further reaction with sodium results in the formation of structures containing Sn–Sn dumbbells, which interconvert through a solid-solution mechanism. These structures are based upon Na 5–xSn 2, with increasing occupancy of one of its sodium sites commensurate with the amount of sodium added. ssNMR results indicate that the final product, Na 15Sn 4, can store additional sodium atoms as an off-stoichiometry compound (Na 15+xSn 4) in a manner similar to Li 15Si 4.« less

  13. Lifetime of Sodium Beta-Alumina Membranes in Molten Sodium Hydroxide

    DTIC Science & Technology

    2008-07-01

    ABSTRACT Summary: Sodium metal can be made by electrolysis of molten sodium hydroxide in sodium beta-alumina membrane electrolysis cells... electrolysis of molten sodium hydroxide in sodium ”-alumina membrane electrolysis cells. However, there are some uncertainties about the lifetime of the...the properties of the membrane degrade upon long term contact with molten sodium hydroxide. Electrolysis cells were designed, but it proved

  14. Large area directly heated lanthanum hexaboride cathode structure having predetermined emission profile

    DOEpatents

    Leung, Ka-Ngo; Gordon, K.C.; Kippenhan, D.O.; Purgalis, P.; Moussa, D.; Williams, M.D.; Wilde, S.B.; West, M.W.

    1987-10-16

    A large area directly heated lanthanum hexaboride (LaB/sub 6/) cathode system is disclosed. The system comprises a LaB/sub 6/ cathode element generally circular in shape about a central axis. The cathode element has a head with an upper substantially planar emission surface, and a lower downwardly and an intermediate body portion which diminishes in cross-section from the head towards the base of the cathode element. A central rod is connected to the base of the cathode element and extends along the central axis. Plural upstanding spring fingers are urged against an outer peripheral contact surface of the head end to provide a mechanical and electrical connection to the cathode element. 7 figs

  15. Effect of different irrigation on smear layer removal after post space preparation.

    PubMed

    Gu, Xin-Hua; Mao, Cai-Yun; Kern, Matthias

    2009-04-01

    The purpose of this study was to evaluate the effect of different irrigating solutions on smear layer removal and dentinal tubule opening on root canal surfaces after post space preparation and to study whether additional ultrasonic irrigation has any effect on smear layer removal. Forty-eight anterior teeth were treated endodontically. After post space preparation, they were assigned to six groups: group 1, EDTA; group 2, EDTA with ultrasonic activation; group 3, sodium hypochlorite (NaOCl); group 4, NaOCl with ultrasonic activation; group 5, sodium chloride (NaCl); and group 6, NaCl with ultrasonic activation. Specimens were examined under a field-emission scanning electron microscope and scored for debris removal and dentinal tubule opening at the coronal, middle, and apical thirds of the root canal. The results showed that EDTA performed significantly better than NaCl and NaOCl in smear layer removal and dentinal tubule opening. Additional ultrasonic irrigation did not improve smear layer removal significantly.

  16. Structural, dielectric and impedance characteristics of lanthanum-modified BiFeO3-PbTiO3 electronic system

    NASA Astrophysics Data System (ADS)

    Pradhan, S. K.; Das, S. N.; Bhuyan, S.; Behera, C.; Padhee, R.; Choudhary, R. N. P.

    2016-06-01

    A lanthanum-modified BiFeO3-PbTiO3 binary electronic system has been fabricated by a high-temperature solid-state reaction technique. The structural, dielectric and electrical properties of a single phase of multicomponent system are investigated to understand its ferroelectrics as well as relaxation behavior. The X-ray diffraction structural analysis substantiates the formation of a new stable phase of tetragonal system (with a large c/a ratio 1.23) without any trace of impurity phase. The electrical behavior of the processed material is characterized through impedance spectroscopy in a wide frequency range (1 kHz-1 MHz) over a temperature range of 25-500 °C. It is observed that the substitution of lanthanum-modified PbTiO3 (PT) into BiFeO3 (BFO) reveals enviable multiferroic property which is evident from the ME coefficient measurement and ferroelectric loop. It also reduces the electrical leakage current or tangent loss. The ac conductivity of the solid solution increases with increase in frequency in the low-temperature region. The impedance spectroscopy of the synthesized material reflects the dielectric relaxation of non-Debye type.

  17. A microporous lanthanum metal-organic framework as a bi-functional chemosensor for the detection of picric acid and Fe(3+) ions.

    PubMed

    Zhang, Chuanqi; Yan, Yan; Pan, Qinhe; Sun, Libo; He, Hongming; Liu, Yunling; Liang, Zhiqiang; Li, Jiyang

    2015-08-07

    A microporous lanthanum metal-organic framework [La(TPT)(DMSO)2]·H2O (La-MOF ()), has been synthesized using a rigid unsymmetrical tricarboxylate ligand of p-terphenyl-3,4'',5-tricarboxylic acid (H3TPT). The structure of is constructed by bi-nuclear lanthanum clusters and fully deprotonated TPT(3-) ligands, which can be simplified into a 3,6-connected flu-3,6-C2/c topology with a point symbol of (4(4)·6)2(4·6(2)·8(7)·10(2)). The π-electron rich ligand H3TPT enables to have blue luminescence when excited at 342 nm at ambient temperature. Meanwhile, exhibits the selective detection of picric acid (PA) and Fe(3+) ions in ethanol solution over other nitroaromatic compounds and metal ions. The high quenching efficiency and selectivity of makes it a potential bi-functional chemosensor for both PA and Fe(3+) ions.

  18. The Perceptual Characteristics of Sodium Chloride to Sodium-Depleted Rats

    PubMed Central

    2017-01-01

    Three experiments assessed potential changes in the rat’s perception of sodium chloride (NaCl) during a state of sodium appetite. In Experiment 1, sodium-sufficient rats licking a range of NaCl concentrations (0.028–0.89M) in 15s trials showed an inverted U-shaped concentration response function peaking at 0.281M. Depleted rats (furosemide) showed an identical function, merely elevated, suggesting altered qualitative or hedonic perception but no change in perceived intensity. In Experiment 2, sodium-depleted rats were tested with NaCl, sodium gluconate, and potassium chloride (KCl; 0.028–0.89M) similar to Experiment 1. KCl was licked at the same rate as water except for a slight elevation at 0.158; sodium gluconate and NaCl were treated similarly, but rats showed more licking for hypertonic sodium gluconate than hypertonic NaCl. Sodium-depleted rats were also tested with NaCl mixed in amiloride (10–300 μM). Amiloride reduced licking but did not alter the shape of the concentration–response function. Collectively, these results suggest that transduction of sodium by epithelial sodium channels (which are blocked by amiloride and are more dominant in sodium gluconate than NaCl transduction) is crucial for the perception of sodium during physiological sodium depletion. In Experiment 3, sodium-deplete rats were tested with NaCl as in Experiment 1 but after taste aversion conditioning to 0.3M NaCl or sucrose. Rats conditioned to avoid NaCl but not sucrose failed to express a sodium appetite, strongly suggesting that NaCl does not undergo a change in taste quality during sodium appetite—rats show no confusion between sucrose and NaCl in this paradigm. PMID:27660150

  19. The Perceptual Characteristics of Sodium Chloride to Sodium-Depleted Rats.

    PubMed

    St John, Steven J

    2017-02-01

    Three experiments assessed potential changes in the rat's perception of sodium chloride (NaCl) during a state of sodium appetite. In Experiment 1, sodium-sufficient rats licking a range of NaCl concentrations (0.028-0.89M) in 15s trials showed an inverted U-shaped concentration response function peaking at 0.281M. Depleted rats (furosemide) showed an identical function, merely elevated, suggesting altered qualitative or hedonic perception but no change in perceived intensity. In Experiment 2, sodium-depleted rats were tested with NaCl, sodium gluconate, and potassium chloride (KCl; 0.028-0.89M) similar to Experiment 1. KCl was licked at the same rate as water except for a slight elevation at 0.158; sodium gluconate and NaCl were treated similarly, but rats showed more licking for hypertonic sodium gluconate than hypertonic NaCl. Sodium-depleted rats were also tested with NaCl mixed in amiloride (10-300 μM). Amiloride reduced licking but did not alter the shape of the concentration-response function. Collectively, these results suggest that transduction of sodium by epithelial sodium channels (which are blocked by amiloride and are more dominant in sodium gluconate than NaCl transduction) is crucial for the perception of sodium during physiological sodium depletion. In Experiment 3, sodium-deplete rats were tested with NaCl as in Experiment 1 but after taste aversion conditioning to 0.3M NaCl or sucrose. Rats conditioned to avoid NaCl but not sucrose failed to express a sodium appetite, strongly suggesting that NaCl does not undergo a change in taste quality during sodium appetite-rats show no confusion between sucrose and NaCl in this paradigm. Published by Oxford University Press on behalf of US Government 2016.

  20. Insights into the structural effects of layered cathode materials for high voltage sodium-ion batteries

    DOE PAGES

    Xu, Gui -Liang; Amine, Rachid; Xu, Yue -Feng; ...

    2017-06-08

    Cathode materials are critical to the energy density, power density and safety of sodium-ion batteries (SIBs). Herein, we performed a comprehensive study to elucidate and exemplify the interplay mechanism between phase structures, interfacial microstrain and electrochemical properties of layered-structured Na xNi 1/3Co 1/3Mn 1/3O 2 cathode materials for high voltage SIBs. The electrochemical test results showed that Na xNi 1/3Co 1/3Mn 1/3O 2 with an intergrowth P2/O3/O1 structure demonstrates better electrochemical performance and better thermal stability than Na xNi 1/3Co 1/3Mn 1/3O 2 with P2/O3 binary-phase integration and Na xNi 1/3Co 1/3Mn 1/3O 2 where only the P phase ismore » dominant. This result is caused by the distinct interfacial microstrain development during the synthesis and cycling of the P2/O3/O1 phase. In operando high energy X-ray diffraction further revealed that the intergrowth P2/O1/O3 cathode can inhibit the irreversible P2–O2 phase transformation and simultaneously improve the structure stability of the O3 and O1 phases during cycling. Here, we believe that interfacial microstrain can serve as an indispensable bridge to guide future design and synthesis of high performance SIB cathode materials and other high energy battery materials.« less

  1. 21 CFR 522.2444b - Sodium thiopental, sodium pentobarbital for injection.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium thiopental, sodium pentobarbital for... FORM NEW ANIMAL DRUGS § 522.2444b Sodium thiopental, sodium pentobarbital for injection. (a) Specifications. Each gram of the drug contains 750 milligrams of sodium thiopental and 250 milligrams of sodium...

  2. 21 CFR 522.2444b - Sodium thiopental, sodium pentobarbital for injection.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium thiopental, sodium pentobarbital for... FORM NEW ANIMAL DRUGS § 522.2444b Sodium thiopental, sodium pentobarbital for injection. (a) Specifications. Each gram of the drug contains 750 milligrams of sodium thiopental and 250 milligrams of sodium...

  3. Efficacy of four different irrigation techniques combined with 60 °C 3% sodium hypochlorite and 17% EDTA in smear layer removal.

    PubMed

    Guo, Xiangjun; Miao, Hui; Li, Lei; Zhang, Shasha; Zhou, Dongyan; Lu, Yan; Wu, Ligeng

    2014-09-08

    Efforts to improve the efficacy of smear layer removal by applying irrigant activation at the final irrigation or by elevating the temperature of the irrigant have been reported. However, the combination of such activation protocols with 60 °C 3% sodium hypochlorite (NaOCl) has seldom been mentioned. The aim of this study was to compare the efficacy in smear layer removal of four different irrigation techniques combined with 60 °C 3% NaOCl and 17% EDTA. Fifty single-rooted teeth were randomly divided into five groups (n = 10) according to the irrigant agitation protocols used during chemomechanical preparation(Dentsply Maillefer, Ballaigues, Switzerland): a side-vented needle group, a ultrasonic irrigation (UI) group, a NaviTip FX group, an EndoActivator group, and a control group (no agitation). After each instrumentation, the root canals were irrigated with 1 mL of 3% NaOCl at 60 °C for 1 minute, and after the whole instrumentation, the root canals were rinsed with 1 mL of 17% EDTA for 1 minute. Both NaOCl and EDTA were activated with one of the five irrigation protocols. The efficacy of smear layer removal was scored at the apical, middle and coronal thirds. The Data were statistically analyzed using SAS version 9.2 for Windows (rank sum test for a randomised block design and ANOVA). No significant differences among the NaviTip FX group, EndoActivator group and control groups, and each of these groups showed a lower score than that of UI group (P < 0.05). Within each group, all three thirds were ranked in the following order: coronal > middle > apical (P < 0.05). In the coronal third, the NaviTip FX group was better than UI group. In the middle and apical third, the differences were not significant among any of the groups. Even without any activation, the combination of 60 °C 3% NaOCl and 17% EDTA could remove the smear layer effectively, similar to NaviTip FX or EndoActivator, and these three protocols were more effective than UI. However, regardless of

  4. Superconductivity of lanthanum revisited: enhanced critical temperature in the clean limit.

    PubMed

    Löptien, P; Zhou, L; Khajetoorians, A A; Wiebe, J; Wiesendanger, R

    2014-10-22

    The thickness dependence of the superconducting energy gap ΔLa of double hexagonally close packed (dhcp) lanthanum islands grown on W(110) is studied by scanning tunneling spectroscopy, from the bulk to the thin-film limit. Superconductivity is suppressed by the boundary conditions for the superconducting wavefunction on the surface and W/La interface, leading to a linear decrease of the critical temperature Tc as a function of the inverse film thickness. For the thick, bulk-like films, ΔLa and Tc are 40% larger compared to the literature values of dhcp La as measured by other techniques. This finding is reconciled by examining the effects of surface contamination as probed by modifications of the surface state, suggesting that the large Tc originates in the superior purity of the samples investigated here.

  5. Superconductivity of lanthanum revisited: enhanced critical temperature in the clean limit

    NASA Astrophysics Data System (ADS)

    Löptien, P.; Zhou, L.; Khajetoorians, A. A.; Wiebe, J.; Wiesendanger, R.

    2014-10-01

    The thickness dependence of the superconducting energy gap ΔLa of double hexagonally close packed (dhcp) lanthanum islands grown on W(110) is studied by scanning tunneling spectroscopy, from the bulk to the thin-film limit. Superconductivity is suppressed by the boundary conditions for the superconducting wavefunction on the surface and W/La interface, leading to a linear decrease of the critical temperature Tc as a function of the inverse film thickness. For the thick, bulk-like films, ΔLa and Tc are 40% larger compared to the literature values of dhcp La as measured by other techniques. This finding is reconciled by examining the effects of surface contamination as probed by modifications of the surface state, suggesting that the large Tc originates in the superior purity of the samples investigated here.

  6. Formulation and evaluation of bilayer tablets of metoclopramide hydrochloride and diclofenac sodium.

    PubMed

    Gattani, Surendra G; Khabiya, Sohan S; Amrutkar, Jitendra R; Kushare, Sachin S

    2012-01-01

    The main objective of the present research work was to develop a bilayer tablet of metoclopramide hydrochloride (MTH) and diclofenac sodium (DS) in separate layers to avoid incompatibility and thus to maximize the efficacy of both drugs in combination for the effective treatment of migraine headaches. MTH and DS were formulated as immediate and sustained release layers respectively. In vitro dissolution kinetic studies of an optimized (D10) batch of DS in both sustained release layer and bilayer tablet forms show good linearity of regression coefficient 0.9773 (first order equation). The results reveal that an optimized immediate release layer (M5) of MTH and a sustained release layer (D10) of DS might be suitable for the treatment of migraine by sequential release of the two drugs in a bilayer tablet. Migraine is a type of recurring headache of moderate to severe intensity associated with gastrointestinal, neurological, and autonomic symptoms. In migraine, a combination of pretreatment with antiemetics is required for symptomatic treatment, when nausea and vomiting are severe. In our present research, we have selected the metoclopramide hydrochloride (MTH) active ingredient for study because it has an antiemetic effect and is a prokinetic agent. MTH is more effective to counteract gastric stasis associated with migraine, and it enhances the rate of absorption of non-steroidal anti-inflammatory drugs (NSAIDs). In the present investigation we combine MTH and a second active ingredient, diclofenac sodium, as a formulated bilayer tablet to prevent degradation of MTH.

  7. Laser transmitter for space-based sodium lidar instrument

    NASA Astrophysics Data System (ADS)

    Yu, Anthony W.; Krainak, Michael A.; Janches, Diego; Konoplev, Oleg

    2016-05-01

    We are currently developing a laser transmitter to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of a Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our laser transmitter development effort with emphasis on wavelength tuning and power scaling of a diode-pumped Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that could produce multi-watt 589 nm wavelength output. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from past and current space flight missions.

  8. Fabrication of oxide layer on zirconium by micro-arc oxidation: Structural and antimicrobial characteristics.

    PubMed

    Fidan, S; Muhaffel, F; Riool, M; Cempura, G; de Boer, L; Zaat, S A J; Filemonowicz, A Czyrska-; Cimenoglu, H

    2017-02-01

    The aim of this study was to cover the surfaces of zirconium (Zr) with an antimicrobial layer for biomedical applications. For this purpose, the micro-arc oxidation (MAO) process was employed in a sodium silicate and sodium hydroxide containing base electrolyte with and without addition of silver acetate (AgC 2 H 3 O 2 ). In general, synthesized MAO layers were composed of zirconium oxide (ZrO 2 ) and zircon (ZrSiO 4 ). Addition of AgC 2 H 3 O 2 into the base electrolyte caused homogenous precipitation of silver-containing particles in the MAO layer, which exhibited excellent antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) as compared to the untreated and MAO-treated Zr. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. O3-type layered transition metal oxide Na(NiCoFeTi) 1/4O 2 as a high rate and long cycle life cathode material for sodium ion batteries

    DOE PAGES

    Yue, Ji -Li; Yang, Xiao -Qing; Zhou, Yong -Ning; ...

    2015-10-09

    High rate capability and long cycle life are challenging goals for the development of room temperature sodium-ion batteries. Here we report a new single phase quaternary O3-type layer-structured transition metal oxide Na(NiCoFeTi) 1/4O 2 synthesized by a simple solid-state reaction as a new cathode material for sodium-ion batteries. It can deliver a reversible capacity of 90.6 mA h g –1 at a rate as high as 20C. At 5C, 75.0% of the initial specific capacity can be retained after 400 cycles with a capacity-decay rate of 0.07% per cycle, demonstrating a superior long-term cyclability at high current density. X-ray diffractionmore » and absorption characterization revealed reversible phase transformations and electronic structural changes during the Na + deintercalation/intercalation process. Ni, Co and Fe ions contribute to charge compensation during charge and discharge. Although Ti ions do not contribute to the charge transfer, they play a very important role in stabilizing the structure during charge and discharge by suppressing the Fe migration. Additionally, Ti substitution can also smooth the charge–discharge plateaus effectively, which provides a potential advantage for the commercialization of this material for room temperature sodium-ion batteries.« less

  10. Two-Fold Anisotropy Governs Morphological Evolution and Stress Generation in Sodiated Black Phosphorus for Sodium Ion Batteries.

    PubMed

    Chen, Tianwu; Zhao, Peng; Guo, Xu; Zhang, Sulin

    2017-04-12

    Phosphorus represents a promising anode material for sodium ion batteries owing to its extremely high theoretical capacity. Recent in situ transmission electron microscopy studies evidenced anisotropic swelling in sodiated black phosphorus, which may find an origin from the two intrinsic anisotropic properties inherent to the layered structure of black phosphorus: sodium diffusional directionality and insertion strain anisotropy. To understand the morphological evolution and stress generation in sodiated black phosphorus, we develop a chemo-mechanical model by incorporating the intrinsic anisotropic properties into the large elasto-plastic deformation. Our modeling results reveal that the apparent morphological evolution in sodiated black phosphorus is critically controlled by the coupled effect of the two intrinsic anisotropic properties. In particular, sodium diffusional directionality generates sharp interphases along the [010] and [001] directions, which constrain anisotropic development of the insertion strain. The coupled effect renders distinctive stress-generation and fracture mechanisms when sodiation starts from different crystal facets. In addition to providing a powerful modeling framework for sodiation and lithiation of layered structures, our findings shed significant light on the sodiation-induced chemo-mechanical degradation of black phosphorus as a promising anode for the next-generation sodium ion batteries.

  11. Carbon coated anatase TiO2 mesocrystals enabling ultrastable and robust sodium storage

    NASA Astrophysics Data System (ADS)

    Zhang, Weifeng; Lan, Tongbin; Ding, Tianli; Wu, Nae-Lih; Wei, Mingdeng

    2017-08-01

    Nanoporous anatase TiO2 mesocrystals with tunable architectures and crystalline phases were successfully fabricated in the presence of the butyl oleate and oleylamine. Especially, the introduced surfactants served as a carbon source, bring a uniform carbon layer (about 2-8 nm) for heightening the electronic conductivity. The carbon coated TiO2 mesocrystals assembled from crystalline tiny subunits have more space sites for sodium-ion storage. When the material was applied as an electrode material in rechargeable sodium-ion batteries, it exhibited a superior capacity of about 90 mA h g-1 at 20 C (1 C = 168 mA g-1) and a highly reversible capacity for 5000 cycles, which is the longest cycle life reported for sodium storage in TiO2 electrodes.

  12. Simultaneous removal of ammonium and phosphate by alkaline-activated and lanthanum-impregnated zeolite.

    PubMed

    He, Yinhai; Lin, Hai; Dong, Yingbo; Liu, Quanli; Wang, Liang

    2016-12-01

    Simultaneous ammonium and phosphate removal characteristics and mechanism, as well as the major influencing factors, such as pH, temperature and co-existing ions, onto NaOH-activated and lanthanum-impregnated zeolite (NLZ) were investigated. The phosphate adsorption increases from 0.2 mg g -1 for natural zeolite up to 8.96 mg g -1 for NLZ, while only a slight decrease on the ammonium adsorption capacity from 23.9 mg g -1 for NaOH-activated zeolite to 21.2 mg g -1 for NLZ was observed. The ammonium and phosphate adsorption showed little pH dependence in the range from pH 3 to 7, while it decreased sharply with the pH increased above pH 7. Adsorption of ammonium and phosphate could be well described by the pseudo-second-order model and the process was mainly governed by intra-particle diffusion. The Langmuir and Freundlich model can be acceptably applied to fit the experimental data, which suggested that adsorption was caused by both the monolayer and homogeneous coverage at specific and equal affinity sites available NLZ. The underlying mechanism for the specific adsorption of phosphate by NLZ was revealed with the aid of SEM-EDS, XPS, and FTIR analysis, and the formation of (LaO)(OH)PO 2 was verified to be the dominant pathway for selective phosphate adsorption by lanthanum-impregnated zeolite. While the removal mechanism of ammonium could be well interpreted by SEM-EDS, FTIR and ICP analysis, and ion-exchange was expected to be the main removal process for ammonium. The results indicate that NLZ could efficiently and simultaneously remove low concentration of ammonium and phosphate from contaminated waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Oxide film on metal substrate reduced to form metal-oxide-metal layer structure

    NASA Technical Reports Server (NTRS)

    Youngdahl, C. A.

    1967-01-01

    Electrically conductive layer of zirconium on a zirconium-oxide film residing on a zirconium substrate is formed by reducing the oxide in a sodium-calcium solution. The reduced metal remains on the oxide surface as an adherent layer and seems to form a barrier that inhibits further reaction.

  14. Hollow nanoparticle cathode materials for sodium electrochemical cells and batteries

    DOEpatents

    Shevchenko, Elena; Rajh, Tijana; Johnson, Christopher S.; Koo, Bonil

    2016-07-12

    A cathode comprises, in its discharged state, a layer of hollow .gamma.-Fe.sub.2O.sub.3 nanoparticles disposed between two layers of carbon nanotubes, and preferably including a metallic current collector in contact with one of the layers of carbon nanotubes. Individual particles of the hollow .gamma.-Fe.sub.2O.sub.3 nanoparticles comprise a crystalline shell of .gamma.-Fe.sub.2O.sub.3 including cation vacancies within the crystal structure of the shell (i.e., iron vacancies of anywhere between 3% to 90%, and preferably 44 to 77% of available octahedral iron sites). Sodium ions are intercalated within at least some of the cation vacancies within the crystalline shell of the hollow .gamma.-Fe.sub.2O.sub.3 nanoparticles.

  15. Effect of Lanthanum-Strontium Cathode Current-Collecting Layer on the Performance of Anode Supported Type Planar Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Park, Sun-Young; Ji, Ho-Il; Kim, Hae-Ryoung; Yoon, Kyung Joong; Son, Ji-Won; Lee, Hae-Weon; Lee, Jong-Ho

    2013-07-01

    We applied screen-printed (La,Sr)CoO3 as a current-collecting layer of planar type unit-cell for lower temperature operation of SOFCs. In this study the effects of the cathode current-collecting layer on the performance of unit cell and symmetric half cell were investigated via AC and DC polarization experiments. According to our investigation, appropriately controlled current collecting layer was very effective to enhance the unit cell performance by reducing not only the ohmic resistance but also the polarization losses of SOFC cathode.

  16. Ultrafast and Highly Reversible Sodium Storage in Zinc-Antimony Intermetallic Nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, Anmin; Gan, Li-yong; Cheng, Yingchun

    2015-12-17

    The progress on sodium-ion battery technology faces many grand challenges, one of which is the considerably lower rate of sodium insertion/deinsertion in electrode materials due to the larger size of sodium (Na) ions and complicated redox reactions compared to the lithium-ion systems. Here, it is demonstrated that sodium ions can be reversibly stored in Zn-Sb intermetallic nanowires at speeds that can exceed 295 nm s -1. Remarkably, these values are one to three orders of magnitude higher than the sodiation rate of other nanowires electrochemically tested with in situ transmission electron micro­scopy. It is found that the nanowires display aboutmore » 161% volume expansion after the first sodiation and then cycle with an 83% reversible volume expansion. Despite their massive expansion, the nanowires can be cycled without any cracking or facture during the ultrafast sodiation/desodiation process. Additionally, most of the phases involved in the sodiation/desodiation process possess high electrical conductivity. More specifically, the NaZnSb exhibits a layered structure, which provides channels for fast Na + diffusion. This observation indicates that Zn-Sb intermetallic nanomaterials offer great promise as high rate and good cycling stability anodic materials for the next generation of sodium-ion batteries.« less

  17. Direct observation of local magnetic properties in strain engineered lanthanum cobaltate thin films

    NASA Astrophysics Data System (ADS)

    Park, S.; Wu, Weida; Freeland, J. W.; Ma, J. X.; Shi, J.

    2009-03-01

    Strain engineered thin film devices with emergent properties have significant impacts on both technical application and material science. We studied strain-induced modification of magnetic properties (Co spin state) in epitaxially grown lanthanum cobaltate (LaCoO3) thin films with a variable temperature magnetic force microscopy (VT-MFM). The real space observation confirms long range magnetic ordering on a tensile-strained film and non-magnetic low-spin configuration on a low-strained film at low temperature. Detailed study of local magnetic properties of these films under various external magnetic fields will be discussed. Our results also demonstrate that VT-MFM is a very sensitive tool to detect the nanoscale strain induced magnetic defects.

  18. Boundary layer separation method for recycling of sodium ions from industrial wastewater.

    PubMed

    Petho, Dóra; Horváth, Géza; Liszi, János; Tóth, Imre; Paor, Dávid

    2010-12-01

    The most effective technological solution for waste treatment is recycling. We have developed a new method for the treatment of industrial wastewaters and have called it the boundary layer separation method (BLSM). We have used the phenomenon that, on the surface of an electrically charged electrode, ions can be enriched in the boundary layer, as compared with the inside of the phase. The essence of the method is that, with an appropriately chosen velocity, the boundary layer can be removed from the wastewater, and the boundary layer, which is rich in ions, can be recycled. The BLSM can be executed as a cyclic procedure. The capacitance of the boundary layer was examined. The best mass transport can be achieved with the use of 1000 and 1200 mV polarization potentials in the examined system, with its value being 1200 mg/m2 per cycle. The necessary operation times were determined by the examination of the velocity of the electrochemical processes. When using 1000 mV polarization potential, the necessary adsorption time is at least 25 seconds, and the desorption time at least 300 seconds. The advantage of the procedure is that it does not use dangerous chemicals, only inert electrodes. The drawback is that it is not selective to ions, the achievable separation in one step is low, and the hydrogen that emerges during the electrolysis might be dangerous.

  19. Low sodium diet (image)

    MedlinePlus

    ... for you. Look for these words on labels: low-sodium, sodium-free, no salt added, sodium-reduced, ... for you. Look for these words on labels: low-sodium, sodium-free, no salt added, sodium-reduced, ...

  20. Polarization study on doped lanthanum gallate electrolyte using impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Gong, Wenquan; Gopalan, Srikanth; Pal, Uday B.

    2004-06-01

    Alternating current complex impedance spectroscopy studies were conducted on symmetrical cells of the type [gas, electrode/La1-x Sr x Ga1-y Mg y O3 (LSGM) electrolyte/electrode, gas]. The electrode materials were slurry-coated on both sides of the LSGM electrolyte support. The electrodes selected for this investigation are candidate materials for solid oxide fuel cell (SOFC) electrodes. Cathode materials include La1-x Sr x MnO3 (LSM), La1-x Sr x Co y Fe1-y O3 (LSCF), a two-phase particulate composite consisting of LSM and doped-lanthanum gallate (LSGM), and LSCF + LSGM. Pt metal electrodes were also used for the purpose of comparison. Anode material investigated was the Ni + Ce0.85Gd0.15O2 composite. The study revealed important details pertaining to the charge-transfer reactions that occur in such electrodes. The information obtained can be used to design electrodes for intermediate temperature SOFCs based on LSGM electrolytes.

  1. Accumulation, elimination and neuro-oxidative damage under lanthanum exposure in glass eels (Anguilla anguilla).

    PubMed

    Figueiredo, Cátia; Grilo, Tiago F; Lopes, Clara; Brito, Pedro; Diniz, Mário; Caetano, Miguel; Rosa, Rui; Raimundo, Joana

    2018-05-07

    Rare earth elements (REEs) comprise elements from lanthanum to lutetium that together with yttrium and scandium are emergent contaminants of critical importance for numerous groundbreaking environmental technologies. Transfer to aquatic ecosystems is expected to increase, however, little information is known about their potential impacts in marine biota. Considering the endangered conservation status of the European eel (Anguilla anguilla) and the vulnerability of early fish life stages to contaminants, we exposed glass eels, through water, to an environmentally relevant concentration (120 ng.L - 1 ) of lanthanum (La) for 7 days (plus 7 days of depuration). The aim was to study the accumulation and elimination of La in eel's body and subsequent quantification of acetylcholinesterase (AchE), lipid peroxidation and antioxidant enzymatic machinery. Accumulation peaked after 72 h-exposure to La, decreasing afterwards, even in continuous exposure. Accumulation was higher in the viscera, followed by the skinless body and ultimately in the head, possibly as a protective mechanism to cope with La neurotoxicity. A significant increase in AChE activity was observed in La-exposed glass eels, suggesting that La 3+ may inhibit the binding of acetylcholine. A depression in lipid peroxidation was registered under La exposure, possibly indicating that La 3+ may play physiological activities and functions as a free radical scavenger. Catalase activity was significantly inhibited in La-exposed glass eels after 72 h, indicating that the availability of La may induce physiological impairment. The quantification of Glutathione S-Transferase activity revealed no differences between control and La-exposed organisms. Further investigation is needed towards understanding the biological effects of REEs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Electrochemical Investigation of DA and UA on Carboxylated Graphene Oxide/lanthanum Electrodes with Sundry Content of Ctab

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Zhu, L.; Qian, W.; Chen, H.; Feng, C.; Han, S.; Lin, H.; Ye, F. Y.

    Glassy carbon electrodes (GCE) were modified by carboxylated graphene oxide/lanthanum with various concentrations of hexadecyl trimethyl ammonium bromide (CTAB), and the treated electrodes, called CTAB/GO-COOLa/GCE, were prepared for the detection of uric acid (UA) and dopamine (DA) by using the differential pulse voltammetry (DPV) and the cyclic voltammetry (CV). The results show that the modified electrode’s electrocatalytic activity could be affected by several factors in the examination, they are the pH value of the system, the main content of CTAB, various concentrations and rates of scan. With a combination of carboxylated graphene oxide/lanthanum and CTAB, the resulted CTAB/GO-COOLa/GCE sensors showed preeminent selectivity and obvious catalytic property toward the electro-oxidation of UA and DA. In optimized conditions, the response of the CTAB/GO-COOLa/GCE electrode for DA was linear in the region of 0.03-500.0μM with detection limits of 0.036μM (S/N=3). Two linear response ranges for the determination UA were obtained from ranges of 1 to 200μM and 200 to 1300μM with a detection limit of 0.42μM (S/N=3). Moreover, the refined electrode was used in the inspection of DA and UA in real samples of serum and urine successfully, displaying its potential application of real samples involved in electroanalysis.

  3. Chemically Bonded Phosphorus/Graphene Hybrid as a High Performance Anode for Sodium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Jiangxuan; Yu, Zhaoxin; Gordin, Mikhail

    2014-11-12

    Room temperature sodium-ion batteries are of great interest for high-energy-density energy storage systems because of low-cost, natural abundance of sodium. Here, we report a novel graphene nanosheets-wrapped phosphorus composite as an anode for high performance sodium-ion batteries though a facile ball-milling of red phosphorus and graphene nanosheets. Not only can the graphene nanosheets significantly improve the electrical conductivity, but they also serve as a buffer layer to accommodate the large volume change of phosphorus in the charge-discharge process. As a result, the graphene wrapped phosphorus composite anode delivers a high reversible capacity of 2077 mAh/g with excellent cycling stability (1700more » mAh/g after 60 cycles) and high Coulombic efficiency (>98%). This simple synthesis approach and unique nanostructure can potentially extend to other electrode materials with unstable solid electrolyte interphases in sodium-ion batteries.« less

  4. Urinary Sodium and Potassium Excretion and Dietary Sources of Sodium in Maputo, Mozambique.

    PubMed

    Queiroz, Ana; Damasceno, Albertino; Jessen, Neusa; Novela, Célia; Moreira, Pedro; Lunet, Nuno; Padrão, Patrícia

    2017-08-03

    This study aimed to evaluate the urinary excretion of sodium and potassium, and to estimate the main food sources of sodium in Maputo dwellers. A cross-sectional evaluation of a sample of 100 hospital workers was conducted between October 2012 and May 2013. Sodium and potassium urinary excretion was assessed in a 24-h urine sample; creatinine excretion was used to exclude unlikely urine values. Food intake in the same period of urine collection was assessed using a 24-h dietary recall. The Food Processor Plus ® was used to estimate sodium intake corresponding to naturally occurring sodium and sodium added to processed foods (non-discretionary sodium). Salt added during culinary preparations (discretionary sodium) was computed as the difference between urinary sodium excretion and non-discretionary sodium. The mean (standard deviation) urinary sodium excretion was 4220 (1830) mg/day, and 92% of the participants were above the World Health Organization (WHO) recommendations. Discretionary sodium contributed 60.1% of total dietary sodium intake, followed by sodium from processed foods (29.0%) and naturally occurring sodium (10.9%). The mean (standard deviation) urinary potassium excretion was 1909 (778) mg/day, and 96% of the participants were below the WHO potassium intake recommendation. The mean (standard deviation) sodium to potassium molar ratio was 4.2 (2.4). Interventions to decrease sodium and increase potassium intake are needed in Mozambique.

  5. Urinary Sodium and Potassium Excretion and Dietary Sources of Sodium in Maputo, Mozambique

    PubMed Central

    Queiroz, Ana; Damasceno, Albertino; Jessen, Neusa; Novela, Célia; Moreira, Pedro; Lunet, Nuno

    2017-01-01

    This study aimed to evaluate the urinary excretion of sodium and potassium, and to estimate the main food sources of sodium in Maputo dwellers. A cross-sectional evaluation of a sample of 100 hospital workers was conducted between October 2012 and May 2013. Sodium and potassium urinary excretion was assessed in a 24-h urine sample; creatinine excretion was used to exclude unlikely urine values. Food intake in the same period of urine collection was assessed using a 24-h dietary recall. The Food Processor Plus® was used to estimate sodium intake corresponding to naturally occurring sodium and sodium added to processed foods (non-discretionary sodium). Salt added during culinary preparations (discretionary sodium) was computed as the difference between urinary sodium excretion and non-discretionary sodium. The mean (standard deviation) urinary sodium excretion was 4220 (1830) mg/day, and 92% of the participants were above the World Health Organization (WHO) recommendations. Discretionary sodium contributed 60.1% of total dietary sodium intake, followed by sodium from processed foods (29.0%) and naturally occurring sodium (10.9%). The mean (standard deviation) urinary potassium excretion was 1909 (778) mg/day, and 96% of the participants were below the WHO potassium intake recommendation. The mean (standard deviation) sodium to potassium molar ratio was 4.2 (2.4). Interventions to decrease sodium and increase potassium intake are needed in Mozambique. PMID:28771193

  6. Effect of crystal size distribution on thermoelectric performance for Lanthanum-doped strontium titanate bulk material

    NASA Astrophysics Data System (ADS)

    Zhang, Boyu; Wang, Jun; Yaer, Xinba; Huo, Zhenzhen; Wu, Yin; Li, Yan; Miao, Lei; Liu, Chengyan; Zou, Tao; Ma, Wen

    2015-07-01

    Effect of crystal size distribution on thermoelectric performance of Lanthanum-doped strontium titanate (La-SrTiO3) ceramics are investigated in this study. Thermoelectric performance measurement, coupled with microstructure studies, shows that the electrical conductivity strongly depends on the crystal size, potential barrier on the grain boundary and porosity. Meantime, because the average potential barriers height are increased along with the reduction of crystal size, the Seebeck coefficients are increased by energy filtering effect at the large number of grain boundaries. As a result, by controlling of crystal size distribution, ZT value of La-SrTiO3 is improved.

  7. Large area directly heated lanthanum hexaboride cathode structure having predetermined emission profile

    DOEpatents

    Leung, Ka-Ngo; Gordon, Keith C.; Kippenham, Dean O.; Purgalis, Peter; Moussa, David; Williams, Malcom D.; Wilde, Stephen B.; West, Mark W.

    1989-01-01

    A large area directly heated lanthanum hexaboride (LaB.sub.6) cathode system (10) is disclosed. The system comprises a LaB.sub.6 cathode element (11) generally circular in shape about a central axis. The cathode element (11) has a head (21) with an upper substantially planar emission surface (23), and a lower downwardly and an intermediate body portion (26) which diminishes in cross-section from the head (21) towards the base (22) of the cathode element (11). A central rod (14) is connected to the base (22) of the cathode element (11) and extends along the central axis. Plural upstanding spring fingers (37) are urged against an outer peripheral contact surface (24) of the head end (21) to provide a mechanical and electrical connection to the cathode element (11).

  8. Dissolution and ionization of sodium superoxide in sodium-oxygen batteries.

    PubMed

    Kim, Jinsoo; Park, Hyeokjun; Lee, Byungju; Seong, Won Mo; Lim, Hee-Dae; Bae, Youngjoon; Kim, Haegyeom; Kim, Won Keun; Ryu, Kyoung Han; Kang, Kisuk

    2016-02-19

    With the demand for high-energy-storage devices, the rechargeable metal-oxygen battery has attracted attention recently. Sodium-oxygen batteries have been regarded as the most promising candidates because of their lower-charge overpotential compared with that of lithium-oxygen system. However, conflicting observations with different discharge products have inhibited the understanding of precise reactions in the battery. Here we demonstrate that the competition between the electrochemical and chemical reactions in sodium-oxygen batteries leads to the dissolution and ionization of sodium superoxide, liberating superoxide anion and triggering the formation of sodium peroxide dihydrate (Na2O2·2H2O). On the formation of Na2O2·2H2O, the charge overpotential of sodium-oxygen cells significantly increases. This verification addresses the origin of conflicting discharge products and overpotentials observed in sodium-oxygen systems. Our proposed model provides guidelines to help direct the reactions in sodium-oxygen batteries to achieve high efficiency and rechargeability.

  9. Effect of dead layer and strain on diffuse phase transition of PLZT relaxor thin films.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, S.; Narayanan, M.; Ma, B.

    2011-02-01

    Bulk relaxor ferroelectrics exhibit excellent permittivity compared to their thin film counterpart, although both show diffuse phase transition (DPT) behavior unlike normal ferroelectrics. To better understand the effect of dead layer and strain on the observed anomaly in the dielectric properties, we have developed relaxor PLZT (lead lanthanum zirconate titanate) thin films with different thicknesses and measured their dielectric properties as a function of temperature and frequency. The effect of dead layer on thin film permittivity has been found to be independent of temperature and frequency, and is governed by the Schottky barrier between the platinum electrode and PLZT. Themore » total strain (thermal and intrinsic) in the film majorly determines the broadening, dielectric peak and temperature shift in the relaxor ferroelectric. The Curie-Weiss type law for relaxors has been further modified to incorporate these two effects to accurately predict the DPT behavior of thin film and bulk relaxor ferroelectrics. The dielectric behavior of thin film is predicted by using the bulk dielectric data from literature in the proposed equation, which agree well with the measured dielectric behavior.« less

  10. The critical role of sodium content on structure, morphology and electrochemical performance of layered P2-type NaxNi0.167Co0.167Mn0.67O2 for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Bao, Shuo; Luo, Shaohua; Wang, Zhiyuan; Wang, Qing; Hao, Aimin; Zhang, Yahui; Wang, Yingling

    2017-09-01

    P2-type manganese-based ternary transition metal oxides have triggered extensive researches as potential cathode materials for sodium ion batteries. However, these kinds of materials display the large difference in electrochemical performance with sodium content varying from 0.45 to 0.8, the relevant investigations on effects of sodium content are insufficient. In this work, we synthesize a series of spherical P2-type cathode materials NaxNi0.167Co0.167Mn0.67O2 with different sodium content (x = 0.45, 0.55, 0.67, 0.8, 0.9, 1) and investigate the effects of sodium content on structure and electrochemical performance. The results reveal that NaxNi0.167Co0.167Mn0.67O2 (x = 0.45, 0.55) consist of P2-phase and P3-phase, while NaxNi0.167Co0.167Mn0.67O2 (x = 0.67, 0.8, 0.9, 1) exhibit pure P2-phase. Na0.45Ni0.167Co0.167Mn0.67O2 delivers an initial discharge capacity of 143 mAh g-1, while a fast capacity decay is observed after 50 cycles. In comparison, Na0.67Ni0.167Co0.167Mn0.67O2 shows excellent cycling stability and rate performance. The significant difference in electrochemical performance is attributed to the initial sodium content, which leads to the existence of P3-phase. Moreover, higher sodium content promotes primary particles to grow larger and thicker, which is not favorable for the diffusion of Na+. Generally, Na0.67Ni0.167Co0.167Mn0.67O2 is favored by suitable sodium content, offers excellent electrochemical performance in terms of capacity, rate performance and cycling stability.

  11. Oral supplementation of Lanthanum Zirconate nanoparticles moderately affected behavior but drastically disturbed leukocyte count, serum cholesterol levels and antioxidant parameters from vital organs of albino mice in a gender specific manner.

    PubMed

    Aftab, Muhammad Nazar; Akram, Irum Naz; Khosa, Tafheem; Zahra, Syeda Qandeel; Bashir, Irum; Ashiq, Muhammad Naeem; Iqbal, Furhan

    2018-05-21

    Lanthanum Zirconate nanoparticles (NPs) are used in blades of gas turbine engines to thermally insulate them and to protect them against hot and corrosive gas streams. However, the information regarding their biocompatibility is limited. The present study was aimed to report the effect of Lanthanum Zirconate NPs on selected aspects of behavior, serum biochemistry, complete blood count and antioxidant parameters from vital organs of albino mice in a gender specific manner. Albino mice, seven weeks old, were orally treated with 75 mg/ml solvent/Kg body weight of Lanthanum Zirconate nanoparticles for consecutive 22 days. Saline treated control groups were maintained in parallel. It was observed that rearing frequency was significantly decreased (P = 0.01) in NPs treated male mice. Complete blood count analysis indicated that NPs treated female mice had significantly reduced white blood cells (P = 0.05) and lymphocytes count (P = 0.03). NPs treated male had significantly reduced serum cholesterol levels (P = 0.05) than control group. It was observed that Superoxide dismutase concentrations in liver (P = 0.025) and kidney (P = 0.008), Malondialdehyde concentrations in liver (P = 0.044) of female and Malondialdehyde concentrations in kidney (P < 0.001) and brain (P < 0.001) and catalase concentrations in liver (P = 0.05) of NPs treated male mice were significantly higher than their respective control groups.. In conclusion, we are reporting that oral supplementation with 75 mg/ml solvent/Kg body weight of Lanthanum Zirconate nanoparticles can affect the behavior, leukocyte count, serum cholesterol and antioxidant metabolites from vital organs of albino mice in a gender specific manner.

  12. Phytotoxic Effects of Lanthanum Oxide Nanoparticles on Maize (Zea mays L.)

    NASA Astrophysics Data System (ADS)

    Liu, Yinglin; Xu, Lina; Dai, Yanhui

    2018-02-01

    The use of lanthanum oxide nanoparticles (La2O3 NPs) in life products have increased dramatically in the past decades, which are inevitable released into natural environment. In this study, we determined the phytotoxicity of La2O3 NPs to maize (Zea mays L.) grown in one-fourth strength Hoagland solution. After being exposed for two weeks, the biomass, roots length and the relative chlorophyll content were measured. La2O3 NPs had phytotoxicity to maize at 5 mg/L. La2O3 NPs decreased shoot biomass (≥10 mg/L), the root biomass and length (≥5 mg/L). Moreover, La2O3 NPs had adverse effects on the chlorophyll content (≥10 mg/L). The decreased chlorophyll content may reduce net photosynthetic rate. This research offers vital information about the phytotoxicity of La2O3 NPs.

  13. Layer-by-layer introduction of poly(phenylenevinylene) onto microspheres and probing the influence from the weak/strong polyanion spacer-layers.

    PubMed

    Song, Jing; Qiu, Tian; Chen, Yun; Zhang, Wei; Fan, Li-Juan

    2015-08-15

    The layer-by-layer (LBL) technique was employed for preparing fluorescent microspheres with a core-shell structure by the alternating adsorption of positively charged poly(p-phenylenevinylene) precursor (pre-PPV) and the polyanions onto polymer substrate spheres, followed by the thermal elimination to convert pre-PPV into fluorescent poly(p-phenylenevinylene) (PPV). Weak polyelectrolytes poly(acrylic acid) (PAA) (usually in a partly ionized form) and strong polyelectrolytes poly(sodium-p-styrenesulfonate) (PSS) were used as the anions to space the PPV layers and reduce the fluorescence self-quenching. Flow cytometry, combined with spectroscopy and microscopy, were used to study the structure and photophysical properties of the resulting microspheres. Optimization of the processing factors was carried out. PAA and PSS as weak and strong polyelectrolytes, respectively, displayed very different influence on the final emission of the spheres. Such difference was attributed to different inherent characteristics of PAA and PSS after detailed investigation in many aspects. In addition, the fluorescent spheres were found to have excellent photostability and thermal stability. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Study of the structure and ferroelectric behavior of BaBi4-xLaxTi4O15 ceramics

    NASA Astrophysics Data System (ADS)

    Khokhar, Anita; Goyal, Parveen K.; Thakur, O. P.; Sreenivas, K.

    2015-06-01

    The structure and ferroelectric properties of Lanthanum substituted barium bismuth titanate BaBi4-xLaxTi4O15 (0 ≤ x ≤ 0.5) ceramics prepared by solid-state reaction method have been investigated. X-ray diffraction (XRD) confirms the formation of a single phase material. The distribution of lanthanum into the perovskite layers and (Bi2O2)2+ layers of BaBi4Ti4O15 ceramics have been revealed through Raman spectroscopy. At lower value of x, it is seen that La3+ ions prefer to substitute A-site Bi3+ ions in the perovskite layers while for higher x values, La3+ ions get incorporated into the (Bi2O2)2+ layers. A critical La content of x ˜ 0.2 in BaBi4-xLaxTi4O15 is seen to exhibit a large remnant polarization (Pr) with low coercive field (Ec). The improvement in the ferroelectric properties of La substituted BaBi4Ti4O15 ceramics has been explained in terms of changing oxygen vacancy concentration and structural relaxation. Tunable ferroelectric materials can be obtained by manipulating the doping amount of lanthanum ion.

  15. The Bayo Canyon/radioactive lanthanum (RaLa) program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dummer, J.E.; Taschner, J.C.; Courtright, C.C.

    1996-04-01

    LANL conducted 254 radioactive lanthanum (RaLa) implosion experiments Sept. 1944-March 1962, in order to test implosion designs for nuclear weapons. High explosives surrounding common metals (surrogates for Pu) and a radioactive source containing up to several thousand curies of La, were involved in each experiment. The resulting cloud was deposited as fallout, often to distances of several miles. This report was prepared to summarize existing records as an aid in evaluating the off-site impact, if any, of this 18-year program. The report provides a historical setting for the program, which was conducted in Technical Area 10, Bayo Canyon about 3more » miles east of Los Alamos. A description of the site is followed by a discussion of collateral experiments conducted in 1950 by US Air Force for developing an airborne detector for tracking atmospheric nuclear weapons tests. All known off-site data from the RaLa program are tabulated and discussed. Besides the radiolanthanum, other potential trace radioactive material that may have been present in the fallout is discussed and amounts estimated. Off-site safety considerations are discussed; a preliminary off-site dose assessment is made. Bibliographical data on 33 persons important to the program are presented as footnotes.« less

  16. Disintegration-controllable stimuli-responsive polyelectrolyte multilayer microcapsules via covalent layer-by-layer assembly.

    PubMed

    Mu, Bin; Lu, Chunyin; Liu, Peng

    2011-02-01

    The disintegration-controllable stimuli-responsive polyelectrolyte multilayer microcapsules have been fabricated via the covalent layer-by-layer assembly between the amino groups of chitosan (CS) and the aldehyde groups of the oxidized sodium alginate (OSA) onto the sacrificial templates (polystyrene sulfonate, PSS) which was removed by dialysis subsequently. The covalent crosslinking bonds of the multilayer microcapsules were confirmed by FTIR analysis. The TEM analysis showed that the diameter of the multilayer microcapsules was <200nm. The diameter of the multilayer microcapsules decreased with the increasing of the pH values or the ionic strength. The pH and ionic strength dual-responsive multilayer microcapsules were stable in acidic and neutral media while they could disintegrate only at strong basic media. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Does endodontic post space irrigation affect smear layer removal and bonding effectiveness?

    PubMed

    Gu, Xin-Hua; Mao, Cai-Yun; Liang, Cong; Wang, Hui-Ming; Kern, Matthias

    2009-10-01

    The effect of different post space irrigants on smear layer removal and dentin bond strength was evaluated. Sixty-six extracted sound maxillary central incisors were endodontically treated. After post space preparation, the teeth were assigned to three groups of 22 teeth each. The teeth of these three groups were irrigated for 1 min with 17% ethylenediaminetetracetic acid (EDTA) (group 1), 5.25% sodium hypochlorite (NaOCl) (group 2), or 0.9% sodium chloride (NaCl) (group 3). In each group, eight specimens were split longitudinally for smear layer evaluation, and the other fourteen specimens were filled with a self-etching adhesive system (Panavia F). Four of 14 specimens of each group were prepared for evaluation of the resin-dentin interdiffusion zone (RDIZ) and resin tags, and the other 10 specimens were serially sectioned for push-out test analysis. Smear layer removal and bond strength were affected by different post space irrigants. EDTA removed the smear layer extremely effectively and, as a result, improved the bond strength at each region (apical, middle, and coronal) of the roots. Resin tag formation and the RDIZ were also affected by different irrigants and in accordance with bond strength. Therefore, removal of the smear layer use a self-etching luting system plays an important role in bonding effectiveness.

  18. Oxide modified air electrode surface for high temperature electrochemical cells

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1992-01-01

    An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

  19. Surface transformation by a “cocktail” solvent enables stable cathode materials for sodium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Linqin; Rahman, Muhammad Mominur; Zhang, Yan

    Coating the surfaces of active materials has become an effective and indispensable path towards the stable operation of practical rechargeable batteries. Improving the affordability of coating processes can bring enormous manufacturing advantages to battery applications. Here in this paper, we report a cheap, simple and efficient method to create conformal coating layers on the primary particles of sodium layered oxide materials for improving battery performance. Mimicking the cathode–electrolyte interfacial reaction in practical cells, we create conformal coating layers via the spontaneous reaction between the oxidative cathode surfaces and a cocktail of reductive organic solvents. The conformal coating layers consist ofmore » metal–organic compounds with reduced transition metal cations, i.e., artificial cathode–electrolyte interphases (CEIs). The cells containing these coated cathode materials deliver much improved cycle life while maintaining reasonably high reversible capacity and rate capability. Furthermore, the structural stability and water resistance are enhanced, which can practically help simplify the storage protocol of cathode powders prior to battery manufacturing. The surfaces of most oxide cathode materials (e.g., lithium cathodes and sodium cathodes) are highly oxidative, and thus we expect that the present method, with tailored experimental parameters, can be readily applied to most battery systems.« less

  20. Surface transformation by a “cocktail” solvent enables stable cathode materials for sodium ion batteries

    DOE PAGES

    Mu, Linqin; Rahman, Muhammad Mominur; Zhang, Yan; ...

    2018-01-09

    Coating the surfaces of active materials has become an effective and indispensable path towards the stable operation of practical rechargeable batteries. Improving the affordability of coating processes can bring enormous manufacturing advantages to battery applications. Here in this paper, we report a cheap, simple and efficient method to create conformal coating layers on the primary particles of sodium layered oxide materials for improving battery performance. Mimicking the cathode–electrolyte interfacial reaction in practical cells, we create conformal coating layers via the spontaneous reaction between the oxidative cathode surfaces and a cocktail of reductive organic solvents. The conformal coating layers consist ofmore » metal–organic compounds with reduced transition metal cations, i.e., artificial cathode–electrolyte interphases (CEIs). The cells containing these coated cathode materials deliver much improved cycle life while maintaining reasonably high reversible capacity and rate capability. Furthermore, the structural stability and water resistance are enhanced, which can practically help simplify the storage protocol of cathode powders prior to battery manufacturing. The surfaces of most oxide cathode materials (e.g., lithium cathodes and sodium cathodes) are highly oxidative, and thus we expect that the present method, with tailored experimental parameters, can be readily applied to most battery systems.« less

  1. Selective dehydration of bio-ethanol to ethylene catalyzed by lanthanum-phosphorous-modified HZSM-5: influence of the fusel.

    PubMed

    Hu, Yaochi; Zhan, Nina; Dou, Chang; Huang, He; Han, Yuwang; Yu, Dinghua; Hu, Yi

    2010-11-01

    Bio-ethanol dehydration to ethylene is an attractive alternative to oil-based ethylene. The influence of fusel, main byproducts in the fermentation process of bio-ethanol production, on the bio-ethanol dehydration should not be ignored. We studied the catalytic dehydration of bio-ethanol to ethylene over parent and modified HZSM-5 at 250°C, with weight hourly space velocity (WHSV) equal to 2.0/h. The influences of a series of fusel, such as isopropanol, isobutanol and isopentanol, on the ethanol dehydration over the catalysts were investigated. The 0.5%La-2%PHZSM-5 catalyst exhibited higher ethanol conversion (100%), ethylene selectivity (99%), and especially enhanced stability (more than 70 h) than the parent and other modified HZSM-5. We demonstrated that the introduction of lanthanum and phosphorous to HZSM-5 could weaken the negative influence of fusel on the formation of ethylene. The physicochemical properties of the catalysts were characterized by ammonia temperature-programmed desorption (NH(3)-TPD), nitrogen adsorption and thermogravimetry (TG)/differential thermogravimetry (DTG)/differential thermal analysis (DTA) (TG/DTG/DTA) techniques. The results indicated that the introduction of lanthanum and phosphorous to HZSM-5 could inhibit the formation of coking during the ethanol dehydration to ethylene in the presence of fusel. The development of an efficient catalyst is one of the key technologies for the industrialization of bio-ethylene.

  2. Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin

    An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from themore » anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.« less

  3. A Theoretical Model for Predicting Residual Stress Generation in Fabrication Process of Double-Ceramic-Layer Thermal Barrier Coating System.

    PubMed

    Song, Yan; Wu, Weijie; Xie, Feng; Liu, Yilun; Wang, Tiejun

    2017-01-01

    Residual stress arisen in fabrication process of Double-Ceramic-Layer Thermal Barrier Coating System (DCL-TBCs) has a significant effect on its quality and reliability. In this work, based on the practical fabrication process of DCL-TBCs and the force and moment equilibrium, a theoretical model was proposed at first to predict residual stress generation in its fabrication process, in which the temperature dependent material properties of DCL-TBCs were incorporated. Then, a Finite Element method (FEM) has been carried out to verify our theoretical model. Afterwards, some important geometric parameters for DCL-TBCs, such as the thickness ratio of stabilized Zirconia (YSZ, ZrO2-8%Y2O3) layer to Lanthanum Zirconate (LZ, La2Zr2O7) layer, which is adjustable in a wide range in the fabrication process, have a remarkable effect on its performance, therefore, the effect of this thickness ratio on residual stress generation in the fabrication process of DCL-TBCs has been systematically studied. In addition, some thermal spray treatment, such as the pre-heating treatment, its effect on residual stress generation has also been studied in this work. It is found that, the final residual stress mainly comes from the cooling down process in the fabrication of DCL-TBCs. Increasing the pre-heating temperature can obviously decrease the magnitude of residual stresses in LZ layer, YSZ layer and substrate. With the increase of the thickness ratio of YSZ layer to LZ layer, magnitudes of residual stresses arisen in LZ layer and YSZ layer will increase while residual stress in substrate will decrease.

  4. The feasibility of in vivo detection of lanthanum using a 241Am K x-ray fluorescence system.

    PubMed

    Nguyen, Joanna; Keldani, Zaid; Da Silva, Eric; Pejović-Milić, Ana; Gräfe, James L

    2017-08-21

    Lanthanum (La) is commonly used in phosphate binders in the form of lanthanum carbonate in patients with end-stage kidney disease undergoing hemodialysis treatments. With this administration, there is the potential for La storage in the body with bone being the main site of concern. However, the long-term effects of residual La in the body on bone health are not yet known. In this work, we investigate the feasibility of using a K x-ray fluorescence (K-XRF) spectroscopy system to measure bone La in vivo. A series of hydroxyapatite (HAp) bone mineral phantoms were created to represent human bone. A 1.09 GBq 241 Am source was used to excite the HAp phantoms doped with various known concentrations of La placed in a 90° geometry relative to the photon source and high-purity germanium (HPGe) detector. For a detector live time of 2000 s, the minimum detection limit was calculated to be 1.7 µg La g -1 Ca or 0.7 µg La g -1 HAp and is comparable to previously reported in vivo bone La concentrations. The technique developed in this study shows promising results and provides an alternative method to invasive biopsy sampling techniques to monitor the accumulation of bone La. To the best of our knowledge, this is the first reported work that seeks to non-invasively measure bone La via in vivo XRF.

  5. Cover-gas seal program. Test report - sodium dip-seal wetting study. [at 450/sup 0/F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carnevali, R.

    1977-10-20

    This report documents the tests conducted to find a reliable surface preparation method of treating the CRBRP dip seal blade (SA508 Class 2 steel) to insure its sodium wettability at 450F or less. Two techniques were established which depressed the sodium wetting temperature of SA 508, Class 2 dip seal blade material to 375F. These techniques were depositing an approx. 60 x 10/sup -6/ inch layer of tin on the blade surface by a brush-on plating process, and, by cleaning the blade surface with ultrasonics while it is immersed in sodium. The tin plating technique is recommended as the initialmore » and primary surface preparation method and ultrasonics as a rewetting and backup technique. This work was conducted in support of the Sodium Dip Seal Feature Test, DRS 32.05.« less

  6. Modified Ion-Conducting Ceramics Based on Lanthanum Gallate: Synthesis, Structure, and Properties

    NASA Astrophysics Data System (ADS)

    Kaleva, G. M.; Politova, E. D.; Mosunov, A. V.; Sadovskaya, N. V.

    2018-06-01

    A review is presented of the synthesis and complex investigation of modified ion-conducting ceramics based on heterosubstituted lanthanum gallate as a promising electrolyte material for solid oxide fuel cells. The effect the composition of multicomponent complex oxides has on the structure, microstructure, and electrophysical properties of ceramics is examined. Samples of ceramics with new compositions are produced via solid-state synthesis and modified with lithium fluoride. A drop is observed in the sintering temperature of the ceramics, caused by the liquid phase mechanism of sintering as a result of the low-melting superstoichiometric quantities of the additive. The effect lithium fluoride has on the process of phase formation, microstructure, and conductivity of the ceramics is investigated. It is found that samples modified with lithium fluoride display high density, dense grain packing, and high values of electrical conductivity at high temperatures.

  7. All-Solid-State Sodium-Selective Electrode with a Solid Contact of Chitosan/Prussian Blue Nanocomposite

    PubMed Central

    Ghosh, Tanushree; Rieger, Jana

    2017-01-01

    Conventional ion-selective electrodes with a liquid junction have the disadvantage of potential drift. All-solid-state ion-selective electrodes with solid contact in between the metal electrode and the ion-selective membrane offer high capacitance or conductance to enhance potential stability. Solution-casted chitosan/Prussian blue nanocomposite (ChPBN) was employed as the solid contact layer for an all-solid-state sodium ion-selective electrode in a potentiometric sodium ion sensor. Morphological and chemical analyses confirmed that the ChPBN is a macroporous network of chitosan that contains abundant Prussian blue nanoparticles. Situated between a screen-printed carbon electrode and a sodium-ionophore-filled polyvinylchloride ion-selective membrane, the ChPBN layer exhibited high redox capacitance and fast charge transfer capability, which significantly enhanced the performance of the sodium ion-selective electrode. A good Nernstian response with a slope of 52.4 mV/decade in the linear range from 10−4–1 M of NaCl was observed. The stability of the electrical potential of the new solid contact was tested by chronopotentiometry, and the capacitance of the electrode was 154 ± 4 µF. The response stability in terms of potential drift was excellent (1.3 µV/h) for 20 h of continuous measurement. The ChPBN proved to be an efficient solid contact to enhance the potential stability of the all-solid-state ion-selective electrode. PMID:29099804

  8. Achieving the WHO sodium target: estimation of reductions required in the sodium content of packaged foods and other sources of dietary sodium.

    PubMed

    Eyles, Helen; Shields, Emma; Webster, Jacqui; Ni Mhurchu, Cliona

    2016-08-01

    Excess sodium intake is one of the top 2 dietary risk factors contributing to the global burden of disease. As such, many countries are now developing national sodium reduction strategies, a key component of which is a sodium reduction model that includes sodium targets for packaged foods and other sources of dietary sodium. We sought to develop a sodium reduction model to determine the reductions required in the sodium content of packaged foods and other dietary sources of sodium to reduce adult population salt intake by ∼30% toward the optimal WHO target of 5 g/d. Nationally representative household food-purchasing data for New Zealand were linked with branded food composition information to determine the mean contribution of major packaged food categories to total population sodium consumption. Discretionary salt use and the contribution of sodium from fresh foods and foods consumed away from the home were estimated with the use of national nutrition survey data. Reductions required in the sodium content of packaged foods and other dietary sources of sodium to achieve a 30% reduction in dietary sodium intakes were estimated. A 36% reduction (1.6 g salt or 628 mg Na) in the sodium content of packaged foods in conjunction with a 40% reduction in discretionary salt use and the sodium content of foods consumed away from the home would reduce total population salt intake in New Zealand by 35% (from 8.4 to 5.5 g/d) and thus meet the WHO 2025 30% relative reduction target. Key reductions required include a decrease of 21% in the sodium content of white bread, 27% for hard cheese, 42% for sausages, and 54% for ready-to-eat breakfast cereals. Achieving the WHO sodium target in New Zealand will take considerable efforts by both food manufacturers and consumers and will likely require a national government-led sodium reduction strategy. © 2016 American Society for Nutrition.

  9. Thiolated alginate-based multiple layer mucoadhesive films of metformin forintra-pocket local delivery: in vitro characterization and clinical assessment.

    PubMed

    Kassem, Abeer Ahmed; Issa, Doaa Ahmed Elsayed; Kotry, Gehan Sherif; Farid, Ragwa Mohamed

    2017-01-01

    Periodontal disease broadly defines group of conditions in which the supportive structure of the tooth (periodontium) is destroyed. Recent studies suggested that the anti-diabetic drug metformin hydrochloride (MF) has an osteogenic effect and is beneficial for the management of periodontitis. Development of strong mucoadhesive multiple layer film loading small dose of MF for intra-pocket application. Multiple layer film was developed by double casting followed by compression method. Either 6% carboxy methyl cellulose sodium (CMC) or sodium alginate (ALG) constituted the inner drug (0.6%) loaded layer. Thiolated sodium alginate (TSA; 2 or 4%) constituted the outer drug free layers to enhance mucoadhesion and achieve controlled drug release. Optimized formulation was assessed clinically on 20 subjects. Films were uniform, thin and hard enough for easy insertion into periodontal pockets. Based on water uptake and in vitro drug release, CMC based film with 4% TSA as an outer layer was the optimized formulation with enhanced mucoadhesion and controlled drug release (83.73% over 12 h). SEM showed the effective fabrication of the triple layer film in which connective lines between the layers could be observed. FTIR examination suggests possibility of hydrogen bonding between the -NH groups of metformin and -OH groups of CMC. DSC revealed the presence of MF mainly in the amorphous form. Clinical results indicated improvement of all clinical parameters six months post treatment. The results suggested that local application of the mucoadhesive multiple layer films loaded with metformin hydrochloride was able to manage moderate chronic periodontitis.

  10. Improving the electrical properties of lanthanum silicate films on ge metal oxide semiconductor capacitors by adopting interfacial barrier and capping layers.

    PubMed

    Choi, Yu Jin; Lim, Hajin; Lee, Suhyeong; Suh, Sungin; Kim, Joon Rae; Jung, Hyung-Suk; Park, Sanghyun; Lee, Jong Ho; Kim, Seong Gyeong; Hwang, Cheol Seong; Kim, HyeongJoon

    2014-05-28

    The electrical properties of La-silicate films grown by atomic layer deposition (ALD) on Ge substrates with different film configurations, such as various Si concentrations, Al2O3 interfacial passivation layers, and SiO2 capping layers, were examined. La-silicate thin films were deposited using alternating injections of the La[N{Si(CH3)3}2]3 precursor with O3 as the La and O precursors, respectively, at a substrate temperature of 310 °C. The Si concentration in the La-silicate films was further controlled by adding ALD cycles of SiO2. For comparison, La2O3 films were also grown using [La((i)PrCp)3] and O3 as the La precursor and oxygen source, respectively, at the identical substrate temperature. The capacitance-voltage (C-V) hysteresis decreased with an increasing Si concentration in the La-silicate films, although the films showed a slight increase in the capacitance equivalent oxide thickness. The adoption of Al2O3 at the interface as a passivation layer resulted in lower C-V hysteresis and a low leakage current density. The C-V hysteresis voltages of the La-silicate films with Al2O3 passivation and SiO2 capping layers was significantly decreased to ∼0.1 V, whereas the single layer La-silicate film showed a hysteresis voltage as large as ∼1.0 V.

  11. Sodium titanate nanotubes as negative electrode materials for sodium-ion capacitors.

    PubMed

    Yin, Jiao; Qi, Li; Wang, Hongyu

    2012-05-01

    The lithium-based energy storage technology is currently being considered for electric automotive industry and even electric grid storage. However, the hungry demand for vast energy sources in the modern society will conflict with the shortage of lithium resources on the earth. The first alternative choice may be sodium-related materials. Herein, we propose an electric energy storage system (sodium-ion capacitor) based on porous carbon and sodium titanate nanotubes (Na-TNT, Na(+)-insertion compounds) as positive and negative electrode materials, respectively, in conjunction with Na(+)-containing non-aqueous electrolytes. As a low-voltage (0.1-2 V) sodium insertion nanomaterial, Na-TNT was synthesized via a simple hydrothermal reaction. Compared with bulk sodium titanate, the predominance of Na-TNT is the excellent rate performance, which exactly caters to the need for electrochemical capacitors. The sodium-ion capacitors exhibited desirable energy density and power density (34 Wh kg(-1), 889 W kg(-1)). Furthermore, the sodium-ion capacitors had long cycling life (1000 cycles) and high coulombic efficiency (≈ 98 % after the second cycle). More importantly, the conception of sodium-ion capacitor has been put forward.

  12. Influence of crystal phases on electro-optic properties of epitaxially grown lanthanum-modified lead zirconate titanate films

    NASA Astrophysics Data System (ADS)

    Masuda, Shin; Seki, Atsushi; Masuda, Yoichiro

    2010-02-01

    We describe here how we have improved the crystal qualities and controlled the crystal phase of the lanthanum-modified lead zirconate titanate (PLZT) film without changing the composition ratio using an oxygen-pressure crystallization process. A PLZT film deposited on a SrTiO3 substrate with the largest electro-optic (EO) coefficient of 498 pm/V has been achieved by controlling the crystal phase of the film. Additionally, a fatigue-free lead zirconate titanate (PZT) capacitor with platinum electrodes has been realized by reducing the oxygen vacancies in the films.

  13. Deposition of Lanthanum Strontium Cobalt Ferrite (LSCF) Using Suspension Plasma Spraying for Oxygen Transport Membrane Applications

    NASA Astrophysics Data System (ADS)

    Fan, E. S. C.; Kesler, O.

    2015-08-01

    Suspension plasma spray deposition was utilized to fabricate dense lanthanum strontium cobalt ferrite oxygen separation membranes (OSMs) on porous metal substrates for mechanical support. The as-sprayed membranes had negligible and/or reversible material decomposition. At the longer stand-off distance (80 mm), smooth and dense membranes could be manufactured using a plasma with power below approximately 81 kW. Moreover, a membrane of 55 μm was observed to have very low gas leakage rates desirable for OSM applications. This thickness could potentially be decreased further to improve oxygen diffusion by using metal substrates with finer surface pores.

  14. Lanthanum manganite-based air electrode for solid oxide fuel cells

    DOEpatents

    Ruka, Roswell J.; Kuo, Lewis; Li, Baozhen

    1999-01-01

    An air electrode material for a solid oxide fuel cell is disclosed. The electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO.sub.3. The A-site of the air electrode material preferably comprises La, Ca, Ce and at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd. The B-site of the electrode material comprises Mn with substantially no dopants. The ratio of A:B is preferably slightly above 1. A preferred air electrode composition is of the formula La.sub.w Ca.sub.x Ln.sub.y Ce.sub.z MnO.sub.3, wherein Ln comprises at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd, w is from about 0.55 to about 0.56, x is from about 0.255 to about 0.265, y is from about 0.175 to about 0.185, and z is from about 0.005 to about 0.02. The air electrode material possesses advantageous chemical and electrical properties as well as favorable thermal expansion and thermal cycle shrinkage characteristics.

  15. Lanthanum-silicon-substituted hydroxyapatite: Mechanochemical synthesis and prospects for medical applications

    NASA Astrophysics Data System (ADS)

    Chaikina, M. V.; Komarova, E. G.; Sharkeev, Yu. P.; Bulina, N. V.; Prosanov, I. Yu.

    2016-08-01

    The paper presents the results of mechanochemical synthesis of hydroxyapatite (HAP) with simultaneous substitutions of lanthanum (La3+) for calcium ions and silicate ((SiO4)4--group) for the phosphate group with the substituent concentrations in the range 0.2-2.0 mol per HAP mol. The use of Si-substituted HAP as a coating material promotes accelerated osteosynthesis and osteointegration of implants into the bone tissue. The replacement of calcium ions by La3+ in the HAP structure plays an antimicrobial role preventing inflammatory processes. Annealing-induced variations in the lattice parameters of synthesized samples indicate the substituent incorporation into the HAP structure. It is known that complex compounds with lanthanides are used for cancer chemotherapy. In particular, La plays a key role in the course of treatment of injured defects of bone tissue. In addition, La-substituted HAP can be used for filling bone defects and coating implants in postoperational areas affected by bone cancer.

  16. Effects of lanthanum and acid rain stress on the bio-sequestration of lanthanum in phytoliths in germinated rice seeds

    PubMed Central

    Si, Yong; Wang, Lihong; Huang, Xiaohua

    2018-01-01

    REEs in the environment can be absorbed by plants and sequestered by plant phytoliths. Acid rain can directly or indirectly affect plant physiological functions. Currently, the effects of REEs and acid rain on phytolith-REEs complex in plants are not yet fully understood. In this study, a high-silicon accumulation crop, rice (Oryza sativa L.), was selected as a representative of plants, and orthogonal experiments were conducted under various levels of lanthanum [La(III)] and pH. The results showed that various La(III) concentrations could significantly improve the efficiency and sequestration of phytolith La(III) in germinated rice seeds. A pH of 4.5 promoted phytolith La(III) sequestration, while a pH of 3.5 inhibited sequestration. Compared with the single treatment with La(III), the combination of La(III) and acid rain inhibited the efficiency and sequestration of phytolith La(III). Correlation analysis showed that the efficiency of phytolith La(III) sequestration had no correlation with the production of phytolith but was closely correlated with the sequestration of phytolith La(III) and the physiological changes of germinated rice seeds. Phytolith morphology was an important factor affecting phytolith La(III) sequestration in germinated rice seeds, and the effect of tubes on sequestration was more significant than that of dumbbells. This study demonstrated that the formation of the phytolith and La(III) complex could be affected by exogenous La(III) and acid rain in germinated rice seeds. PMID:29763463

  17. Magnetocaloric effect in potassium doped lanthanum manganite perovskites prepared by a pyrophoric method

    NASA Astrophysics Data System (ADS)

    Das, Soma; Dey, T. K.

    2006-08-01

    The magnetocaloric effect (MCE) in fine grained perovskite manganites of the type La1-xKxMnO3 (0lanthanum manganite enhances the Curie temperature (TC) of the system from 260.4 K (x = 0.05) to 309.7 K (x = 0.15). A large magnetic entropy change associated with the ferromagnetic-paramagnetic transition has been observed. The maximum entropy change |ΔSMMax| in an applied field of 1 T shows an enhancement by ~10% with increase in K content up to x = 0.15. La0.85K0.15MnO3 exhibits the largest |ΔSMMax| value of 3.00 J kg-1 K-1 at 310 K amongst the compounds investigated. Moreover, the maximum magnetic entropy change exhibits a linear dependence with applied magnetic field. The estimated adiabatic temperature change at TC and at 1 T field also increases with K doping, being a maximum of 2.1 K for the La0.85K0.15MnO3 compound. The relative cooling power (RCP) of La1-xKxMnO3 compounds is estimated to be about one-third of that of the prototype magnetic refrigerant material (pure Gd). However, La1-xKxMnO3 compounds possess an MCE around room temperature, which is comparable to that of Gd. Further, tailoring of their TC, higher chemical stability, lower eddy current heating and lower cost of synthesis are some of the attractive features of K doped lanthanum manganites that are advantageous for a magnetic refrigerant. The temperature dependence of the magnetic entropy change (ΔSM) measured under various magnetic fields is explained fairly well using the Landau theory of phase transitions. Contributions of magnetoelastic and electron interaction are found to have a strong influence in the magnetocaloric effect of manganites.

  18. Energy transfer driven tunable emission of Tb/Eu co-doped lanthanum molybdate nanophosphors

    NASA Astrophysics Data System (ADS)

    Thomas, Kukku; Alexander, Dinu; Sisira, S.; Gopi, Subash; Biju, P. R.; Unnikrishnan, N. V.; Joseph, Cyriac

    2018-06-01

    Tb3+/Eu3+ co-doped lanthanum molybdate nanophosphors were synthesized by conventional co-precipitation method. The Powder X-ray diffractogram revealed the formation of highly crystalline tetragonal nanocrystals with space group I41/a and the detailed analysis of the small variation of lattice parameters with Tb/Eu co-doping on the host lattice were carried out based on the ionic radii of the dopants. The FTIR spectra is employed to identify the fundamental vibrational modes in La2-x-y (MoO4)3:xTb, yEu nanocrystals. The formation of nanocrystals by oriented attachment was recognized from the HR TEM images and the d-spacing calculated was in accordance with that corresponding to highest intensity diffraction peak in the XRD patterns. The constituent elements present in the samples were identified with the aid of EDAX and elemental mapping analysis. The broad Mo6+- O2- CTB and the sharp excitation peaks of Tb and Eu identified from the UV-Vis absorption spectra facilitates the suitability of exciting the phosphors effectively over NUV and visible region of the spectra. The possibility of energy transfer from host to Tb3+/Eu3+ ions and from Tb3+ to Eu3+ ions were confirmed from the PL excitation spectra monitoring 5D0→7F2 transition of Eu3+ ions around 615 nm. The correlated analysis of PL emission spectra, life time measurements and CIE diagram, upon different excitation channels elucidate the excellent luminescent properties of La2-x-y (MoO4)3:xTb, yEu nanophosphors with tunable emission colours in a wide range varying from yellow green region to reddish orange region and the efficient energy transfer from Tb3+ to Eu3+ ions in lanthanum molybdate host lattice. The Tb→Eu energy transfer efficiency and probability were calculated from the decay measurements and the values were found to be satisfactory for exploiting the prepared nanophosphors for the development of multifunctional luminescent nanophosphors.

  19. Test Your Sodium Smarts

    MedlinePlus

    ... You may be surprised to learn how much sodium is in many foods. Sodium, including sodium chloride ... foods with little or no salt. Test your sodium smarts by answering these 10 questions about which ...

  20. High-sodium comet

    NASA Astrophysics Data System (ADS)

    Friebele, Elaine

    In mid-April, astronomers in the Canary Islands discovered that Comet Hale-Bopp has a tail composed of sodium atoms, in addition to the commonly known ion and dust tails. Although sodium atoms have been seen at the centers of other comets, this is the first observation of a comet tail consisting of sodium.The discovery by Gabriele Cremonese of the Padova Astronomical Observatory in Italy and Don Pollaco of the Isaac Newton Group of telescopes at the Canary Islands, came from images of Hale-Bopp taken with a special wide-field camera fitted with a filter that isolates emission from sodium atoms. The sodium atoms are distributed over an enormous region in and around Hale-Bopp. It is not clear exactly how the sodium tail, which is 600,000 km wide and 50 million km long, was formed.

  1. Mixture of alkaline tetrasodium EDTA with sodium hypochlorite promotes in vitro smear layer removal and organic matter dissolution during biomechanical preparation.

    PubMed

    Tartari, T; Oda, D F; Zancan, R F; da Silva, T L; de Moraes, I G; Duarte, M A H; Bramante, C M

    2017-01-01

    The aim of this study was to determine the following: (i) the quantity of free chlorine in mixtures of equal proportions of sodium hypochlorite (NaOCl) with trisodium ethylenediaminetetraacetic acid (EDTAHNa 3 ) and alkaline tetrasodium ethylenediaminetetraacetic acid (EDTANa 4 ); (ii) organic matter dissolution; and (iii) the time necessary to remove the smear layer by these irrigants alone and when mixed. The solutions were mixed in a 1 : 1 ratio and then iodometrically titrated over time to determine the quantity of free available chlorine. The capability of organic matter dissolution by the solutions alone and the mixtures of irrigants was analysed by weighing bovine muscle tissue specimens before and after submission to the following groups (n = 10): G1 - 0.9% saline solution (control), G2 - 2.5% NaOCl, G3 - 17% EDTAHNa 3 , G4 - 10% EDTANa 4 , G5 - 20% EDTANa 4 , G6 - 5% NaOCl + 17% EDTAHNa 3 , G7 - 5% NaOCl + 10% EDTANa 4 and G8 - 5% NaOCl + 20% EDTANa 4 . The times necessary for smear layer removal were determinated on discs of bovine dentine with a standardized smear layer produced with SiC papers using a scanning electron microscope that did not require the samples to be sputter coated. The dentine discs were submitted to the same experimental groups previously described (n = 10) over several time periods, and the photomicrographs acquired were scored for the presence of smear layer. The parametric data of tissue dissolution were analysed using two-way anova and one-way anova with Tukey's post hoc tests (α < 0.05), whilst nonparametric data of smear layer removal were analysed by Friedman test (α < 0.05) and the Kruskal-Wallis test with Dunn's post hoc (α < 0.05). EDTAHNa 3 caused an almost complete and immediate loss of free available chlorine from NaOCl, whilst EDTANa 4 promoted a slow and concentrat-ion-dependent decline. The organic matter was not dissolved in the control group, EDTA groups or the mixture of NaOCl + 17% EDTAHNa 3

  2. Polymer mediated layer-by-layer assembly of different shaped gold nanoparticles.

    PubMed

    Budy, Stephen M; Hamilton, Desmond J; Cai, Yuheng; Knowles, Michelle K; Reed, Scott M

    2017-02-01

    Gold nanoparticles (GNPs) have a wide range of properties with potential applications in electronics, optics, catalysis, and sensing. In order to demonstrate that dense, stable, and portable samples could be created for these applications, multiple layers of GNPs were assembled via drop casting on glass substrates by layer-by-layer (LBL) techniques. Two cationic polyelectrolytes, poly(diallyldimethylammonium chloride) and polyethyleneimine, one anionic polyelectrolyte, poly(sodium 4-styrene sulfonate), and one neutral polymer, polyvinylpyrrolidone, were combined with four different shapes of GNPs (spherical, rod, triangular prismatic, and octahedral) to prepare thin films. A subset of these polymer nanoparticle combinations were assembled into thin films. Synthesized GNPs were characterized via dynamic light scattering, UV-vis spectroscopy, and transmission electron microscopy and the LBL thin films were characterized using UV-vis spectroscopy and atomic force microscopy. Sensing applications of the nanoparticles in solution and thin films were tested by monitoring the localized surface plasmon resonance of the GNPs. LBL thin films were prepared ranging from 25 to 100 layers with optical densities at plasmon from 0.5 to 3.0. Sensitivity in solutions ranged from 14 to 1002nm/refractive index units (RIU) and films ranged from 18.8 to 135.1nm/RIU suggesting reduced access to the GNPs within the films. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Multilayer Films and Capsules of Sodium Carboxymethylcellulose and Polyhexamethylenguanidine Hydrochloride

    NASA Astrophysics Data System (ADS)

    Guzenko, Nataliia; Gabchak, Oleksandra; Pakhlov, Evgenij

    The complexation of polyhexamethylenguanidine hydrochloride (PHMG) and sodium carboxymethylcellulose (CMC) was investigated for different conditions. Mixing of equiconcentrated aqueous solutions of the polyelectrolytes was found to result in the formation of an insoluble interpolyelectrolyte complex with an overweight of carboxymethylcellulose. A step-by-step formation of stable, irreversibly adsorbed multilayer film of the polymers was demonstrated using the quartz crystal microbalance method. Unusually thick polymer shells with a large number of loops and tails of the polyanion were formed by the method of layer-by-layer self-assembly of PHMG and CMC on spherical CaCO3 particles. Hollow multilayer capsules stable in neutral media were obtained by dissolution of the inorganic matrix in EDTA solution.

  4. The behaviour of water and sodium chloride solution confined into asbestos nanotube

    NASA Astrophysics Data System (ADS)

    Fomin, Yu. D.; Ryzhov, V. N.; Tsiok, E. N.

    2016-08-01

    We present the molecular simulation study of the behaviour of water and sodium chloride solution confined in lizardite asbestos nanotube which is a typical example of hydrophilic confinement. The local structure and orientational and dynamic properties are studied. It is shown that at low enough temperatures there is a well-defined orientational ordering of the water molecules. At high local densities corresponding to the maxima of the density distribution function, the water molecules are oriented parallel to the axis of the tube. It is also shown that the diffusion coefficient drops about two orders of magnitude comparing to the bulk case. The behaviour of sodium chloride solutions is also considered and the formation of double layer is observed.

  5. [Sodium and hypertension].

    PubMed

    de Wardener, H E

    1996-09-01

    Over several million years the human race was programmed to eat a diet which contained about 15 mmol of sodium (1 g of sodium chloride) per day. It is only five to ten thousand years ago that we became addicted to salt. Today we eat about 150 mmol of sodium (9-12 g of salt) per day. It is now apparent that this sudden rise in sodium intake (in evolutionary terms) is the most likely cause for the rise in blood pressure with age that occurs in the majority of the world's population. Those which consume less than 60 mmol/day do not develop hypertension. The reason for the rise in sodium intake is not known but it is probable that an important stimulus was the discovery that meat could be preserved by immersion into a concentrated salt solution. This seemingly miraculous power endowed salt with such magical and medicinal qualities that it became a symbol of goodness and health. It was not until 1904 Ambard and Beaujard suggested that on the contrary dietary salt could be harmful and raise the blood pressure. At first the idea did not prosper and it continues to be opposed by a diminishing band. The accumulated evidence that sodium intake is related to the blood pressure in normal man and animals and in inherited forms of hypertension has been obtained from experimental manipulations and studies of human populations. The following observation links sodium and hypertension. An increase in sodium intakes raises the blood pressure of the normal rat, dog, rabbit, baboon, chimpanzee and man. Population studies have demonstrated a significant correlation between sodium intake and the customary rise in blood pressure with age. The development of hypertensive strains of rats has revealed that the primary genetic lesion which gives rise to hypertension resides in the kidney where it impairs the urinary excretion of sodium. There is similar but less convincing evidence in essential hypertension. The kidney in both essential hypertension and hypertensive strains of rats share a

  6. Microporous ceramic coated separators with superior wettability for enhancing the electrochemical performance of sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Suharto, Yustian; Lee, Yongho; Yu, Ji-Sang; Choi, Wonchang; Kim, Ki Jae

    2018-02-01

    Finding an alternative to glass fiber (GF) separators is a crucial factor for the fast commercialization of sodium-ion batteries (SIBs), because GF separators are too thick for use in SIBs, thereby decreasing the volumetric and gravimetric energy density. Here we propose a microporous composite separator prepared by introducing a polymeric coating layer of polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP co-polymer) with ZrO2 nanoparticles to a polyethylene (PE) separator. The coated separator efficiently enhances the cell performance of SIBs. The ZrO2 nanoparticles, finely dispersed on the polymeric coating layer, induce the formation of many micropores on the polymeric coating layer, suggesting that micropore formation on the coating layer renders the composite separator more open in structure. An ethylene carbonate/propylene carbonate liquid electrolyte for SIBs is not absorbed by PE separators even after 1 h of electrolyte droplet testing, while the proposed separator with many micropores is completely wetted by the electrolyte. Sodium ion migration across the composite separator is therefore effectively enhanced by the formation of ion transfer pathways, which improve ionic conductivity. As a result, the microporous composite separator affords stable cycle performances and excellent specific capacity retention (95.8%) after 50 cycles, comparable to those offered by a SIB with a GF separator.

  7. Habit plane-driven P2-type manganese-based layered oxide as long cycling cathode for Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Luo, Rui; Wu, Feng; Xie, Man; Ying, Yao; Zhou, Jiahui; Huang, Yongxin; Ye, Yusheng; Li, Li; Chen, RenJie

    2018-04-01

    Layered transition metal oxides are considered to be promising candidates as cathode materials for sodium-ion batteries. Herein, a facile solid-state reaction is developed to synthesize hexagons plate-like Na0.67Ni0.25Mn0.75O2+δ (denoted as P2-NNM) material with habit plane formed. The structure of this layered oxide is characterized by XRD, HR-TEM and SAED. The layered material delivers a high reversible capacity of 91.8 mAh g-1 at 0.2 C with a capacity retention of 94.4 % after 280 cycles, superior rate capability and long cycle life (84.2 % capacity retention after 1000 cycle). Ni2+ is an active ion and Ni doping alleviates the Jahn-Teller distortion, and Mn3+/Mn4+ coexist as Mn4+ is desired from the stability perspective. Particularly, CV and XPS results confirm these results. Moreover, the electrode exhibits a quasi-solid-solution reaction during the sodium extraction and insertion. This contribution demonstrates that P2-NNM is a promising cathode electrode for rechargeable long-life sodium-ion batteries.

  8. Poly(sodium 4-styrenseulfonate)-modified monolayer graphene for anode applications of organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Zhou, Yongfang; Wang, Min; Wang, Liang; Liu, Shuli; Chen, Shufen; Cao, Kun; Shang, Wenjuan; Mai, Jiangquan; Zhao, Baomin; Feng, Jing; Lu, Xinhui; Huang, Wei

    2017-09-01

    An insulated poly(sodium 4-styrenseulfonate) (PSS) was used to modify monolayer graphene for anode applications of organic photovoltaics (OPVs). With this PSS interfacial modification layer, the OPVs showed a significant increase of 56.4% in efficiency due to an improved work function and hydrophilic feature of graphene and an enlarged recombination resistance of carriers/excitons. Doping a highly contorted 1,2,5-thiadiazole-fused 12-ring polyaromatic hydrocarbon into the active layer to form ternary blended OPVs further enlarged the recombination resistance of carriers/excitons and improved light absorption of the active layer, with which a high power conversion efficiency of 6.29% was acquired.

  9. Study on glutathionesulfonic acid sodium salt as biodistribution promoter for thiopental sodium.

    PubMed

    Ohkawa, Yuhsuke; Fujimoto, Tomonori; Higashiyama, Kyohko; Maeda, Hiroshi; Asoh, Tomoyuki; Kurumi, Masateru; Sasaki, Kenji; Nakayama, Taiji

    2002-06-01

    The effects of glutathione (GSH) and glutathionesulfonic acid sodium salt [N-(N-gamma-L-glutamyl-L-beta-sulfoalanyl)glycine sodium salt, GSO3Na], which is a minor metabolite of GSH, on the pharmacokinetics of thiopental sodium were investigated in rats. The concomitant use of GSO3Na with thiopental sodium significantly increased the tissue-to-plasma concentration ratio (Kp) of thiopental sodium 60 min after its administration in the heart, lung, brain, liver, kidney, and spleen, while GSH did not affect them. On the other hand, the Kp value of thiopental sodium 5 min after its administration with concomitant GSO3Na decreased significantly only in the spleen. Neither GSO3Na nor GSH changes the pharmacokinetic parameters of thiopental sodium. Significant change of the binding ratio of thiopental sodium to bovine serum albumin (BSA) was not observed by the addition of less than 5-fold GSO3Na. About 50% of thiopental sodium was bound to the brain, lung or liver, however, no significant change of this binding ratio was observed by the concomitant use of GSO3Na. The partition coefficient of thiopental sodium apparently increased by the concomitant use of GSO3Na but not by GSH. This phenomenon seemed to be concerned with a mechanism to increase the Kp values of thiopental sodium in the tissues. The increment in the drug distribution to tissues with concomitant GSO3Na observed in this study is useful information for the application of drug combinations as a biodistribution promoter.

  10. Final report on the safety assessment of sodium sulfite, potassium sulfite, ammonium sulfite, sodium bisulfite, ammonium bisulfite, sodium metabisulfite and potassium metabisulfite.

    PubMed

    Nair, Bindu; Elmore, Amy R

    2003-01-01

    Sodium Sulfite, Ammonium Sulfite, Sodium Bisulfite, Potassium Bisulfite, Ammonium Bisulfite, Sodium Metabisulfite, and Potassium Metabisulfite are inorganic salts that function as reducing agents in cosmetic formulations. All except Sodium Metabisulfite also function as hair-waving/straightening agents. In addition, Sodium Sulfite, Potassium Sulfite, Sodium Bisulfite, and Sodium Metabisulfite function as antioxidants. Although Ammonium Sulfite is not in current use, the others are widely used in hair care products. Sulfites that enter mammals via ingestion, inhalation, or injection are metabolized by sulfite oxidase to sulfate. In oral-dose animal toxicity studies, hyperplastic changes in the gastric mucosa were the most common findings at high doses. Ammonium Sulfite aerosol had an acute LC(50) of >400 mg/m(3) in guinea pigs. A single exposure to low concentrations of a Sodium Sulfite fine aerosol produced dose-related changes in the lung capacity parameters of guinea pigs. A 3-day exposure of rats to a Sodium Sulfite fine aerosol produced mild pulmonary edema and irritation of the tracheal epithelium. Severe epithelial changes were observed in dogs exposed for 290 days to 1 mg/m(3) of a Sodium Metabisulfite fine aerosol. These fine aerosols contained fine respirable particle sizes that are not found in cosmetic aerosols or pump sprays. None of the cosmetic product types, however, in which these ingredients are used are aerosolized. Sodium Bisulfite (tested at 38%) and Sodium Metabisulfite (undiluted) were not irritants to rabbits following occlusive exposures. Sodium Metabisulfite (tested at 50%) was irritating to guinea pigs following repeated exposure. In rats, Sodium Sulfite heptahydrate at large doses (up to 3.3 g/kg) produced fetal toxicity but not teratogenicity. Sodium Bisulfite, Sodium Metabisulfite, and Potassium Metabisulfite were not teratogenic for mice, rats, hamsters, or rabbits at doses up to 160 mg/kg. Generally, Sodium Sulfite, Sodium

  11. Fractionation of Sodium Efflux in Frog Sartorius Muscles by Strophanthidin and Removal of External Sodium

    PubMed Central

    Horowicz, P.; Taylor, J. W.; Waggoner, D. M.

    1970-01-01

    The influence of strophanthidin, ouabain, and the removal of external sodium on the sodium efflux from frog sartorius muscle was measured. In freshly dissected muscles strophanthidin and ouabain in maximally effective concentrations reduced the efflux of sodium by about 50%. Of the sodium efflux which is strophanthidin-insensitive about 75% is inhibited after complete replacement of external sodium by lithium. In the absence of strophanthidin replacement of external sodium by lithium, calcium, or magnesium produces an initial rise in the sodium efflux, followed by a fall in the efflux as the exposure of the muscles to sodium-free media is continued. When the muscles are exposed for prolonged periods in sodium-free media, the fraction of internal sodium lost per minute is higher when returned to normal Ringer fluid than it was initially. The activation of sodium efflux by external sodium after long periods in sodium-free solutions is partly strophanthidin-sensitive and partly strophanthidin-insensitive. The internal sodium concentration is an important factor in these effects. The effects of temperature on the sodium efflux were also measured. Above 7°C the Q 10 of both the strophanthidin-sensitive and strophanthidin-insensitive sodium efflux is about 2.0. Below 7°C the strophanthidin-insensitive sodium efflux has a Q 10 of about 7.4. PMID:5315424

  12. [Effect of lanthanum on the flavonoids contents and antioxidant capacity in soybean seedling under ultraviolet-B stress].

    PubMed

    Peng, Qi; Zhou, Qing

    2008-07-01

    Dynamic state of antioxidant capacity of flavonoids was investigated for a further demonstration of alleviating the damage of the UV-B radiation in the La-treated soybean seedlings under UV-B stress. Using hydroponics culture, the effects of lanthanum on the contents of flavonoids and its ability of antioxidant under elevated ultraviolet-B radiation (280-320 nm) was studied in this paper. The results showed flavonoids contents in Soybean seedlings during the stress and convalescent period increase firstly and then reduce. Membrane permeability and MDA contents increase firstly (1st-5th day) and then fall (6th to 11th day). A similar change of flavonoids contents and clearance of flavonoids scavenging O2*- and *OH in soybean seedlings occur; the flavonoids contents La(III) + UV-B > UV-B > La(III) > CK, La(III) + T1 > La(III) + T2. Plasma membrane permeability and MAD contents UV-B> La(III) + UV-B > CK > La(III), La(III) + T2 > La(III) + T1. The ability of Scavenging activities of free radical (O2*-, *OH) La(III) + UV-B > UV-B > La(III) > CK. It suggested that the regulative effect of La(III) on flavonoids, improved the metabolism of ROS, diminished the concentration of MDA and maintained normal Plasma membrane permeability, and that its protective effect against low UV-B radiation was superior to that of high UV-B radiation. To conclude, the defensive effect of La(III) on soybean seedlings under UV-B stress was carried out on the layer of defense system.

  13. Formulation, in vitro evaluation and study of variables on tri-layered gastro-retentive delivery system of diltiazem HCl.

    PubMed

    Raut Desai, Shilpa; Rohera, Bhagwan D

    2014-03-01

    Tri-layered floating tablets using only one grade of polyethylene oxide (PEO) would enable easy manufacturing, reproducibility and controlled release for highly soluble drugs. To evaluate the potential of PEO as a sole polymer for the controlled release and to study the effect of formulation variables on release and gastric retention of highly soluble Diltiazem hydrochloride (DTZ). Tablets were compressed with middle layer consisting of drug and polymer while outer layers consisted of polymer with sodium bicarbonate. Design of formulation to obtain 12 h, zero-order release and rapid floatation was done by varying the grades, quantity of PEO and sodium bicarbonate. Dissolution data were fitted in drug release models and swelling/erosion studies were undertaken to verify the drug release mechanism. Effect of formulation variables and tablet surface morphology using scanning electron microscopy were studied. The optimized formula passed the criteria of USP dissolution test I and exhibited floating lag-time of 3-4 min. Drug release was faster from low molecular weight (MW) PEO as compared to high MW. With an increase in the amount of sodium bicarbonate, faster buoyancy was achieved due to the increased CO2 gas formation. Drug release followed zero-order and gave a good fit to the Korsmeyer-Peppas model, which suggested that drug release was due to diffusion through polymer swelling. Zero-order, controlled release profile with the desired buoyancy can be achieved by using optimum formula quantities of sodium bicarbonate and polymer. The tri-layered system shows promising delivery of DTZ, and possibly other water-soluble drugs.

  14. 40 CFR 415.170 - Applicability; description of the sodium dichromate and sodium sulfate production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sodium dichromate and sodium sulfate production subcategory. 415.170 Section 415.170 Protection of... MANUFACTURING POINT SOURCE CATEGORY Sodium Dichromate and Sodium Sulfate Production Subcategory § 415.170 Applicability; description of the sodium dichromate and sodium sulfate production subcategory. The provisions of...

  15. 40 CFR 415.170 - Applicability; description of the sodium dichromate and sodium sulfate production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sodium dichromate and sodium sulfate production subcategory. 415.170 Section 415.170 Protection of... MANUFACTURING POINT SOURCE CATEGORY Sodium Dichromate and Sodium Sulfate Production Subcategory § 415.170 Applicability; description of the sodium dichromate and sodium sulfate production subcategory. The provisions of...

  16. 40 CFR 415.170 - Applicability; description of the sodium dichromate and sodium sulfate production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sodium dichromate and sodium sulfate production subcategory. 415.170 Section 415.170 Protection of... MANUFACTURING POINT SOURCE CATEGORY Sodium Dichromate and Sodium Sulfate Production Subcategory § 415.170 Applicability; description of the sodium dichromate and sodium sulfate production subcategory. The provisions of...

  17. 40 CFR 415.170 - Applicability; description of the sodium dichromate and sodium sulfate production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sodium dichromate and sodium sulfate production subcategory. 415.170 Section 415.170 Protection of... MANUFACTURING POINT SOURCE CATEGORY Sodium Dichromate and Sodium Sulfate Production Subcategory § 415.170 Applicability; description of the sodium dichromate and sodium sulfate production subcategory. The provisions of...

  18. 40 CFR 415.170 - Applicability; description of the sodium dichromate and sodium sulfate production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sodium dichromate and sodium sulfate production subcategory. 415.170 Section 415.170 Protection of... MANUFACTURING POINT SOURCE CATEGORY Sodium Dichromate and Sodium Sulfate Production Subcategory § 415.170 Applicability; description of the sodium dichromate and sodium sulfate production subcategory. The provisions of...

  19. Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney: hormonal control.

    PubMed

    Féraille, E; Doucet, A

    2001-01-01

    Tubular reabsorption of filtered sodium is quantitatively the main contribution of kidneys to salt and water homeostasis. The transcellular reabsorption of sodium proceeds by a two-step mechanism: Na(+)-K(+)-ATPase-energized basolateral active extrusion of sodium permits passive apical entry through various sodium transport systems. In the past 15 years, most of the renal sodium transport systems (Na(+)-K(+)-ATPase, channels, cotransporters, and exchangers) have been characterized at a molecular level. Coupled to the methods developed during the 1965-1985 decades to circumvent kidney heterogeneity and analyze sodium transport at the level of single nephron segments, cloning of the transporters allowed us to move our understanding of hormone regulation of sodium transport from a cellular to a molecular level. The main purpose of this review is to analyze how molecular events at the transporter level account for the physiological changes in tubular handling of sodium promoted by hormones. In recent years, it also became obvious that intracellular signaling pathways interacted with each other, leading to synergisms or antagonisms. A second aim of this review is therefore to analyze the integrated network of signaling pathways underlying hormone action. Given the central role of Na(+)-K(+)-ATPase in sodium reabsorption, the first part of this review focuses on its structural and functional properties, with a special mention of the specificity of Na(+)-K(+)-ATPase expressed in renal tubule. In a second part, the general mechanisms of hormone signaling are briefly introduced before a more detailed discussion of the nephron segment-specific expression of hormone receptors and signaling pathways. The three following parts integrate the molecular and physiological aspects of the hormonal regulation of sodium transport processes in three nephron segments: the proximal tubule, the thick ascending limb of Henle's loop, and the collecting duct.

  20. Sodium Oxybate

    MedlinePlus

    Sodium oxybate is used to prevent attacks of cataplexy (episodes of muscle weakness that begin suddenly and ... urge to sleep during daily activities, and cataplexy). Sodium oxybate is in a class of medications called ...

  1. GENOTOXICITY STUDIES OF SODIUM DICHLOROACETATE AND SODIUM TRICHLOROACETATE

    EPA Science Inventory

    The genotoxic properties of sodium dichloroacetate (DCA) and sodium trichloroacetate (TCA)were evaluated in several short-term in vitro and in vivo assays. Neither compound was mutagenic in tester strain TA102 in the Salmonella mutagenicity assay. Both DCA and TCA were weak induc...

  2. Honeycomb-Ordered Na 3Ni 1.5M 0.5BiO 6 (M = Ni, Cu, Mg, Zn) as High-Voltage Layered Cathodes for Sodium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Peng -Fei; Guo, Yu -Jie; Duan, Hui

    Developing high-voltage layered cathodes for sodium-ion batteries (SIBs) has always been a severe challenge. Herein, a new family of honeycomb-layered Na 3Ni 1.5M 0.5BiO 6 (M = Ni, Cu, Mg, Zn) with a monoclinic superstructure has been shown to combine good Na + (de)intercalation activity with a competitive 3.3 V high voltage. By coupling the electrochemical process with ex situ X-ray absorption spectroscopy as well as in situ X-ray diffraction, the charge compensation mechanism and structural evolution of these new cathodes are clearly investigated. Interestingly, both Ni 2+/Ni 3+ and Cu 2+/Cu 3+ participate in the redox reaction upon cycling,more » and the succession of single-phase, two-phase, or three-phase regions upon Na+ extraction/insertion were identified with rather good accuracy. Furthermore, this research strategy could provide insights into the structure–function–property relationships on a new series of honeycomb-ordered materials with the general formula Na 3Ni 1.5M 0.5BiO 6 and also serve as a bridge to guide future design of high-performance cathodes for SIBs.« less

  3. Honeycomb-Ordered Na 3Ni 1.5M 0.5BiO 6 (M = Ni, Cu, Mg, Zn) as High-Voltage Layered Cathodes for Sodium-Ion Batteries

    DOE PAGES

    Wang, Peng -Fei; Guo, Yu -Jie; Duan, Hui; ...

    2017-11-01

    Developing high-voltage layered cathodes for sodium-ion batteries (SIBs) has always been a severe challenge. Herein, a new family of honeycomb-layered Na 3Ni 1.5M 0.5BiO 6 (M = Ni, Cu, Mg, Zn) with a monoclinic superstructure has been shown to combine good Na + (de)intercalation activity with a competitive 3.3 V high voltage. By coupling the electrochemical process with ex situ X-ray absorption spectroscopy as well as in situ X-ray diffraction, the charge compensation mechanism and structural evolution of these new cathodes are clearly investigated. Interestingly, both Ni 2+/Ni 3+ and Cu 2+/Cu 3+ participate in the redox reaction upon cycling,more » and the succession of single-phase, two-phase, or three-phase regions upon Na+ extraction/insertion were identified with rather good accuracy. Furthermore, this research strategy could provide insights into the structure–function–property relationships on a new series of honeycomb-ordered materials with the general formula Na 3Ni 1.5M 0.5BiO 6 and also serve as a bridge to guide future design of high-performance cathodes for SIBs.« less

  4. A comparative scanning electron microscopic investigation of the smear layer after the use of sodium hypochlorite gel and solution forms as root canal irrigants.

    PubMed

    Zand, Vahid; Lotfi, Mehrdad; Rahimi, Saeed; Mokhtari, Hadi; Kazemi, Ali; Sakhamanesh, Vahideh

    2010-07-01

    The effect of sodium hypochlorite (NaOCl) gel along with EDTA on the removal of the smear layer has not been studied; therefore, the aim of the present study was to compare the efficacy of gel and solution forms of NaOCl in removal of the smear layer from root canal walls. A total of 40 single-rooted teeth with minimum curvature (<5 degrees) were selected and divided into two experimental groups, each containing 15 teeth and one positive control group containing 10 teeth. The canals of all the teeth were prepared with rotary RaCe instruments up to #35. In the NaOCl solution group, the root canals were flushed with 2.5% NaOCl solution during instrumentation and in NaOCl gel group, the instruments were coated with gel form of NaOCl and used inside the root canals; then saline was used for root canal irrigation. Finally, 1 mL of 17% EDTA was used to rinse inside the root canals and remained in the root canals for 2 minutes in the both experimental groups; in the saline group, only saline was used for irrigation. The amount of the smear layer was quantified according to the Torabinejad method using a scanning electron microscope. Data were analyzed by the Kruskal-Wallis and Mann-Whitney tests. All the statistical analyses were set with a significance level of alpha = 0.05. There were no significant differences between NaOCl gel and solution forms in the coronal, middle, and apical thirds of root canals. There were significant differences between NaOCl solution and saline groups in the three parts of root canal walls and between NaOCl gel and saline in the coronal, middle, and apical thirds. The use of NaOCl gel can be as effective as NaOCl solution along with EDTA in smear layer removal in the three parts of root canal walls. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Astrocyte Sodium Signalling and Panglial Spread of Sodium Signals in Brain White Matter.

    PubMed

    Moshrefi-Ravasdjani, Behrouz; Hammel, Evelyn L; Kafitz, Karl W; Rose, Christine R

    2017-09-01

    In brain grey matter, excitatory synaptic transmission activates glutamate uptake into astrocytes, inducing sodium signals which propagate into neighboring astrocytes through gap junctions. These sodium signals have been suggested to serve an important role in neuro-metabolic coupling. So far, it is unknown if astrocytes in white matter-that is in brain regions devoid of synapses-are also able to undergo such intra- and intercellular sodium signalling. In the present study, we have addressed this question by performing quantitative sodium imaging in acute tissue slices of mouse corpus callosum. Focal application of glutamate induced sodium transients in SR101-positive astrocytes. These were largely unaltered in the presence of ionotropic glutamate receptors blockers, but strongly dampened upon pharmacological inhibition of glutamate uptake. Sodium signals induced in individual astrocytes readily spread into neighboring SR101-positive cells with peak amplitudes decaying monoexponentially with distance from the stimulated cell. In addition, spread of sodium was largely unaltered during pharmacological inhibition of purinergic and glutamate receptors, indicating gap junction-mediated, passive diffusion of sodium between astrocytes. Using cell-type-specific, transgenic reporter mice, we found that sodium signals also propagated, albeit less effectively, from astrocytes to neighboring oligodendrocytes and NG2 cells. Again, panglial spread was unaltered with purinergic and glutamate receptors blocked. Taken together, our results demonstrate that activation of sodium-dependent glutamate transporters induces sodium signals in white matter astrocytes, which spread within the astrocyte syncytium. In addition, we found a panglial passage of sodium signals from astrocytes to NG2 cells and oligodendrocytes, indicating functional coupling between these macroglial cells in white matter.

  6. Influence of La/W ratio on electrical conductivity of lanthanum tungstate with high La/W ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojo, Gen; Shono, Yohei; Ushiyama, Hiroshi

    The proton-conducting properties of lanthanum tungstates (LWOs) with high La/W ratios were investigated using electrochemical measurements and quantum chemical calculations. Single phases of LWOs with high La/W ratios (6.3≤La/W≤6.7) were synthesized by high-temperature sintering at around 1700 °C. The electrical conductivity of LWO increased with increasing La/W ratio in the single-phase region. The LWO synthesized at the optimum sintering temperature and time, and with the optimum La/W ratio gave the maximum conductivity, i.e., 2.7×10{sup −3} S cm{sup −1} with La/W=6.7 at 500 °C. Density functional theory calculations, using the nudged elastic band method, were performed to investigate the proton diffusionmore » barrier. The results suggest that the proton diffusion paths around La sites have the lowest proton diffusion barrier. These findings improve our understanding of LWO synthesis and the proton-conducting mechanism and provide a strategy for improving proton conduction in LWOs. - Graphical abstract: The LWOs with high La/W ratios were synthesized for the first time. The optimum La/W ratio gave the maximum conductivity with La/W=6.7 at 500 °C. The proton diffusion paths were also considered with density functional theory calculations. - Highlights: • The proton-conducting properties of lanthanum tungstates (LWOs) were investigated. • Single phase LWOs with high La/W ratios (6.3≤La/W≤6.7) were synthesized successfully. • LWOs with the high La/W ratios showed high proton conductivity. • The DFT calculation suggested the lowest proton diffusion barrier in the path around La sites.« less

  7. Calcium intercalation into layered fluorinated sodium iron phosphate

    DOE PAGES

    Lipson, Albert L.; Kim, Soojeong; Pan, Baofei; ...

    2017-10-09

    Here, the energy density and cost of battery systems could be improved by moving to alternative battery chemistries such as Ca-ion. However, in order to switch chemistries many problems need to be solved including the identification of cathode materials with high energy density, and electrolytes that can plate and strip calcium metal. Herein, the feasibility and cycling performance of Ca 2+ intercalation into a desodiated layered Na 2FePO 4F host is described. This is the first demonstration of Ca 2+ intercalation into a polyanionic framework, which implies that other polyanionic framework materials may be active for Ca 2+ intercalation. Althoughmore » substantial effort is still needed to identify a high energy density cathode material, this study and others demonstrate the feasibility of Ca 2+ intercalation into multiple materials making it more probable that such a cathode material can be found.« less

  8. Calcium intercalation into layered fluorinated sodium iron phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipson, Albert L.; Kim, Soojeong; Pan, Baofei

    Here, the energy density and cost of battery systems could be improved by moving to alternative battery chemistries such as Ca-ion. However, in order to switch chemistries many problems need to be solved including the identification of cathode materials with high energy density, and electrolytes that can plate and strip calcium metal. Herein, the feasibility and cycling performance of Ca 2+ intercalation into a desodiated layered Na 2FePO 4F host is described. This is the first demonstration of Ca 2+ intercalation into a polyanionic framework, which implies that other polyanionic framework materials may be active for Ca 2+ intercalation. Althoughmore » substantial effort is still needed to identify a high energy density cathode material, this study and others demonstrate the feasibility of Ca 2+ intercalation into multiple materials making it more probable that such a cathode material can be found.« less

  9. A Theoretical Model for Predicting Residual Stress Generation in Fabrication Process of Double-Ceramic-Layer Thermal Barrier Coating System

    PubMed Central

    Song, Yan; Wu, Weijie; Xie, Feng; Liu, Yilun; Wang, Tiejun

    2017-01-01

    Residual stress arisen in fabrication process of Double-Ceramic-Layer Thermal Barrier Coating System (DCL-TBCs) has a significant effect on its quality and reliability. In this work, based on the practical fabrication process of DCL-TBCs and the force and moment equilibrium, a theoretical model was proposed at first to predict residual stress generation in its fabrication process, in which the temperature dependent material properties of DCL-TBCs were incorporated. Then, a Finite Element method (FEM) has been carried out to verify our theoretical model. Afterwards, some important geometric parameters for DCL-TBCs, such as the thickness ratio of stabilized Zirconia (YSZ, ZrO2-8%Y2O3) layer to Lanthanum Zirconate (LZ, La2Zr2O7) layer, which is adjustable in a wide range in the fabrication process, have a remarkable effect on its performance, therefore, the effect of this thickness ratio on residual stress generation in the fabrication process of DCL-TBCs has been systematically studied. In addition, some thermal spray treatment, such as the pre-heating treatment, its effect on residual stress generation has also been studied in this work. It is found that, the final residual stress mainly comes from the cooling down process in the fabrication of DCL-TBCs. Increasing the pre-heating temperature can obviously decrease the magnitude of residual stresses in LZ layer, YSZ layer and substrate. With the increase of the thickness ratio of YSZ layer to LZ layer, magnitudes of residual stresses arisen in LZ layer and YSZ layer will increase while residual stress in substrate will decrease. PMID:28103275

  10. Layer-by-layer self-assembly of micro-capsules for the magnetic activation of semi-permeable nano-shells

    NASA Astrophysics Data System (ADS)

    Prouty, Malcolm D.

    2007-12-01

    Layer-by-layer (LbL) self-assembly has demonstrated broad perspectives for encapsulating, and the controllable delivery, of drugs. The nano-scale polymer layers have the capability of material protection. Magnetic nanoparticles have great potential to be applied with LbL technology to achieve both "focusing" of the encapsulated drugs to a specific location followed by "switching" them on to release the encapsulated drugs. In this work, Phor21-betaCG(ala), dextran, and dexamethasone were used as model drugs. Encapsulation of these drugs with layer-by-layer self-assembly formed biolnano robotic capsules for controlled delivery and drug release. Silica nanoparticles coated with polyelectrolyte layers of sodium carboxymethyl cellulose (CMC) or gelatin B, along with an oppositely charged peptide drug (Phor2l-betaCG(ala)), were prepared using LbL self-assembly and confirmed using QCM and zeta potential measurements. The peptide drug was assembled as a component of the multilayer walls. The release kinetics of the embedded peptide were determined. Up to 18% of the embedded Phor21-betaCG(ala) was released from the CMC multilayers over a period of 28 hours. The release was based on physiological conditions, and an external control mechanism using magnetic nanoparticles needed to be developed. Magnetic permeability control experiments were setup by applying LbL self-assembly on MnCO3 micro-cores to fabricate polyelectrolyte microcapsules embedded with superparamagnetic gold coated cobalt (Co Au) nanoparticles. An alternating magnetic field was applied to the microcapsules to check for changes in permeability. Permeability experiments were achieved by adding fluorescein isothiocyanate (FITC) labeled dextran to the microcapsule solution. Before an alternating magnetic field was applied, the capsules remained impermeable to the FITC-dextran; however, after an alternating magnetic field was applied for 30 minutes, approximately 99% of the capsules were filled with FITC

  11. The influence of lake water alkalinity and humic substances on particle dispersion and lanthanum desorption from a lanthanum modified bentonite.

    PubMed

    Reitzel, Kasper; Balslev, Kristiane Astrid; Jensen, Henning S

    2017-11-15

    A 12 days laboratory study on potential desorption of Lanthanum (La) from a commercial La modified clay (Phoslock) was conducted using lake water from 17 Danish lakes with alkalinities between 0.02 and 3.7 meq L -1 and varying concentrations of DOC and humic acids (HA's). A similar study was conducted in artificial lake water with alkalinities from 0 to 2.5 meq L -1 in order to exclude interference from dissolved HA's. To test if La in solution (FLa) was associated with fine particles, the water samples were filtered sequentially through three filter sizes (1.2 μm, 0.45 μm and 0.2 μm), and finally, ultracentrifugation was used in an attempt to separate colloidal La from dissolved La. The study showed that higher FLa (up to 2.5 mg L -1 or 14% of the total La in the Phoslock) concentrations were found in soft water lakes compared to hard water lakes, probably due to dispersion of the clay at low alkalinities. In addition, this study showed that HA's seem to increase the FLa concentrations in soft water lakes, most likely through complexation of La retained in the Phoslock matrix. In summary, we conclude that elevated La concentrations in lake water after a Phoslock treatment should only be expected in soft water lakes rich in DOC and HA's. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Pediatric drug formulation of sodium benzoate extended-release granules.

    PubMed

    Combescot, E; Morat, G; de Lonlay, P; Boudy, V

    2016-01-01

    Urea cycle disorders are a group of inherited orphan diseases leading to hyperammonemia. Current therapeutic strategy includes high doses of sodium benzoate leading to three or four oral intakes per day. As this drug is currently available in capsules or in solution, children are either unable to swallow the capsule or reluctant to take the drug due to its strong bitter taste. The objective of the present study was to develop solid, multiparticulate formulations of sodium benzoate, which are suitable for pediatric patients (i.e. flavor-masked, easy to swallow and with a dosing system). Drug layering and coating in a fluidized bed were applied for preparing sustained-release granules. Two types of inert cores (GalenIQ® and Suglets®) and three different polymers (Kollicoat®, Aquacoat® and Eudragit®) were tested in order to select the most appropriate polymer and starter core for our purpose. Physical characteristics and drug release profiles of the pellets were evaluated. A Suglets® core associated with a Kollicoat® coating seems to be the best combination for an extended release of sodium benzoate. A curing period of 8 h was necessary to complete film formation and the resulting drug release pattern was found to be dependent of the acidity of the release medium.

  13. Impact of Sodium Contamination in Tin Sulfide Thin-Film Solar Cells

    DOE PAGES

    Steinmann, Vera; Brandt, Riley E.; Chakraborty, Rupak; ...

    2016-02-12

    Empirical observations show that sodium(Na) is a benign contaminant in some thin-filmsolar cells. Here, we intentionally contaminate thermally evaporated tin sulfide (SnS)thin-films with sodium and measure the SnS absorber properties and solar cellcharacteristics. The carrier concentration increases from 2 × 10 16 cm -3 to 4.3 × 10 17 cm -3 in Na-doped SnSthin-films, when using a 13 nm NaCl seed layer, which is detrimental for SnS photovoltaic applications but could make Na-doped SnS an attractive candidate in thermoelectrics. We observed trends in carrier concentration and found that it is in good agreement with density functional theory calculations, which predictmore » an acceptor-type NaSn defect with low formation energy.« less

  14. Europium-Doped Lanthanum Hafnate Nanoparticles: Structure, Photoluminescence, and Radioluminescence

    NASA Astrophysics Data System (ADS)

    Wahid, Kareem; Pokhrel, Madhab; Mao, Yuanbing

    Due to their novel physical properties, nanostructured phosphors are of interest for radiation-based imaging and therapeutics. Herein, the structural and luminescent properties of europium-doped lanthanum hafnate (La2Hf2O7:xmol%Eu3+, x = 0 - 35) nanoparticles are investigated for use as scintillators. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy confirm samples prepared through a combined co-precipitation and low-temperature molten salt synthetic process homogenously form spherical nanocrystals of 36 nm in the ordered pyrochlore phase. Ultraviolet and X-ray excitation of these samples induce strong red emissions in the 580 - 590 and 612 - 630 nm range corresponding to the 5D0->7 F1 magnetic dipole and 5D0->7 F2 electric dipole transitions of Eu3+. Optical response and quantum yield are optimized at 5% Eu3+; a proposed trade-off between quenching mechanisms (defect-states/cross-relaxation) and dopant concentration is discussed. Owing to their high density, large effective atomic number, and bright luminescence, these La2Hf2O7:xmol%Eu3+ nanoparticles warrant further investigation for scintillator applications. The authors thank the support from the Defense Threat Reduction Agency of the U.S. Department of Defense (award #HDTRA1- 10-1-0114).

  15. Striped lanthanum cobaltite films: how strain orders oxygen defects

    NASA Astrophysics Data System (ADS)

    Birenbaum, Axiel Yael; Biegalski, Michael D.; Qiao, Liang; Cooper, Valentino R.; Borisevich, Albina

    Oxygen-deficient metal cobalt oxides have been widely studied for solid oxide fuel cell cathode applications. In order to predict atomic-scale transport pathways, a thorough understanding of its defect properties is crucial. Previous studies, including Scanning Transmission Electron Microscopy (STEM), demonstrate lanthanum cobaltite, grown as thin films on [100]pc oriented perovskites, spontaneously order its oxygen vacancies. In this work, we investigate the behavior of LaCoO3 - δ thin films grown on SrTiO3 [111] surface to determine if orientation can be used to shape the anisotropy of oxygen transport. For these films, STEM studies reveal ordered vacancy arrangements. We do so by establishing the structural and electronic properties of LaCoO3 - δ on SrTiO3, using ab initio electronic structure calculations. We then treat how epitaxial strain leads to oxygen vacancies forming these distinctive stripe patterns. The impact of different substrates is addressed. In addition, this leads to an opportunity to discuss the effect of reduced symmetry in oxygen deficient compounds on cobalt oxide behavior compared to the ideal perovskite environment. Research was sponsored by the US DoE, Office of Science, BES, MSED, and used resources at NERSC and OLCF.

  16. Multicolor Layer-by-Layer films using weak polyelectrolyte assisted synthesis of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Rivero, Pedro Jose; Goicoechea, Javier; Urrutia, Aitor; Matias, Ignacio Raul; Arregui, Francisco Javier

    2013-10-01

    In the present study, we show that silver nanoparticles (AgNPs) with different shape, aggregation state and color (violet, green, orange) have been successfully incorporated into polyelectrolyte multilayer thin films using the layer-by-layer (LbL) assembly. In order to obtain colored thin films based on AgNPs is necessary to maintain the aggregation state of the nanoparticles, a non-trivial aspect in which this work is focused on. The use of Poly(acrylic acid, sodium salt) (PAA) as a protective agent of the AgNPs is the key element to preserve the aggregation state and makes possible the presence of similar aggregates (shape and size) within the LbLcolored films. This approach based on electrostatic interactions of the polymeric chains and the immobilization of AgNPs with different shape and size into the thin films opens up a new interesting perspective to fabricate multicolornanocomposites based on AgNPs.

  17. Thermal Stability of NaxCrO2 for Rechargeable Sodium Batteries; Studies by High-Temperature Synchrotron X-ray Diffraction.

    PubMed

    Yabuuchi, Naoaki; Ikeuchi, Issei; Kubota, Kei; Komaba, Shinichi

    2016-11-30

    Thermal stability and phase transition processes of NaCrO 2 and Na 0.5 CrO 2 are carefully examined by high-temperature synchrotron X-ray diffraction method. O3-type NaCrO 2 shows anisotropic thermal expansion on heating, which is a common character as layered materials, without phase transition in the temperature range of 27-527 °C. In contrast, for the desodiated phase, in-plane distorted P3-type layered oxide (P'3 Na 0.5 CrO 2 ), phase transition occurs in the following order. Monoclinic distortion associated with Na/vacancy ordering is gradually lost on heating, and its symmetry increases and changes to a rhombohedral lattice at 207 °C. On further heating, phase segregation to two P3 layered metastable phases, which have different interlayer distances (17.0 and 13.5 Å, presumably sodium-rich and sodium-free P3 phases, respectively) are observed on heating to 287-477 °C, but oxygen loss is not observed. Oxygen loss is observed at temperatures only above 500 °C, resulting in the formation of corundum-type Cr 2 O 3 and O3 NaCrO 2 as thermodynamically stable phases. From these results, possibility of Na x CrO 2 as a positive electrode material for safe rechargeable sodium batteries is also discussed.

  18. A Wireless, Passive, Magnetically-soft Harmonic Sensor for Monitoring Sodium Hypochlorite Concentrations in Water

    PubMed Central

    Ong, Keat G.; Paulose, Maggie; Grimes, Craig A.

    2003-01-01

    A wireless, passive, remote-query sensor for monitoring sodium hypochlorite (bleach) solutions is reported. The sensor is comprised of a magnetically-soft ferromagnetic ribbon, coated with a layer of polyurethane and alumina, having a large and nonlinear permeability that supports higher-order harmonics in response to a time varying magnetic field. The hypochlorite ions induce swelling in the coating, with the resultant stress altering the harmonic signature of the sensor from which the sodium hypochlorite concentration can be determined. The wireless, passive nature of the sensor platform enables long-term monitoring of bleach concentrations in the environment. The sensor platform can be extended to other chemical analytes of interest as desired.

  19. A reversible phase transition for sodium insertion in anatase TiO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Fukunishi, Mika; Morgan, Benjamin J.

    Anatase TiO 2 is a potential negative electrode for sodium-ion batteries. The sodium storage mechanism is, however, still under debate, yet its comprehension is required to optimize the electrochemical properties. To clarify the sodium storage mechanism occurring in anatase, we have used both electrochemical and chemical routes from which we obtained similar trends. During the first discharge, an irreversible plateau region is observed which corresponds to the insertion of Na+ within the interstitial sites of anatase and is accompanied by a drastic loss of the long-range order as revealed by X-ray diffraction, high resolution of high angle annular dark-field scanningmore » transmission electron microscope (HAADF-STEM), and pair distribution function (PDF) analysis. Further structural analysis of the total scattering data indicates that the sodiated phase displays a layered-like rhombohedral R3m structure built from the stacking of Ti and Na slabs. Because of the initial 3D network of anatase, the reduced phase shows strong disorder due to cationic intermixing between the Ti and Na slabs and the refined chemical formula is (Na 0.43Ti 0.57) 3a 0.22Na 0.39Ti 0.39) 3bO 2, where refers to vacancy. The presence of high valence Ti ions in the Na layers induces a contraction of the c-parameter as compared to the ordered phase. Upon desodiation, the structure further amorphized and the local structure probed by PDF is shown to be similar to the anatase TiO 2, suggesting that the 3D network is recovered. The reversible sodium insertion/deinsertion is thus attributed to the rhombohedral active phase formed during the first discharge, and an oxidized phase featuring the local structure of anatase. Due to the amorphous nature of the two phases, the potential-composition curves are characterized by a sloping curve. Lastly, a comparison between the intercalation of lithium and sodium into anatase TiO 2 performed by DFT calculations confirmed that, for the sodiated phase, the

  20. A reversible phase transition for sodium insertion in anatase TiO 2

    DOE PAGES

    Li, Wei; Fukunishi, Mika; Morgan, Benjamin J.; ...

    2017-02-07

    Anatase TiO 2 is a potential negative electrode for sodium-ion batteries. The sodium storage mechanism is, however, still under debate, yet its comprehension is required to optimize the electrochemical properties. To clarify the sodium storage mechanism occurring in anatase, we have used both electrochemical and chemical routes from which we obtained similar trends. During the first discharge, an irreversible plateau region is observed which corresponds to the insertion of Na+ within the interstitial sites of anatase and is accompanied by a drastic loss of the long-range order as revealed by X-ray diffraction, high resolution of high angle annular dark-field scanningmore » transmission electron microscope (HAADF-STEM), and pair distribution function (PDF) analysis. Further structural analysis of the total scattering data indicates that the sodiated phase displays a layered-like rhombohedral R3m structure built from the stacking of Ti and Na slabs. Because of the initial 3D network of anatase, the reduced phase shows strong disorder due to cationic intermixing between the Ti and Na slabs and the refined chemical formula is (Na 0.43Ti 0.57) 3a 0.22Na 0.39Ti 0.39) 3bO 2, where refers to vacancy. The presence of high valence Ti ions in the Na layers induces a contraction of the c-parameter as compared to the ordered phase. Upon desodiation, the structure further amorphized and the local structure probed by PDF is shown to be similar to the anatase TiO 2, suggesting that the 3D network is recovered. The reversible sodium insertion/deinsertion is thus attributed to the rhombohedral active phase formed during the first discharge, and an oxidized phase featuring the local structure of anatase. Due to the amorphous nature of the two phases, the potential-composition curves are characterized by a sloping curve. Lastly, a comparison between the intercalation of lithium and sodium into anatase TiO 2 performed by DFT calculations confirmed that, for the sodiated phase, the

  1. Final report on the safety assessment of potassium silicate, sodium metasilicate, and sodium silicate.

    PubMed

    Elmore, Amy R

    2005-01-01

    Potassium Silicate, Sodium Metasilicate, and Sodium Silicate combine metal cations with silica to form inorganic salts used as corrosion inhibitors in cosmetics. Sodium Metasilicate also functions as a chelating agent and Sodium Silicate as a buffering and pH adjuster. Sodium Metasilicate is currently used in 168 formulations at concentrations ranging from 13% to 18%. Sodium Silicate is currently used in 24 formulations at concentrations ranging from 0.3% to 55%. Potassium Silicate and Sodium Silicate have been reported as being used in industrial cleaners and detergents. Sodium Metasilicate is a GRAS (generally regarded as safe) food ingredient. Aqueous solutions of Sodium Silicate species are a part of a chemical continuum of silicates based on an equilibrium of alkali, water, and silica. pH determines the solubility of silica and, together with concentration, determines the degree of polymerization. Sodium Silicate administered orally is readily absorbed from the alimentary canal and excreted in the urine. The toxicity of these silicates has been related to the molar ratio of SiO2/Na2O and the concentration being used. The Sodium Metasilicate acute oral LD50 ranged from 847 mg/kg in male rats to 1349.3 mg/kg in female rats and from 770 mg/kg in female mice to 820 mg/kg in male mice. Gross lesions of variable severity were found in the oral cavity, pharynx, esophagus, stomach, larynx, lungs, and kidneys of dogs receiving 0.25 g/kg or more of a commercial detergent containing Sodium Metasilicate; similar lesions were also seen in pigs administered the same detergent and dose. Male rats orally administered 464 mg/kg of a 20% solution containing either 2.0 or 2.4 to 1.0 ratio of sodium oxide showed no signs of toxicity, whereas doses of 1000 and 2150 mg/kg produced gasping, dypsnea, and acute depression. Dogs fed 2.4 g/kg/day of Sodium Silicate for 4 weeks had gross renal lesions but no impairment of renal function. Dermal irritation of Potassium Silicate, Sodium

  2. Lowest neonatal serum sodium predicts sodium intake in low birth weight children.

    PubMed

    Shirazki, Adi; Weintraub, Zalman; Reich, Dan; Gershon, Edith; Leshem, Micah

    2007-04-01

    Forty-one children aged 10.5 +/- 0.2 years (range, 8.0-15.0 yr), born with low birth weight of 1,218.2 +/- 36.6 g (range, 765-1,580 g) were selected from hospital archives on the basis of whether they had received neonatal diuretic treatment or as healthy matched controls. The children were tested for salt appetite and sweet preference, including rating of preferred concentration of salt in tomato soup (and sugar in tea), ratings of oral spray (NaCl and sucrose solutions), intake of salt or sweet snack items, and a food-seasoning, liking, and dietary questionnaire. Results showed that sodium appetite was not related to neonatal diuretic treatment, birth weight, or gestational age. However, there was a robust inverse correlation (r = -0.445, P < 0.005) between reported dietary sodium intake and the neonatal lowest serum sodium level (NLS) recorded for each child as an index of sodium loss. The relationship of NLS and dietary sodium intake was found in both boys and girls and in both Arab and Jewish children, despite marked ethnic differences in dietary sources of sodium. Hence, low NLS predicts increased intake of dietary sodium in low birth weight children some 8-15 yr later. Taken together with other recent evidence, it is now clear that perinatal sodium loss, from a variety of causes, is a consistent and significant contributor to long-term sodium intake.

  3. Injection of beef strip loins with solutions containing sodium tripolyphosphate, sodium lactate, and sodium chloride to enhance palatability.

    PubMed

    Vote, D J; Platter, W J; Tatum, J D; Schmidt, G R; Belk, K E; Smith, G C; Speer, N C

    2000-04-01

    Beef strip loins (46 U.S. Choice loins and 49 U.S. Select loins) were used to evaluate the potential for enhancing beef tenderness, juiciness, and flavor by injecting fresh cuts with solutions containing sodium tripolyphosphate, sodium lactate, and sodium chloride. One half of each loin served as an untreated control, and the other half was injected with either distilled water (110% of raw weight) or a solution containing phosphate/lactate/chloride solution (107.5, 110, 112.5, or 115% of raw weight). All phosphate/lactate/chloride solutions were formulated to produce injected product concentrations of .25% sodium tripolyphosphate, .5% sodium chloride, and 2.5% sodium lactate. Ten additional U.S. Select loins were injected to 110% of raw weight with a phosphate-only solution (final product concentration of .25% sodium tripolyphosphate) for comparison with Select loins injected to 110% with phosphate/lactate/chloride and with distilled water. Steaks from each control and treated loin section were cooked to two final internal temperatures (66 degrees C and 77 degrees C) for sensory panel evaluation and shear force measurement. Injection of subprimal cuts with phosphate/lactate/chloride solutions improved tenderness (P < .05), juiciness (P < .05), and cooked beef flavor (P < .10) of strip loin steaks and was especially effective for maintaining tenderness and juiciness of steaks cooked to the higher final internal temperature. Injection of Select loins with a solution containing only sodium tripolyphosphate was not effective for improving beef tenderness or juiciness and tended to impart off-flavors characterized by sensory panelists as soapy and sour. Injection of fresh cuts with phosphate/lactate/chloride solutions could assist the beef industry's efforts to improve product quality and consistency.

  4. Calcium intercalation into layered fluorinated sodium iron phosphate

    NASA Astrophysics Data System (ADS)

    Lipson, Albert L.; Kim, Soojeong; Pan, Baofei; Liao, Chen; Fister, Timothy T.; Ingram, Brian J.

    2017-11-01

    The energy density and cost of battery systems, relative to the current state-of-the art, can be improved by developing alternative chemistries utilizing multivalent working ions such as calcium. Many challenges must be overcome, such as the identification of cathode materials with high energy density and an electrolyte with a wide electrochemical stability window that can plate and strip calcium metal, before market implementation. Herein, the feasibility and cycling performance of Ca2+ intercalation into a desodiated layered Na2FePO4F host is described. This is the first demonstration of Ca2+ intercalation into a polyanionic framework, which implies that other polyanionic framework materials may be active for Ca2+ intercalation. Although substantial effort is expected in order to develop a high energy density cathode material, this study demonstrates the feasibility of Ca2+ intercalation into multiple host structures types, thereby extending opportunities for development of Ca insertion host structures, suggesting such a cathode material can be identified and developed.

  5. Mechanical Properties of Layered La2Zr2O7 Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Guo, Xingye; Li, Li; Park, Hyeon-Myeong; Knapp, James; Jung, Yeon-Gil; Zhang, Jing

    2018-04-01

    Lanthanum zirconate (La2Zr2O7) has been proposed as a promising thermal barrier coating (TBC) material due to its low thermal conductivity and high stability at high temperatures. In this work, both single and double-ceramic-layer (DCL) TBC systems of La2Zr2O7 and 8 wt.% yttria-stabilized zirconia (8YSZ) were prepared using air plasma spray (APS) technique. The thermomechanical properties and microstructure were investigated. Thermal gradient mechanical fatigue (TGMF) tests were applied to investigate the thermal cycling performance. The results showed that DCL La2Zr2O7 + 8YSZ TBC samples lasted fewer cycles compared with single-layered 8YSZ TBC samples in TGMF tests. This is because DCL La2Zr2O7 TBC samples had higher residual stress during the thermal cycling process, and their fracture toughness was lower than that of 8YSZ. Bond strength test results showed that 8YSZ TBC samples had higher bond strength compared with La2Zr2O7. The erosion rate of La2Zr2O7 TBC samples was higher than that of 8YSZ samples, due to the lower critical erodent velocity and fracture toughness of La2Zr2O7. DCL porous 8YSZ + La2Zr2O7 had a lower erosion rate than other SCL and DCL La2Zr2O7 coatings, suggesting that porous 8YSZ serves as a stress-relief buffer layer.

  6. Lanthanum manganite-based air electrode for solid oxide fuel cells

    DOEpatents

    Ruka, R.J.; Kuo, L.; Li, B.

    1999-06-29

    An air electrode material for a solid oxide fuel cell is disclosed. The electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO[sub 3]. The A-site of the air electrode material preferably comprises La, Ca, Ce and at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd. The B-site of the electrode material comprises Mn with substantially no dopants. The ratio of A:B is preferably slightly above 1. A preferred air electrode composition is of the formula La[sub w]Ca[sub x]Ln[sub y]Ce[sub z]MnO[sub 3], wherein Ln comprises at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd, w is from about 0.55 to about 0.56, x is from about 0.255 to about 0.265, y is from about 0.175 to about 0.185, and z is from about 0.005 to about 0.02. The air electrode material possesses advantageous chemical and electrical properties as well as favorable thermal expansion and thermal cycle shrinkage characteristics. 10 figs.

  7. Synthesis and characterization of sodium vanadium oxide gels: the effects of water (n) and sodium (x) content on the electrochemistry of Na(x)V2O5·nH2O.

    PubMed

    Lee, Chia-Ying; Marschilok, Amy C; Subramanian, Aditya; Takeuchi, Kenneth J; Takeuchi, Esther S

    2011-10-28

    Sodium vanadium oxide gels, Na(x)V(2)O(5)·nH(2)O, of varying sodium content (0.12 < x < 0.32) were prepared by careful control of an ion exchange process. The water content (0.23 > n > 0.01) and interlayer spacing were found to be inversely proportional to the sodium level (x), thus control of sodium (x) content provided a direct, chimie douce approach for control of hydration level (n) and interlayer spacing, without the need for high temperature treatment to affect dehydration. Notably, the use of high temperatures to modify hydration levels can result in crystallization and collapse of the interlayer structure, highlighting the distinct advantage of our novel chimie douce synthesis strategy. Subsequent to synthesis and characterization, results from an electrochemical study of a series of Na(x)V(2)O(5)·nH(2)O samples highlight the significant impact of interlayer water on delivered capacity of the layered materials. Specifically, the sodium vanadium oxide gels with higher sodium content and lower water content provided higher capacities in lithium based cells, where capacity delivered to 2.0 V under C/20 discharge ranged from 170 mAh/g for Na(0.12)V(2)O(5)·0.23H(2)O to 300 mAh/g for Na(0.32)V(2)O(5)·0.01H(2)O. The capacity differences were maintained as the cells were cycled. This journal is © the Owner Societies 2011

  8. Sodium-ion batteries: present and future.

    PubMed

    Hwang, Jang-Yeon; Myung, Seung-Taek; Sun, Yang-Kook

    2017-06-19

    Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

  9. Reduced conductivity and enhancement of Debye orientational polarization in lanthanum doped cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Rahman, Atta ur; Rafiq, M. A.; Karim, S.; Maaz, K.; Siddique, M.; Hasan, M. M.

    2011-12-01

    In this work we have investigated the conductivity and dielectric properties of CoLaxFe2-xO4 (x=0.0, 0.03, 0.05, and 0.07) nanoparticles synthesized by chemical co-precipitation route. X-ray diffraction analysis confirms the inverse spinal structure of nanoparticles with slight increase in the lattice constant as La concentration increases. Transmission electron microscopy shows spherical nanoparticles with sizes of ∼20 nm. Impedance spectroscopy of the samples was performed in the frequency range 20 Hz-2 MHz at room temperature. The resistance of the grains and grain boundaries was found to increase with lanthanum concentration while the AC conductivity of the samples was observed to decrease with increasing La concentration. Dipolar orientational polarization was found to play an important role in determining dielectric properties of the samples.

  10. Sodium balance in hemodialysis therapy.

    PubMed

    Kooman, Jeroen P; van der Sande, Frank; Leunissen, Karel; Locatelli, Francesco

    2003-01-01

    Water and sodium overload is the predominant factor in the pathogenesis of hypertension in dialysis patients. In many dialysis patients, dry weight is not reached because of an imbalance between the interdialytic accumulation of water and sodium and the brief and discontinuous nature of routine dialysis therapy. During dialysis, sodium is removed by convection and to a lesser degree by diffusion. However, with supraphysiologic dialysate sodium concentrations, diffusive influx from dialysate may occur, especially in patients with low predialytic plasma sodium concentrations. Measuring sodium removal during dialysis is difficult and hampered by the variability in conventional sodium measurements. Ionic mass removal by continuous measurement of conductivity in the dialysate ports appears to be a promising tool for the approximation of sodium removal during dialysis. While the beneficial effects of concomitant water and sodium removal on blood pressure control in dialysis patients are undisputed, it is less well known whether a change in hydrosodium balance solely by reducing dialysate sodium is beneficial. Considering the inherent dangers of such an approach (intradialytic hemodynamic instability), the beneficial effects of strict dietary sodium restriction appear to be of much larger clinical benefit. It has become possible to individualize dialysate sodium concentration by means of online measurements of plasma conductivity and adjustment of dialysate conductivity by feedback technologies. The clinical benefits of this approach deserve further study. Still, reducing dietary sodium intake remains the most important tool in improving blood control in dialysis patients.

  11. Hydrophobic forces in the foam films stabilized by sodium dodecyl sulfate: effect of electrolyte.

    PubMed

    Wang, Liguang; Yoon, Roe-Hoan

    2004-12-21

    Further studies of the hydrophobic force in foam films were carried out, including the effect of added inorganic electrolyte. We used a thin film balance of Scheludko-Exerowa type to obtain the disjoining pressure isotherms of the foam films stabilized by 10(-4) M sodium dodecyl sulfate in varying concentrations of sodium chloride. The results were compared with the disjoining pressure isotherms predicted from the extended Derjaguin-Landau-Verwey-Overbeek theory, which considers contributions from hydrophobic force in addition to those from double layer and van der Waals dispersion forces. The double layer forces were calculated from the surface potentials (psi s) obtained using the Gibbs adsorption equation and corrected for the counterion binding effect, while the dispersion forces were calculated using the Hamaker constant (A232) of 3.7 x 10(-20) J. The hydrophobic forces were calculated from the equilibrium film thickness as described previously. The predicted disjoining pressure isotherms were in good agreement with the experimental ones. It was found that the hydrophobic force is dampened substantially by the added electrolyte.

  12. Low-Sodium Versus Standard-Sodium Peritoneal Dialysis Solution in Hypertensive Patients: A Randomized Controlled Trial.

    PubMed

    Rutkowski, Bolesław; Tam, Paul; van der Sande, Frank M; Vychytil, Andreas; Schwenger, Vedat; Himmele, Rainer; Gauly, Adelheid

    2016-05-01

    Peritoneal dialysis (PD) solutions with reduced sodium content may have advantages for hypertensive patients; however, they have lower osmolarity and solvent drag, so the achieved Kt/Vurea may be lower. Furthermore, the increased transperitoneal membrane sodium gradient can influence sodium balance with consequences for blood pressure (BP) control. Prospective, randomized, double-blind clinical trial to prove the noninferiority of total weekly Kt/Vurea with low-sodium versus standard-sodium PD solution, with the lower confidence limit above the clinically accepted difference of -0.5. Hypertensive patients (≥ 1 antihypertensive drug, including diuretics, or office systolic BP ≥ 130 mmHg) on continuous ambulatory PD therapy from 17 sites. 108 patients were randomly assigned (1:1) to 6-month treatments with either low-sodium (125 mmol/L of sodium; 1.5%, 2.3%, or 4.25% glucose; osmolarity, 338-491 mOsm/L) or standard-sodium (134 mmol/L of sodium; 1.5%, 2.3%, or 4.25% glucose; osmolarity, 356-509 mOsm/L) PD solution. Primary end point: weekly total Kt/Vurea; secondary outcomes: BP control, safety, and tolerability. Total Kt/Vurea was determined from 24-hour dialysate and urine collection; BP, by office measurement. Total Kt/Vurea after 12 weeks was 2.53 ± 0.89 in the low-sodium group (n = 40) and 2.97 ± 1.58 in the control group (n = 42). The noninferiority of total Kt/Vurea could not be confirmed. There was no difference for peritoneal Kt/Vurea (1.70 ± 0.38 with low sodium, 1.77 ± 0.44 with standard sodium), but there was a difference in renal Kt/Vurea (0.83 ± 0.80 with low sodium, 1.20 ± 1.54 with standard sodium). Mean daily sodium removal with dialysate at week 12 was 1.188 g higher in the low-sodium group (P < 0.001). BP changed marginally with standard-sodium solution, but decreased with low-sodium PD solution, resulting in less antihypertensive medication. Broader variability of study population than anticipated, particularly regarding residual kidney

  13. Reorientation of the ‘free OH’ group in the top-most layer of air/water interface of sodium fluoride aqueous solution probed with sum-frequency generation vibrational spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Ran-Ran; Guo, Yuan; Wang, Hongfei

    2014-09-17

    Many experimental and theoretical studies have established the specific anion, as well as cation effects on the hydrogen-bond structures at the air/water interface of electrolyte solutions. However, the ion effects on the top-most layer of the air/water interface, which is signified by the non-hydrogen-bonded so-called ‘free O-H’ group, has not been discussed or studied. In this report, we present the measurement of changes of the orientational angle of the ‘free O-H’ group at the air/water interface of the sodium fluoride (NaF) solutions at different concentrations using the interface selective sum-frequency generation vibrational spectroscopy (SFG-VS) in the ssp and ppp polarizations.more » The polarization dependent SFG-VS results show that the average tilt angle of the ‘free O-H’ changes from about 35.3 degrees ± 0.5 degrees to 43.4 degrees ± 2.1degrees as the NaF concentration increase from 0 to 0.94M (nearly saturated). Such tilt angle change is around the axis of the other O-H group of the same water molecule at the top-most layer at the air/water interface that is hydrogen-bonded to the water molecules below the top-most layer. These results provide quantitative molecular details of the ion effects of the NaF salt on the structure of the water molecules at the top-most layer of the air/water interfacial, even though both the Na+ cation and the F- anion are believed to be among the most excluded ions from the air/water interface.« less

  14. Microwave absorption in substances that form hydration layers with water

    NASA Astrophysics Data System (ADS)

    Garner, H. R.; Ohkawa, T.; Tuason, O.; Lee, R. L.

    1990-12-01

    The microwave absorption of certain water soluble polymers (polyethylene glycol, polyvinyl pyrrolidone, proteins, and DNA) in solution is composed of three parts: absorption in the free water, absorption in the substance, and absorption in the hydration layer. Ethanol, sucrose, glycerol, and sodium acetate, which form weak hydrogen bonds or have an ionic nature in aqueous solutions, also have microwave absorption signatures similar to polymers that form hydration layers. The frequency-dependent absorption of the free water and of the hydration layer water is described by a simple Debye relaxation model. The absorption per unit sample volume attributable to the hydration layer is solute concentration dependent, and a simple model is used to describe the dependence. The hydration-layer relaxation time was found to vary from substance to substance and with solute concentration. The relaxation time was also found to be independent of solute length.

  15. Fractional excretion of sodium

    MedlinePlus

    FE sodium; FENa ... a lab. There, they are examined for salt (sodium) and creatinine levels. Creatinine is a chemical waste ... Chernecky CC, Berger BJ. Excretion fraction of filtered sodium-blood and urine. In: Chernecky CC, Berger BJ, ...

  16. Concordance of dietary sodium intake and concomitant phosphate load: Implications for sodium interventions.

    PubMed

    Humalda, J K; Keyzer, C A; Binnenmars, S H; Kwakernaak, A J; Slagman, M C J; Laverman, G D; Bakker, S J L; de Borst, M H; Navis, G J

    2016-08-01

    Both a high dietary sodium and high phosphate load are associated with an increased cardiovascular risk in patients with chronic kidney disease (CKD), and possibly also in non-CKD populations. Sodium and phosphate are abundantly present in processed food. We hypothesized that (modulation of) dietary sodium is accompanied by changes in phosphate load across populations with normal and impaired renal function. We first investigated the association between sodium and phosphate load in 24-h urine samples from healthy controls (n = 252), patients with type 2 diabetes mellitus (DM, n = 255) and renal transplant recipients (RTR, n = 705). Secondly, we assessed the effect of sodium restriction on phosphate excretion in a nondiabetic CKD cohort (ND-CKD: n = 43) and a diabetic CKD cohort (D-CKD: n = 39). Sodium excretion correlated with phosphate excretion in healthy controls (R = 0.386, P < 0.001), DM (R = 0.490, P < 0.001), and RTR (R = 0.519, P < 0.001). This correlation was also present during regular sodium intake in the intervention studies (ND-CKD: R = 0.491, P < 0.001; D-CKD: R = 0.729, P < 0.001). In multivariable regression analysis, sodium excretion remained significantly correlated with phosphate excretion after adjustment for age, gender, BMI, and eGFR in all observational cohorts. In ND-CKD and D-CKD moderate sodium restriction reduced phosphate excretion (31 ± 10 to 28 ± 10 mmol/d; P = 0.04 and 26 ± 11 to 23 ± 9 mmol/d; P = 0.02 respectively). Dietary exposure to sodium and phosphate are correlated across the spectrum of renal function impairment. The concomitant reduction in phosphate intake accompanying sodium restriction underlines the off-target effects on other nutritional components, which may contribute to the beneficial cardiovascular effects of sodium restriction. (f) Registration numbers: Dutch Trial Register NTR675, NTR2366. Copyright © 2016. Published by Elsevier B.V.

  17. Lanthanum Tricyanide-Catalyzed Acyl Silane-Ketone Benzoin Additions and Kinetic Resolution of Resultant α-Silyloxyketones

    PubMed Central

    Tarr, James C.

    2010-01-01

    We report the full account of our efforts on the lanthanum tricyanide-catalyzed acyl silane-ketone benzoin reaction. The reaction exhibits a wide scope in both acyl silane (aryl, alkyl) and ketone (aryl-alkyl, alkyl-alkyl, aryl-aryl, alkenyl-alkyl, alkynyl-alkyl) coupling partners. The diastereoselectivity of the reaction has been examined in both cyclic and acyclic systems. Cyclohexanones give products arising from equatorial attack by the acyl silane. The diastereoselectivity of acyl silane addition to acyclic α-hydroxy ketones can be controlled by varying the protecting group to obtain either Felkin-Ahn or chelation control. The resultant α-silyloxyketone products can be resolved with selectivity factors from 10 to 15 by subjecting racemic ketone benzoin products to CBS reduction. PMID:20392127

  18. Lanthanum tricyanide-catalyzed acyl silane-ketone benzoin additions and kinetic resolution of resultant alpha-silyloxyketones.

    PubMed

    Tarr, James C; Johnson, Jeffrey S

    2010-05-21

    We report the full account of our efforts on the lanthanum tricyanide-catalyzed acyl silane-ketone benzoin reaction. The reaction exhibits a wide scope in both acyl silane (aryl, alkyl) and ketone (aryl-alkyl, alkyl-alkyl, aryl-aryl, alkenyl-alkyl, alkynyl-alkyl) coupling partners. The diastereoselectivity of the reaction has been examined in both cyclic and acyclic systems. Cyclohexanones give products arising from equatorial attack by the acyl silane. The diastereoselectivity of acyl silane addition to acyclic alpha-hydroxy ketones can be controlled by varying the protecting group to obtain either Felkin-Ahn or chelation control. The resultant alpha-silyloxyketone products can be resolved with selectivity factors from 10 to 15 by subjecting racemic ketone benzoin products to CBS reduction.

  19. Intracavity frequency doubling of a continuous-wave, diode-laser-pumped neodymium lanthanum scandium borate laser.

    PubMed

    Meyn, J P; Huber, G

    1994-09-15

    Neodymium-doped lanthanum scandium borate [Nd:LaSc(3)(BO(3))(4)] is a new material for efficient and compact diode-pumped solid-state lasers. A simple plane-plane 3-mm-long resonator is formed by a coated Nd(10%):LaSc(3)(BO(3))(4) crystal and a coated potassium titanyl phosphate (KTP) crystal. The second-harmonic output power at 531 nm is 522 mW at 2.05-W incident pump power of the diode laser. The corresponding optical efficiency is 25%, and the conversion efficiency from the fundamental to the second harmonic is 55%. The wellknown chaotic power fluctuations of intracavity frequency-doubled lasers (green problem) are avoided by use of a short KTP crystal, between 0.5 and 2 mm in length.

  20. Formation mechanism and characteristics of lanthanum-doped BaTiO{sub 3} powders and ceramics prepared by the sol–gel process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ianculescu, Adelina Carmen; Vasilescu, Catalina Andreea, E-mail: katyvasilescu85@yahoo.com; National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG54, 077125 Magurele

    2015-08-15

    Pure and lanthanum-doped barium titanate nanopowders described by two different formulae, as Ba{sub 1−x}La{sub x}TiO{sub 3}, for lower La concentrations (0 ≤ x ≤ 0.005) and Ba{sub 1−x}La{sub x}Ti{sub 1−x/4}O{sub 3} for higher La concentration (x = 0.025) were prepared by an alkoxide sol–gel method. Single phase compositions were obtained after annealing at 900 °C for 2 h, in air. The increase of the lanthanum content causes structural and morphological changes in the oxide powders, including the evolution of the unit cell from tetragonal toward a cubic symmetry, the particle size decrease and a higher aggregation tendency. SEM investigations ofmore » the ceramics sintered at 1300 °C for 4 h indicate significant changes of the microstructural features (strong decrease of the average grain size and increase of the intergranular porosity) with the raise of La amount. Lanthanum addition to barium titanate prepared by sol–gel induces a more significant shift of the Curie temperature toward lower values, than that one reported in literature for ceramics of similar compositions, but processed by the conventional solid state method. The compositions with smaller La amount (x ≤ 0.005) show semiconducting properties at room temperature and high relative dielectric permittivity values, while the undoped ceramics and those doped with higher La content (x = 0.025) are good dielectrics. The ceramic with x = 0.025 exhibits acceptable low losses, a very diffuse ferroelectric–paraelectric transition and Curie temperature closed to the room temperature, being thus susceptible for high tunability applications. - Highlights: • Ba{sub 1−x}La{sub x}TiO{sub 3} (x ≤ 0.005) and Ba{sub 1−x}La{sub x}Ti{sub 1−x/4}O{sub 3} (x = 0.025) were prepared by sol–gel. • Ceramics with x < 0.5 exhibit semiconductor and high dielectric properties. • Ceramic with x = 0.025 exhibits acceptable low losses and diffuse phase transition.« less

  1. Multicolor Layer-by-Layer films using weak polyelectrolyte assisted synthesis of silver nanoparticles

    PubMed Central

    2013-01-01

    In the present study, we show that silver nanoparticles (AgNPs) with different shape, aggregation state and color (violet, green, orange) have been successfully incorporated into polyelectrolyte multilayer thin films using the layer-by-layer (LbL) assembly. In order to obtain colored thin films based on AgNPs is necessary to maintain the aggregation state of the nanoparticles, a non-trivial aspect in which this work is focused on. The use of Poly(acrylic acid, sodium salt) (PAA) as a protective agent of the AgNPs is the key element to preserve the aggregation state and makes possible the presence of similar aggregates (shape and size) within the LbLcolored films. This approach based on electrostatic interactions of the polymeric chains and the immobilization of AgNPs with different shape and size into the thin films opens up a new interesting perspective to fabricate multicolornanocomposites based on AgNPs. PMID:24148227

  2. Ion transport in proximal colon of the rat. Sodium depletion stimulates neutral sodium chloride absorption.

    PubMed Central

    Foster, E S; Budinger, M E; Hayslett, J P; Binder, H J

    1986-01-01

    The model of sodium and chloride transport proposed for the colon is based on studies performed in the distal segment and tacitly assumes that ion transport is similar throughout the colon. In rat distal colon, neutral sodium-chloride absorption accounts for the major fraction of overall sodium absorption and aldosterone stimulates electrogenic, amiloride-sensitive sodium absorption. Since we have demonstrated qualitative differences in potassium transport in proximal and distal segments of rat colon, unidirectional 22Na and 36Cl fluxes were performed under short-circuit conditions across isolated proximal colon of control and sodium-depleted rats with secondary hyperaldosteronism. In the control group, net sodium absorption (JNanet) (7.4 +/- 0.5 mu eq/h . cm2) was greater than Isc (1.4 +/- 0.1 mu eq/h . cm2), and JClnet was 0 in Ringer solution. Residual flux (JR) was -5.2 +/- 0.5 mu eq/h . cm2 consistent with hydrogen ion secretion suggesting that neutral sodium absorption may represent sodium-hydrogen exchange. 1 mM mucosal amiloride, which inhibits sodium-hydrogen exchange in other epithelia, produced comparable decreases in JNanet and JR (4.1 +/- 0.6 and 3.2 +/- 0.6 mu eq/h . cm2, respectively) without a parallel fall in Isc. Sodium depletion stimulated JNanet, JClnet, and Isc by 7.0 +/- 1.4, 6.3 +/- 1.9, and 0.8 +/- 0.2 mu eq/h . cm2, respectively, and 1 mM amiloride markedly inhibited JNanet and JClnet by 6.0 +/- 1.1 and 4.0 +/- 1.6 mu eq/h . cm2, respectively, with only a minimal reduction in Isc. Conclusions: the predominant neutral sodium-absorptive mechanism in proximal colon is sodium-hydrogen exchange. Sodium depletion stimulates electroneutral chloride-dependent sodium absorption (most likely as a result of increasing sodium-hydrogen and chloride-bicarbonate exchanges), not electrogenic chloride-independent sodium transport. The model of ion transport in the proximal colon is distinct from that of the distal colon. PMID:2418060

  3. An O3-type Oxide with Low Sodium Content as the Phase-Transition-Free Anode for Sodium-Ion Batteries.

    PubMed

    Zhao, Chenglong; Avdeev, Maxim; Chen, Liquan; Hu, Yong-Sheng

    2018-06-11

    Layered transition metal oxides Na x MO 2 (M=transition metal) with P2 or O3 structure have attracted attention in sodium-ion batteries (NIBs). A universal law is found to distinguish structural competition between P2 and O3 types based on the ratio of interlayer distances of the alkali metal layer d (O-Na-O) and transition-metal layer d (O-M-O) . The ratio of about 1.62 can be used as an indicator. O3-type Na 0.66 Mg 0.34 Ti 0.66 O 2 oxide is prepared as a stable anode for NIBs, in which the low Na-content (ca. 0.66) usually undergoes a P2-type structure with respect to Na x MO 2 . This material delivers an available capacity of about 98 mAh g -1 within a voltage range of 0.4-2.0 V and exhibits a better cycling stability (ca. 94.2 % of capacity retention after 128 cycles). In situ X-ray diffraction reveals a single-phase reaction in the discharge-charge process, which is different from the common phase transitions reported in O3-type electrodes, ensuring long-term cycling stability. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Transglutaminase catalyzed cross-linking of sodium caseinate improves oxidative stability of flaxseed oil emulsion.

    PubMed

    Ma, Hairan; Forssell, Pirkko; Kylli, Petri; Lampi, Anna-Maija; Buchert, Johanna; Boer, Harry; Partanen, Riitta

    2012-06-20

    Sodium caseinate was modified by transglutaminase catalyzed cross-linking reaction prior to the emulsification process in order to study the effect of cross-linking on the oxidative stability of protein stabilized emulsions. The extent of the cross-linking catalyzed by different dosages of transglutaminase was investigated by following the ammonia production during the reaction and using SDS-PAGE gel. O/W emulsions prepared with the cross-linked and non-cross-linked sodium caseinates were stored for 30 days under the same conditions. Peroxide value measurement, oxygen consumption measurement, and headspace gas chromatography analysis were used to study the oxidative stability of the emulsions. The emulsion made of the cross-linked sodium caseinate showed an improved oxidative stability with reduced formation of fatty acid hydroperoxides and volatiles and a longer period of low rate oxygen consumption. The improving effect of transglutaminase catalyzed cross-linking could be most likely attributed to the enhanced physical stability of the interfacial protein layer against competitive adsorption by oil oxidation products.

  5. Layer-by-layer composite film of nickel phthalocyanine and montmorillonite clay for synergistic effect on electrochemical detection of dopamine

    NASA Astrophysics Data System (ADS)

    de Lucena, Nathalia C.; Miyazaki, Celina M.; Shimizu, Flávio M.; Constantino, Carlos J. L.; Ferreira, Marystela

    2018-04-01

    Dopamine (DA) abnormal levels are related to diseases which makes important the development of fast, reliable, low-cost and sensitive devices for diagnosis and pharmaceutical controls. Nanostructured film composite of sodium montmorillonite clay (Na+MMT) and nickel phthalocyanine (NiTsPc) was self-assembled by layer-by-layer (LbL) technique and applied as electrochemical sensor for DA in the presence of common natural interferents as ascorbic acid (AA) and uric acid (UA). Three different LbL architecture films were investigated: LbL films of clay (PEI/Na+MMT) and phthalocyanine (PEI/NiTsPc) in a bilayer structure with a conventional polyelectrolyte (PEI) and a composite film formed by both materials to verify the synergistic effect in the LbL film in a quadri-layer assembly (PEI/Na+MMT/PEI/NiTsPc). Structural characterization indicated molecular level interactions between the layers forming the LbL films. The ITO/(PEI/Na+MMT/PEI/NiTsPc)10 electrode exhibited a LOD of 1.0 μmol L-1 and linear range 5-150 μmol L-1.

  6. [Sodium intake during pregnancy].

    PubMed

    Delemarre, F M; Franx, A; Knuist, M; Steegers, E A

    1999-10-23

    International studies have yielded contradictory results on efficacy of a sodium-restricted diet during pregnancy in preventing and curing hypertension of pregnancy. In the Netherlands three studies have been performed to investigate the value of dietary sodium restriction in pregnancy; they concerned epidemiology, prevention and treatment. Midwives often prescribed this dietary intervention. Urinary sodium excretion was not related to blood pressure changes in pregnancy. Dietary sodium restriction from the third month of pregnancy onwards did not reduce the incidence of pregnancy-induced hypertension. Maternal side effects were a decreased intake of nutrients, decreased maternal weight gain, lowered plasma volume and stimulation of the renin-angiotensin-aldosterone system. A dietary sodium restriction in women with early symptoms of pregnancy-induced hypertension showed no therapeutic effect on blood pressure. There is no place for dietary sodium restriction in the prevention or treatment of hypertension in pregnancy.

  7. Mixed mosaic membranes prepared by layer-by-layer assembly for ionic separations.

    PubMed

    Rajesh, Sahadevan; Yan, Yu; Chang, Hsueh-Chia; Gao, Haifeng; Phillip, William A

    2014-12-23

    Charge mosaic membranes, which possess distinct cationic and anionic domains that traverse the membrane thickness, are capable of selectively separating dissolved salts from similarly sized neutral solutes. Here, the generation of charge mosaic membranes using facile layer-by-layer assembly methodologies is reported. Polymeric nanotubes with pore walls lined by positively charged polyethylenimine moieties or negatively charged poly(styrenesulfonate) moieties were prepared via layer-by-layer assembly using track-etched membranes as sacrificial templates. Subsequently, both types of nanotubes were deposited on a porous support in order to produce mixed mosaic membranes. Scanning electron microscopy demonstrates that the facile deposition techniques implemented result in nanotubes that are vertically aligned without overlap between adjacent elements. Furthermore, the nanotubes span the thickness of the mixed mosaic membranes. The effects of this unique nanostructure are reflected in the transport characteristics of the mixed mosaic membranes. The hydraulic permeability of the mixed mosaic membranes in piezodialysis operations was 8 L m(-2) h(-1) bar(-1). Importantly, solute rejection experiments demonstrate that the mixed mosaic membranes are more permeable to ionic solutes than similarly sized neutral molecules. In particular, negative rejection of sodium chloride is observed (i.e., the concentration of NaCl in the solution that permeates through a mixed mosaic membrane is higher than in the initial feed solution). These properties illustrate the ability of mixed mosaic membranes to permeate dissolved ions selectively without violating electroneutrality and suggest their utility in ionic separations.

  8. Emerging Prototype Sodium-Ion Full Cells with Nanostructured Electrode Materials.

    PubMed

    Ren, Wenhao; Zhu, Zixuan; An, Qinyou; Mai, Liqiang

    2017-06-01

    Due to steadily increasing energy consumption, the demand of renewable energy sources is more urgent than ever. Sodium-ion batteries (SIBs) have emerged as a cost-effective alternative because of the earth abundance of Na resources and their competitive electrochemical behaviors. Before practical application, it is essential to establish a bridge between the sodium half-cell and the commercial battery from a full cell perspective. An overview of the major challenges, most recent advances, and outlooks of non-aqueous and aqueous sodium-ion full cells (SIFCs) is presented. Considering the intimate relationship between SIFCs and electrode materials, including structure, composition and mutual matching principle, both the advance of various prototype SIFCs and the electrochemistry development of nanostructured electrode materials are reviewed. It is noted that a series of SIFCs combined with layered oxides and hard carbon are capable of providing a high specific gravimetric energy above 200 Wh kg -1 , and an NaCrO 2 //hard carbon full cell is able to deliver a high rate capability over 100 C. To achieve industrialization of SIBs, more systematic work should focus on electrode construction, component compatibility, and battery technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effect of pH, Sodium Chloride, and Sodium Nitrite on Enterotoxin A Production

    PubMed Central

    Tompkin, R. B.; Ambrosino, J. M.; Stozek, S. K.

    1973-01-01

    The combined effects of pH, sodium chloride, and sodium nitrite were studied by using a dialysis sac technique in brain heart infusion broth. Growth and enterotoxin A production by Staphylococcus aureus strain 100 were found to decrease with the addition of sodium nitrite, with a decrease in pH from 7.0, and with an increase in sodium chloride concentration. The significance of these results is discussed in relation to cured meats. PMID:4203331

  10. Composition for use in high-temperature hydrogen-fluorine environments and method for making the composition

    DOEpatents

    Kovach, Louis; Holcombe, Cressie E.

    1982-01-01

    The present invention relates to a composition particularly suitable for as structural components subject to high-temperature environments containing gaseous hydrogen and fluorine. The composition of the present invention consists essentially of lanthanum hexaboride-molybdenum diboride with dispersed silicon. The composition is formed by hot pressing a powder mixture of lanthanum hexaboride as the major constituent and molybdenum disilicide. This composition exhibits substantial resistance to thermal shock and corrosion in environments containing hydrogen and fluorine gases at material surface temperatures up to about 1850.degree. K. Upon exposure of the hot-pressed composition to high-temperature environments containing fluorine gases, a highly protective layer of lanthanum trifluoride containing dispersed molybdenum is formed on exposed surfaces of the composition.

  11. The unique response of renin and aldosterone to dietary sodium intervention in sodium sensitivity.

    PubMed

    Shin, Sung Joon; Lim, ChiYeon; Oh, Sang Woo; Rhee, Moo-Yong

    2014-06-01

    Sodium sensitivity (SS) is a phenomenon in which significant changes in blood pressure (BP) are observed based on sodium intake. The renin-angiotensin-aldosterone system plays a critical role in sodium handling and hypertension. We identified the specific responses of renin and aldosterone based on dietary sodium intake and revealed the relationship between these hormonal changes and dietary sodium intake in patients with SS. In total, 61 subjects were available to analyze full data including plasma renin activity (PRA) and aldosterone. Participants were given a low-sodium DASH diet (LSD) for 7 days and a high-sodium DASH diet (HSD) for the following 7 days. SS was found in five (14.71%) in normotensives, and 14 (51.85%) in hypertensives. In sodium-resistant (SR) subjects, both PRA and aldosterone decreased significantly after consuming HSD. Moreover, a significant correlation was observed between PRA and aldosterone in SR subjects. In contrast, only hypertensive subjects showed a marked fall in PRA after consuming HSD (1.299 ± 0.904 vs. 0.593 ± 0.479) among SS subjects. This study demonstrated the different responses of renin and aldosterone in SS and SR subjects based on dietary sodium intake whether or not they had hypertension. © The Author(s) 2014.

  12. Study of the structure and ferroelectric behavior of BaBi{sub 4-x}La{sub x}Ti{sub 4}O{sub 15} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khokhar, Anita, E-mail: mails4anita@gmail.com; Sreenivas, K.; Goyal, Parveen K.

    2015-06-24

    The structure and ferroelectric properties of Lanthanum substituted barium bismuth titanate BaBi{sub 4-x}La{sub x}Ti{sub 4}O{sub 15} (0 ≤ x ≤ 0.5) ceramics prepared by solid-state reaction method have been investigated. X-ray diffraction (XRD) confirms the formation of a single phase material. The distribution of lanthanum into the perovskite layers and (Bi{sub 2}O{sub 2}){sup 2+} layers of BaBi{sub 4}Ti{sub 4}O{sub 15} ceramics have been revealed through Raman spectroscopy. At lower value of x, it is seen that La{sup 3+} ions prefer to substitute A-site Bi{sup 3+} ions in the perovskite layers while for higher x values, La{sup 3+} ions get incorporatedmore » into the (Bi{sub 2}O{sub 2}){sup 2+} layers. A critical La content of x ∼ 0.2 in BaBi{sub 4-x}La{sub x}Ti{sub 4}O{sub 15} is seen to exhibit a large remnant polarization (P{sub r}) with low coercive field (E{sub c}). The improvement in the ferroelectric properties of La substituted BaBi{sub 4}Ti{sub 4}O{sub 15} ceramics has been explained in terms of changing oxygen vacancy concentration and structural relaxation. Tunable ferroelectric materials can be obtained by manipulating the doping amount of lanthanum ion.« less

  13. Method of doping interconnections for electrochemical cells

    DOEpatents

    Pal, Uday B.; Singhal, Subhash C.; Moon, David M.; Folser, George R.

    1990-01-01

    A dense, electronically conductive interconnection layer 26 is bonded on a porous, tubular, electronically conductive air electrode structure 16, optionally supported by a ceramic support 22, by (A) forming a layer of oxide particles of at least one of the metals Ca, Sr, Co, Ba or Mg on a part 24 of a first surface of the air electrode 16, (B) heating the electrode structure, (C) applying a halide vapor containing at least lanthanum halide and chromium halide to the first surface and applying a source of oxygen to a second opposite surface of the air electrode so that they contact at said first surface, to cause a reaction of the oxygen and halide and cause a dense lanthanum-chromium oxide structure to grow, from the first electrode surface, between and around the oxide particles, where the metal oxide particles get incoporated into the lanthanum-chromium oxide structure as it grows thicker with time, and the metal ions in the oxide particles diffuse into the bulk of the lanthamum-chromium oxide structure, to provide a dense, top, interconnection layer 26 on top of the air electrode 16. A solid electrolyte layer 18 can be applied to the uncovered portion of the air electrode, and a fuel electrode 20 can be applied to the solid electrolyte, to provide an electrochemical cell 10.

  14. Highly stable Na2/3 (Mn0.54 Ni0.13 Co0.13 )O2 cathode modified by atomic layer deposition for sodium-ion batteries.

    PubMed

    Kaliyappan, Karthikeyan; Liu, Jian; Lushington, Andrew; Li, Ruying; Sun, Xueliang

    2015-08-10

    For the first time, atomic layer deposition (ALD) of Al2 O3 was adopted to enhance the cyclic stability of layered P2-type Na2/3 (Mn0.54 Ni0.13 Co0.13 )O2 (MNC) cathodes for use in sodium-ion batteries (SIBs). Discharge capacities of approximately 120, 123, 113, and 105 mA h g(-1) were obtained for the pristine electrode and electrodes coated with 2, 5, and 10 ALD cycles, respectively. All electrodes were cycled at the 1C discharge current rate for voltages between 2 and 4.5 V in 1 M NaClO4 electrolyte. Among the electrodes tested, the Al2 O3 coating from 2 ALD cycles (MNC-2) exhibited the best electrochemical stability and rate capability, whereas the electrode coated by 10 ALD cycles (MNC-10) displayed the highest columbic efficiency (CE), which exceeded 97 % after 100 cycles. The enhanced electrochemical stability observed for ALD-coated electrodes could be a result of the protection effects and high band-gap energy (Eg =9.00 eV) of the Al2 O3 coating layer. Additionally, the metal-oxide coating provides structural stability against mechanical stresses occurring during the cycling process. The capacity, cyclic stability, and rate performance achieved for the MNC electrode coated with 2 ALD cycles of Al2 O3 reveal the best results for SIBs. This study provides a promising route toward increasing the stability and CE of electrode materials for SIB application. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Role of diclofenac sodium and paracetamol on colonic anastomosis: An experimental rodent model.

    PubMed

    Gulcicek, Osman Bilgin; Solmaz, Ali; Yigitbas, Hakan; Ercetin, Candas; Yavuz, Erkan; Ozdogan, Kamil; Biricik, Aytac; Akkalp, Asli Kahraman; Uzun, Hafize; Kutnu, Muge; Celebi, Fatih; Celik, Atilla

    2018-05-01

    Despite many advances in surgery and technology, colonic anastomosis remains a challenge after colonic resection. The purpose of this study is to compare the safety of using diclofenac sodium and paracetamol for analgesia in colonic anastomosis on rats. Wistar-Hannover rats were randomly allocated to four groups: Group 1, sham-operated group; Group 2, control group; Group 3, diclofenac sodium group; Group 4, paracetamol group. After laparotomy, the left colon was transected and a single-layer anastomosis was made with 5/0 vicryl in Groups 2, 3, and 4. Only laparotomy was performed in Group 1. After anastomosis, we administered saline to Group 2, diclofenac sodium to Group 3, and paracetamol to Group 4 for 7 days. Then, all animals were decapitated. The anastomotic region was resected, and bursting pressure was measured. Then, the specimen was sent to the laboratory for histological examination and hydroxyproline analysis. Bursting pressure and hydroxyproline level were significantly higher in the paracetamol group (p<0.05). When we looked at the fibrosis levels of these groups, it was also higher in paracetamol group. Bursting pressure, hydroxyproline levels, and fibrosis levels indicate that the perioperative use of paracetamol for analgesia when undergoing colonic anastomosis is safer than diclofenac sodium. Copyright © 2017. Published by Elsevier Taiwan.

  16. Chronoamperometric study of mild steel pitting in sodium sulfide aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otero, T.F.; Achucarro, C.

    1994-08-01

    Mild steel samples were studied by chronoamperometry in sodium sulfide (Na[sub 2]S) aqueous solution. Pit nucleation and growth also were monitored by optical microscopy. The influence of variables such as temperature, polarization potential, surface roughness, the presence of electrochemically generated oxide layers, and the simultaneous presence of potassium hydroxide (KOH) was studied. The influence of each parameter on pit shape and growth was reviewed. Different reactions and competitive processes were proposed based on the experimental results.

  17. 21 CFR 184.1736 - Sodium bicarbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium bicarbonate. 184.1736 Section 184.1736 Food... GRAS § 184.1736 Sodium bicarbonate. (a) Sodium bicarbonate (NaHCO3, CAS Reg. No. 144-55-8) is prepared by treating a sodium carbonate or a sodium carbonate and sodium bicarbonate solution with carbon...

  18. Sodium Polystyrene Sulfonate

    MedlinePlus

    Sodium polystyrene sulfonate is used to treat hyperkalemia (increased amounts of potassium in the body). Sodium polystyrene sulfonate is in a class of medications called potassium-removing agents. It works by ...

  19. Atmospheric Dispersion of Sodium Aerosol due to a Sodium Leak in a Fast Breeder Reactor Complex

    NASA Astrophysics Data System (ADS)

    Punitha, G.; Sudha, A. Jasmin; Kasinathan, N.; Rajan, M.

    Liquid sodium at high temperatures (470 K to 825 K) is used as the primary and secondary coolant in Liquid Metal cooled Fast Breeder Reactors (LMFBR). In the event of a postulated sodium leak in the Steam Generator Building (SGB) of a LMFBR, sodium readily combusts in the ambient air, especially at temperatures above 523 K. Intense sodium fire results and sodium oxide fumes are released as sodium aerosols. Sodium oxides are readily converted to sodium hydroxide in air due to the presence of moisture in it. Hence, sodium aerosols are invariably in the form of particulate sodium hydroxide. These aerosols damage not only the equipment and instruments due to their corrosive nature but also pose health hazard to humans. Hence, it is essential to estimate the concentration of sodium aerosols within the plant boundary for a sodium leak event. The Gaussian Plume Dispersion Model can obtain the atmospheric dispersion of sodium aerosols in an open terrain. However, this model does not give accurate results for dispersion in spaces close to the point of release and with buildings in between. The velocity field due to the wind is altered to a large extent by the intervening buildings and structures. Therefore, a detailed 3-D estimation of the velocity field and concentration has to be obtained through rigorous computational fluid dynamics (CFD) approach. PHOENICS code has been employed to determine concentration of sodium aerosols at various distances from the point of release. The dispersion studies have been carried out for the release of sodium aerosols at different elevations from the ground and for different wind directions.

  20. Sodium intake and dietary sources of sodium in a sample of undergraduate students from Novi Sad, Serbia.

    PubMed

    2017-07-01

    Data on sodium intake and sources of sodium in the diet in Serbia are limited. The aim of this study was to estimate the sodium intake and identify the sources of sodium in the diet of undergraduate students attending the University of Novi Sad. Students completed a questionnaire to gather data on their gender, age and university faculty attended, and then a 24 h dietary recall. The sodium intake of the students was calculated using the dietary recall data and data on the sodium content of foods. The contribution of different food groups as well as of specific foodstuffs to the total sodium intake was calculated. The mean estimated sodium intake of the students was 3,938.5 ± 1,708.1 mg/day. The sodium intake of 89.1% of the surveyed students exceeded the guideline for sodium intake, the majority of the sodium coming from processed foods (78.9% of the total sodium intake). The food groups that contributed the most to the total sodium intake of the students were meat and meat products (21.7%) and cereals and cereal-based products (18.6%). Bread and other bakery products were responsible for 13.1% of the total sodium intake. High sodium intake in students of the University of Novi Sad puts them at high risk of developing high blood pressure. The food industry should work towards reformulating products with high sodium content, especially bread and other bakery products. Efforts should be taken to reduce sodium intake among undergraduate students in Novi Sad.

  1. Development of a Sodium Lidar for Space-Borne Missions

    NASA Astrophysics Data System (ADS)

    Janches, D.; Krainak, M. A.; Yu, A. W.; Jones, S.; Chen, J. R.

    2015-12-01

    We are currently developing laser and electro-optic technologies to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage to study the composition and dynamics of Earth's mesosphere based on a spaceborne instrument that will measure the mesospheric Na layer. There is a pressing need in the Ionosphere - Thermosphere - Mesosphere (ITM) community for high-resolution measurements that can characterize the effect of small-scale dynamics (i.e. Gravity Waves with wavelengths smaller than a few hundred km) in the Mesosphere-Lower-Termosphere (MLT) on a global basis. This is compelling because they are believed to be the dominant contributors to momentum transport and deposition in the MLT, which largely drive the global circulation and thermal structure and interactions with the tides and planetary waves in this region. A nadir-pointing spaceborne Na Doppler resonance fluorescence LIDAR on board of the International Space Station (ISS) will essentially make high-resolution, in time and space, Na density, temperature and vertical wind measurements, from 75-115 km (MLT region). Our instrument concept consisted of a high-energy laser transmitter at 589 nm and highly sensitive photon counting detector that allows for range-resolved atmospheric-sodium-temperature profiles. The atmospheric temperature is deduced from the linewidth of the resonant fluorescence from the atomic sodium vapor D2 line as measured by our tunable laser. We are currently developing a high power energy laser that allows for some day time sodium lidar observations with the help of a narrow bandpass filter based on etalon or atomic sodium Faraday filter with ~5 to 10 pm optical bandwidth. The current baseline detector for the lidar instrument is a 16-channel Photomultiplier Tube with receiver electronics that has been space-qualified for the ICESat-2/ATLAS mission. Our technique uses the 16-channels as a photon-number-resolving "single" detector to provide the

  2. Comparative effects of sodium bicarbonate and sodium chloride on reversing cocaine-induced changes in the electrocardiogram.

    PubMed

    Parker, R B; Perry, G Y; Horan, L G; Flowers, N C

    1999-12-01

    Cocaine abuse is associated with a number of cardiovascular complications that include arrhythmias and sudden cardiac death. Although the mechanism(s) remain unclear, cocaine-induced block of sodium channels resulting in slowed cardiac conduction is thought to play an important role. Several reports suggest that the effects of cocaine effects on cardiac sodium channels can be reversed by administration of sodium bicarbonate. Whether the beneficial effects of sodium bicarbonate are due to sodium ions or an increase in blood pH is unknown. Therefore the purpose of this study was to compare the effects of sodium loading alone (by using sodium chloride) versus sodium loading with an associated increase in arterial pH (by using sodium bicarbonate) on reversing cocaine-induced effects on the electrocardiogram (ECG) in a canine model. Seventeen anesthetized dogs received three i.v. injections of cocaine, 5 mg/kg, with each dose separated by 15 min. Two minutes after the third cocaine dose, each dog was randomly assigned to receive 2 mEq/kg i.v. sodium bicarbonate (1 mEq/ml) or 2 mEq/kg i.v. sodium chloride (1 mEq/ml). ECG, electrophysiologic, and hemodynamic data were recorded at baseline, after each cocaine injection, and after administration of sodium bicarbonate or sodium chloride. In both groups of animals, the first cocaine injection significantly (p < 0.05) prolonged the PR, QTc, AH, and HV intervals, and QRS duration compared with baseline. All intervals continued to lengthen in a dose-dependent manner after the second and third cocaine doses. Sodium bicarbonate significantly (p < 0.05) reduced cocaine-induced prolongation of PR [(147 +/- 5-130 +/- 5 ms), AH (81 +/- 6 - 72 +/- 6 ms), and HV intervals (55 +/- 2 - 39 +/- 1 ms). and QRS duration (96 +/- 6 - 66 +/- 4 ms), peak effect after third cocaine dose versus after sodium bicarbonate, respectively]. Sodium chloride had no effect on reversing cocaine-induced effects on the ECG. Cocaine produces dose

  3. Data for effects of lanthanum complex on the thermo-oxidative aging of natural rubber.

    PubMed

    Zheng, Wei; Liu, Li; Zhao, Xiuying; He, Jingwei; Wang, Ao; Chan, Tung W; Wu, Sizhu

    2015-12-01

    Novel mixed antioxidants composed of antioxidant IPPD and lanthanum (La) complex were added as a filler to form natural rubber (NR) composites. By mechanical testing, Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and thermogravimetric analysis (TGA), a string of data, including the mechanical properties, the variation of internal groups and the thermal and thermo-oxidative decompositions of NR, was presented in this data article. The data accompanying its research article [1] studied the thermo-oxidative aging properties of NR in detail. The density function theoretical (DFT) calculations were also used as an assistant to study the thermo-oxidative aging mechanism of NR. The data revealed that this new rare-earth antioxidant could indeed enhance the thermo-oxidative aging resistance of NR, which is associated with its different function mechanism from that of the pure antioxidant IPPD.

  4. Lanthanum induced B-to-Z transition in self-assembled Y-shaped branched DNA structure

    PubMed Central

    Nayak, Ashok K.; Mishra, Aseem; Jena, Bhabani S.; Mishra, Barada K.; Subudhi, Umakanta

    2016-01-01

    Controlled conversion of right-handed B-DNA to left-handed Z-DNA is one of the greatest conformational transitions in biology. Recently, the B-Z transition has been explored from nanotechnological points of view and used as the driving machinery of many nanomechanical devices. Using a combination of CD spectroscopy, fluorescence spectroscopy, and PAGE, we demonstrate that low concentration of lanthanum chloride can mediate B-to-Z transition in self-assembled Y-shaped branched DNA (bDNA) structure. The transition is sensitive to the sequence and structure of the bDNA. Thermal melting and competitive dye binding experiments suggest that La3+ ions are loaded to the major and minor grooves of DNA and stabilize the Z-conformation. Our studies also show that EDTA and EtBr play an active role in reversing the transition from Z-to-B DNA. PMID:27241949

  5. Lanthanum induced B-to-Z transition in self-assembled Y-shaped branched DNA structure

    NASA Astrophysics Data System (ADS)

    Nayak, Ashok K.; Mishra, Aseem; Jena, Bhabani S.; Mishra, Barada K.; Subudhi, Umakanta

    2016-05-01

    Controlled conversion of right-handed B-DNA to left-handed Z-DNA is one of the greatest conformational transitions in biology. Recently, the B-Z transition has been explored from nanotechnological points of view and used as the driving machinery of many nanomechanical devices. Using a combination of CD spectroscopy, fluorescence spectroscopy, and PAGE, we demonstrate that low concentration of lanthanum chloride can mediate B-to-Z transition in self-assembled Y-shaped branched DNA (bDNA) structure. The transition is sensitive to the sequence and structure of the bDNA. Thermal melting and competitive dye binding experiments suggest that La3+ ions are loaded to the major and minor grooves of DNA and stabilize the Z-conformation. Our studies also show that EDTA and EtBr play an active role in reversing the transition from Z-to-B DNA.

  6. Data for effects of lanthanum complex on the thermo-oxidative aging of natural rubber

    PubMed Central

    Zheng, Wei; Liu, Li; Zhao, Xiuying; He, Jingwei; Wang, Ao; Chan, Tung W.; Wu, Sizhu

    2015-01-01

    Novel mixed antioxidants composed of antioxidant IPPD and lanthanum (La) complex were added as a filler to form natural rubber (NR) composites. By mechanical testing, Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and thermogravimetric analysis (TGA), a string of data, including the mechanical properties, the variation of internal groups and the thermal and thermo-oxidative decompositions of NR, was presented in this data article. The data accompanying its research article [1] studied the thermo-oxidative aging properties of NR in detail. The density function theoretical (DFT) calculations were also used as an assistant to study the thermo-oxidative aging mechanism of NR. The data revealed that this new rare-earth antioxidant could indeed enhance the thermo-oxidative aging resistance of NR, which is associated with its different function mechanism from that of the pure antioxidant IPPD. PMID:26693513

  7. 21 CFR 184.1736 - Sodium bicarbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium bicarbonate. 184.1736 Section 184.1736 Food... Specific Substances Affirmed as GRAS § 184.1736 Sodium bicarbonate. (a) Sodium bicarbonate (NaHCO3, CAS Reg. No. 144-55-8) is prepared by treating a sodium carbonate or a sodium carbonate and sodium bicarbonate...

  8. 21 CFR 184.1736 - Sodium bicarbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium bicarbonate. 184.1736 Section 184.1736 Food... Specific Substances Affirmed as GRAS § 184.1736 Sodium bicarbonate. (a) Sodium bicarbonate (NaHCO3, CAS Reg. No. 144-55-8) is prepared by treating a sodium carbonate or a sodium carbonate and sodium bicarbonate...

  9. 21 CFR 184.1736 - Sodium bicarbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium bicarbonate. 184.1736 Section 184.1736 Food... Specific Substances Affirmed as GRAS § 184.1736 Sodium bicarbonate. (a) Sodium bicarbonate (NaHCO3, CAS Reg. No. 144-55-8) is prepared by treating a sodium carbonate or a sodium carbonate and sodium bicarbonate...

  10. 21 CFR 184.1736 - Sodium bicarbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium bicarbonate. 184.1736 Section 184.1736 Food... Specific Substances Affirmed as GRAS § 184.1736 Sodium bicarbonate. (a) Sodium bicarbonate (NaHCO3, CAS Reg. No. 144-55-8) is prepared by treating a sodium carbonate or a sodium carbonate and sodium bicarbonate...

  11. 21 CFR 184.1733 - Sodium benzoate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium benzoate. 184.1733 Section 184.1733 Food... GRAS § 184.1733 Sodium benzoate. (a) Sodium benzoate is the chemical benzoate of soda (C7H5NaO2), produced by the neutralization of benzoic acid with sodium bicarbonate, sodium carbonate, or sodium...

  12. Comparison of magnesium sulfate and sodium sulfate for removal of water from pesticide extracts of foods.

    PubMed

    Schenck, Frank J; Callery, Patrick; Gannett, Peter M; Daft, Jonathan R; Lehotay, Steven J

    2002-01-01

    Water-miscible solvents, such as acetone and acetonitrile, effectively extract both polar and nonpolar pesticide residues from nonfatty foods. The addition of sodium chloride to the resulting acetonitrile-water or acetone-water extract (salting out) results in the separation of the water from the organic solvent. However, the organic solvent layer (pesticide extract) still contains some residual water, which can adversely affect separation procedures that follow, such as solid-phase extraction and/or gas chromatography. Drying agents, such as sodium sulfate or magnesium sulfate, are used to remove the water from the organic extracts. In the present study, we used nuclear magnetic resonance spectroscopy to study the composition of the phases resulting from salting out and to compare the effectiveness of sodium sulfate and magnesium sulfate as drying agents. The study showed that considerable amounts of water remained in the organic phase after phase separation. Sodium sulfate was a relatively ineffective drying agent, removing little or no residual water from the organic solvent. Magnesium sulfate proved to be a much more effective drying agent.

  13. Impact of sodium caseinate concentration and location on magnesium release from multiple W/O/W emulsions.

    PubMed

    Bonnet, Marie; Cansell, Maud; Placin, Frédéric; Anton, Marc; Leal-Calderon, Fernando

    2010-06-15

    Water-in-oil-in-water (W/O/W) double emulsions were prepared and the rate of release of magnesium ions from the internal to the external aqueous phase was followed. Sodium caseinate was used not only as a hydrophilic surface-active species but also as a chelating agent able to bind magnesium ions. The release occurred without film rupturing (no coalescence). The kinetics of the release process depended on the location (in only one or in both aqueous compartments) and on the concentration of sodium caseinate. The rate of release increased with the concentration of sodium caseinate in the external phase and decreased when sodium caseinate was present in the inner droplets. The experiments were interpreted within the frame of a mean-field model based on diffusion, integrating the effect of ion binding. The data could be adequately fitted by considering a time-dependent permeation coefficient of the magnesium ions across the oil phase. Our results suggested that ion permeability was influenced by the state of the protein interfacial layers which itself depended on the extent of magnesium binding.

  14. Naproxen sodium overdose

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002507.htm Naproxen sodium overdose To use the sharing features on this page, please enable JavaScript. Naproxen sodium is a nonsteroidal anti-inflammatory drug (NSAID) used ...

  15. Diclofenac sodium overdose

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002630.htm Diclofenac sodium overdose To use the sharing features on this page, please enable JavaScript. Diclofenac sodium is a prescription medicine used to relieve pain ...

  16. 21 CFR 872.3490 - Carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. 872.3490 Section 872.3490 Food and Drugs... maleic acid calcium-sodium double salt denture adhesive. (a) Identification. A carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive is a device...

  17. 21 CFR 872.3490 - Carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. 872.3490 Section 872.3490 Food and Drugs... maleic acid calcium-sodium double salt denture adhesive. (a) Identification. A carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive is a device...

  18. 21 CFR 872.3490 - Carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. 872.3490 Section 872.3490 Food and Drugs... maleic acid calcium-sodium double salt denture adhesive. (a) Identification. A carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive is a device...

  19. 21 CFR 872.3490 - Carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. 872.3490 Section 872.3490 Food and Drugs... maleic acid calcium-sodium double salt denture adhesive. (a) Identification. A carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive is a device...

  20. 21 CFR 872.3490 - Carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. 872.3490 Section 872.3490 Food and Drugs... maleic acid calcium-sodium double salt denture adhesive. (a) Identification. A carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive is a device...

  1. Sodium-NaK engineering handbook. Volume III. Sodium systems, safety, handling, and instrumentation. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foust, O J

    1978-01-01

    The handbook is intended for use by present and future designers in the Liquid Metals Fast Breeder Reactor (LMFBR) Program and by the engineering and scientific community performing other type investigation and exprimentation requiring high-temperature sodium and NaK technology. The arrangement of subject matter progresses from a technological discussion of sodium and sodium--potassium alloy (NaK) to discussions of varius categories and uses of hardware in sodium and NaK systems. Emphasis is placed on sodium and NaK as heat-transport media. Sufficient detail is included for basic understanding of sodium and NaK technology and of technical aspects of sodium and NaK componentsmore » and instrument systems. Information presented is considered adequate for use in feasibility studies and conceptual design, sizing components and systems, developing preliminary component and system descriptions, identifying technological limitations and problem areas, and defining basic constraints and parameters.« less

  2. Development of a Sodium LIDAR for Spaceborne Missions

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey

    2015-01-01

    We are currently developing laser and electro-optic technologies to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of a Heliophysics mission targeted to study the composition and dynamics of Earths mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. There is a pressing need in the Ionosphere Thermosphere - Mesosphere (ITM) community for high-resolution measurements that can characterize small-scale dynamics (i.e. Gravity Waves with wavelengths smaller than a few hundred km) and their effects in the Mesosphere-Lower-Termosphere (MLT) on a global basis. This is compelling because they are believed to be the dominant contributors to momentum transport and deposition in the MLT, which largely drive the global circulation and thermal structure and interactions with the tides and planetary waves in this region. We are developing a spaceborne remote sensing technique that will enable acquisition of global Na density, temperature and wind measurements in the MLT with the spatial and temporal resolution required to resolve issues associated with the structure, chemistry, dynamics, and energetics of this regionA nadir-pointing spaceborne Na Doppler resonance fluorescence LIDAR on board of the ISS will essentially make high-resolution, in time and space, Na density, temperature and vertical wind measurements, from 75-115 km (MLT region). Our instrument concept consisted of a high-energy laser transmitter at 589 nm and highly sensitive photon counting detector that allows for range-resolved atmospheric-sodium-temperature profiles. The atmospheric temperature is deduced from the linewidth of the resonant fluorescence from the atomic sodium vapor D2 line as measured by our tunable laser. We are currently developing a high power energy laser that allows for some day time sodium lidar observations with the help of a narrow bandpass

  3. Sodium storage and injection system

    NASA Technical Reports Server (NTRS)

    Keeton, A. R. (Inventor)

    1979-01-01

    A sodium storage and injection system for delivering atomized liquid sodium to a chemical reactor employed in the production of solar grade silicon is disclosed. The system is adapted to accommodate start-up, shut-down, normal and emergency operations, and is characterized by (1) a jacketed injection nozzle adapted to atomize liquefied sodium and (2) a supply circuit connected to the nozzle for delivering the liquefied sodium. The supply circuit is comprised of a plurality of replaceable sodium containment vessels, a pump interposed between the vessels and the nozzle, and a pressurizing circuit including a source of inert gas connected with the vessels for maintaining the sodium under pressure.

  4. Dependence of sodium laser guide star photon return on the geomagnetic field

    NASA Astrophysics Data System (ADS)

    Moussaoui, N.; Holzlöhner, R.; Hackenberg, W.; Bonaccini Calia, D.

    2009-07-01

    Aims: The efficiency of optical pumping that increases the backscatter emission of mesospheric sodium atoms in continuous wave (cw) laser guide stars (LGSs) can be significantly reduced and, in the worst case, eliminated by the action of the geomagnetic field. Our goal is to present an estimation of this effect for several telescope sites. Methods: Sodium atoms precess around magnetic field lines that cycle the magnetic quantum number, reducing the effectiveness of optical pumping. Our method is based on calculating the sodium magnetic sublevel populations in the presence of the geomagnetic field and on experimental measurements of radiance return from sodium LGS conducted at the Starfire optical range (SOR). Results: We propose a relatively simple semi-empirical formula for estimating the effect of the geomagnetic field on enhancing the LGSs photon return due to optical pumping with a circularly polarized cw single-frequency laser beam. Starting from the good agreement between our calculations and the experimental measurements for the geomagnetic field effect, and in order to more realistically estimate the sodium LGSs photon return, we introduce the effect of the distance to the mesospheric sodium layer and the atmospheric attenuation. The combined effect of these three factors is calculated for several telescope sites. Conclusions: In calculating the return flux of LGSs, only the best return conditions are often assumed, relying on strong optical pumping with circularly polarized lasers. However, one can only obtain this optimal return along one specific laser orientation on the sky, where the geomagnetic field lines are parallel to the laser beam. For most of the telescopes, the optimum can be obtained at telescope orientations beyond the observation limit. For the telescopes located close to the geomagnetic pole, the benefit of the optical pumping is much more important than for telescopes located close to the geomagnetic equator.

  5. 21 CFR 186.1770 - Sodium oleate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium oleate. 186.1770 Section 186.1770 Food and....1770 Sodium oleate. (a) Sodium oleate (C18H33O2Na, CAS Reg. No. 143-19-1) is the sodium salt of oleic.... Commercially, sodium oleate is made by mixing and heating flaked sodium hydroxide and oleic acid. (b) In...

  6. Inversion layer solar cell fabrication and evaluation. [etching on silicon films

    NASA Technical Reports Server (NTRS)

    Call, R. L.

    1974-01-01

    Inversion layer solar cells were fabricated by etching through the diffused layer on p-type silicon wafers in a comb-like contact pattern. The charge separation comes from an induced p-n junction at the surface. The inverted surface is caused by a layer of transparent material applied to the surface that either contains free positive ions or that creates donor states at the interface. Cells are increased from 3 ma I sub sc to 100 ma by application of sodium silicate. The action is unstable, however, and decays. Non-mesa contaminated oxide cells were fabricated with short circuit currents of over 100 ma measured in the sun. Cells of this type have demonstrated stability.

  7. Assessment of sodium status in large ruminants by measuring the sodium-to-potassium ratio in muzzle secretions.

    PubMed

    Singh, S P; Rani, D

    1999-09-01

    To develop a simple diagnostic test to assess sodium status in large ruminants on the basis of the sodium-to-potassium ratio (Na:K) and to determine its relevance. 7 buffalo heifers and 21 lactating, pregnant, and nonpregnant dairy cows and heifers. Buffalo heifers were subjected in 2 experiments to variable dietary sodium intake or sodium depletion and changes in sodium and potassium concentrations; Na:K was simultaneously monitored in various body fluids to study its value for indicating sodium status. Validity of the muzzle secretion test was assessed. Muzzle secretion and urinary Na:K and sodium concentration, but not serum electrolyte concentrations, reflected the sodium status of buffalo heifers in response to the widely variable intake of sodium (0.03 to 0.16% of dry matter [DM]). Progressive sodium depletion during an 11-day period, using saliva deprivation caused reciprocal changes in sodium and potassium concentrations in saliva and muzzle secretion, but not in urine. Decreasing urine sodium concentration was associated with decreasing urine potassium concentration. Saliva, urine, and muzzle secretion Na:K closely reflected the degree of sodium deficit. Buffaloes or dairy cows maintained on optimal sodium intake had muzzle secretion and urine Na:K > 0.30. Muzzle secretion or urine Na:K < 0.20 or < 0.10, respectively, was indicative of sodium deficiency. Analysis of muzzle secretion Na:K, and to a large extent urine Na:K, may be used as a convenient diagnostic tool to assess sodium status in large ruminants. It has accuracy similar to that of saliva Na:K.

  8. Time to Consider Use of the Sodium-to-Potassium Ratio for Practical Sodium Reduction and Potassium Increase

    PubMed Central

    Miura, Katsuyuki; Ueshima, Hirotsugu

    2017-01-01

    Pathogenetic studies have demonstrated that the interdependency of sodium and potassium affects blood pressure. Emerging evidences on the sodium-to-potassium ratio show benefits for a reduction in sodium and an increase in potassium compared to sodium and potassium separately. As presently there is no known review, this article examined the practical use of the sodium-to-potassium ratio in daily practice. Epidemiological studies suggest that the urinary sodium-to-potassium ratio may be a superior metric as compared to separate sodium and potassium values for determining the relation to blood pressure and cardiovascular disease risks. Higher correlations and better agreements are seen for the casual urine sodium-to-potassium ratio than for casual urine sodium or potassium alone when compared with the 24-h urine values. Repeated measurements of the casual urine provide reliable estimates of the 7-day 24-h urine value with less bias for the sodium-to-potassium ratio as compared to the common formulas used for estimating the single 24-h urine from the casual urine for sodium and potassium separately. Self-monitoring devices for the urinary sodium-to-potassium ratio measurement makes it possible to provide prompt onsite feedback. Although these devices have been evaluated with a view to support an individual approach for sodium reduction and potassium increase, there has yet to be an accepted recommended guideline for the sodium-to-potassium ratio. This review concludes with a look at the practical use of the sodium-to-potassium ratio for assistance in practical sodium reduction and potassium increase. PMID:28678188

  9. Sodium urine test

    MedlinePlus

    ... or monitor many types of kidney diseases. Normal Results For adults, normal urine sodium values are generally ... meaning of your specific test result. What Abnormal Results Mean A higher than normal urine sodium level ...

  10. Sodium hydroxide poisoning

    MedlinePlus

    Sodium hydroxide is a very strong chemical. It is also known as lye and caustic soda. This ... poisoning from touching, breathing in (inhaling), or swallowing sodium hydroxide. This article is for information only. Do ...

  11. Sodium carbonate poisoning

    MedlinePlus

    Sodium carbonate (known as washing soda or soda ash) is a chemical found in many household and ... products. This article focuses on poisoning due to sodium carbonate. This article is for information only. Do ...

  12. Sodium oxybate for cataplexy.

    PubMed

    Lemon, Michael D; Strain, Joe D; Farver, Debra K

    2006-03-01

    To review the pharmacology, pharmacokinetics, clinical efficacy, adverse effects, drug interactions, precautions, dosing recommendations, and patient counseling of sodium oxybate for the treatment of cataplexy in patients with narcolepsy. OVID and PubMed databases were searched (1966-January 2006) using the key words sodium oxybate, gamma-hydroxybutyrate, narcolepsy, and cataplexy. Only English-language articles were selected. All information on sodium oxybate related to narcolepsy and cataplexy was considered. Study selection included human trials evaluating safety and efficacy of sodium oxybate for the treatment of cataplexy. Sodium oxybate is approved by the Food and Drug Administration for the treatment of excessive daytime sleepiness and cataplexy in patients with narcolepsy. In placebo-controlled trials, sodium oxybate demonstrated efficacy in reducing the number of cataplexy attacks. The dosing regimen includes a split dose given at bedtime and 2.5-4 hours later due to its short elimination half-life. The drug is generally well tolerated, with headache, nausea, dizziness, pain, and somnolence being the most common adverse events. Sodium oxybate is safe and effective for the treatment of cataplexy. Potential disadvantages include a multiple dosing regimen, abuse potential, cost, and a closed distribution system. Potential advantages demonstrated in clinical trials include significant decreases in the number of weekly cataplexy attacks, improvement in daytime sleepiness, and improvement in the Clinical Global Impression of Change score and nighttime awakenings. Overall, sodium oxybate provides a new option for the treatment of cataplexy.

  13. Impact of Thermal Aging on the Microstructure Evolution and Mechanical Properties of Lanthanum-Doped Tin-Silver-Copper Lead-Free Solders

    NASA Astrophysics Data System (ADS)

    Sadiq, Muhammad; Pesci, Raphaël; Cherkaoui, Mohammed

    2013-03-01

    An extensive study is made to analyze the impact of pure lanthanum on the microstructure and mechanical properties of Sn-Ag-Cu (SAC) alloys at high temperatures. Different compositions are tested; the temperature applied for the isothermal aging is 150°C, and aging times of 10 h, 25 h, 50 h, 100 h, and 200 h are studied. Optical microscopy with cross-polarized light is used to follow the grain size, which is refined from 8 mm to 1 mm for as-cast samples and is maintained during thermal aging. Intermetallic compounds (IMCs) present inside the bulk Sn matrix affect the mechanical properties of the SAC alloys. Due to high-temperature exposure, these IMCs grow and hence their impact on mechanical properties becomes more significant. This growth is followed by scanning electron microscopy, and energy-dispersive spectroscopy is used for elemental mapping of each phase. A significant refinement in the average size of IMCs of up to 40% is identified for the as-cast samples, and the coarsening rate of these IMCs is slowed by up to 70% with no change in the interparticle spacing. Yield stress and tensile strength are determined through tensile testing at 20°C for as-cast samples and after thermal aging at 150°C for 100 h and 200 h. Both yield stress and tensile strength are increased by up to 20% by minute lanthanum doping.

  14. Slow Sodium: An Oral Slowly Released Sodium Chloride Preparation

    PubMed Central

    Clarkson, E. M.; Curtis, J. R.; Jewkes, R. J.; Jones, B. E.; Luck, V. A.; de Wardener, H. E.; Phillips, N.

    1971-01-01

    The use of a slowly released oral preparation of sodium chloride is described. It was given to patients and athletes to treat or prevent acute and chronic sodium chloride deficiency. Gastrointestinal side effects were not encountered after the ingestion of up to 500 mEq in one day or 200 mEq in 10 minutes. PMID:5569979

  15. Effects of sodium polyacrylate on water retention and infiltration capacity of a sandy soil.

    PubMed

    Zhuang, Wenhua; Li, Longguo; Liu, Chao

    2013-01-01

    Based on the laboratory study, the effects of sodium polyacrylate (SP) was investigated at 5 rates of 0, 0.08, 0.2, 0.5, and 1%, on water retention, saturated hydraulic conductivity(Ks), infiltration characteristic and water distribution profiles of a sandy soil. The results showed that water retention and available water capacity effectively increased with increasing SP rate. The Ks and the rate of wetting front advance and infiltration under certain pond infiltration was significantly reduced by increasing SP rate, which effectively reduced water in a sandy soil leaking to a deeper layer under the plough layer. The effect of SP on water distribution was obviously to the up layer and very little to the following deeper layers. Considering both the effects on water retention and infiltration capacity, it is suggested that SP be used to the sandy soil at concentrations ranging from 0.2 to 0.5%.

  16. 21 CFR 184.1751 - Sodium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium citrate. 184.1751 Section 184.1751 Food and....1751 Sodium citrate. (a) Sodium citrate (C6H5Na3O7·2H2O, CAS Reg. No. 68-0904-092) is the sodium salt of citric acid. It is prepared by neutralizing citric acid with sodium hydroxide or sodium carbonate...

  17. Enteric-coated mycophenolate sodium.

    PubMed

    Gabardi, Steven; Tran, Jennifer L; Clarkson, Michael R

    2003-11-01

    To review the pharmacology, pharmacokinetics, efficacy, and safety of mycophenolate sodium. Primary literature was obtained via a MEDLINE search (1966-June 2003). Abstracts were obtained from the manufacturer and included in the analysis. All studies and abstracts evaluating mycophenolate sodium in solid organ transplantation were considered for inclusion. English-language studies and abstracts were selected for inclusion, but were limited to those consisting of human subjects. Mycophenolate sodium, a mycophenolic acid prodrug, is an inhibitor of T-lymphocyte proliferation. Mycophenolic acid reduces the incidence of acute rejection in renal transplantation. Mycophenolate sodium is enteric coated and has been suggested as a potential method to reduce the gastrointestinal adverse events seen with mycophenolate mofetil. Both mycophenolate mofetil and mycophenolate sodium have been shown to be therapeutically equivalent at decreasing the incidence of allograft rejection and loss. The frequency of adverse events is similar between both compounds, with the most common events being diarrhea and leukopenia. Mycophenolate sodium is effective in preventing acute rejection in renal transplant recipients. At doses of 720 mg twice daily, the efficacy and safety profiles are similar to those of mycophenolate mofetil 1000 mg twice daily. Mycophenolate sodium has been approved in Switzerland; approval in the US is pending.

  18. Ti3C2 MXene-Derived Sodium/Potassium Titanate Nanoribbons for High-Performance Sodium/Potassium Ion Batteries with Enhanced Capacities.

    PubMed

    Dong, Yanfeng; Wu, Zhong-Shuai; Zheng, Shuanghao; Wang, Xiaohui; Qin, Jieqiong; Wang, Sen; Shi, Xiaoyu; Bao, Xinhe

    2017-05-23

    Sodium and potassium ion batteries hold promise for next-generation energy storage systems due to their rich abundance and low cost, but are facing great challenges in optimum electrode materials for actual applications. Here, ultrathin nanoribbons of sodium titanate (M-NTO, NaTi 1.5 O 8.3 ) and potassium titanate (M-KTO, K 2 Ti 4 O 9 ) were successfully synthesized by a simultaneous oxidation and alkalization process of Ti 3 C 2 MXene. Benefiting from the suitable interlayer spacing (0.90 nm for M-NTO, 0.93 nm for M-KTO), ultrathin thickness (<11 nm), narrow widths of nanoribbons (<60 nm), and open macroporous structures for enhanced ion insertion/extraction kinetics, the resulting M-NTO exhibited a large reversible capacity of 191 mAh g -1 at 200 mA g -1 for sodium storage, higher than those of pristine Ti 3 C 2 (178 mAh g -1 ) and commercial TiC derivatives (86 mAh g -1 ). Notably, M-KTO displayed a superior reversible capacity of 151 mAh g -1 at 50 mA g -1 and 88 mAh g -1 at a high rate of 300 mA g -1 and long-term stable cyclability over 900 times, which outperforms other Ti-based layered materials reported to date. Moreover, this strategy is facile and highly flexible and can be extended for preparing a large number of MXene-derived materials, from the 60+ group of MAX phases, for various applications such as supercapacitors, batteries, and electrocatalysts.

  19. A multi-scale study of the adsorption of lanthanum on the (110) surface of tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samin, Adib J.; Zhang, Jinsuo

    In this study, we utilize a multi-scale approach to studying lanthanum adsorption on the (110) plane of tungsten. The energy of the system is described from density functional theory calculations within the framework of the cluster expansion method. It is found that including two-body figures up to the sixth nearest neighbor yielded a reasonable agreement with density functional theory calculations as evidenced by the reported cross validation score. The results indicate that the interaction between the adsorbate atoms in the adlayer is important and cannot be ignored. The parameterized cluster expansion expression is used in a lattice gas Monte Carlomore » simulation in the grand canonical ensemble at 773 K and the adsorption isotherm is recorded. Implications of the obtained results for the pyroprocessing application are discussed.« less

  20. A multi-scale study of the adsorption of lanthanum on the (110) surface of tungsten

    NASA Astrophysics Data System (ADS)

    Samin, Adib J.; Zhang, Jinsuo

    2016-07-01

    In this study, we utilize a multi-scale approach to studying lanthanum adsorption on the (110) plane of tungsten. The energy of the system is described from density functional theory calculations within the framework of the cluster expansion method. It is found that including two-body figures up to the sixth nearest neighbor yielded a reasonable agreement with density functional theory calculations as evidenced by the reported cross validation score. The results indicate that the interaction between the adsorbate atoms in the adlayer is important and cannot be ignored. The parameterized cluster expansion expression is used in a lattice gas Monte Carlo simulation in the grand canonical ensemble at 773 K and the adsorption isotherm is recorded. Implications of the obtained results for the pyroprocessing application are discussed.