Science.gov

Sample records for lbnl laser-plasma accelerator

  1. Free-electron laser driven by the LBNL laser-plasma accelerator

    SciTech Connect

    Schroeder, C. B.; Fawley, W. M.; Robinson, K. E.; Toth, Cs.; Gruener, F.; Bakeman, M.; Nakamura, K.; Esarey, E.; Leemans, W. P.

    2009-01-22

    A design of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, XUV pulses is presented. The FEL is driven by a high-current, 0.5 GeV electron beam from the Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few centimeters. The proposed ultra-fast source ({approx}10 fs) would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science. Owing to the high current (> or approx.10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 10{sup 13} photons/pulse. Devices based both on self-amplified spontaneous emission and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered.

  2. Free-electron laser driven by the LBNL laser-plasma accelerator

    SciTech Connect

    Schroeder, C. B.; Fawley, W. M.; Gruner, F.; Bakeman, M.; Nakamura, K.; Robinson, K. E.; Toth, Cs.; Esarey, E.; Leemans, W. P.

    2008-08-04

    A design of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, XUV pulses is presented. The FEL is driven by ahigh-current, 0.5 GeV electron beam from the Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few centimeters. The proposed ultra-fast source (~;;10 fs) would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science. Owing to the high current (>10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 10^13 photons/pulse. Devices based both on self-amplified spontaneous emission and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered.

  3. Analysis of Capillary Guided Laser Plasma Accelerator Experiments at LBNL

    SciTech Connect

    Nakamura, K.; Esarey, E.; Leemans, W. P.; Gonsalves, A. J.; Panasenko, D.; Toth, Cs.; Geddes, C. G. R.; Schroeder, C. B.; Lin, C.

    2009-01-22

    Laser wakefield acceleration experiments were carried out by using a hydrogen-filled capillary discharge waveguide. For a 15 mm long, 200 {mu}m diameter capillary, quasi-monoenergetic e-beams up to 300 MeV were observed. By de-tuning discharge delay from optimum guiding performance, self-trapping was found to be stabilized. For a 33 mm long, 300 {mu}m capillary, a parameter regime with high energy electron beams, up to 1 GeV, was found. In this regime, the electron beam peak energy was correlated with the amount of trapped electrons.

  4. Analysis of Capillary Guided Laser Plasma Accelerator Experiments at LBNL

    SciTech Connect

    Advanced Light Source; Nakamura, Kei; Gonsalves, Anthony; Panasenko, Dmitriy; Lin, Chen; Toth, Csaba; Geddes, Cameron; Schroeder, Carl; Esarey, Eric; Leemans, Wim

    2008-09-29

    Laser wakefield acceleration experiments were carried out by using a hydrogen-filledcapillary discharge waveguide. For a 15 mm long, 200 mu m diameter capillary, quasi-monoenergetic e-beams up to 300 MeV were observed. By de-tuning discharge delay from optimum guiding performance, self-trapping was found to be stabilized. For a 33 mm long, 300 mu m capillary, a parameter regime with high energy electron beams, up to 1 GeV, was found. In this regime, the electron beam peak energy was correlated with the amount of trapped electrons.

  5. Design of an XUV FEL Driven by the Laser-Plasma Accelerator at theLBNL LOASIS Facility

    SciTech Connect

    Schroeder, Carl B.; Fawley, W.M.; Esarey, Eric; Leemans, W.P.

    2006-09-01

    We present a design for a compact FEL source of ultrafast, high-peak flux, soft x-ray pulses employing a high-current, GeV-energy electron beam from the existing laser-plasma accelerator at the LBNL LOASIS laser facility. The proposed ultra-fast source would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science with pulse lengths of tens of fs. Owing both to the high current ({approx} 10 kA) and reasonable charge/pulse ({approx} 0.1-0.5 nC) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially 10{sup 13}--10{sup 14} photons/pulse. We examine devices based both on SASE and high-harmonic generated input seeds to give improved coherence and reduced undulator length, presenting both analytic scalings and numerical simulation results for expected FEL performance. A successful source would result in a new class of compact laser-driven FELs in which a conventional RF accelerator is replaced by a GeV-class laser-plasma accelerator whose active acceleration region is only a few cm in length.

  6. Laser Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Malka, Victor

    The continuing development of powerful laser systems has permitted to extend the interaction of laser beams with matter far into the relativistic domain, and to demonstrate new approaches for producing energetic particle beams. The extremely large electric fields, with amplitudes exceeding the TV/m level, that are produced in plasma medium are of relevance particle acceleration. Since the value of this longitudinal electric field, 10,000 times larger than those produced in conventional radio-frequency cavities, plasma accelerators appear to be very promising for the development of compact accelerators. The incredible progresses in the understanding of laser plasma interaction physic, allows an excellent control of electron injection and acceleration. Thanks to these recent achievements, laser plasma accelerators deliver today high quality beams of energetic radiation and particles. These beams have a number of interesting properties such as shortness, brightness and spatial quality, and could lend themselves to applications in many fields, including medicine, radio-biology, chemistry, physics and material science,security (material inspection), and of course in accelerator science.

  7. Progress on laser plasma accelerators

    SciTech Connect

    Chen, P.

    1986-04-01

    Several laser plasma accelerator schemes are reviewed, with emphasis on the Plasma Beat Wave Accelerator (PBWA). Theory indicates that a very high acceleration gradient, of order 1 GeV/m, can exist in the plasma wave driven by the beating lasers. Experimental results obtained on the PBWA experiment at UCLA confirms this. Parameters related to the PBWA as an accelerator system are derived, among them issues concerning the efficiency and the laser power and energy requirements are discussed.

  8. Colliding Laser Pulses for Laser-Plasma Accelerator Injection Control

    SciTech Connect

    Plateau, G. R.; Geddes, C. G. R.; Matlis, N. H.; Mittelberger, D. E.; Nakamura, K.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.; Cormier-Michel, E.

    2010-11-04

    Decoupling injection from acceleration is a key challenge to achieve compact, reliable, tunable laser-plasma accelerators (LPA). In colliding pulse injection the beat between multiple laser pulses can be used to control energy, energy spread, and emittance of the electron beam by injecting electrons in momentum and phase into the accelerating phase of the wake trailing the driver laser pulse. At LBNL, using automated control of spatiotemporal overlap of laser pulses, two-pulse experiments showed stable operation and reproducibility over hours of operation. Arrival time of the colliding beam was scanned, and the measured timing window and density of optimal operation agree with simulations. The accelerator length was mapped by scanning the collision point.

  9. Colliding Laser Pulses for Laser-Plasma Accelerator Injection Control

    NASA Astrophysics Data System (ADS)

    Plateau, G. R.; Geddes, C. G. R.; Matlis, N. H.; Cormier-Michel, E.; Mittelberger, D. E.; Nakamura, K.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2010-11-01

    Decoupling injection from acceleration is a key challenge to achieve compact, reliable, tunable laser-plasma accelerators (LPA) [1, 2]. In colliding pulse injection the beat between multiple laser pulses can be used to control energy, energy spread, and emittance of the electron beam by injecting electrons in momentum and phase into the accelerating phase of the wake trailing the driver laser pulse [3, 4, 5, 6, 7]. At LBNL, using automated control of spatiotemporal overlap of laser pulses, two-pulse experiments showed stable operation and reproducibility over hours of operation. Arrival time of the colliding beam was scanned, and the measured timing window and density of optimal operation agree with simulations [8]. The accelerator length was mapped by scanning the collision point.

  10. PRECISE CHARGE MEASUREMENT FOR LASER PLASMA ACCELERATORS

    SciTech Connect

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Sokollik, Thomas; Shiraishi, Satomi; Tilborg, Jeroen van; Osterhoff, Jens; Donahue, Rich; Rodgers, David; Smith, Alan; Byrne, Warren; Leemans, Wim

    2011-07-19

    Cross-calibrations of charge diagnostics are conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). Employed diagnostics are a scintillating screen, activation based measurement, and integrating current transformer. The diagnostics agreed within {+-}8 %, showing that they can provide accurate charge measurements for LPAs provided they are used properly.

  11. LASER-PLASMA-ACCELERATOR-BASED GAMMA GAMMA COLLIDERS

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Toth, Cs.; Geddes, C. G. R.; Leemans, W. P.

    2009-05-04

    Design considerations for a next-generation linear collider based on laser-plasma-accelerators are discussed, and a laser-plasma-accelerator-based gamma-gamma collider is considered. An example of the parameters for a 0.5 TeV laser-plasma-accelerator gamma gamma collider is presented.

  12. Multiple pulse resonantly enhanced laser plasma wakefield acceleration

    SciTech Connect

    Corner, L.; Walczak, R.; Nevay, L. J.; Dann, S.; Hooker, S. M.; Bourgeois, N.; Cowley, J.

    2012-12-21

    We present an outline of experiments being conducted at Oxford University on multiple-pulse, resonantly-enhanced laser plasma wakefield acceleration. This method of laser plasma acceleration uses trains of optimally spaced low energy short pulses to drive plasma oscillations and may enable laser plasma accelerators to be driven by compact and efficient fibre laser sources operating at high repetition rates.

  13. Charge Diagnostics for Laser Plasma Accelerators

    SciTech Connect

    Nakamura, K.; Gonsalves, A. J.; Lin, C.; Sokollik, T.; Smith, A.; Rodgers, D.; Donahue, R.; Bryne, W.; Leemans, W. P.

    2010-06-01

    The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. The sensitivity of the Lanex Fast decreased by 1percent per 100 MeV increase of the energy. The linear response of the screen against the charge was verified with charge density and intensity up to 160 pC/mm2 and 0.4 pC/ps/mm2, respectively. For electron beams from the laser plasma accelerator, a comprehensive study of charge diagnostics has been performed using a Lanex screen, an integrating current transformer, and an activation based measurement. The charge measured by each diagnostic was found to be within +/-10 percent.

  14. Charge Diagnostics for Laser Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Gonsalves, A. J.; Lin, C.; Sokollik, T.; Smith, A.; Rodgers, D.; Donahue, R.; Bryne, W.; Leemans, W. P.

    2010-11-01

    The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. The sensitivity of the Lanex Fast decreased by 1% per 100 MeV increase of the energy. The linear response of the screen against the charge was verified with charge density and intensity up to 160 pC/mm2 and 0.4 pC/ps/mm2, respectively. For electron beams from the laser plasma accelerator, a comprehensive study of charge diagnostics has been performed using a Lanex screen, an integrating current transformer, and an activation based measurement. The charge measured by each diagnostic was found to be within ±10%.

  15. Charge Diagnostics for Laser Plasma Accelerators

    SciTech Connect

    Nakamura, K.; Gonsalves, A. J.; Lin, C.; Sokollik, T.; Smith, A.; Rodgers, D.; Donahue, R.; Bryne, W.; Leemans, W. P.

    2010-11-04

    The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. The sensitivity of the Lanex Fast decreased by 1% per 100 MeV increase of the energy. The linear response of the screen against the charge was verified with charge density and intensity up to 160 pC/mm{sup 2} and 0.4 pC/ps/mm{sup 2}, respectively. For electron beams from the laser plasma accelerator, a comprehensive study of charge diagnostics has been performed using a Lanex screen, an integrating current transformer, and an activation based measurement. The charge measured by each diagnostic was found to be within {+-}10%.

  16. Staging of laser-plasma accelerators

    NASA Astrophysics Data System (ADS)

    Steinke, S.; van Tilborg, J.; Benedetti, C.; Geddes, C. G. R.; Daniels, J.; Swanson, K. K.; Gonsalves, A. J.; Nakamura, K.; Shaw, B. H.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2016-05-01

    We present results of an experiment where two laser-plasma-accelerator stages are coupled at a short distance by a plasma mirror. Stable electron beams from the first stage were used to longitudinally probe the dark-current-free, quasi-linear wakefield excited by the laser of the second stage. Changing the arrival time of the electron beam with respect to the second stage laser pulse allowed reconstruction of the temporal wakefield structure, determination of the plasma density, and inference of the length of the electron beam. The first stage electron beam could be focused by an active plasma lens to a spot size smaller than the transverse wake size at the entrance of the second stage. This permitted electron beam trapping, verified by a 100 MeV energy gain.

  17. Summary Report of Working Group 6: Laser-Plasma Acceleration

    SciTech Connect

    Leemans, Wim P.; Downer, Michael; Siders, Craig

    2006-07-01

    A summary is given of presentations and discussions in theLaser-Plasma Acceleration Working Group at the 2006 Advanced AcceleratorConcepts Workshop. Presentation highlights include: widespreadobservation of quasi-monoenergetic electrons; good agreement betweenmeasured and simulated beam properties; the first demonstration oflaser-plasma acceleration up to 1 GeV; single-shot visualization of laserwakefield structure; new methods for measuring<100 fs electronbunches; and new methods for "machining" laser-plasma acceleratorstructures. Discussion of future direction includes: developing a roadmapfor laser-plasma acceleration beyond 1 GeV; a debate over injection andguiding; benchmarking simulations with improved wake diagnostics;petawatt laser technology for future laser-plasmaaccelerators.

  18. Precise charge measurement for laser plasma accelerators

    NASA Astrophysics Data System (ADS)

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Sokollik, Thomas; Shiraishi, Satomi; van Tilborg, Jeroen; Smith, Alan; Rodgers, Dave; Donahue, Rick; Byrne, Warren; Leemans, Wim

    2011-10-01

    A comprehensive study of charge diagnostics was conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. Using an integrating current transformer as a calibration reference, the sensitivity of the Lanex Fast was found to decrease by 1% per 100 MeV increase of the energy. By using electron beams from LPA, cross calibrations of the charge were carried out with an integrating current transformer, scintillating screen (Lanex from Kodak), and activation based measurement. The diagnostics agreed within ~8%, showing that they all can provide accurate charge measurements for LPAs provided necessary cares. Work supported by the Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  19. Controlling electron injection in laser plasma accelerators using multiple pulses

    SciTech Connect

    Matlis, N. H.; Geddes, C. G. R.; Plateau, G. R.; Esarey, E.; Schroeder, C.; Bruhwiler, D.; Cormier-Michel, E.; Chen, M.; Yu, L.; Leemans, W. P.

    2012-12-21

    Use of counter-propagating pulses to control electron injection in laser-plasma accelerators promises to be an important ingredient in the development of stable devices. We discuss the colliding pulse scheme and associated diagnostics.

  20. Modeling laser-plasma acceleration in the laboratory frame

    SciTech Connect

    2011-01-01

    A simulation of laser-plasma acceleration in the laboratory frame. Both the laser and the wakefield buckets must be resolved over the entire domain of the plasma, requiring many cells and many time steps. While researchers often use a simulation window that moves with the pulse, this reduces only the multitude of cells, not the multitude of time steps. For an artistic impression of how to solve the simulation by using the boosted-frame method, watch the video "Modeling laser-plasma acceleration in the wakefield frame."

  1. Staging Laser Plasma Accelerators for Increased Beam Energy

    SciTech Connect

    Panasenko, D.; Shu, A. J.; Schroeder, C. B.; Gonsalves, A. J.; Nakamura, K.; Matlis, N. H.; Cormier-Michel, E.; Plateau, G.; Lin, C.; Toth, C.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2009-01-22

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10 m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.

  2. Staging laser plasma accelerators for increased beam energy

    SciTech Connect

    Panasenko, Dmitriy; Shu, Anthony; Schroeder, Carl; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas; Cormier-Michel, Estelle; Plateau, Guillaume; Lin, Chen; Toth, Csaba; Geddes, Cameron; Esarey, Eric; Leemans, Wim

    2008-09-29

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.

  3. Modeling laser-plasma acceleration in the wakefield frame

    SciTech Connect

    2011-01-01

    A simulation of laser-plasma acceleration in the boosted frame of the wake, moving at near lightspeed. Space has contracted and time has stretched, separating events in time. Relatively few time steps are needed to model them, requiring less computer time.

  4. Summary Report of Working Group 1: Laser-Plasma Acceleration

    SciTech Connect

    Geddes, C.G.R.; Clayton, C.; Lu, W.; Thomas, A.G.R.

    2010-06-01

    Advances in and physics of the acceleration of particles using underdense plasma structures driven by lasers were the topics of presentations and discussions in Working Group 1 of the 2010 Advanced Accelerator Concepts Workshop. Such accelerators have demonstrated gradients several orders beyond conventional machines, with quasi-monoenergetic beams at MeV-GeV energies, making them attractive candidates for next generation accelerators. Workshop discussions included advances in control over injection and laser propagation to further improve beam quality and stability, detailed diagnostics and physics models of the acceleration process, radiation generation as a source and diagnostic, and technological tools and upcoming facilities to extend the reach of laser-plasma accelerators.

  5. Influence of Reverse Expansion of Laser Plasma on Ions Acceleration

    NASA Astrophysics Data System (ADS)

    Sysoev, Alexander A.; Gracheva, O. I.; Karpov, A. V.

    Effect of laser plasma reverse extension is described in this paper. Influence of the effect on ion acceleration in a laser ion source is researched. This effect leads to sedimentation of ions on metal target, which significantly impacts acceleration time of other ions. In this case, the ions also tend to travel major part of their path with constant velocity. This allows one to consider movement of the ions in plasma drift space, when optimizing time focusing ability of the TOF analyzer.

  6. Hybrid Laser-Plasma Wakefield Acceleration

    SciTech Connect

    Hidding, B.; Koenigstein, T.; Willi, O.; Pretzler, G.; Karsch, S.; Rosenzweig, J. B.

    2010-11-04

    The concept of driving a driver/witness-type plasma wakefield accelerator (PWFA) with quasimonoenergetic double electron bunches from a laser wakefield accelerator (LWFA) is studied. In the quasimonoenergetic LWFA/SMLWFA (self-modulated LWFA) regime, it is possible to generate multiple quasimonoenergetic electron bunches with durations of only a few fs and distances of only a few tens of fs with a comparably simple experimental setup. In a subsequent high-density plasma afterburner stage the witness bunch energy can be boosted in the plasma wakefield generated by the driver. Such a hybrid system can increase the maximum energy output of a laser wakefield accelerator and is well suited to study driver/witness plasma accelerator phenomena and can be used as a cost-effective test-bed for future high-energy plasma-based accelerators.

  7. Hybrid Laser-Plasma Wakefield Acceleration

    NASA Astrophysics Data System (ADS)

    Hidding, B.; Königstein, T.; Karsch, S.; Willi, O.; Pretzler, G.; Rosenzweig, J. B.

    2010-11-01

    The concept of driving a driver/witness-type plasma wakefield accelerator (PWFA) with quasimonoenergetic double electron bunches from a laser wakefield accelerator (LWFA) is studied. In the quasimonoenergetic LWFA/SMLWFA (self-modulated LWFA) regime, it is possible to generate multiple quasimonoenergetic electron bunches with durations of only a few fs and distances of only a few tens of fs with a comparably simple experimental setup. In a subsequent high-density plasma afterburner stage the witness bunch energy can be boosted in the plasma wakefield generated by the driver. Such a hybrid system can increase the maximum energy output of a laser wakefield accelerator and is well suited to study driver/witness plasma accelerator phenomena and can be used as a cost-effective test-bed for future high-energy plasma-based accelerators.

  8. A side-injected-laser plasma accelerator

    SciTech Connect

    Katsouleas, T.; Dawson, J.M.; Sultana, D.; Yun, Y.T.

    1985-10-01

    A new method for driving relativistic plasma waves capable of ultra-high acceleration gradients (order 1GeV/cm) is presented. By injecting a single laser frequency from the side, rather than colinearly with the accelerated particles, both pump depletion and particle dephasing may be avoidable. The coupling of the side injected laser to the relativistic plasma wave via a pre-formed density ripple in the plasma is modelled analytically and with computer simulation.

  9. Shock assisted ionization injection in laser-plasma accelerators

    PubMed Central

    Thaury, C.; Guillaume, E.; Lifschitz, A.; Ta Phuoc, K.; Hansson, M.; Grittani, G.; Gautier, J.; Goddet, J.-P.; Tafzi, A.; Lundh, O.; Malka, V.

    2015-01-01

    Ionization injection is a simple and efficient method to trap an electron beam in a laser plasma accelerator. Yet, because of a long injection length, this injection technique leads generally to the production of large energy spread electron beams. Here, we propose to use a shock front transition to localize the injection. Experimental results show that the energy spread can be reduced down to 10 MeV and that the beam energy can be tuned by varying the position of the shock. This simple technique leads to very stable and reliable injection even for modest laser energy. It should therefore become a unique tool for the development of laser-plasma accelerators. PMID:26549584

  10. Shock assisted ionization injection in laser-plasma accelerators.

    PubMed

    Thaury, C; Guillaume, E; Lifschitz, A; Ta Phuoc, K; Hansson, M; Grittani, G; Gautier, J; Goddet, J-P; Tafzi, A; Lundh, O; Malka, V

    2015-01-01

    Ionization injection is a simple and efficient method to trap an electron beam in a laser plasma accelerator. Yet, because of a long injection length, this injection technique leads generally to the production of large energy spread electron beams. Here, we propose to use a shock front transition to localize the injection. Experimental results show that the energy spread can be reduced down to 10 MeV and that the beam energy can be tuned by varying the position of the shock. This simple technique leads to very stable and reliable injection even for modest laser energy. It should therefore become a unique tool for the development of laser-plasma accelerators. PMID:26549584

  11. Particle physicist's dreams about PetaelectronVolt laser plasma accelerators

    SciTech Connect

    Vesztergombi, G.

    2012-07-09

    Present day accelerators are working well in the multi TeV energy scale and one is expecting exciting results in the coming years. Conventional technologies, however, can offer only incremental (factor 2 or 3) increase in beam energies which does not follow the usual speed of progress in the frontiers of high energy physics. Laser plasma accelerators theoretically provide unique possibilities to achieve orders of magnitude increases entering the PetaelectronVolt (PeV) energy range. It will be discussed what kind of new perspectives could be opened for the physics at this new energy scale. What type of accelerators would be required?.

  12. Laser Guiding for GeV Laser-Plasma Accelerators

    SciTech Connect

    Leemans, Wim; Esarey, Eric; Geddes, Cameron; Schroeder, C.B.; Toth, Csaba

    2005-06-06

    Guiding of relativistically intense laser beams in preformed plasma channels is discussed for development of GeV-class laser accelerators. Experiments using a channel guided laser wakefield accelerator (LWFA) at LBNL have demonstrated that near mono-energetic 100 MeV-class electron beams can be produced with a 10 TW laser system. Analysis, aided by particle-in-cell simulations, as well as experiments with various plasma lengths and densities, indicate that tailoring the length of the accelerator, together with loading of the accelerating structure with beam, is the key to production of mono-energetic electron beams. Increasing the energy towards a GeV and beyond will require reducing the plasma density and design criteria are discussed for an optimized accelerator module. The current progress and future directions are summarized through comparison with conventional accelerators, highlighting the unique short term prospects for intense radiation sources based on laser-driven plasma accelerators.

  13. Laser guiding for GeV laser-plasma accelerators.

    PubMed

    Leemans, Wim; Esarey, Eric; Geddes, Cameron; Schroeder, Carl; Tóth, Csaba

    2006-03-15

    Guiding of relativistically intense laser beams in preformed plasma channels is discussed for development of GeV-class laser accelerators. Experiments using a channel guided laser wakefield accelerator at Lawrence Berkeley National Laboratory (LBNL) have demonstrated that near mono-energetic 100 MeV-class electron beams can be produced with a 10 TW laser system. Analysis, aided by particle-in-cell simulations, as well as experiments with various plasma lengths and densities, indicate that tailoring the length of the accelerator, together with loading of the accelerating structure with beam, is the key to production of mono-energetic electron beams. Increasing the energy towards a GeV and beyond will require reducing the plasma density and design criteria are discussed for an optimized accelerator module. The current progress and future directions are summarized through comparison with conventional accelerators, highlighting the unique short-term prospects for intense radiation sources based on laser-driven plasma accelerators. PMID:16483950

  14. Tunable Laser Plasma Accelerator based on Longitudinal Density Tailoring

    SciTech Connect

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Panasenko, Dmitriy; Shiraishi, Satomi; Sokollik, Thomas; Benedetti, Carlo; Schroeder, Carl; Geddes, Cameron; Tilborg, Jeroen van; Osterhoff, Jens; Esarey, Eric; Toth, Csaba; Leemans, Wim

    2011-07-15

    Laser plasma accelerators have produced high-quality electron beams with GeV energies from cm-scale devices and are being investigated as hyperspectral fs light sources producing THz to {gamma}-ray radiation and as drivers for future high-energy colliders. These applications require a high degree of stability, beam quality and tunability. Here we report on a technique to inject electrons into the accelerating field of a laser-driven plasma wave and coupling of this injector to a lower-density, separately tunable plasma for further acceleration. The technique relies on a single laser pulse powering a plasma structure with a tailored longitudinal density profile, to produce beams that can be tuned in the range of 100-400 MeV with percent-level stability, using laser pulses of less than 40 TW. The resulting device is a simple stand-alone accelerator or the front end for a multistage higher-energy accelerator.

  15. Ultrafast Diagnostics for Electron Beams from Laser Plasma Accelerators

    SciTech Connect

    Matlis, N. H.; Bakeman, M.; Geddes, C. G. R.; Gonsalves, T.; Lin, C.; Nakamura, K.; Osterhoff, J.; Plateau, G. R.; Schroeder, C. B.; Shiraishi, S.; Sokollik, T.; van Tilborg, J.; Toth, Cs.; Leemans, W. P.

    2010-06-01

    We present an overview of diagnostic techniques for measuring key parameters of electron bunches from Laser Plasma Accelerators (LPAs). The diagnostics presented here were chosen because they highlight the unique advantages (e.g., diverse forms of electromagnetic emission) and difficulties (e.g., shot-to-shot variability) associated with LPAs. Non destructiveness and high resolution (in space and time and energy) are key attributes that enable the formation of a comprehensive suite of simultaneous diagnostics which are necessary for the full characterization of the ultrashort, but highly-variable electron bunches from LPAs.

  16. Electron beam charge diagnostics for laser plasma accelerators

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Gonsalves, A. J.; Lin, C.; Smith, A.; Rodgers, D.; Donahue, R.; Byrne, W.; Leemans, W. P.

    2011-06-01

    A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). First, a scintillating screen (Lanex) was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT) for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160pC/mm2 and 0.4pC/(psmm2), respectively. After the radio-frequency accelerator based cross calibration, a series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within ±8%, showing that they all can provide accurate charge measurements for LPAs.

  17. STUDIES OF A FREE ELECTRON LASER DRIVEN BY A LASER-PLASMA ACCELERATOR

    SciTech Connect

    Montgomery, A.; Schroeder, C.; Fawley, W.

    2008-01-01

    A free electron laser (FEL) uses an undulator, a set of alternating magnets producing a periodic magnetic fi eld, to stimulate emission of coherent radiation from a relativistic electron beam. The Lasers, Optical Accelerator Systems Integrated Studies (LOASIS) group at Lawrence Berkeley National Laboratory (LBNL) will use an innovative laserplasma wakefi eld accelerator to produce an electron beam to drive a proposed FEL. In order to optimize the FEL performance, the dependence on electron beam and undulator parameters must be understood. Numerical modeling of the FEL using the simulation code GINGER predicts the experimental results for given input parameters. Among the parameters studied were electron beam energy spread, emittance, and mismatch with the undulator focusing. Vacuum-chamber wakefi elds were also simulated to study their effect on FEL performance. Energy spread was found to be the most infl uential factor, with output FEL radiation power sharply decreasing for relative energy spreads greater than 0.33%. Vacuum chamber wakefi elds and beam mismatch had little effect on the simulated LOASIS FEL at the currents considered. This study concludes that continued improvement of the laser-plasma wakefi eld accelerator electron beam will allow the LOASIS FEL to operate in an optimal regime, producing high-quality XUV and x-ray pulses.

  18. Multistage coupling of independent laser-plasma accelerators.

    PubMed

    Steinke, S; van Tilborg, J; Benedetti, C; Geddes, C G R; Schroeder, C B; Daniels, J; Swanson, K K; Gonsalves, A J; Nakamura, K; Matlis, N H; Shaw, B H; Esarey, E; Leemans, W P

    2016-02-11

    Laser-plasma accelerators (LPAs) are capable of accelerating charged particles to very high energies in very compact structures. In theory, therefore, they offer advantages over conventional, large-scale particle accelerators. However, the energy gain in a single-stage LPA can be limited by laser diffraction, dephasing, electron-beam loading and laser-energy depletion. The problem of laser diffraction can be addressed by using laser-pulse guiding and preformed plasma waveguides to maintain the required laser intensity over distances of many Rayleigh lengths; dephasing can be mitigated by longitudinal tailoring of the plasma density; and beam loading can be controlled by proper shaping of the electron beam. To increase the beam energy further, it is necessary to tackle the problem of the depletion of laser energy, by sequencing the accelerator into stages, each powered by a separate laser pulse. Here, we present results from an experiment that demonstrates such staging. Two LPA stages were coupled over a short distance (as is needed to preserve the average acceleration gradient) by a plasma mirror. Stable electron beams from a first LPA were focused to a twenty-micrometre radius--by a discharge capillary-based active plasma lens--into a second LPA, such that the beams interacted with the wakefield excited by a separate laser. Staged acceleration by the wakefield of the second stage is detected via an energy gain of 100 megaelectronvolts for a subset of the electron beam. Changing the arrival time of the electron beam with respect to the second-stage laser pulse allowed us to reconstruct the temporal wakefield structure and to determine the plasma density. Our results indicate that the fundamental limitation to energy gain presented by laser depletion can be overcome by using staged acceleration, suggesting a way of reaching the electron energies required for collider applications. PMID:26829223

  19. Benchmarked Simulations of Slow Capillary Discharges for Laser-Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Johnson, Jeffrey; Colella, Phillip; Geddes, Cameron; Mittelberger, Daniel; Bulanov, Stepan; Esarey, Eric; Leemans, Wim; Applied Numerical Algorithms Group (Lbl) Team; Loasis Laboratory (Lbl) Team

    2011-10-01

    We report our progress on a non-equilibrium, 2-temperature plasma model used for slow capillary discharges pertinent to laser-plasma accelerators. In these experiments, energy transport plays a major role in the formation of a plasma channel, which is used to guide the laser and enhance acceleration. We describe a series of simulations used to study the effects of electrical and thermal conduction, diffusion, and externally-applied magnetic fields in present and ongoing experiments with relevant geometries and densities. Scylla, a 1D cylindrical plasma/hydro code, was used to explore transport models and to resolve the radial profile of the plasma within the capillary. It has also been benchmarked against existing codes and experimental data. Since the capillary has 3D features such as gas feed slots, we have begun implementing a multi-dimensional AMR plasma model that solves the governing equations on irregular domains. Application to the BELLA Project at LBNL will be discussed. This work was supported by the Department of En- ergy under contract number DE-AC02-05-CH11231.

  20. Laser-PlasmaWakefield Acceleration with Higher Order Laser Modes

    SciTech Connect

    Geddes, C.G.R.; Cormier-Michel, E.; Esarey, E.; Schroeder, C.B.; Mullowney, P.; Paul, K.; Cary, J.R.; Leemans, W.P.

    2010-06-01

    Laser-plasma collider designs point to staging of multiple accelerator stages at the 10 GeV level, which are to be developed on the upcoming BELLA laser, while Thomson Gamma source designs use GeV stages, both requiring efficiency and low emittance. Design and scaling of stages operating in the quasi-linear regime to address these needs are presented using simulations in the VORPAL framework. In addition to allowing symmetric acceleration of electrons and positrons, which is important for colliders, this regime has the property that the plasma wakefield is proportional to the transverse gradient of the laser intensity profile. We demonstrate use of higher order laser modes to tailor the laser pulse and hence the transverse focusing forces in the plasma. In particular, we show that by using higher order laser modes, we can reduce the focusing fields and hence increase the matched electron beam radius, which is important to increased charge and efficiency, while keeping the low bunch emittance required for applications.

  1. Laser-Plasma Wakefield Acceleration with Higher Order Laser Modes

    SciTech Connect

    Geddes, C. G. R.; Schroeder, C. B.; Cormier-Michel, E.; Mullowney, P.; Paul, K.; Esarey, E.; Cary, J. R.; Leemans, W. P.

    2010-11-04

    Laser-plasma collider designs point to staging of multiple accelerator stages at the 10 GeV level, which are to be developed on the upcoming BELLA laser, while Thomson Gamma source designs use GeV stages, both requiring efficiency and low emittance. Design and scaling of stages operating in the quasi-linear regime to address these needs are presented using simulations in the VORPAL framework. In addition to allowing symmetric acceleration of electrons and positrons, which is important for colliders, this regime has the property that the plasma wakefield is proportional to the transverse gradient of the laser intensity profile. We demonstrate use of higher order laser modes to tailor the laser pulse and hence the transverse focusing forces in the plasma. In particular, we show that by using higher order laser modes, we can reduce the focusing fields and hence increase the matched electron beam radius, which is important to increased charge and efficiency, while keeping the low bunch emittance required for applications.

  2. Electron Beam Charge Diagnostics for Laser Plasma Accelerators

    SciTech Connect

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Smith, Alan; Rodgers, David; Donahue, Rich; Byrne, Warren; Leemans, Wim

    2011-06-27

    A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). First, a scintillating screen (Lanex) was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT) for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160 pC/mm{sup 2} and 0.4 pC/(ps mm{sup 2}), respectively. After the radio-frequency accelerator based cross calibration, a series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within {+-}8%, showing that they all can provide accurate charge measurements for LPAs.

  3. Tapered plasma channels to phase-lock accelerating and focusing forces in laser-plasma accelerators

    SciTech Connect

    Rittershofer, W.; Schroeder, C.B.; Esarey, E.; Gruner, F.J.; Leemans, W.P.

    2010-05-17

    Tapered plasma channels are considered for controlling dephasing of a beam with respect to a plasma wave driven by a weakly-relativistic, short-pulse laser. Tapering allows for enhanced energy gain in a single laser plasma accelerator stage. Expressions are derived for the taper, or longitudinal plasma density variation, required to maintain a beam at a constant phase in the longitudinal and/or transverse fields of the plasma wave. In a plasma channel, the phase velocities of the longitudinal and transverse fields differ, and, hence, the required tapering differs. The length over which the tapered plasma density becomes singular is calculated. Linear plasma tapering as well as discontinuous plasma tapering, which moves beams to adjacent plasma wave buckets, are also considered. The energy gain of an accelerated electron in a tapered laser-plasma accelerator is calculated and the laser pulse length to optimize the energy gain is determined.

  4. Probing electron acceleration and x-ray emission in laser-plasma accelerators

    SciTech Connect

    Thaury, C.; Ta Phuoc, K.; Corde, S.; Brijesh, P.; Lambert, G.; Malka, V.; Mangles, S. P. D.; Bloom, M. S.; Kneip, S.

    2013-06-15

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction length to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.

  5. Probing electron acceleration and x-ray emission in laser-plasma accelerators

    NASA Astrophysics Data System (ADS)

    Thaury, C.; Ta Phuoc, K.; Corde, S.; Brijesh, P.; Lambert, G.; Mangles, S. P. D.; Bloom, M. S.; Kneip, S.; Malka, V.

    2013-06-01

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction length to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.

  6. Reply to ``Comment on `Beamstrahlung considerations in laser-plasma-accelerator-based linear colliders' ''

    NASA Astrophysics Data System (ADS)

    Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-10-01

    We reply to Lebedev and Nagaitsev’s foregoing Comment [Phys. Rev. ST Accel. Beams 16, 108001 (2013)PRABFM1098-4402]. We disagree with the conclusion of the Comment that scattering imposes a fundamental limitation on plasma-based accelerator technology. Laser-plasma accelerators are compatible with high-luminosity collider concepts.

  7. Operational plasma density and laser parameters for future colliders based on laser-plasma accelerators

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2012-12-21

    The operational plasma density and laser parameters for future colliders based on laser-plasma accelerators are discussed. Beamstrahlung limits the charge per bunch at low plasma densities. Reduced laser intensity is examined to improve accelerator efficiency in the beamstrahlung-limited regime.

  8. Transport and Non-Invasive Position Detection of Electron Beams from Laser-Plasma Accelerators

    SciTech Connect

    Osterhoff, Jens; Sokollik, Thomas; Nakamura, Kei; Bakeman, Michael; Weingartner, R; Gonsalves, Anthony; Shiraishi, Satomi; Lin, Chen; vanTilborg, Jeroen; Geddes, Cameron; Schroeder, Carl; Esarey, Eric; Toth, Csaba; DeSantis, Stefano; Byrd, John; Gruner, F; Leemans, Wim

    2011-07-20

    The controlled imaging and transport of ultra-relativistic electrons from laser-plasma accelerators is of crucial importance to further use of these beams, e.g. in high peak-brightness light sources. We present our plans to realize beam transport with miniature permanent quadrupole magnets from the electron source through our THUNDER undulator. Simulation results demonstrate the importance of beam imaging by investigating the generated XUV-photon flux. In addition, first experimental findings of utilizing cavity-based monitors for non-invasive beam-position measurements in a noisy electromagnetic laser-plasma environment are discussed.

  9. Temporal Characterization of Femtosecond Laser-Plasma-AcceleratedElectron Bunches using THz Radiation

    SciTech Connect

    van Tilborg, J.; Schroeder, C.B.; Filip, C.V.; Toth, Cs.; Geddes,C.G.R.; Fubiani, G.; Huber, R.; Kaindl, R.A.; Esarey, E.; Leemans, W.P.

    2005-07-12

    The temporal pro le of relativistic laser-plasma-acceleratedelectron bunches has been characterized. Coherent transition radiation atTHz frequencies, emitted at the plasma-vacuum boundary, is measuredthrough electro-optic sampling. The data indicates that THz radiation isemitted by a skewed bunch with a sub-50 fs rise time and a ~; 600 fs tail(half-width-at-half-maximum), consistent with ballistic debunching of 100percent-energy-spread beams. The measurement demonstrates bothshot-to-shot stability of the laser-plasma accelerator and femtosecondsynchronization between bunch and probe beam.

  10. Transport and Non-Invasive Position Detection of Electron Beams from Laser-Plasma Accelerators

    SciTech Connect

    Osterhoff, J.; Nakamura, K.; Bakeman, M.; Gonsalves, A. J.; Shiraishi, S.; Lin, C.; Tilborg, J. van; Geddes, C. G. R.; Schroeder, C. B.; Esarey, E.; Toth, Cs.; De Santis, S.; Byrd, J. M.; Leemans, W. P.; Sokollik, T.; Weingartner, R.; Gruener, F.

    2010-11-04

    The controlled imaging and transport of ultra-relativistic electrons from laser-plasma accelerators is of crucial importance to further use of these beams, e.g. in high peak-brightness light sources. We present our plans to realize beam transport with miniature permanent quadrupole magnets from the electron source through our THUNDER undulator. Simulation results demonstrate the importance of beam imaging by investigating the generated XUV-photon flux. In addition, first experimental findings of utilizing cavity-based monitors for non-invasive beam-position measurements in a noisy electromagnetic laser-plasma environment are discussed.

  11. GPU-Accelerated PIC/MCC Simulation of Laser-Plasma Interaction Using BUMBLEBEE

    NASA Astrophysics Data System (ADS)

    Jin, Xiaolin; Huang, Tao; Chen, Wenlong; Wu, Huidong; Tang, Maowen; Li, Bin

    2015-11-01

    The research of laser-plasma interaction in its wide applications relies on the use of advanced numerical simulation tools to achieve high performance operation while reducing computational time and cost. BUMBLEBEE has been developed to be a fast simulation tool used in the research of laser-plasma interactions. BUMBLEBEE uses a 1D3V electromagnetic PIC/MCC algorithm that is accelerated by using high performance Graphics Processing Unit (GPU) hardware. BUMBLEBEE includes a friendly user-interface module and four physics simulators. The user-interface provides a powerful solid-modeling front end and graphical and computational post processing functionality. The solver of BUMBLEBEE has four modules for now, which are used to simulate the field ionization, electron collisional ionization, binary coulomb collision and laser-plasma interaction processes. The ionization characteristics of laser-neutral interaction and the generation of high-energy electrons have been analyzed by using BUMBLEBEE for validation.

  12. Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources

    SciTech Connect

    Geddes, Cameron G.R.; Cormier-Michel, Estelle; Esarey, Eric H.; Schroeder, Carl B.; Vay, Jean-Luc; Leemans, Wim P.; Bruhwiler, David L.; Cary, John R.; Cowan, Ben; Durant, Marc; Hamill, Paul; Messmer, Peter; Mullowney, Paul; Nieter, Chet; Paul, Kevin; Shasharina, Svetlana; Veitzer, Seth; Weber, Gunther; Rubel, Oliver; Ushizima, Daniela; Bethel, Wes; Wu, John

    2009-03-20

    Compared to conventional particle accelerators, plasmas can sustain accelerating fields that are thousands of times higher. To exploit this ability, massively parallel SciDAC particle simulations provide physical insight into the development of next-generation accelerators that use laser-driven plasma waves. These plasma-based accelerators offer a path to more compact, ultra-fast particle and radiation sources for probing the subatomic world, for studying new materials and new technologies, and for medical applications.

  13. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.

    2016-03-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  14. Shaping of pulses in optical grating-based laser systems for optimal control of electrons in laser plasma wake-field accelerator

    SciTech Connect

    Toth, Cs.; Faure, J.; Geddes, C.G.R.; van Tilborg, J.; Leemans, W.P.

    2003-05-01

    In typical chirped pulse amplification (CPA) laser systems, scanning the grating separation in the optical compressor causes the well know generation of linear chirp of frequency vs. time in a laser pulse, as well as a modification of all the higher order phase terms. By setting the compressor angle slightly different from the optimum value to generate the shortest pulse, a typical scan around this value will produce significant changes to the pulse shape. Such pulse shape changes can lead to significant differences in the interaction with plasmas such as used in laser wake-field accelerators. Strong electron yield dependence on laser pulse shape in laser plasma wake-field electron acceleration experiments have been observed in the L'OASIS Lab of LBNL [1]. These experiments show the importance of pulse skewness parameter, S, defined here on the basis of the ratio of the ''head-width-half-max'' (HWHM) and the ''tail-width-halfmax'' (TWHM), respectively.

  15. Proton shock acceleration in laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Marti, M.; Davies, J.; Fonseca, R. A.; Silva, L. O.; Fahlen, J.; Ren, C.; Tsung, F.; Mori, W. B.

    2003-10-01

    The formation of strong, high Mach number (2--3), electrostatic shocks by laser pulses incident on overdense plasma slabs is observed in 1 and 2-dimensional particle-in-cell simulations, for a wide range of intensities, pulse durations, target thicknesses and densities. The shocks propagate undisturbed across the plasma, accelerating the ions (protons). For dimensionless field strength parameter a_0=16 (Iλ^2 ≈ 3 × 10^20 W cm-2 μm^2, where I is intensity and λ wavelength) the highest energy protons are accelerated by the shock. A plateau in the ion spectrum provides a direct signature for shock acceleration.

  16. Intense ion beams accelerated by relativistic laser plasmas

    NASA Astrophysics Data System (ADS)

    Roth, Markus; Cowan, Thomas E.; Gauthier, Jean-Claude J.; Allen, Matthew; Audebert, Patrick; Blazevic, Abel; Fuchs, Julien; Geissel, Matthias; Hegelich, Manuel; Karsch, S.; Meyer-ter-Vehn, Jurgen; Pukhov, Alexander; Schlegel, Theodor

    2001-12-01

    We have studied the influence of the target properties on laser-accelerated proton and ion beams generated by the LULI multi-terawatt laser. A strong dependence of the ion emission on the surface conditions, conductivity, shape and material of the thin foil targets were observed. We have performed a full characterization of the ion beam using magnetic spectrometers, Thompson parabolas, radiochromic film and nuclear activation techniques. The strong dependence of the ion beam acceleration on the conditions on the target back surface was found in agreement with theoretical predictions based on the target normal sheath acceleration (TNSA) mechanism. Proton kinetic energies up to 25 MeV have been observed.

  17. The BErkeley Lab Laser Accelerator (BELLA): A 10 GeV Laser Plasma Accelerator

    SciTech Connect

    Leemans, W.P.; Duarte, R.; Esarey, E.; Fournier, S.; Geddes, C.G.R.; Lockhart, D.; Schroeder, C.B.; Toth, C.; Vay, J.-L.; Zimmermann, S.

    2010-06-01

    An overview is presented of the design of a 10 GeV laser plasma accelerator (LPA) that will be driven by a PW-class laser system and of the BELLA Project, which has as its primary goal to build and install the required Ti:sapphire laser system for the acceleration experiments. The basic design of the 10 GeV stage aims at operation in the quasi-linear regime, where the laser excited wakes are largely sinusoidal and offer the possibility of accelerating both electrons and positrons. Simulations show that a 10 GeV electron beam can be generated in a meter scale plasma channel guided LPA operating at a density of about 1017 cm-3 and powered by laser pulses containing 30-40 J of energy in a 50- 200 fs duration pulse, focused to a spotsize of 50-100 micron. The lay-out of the facility and laser system will be presented as well as the progress on building the facility.

  18. The BErkeley Lab Laser Accelerator (BELLA): A 10 GeV Laser Plasma Accelerator

    SciTech Connect

    Leemans, W. P.; Duarte, R.; Fournier, S.; Geddes, C. G. R.; Lockhart, D.; Schroeder, C. B.; Toth, C.; Vay, J.-L.; Zimmermann, S.; Esarey, E.

    2010-11-04

    An overview is presented of the design of a 10 GeV laser plasma accelerator (LPA) that will be driven by a PW-class laser system and of the BELLA Project, which has as its primary goal to build and install the required Ti:sapphire laser system for the acceleration experiments. The basic design of the 10 GeV stage aims at operation in the quasi-linear regime, where the laser excited wakes are largely sinusoidal and offer the possibility of accelerating both electrons and positrons. Simulations show that a 10 GeV electron beam can be generated in a meter scale plasma channel guided LPA operating at a density of about 10{sup 17} cm{sup -3} and powered by laser pulses containing 30-40 J of energy in a 50-200 fs duration pulse, focused to a spotsize of 50-100 micron. The lay-out of the facility and laser system will be presented as well as the progress on building the facility.

  19. Broadband Single-Shot Electron Spectrometer for GeV-Class Laser Plasma Based Accelerators

    SciTech Connect

    Nakamura, K.; Wan, W.; Ybarrolaza, N.; Syversrud, D.; Wallig, J.; Leemans, W.P.

    2008-05-01

    Laser-plasma-based accelerators can provide electrons over a broad energy range and/or with large momentum spread. The electron beam energy distribution can be controlled via accurate control of laser and plasma properties, and beams with energies ranging from'0.5 to 1000 MeV have been observed. Measuring these energy distributions in a single shot requires the use of a diagnostic with large momentum acceptance and, ideally, sufficient resolution to accurately measure energy spread in the case of narrow energy spread. Such a broadband single-shot electron magnetic spectrometer for GeV-class laser-plasma-based accelerators has been developed at Lawrence Berkeley National Laboratory. A detailed description of the hardware and the design concept is presented, as well as a performance evaluation of the spectrometer. The spectrometer covered electron beam energies raging from 0.01 to 1.1 GeV in a single shot, and enabled the simultaneous measurement of the laser properties at the exit of the accelerator through the use of a sufficiently large pole gap. Based on measured field maps and 3rd-order transport analysis, a few percent-level resolution and determination of the absolute energy were achieved over the entire energy range. Laser-plasma-based accelerator experiments demonstrated the capability of the spectrometer as a diagnostic and its suitability for such a broadband electron source.

  20. Optical transverse injection in laser-plasma acceleration.

    PubMed

    Lehe, R; Lifschitz, A F; Davoine, X; Thaury, C; Malka, V

    2013-08-23

    Laser-wakefield acceleration constitutes a promising technology for future electron accelerators. A crucial step in such an accelerator is the injection of electrons into the wakefield, which will largely determine the properties of the extracted beam. We present here a new paradigm of colliding-pulse injection, which allows us to generate high-quality electron bunches having both a very low emittance (0.17 mm·mrad) and a low energy spread (2%), while retaining a high charge (~100 pC) and a short duration (3 fs). In this paradigm, the pulse collision provokes a transient expansion of the accelerating bubble, which then leads to transverse electron injection. This mechanism contrasts with previously observed optical injection mechanisms, which were essentially longitudinal. We also specify the range of parameters in which this new type of injection occurs and show that it is within reach of existing high-intensity laser facilities. PMID:24010450

  1. Generating intense fully coherent soft x-ray radiation based on a laser-plasma accelerator.

    PubMed

    Feng, Chao; Xiang, Dao; Deng, Haixiao; Huang, Dazhang; Wang, Dong; Zhao, Zhentang

    2015-06-01

    Laser-plasma based accelerator has the potential to dramatically reduce the size and cost of future x-ray light sources to the university-laboratory scale. However, the large energy spread of the laser-plasma accelerated electron beam may hinder the way for short wavelength free-electron laser generation. In this paper, we propose a novel method for directly imprinting strong coherent micro-bunching on the electron beam with large intrinsic energy spread by using a wavefront-tilted conventional optical laser beam and a weak dipole magnet. Theoretical analysis and numerical simulations demonstrate that this technique can be used for the generation of fully coherent femtosecond soft x-ray radiation at gigawatts level with a very short undulator. PMID:26072855

  2. Summary of Working Group 1: Laser Plasma Wakefield Accelerators

    SciTech Connect

    Krushelnick, Karl; Kaganovich, Dmitri; Gonsalves, Anthony

    2009-01-22

    There have been many significant experimental and theoretical advances recently with regard to the production of relativistic electron beams using laser wakefield accelerators (LWFA) driven by high power short pulse lasers. In particular, there has been an explosion of interest in this field following the discovery of methods to generate such beams with low energy spread. In recent work by many groups around the world the energy and quality of these beams has been improved and a more complete understanding of the 'bubble' regime of electron acceleration has been obtained, enabling a significant improvement in the output electron beam stability. The 2008 Advanced Accelerator Concepts workshop in Santa Cruz CA brought together the leading groups engaged in this research from around the world. This paper will summarize the major results presented at the conference. Further details on the work described here can be found in the other related papers in these proceedings.

  3. Overview of Laser-Plasma Acceleration Programs in Asia

    SciTech Connect

    Sheng, Z. M.; Zhang, J.

    2010-11-04

    With many high power laser systems ranging from a few TW to multi-100 TW installed in some laboratories in Asia, significant progress on laser-driven wakefield acceleration of electrons has been achieved. Generation of quasi-monoenergetic electron beams from tens of MeV to nearly GeV has been demonstrated. Several programs for ion/proton acceleration aiming at potential medical applications are running or planned based upon their significant theoretical and numerical findings. There are quite a few collaborations existing among Asian research groups.

  4. DEVELOPMENT OF WATER JET PLASMA MIRROR FOR STAGING OF LASER PLASMA ACCELERATORS

    SciTech Connect

    Panasenko, Dmitriy; Gonsalves, Anthony J.; Leemans, Wim; Nakamura, Kei; Shu, Anthony; Toth, Csaba

    2009-05-04

    Staging Laser Plasma Accelerators (LPAs) is necessary in order to reach beam energies of 100 GeV and above. This requires incoupling of additional laser beams into accelerating stages. In order to maintain the high average accelerating gradient of a staged LPA, it is imperative to minimize the distance that is needed for laser incoupling. A plasma mirror is proposed as the final coupling optic reducing the coupling distance from tens of meters, using a conventional optic, to as small as a few cm. Both a planar water jet and a nitrocellulose foil are used as reflecting surfacesand characterized. A maximum reflectivity of 70percent was obtained using both surfaces.

  5. Measurement of acceleration in femtosecond laser-plasmas

    SciTech Connect

    Haessner, R.; Theobald, W.; Niedermeier, S.; Michelmann, K.; Feurer, T.; Schillinger, H.; Sauerbrey, R.

    1998-02-20

    Accelerations up to 4x10{sup 19} m/s{sup 2} are measured in femtosecond laser-produced plasmas at intensities of 10{sup 18} W/cm{sup 2} using the Frequency Resolved Optical Gating (FROG) technique. A high density plasma is formed by focusing an ultrashort unchirped laser pulse on a plane carbon target and part of the reflected pulse is eventually detected by a FROG autocorrelator. Radiation pressure and thermal pressure accelerate the plasma which causes a chirp in the reflected laser pulse. The retrieved phase and amplitude information reveal that the plasma motion is dominated by the large light pressure which pushes the plasma into the target. This is supported by theoretical estimates and by the results of independently measured time integrated spectra of the reflected pulse.

  6. Proton Shock Acceleration in Laser-Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Silva, Luís O.; Marti, Michael; Davies, Jonathan R.; Fonseca, Ricardo A.; Ren, Chuang; Tsung, Frank S.; Mori, Warren B.

    2004-01-01

    The formation of strong, high Mach number (2 3), electrostatic shocks by laser pulses incident on overdense plasma slabs is observed in one- and two-dimensional particle-in-cell simulations, for a wide range of intensities, pulse durations, target thicknesses, and densities. The shocks propagate undisturbed across the plasma, accelerating the ions (protons). For a dimensionless field strength parameter a0=16 (Iλ2≈3×1020 W cm-2 μm2, where I is the intensity and λ the wavelength), and target thicknesses of a few microns, the shock is responsible for the highest energy protons. A plateau in the ion spectrum provides a direct signature for shock acceleration.

  7. Electron acceleration in long scale laser - plasma interactions

    NASA Astrophysics Data System (ADS)

    Kamperidis, Christos; Mangles, Stuart P. D.; Nagel, Sabrina R.; Bellei, Claudio; Krushelnick, Karl; Najmudin, Zulfikar; Bourgeois, Nicola; Marques, Jean Raphael; Kaluza, Malte C.

    2006-10-01

    Broad energy electron bunches are produced through the Self-Modulated Laser Wakefield Acceleration scheme at the 30J, 300 fsec laser, LULI, France, with long scale underdense plasmas, created in a He filled gas cell and in He gas jet nozzles of various lengths. With c.τlaser>>λplasma, electrons reached Emax ˜ 200MeV. By carefully controlling the dynamics of the interaction and by simultaneous observations of the electron energy spectra and the forward emitted optical spectrum, we found that a plasma density threshold (˜5.10^18 cm-3) exists for quasi-monoenergetic (˜30MeV) features to appear. The overall plasma channel size was inferred from the collected Thomson scattered light. 2D PIC simulations indicate that the main long laser pulse breaks up into small pulselets that eventually get compressed and tightly focused inside the first few plasma periods, leading to a bubble like acceleration of electron bunches.

  8. Transport line for a multi-staged laser-plasma acceleration: DACTOMUS

    NASA Astrophysics Data System (ADS)

    Chancé, Antoine; Delferrière, Olivier; Schwindling, Jérôme; Bruni, Christelle; Delerue, Nicolas; Specka, Arnd; Cros, Brgitte; Maynard, Gillies; Paradkar, Bhooshan S.; Mora, Patrick

    2014-03-01

    Laser-plasma acceleration is one of the most promising techniques to reach very high acceleration gradients up to a few hundreds of GeV/m. In order to push this acceleration scheme in the domain of the very high energies, the CILEX project was launched with the laser APOLLON. One of the main topics of this project is to study multi-staged acceleration. It consists in generating and pre-accelerating electrons in a first laser-plasma stage, to transport them up to a second stage where the electrons are accelerated again thanks to another laser pulse. The DACTOMUS project, based on a collaboration CEA-IRFU, CEA-IRAMIS, LAL, LPGP, LULI and LLR, aims at the study and realization of such a transfer line between these two stages. Firstly, a prototype will be developed and tested by the groups of CEA-IRAMIS-SPAM, LPGP, and LULI on the UHI100 facility (CEA-SPAM). This collaboration must enable to realize the first acceleration stage. For the transport line prototype, the main difficulties are to realize a very compact and energy accepting line with diagnostics to characterize the electron beam. We will present here the optics of this line, its performances and the inserted diagnostics.

  9. Mapping the x-ray emission region in a laser-plasma accelerator.

    PubMed

    Corde, S; Thaury, C; Phuoc, K Ta; Lifschitz, A; Lambert, G; Faure, J; Lundh, O; Benveniste, E; Ben-Ismail, A; Arantchuk, L; Marciniak, A; Stordeur, A; Brijesh, P; Rousse, A; Specka, A; Malka, V

    2011-11-18

    The x-ray emission in laser-plasma accelerators can be a powerful tool to understand the physics of relativistic laser-plasma interaction. It is shown here that the mapping of betatron x-ray radiation can be obtained from the x-ray beam profile when an aperture mask is positioned just beyond the end of the emission region. The influence of the plasma density on the position and the longitudinal profile of the x-ray emission is investigated and compared to particle-in-cell simulations. The measurement of the x-ray emission position and length provides insight on the dynamics of the interaction, including the electron self-injection region, possible multiple injection, and the role of the electron beam driven wakefield. PMID:22181891

  10. Wavefront-sensor-based electron density measurements for laser-plasma accelerators

    SciTech Connect

    Plateau, Guillaume; Matlis, Nicholas; Geddes, Cameron; Gonsalves, Anthony; Shiraishi, Satomi; Lin, Chen; van Mourik, Reinier; Leemans, Wim

    2010-02-20

    Characterization of the electron density in laser produced plasmas is presented using direct wavefront analysis of a probe laser beam. The performance of a laser-driven plasma-wakefield accelerator depends on the plasma wavelength, hence on the electron density. Density measurements using a conventional folded-wave interferometer and using a commercial wavefront sensor are compared for different regimes of the laser-plasma accelerator. It is shown that direct wavefront measurements agree with interferometric measurements and, because of the robustness of the compact commercial device, have greater phase sensitivity, straightforward analysis, improving shot-to-shot plasma-density diagnostics.

  11. Monoenergetic energy doubling in a hybrid laser-plasma wakefield accelerator.

    PubMed

    Hidding, B; Königstein, T; Osterholz, J; Karsch, S; Willi, O; Pretzler, G

    2010-05-14

    An ultracompact laser-plasma-generated, fs-scale electron double bunch system can be injected into a high-density driver/witness-type plasma wakefield accelerator afterburner stage to boost the witness electrons monoenergetically to energies far beyond twice their initial energy on the GeV scale. The combination of conservation of monoenergetic phase-space structure and fs duration with radial electric plasma fields E(r)∼100  GV/m leads to dramatic transversal witness compression and unprecedented charge densities. It seems feasible to upscale and implement the scheme to future accelerator systems. PMID:20866970

  12. Monoenergetic Energy Doubling in a Hybrid Laser-Plasma Wakefield Accelerator

    SciTech Connect

    Hidding, B.; Koenigstein, T.; Osterholz, J.; Willi, O.; Pretzler, G.; Karsch, S.

    2010-05-14

    An ultracompact laser-plasma-generated, fs-scale electron double bunch system can be injected into a high-density driver/witness-type plasma wakefield accelerator afterburner stage to boost the witness electrons monoenergetically to energies far beyond twice their initial energy on the GeV scale. The combination of conservation of monoenergetic phase-space structure and fs duration with radial electric plasma fields E{sub r{approx}}100 GV/m leads to dramatic transversal witness compression and unprecedented charge densities. It seems feasible to upscale and implement the scheme to future accelerator systems.

  13. Monoenergetic Energy Doubling in a Hybrid Laser-Plasma Wakefield Accelerator

    NASA Astrophysics Data System (ADS)

    Hidding, B.; Königstein, T.; Osterholz, J.; Karsch, S.; Willi, O.; Pretzler, G.

    2010-05-01

    An ultracompact laser-plasma-generated, fs-scale electron double bunch system can be injected into a high-density driver/witness-type plasma wakefield accelerator afterburner stage to boost the witness electrons monoenergetically to energies far beyond twice their initial energy on the GeV scale. The combination of conservation of monoenergetic phase-space structure and fs duration with radial electric plasma fields Er˜100GV/m leads to dramatic transversal witness compression and unprecedented charge densities. It seems feasible to upscale and implement the scheme to future accelerator systems.

  14. Staged concept of laser-plasma acceleration toward multi-GeV electron beams

    NASA Astrophysics Data System (ADS)

    Malka, Victor; Lifschitz, A.; Faure, J.; Glinec, Y.

    2006-09-01

    The concepts of the laser-plasma based accelerator and injector are discussed here. The recent tests done at LOA as well as design studies of high-quality GeV electron beam production with low energy spread (1%) are presented. These laser-produced particle beams have a number of interesting properties and could lend themselves to applications in many fields, including medicine (radiotherapy), chemistry (radiolysis), and accelerator physics. They could be used as a source for the production of γ ray beams for nondestructive material inspection by radiography, or for future compact X-free electron laser machines.

  15. Observation of longitudinal and transverse self-injections in laser-plasma accelerators.

    PubMed

    Corde, S; Thaury, C; Lifschitz, A; Lambert, G; Ta Phuoc, K; Davoine, X; Lehe, R; Douillet, D; Rousse, A; Malka, V

    2013-01-01

    Laser-plasma accelerators can produce high-quality electron beams, up to giga electronvolts in energy, from a centimetre scale device. The properties of the electron beams and the accelerator stability are largely determined by the injection stage of electrons into the accelerator. The simplest mechanism of injection is self-injection, in which the wakefield is strong enough to trap cold plasma electrons into the laser wake. The main drawback of this method is its lack of shot-to-shot stability. Here we present experimental and numerical results that demonstrate the existence of two different self-injection mechanisms. Transverse self-injection is shown to lead to low stability and poor-quality electron beams, because of a strong dependence on the intensity profile of the laser pulse. In contrast, longitudinal injection, which is unambiguously observed for the first time, is shown to lead to much more stable acceleration and higher-quality electron beams. PMID:23422669

  16. Observation of longitudinal and transverse self-injections in laser-plasma accelerators

    NASA Astrophysics Data System (ADS)

    Corde, S.; Thaury, C.; Lifschitz, A.; Lambert, G.; Ta Phuoc, K.; Davoine, X.; Lehe, R.; Douillet, D.; Rousse, A.; Malka, V.

    2013-02-01

    Laser-plasma accelerators can produce high-quality electron beams, up to giga electronvolts in energy, from a centimetre scale device. The properties of the electron beams and the accelerator stability are largely determined by the injection stage of electrons into the accelerator. The simplest mechanism of injection is self-injection, in which the wakefield is strong enough to trap cold plasma electrons into the laser wake. The main drawback of this method is its lack of shot-to-shot stability. Here we present experimental and numerical results that demonstrate the existence of two different self-injection mechanisms. Transverse self-injection is shown to lead to low stability and poor-quality electron beams, because of a strong dependence on the intensity profile of the laser pulse. In contrast, longitudinal injection, which is unambiguously observed for the first time, is shown to lead to much more stable acceleration and higher-quality electron beams.

  17. Analysis of damaging effects of laser-plasma accelerated shrapnels on protecting glass shield

    NASA Astrophysics Data System (ADS)

    Martinkova, Michaela; Kalal, Milan; Shmatov, Mikhail L.

    2013-11-01

    Analysis of the damage caused by laser plasma accelerated fragments of metal target was performed. Measured as well as calculated parameters of craters and shrapnel found in BK7 glass blastshield are presented. Method applied for the measurement of parameters of craters is described. Potential damage of optical elements by the so-called striking cores (high-velocity stable objects arising due to collapse of cones or some other target parts toward their axes) that can be generated in IFE related experiments is evaluated.

  18. Dynamics of ponderomotive ion acceleration in a laser-plasma channel

    SciTech Connect

    Kovalev, V. F.; Bychenkov, V. Yu.

    2015-04-15

    Analytical solution to the Cauchy problem for the kinetic equation describing the radial acceleration of ions under the action of the ponderomotive force of a laser beam undergoing guided propagation in transparent plasma is constructed. Spatial and temporal dependences of the ion distribution function and the integral ion characteristics, such as the density, average velocity, and energy spectrum, are obtained for an axisymmetric laser-plasma channel. The formation of a density peak near the channel boundary and the effect of ion flow breaking for a quasi-stationary laser beam are described analytically.

  19. Dependence of electron trapping on bubble geometry in laser-plasma wakefield acceleration

    SciTech Connect

    Li, X. F.; Yu, Q.; Huang, S.; Zhang, F.; Kong, Q.; Gu, Y. J.; Kawata, S.

    2014-07-15

    The effect of bubble shape in laser-plasma electron acceleration was investigated. We showed the general existence of an ellipsoid bubble. The electromagnetic field in this bubble and its dependence on bubble shape were determined through theory. The electron-trapping cross-section for different bubble aspect ratios was studied in detail. When the shape of the bubble was close to spherical, the trapping cross-section reached to the maximum. When the bubble deviated from a spherical shape, the cross-section decreased until electron injection no longer occurred. These results were confirmed by particle-in-cell simulation.

  20. Long-range persistence of femtosecond modulations on laser-plasma-accelerated electron beams

    SciTech Connect

    Tilborg, J. van; Lin, C.; Nakamura, K.; Gonsalves, A. J.; Matlis, N. H.; Sokollik, T.; Shiraishi, S.; Osterhoff, J.; Benedetti, C.; Schroeder, C. B.; Toth, Cs.; Esarey, E.; Leemans, W. P.

    2012-12-21

    Laser plasma accelerators have produced femtosecond electron bunches with a relative energy spread ranging from 100% to a few percent. Simulations indicate that the measured energy spread can be dominated by a correlated spread, with the slice spread significantly lower. Measurements of coherent optical transition radiation are presented for broad-energy-spread beams with laser-induced density and momentum modulations. The long-range (meter-scale) observation of coherent optical transition radiation indicates that the slice energy spread is below the percent level to preserve the modulations.

  1. Active Plasma Lensing for Relativistic Laser-Plasma-Accelerated Electron Beams.

    PubMed

    van Tilborg, J; Steinke, S; Geddes, C G R; Matlis, N H; Shaw, B H; Gonsalves, A J; Huijts, J V; Nakamura, K; Daniels, J; Schroeder, C B; Benedetti, C; Esarey, E; Bulanov, S S; Bobrova, N A; Sasorov, P V; Leemans, W P

    2015-10-30

    Compact, tunable, radially symmetric focusing of electrons is critical to laser-plasma accelerator (LPA) applications. Experiments are presented demonstrating the use of a discharge-capillary active plasma lens to focus 100-MeV-level LPA beams. The lens can provide tunable field gradients in excess of 3000 T/m, enabling cm-scale focal lengths for GeV-level beam energies and allowing LPA-based electron beams and light sources to maintain their compact footprint. For a range of lens strengths, excellent agreement with simulation was obtained. PMID:26565471

  2. Beam loading in a laser-plasma accelerator using a near-hollow plasma channel

    SciTech Connect

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; Leemans, W. P.

    2013-12-15

    Beam loading in laser-plasma accelerators using a near-hollow plasma channel is examined in the linear wake regime. It is shown that, by properly shaping and phasing the witness particle beam, high-gradient acceleration can be achieved with high-efficiency, and without induced energy spread or emittance growth. Both electron and positron beams can be accelerated in this plasma channel geometry. Matched propagation of electron beams can be achieved by the focusing force provided by the channel density. For positron beams, matched propagation can be achieved in a hollow plasma channel with external focusing. The efficiency of energy transfer from the wake to a witness beam is calculated for single ultra-short bunches and bunch trains.

  3. Beam loading in a laser-plasma accelerator using a near-hollow plasma channel

    NASA Astrophysics Data System (ADS)

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; Leemans, W. P.

    2013-12-01

    Beam loading in laser-plasma accelerators using a near-hollow plasma channel is examined in the linear wake regime. It is shown that, by properly shaping and phasing the witness particle beam, high-gradient acceleration can be achieved with high-efficiency, and without induced energy spread or emittance growth. Both electron and positron beams can be accelerated in this plasma channel geometry. Matched propagation of electron beams can be achieved by the focusing force provided by the channel density. For positron beams, matched propagation can be achieved in a hollow plasma channel with external focusing. The efficiency of energy transfer from the wake to a witness beam is calculated for single ultra-short bunches and bunch trains.

  4. Compact X-ray Free Electron Laser from a Laser-plasma Accelerator using a Transverse Gradient Undulator

    SciTech Connect

    Huang, Zhirong; Ding, Yuantao; Schroeder, Carl B.; /LBL, Berkeley

    2012-09-13

    Compact laser-plasma accelerators can produce high energy electron beams with low emittance, high peak current but a rather large energy spread. The large energy spread hinders the potential applications for coherent FEL radiation generation. In this paper, we discuss a method to compensate the effects of beam energy spread by introducing a transverse field variation into the FEL undulator. Such a transverse gradient undulator together with a properly dispersed beam can greatly reduce the effects of electron energy spread and jitter on FEL performance. We present theoretical analysis and numerical simulations for SASE and seeded extreme ultraviolet and soft x-ray FELs based on laser plasma accelerators.

  5. GeV Electron Beams from a Capillary Discharge Guided Laser Plasma Accelerator

    SciTech Connect

    Nakamura, Kei; Gonsalves, Anthony; Panasenko, Dmitriy; Lin, Chen; Toth, Csaba; Geddes, Cameron; Schroeder, Carl; Esarey, Eric; Leemans, Wim

    2010-07-08

    Laser plasma acceleration (LPA) up to 1 GeV has been realized at Lawrence Berkeley National Laboratory by using a capillary discharge waveguide. In this paper, the capillary discharge guided LPA system including a broadband single-shot electron spectrometer is described. The spectrometer was designed specifically for LPA experiments and has amomentumacceptance of 0.01 - 1.1 GeV/c with a percent level resolution. Experiments using a 33 mm long, 300 mu m diameter capillary demonstrated the generation of high energy electron beams up to 1 GeV. By de-tuning discharge delay from optimum guiding performance, selftrapping and acceleration were found to be stabilized producing 460 MeV electron beams.

  6. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV

    PubMed Central

    Wang, Xiaoming; Zgadzaj, Rafal; Fazel, Neil; Li, Zhengyan; Yi, S. A.; Zhang, Xi; Henderson, Watson; Chang, Y.-Y.; Korzekwa, R.; Tsai, H.-E.; Pai, C.-H.; Quevedo, H.; Dyer, G.; Gaul, E.; Martinez, M.; Bernstein, A. C.; Borger, T.; Spinks, M.; Donovan, M.; Khudik, V.; Shvets, G.; Ditmire, T.; Downer, M. C.

    2013-01-01

    Laser-plasma accelerators of only a centimetre’s length have produced nearly monoenergetic electron bunches with energy as high as 1 GeV. Scaling these compact accelerators to multi-gigaelectronvolt energy would open the prospect of building X-ray free-electron lasers and linear colliders hundreds of times smaller than conventional facilities, but the 1 GeV barrier has so far proven insurmountable. Here, by applying new petawatt laser technology, we produce electron bunches with a spectrum prominently peaked at 2 GeV with only a few per cent energy spread and unprecedented sub-milliradian divergence. Petawatt pulses inject ambient plasma electrons into the laser-driven accelerator at much lower density than was previously possible, thereby overcoming the principal physical barriers to multi-gigaelectronvolt acceleration: dephasing between laser-driven wake and accelerating electrons and laser pulse erosion. Simulations indicate that with improvements in the laser-pulse focus quality, acceleration to nearly 10 GeV should be possible with the available pulse energy. PMID:23756359

  7. Controlled laser plasma wakefield acceleration of electrons via colliding pulse injection in non-collinear geometry

    NASA Astrophysics Data System (ADS)

    Toth, Csaba; Nakamura, Kei; Geddes, Cameron; Panasenko, Dmitriy; Plateau, Guillaume; Matlis, Nicholas; Schroeder, Carl; Esarey, Eric; Leemans, Wim

    2007-11-01

    Colliding laser pulses [1] have been proposed as a method for controlling injection of electrons into a laser wakefield accelerator (LWFA) and hence producing high quality electron beams with energy spread below 1% and normalized emittances < 1 micron. The. One pulse excites a plasma wake, and a collinear pulse following behind it collides with a counterpropagating pulse forming a beat pattern that boosts background electrons into accelerating phase. A variation of the original method uses only two laser pulses [2] which may be non-collinear. The first pulse drives the wake, and beating of the trailing edge of this pulse with the colliding pulse injects electrons. Non-collinear injection avoids optical elements on the electron beam path (avoiding emittance growth). We report on progress of non-collinear experiments at LBNL, using the Ti:Sapphire laser at the LOASIS facility of LBNL. New results indicate that the electron beam properties are affected by the presence of the second beam. [1] E. Esarey, et al, Phys. Rev. Lett 79, 2682 (1997) [2] G. Fubiani, Phys. Rev. E 70, 016402 (2004)

  8. Near-threshold electron injection in the laser-plasma wakefield accelerator leading to femtosecond bunches

    NASA Astrophysics Data System (ADS)

    Islam, M. R.; Brunetti, E.; Shanks, R. P.; Ersfeld, B.; Issac, R. C.; Cipiccia, S.; Anania, M. P.; Welsh, G. H.; Wiggins, S. M.; Noble, A.; Cairns, R. A.; Raj, G.; Jaroszynski, D. A.

    2015-09-01

    The laser-plasma wakefield accelerator is a compact source of high brightness, ultra-short duration electron bunches. Self-injection occurs when electrons from the background plasma gain sufficient momentum at the back of the bubble-shaped accelerating structure to experience sustained acceleration. The shortest duration and highest brightness electron bunches result from self-injection close to the threshold for injection. Here we show that in this case injection is due to the localized charge density build-up in the sheath crossing region at the rear of the bubble, which has the effect of increasing the accelerating potential to above a critical value. Bunch duration is determined by the dwell time above this critical value, which explains why single or multiple ultra-short electron bunches with little dark current are formed in the first bubble. We confirm experimentally, using coherent optical transition radiation measurements, that single or multiple bunches with femtosecond duration and peak currents of several kiloAmpere, and femtosecond intervals between bunches, emerge from the accelerator.

  9. An ultrashort pulse ultra-violet radiation undulator source driven by a laser plasma wakefield accelerator

    SciTech Connect

    Anania, M. P.; Brunetti, E.; Wiggins, S. M.; Grant, D. W.; Welsh, G. H.; Issac, R. C.; Cipiccia, S.; Shanks, R. P.; Manahan, G. G.; Aniculaesei, C.; Jaroszynski, D. A.; Geer, S. B. van der; Loos, M. J. de; Poole, M. W.; Shepherd, B. J. A.; Clarke, J. A.; Gillespie, W. A.; MacLeod, A. M.

    2014-06-30

    Narrow band undulator radiation tuneable over the wavelength range of 150–260 nm has been produced by short electron bunches from a 2 mm long laser plasma wakefield accelerator based on a 20 TW femtosecond laser system. The number of photons measured is up to 9 × 10{sup 6} per shot for a 100 period undulator, with a mean peak brilliance of 1 × 10{sup 18} photons/s/mrad{sup 2}/mm{sup 2}/0.1% bandwidth. Simulations estimate that the driving electron bunch r.m.s. duration is as short as 3 fs when the electron beam has energy of 120–130 MeV with the radiation pulse duration in the range of 50–100 fs.

  10. Colliding pulse injection experiments in non-collinear geometryfor controlled laser plasma wakefield acceleration of electrons

    SciTech Connect

    Toth, Carl B.; Esarey, Eric H.; Geddes, Cameron G.R.; Leemans,Wim P.; Nakamura, Kei; Panasenko, Dmitriy; Schroeder, Carl B.; Bruhwiler,D.; Cary, J.R.

    2007-06-25

    An optical injection scheme for a laser-plasma basedaccelerator which employs a non-collinear counter-propagating laser beamto push background electrons in the focusing and acceleration phase viaponderomotive beat with the trailing part of the wakefield driver pulseis discussed. Preliminary experiments were performed using a drive beamof a_0 = 2.6 and colliding beam of a_1 = 0.8 both focused on the middleof a 200 mu m slit jet backed with 20 bar, which provided ~; 260 mu mlong gas plume. The enhancement in the total charge by the collidingpulse was observed with sharp dependence on the delay time of thecolliding beam. Enhancement of the neutron yield was also measured, whichsuggests a generation of electrons above 10 MeV.

  11. X-ray Emission from Electron Betatron Motion in a Laser-Plasma Accelerator

    SciTech Connect

    Plateau, G. R.; Geddes, C. G. R.; Matlis, N. H.; Mittelberger, D. E.; Battaglia, M.; Kim, T. S.; Nakamura, K.; Esarey, E.; Leemans, W. P.; Thorn, D. B.; Stoehlker, T.

    2010-11-04

    Single-shot x-ray spectra from electron bunches produced by a laser-plasma wakefield accelerator (LPA) were measured using a photon-counting single-shot pixelated Silicon-based detector, providing for the first time single-shot direct spectra without assumptions required by filter based techniques. In addition, the electron bunch source size was measured by imaging a wire target, demonstrating few micron source size and stability. X-rays are generated when trapped electrons oscillate in the focusing field of the wake trailing the driver laser pulse. In addition to improving understanding of bunch emittance and wake structure, this provides a broadband, synchronized femtosecond source of keV x-rays. Electron bunch spectra and divergence were measured simultaneously and preliminary analysis shows correlation between x-ray and electron spectra. Bremsstrahlung background was managed using shielding and magnetic diversion.

  12. Space-charge effects in ultra-high current electron bunches generated by laser-plasma accelerators

    SciTech Connect

    Grinner, F. J.; Schroeder, C. B.; Maier, A. R.; Becker, S.; Mikhailova, J. M.

    2009-02-11

    Recent advances in laser-plasma accelerators, including the generation of GeV-scale electron bunches, enable applications such as driving a compact free-electron-laser (FEL). Significant reduction in size of the FEL is facilitated by the expected ultra-high peak beam currents (10-100 kA) generated in laser-plasma accelerators. At low electron energies such peak currents are expected to cause space-charge effects such as bunch expansion and induced energy variations along the bunch, potentially hindering the FEL process. In this paper we discuss a self-consistent approach to modeling space-charge effects for the regime of laser-plasma-accelerated ultra-compact electron bunches at low or moderate energies. Analytical treatments are considered as well as point-to-point particle simulations, including the beam transport from the laser-plasma accelerator through focusing devices and the undulator. In contradiction to non-self-consistent analyses (i.e., neglecting bunch evolution), which predict a linearly growing energy chirp, we have found the energy chirp reaches a maximum and decreases thereafter. The impact of the space-charge induced chirp on FEL performance is discussed and possible solutions are presented.

  13. Laser-plasma accelerators-based high energy radiation femtochemistry and spatio-temporal radiation biomedicine

    NASA Astrophysics Data System (ADS)

    Gauduel, Y. A.; Lundh, O.; Martin, M. T.; Malka, V.

    2012-06-01

    The innovating advent of powerful TW laser sources (~1019 W cm-z) and laser-plasma interactions providing ultra-short relativistic particle beams (electron, proton) in the MeV domain open exciting opportunities for the simultaneous development of high energy radiation femtochemistry (HERF) and ultrafast radiation biomedicine. Femtolysis experiments (Femtosecond radiolysis) of aqueous targets performed with relativistic electron bunches of 2.5-15 MeV give new insights on transient physicochemical events that take place in the prethermal regime of confined ionization tracks. Femtolysis studies emphasize the pre-eminence of ultra-fast quantum effects in the temporal range 10-14 - 10-11 s. The most promising advances of HERF concern the quantification of ultrafast sub-nanometric biomolecular damages (bond weakening and bond breaking) in the radial direction of a relativistic particle beam. Combining ultra-short relativistic particle beams and near-infrared spectroscopic configurations, laser-plasma accelerators based high energy radiation femtochemistry foreshadows the development of real-time radiation chemistry in the prethermal regime of nascent ionisation clusters. These physico-chemical advances would be very useful for future developments in biochemically relevant environments (DNA, proteins) and in more complex biological systems such as living cells. The first investigation of single and multiple irradiation shots performed at high energy level (90 MeV) and very high dose rate, typically 1013 Gy s-1, demonstrates that measurable assessments of immediate and reversible DNA damage can be explored at single cell level. Ultrafast in vivo irradiations would permit the development of bio-nanodosimetry on the time scale of molecular motions, i.e. angstrom or sub-angstrom displacements and open new perspectives in the emerging domain of ultrafast radiation biomedicine such as pulsed radiotherapy.

  14. Narrow spread electron beams from a laser-plasma wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Wiggins, S. M.; Anania, M. P.; Brunetti, E.; Cipiccia, S.; Ersfeld, B.; Islam, M. R.; Issac, R. C.; Raj, G.; Shanks, R. P.; Vieux, G.; Welsh, G. H.; Gillespie, W. A.; MacLeod, A. M.; Jaroszynski, D. A.

    2009-05-01

    The Advanced Laser-Plasma High-Energy Accelerators towards X-rays (ALPHA-X) programme is developing laserplasma accelerators for the production of ultra-short electron bunches with subsequent generation of incoherent radiation pulses from plasma and coherent short-wavelength radiation pulses from a free-electron laser (FEL). The first quantitative measurements of the electron energy spectra have been made on the University of Strathclyde ALPHA-X wakefield acceleration beam line. A high peak power laser pulse (energy 900 mJ, duration 35 fs) is focused into a gas jet (nozzle length 2 mm) using an F/16 spherical mirror. Electrons from the laser-induced plasma are self-injected into the accelerating potential of the plasma density wake behind the laser pulse. Electron beams emitted from the plasma have been imaged downstream using a series of Lanex screens positioned along the beam line axis and the divergence of the electron beam has been measured to be typically in the range 1-3 mrad. Measurements of the electron energy spectrum, obtained using the ALPHA-X high resolution magnetic dipole spectrometer, are presented. The maximum central energy of the monoenergetic beam is 90 MeV and r.m.s. relative energy spreads as low as 0.8% are measured. The mean central energy is 82 MeV and mean relative energy spread is 1.1%. A theoretical analysis of this unexpectedly high electron beam quality is presented and the potential impact on the viability of FELs driven by electron beams from laser wakefield accelerators is examined.

  15. Accelerating piston action and plasma heating in high-energy density laser plasma interactions

    NASA Astrophysics Data System (ADS)

    Levy, M. C.; Wilks, S. C.; Baring, M. G.

    2013-03-01

    In the field of high-energy density physics (HEDP), lasers in both the nanosecond and picosecond regimes can drive conditions in the laboratory relevant to a broad range of astrophysical phenomena, including gamma-ray burst afterglows and supernova remnants. In the short-pulse regime, the strong light pressure (>Gbar) associated ultraintense lasers of intensity I > 1018 W/cm2 plays a central role in many HEDP applications. Yet, the behavior of this nonlinear pressure mechanism is not well-understood at late time in the laser-plasma interaction. In this paper, a more realistic treatment of the laser pressure 'hole boring' process is developed through analytical modeling and particle-in-cell simulations. A simple Liouville code capturing the phase space evolution of ponderomotively-driven ions is employed to distill effects related to plasma heating and ion bulk acceleration. Taking into account these effects, our results show that the evolution of the laser-target system encompasses ponderomotive expansion, equipartition, and quasi-isothermal expansion epochs. These results have implications for light piston-driven ion acceleration scenarios, and astrophysical applications where the efficiencies of converting incident Poynting flux into bulk plasma flow and plasma heat are key unknown parameters.

  16. Laser red shifting based characterization of wakefield excitation in a laser-plasma accelerator

    SciTech Connect

    Shiraishi, S.; Benedetti, C.; Gonsalves, A. J.; Nakamura, K.; Shaw, B. H.; Sokollik, T.; Tilborg, J. van; Geddes, C. G. R.; Schroeder, C. B.; Tóth, Cs.; Esarey, E.; Leemans, W. P.

    2013-06-15

    Optical spectra of a drive laser exiting a channel guided laser-plasma accelerator (LPA) are analyzed through experiments and simulations to infer the magnitude of the excited wakefields. The experiments are performed at sufficiently low intensity levels and plasma densities to avoid electron beam generation via self-trapping. Spectral redshifting of the laser light is studied as an indicator of the efficiency of laser energy transfer into the plasma through the generation of coherent plasma wakefields. Influences of input laser energy, plasma density, temporal and spatial laser profiles, and laser focal location in a plasma channel are analyzed. Energy transfer is found to be sensitive to details of laser pulse shape and focal location. The experimental conditions for these critical parameters are modeled and included in particle-in-cell simulations. Simulations reproduce the redshift of the laser within uncertainties of the experiments and produce an estimate of the wake amplitudes in the experiments as a function of amount of redshift. The results support the practical use of laser redshifting to quantify the longitudinally averaged accelerating field that a particle would experience in an LPA powered below the self-trapping limit.

  17. Characteristics of an envelope model for laser-plasma accelerator simulation

    SciTech Connect

    Cowan, Benjamin M.; Bruhwiler, David L.; Cormier-Michel, Estelle; Esarey, Eric; Geddes, Cameron G.R.; Messmer, Peter; Paul, Kevin M.

    2011-01-01

    Simulation of laser-plasma accelerator (LPA) experiments is computationally intensive due to the disparate length scales involved. Current experiments extend hundreds of laser wavelengths transversely and many thousands in the propagation direction, making explicit PIC simulations enormously expensive and requiring massively parallel execution in 3D. Simulating the next generation of LPA experiments is expected to increase the computational requirements yet further, by a factor of 1000. We can substantially improve the performance of LPA simulations by modeling the envelope evolution of the laser field rather than the field itself. This allows for much coarser grids, since we need only resolve the plasma wavelength and not the laser wavelength, and therefore larger timesteps can be used. Thus an envelope model can result in savings of several orders of magnitude in computational resources. By propagating the laser envelope in a Galilean frame moving at the speed of light, dispersive errors can be avoided and simulations over long distances become possible. The primary limitation to this envelope model is when the laser pulse develops large frequency shifts, and thus the slowly-varying envelope assumption is no longer valid. Here we describe the model and its implementation, and show rigorous benchmarks for the algorithm, establishing second-order convergence and correct laser group velocity. We also demonstrate simulations of LPA phenomena such as self-focusing and meter-scale acceleration stages using the model.

  18. Ion Acceleration by Laser Plasma Interaction from Cryogenic Micro Jets - Oral Presentation

    SciTech Connect

    Propp, Adrienne

    2015-08-25

    Processes that occur in extreme conditions, such as in the center of stars and large planets, can be simulated in the laboratory using facilities such as SLAC National Accelerator Laboratory and the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). These facilities allow scientists to investigate the properties of matter by observing their interactions with high power lasers. Ion acceleration from laser plasma interaction is gaining greater attention today due to its widespread potential applications, including proton beam cancer therapy and fast ignition for energy production. Typically, ion acceleration is achieved by focusing a high power laser on thin foil targets through a mechanism called Target Normal Sheath Acceleration. Based on research and recent experiments, we hypothesized that a pure liquid cryogenic jet would be an ideal target for this type of interaction, capable of producing the highest proton energies possible with today’s laser technologies. Furthermore, it would provide a continuous, pure target, unlike metal foils which are consumed in the interaction and easily contaminated. In an effort to test this hypothesis and investigate new, potentially more efficient mechanisms of ion acceleration, we used the 527 nm split beam, frequency-doubled TITAN laser at JLF. Data from the cryogenic jets was limited due to the flow of current up the jet into the nozzle during the interaction, heating the jet and damaging the orifice. However, we acheived a pure proton beam with an indiciation of a monoenergetic feature. Furthermore, data from gold and carbon wires showed surprising and interesting results. Preliminary analysis of data from two ion emission diagnostics, Thomson parabola spectrometers (TPs) and radio chromic films (RCFs), suggests that shockwave acceleration occurred rather than target normal sheath acceleration, the standard mechanism of ion acceleration. Upon completion of the experiment at TITAN, I researched the

  19. Undulator-Based Laser Wakefield Accelerator Electron Beam Energy Spread and Emittance Diagnostic

    SciTech Connect

    Bakeman, M.S.; Van Tilborg, J.; Nakamura, K.; Gonsalves, A.; Osterhoff, J.; Sokollik, T.; Lin, C.; Robinson, K.E.; Schroeder, C.B.; Toth, Cs.; Weingartner, R.; Gruner, F.; Esarey, E.; Leemans, W.P.

    2010-06-01

    The design and current status of experiments to couple the Tapered Hybrid Undulator (THUNDER) to the Lawrence Berkeley National Laboratory (LBNL) laser plasma accelerator (LPA) to measure electron beam energy spread and emittance are presented.

  20. Undulator-Based Laser Wakefield Accelerator Electron Beam Energy Spread and Emittance Diagnostic

    SciTech Connect

    Bakeman, M. S.; Van Tilborg, J.; Nakamura, K.; Gonsalves, A.; Osterhoff, J.; Robinson, K. E.; Schroeder, C. B.; Toth, Cs.; Esarey, E.; Leemans, W. P.; Sokollik, T.; Lin, C.; Weingartner, R.; Gruener, F.

    2010-11-04

    The design and current status of experiments to couple the Tapered Hybrid Undulator (THUNDER) to the Lawrence Berkeley National Laboratory (LBNL) laser plasma accelerator (LPA) to measure electron beam energy spread and emittance are presented.

  1. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror

    NASA Astrophysics Data System (ADS)

    Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.; Li, Zhengyan; Arefiev, Alexey V.; Zhang, Xi; Zgadzaj, Rafal; Henderson, Watson; Khudik, V.; Shvets, G.; Downer, M. C.

    2015-02-01

    We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a0 ˜ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jet exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic "denting" of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75-200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (˜6 × 10-12) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements.

  2. Frequency-Domain Tomography for Single-shot, Ultrafast Imaging of Evolving Laser-Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Li, Zhengyan; Zgadzaj, Rafal; Wang, Xiaoming; Downer, Michael

    2011-10-01

    Intense laser pulses propagating through plasma create plasma wakefields that often evolve significantly, e.g. by expanding and contracting. However, such dynamics are known in detail only through intensive simulations. Laboratory visualization of evolving plasma wakes in the ``bubble'' regime is important for optimizing and scaling laser-plasma accelerators. Recently snap-shots of quasi-static wakes were recorded using frequency-domain holography (FDH). To visualize the wake's evolution, we have generalized FDH to frequency-domain tomography (FDT), which uses multiple probes propagating at different angles with respect to the pump pulse. Each probe records a phase streak, imprinting a partial record of the evolution of pump-created structures. We then topographically reconstruct the full evolution from all phase streaks. To prove the concept, a prototype experiment visualizing nonlinear index evolution in glass is demonstrated. Four probes propagating at 0, 0.6, 2, 14 degrees to the index ``bubble'' are angularly and temporally multiplexed to a single spectrometer to achieve cost-effective FDT. From these four phase streaks, an FDT algorithm analogous to conventional CT yields a single-shot movie of the pump's self-focusing dynamics.

  3. Compact quasi-monoenergetic photon sources from laser-plasma accelerators for nuclear detection and characterization

    NASA Astrophysics Data System (ADS)

    Geddes, Cameron G. R.; Rykovanov, Sergey; Matlis, Nicholas H.; Steinke, Sven; Vay, Jean-Luc; Esarey, Eric H.; Ludewigt, Bernhard; Nakamura, Kei; Quiter, Brian J.; Schroeder, Carl B.; Toth, Csaba; Leemans, Wim P.

    2015-05-01

    Near-monoenergetic photon sources at MeV energies offer improved sensitivity at greatly reduced dose for active interrogation, and new capabilities in treaty verification, nondestructive assay of spent nuclear fuel and emergency response. Thomson (also referred to as Compton) scattering sources are an established method to produce appropriate photon beams. Applications are however restricted by the size of the required high-energy electron linac, scattering (photon production) system, and shielding for disposal of the high energy electron beam. Laser-plasma accelerators (LPAs) produce GeV electron beams in centimeters, using the plasma wave driven by the radiation pressure of an intense laser. Recent LPA experiments are presented which have greatly improved beam quality and efficiency, rendering them appropriate for compact high-quality photon sources based on Thomson scattering. Designs for MeV photon sources utilizing the unique properties of LPAs are presented. It is shown that control of the scattering laser, including plasma guiding, can increase photon production efficiency. This reduces scattering laser size and/or electron beam current requirements to scale compatible with the LPA. Lastly, the plasma structure can decelerate the electron beam after photon production, reducing the size of shielding required for beam disposal. Together, these techniques provide a path to a compact photon source system.

  4. Automated detection and analysis of particle beams in laser-plasma accelerator simulations

    SciTech Connect

    Ushizima, Daniela Mayumi; Geddes, C.G.; Cormier-Michel, E.; Bethel, E. Wes; Jacobsen, J.; Prabhat, ,; R.ubel, O.; Weber, G,; Hamann, B.

    2010-05-21

    Numerical simulations of laser-plasma wakefield (particle) accelerators model the acceleration of electrons trapped in plasma oscillations (wakes) left behind when an intense laser pulse propagates through the plasma. The goal of these simulations is to better understand the process involved in plasma wake generation and how electrons are trapped and accelerated by the wake. Understanding of such accelerators, and their development, offer high accelerating gradients, potentially reducing size and cost of new accelerators. One operating regime of interest is where a trapped subset of electrons loads the wake and forms an isolated group of accelerated particles with low spread in momentum and position, desirable characteristics for many applications. The electrons trapped in the wake may be accelerated to high energies, the plasma gradient in the wake reaching up to a gigaelectronvolt per centimeter. High-energy electron accelerators power intense X-ray radiation to terahertz sources, and are used in many applications including medical radiotherapy and imaging. To extract information from the simulation about the quality of the beam, a typical approach is to examine plots of the entire dataset, visually determining the adequate parameters necessary to select a subset of particles, which is then further analyzed. This procedure requires laborious examination of massive data sets over many time steps using several plots, a routine that is unfeasible for large data collections. Demand for automated analysis is growing along with the volume and size of simulations. Current 2D LWFA simulation datasets are typically between 1GB and 100GB in size, but simulations in 3D are of the order of TBs. The increase in the number of datasets and dataset sizes leads to a need for automatic routines to recognize particle patterns as particle bunches (beam of electrons) for subsequent analysis. Because of the growth in dataset size, the application of machine learning techniques for

  5. An application of laser-plasma acceleration: towards a free-electron laser amplification

    NASA Astrophysics Data System (ADS)

    Couprie, M. E.; Labat, M.; Evain, C.; Marteau, F.; Briquez, F.; Khojoyan, M.; Benabderrahmane, C.; Chapuis, L.; Hubert, N.; Bourassin-Bouchet, C.; El Ajjouri, M.; Bouvet, F.; Dietrich, Y.; Valléau, M.; Sharma, G.; Yang, W.; Marcouillé, O.; Vétéran, J.; Berteaud, P.; El Ajjouri, T.; Cassinari, L.; Thaury, C.; Lambert, G.; Andriyash, I.; Malka, V.; Davoine, X.; Tordeux, M. A.; Miron, C.; Zerbib, D.; Tavakoli, K.; Marlats, J. L.; Tilmont, M.; Rommeluère, P.; Duval, J. P.; N'Guyen, M. H.; Rouqier, A.; Vanderbergue, M.; Herbeaux, C.; Sebdouai, M.; Lestrade, A.; Leclercq, N.; Dennetière, D.; Thomasset, M.; Polack, F.; Bielawski, S.; Szwaj, C.; Loulergue, A.

    2016-03-01

    The laser-plasma accelerator (LPA) presently provides electron beams with a typical current of a few kA, a bunch length of a few fs, energy in the few hundred MeV to several GeV range, a divergence of typically 1 mrad, an energy spread of the order of 1%, and a normalized emittance of the order of π.mm.mrad. One of the first applications could be to use these beams for the production of radiation: undulator emission has been observed but the rather large energy spread (1%) and divergence (1 mrad) prevent straightforward free-electron laser (FEL) amplification. An adequate beam manipulation through the transport to the undulator is then required. The key concept proposed here relies on an innovative electron beam longitudinal and transverse manipulation in the transport towards an undulator: a ‘demixing’ chicane sorts the electrons according to their energy and reduces the spread from 1% to one slice of a few ‰ and the effective transverse size is maintained constant along the undulator (supermatching) by a proper synchronization of the electron beam focusing with the progress of the optical wave. A test experiment for the demonstration of FEL amplification with an LPA is under preparation. Electron beam transport follows different steps with strong focusing with permanent magnet quadrupoles of variable strength, a demixing chicane with conventional dipoles, and a second set of quadrupoles for further focusing in the undulator. The FEL simulations and the progress of the preparation of the experiment are presented.

  6. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror

    SciTech Connect

    Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.; Li, Zhengyan; Zgadzaj, Rafal; Henderson, Watson; Downer, M. C.; Arefiev, Alexey V.; Zhang, Xi; Khudik, V.; Shvets, G.

    2015-02-15

    We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a{sub 0} ∼ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jet exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic “denting” of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75–200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (∼6 × 10{sup −12}) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements.

  7. Seventy Five Years of Particle Accelerators (LBNL Summer Lecture Series)

    ScienceCinema

    Sessler, Andy

    2011-04-28

    Summer Lecture Series 2006: Andy Sessler, Berkeley Lab director from 1973 to 1980, sheds light on the Lab's nearly eight-decade history of inventing and refining particle accelerators, which continue to illuminate the nature of the universe.

  8. Deducing the electron-beam diameter in a laser-plasma accelerator using x-ray betatron radiation.

    PubMed

    Schnell, Michael; Sävert, Alexander; Landgraf, Björn; Reuter, Maria; Nicolai, Maria; Jäckel, Oliver; Peth, Christian; Thiele, Tobias; Jansen, Oliver; Pukhov, Alexander; Willi, Oswald; Kaluza, Malte C; Spielmann, Christian

    2012-02-17

    We investigate the properties of a laser-plasma electron accelerator as a bright source of keV x-ray radiation. During the interaction, the electrons undergo betatron oscillations and from the carefully measured x-ray spectrum the oscillation amplitude of the electrons can be deduced which decreases with increasing electron energies. From the oscillation amplitude and the independently measured x-ray source size of (1.8±0.3) μm we are able to estimate the electron bunch diameter to be (1.6±0.3) μm. PMID:22401215

  9. Control of Laser Plasma Based Accelerators up to 1 GeV

    SciTech Connect

    Nakamura, Kei

    2007-12-03

    This dissertation documents the development of a broadband electron spectrometer (ESM) for GeV class Laser Wakefield Accelerators (LWFA), the production of high quality GeV electron beams (e-beams) for the first time in a LWFA by using a capillary discharge guide (CDG), and a statistical analysis of CDG-LWFAs. An ESM specialized for CDG-LWFAs with an unprecedented wide momentum acceptance, from 0.01 to 1.1 GeV in a single shot, has been developed. Simultaneous measurement of e-beam spectra and output laser properties as well as a large angular acceptance (> {+-} 10 mrad) were realized by employing a slitless scheme. A scintillating screen (LANEX Fast back, LANEX-FB)--camera system allowed faster than 1 Hz operation and evaluation of the spatial properties of e-beams. The design provided sufficient resolution for the whole range of the ESM (below 5% for beams with 2 mrad divergence). The calibration between light yield from LANEX-FB and total charge, and a study on the electron energy dependence (0.071 to 1.23 GeV) of LANEX-FB were performed at the Advanced light source (ALS), Lawrence Berkeley National Laboratory (LBNL). Using this calibration data, the developed ESM provided a charge measurement as well. The production of high quality electron beams up to 1 GeV from a centimeter-scale accelerator was demonstrated. The experiment used a 310 {micro}m diameter gas-filled capillary discharge waveguide that channeled relativistically-intense laser pulses (42 TW, 4.5 x 10{sup 18} W/cm{sup 2}) over 3.3 centimeters of sufficiently low density ({approx_equal} 4.3 x 10{sup 18}/cm{sup 3}) plasma. Also demonstrated was stable self-injection and acceleration at a beam energy of {approx_equal} 0.5 GeV by using a 225 {micro}m diameter capillary. Relativistically-intense laser pulses (12 TW, 1.3 x 10{sup 18}W/cm{sup 2}) were guided over 3.3 centimeters of low density ({approx_equal} 3.5 x 10{sup 18}/cm{sup 3}) plasma in this experiment. A statistical analysis of the CDG

  10. Modeling of 10 GeV-1 TeV laser-plasma accelerators using Lorentz boosted simulations

    SciTech Connect

    Vay, J.-L.; Geddes, C. G. R.; Esarey, E.; Schroeder, C. B.; Leemans, W. P.; Cormier-Michel, E.; Grote, D. P.

    2011-12-15

    Modeling of laser-plasma wakefield accelerators in an optimal frame of reference [J.-L. Vay, Phys. Rev. Lett. 98, 130405 (2007)] allows direct and efficient full-scale modeling of deeply depleted and beam loaded laser-plasma stages of 10 GeV-1 TeV (parameters not computationally accessible otherwise). This verifies the scaling of plasma accelerators to very high energies and accurately models the laser evolution and the accelerated electron beam transverse dynamics and energy spread. Over 4, 5, and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV, and 1 TeV class stages, respectively. Agreement at the percentage level is demonstrated between simulations using different frames of reference for a 0.1 GeV class stage. Obtaining these speedups and levels of accuracy was permitted by solutions for handling data input (in particular, particle and laser beams injection) and output in a relativistically boosted frame of reference, as well as mitigation of a high-frequency instability that otherwise limits effectiveness.

  11. Modeling of 10 GeV-1 TeV laser-plasma accelerators using Lorentz boosted simulations

    SciTech Connect

    Vay, J. -L.; Geddes, C. G. R.; Esarey, E.; Schroeder, C. B.; Leemans, W. P.; Cormier-Michel, E.; Grote, D. P.

    2011-12-13

    We study modeling of laser-plasma wakefield accelerators in an optimal frame of reference [J.-L. Vay, Phys. Rev. Lett. 98, 130405 (2007)] that allows direct and efficient full-scale modeling of deeply depleted and beam loaded laser-plasma stages of 10 GeV-1 TeV (parameters not computationally accessible otherwise). This verifies the scaling of plasmaaccelerators to very high energies and accurately models the laser evolution and the accelerated electron beam transverse dynamics and energy spread. Over 4, 5, and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV, and 1 TeV class stages, respectively. Agreement at the percentage level is demonstrated between simulations using different frames of reference for a 0.1 GeV class stage. In addition, obtaining these speedups and levels of accuracy was permitted by solutions for handling data input (in particular, particle and laser beams injection) and output in a relativistically boosted frame of reference, as well as mitigation of a high-frequency instability that otherwise limits effectiveness.

  12. Performance of capillary discharge guided laser plasma wakefieldaccelerator

    SciTech Connect

    Nakamura, Kei; Esarey, Eric; Geddes, Cameron G.R.; Gonsalves,Anthony J.; Leemans, Wim P.; Panasenko, Dmitriy; Schroeder, Carl B.; Toth, Csaba; Hooker, S.M.

    2007-06-25

    A GeV-class laser-driven plasma-based wakefield acceleratorhas been realized at the Lawrence Berkeley National Laboratory (LBNL).The device consists of the 40TW high repetition rate Ti:sapphire LOASISlaser system at LBNL and a gas-filled capillary discharge waveguidedeveloped at Oxford University. The operation of the capillary dischargeguided laser plasma wakefield accelerator with a capillaryof 225 mu mdiameter and 33 mm in length was analyzed in detail. The input intensitydependence suggests that excessive self-injection causes increased beamloading leading to broadband lower energy electron beam generation. Thetrigger versus laser arrival timing dependence suggests that the plasmachannel parameters can be tuned to reduce beam divergence.

  13. Observation of THz emission from a laser-plasma accelerated electron bunch crossing a plasma-vacuum boundary

    SciTech Connect

    Leemans, W.P.; Geddes, C.G.R.; Faure, J.; Toth, Cs.; van Tilborg, J.; Schroeder, C.B.; Esarey, E.; Fubiani, G.; Auerbach, D.; Marcelis, B.; Carnahan, M.A.; Kaindl, R.A.; Byrd, J.; Martin, M.C.

    2003-04-15

    Coherent radiation in the 0.3 - 3 THz range has been generated from femto second electron bunches at a plasma-vacuum boundary via transition radiation. The bunches produced by a laser-plasma accelerator contained 1.5 nC of charge. The THz energy per pulse within a limited 30 mrad collection angle was 3.5 nJ and scaled quadratically with bunch charge, consistent with coherent emission. Modeling indicates that this broadband source produces about 0.3 muJ per pulse within a 100 mrad angle, and that increasing the transverse plasma size and electron beam energy could provide more than 100 muj/pulse.

  14. Ultra-relativistic ion acceleration in the laser-plasma interactions

    SciTech Connect

    Huang Yongsheng; Wang Naiyan; Tang Xiuzhang; Shi Yijin; Xueqing Yan

    2012-09-15

    An analytical relativistic model is proposed to describe the relativistic ion acceleration in the interaction of ultra-intense laser pulses with thin-foil plasmas. It is found that there is a critical value of the ion momentum to make sure that the ions are trapped by the light sail and accelerated in the radiation pressure acceleration (RPA) region. If the initial ion momentum is smaller than the critical value, that is in the classical case of RPA, the potential has a deep well and traps the ions to be accelerated, as the same described before by simulation results [Eliasson et al., New J. Phys. 11, 073006 (2009)]. There is a new ion acceleration region different from RPA, called ultra-relativistic acceleration, if the ion momentum exceeds the critical value. In this case, ions will experience a potential downhill. The dependence of the ion momentum and the self-similar variable at the ion front on the acceleration time has been obtained. In the ultra-relativistic limit, the ion momentum at the ion front is proportional to t{sup 4/5}, where t is the acceleration time. In our analytical hydrodynamical model, it is naturally predicted that the ion distribution from RPA is not monoenergetic, although the phase-stable acceleration mechanism is effective. The critical conditions of the laser and plasma parameters which identify the two acceleration modes have been achieved.

  15. Development of High Gradient Laser Wakefield Accelerators Towards Nuclear Detection Applications at LBNL

    SciTech Connect

    Geddes, Cameron G. R.; Gonsalves, Anthony J.; Lin Chen; Cormier-Michel, Estelle; Matlis, Nicholas H.; Panasenko, Dmitriy; Plateau, Guillaume R.; Schroeder, Carl B.; Toth, Csaba; Bruhwiler, David L.; Cary, John R.; Esarey, Eric H.; Nakamura, Kei; Bakeman, Mike; Leemans, Wim P.

    2009-03-10

    Compact high-energy linacs are important to applications including monochromatic gamma sources for nuclear material security applications. Recent laser wakefield accelerator experiments at LBNL demonstrated narrow energy spread beams, now with energies of up to 1 GeV in 3 cm using a plasma channel at low density. This demonstrates the production of GeV beams from devices much smaller than conventional linacs, and confirms the anticipated scaling of laser driven accelerators to GeV energies. Stable performance at 0.5 GeV was demonstrated. Experiments and simulations are in progress to control injection of particles into the wake and hence to improve beam quality and stability. Using plasma density gradients to control injection, stable beams at 1 MeV over days of operation, and with an order of magnitude lower absolute momentum spread than previously observed, have been demonstrated. New experiments are post-accelerating the beams from controlled injection experiments to increase beam quality and stability. Thomson scattering from such beams is being developed to provide collimated multi-MeV monoenergetic gamma sources for security applications from compact devices. Such sources can reduce dose to target and increase accuracy for applications including photofission and nuclear resonance fluorescence.

  16. Development of high gradient laser wakefield accelerators towards nuclear detection applications at LBNL

    SciTech Connect

    Geddes, Cameron GR; Bruhwiler, David L.; Cary, John R.; Esarey, Eric H.; Gonsalves, Anthony J.; Lin, Chen; Cormier-Michel, Estelle; Matlis, Nicholas H.; Nakamura, Kei; Bakeman, Mike; Panasenko, Dmitriy; Plateau, Guillaume R.; Schroeder, Carl B.; Toth, Csaba; Leemans, Wim P.

    2008-09-08

    Compact high-energy linacs are important to applications including monochromatic gamma sources for nuclear material security applications. Recent laser wakefield accelerator experiments at LBNL demonstrated narrow energy spread beams, now with energies of up to 1 GeV in 3 cm using a plasma channel at low density. This demonstrates the production of GeV beams from devices much smaller than conventional linacs, and confirms the anticipated scaling of laser driven accelerators to GeV energies. Stable performance at 0.5 GeV was demonstrated. Experiments and simulations are in progress to control injection of particles into the wake and hence to improve beam quality and stability. Using plasma density gradients to control injection, stable beams at 1 MeV over days of operation, and with an order of magnitude lower absolute momentum spread than previously observed, have been demonstrated. New experiments are post-accelerating the beams from controlled injection experiments to increase beam quality and stability. Thomson scattering from such beams is being developed to provide collimated multi-MeV monoenergetic gamma sources for security applications from compact devices. Such sources can reduce dose to target and increase accuracy for applications including photofission and nuclear resonance fluorescence.

  17. 3D printing of gas jet nozzles for laser-plasma accelerators

    NASA Astrophysics Data System (ADS)

    Döpp, A.; Guillaume, E.; Thaury, C.; Gautier, J.; Ta Phuoc, K.; Malka, V.

    2016-07-01

    Recent results on laser wakefield acceleration in tailored plasma channels have underlined the importance of controlling the density profile of the gas target. In particular, it was reported that the appropriate density tailoring can result in improved injection, acceleration, and collimation of laser-accelerated electron beams. To achieve such profiles, innovative target designs are required. For this purpose, we have reviewed the usage of additive layer manufacturing, commonly known as 3D printing, in order to produce gas jet nozzles. Notably we have compared the performance of two industry standard techniques, namely, selective laser sintering (SLS) and stereolithography (SLA). Furthermore we have used the common fused deposition modeling to reproduce basic gas jet designs and used SLA and SLS for more sophisticated nozzle designs. The nozzles are characterized interferometrically and used for electron acceleration experiments with the Salle Jaune terawatt laser at Laboratoire d'Optique Appliquée.

  18. 3D printing of gas jet nozzles for laser-plasma accelerators.

    PubMed

    Döpp, A; Guillaume, E; Thaury, C; Gautier, J; Ta Phuoc, K; Malka, V

    2016-07-01

    Recent results on laser wakefield acceleration in tailored plasma channels have underlined the importance of controlling the density profile of the gas target. In particular, it was reported that the appropriate density tailoring can result in improved injection, acceleration, and collimation of laser-accelerated electron beams. To achieve such profiles, innovative target designs are required. For this purpose, we have reviewed the usage of additive layer manufacturing, commonly known as 3D printing, in order to produce gas jet nozzles. Notably we have compared the performance of two industry standard techniques, namely, selective laser sintering (SLS) and stereolithography (SLA). Furthermore we have used the common fused deposition modeling to reproduce basic gas jet designs and used SLA and SLS for more sophisticated nozzle designs. The nozzles are characterized interferometrically and used for electron acceleration experiments with the Salle Jaune terawatt laser at Laboratoire d'Optique Appliquée. PMID:27475557

  19. Radiation shielding and patient organ dose study for an accelerator- based BNCT Facility at LBNL

    SciTech Connect

    Costes, S.V.; Vujic, J.; Donahue, R.J.

    1996-10-24

    This study considers the radiation safety aspects of several designs discussed in a previous report of an accelerator-based source of neutrons, based on the [sup 7]Li(p,n) reaction, for a Boron Neutron Capture Therapy (BNCT) Facility at Lawrence Berkeley National Laboratory (LBNL). determines the optimal radiation shield thicknesses for the patient treatment room. Since this is an experimental facility no moderator or reflector is considered in the bulk wall shield design. This will allow the flexibility of using any postulated moderator/reflector design and assumes sufficient shielding even in the absence of a moderator/reflector. In addition the accelerator is assumed to be capable of producing 100 mA of 2.5 MeV proton beam current. The addition of 1% and 2% [sup 10]B (by weight) to the concrete is also investigated. The second part of this paper determines the radiation dose to the major organs of a patient during a treatment. Simulations use the MIRD 5 anthropomorphic phantom to calculate organ doses from a 20 mA proton beam assuming various envisioned moderator/reflector in place. Doses are tabulated by component and for a given uniform [sup 10]B loading in all organs. These are presented in for a BeO moderator and for an Al/AlF[sub 3] moderator. Dose estimates for different [sup 10]B loadings may be scaled.

  20. Low Emittance, High Brilliance Relativistic Electron Beams from a Laser-Plasma Accelerator

    SciTech Connect

    Brunetti, E.; Shanks, R. P.; Manahan, G. G.; Islam, M. R.; Ersfeld, B.; Anania, M. P.; Cipiccia, S.; Issac, R. C.; Raj, G.; Vieux, G.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A.

    2010-11-19

    Progress in laser wakefield accelerators indicates their suitability as a driver of compact free-electron lasers (FELs). High brightness is defined by the normalized transverse emittance, which should be less than 1{pi} mm mrad for an x-ray FEL. We report high-resolution measurements of the emittance of 125 MeV, monoenergetic beams from a wakefield accelerator. An emittance as low as 1.1{+-}0.1{pi} mm mrad is measured using a pepper-pot mask. This sets an upper limit on the emittance, which is comparable with conventional linear accelerators. A peak transverse brightness of 5x10{sup 15} A m{sup -1} rad{sup -1} makes it suitable for compact XUV FELs.

  1. Generation of attosecond electron bunches in a laser-plasma accelerator using a plasma density upramp

    NASA Astrophysics Data System (ADS)

    Weikum, M. K.; Li, F. Y.; Assmann, R. W.; Sheng, Z. M.; Jaroszynski, D.

    2016-09-01

    Attosecond electron bunches and attosecond radiation pulses enable the study of ultrafast dynamics of matter in an unprecedented regime. In this paper, the suitability for the experimental realization of a novel scheme producing sub-femtosecond duration electron bunches from laser-wakefield acceleration in plasma with self-injection in a plasma upramp profile has been investigated. While it has previously been predicted that this requires laser power above a few hundred terawatts typically, here we show that the scheme can be extended with reduced driving laser powers down to tens of terawatts, generating accelerated electron pulses with minimum length of around 166 attoseconds and picocoulombs charge. Using particle-in-cell simulations and theoretical models, the evolution of the accelerated electron bunch within the plasma as well as simple scalings of the bunch properties with initial laser and plasma parameters are presented.

  2. Coulomb-driven energy boost of heavy ions for laser-plasma acceleration.

    PubMed

    Braenzel, J; Andreev, A A; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M

    2015-03-27

    An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×10^{19}  W/  cm^{2}. Highly charged gold ions with kinetic energies up to >200  MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration. PMID:25860747

  3. Laser plasma acceleration of electrons: Towards the production of monoenergetic beams

    SciTech Connect

    Krushelnick, K.; Najmudin, Z.; Mangles, S.P.D.; Thomas, A.G.R.; Wei, M.S.; Walton, B.; Gopal, A.; Clark, E.L.; Dangor, A.E.; Fritzler, S.; Murphy, C.D.; Norreys, P.A.; Mori, W.B.; Gallacher, J.; Jaroszynski, D.; Viskup, R.

    2005-05-15

    The interaction of high intensity laser pulses with underdense plasma is investigated experimentally using a range of laser parameters and energetic electron production mechanisms are compared. It is clear that the physics of these interactions changes significantly depending not only on the interaction intensity but also on the laser pulse length. For high intensity laser interactions in the picosecond pulse duration regime the production of energetic electrons is highly correlated with the production of plasma waves. However as intensities are increased the peak electron acceleration increases beyond that which can be produced from single stage plasma wave acceleration and direct laser acceleration mechanisms must be invoked. If, alternatively, the pulse length is reduced such that it approaches the plasma period of a relativistic electron plasma wave, high power interactions can be shown to enable the generation of quasimonoenergetic beams of relativistic electrons.

  4. GeV electron beams from a laser-plasma accelerator

    SciTech Connect

    Schroeder, C.B.; Toth, Cs.; Nagler, B.; Gonsalves, A.J.; Nakamura, K.; Geddes, C.G.R.; Esarey, E.; Hooker, S.M.; Leemans, W.P.

    2006-10-01

    High-quality electron beams with up to 1 GeV energy havebeen generated by a laser-driven plasma-based accelerator by guiding a 40TW peak power laser pulse in a 3.3 cm long gas-filled capillary dischargewaveguide.

  5. Study of a THz IFEL prebuncher for laser-plasma accelerators

    SciTech Connect

    Sung, C.; Tochitsky, S.Ya.; Ralph, J.; Joshi, C.; Musumeci, P.; Rosenzweig, J.B.; Pellegrini, C.

    2004-12-07

    For monoenergetic acceleration of electrons, the injected particles need to be bunched with the same periodicity as the accelerating structure. In a laser-driven plasma beatwave accelerator, the accelerating structure (plasma wave) is phase-locked to the CO2 beat-wave used to drive it. Using the same beat-wave to generate high power FIR radiation via difference frequency mixing in GaAs ensures that the radiation has the same phase relationship as the plasma wave before it saturates and detunes from the pump. Therefore, this radiation can be used to prebunch an existing electron beam based on an Inverse Free Electron Laser (IFEL) concept. Here we report the progress on the proposed THz microbunching experiment in the Neptune laboratory. A 50 cm long prebuncher is optimized using simulation codes for minimum FIR power required. The injected 5ps long electron beam is expected to form a series of 45 {mu}m long microbunches containing over 40% of the injected current after 1.6 m drift space following the undulator. Preliminary experimental results on THz generation are also presented.

  6. Laser-driven three-stage heavy-ion acceleration from relativistic laser-plasma interaction.

    PubMed

    Wang, H Y; Lin, C; Liu, B; Sheng, Z M; Lu, H Y; Ma, W J; Bin, J H; Schreiber, J; He, X T; Chen, J E; Zepf, M; Yan, X Q

    2014-01-01

    A three-stage heavy ion acceleration scheme for generation of high-energy quasimonoenergetic heavy ion beams is investigated using two-dimensional particle-in-cell simulation and analytical modeling. The scheme is based on the interaction of an intense linearly polarized laser pulse with a compound two-layer target (a front heavy ion layer + a second light ion layer). We identify that, under appropriate conditions, the heavy ions preaccelerated by a two-stage acceleration process in the front layer can be injected into the light ion shock wave in the second layer for a further third-stage acceleration. These injected heavy ions are not influenced by the screening effect from the light ions, and an isolated high-energy heavy ion beam with relatively low-energy spread is thus formed. Two-dimensional particle-in-cell simulations show that ∼100MeV/u quasimonoenergetic Fe24+ beams can be obtained by linearly polarized laser pulses at intensities of 1.1×1021W/cm2. PMID:24580346

  7. Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator

    PubMed Central

    Huang, K.; Li, Y. F.; Li, D. Z.; Chen, L. M.; Tao, M. Z.; Ma, Y.; Zhao, J. R.; Li, M. H.; Chen, M.; Mirzaie, M.; Hafz, N.; Sokollik, T.; Sheng, Z. M.; Zhang, J.

    2016-01-01

    Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 108/shot and 108 photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3rd generation synchrotrons. PMID:27273170

  8. Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator.

    PubMed

    Huang, K; Li, Y F; Li, D Z; Chen, L M; Tao, M Z; Ma, Y; Zhao, J R; Li, M H; Chen, M; Mirzaie, M; Hafz, N; Sokollik, T; Sheng, Z M; Zhang, J

    2016-01-01

    Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 10(8)/shot and 10(8 )photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3(rd) generation synchrotrons. PMID:27273170

  9. Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator

    NASA Astrophysics Data System (ADS)

    Huang, K.; Li, Y. F.; Li, D. Z.; Chen, L. M.; Tao, M. Z.; Ma, Y.; Zhao, J. R.; Li, M. H.; Chen, M.; Mirzaie, M.; Hafz, N.; Sokollik, T.; Sheng, Z. M.; Zhang, J.

    2016-06-01

    Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 108/shot and 108 photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3rd generation synchrotrons.

  10. Few femtosecond, few kiloampere electron bunch produced by a laser-plasma accelerator

    NASA Astrophysics Data System (ADS)

    Lundh, O.; Lim, J.; Rechatin, C.; Ammoura, L.; Ben-Ismaïl, A.; Davoine, X.; Gallot, G.; Goddet, J.-P.; Lefebvre, E.; Malka, V.; Faure, J.

    2011-03-01

    Particle accelerators driven by the interaction of ultraintense and ultrashort laser pulses with a plasma can generate accelerating electric fields of several hundred gigavolts per metre and deliver high-quality electron beams with low energy spread, low emittance and up to 1GeV peak energy. Moreover, it is expected they may soon be able to produce bursts of electrons shorter than those produced by conventional particle accelerators, down to femtosecond durations and less. Here we present wide-band spectral measurements of coherent transition radiation which we use for temporal characterization. Our analysis shows that the electron beam, produced using controlled optical injection, contains a temporal feature that can be identified as a 15pC, 1.4-1.8fs electron bunch (root mean square) leading to a peak current of 3-4kA depending on the bunch shape. We anticipate that these results will have a strong impact on emerging applications such as short-pulse and short-wavelength radiation sources, and will benefit the realization of laboratory-scale free-electron lasers.

  11. Electron Injection in Laser Plasma Accelerators by High-Order Field Ionization

    SciTech Connect

    Chen, M.; Esarey, E.; Geddes, C. G. R.; Schroeder, C. B.; Leemans, W. P.

    2010-11-04

    Electron injection and trapping in a laser wakefield accelerator by high-order field ionization is studied theoretically and by particle-in-cell simulations. To obtain low energy spread beams we use a short region of gas mixture (H+N) near the start of the stage to trap electrons, while the remainder of the stage uses pure H and is injection-free. Effects of gas mix parameters, such as concentration and length, on the final electron injection number and beam quality are studied. Laser polarization and shape effects on injection number and final electron emittance are also shown.

  12. Colliding pulse injection experiments in non-collinear geometry for controlled laser plasma wakefield acceleration of electrons

    NASA Astrophysics Data System (ADS)

    Toth, Csaba; Nakamura, K.; Geddes, C.; Michel, P.; Schroeder, C.; Esarey, E.; Leemans, W.

    2006-10-01

    A method for controlled injection of electrons into a plasma wakefield relying on colliding laser pulses [1] has been proposed a decade ago to produce high quality relativistic electron beams with energy spread below 1% and normalized emittances < 1 micron from a laser wakefield accelerator (LWFA). The original idea uses three pulses in which one pulse excites the plasma wake and a trailing laser pulse collides with a counterpropagating one to form a beat pattern that boosts background electrons to catch the plasma wave. Another, two-beam off-axis injection method [2] with crossing angles varying from 180 to 90 degrees avoids having optical elements on the path of the electron beam and has been studied at the LOASIS facility of LBNL as a viable method for laser triggered injection. It allows low dark current operation with controllable final beam energy and low energy spread. Here, we report on progress of electron optical injection via the two-beam non-collinear colliding pulse scheme using multi-terawatt Ti:Sapphire laser beams (45 fs, 100s of mJ) focused onto a Hydrogen gas plume. Experimental results indicate that electron beam properties are affected by the second beam. *This work is supported by DoE under contract DE-AC02-05CH11231. [1] E. Esarey, et al, Phys. Rev. Lett 79, 2682 (1997) [2] G. Fubiani, Phys. Rev. E 70, 016402 (2004)

  13. Progress on laser plasma accelerator development using transverselyand longitudinally shaped plasmas

    SciTech Connect

    Leemans, Wim P.; Esarey, E.; Geddes, C.G.R.; Toth, Cs.; Schroeder, C.B.; Nakamura, K.; Gonsalves, A.J.; Panasenko, D.; Cormier-Michel, E.; Plateau, G.R.; Lin, C.; Bruhwiler, D.L.; Cary, J.R.

    2009-03-31

    A summary of progress at Lawrence Berkeley National Laboratory is given on: (1) experiments on down-ramp injection; (2) experiments on acceleration in capillary discharge plasma channels; and (3) simulations of a staged laser wakefield accelerator (LWFA). Control of trapping in a LWFA using plasma density down-ramps produced electron bunches with absolute longitudinal and transverse momentum spreads more than ten times lower than in previous experiments (0.17 and 0.02 MeV Ic FWHM, respectively) and with central momenta of 0.76 +- 0.02 MeV Ic, stable over a week of operation. Experiments were also carried out using a 40 TW laser interacting with a hydrogen-filled capillary discharge waveguide. For a 15 mm long, 200 mu m diameter capillary, quasi-monoenergetic bunches up to 300 MeV were observed. By detuning discharge delay from optimum guiding performance, self-trapping was found to be stabilized. For a 33 mm long, 300 mu m capillary, a parameter regime with high energy bunches, up to 1 Ge V, was found. In this regime, peak electron energy was correlated with the amount of trapped charge. Simulations show that bunches produced on a down-ramn and iniected into a channel-guided LWFA can produce stable beams with 0.2 MeV Ic-class momentum spread at high energies.

  14. High field plasmonics and laser-plasma acceleration in solid targets

    NASA Astrophysics Data System (ADS)

    Sgattoni, A.; Fedeli, L.; Cantono, G.; Ceccotti, T.; Macchi, A.

    2016-01-01

    The interaction of low intensity laser pulses with metal nano-structures is at the basis of plasmonics and the excitation of surface plasmon polaritons (SP) is one of its building blocks. Some of the configurations adopted in classical plasmonics can be explored considering high intensity lasers interacting with properly structured targets. SP excitation at intensities such that the electrons quiver at relativistic velocities, poses new questions and might open new frontiers for manipulation and amplification of high power laser pulses. Here we discuss two configurations which show evidence of the resonant coupling between relativistically intense laser pulses with the SPs on plasma targets with surface modulations. Evidences of SP excitation were observed in a recent experiment when a high contrast (1012), high intensity laser pulse (I=5\\centerdot {{10}19} W cm‑2) was focussed on a grating target (engraved surface at sub-micron scale); a strong emission of multi-MeV electron bunches accelerated by SPs was observed only in conditions for the resonant SP excitation. Theoretical and numerical analysis of the Light-Sail (LS) Radiation Pressure Acceleration (RPA) regime show how the plasmonic resonant coupling of the laser light with the target rippling, affects the growth of Rayleigh Taylor Instability (RTI) driven by the radiation pressure.

  15. Absolute energy calibration for relativistic electron beams with pointing instability from a laser-plasma accelerator

    SciTech Connect

    Cha, H. J.; Choi, I. W.; Kim, H. T.; Kim, I J.; Nam, K. H.; Jeong, T. M.; Lee, J.

    2012-06-15

    The pointing instability of energetic electron beams generated from a laser-driven accelerator can cause a serious error in measuring the electron spectrum with a magnetic spectrometer. In order to determine a correct electron spectrum, the pointing angle of an electron beam incident on the spectrometer should be exactly defined. Here, we present a method for absolutely calibrating the electron spectrum by monitoring the pointing angle using a scintillating screen installed in front of a permanent dipole magnet. The ambiguous electron energy due to the pointing instability is corrected by the numerical and analytical calculations based on the relativistic equation of electron motion. It is also possible to estimate the energy spread of the electron beam and determine the energy resolution of the spectrometer using the beam divergence angle that is simultaneously measured on the screen. The calibration method with direct measurement of the spatial profile of an incident electron beam has a simple experimental layout and presents the full range of spatial and spectral information of the electron beams with energies of multi-hundred MeV level, despite the limited energy resolution of the simple electron spectrometer.

  16. Design considerations for a laser-plasma linear collider

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Geddes, C. G. R.; Toth, Cs.; Leemans, W. P.

    2009-01-22

    Design considerations for a next-generation electron-positron linear collider based on laser-plasma-accelerators are discussed. Several of the advantages and challenges of laser-plasma-based accelerator technology are addressed. An example of the parameters for a 1 TeV laser-plasma-based collider is presented.

  17. Design considerations for a laser-plasma linear collider

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Geddes, C. G. R.; Toth, Cs.; Leemans, W. P.

    2008-08-01

    Design considerations for a next-generation electron-positron linear collider based on laser-plasma-accelerators are discussed. Several of the advantages and challenges of laser-plasma based accelerator technology are addressed. An example of the parameters for a 1 TeV laser-plasma based collider is presented.

  18. Relativistically Induced Transparency Acceleration (RITA) - laser-plasma accelerated quasi-monoenergetic GeV ion-beams with existing lasers?

    NASA Astrophysics Data System (ADS)

    Sahai, Aakash A.

    2013-10-01

    Laser-plasma ion accelerators have the potential to produce beams with unprecedented characteristics of ultra-short bunch lengths (100s of fs) and high bunch-charge (1010 particles) over acceleration length of about 100 microns. However, creating and controlling mono-energetic bunches while accelerating to high-energies has been a challenge. If high-energy mono-energetic beams can be demonstrated with minimal post-processing, laser (ω0)-plasma (ωpe) ion accelerators may be used in a wide-range of applications such as cancer hadron-therapy, medical isotope production, neutron generation, radiography and high-energy density science. Here we demonstrate using analysis and simulations that using relativistic intensity laser-pulses and heavy-ion (Mi ×me) targets doped with a proton (or light-ion) species (mp ×me) of trace density (at least an order of magnitude below the cold critical density) we can scale up the energy of quasi-mono-energetically accelerated proton (or light-ion) beams while controlling their energy, charge and energy spectrum. This is achieved by controlling the laser propagation into an overdense (ω0 <ωpeγ = 1) increasing plasma density gradient by incrementally inducing relativistic electron quiver and thereby rendering them transparent to the laser while the heavy-ions are immobile. Ions do not directly interact with ultra-short laser that is much shorter in duration than their characteristic time-scale (τp <<√{mp} /ω0 <<√{Mi} /ω0). For a rising laser intensity envelope, increasing relativistic quiver controls laser propagation beyond the cold critical density. For increasing plasma density (ωpe2 (x)), laser penetrates into higher density and is shielded, stopped and reflected where ωpe2 (x) / γ (x , t) =ω02 . In addition to the laser quivering the electrons, it also ponderomotively drives (Fp 1/γ∇za2) them forward longitudinally, creating a constriction of snowplowed e-s. The resulting longitudinal e--displacement from

  19. Laser-plasma-based linear collider using hollow plasma channels

    NASA Astrophysics Data System (ADS)

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; Leemans, W. P.

    2016-09-01

    A linear electron-positron collider based on laser-plasma accelerators using hollow plasma channels is considered. Laser propagation and energy depletion in the hollow channel is discussed, as well as the overall efficiency of the laser-plasma accelerator. Example parameters are presented for a 1-TeV and 3-TeV center-of-mass collider based on laser-plasma accelerators.

  20. Recent Progress at LBNL on Characterization of Laser WakefieldAccelerated Electron Bunches using Coherent Transition Radiation

    SciTech Connect

    Plateau, Guillaume R.; Esarey, Eric H.; Geddes, Cameron G.R.; Leemans, Wim P.; Matlis, Nicholas H.; Schroeder, Carl B.; van Tilborg,Jeroen; Toth, Csaba

    2007-06-25

    At LBNL, laser wakefield accelerators (LWFA) can now produce ultra-short electron bunches with energies up to 1 GeV [1]. As femtosecond electron bunches exit the plasma they radiate an intense burst in the terahertz range [2,3] via coherent transition radiation (CTR). Measuring the CTR properties allows non-invasive bunchlength diagnostics [4], a key to continuing rapid advance in LWFA technology. Experimental bunch length characterization for two different energy regimes through bolometric analysis and electro-optic (EO) sampling are presented. Measurements demonstrate both shot-to-shot stability of bunch parameters, and femtosecond synchronization between the bunch, the THz pulse, and the laser beam. In addition, this method of CTR generation provides THz pulses of very high peak power suitable for applications. Recent results reveal LWFA to be a promising intense ultrafast THz source.

  1. Extending laser plasma accelerators into the mid-IR spectral domain with a next-generation ultra-fast CO2 laser

    NASA Astrophysics Data System (ADS)

    Pogorelsky, I. V.; Babzien, M.; Ben-Zvi, I.; Polyanskiy, M. N.; Skaritka, J.; Tresca, O.; Dover, N. P.; Najmudin, Z.; Lu, W.; Cook, N.; Ting, A.; Chen, Y.-H.

    2016-03-01

    Expanding the scope of relativistic plasma research to wavelengths longer than the λ/≈   0.8-1.1 μm range covered by conventional mode-locked solid-state lasers would offer attractive opportunities due to the quadratic scaling of the ponderomotive electron energy and critical plasma density with λ. Answering this quest, a next-generation mid-IR laser project is being advanced at the BNL ATF as a part of the user facility upgrade. We discuss the technical approach to this conceptually new 100 TW, 100 fs, λ  =   9-11 μm CO2 laser BESTIA (Brookhaven Experimental Supra-Terawatt Infrared at ATF) that encompasses several innovations applied for the first time to molecular gas lasers. BESTIA will enable new regimes of laser plasma accelerators. One example is shock-wave ion acceleration (SWA) from gas jets. We review ongoing efforts to achieve stable, monoenergetic proton acceleration by dynamically shaping the plasma density profile from a hydrogen gas target with laser-produced blast waves. At its full power, 100 TW BESTIA promises to achieve proton beams at an energy exceeding 200 MeV. In addition to ion acceleration in over-critical plasma, the ultra-intense mid-IR BESTIA will open up new opportunities in driving wakefields in tenuous plasmas, expanding the landscape of laser wakefield accelerator (LWFA) studies into the unexplored long-wavelength spectral domain. Simple wavelength scaling suggests that a 100 TW CO2 laser beam will be capable of efficiently generating plasma ‘bubbles’ a thousand times greater in volume compared with a near-IR solid state laser of an equivalent power. Combined with a femtosecond electron linac available at the ATF, this wavelength scaling will facilitate the study of external seeding and staging of LWFAs.

  2. High Quality Electron Bunches up to 1 GeV from Laser WakefieldAcceleration at LBNL

    SciTech Connect

    Esarey, E.; Nagler, B.; Gonsalves, A.J.; Toth, Cs.; Nakamura, K.; Geddes, C.G.R.; Schroeder, C.B.; van Tilborg, J.; Hooker, S.; Leemans,W.P.; Michel, E.; Cary, J.; Bruhwiler, D.

    2006-07-01

    Experiments at the LOASIS laboratory of LBNL havedemonstrated production of 100 MeV to 1 GeV electron bunches with lowenergy spread and low divergence from laser wakefield acceleration. Theradiation pressure of a 10 TW laser pulse, guided over 10 diffractionranges by a few-mm long plasma density channel, was used to drive anintense plasma wave (wakefield), producing electron bunches with energieson the order of 100 MeV and acceleration gradients on the order of 100GV/m. Beam energy was increased from 100 MeV to 1 GeV by using a few-cmlong guiding channel at lower density, driven by a 40 TW laser,demonstrating the anticipated scaling to higher beam energies. Particlesimulations indicate that the low energy spread beams were produced fromself-trapped electrons through the interplay of trapping, loading, anddephasing. Other experiments and simulations are also underway to controlinjection of particles into the wake, and hence improve beam quality andstability further.

  3. A method of determining narrow energy spread electron beams from a laser plasma wakefield accelerator using undulator radiation

    SciTech Connect

    Gallacher, J. G.; Anania, M. P.; Brunetti, E.; Ersfeld, B.; Islam, M. R.; Reitsma, A. J. W.; Shanks, R. P.; Wiggins, S. M.; Jaroszynski, D. A.; Budde, F.; Debus, A.; Haupt, K.; Schwoerer, H.; Jaeckel, O.; Pfotenhauer, S.; Rohwer, E.; Schlenvoigt, H.-P.

    2009-09-15

    In this paper a new method of determining the energy spread of a relativistic electron beam from a laser-driven plasma wakefield accelerator by measuring radiation from an undulator is presented. This could be used to determine the beam characteristics of multi-GeV accelerators where conventional spectrometers are very large and cumbersome. Simultaneous measurement of the energy spectra of electrons from the wakefield accelerator in the 55-70 MeV range and the radiation spectra in the wavelength range of 700-900 nm of synchrotron radiation emitted from a 50 period undulator confirm a narrow energy spread for electrons accelerated over the dephasing distance where beam loading leads to energy compression. Measured energy spreads of less than 1% indicates the potential of using a wakefield accelerator as a driver of future compact and brilliant ultrashort pulse synchrotron sources and free-electron lasers that require high peak brightness beams.

  4. Plasma wakefields driven by an incoherent combination of laser pulses: a path towards high-average power laser-plasma accelerators

    SciTech Connect

    Benedetti, C.; Schroeder, C.B.; Esarey, E.; Leemans, W.P.

    2014-05-01

    he wakefield generated in a plasma by incoherently combining a large number of low energy laser pulses (i.e.,without constraining the pulse phases) is studied analytically and by means of fully-self-consistent particle-in-cell simulations. The structure of the wakefield has been characterized and its amplitude compared with the amplitude of the wake generated by a single (coherent) laser pulse. We show that, in spite of the incoherent nature of the wakefield within the volume occupied by the laser pulses, behind this region the structure of the wakefield can be regular with an amplitude comparable or equal to that obtained from a single pulse with the same energy. Wake generation requires that the incoherent structure in the laser energy density produced by the combined pulses exists on a time scale short compared to the plasma period. Incoherent combination of multiple laser pulses may enable a technologically simpler path to high-repetition rate, high-average power laser-plasma accelerators and associated applications.

  5. Plasma wakefields driven by an incoherent combination of laser pulses: A path towards high-average power laser-plasma accelerators

    SciTech Connect

    Benedetti, C.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2014-05-15

    The wakefield generated in a plasma by incoherently combining a large number of low energy laser pulses (i.e., without constraining the pulse phases) is studied analytically and by means of fully self-consistent particle-in-cell simulations. The structure of the wakefield has been characterized and its amplitude compared with the amplitude of the wake generated by a single (coherent) laser pulse. We show that, in spite of the incoherent nature of the wakefield within the volume occupied by the laser pulses, behind this region, the structure of the wakefield can be regular with an amplitude comparable or equal to that obtained from a single pulse with the same energy. Wake generation requires that the incoherent structures in the laser energy density produced by the combined pulses exist on a time scale short compared to the plasma period. Incoherent combination of multiple laser pulses may enable a technologically simpler path to high-repetition rate, high-average power laser-plasma accelerators, and associated applications.

  6. Charge steering of laser plasma accelerated fast ions in a liquid spray — creation of MeV negative ion and neutral atom beams

    SciTech Connect

    Schnürer, M.; Abicht, F.; Priebe, G.; Braenzel, J.; Prasad, R.; Borghesi, M.; Andreev, A.; Nickles, P. V.; Jequier, S.; Tikhonchuk, V.; Ter-Avetisyan, S.

    2013-11-15

    The scenario of “electron capture and loss” has been recently proposed for the formation of negative ion and neutral atom beams with up to MeV kinetic energy [S. Ter-Avetisyan, et al., Appl. Phys. Lett. 99, 051501 (2011)]. Validation of these processes and of their generic nature is here provided in experiments where the ion source and the interaction medium have been spatially separated. Fast positive ions accelerated from a laser plasma source are sent through a cold spray where their charge is changed. Such formed neutral atom or negative ion has nearly the same momentum as the original positive ion. Experiments are released for protons, carbon, and oxygen ions and corresponding beams of negative ions and neutral atoms have been obtained. The electron capture and loss phenomenon is confirmed to be the origin of the negative ion and neutral atom beams. The equilibrium ratios of different charge components and cross sections have been measured. Our method is general and allows the creation of beams of neutral atoms and negative ions for different species which inherit the characteristics of the positive ion source.

  7. The Berkeley accelerator space effects facility (BASE) - A newmission for the 88-inch cyclotron at LBNL

    SciTech Connect

    McMahan, M.A.

    2005-09-06

    In FY04, the 88-Inch Cyclotron began a new operating mode that supports a local research program in nuclear science, R&D in accelerator technology and a test facility for the National Security Space (NSS) community (the U.S. Air Force and NRO). The NSS community (and others on a cost recovery basis) can take advantage of both the light- and heavy-ion capabilities of the Cyclotron to simulate the space radiation environment. A significant portion of this work involves the testing of microcircuits for single event effects. The experimental areas within the building that are used for the radiation effects testing are now called the Berkeley Accelerator and Space Effects (BASE) facility. Improvements to the facility to provide increased reliability, quality assurance and new capabilities are underway and will be discussed. These include a 16 AMeV ''cocktail'' of beams for heavy ion testing, a neutron beam, more robust dosimetry, and other upgrades.

  8. Customizable electron beams from optically controlled laser plasma acceleration for γ-ray sources based on inverse Thomson scattering

    NASA Astrophysics Data System (ADS)

    Kalmykov, S. Y.; Davoine, X.; Ghebregziabher, I.; Shadwick, B. A.

    2016-09-01

    Laser wakefield acceleration of electrons in the blowout regime can be controlled by tailoring the laser pulse phase and the plasma target. The 100 nm-scale bandwidth and negative frequency chirp of the optical driver compensate for the nonlinear frequency red-shift imparted by wakefield excitation. This mitigates pulse self-steepening and suppresses continuous injection. The plasma channel suppresses diffraction of the pulse leading edge, further reducing self-steepening, making injection even quieter. Besides, the channel destabilizes the pulse tail confined within the accelerator cavity (the electron density "bubble"), causing oscillations in the bubble size. The resulting periodic injection generates background-free comb-like beams - sequences of synchronized, low phase-space volume bunches. Controlling the number of bunches, their energy, and energy spacing by varying the channel radius and the pulse length (as permitted by the large bandwidth) enables the design of a tunable, all-optical source of polychromatic, pulsed γ-rays using the mechanism of inverse Thomson scattering. Such source may radiate ~107 quasi-monochromatic 10 MeV-scale photons per shot into a microsteradian-scale observation angle. The photon energy is distributed among several distinct bands, each having sub-25% energy spread dictated by the mrad-scale divergence of electron beam.

  9. Generation of bright attosecond x-ray pulse trains via Thomson scattering from laser-plasma accelerators.

    PubMed

    Luo, W; Yu, T P; Chen, M; Song, Y M; Zhu, Z C; Ma, Y Y; Zhuo, H B

    2014-12-29

    Generation of attosecond x-ray pulse attracts more and more attention within the advanced light source user community due to its potentially wide applications. Here we propose an all-optical scheme to generate bright, attosecond hard x-ray pulse trains by Thomson backscattering of similarly structured electron beams produced in a vacuum channel by a tightly focused laser pulse. Design parameters for a proof-of-concept experiment are presented and demonstrated by using a particle-in-cell code and a four-dimensional laser-Compton scattering simulation code to model both the laser-based electron acceleration and Thomson scattering processes. Trains of 200 attosecond duration hard x-ray pulses holding stable longitudinal spacing with photon energies approaching 50 keV and maximum achievable peak brightness up to 1020 photons/s/mm2/mrad2/0.1%BW for each micro-bunch are observed. The suggested physical scheme for attosecond x-ray pulse trains generation may directly access the fastest time scales relevant to electron dynamics in atoms, molecules and materials. PMID:25607175

  10. Laser-plasma acceleration with multi-color pulse stacks: Designer electron beams for advanced radiation sources

    NASA Astrophysics Data System (ADS)

    Kalmykov, Serge; Shadwick, Bradley; Ghebregziabher, Isaac; Davoine, Xavier

    2015-11-01

    Photon engineering offers new avenues to coherently control electron beam phase space on a femtosecond time scale. It enables generation of high-quality beams at a kHz-scale repetition rate. Reducing the peak pulse power (and thus the average laser power) is the key to effectively exercise such control. A stepwise negative chirp, synthesized by incoherently stacking collinear sub-Joule pulses from conventional CPA, affords a micron-scale bandwidth. It is sufficient to prevent rapid compression of the pulse into an optical shock, while delaying electron dephasing. This extends electron energy far beyond the limits suggested by accepted scalings (beyond 1 GeV in a 3 mm plasma), without compromising beam quality. In addition, acceleration with a stacked pulse in a channel favorably modifies electron beam on a femtosecond time scale, controllably producing synchronized sequences of 100 kA-scale, quasi-monoenergetic bunches. These comb-like, designer GeV electron beams are ideal drivers of polychromatic, tunable inverse Thomson γ-ray sources. The work of SYK and BAS is supported by the US DOE Grant DE-SC0008382 and NSF Grant PHY-1104683. Inverse Thomson scattering simulations were completed utilizing the Holland Computing Center of the University of Nebraska.

  11. Relativistic Laser-Plasma Interactions

    SciTech Connect

    Skoric, Milos M.

    2009-11-10

    Ever since the much acclaimed paper of Akhiezer and Polovin plasma theorists have been attempting to comprehend complex dynamics related to the propagation of high and ultra-high intensity electromagnetic (EM) radiation through a plasma. This topic was successfully revisited a number of years later by Kaw and Dawson whose analysis threw more light on the propagation of coupled longitudinal-transverse waves of arbitrary intensity. The high phase velocity case was soon solved exactly by Max and Perkins, (early review). The problem of relativistic laser-plasma interactions is of particular interest concerning the fast ignition concept, relevant to contemporary laser inertial confinement fusion research. Moreover, the understanding of relativistic laser pulse evolution in a plasma is basic to many new applications, including optical-field-ionized x-ray lasers, plasma-based electron accelerator schemes, as well as, interpretation of some astrophysical phenomena, and references, therein). From a text given in two tutorial lectures, in a limited space, we mainly focus on an important paradigm of stimulated Raman scattering.

  12. Physics considerations for laser-plasma linear colliders

    SciTech Connect

    Schroeder, Carl; Esarey, Eric; Geddes, Cameron; Benedetti, Carlo; Leemans, Wim

    2010-06-11

    Physics considerations for a next-generation linear collider based on laser-plasma accelerators are discussed. The ultra-high accelerating gradient of a laser-plasma accelerator and short laser coupling distance between accelerator stages allows for a compact linac. Two regimes of laser-plasma acceleration are discussed. The highly nonlinear regime has the advantages of higher accelerating fields and uniform focusing forces, whereas the quasi-linear regime has the advantage of symmetric accelerating properties for electrons and positrons. Scaling of various accelerator and collider parameters with respect to plasma density and laser wavelength are derived. Reduction of beamstrahlung effects implies the use of ultra-short bunches of moderate charge. The total linac length scales inversely with the square root of the plasma density, whereas the total power scales proportional to the square root of the density. A 1 TeV center-of-mass collider based on stages using a plasma density of 10{sup 17} cm{sup -3} requires tens of J of laser energy per stage (using 1 {micro}m wavelength lasers) with tens of kHz repetition rate. Coulomb scattering and synchrotron radiation are examined and found not to significantly degrade beam quality. A photon collider based on laser-plasma accelerated beams is also considered. The requirements for the scattering laser energy are comparable to those of a single laser-plasma accelerator stage.

  13. Excitation of nuclear isomers by X rays from laser plasma

    SciTech Connect

    Andreev, Aleksandr A; Karpeshin, F; Trzhaskovskaya, M B; Platonov, Konstantin Yu; Rozhdestvenskii, Yu V

    2010-06-23

    The possibility of obtaining isomer nuclei is studied by the example of the molybdenum isomer {sup 93}Mo upon irradiation of a niobium {sup 93}Nb target by {approx}50-J, 100-fs laser pulses. It is shown that the modern laser technique allows production of isomer nuclei by accelerated protons and radiative de-excitation of isomer nuclear states by thermal or line X-rays from laser plasma. (interaction of laser radiation with matter. laser plasma)

  14. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    ScienceCinema

    Leemans, Wim [LOASIS Program, AFRD

    2009-09-01

    July 8, 2008 Berkeley Lab lecture: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  15. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    SciTech Connect

    Leemans, Wim

    2008-07-08

    Summer Lecture Series 2008: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  16. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    ScienceCinema

    Leemans, Wim [LOASIS Program, AFRD

    2011-04-28

    Summer Lecture Series 2008: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  17. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    SciTech Connect

    Leemans, Wim

    2008-07-08

    July 8, 2008 Berkeley Lab lecture: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  18. Critical Issues in Plasma Accelerator

    NASA Astrophysics Data System (ADS)

    Uesaka, M.; Hosokai, T.

    2004-10-01

    Updated achievements and critical issues in plasma accelerators are summarized. As to laser plasma accelerators, we cover the results of plasma cathodes by U.Michigan, LBNL, LOA and U.Tokyo. Although many new results of accelerated electrons have been reported, the electrons do not yet form a bunch with narrow energy spread. Several injection schemes and measurements to verify ultrashort bunch (tens fs) with narrow energy spread, low emittance and many charges are planned. E-162 experiments by UCLA / USC / SLAC and a newly proposed experiment on density transition trapping are introduced for electron beam driven plasma accelerators. Their main purpose is realization of GeV plasma accelerator, but application to pump-and-probe analysis for investigation of ultrafast quantum phenomena is also promising.

  19. Final Report for "Community Petascale Project for Accelerator Science and Simulations".

    SciTech Connect

    Cary, J. R.; Bruhwiler, D. L.; Stoltz, P. H.; Cormier-Michel, E.; Cowan, B.; Schwartz, B. T.; Bell, G.; Paul, K.; Veitzer, S.

    2013-04-19

    This final report describes the work that has been accomplished over the past 5 years under the Community Petascale Project for Accelerator and Simulations (ComPASS) at Tech-X Corporation. Tech-X had been involved in the full range of ComPASS activities with simulation of laser plasma accelerator concepts, mainly in collaboration with LOASIS program at LBNL, simulation of coherent electron cooling in collaboration with BNL, modeling of electron clouds in high intensity accelerators, in collaboration with researchers at Fermilab and accurate modeling of superconducting RF cavity in collaboration with Fermilab, JLab and Cockcroft Institute in the UK.

  20. A 1 GeV Laser Wakefield Accelerator: Experimental Progress at the l'OASIS Facility of LBNL

    NASA Astrophysics Data System (ADS)

    Leemans, W. P.; Geddes, C. G. R.; Toth, C. S.; van Tilborg, J.; Nagler, B.; Michel, P.; Nakamura, K.; Esarey, E.; Schroeder, C. B.; Gonsalves, A.; Spence, D. J.; Hooker, S. M.; Filip, C.; Cowan, T.

    2004-11-01

    Experimental progress towards a 1 GeV laser-driven plasma-based accelerator will be discussed. The design of the 1 GeV accelerator module consists of two components: (1) an all-optical electron injector and (2) a plasma channel for laser guiding and electron acceleration to high energy via the laser wakefield acceleration (LWFA) mechanism. Experimental results on the injector development include the demonstration of laser guiding at relativistic intensities in preformed plasmas and production of quasi-monochromatic electron beams with energy around 100 MeV. Progress on guiding 100 TW laser pulses in capillary-discharge-based plasma channels will be discussed and integration of these channels with the all-optical injector will be reported.

  1. Design of a free-electron laser driven by the LBNLlaser-plasma-accelerator

    SciTech Connect

    Schroeder, C.B.; Fawley, W.M.; Montgomery, A.L.; Robinson, K.E.; Gruner, F.; Bakeman, M.; Leemans, W.P.

    2007-09-10

    We discuss the design and current status of a compactfree-electron laser (FEL), generating ultra-fast, high-peak flux, VUVpulses driven by a high-current, GeV electron beam from the existingLawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator,whose active acceleration length is only a few cm. The proposedultra-fast source would be intrinsically temporally synchronized to thedrive laser pulse, enabling pump-probe studies in ultra-fast science withpulse lengths of tens of fs. Owing to the high current (&10 kA) ofthe laser-plasma-accelerated electron beams, saturated output fluxes arepotentially greater than 1013 photons/pulse. Devices based both on SASEand high-harmonic generated input seeds, to reduce undulator length andfluctuations, are considered.

  2. Ion beam control in laser plasma interaction

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Izumiyama, T.; Sato, D.; Nagashima, T.; Takano, M.; Barada, D.; Gu, Y. J.; Ma, Y. Y.; Kong, Q.; Wang, P. X.; Wang, W. M.

    2016-03-01

    By a two-stage successive acceleration in laser ion acceleration, our 2.5-dimensional particle-in-cell simulations demonstrate a remarkable increase in ion energy by a few hundreds of MeV; the maximum proton energy reaches about 250MeV. The ions are accelerated by the inductive continuous post-acceleration in a laser plasma interaction together with the target normal sheath acceleration and the breakout afterburner mechanism. An intense short-pulse laser generates a strong current by high-energy electrons accelerated, when an intense short- pulse laser illuminates a plasma target. The strong electric current creates a strong magnetic field along the high-energy electron current in the plasma. During the increase phase in the magnetic field strength, the moving longitudinal inductive electric field is induced by the Faraday law, and accelerates the forward-moving ions continously. The multi-stage acceleration provides a unique controllability in the ion energy and its quality.

  3. Generation and analysis of quasimonoenergetic electron beams by laser-plasma interaction in transitional region from the self-modulated laser wakefield to bubble acceleration regime

    SciTech Connect

    Masuda, S.; Miura, E.

    2009-09-15

    Generation of quasimonoenergetic electron beams in a transitional region from the self-modulated laser wakefield to bubble acceleration regime is reported. Quasimonoenergetic electron beams containing more than 3x10{sup 8} electrons in the monoenergetic peak with energies of 40-60 MeV have been obtained from a plasma with an electron density of 1.6x10{sup 19} cm{sup -3} produced by an 8 TW, 50 fs laser pulse. The generation of quasimonoenergetic electron beams is investigated by two-dimensional particle-in-cell simulations. Few periods of the plasma wave are located inside the laser pulse, because the laser pulse duration is longer than the wavelength of the plasma wave. Electrons trapped in the first period of the plasma wave can form the monoenergetic bunch, even though the trapped electrons interact directly with the laser field. The quasimonoenergetic electron beam can be obtained due to the small contribution of the direct acceleration by the laser field. This type of monoenergetic electron acceleration is different from that of both the self-modulated laser wakefield and bubble acceleration regimes, in which the trapped electrons in the plasma wave are located behind the laser pulse due to the pulse compression or fragmentation and free from the laser electric field. This result suggests a new regime for the quasimonoenergetic electron acceleration in the region between the self-modulation and bubble regime.

  4. X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator

    SciTech Connect

    Kneip, S.; McGuffey, C.; Dollar, F.; Chvykov, V.; Kalintchenko, G.; Krushelnick, K.; Maksimchuk, A.; Mangles, S. P. D.; Matsuoka, T.; Schumaker, W.; Thomas, A. G. R.; Yanovsky, V.; Bloom, M. S.; Najmudin, Z.; Palmer, C. A. J.; Schreiber, J.

    2011-08-29

    We show that x-rays from a recently demonstrated table top source of bright, ultrafast, coherent synchrotron radiation [Kneip et al., Nat. Phys. 6, 980 (2010)] can be applied to phase contrast imaging of biological specimens. Our scheme is based on focusing a high power short pulse laser in a tenuous gas jet, setting up a plasma wakefield accelerator that accelerates and wiggles electrons analogously to a conventional synchrotron, but on the centimeter rather than tens of meter scale. We use the scheme to record absorption and phase contrast images of a tetra fish, damselfly and yellow jacket, in particular highlighting the contrast enhancement achievable with the simple propagation technique of phase contrast imaging. Coherence and ultrafast pulse duration will allow for the study of various aspects of biomechanics.

  5. A tuneable ultra-compact high-power, ultra-short pulsed, bright gamma-ray source based on bremsstrahlung radiation from laser-plasma accelerated electrons

    SciTech Connect

    Cipiccia, S.; Wiggins, S. M.; Shanks, R. P.; Islam, M. R.; Vieux, G.; Issac, R. C.; Brunetti, E.; Ersfeld, B.; Welsh, G. H.; Anania, M. P.; Jaroszynski, D. A.; Maneuski, D.; Shea, V. O.; Lemos, N. R. C.; Bendoyro, R. A.; Dias, J. M.; Bourgeois, N.; Ibbotson, T. P. A.; and others

    2012-03-15

    The laser driven plasma wakefield accelerator is a very compact source of high energy electrons. When the quasi-monoenergetic beam from these accelerators passes through dense material, high energy bremsstrahlung photons are emitted in a collimated beam with high flux. We show how a source based on this emission process can produce more than 10{sup 9} photons per pulse with a mean energy of 10 MeV. We present experimental results that show the feasibility of this method of producing high energy photons and compare the experimental results with GEANT4 Montecarlo simulations, which also give the scaling required to evaluate its suitability as method to produce radioisotopes via photo-nuclear reactions or for imaging applications.

  6. Measurement of angularly dependent spectra of betatron gamma-rays from a laser plasma accelerator with quadrant-sectored range filters

    NASA Astrophysics Data System (ADS)

    Jeon, Jong Ho; Nakajima, Kazuhisa; Kim, Hyung Taek; Rhee, Yong Joo; Pathak, Vishwa Bandhu; Cho, Myung Hoon; Shin, Jung Hun; Yoo, Byung Ju; Jo, Sung Ha; Shin, Kang Woo; Hojbota, Calin; Bae, Lee Jin; Jung, Jaehyung; Cho, Min Sang; Sung, Jae Hee; Lee, Seong Ku; Cho, Byoung Ick; Choi, Il Woo; Nam, Chang Hee

    2016-07-01

    Measurement of angularly dependent spectra of betatron gamma-rays radiated by GeV electron beams from laser wakefield accelerators (LWFAs) are presented. The angle-resolved spectrum of betatron radiation was deconvolved from the position dependent data measured for a single laser shot with a broadband gamma-ray spectrometer comprising four-quadrant sectored range filters and an unfolding algorithm, based on the Monte Carlo code GEANT4. The unfolded gamma-ray spectra in the photon energy range of 0.1-10 MeV revealed an approximately isotropic angular dependence of the peak photon energy and photon energy-integrated fluence. As expected by the analysis of betatron radiation from LWFAs, the results indicate that unpolarized gamma-rays are emitted by electrons undergoing betatron motion in isotropically distributed orbit planes.

  7. Carbon Multicharged Ion Generation from Laser Plasma

    NASA Astrophysics Data System (ADS)

    Balki, Oguzhan; Elsayed-Ali, Hani E.

    2014-10-01

    Multicharged ions (MCI) have potential uses in different areas such as microelectronics and medical physics. Carbon MCI therapy for cancer treatment is considered due to its localized energy delivery to hard-to-reach tumors at a minimal damage to surrounding tissues. We use a Q-switched Nd:YAG laser with 40 ns pulse width operated at 1064 nm to ablate a graphite target in ultrahigh vacuum. A time-of-flight energy analyzer followed by a Faraday cup is used to characterize the carbon MCI extracted from the laser plasma. The MCI charge state and energy distribution are obtained. With increase in the laser fluence, the ion charge states and ion energy are increased. Carbon MCI up to C+9 are observed along with carbon clusters. When an acceleration voltage is applied between the carbon target and a grounded mesh, ion extraction is observed to increase with the applied voltage. National Science Foundation.

  8. Laser-plasma-accelerators—A novel, versatile tool for space radiation studies

    NASA Astrophysics Data System (ADS)

    Hidding, Bernhard; Königstein, Thomas; Willi, Oswald; Rosenzweig, James B.; Nakajima, Kazuhisa; Pretzler, Georg

    2011-04-01

    The potential of laser-plasma-based accelerator technology for future advanced space radiation studies is investigated. Laser-plasma accelerators have been shown to be capable of robust generation of particle beams such as electrons, protons, neutrons and ions, as well as photons, having a wide range of accessible parameters. Further, instead of maximum accelerating fields of the order of MV/m as in state-of-the-art accelerators, laser-plasma acceleration operates with fields up to TV/m and can thus be used to reach as yet inaccessible parameter regimes, but which are very relevant to space radiation studies. Due to their versatility and compactness, the same laser-plasma-accelerator can be used in university-scale labs to generate different kinds of particle and photon beams, each yielding up to kGy doses per shot, and allowing combinations of different kinds of radiation production simultaneously. Laser-plasma-accelerators provide the advantage of cost-effective radiation generation, thus ameliorating the current shortage of beam time for testing of radiation resistivity of electronic components. Beyond this, laser-plasma-accelerators can be used to reproduce certain aspects of space radiation, e.g. broad, decreasing multi-MeV-scale spectra, with substantially improved level of fidelity, as compared to state-of-the-art technology. This can increase the significance of electronic components testing, and in turn yield increased reliability and safety of future manned or unmanned space missions, high-altitude flights, as well as the electronic components used in harsh radiation environments in general. Laser-plasma-accelerators may therefore become indispensable tools for next-generation space radiation studies.

  9. 14. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. November 22, 1963. BEV-3467. ACCELERATION DIAGRAM. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  10. TOPICAL REVIEW: Relativistic laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Umstadter, Donald

    2003-04-01

    By focusing petawatt peak power laser light to intensities up to 1021 W cm-2, highly relativistic plasmas can now be studied. The force exerted by light pulses with this extreme intensity has been used to accelerate beams of electrons and protons to energies of a million volts in distances of only microns. This acceleration gradient is a thousand times greater than in radio-frequency-based accelerators. Such novel compact laser-based radiation sources have been demonstrated to have parameters that are useful for research in medicine, physics and engineering. They might also someday be used to ignite controlled thermonuclear fusion. Ultrashort pulse duration particles and x-rays that are produced can resolve chemical, biological or physical reactions on ultrafast (femtosecond) timescales and on atomic spatial scales. These energetic beams have produced an array of nuclear reactions, resulting in neutrons, positrons and radioactive isotopes. As laser intensities increase further and laser-accelerated protons become relativistic, exotic plasmas, such as dense electron-positron plasmas, which are of astrophysical interest, can be created in the laboratory. This paper reviews many of the recent advances in relativistic laser-plasma interactions.

  11. Laser Triggered Electron Injection into a Channel Guided Wakefield Accelerator

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Filip, C.

    2005-10-01

    Laser-plasma accelerators have demonstrated the generation of narrow energy spread (˜ few %) electron beams with considerable amount of charge (>100 pC). Stability of laser-plasma accelerators, as in the conventional accelerators, requires highly synchronized injection of electrons into the structured accelerating field. The Colliding Pulse Method[1] with pre-formed plasma channel guiding [2] can result in jitter-free injection in a dark-current-free accelerating structure. We report on experimental progress of laser triggered injection of electrons into a laser wakefield, where an intense laser pulse is guided by a pre-formed plasma channel. The experiments use the multi-beam, multi-terawatt Ti:Al2O3 laser at LOASIS facility of LBNL. The ignitor-heater method is used to first produce a pre-formed plasma channel in a hydrogen gas jet. Two counter propagating beams (wakefield driver:100-500mJ-50fs, injector:50-300mJ-50fs) then are focused onto the entrance of the channel. Preliminary results indicate that electron beam properties are affected by the second beam. Details of the experiment will be presented. [1]G.Fubiani, et al, Phys. Rev. E 70, 016402 (2004). [2]C.G.R. Geddes et al, Nature 431, 538 (2004). This work is supported by DoE under contract DE-AC02-05CH11231.

  12. Dynamics of electron bunches at the laser-plasma interaction in the bubble regime

    NASA Astrophysics Data System (ADS)

    Maslov, V. I.; Svystun, O. M.; Onishchenko, I. N.; Tkachenko, V. I.

    2016-09-01

    The multi-bunches self-injection, observed in laser-plasma accelerators in the bubble regime, affects the energy gain of electrons accelerated by laser wakefield. However, understanding of dynamics of the electron bunches formed at laser-plasma interaction may be challenging. We present here the results of fully relativistic electromagnetic particle-in-cell (PIC) simulation of laser wakefield acceleration driven by a short laser pulse in an underdense plasma. The trapping and acceleration of three witness electron bunches by the bubble-like structures were observed. It has been shown that with time the first two witness bunches turn into drivers and contribute to acceleration of the last witness bunch.

  13. LBNL LLRF Controls Suite

    Energy Science and Technology Software Center (ESTSC)

    2005-03-18

    This package provides a complete set of FPGA logic and driver software for the LBNL Interim SNS (Spallation Neutron Source) LLRF (Low Level Radio Frequency) cavity control system, plus a hardware-software cosimulation framework that can demonstrate correct operation of the code. The controls are organized in a traditional three-tier layout. Tier 1 (hardware access): Verilog code targeted at the XC2S15O FPGA that lies at the center of the custom hardware, Includes a direct digital frequencymore » synthesizer (DDS), a low-latency vector PI feedback control loop, four-channel vector waveform capture, and support for on-board housekeeping circuitry. Tier 2 (network presentation): C code targeted at a 32-bit microcontroller, which has a direct connection to both the FPGA and to Ethemet. This layer is itself divided into a HAL (hardware abstraction layer) to mediate access to the FPGA registers, a driver to organize all the application-specific computations (including a waveform curve fit that determines cavity detuning), and a toy network access protocol. Tier 3 (operator interface): A Tcl program that exchanges data with tier 2, and gives the operator a virtual control panel for the hardware In the production SNS installation, the toy network access protocol and tier 3 are replaced with EPICS (http://www.aps.anl.gov/epics/). The code given here is dramatically smaller and simpler than EPICS, yet gives enough functionality to demonstrate proper operation of an RF cavity. The SNS facility now uses three generations of LLRF control hardware. This package is intended to be used in all of them, but is so far only tested on the second ("Interim") generation hardware. It may also be adaptable to future LLRF projects at LBNL, other National Labs, and worldwide.« less

  14. LBNL LLRF Controls Suite

    SciTech Connect

    Doolittle, Lawrence R.

    2005-03-18

    This package provides a complete set of FPGA logic and driver software for the LBNL Interim SNS (Spallation Neutron Source) LLRF (Low Level Radio Frequency) cavity control system, plus a hardware-software cosimulation framework that can demonstrate correct operation of the code. The controls are organized in a traditional three-tier layout. Tier 1 (hardware access): Verilog code targeted at the XC2S15O FPGA that lies at the center of the custom hardware, Includes a direct digital frequency synthesizer (DDS), a low-latency vector PI feedback control loop, four-channel vector waveform capture, and support for on-board housekeeping circuitry. Tier 2 (network presentation): C code targeted at a 32-bit microcontroller, which has a direct connection to both the FPGA and to Ethemet. This layer is itself divided into a HAL (hardware abstraction layer) to mediate access to the FPGA registers, a driver to organize all the application-specific computations (including a waveform curve fit that determines cavity detuning), and a toy network access protocol. Tier 3 (operator interface): A Tcl program that exchanges data with tier 2, and gives the operator a virtual control panel for the hardware In the production SNS installation, the toy network access protocol and tier 3 are replaced with EPICS (http://www.aps.anl.gov/epics/). The code given here is dramatically smaller and simpler than EPICS, yet gives enough functionality to demonstrate proper operation of an RF cavity. The SNS facility now uses three generations of LLRF control hardware. This package is intended to be used in all of them, but is so far only tested on the second ("Interim") generation hardware. It may also be adaptable to future LLRF projects at LBNL, other National Labs, and worldwide.

  15. Control of laser plasma instabilities in hohlraums

    SciTech Connect

    Kruer, W.L.

    1996-12-01

    Laser plasma instabilities are an important constraint on the operating regime for inertial fusion. Many techniques have been developed to control the various laser-driven instabilities. Experiments with long scale length plasmas are testing these instability levels, the nonlinear regimes, and the control mechanisms.

  16. An ultracompact X-ray source based on a laser-plasma undulator.

    PubMed

    Andriyash, I A; Lehe, R; Lifschitz, A; Thaury, C; Rax, J-M; Krushelnick, K; Malka, V

    2014-01-01

    The capability of plasmas to sustain ultrahigh electric fields has attracted considerable interest over the last decades and has given rise to laser-plasma engineering. Today, plasmas are commonly used for accelerating and collimating relativistic electrons, or to manipulate intense laser pulses. Here we propose an ultracompact plasma undulator that combines plasma technology and nanoengineering. When coupled with a laser-plasma accelerator, this undulator constitutes a millimetre-sized synchrotron radiation source of X-rays. The undulator consists of an array of nanowires, which are ionized by the laser pulse exiting from the accelerator. The strong charge-separation field, arising around the wires, efficiently wiggles the laser-accelerated electrons. We demonstrate that this system can produce bright, collimated and tunable beams of photons with 10-100 keV energies. This concept opens a path towards a new generation of compact synchrotron sources based on nanostructured plasmas. PMID:25145401

  17. An ultracompact X-ray source based on a laser-plasma undulator

    NASA Astrophysics Data System (ADS)

    Andriyash, I. A.; Lehe, R.; Lifschitz, A.; Thaury, C.; Rax, J.-M.; Krushelnick, K.; Malka, V.

    2014-08-01

    The capability of plasmas to sustain ultrahigh electric fields has attracted considerable interest over the last decades and has given rise to laser-plasma engineering. Today, plasmas are commonly used for accelerating and collimating relativistic electrons, or to manipulate intense laser pulses. Here we propose an ultracompact plasma undulator that combines plasma technology and nanoengineering. When coupled with a laser-plasma accelerator, this undulator constitutes a millimetre-sized synchrotron radiation source of X-rays. The undulator consists of an array of nanowires, which are ionized by the laser pulse exiting from the accelerator. The strong charge-separation field, arising around the wires, efficiently wiggles the laser-accelerated electrons. We demonstrate that this system can produce bright, collimated and tunable beams of photons with 10-100 keV energies. This concept opens a path towards a new generation of compact synchrotron sources based on nanostructured plasmas.

  18. Ptychographic measurements of ultrahigh-intensity laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Leblanc, A.; Monchocé, S.; Bourassin-Bouchet, C.; Kahaly, S.; Quéré, F.

    2016-04-01

    The extreme intensities now delivered by femtosecond lasers make it possible to drive and control relativistic motion of charged particles with light, opening a path to compact particle accelerators and coherent X-ray sources. Accurately characterizing the dynamics of ultrahigh-intensity laser-plasma interactions as well as the resulting light and particle emissions is an essential step towards such achievements. This remains a considerable challenge, as the relevant scales typically range from picoseconds to attoseconds in time, and from micrometres to nanometres in space. In these experiments, owing to the extreme prevalent physical conditions, measurements can be performed only at macroscopic distances from the targets, yielding only partial information at these microscopic scales. This letter presents a major advance by applying the concepts of ptychography to such measurements, and thus retrieving microscopic information hardly accessible until now. This paves the way to a general approach for the metrology of extreme laser-plasma interactions on very small spatial and temporal scales.

  19. LBNL SecureMessaging

    SciTech Connect

    Pery, Marcia; Agarwal, Deb

    2003-03-17

    The LBNLSecureMessaging application enables collaboration among colocated or geograhically dispersed users by supporting secure synchronous and asynchronous communication. This application is the graphical user interface client that is meant to be used in conjunction with servers (LBNL's PCCEServer and a customized IRC server) to allow group and one-to-one conversations via text-based instant messaging. Conversations may be private (by invitation only) or public (open to any member of a collaboratory group_ and they may be permanent and on-going or temporary and ad hoc. Users may leave notes for other people who are online or offline. By providing presence and awareness information, collaborators can easily locate each other and rendezvous. Written in Java/Swing, this application is cross-platform. To gain access to functionality, users have to be registered with an authorization server (PCCEServer) that maintains an access control list. Thus a collaboration group is comprised of a set of PCCE-registered users. Registered users can log in via either X.509 certificate or a username and password combination. PKI and SSL are used to authenticate servers and clients and to encrypt messages sent over the network. The LBNLSecureMessaging application offers instant messaging capabilities in a secure environment that provides data integrity, privacyk authorization, and authentication.

  20. LBNL SecureMessaging

    Energy Science and Technology Software Center (ESTSC)

    2003-03-17

    The LBNLSecureMessaging application enables collaboration among colocated or geograhically dispersed users by supporting secure synchronous and asynchronous communication. This application is the graphical user interface client that is meant to be used in conjunction with servers (LBNL's PCCEServer and a customized IRC server) to allow group and one-to-one conversations via text-based instant messaging. Conversations may be private (by invitation only) or public (open to any member of a collaboratory group_ and they may be permanentmore » and on-going or temporary and ad hoc. Users may leave notes for other people who are online or offline. By providing presence and awareness information, collaborators can easily locate each other and rendezvous. Written in Java/Swing, this application is cross-platform. To gain access to functionality, users have to be registered with an authorization server (PCCEServer) that maintains an access control list. Thus a collaboration group is comprised of a set of PCCE-registered users. Registered users can log in via either X.509 certificate or a username and password combination. PKI and SSL are used to authenticate servers and clients and to encrypt messages sent over the network. The LBNLSecureMessaging application offers instant messaging capabilities in a secure environment that provides data integrity, privacyk authorization, and authentication.« less

  1. γ-H2AX and phosphorylated ATM focus formation in cancer cells after laser plasma X irradiation.

    PubMed

    Sato, Katsutoshi; Nishikino, Masaharu; Okano, Yasuaki; Ohshima, Shinsuke; Hasegawa, Noboru; Ishino, Masahiko; Kawachi, Tetsuya; Numasaki, Hodaka; Teshima, Teruki; Nishimura, Hiroaki

    2010-10-01

    The usefulness of laser plasma X-ray pulses for medical and radiation biological studies was investigated, and the effects of laser plasma X rays were compared with those of conventional sources such as a linear accelerator. A cell irradiation system was developed that used copper-Kα (8 keV) lines from an ultrashort high-intensity laser to produce plasma. The absorbed dose of the 8 keV laser plasma X-ray pulse was estimated accurately with Gafchromic® EBT film. When the cells were irradiated with approximately 2 Gy of laser plasma X rays, the circular regions on γ-H2AX-positive cells could be clearly identified. Moreover, the numbers of γ-H2AX and phosphorylated ataxia telangiectasia mutated (ATM) foci induced by 8 keV laser plasma X rays were comparable to those induced by 4 MV X rays. These results indicate that the laser plasma X ray source may be useful for radiation biology studies. PMID:20718602

  2. Theoretical Investigations of Plasma-Based Accelerators and Other Advanced Accelerator Concepts

    SciTech Connect

    Shuets, G.

    2004-05-21

    Theoretical investigations of plasma-based accelerators and other advanced accelerator concepts. The focus of the work was on the development of plasma based and structure based accelerating concepts, including laser-plasma, plasma channel, and microwave driven plasma accelerators.

  3. Laser Plasma and Hydrodynamics Experiments with KrF Lasers

    NASA Astrophysics Data System (ADS)

    Weaver, James

    2006-10-01

    The proposed Fusion Test Facility (FTF) will exploit the unique features of Krypton Fluoride (KrF) lasers to achieve ignition and substantial gain (>20) at <500 kJ laser energies using direct drive.[1] The strategy uses highly uniform, high bandwidth, 248 nm KrF laser illumination at intensities near 2 x 10^15 W/cm^2 to accelerate low-aspect ratio pellets to implosion velocities of 400 km/s. Higher than usual implosion velocity allows ignition at substantially reduced laser energy. Amplitudes of both hydrodynamic instability during the pellet implosion and deleterious laser plasma instability (LPI) in the corona must be kept sufficiently low if one is to achieve ignition and gain. Increased laser intensity reduces hydrodynamic instability because it allows acceleration of thicker, low aspect ratio pellets, but is also more likely to produce deleterious LPI. The deep UV wavelength of KrF should allow use of these higher intensities. Studies of hydrodynamic instabilities and laser plasma instabilities (LPI) are the subject of ongoing experiments at the 2-3 kJ Nike KrF laser. The Nike laser has demonstrated highly uniform UV irradiation of planar targets at moderate laser intensities (I˜10^14 W/cm^2), including the recent addition of short duration ``spike'' prepulses for hydrodynamic stability studies. A new effort in LPI physics is underway at the Nike facility where the peak intensity is being extended above 10^15 W/cm^2 by a combination of smaller focal diameters and shorter pulse lengths. This talk will discuss progress in the ongoing experiments at Nike in support of the FTF design. [1] S. P. Obenschain, et al., Phys. Plasmas 13 056329 (2006).

  4. Optical shaping of gas targets for laser-plasma ion sources

    NASA Astrophysics Data System (ADS)

    Dover, N. P.; Cook, N.; Tresca, O.; Ettlinger, O.; Maharjan, C.; Polyanskiy, M. N.; Shkolnikov, P.; Pogorelsky, I.; Najmudin, Z.

    2016-01-01

    We report on the experimental demonstration of a technique to generate steep density gradients in gas-jet targets of interest to laser-plasma ion acceleration. By using an intentional low-energy prepulse, we generated a hydrodynamic blast wave in the gas to shape the target prior to the arrival of an intense CO2 λ≈ 10m drive pulse. This technique has been recently shown to facilitate the generation of ion beams by shockwave acceleration (Tresca et al., Phys. Rev. Lett., vol. 115 (9), 2015, 094802). Here, we discuss and introduce a model to understand the generation of these blast waves and discuss in depth the experimental realisation of the technique, supported by hydrodynamics simulations. With appropriate prepulse energy and timing, this blast wave can generate steepened density gradients as short as &ap 20μm (1/e), opening up new possibilities for laser-plasma studies with near-critical gaseous targets.

  5. Demonstration of relativistic electron beam focusing by a laser-plasma lens

    PubMed Central

    Thaury, C.; Guillaume, E.; Döpp, A.; Lehe, R.; Lifschitz, A.; Ta Phuoc, K.; Gautier, J.; Goddet, J-P; Tafzi, A.; Flacco, A.; Tissandier, F.; Sebban, S.; Rousse, A.; Malka, V.

    2015-01-01

    Laser-plasma technology promises a drastic reduction of the size of high-energy electron accelerators. It could make free-electron lasers available to a broad scientific community and push further the limits of electron accelerators for high-energy physics. Furthermore, the unique femtosecond nature of the source makes it a promising tool for the study of ultrafast phenomena. However, applications are hindered by the lack of suitable lens to transport this kind of high-current electron beams mainly due to their divergence. Here we show that this issue can be solved by using a laser-plasma lens in which the field gradients are five order of magnitude larger than in conventional optics. We demonstrate a reduction of the divergence by nearly a factor of three, which should allow for an efficient coupling of the beam with a conventional beam transport line. PMID:25880791

  6. Demonstration of relativistic electron beam focusing by a laser-plasma lens.

    PubMed

    Thaury, C; Guillaume, E; Döpp, A; Lehe, R; Lifschitz, A; Ta Phuoc, K; Gautier, J; Goddet, J-P; Tafzi, A; Flacco, A; Tissandier, F; Sebban, S; Rousse, A; Malka, V

    2015-01-01

    Laser-plasma technology promises a drastic reduction of the size of high-energy electron accelerators. It could make free-electron lasers available to a broad scientific community and push further the limits of electron accelerators for high-energy physics. Furthermore, the unique femtosecond nature of the source makes it a promising tool for the study of ultrafast phenomena. However, applications are hindered by the lack of suitable lens to transport this kind of high-current electron beams mainly due to their divergence. Here we show that this issue can be solved by using a laser-plasma lens in which the field gradients are five order of magnitude larger than in conventional optics. We demonstrate a reduction of the divergence by nearly a factor of three, which should allow for an efficient coupling of the beam with a conventional beam transport line. PMID:25880791

  7. APPLICATIONS OF LASERS AND OTHER TOPICS IN LASER PHYSICS AND TECHNOLOGY: Switching of a pulsed ionic diode through the bulk of an ion source with laser plasma initiation

    NASA Astrophysics Data System (ADS)

    Pleshakova, R. P.; Shikanov, A. E.

    1987-10-01

    An analysis was made of the results of an investigation of switching of a pulsed ionic diode through the bulk of an ion source with a laser plasma and a vacuum arc. The dependences of the neutron yield on the electrical energy of the diode were recorded and analyzed. The results indicated a possible way of simple construction of an acceleration tube with switching via a laser-plasma source.

  8. Laser plasma at low air pressure

    NASA Astrophysics Data System (ADS)

    Vas'kovskii, Iu. M.; Moiseev, V. N.; Rovinskii, R. E.; Tsenina, I. S.

    1993-01-01

    The ambient-pressure dependences of the dynamic and optical characteristics of a laser plasma generated by CO2-laser irradiation of an obstacle are investigated experimentally. The change of the sample's surface roughness after irradiation is investigated as a function of air pressure. It is concluded that the transition from the air plasma to the erosion plasma takes place at an air pressure of about 1 mm Hg. The results confirm the existing theory of plasma formation near the surface of an obstacle under the CO2-laser pulse effect in air.

  9. Negative ion beam generation in laser plasma interactions

    NASA Astrophysics Data System (ADS)

    Jequier, Sophie; Tikhonchuk, Vladimir; Ter-Avetisyan, Sargis

    2013-10-01

    Detection of a large number of energetic negative ions and neutral atoms have been reported in recent intense laser plasma interaction experiments. These particles were produced from fast positive ions (proton, carbon, oxygen) accelerated from a laser produced plasma when they were passing through a cold spray of water or ethanol. The negative ions formation is strongly related to the fast positive ions, and it is explained by a process of a single electron capture - loss. Double charge exchange, elastic scattering and energy loss phenomena have been neglected since their cross sections are much smaller. Assuming independent atoms approximation, we study populations evolution through the interaction zone analytically and numerically by solving the rate equations using cross sections drawn from literature. Taking into account the energy distribution of the incident ions, the calculations give the final energy distribution for the different species that can be compared to experimental spectra. First results obtained for hydrogen in the water case indicate that this model can explain the main observed features. The results concerning the carbon and oxygen ions will be also presented as well as refinement of the cross sections since some cross sections are missing for these energies.

  10. NDCX-II project commencing at LBNL

    SciTech Connect

    Friedman, A; Kwan, J

    2009-10-26

    NDCX-II is the second-generation Neutralized Drift Compression eXperiment, capable of accelerating and strongly bunching tens of nanoCoulombs of non-relativistic ions, for applications requiring nanosecond-scale pulses with short stopping ranges. As with the existing NDCX-I at Lawrence Berkeley National Laboratory (LBNL), the new machine is based on the technique of neutralized drift compression, whereby a head-to-tail velocity gradient is imparted to the beam, which then shortens as it drifts in a neutralizing plasma that suppresses space-charge forces. The figure shows the layout of the machine, to be sited at LBNL. It will make extensive use of induction cells and other parts from the decommissioned Advanced Test Accelerator (ATA) at Lawrence Livermore National Laboratory (LLNL). It will be extensible and reconfigurable; in the configuration that has received the most emphasis, each pulse will deliver 30-50 nC of Li+ ions at 3 MeV into a mm-scale spot onto a thin-foil target. Pulse compression to {approx} 1 ns begins in the accelerator and finishes in the drift compression line; the beam is manipulated using suitably tailored voltage waveforms in the accelerating gaps. NDCX-II employs novel beam dynamics. To use the 200 kV Blumlein pulsed power from ATA (blue cylinders in the figure), the pulse duration must first be reduced from an initial 500 ns to less than 70 ns. This shortening is accomplished in an initial stage of non-neutral drift compression, downstream of the injector and the first few induction cells (note the spaces between induction cells at the left end of the figure). The compression is rapid enough that fewer than ten long-pulse waveform generators are needed, with Blumleins powering the rest of the acceleration. Extensive particle-in-cell simulation studies have enabled an attractive physics design that meets the stringent cost goal. Snapshots from a simulation video are shown in the figure. Studies on a dedicated test stand are characterizing

  11. EFFECT OF LASER LIGHT ON LASER PLASMAS: Laser plasma at low air pressure

    NASA Astrophysics Data System (ADS)

    Vas'kovskiĭ, Yu M.; Moiseev, V. N.; Rovinskiĭ, R. E.; Tsenina, I. S.

    1993-01-01

    The dynamic and optical characteristics of the laser plasma produced during the application of a CO2 laser pulse to a target have been studied as a function of the ambient air pressure. The changes in the surface roughness of the sample after bombardment were studied as a function of the air pressure. It is concluded from the results that a transition from an air plasma to an erosion plasma occurs at a residual air pressure on the order of 1 torr. The experiment data support the existing picture of the process by which a plasma is produced near the surface of a target in air by laser pulses.

  12. Laser Plasma Coupling for High Temperature Hohlraums

    SciTech Connect

    Kruer, W.

    1999-11-04

    Simple scaling models indicate that quite high radiation temperatures can be achieved in hohlraums driven with the National Ignition Facility. A scaling estimate for the radiation temperature versus pulse duration for different size NIF hohlraums is shown in Figure 1. Note that a radiation temperature of about 650 ev is projected for a so-called scale 1 hohlraum (length 2.6mm, diameter 1.6mm). With such high temperature hohlraums, for example, opacity experiments could be carried out using more relevant high Z materials rather than low Z surrogates. These projections of high temperature hohlraums are uncertain, since the scaling model does not allow for the very strongly-driven laser plasma coupling physics. Lasnex calculations have been carried out to estimate the plasma and irradiation conditions in a scale 1 hohlraum driven by NIF. Linear instability gains as high as exp(100) have been found for stimulated Brillouin scattering, and other laser-driven instabilities are also far above their thresholds. More understanding of the very strongly-driven coupling physics is clearly needed in order to more realistically assess and improve the prospects for high temperature hohlraums. Not surprisingly, this regime has been avoided for inertial fusion applications and so is relatively unexplored.

  13. Laser-plasma interactions for fast ignition

    NASA Astrophysics Data System (ADS)

    Kemp, A. J.; Fiuza, F.; Debayle, A.; Johzaki, T.; Mori, W. B.; Patel, P. K.; Sentoku, Y.; Silva, L. O.

    2014-05-01

    In the electron-driven fast-ignition (FI) approach to inertial confinement fusion, petawatt laser pulses are required to generate MeV electrons that deposit several tens of kilojoules in the compressed core of an imploded DT shell. We review recent progress in the understanding of intense laser-plasma interactions (LPI) relevant to FI. Increases in computational and modelling capabilities, as well as algorithmic developments have led to enhancement in our ability to perform multi-dimensional particle-in-cell simulations of LPI at relevant scales. We discuss the physics of the interaction in terms of laser absorption fraction, the laser-generated electron spectra, divergence, and their temporal evolution. Scaling with irradiation conditions such as laser intensity are considered, as well as the dependence on plasma parameters. Different numerical modelling approaches and configurations are addressed, providing an overview of the modelling capabilities and limitations. In addition, we discuss the comparison of simulation results with experimental observables. In particular, we address the question of surrogacy of today's experiments for the full-scale FI problem.

  14. Frequency Domain Tomography Of Evolving Laser-Plasma Accelerator Structures

    SciTech Connect

    Dong Peng; Reed, Stephen; Kalmykov, Serguei; Shvets, Gennady; Downer, Mike

    2009-01-22

    Frequency Domain Holography (FDH), a technique for visualizing quasistatic objects propagating near the speed of light, has produced 'snapshots' of laser wakefields, but they are averaged over structural variations that occur during propagation through the plasma medium. Here we explore via simulations a generalization of FDH--that we call Frequency Domain Tomography (FDT)--that can potentially record a time sequence of quasistatic snapshots, like the frames of a movie, of the wake structure as it propagates through the plasma. FDT utilizes a several probe-reference pulse pairs that propagate obliquely to the drive pulse and wakefield, along with tomographic reconstruction algorithms similar to those used in medical CAT scans.

  15. Nonlinear laser energy depletion in laser-plasma accelerators

    SciTech Connect

    Shadwick, B.A.; Schroeder, C.B.; Esarey, E.

    2009-04-03

    Energy depletion of intense, short-pulse lasers via excitation of plasma waves is investigated numerically and analytically. The evolution of a resonant laser pulse proceeds in two phases. In the first phase, the pulse steepens, compresses, and frequency red-shifts as energy is deposited in the plasma. The second phase of evolution occurs after the pulse reaches a minimum length at which point the pulse rapidly lengthens, losing resonance with the plasma. Expressions for the rate of laser energy loss and rate of laser red-shifting are derived and are found to be in excellent agreement with the direct numerical solution of the laser field evolution coupled to the plasma response. Both processes are shown to have the same characteristic length-scale. In the high intensity limit, for nearly-resonant Gaussian laser pulses, this scale length is shown to be independent of laser intensity.

  16. NDCX-II project commencing at LBNL

    SciTech Connect

    Friedman, A; Kwan, J

    2009-10-22

    fusion ignition on the laboratory scale, and thus advance this approach to fusion energy. Heavy ion accelerators have a number of attributes (such as efficiency, longevity, and use of magnetic fields for final focusing) that make them attractive candidates as Inertial Fusion energy (IFE) drivers As with LBNL's existing NDCX-I, the new machine will produce short ion pulses using the technique of neutralized drift compression. A head-to-tail velocity gradient is imparted to the beam, which then shortens as it drifts in neutralizing plasma that suppresses space-charge forces. NDCX-II will make extensive use of induction cells and other hardware from the decommissioned ATA facility at LLNL. Figure (1) shows the layout of the facility, to be sited in LBNL's Building 58 alongside the existing NDCX-I apparatus. This second-generation facility represents a significant upgrade from the existing NDCX-I. It will be extensible and reconfigurable; in the configuration that has received the most emphasis, each NDCX-II pulse will deliver 30 nC of ions at 3 MeV into a mm-scale spot onto a thin-foil target. Pulse compression to {approx} 1 ns occurs in the accelerator as well as in the drift compression line; the beam is manipulated using suitably tailored voltage waveforms in the accelerating gaps. NDCX-II employs novel beam dynamics. To use the 200 kV Blumlein power supplies from ATA (blue cylinders in the figure), the pulse duration must first be reduced to less than 70 ns. This shortening is accomplished in an initial stage of non-neutral drift compression, downstream of the injector and the first few induction cells. The compression is sufficiently rapid that fewer than ten long-pulse waveform generators are needed, with Blumleins powering the rest of the acceleration. Extensive simulation studies have enabled an attractive physics design; these employ both a new 1-D code (ASP) and the VNL's workhorse 2-D/3-D code Warp. Snapshots from a simulation movie (available online) appear in

  17. Few-cycle optical probe-pulse for investigation of relativistic laser-plasma interactions

    SciTech Connect

    Schwab, M. B.; Sävert, A.; Polz, J.; Schnell, M.; Rinck, T.; Möller, M.; Hansinger, P.; Jäckel, O.; Paulus, G. G.; Kaluza, M. C.; Veisz, L.

    2013-11-04

    The development of a few-cycle optical probe-pulse for the investigation of laser-plasma interactions driven by a Ti:sapphire, 30 Terawatt (TW) laser system is described. The probe is seeded by a fraction of the driving laser's energy and is spectrally broadened via self-phase modulation in a hollow core fiber filled with a rare gas, then temporally compressed to a few optical cycles via chirped mirrors. Shadowgrams of the laser-driven plasma wave created in relativistic electron acceleration experiments are presented with few-fs temporal resolution, which is shown to be independent of post-interaction spectral filtering of the probe-beam.

  18. Enhancement of the maximum proton energy by funnel-geometry target in laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Yang, Peng; Fan, Dapeng; Li, Yuxiao

    2016-09-01

    Enhancement of the maximum proton energy using a funnel-geometry target is demonstrated through particle simulations of laser-plasma interactions. When an intense short-pulse laser illuminate a thin foil target, the foil electrons are pushed by the laser ponderomotive force, and then form an electron cloud at the target rear surface. The electron cloud generates a strong electrostatic field, which accelerates the protons to high energies. If there is a hole in the rear of target, the shape of the electron cloud and the distribution of the protons will be affected by the protuberant part of the hole. In this paper, a funnel-geometry target is proposed to improve the maximum proton energy. Using particle-in-cell 2-dimensional simulations, the transverse electric field generated by the side wall of four different holes are calculated, and protons inside holes are restricted to specific shapes by these field. In the funnel-geometry target, more protons are restricted near the center of the longitudinal accelerating electric field, thus protons experiencing longer accelerating time and distance in the sheath field compared with that in a traditional cylinder hole target. Accordingly, more and higher energy protons are produced from the funnel-geometry target. The maximum proton energy is improved by about 4 MeV compared with a traditional cylinder-shaped hole target. The funnel-geometry target serves as a new method to improve the maximum proton energy in laser-plasma interactions.

  19. Ramping Up the SNS Beam Power with the LBNL Baseline H- source

    SciTech Connect

    Stockli, Martin P; Han, Baoxi; Murray Jr, S N; Newland, Denny J; Pennisi, Terry R; Santana, Manuel; Welton, Robert F

    2009-01-01

    LBNL designed and built the Frontend for the Spallation Neutron Source, including its H- source and Low-Energy Beam Transport (LEBT). This paper discusses the performance of the H- source and LEBT during the commissioning of the accelerator, as well as their performance while ramping up the SNS beam power to 540 kW. Detailed discussions of major shortcomings and their mitigations are presented to illustrate the effort needed to take even a well-designed R&D ion source into operation. With these modifications, at 4% duty factor the LBNL H- source meets the essential requirements that were set at the beginning of the project.

  20. Nonlinear Laser-Plasma Interaction in Magnetized Liner Inertial Fusion

    DOE PAGESBeta

    Geissel, Matthias; Awe, Thomas James; Bliss, David E.; Campbell, Edward Michael; Gomez, Matthew R.; Harding, Eric; Harvey-Thompson, Adam James; Hansen, Stephanie B.; Jennings, Christopher Ashley; Kimmel, Mark W.; et al

    2016-03-04

    Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. Although magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Ultimately, nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. Wemore » determine and discuss key LPI processes and mitigation methods. Results with and without improvement measures are presented.« less

  1. Nonlinear laser-plasma interaction in magnetized liner inertial fusion

    NASA Astrophysics Data System (ADS)

    Geissel, Matthias; Awe, T. J.; Bliss, D. E.; Campbell, M. E.; Gomez, M. R.; Harding, E.; Harvey-Thompson, A. J.; Hansen, S. B.; Jennings, C.; Kimmel, M. W.; Knapp, P.; Lewis, S. M.; McBride, R. D.; Peterson, K.; Schollmeier, M.; Scoglietti, D. J.; Sefkow, A. B.; Shores, J. E.; Sinars, D. B.; Slutz, S. A.; Smith, I. C.; Speas, C. S.; Vesey, R. A.; Porter, J. L.

    2016-03-01

    Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. While magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. Key LPI processes are determined, and mitigation methods are discussed. Results with and without improvement measures are presented.

  2. An MPP hydrocode to study laser-plasma interactions

    SciTech Connect

    Berger, R L; Langdon, A B; Langer, S H; Still, C H; Suter, L J; Williams E A

    1998-10-01

    Because of the increased size and power inherent in a laser-AGEX on NIF, laser-plasma interactions (LPI) observed in NOVA AGEX play an increasingly important role. The process by which filamentation and stimulated backscatter grow is complex. Furthermore, there is a competition among the instabilities so that lessening one can increase another. Therefore, simulating them is an integral part to successful experiments on NIF. In this paper, we present a massively parallel hydrocode to simulate laser-plasma interactions in NIF-relevant AGEX regimes.

  3. Time-resolved absolute measurements by electro-optic effect of giant electromagnetic pulses due to laser-plasma interaction in nanosecond regime.

    PubMed

    Consoli, F; De Angelis, R; Duvillaret, L; Andreoli, P L; Cipriani, M; Cristofari, G; Di Giorgio, G; Ingenito, F; Verona, C

    2016-01-01

    We describe the first electro-optical absolute measurements of electromagnetic pulses (EMPs) generated by laser-plasma interaction in nanosecond regime. Laser intensities are inertial-confinement-fusion (ICF) relevant and wavelength is 1054 nm. These are the first direct EMP amplitude measurements with the detector rather close and in direct view of the plasma. A maximum field of 261 kV/m was measured, two orders of magnitude higher than previous measurements by conductive probes on nanosecond regime lasers with much higher energy. The analysis of measurements and of particle-in-cell simulations indicates that signals match the emission of charged particles detected in the same experiment, and suggests that anisotropic particle emission from target, X-ray photoionization and charge implantation on surfaces directly exposed to plasma, could be important EMP contributions. Significant information achieved on EMP features and sources is crucial for future plants of laser-plasma acceleration and inertial-confinement-fusion and for the use as effective plasma diagnostics. It also opens to remarkable applications of laser-plasma interaction as intense source of RF-microwaves for studies on materials and devices, EMP-radiation-hardening and electromagnetic compatibility. The demonstrated extreme effectivity of electric-fields detection in laser-plasma context by electro-optic effect, leads to great potential for characterization of laser-plasma interaction and generated Terahertz radiation. PMID:27301704

  4. Time-resolved absolute measurements by electro-optic effect of giant electromagnetic pulses due to laser-plasma interaction in nanosecond regime

    PubMed Central

    Consoli, F.; De Angelis, R.; Duvillaret, L.; Andreoli, P. L.; Cipriani, M.; Cristofari, G.; Di Giorgio, G.; Ingenito, F.; Verona, C.

    2016-01-01

    We describe the first electro-optical absolute measurements of electromagnetic pulses (EMPs) generated by laser-plasma interaction in nanosecond regime. Laser intensities are inertial-confinement-fusion (ICF) relevant and wavelength is 1054 nm. These are the first direct EMP amplitude measurements with the detector rather close and in direct view of the plasma. A maximum field of 261 kV/m was measured, two orders of magnitude higher than previous measurements by conductive probes on nanosecond regime lasers with much higher energy. The analysis of measurements and of particle-in-cell simulations indicates that signals match the emission of charged particles detected in the same experiment, and suggests that anisotropic particle emission from target, X-ray photoionization and charge implantation on surfaces directly exposed to plasma, could be important EMP contributions. Significant information achieved on EMP features and sources is crucial for future plants of laser-plasma acceleration and inertial-confinement-fusion and for the use as effective plasma diagnostics. It also opens to remarkable applications of laser-plasma interaction as intense source of RF-microwaves for studies on materials and devices, EMP-radiation-hardening and electromagnetic compatibility. The demonstrated extreme effectivity of electric-fields detection in laser-plasma context by electro-optic effect, leads to great potential for characterization of laser-plasma interaction and generated Terahertz radiation. PMID:27301704

  5. Time-resolved absolute measurements by electro-optic effect of giant electromagnetic pulses due to laser-plasma interaction in nanosecond regime

    NASA Astrophysics Data System (ADS)

    Consoli, F.; de Angelis, R.; Duvillaret, L.; Andreoli, P. L.; Cipriani, M.; Cristofari, G.; di Giorgio, G.; Ingenito, F.; Verona, C.

    2016-06-01

    We describe the first electro-optical absolute measurements of electromagnetic pulses (EMPs) generated by laser-plasma interaction in nanosecond regime. Laser intensities are inertial-confinement-fusion (ICF) relevant and wavelength is 1054 nm. These are the first direct EMP amplitude measurements with the detector rather close and in direct view of the plasma. A maximum field of 261 kV/m was measured, two orders of magnitude higher than previous measurements by conductive probes on nanosecond regime lasers with much higher energy. The analysis of measurements and of particle-in-cell simulations indicates that signals match the emission of charged particles detected in the same experiment, and suggests that anisotropic particle emission from target, X-ray photoionization and charge implantation on surfaces directly exposed to plasma, could be important EMP contributions. Significant information achieved on EMP features and sources is crucial for future plants of laser-plasma acceleration and inertial-confinement-fusion and for the use as effective plasma diagnostics. It also opens to remarkable applications of laser-plasma interaction as intense source of RF-microwaves for studies on materials and devices, EMP-radiation-hardening and electromagnetic compatibility. The demonstrated extreme effectivity of electric-fields detection in laser-plasma context by electro-optic effect, leads to great potential for characterization of laser-plasma interaction and generated Terahertz radiation.

  6. Design Studies for a High-Repetition-Rate FEL Facility at LBNL.

    SciTech Connect

    CORLETT, J.; BELKACEM, A.; BYRD, J. M.; FAWLEY, W.; KIRZ, J.; LIDIA, S.; MCCURDY, W.; PADMORE, H.; PENN, G.; POGORELOV, I.; QIANG, J.; ROBIN, D.; SANNIBALE, F.; SCHOENLEIN, R.; STAPLES, J.; STEIER, C.; VENTURINI, M.; WAN, W.; WILCOX, R.; ZHOLENTS, A.

    2007-10-04

    Lawrence Berkeley National Laboratory (LBNL) is working to address the needs of the primary scientific Grand Challenges now being considered by the U.S. Department of Energy, Office of Basic Energy Sciences: we are exploring scientific discovery opportunities, and new areas of science, to be unlocked with the use of advanced photon sources. A partnership of several divisions at LBNL is working to define the science and instruments needed in the future. To meet these needs, we propose a seeded, high-repetition-rate, free-electron laser (FEL) facility. Temporally and spatially coherent photon pulses, of controlled duration ranging from picosecond to sub-femtosecond, are within reach in the vacuum ultraviolet (VUV) to soft X-ray regime, and LBNL is developing critical accelerator physics and technologies toward this goal. We envision a facility with an array of FELs, each independently configurable and tunable, providing a range of photon-beam properties with high average and peak flux and brightness.

  7. Time-resolved measurements with streaked diffraction patterns from electrons generated in laser plasma wakefield

    NASA Astrophysics Data System (ADS)

    He, Zhaohan; Nees, John; Hou, Bixue; Krushelnick, Karl; Thomas, Alec; Beaurepaire, Benoît; Malka, Victor; Faure, Jérôme

    2013-10-01

    Femtosecond bunches of electrons with relativistic to ultra-relativistic energies can be robustly produced in laser plasma wakefield accelerators (LWFA). Scaling the electron energy down to sub-relativistic and MeV level using a millijoule laser system will make such electron source a promising candidate for ultrafast electron diffraction (UED) applications due to the intrinsic short bunch duration and perfect synchronization with the optical pump. Recent results of electron diffraction from a single crystal gold foil, using LWFA electrons driven by 8-mJ, 35-fs laser pulses at 500 Hz, will be presented. The accelerated electrons were collimated with a solenoid magnetic lens. By applying a small-angle tilt to the magnetic lens, the diffraction pattern can be streaked such that the temporal evolution is separated spatially on the detector screen after propagation. The observable time window and achievable temporal resolution are studied in pump-probe measurements of photo-induced heating on the gold foil.

  8. Stability of liquid-nitrogen-jet laser-plasma targets

    NASA Astrophysics Data System (ADS)

    Fogelqvist, E.; Kördel, M.; Selin, M.; Hertz, H. M.

    2015-11-01

    Microscopic jets of cryogenic substances such as liquid nitrogen are important regenerative high-density targets for high-repetition rate, high-brightness laser-plasma soft x-ray sources. When operated in vacuum such liquid jets exhibit several non-classical instabilities that negatively influence the x-ray source's spatial and temporal stability, yield, and brightness, parameters that all are important for applications such as water-window microscopy. In the present paper, we investigate liquid-nitrogen jets with a flash-illumination imaging system that allows for a quantitative stability analysis with high spatial and temporal resolution. Direct and indirect consequences of evaporation are identified as the key reasons for the observed instabilities. Operating the jets in an approximately 100 mbar ambient atmosphere counteracts the effects of evaporation and produces highly stable liquid nitrogen jets. For operation in vacuum, which is necessary for the laser plasmas, we improve the stability by introducing an external radiative heating element. The method significantly extends the distance from the nozzle that can be used for liquid-jet laser plasmas, which is of importance for high-average-power applications. Finally, we show that laser-plasma operation with the heating-element-stabilized jet shows improved short-term and long-term temporal stability in its water-window x-ray emission.

  9. Stability of liquid-nitrogen-jet laser-plasma targets

    SciTech Connect

    Fogelqvist, E. Kördel, M.; Selin, M.; Hertz, H. M.

    2015-11-07

    Microscopic jets of cryogenic substances such as liquid nitrogen are important regenerative high-density targets for high-repetition rate, high-brightness laser-plasma soft x-ray sources. When operated in vacuum such liquid jets exhibit several non-classical instabilities that negatively influence the x-ray source's spatial and temporal stability, yield, and brightness, parameters that all are important for applications such as water-window microscopy. In the present paper, we investigate liquid-nitrogen jets with a flash-illumination imaging system that allows for a quantitative stability analysis with high spatial and temporal resolution. Direct and indirect consequences of evaporation are identified as the key reasons for the observed instabilities. Operating the jets in an approximately 100 mbar ambient atmosphere counteracts the effects of evaporation and produces highly stable liquid nitrogen jets. For operation in vacuum, which is necessary for the laser plasmas, we improve the stability by introducing an external radiative heating element. The method significantly extends the distance from the nozzle that can be used for liquid-jet laser plasmas, which is of importance for high-average-power applications. Finally, we show that laser-plasma operation with the heating-element-stabilized jet shows improved short-term and long-term temporal stability in its water-window x-ray emission.

  10. A Next Generation Light Source Facility at LBNL

    SciTech Connect

    Corlett, J.N.; Austin, B.; Baptiste, K.M.; Byrd, J.M.; Denes, P.; Donahue, R.; Doolittle, L.; Falcone, R.W.; Filippetto, D.; Fournier, S.; Li, D.; Padmore, H.A.; Papadopoulos, C.; Pappas, C.; Penn, G.; Placidi, M.; Prestemon, S.; Prosnitz, D.; Qiang, J.; Ratti, A.; Reinsch, M.; Sannibale, F.; Schlueter, R.; Schoenlein, R.W.; Staples, J.W.; Vecchione, T.; Venturini, M.; Wells, R.; Wilcox, R.; Wurtele, J.; Charman, A.; Kur, E.; Zholents, A.A.

    2011-03-23

    The Next Generation Light Source (NGLS) is a design concept, under development at LBNL, for a multibeamline soft x-ray FEL array powered by a ~;;2 GeV superconducting linear accelerator, operating with a 1 MHz bunch repetition rate. The CW superconducting linear accelerator is supplied by a high-brightness, highrepetition- rate photocathode electron gun. Electron bunches are distributed from the linac to the array of independently configurable FEL beamlines with nominal bunch rates up to 100 kHz in each FEL, and with even pulse spacing. Individual FELs may be configured for EEHG, HGHG, SASE, or oscillator mode of operation, and will produce high peak and average brightness x-rays with a flexible pulse format, with pulse durations ranging from sub-femtoseconds to hundreds of femtoseconds.

  11. Weak collisionless shocks in laser-plasmas

    NASA Astrophysics Data System (ADS)

    Cairns, R. A.; Bingham, R.; Trines, R. G. M.; Norreys, P.

    2015-04-01

    We obtain a theory describing laminar shock-like structures in a collisionless plasma and examine the parameter limits, in terms of the ion sound Mach number and the electron/ion temperature ratio, within which these structures exist. The essential feature is the inclusion of finite ion temperature with the result that some ions are reflected from a potential ramp. This destroys the symmetry between upstream and downstream regions that would otherwise give the well-known ion solitary wave solution. We have shown earlier (Cairns et al 2014 Phys. Plasmas 21 022112) that such structures may be relevant to problems such as the existence of strong, localized electric fields observed in laser compressed pellets and laser acceleration of ions. Here we present results on the way in which these structures may produce species separation in fusion targets and suggest that it may be possible to use shock ion acceleration for fast ignition.

  12. Effects of CSR Generated from Upstream Bends in a Laser Plasma Storage Ring

    SciTech Connect

    Mitchell, C.; Qiang, J.; Venturini, M.

    2013-08-28

    The recent proposal [1] of a Laser Plasma Storage Ring (LPSR) envisions the use of a laser-plasma (LP) acceleration module to inject an electron beam into a compact 500 MeV storage ring. Electron bunches generated by LP methods are naturally very short (tens of femtoseconds), presenting peak currents on the order of 10 kA or higher. Of obvious concern is the impact of collective effects and in particular Coherent Synchrotron Radiation (CSR) on the beam dynamics in the storage ring. Available simulation codes (e.g. Elegant [2]) usually include transient CSR effects but neglect the contribution of radiation emitted from trailing magnets. In a compact storage ring, with dipole magnets close to each other, cross talking between different magnets could in principle be important.In this note we investigate this effect for the proposed LPSR and show that, in fact, this effect is relatively small. However our analysis also indicates that CSR effects in general would be quite strong and deserve a a careful study.

  13. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions.

    PubMed

    Mangles, S P D; Murphy, C D; Najmudin, Z; Thomas, A G R; Collier, J L; Dangor, A E; Divall, E J; Foster, P S; Gallacher, J G; Hooker, C J; Jaroszynski, D A; Langley, A J; Mori, W B; Norreys, P A; Tsung, F S; Viskup, R; Walton, B R; Krushelnick, K

    2004-09-30

    High-power lasers that fit into a university-scale laboratory can now reach focused intensities of more than 10(19) W cm(-2) at high repetition rates. Such lasers are capable of producing beams of energetic electrons, protons and gamma-rays. Relativistic electrons are generated through the breaking of large-amplitude relativistic plasma waves created in the wake of the laser pulse as it propagates through a plasma, or through a direct interaction between the laser field and the electrons in the plasma. However, the electron beams produced from previous laser-plasma experiments have a large energy spread, limiting their use for potential applications. Here we report high-resolution energy measurements of the electron beams produced from intense laser-plasma interactions, showing that--under particular plasma conditions--it is possible to generate beams of relativistic electrons with low divergence and a small energy spread (less than three per cent). The monoenergetic features were observed in the electron energy spectrum for plasma densities just above a threshold required for breaking of the plasma wave. These features were observed consistently in the electron spectrum, although the energy of the beam was observed to vary from shot to shot. If the issue of energy reproducibility can be addressed, it should be possible to generate ultrashort monoenergetic electron bunches of tunable energy, holding great promise for the future development of 'table-top' particle accelerators. PMID:15457251

  14. A retrospective on the LBNL PEM project

    SciTech Connect

    Huber, J.S.; Moses, W.W.; Wang, G.C.; Derenzo, S.E.; Huesman,R.H.; Qi, J.; Virador, P.; Choong, W.S.; Mandelli, E.; Beuville, E.; Pedrali-Noy, M.; Krieger, B.; Meddeler, G.

    2004-11-15

    We present a retrospective on the LBNL Positron EmissionMammography (PEM) project, looking back on our design and experiences.The LBNL PEM camera utilizes detector modules that are capable ofmeasuring depth of interaction (DOI) and places them into 4 detectorbanks in a rectangular geometry. In order to build this camera, we had todevelop the DOI detector module, LSO etching, Lumirror-epoxy reflectorfor the LSO array (to achieve optimal DOI), photodiode array, custom IC,rigid-flex readout board, packaging, DOI calibration and reconstructionalgorithms for the rectangular camera geometry. We will discuss thehighlights (good and bad) of these developments.

  15. A retrospective on the LBNL PEM project.

    PubMed

    Huber, Jennifer S; Moses, William W; Wang, Gin-Chung; Derenzo, Stephen E; Huesman, Ronald H; Qi, Jinyi; Virador, Patrick; Choong, Woon-Seng; Mandelli, Emanuele; Beuville, Eric; Pedrali-Noy, Marzio; Krieger, Brad; Meddeler, Gerrit J

    2006-01-01

    We present a retrospective on the LBNL Positron Emission Mammography (PEM) project, looking back on our design and experiences. The LBNL PEM camera utilizes detector modules that are capable of measuring depth of interaction (DOI) and places them into 4 detector banks in a rectangular geometry. In order to build this camera, we had to develop the DOI detector module, LSO etching, Lumirror-epoxy reflector for the LSO array (to achieve optimal DOI), photodiode array, custom IC, rigid-flex readout board, packaging, DOI calibration and reconstruction algorithms for the rectangular camera geometry. We will discuss the high-lights (good and bad) of these developments. PMID:17645996

  16. Freestanding film structures for laser plasma experiments

    SciTech Connect

    Klyuenkov, E B; Lopatin, A Ya; Luchin, V I; Salashchenko, Nikolai N; Tsybin, N N

    2013-04-30

    The technique is developed for fabricating 5-500-nm-thick freestanding films of various materials and multilayer compositions. Apart from the traditional use in spectral filtration of soft X-ray and extreme ultraviolet radiation, the possibility of using the ultrathin films fabricated by this technique as targets in experiments on laser acceleration of ions is considered. A sample of the target in the form of a 5-nm-thick carbon film on a supporting net is fabricated. (extreme light fields and their applications)

  17. Microengineering Laser Plasma Interactions at Relativistic Intensities.

    PubMed

    Jiang, S; Ji, L L; Audesirk, H; George, K M; Snyder, J; Krygier, A; Poole, P; Willis, C; Daskalova, R; Chowdhury, E; Lewis, N S; Schumacher, D W; Pukhov, A; Freeman, R R; Akli, K U

    2016-02-26

    We report on the first successful proof-of-principle experiment to manipulate laser-matter interactions on microscales using highly ordered Si microwire arrays. The interaction of a high-contrast short-pulse laser with a flat target via periodic Si microwires yields a substantial enhancement in both the total and cutoff energies of the produced electron beam. The self-generated electric and magnetic fields behave as an electromagnetic lens that confines and guides electrons between the microwires as they acquire relativistic energies via direct laser acceleration. PMID:26967419

  18. Microengineering Laser Plasma Interactions at Relativistic Intensities

    NASA Astrophysics Data System (ADS)

    Jiang, S.; Ji, L. L.; Audesirk, H.; George, K. M.; Snyder, J.; Krygier, A.; Poole, P.; Willis, C.; Daskalova, R.; Chowdhury, E.; Lewis, N. S.; Schumacher, D. W.; Pukhov, A.; Freeman, R. R.; Akli, K. U.

    2016-02-01

    We report on the first successful proof-of-principle experiment to manipulate laser-matter interactions on microscales using highly ordered Si microwire arrays. The interaction of a high-contrast short-pulse laser with a flat target via periodic Si microwires yields a substantial enhancement in both the total and cutoff energies of the produced electron beam. The self-generated electric and magnetic fields behave as an electromagnetic lens that confines and guides electrons between the microwires as they acquire relativistic energies via direct laser acceleration.

  19. Current new applications of laser plasmas

    SciTech Connect

    Hauer, A.A.; Forslund, D.W.; McKinstrie, C.J.; Wark, J.S.; Hargis, P.J. Jr.; Hamil, R.A.; Kindel, J.M.

    1988-09-01

    This report describes several new applications of laser-produced plasmas that have arisen in the last few years. Most of the applications have been an outgrowth of the active research in laser/matter interaction inspired by the pursuit of laser fusion. Unusual characteristics of high-intensity laser/matter interaction, such as intense x-ray and particle emission, were noticed early in the field and are now being employed in a significant variety of applications outside the fusion filed. Applications range from biology to materials science to pulsed-power control and particle accelerators. 92 refs., 23 figs., 4 tabs.

  20. [Research on cells ablation characters by laser plasma].

    PubMed

    Han, Jing-hua; Zhang, Xin-gang; Cai, Xiao-tang; Duan, Tao; Feng, Guo-ying; Yang, Li-ming; Zhang, Ya-jun; Wang, Shao-peng; Li, Shi-wen

    2012-08-01

    The study on the mechanism of laser ablated cells is of importance to laser surgery and killing harmful cells. Three radiation modes were researched on the ablation characteristics of onion epidermal cells under: laser direct irradiation, focused irradiation and the laser plasma radiation. Based on the thermodynamic properties of the laser irradiation, the cell temperature rise and phase change have been analyzed. The experiments show that the cells damage under direct irradiation is not obvious at all, but the focused irradiation can cause cells to split and moisture removal. The removal shape is circular with larger area and rough fracture edges. The theoretical analysis found out that the laser plasma effects play a key role in the laser ablation. The thermal effects, radiation ionization and shock waves can increase the deposition of laser pulses energy and impact peeling of the cells, which will greatly increase the scope and efficiency of cell killing and is suitable for the cell destruction. PMID:23156745

  1. Light-curing polymers for laser plasma generation

    NASA Astrophysics Data System (ADS)

    Loktionov, E. Y.; Protasov, Y. S.; Protasov, Y. Y.; Telekh, V. D.

    2015-07-01

    Solid rather than liquid media are used in pulsed laser plasma generators despite sophisticated transportation and dosing system need for a long-term operation. Liquid media could be more preferable due to transfer and dosing (down to 10-14 L) being well developed, but plasma generation of those results in intense droplet formation and kinetic energy losses. Combination of liquids transportation advantages and solids plasma generation efficiency might resolve this trade-off. Liquid-to-solid transition can be induced by cooling down to sublimation temperature, thermo-, photo- or electron induced polymerization (curing). Light cured polymers seem to be very useful as active media for plasma generators, since they can be solidified very fast (ca. 30 ms) just before impact. We considered experimentally several UV- curing polymer and mixtures ablation regimes and supply schemes for laser plasma generation. The best results were obtained for liquid polymer at high-power pulsed irradiation matching curing optimum wavelength.

  2. High Magnetic field generation for laser-plasma experiments

    SciTech Connect

    Pollock, B B; Froula, D H; Davis, P F; Ross, J S; Fulkerson, S; Bower, J; Satariano, J; Price, D; Glenzer, S H

    2006-05-01

    An electromagnetic solenoid was developed to study the effect of magnetic fields on electron thermal transport in laser plasmas. The solenoid, which is driven by a pulsed power system suppling 30 kJ, achieves magnetic fields of 13 T. The field strength was measured on the solenoid axis with a magnetic probe and optical Zeeman splitting. The measurements agree well with analytical estimates. A method for optimizing the solenoid design to achieve magnetic fields exceeding 20 T is presented.

  3. Laser-plasma interactions with a Fourier-Bessel particle-in-cell method

    NASA Astrophysics Data System (ADS)

    Andriyash, Igor A.; Lehe, Remi; Lifschitz, Agustin

    2016-03-01

    A new spectral particle-in-cell (PIC) method for plasma modeling is presented and discussed. In the proposed scheme, the Fourier-Bessel transform is used to translate the Maxwell equations to the quasi-cylindrical spectral domain. In this domain, the equations are solved analytically in time, and the spatial derivatives are approximated with high accuracy. In contrast to the finite-difference time domain (FDTD) methods, that are used commonly in PIC, the developed method does not produce numerical dispersion and does not involve grid staggering for the electric and magnetic fields. These features are especially valuable in modeling the wakefield acceleration of particles in plasmas. The proposed algorithm is implemented in the code PLARES-PIC, and the test simulations of laser plasma interactions are compared to the ones done with the quasi-cylindrical FDTD PIC code CALDER-CIRC.

  4. Ionization dynamics in the laser plasma in a low pressure gas target

    NASA Astrophysics Data System (ADS)

    Demidov, R. A.; Kalmykov, S. G.; Mozharov, A. M.; Petrenko, M. V.; Sasin, M. E.

    2012-11-01

    In Xe-laser-plasma short-wave-radiation sources, the laser-energy-to-EUV conversion efficiency (CE) turns out to be substantially lower than theoretical expectations. An estimation made in the present work is evidence of what a long period of the primary ionization, lasting up to a moment when high- Z ions appear to emit short-wave photons, can be considered as a main cause for the low CE values. During that period the plasma remains low-ionized and absorbs weakly the laser energy. Data deduced from laser light absorption measurements confirm the estimation above. A preionization of the gas target with the UV excimer laser pulse is proposed as a method to accelerate the ionization process.

  5. Generation of thin, near critical density gas targets for laser plasma interaction experiments

    NASA Astrophysics Data System (ADS)

    Salehi, Fatholah; Goers, Andy; Hine, George; Feder, Linus; Miao, Bo; Milchberg, Howard

    2015-11-01

    We present the design and characterization of a thin (200µm FWHM), high density pulsed gas jet which we use to study near critical and overcritical laser plasma interactions. We show that cryogenic cooling of the pulsed jet provides the necessary density enhancement for reaching overcritical plasma densities at 800 nm (> 1 . 7 × >102 1 cm-3) with pure hydrogen gas at plenum pressures below 1000 psi. Further, we present 2D and 3D PIC simulations showing the interaction of femtosecond pulses with our experimentally measured near critical gas density profile. The simulations show electron and ion acceleration at drive pulse energies as low as a few tens of millijoules. This work supported by DTRA and the US Department of Energy.

  6. A compact tunable polarized X-ray source based on laser-plasma helical undulators

    PubMed Central

    Luo, J.; Chen, M.; Zeng, M.; Vieira, J.; Yu, L. L.; Weng, S. M.; Silva, L. O.; Jaroszynski, D. A.; Sheng, Z. M.; Zhang, J.

    2016-01-01

    Laser wakefield accelerators have great potential as the basis for next generation compact radiation sources because of their extremely high accelerating gradients. However, X-ray radiation from such devices still lacks tunability, especially of the intensity and polarization distributions. Here we propose a tunable polarized radiation source based on a helical plasma undulator in a plasma channel guided wakefield accelerator. When a laser pulse is initially incident with a skew angle relative to the channel axis, the laser and accelerated electrons experience collective spiral motions, which leads to elliptically polarized synchrotron-like radiation with flexible tunability on radiation intensity, spectra and polarization. We demonstrate that a radiation source with millimeter size and peak brilliance of 2 × 1019 photons/s/mm2/mrad2/0.1% bandwidth can be made with moderate laser and electron beam parameters. This brilliance is comparable with third generation synchrotron radiation facilities running at similar photon energies, suggesting that laser plasma based radiation sources are promising for advanced applications. PMID:27377126

  7. A compact tunable polarized X-ray source based on laser-plasma helical undulators.

    PubMed

    Luo, J; Chen, M; Zeng, M; Vieira, J; Yu, L L; Weng, S M; Silva, L O; Jaroszynski, D A; Sheng, Z M; Zhang, J

    2016-01-01

    Laser wakefield accelerators have great potential as the basis for next generation compact radiation sources because of their extremely high accelerating gradients. However, X-ray radiation from such devices still lacks tunability, especially of the intensity and polarization distributions. Here we propose a tunable polarized radiation source based on a helical plasma undulator in a plasma channel guided wakefield accelerator. When a laser pulse is initially incident with a skew angle relative to the channel axis, the laser and accelerated electrons experience collective spiral motions, which leads to elliptically polarized synchrotron-like radiation with flexible tunability on radiation intensity, spectra and polarization. We demonstrate that a radiation source with millimeter size and peak brilliance of 2 × 10(19) photons/s/mm(2)/mrad(2)/0.1% bandwidth can be made with moderate laser and electron beam parameters. This brilliance is comparable with third generation synchrotron radiation facilities running at similar photon energies, suggesting that laser plasma based radiation sources are promising for advanced applications. PMID:27377126

  8. Development of Laser Plasma X-ray Microbeam Irradiation System and Radiation Biological Application

    NASA Astrophysics Data System (ADS)

    Sato, Katsutoshi; Nishikino, Masaharu; Numasaki, Hodaka; Kawachi, Tetsuya; Teshima, Teruki; Nishimura, Hiroaki

    Laser plasma x-ray source has the features such as ultra short pulse, high brilliance, monochromaticity, and focusing ability. These features are excellent compared with conventional x-ray source. In order to apply the laser plasma x-ray source to the biomedical study and to more closely research the radiobilogical responce of the cancer cell such as radiation induced bystander effect, we have developed x-ray microbeam system using laser plasma x-ray source. The absorbed dose of laser plasma x-ray was estimated with Gafchromic EBT film and DNA double strand breaks on the cells were detected by immunofluorescence staining. When the cells were irradiated with laser plasma x-ray, the circular regions existing γ-H2AX positive cells were clearly identified. The usefulness of the laser plasma x-ray on the radiobiological study was proved in this research.

  9. Atomic mass dependent electrostatic diagnostics of colliding laser plasma plumes

    SciTech Connect

    Yeates, P.; Fallon, C.; Kennedy, E. T.; Costello, J. T.; School of Physical Sciences, Dublin City University , Dublin 7

    2013-09-15

    The behaviours of colliding laser plasma plumes (C{sub p}) compared with single plasma plumes (S{sub p}) are investigated for 14 different atomic mass targets. A Faraday cup, situated at the end of a drift tube (L = 0.99 m), is employed to record the time-of-flight (TOF) current traces for all elements and both plume configurations, for a fixed laser intensity of I{sub p} = 4.2 × 10{sup 10} W cm{sup −2} (F = 0.25 kJ cm{sup −2}). The ratio of the peak current from the C{sub p} relative to twice that from the S{sub p} is designated as the peak current ratio while the ratio of the integrated charge yield from the C{sub p} relative to twice that from the S{sub p} is designated as the charge yield ratio. Variation of the position of the Faraday cup within the drift tube (L = 0.33, 0.55, and 0.99 m) in conjunction with a lower laser fluence (F = 0.14 kJ cm{sup −2}) facilitated direct comparison of the changing TOF traces from both plasma configurations for the five lightest elements studied (C, Al, Si, Ti, and Mn). The results are discussed in the frame of laser plasma hydrodynamic modelling to approximate the critical recombination distance L{sub CR}. The dynamics of colliding laser plasma plumes and the atomic mass dependence trends observed are presented and discussed.

  10. PIC Simulation of Laser Plasma Interactions with Temporal Bandwidths

    NASA Astrophysics Data System (ADS)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2015-11-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temperal bandwidths under conditions relevant to current and future shock ignition experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth, the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using smoothing techniques such as SSD or ISI). We will show that temporal bandwidth along play an important role in the control of LPI's in these lasers and discuss future directions. This work is conducted under the auspices of NRL.

  11. QED effects and radiation generation in relativistic laser plasma

    NASA Astrophysics Data System (ADS)

    Kostyukov, I. Yu.; Nerush, E. N.; Bashmakov, V. F.

    2011-06-01

    The radiative and quantum effects in laser plasmas are discussed. The self-consistent numerical model based on particle-in-cell and Monte-Carlo methods are developed. First we analyze the spectra of Compton backscattered photons and betatron radiation in the classical and quantum regimes. Then we address an interaction between intense laser pulse and relativistic electron beam. Finally we discuss the electron-positron pair plasma production in extremely-intense laser field. It is shown that such plasma can be an efficient source of energetic gammaquanta.

  12. Erosion resistant nozzles for laser plasma extreme ultraviolet (EUV) sources

    DOEpatents

    Kubiak, Glenn D.; Bernardez, II, Luis J.

    2000-01-04

    A gas nozzle having an increased resistance to erosion from energetic plasma particles generated by laser plasma sources. By reducing the area of the plasma-facing portion of the nozzle below a critical dimension and fabricating the nozzle from a material that has a high EUV transmission as well as a low sputtering coefficient such as Be, C, or Si, it has been shown that a significant reduction in reflectance loss of nearby optical components can be achieved even after exposing the nozzle to at least 10.sup.7 Xe plasma pulses.

  13. Improving the Capabilities of a Continuum Laser Plasma Interaction Code

    SciTech Connect

    Hittinger, J F; Dorr, M R

    2006-06-15

    The numerical simulation of plasmas is a critical tool for inertial confinement fusion (ICF). We have been working to improve the predictive capability of a continuum laser plasma interaction code pF3d, which couples a continuum hydrodynamic model of an unmagnetized plasma to paraxial wave equations modeling the laser light. Advanced numerical techniques such as local mesh refinement, multigrid, and multifluid Godunov methods have been adapted and applied to nonlinear heat conduction and to multifluid plasma models. We describe these algorithms and briefly demonstrate their capabilities.

  14. Supersonic gas jets for laser-plasma experiments

    NASA Astrophysics Data System (ADS)

    Schmid, K.; Veisz, L.

    2012-05-01

    We present an in-depth analysis of De Laval nozzles, which are ideal for gas jet generation in a wide variety of experiments. Scaling behavior of parameters especially relevant to laser-plasma experiments as jet collimation, sharpness of the jet edges and Mach number of the resulting jet is studied and several scaling laws are given. Special attention is paid to the problem of the generation of microscopic supersonic jets with diameters as small as 150 μm. In this regime, boundary layers dominate the flow formation and have to be included in the analysis.

  15. Development of a Multi-GeV spectrometer for laser-plasma experiment at FLAME

    NASA Astrophysics Data System (ADS)

    Valente, P.; Anelli, F.; Bacci, A.; Batani, D.; Bellaveglia, M.; Benocci, R.; Benedetti, C.; Cacciotti, L.; Cecchetti, C. A.; Clozza, A.; Cultrera, L.; Di Pirro, G.; Drenska, N.; Faccini, R.; Ferrario, M.; Filippetto, D.; Fioravanti, S.; Gallo, A.; Gamucci, A.; Gatti, G.; Ghigo, A.; Giulietti, A.; Giulietti, D.; Gizzi, L. A.; Koester, P.; Labate, L.; Levato, T.; Lollo, V.; Londrillo, P.; Martellotti, S.; Pace, E.; Pathak, N.; Rossi, A.; Tani, F.; Serafini, L.; Turchetti, G.; Vaccarezza, C.

    2011-10-01

    The advance in laser-plasma acceleration techniques pushes the regime of the resulting accelerated particles to higher energies and intensities. In particular, the upcoming experiments with the 250 TW laser at the FLAME facility of the INFN Laboratori Nazionali di Frascati, will enter the GeV regime with more than 100 pC of electrons. At the current status of understanding of the acceleration mechanism, relatively large angular and energy spreads are expected. There is therefore the need for developing a device capable to measure the energy of electrons over three orders of magnitude (few MeV to few GeV), with still unknown angular divergences. Within the PlasmonX experiment at FLAME, a spectrometer is being constructed to perform these measurements. It is made of an electro-magnet and a screen made of scintillating fibers for the measurement of the trajectories of the particles. The large range of operation, the huge number of particles and the need to focus the divergence, present challenges in the design and construction of such a device. We present the design considerations for this spectrometer that lead to the use of scintillating fibers, multichannel photo-multipliers and a multiplexing electronics, a combination which is innovative in the field. We also present the experimental results obtained with a high intensity electron beam performed on a prototype at the LNF beam test facility.

  16. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. BEVATRON SHIELDING - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  17. Measurements of laser-plasma instability relevant to ignition hohlraums

    SciTech Connect

    Fernandez, J.C.; Bauer, B.S.; Cobble, J.A.; DuBois, D.F.; Kyrala, G.A.; Montgomery, D.S.; Rose, H.A.; Vu, H.X.; Watt, R.G.; Wilde, B.H.; Wilke, M.D.; Wood, W.M.; Failor, B.H.; Kirkwood, R.; MacGowan, B.J.

    1997-05-01

    The potential for laser-plasma instability is a serious concern for indirect-drive inertial confinement fusion (ICF), where laser beams illuminate the interior of a cavity (called a hohlraum) to produce x-rays for imploding a fusion capsule symmetrically. The speckled nature of laser beams used in ICF is an important factor in laser-plasma instability processes. For example, models which calculate the spatial growth of convective instability by properly accounting for the laser speckles successfully predict the observed onsets of backscattering due to stimulated Brillouin and Raman scattering instabilities (SBS and SRS). Assuming pump depletion as the only saturation mechanism in these models results in very large predicted levels of SBS and SRS backscattering from the long-scale plasmas expected in ignition hohlraums. However, in the long-scale plasmas studied in the Nova and Trident lasers [E. M. Campbell, Rev. Sci. Instrum. {bold 57}, 2101 (1986) and N. K. Moncur {ital et al.}, Appl. Opt. {bold 34}, 4274 (1995)], SRS and SBS are observed to saturate much below the levels expected from pump depletion. While the mechanism of SBS saturation is not understood at present, the observations of SRS saturation are qualitatively understood. {copyright} {ital 1997 American Institute of Physics.}

  18. Laser plasma interaction in rugby-shaped hohlraums

    NASA Astrophysics Data System (ADS)

    Masson-Laborde, P.-E.; Philippe, F.; Tassin, V.; Monteil, M.-C.; Gauthier, P.; Casner, A.; Depierreux, S.; Seytor, P.; Teychenne, D.; Loiseau, P.; Freymerie, P.

    2014-10-01

    Rugby shaped-hohlraum has proven to give high performance compared to a classical similar-diameter cylinder hohlraum. Due to this performance, this hohlraum has been chosen as baseline ignition target for the Laser MegaJoule (LMJ). Many experiments have therefore been performed during the last years on the Omega laser facility in order to study in details the rugby hohlraum. In this talk, we will discuss the interpretation of these experiments from the point of view of the laser plasma instability problem. Experimental comparisons have been done between rugby, cylinder and elliptical shape rugby hohlraums and we will discuss how the geometry differences will affect the evolution of laser plasma instabilities (LPI). The efficiency of laser smoothing techniques on these instabilities will also be discussed as well as gas filling effect. The experimental results will be compared with FCI2 hydroradiative calculations and linear postprocessing with Piranah. Experimental Raman and Brillouin spectrum, from which we can infer the location of the parametric instabilities, will be compared to simulated ones, and will give the possibility to compare LPI between the different hohlraum geometries.

  19. Micromachining of polydimethylsiloxane induced by laser plasma EUV light

    NASA Astrophysics Data System (ADS)

    Torii, S.; Makimura, T.; Okazaki, K.; Nakamura, D.; Takahashi, A.; Okada, T.; Niino, H.; Murakami, K.

    2011-06-01

    Polydimethylsiloxane (PDMS) is fundamental materials in the field of biotechnology. Because of its biocompatibility, microfabricated PDMS sheets are applied to micro-reactors and microchips for cell culture. Conventionally, the microstructures were fabricated by means of cast or imprint using molds, however it is difficult to fabricate the structures at high aspect ratios such as through-holes/vertical channels. The fabrication of the high-aspect structures would enable us to stack sheets to realize 3D fluidic circuits. In order to achieve the micromachining, direct photo-ablation by short wavelength light is promising. In the previous works, we investigated ablation of transparent materials such as silica glass and poly(methyl methacrylate) induced by irradiation with laser plasma EUV light. We achieved smooth and fine nanomachining. In this work, we applied our technique to PDMS micromachining. We condensed the EUV light onto PDMS surfaces at high power density up to 108 W/cm2 using a Au coated ellipsoidal mirror. We found that PDMS sheet was ablated at a rate up to 440 nm/shot. It should be emphasized that through hole with a diameter of 1 μm was fabricated in a PDMS sheet with a thickness of 4 μm. Thus we demonstrated the micromachining of PDMS sheets using laser plasma EUV light.

  20. Ramping Up the SNS Beam Power with the LBNL Baseline H{sup -} Source

    SciTech Connect

    Stockli, Martin P.; Han, B. X.; Murray, S. N.; Newland, D.; Pennisi, T. R.; Santana, M.; Welton, R. F.

    2009-03-12

    LBNL designed and built the Frontend for the Spallation Neutron Source, including its H{sup -} source and Low-Energy Beam Transport (LEBT). This paper discusses the performance of the H{sup -} source and LEBT during the commissioning of the accelerator, as well as their performance while ramping up the SNS beam power to 540 kW. Detailed discussions of major shortcomings and their mitigations are presented to illustrate the effort needed to take even a well-designed R and D ion source into operation. With these modifications, at 4% duty factor the LBNL H{sup -} source meets the essential requirements that were set at the beginning of the project.

  1. Optical Probing of CO2 Laser-Plasma Interactions at Near Critical Density

    NASA Astrophysics Data System (ADS)

    Gong, Chao

    The interaction of a high-power laser beam with plasma has been explored extensively in the context of laser-driven fusion, plasma-based acceleration of ions and electrons and high energy-density physics. One of the fundamental processes common to all these studies is the penetration of intense light into a dense matter through the hole boring effect and self-induced transparency. Light with a given wavelength lambda will be reflected once the electron density equals the critical electron plasma density nc = 1.1x 1021cm -3 /[lambda(mum)]2. The radiation pressure exerted on the critical density layer is characterized by the ponderomotive force of a focused laser pulse which scales with a laser intensity, I as Ilambda2 Wmum2/cm 2. At Ilambda2 ˜1017 Wmum2/cm2 and above, it becomes possible for the laser pulse not only to steepen the plasma profile but to push the overcritical plasma with ne > nc creating a cavity or a hole in the target. The phenomenon of hole boring, whereby a laser pulse propagates through a reduced density cavity to reach and push the critical density layer, is of importance in fast-ignition fusion because it may allow the laser pulse to deliver its energy closer to the compressed fuel where it can be converted into fast electrons that are needed to ignite a small portion of the fuel. The layer of plasma pushed by the radiation pressure can reflect and accelerate ions via the so called Hole Boring Radiation Pressure Acceleration mechanism. Also the density pile- up in combination with the strong electron heating at the critical density layer can facilitate the formation of a collisionless shock. This shock wave acceleration can produce high energy ion beams with a narrow energy spread. Numerous experiments have been carried out to study dynamics of laser plasma interaction indirectly using solid state targets that are opaque for 1?m laser. However, by using a longer wavelength CO2 laser, lambda = 10.6mum, the critical plasma density is decreased

  2. DUSEL-related Science at LBNL -- Program and Opportunities

    SciTech Connect

    Bauer, Christian; Detweiler, Jason; Freedman, Stuart; Gilchriese, Murdock; Kadel, Richard; Koch, Volker; Kolomensky, Yury; Lesko, Kevin; von der Lippe, Henrik; Marks, Steve; Nomura, Yasunori; Plate, David; Roe, Natalie; Sichtermann, Ernst; Ligeti, Zoltan

    2009-08-01

    neutrinoless double beta decay searches. The Nuclear Physics Long Range Plan strongly endorses DUSEL and the associated nuclear physics programs. It mentions, in particular, neutrinoless double beta decay, and accelerator-based nuclear astrophysics measurements as key elements of the DUSEL nuclear physics experimental program. There are numerous fundamental scientific questions that experiments which can naturally be sited at DUSEL can address. LBNL has a long tradition and track record of successful experiments in all of these areas: neutrino physics, dark matter searches, and nuclear astrophysics. Clearly, DUSEL presents many scientific opportunities, and the committee was charged to present a roadmap for LBNL participation, the impact that LBNL is likely to have on experiments at the present level of effort, the value of additional manpower, and opportunities for synergistic Detector R&D activities. The Berkeley community is already deeply involved in a number of experiments and/or proposals, shown in Table 1, that will be relevant to science at DUSEL. The approximate time lines for all projects considered in this report are shown in Table 2. For the DUSEL-related experiments the depth at which they would be located is also shown. Section 2 of this report deals with nuclear astrophysics. Section 3 discusses neutrinoless double beta decays. Section 4 focuses on neutrino oscillations, including the search for CP violation and proton decay. Section 5 deals with dark matter searches. In each section we give a brief overview of that field, review the present Berkeley efforts, and discuss the opportunities going into the future. Section 6 contains our recommendations.

  3. Laser-plasma interactions relevant to Inertial Confinement Fusion

    SciTech Connect

    Wharton, K.B.

    1998-11-02

    Research into laser-driven inertial confinement fusion is now entering a critical juncture with the construction of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). Many of the remaining unanswered questions concerning NIF involve interactions between lasers and plasmas. With the eventual goal of fusion power in mind, laser-plasma interactions relevant to laser fusion schemes is an important topic in need of further research. This work experimentally addresses some potential shortcuts and pitfalls on the road to laser-driven fusion power. Current plans on NIF have 192 laser beams directed into a small cylindrical cavity which will contain the fusion fuel; to accomplish this the beams must cross in the entrance holes, and this intersection will be in the presence of outward-flowing plasma. To investigate the physics involved, interactions of crossing laser beams in flowing plasmas are investigated with experiments on the Nova laser facility at LLNL. It was found that in a flowing plasma, energy is transferred between two crossing laser beams, and this may have deleterious consequences for energy balance and ignition in NIF. Possible solutions to this problem are presented. A recently-proposed alternative to standard laser-driven fusion, the ''fast ignitor'' concept, is also experimentally addressed in this dissertation. Many of the laser-plasma interactions necessary for the success of the fast ignitor have not previously been explored at the relevant laser intensities. Specifically, the transfer of high-intensity laser energy to electrons at solid-target interfaces is addressed. 20-30% conversion efficiencies into forward-propagated electrons were measured, along with an average electron energy that varied with the type of target material. The directionality of the electrons was also measured, revealing an apparent beaming of the highest energy electrons. This work was extended to various intensities and pulse lengths and a

  4. A multi-beam, multi-terawatt Ti:sapphire laser system for laser wake-field acceleration studies

    SciTech Connect

    Toth, Cs.; Geddes, C.G.R.; Tilborg, J. van; Leemans, W.P.

    2004-12-07

    The Lasers, Optical Accelerator Systems Integrated Studies (L'OASIS) Lab of LBNL operates a highly automated and remotely controlled Ti:sapphire chirped pulse amplification (CPA) laser system that provides synchronized beams of 2x1.0 TW, 12 TW, and 100 TW peak-power, in a unique, radiation shielded facility. The system has been specially designed for studying high field laser-plasma interactions and particularly aimed for the investigations of laser wake-field particle acceleration. It generates and recombines multiple beams having different pulse durations, wavelengths, and pulse energies for various stages of plasma preparation, excitation, and diagnostics. The amplifier system is characterized and continuously monitored via local area network (LAN) from a radiation shielded control room by an array of diagnostics, including beam profile monitoring cameras, remote controlled alignment options, self-correcting beam-pointing stabilization loops, pulse measurement tools, such as single-shot autocorrelator for pulse duration and third-order correlator for contrast measurements, FROG for pulse shape studies.

  5. XUV radiation from gaseous nitrogen and argon target laser plasmas

    NASA Astrophysics Data System (ADS)

    Vrba, P.; Vrbová, M.; Brůža, P.; Pánek, D.; Krejčí, F.; Kroupa, M.; Jakůbek, J.

    2012-06-01

    Laser plasma created in gaseous target is studied as a source of radiation in the "water window" wavelength range. Plasma is created by focusing an 800 mJ/7 ns Nd:YAG laser pulse into the gas-puff target. Using nitrogen gas results in emission of an intense quasi-monochromatic radiation with the wavelength 2.88 nm, corresponding to the quantum transition 1s2p → 1s2 of helium -like nitrogen ion. The emission spectrum with argon target covers all the water window range. Laboratory and computer experiments have been performed for both target gases. The spatial distributions of emitted energy in the water window spectral range were compared. The total emitted energy with argon was one order higher than with nitrogen.

  6. Optical spectroscopy of laser plasma in a deep crater

    SciTech Connect

    Kononenko, Taras V; Konov, Vitalii I; Walter, D; Dausinger, F

    2009-04-30

    The time dynamics of plasma-emission spectra is studied experimentally at different stages of the drilling of a steel plate by 100-fs and 5-ps laser pulses: from a shallow crater to a hole. The change in the time dependence of the plasma temperature caused by variations in the irradiated surface geometry is analysed. It is found that the time interval needed to reach a particular temperature (about 8000 K) drastically increases from 40-50 to 150-200 ns when a specific crater depth is achieved. The opposite tendency is observed as the crater depth grows further and a hole is produced. Strong self-absorption in a plasma plume inside a deep crater is experimentally confirmed which results in the appearance of line absorption against a continuous emission spectrum. (interaction of laser radiation with matter. laser plasma)

  7. Laser-plasma-interaction experiments using multikilojoule lasers

    SciTech Connect

    Drake, R.P.

    1987-07-01

    This paper summarizes the results of several laser-plasma-interaction experiments using multikilojoule lasers, and considers their implications for laser fusion. The experiments used 1.06, 0.53, 0.35, and 0.26 ..mu..m light to produce relatively large, warm, planar plasmas and to study the effect of laser wavelength and density-gradient scale length on the Stimulated Raman Scattering and on the scattering of light at frequencies near the incident laser frequency by Stimulated Brillouin Scattering or other processes. The results of these experiments suggest that some laser wavelength between 0.2 and 0.6 ..mu..m will be required for high-gain laser fusion.

  8. Simulating NIF laser-plasma interaction with multiple SRS frequencies

    SciTech Connect

    Still, C H; Hinkel, D E; Langdon, A B; Palastro, J P; Williams, E A

    2009-10-05

    Understanding the energetics of a NIF ignition hohlraum is important to achieving ignition. Laser-plasma interactions (LPI) can reduce the radiation drive if backscatter occurs, and can also affect the hohlraum energetics by modifying the laser beam energy deposition which in turn can alter the implosion symmetry. The addition of a second SRS frequency to the modeling code pF3d can capture physics which would otherwise have been omitted. In the case of a wide or bi-modal SRS spectrum, this physics can be important. We discuss the modifications to the pF3d computational model, and exhibit its effect in a NIF ignition-relevant LPI simulation.

  9. Trends in laser-plasma-instability experiments for laser fusion

    SciTech Connect

    Drake, R.P. Lawrence Livermore National Lab., CA )

    1991-06-06

    Laser-plasma instability experiments for laser fusion have followed three developments. These are advances in the technology and design of experiments, advances in diagnostics, and evolution of the design of high-gain targets. This paper traces the history of these three topics and discusses their present state. Today one is substantially able to produce controlled plasma conditions and to diagnose specific instabilities within such plasmas. Experiments today address issues that will matter for future laser facilities. Such facilities will irradiate targets with {approx}1 MJ of visible or UV light pulses that are tens of nanoseconds in duration, very likely with a high degree of spatial and temporal incoherence. 58 refs., 4 figs.

  10. Progress in Long Scale Length Laser-Plasma Interactions

    SciTech Connect

    Glenzer, S H; Arnold, P; Bardsley, G; Berger, R L; Bonanno, G; Borger, T; Bower, D E; Bowers, M; Bryant, R; Buckman, S; Burkhart, S C; Campbell, K; Chrisp, M P; Cohen, B I; Constantin, G; Cooper, F; Cox, J; Dewald, E; Divol, L; Dixit, S; Duncan, J; Eder, D; Edwards, J; Erbert, G; Felker, B; Fornes, J; Frieders, G; Froula, D H; Gardner, S D; Gates, C; Gonzalez, M; Grace, S; Gregori, G; Greenwood, A; Griffith, R; Hall, T; Hammel, B A; Haynam, C; Heestand, G; Henesian, M; Hermes, G; Hinkel, D; Holder, J; Holdner, F; Holtmeier, G; Hsing, W; Huber, S; James, T; Johnson, S; Jones, O S; Kalantar, D; Kamperschroer, J H; Kauffman, R; Kelleher, T; Knight, J; Kirkwood, R K; Kruer, W L; Labiak, W; Landen, O L; Langdon, A B; Langer, S; Latray, D; Lee, A; Lee, F D; Lund, D; MacGowan, B; Marshall, S; McBride, J; McCarville, T; McGrew, L; Mackinnon, A J; Mahavandi, S; Manes, K; Marshall, C; Mertens, E; Meezan, N; Miller, G; Montelongo, S; Moody, J D; Moses, E; Munro, D; Murray, J; Neumann, J; Newton, M; Ng, E; Niemann, C; Nikitin, A; Opsahl, P; Padilla, E; Parham, T; Parrish, G; Petty, C; Polk, M; Powell, C; Reinbachs, I; Rekow, V; Rinnert, R; Riordan, B; Rhodes, M

    2003-11-11

    The first experiments on the National Ignition Facility (NIF) have employed the first four beams to measure propagation and laser backscattering losses in large ignition-size plasmas. Gas-filled targets between 2 mm and 7 mm length have been heated from one side by overlapping the focal spots of the four beams from one quad operated at 351 nm (3{omega}) with a total intensity of 2 x 10{sup 15} W cm{sup -2}. The targets were filled with 1 atm of CO{sub 2} producing of up to 7 mm long homogeneously heated plasmas with densities of n{sub e} = 6 x 10{sup 20} cm{sup -3} and temperatures of T{sub e} = 2 keV. The high energy in a NIF quad of beams of 16kJ, illuminating the target from one direction, creates unique conditions for the study of laser plasma interactions at scale lengths not previously accessible. The propagation through the large-scale plasma was measured with a gated x-ray imager that was filtered for 3.5 keV x rays. These data indicate that the beams interact with the full length of this ignition-scale plasma during the last {approx}1 ns of the experiment. During that time, the full aperture measurements of the stimulated Brillouin scattering and stimulated Raman scattering show scattering into the four focusing lenses of 6% for the smallest length ({approx}2 mm). increasing to 12% for {approx}7 mm. These results demonstrate the NIF experimental capabilities and further provide a benchmark for three-dimensional modeling of the laser-plasma interactions at ignition-size scale lengths.

  11. Annual Scientific Report for DE-FG03-02NA00063 Coherent imaging of laser-plasma interactions using XUV high harmonic radiation

    SciTech Connect

    Prof. Henry C. Kapteyn

    2005-05-03

    In this project, we use coherent short-wavelength light generated using high-order harmonic generation as a probe of laser-plasma dynamics and phase transitions on femtosecond time-scales. The interaction of ultrashort laser pulses with materials and plasmas is relevant to stockpile stewardship, to understanding the equation of state of matter at high pressures and temperatures, and to plasma concepts such as the fast-ignitor ICF fusion concept and laser-based particle acceleration. Femtosecond laser technology makes it possible to use a small-scale setup to generate 20fs pulses with average power >10W at multiple kHz repetition rates, that can be focused to intensities in excess of 1017W/cm2. These lasers can be used either to rapidly heat materials to initiate phase transitions, or to create laser plasmas over a wide parameter space. These lasers can also be used to generate fully spatially coherent XUV beams with which to probe these materials and plasma systems. We are in process of implementing imaging studies of plasma hydrodynamics and warm, dense matter. The data will be compared with simulation codes of laser-plasma interactions, making it possible to refine and validate these codes.

  12. FY2014 LBNL LDRD Annual Report

    SciTech Connect

    Ho, Darren

    2015-06-01

    Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE’s National Laboratory System, Berkeley Lab supports DOE’s missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation. The LDRD program supports Berkeley Lab’s mission in many ways. First, because LDRD funds can be allocated within a relatively short time frame, Berkeley Lab researchers can support the mission of the Department of Energy (DOE) and serve the needs of the nation by quickly responding to forefront scientific problems. Second, LDRD enables Berkeley Lab to attract and retain highly qualified scientists and to support their efforts to carry out worldleading research. In addition, the LDRD program also supports new projects that involve graduate students and postdoctoral fellows, thus contributing to the education mission of Berkeley Lab.

  13. Laser plasma interaction experiments in the context of inertial fusion

    NASA Astrophysics Data System (ADS)

    Labaune, C.; Bandulet, H.; Depierreux, S.; Lewis, K.; Michel, P.; Michard, A.; Baldis, H. A.; Hulin, S.; Pesme, D.; Hüller, S.; Tikhonchuk, V.; Riconda, C.; Weber, S.

    2004-12-01

    In laser fusion, the coupling and the propagation of the laser beams in the plasma surrounding the pellet must be well controlled for to succeed in producing a high energy level. To achieve thermonuclear ignition and high gain, the coupling efficiency must be as high as possible, the uniformity of the energy deposition must be very good and the fast electron generation must be minimized. This implies a deep understanding of the laser plasma interaction mechanisms to keep the nonlinear processes at a low level. Important advances in laser plasma interaction physics have been achieved thanks to the converging efforts of the experimental and theoretical approaches. Among the different studies of the last few years, we will report results on three themes which are important for future fusion experiments. The first concerns the ability of plasmas to induce temporal and spatial incoherence to the laser beams during their propagation. Beam smoothing, beam spraying and increased incoherence may in turn reduce the level of backscattering instabilities. In laser fusion, multiple beams are used to irradiate the target. The effect of the overlap of the laser beams on parametric instabilities may complicate the problem. Not only is there the interplay between instabilities driven by one beam, but also the interplay between instabilities driven by different beams. In the Laboratoire pour l'Utilisation des Lasers Intenses (LULI) experiment, although the overall stimulated Brillouin scattering (SBS) reflectivity was reduced, a well-defined resonance of the amplitude of ion acoustic waves (IAWs) associated with SBS has been observed for waves propagating along the bisecting direction between two laser beams. Energy transfer between two identical laser beams has been observed and correlated with plasma induced incoherence. The nonlinear saturation of stimulated scattering instabilities is a fundamental ingredient of the understanding of the observed and future reflectivity levels

  14. Specular reflectivity and hot-electron generation in high-contrast relativistic laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Kemp, Gregory Elijah

    laser-plasma interactions. Spatial, temporal and spectral properties of the incident and specular pulses, both near and far away from the interaction region where experimental measurements are obtained, are used to benchmark simulations designed to infer dominant hot-electron acceleration mechanisms and their corresponding energy/angular distributions. To handle this highly coupled interaction, I employed particle-in-cell modeling using a wide variety of algorithms (verified to be numerically stable and consistent with analytic expressions) and physical models (validated by experimental results) to reasonably model the interaction's sweeping range of plasma densities, temporal and spatial scales, electromagnetic wave propagation and its interaction with solid density matter. Due to the fluctuations in the experimental conditions and limited computational resources, only a limited number of full-scale simulations were performed under typical experimental conditions to infer the relevant physical phenomena in the interactions. I show the usefulness of the often overlooked specular reflectivity measurements in constraining both high and low-contrast simulations, as well as limitations of their experimental interpretations. Using these experimental measurements to reasonably constrain the simulation results, I discuss the sensitivity of relativistic electron generation in ultra-intense laser plasma interactions to initial target conditions and the dynamic evolution of the interaction region.

  15. Improving sensitivity of laser-induced breakdown spectroscopy using laser plasmas interaction

    NASA Astrophysics Data System (ADS)

    Il'in, Alexey A.; Golik, Sergey S.; Nagorny, Ivan G.; Bulanov, Alexey V.

    2006-11-01

    Laser plasmas interaction and spectral characteristics of plasma were investigated at a laser breakdown in a normal atmosphere with the purpose of improving laser-induced breakdown spectroscopy sensitivity. Colliding plasmas interaction was investigated depending on mechanism of absorption wave of laser radiation and distance between foci. Laser supported detonation wave, breakdown wave and fast wave of ionization are absorption wave observed in experiment. It was shown that seed electrons for cascade breakdown in front of fast wave of ionization is occurred due to oxygen molecules photoionization. Molecular emission and collapse of intensity of plasma continuum during the initial moments of laser plasma expansion were registered. The line/continuum ratio was essentially increased in case of laser plasmas interaction. Thus laser plasmas interaction improves sensitivity of LIBS.

  16. Numerical Simulation of Plasma Behavior in a Magnetic Nozzle of a Laser-plasma Driven Nuclear Electric Propulsion System

    NASA Astrophysics Data System (ADS)

    Kajimura, Y.; Matsuda, N.; Hayashida, K.; Maeno, A.; Nakashima, H.

    2008-12-01

    Numerical simulations of plasma behavior in a magnetic nozzle of a Laser-Plasma Driven Nuclear Electric Propulsion System are conducted. The propellant is heated and accelerated by the laser and expanded isotropically. The magnetic nozzle is a combination of solenoidal coils and used to collimate and guide the plasma to produce thrust. Simulation calculations by a three-dimensional hybrid code are conducted to examine the plasma behaviors in the nozzle and to estimate the thrust efficiency. We also estimate a fraction (α) of plasma particles leaking in the forward (spacecraft) direction. By a combination of a few coils, we could decrease α value without degrading the thrust efficiency. Finally, the shaped propellant is proposed to increase the thrust efficiency.

  17. Numerical Simulation of Plasma Behavior in a Magnetic Nozzle of a Laser-plasma Driven Nuclear Electric Propulsion System

    SciTech Connect

    Kajimura, Y.; Matsuda, N.; Hayashida, K.; Maeno, A.; Nakashima, H.

    2008-12-31

    Numerical simulations of plasma behavior in a magnetic nozzle of a Laser-Plasma Driven Nuclear Electric Propulsion System are conducted. The propellant is heated and accelerated by the laser and expanded isotropically. The magnetic nozzle is a combination of solenoidal coils and used to collimate and guide the plasma to produce thrust. Simulation calculations by a three-dimensional hybrid code are conducted to examine the plasma behaviors in the nozzle and to estimate the thrust efficiency. We also estimate a fraction ({alpha}) of plasma particles leaking in the forward (spacecraft) direction. By a combination of a few coils, we could decrease {alpha} value without degrading the thrust efficiency. Finally, the shaped propellant is proposed to increase the thrust efficiency.

  18. 44. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. May 4, 1949. PERSPECTIVE DRAWING, BIRD'S-EYE VIEW - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  19. 38. Photocopy of engineering drawing (LBNL Archives and Records Collection). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. Photocopy of engineering drawing (LBNL Archives and Records Collection). December 10, 1948. 1 BEVATRON EXTERIOR PRELIMINARY PERSPECTIVE-BIRD'S-EYE VIEW - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  20. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-047). March 2005. AREA OF MAGNET REMOVAL, NORTHEAST QUADRANT, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  1. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. WALL AND WINDOW OVERLOOKING MAGNET ROOM, SECOND STORY OFFICE-AND-SHOPS SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  2. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. SIDE OF MAGNET OF BEAMLINE EXITING SHIELDING, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  3. 10. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. November 11, 1950. BEV-336. MAGNET CORE SHOWING FOUNDATION AND SUPPORTS. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  4. 5. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. August 25, 1950. BEV-307. BEVATRON MAGNET FOUNDATION. B-51 - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  5. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. END OF BEAMLINE LEAVING SHIELDING, MAGNET COILS IN EPOXY, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  6. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. FLOOR AND CEILING OF MAGNET ROOM, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  7. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. BEVATRON IN CENTER OF MAGNET ROOM - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  8. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. MAGNET OF BEAMLINE, EXITING SHIELDING, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  9. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-158). March 2005. CONNECTION OF MAGNET ROOM CRANE TO OUTER TRACK, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  10. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. ENTRANCE TO STAIRWAY TO TUNNEL UNDER MAIN FLOOR OF MAGNET ROOM, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  11. 7. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. November 29, 1950. BEV-360. GENERAL VIEW, MAGNET ROOM, LOOKING SOUTHWEST. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  12. 12. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. February 5, 1954. BEV-681. GENERATOR ROOM FOR BEVATRON MAGNET. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  13. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-006). March 2005. JACKBOLTS BETWEEN MAGNET AND MAGNET FOUNDATION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  14. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-015). March 2005. INTERIOR WALL OF MAGNET INSIDE CENTER OF BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  15. 6. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. October 31, 1950. BEV-331. MAGNET ROOM. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  16. 13. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. April 4, 1957. BEV-128. PROGRESS--MAGNET REPAIR. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  17. 24. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Photocopy of photograph (original print located in LBNL Photo Lab Collection). George Kagawa, Photographer. B-51. November 6, 1961. BEV-2497 ION GUN II, EMERY ZAJEC - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  18. 23. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. March 26, 1953. BEV-551. OVERALL VIEW OF ION GUN. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  19. 18. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. January 12, 1950. BEV-195. ION GUN INJECTOR. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  20. 30. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. October 6, 1955. BEV-943. ANTI-PROTON EXPERIMENT. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  1. 2. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. November 22, 1963. BEV-3469 EXTERNAL BEAM EXPERIMENT DIAGRAM. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  2. 3. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. November 22, 1963. BEV-3470 INTERNAL BEAM EXPERIMENT DIAGRAM. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  3. 40. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. March, 1949. BEV 4903-00020. GRADING-SITE WORK FOR BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  4. 39. Photocopy of engineering drawing (LBNL Archives and Records Collection). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. Photocopy of engineering drawing (LBNL Archives and Records Collection). December 10, 1948. 2 BEVATRON EXTERIOR PRELIMINARY PERSPECTIVE - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  5. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. STUB OF BEAMLINE EXITING SHIELDING, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  6. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. ROOF BLOCKS, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  7. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. STAIRWAY FROM MAIN FLOOR OF 51A TO SECOND FLOOR EXTERIOR EXIT, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  8. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-066). March 2005. LOCAL INJECTOR, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  9. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. PUMP MOUNTS, FAN ROOM, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  10. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. GENERATOR MOTORS OPPOSITE SWITCHGEAR RACKS, MECHANIC SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  11. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-108). March 2005. FAN ROOM WITH STAIR TO FILTER BANKS, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  12. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-143). March 2005. BUILDING 51A, EXTERIOR WALL, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  13. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-005). March 2005. PASSAGEWAY UNDER SOUTHEAST QUADRANT, AIR DUCT OPENINGS, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  14. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. GENERATOR ROOM, MECHANICAL SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  15. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-107). March 2005. NORTH FAN, FAN ROOM, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  16. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. REMNANTS OF HYDRAULIC FIXTURES, FAN ROOM, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  17. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-082). June 2005. CEILING AND CRANE OF BUILDING 51A, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  18. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. SWITCHGEAR, MECHANICAL SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  19. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. SWITCHGEAR AND POWER GENERATOR MOTORS, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  20. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-106). March 2005. SOUTH FAN, FAN ROOM, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  1. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. CENTRAL SUPPORT COLUMN EXTENDING THROUGH CRANES AND ROOF SUPPORT TRUSS, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  2. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-052). March 2005. LOCAL INJECTOR, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  3. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. STAIRWAY FROM MAIN FLOOR TO SECOND FLOOR OF MECHANICAL WINE, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  4. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. SWITCHGEAR AND POWER GENERATOR MOTORS, MECHANICAL SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  5. 8. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. July 2, 1953. BEV-574. QUADRANT POLE TIP INSTALLATION. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  6. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-087). March 2005. GENERATOR PIT AREA, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  7. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-110). March 2005. SOUTH FAN FROM MEZZANINE, FAN ROOM, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  8. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. CABLE RACEWAYS, CATWALK, AND WINDOWS OF OFFICE-AND-SHOPS SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  9. 16. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. December 29, 1953. BEV-654. INJECTOR, INJECTOR TANK-WIDE ANGLE; MARIO CAROTTA. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  10. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-054). March 2005. LOCAL INJECTOR ENTERING SHIELDING, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  11. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-004). March 2005. ENTRY TO IGLOO, ILLUSTRATING THICKNESS OF IGLOO WALL, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  12. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-077). March 2005. STUB OF SUPERHILAC BEAM, ENTERING SHIELDING, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  13. 17. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. October 20, 1958. BEV-1654. OVERALL VIEW WITH PROTON INJECTOR. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  14. 15. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Photocopy of photograph (original print located in LBNL Photo Lab Collection). George Kagawa, Photographer. November 22, 1963. BEV-3468. INJECTION SYSTEM DIAGRAM. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  15. 51. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. April 22, 1950. BEV-248. INTERIOR OF BEVATRON BUILDING. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  16. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection XBD200503-00117-089). March 2005. GENERATOR PIT AREA, CONCRETE FOUNDATION FOR EQUIPMENT MOUNTS, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  17. 41. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. August 29, 1949. BEV-101. BEVATRON AREA LOOKING SOUTHEAST. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  18. 27. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. August 18, 1958. Bubble Chamber 605. BUBBLE CHAMBER ASSEMBLY - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  19. 57. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. December 29, 1953. BEV-657. WEST TANK OPEN, CLOSE-UP. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  20. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-043). March 2005. MOUSE AT EAST TANGENT, PLUNGING MECHANISM, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  1. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-027). March 2005. MOUSE AT EAST TANGENT, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  2. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-026). March 2005. MOUSE AT EAST TANGENT, LOOKING TOWARD EAST TANGENT, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  3. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-012). March 2005. PASSAGEWAY UNDER QUADRANT AND DIFFUSION PUMPS, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  4. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-050). March 2005. DIFFUSION PUMPS UNDER WEST TANGENT, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  5. 37. Photocopy of engineering drawing (original drawing located in LBNL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. Photocopy of engineering drawing (original drawing located in LBNL Building 90F Architecture and Engineering As-Built Collection). May, 1986. UNIVERSITY OF CALIFORNIA TOPOGRAPHIC MAP - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  6. 9. Photocopy of engineering drawing (original drawing located in LBNL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photocopy of engineering drawing (original drawing located in LBNL Building 90F Architecture and Engineering As-Built Collection). July, 1960. 4BOOQ002. QUADRANT MAP - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  7. Laser plasma instability experiments with KrF lasersa)

    NASA Astrophysics Data System (ADS)

    Weaver, J. L.; Oh, J.; Afeyan, B.; Phillips, L.; Seely, J.; Feldman, U.; Brown, C.; Karasik, M.; Serlin, V.; Aglitskiy, Y.; Mostovych, A. N.; Holland, G.; Obenschain, S.; Chan, L.-Y.; Kehne, D.; Lehmberg, R. H.; Schmitt, A. J.; Colombant, D.; Velikovich, A.

    2007-05-01

    Deleterious effects of laser-plasma instability (LPI) may limit the maximum laser irradiation that can be used for inertial confinement fusion. The short wavelength (248nm), large bandwidth, and very uniform illumination available with krypton-fluoride (KrF) lasers should increase the maximum usable intensity by suppressing LPI. The concomitant increase in ablation pressure would allow implosion of low-aspect-ratio pellets to ignition with substantial gain (>20) at much reduced laser energy. The proposed KrF-laser-based Fusion Test Facility (FTF) would exploit this strategy to achieve significant fusion power (150MW) with a rep-rate system that has a per pulse laser energy well below 1 MJ. Measurements of LPI using the Nike KrF laser are presented at and above intensities needed for the FTF (I˜2×1015W/cm2). The results to date indicate that LPI is indeed suppressed. With overlapped beam intensity above the planar, single beam intensity threshold for the two-plasmon decay instability, no evidence of instability was observed via measurements of 3/2ωo and 1/2ωo harmonic emissions.

  8. Discrete Variational Approach for Modeling Laser-Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Reyes, J. Paxon; Shadwick, B. A.

    2014-10-01

    The traditional approach for fluid models of laser-plasma interactions begins by approximating fields and derivatives on a grid in space and time, leading to difference equations that are manipulated to create a time-advance algorithm. In contrast, by introducing the spatial discretization at the level of the action, the resulting Euler-Lagrange equations have particular differencing approximations that will exactly satisfy discrete versions of the relevant conservation laws. For example, applying a spatial discretization in the Lagrangian density leads to continuous-time, discrete-space equations and exact energy conservation regardless of the spatial grid resolution. We compare the results of two discrete variational methods using the variational principles from Chen and Sudan and Brizard. Since the fluid system conserves energy and momentum, the relative errors in these conserved quantities are well-motivated physically as figures of merit for a particular method. This work was supported by the U. S. Department of Energy under Contract No. DE-SC0008382 and by the National Science Foundation under Contract No. PHY-1104683.

  9. CMOS monolithic pixel sensors research and development at LBNL

    NASA Astrophysics Data System (ADS)

    Contarato, D.; Bussat, J.-M.; Denes, P.; Greiner, L.; Kim, T.; Stezelberger, T.; Wieman, H.; Battaglia, M.; Hooberman, B.; Tompkins, L.

    2007-12-01

    This paper summarizes the recent progress in the design and characterization of CMOS pixel sensors at LBNL. Results of lab tests, beam tests and radiation hardness tests carried out at LBNL on a test structure with pixels of various sizes are reported. The first results of the characterization of back-thinned CMOS pixel sensors are also reported, and future plans and activities are discussed.

  10. LDRD Final Report: Adaptive Methods for Laser Plasma Simulation

    SciTech Connect

    Dorr, M R; Garaizar, F X; Hittinger, J A

    2003-01-29

    The goal of this project was to investigate the utility of parallel adaptive mesh refinement (AMR) in the simulation of laser plasma interaction (LPI). The scope of work included the development of new numerical methods and parallel implementation strategies. The primary deliverables were (1) parallel adaptive algorithms to solve a system of equations combining plasma fluid and light propagation models, (2) a research code implementing these algorithms, and (3) an analysis of the performance of parallel AMR on LPI problems. The project accomplished these objectives. New algorithms were developed for the solution of a system of equations describing LPI. These algorithms were implemented in a new research code named ALPS (Adaptive Laser Plasma Simulator) that was used to test the effectiveness of the AMR algorithms on the Laboratory's large-scale computer platforms. The details of the algorithm and the results of the numerical tests were documented in an article published in the Journal of Computational Physics [2]. A principal conclusion of this investigation is that AMR is most effective for LPI systems that are ''hydrodynamically large'', i.e., problems requiring the simulation of a large plasma volume relative to the volume occupied by the laser light. Since the plasma-only regions require less resolution than the laser light, AMR enables the use of efficient meshes for such problems. In contrast, AMR is less effective for, say, a single highly filamented beam propagating through a phase plate, since the resulting speckle pattern may be too dense to adequately separate scales with a locally refined mesh. Ultimately, the gain to be expected from the use of AMR is highly problem-dependent. One class of problems investigated in this project involved a pair of laser beams crossing in a plasma flow. Under certain conditions, energy can be transferred from one beam to the other via a resonant interaction with an ion acoustic wave in the crossing region. AMR provides an

  11. Laser wakefield accelerator based light sources: potential applications and requirements

    SciTech Connect

    Albert, F.; Thomas, A. G.; Mangles, S. P.D.; Banerjee, S.; Corde, S.; Flacco, A.; Litos, M.; Neely, D.; Viera, J.; Najmudin, Z.; Bingham, R.; Joshi, C.; Katsouleas, T.

    2015-01-15

    In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, X-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser-plasma based light sources. We discuss ongoing and future efforts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefield accelerators for these specific applications.

  12. Simulation of laser-plasma interaction experiments with gas-filled hohlraums on the LIL facility

    NASA Astrophysics Data System (ADS)

    Loiseau, P.; Masson-Laborde, P.-E.; Teychenné, D.; Monteil, M.-C.; Casanova, M.; Marion, D.; Tran, G.; Huser, G.; Rousseaux, C.; Hüller, S.; Héron, A.; Pesme, D.

    2016-03-01

    Laser-plasma interaction is a major issue for achieving ignition in inertial confinement fusion schemes, and still a major concern for the upcoming french laser mégajoule (LMJ) program. In order to mitigate the deleterious effects due to laser-plasma instabilities (LPI), clearly evidenced during the recent US National Ignition Campaign conducted on the National Ignition Facility, we use the LIL facility as a demonstrator for LPI studies. In this article, we focus on preliminary results regarding the propagation of a typical LMJ quadruplet through gas-filled hohlraums. Results on hohlraum energetics will then be discussed.

  13. High-average-power water window soft X-rays from an Ar laser plasma

    NASA Astrophysics Data System (ADS)

    Amano, Sho

    2016-07-01

    A high average power of 140 mW and high conversion efficiency of 14% were demonstrated in “water window” soft X-rays generated using a laser plasma source developed in-house, when a solid Ar target was irradiated by a commercial Nd:YAG Q-switched laser with an energy of 1 J at a repetition rate of 1 Hz. This soft X-ray power compared favorably with that produced using a synchrotron radiation source, and the developed laser plasma source can be used in various applications, such as soft X-ray microscopy, in place of synchrotron facilities.

  14. Laser plasma influence on the space-time structure of powerful laser radiation

    NASA Astrophysics Data System (ADS)

    Ananyin, O. B.; Bogdanov, G. S.; Vovchenko, E. D.; Gerasimov, I. A.; Kuznetsov, A. P.; Melekhov, A. P.

    2016-01-01

    This paper deals with the influence of laser plasma on the structure of the radiation field of a powerful Nd-glass laser with pulse energy up to 30 J and with the diameter of the output beam 45 mm. Laser plasma is generated by focusing the laser radiation on a low-density target such as nylon mesh and teflon or mylar films. Temporal profile of the laser pulse with a total duration of 25 ns consists of a several short pulse train. Duration of each pulse is about 2 ns. Notable smoothing of spatially non-uniform radiation structure was observed in the middle of the laser pulse.

  15. Mono-Energetic Beams from Laser Plasma Interactions

    SciTech Connect

    Geddes, C.G.R.; Esarey, E.; Leemans, W.P.; Schroeder, C.B.; Toth,Cs.; van Tilborg, J.; Cary, John R.; Bruhwiler, David L.; Nieter, Chet

    2005-05-09

    A laser driven wakefield accelerator has been tuned to produce high energy electron bunches with low emittance and energy spread by extending the interaction length using a plasma channel. Wakefield accelerators support gradients thousands of times those achievable in RF accelerators, but short acceleration distance, limited by diffraction, has resulted in low energy beams with 100 percent electron energy spread. In the present experiments on the L'OASIS laser, the relativistically intense drive pulse was guided over 10 diffraction ranges by a plasma channel. At a drive pulse power of 9 TW, electrons were trapped from the plasma and beams of percent energy spread containing > 200 pC charge above 80 MeV and with normalized emittance estimated at< 2pi-mm-mrad were produced. Data and simulations (VORPAL code) show the high quality bunch was formed when beam loading turned off injection after initial trapping, and when the particles were extracted as they dephased from the wake. Up to 4TW was guided without trapping, potentially providing a platform for controlled injection. The plasma channel technique forms the basis of a new class of accelerators, with high gradients and high beam quality.

  16. Concurrence of monoenergetic electron beams and bright X-rays from an evolving laser-plasma bubble

    PubMed Central

    Yan, Wenchao; Chen, Liming; Li, Dazhang; Zhang, Lu; Hafz, Nasr A. M.; Dunn, James; Ma, Yong; Huang, Kai; Su, Luning; Chen, Min; Sheng, Zhengming; Zhang, Jie

    2014-01-01

    Desktop laser plasma acceleration has proven to be able to generate gigaelectronvolt-level quasi-monoenergetic electron beams. Moreover, such electron beams can oscillate transversely (wiggling motion) in the laser-produced plasma bubble/channel and emit collimated ultrashort X-ray flashes known as betatron radiation with photon energy ranging from kiloelectronvolts to megaelectronvolts. This implies that usually one cannot obtain bright betatron X-rays and high-quality electron beams with low emittance and small energy spread simultaneously in the same accelerating wave bucket. Here, we report the first (to our knowledge) experimental observation of two distinct electron bunches in a single laser shot, one featured with quasi-monoenergetic spectrum and another with continuous spectrum along with large emittance. The latter is able to generate high-flux betatron X-rays. Such is observed only when the laser self-guiding is extended over 4 mm at a fixed plasma density (4 × 1018 cm−3). Numerical simulation reveals that two bunches of electrons are injected at different stages due to the bubble evolution. The first bunch is injected at the beginning to form a stable quasi-monoenergetic electron beam, whereas the second one is injected later due to the oscillation of the bubble size as a result of the change of the laser spot size during the propagation. Due to the inherent temporal synchronization, this unique electron–photon source can be ideal for pump–probe applications with femtosecond time resolution. PMID:24711405

  17. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. TOP OF BEVATRON, BUILDING 51 ROOF TRUSS, AND CENTRAL RING TRACK FOR MAGNET ROOM CRANE, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  18. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. STAIRWAY FROM MAIN FLOOR OF MAGNET ROOM TO TOP OF OUTER LAYER OF CONCRETE SHIELDING, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  19. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. STAIRWAY BETWEEN MAIN FLOOR OF MAGNET ROOM AND SECOND FLOOR OF OFFICE-AND-SHOP SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  20. 11. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. December 17, 1952. BEV-517. MOVING CURVE TANK INTO MAGNET FOR STORAGE. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  1. 36. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. September 21, 1956. BEV-1154. DISCOVERERS OF ANTI-NEUTRON--(L. to R.) W. WENZEL, B. CORK, G. LAMBERTSON, AND O. PICCIONI, WITH FOCUS MAGNET. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  2. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-049). March 2005. TUNNEL ENTRY FROM MAIN FLOOR OF MAGNET ROOM INTO CENTER OF BEVATRON, BENEATH SOUTHWEST QUADRANT - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  3. 35. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. April 27, 1960. BEV-2050. CLYDE WIEGAND; ANTI-PROTON SET-UP. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  4. 34. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. October 6, 1955. BEV-938. ANTI-PROTON SET-UP WITH WORK GROUP; E. SEGRE, C. WIEGAND, E. LOFGREN, O. CHAMBERLAIN, T. YPSILANTIS. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  5. 53. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. June 28, 1950. BEV-268. EXTERIOR OF SOUTHWEST CORNER OF BEVATRON BUILDING. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  6. 21. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Don Bradley, Photographer. January 31, 1963. BEV-3286 ALTERATIONS PROGRESS; OLLIE OLSON, PAT CALLAHAN. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  7. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-046). March 2005. ROOF SHIELDING BLOCK AND I-BEAM SUPPORT CONSTRUCTION, CENTER OF BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  8. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-129). March 2005. ENTRY TO ROOM 24, MAIN FLOOR, OFFICE-AND-SHOPS SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  9. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-009). March 2005. OPENINGS OF AIR DUCTS INTO PASSAGEWAY UNDER SOUTHEAST QUADRANT, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  10. 32. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. October 6, 1955. BEV-937. ANTI-PROTON SET-UP, EXTERIOR VIEW. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  11. 31. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. October 6, 1955. BEV-933. ANTI-PROTON SET-UP, INTERIOR VIEW. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  12. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-035). March 2005. WEST TANGENT VIEWED FROM INTERIOR OF BEVATRON. EQUIPMENT ACCESS STAIRWAY ON LEFT - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  13. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200506-00198-11). June 2005. DUCTWORK BETWEEN FAN ROOM AND PASSAGEWAY UNDER BEVATRON, NORTH SIDE OF ROOM 10, MAIN FLOOR, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  14. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-139). March 2005. TOP OF BEVATRON, INCLUDING WOOD STAIRWAY FROM OUTER EDGE OF SHIELDING TO TOP OF ROOF BLOCK SHIELDING - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  15. 20. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Photocopy of photograph (original print located in LBNL Photo Lab Collection). George Kagawa, Photographer. November 15, 1962. BEV-3121. OVERALL VIEW OF LINAC II; GLEN WHITE, FOSS CROSBY, BOB RICHTER. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  16. 33. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. April 10, 1958. BEV-1515. ANTI-PROTON SET-UP; BRUCE CORK, GLENN LAMBERTSON. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  17. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200506-00198-08). June 2005. DUCTWORK BETWEEN FAN ROOM AND PASSAGEWAY UNDER BEVATRON, SOUTH SIDE OF ROOM 10, MAIN FLOOR, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  18. Photocopy of photograph (digital image maintained in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image maintained in LBNL Photo Lab Collection, XBD200503-00117-176). March 2005. CENTRAL COLUMN SUPPORT TO ROOF SHOWING CRANES CENTER SUPPORT TRACK, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  19. 19. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Photocopy of photograph (original print located in LBNL Photo Lab Collection). George Kagawa/Don Bradley, Photographers. December 4, 1961. BEV-2548. LINAC II DRIFT TUBES. B-64. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  20. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200506-00218-12). June 2005. DEEP TUNNEL INTO FOUNDATION UNDER BEVATRON, VIEW OF CART ON RAILS FOR TRANSPORTING EQUIPMENT - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  1. 4. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. August, 1955. XBB 689-5508. BEVATRON MODEL (L. TO R.) WITH L. SMITH, McMILLAN, E.O. LAWRENCE, LOFGREN, BROBECK, AND SEWELL - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  2. 59. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. April 25, 1957. BEV-1311. VACUUM SNOUT IN NORTH TARGET AREA; BOB RICHTER. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  3. 49. Photocopy of engineering drawing (original drawing located in LBNL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. Photocopy of engineering drawing (original drawing located in LBNL Building 90F Architecture and Engineering As-Built Collection). June 6, 1949. B51A0354. BEVATRON PLOT PLAN (MASTEN AND HURD) - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  4. 29. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. July, 1959. Morgue 1959-46 (P-1). ALVAREZ BUBBLE CHAMBER GROUP (L. TO R.) HERNANDEZ, McMILLAN, ALVAREZ, GOW - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  5. 28. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. April 1, 1959. Bubble Chamber 722. BUBBLE CHAMBER, WIDE-ANGLE INTERIOR VIEW OF BUILDING 59 - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  6. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-031). March 2005. MOUSE AT EAST TANGENT, WITH COVER OPEN, LOOKING TOWARD CENTER IGLOO, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  7. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-034). March 2005. MOUSE AT EAST TANGENT WITH COVER CLOSED, LOOKING TOWARD CENTER IGLOO, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  8. 26. Photocopy of engineering drawing (original drawing located in LBNL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Photocopy of engineering drawing (original drawing located in LBNL Building 90F Architecture and Engineering As-Built Collection). October 24, 1956. 3/8'=1' 4B51S011. BEVATRON SHIELDING FOUNDATION - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  9. 50. Photocopy of engineering drawing (original drawing located in LBNL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. Photocopy of engineering drawing (original drawing located in LBNL Building 90F Architecture and Engineering As-Built Collection). June 6, 1949. 1/18'=1'. 5N51A002. BEVATRON SUB FLOOR PLAN - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  10. 22. Photocopy of engineering drawing (original drawing located in LBNL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Photocopy of engineering drawing (original drawing located in LBNL Building 90F Architecture and Engineering As-Built Collection). September 29, 1964. 4B51K007 SECOND FLOOR PLAN. B51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  11. 25. Photocopy of engineering drawing (original drawing located in LBNL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Photocopy of engineering drawing (original drawing located in LBNL Building 90F Architecture and Engineering As-Built Collection). February 18, 1969. 4B51BK001. EXTERNAL PROTRON BEAM HALL. B51B FIRST FLOOR PLAN. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  12. 1. Photocopy of engineering drawing (original drawing located in LBNL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photocopy of engineering drawing (original drawing located in LBNL Building 90F Architecture and Engineering As-Built Collection). January 1961. Dwg No. 6B 00D 005 CONTRACT 48 LEASE AND OCCUPANCY MAP - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  13. 47. Photocopy of engineering drawing (original drawing located in LBNL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. Photocopy of engineering drawing (original drawing located in LBNL Building 90F Architecture and Engineering As-Built Collection). July 15, 1955. B51A0084. BEVATRON CONTROL ROOM CEILING TREATMENT AND RELOCATION OF LIGHTS - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  14. 60. Photocopy of engineering drawing (original drawing located in LBNL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. Photocopy of engineering drawing (original drawing located in LBNL Building 90F Architecture and Engineering As-Built Collection). September 20, 1964. 4B51K001A. MAIN FLOOR PLAN B-51-51A - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  15. 46. Photocopy of engineering drawing (original drawing located in LBNL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. Photocopy of engineering drawing (original drawing located in LBNL Building 90F Architecture and Engineering As-Built Collection). July 15, 1955. B51A0084. BEVATRON CONTROL ROOM - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  16. Magnetic core studies at LBNL and LLNL

    SciTech Connect

    Molvik, A.W.; Faltens, A.; Reginato, L.; Blaszkiewicz, M.; Smith, C.; Wood, R.

    1997-09-20

    The objective of this work is to minimize the cost of the materials and maximize the performance of magnetic cores, a major cost component of a Heavy-Ion-Fusion, HIF, induction accelerator driver. This includes selection of the alloy for cost and performance, and maximizing the performance of each alloy evaluated. The two major performance parameters are the magnetic flux swing and the energy loss. The volt seconds of the cores, obtained from the flux swing with Faraday's Law, determines the beam energy and duration. Core losses from forming domains and moving their boundaries are a major factor in determining the efficiency of an induction accelerator.

  17. BRIEF COMMUNICATIONS: Coherent anti-Stokes Raman scattering by excited ions in a laser plasma

    NASA Astrophysics Data System (ADS)

    Gladkov, S. M.; Zheltikov, Aleksei M.; Koroteev, Nikolai I.; Rychev, M. V.; Fedotov, Andrei B.

    1989-07-01

    The coherent anti-Stokes Raman scattering (CARS) method was used in observation of excited Al II, Al III, In II and N II in an optical breakdown plasma. The feasibility of CARS spectroscopy of multiply charged ions in a laser plasma was established.

  18. Particle density and temperature distribution in the early stage of laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Molinari, V. G.; Mostacci, D.; Sumini, M.

    1996-05-01

    Starting from the Boltzmann-Vlasov equation, particle density and temperature profiles and their time evolution are calculated, valid for the initial stage of laser-plasma interaction. The main focus of the work is on the analysis of the classical problem of two semi-infinite media kept at different temperatures and on the ensuing system evolution. Preliminary analytical results are presented.

  19. Ablation of carbon-doped liquid propellant in laser plasma propulsion

    NASA Astrophysics Data System (ADS)

    Zheng, Z. Y.; Liang, T.; Zhang, S. Q.; Gao, L.; Gao, H.; Zhang, Z. L.

    2016-04-01

    Carbon-doped liquid glycerol ablated by nanosecond pulse laser is investigated in laser plasma propulsion. It is found that the propulsion is much more correlated with the carbon content. The doped carbon can change the laser intensity and laser focal position so as to reduce the splashing quantity of the glycerol. Less consumption of the liquid volume results in a high specific impulse.

  20. Efficient Modeling of Laser-Plasma Accelerators with INF&RNO

    SciTech Connect

    Benedetti, C.; Schroeder, C. B.; Esarey, E.; Geddes, C. G. R.; Leemans, W. P.

    2010-06-01

    The numerical modeling code INF&RNO (INtegrated Fluid& paRticle simulatioN cOde, pronounced"inferno") is presented. INF&RNO is an efficient 2D cylindrical code to model the interaction of a short laser pulse with an underdense plasma. The code is based on an envelope model for the laser while either a PIC or a fluid description can be used for the plasma. The effect of the laser pulse on the plasma is modeled with the time-averaged poderomotive force. These and other features allow for a speedup of 2-4 orders of magnitude compared to standard full PIC simulations while still retaining physical fidelity. The code has been benchmarked against analytical solutions and 3D PIC simulations and here a set of validation tests together with a discussion of the performances are presented.

  1. Efficient Modeling of Laser-Plasma Accelerators with INF and RNO

    SciTech Connect

    Benedetti, C.; Schroeder, C. B.; Esarey, E.; Geddes, C. G. R.; Leemans, W. P.

    2010-11-04

    The numerical modeling code INF and RNO (INtegrated Fluid and paRticle simulatioN cOde, pronounced 'inferno') is presented. INF and RNO is an efficient 2D cylindrical code to model the interaction of a short laser pulse with an underdense plasma. The code is based on an envelope model for the laser while either a PIC or a fluid description can be used for the plasma. The effect of the laser pulse on the plasma is modeled with the time-averaged poderomotive force. These and other features allow for a speedup of 2-4 orders of magnitude compared to standard full PIC simulations while still retaining physical fidelity. The code has been benchmarked against analytical solutions and 3D PIC simulations and here a set of validation tests together with a discussion of the performances are presented.

  2. Pulse evolution and plasma-wave phase velocity in channel-guided laser-plasma accelerators.

    PubMed

    Benedetti, C; Rossi, F; Schroeder, C B; Esarey, E; Leemans, W P

    2015-08-01

    The self-consistent laser evolution of an intense, short-pulse laser exciting a plasma wave and propagating in a preformed plasma channel is investigated, including the effects of pulse steepening and energy depletion. In the weakly relativistic laser intensity regime, analytical expressions for the laser energy depletion, pulse self-steepening rate, laser intensity centroid velocity, and phase velocity of the plasma wave are derived and validated numerically. PMID:26382537

  3. Emittance of positron beams produced in intense laser plasma interaction

    SciTech Connect

    Chen Hui; Hazi, A.; Link, A.; Anderson, S.; Gronberg, J.; Izumi, N.; Tommasini, R.; Wilks, S.; Sheppard, J. C.; Meyerhofer, D. D.; Baldis, H. A.; Marley, E.; Park, J.; Williams, G. J.; Fedosejev, R.; Kerr, S.

    2013-01-15

    The first measurement of the emittance of intense laser-produced positron beams has been made. The emittance values were derived through measurements of positron beam divergence and source size for different peak positron energies under various laser conditions. For one of these laser conditions, we used a one dimensional pepper-pot technique to refine the emittance value. The laser-produced positrons have a geometric emittance between 100 and 500 mm{center_dot}mrad, comparable to the positron sources used at existing accelerators. With 10{sup 10}-10{sup 12} positrons per bunch, this low emittance beam, which is quasi-monoenergetic in the energy range of 5-20 MeV, may be useful as an alternative positron source for future accelerators.

  4. Laminar shocks in high power laser plasma interactions

    SciTech Connect

    Cairns, R. A.; Bingham, R.; Norreys, P.; Trines, R.

    2014-02-15

    We propose a theory to describe laminar ion sound structures in a collisionless plasma. Reflection of a small fraction of the upstream ions converts the well known ion acoustic soliton into a structure with a steep potential gradient upstream and with downstream oscillations. The theory provides a simple interpretation of results dating back more than forty years but, more importantly, is shown to provide an explanation for recent observations on laser produced plasmas relevant to inertial fusion and to ion acceleration.

  5. Progress of Laser-Driven Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuhisa

    2007-07-01

    There is a great interest worldwide in plasma accelerators driven by ultra-intense lasers which make it possible to generate ultra-high gradient acceleration and high quality particle beams in a much more compact size compared with conventional accelerators. A frontier research on laser and plasma accelerators is focused on high energy electron acceleration and ultra-short X-ray and Tera Hertz radiations as their applications. These achievements will provide not only a wide range of sciences with benefits of a table-top accelerator but also a basic science with a tool of ultrahigh energy accelerators probing an unknown extremely microscopic world. Harnessing the recent advance of ultra-intense ultra-short pulse lasers, the worldwide research has made a tremendous breakthrough in demonstrating high-energy high-quality particle beams in a compact scale, so called "dream beams on a table top", which represents monoenergetic electron beams from laser wakefield accelerators and GeV acceleration by capillary plasma-channel laser wakefield accelerators. This lecture reviews recent progress of results on laser-driven plasma based accelerator experiments to quest for particle acceleration physics in intense laser-plasma interactions and to present new outlook for the GeV-range high-energy laser plasma accelerators.

  6. Progress of Laser-Driven Plasma Accelerators

    SciTech Connect

    Nakajima, Kazuhisa

    2007-07-11

    There is a great interest worldwide in plasma accelerators driven by ultra-intense lasers which make it possible to generate ultra-high gradient acceleration and high quality particle beams in a much more compact size compared with conventional accelerators. A frontier research on laser and plasma accelerators is focused on high energy electron acceleration and ultra-short X-ray and Tera Hertz radiations as their applications. These achievements will provide not only a wide range of sciences with benefits of a table-top accelerator but also a basic science with a tool of ultrahigh energy accelerators probing an unknown extremely microscopic world.Harnessing the recent advance of ultra-intense ultra-short pulse lasers, the worldwide research has made a tremendous breakthrough in demonstrating high-energy high-quality particle beams in a compact scale, so called ''dream beams on a table top'', which represents monoenergetic electron beams from laser wakefield accelerators and GeV acceleration by capillary plasma-channel laser wakefield accelerators. This lecture reviews recent progress of results on laser-driven plasma based accelerator experiments to quest for particle acceleration physics in intense laser-plasma interactions and to present new outlook for the GeV-range high-energy laser plasma accelerators.

  7. Radiation sources based on laser-plasma interactions.

    PubMed

    Jaroszynski, D A; Bingham, R; Brunetti, E; Ersfeld, B; Gallacher, J; van der Geer, B; Issac, R; Jamison, S P; Jones, D; de Loos, M; Lyachev, A; Pavlov, V; Reitsma, A; Saveliev, Y; Vieux, G; Wiggins, S M

    2006-03-15

    Plasma waves excited by intense laser beams can be harnessed to produce femtosecond duration bunches of electrons with relativistic energies. The very large electrostatic forces of plasma density wakes trailing behind an intense laser pulse provide field potentials capable of accelerating charged particles to high energies over very short distances, as high as 1GeV in a few millimetres. The short length scale of plasma waves provides a means of developing very compact high-energy accelerators, which could form the basis of compact next-generation light sources with unique properties. Tuneable X-ray radiation and particle pulses with durations of the order of or less than 5fs should be possible and would be useful for probing matter on unprecedented time and spatial scales. If developed to fruition this revolutionary technology could reduce the size and cost of light sources by three orders of magnitude and, therefore, provide powerful new tools to a large scientific community. We will discuss how a laser-driven plasma wakefield accelerator can be used to produce radiation with unique characteristics over a very large spectral range. PMID:16483958

  8. Compact neutron source development at LBNL

    SciTech Connect

    Reijonen, Jani; Lou, Tak Pui; Tolmachoff, Bryan; Leung, K.N.

    2001-07-25

    A compact neutron generator based on D-D or D-T fusion reactions is being developed at the Lawrence Berkeley National Laboratory. The deuterium or tritium ions are produced in a radio-frequency (RF) driven multicusp plasma source. Seven beamlets are extracted and are accelerated to energy of 100 keV by means of a three-electrode electrostatic accelerator column. The ion beam then impinges on a titanium coated copper target where either the 2.4 MeV D-D or 14 MeV D-T neutrons are generated by fusion reaction. The development of the neutron tube is divided into three phases. First, the accelerator column is operated at hydrogen beam intensity of 15 mA. Second phase consists of deuterium beam runs at pulsed, low duty cycle 150 mA operation. The third phase consists of deuterium or tritium operation at 1.5 A beam current. Phase one is completed and the results of hydrogen beam testing are discussed. Low duty cycle 150 mA deuterium operation is being investigated. Neutron flux will be measured. Finally the phase three operation and the advance neutron generator designs are described.

  9. Compact neutron source development at LBNL

    NASA Astrophysics Data System (ADS)

    Reijonen, Jani; Lou, Tak P.; Tolmachoff, Bryan; Leung, Ka-Ngo

    2001-12-01

    A compact neutron generator based on D-D or D-T fusion reactions is being developed at the Lawrence Berkeley National laboratory. The deuterium or tritium ions are produced in a radio-frequency (RF) driven multicusp plasma source. Seven beamlets are extracted and are accelerated to energy of 100 keV by means of a three-electrode electrostatic accelerator column. The ion beam then impinges on a titanium coated copper target where either the 2.4 MeV D-D or 13 MeV D-T neutrons are generated by fusion reaction. The development of the neutron tube is divided into three phases. First, the accelerator column is operated at hydrogen beam intensity of 15 mA. Second phase consists of deuterium beam runs at pulsed, low duty cycle 150 mA operation. The third phase consists of deuterium or tritium operation at 1.5 A beam current. Phase one is completed and the results of hydrogen beam testing are discussed. Low duty cycle 150 mA deuterium operation is being investigated. Neutron flux will be measured. Finally the phase three operation and the advance neutron generator designs are described.

  10. BEARS: Radioactive ion beams at LBNL

    SciTech Connect

    Powell, J.; Guo, F.Q.; Haustein, P.E.

    1998-07-01

    BEARS (Berkeley Experiments with Accelerated Radioactive Species) is an initiative to develop a radioactive ion-beam capability at Lawrence Berkeley National Laboratory. The aim is to produce isotopes at an existing medical cyclotron and to accelerate them at the 88 inch Cyclotron. To overcome the 300-meter physical separation of these two accelerators, a carrier-gas transport system will be used. At the terminus of the capillary, the carrier gas will be separated and the isotopes will be injected into the 88 inch Cyclotron`s Electron Cyclotron Resonance (ECR) ion source. The first radioactive beams to be developed will include 20-min {sup 11}C and 70-sec {sup 14}O, produced by (p,n) and (p,{alpha}) reactions on low-Z targets. A test program is currently being conducted at the 88 inch Cyclotron to develop the parts of the BEARS system. Preliminary results of these tests lead to projections of initial {sup 11}C beams of up to 2.5 {times} 10{sup 7} ions/sec and {sup 14}O beams of 3 {times} 10{sup 5} ions/sec.

  11. Characterization of femtosecond electron bunches from a laser-wakefield accelerator using THz radiation

    NASA Astrophysics Data System (ADS)

    van Tilborg, Jeroen

    2005-10-01

    We report on the temporal characterization of laser-plasma-produced electron bunches, indicating ultra-short sub-50 fs charge structure. In the LOASIS laboratory at LBNL, the electron bunches are produced through the interaction of an intense (>10^19 Wcm-2) laser pulse with an underdense (˜10^19 cm-3) Helium plasma. The femtosecond multi-nanoCoulomb bunches have relativistic energies, with a 100% energy spread. As the bunch exits the plasma-vacuum interface, coherent transition radiation is emitted. Since the electron bunch is still dense and compact at the emission interface, the coherent spectrum of the intense radiation pulse covers the THz regime. Spectral and temporal measurements on the THz pulse are performed and correlated to the temporal properties of the electron bunch. Detection techniques such as Michelson interferometry, semiconductor switching, and electro-optic sampling are applied. The latter technique, where the THz electric field versus time is mapped out, provides detailed temporal structure of the radiation pulse, and by inference the electron bunch. The measurements indicate that THz radiation is emitted by a skewed bunch with a sub-50 fs rise time and a ˜600 fs tail (half-width-at-half-maximum), which is consistent with ballistic debunching of 100%-energy-spread beams during propagation. The electro-optic time resolution of the method was limited by the crystal properties. The Michelson interferometry and semiconductor switching experiments confirmed the femtosecond nature of the electron bunches. The electro-optic measurement also demonstrates shot-to-shot stability of the laser-wakefield accelerator (LWFA) as well as femtosecond synchronization between the electron bunch and the probe beam. This highlights the applicability of the LWFA in pump-probe experiments, where synchronized emission of x-rays, gamma rays, THz waves, NIR beams, and electron bunches is available. This work is supported by DoE under contract DE-AC02-05CH11231.

  12. Relativistic laser-plasma interactions in the quantum regime.

    PubMed

    Eliasson, Bengt; Shukla, P K

    2011-04-01

    We consider nonlinear interactions between a relativistically strong laser beam and a plasma in the quantum regime. The collective behavior of electrons is modeled by a Klein-Gordon equation, which is nonlinearly coupled with the electromagnetic wave through the Maxwell and Poisson equations. This allows us to study nonlinear interactions between arbitrarily large-amplitude electromagnetic waves and a quantum plasma. We have used our system of nonlinear equations to study theoretically the parametric instabilities involving stimulated Raman scattering and modulational instabilities. A model for quasi-steady-state propagating electromagnetic wave packets is also derived, and which shows possibility of localized solitary structures in a quantum plasma. Numerical simulations demonstrate collapse and acceleration of electrons in the nonlinear stage of the modulational instability, as well as possibility of the wake-field acceleration of electrons to relativistic speeds by short laser pulses at nanometer length scales. Our study is relevant for understanding the localization of intense electromagnetic pulses in a quantum plasma with extremely high electron densities and relatively low temperature. PMID:21599316

  13. Metallic targets ablation by laser plasma production in a vacuum

    NASA Astrophysics Data System (ADS)

    Beilis, I. I.

    2016-03-01

    A model of metallic target ablation and metallic plasma production by laser irradiation is reported. The model considers laser energy absorption by the plasma, electron emission from hot targets and ion flux to the target from the plasma as well as an electric sheath produced at the target-plasma interface. The proposed approach takes into account that the plasma, partially shields the laser radiation from the target, and also converts absorbed laser energy to kinetic and potential energies of the charged plasma particles, which they transport not only through the ambient vacuum but also through the electrostatic sheath to the solid surface. Therefore additional plasma heating by the accelerated emitted electrons and target heating caused by bombardment of it by the accelerated ions are considered. A system of equations, including equations for solid heat conduction, plasma generation, and plasma expansion, is solved self-consistently. The results of calculations explain the measured dependencies of ablation yield (μ g/pulse) for Al, Ni, and Ti targets on laser fluence in range of (5-21)J/cm2 published previously by Torrisi et al.

  14. Study of laser plasma interactions in the relativistic regime

    SciTech Connect

    Umstadter, D.

    1997-08-13

    We discuss the first experimental demonstration of electron acceleration by a laser wakefield over instances greater than a Rayleigh range (or the distance a laser normally propagates in vacuum). A self-modulated laser wakefield plasma wave is shown to have a field gradient that exceeds that of an RF linac by four orders of magnitude (E => 200 GV/m) and accelerates electrons with over 1-nC of charge per bunch in a beam with space-charge-limited emittance (1 mm-mrad). Above a laser power threshold, a plasma channel, created by the intense ultrashort laser pulse (I approx. 4 x1018 W/CM2, gamma = 1 micron, r = 400 fs), was found to increase the laser propagation distance, decrease the electron beam divergence, and increase the electron energy. The plasma wave, directly measured with coherent Thomson scattering is shown to damp-due to beam loading-in a duration of 1.5 ps or approx. 100 plasma periods. These results may have important implications for the proposed fast ignitor concept.

  15. Effect of solenoidal magnetic field on drifting laser plasma

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazumasa; Okamura, Masahiro; Sekine, Megumi; Cushing, Eric; Jandovitz, Peter

    2013-04-01

    An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.

  16. Interferometric System for the Visualization of High-Speed Processes in Laser Plasma

    NASA Astrophysics Data System (ADS)

    Ananin, O. B.; Bashutin, O. A.; Bogdanov, G. S.; Vovchenko, E. D.; Gerasimov, I. A.; Dvoeglazov, Ya. M.; Melekhov, A. P.; Savjolov, A. S.; Raevsky, I. F.; Filippov, E. D.

    A fundamental to understanding physical processes in laser plasma is to study plasma density profile. We applied an optical interferometer of Mach-Zehnder and UV nitrogen laser that was used as a source of probe light (wavelength 337 nm, energy of ∼ 150 μJ, pulse duration ∼ 5 ns). Digital camera frame grabber captures individual interferometric pictures, so phase shift of fringes is easy photographed and analyzed in terms of plasma density. Powerful Nd-laser (wavelength 1.054 μm, pulse energy up to 20 J, pulse duration ≈15 ns) was used to generate laser plasma. The pulse of probing laser passed through the laser-induced plasma with delay td ≈5÷50 ns. The results of interferometric measurements of electron density in laser-induced plasma from copper target are presented.

  17. Review of upconverted Nd-glass laser plasma experiments at the Lawrence Livermore National Laboratory

    SciTech Connect

    Manes, K.R.

    1982-05-01

    Systematic scaling experiments aimed at deducing the dependence of laser-plasma interaction phenomena on target plasma material and target irradiation history have been underway in laboratories all over the world in recent years. During 1980 and 1981 the Livermore program undertook to measure the laser light absorption of high and low Z plasmas and the partition of the absorbed energy amongst the thermal and suprathermal electron populations as a function of both laser intensity and wavelength. Simulations suggested that short wavelength laser light would couple more efficiently than longer wavelengths to target plasmas. Shorter wavelength heating of higher electron plasma densities would, it was felt, lead to laser-plasma interactions freer of anomalous absorption processes. The following sections review LLNL experiments designed to test these hypotheses.

  18. Time-Space Position of Warm Dense Matter in Laser Plasma Interaction Process

    SciTech Connect

    Cao, L F; Uschmann, I; Forster, E; Zamponi, F; Kampfer, T; Fuhrmann, A; Holl, A; Redmer, R; Toleikis, S; Tschentscher, T; Landen, O L; Glenzer, S H

    2006-09-25

    Laser plasma interaction experiments have been perform performed using an fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. Electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were cautiously compared with relevant 1D numerical simulation. Finally these results provide a first experience of searching for the time-space position of the so-called warm dense plasma in an ultra fast laser target interaction process. These experiments aim to prepare near solid-density plasmas for Thomson scattering experiments using the short wavelength free-electron laser FLASH, DESY Hamburg.

  19. Space-Time Characterization of Laser Plasma Interactions in the Warm Dense Matter Regime

    SciTech Connect

    Cao, L F; Uschmann, I; Forster, E; Zamponi, F; Kampfer, T; Fuhrmann, A; Holl, A; Redmer, R; Toleikis, S; Tschentsher, T; Glenzer, S H

    2008-04-30

    Laser plasma interaction experiments have been performed using a fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. The electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were compared with hydrodynamic simulation. First results to characterize the plasma density and temperature as a function of space and time are obtained. This work aims to generate plasmas in the warm dense matter (WDM) regime at near solid-density in an ultra-fast laser target interaction process. Plasmas under these conditions can serve as targets to develop x-ray Thomson scattering as a plasma diagnostic tool, e.g., using the VUV free-electron laser (FLASH) at DESY Hamburg.

  20. Study of nuclear reactions in laser plasmas at future ELI-NP facility

    NASA Astrophysics Data System (ADS)

    Lanzalone, G.; Altana, C.; Anzalone, A.; Cappuzzello, F.; Cavallaro, M.; Gizzi, L. A.; Labate, L.; Lamia, L.; Mascali, D.; Muoio, A.; Negoita, F.; Odorici, F.; Petrascu, H.; Trifirò, A.; Trimarchi, M.; Tudisco, S.

    2016-05-01

    In this contribution we will present the future activities that our collaboration will carry out at ELI-NP (Extreme Light Infrastructure Nuclear Physics), the new multi peta-watt Laser facility, currently under construction at Bucharest (Romania). The activities concerns the study of nuclear reactions in laser plasmas. In this framework we proposed the construction of a new, general-purpose experimental set-up able to detect and identify neutrons and charged particles.

  1. Laser-plasma ion beams-experiments towards charge transfer x-ray laser

    SciTech Connect

    Crespo Lopez-Urrutia, J.R.; Fill, E.E. ); Bruch, R. ); Schneider, D. )

    1993-06-05

    Laser plasmas produced at intensities of up to 10[sup 14] W/cm[sup 2] expand towards a secondary target a few millimeters away. The intense x-ray emission during the interaction plasma-target was recorded spectrally, spatially and time-resolved. A number of processes, like recombination and charge transfer may account for this strong radiation. The implications of these experiments to the design of a charge transfer x-ray laser are discussed.

  2. Particle density and temperature distribution in the early stage of laser-plasma interaction

    SciTech Connect

    Molinari, V.G.; Mostacci, D.; Sumini, M.

    1996-05-01

    Starting from the Boltzmann-Vlasov equation, particle density and temperature profiles and their time evolution are calculated, valid for the initial stage of laser-plasma interaction. The main focus of the work is on the analysis of the classical problem of two semi-infinite media kept at different temperatures and on the ensuing system evolution. Preliminary analytical results are presented. {copyright} {ital 1996 American Institute of Physics.}

  3. Study of mechanisms for magnetic field diffusion into an expanding laser plasma

    SciTech Connect

    Bessarab, A. V.; Bondarenko, G. A.; Dolgoleva, G. V.; Zhmailo, V. A.; Kunin, A. V.; Nikitin, I. N.; Novikova, E. A.; Statsenko, V. P.; Sungatullin, R. R.

    2007-10-15

    The interaction of plasma clouds generated during laser irradiation of a spherical target in a background gas with a magnetic field was studied on the MKV-4 test bench of the Iskra-5 facility. The dynamics of the plasma cloud expansion in a 300- to 500-Oe magnetic field was investigated using magnetic and probe diagnostics. The results obtained are compared with calculations by different models of laser plasma diffusion in a magnetic field.

  4. Diffraction-limited soft-x-ray projection imaging using a laser plasma source

    SciTech Connect

    Tichenor, D.A.; Kubiak, G.D.; Malinowski, M.E.; Stulen, R.H.; Haney, S.J.; Berger, K.W.; Brown, L.A. ); Freeman, R.R.; Mansfield, W.M.; Wood, O.R. II; Tennant, D.M.; Bjorkholm, J.E.; MacDowell, A.A. ); Bokor, J.; Jewell, T.E.; White, D.L.; Windt, D.L.; Waskiewicz, W.K. )

    1991-10-15

    Projection imaging of 0.1-{mu}m lines and spaces is demonstrated with a Mo/Si multilayer coated Schwarzschild objective and 14-nm illumination from a laser plasma source. This structure has been etched into a silicon wafer by using a trilevel resist and reactive ion etching. Low-contrast modulation at 0.05-{mu}m lines and spaces is observed in polymethylmethacrylate.

  5. Effects of Laser-Plasma Instabilities on Hydro Evolution in Direct-Drive Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Li, J.; Hu, S. X.; Ren, C.

    2015-11-01

    Laser-plasma instabilities and hydro evolution of coronal plasmas in an OMEGA EP long-scale-length experiment with planar targets are studied with particle-in-cell (PIC) and hydrodynamics simulations. Plasma and laser conditions are first obtained in a DRACO simulation with only inverse-bremsstrahlung absorption. Using these conditions, an OSIRIS simulation is performed to study laser absorption and hot-electron generation caused by laser-plasma instabilities near the quarter-critical region. The obtained PIC information has subsequently been coupled to another DRACO simulation to examine how the laser-plasma instabilities affect the overall hydrodynamics. The results show that the more-realistic laser absorption can increase the electron temperature but only slightly changes the density scale length in the corona. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944, DE-FC02-04ER54789 (Fusion Science Center), and DE-SC0012316.

  6. Large-solid-angle illuminators for extreme ultraviolet lithography with laser plasmas

    SciTech Connect

    Kubiak, G.D.; Tichenor, D.A.; Sweatt, W.C.; Chow, W.W.

    1995-06-01

    Laser Plasma Sources (LPSS) of extreme ultraviolet radiation are an attractive alternative to synchrotron radiation sources for extreme ultraviolet lithography (EUVL) due to their modularity, brightness, and modest size and cost. To fully exploit the extreme ultraviolet power emitted by such sources, it is necessary to capture the largest possible fraction of the source emission half-sphere while simultaneously optimizing the illumination stationarity and uniformity on the object mask. In this LDRD project, laser plasma source illumination systems for EUVL have been designed and then theoretically and experimentally characterized. Ellipsoidal condensers have been found to be simple yet extremely efficient condensers for small-field EUVL imaging systems. The effects of aberrations in such condensers on extreme ultraviolet (EUV) imaging have been studied with physical optics modeling. Lastly, the design of an efficient large-solid-angle condenser has been completed. It collects 50% of the available laser plasma source power at 14 nm and delivers it properly to the object mask in a wide-arc-field camera.

  7. Contemporary particle-in-cell approach to laser-plasma modelling

    NASA Astrophysics Data System (ADS)

    Arber, T. D.; Bennett, K.; Brady, C. S.; Lawrence-Douglas, A.; Ramsay, M. G.; Sircombe, N. J.; Gillies, P.; Evans, R. G.; Schmitz, H.; Bell, A. R.; Ridgers, C. P.

    2015-11-01

    Particle-in-cell (PIC) methods have a long history in the study of laser-plasma interactions. Early electromagnetic codes used the Yee staggered grid for field variables combined with a leapfrog EM-field update and the Boris algorithm for particle pushing. The general properties of such schemes are well documented. Modern PIC codes tend to add to these high-order shape functions for particles, Poisson preserving field updates, collisions, ionisation, a hybrid scheme for solid density and high-field QED effects. In addition to these physics packages, the increase in computing power now allows simulations with real mass ratios, full 3D dynamics and multi-speckle interaction. This paper presents a review of the core algorithms used in current laser-plasma specific PIC codes. Also reported are estimates of self-heating rates, convergence of collisional routines and test of ionisation models which are not readily available elsewhere. Having reviewed the status of PIC algorithms we present a summary of recent applications of such codes in laser-plasma physics, concentrating on SRS, short-pulse laser-solid interactions, fast-electron transport, and QED effects.

  8. Energetic neutron beams generated from femtosecond laser plasma interactions

    SciTech Connect

    Zulick, C.; Dollar, F.; Chvykov, V.; Kalinchenko, G.; Maksimchuk, A.; Raymond, A.; Thomas, A. G. R.; Willingale, L.; Yanovsky, V.; Krushelnick, K.; Davis, J.; Petrov, G. M.

    2013-03-25

    Experiments at the HERCULES laser facility have produced directional neutron beams with energies up to 16.8({+-}0.3) MeV using {sub 1}{sup 2}d(d,n){sub 2}{sup 3}He,{sub 7}{sup 3}Li(p,n){sub 4}{sup 7}Be,and{sub 3}{sup 7}Li(d,n){sub 4}{sup 8}Be reactions. Efficient {sub 1}{sup 2}Li(d,n){sub 4}{sup 8}Be reactions required the selective acceleration of deuterons through the introduction of a deuterated plastic or cryogenically frozen D{sub 2}O layer on the surface of a thin film target. The measured neutron yield was {<=}1.0 ({+-}0.5) Multiplication-Sign 10{sup 7} neutrons/sr with a flux 6.2({+-}3.7) times higher in the forward direction than at 90{sup Degree-Sign }. This demonstrates that femtosecond lasers are capable of providing a time averaged neutron flux equivalent to commercial {sub 1}{sup 2}d(d,n){sub 2}{sup 3}He generators with the advantage of a directional beam with picosecond bunch duration.

  9. Charge resolved electrostatic diagnostic of colliding copper laser plasma plumes

    SciTech Connect

    Yeates, P.; Fallon, C.; Kennedy, E. T.; Costello, J. T.

    2011-10-15

    The collision of two laser generated plasma plumes can result, under appropriate conditions, in the formation of a ''stagnation layer.'' The processes underlying this phenomenon are complex and time dependent. The majority of experiments over the last few decades have focused upon spectroscopic diagnostic of colliding plasmas. We have performed electrostatic diagnosis of multiply charged copper ions (Cu{sup +} to Cu{sup 5+}) generated via Q-switched pulsed laser ({lambda} = 1.06 {mu}m, {tau} = 6 ns, and E{sub L} = 52-525 mJ) generation of copper plasma plumes from a planar target. Time dependent current traces, charge yields, and kinetic energy (K{sub e}) distributions are obtained for single plasma plumes (S{sub p}) and colliding plasma plumes (C{sub p}). The charge yield from a C{sub p} relative to twice that from a S{sub p} is characterized by a charge yield ratio (CYR) parameter. Superior ion yields for all charge states occur for a discrete range of fluences (F) from colliding plasma plumes leading to a CYR parameter exceeding unity. The kinetic energy distributions from colliding plasma plumes display well defined energy compression via narrowing of the distributions for all fluences and charge states. The extent of this energy compression is charge dependent. Space charge forces within the stagnation layer and the resulting charge dependent acceleration of ions are proposed to account for the transfer of ion kinetic energy in favour of collisional ionization mechanisms.

  10. Compact neutron generator development at LBNL

    SciTech Connect

    Reijonen, J.; English, G.; Firestone, R.; Giquel, F.; King, M.; Leung, K-N.; Sun, M.

    2003-12-31

    A wide variety of applications ranging from medical (BNCT, Boron Neutron Capture Therapy) and basic science (neutron imaging, material studies) to homeland security (explosive detection and nuclear material non-proliferation) are in need of compact, high flux neutron generators. The Plasma and Ion Source Technology Group in the Lawrence Berkeley National Laboratory is developing various neutron generators for these applications. These neutron generators employed either the D-D or the D-T fusion reaction for the neutron production. The deuterium or deuterium-tritium gas mixture is ionized in an RF-driven plasma source. The ions are then accelerated to {approx}100 keV energy using high current, high voltage DC-power supply to a target where the 2.45 MeV (for D-D reaction) or 14 MeV (for the D-T reaction) neutrons are generated. The development of two different types of neutron tubes are being discussed in this presentation, namely compact, pulsed operation neutron generators and cw, high yield neutron generators. These generators are currently operating at D-D neutron yields of 108 n/s and 109 n/s respectively. A facility, incorporating the larger neutron generator, has been constructed for Prompt Gamma Activation Analysis (PGAA) and Neutron Activation Analysis (NAA) measurements.

  11. Holographic Imaging of Evolving Laser-Plasma Structures

    SciTech Connect

    Downer, Michael; Shvets, G.

    2014-07-31

    In the 1870s, English photographer Eadweard Muybridge captured motion pictures within one cycle of a horse’s gallop, which settled a hotly debated question of his time by showing that the horse became temporarily airborne. In the 1940s, Manhattan project photographer Berlin Brixner captured a nuclear blast at a million frames per second, and resolved a dispute about the explosion’s shape and speed. In this project, we developed methods to capture detailed motion pictures of evolving, light-velocity objects created by a laser pulse propagating through matter. These objects include electron density waves used to accelerate charged particles, laser-induced refractive index changes used for micromachining, and ionization tracks used for atmospheric chemical analysis, guide star creation and ranging. Our “movies”, like Muybridge’s and Brixner’s, are obtained in one shot, since the laser-created objects of interest are insufficiently repeatable for accurate stroboscopic imaging. Our high-speed photographs have begun to resolve controversies about how laser-created objects form and evolve, questions that previously could be addressed only by intensive computer simulations based on estimated initial conditions. Resolving such questions helps develop better tabletop particle accelerators, atmospheric ranging devices and many other applications of laser-matter interactions. Our photographic methods all begin by splitting one or more “probe” pulses from the laser pulse that creates the light-speed object. A probe illuminates the object and obtains information about its structure without altering it. We developed three single-shot visualization methods that differ in how the probes interact with the object of interest or are recorded. (1) Frequency-Domain Holography (FDH). In FDH, there are 2 probes, like “object” and “reference” beams in conventional holography. Our “object” probe surrounds the light-speed object, like a fleas swarming around a

  12. Random aspects of beam physics and laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Charman, Andrew Emile

    Aspects of the dynamics of charged particle and radiation beams, and of the interaction of plasmas with radiation are investigated, informed by concerns of classical and quantum mechanical uncertainty and noise, and related by notions of particle and radiation phase space manipulation, overlap, and control. We begin by studying questions of optimal longitudinal pulse-shaping in laser wakefield accelerators, based on a one-dimensional model with prescribed laser drive and either a linearized or fully nonlinear quasi-static plasma response. After discussing various figures of-merit, we advocate maximizing the peak wake amplitude instead of the transformer ratio. A number of new results are demonstrated, certain conjectures are rigorously proved for the first time, and some erroneous claims corrected. Instead of using short laser pulses to excite plasma waves, one can employ the beat wave between two co-propagating lasers to excite a Langmuir wave with high phase velocity suitable for acceleration of relativistic electrons. A modified version of this plasma beat-wave accelerator scheme is introduced and analyzed, which is based on autoresonant phase-locking of the nonlinear Langmuir wave to the slowly chirped beat frequency of the driving lasers via adiabatic passage through resonance. This new scheme is designed to overcome some of the well-known limitations of previous approaches, such as relativistic detuning and nonlinear modulation of the driven Langmuir wave amplitude, as well as sen sitivity to frequency mismatch due to measurement uncertainties and density fluctuations or inhomogeneities. From radiation exciting plasmas, we turn to issues of plasmas or beams emitting radiation. We develop a Hilbert-space and operator-based approach to electromagnetic radiation, and use this formalism to derive a maximum-power variational principle (MPVP) for spontaneous radiation from prescribed classical harmonic sources. Results are first derived in the paraxial limit, based

  13. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Direct ignition of inertial fusion targets by a laser-plasma ion stream

    NASA Astrophysics Data System (ADS)

    Gus'kov, Sergei Yu

    2001-10-01

    This paper outlines the theoretical direct-ignition model of the pre-compressed thermonuclear material of an inertial fusion target under the action of a high-power pulse of light ions from a laser plasma. It is shown that plasma streams with parameters required for the ignition can be obtained from a plane target-generator, located separately from the fusion target upon its fast thermal explosion driven by a high-power laser pulse. This method of direct ignition implies the use of a fusion target whose design provides the supply of the igniting driver energy to the compressed thermonuclear material. This target may be a cylindrical target with partially open ends or a spherical target with one or two conic openings.

  14. The LBNL Low Background Facility - Services and Recent Updates

    NASA Astrophysics Data System (ADS)

    Thomas, Keenan; Smith, Alan; Norman, Eric; Chan, Yuen-Dat; Poon, Alan; Lesko, Kevin

    2014-09-01

    The Low Background Facility (LBF) at Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background laboratory on the surface at LBNL and at a recently established underground location (4300 m.w.e) at the Sanford Underground Research Facility (SURF) in Lead, SD (relocated from Oroville, CA). These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K) or common cosmogenic/anthropogenic products; active screening via neutron activation analysis for U,Th, and K as well as a variety of stable isotopes; and neutron flux/beam characterization through the use of monitors. A general overview of the facilities, services, and sensitivities will be presented. Recent activities and upgrades will also be described in detail including an overview of the recently installed counting system at SURF. The LBF is open to any users for counting services or collaboration on a wide variety of experiments and projects. The Low Background Facility (LBF) at Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background laboratory on the surface at LBNL and at a recently established underground location (4300 m.w.e) at the Sanford Underground Research Facility (SURF) in Lead, SD (relocated from Oroville, CA). These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K) or common cosmogenic

  15. [Experimental investigation of laser plasma soft X-ray source with gas target].

    PubMed

    Ni, Qi-liang; Gong, Yan; Lin, Jing-quan; Chen, Bo; Cao, Jian-lin

    2003-02-01

    This paper describes a debris-free laser plasma soft X-ray source with a gas target, which has high operating frequency and can produce strong soft X-ray radiation. The valve of this light source is drived by a piezoelectrical ceramic whose operating frequency is up to 400 Hz. In comparison with laser plasma soft X-ray sources using metal target, the light source is debris-free. And it has higher operating frequency than gas target soft X-ray sources whose nozzle is controlled by a solenoid valve. A channel electron multiplier (CEM) operating in analog mode is used to detect the soft X-ray generated by the laser plasma source, and the CEM's output is fed to to a charge-sensitive preamplifier for further amplification purpose. Output charges from the CEM are proportional to the amplitude of the preamplifier's output voltage. Spectra of CO2, Xe and Kr at 8-14 nm wavelength which can be used for soft X-ray projection lithography are measured. The spectrum for CO2 consists of separate spectral lines originate mainly from the transitions in Li-like and Be-like ions. The Xe spectrum originating mainly from 4d-5f, 4d-4f, 4d-6p and 4d-5p transitions in multiply charged xenon ions. The spectrum for Kr consists of separate spectral lines and continuous broad spectra originating mainly from the transitions in Cu-, Ni-, Co- and Fe-like ions. PMID:12939982

  16. Parallel PIC Simulations of Short-Pulse High Intensity Laser Plasma Interactions.

    NASA Astrophysics Data System (ADS)

    Lasinski, B. F.; Still, C. H.; Langdon, A. B.

    2001-10-01

    We extend our previous simulations of high intensity short pulse laser plasma interactions footnote B. F. Lasinski, A. B. Langdon, S. P. Hatchett, M. H. Key, and M. Tabak, Phys. Plasmas 6, 2041 (1999); S. C. Wilks and W. L. Kruer, IEEE Journal of Quantum Electronics 11, 1954 (1997). to 3D and to much larger systems in 2D using our new, modern, 3D, electromagnetic, fully relativistic, massively parallel PIC code. We study the generation of hot electrons and energetic ions and the associated complex phenomena. Laser light filamentation and the formation of high static magnetic fields are described.

  17. Parallel PIC Simulations of Ultra-High Intensity Laser Plasma Interactions.

    NASA Astrophysics Data System (ADS)

    Lasinski, B. F.; Still, C. H.; Langdon, A. B.; Wilks, S. C.; Hatchett, S. P.; Hinkel, D. E.

    1999-11-01

    We extend our previous simulations of high intensity short pulse laser plasma interactionsfootnote B. F. Lasinski, A. B. Langdon, S. P. Hatchett, M. H. Key, and M. Tabak, Phys. Plasmas 6, 2041 (1999); S. C. Wilks and W. L. Kruer, IEEE Journal of Quantum Electronics 11, 1954 (1997). to 3D and to much larger systems in 2D using our new, modern, 3D, electromagnetic, fully relativistic, massively parallel PIC code. Our simulation parameters are guided by the recent Petawatt experiments at Livermore. We study the generation of hot electrons and energetic ions and the associated complex phenomena. Laser light filamentation and the formation of high static magnetic fields are described.

  18. Dependence of laser-plasma interaction physics on laser wavelength and plasma scalelength

    SciTech Connect

    Campbell, E.M.

    1984-04-09

    We discuss the dependence of many features of laser-plasma interaction physics on both the laser wavelength and plasma dimensions. Experimental results that are presented include absorption, stimulated Brillouin scattering, suprathermal electron production, and optical signatures of the two plasmon decay and stimulated Raman instabilities. While the experiments show beneficial effects of decreasing laser wavelength on the coupling physics, the mix and efficiency of the various interaction processes is shown to be strongly dependent on the size of the underdense plasma. 42 refs., 20 figs., 5 tabs.

  19. Effects of front-surface target structures on properties of relativistic laser-plasma electrons.

    PubMed

    Jiang, S; Krygier, A G; Schumacher, D W; Akli, K U; Freeman, R R

    2014-01-01

    We report the results of a study of the role of prescribed geometrical structures on the front of a target in determining the energy and spatial distribution of relativistic laser-plasma electrons. Our three-dimensional particle-in-cell simulation studies apply to short-pulse, high-intensity laser pulses, and indicate that a judicious choice of target front-surface geometry provides the realistic possibility of greatly enhancing the yield of high-energy electrons while simultaneously confining the emission to narrow (<5°) angular cones. PMID:24580345

  20. Experimental basis for laser-plasma interactions in ignition hohlraums at the National Ignition Facility

    SciTech Connect

    Froula, D H; Divol, L; London, R A; Berger, R L; Doeppner, T; Meezan, N B; Ralph, J; Ross, J S; Suter, L J; Glenzer, S H

    2009-11-12

    A series of laser plasma interaction experiments at OMEGA (LLE, Rochester) using gas-filled hohlraums shed light on the behavior of stimulated Raman scattering and stimulated Brillouin scattering at various plasma conditions encountered in indirect drive ignition designs. We present detailed experimental results that quantify the density, temperature, and intensity thresholds for both of these instabilities. In addition to controlling plasma parameters, the National Ignition Campaign relies on optical beam smoothing techniques to mitigate backscatter. We show that polarization smoothing is effective at controlling backscatter. These results provide an experimental basis for forthcoming experiments on National Ignition Facility.

  1. Femtosecond laser-plasma interaction with prepulse-generated liquid metal microjets

    NASA Astrophysics Data System (ADS)

    Uryupina, D. S.; Ivanov, K. A.; Brantov, A. V.; Savel'ev, A. B.; Bychenkov, V. Yu.; Povarnitsyn, M. E.; Volkov, R. V.; Tikhonchuk, V. T.

    2012-01-01

    Ultrashort laser pulse interaction with a microstructured surface of a melted metal is a promising source of hard x-ray radiation. Microstructuring is achieved by a weak prepulse that produces narrow high-density microjets. As an x-ray source, the interaction of the main laser pulse with such jets is shown to be nearly two orders of magnitude more efficient than the interaction with ordinary metal targets. This paper presents the results of optical and x-ray studies of laser-plasma interaction physics under such conditions supported by numerical simulations of microjet formation and fast-electron generation.

  2. Physics of laser-plasma interaction for shock ignition of fusion reactions

    NASA Astrophysics Data System (ADS)

    Tikhonchuk, V. T.; Colaïtis, A.; Vallet, A.; Llor Aisa, E.; Duchateau, G.; Nicolaï, Ph; Ribeyre, X.

    2016-01-01

    The shock ignition scheme is an alternative approach, which aims to achieve ignition of fusion reactions in two subsequent steps: first, the target is compressed at a low implosion velocity and second, a strong converging shock is launched during the stagnation phase and ignites the hot spot. In this paper we describe the major elements of this scheme and recent achievements concerning the laser-plasma interaction, the crucial role of hot electrons in the shock generation, the shock amplification in the imploding shell and the ignition conditions.

  3. Pushing the Limits of Plasma Length in Inertial-Fusion Laser-Plasma Interaction Experiments

    NASA Astrophysics Data System (ADS)

    Froula, D. H.; Divol, L.; London, R. A.; Michel, P.; Berger, R. L.; Meezan, N. B.; Neumayer, P.; Ross, J. S.; Wallace, R.; Glenzer, S. H.

    2008-01-01

    We demonstrate laser beam propagation and low backscatter in laser produced hohlraum plasmas of ignition plasma length. At intensities I<5×1014Wcm-2 greater than 80% of the energy in a blue (3ω, 351 nm) laser is transmitted through a L=5-mm long, high-temperature (Te=2.5keV), high-density (ne=5×1020cm-3) plasma. These experiments show that the backscatter scales exponentially with plasma length which is consistent with linear theory. The backscatter calculated by a new steady state 3D laser-plasma interaction code developed for large ignition plasmas is in good agreement with the measurements.

  4. Magnetic Cavitation and the Reemergence of Nonlocal Transport in Laser Plasmas

    SciTech Connect

    Ridgers, C. P.; Kingham, R. J.; Thomas, A. G. R.

    2008-02-22

    We present the first fully kinetic Vlasov-Fokker-Planck simulations of nanosecond laser-plasma interactions including self-consistent magnetic fields and hydrodynamic plasma expansion. For the largest magnetic fields externally applied to long-pulse laser-gas-jet experiments (12 T) a significant degree of cavitation of the B field (>40%) will be shown to occur from the laser-heated region in under half a nanosecond. This is due to the Nernst effect and leads to the reemergence of nonlocality even if the initial value of the magnetic field strength is sufficient to localize the transport.

  5. Plasma effects in high harmonic spectra from ultrarelativistic laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Boyd, T. J. M.; Ondarza-Rovira, R.

    2016-03-01

    A single particle model has been applied to examine the competition between radiation from a strong Langmuir source and coherent bremsstrahlung in ultra-relativistic laser-plasma interactions. Output from this model shows generally satisfactory agreement with that from particle-in-cell (PIC) simulations, in particular reproducing spectra characterised by a decay index p = 5 / 3. At the highest intensities considered, both model and PIC spectra show the competing contribution from relativistic electron bremsstrahlung, characterised by a further relaxation in the decay index to p = 2 / 3. Combinations of laser and plasma parameters have been identified that define regions of parameter space where one or other emission is dominant.

  6. Quantum Cohesion Oscillation of Electron Ground State in Low Temperature Laser Plasma

    NASA Technical Reports Server (NTRS)

    Zhao, Qingxun; Zhang, Ping; Dong, Lifang; Zhang, Kaixi

    1996-01-01

    The development of radically new technological and economically efficient methods for obtaining chemical products and for producing new materials with specific properties requires the study of physical and chemical processes proceeding at temperature of 10(exp 3) to 10(exp 4) K, temperature range of low temperature plasma. In our paper, by means of Wigner matrix of quantum statistical theory, a formula is derived for the energy of quantum coherent oscillation of electron ground state in laser plasma at low temperature. The collective behavior would be important in ion and ion-molecule reactions.

  7. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Ma, Guangjin; Dallari, William; Borot, Antonin; Krausz, Ferenc; Yu, Wei; Tsakiris, George D.; Veisz, Laszlo

    2015-03-01

    We have performed a systematic study through particle-in-cell simulations to investigate the generation of attosecond pulse from relativistic laser plasmas when laser pulse duration approaches the few-cycle regime. A significant enhancement of attosecond pulse energy has been found to depend on laser pulse duration, carrier envelope phase, and plasma scale length. Based on the results obtained in this work, the potential of attaining isolated attosecond pulses with ˜100 μJ energy for photons >16 eV using state-of-the-art laser technology appears to be within reach.

  8. Development and characterization of very dense submillimetric gas jets for laser-plasma interaction

    SciTech Connect

    Sylla, F.; Kahaly, S.; Flacco, A.; Malka, V.; Veltcheva, M.

    2012-03-15

    We report on the characterization of recently developed submillimetric He gas jets with peak density higher than 10{sup 21} atoms/cm{sup 3} from cylindrical and slightly conical nozzles of throat diameter of less than 400 {mu}m. Helium gas at pressure 300-400 bar has been developed for this purpose to compensate the nozzle throat diameter reduction that affects the output mass flow rate. The fast-switching electro-valve enables to operate the jet safely for multi-stage vacuum pump assembly. Such gaseous thin targets are particularly suitable for laser-plasma interaction studies in the unexplored near-critical regime.

  9. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses

    SciTech Connect

    Ma, Guangjin; Dallari, William; Borot, Antonin; Tsakiris, George D.; Veisz, Laszlo; Krausz, Ferenc; Yu, Wei

    2015-03-15

    We have performed a systematic study through particle-in-cell simulations to investigate the generation of attosecond pulse from relativistic laser plasmas when laser pulse duration approaches the few-cycle regime. A significant enhancement of attosecond pulse energy has been found to depend on laser pulse duration, carrier envelope phase, and plasma scale length. Based on the results obtained in this work, the potential of attaining isolated attosecond pulses with ∼100 μJ energy for photons >16 eV using state-of-the-art laser technology appears to be within reach.

  10. Target micro-displacement measurement by a "comb" structure of intensity distribution in laser plasma propulsion

    NASA Astrophysics Data System (ADS)

    Zheng, Z. Y.; Zhang, S. Q.; Gao, L.; Gao, H.

    2015-05-01

    A "comb" structure of beam intensity distribution is designed and achieved to measure a target displacement of micrometer level in laser plasma propulsion. Base on the "comb" structure, the target displacement generated by nanosecond laser ablation solid target is measured and discussed. It is found that the "comb" structure is more suitable for a thin film target with a velocity lower than tens of millimeters per second. Combing with a light-electric monitor, the `comb' structure can be used to measure a large range velocity.

  11. A laser-plasma clean soft x-ray source for projection microlithography

    NASA Astrophysics Data System (ADS)

    Bollanti, S.; Di Lazzaro, P.; Flora, F.; Mezi, L.; Murra, D.; Torre, A.

    2008-10-01

    Within a National Project on nanotechnologies, at the ENEA Research Centre in Frascati a micro-exposure tool for projection lithography at 14.4 nm has been developed. The laser-plasma soft X-ray source is equipped with a patented debris mitigation system developed in the frame of a European Integrated Project, in order to preserve the collecting optics. A 90-nm-resolution patterning has been achieved on resist by this laboratory-scale tool based on a Schwarzschildtype projection optics.

  12. Development and characterization of very dense submillimetric gas jets for laser-plasma interaction.

    PubMed

    Sylla, F; Veltcheva, M; Kahaly, S; Flacco, A; Malka, V

    2012-03-01

    We report on the characterization of recently developed submillimetric He gas jets with peak density higher than 10(21) atoms/cm(3) from cylindrical and slightly conical nozzles of throat diameter of less than 400 μm. Helium gas at pressure 300-400 bar has been developed for this purpose to compensate the nozzle throat diameter reduction that affects the output mass flow rate. The fast-switching electro-valve enables to operate the jet safely for multi-stage vacuum pump assembly. Such gaseous thin targets are particularly suitable for laser-plasma interaction studies in the unexplored near-critical regime. PMID:22462922

  13. Laser-Plasma Density and Temperature Measurements with Triple Langmuir Probes

    NASA Astrophysics Data System (ADS)

    Arias, A.; Quiros, N.; Khanal, V.; Wan, W. C.; Meineke, J.; Kugland, N. L.; Morita, T.; Gregori, G.; Park, H.-S.; Presura, R.

    2013-10-01

    Experiments to investigate shocks produced by the explosive expansion of a laser-plasma plume against a gas background were performed on the Titan laser (LLNL). Knowledge of density and temperature is essential for understanding the underlying processes. Triple Langmuir probes (TLP) were used for measuring these quantities as function of time at a given location in the plasma. In the experiment, laser ablation plasma from a carbon rod expanded in hydrogen, helium, or argon ambient gas. Density and temperature jumps in the TLP measurements can be correlated with shocks detected by interferometry and proton deflectometry. This work was supported by the US DOE/OFES grant DE-SC0008829.

  14. Efficient quasi-monoenergetic ion beams up to 18 MeV/nucleon via self-generated plasma fields in relativistic laser plasmas

    NASA Astrophysics Data System (ADS)

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald; Hamilton, Christopher; Santiago, Miguel; Kreuzer, Christian; Shah, Rahul; Fernandez, Juan; Los Alamos National Laboratory Team; Ludwig-Maximilian-University Team

    2015-11-01

    Table-top laser-plasma ion accelerators seldom achieve narrow energy spreads, and never without serious compromises in efficiency, particle yield, etc. Using massive computer simulations, we identify a self-organizing scheme that exploits persisting self-generated plasma electric (~ TV/m) and magnetic (~ 104 Tesla) fields to reduce the ion energy spread after the laser exits the plasma - separating the ion acceleration from the energy spread reduction. Consistent with the scheme, we experimentally demonstrate aluminum and carbon ion beams with narrow spectral peaks at energies up to 310 MeV (11.5 MeV/nucleon) and 220 MeV (18.3 MeV/nucleon), respectively, with high conversion efficiency (~ 5%, i.e., 4J out of 80J laser). This is achieved with 0.12 PW high-contrast Gaussian laser pulses irradiating planar foils with optimal thicknesses of up to 250 nm that scale with laser intensity. When increasing the focused laser intensity fourfold (by reducing the focusing optic f/number twofold), the spectral-peak energy increases twofold. These results pave the way for next generation compact accelerators suitable for applications. For example, 400 MeV (33.3 MeV/nucleon) carbon-ion beam with narrow energy spread required for ion fast ignition could be generated using PW-class lasers.

  15. Trapping and dark current in plasma-based accelerators

    SciTech Connect

    Schroder, C.B.; Esarey, E.; Shadwick, B.A.; Leemans, W.P.

    2004-06-01

    The trapping of thermal electrons in a nonlinear plasma wave of arbitrary phase velocity is investigated. The threshold plasma wave amplitude for trapping plasma electrons is calculated, thereby determining the fraction trapped and the expected dark current in a plasma-based accelerator. It is shown that the presence of a laser field (e.g., trapping in the self-modulated regime of the laser wakefield accelerator) increases the trapping threshold. Implications for experimental and numerical laser-plasma studies are discussed.

  16. Diagnostics for induction accelerators

    SciTech Connect

    Fessenden, T.J.

    1996-04-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at LLNL from the early 1960`s to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400 ns pulses. The Advanced Test Accelerator (ATA) built at Livermore`s Site 300 produced 10,000 Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and LBNL. This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high current, short pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail.

  17. Strong Field QED Simulation of Laser-Plasma Interaction Using BUMBLEBEE

    NASA Astrophysics Data System (ADS)

    Jin, Xiaolin; Tian, Yunxian; Huang, Tao; Chen, Wenlong; Li, Bin

    Next generation laser intensity could reach 1024 W/cm2, making strong field quantum electrodynamics (QED) effects in laser-plasma interaction a promising research field. The model of photon and pair production in strong field QED is implemented into our 1D3V particle-in-cell (PIC) code BUMBLEBEE with Monte Carlo (MC) algorithm. We apply the kirk and bell model to simulate the photon and pair production, where photon is produced through bremsstrahlung process and the pair is produced through the Bethe-Heitler process. There are two stages in the QED pair production process. Firstly, the intense laser interacts with a relativistic electron or positron to produce the photon. Secondly, the photon interacts with the same laser field to produce the e+-e- pair. The QED process is coupled to laser-plasma interaction processes before pushing the particles at each step. Using this code, the evolutions of the particles in ultrahigh intensity laser (~1023W/cm2) interaction with aluminum foil target are observed. Four different initial plasma profiles are considered in the simulations.

  18. Diagnostics of laser plasma plume dynamics within an electrically biased confining cavity

    SciTech Connect

    Yeates, P.; Kennedy, E. T.

    2011-09-15

    The dynamics of laser generated plasma plumes expanding within confining surfaces display a two-phase nature. Early phase enhancement due to hydrodynamic containment results in higher temperatures, densities, and average charges states in comparison to freely expanding plasma plumes. Later phase dynamics result in rapid decay of the plasma plume due to lossy plasma--surface interactions. This paper examines laser plasma generation and expansion within rectangular aluminium cavities biased to high voltages (V{sub bias} = {+-}9 kV). ''Hydro-electro-dynamic'' confinement of the laser plasma plumes and the expansion dynamics were studied via space and time resolved visible emission spectroscopy. The charged confining cavities displayed enhanced emission, higher electron densities (N{sub e}) and longer emission durations compared to those of an unbiased cavity. This behavior is attributed to the influence of the electric fields in the cavity on the charged particle dynamics within the cavity volume. The degree of enhancement depended strongly on the applied polarity.

  19. Application of imaging plate to x-ray imaging and spectroscopy in laser plasma experiments

    SciTech Connect

    Izumi, N; Snavely, R; Gregori, G; Koch, J A; Park, H; Remington, B A

    2006-04-25

    We report recent progress of x-ray diagnostic techniques in laser plasma experiment with using imaging plates. Imaging plate is a photo-stimulable phosphor screen (BaF(Br0.85,10.15):Eu{sup 2+}) deposited on flexible metal or plastic substrate. We applied the imaging plate to x-ray microscopy in laser fusion experiment experiments. Self-emission x-ray images of imploded core were obtained successfully with using imaging plate and high magnification target mounted pinhole arrays. The imaging plates were applied also in ultra-intense laser experiment at the Rutherford Appleton Laboratory. Small samarium foil was irradiated by high intensity laser pulse from the Vulcan laser system. The k shell x-rays from the foil ({approx}40keV) was used as a line x-ray source for microscopic radiography. Performance of imaging plate on high-energy x-ray backlit radiography was demonstrated by imaging sinusoidal grooves of 6um amplitude on a Au foil. Detailed spectrum of k shell x-ray from Cu embedded foil target was successfully observed by fully coupling imaging plate with a highly ordered pyrolytic graphite crystal spectrometer. The performances of the imaging plates evaluated in actual laser plasma experiments will be presented.

  20. Proton Radiography of Field Distributions in Ultra-Intense-Laser Plasma Interactions with Pulse of MeV Proton Beams

    NASA Astrophysics Data System (ADS)

    Nakamura, Hirotaka; Kodama, Ryosuke; Tampo, Motonobu; Borghesi, Marco; Romagnani, Lorenzo; Fuchs, Julien; Amin, Munib; Pipahl, Ariane; Willi, Oswald; Michibata, Takuya; Mima, Kunioki; Azechi, Hiroshi

    2008-11-01

    Proton radiography has been used to observe transient electric and magnetic fields in laser plasma interactions. We report an experimental investigation of a transient electric field generated around a laser-irradiated-plasma-fiber attached on a tip of a cone-geometry target. The electric field guided and collimated energetic electrons generated by the laser-plasma interactions in the fiber. The front of these fields propagated along the fiber with the energetic electrons at almost the light velocity. Simulation with the Geant4 Monte Carlo code shows the electric field above a few TV/m were excited around the fiber.

  1. Backscatter Reduction Using Combined Spatial, Temporal, and Polarization Beam Smoothing in a Long-Scale-length Laser Plasma

    SciTech Connect

    Moody, J. D.; MacGowan, B. J.; Rothenberg, J. E.; Berger, R. L.; Divol, L.; Glenzer, S. H.; Kirkwood, R. K.; Williams, E. A.; Young, P. E.

    2001-03-26

    Spatial, temporal, and polarization smoothing schemes are combined for the first time to reduce to a few percent the total stimulated backscatter of a NIF-like probe laser beam (2x10{sup 15} W/cm{sup 2}, 351 nm, f/8) in a long-scale-length laser plasma. Combining temporal and polarization smoothing reduces simulated Brillouin scattering and simulated Raman scattering (SRS) up to an order of magnitude although neither smoothing scheme by itself is uniformly effective. The results agree with trends observed in simulations performed with the laser-plasma interaction code F3D simulations [R.L. Berger et al., Phys. Plasma 6, 1043 (1999)].

  2. Development of the LBNL positron emission mammography camera

    SciTech Connect

    Huber, Jennifer S.; Choong, Woon-Seng; Wang, Jimmy; Maltz, Jonathon S.; Qi, Jinyi; Mandelli, Emanuele; Moses, William W.

    2002-12-19

    We present the construction status of the LBNL Positron Emission Mammography (PEM) camera, which utilizes a PET detector module with depth of interaction measurement consisting of 64 LSO crystals (3x3x30 mm3) coupled on one end to a single photomultiplier tube (PMT) and on the opposite end to a 64 pixel array of silicon photodiodes (PDs). The PMT provides an accurate timing pulse, the PDs identify the crystal of interaction, the sum provides a total energy signal, and the PD/(PD+PMT) ratio determines the depth of interaction. We have completed construction of all 42 PEM detector modules. All data acquisition electronics have been completed, fully tested and loaded onto the gantry. We have demonstrated that all functions of the custom IC work using the production rigid-flex boards and data acquisition system. Preliminary detector module characterization and coincidence data have been taken using the production system, including initial images.

  3. The LBNL High School Student Research Participation Program (HSSRPP)

    NASA Astrophysics Data System (ADS)

    McMahan, M. A.

    2007-04-01

    The HSSRPP, which has been in operation at LBNL since 2001, places 25-35 students each year in summer research internships at Lawrence Berkeley National Laboratory, a multi-purpose Department of Energy laboratory. The paid six-week internships, which are restricted to students who have completed their junior or senior year of high school, are highly sought over, with nearly 300 applications in 2006. With funding from Bechtel, the success of the program has been assessed through surveys and tracking of the student participants. In addition, as part of the application process, the students are asked the essay question, ``If you were in charge of the Science Department at your High School, what changes would you make to motivate more students to pursue careers in science and why?'' The responses of all applicants for 2004-2006 have been analyzed by gender and school district. The results will be discussed.

  4. ARM-LBNL-NOAA Flask Sampler for Carbon Cycle Gases

    DOE Data Explorer

    Torn, Margaret

    2008-01-15

    Data from ccg-flasks are sampled at the ARM SGP site and analyzed by the NOAA Earth System Research Laboratory (ESRL) as part of the NOAA Cooperative Global Air Sampling Network. Surface samples are collected from a 60m tower at the SGP Central Facility, usually once per week on one afternoon. The aircraft samples are collected approximately weekly from a chartered aircraft, and the collection flight path is centered over the tower where the surface samples are collected. Samples are collected by the ARM/LBNL Carbon Project. CO2 flask data contains measurements of CO2 concentration and CO2 stable isotope ratios (13CO2 and C18OO) from flasks collected at the SGP site. The flask samples are collected at 2m, 4m, 25m, and 60m along the 60m tower.

  5. Optimization of some laser and target features for laser-plasma interaction in the context of fusion

    NASA Astrophysics Data System (ADS)

    Depierreux, S.; Labaune, C.; Michel, D. T.; Tikhonchuk, V. T.; Tassin, V.; Stenz, C.; Borisenko, N. G.; Nazarov, W.; Grech, M.; Hüller, S.; Limpouch, J.; Loiseau, P.; Nicolaï, P.; Pesme, D.; Rozmus, W.; Meyer, C.; D-Nicola, P.; Wrobel, R.; Alozy, E.; Romary, P.; Thiell, G.; Soullié, G.; Reverdin, C.; Villette, B.; Rabec-le-Gloahec, M.; Godinho, C.

    2008-05-01

    This paper presents experimental results obtained at LULI 2000 and LIL about (i) the compared laser plasma coupling at 526 (2ω) and 351 nm (3ω) and (ii) the early laser imprint suppression using foam targets as plasma smoother of the laser beam. Both experiments are described, part of the experimental results are presented and discussed.

  6. Laser-ion acceleration through controlled surface contamination

    SciTech Connect

    Hou Bixue; Nees, John A.; He Zhaohan; Easter, James H.; Thomas, Alexander G. R.; Krushelnick, Karl M.; Petrov, George; Davis, Jack

    2011-04-15

    In laser-plasma ion accelerators, control of target contamination layers can lead to selection of accelerated ion species and enhancement of acceleration. To demonstrate this, deuterons up to 75 keV are accelerated from an intense laser interaction with a glass target simply by placing 1 ml of heavy water inside the experimental chamber prior to pumping to generate a deuterated contamination layer on the target. Using the same technique with a deuterated-polystyrene-coated target also enhances deuteron yield by a factor of 3 to 5, while increasing the maximum energy of the generated deuterons to 140 keV.

  7. Progress in bright ion beams for industry, medicine and fusion at LBNL

    SciTech Connect

    Kwan, Joe W.

    2002-05-31

    Recent progresses at LBNL in developing ion beams for industry, radiation therapy and inertial fusion applications were discussed. The highlights include ion beam lithography, boron neutron capture therapy (BNCT), and heavy ion fusion (HIF) drivers using multiple linacs.

  8. A Fokker-Planck code for laser plasma interaction in femtosecond-laser shock peening

    NASA Astrophysics Data System (ADS)

    Ren, Zhencheng; Wang, Guo-Xiang; Ye, Chang; Dong, Yalin

    2016-03-01

    A Fokker-Planck code is developed to simulate the laser-plasma interaction in the femtosecond-laser shock peening and forming processes. A numerical scheme dealing with high-energy concentration and its resulting steep gradient are presented, and the source code is provided as supplementary material for further usage. The breakdown of the classical heat transport theory is observed when the laser intensity increases. The difference in heat flow between the classical theory and simulation is presented. It is found that the classical heat transport theory overestimates heat flow by orders of magnitude during femtosecond-laser shock peening or forming. As a result, the electron pressure can be underestimated using the classical hydrodynamic code.

  9. Plasma effects on harmonic spectra generated from moderately relativistic laser-plasma interactions.

    PubMed

    Ondarza-Rovira, R; Boyd, T J M

    2012-08-01

    When intense p-polarized laser light is incident on a plasma with an electron density many times the critical density, the flux of fast electrons created by Brunel absorption excites plasma oscillations. These oscillations may in turn affect the spectrum of high harmonics by modulating the spectrum at the plasma frequency, ω(p), and by coupling to the radiation field through the steep density gradient at the plasma-vacuum interface, so generating plasma line emission (PLE) at ω(p) and harmonics of ω(p). Both aspects depend sensitively on a range of plasma and laser pulse parameters, including the initial electron density, the density profile at the plasma-vacuum interface, and the intensity, pulse shape, and pulse length of the incident laser light. These various dependences have been characterised for moderately relativistic laser-plasma interactions by means of a series of particle-in-cell (PIC) simulations. PMID:23005869

  10. Theory of optical phase conjugation via four-wave mixing in laser plasmas

    SciTech Connect

    Lahiri, J.; Sinha, B.K.

    1995-05-01

    Theoretical studies of optical phase conjugation via four-wave mixing in a two-temperature laser produced carbon plasma are reported. Starting from Maxwell equations and using the theory of parametric decay instability, analytical expressions of the phase conjugate reflectivity for a steady-state probe have been obtained and numerically evaluated for the case of the laser plasma formed by irradiating a carbon slab target with a Nd:Glass laser operating at {lambda}{sub 0}=1.06 {mu}. The variation of reflectivity as a function of frequency and angular mismatch between the pump and probe waves has been considered. It is observed that the reflectivity peaks occur under the situation of resonance when the frequency mismatch equals the ion-acoustic frequency of the plasma. The detailed numerical results are graphically reported and discussed. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  11. Drag Reduction by Laser-Plasma Energy Addition in Hypersonic Flow

    SciTech Connect

    Oliveira, A. C.; Minucci, M. A. S.; Toro, P. G. P.; Chanes, J. B. Jr; Myrabo, L. N.

    2008-04-28

    An experimental study was conducted to investigate the drag reduction by laser-plasma energy addition in a low density Mach 7 hypersonic flow. The experiments were conducted in a shock tunnel and the optical beam of a high power pulsed CO{sub 2} TEA laser operating with 7 J of energy and 30 MW peak power was focused to generate the plasma upstream of a hemispherical model installed in the tunnel test section. The non-intrusive schlieren optical technique was used to visualize the effects of the energy addition to hypersonic flow, from the plasma generation until the mitigation of the shock wave profile over the model surface. Aside the optical technique, a piezoelectric pressure transducer was used to measure the impact pressure at stagnation point of the hemispherical model and the pressure reduction could be observed.

  12. Design and characterization of supersonic nozzles for wide focus laser-plasma interactions

    SciTech Connect

    Lemos, N.; Lopes, N.; Dias, J. M.

    2009-10-15

    In this work we optimize the contour of supersonic nozzles to produce long and stable gas jets suitable to be used in loose focus laser-plasma applications. The nozzle design method takes into account the inclusion of a boundary layer that increases the length of the usable gas jet. Two 8 mm supersonic nozzles were characterized, one with a Mach number of 3 and another with a Mach number of 6, using a Mach-Zehnder interferometer performed with a He:Ne 4 cm expanded laser beam. The experimental results confirm that the inclusion of the boundary layer produces an 8 mm constant longitudinal density profile for the nozzle with a Mach number of 6 (NM6) and a 4.5 mm constant longitudinal density profile for the nozzle with a Mach number of 3 (NM3).

  13. Particle-in-Cell Modeling of Laser-Plasma Interactions in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Wen, H.; Maximov, A. V.; Yan, R.; Li, J.; Ren, C.; Myatt, J. F.

    2014-10-01

    In the direct-drive method of inertial confinement fusion, the laser-plasma interactions (LPI's) near quarter-critical density are very important for laser absorption and fast-electron generation. Three-dimensional simulations with the particle-in-cell (PIC) code OSIRIS have allowed us to study different parametric instabilities including two-plasmon decay, stimulated Raman scattering, and stimulated Brillouin scattering. These instabilities may coexist and interact in the region near quarter-critical density. The spectra of forward-going and backward-going scattered light and fast electrons in two-dimensional and three-dimensional PIC simulations have been studied. Characteristics of LPI driven by a plane-wave laser and by an incoherent laser beam are compared. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  14. Filamentation of magnetosonic wave and generation of magnetic turbulence in laser plasma interaction

    SciTech Connect

    Modi, K. V.; Tiwary, Prem Pyari; Singh, Ram Kishor Sharma, R. P.; Satsangi, V. R.

    2014-10-15

    This paper presents a theoretical model for the magnetic turbulence in laser plasma interaction due to the nonlinear coupling of magnetosonic wave with ion acoustic wave in overdense plasma. For this study, dynamical equations of magnetosonic waves and the ion acoustic waves have been developed in the presence of ponderomotive force due to the pump magnetosonic wave. Slowly converging and diverging behavior has been studied semi-analytically, this results in the formation of filaments of the magnetosonic wave. Numerical simulation has also been carried out to study nonlinear stage. From the results, it has been found that the localized structures become quite complex in nature. Further, power spectrum has been studied. Results show that the spectral index follows (∼k{sup −2.0}) scaling at smaller scale. Relevance of the present investigation has been shown with the experimental observation.

  15. High-order harmonic generation from laser plasma produced by pulses of different duration

    SciTech Connect

    Ganeev, R. A.; Suzuki, M.; Baba, M.; Kuroda, H.

    2007-08-15

    The high-order harmonic generation was analyzed by interaction of the femtosecond pulses with the laser plasma produced on the surfaces of various targets. The plasma formation was accomplished by the interaction of the prepulse radiation of different pulse duration (160 fs, 1.5 ps, 210 ps, and 20 ns) with the low-Z (lithium, boron, carbon), medium-Z (manganese, zinc, nickel), and high-Z (silver, barium) targets. We showed that plasma formation conditions play a crucial role in harmonic generation and the optimization of this process mostly depends on the energy of prepulse rather than its intensity at the target surface. These studies also demonstrated that the delay between the prepulse and femtosecond pulse is another important parameter, which distinguishes harmonic generation in the cases of the low- and high-Z targets.

  16. Design and characterization of supersonic nozzles for wide focus laser-plasma interactions.

    PubMed

    Lemos, N; Lopes, N; Dias, J M; Viola, F

    2009-10-01

    In this work we optimize the contour of supersonic nozzles to produce long and stable gas jets suitable to be used in loose focus laser-plasma applications. The nozzle design method takes into account the inclusion of a boundary layer that increases the length of the usable gas jet. Two 8 mm supersonic nozzles were characterized, one with a Mach number of 3 and another with a Mach number of 6, using a Mach-Zehnder interferometer performed with a He:Ne 4 cm expanded laser beam. The experimental results confirm that the inclusion of the boundary layer produces an 8 mm constant longitudinal density profile for the nozzle with a Mach number of 6 (NM6) and a 4.5 mm constant longitudinal density profile for the nozzle with a Mach number of 3 (NM3). PMID:19895054

  17. Characterization of a novel double-gas-jet laser plasma EUV source

    NASA Astrophysics Data System (ADS)

    de Bruijn, Rene; Bartnik, Andrzej; Fledderus, H. F.; Fiedorowicz, Henryk; Hegeman, Petra; Constantinescu, Raluca C.; Bijkerk, Fred

    2000-07-01

    A novel laser plasma EUV source geometry based on a (pulsed) double gas jet system has been characterized for utilization in EUV Lithography. The use of a secondary annular jet of a buffer gas in conjunction with the primary jet of target gas provides a considerable gain in EUV yield of an order of magnitude. The best CE data at 12.8 nm were obtained using xenon as target gas and hydrogen as buffer gas. The plasma source was driven using a short-wavelength KrF laser (0.9 J, 27 ns). Conversion efficiencies (CE) and EUV pulse shapes have been measured using calibrated Mo/Si multilayer mirrors and filtered junction diodes. A pinhole camera, equipped with a back illuminated CCD camera, was used to determine the plasma size in a wavelength range from 6 - 16 nm.

  18. An imaging proton spectrometer for short-pulse laser plasma experiments

    SciTech Connect

    Chen, H; Hazi, A; van Maren, R; Chen, S; Fuchs, J; Gauthier, M; Pape, S L; Rygg, J R; Shepherd, R

    2010-05-11

    Ultra intense short pulse laser pulses incident on solid targets can generate energetic protons. In additions to their potentially important applications such as in cancer treatments and proton fast ignition, these protons are essential to understand the complex physics of intense laser plasma interaction. To better characterize these laser-produced protons, we designed and constructed a novel, spatially imaging proton spectrometer that will not only measure proton energy distribution with high resolution, but also provide its angular characteristics. The information obtained from this spectrometer compliments those from commonly used diagnostics including radiochromic film packs, CR39 nuclear track detectors, and non-imaging magnetic spectrometers. The basic characterizations and sample data from this instrument are presented.

  19. Pushing the limits of plasma length in inertial-fusion laser-plasma interaction experiments.

    PubMed

    Froula, D H; Divol, L; London, R A; Michel, P; Berger, R L; Meezan, N B; Neumayer, P; Ross, J S; Wallace, R; Glenzer, S H

    2008-01-11

    We demonstrate laser beam propagation and low backscatter in laser produced hohlraum plasmas of ignition plasma length. At intensities I < 5 x 10(14) W cm(-2) greater than 80% of the energy in a blue (3 omega, 351 nm) laser is transmitted through a L=5-mm long, high-temperature (Te = 2.5 keV), high-density (ne = 5 x 10(20) cm(-3)) plasma. These experiments show that the backscatter scales exponentially with plasma length which is consistent with linear theory. The backscatter calculated by a new steady state 3D laser-plasma interaction code developed for large ignition plasmas is in good agreement with the measurements. PMID:18232778

  20. Anomalous self-generated electrostatic fields in nanosecond laser-plasma interaction

    SciTech Connect

    Lancia, L.; Antici, P.; Grech, M.; Weber, S.; Marques, J.-R.; Romagnani, L.; Bourgeois, N.; Audebert, P.; Fuchs, J.; Nakatsutsumi, M.; Bellue, A.; Feugeas, J.-L.; Nicolaie, Ph.; Tikhonchuk, V. T.; Grismayer, T.; Lin, T.; Nkonga, B.; Kodama, R.

    2011-03-15

    Electrostatic (E) fields associated with the interaction of a well-controlled, high-power, nanosecond laser pulse with an underdense plasma are diagnosed by proton radiography. Using a current three-dimensional wave propagation code equipped with nonlinear and nonlocal hydrodynamics, we can model the measured E-fields that are driven by the laser ponderomotive force in the region where the laser undergoes filamentation. However, strong fields of up to 110 MV/m measured in the first millimeter of propagation cannot be reproduced in the simulations. This could point to the presence of unexpected strong thermal electron pressure gradients possibly linked to ion acoustic turbulence, thus emphasizing the need for the development of full kinetic collisional simulations in order to properly model laser-plasma interaction in these strongly nonlinear conditions.

  1. Electrons trajectories around a bubble regime in intense laser plasma interaction

    SciTech Connect

    Lu, Ding; Xie, Bai-Song; Ali Bake, Muhammad; Sang, Hai-Bo; Zhao, Xue-Yan; Wu, Hai-Cheng

    2013-06-15

    Some typical electrons trajectories around a bubble regime in intense laser plasma interaction are investigated theoretically. By considering a modification of the fields and ellipsoid bubble shape due to the presence of residual electrons in the bubble regime, we study in detail the electrons nonlinear dynamics with or without laser pulse. To examine the electron dynamical behaviors, a set of typical electrons, which locate initially at the front of the bubble, on the transverse edge and at the bottom of the bubble respectively, are chosen for study. It is found that the range of trapped electrons in the case with laser pulse is a little narrower than that without laser pulse. The partial phase portraits for electrons around the bubble are presented numerically and their characteristic behaviors are discussed theoretically. Implication of our results on the high quality electron beam generation is also discussed briefly.

  2. Analyses of laser-plasma interactions in National Ignition Facility ignition targets

    SciTech Connect

    Hinkel, D. E.; Callahan, D. A.; Langdon, A. B.; Langer, S. H.; Still, C. H.; Williams, E. A.

    2008-05-15

    A capability to analyze laser-plasma interactions (LPI) for ignition targets to be fielded at the National Ignition Facility has been developed and exercised. LPI in these targets may cause direct energy loss (backscatter) or energy redirection (beam spray, deflection, and energy transfer). These analyses range from analyzing the gain exponents for backscatter and beam spray to performing massively parallel, three-dimensional simulations of laser beam propagation in the most promising candidate ignition target designs. In the former assessment, ignition designs are iterated to reduce the gain exponent values. In the latter, beam propagation simulations are performed to analyze the reflectivity and beam transmission of speckled laser beams in the computed plasma profiles of the ignition targets. In current ignition designs, laser reflectivity is calculated to be well below 10%.

  3. Pushing the limits of plasma length in inertial fusion laser-plasma interaction experiments

    SciTech Connect

    Froula, D; Divol, L; London, R; Michel, P; Berger, R L; Meezan, N; Neumayer, P; Ross, J; Wallace, R; Glenzer, S H

    2007-08-02

    We demonstrate laser beam propagation and low backscatter in laser produced hohlraum plasmas of ignition plasma length. At intensities I < 5 x 10{sup 14} W cm{sup -2} greater than 80% of the energy in a blue (3{omega}, 351 nm) laser is transmitted through a L=5-mm long, high-temperature (T{sub e} = 2.5 keV), high-density (n{sub e} = 5 x 10{sup 20} cm{sup -3}) plasma. These experiments show that the backscatter scales exponentially with plasma length which is consistent with linear theory. The backscatter calculated by a new steady state 3D laser-plasma interaction code developed for large ignition plasmas is in good agreement with the measurements.

  4. Effect of relativistic and ponderomotive nonlinearities on stimulated Raman scattering in laser plasma interaction

    SciTech Connect

    Sharma, R. P.; Gupta, M. K.

    2006-11-15

    In this paper, the authors have investigated the effect of ultra-intense laser beam filaments on stimulated Raman scattering (SRS) in unmagnetized plasma when relativistic and ponderomotive nonlinearities are operative. First, the filamentary dynamics of laser beam is studied. In these structures, the plasma wave generation and associated SRS process are studied. The effect of filamentation on SRS back reflectivity has been studied in detail. For the typical laser plasma parameters, i.e., laser beam Nd:YAG ({lambda}=1064 nm), laser beam radius=15 {mu}m, laser power flux=6x10{sup 17} W/cm{sup 2}, electron density=1.9x10{sup 19} per cm{sup 3}, the SRS reflectivity reduces by a factor 2.5 due to ponderomotive effects.

  5. Bulk resonance absorption induced by relativistic effects in laser-plasma interaction

    SciTech Connect

    Ding Wenjun; Sheng, Z.-M.; Zhang, J.; Yu, M. Y.

    2009-04-15

    Resonance absorption in relativistic laser-plasma interaction is studied via two-dimensional particle-in-cell simulation. As the laser intensity increases from the linear regime, the absorption rate first decreases due to relativistic modulation of the electron plasma oscillations excited at the mode conversion layer. However, the trend reverses after a critical intensity. The reversal can be attributed to the fact that the relativistic critical layer depends on the local intensity of the laser pulse, so that instead of occurring in a thin layer, resonance absorption occurs in a plasma bulk region, leading absorption rate increase. The reflected-light spectrum also shows broadening and splitting of the harmonics at high laser intensities, which can be attributed to critical-surface oscillations driven by the laser ponderomotive force.

  6. Analysis on laser plasma emission for characterization of colloids by video-based computer program

    NASA Astrophysics Data System (ADS)

    Putri, Kirana Yuniati; Lumbantoruan, Hendra Damos; Isnaeni

    2016-02-01

    Laser-induced breakdown detection (LIBD) is a sensitive technique for characterization of colloids with small size and low concentration. There are two types of detection, optical and acoustic. Optical LIBD employs CCD camera to capture the plasma emission and uses the information to quantify the colloids. This technique requires sophisticated technology which is often pricey. In order to build a simple, home-made LIBD system, a dedicated computer program based on MATLAB™ for analyzing laser plasma emission was developed. The analysis was conducted by counting the number of plasma emissions (breakdowns) during a certain period of time. Breakdown probability provided information on colloid size and concentration. Validation experiment showed that the computer program performed well on analyzing the plasma emissions. Optical LIBD has A graphical user interface (GUI) was also developed to make the program more user-friendly.

  7. High-energy 4{omega} probe laser for laser-plasma experiments at nova

    SciTech Connect

    Glenzer, S. H., LLNL

    1998-06-02

    For the characterization of inertial confinement fusion plasmas we implemented a high-energy 4{omega} probe laser at the Nova laser facility. A total energy of > 50 Joules at 4{omega}, a focal spot size of order 100 {micro}m, and a pointing accuracy of 100 {micro}m was demonstrated for target shots. This laser provides intensities of up to 3 x 10{sup 14}W cm{sup -2} and therefore fulfills high-power requirements for laser-plasma interaction experiments. The 4{omega} probe laser is now routinely used for Thomson scattering. Successful experiments were performed in gas-filled hohlraums at electron densities of n{sub e} > 2 X 10{sup 21}cm{sup -3} which represents the highest density plasma so far being diagnosed with Thomson scattering.

  8. Specular Reflectivity and Hot-Electron Generation in High-Contrast Relativistic Laser-Plasma Interactions

    SciTech Connect

    Kemp, Gregory Elijah

    2013-01-01

    Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the cost of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic

  9. Laser-plasma debris from a rotating cryogenic-solid-Xe target

    SciTech Connect

    Amano, Sho; Inaoka, Yutaka; Hiraishi, Hiroki; Miyamoto, Shuji; Mochizuki, Takayasu

    2010-02-15

    We investigate the characteristics of laser plasma debris that is responsible for damaging optics. The debris is composed of fast ions, neutral particles, and fragments, and originates from a solid Xe target on a rotating drum that we developed as an extreme ultraviolet (EUV) source. The ice fragments appear to be a problem most notably with solid Xe targets; however, we find that the damage induced by Xe ice fragments can be avoided by simply reducing the laser pulse energy. We find the number of fast neutral particles to be an order of magnitude less than the number of ions, and we clarify that the plasma debris is primarily composed of fast ions. In addition, we find that the number of fast ions having a few dozen keV of energy decreases when using the rotating target compared with the rest target. We attribute this to a gas curtain effect from the Xe gas localized at the rotating target surface. We estimate the sputtering rate of the Mo/Si mirror, which is caused primarily by the fast ions, to be 104 nm/1x10{sup 6} shots at 190 mm from the source plasma and at an 11.25 deg. angle from the incident laser beam. Up to the 1x10{sup 6} shots exposure, remarkable degradation of the mirror reflectivity is not observed though the sputtering damages the mirror. Mitigation of the ions by using gas and/or magnetic fields will further improve the mirror lifetime. By comparing with a liquid jet Xe target, we conclude that the sputtering rate per conversion efficiency when using the solid Xe targets on the rotating drum is the same as that when using the liquid Xe targets. The high conversion efficiency of 0.9% in the rotating drum solid Xe target makes this technique useful for developing laser plasma EUV sources.

  10. Laser-plasma interaction in the context of inertial fusion: experiments and modeling

    NASA Astrophysics Data System (ADS)

    Labaune, C.; Lewis, K.; Bandulet, H.; Depierreux, S.; Hüller, S.; Masson-Laborde, P. E.; Pesme, D.; Loiseau, P.

    2007-08-01

    Many nonlinear processes may affect the laser beam propagation and the laser energy deposition in the underdense plasma surrounding the pellet. These processes, associated with anomalous and nonlinear absorption mechanisms, are fundamental issues in the context of Inertial Confinement Fusion. The work presented in this article refers to laser-plasma interaction experiments which were conducted under well-controlled conditions, and to their theoretical and numerical modeling. Thanks to important diagnostics improvements, the plasma and laser parameters were sufficiently characterized in these experiments to make it possible to carry out numerical simulations modeling the laser plasma interaction in which the hydrodynamics conditions were very close to the experimental ones. Two sets of experiments were carried out with the LULI 2000 and the six beam LULI laser facilities. In the first series of experiments, the interaction between two single hot spots was studied as a function of their distance, intensity and light polarization. In the second series, the intensity distribution of stimulated Brillouin scattering (SBS) inside the plasma was studied by means of a new temporally resolved imaging system. Two-dimensional (2D) simulations were carried out with our code Harmony2D in order to model these experiments. For both series of experiments, the numerical results show a very good agreement with the experimental ones for what concerns the main SBS features, namely the spatial and temporal behavior of the SBS-driven acoustic waves, as well as the average SBS reflectivities. Thus, these well diagnosed experiments, carried out with well defined conditions, make it possible to benchmark our theoretical and numerical modelings and, hence, to improve our predictive capabilities for future experiments.

  11. New Developments in the Simulation of Advanced Accelerator Concepts

    SciTech Connect

    Bruhwiler, David L.; Cary, John R.; Cowan, Benjamin M.; Paul, Kevin; Mullowney, Paul J.; Messmer, Peter; Geddes, Cameron G. R.; Esarey, Eric; Cormier-Michel, Estelle; Leemans, Wim; Vay, Jean-Luc

    2009-01-22

    Improved computational methods are essential to the diverse and rapidly developing field of advanced accelerator concepts. We present an overview of some computational algorithms for laser-plasma concepts and high-brightness photocathode electron sources. In particular, we discuss algorithms for reduced laser-plasma models that can be orders of magnitude faster than their higher-fidelity counterparts, as well as important on-going efforts to include relevant additional physics that has been previously neglected. As an example of the former, we present 2D laser wakefield accelerator simulations in an optimal Lorentz frame, demonstrating >10 GeV energy gain of externally injected electrons over a 2 m interaction length, showing good agreement with predictions from scaled simulations and theory, with a speedup factor of {approx}2,000 as compared to standard particle-in-cell.

  12. New Developments in the Simulation of Advanced Accelerator Concepts

    SciTech Connect

    Paul, K.; Cary, J.R.; Cowan, B.; Bruhwiler, D.L.; Geddes, C.G.R.; Mullowney, P.J.; Messmer, P.; Esarey, E.; Cormier-Michel, E.; Leemans, W.P.; Vay, J.-L.

    2008-09-10

    Improved computational methods are essential to the diverse and rapidly developing field of advanced accelerator concepts. We present an overview of some computational algorithms for laser-plasma concepts and high-brightness photocathode electron sources. In particular, we discuss algorithms for reduced laser-plasma models that can be orders of magnitude faster than their higher-fidelity counterparts, as well as important on-going efforts to include relevant additional physics that has been previously neglected. As an example of the former, we present 2D laser wakefield accelerator simulations in an optimal Lorentz frame, demonstrating>10 GeV energy gain of externally injected electrons over a 2 m interaction length, showing good agreement with predictions from scaled simulations and theory, with a speedup factor of ~;;2,000 as compared to standard particle-in-cell.

  13. The role of the gas/plasma plume and self-focusing in a gas-filled capillary discharge waveguide for high-power laser-plasma applications

    SciTech Connect

    Ciocarlan, C.; Wiggins, S. M.; Islam, M. R.; Ersfeld, B.; Abuazoum, S.; Wilson, R.; Aniculaesei, C.; Welsh, G. H.; Vieux, G.; Jaroszynski, D. A.

    2013-09-15

    The role of the gas/plasma plume at the entrance of a gas-filled capillary discharge plasma waveguide in increasing the laser intensity has been investigated. Distinction is made between neutral gas and hot plasma plumes that, respectively, develop before and after discharge breakdown. Time-averaged measurements show that the on-axis plasma density of a fully expanded plasma plume over this region is similar to that inside the waveguide. Above the critical power, relativistic and ponderomotive self-focusing lead to an increase in the intensity, which can be nearly a factor of 2 compared with the case without a plume. When used as a laser plasma wakefield accelerator, the enhancement of intensity can lead to prompt electron injection very close to the entrance of the waveguide. Self-focusing occurs within two Rayleigh lengths of the waveguide entrance plane in the region, where the laser beam is converging. Analytical theory and numerical simulations show that, for a density of 3.0 × 10{sup 18} cm{sup −3}, the peak normalized laser vector potential, a{sub 0}, increases from 1.0 to 1.85 close to the entrance plane of the capillary compared with a{sub 0} = 1.41 when the plume is neglected.

  14. A HIGH REPETITION PLASMA MIRROR FOR STAGED ELECTRON ACCELERATION

    SciTech Connect

    Sokollik, Thomas; Shiraishi, Satomi; Osterhoff, Jens; Evans, Eugene; Gonsalves, Anthony; Nakamura, Kei; vanTilborg, Jeroen; Lin, Chen; Toth, Csaba; Leemans, Wim

    2011-07-22

    In order to build a compact, staged laser plasma accelerator the in-coupling of the laser beam to the different stages represents one of the key issues. To limit the spatial foot print and thus to realize a high overall acceleration gradient, a concept has to be found which realizes this in-coupling within a few centimeters. We present experiments on a tape-drive based plasma mirror which could be used to reflect the focused laser beam into the acceleration stage.

  15. Laser plasma interaction on rugby hohlraum on the Omega Laser Facility: Comparisons between cylinder, rugby, and elliptical hohlraums

    NASA Astrophysics Data System (ADS)

    Masson-Laborde, P. E.; Monteil, M. C.; Tassin, V.; Philippe, F.; Gauthier, P.; Casner, A.; Depierreux, S.; Neuville, C.; Villette, B.; Laffite, S.; Seytor, P.; Fremerye, P.; Seka, W.; Teychenné, D.; Debayle, A.; Marion, D.; Loiseau, P.; Casanova, M.

    2016-02-01

    Gas-filled rugby-shaped hohlraums have demonstrated high performances compared to a classical similar diameter cylinder hohlraum with a nearly 40% increase of x-ray drive, 10% higher measured peak drive temperature, and an increase in neutron production. Experimental comparisons have been done between rugby, cylinder, and elliptical hohlraums. The impact of these geometry differences on the laser plasma instabilities is examined. Using comparisons with hydrodynamic simulations carried out with the code FCI2 and postprocessed by Piranah, we have been able to reproduce the stimulated Raman and Brillouin scattering spectrum of the different beams. Using a methodology based on a statistical analysis for the gain calculations, we show that the behavior of the laser plasma instabilities in rugby hohlraums can be reproduced. The efficiency of laser smoothing techniques to mitigate these instabilities are discussed, and we show that while rugby hohlraums exhibit more laser plasma instabilities than cylinder hohlraum, the latter can be mitigated in the case of an elliptical hohlraum.

  16. Magnetooptical Faraday and Light-Scattering Diagnostics of Laser Plasma in Leopard Laser Facility at UNR/NTF

    NASA Astrophysics Data System (ADS)

    Sarkisov, G. S.; Yates, K.; Ivanov, V. V.; Sotnikov, V. I.; Yasin, E.; Wiewior, P.; Astanovitsky, A.; Chaly, O.; Kindel, J.

    2009-11-01

    Laser plasma of the solid target on Leopard Laser Facility at University of Nevada Reno was investigated using polarimetry, interferometry and laser-scattering diagnostics. 50 TW Nd:glass Leopard laser operates on 1056 nm wavelength, 10 J energy and 1ns/400 fs pulse width. Power flux on a target surface varied from 10^14 to 10^19W/cm^2 with 20 μm focus spot from off-axis parabola. The diagnostic of spontaneous magnetic fields in laser plasma was carried out using three-channel polarinterferometer with Faraday, shadow and interferogram channels. Ultrafast two-frame shadowgrams/interferograms with two probing beams with orthogonal polarizations were used for investigation of fast moving plasma phenomena (jets, ionization front propagation). Continuous 1W green DPSS-laser with external modulation was used for light scattering experiments for investigation of the late-time micro-particles generation in laser plasma with expected large charge number of the grain Z ˜ 100-1000.

  17. Hybrid Simulation of Laser-Plasma Interactions and Fast Electron Transport in Inhomogeneous Plasma

    SciTech Connect

    Cohen, B I; Kemp, A; Divol, L

    2009-05-27

    A new framework is introduced for kinetic simulation of laser-plasma interactions in an inhomogenous plasma motivated by the goal of performing integrated kinetic simulations of fast-ignition laser fusion. The algorithm addresses the propagation and absorption of an intense electromagnetic wave in an ionized plasma leading to the generation and transport of an energetic electron component. The energetic electrons propagate farther into the plasma to much higher densities where Coulomb collisions become important. The high-density plasma supports an energetic electron current, return currents, self-consistent electric fields associated with maintaining quasi-neutrality, and self-consistent magnetic fields due to the currents. Collisions of the electrons and ions are calculated accurately to track the energetic electrons and model their interactions with the background plasma. Up to a density well above critical density, where the laser electromagnetic field is evanescent, Maxwell's equations are solved with a conventional particle-based, finite-difference scheme. In the higher-density plasma, Maxwell's equations are solved using an Ohm's law neglecting the inertia of the background electrons with the option of omitting the displacement current in Ampere's law. Particle equations of motion with binary collisions are solved for all electrons and ions throughout the system using weighted particles to resolve the density gradient efficiently. The algorithm is analyzed and demonstrated in simulation examples. The simulation scheme introduced here achieves significantly improved efficiencies.

  18. Coupled hydrodynamic model for laser-plasma interaction and hot electron generation.

    PubMed

    Colaïtis, A; Duchateau, G; Ribeyre, X; Maheut, Y; Boutoux, G; Antonelli, L; Nicolaï, Ph; Batani, D; Tikhonchuk, V

    2015-10-01

    We present a formulation of the model of laser-plasma interaction (LPI) at hydrodynamical scales that couples the plasma dynamics with linear and nonlinear LPI processes, including the creation and propagation of high-energy electrons excited by parametric instabilities and collective effects. This formulation accounts for laser beam refraction and diffraction, energy absorption due to collisional and resonant processes, and hot electron generation due to the stimulated Raman scattering, two-plasmon decay, and resonant absorption processes. Hot electron (HE) transport and absorption are described within the multigroup angular scattering approximation, adapted for transversally Gaussian electron beams. This multiscale inline LPI-HE model is used to interpret several shock ignition experiments, highlighting the importance of target preheating by HEs and the shortcomings of standard geometrical optics when modeling the propagation and absorption of intense laser pulses. It is found that HEs from parametric instabilities significantly increase the shock pressure and velocity in the target, while decreasing its strength and the overall ablation pressure. PMID:26565161

  19. Coupled hydrodynamic model for laser-plasma interaction and hot electron generation

    NASA Astrophysics Data System (ADS)

    Colaïtis, A.; Duchateau, G.; Ribeyre, X.; Maheut, Y.; Boutoux, G.; Antonelli, L.; Nicolaï, Ph.; Batani, D.; Tikhonchuk, V.

    2015-10-01

    We present a formulation of the model of laser-plasma interaction (LPI) at hydrodynamical scales that couples the plasma dynamics with linear and nonlinear LPI processes, including the creation and propagation of high-energy electrons excited by parametric instabilities and collective effects. This formulation accounts for laser beam refraction and diffraction, energy absorption due to collisional and resonant processes, and hot electron generation due to the stimulated Raman scattering, two-plasmon decay, and resonant absorption processes. Hot electron (HE) transport and absorption are described within the multigroup angular scattering approximation, adapted for transversally Gaussian electron beams. This multiscale inline LPI-HE model is used to interpret several shock ignition experiments, highlighting the importance of target preheating by HEs and the shortcomings of standard geometrical optics when modeling the propagation and absorption of intense laser pulses. It is found that HEs from parametric instabilities significantly increase the shock pressure and velocity in the target, while decreasing its strength and the overall ablation pressure.

  20. Spatio-temporal evolution of magnetosonic wave in the laser plasma interaction

    SciTech Connect

    Sharma, R. P. Singh, Ram Kishor Sharma, Swati; Tiwary, Prem Pyari; Modi, K. V.; Satsangi, V. R.

    2015-05-15

    This paper presents a theoretical model for the transient response of nonlinear coupling between magnetosonic wave and ion acoustic wave in the overdense plasma. Filamentation of magnetosonic wave has been considered to be responsible for magnetic turbulence during the laser plasma interaction. The ion acoustic wave gets excited due to the ponderomotive force exerted by magnetosonic wave and this ion acoustic wave in turn generates perturbation in the background density in the form of spatial density harmonics. Numerical simulation has been carried out for dimensionless coupled equations of magnetosonic wave and ion acoustic wave; and the results show quite complex localized structures that grow with time. The power spectrum has also been studied which shows that the spectral index follows an approximate scaling of the order of ∼k{sup −2.4} at smaller scales. The data obtained from numerical simulation are used in semi analytical model to better understand the mechanism of nonlinear evolution of magnetosonic wave. The results indicate considerable randomness in the spatial structure of the magnetic field profile which gives sufficient indication of turbulence.

  1. SiC detector damage and characterization for high intensity laser-plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Cannavò, A.

    2016-05-01

    Silicon-Carbide (SiC) detectors are always more extensively employed as diagnostics in laser-generated plasma due to their remarkable properties such as their high band gap, high carrier velocity, high detection efficiency, high radiation resistance and low leakage current at room temperature. SiC detectors, in comparison with Si detectors, have the advantage of being insensitive to visible light, having low reverse current at high temperature and high radiation hardness. A similar energy resolution characterizes the two types of detectors, being 0.8% in Si and 1.0% in SiC, as measured detecting 5.8 MeV alpha particles. Generally, SiC detectors are employed as laser-plasma diagnostics in time-of-flight configuration, permitting the simultaneous detection of photons, electrons and ions based on discrimination of velocity. SiC detectors can be employed in the proportionality regime, because their response is proportional to the radiation energy deposited in the active layer. Using thin absorbers in front of the detectors makes it possible to have further information on the radiation nature, intensity and energy. Surface characterization of SiC before and after prolonged exposure to hot plasma laser generated shows the formation of bulk defects and thin film deposition on the detector surface limiting the device functionality.

  2. Measuring the coherence properties of light emission from laser-plasma interactions. Final report

    SciTech Connect

    Batha, S.H.

    1998-03-06

    Several detrimental instabilities can be excited when a high-intensity laser interacts with plasma. The temporal evolution and spectra of the scattered light emitted by many of these instabilities are used to characterize the instabilities and to benchmark theories. It has been difficult to image the emission region with sufficient resolution to make quantitative comparisons with theory. Direct measurement of the emission region would yield information on ponderomotive steepening phenomena, the true emission zone of convective instabilities, and on the saturation of absolute instabilities. The increase in laser intensity caused by the filamentation instability is conjectured to elevate the levels of parametric instabilities found in high-energy laser-plasma interactions. Because the diameter of the filaments is very small (on the order of 10 {micro}m), it is impossible to image the emission sites directly and either to prove or to disprove this conjecture. The research reported here examines an alternate method of measuring the emission region of scattered light from parametric instabilities. This report provides a brief background of coherence theory by defining the relevant parameters in Section 2. A concrete example of the effect that multiple scattering sites would have on the proposed measurement is provided in Section 3. The following section briefly describes experiments that might be able to demonstrate the proposed technique. The conclusion raises the issue of coherence and its effect on the expected angular distribution of scattering light from parametric instabilities.

  3. Bandwidth Dependence of Laser Plasma Instabilities Driven by the Nike KrF Laser

    NASA Astrophysics Data System (ADS)

    Weaver, J. L.; Oh, J.; Seely, J.; Kehne, D.; Brown, C. M.; Obenschain, S.; Serlin, V.; Schmitt, A. J.; Phillips, L.; Lehmberg, R. H.; McLean, E.; Manka, C.; Feldman, U.

    2011-10-01

    The Nike krypton-fluoride (KrF) laser at the Naval Research Laboratory operates in the deep UV (248 nm) and employs beam smoothing by induced spatial incoherence (ISI). In the first ISI studies at longer wavelengths (1054 nm and 527 nm) [Obenschain, PRL 62, 768(1989);Mostovych, PRL, 59, 1193(1987); Peyser, Phys. Fluids B 3, 1479(1991)], stimulated Raman scattering, stimulated Brillouin scattering, and the two plasmon decay instability were reduced when wide bandwidth ISI (δν / ν ~ 0.03-0.19%) pulses irradiated targets at moderate to high intensities (1014-1015W/cm2) . Recent Nike work showed that the threshold for quarter critical instabilities increased with the expected wavelength scaling, without accounting for the large bandwidth (δν ~ 1-3 THz). New experiments will compare laser plasma instabilities (LPI) driven by narrower bandwidth pulses to those observed with the standard operation. The bandwidth of KrF lasers can be reduced by adding narrow filters (etalons or gratings) in the initial stages of the laser. This talk will discuss the method used to narrow the output spectrum of Nike, the laser performance for this new operating mode, and target observations of LPI in planar CH targets. Work supported by DoE/NNSA.

  4. Laser-Plasma Interactions on NIKE and the Fusion Test Facility

    NASA Astrophysics Data System (ADS)

    Phillips, Lee; Weaver, James

    2008-11-01

    Recent proposed designs for a Fusion Test Facility (FTF) (Obenchain et al., Phys. Plasmas 13 056320 (2006)) for direct-drive ICF targets for energy applications involve high implosion velocities combined with higher laser irradiances. The use of high irradiances increases the likelihood of deleterious laser plasma instabilities (LPI) but the proposed use of a 248 nm KrF laser to drive these targets is expected to minimize the LPI risk. We examine, using simulation results from NRL's FAST hydrocode, the proposed operational regimes of the FTF in relation to the thresholds for the SRS, SBS, and 2-plasmon instabilities. Simulations are also used to help design and interpret ongoing experiments being conducted at NRL's NIKE facility for the purpose of generating and studying LPI. Target geometries and laser pulseshapes were devised in order to create plasma conditions with long scalelengths and low electron temperatures that allow the growth of parametric instabilities. These simulations include the effects of finite beam angles through the use of raytracing.

  5. Design of an Experiment to Observe Laser-Plasma Interactions on NIKE

    NASA Astrophysics Data System (ADS)

    Phillips, L.; Weaver, J.; Manheimer, W.; Zalesak, S.; Schmitt, A.; Fyfe, D.; Afeyan, B.; Charbonneau-Lefort, M.

    2007-11-01

    Recent proposed designs (Obenschain et al., Phys. Plasmas 13 056320 (2006)) for direct-drive ICF targets for energy applications involve high implosion velocities combined with higher laser irradiances. The use of high irradiances increases the likelihood of deleterious laser plasma instabilities (LPI) that may lead, for example, to the generation of fast electrons. The proposed use of a 248 nm KrF laser to drive these targets is expected to minimize LPI; this is being studied by experiments at NRL's NIKE facility. We used a modification of the FAST code that models laser pulses with arbitrary spatial and temporal profiles to assist in designing these experiments. The goal is to design targets and pulseshapes to create plasma conditions that will produce sufficient growth of LPI to be observable on NIKE. Using, for example, a cryogenic DT target that is heated by a brief pulse and allowed to expand freely before interacting with a second, high-intensity pulse, allows the development of long scalelengths at low electron temperatures and leads to a predicted 20-efold growth in two-plasmon amplitude.

  6. Studies of bandwidth dependence of laser plasma instabilities driven by the Nike laser

    NASA Astrophysics Data System (ADS)

    Weaver, J.; Kehne, D.; Obenschain, S.; Serlin, V.; Schmitt, A. J.; Oh, J.; Lehmberg, R. H.; Brown, C. M.; Seely, J.; Feldman, U.

    2012-10-01

    Experiments at the Nike laser facility of the Naval Research Laboratory are exploring the influence of laser bandwidth on laser plasma instabilities (LPI) driven by a deep ultraviolet pump (248 nm) that incorporates beam smoothing by induced spatial incoherence (ISI). In early ISI studies with longer wavelength Nd:glass lasers (1054 nm and 527 nm),footnotetextObenschain, PRL 62(1989);Mostovych, PRL 62(1987);Peyser, Phys. Fluids B 3(1991). stimulated Raman scattering, stimulated Brillouin scattering, and the two plasmon decay instability were reduced when wide bandwidth ISI (δν/ν˜0.03-0.19%) pulses irradiated targets at moderate to high intensities (10^14-10^15 W/cm^2). The current studies will compare the emission signatures of LPI from planar CH targets during Nike operation at large bandwidth (δν˜1THz) to observations for narrower bandwidth operation (δν˜0.1-0.3THz). These studies will help clarify the relative importance of the short wavelength and wide bandwidth to the increased LPI intensity thresholds observed at Nike. New pulse shapes are being used to generate plasmas with larger electron density scale-lengths that are closer to conditions during pellet implosions for direct drive inertial confinement fusion.

  7. Spectroscopic diagnostics of plume rebound and shockwave dynamics of confined aluminum laser plasma plumes

    SciTech Connect

    Yeates, P.; Kennedy, E. T.

    2011-06-15

    Generation and expansion dynamics of aluminum laser plasma plumes generated between parallel plates of varying separation ({Delta}Z = 2.0, 3.2, 4.0, and 5.6 mm), which confined plume expansion normal to the ablation surface, were diagnosed. Space and time resolved visible emission spectroscopy in the spectral range {lambda} = 355-470 nm and time gated visible imaging were employed to record emission spectra and plume dynamics. Space and time resolved profiles of N{sub e} (the electron density), T{sub e} (the electron temperature), and T{sub ionz} (the ionization temperature) were compared for different positions in the plasma plume. Significant modifications of the profiles of the above parameters were observed for plasma-surface collisions at the inner surface of the front plate, which formed a barrier to the free expansion of the plasma plume generated by the laser light on the surface of the back plate. Shockwave generation at the collision interface resulted in delayed compression of the low-density plasma plume near the inner ablation surface, at late stages in the plasma history. Upon exiting the cavity formed by the two plates, through an aperture in the front plate, the plasma plume underwent a second phase of free expansion.

  8. Towards modeling of nonlinear laser-plasma interactions with hydrocodes: the thick-ray approach.

    PubMed

    Colaïtis, A; Duchateau, G; Nicolaï, P; Tikhonchuk, V

    2014-03-01

    This paper deals with the computation of laser beam intensity in large-scale radiative hydrocodes applied to the modeling of nonlinear laser-plasma interactions (LPIs) in inertial confinement fusion (ICF). The paraxial complex geometrical optics (PCGO) is adapted for light waves in an inhomogeneous medium and modified to include the inverse bremsstrahlung absorption and the ponderomotive force. This thick-ray model is compared to the standard ray-tracing (RT) approach, both in the chic code. The PCGO model leads to different power deposition patterns and better diffraction modeling compared to standard RT codes. The intensity-reconstruction technique used in RT codes to model nonlinear LPI leads to artificial filamentation and fails to reproduce realistic ponderomotive self-focusing distances, intensity amplifications, and density channel depletions, whereas PCGO succeeds. Bundles of Gaussian thick rays can be used to model realistic non-Gaussian ICF beams. The PCGO approach is expected to improve the accuracy of ICF simulations and serve as a basis to implement diverse LPI effects in large-scale hydrocodes. PMID:24730950

  9. Laser-plasma interactions in NIF-scale plasmas (HLP5 and HLP6)

    SciTech Connect

    MacGowan, B.; Berger, R.; Fernandez, J.

    1996-06-01

    The understanding of laser-plasma interactions in ignition-scale inertial confinement fusion (ICF) hohlraum targets is important for the success of the proposed National Ignition Facility (NIF). The success of an indirect-drive ICF ignition experiment depends on the ability to predict and control the history and spatial distribution of the x-radiation produced by the laser beams that are absorbed by the inside of the hohlraum wall. Only by controlling the symmetry of this x-ray drive is it possible to obtain the implosion symmetry in the fusion pellet necessary for ignition. The larger hohlraums and longer time scales required for ignition-scale targets result in the presence of several millimeters of plasma (electron density n{sub e} {approximately} 0.1 n{sub c} {approximately} 10{sup 21} cm{sup {minus}3}), through which the 3{omega} (351-nm) laser beams must propagate before they are absorbed at the hohlraum wall. Hydrodynamic simulations show this plasma to be very uniform [density-gradient scalelength L{sub n} = n{sub e}(dn{sub e}/dx){sup {minus}1}{approximately} 2mm] and to exhibit low velocity gradients [velocity-gradient scale-length L{sub v} = c{sub s}(dv/dx){sup {minus}1} > 6 mm].

  10. The development of laser-plasma interaction program LAP3D on thousands of processors

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoyan; Hao, Liang; Liu, Zhanjun; Zheng, Chunyang; Li, Bin; Guo, Hong

    2015-08-01

    Modeling laser-plasma interaction (LPI) processes in real-size experiments scale is recognized as a challenging task. For explorering the influence of various instabilities in LPI processes, a three-dimensional laser and plasma code (LAP3D) has been developed, which includes filamentation, stimulated Brillouin backscattering (SBS), stimulated Raman backscattering (SRS), non-local heat transport and plasmas flow computation modules. In this program, a second-order upwind scheme is applied to solve the plasma equations which are represented by an Euler fluid model. Operator splitting method is used for solving the equations of the light wave propagation, where the Fast Fourier translation (FFT) is applied to compute the diffraction operator and the coordinate translations is used to solve the acoustic wave equation. The coupled terms of the different physics processes are computed by the second-order interpolations algorithm. In order to simulate the LPI processes in massively parallel computers well, several parallel techniques are used, such as the coupled parallel algorithm of FFT and fluid numerical computation, the load balance algorithm, and the data transfer algorithm. Now the phenomena of filamentation, SBS and SRS have been studied in low-density plasma successfully with LAP3D. Scalability of the program is demonstrated with a parallel efficiency above 50% on about ten thousand of processors.

  11. Laser plasma of poly (methyl methacrylate) in air: modeling and experiment

    NASA Astrophysics Data System (ADS)

    Zakharov, L. A.; Bulgakova, N. M.; Tel'Minov, A. E.; Panchenko, A. N.; Shulepov, M. A.

    2010-09-01

    Experimental and theoretical studies on laser ablation of polymers (PMMA, polyimide) have been performed in a wide range of CO2-laser fluences. Evolution of polymer laser plume in air has been investigated with simultaneous registration of radiation spectra of the ablation products, spatial dynamics of plasma flare, and temporal behavior of plasma emission on separate spectral lines. It has been found that spectral lines have intensity peak after laser pulse termination while plasma emission spectra are similar to those of organic material combusting. The results confirm that combustion of the laser-vaporized polymers occurs in the plasma plume. A thermo-chemical model of heating and ablation of organic polymers by CO2 laser pulses has been developed which takes into account attenuation of radiation in laser plasmas and chemical processes leading to heating the plume of the ablation products. Temperature evolution in the irradiated sample, ablation dynamics, and laser beam attenuation are analyzed. The modeling results are compared with the experimental data on high-speed imaging of the plasma plume. The effect of the formation of a "plasma pipe" is revealed under polymer ablation in air under normal conditions.

  12. High brightness EUV sources based on laser plasma at using droplet liquid metal target

    NASA Astrophysics Data System (ADS)

    Vinokhodov, A. Yu; Krivokorytov, M. S.; Sidelnikov, Yu V.; Krivtsun, V. M.; Medvedev, V. V.; Koshelev, K. N.

    2016-05-01

    We present the study of a source of extreme ultraviolet (EUV) radiation based on laser plasma generated due to the interaction of radiation from a nanosecond Nd : YAG laser with a liquidmetal droplet target consisting of a low-temperature eutectic indium–tin alloy. The generator of droplets is constructed using a commercial nozzle and operates on the principle of forced capillary jet decomposition. Long-term spatial stability of the centre-of-mass position of the droplet with the root-mean-square deviation of ~0.5 μm is demonstrated. The use of a low-temperature working substance instead of pure tin increases the reliability and lifetime of the droplet generator. For the time- and space-averaged power density of laser radiation on the droplet target 4 × 1011 W cm-2 and the diameter of radiating plasma ~80 μm, the mean efficiency of conversion of laser energy into the energy of EUV radiation at 13.5 +/- 0.135 nm equal to 2.3% (2π sr)-1 is achieved. Using the doublepulse method, we have modelled the repetitively pulsed regime of the source operation and demonstrated the possibility of its stable functioning with the repetition rate up to 8 kHz for the droplet generation repetition rate of more than 32 kHz, which will allow the source brightness to be as large as ~0.96 kW (mm2 sr)-1.

  13. Laser Plasma Soft X-Ray Contact Microscopy of Polymer Composites

    NASA Astrophysics Data System (ADS)

    Azuma, Hirozumi; Takeichi, Akihiro; Noda, Shoji

    1994-08-01

    Microstructures of polymer composites are observed with a good contrast and with a submicron spatial resolution by contact soft X-ray microscopy with a laser plasma as a soft X-ray source. An iron target was irradiated by a YAG laser ( 2ω=532 nm, 0.4 J) at laser power density of 2.5×1012 W/cm2 and the emitted soft X-rays were filtered with a thin aluminum foil. For a 0.1-µ m-thick poly acrylonitrile-butadiene-styrene specimen, poly-butadiene or copolymer of butadiene spheres of about 500 nm diameter, which are selectively stained with osmium, is observed with soft X-rays in the wavelength region between 17 and 20 nm. For a 4-µ m-thick polyvinyl chloride film specimen formed by polymer powder compaction, peripheral areas of holes, grain boundaries, and areas probably degraded by HCl reduction are observed with soft X-rays in the wavelength region mainly around 2 nm.

  14. Quantitative Kα line spectroscopy for energy transport in ultra-intense laser plasma interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Nishimura, H.; Fujioka, S.; Arikawa, Y.; Nakai, M.; Chen, H.; Park, J.; Williams, G. J.; Ozaki, T.; Shiraga, H.; Kojima, S.; Johzaki, T.; Sunahara, A.; Miyanaga, N.; Kawanaka, J.; Nakata, Y.; Jitsuno, T.; Azechi, H.

    2016-03-01

    Absolute Ka line spectroscopy is proposed for studying laser-plasma interactions taking place in the cone-guided fast ignition targets. X-ray spectra ranging from 20 to 100 keV were quantitatively measured with a Laue spectrometer. The absolute sensitivities of the Laue spectrometer system were calibrated using pre-characterized laser-produced x-ray sources and radioisotopes. The integrated reflectivity for the crystal is in good agreement with predictions by an open code for x-ray diffraction. The energy transfer efficiency from incident laser beams to hot electrons, as the energy transfer agency, is derived as a consequence of this work. The absolute yield of Au and Ta Ka lines were measured in the fast ignition experimental campaign performed at Institute of Laser Engineering, Osaka University. Applying the hot electron spectrum information from the electron spectrometer, an energy transfer efficiency of the incident LFEX [1], a kJ-class PW laser, to hot electrons was derived for a planar and cone-guided geometry.

  15. The development of laser-plasma interaction program LAP3D on thousands of processors

    SciTech Connect

    Hu, Xiaoyan Hao, Liang; Liu, Zhanjun; Zheng, Chunyang; Li, Bin Guo, Hong

    2015-08-15

    Modeling laser-plasma interaction (LPI) processes in real-size experiments scale is recognized as a challenging task. For explorering the influence of various instabilities in LPI processes, a three-dimensional laser and plasma code (LAP3D) has been developed, which includes filamentation, stimulated Brillouin backscattering (SBS), stimulated Raman backscattering (SRS), non-local heat transport and plasmas flow computation modules. In this program, a second-order upwind scheme is applied to solve the plasma equations which are represented by an Euler fluid model. Operator splitting method is used for solving the equations of the light wave propagation, where the Fast Fourier translation (FFT) is applied to compute the diffraction operator and the coordinate translations is used to solve the acoustic wave equation. The coupled terms of the different physics processes are computed by the second-order interpolations algorithm. In order to simulate the LPI processes in massively parallel computers well, several parallel techniques are used, such as the coupled parallel algorithm of FFT and fluid numerical computation, the load balance algorithm, and the data transfer algorithm. Now the phenomena of filamentation, SBS and SRS have been studied in low-density plasma successfully with LAP3D. Scalability of the program is demonstrated with a parallel efficiency above 50% on about ten thousand of processors.

  16. Target dependent femtosecond laser plasma implantation dynamics in enabling silica for high density erbium doping.

    PubMed

    Chandrappan, Jayakrishnan; Murray, Matthew; Kakkar, Tarun; Petrik, Peter; Agocs, Emil; Zolnai, Zsolt; Steenson, D P; Jha, Animesh; Jose, Gin

    2015-01-01

    Chemical dissimilarity of tellurium oxide with silica glass increases phase separation and crystallization tendency when mixed and melted for making a glass. We report a novel technique for incorporating an Er(3+)-doped tellurite glass composition into silica substrates through a femtosecond (fs) laser generated plasma assisted process. The engineered material consequently exhibits the spectroscopic properties of Er(3+)-ions, which are unachievable in pure silica and implies this as an ideal material for integrated photonics platforms. Formation of a well-defined metastable and homogeneous glass structure with Er(3+)-ions in a silica network, modified with tellurite has been characterized using high-resolution cross-sectional transmission electron microscopy (HRTEM). The chemical and structural analyses using HRTEM, Rutherford backscattering spectrometry (RBS) and laser excitation techniques, confirm that such fs-laser plasma implanted glasses may be engineered for significantly higher concentration of Er(3+)-ions without clustering, validated by the record high lifetime-density product 0.96 × 10(19) s.cm(-3). Characterization of planar optical layers and photoluminescence emission spectra were undertaken to determine their thickness, refractive indices and photoluminescence properties, as a function of Er(3+) concentration via different target glasses. The increased Er(3+) content in the target glass enhance the refractive index and photoluminescence intensity of the modified silica layer whilst the lifetime and thickness decrease. PMID:26370060

  17. DNA strand breaks induced by soft X-ray pulses from a compact laser plasma source

    NASA Astrophysics Data System (ADS)

    Adjei, Daniel; Wiechec, Anna; Wachulak, Przemyslaw; Ayele, Mesfin Getachew; Lekki, Janusz; Kwiatek, Wojciech M.; Bartnik, Andrzej; Davídková, Marie; Vyšín, Luděk; Juha, Libor; Pina, Ladislav; Fiedorowicz, Henryk

    2016-03-01

    Application of a compact laser plasma source of soft X-rays in radiobiology studies is demonstrated. The source is based on a laser produced plasma as a result of irradiation of a double-stream gas puff target with nanosecond laser pulses from a commercially available Nd:YAG laser. The source allows irradiation of samples with soft X-ray pulses in the "water window" spectral range (wavelength: 2.3-4.4 nm; photon energy: 280-560 eV) in vacuum or a helium atmosphere at very high-dose rates and doses exceeding the kGy level. Single-strand breaks (SSB) and double-strand breaks (DBS) induced in DNA plasmids pBR322 and pUC19 have been measured. The different conformations of the plasmid DNA were separated by agarose gel electrophoresis. An exponential decrease in the supercoiled form with an increase in linear and relaxed forms of the plasmids has been observed as a function of increasing photon fluence. Significant difference between SSB and DSB in case of wet and dry samples was observed that is connected with the production of free radicals in the wet sample by soft X-ray photons and subsequent affecting the plasmid DNA. Therefore, the new source was validated to be useful for radiobiology experiments.

  18. X-ray Spectral Measurements of the JMAR High-Power Laser-plasma Source

    NASA Astrophysics Data System (ADS)

    Whitlock, Robert R.; Dozier, Charles M.; Newman, Daniel A.; Turcu, I. C. Edmond; Gaeta, Celestino J.; Cassidy, Kelly L.; Powers, Michael F.; Kleindolph, Thomas; Morris, James H.; Forber, Richard A.

    2002-10-01

    X-ray spectra of Cu plasmas at the focus of a four-beam, solid-state diode-pumped laser have been recorded. This laser-plasma X-ray source is being developed for JMAR's lithography systems aimed at high- performance semiconductor integrated circuits. The unique simultaneous overlay of the four sub-nanosecond laser beams at 300 Hertz produces a bright, point-plasma X-ray source. PIN diode measurements of the X-ray output indicate that the conversion efficiency (ratio of X-ray emission energy into 2π steradians to incident laser energy) was approximately 9 percent with average X-ray power yields of greater than 10 Watts. Spectra were recorded on calibrated Kodak DEF film in a curved-crystal spectrograph. A KAP crystal (2d = 26.6 Angstroms) was used to disperse the 900 eV to 3000 eV spectral energies onto the film. Preliminary examination of the films indicated the existence of Cu and Cu XX ionization states. Additional spectra as a function of laser input power were also recorded to investigate potential changes in X-ray yields. These films are currently being analyzed. The analysis of the spectra provide absolute line and continuum intensities, and total X-ray output in the measured spectral range.

  19. High brightness EUV sources based on laser plasma at using droplet liquid metal target

    NASA Astrophysics Data System (ADS)

    Vinokhodov, A. Yu; Krivokorytov, M. S.; Sidelnikov, Yu V.; Krivtsun, V. M.; Medvedev, V. V.; Koshelev, K. N.

    2016-05-01

    We present the study of a source of extreme ultraviolet (EUV) radiation based on laser plasma generated due to the interaction of radiation from a nanosecond Nd : YAG laser with a liquidmetal droplet target consisting of a low-temperature eutectic indium–tin alloy. The generator of droplets is constructed using a commercial nozzle and operates on the principle of forced capillary jet decomposition. Long-term spatial stability of the centre-of-mass position of the droplet with the root-mean-square deviation of ~0.5 μm is demonstrated. The use of a low-temperature working substance instead of pure tin increases the reliability and lifetime of the droplet generator. For the time- and space-averaged power density of laser radiation on the droplet target 4 × 1011 W cm-2 and the diameter of radiating plasma ~80 μm, the mean efficiency of conversion of laser energy into the energy of EUV radiation at 13.5 ± 0.135 nm equal to 2.3% (2π sr)-1 is achieved. Using the doublepulse method, we have modelled the repetitively pulsed regime of the source operation and demonstrated the possibility of its stable functioning with the repetition rate up to 8 kHz for the droplet generation repetition rate of more than 32 kHz, which will allow the source brightness to be as large as ~0.96 kW (mm2 sr)-1.

  20. Investigations of laser plasmas dynamics by means of real and virtual Langmuir probes

    SciTech Connect

    Gambino, N.; Mascali, D.; Tudisco, S.; Anzalone, A.; Gammino, S.; Musumeci, F.; Spitaleri, A.

    2011-07-01

    In this paper we propose a novel technique for LPP-Laser Produced Plasmas investigation, combining high time resolved measurements using compact Langmuir Probes with the output of a theoretical model called HYBLAS developed on purpose, which is able to simulate the charged particles collected by a so-called virtual probe. It will be shown that with an appropriate experimental set-up and with the use of a Matlab software able to accurately analyze the experimental I-V curves, laser plasmas can be investigated properly even if the probe is placed very close to the target surface. This permits not only to study the plume expansion with a high temporal resolution, but also to estimate correctly the self-generated coulomb electric field inside the plume and to detect the inner structure of the the first upcoming expanding plasma. HYBLAS is able to predict and describe the plume expansion at relatively low power densities and is a powerful method to compare directly the experimental current signals with the numerical results if the initial conditions are settled properly. A direct comparison of the theoretical data with the experimental ones realized on different metal targets shows that our method is able to predict properly the overall plasma expansion in the nanosecond laser pulse duration regime. The virtual probe method was moreover tested by comparing the numerical results with another numerical code called MULTI, which simulate the expansion by combining the hydrodynamics equations to a multigroup method in order to include the radiation transport. (authors)