Science.gov

Sample records for lcls cavity bpm

  1. A high resolution cavity BPM for the CLIC Test Facility

    SciTech Connect

    Chritin, N.; Schmickler, H.; Soby, L.; Lunin, A.; Solyak, N.; Wendt, M.; Yakovlev, V.; /Fermilab

    2010-08-01

    In frame of the development of a high resolution BPM system for the CLIC Main Linac we present the design of a cavity BPM prototype. It consists of a waveguide loaded dipole mode resonator and a monopole mode reference cavity, both operating at 15 GHz, to be compatible with the bunch frequencies at the CLIC Test Facility. Requirements, design concept, numerical analysis, and practical considerations are discussed.

  2. Cavity BPM System Tests for the ILC Spectrometer

    SciTech Connect

    Slater, M.

    2007-12-21

    The main physics program of the International Linear Collider (ILC) requires a measurement of the beam energy at the interaction point with an accuracy of 10{sup -4} or better. To achieve this goal a magnetic spectrometer using high resolution beam position monitors (BPMs) has been proposed. This paper reports on the cavity BPM system that was deployed to test this proposal. We demonstrate sub-micron resolution and micron level stability over 20 hours for a 1 m long BPM triplet. We find micron-level stability over 1 hour for 3 BPM stations distributed over a 30 m long baseline. The understanding of the behavior and response of the BPMs gained from this work has allowed full spectrometer tests to be carried out.

  3. Linac Coherent Light Source Undulator RF BPM System

    SciTech Connect

    Lill, R.M.; Morrison, L.H.; Waldschmidt, G.J.; Walters, D.R.; Johnson, R.; Li, Z.; Smith, S.; Straumann, T.; /SLAC

    2007-04-17

    The Linac Coherent Light Source (LCLS) will be the world's first x-ray free-electron laser (FEL) when it becomes operational in 2009. The LCLS is currently in the construction phase. The beam position monitor (BPM) system planned for the LCLS undulator will incorporate a high-resolution X-band cavity BPM system described in this paper. The BPM system will provide high-resolution measurements of the electron beam trajectory on a pulse-to-pulse basis and over many shots. The X-band cavity BPM size, simple fabrication, and high resolution make it an ideal choice for LCLS beam position detection. We will discuss the system specifications, design, and prototype test results.

  4. A novel electromagnetic design and a new manufacturing process for the cavity BPM (Beam Position Monitor)

    NASA Astrophysics Data System (ADS)

    Dal Forno, Massimo; Craievich, Paolo; Baruzzo, Roberto; De Monte, Raffaele; Ferianis, Mario; Lamanna, Giuseppe; Vescovo, Roberto

    2012-01-01

    The Cavity Beam Position Monitor (BPM) is a beam diagnostic instrument which, in a seeded Free Electron Laser (FEL), allows the measurement of the electron beam position in a non-destructive way and with sub-micron resolution. It is composed by two resonant cavities called reference and position cavity, respectively. The measurement exploits the dipole mode that arises when the electron bunch passes off axis. In this paper we describe the Cavity BPM that has been designed and realized in the context of the FERMI@Elettra project [1]. New strategies have been adopted for the microwave design, for both the reference and the position cavities. Both cavities have been simulated by means of Ansoft HFSS [2] and CST Particle Studio [3], and have been realized using high precision lathe and wire-EDM (Electro-Discharge) machine, with a new technique that avoids the use of the sinker-EDM machine. Tuners have been used to accurately adjust the working frequencies for both cavities. The RF parameters have been estimated, and the modifications of the resonant frequencies produced by brazing and tuning have been evaluated. Finally, the Cavity BPM has been installed and tested in the presence of the electron beam.

  5. Nitrogen-doped 9-cell cavity performance in a test cryomodule for LCLS-II

    SciTech Connect

    Gonnella, D. Eichhorn, R.; Furuta, F.; Ge, M.; Hall, D.; Ho, V.; Hoffstaetter, G.; Liepe, M. O'Connell, T.; Posen, S.; Quigley, P.; Sears, J.; Veshcherevich, V.; Grassellino, A.; Romanenko, A.; Sergatskov, D. A.

    2015-01-14

    The superconducting RF linac for Linac Coherent Light Source-II calls for 1.3 GHz 9-cell cavities with an average intrinsic quality factor Q{sub 0} of 2.7 × 10{sup 10} at 2.0 K and 16 MV/m accelerating gradient. Two niobium 9 cell cavities, prepared with nitrogen-doping at Fermilab, were assembled into the Cornell Horizontal Test Cryomodule (HTC) to test cavity performance in a cryomodule that is very similar to a full LCLS-II cryomodule. The cavities met LCLS-II specifications with an average quench field of 17 MV/m and an average Q{sub 0} of 3 × 10{sup 10}. The sensitivity of the cavities' residual resistance to ambient magnetic field was determined to be 0.5 nΩ/mG during fast cool down. In two cool downs, a heater attached to one of the cavity beam tubes was used to induce large horizontal temperature gradients. Here, we report on the results of these first tests of nitrogen-doped cavities in a cryomodule, which provide critical information for the LCLS-II project.

  6. LCLS Undulator Commissioning, Alignment, and Performance

    SciTech Connect

    Nuhn, Heinz-Dieter

    2009-10-30

    The LCLS x-ray FEL has recently achieved its 1.5-Angstrom lasing and saturation goals upon first trial. This was achieved as a result of a thorough pre-beam checkout, both traditional and beam-based component alignment techniques, and high electron beam brightness. The x-ray FEL process demands very tight tolerances on the straightness of the electron beam trajectory (<5 {micro}m) through the LCLS undulator system. Tight, but less stringent tolerances of {approx}100 {micro}m rms were met for the transverse placement of the individual undulator segments with respect to the beam axis. The tolerances for electron beam straightness can only be met through a beam-based alignment (BBA) method, which is implemented using large electron energy variations and sub-micron resolution cavity beam position monitors (BPM), with precise conventional alignment used to set the starting conditions. Precision-fiducialization of components mounted on remotely adjustable girders, and special beam-finder wires (BFW) at each girder have been used to meet these challenging alignment tolerances. Longer-term girder movement due to ground motion and temperature changes are being monitored, continuously, by a unique stretched wire and hydrostatic level Alignment Diagnostics System (ADS).

  7. Quench Studies of Six High Temperature Nitrogen Doped 9 Cell Cavities for Use in the LCLS-II Baseline Prototype Cryomodule at Jefferson Laboratory

    SciTech Connect

    Palczewski, Ari; Geng, Rongli; Eremeev, Grigory; Reece, Charles

    2015-09-01

    Jefferson Lab (JLab) processed six nine-cell cavities as part of a small-scale production for LCLS-II cavity processing development utilizing the promising nitrogen-doping process. Various nitrogen-doping recipes have been scrutinized to optimize process parameters with the aim to guarantee an unloaded quality factor (Q_0) of 2.7∙1010 at an accelerating field (Eacc) of 16 MV/m at 2.0 K in the cryomodule. During the R&D phase the characteristic Q0 vs. Eacc performance curve of the cavities has been measured in JLab’s vertical test area at 2 K. The findings showed the characteristic rise of the Q0 with Eacc as expected from nitrogen-doping. Initially, five cavities achieved an average Q0 of 3.3·1010 at the limiting Eacc averaging to 16.8 MV/m, while one cavity experienced an early quench accompanied by an unusual Q_0 vs. Eacc curve. The project accounts for a cavity performance loss from the vertical dewar test (with or without the helium vessel) to the horizontal performance in a cryomodule, such that these results leave no save margin to the cryomodule specification. Consequently, a refinement of the nitrogen-doping has been initiated to guarantee an average quench field above 20 MV/m without impeding the Q_0. This paper covers the refinement work performed for each cavity, which depends on the initial results, as well as a quench analysis carried out before and after the rework during the vertical RF tests as far as applicable.

  8. Optical cavity and electron beam requirements for the operation of a 1.5 {angstrom} LCLS in a regenerative amplifier mode

    SciTech Connect

    Tatchyn, R.

    1995-12-31

    Current conceptual designs for Linac Coherent Light Sources (LCLSs) in the 100-1 {angstrom} wavelength range are based on Free Electron Lasers (FELs) that are designed to saturate in a single pass of the electron beam through the undulator. This, in practice, leads to insertion devices several tens of meters in length, which greatly dominates the component costs of the overall LCLS system. Although it is well known that amplification within a cavity would enable much shorter and more economical undulators to be employed, two major practical problems are currently adduced to discount the use of such configurations in the sub-100 {angstrom} wavelength regime: (1) the temporal jitter of the (sub-picosecond) electron bunches required for such FELs can be comparable to or larger that the durations of the bunches themselves, rendering reliable synchronization extremely difficult, and (2) the lack of optical elements of sufficient reflectivity and bandwidth out of which adequately efficient optical cavities can be constructed. In this paper we reasssess the requirements associated with these two aspects of x-ray optics as a possible approach to resolving or making more tractable the resolution of some of the basic problems involved.

  9. Small Aperture BPM to Quadrupole Assembly Tolerance Study

    SciTech Connect

    Fong, K. W.

    2010-12-07

    The LCLS injector and linac systems utilize a series of quadrupole magnets with a beam position monitor (BPM) captured in the magnet pole tips. The BPM measures the electron beam position by comparing the electrical signal from 4 electrodes and interpolating beam position from these signals. The manufacturing tolerances of the magnet and BPM are critical in determining the mechanical precision of the electrodes relative to the nominal electron beam Z-axis. This study evaluates the statistical uncertainty of the electrodes center axis relative to the nominal electron beam axis.

  10. BPM 3.0

    NASA Astrophysics Data System (ADS)

    Scheer, August-Wilhelm; Klueckmann, Joerg

    Business Process Management (BPM) is an established management discipline. Since today’s organizations expect every employee to think and act like an entrepreneur, i.e., like a manager, BPM is also increasingly becoming part of everyday operations. But merely adopting a process-based approach across the enterprise is not enough to enable BPM at every level. What is needed is a combination of organizational forms and technologies that support distributed BPM initiatives while simultaneously consolidating them company-wide. Every employee must be empowered to model and optimize their own processes. At the same time, the entire BPM community needs a platform that brings together all the individual initiatives. This is the only way to leverage the full potential of process-oriented management. In the following article, the authors describe the trends in BPM development that are turning users into process managers and supporting the creation of a BPM community.

  11. BPM System Improvements

    SciTech Connect

    Church, M.

    1991-04-24

    During the accelerator studies period of 12/90 through 1/91 the Accumulator BPM system was investigated in some detail in an effort to improve its reliability and accuracy in making closed orbit measurements. The motivation for this is to try and improve the beam energy resolution for E760. The relativistic {beta} of the {bar p} is given by {beta} = f{sub R}L/c where f{sub R} is the revolution frequency, L is the orbit length ({approx} 474050mm), and c is the speed of light. Hence, the error in {beta} is given by d{beta}/{beta} = df{sub R}/f{sub R} + dL/L. Since df{sub R}/f{sub R} is {approx} 2 x 10{sup -7}, the main contribution to the error comes from dL. During the E760 run of 5/90 to 9/90 dL was estimated to be {approx} 1mm. It is thought that this can be reduced to {approx} .25mm with proper use of the present BPM system. L is given by L = L{sub 0} + {delta}L where L{sub 0} is the accurately known orbit length of a reference orbit (extracted from an energy scan of the J/{Psi} or {Psi}{prime}), and {delta}L is the difference orbit between the current orbit and the reference orbit. SL is calculated in the 1st approximation by {delta}L = {Sigma}{sub i}C{sub i}{Sigma}{sub j}{Delta}BPM{sub ij} where {Delta}BPM{sub ij} is the horizontal difference orbit at the ith BPM in the jth sector and C{sub i} are constants depending upon the location of the BPM pickup and the strength of the quadrupoles. Table I lists the constants C{sub i}, and Fig. 1 shows a typical difference orbit, {Delta}BPM{sub ij}. These studies were all done with 'reverse protons' and concentrated on closed orbit measurements with the Accumulator horizontal BPMs. The low frequency (H=2) mode of the BPM system is used in all cases, therefore it is required that the beam be bunched with ARF3 at some level. The low frequency RF module in the BPM system had previously been modified to track the H=2 frequency.

  12. The Tail of BPM

    NASA Astrophysics Data System (ADS)

    Kruba, Steve; Meyer, Jim

    Business process management suites (BPMS's) represent one of the fastest growing segments in the software industry as organizations automate their key business processes. As this market matures, it is interesting to compare it to Chris Anderson's 'Long Tail.' Although the 2004 "Long Tail" article in Wired magazine was primarily about the media and entertainment industries, it has since been applied (and perhaps misapplied) to other markets. Analysts describe a "Tail of BPM" market that is, perhaps, several times larger than the traditional BPMS product market. This paper will draw comparisons between the concepts in Anderson's article (and subsequent book) and the BPM solutions market.

  13. High Resolution BPM for Linear Colliders

    NASA Astrophysics Data System (ADS)

    Simon, C.; Chel, S.; Luong, M.; Napoly, O.; Novo, J.; Roudier, D.; Baboi, N.; Noelle, D.; Mildner, N.; Zapfe, K.; Rouvière, N.

    2006-11-01

    A high resolution Beam Position Monitor (BPM) is necessary for the beam-based alignment systems of high energy and low emittance electron linacs. Such a monitor is developed in the framework of the European CARE/SRF programme, in a close collaboration between DESY and CEA/DSM/DAPNIA. This monitor is a radiofrequency re-entrant cavity, which can be used either at room or cryogenic temperature, in an environment where dust particle contamination has to be avoided, such as superconducting cavities in a cryomodule. A first prototype of a re-entrant BPM has already delivered measurements at 2K. inside the first cryomodule (ACC1) on the TESLA Test Facility 2 (TTF2). The performances of this BPM are analyzed both experimentally and theoretically, and the limitations of this existing system clearly identified. A new cavity and new electronics have been designed in order to improve the position resolution down to 1 μm and the damping time down to 10 ns.

  14. LCLS Injector Drive Laser

    SciTech Connect

    Dowell, D.H.; Castro, J.; Emma, P.; Frisch, J.; Gilevich, A.; Hays, G.; Hering, P.; Limborg-Deprey, C.; Loos, H.; Miahnahri, A.; White, W.; /SLAC

    2007-11-02

    Requirements for the LCLS injector drive laser present significant challenges to the design of the system. While progress has been demonstrated in spatial shape, temporal shape, UV generation and rep-rate, a laser that meets all of the LCLS specifications simultaneously has yet to be demonstrated. These challenges are compounded by the stability and reliability requirements. The drive laser and transport system has been installed and tested. We will report on the current operational state of the laser and plans for future improvements.

  15. LCLS Spectral Flux Viewer

    Energy Science and Technology Software Center (ESTSC)

    2005-10-25

    This application (FluxViewer) is a tool for displaying spectral flux data for the Linac Coherent Light Source (LCLS). This tool allows the user to view sliced spatial and energy distributions of the photons selected for specific energies and positions transverse to the beam axis.

  16. Performance of a Nanometer Resolution BPM System

    SciTech Connect

    Vogel, V; Hayano, H; Honda, Y; Terunuma, N; Urakawa, J; Kolomensky, Y; Orimoto, T; Chung, C; Fitsos, P; Gronberg, J; Walston, S; White, G; Frisch, J; May, J; McCormick, D; Ross, M; Smith, S; Smith, T; Slater, M; Ward, D; Boogert, S; Lyapin, A; Malton, S; Miller, D

    2005-10-14

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. it is important to the ongoing ILC design effort to demonstrate that these tolerances can be achieved--ideally using beam-based stability measurements. It has been estimated that an RF cavity BPM with modern waveform processing could provide a position measurement resolution of less than one nanometer. Such a system could form the basis of the desired beam-based stability measurement, as well as be used for other specialized purposes. They have developed a high resolution RF cavity BPM and associated electronics. A triplet comprised of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. The three BPMs are rigidly mounted inside an alignment frame on six variable-length struts which can be used to move the BPMs in position and angle. they have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, they have been able to demonstrate a resolution of approximately 20 nm over a dynamic range of {+-} 20 {micro}m. They report on the progress of these ongoing tests.

  17. The LCLS-II LLRF System

    SciTech Connect

    DooLittle, Lawrence; Huang, G.; Ratti, A.; Serrano, C.; Bachimanchi, Ramakrishna; Hovater, J. Curt; Babel, S.; Hong, B.; Van Winkle, D.; Chase, B.; Cullerton, E.; Varghese, P.

    2015-09-01

    The SLAC National Accelerator Laboratory is planning an upgrade (LCLS-II) to the Linear Coherent Light Source with a 4 GeV CW superconducting (SCRF) linac. The SCRF linac consists of 35 ILC style cryomodules (eight cavities each) for a total of 280 cavities. Expected cavity gradients are 16 MV/m with a loaded QL of ~ 4x107. The RF system will have 3.8 kW solid state amplifiers driving single cavities. To ensure optimum field stability a single-source single-cavity control system has been chosen. It consists of a precision four-channel cavity receiver and RF stations (Forward, Reflected and Drive signals). In order to regulate the resonant frequency variations of the cavities due to He pressure, the tuning of each cavity is controlled by a Piezo actuator and a slow stepper motor. In addition the system (LLRF-amplifier-cavity) is being modeled and cavity microphonic testing has started. This paper describes the LLRF system under consideration, including recent modeling and cavity tests.

  18. Trajectory Stability Modeling And Tolerances in the LCLS

    SciTech Connect

    Wu, J.; Emma, P.; /SLAC

    2007-04-27

    To maintain stable performance of the Linac Coherent Light Source (LCLS) x-ray free-electron laser, one must control the electron trajectory stability through the undulator to a small fraction of the beam size. BPM-based feedback loops running at 120 Hz will be effective in controlling jitter at low frequencies less than a few Hz. On the other hand, linac and injector stability tolerances must be chosen to limit jitter at higher frequencies. In this paper we study possible sources of high frequency jitter, including: (1) steering coil current regulation; (2) quadrupole magnet transverse vibrations; (3) quadrupole current regulation with transverse misalignments; (4) charge variations coupled to jitter through transverse wakefields of misaligned RF structures; and (5) bunch length variations coupled through coherent synchrotron radiation in the bunch compressor chicanes. Based on this study, we set component tolerances and estimate expected trajectory stability in the LCLS.

  19. LCLS Undulator Fiducialization Plan

    SciTech Connect

    Wolf, Zachary

    2010-11-24

    This note presents the LCLS undulator fiducialization plan. The undulators will be fiducialized in the Magnetic Measurement Facility at SLAC. The note begins by summarizing the requirements for the fiducialization. A brief discussion of the measurement equipment is presented, followed by the methods used to perform the fiducialization and check the results. This is followed by the detailed fiducialization plan in which each step is enumerated. Finally, the measurement results and data storage format are presented.

  20. LCLS Undulator Test Plan

    SciTech Connect

    Wolf, Zachary

    2010-11-24

    This note presents the test plan for the LCLS undulators. The undulators will be measured and tuned in the Magnetic Measurement Facility at SLAC. The requirements for tuning are well established and are summarized. A brief discussion of the measurement equipment is presented. This is followed by the detailed test plan in which each step is enumerated. Finally, the measurement results and storage format are presented. The LCLS consists of 33 undulator segments, hereafter referred to as undulators, plus 6 spares and one reference undulator. The undulators must be tuned to meet strict requirements. They must also be fiducialized to allow alignment with other components. This note details the plan for tuning and fiducializing the LCLS undulators. The note begins with the list of tuning and fiducialization requirements. The laboratory in which the work will be performed and the relevant equipment is then briefly described. This is followed by a detailed test plan in which all the steps of tuning and fiducialization are enumerated.

  1. Fast Beam-Based BPM Calibration

    SciTech Connect

    Bertsche, K.; Loos, H.; Nuhn, H.-D.; Peters, F.; /SLAC

    2012-10-15

    The Alignment Diagnostic System (ADS) of the LCLS undulator system indicates that the 33 undulator quadrupoles have extremely high position stability over many weeks. However, beam trajectory straightness and lasing efficiency degrade more quickly than this. A lengthy Beam Based Alignment (BBA) procedure must be executed every two to four weeks to re-optimize the X-ray beam parameters. The undulator system includes RF cavity Beam Position Monitors (RFBPMs), several of which are utilized by an automatic feedback system to align the incoming electron-beam trajectory to the undulator axis. The beam trajectory straightness degradation has been traced to electronic drifts of the gain and offset of the BPMs used in the beam feedback system. To quickly recover the trajectory straightness, we have developed a fast beam-based procedure to recalibrate the BPMs. This procedure takes advantage of the high-precision monitoring capability of the ADS, which allows highly repeatable positioning of undulator quadrupoles. This report describes the ADS, the position stability of the LCLS undulator quadrupoles, and some results of the new recovery procedure.

  2. PERFORMANCE OF A NANOMETER RESOLUTION BPM SYSTEM

    SciTech Connect

    Walston, S; Chung, C; Fitsos, P; Gronberg, J; Meller, R; Vogel, V; Hayano, H; Honda, Y; Terunuma, N; Urakawa, J; Kolomensky, Y; Orimoto, T; Boogert, S; Frisch, J; May, J; McCormick, D; Ross, M; Smith, S; Smith, T; Slater, M; Thomson, M; Ward, D; Lyapin, A; Malton, S; Miller, D; White, G

    2006-06-21

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved--ideally using beam-based stability measurements. It has been estimated that RF cavity beam position monitors (BPMs) could provide position measurement resolutions of less than one nanometer and could form the basis of the desired beam-based stability measurement. We have developed a high resolution RF cavity BPM system. A triplet of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. The three BPMs are rigidly mounted inside an alignment frame on variable-length struts which allow movement in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a calibration algorithm which is immune to beam jitter. To date, we have been able to demonstrate a resolution of approximately 20 nm over a dynamic range of +/- 20 microns. We report on the progress of these ongoing tests.

  3. Performance of a Nanometer Resolution BPM System

    SciTech Connect

    Walston, S.; Chung, C.; Fitsos, P.; Gronberg, J.; Meller, R.; Vogel, V.; Hayano, H.; Honda, Y.; Terunuma, N.; Urakawa, J.; Kolomensky, Y.; Orimoto, T.; Boogert, S.; Frisch, J.; May, J.; McCormick, D.; Ross, M.; Smith, S.; Smith, T.; White, G.; Slater, M.; /Cambridge U. /University Coll. London

    2007-04-24

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved ideally using beam-based stability measurements. It has been estimated that RF cavity beam position monitors (BPMs) could provide position measurement resolutions of less than one nanometer and could form the basis of the desired beam-based stability measurement. We have developed a high resolution RF cavity BPM system. A triplet of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. The three BPMs are rigidly mounted inside an alignment frame on variable-length struts which allow movement in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a calibration algorithm which is immune to beam jitter. To date, we have been able to demonstrate a resolution of approximately 20 nm over a dynamic range of +/- 20 microns. We report on the progress of these ongoing tests.

  4. Commissioning the LCLS Injector

    SciTech Connect

    Akre, R.; Dowell, D.; Emma, P.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Iverson, R.; Limborg-Deprey, C.; Loos, H.; Miahnahri, A.; Schmerge, J.; Turner, J.; Welch, J.; White, W.; Wu, J.; /SLAC

    2007-11-28

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) project presently under construction at SLAC. The injector section, from drive laser and RF photocathode gun through first bunch compressor chicane, was installed in fall 2006. Initial system commissioning with an electron beam was completed in August 2007, with the goal of a 1.2-micron emittance in a 1-nC bunch clearly demonstrated. The second phase of commissioning, including second bunch compressor and full linac, is planned for 2008, with FEL commissioning in 2009. We report experimental results and experience gained in the first phase of commissioning, including the photo-cathode drive laser, RF gun, photocathode, S-band and X-band RF systems, first bunch compressor, and the various beam diagnostics.

  5. LCLS Heavy Met Outgassing Tests

    SciTech Connect

    Kishiyama, K. I.

    2010-12-01

    A Heavy Met that is 95% tungsten, 3% nickel and 2% iron and sintered to 100% density and is Ultra High Vacuum (UHV) compatible is proposed for use as the X-ray slit in the Front End Enclosure and the Fixed Mask for the Linac Coherent Light Source (LCLS). The Heavy Met was tested in the LLNL Vacuum Sciences and Engineering Lab (VSEL) to determine its outgassing rate and its overall compatibility with the vacuum requirements for LCLS.

  6. The LCLS Timing Event System

    SciTech Connect

    Dusatko, John; Allison, S.; Browne, M.; Krejcik, P.; /SLAC

    2012-07-23

    The Linac Coherent Light Source requires precision timing trigger signals for various accelerator diagnostics and controls at SLAC-NAL. A new timing system has been developed that meets these requirements. This system is based on COTS hardware with a mixture of custom-designed units. An added challenge has been the requirement that the LCLS Timing System must co-exist and 'know' about the existing SLC Timing System. This paper describes the architecture, construction and performance of the LCLS timing event system.

  7. LCLS Gun Solenoid Design Considerations

    SciTech Connect

    Schmerge, John

    2010-12-10

    The LCLS photocathode rf gun requires a solenoid immediately downstream for proper emittance compensation. Such a gun and solenoid have been operational at the SSRL Gun Test Facility (GTF) for over eight years. Based on magnetic measurements and operational experience with the GTF gun solenoid multiple modifications are suggested for the LCLS gun solenoid. The modifications include adding dipole and quadrupole correctors inside the solenoid, increasing the bore to accommodate the correctors, decreasing the mirror plate thickness to allow the solenoid to move closer to the cathode, cutouts in the mirror plate to allow greater optical clearance with grazing incidence cathode illumination, utilizing pancake coil mirror images to compensate the first and second integrals of the transverse fields and incorporating a bipolar power supply to allow for proper magnet standardization and quick polarity changes. This paper describes all these modifications plus the magnetic measurements and operational experience leading to the suggested modifications.

  8. LCLS Undulator Tuning And Fiducialization

    SciTech Connect

    Wolf, Zachary; Kaplounenko, Vsevolod; Levashov, Yury; Weidemann, Achim; /SLAC

    2007-11-02

    The LCLS project at SLAC requires 40 undulators: 33 in the beam line, 6 spares, and one reference undulator. A new facility was constructed at SLAC for tuning and fiducializing the undulators. The throughput of the facility must be approximately one undulator per week. The undulator tuning has been partially automated. Fiducialization techniques have been devised. The new facility, the tuning techniques, and the fiducialization techniques will be discussed.

  9. Distribution of Heating from Untrapped HOM Radiation in the LCLS-II Cryomodules

    SciTech Connect

    Bane, Karl; Nantista, Christopher; Adolphsen, Chris; Raubenheimer, Tor; Saini, Arun; Solyak, Nikolay; Yakovlev, Vyacheslav

    2015-02-17

    The superconducting cavities in the CW linacs of LCLS-II will operate at 2 K, where cooling is very expensive. One source of heat is presented by the higher order mode (HOM) power deposited by the beam. Due to the very short bunch length, especially in the L3 region, the LCLS-II beam spectrum extends into the terahertz range. Ceramic absorbers, at 70 K between cryomodules, are meant to absorb much of this power. In this report we perform two kinds of calculations to estimate the effectiveness of the absorbers and the fractional power that remains to be removed at 2 K

  10. Distribution of Heating from Untrapped HOM Radiation in the LCLS-II Cryomodules

    DOE PAGESBeta

    Bane, Karl; Nantista, Christopher; Adolphsen, Chris; Raubenheimer, Tor; Saini, Arun; Solyak, Nikolay; Yakovlev, Vyacheslav

    2015-01-01

    The superconducting cavities in the CW linacs of LCLS-II will operate at 2 K, where cooling is very expensive. One source of heat is presented by the higher order mode (HOM) power deposited by the beam. Due to the very short bunch length, especially in the L3 region, the LCLS-II beam spectrum extends into the terahertz range. Ceramic absorbers, at 70 K between cryomodules, are meant to absorb much of this power. In this report we perform two kinds of calculations to estimate the effectiveness of the absorbers and the fractional power that remains to be removed at 2 K.

  11. A Stability of LCLS Linac Modulators

    SciTech Connect

    Decker, F.-J.; Krasnykh, A.; Morris, B.; Nguyen, M.; /SLAC

    2012-06-13

    Information concerning to a stability of LCLS RF linac modulators is allocated in this paper. In general a 'pulse-to-pulse' modulator stability (and RF phase as well) is acceptable for the LCLS commission and FEL programs. Further modulator stability improvements are possible and approaches are discussed based on our experimental results.

  12. Wp specific methylation of highly proliferated LCLs

    SciTech Connect

    Park, Jung-Hoon; Jeon, Jae-Pil; Shim, Sung-Mi; Nam, Hye-Young; Kim, Joon-Woo; Han, Bok-Ghee; Lee, Suman . E-mail: suman@cha.ac.kr

    2007-06-29

    The epigenetic regulation of viral genes may be important for the life cycle of EBV. We determined the methylation status of three viral promoters (Wp, Cp, Qp) from EBV B-lymphoblastoid cell lines (LCLs) by pyrosequencing. Our pyrosequencing data showed that the CpG region of Wp was methylated, but the others were not. Interestingly, Wp methylation was increased with proliferation of LCLs. Wp methylation was as high as 74.9% in late-passage LCLs, but 25.6% in early-passage LCLs. From two Burkitt's lymphoma cell lines, Wp specific hypermethylation was also found (>80%). Interestingly, the expression of EBNA2 gene which located directly next to Wp was associated with its methylation. Our data suggested that Wp specific methylation may be important for the indicator of the proliferation status of LCLs, and the epigenetic viral gene regulation of EBNA2 gene by Wp should be further defined possibly with other biological processes.

  13. Cavities

    MedlinePlus

    ... The tooth may hurt even without stimulation (spontaneous toothache). If irreversible damage to the pulp occurs and ... To detect cavities early, a dentist inquires about pain, examines the teeth, probes the teeth with dental instruments, and may take x-rays. People should ...

  14. Coherent Diffractive Imaging at LCLS

    NASA Astrophysics Data System (ADS)

    Schulz, Joachim

    2010-03-01

    Soft x-ray FEL light sources produce ultrafast x-ray pulses with outstanding high peak brilliance. This might enable the structure determination of proteins that cannot be crystallized. The deposited energy would destroy the molecules completely, but owing to the short pulses the destruction will ideally only happen after the termination of the pulse. In order to address the many challenges that we face in attempting molecular diffraction, we have carried out experiments in coherent diffraction from protein nanocrystals at the Linac Coherent Light Source (LCLS) at SLAC. The periodicity of these objects gives us much higher scattering signals than uncrystallized proteins would. The crystals are filtered to sizes less than 2 micron, and delivered to the pulsed X-ray beam in a liquid jet. The effects of pulse duration and fluence on the high-resolution structure of the crystals have been studied. Diffraction patterns are recorded at a repetition rate of 30 Hz with pnCCD detectors. This allows us to take 108,000 images per hour. With 2-mega-pixel-detectors this gives a data-rate of more than 400 GB per hour. The automated sorting and evaluation of hundreds of thousands images is another challenge of this kind of experiments. Preliminary results will be presented on our first LCLS experiments. This work was carried out as part of a collaboration, for which Henry Chapman is the spokesperson. The collaboration consists of CFEL DESY, Arizona State University, SLAC, Uppsala University, LLNL, The University of Melbourne, LBNL, the Max Planck Institute for Medical Research, and the Max Planck Advanced Study Group (ASG) at the CFEL. The experiments were carried out using the CAMP apparatus, which was designed and built by the Max Planck ASG at CFEL. The LCLS is operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences.

  15. Linac Energy Management for LCLS

    SciTech Connect

    Chu, Chungming; Iverson, Richard; Krejcik, Patrick; Rogind, Deborah; White, Greg; Woodley, Mark; /SLAC

    2012-07-05

    Linac Energy Management (LEM) is a control system program that scales magnet field set-point settings following a change in beam energy. LEM is necessary because changes in the number, phase, and amplitude of the active klystrons change the beam's rigidity, and therefore, to maintain constant optics, one has to change focusing gradients and bend fields accordingly. This paper describes the basic process, the control system application programs we developed for LEM, and some of the implementation lessons learned at the Linac Coherent Light Source (LCLS).

  16. Lattice function measurement with TBT BPM data

    SciTech Connect

    Yang, M.J.

    1995-06-01

    At Fermilab Main Ring some of the Beam Position Monitors (BPM) are instrumented with Turn-By-Turn (TBT) capability to record up to 1,024 consecutive turns of BPM data for each given trigger. For example, there are 9 horizontal plane and 8 vertical plane BPM`s in the sector D3 and D4. The BPM data, which records the betatron oscillation, is fitted to obtain beam parameters x, x{prime}, y, y{prime}, and {Delta}p/p, using the calculated beam line transfer matrix. The resulted TBT beam parameters (x, x{prime}) or (y, y{prime}) are fitted to ellipses to obtain the lattice function {beta}, {alpha}, and the emittance associated with the betatron oscillation. The tune of the machine can be calculated from the phase space angles of the successive turns, in the normalized phase space. The beam parameters can also be used to extract transfer matrix to be used for local and global coupling analysis. The process of fitting the BPM data produces information that can be used to diagnose problems such as calibration, noise level and polarity. Being available at every turn and at changing beam position the information carries a lot of statistical power. Since most of the BPM`s are located at high beta location only the x and y beam position information is not simultaneously available. The BPM data fitting processing essentially bridged the gap.

  17. Development of the PEFP's beam line BPM

    NASA Astrophysics Data System (ADS)

    Ryu, Jin-Yeong; Kwon, Hyeok-Jung; Jang, Ji-Ho; Kim, Han-Sung; Seol, Kyung-Tae; Cho, Yong-Sub

    2013-01-01

    The Proton Engineering Frontier Project (PEFP) has 20-MeV and 100-MeV beam lines to supply proton beams to users. A stripline-type Beam Position Monitor (BPM) was designed and fabricated in order to measure the beam's position in the beam line. The RF properties of the BPM were measured and compared with the simulation. After the sensitivity of the BPM at a test stand had been obtained, we performed a beam test in a test beam line of the PEFP 20-MeV proton linac.

  18. LCLS Undulator Quadrupole Fiducialization Plan

    SciTech Connect

    Wolf, Zachary; Levashov, Michael; Lundahl, Eric; Reese, Ed; LeCocq, Catherine; Ruland, Robert; /SLAC

    2010-11-24

    This note presents the fiducialization plan for the LCLS undulator quadrupoles. The note begins by summarizing the requirements for the fiducialization. A discussion of the measurement equipment is presented, followed by the methods used to perform the fiducialization and check the results. This is followed by the detailed fiducialization plan in which each step is enumerated. Finally, the measurement results and data storage formats are presented. The LCLS is made up of 33 assemblies consisting of an undulator, quadrupole, beam finder wire, and other components mounted on a girder. The components must be mounted in such a way that the beam passes down the axis of each component. In this note, we describe how the ideal beam axis is related to tooling balls on the quadrupole. This step, called fiducialization, is necessary because the ideal beam axis is determined magnetically, whereas tangible objects must be used to locate the quadrupole. The note begins with the list of fiducialization requirements. The laboratory in which the work will be performed and the relevant equipment is then briefly described. This is followed by a discussion of the methods used to perform the fiducialization and the methods used to check the results. A detailed fiducialization plan is presented in which all the steps of fiducialization are enumerated. A discussion of the resulting data files and directory structure concludes the note.

  19. Creating an EPICS Based Test Stand Development System for a BPM Digitizer of the Linac Coherent Light Source

    SciTech Connect

    Not Available

    2011-06-22

    The Linac Coherent Light Source (LCLS) is required to deliver a high quality electron beam for producing coherent X-rays. As a result, high resolution beam position monitoring is required. The Beam Position Monitor (BPM) digitizer acquires analog signals from the beam line and digitizes them to obtain beam position data. Although Matlab is currently being used to test the BPM digitizer?s functions and capability, the Controls Department at SLAC prefers to use Experimental Physics and Industrial Control Systems (EPICS). This paper discusses the transition of providing similar as well as enhanced functionalities, than those offered by Matlab, to test the digitizer. Altogether, the improved test stand development system can perform mathematical and statistical calculations with the waveform signals acquired from the digitizer and compute the fast Fourier transform (FFT) of the signals. Finally, logging of meaningful data into files has been added.

  20. A BPM calibration procedure using TBT data

    SciTech Connect

    Yang, M.J.; Crisp, J.; Prieto, P.; /Fermilab

    2007-06-01

    Accurate BPM calibration is crucial for lattice analysis. It is also reassuring when the calibration can be independently verified. This paper outlines a procedure that can extract BPM calibration information from TBT orbit data. The procedure is developed as an extension to the Turn-By-Turn lattice analysis [1]. Its application to data from both Recycler Ring and Main Injector (MI) at Fermilab have produced very encouraging results. Some specifics in hardware design will be mentioned to contrast that of analysis results.

  1. XAL Adoption Experience at LCLS

    SciTech Connect

    Chu, P.; Woodley, M.; Chan, A.; Chevtsov, S.; Fairley, D.; Grunhaus, E.; Iverson, R.; Krejcik, P.; White, G.; Wu, J.; Zelazny, M.; Gan, Q.; /Beijing, Inst. High Energy Phys.

    2009-12-11

    XAL is a high level accelerator application framework originally developed by the Spallation Neutron Source (SNS), Oak Ridge National Laboratory. The XAL framework provides generic hierarchical view for an accelerator as well as many utility tools. In XAL, a built-in physics model calculates either single particle or beam envelope tracking for physics parameters. Modifications to the original XAL model are necessary for the Linac Coherent Light Source (LCLS). Work was done to manipulate MAD deck output within a database in support of the XAL configuration and model. The XAL graphical user interface has been replaced by a SLAC specific design. New applications based on the framework are also discussed in this paper.

  2. Introduction to LCLS Undulator Tuning

    SciTech Connect

    Wolf, Z.

    2005-01-31

    This note gives a general introduction to undulator tuning for the LCLS. It starts with a theoretical discussion in which the equations necessary to understand undulator tuning are derived. The trajectory of an electron in an undulator and the relation between the electron motion and a radiation wave are analyzed. Common terms are defined such as slippage, K{sub eff}, and B{sub eff}. The radiation wavelength is derived. After the theoretical discussion, the results are illustrated with simulations. A program was written which gives simulated undulator field measurements along with an assortment of possible field errors. The simulated measurements are sent to the analysis program we are developing and the effect of various field errors is studied. The shims used to correct the field errors are discussed.

  3. Commissioning of the LCLS LINAC

    SciTech Connect

    Loos, H.; Akre, R.; Brachmann, A.; Decker, F.-J.; Ding, Y.; Dowell, D.; Emma, P.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Huang, Z.; Iverson, R.; Limborg-Deprey, C.; Miahnahri, A.; Molloy, S.; Nuhn, H.-D.; Turner, J.; Welch, J.; White, W.; Wu, J.; /SLAC /Stanford U., Appl. Phys. Dept.

    2010-06-11

    The Linac Coherent Light Source (LCLS) X-ray free electron laser project is currently under construction at the Stanford Linear Accelerator Center (SLAC). A new injector and upgrades to the existing accelerator were installed in two phases in 2006 and 2007. We report on the commissioning of the injector, the two new bunch compressors at 250MeV and 4.3 GeV, and transverse and longitudinal beam diagnostics up to the end of the existing linac at 13.6 GeV. The commissioning of the new transfer line from the end of the linac to the undulator is scheduled to start in November 2008 and for the undulator in March 2009 with first light to be expected in July 2009.

  4. A Study of Resonant Excitation of Longitudinal HOMs in the Cryomodules of LCLS-II

    SciTech Connect

    Bane, Karl

    2015-09-23

    The Linac Coherent Light Source (LCLS) at SLAC, the world’s first hard X-ray FEL, is being upgraded to the LCLS-II. The major new feature will be the installation of 35 cryomodules (CMs) of TESLA-type, superconducting accelerating structures, to allow for high rep-rate operation. It is envisioned that eventually the LCLS-II will be able to deliver 300 pC, 1 kA pulses of beam at a rate of 1 MHz. At a cavity temperature of 2 K, any heat generated (even on the level of a few watts) is expensive to remove. In the last linac of LCLS-II, L3—where the peak current is highest—the power radiated by the bunches in the CMs is estimated at 13.8 W (charge 300 pC option, rep rate 1 MHz). But this calculation ignores resonances that can be excited between the bunch frequency and higher order mode (HOM) frequencies in the CMs, which in principle can greatly increase this number. In the present work we calculate the multi-bunch wakefields excited in a CM of LCLS-II, in order to estimate the probability of the beam losing a given amount of power. Along theway, we find some interesting properties of the resonant interaction. In detail, we begin this report by finding the wakes experienced by bunches far back in the bunch train. Then we present a complementary approach that calculates the field amplitude excited in steady-state by a train of bunches, and show that the two approaches agree. Next we obtain the properties of the 450 longitudinal HOMs that cover the range 3–5 GHz in the CMs of LCLS-II, where we include the effects of the inter-CM ceramic dampers. At the end we apply our method using these modes.

  5. PAL-XFEL cavity beam position monitor pick-up design and beam test

    NASA Astrophysics Data System (ADS)

    Lee, Sojeong; Park, Young Jung; Kim, Changbum; Kim, Seung Hwan; Shin, Dong Cheol; Han, Jang-Hui; Ko, In Soo

    2016-08-01

    As an X-ray Free Electron Laser, PAL-XFEL is about to start beam commissioning. X-band cavity beam position monitor (BPM) is used in the PAL-XFEL undulator beam line. Prototypes of cavity BPM pick-up were designed and fabricated to test the RF characteristics. Also, the beam test of a cavity BPM pick-up was done in the Injector Test Facility (ITF). In the beam test, the raw signal properties of the cavity BPM pick-up were measured at a 200 pC bunch charge. According to the RF test and beam test results, the prototype cavity BPM pick-up design was confirmed to meet the requirements of the PAL-XFEL cavity BPM system.

  6. RHIC BPM SYSTEM MODIFICATIONS AND PERFORMANCE.

    SciTech Connect

    SATOGATA, T.; CALAGA, R.; CAMERON, P.; ET AL.

    2005-05-16

    The RHIC beam position monitor (BPM) system provides independent average orbit and turn-by-turn (TBT) position measurements. In each ring, there are 162 measurement locations per plane (horizontal and vertical) for a total of 648 BPM planes in the RHIC machine. During 2003 and 2004 shutdowns, BPM processing electronics were moved from the RHIC tunnel to controls alcoves to reduce radiation impact, and the analog signal paths of several dozen modules were modified to eliminate gain-switching relays and improve signal stability. This paper presents results of improved system performance, including stability for interaction region beam-based alignment efforts. We also summarize performance of recently-added DSP profile scan capability, and improved million-turn TBT acquisition channels for 10 Hz triplet vibration, nonlinear dynamics, and echo studies.

  7. Coherence Properties of the LCLS

    SciTech Connect

    Ocko, Samuel

    2010-08-25

    The LINAC Coherent Light Source (LCLS), an X-Ray free-electron laser(FEL) based on the self amplified spontaneous emission principle, has recently come on-line. For many users it is desirable to have an idea of the level of transverse coherence of the X-Ray beam produced. In this paper, we analyze the output of GENESIS simulations of electrons traveling through the FEL. We first test the validity of an approach that ignores the details of how the beam was produced, and instead, by assuming a Gaussian-Schell model of transverse coherence, predicts the level of transverse coherence simply through looking at the beam radius at several longitudinal slices. We then develop a Markov chain Monte Carlo approach to calculating the degree of transverse coherence, which offers a {approx}100-fold speedup compared to the brute-force algorithm previously in use. We find the beam highly coherent. Using a similar Markov chain Monte Carlo approach, we estimate the reasonability of assuming the beam to have a Gaussian-Schell model of transverse coherence, with inconclusive results.

  8. LCLS XTOD Tunnel Vacuum System (XVTS)

    SciTech Connect

    Beale, R; Duffy, P; Kishiyama, K; Mckernan, M; McMahon, D; Lewis, S; Trent, J; Tung, L; Shen, S

    2005-11-04

    The vacuum system of the XVTS (X-Ray Vacuum Transport System) for the LCLS (Linac Coherent Light Source) XTOD (X-ray Transport, Optics and Diagnostics) system has been analyzed and configured by the Lawrence Livermore National Laboratory's NTED (New Technologies Engineering Division) as requested by the SLAC/LCLS program. The system layout, detailed analyses and selection of the vacuum components for the XTOD tunnel section are presented in this preliminary design report. The vacuum system was analyzed and optimized using a coupled gas load balance model of sub-volumes of the components to be evacuated. Also included are the plans for procurement, mechanical integration, and the cost estimates.

  9. LCLS-II Undulator Tolerance Analysis

    SciTech Connect

    Nuhn, H.-D.; Marks, S.; Wu, J.; /SLAC

    2012-06-06

    The SLAC National Accelerator Laboratory is building a new FEL user facility, LCLS-II, as a major upgrade to the Linear Coherent Light Source (LCLS). The upgrade will include two new Free Electron Lasers (FELs), to generate soft (SXR) and hard x-ray (HXR) SASE FEL radiation, based on planar, variable gap hybrid undulators with two different undulator periods (SXU: 55 mm, HXU: 32 mm). An algebraic FEL tolerance analysis for the undulator lines, including tuning, alignment, and phase correction tolerances has been performed. The methods and results are presented in this paper.

  10. LCLS Far-Field Spontaneous Radiation

    Energy Science and Technology Software Center (ESTSC)

    2004-04-16

    This application (FarFieldDisplay) is a tool for displaying and analyzing far-field spontaneous spectral flux data for the Linac Coherent Light Source (LCLS) Calculated by Roman Tatchyn (Stanford University). This tool allows the user to view sliced spatial and energy distributions of the fat-field photons selected for specific energies or positions transverse to the beam axis,

  11. Microbunching phenomena in LCLS-II

    SciTech Connect

    Venturini, M.; Qiang, J.; Papadopoulos, C.; Ding, Y.; Emma, P.; Huang, Z.; Marcus, G.; Marinelli, A.; Nosochkov, Y.; Raubenheimer, T.; Wang, L.; Woodley, M.

    2015-07-14

    The microbunching instability has long been recognized as a potential limiting factor to the performance of X-ray FELs. It is of particular relevance in LCLS-II due, in part, to a layout that includes a long bypass beamline between the Linac and the undulators. Here we focus on two aspects of the instability that highlight the importance of 3D effects.

  12. RF Design of the LCLS Gun

    SciTech Connect

    Limborg-Deprey, C

    2010-12-13

    Final dimensions for the LCLS RF gun are described. This gun, referred to as the LCLS gun, is a modified version of the UCLA/BNL/SLAC 1.6 cell S-Band RF gun [1], referred to as the prototype gun. The changes include a larger mode separation (15 MHz for the LCLS gun vs. 3.5 MHz for the prototype gun), a larger radius at the iris between the 2 cells, a reduced surface field on the curvature of the iris between the two cells, Z power coupling, increased cooling channels for operation at 120 Hz, dual rf feed, deformation tuning of the full cell, and field probes in both cells. Temporal shaping of the klystron pulse, to reduce the average power dissipated in the gun, has also been adopted. By increasing the mode separation, the amplitude of the 0-mode electric field on the cathode decreases from 10% of the peak on axis field for the prototype gun to less than 3% for the LCLS gun for the steady state fields. Beam performance is improved as shown by the PARMELA simulations. The gun should be designed to accept a future load lock system. Modifications follow the recommendations of our RF review committee [2]. Files and reference documents are compiled in Section IV.

  13. TTF3 power coupler thermal analysis for LCLS-II CW operation

    SciTech Connect

    Xiao, L.; Adolphsen, C.; Li, Z.; Nantista, C.; Raubenheimer, T.; Solyak, N.; Gonin, I.

    2015-05-13

    The TESLA 9-cell SRF cavity design has been adopted for use in the LCLS-II SRF Linac. Its TTF3 coaxial fundamental power coupler (FPC), optimized for pulsed operation in European XFEL and ILC, requires modest changes to make it suitable for LCLS-II continuous-wave (CW) operation. For LCLS-II it must handle up to 7 kW of power, fully reflected, with the maximum temperature around 450 K, the coupler bake temperature. In order to improve TTF3 FPC cooling, an increased copper plating thickness will be used on the inner conductor of the ‘warm’ section of the coupler. Also, the antenna will be shortened to achieve higher cavity Qext values. Fully 3D FPC thermal analysis has been performed using the SLAC-developed parallel finite element code suite ACE3P, which includes electromagnetic codes and an integrated electromagnetic, thermal and mechanical multi-physics code. In this paper, we present TTF3 FPC thermal analysis simulation results obtained using ACE3P as well as a comparison with measurement results.

  14. Digital signal processing the Tevatron BPM signals

    SciTech Connect

    Cancelo, G.; James, E.; Wolbers, S.; /Fermilab

    2005-05-01

    The Beam Position Monitor (TeV BPM) readout system at Fermilab's Tevatron has been updated and is currently being commissioned. The new BPMs use new analog and digital hardware to achieve better beam position measurement resolution. The new system reads signals from both ends of the existing directional stripline pickups to provide simultaneous proton and antiproton measurements. The signals provided by the two ends of the BPM pickups are processed by analog band-pass filters and sampled by 14-bit ADCs at 74.3MHz. A crucial part of this work has been the design of digital filters that process the signal. This paper describes the digital processing and estimation techniques used to optimize the beam position measurement. The BPM electronics must operate in narrow-band and wide-band modes to enable measurements of closed-orbit and turn-by-turn positions. The filtering and timing conditions of the signals are tuned accordingly for the operational modes. The analysis and the optimized result for each mode are presented.

  15. Photon Beamlines and Diagnostics at LCLS

    SciTech Connect

    Moeller, S.; Arthur, J.; Brachmann, A.; Coffee, R.; Decker, F.-J.; Edstrom, S.; Emma, P.; Feng, Y.; Fisher, S.; Fritsch, J.; Galayda, J.; Gilevich, S.; Hastings, J.; Hays, G.; Hering, P.; Huang, Z.; Iverson, R.; Krzywinski, J.; Lewis, S.; Loos, H.; Messerschmidt, M.; /SLAC /LLNL, Livermore /Argonne

    2011-02-07

    The Linac Coherent Light Source (LCLS) is the first hard-x-ray free electron laser in operation. The turn-on of LCLS was rapid and operation has been reliable. Performance has exceeded the design parameters in several areas. The photon energy output covers a range from 480 eV to over 9 keV; the pulse energy is typically 2-3 mJ, with a maximum of 4 mJ at 2 keV. Electron pulse lengths can be varied from 500 fs to shorter than 10 fs. A low-charge option at 20 pC is being explored, which delivers pulses shorter than 10 fs with a reduced pulse energy, typically around 0.2 mJ. On-demand, single-shot and multi-shot modes up to 60 Hz (planned is 120 Hz) can be made available. The photon diagnostics built for LCLS have been commissioned and provide measurements of various properties of the FEL beam, such as pulse energy, beam size and position, wavelength, and allows for intensity attenuation over the entire wavelength range. The two soft x-ray instruments, the Atomic Molecular and Optics (AMO) and Soft X-ray Material Science (SXR) stations, are fully operational and completed their second user run in mid September 2010. The third user run is scheduled from October to December 2010, and will include the first hard x-ray instrument X-ray Pump-and-Probe (XPP). Three additional hard x-ray stations will follow: CXI (Coherent X-ray Imaging) is planned to start commissioning in December 2010, the XCS (X-ray correlation spectroscopy) instrument will start in June 2011, and the station for Matter in Extreme Conditions (MEC) in 2012. A list of past and future milestones for LCLS commission and operations is shown in table 1. The LCLS hard x-ray Free Electron Laser at SLAC reported first lasing in April of 2009. Since then two successful user runs have been completed at the two soft x-ray stations. The first hard x-ray station has started commissioning in July of 2010. Beam diagnostics play an essential role for tuning the machine and delivering the requested beam properties to the

  16. Development of a BPM Lock-In Diagnostic System

    SciTech Connect

    Richard Dickson

    2003-05-12

    A system has been developed for the acquisition and analysis of high rate, time coherent BPM data across the Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF). This system will allow the acquisition of Beam Position Monitor (BPM) position and intensity information at a rate in excess 7 KHz for approximately 200 BPMs in a time synchronous manner. By inducing minute sinusoidal transverse beam motion in the CEBAF injector, with known phase relative to the synchronized BPM acquisition, it is possible to derive several types of useful information. Analysis of the BPM intensity data, which is proportional to beam current, by beating the signal with an in-phase sinusoidal representation of the transverse kick can localize beam scraping to a particular BPM. Similarly, real-time optics information may be deduced with an analysis of BPM position data. This paper will detail the frequency lock-in technique applied and present status.

  17. RHIC BPM SYSTEM PERFORMANCE, UPGRADES, AND TOOLS.

    SciTech Connect

    SATOGATA,T.; CAMERON,P.; CERNIGLIA,P.; CUPOLO,J.; DAWSON,C.; DEGEN,C.; MEAD,J.; PTITSYN,V.; SIKORA,R.

    2002-06-02

    During the RHIC 2001-2 run, the beam position monitor (BPM) system provided independent average orbit and turn-by-turn (TBT) position measurements at 162 locations in each measurement plane and RHIC ring. TBT acquisition was successfully upgraded from 128 turns to 1024 turns per trigger, including injection. Closed orbits were acquired and automatically archived every two seconds through each acceleration ramp for orbit analysis and feed-forward orbit correction. This paper presents the overall system performance during this run, including precision, reproducibility, radiation damage, and analysis tools. We also summarize future plans, including million-turn TBT acquisition for nonlinear dynamics studies.

  18. Algorithms to Automate LCLS Undulator Tuning

    SciTech Connect

    Wolf, Zachary

    2010-12-03

    Automation of the LCLS undulator tuning offers many advantages to the project. Automation can make a substantial reduction in the amount of time the tuning takes. Undulator tuning is fairly complex and automation can make the final tuning less dependent on the skill of the operator. Also, algorithms are fixed and can be scrutinized and reviewed, as opposed to an individual doing the tuning by hand. This note presents algorithms implemented in a computer program written for LCLS undulator tuning. The LCLS undulators must meet the following specifications. The maximum trajectory walkoff must be less than 5 {micro}m over 10 m. The first field integral must be below 40 x 10{sup -6} Tm. The second field integral must be below 50 x 10{sup -6} Tm{sup 2}. The phase error between the electron motion and the radiation field must be less than 10 degrees in an undulator. The K parameter must have the value of 3.5000 {+-} 0.0005. The phase matching from the break regions into the undulator must be accurate to better than 10 degrees. A phase change of 113 x 2{pi} must take place over a distance of 3.656 m centered on the undulator. Achieving these requirements is the goal of the tuning process. Most of the tuning is done with Hall probe measurements. The field integrals are checked using long coil measurements. An analysis program written in Matlab takes the Hall probe measurements and computes the trajectories, phase errors, K value, etc. The analysis program and its calculation techniques were described in a previous note. In this note, a second Matlab program containing tuning algorithms is described. The algorithms to determine the required number and placement of the shims are discussed in detail. This note describes the operation of a computer program which was written to automate LCLS undulator tuning. The algorithms used to compute the shim sizes and locations are discussed.

  19. XAMPS Detectors Readout ASIC for LCLS

    SciTech Connect

    Dragone, A; Pratte, J.F.; Rehak, P.; Carini, G.A.; Herbst, R.; O'Connor, P.; Siddons, D.P.; /BNL, NSLS

    2008-12-18

    An ASIC for the readout of signals from X-ray Active Matrix Pixel Sensor (XAMPS) detectors to be used at the Linac Coherent Light Source (LCLS) is presented. The X-ray Pump Probe (XPP) instrument, for which the ASIC has been designed, requires a large input dynamic range on the order of 104 photons at 8 keV with a resolution of half a photon FWHM. Due to the size of the pixel and the length of the readout line, large input capacitance is expected, leading to stringent requirement on the noise optimization. Furthermore, the large number of pixels needed for a good position resolution and the fixed LCLS beam period impose limitations on the time available for the single pixel readout. Considering the periodic nature of the LCLS beam, the ASIC developed for this application is a time-variant system providing low-noise charge integration, filtering and correlated double sampling. In order to cope with the large input dynamic range a charge pump scheme implementing a zero-balance measurement method has been introduced. It provides an on chip 3-bit coarse digital conversion of the integrated charge. The residual charge is sampled using correlated double sampling into analog memory and measured with the required resolution. The first 64 channel prototype of the ASIC has been fabricated in TSMC CMOS 0.25 {micro}m technology. In this paper, the ASIC architecture and performances are presented.

  20. Coherent Radiation Effects in the LCLS Undulator

    SciTech Connect

    Reiche, S.; Huang, Z.; /SLAC

    2010-12-14

    For X-ray Free-Electron Lasers such as LCLS and TESLA FEL, a change in the electron energy while amplifying the FEL radiation can shift the resonance condition out of the bandwidth of the FEL. The largest sources of energy loss is the emission of incoherent undulator radiation. Because the loss per electron depends only on the undulator parameters and the beam energy, which are fixed for a given resonant wavelength, the average energy loss can be compensated for by a fixed taper of the undulator. Coherent radiation has a strong enhancement proportional to the number of electrons in the bunch for frequencies comparable to or longer than the bunch dimension. If the emitted coherent energy becomes comparable to that of the incoherent emission, it has to be included in the taper as well. However, the coherent loss depends on the bunch charge and the applied compression scheme and a change of these parameters would require a change of the taper. This imposes a limitation on the practical operation of Free-Electron Lasers, where the taper can only be adjusted manually. In this presentation we analyze the coherent emission of undulator radiation and transition undulator radiation for LCLS, and estimate whether the resulting energy losses are significant for the operation of LCLS.

  1. Undulator Radiation Damage Experience at LCLS

    SciTech Connect

    Nuhn, H. D.; Field, C.; Mao, S.; Levashov, Y.; Santana, M.; Welch, J. N.; Wolf, Z.

    2015-01-06

    The SLAC National Accelerator Laboratory has been running the Linac Coherent Light Source (LCLS), the first x-ray Free Electron Laser since 2009. Undulator magnet damage from radiation, produced by the electron beam traveling through the 133-m long straight vacuum tube, has been and is a concern. A damage measurement experiment has been performed in 2007 in order to obtain dose versus damage calibrations. Radiation reduction and detection devices have been integrated into the LCLS undulator system. The accumulated radiation dose rate was continuously monitored and recorded. In addition, undulator segments have been routinely removed from the beamline to be checked for magnetic (50 ppm, rms) and mechanic (about 0.25 µm, rms) changes. A reduction in strength of the undulator segments is being observed, at a level, which is now clearly above the noise. Recently, potential sources for the observed integrated radiation levels have been investigated. The paper discusses the results of these investigation as well as comparison between observed damage and measured dose accumulations and discusses, briefly, strategies for the new LCLS-II upgrade, which will be operating at more than 300 times larger beam rate.

  2. RHIC BPM system average orbit calculations

    SciTech Connect

    Michnoff,R.; Cerniglia, P.; Degen, C.; Hulsart, R.; et al.

    2009-05-04

    RHIC beam position monitor (BPM) system average orbit was originally calculated by averaging positions of 10000 consecutive turns for a single selected bunch. Known perturbations in RHIC particle trajectories, with multiple frequencies around 10 Hz, contribute to observed average orbit fluctuations. In 2006, the number of turns for average orbit calculations was made programmable; this was used to explore averaging over single periods near 10 Hz. Although this has provided an average orbit signal quality improvement, an average over many periods would further improve the accuracy of the measured closed orbit. A new continuous average orbit calculation was developed just prior to the 2009 RHIC run and was made operational in March 2009. This paper discusses the new algorithm and performance with beam.

  3. Operation and Upgrades of the LCLS*

    SciTech Connect

    Frisch, J.; Akre, R.; Arthur, J.; Bionta, R.; Bostedt, C.; Bozek, J.; Brachmann, A.; Bucksbaum, P.; Coffee, R.; Decker, F.-J.; Ding, Y.; Dowell, D.; Edstrom, S.; Emma, P.; Fisher, A.; Gilevich, S.; Hastings, J.; Hays, G.; Hering, P.; Huang, Z.; Iverson, R.; /SLAC /Argonne /SLAC

    2010-10-27

    The LCLS FEL began user operations in September 2009 with photon energies from 800eV to 2 KeV and pulse energies above 2 mJ. Both long pulse (50-200 femtosecond FWHM) and short pulse (<10 femtosecond FWHM at 150 uJ) pulses were delivered at user request. In addition the FEL was operated at fundamental photon energies up to 10 KeV in preparation for hard X-ray experiments. FEL operating parameters, performance and reliability results will be presented, in addition to plans for upgrades to the facility.

  4. Operational Performance of LCLS Beam Instrumentation

    SciTech Connect

    Loos, Henrik; Akre, R.; Brachmann, A.; Coffee, R.; Decker, F.-J.; Ding, Y.; Dowell, D.; Edstrom, S.; Emma, P.; Fisher, A.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Huang, Z.; Iverson, R.; Messerschmidt, M.; Miahnahri, A.; Moeller, S.; Nuhn, H.-D.; Ratner, D.; /SLAC /LLNL, Livermore

    2010-06-15

    The Linac Coherent Light Source (LCLS) X-ray FEL utilizing the last km of the SLAC linac has been operational since April 2009 and finished its first successful user run last December. The various diagnostics for electron beam properties including beam position monitors, wire scanners, beam profile monitors, and bunch length diagnostics are presented as well as diagnostics for the X-ray beam. The low emittance and ultra-short electron beam required for X-ray FEL operation has implications on the transverse and longitudinal diagnostics. The coherence effects of the beam profile monitors and the challenges of measuring fs long bunches are discussed.

  5. High-Level Application Framework for LCLS

    SciTech Connect

    Chu, P; Chevtsov, S.; Fairley, D.; Larrieu, C.; Rock, J.; Rogind, D.; White, G.; Zalazny, M.; /SLAC

    2008-04-22

    A framework for high level accelerator application software is being developed for the Linac Coherent Light Source (LCLS). The framework is based on plug-in technology developed by an open source project, Eclipse. Many existing functionalities provided by Eclipse are available to high-level applications written within this framework. The framework also contains static data storage configuration and dynamic data connectivity. Because the framework is Eclipse-based, it is highly compatible with any other Eclipse plug-ins. The entire infrastructure of the software framework will be presented. Planned applications and plug-ins based on the framework are also presented.

  6. The LAMP instrument at the LCLS

    NASA Astrophysics Data System (ADS)

    Osipov, Timur; Castagna, Jean-Charles; Bostedt, Christoph; Xiong, Hui; Ferguson, Ken; Bucher, Maximilian; Berrah, Nora

    2015-05-01

    We have commissioned and used a new instrument at the Linac Coherent Light (LCLS) Source at SLAC National Laboratory called LAMP. It consists of several detectors housed in a double chambered vacuum system. One detection scheme offered relies on the use of a double velocity map imaging (VMI) spectrometer which enables research in the gas phase such as molecular dynamics experiments. The latter are monitored via the detection of electron and ionic fragments resulting from x-ray photo-absorption of x-ray photons. With this new tool, we can record the different fragmentation pathways by measuring multi-particles ion-ion coincidences/multi-particle correlations. We can also simultaneously image the electrons momenta to capture the most detailed x-ray induced reaction in molecules and nano-systems. The other detection scheme offered consists of two imaging detectors of the pnCCD type for diffraction experiments of clusters and bio-specimens. This instrument, available to any users, has the possibility to uncover new mechanisms in physics, chemistry and biology. This work is funded in part by the Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under a SISGR grant and funds from the LCLS, funded by DOE-BES.

  7. Status of the ATF Damping Ring BPM Upgrade Project

    SciTech Connect

    Briegel, C.; Eddy, N.; Haynes, B.; May, J.; McCormick, D.; Nelson, J.; Nicklaus, D.; Prieto, P.; Rechenmacher, R.; Smith, T.; Teranuma, N.; Urakawa, J.; Voy, D.; Wendt, M.; Woodley, M.; /SLAC

    2011-12-01

    A substantial upgrade of the beam position monitors (BPM) at the ATF (Accelerator Test Facility) damping ring is currently in progress. Implementing digital read-out signal processing techniques in line with an optimized, low-noise analog downconverter, a resolution well below 1 mum could be demonstrated at 20 (of 96) upgraded BPM stations. The narrowband, high resolution BPM mode permits investigation of all types of non-linearities, imperfections and other obstacles in the machine which may limit the very low target aimed vertical beam emittance of < 2 pm. The technical status of the project, first beam measurements and an outlook to it's finalization are presented.

  8. Reliability of Operation at SLAC in the LCLS Era

    SciTech Connect

    Wienands, U.; Allen, W.B.; Colocho, W.; Erickson, R.; Stanek, M.; /SLAC

    2009-06-19

    LCLS hardware availability has been above 90% for the first two commissioning runs of the accelerator. In this paper we compare the reliability data for LCLS (availability, MTBF and MTTR) to those of PEP-II, the e{sup +}e{sup -} collider operating previously at SLAC. It may be seen that the linac availability is not significantly different now than it was before, while the availability of the whole LCLS facility is significantly higher than that of the PEP-II facility as a whole (which was about 87%). Most of the improvement is in the MTTR. Ways to improve availability towards the goal of 95% are discussed.

  9. Next Generation Instrumentation: LAMP -- LCLS - ASG - Michigan - Project for Novel Science with the LCLS FEL

    NASA Astrophysics Data System (ADS)

    Osipov, T.; Rolles, D.; Bostedt, C.; Castagna, J.-C.; Hartmann, R.; Bozek, J. D.; Schlichting, I.; Strüder, L.; Ullrich, J.; Berrah, N.

    2011-05-01

    We are designing and building the next generation multi-purpose instrumentation especially adapted to accommodate unique large-area, single-photon counting pnCCD detectors together with advanced many-particle ion and electron imaging spectrometers (reaction microscope, REMI; velocity map imaging, VMI; magnetic bottle) for simultaneous detection of scattered and fluorescent photons and charged particles in experiments at the LCLS FEL. The new end-station presents improvements to the existing CAMP instrument, such as extended range and flexibility of detector positioning and control, better vacuum level, more convenient sample changing procedure, better temperature control, more versatility with pump-probe laser in- and out-coupling, etc. The instrument will be available to any scientist and is planned to be commissioned in the second half of 2012. This work is funded by the DoE, Sc, BES, LCLS and Max Planck Society.

  10. Overview of recent trends and developments for BPM systems

    SciTech Connect

    Wendt, M.; /Fermilab

    2011-08-01

    Beam position monitoring (BPM) systems are the workhorse of beam diagnostics for almost any kind of charged particle accelerator: linear, circular or transport-lines, operating with leptons, hadrons or heavy ions. BPMs are essential for beam commissioning, accelerator fault analysis and trouble shooting, machine optics, as well as lattice measurements, and finally, for accelerator optimization, in order to achieve the ultimate beam quality. This presentation summarizes the efforts of the beam instrumentation community on recent developments and advances on BPM technologies, i.e. BPM pickup monitors and front-end electronics (analog and digital). Principles, examples, and state-of-the-art status on various BPM techniques, serving hadron and heavy ion machines, sync light synchrotron's, as well as electron linacs for FEL or HEP applications are outlined.

  11. Initial Commissioning Experience With the LCLS Injector

    SciTech Connect

    Akre, R.; Castro, J.; Ding, Y.; Dowell, D.H.; Emma, P.; Frisch, J.; Gilevich, A.; Hays, G.; Hering, P.; Huang, Z.; Iverson, R.; Krejcik, P.; Limborg-Deprey, C.; Loos, H.; Miahnahri, A.; Rivetta, C.; Saleski, M.; Schmerge, J.F.; Schultz, D.; Turner, J.; Welch, J.; /SLAC /DESY

    2007-11-02

    The Linac Coherent Light Source (LCLS) is a SASE xray Free-Electron Laser (FEL) project presently under construction at SLAC [1]. The injector section, from drive-laser and RF photocathode gun through first bunch compressor chicane, was installed in fall 2006. Initial system commissioning with an electron beam is taking place during the spring and summer of 2007. The second phase of construction, including second bunch compressor and full linac, will begin later, in the fall of 2007. We report here on experience gained during the first phase of machine commissioning, including RF photocathode gun, linac booster section, S-band and X-band RF systems, first bunch compressor, and the various beam diagnostics.

  12. Commissioning Results of the LCLS Injector

    SciTech Connect

    Dowell, D.H.; Akre, R.; Ding, Y.; Emma, P.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Huang, Z.; Iverson, R.; Limborg-Deprey, C.; Loos, H.; Miahnahri, A.; Schmerge, J.; Turner, J.; Welch, J.; White, W.; Wu, J.; Frohlich, L.; Limberg, T.; Prat, E.; /DESY

    2007-11-16

    The Linac Coherent Light Source (LCLS) is a SASE xray Free-Electron Laser (FEL) project presently under construction at SLAC. The injector section, from drive-laser and RF photocathode gun through first bunch compressor chicane, was installed in fall 2006. Initial system commissioning with an electron beam has recently been completed. The second phase of construction, including second bunch compressor and full linac, is planned for 2008. In this paper, we report experimental results and experience gained during the first phase of machine commissioning. This includes the cathode, drive laser, RF photocathode gun, linac booster section, S-band and X-band RF systems, first bunch compressor, and the various beam diagnostics.

  13. LCLS LLRF Upgrades to the SLAC Linac

    SciTech Connect

    Akre, R.; Dowell, D.; Emma, P.; Frisch, J.; Hong, B.; Kotturi, K.; Krejcik, P.; Wu, J.; Byrd, J.; /LBL, Berkeley

    2007-10-04

    The Linac Coherent Light Source (LCLS) at SLAC will be the brightest X-ray laser in the world when it comes on line. In order to achieve the brightness a 200fS length electron bunch is passed through an undulator. To create the 200fS, 3kA bunch, a 10pS electron bunch, created from a photo cathode in an RF gun, is run off crest on the RF to set up a position to energy correlation. The bunch is then compressed by chicanes. The stability of the RF system is critical in setting up the position to energy correlation. Specifications derived from simulations require the RF system to be stable to below 200fS in several critical injector stations and the last kilometer of linac. The SLAC linac RF system is being upgraded to meet these requirements.

  14. Multi-Device Knob Utility for LCLS

    SciTech Connect

    Zelazny, Michael; Chevtsov, Sergei; Chu, Chungming Paul; Fairley, Diane; Krejcik, Patrick; Rogind, Deborah; Smith, Howard; White, Greg; Yocky, Gerald; /SLAC

    2009-12-09

    At the SLAC National Accelerator Laboratory (SLAC) the Controls Department (CD) has developed a new Multi-Device Knob Utility (MKB) based on the Experimental Physics and Industrial Control System (EPICS) toolkit for controlling one or more Process Variables (PVs) in unison, or simultaneously, from a physical knob located in the control room, or from various software tools such as the EPICS Extensible Display Manager (EDM) or a Swing slider in Java. A group of devices are hooked up to a knob, and then the value written to the devices is a simple function of the value of the knob. This is used, most commonly, to create a bump in the electron beam for the Linac Coherent Light Source (LCLS). Control system variables typically controlled are magnetic fields, phases, and timing offsets. This paper describes the technologies used to implement this utility.

  15. The Linac Cooherent Light Source (LCLS) Accelerator

    SciTech Connect

    Wu, Juhao; Emma, P.; /SLAC

    2007-03-21

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) based on the final kilometer of the Stanford Linear Accelerator. Such an FEL requires a high energy, high brightness electron beam to drive the FEL instability to saturation. When fed by an RF-photocathode gun, and modified to include two bunch compressor chicanes, the SLAC linac will provide such a high quality beam at 14 GeV and 1-{micro}m normalized emittance. In this paper, we report on recent linac studies, including beam stability and tolerances, longitudinal and transverse feedback systems, conventional and time-resolved diagnostics, and beam collimation systems. Construction and installation of the injector through first bunch compressor will be completed by December 2006, and electron commissioning is scheduled to begin in January of 2007.

  16. Radiological Studies for the LCLS Beam Abort System

    SciTech Connect

    Santana Leitner, M.; Vollaire, J.; Mao, X.S.

    2008-03-25

    The Linac Coherent Light Source (LCLS), a pioneer hard x-ray free electron laser is currently under construction at the Stanford Linear Accelerator Center. It is expected that by 2009 LCLS will deliver laser pulses of unprecedented brightness and short length, which will be used in several forefront research applications. This ambitious project encompasses major design challenges to the radiation protection like the numerous sources and the number of surveyed objects. In order to sort those, the showers from various loss sources have been tracked along a detailed model covering 1/2 mile of LCLS accelerator by means of the Monte Carlo intra nuclear cascade codes FLUKA and MARS15. This article covers the FLUKA studies of heat load; prompt and residual dose and environmental impact for the LCLS beam abort system.

  17. LCLS-II New Instruments Workshops Report

    SciTech Connect

    Baradaran, Samira; Bergmann, Uwe; Durr, Herrmann; Gaffney, Kelley; Goldstein, Julia; Guehr, Markus; Hastings, Jerome; Heimann, Philip; Lee, Richard; Seibert, Marvin; Stohr, Joachim; /SLAC

    2012-08-08

    The LCLS-II New Instruments workshops chaired by Phil Heimann and Jerry Hastings were held on March 19-22, 2012 at the SLAC National Accelerator Laboratory. The goal of the workshops was to identify the most exciting science and corresponding parameters which will help define the LCLS-II instrumentation. This report gives a synopsis of the proposed investigations and an account of the workshop. Scientists from around the world have provided short descriptions of the scientific opportunities they envision at LCLS-II. The workshops focused on four broadly defined science areas: biology, materials sciences, chemistry and atomic, molecular and optical physics (AMO). Below we summarize the identified science opportunities in the four areas. The frontiers of structural biology lie in solving the structures of large macromolecular biological systems. Most large protein assemblies are inherently difficult to crystallize due to their numerous degrees of freedom. Serial femtosecond protein nanocrystallography, using the 'diffraction-before-destruction' approach to outrun radiation damage has been very successfully pioneered at LCLS and diffraction patterns were obtained from some of the smallest protein crystals ever. The combination of femtosecond x-ray pulses of high intensity and nanosized protein crystals avoids the radiation damage encountered by conventional x-ray crystallography with focused beams and opens the door for atomic structure determinations of the previously largely inaccessible class of membrane proteins that are notoriously difficult to crystallize. The obtained structures will allow the identification of key protein functions and help in understanding the origin and control of diseases. Three dimensional coherent x-ray imaging at somewhat lower resolution may be used for larger objects such as viruses. The chemistry research areas of primary focus are the predictive understanding of catalytic mechanisms, with particular emphasis on photo- and

  18. Linear Coherent Light Source, LCLS: The upgrade path

    NASA Astrophysics Data System (ADS)

    Bergmann, Uwe

    2014-03-01

    With ultrashort and ultrabright X-ray pulses (>1012 photons in pulses of < 100 femtosecond length) X-ray Free electron lasers provide revolutionary new capabilities to study a wide range of phenomena including novel states of matter, quantum materials, ultrafast chemistry and structural biology. Starting operations in 2009 the Linac Coherent Light Source (LCLS) at SLAC has been the first of such machines delivering 280 eV-11 keV X-ray pulses to users at a rate of 120 Hz. The success of the LCLS has positively impacted numerous efforts around the world and there are now five hard X-ray FELs in operation or under construction in addition to two FELs that operate in the VUV and soft X-ray region. The planned LCLS upgrade, LCLS-II, has recently been modified in order to address the recommendation of a report of the Basic Energy Science Advisory Committee from last summer. We will present examples of some of the most exciting LCLS science highlights, discuss operation upgrades and present the parameters of the new LCLS-II upgrade.

  19. Reducing the Heat Load on the LCLS 120 Hz RF Gun with RF Pulse Shaping

    SciTech Connect

    Schmerge, J.

    2005-01-31

    The LCLS injector must operate at 120 Hz repetition frequency but to date the maximum operating frequency of an S-band rf gun has been 50 Hz. The high fields desired for the LCLS gun operation limit the repetition frequency due to thermal expansion causing rf detuning and field redistribution. One method of addressing the thermal loading problem is too reduce the power lost on the cavity walls by properly shaping the rf pulse incident on the gun. The idea is to reach the steady state field value in the gun faster than the time constant of the gun would allow when using a flat incident rf pulse. By increasing the incident power by about a factor of three and then decreasing the incident power when the field reaches the desired value in the gun, the field build up time can be decreased by more than a factor of three. Using this technique the heat load is also decreased by more than a factor of three. In addition the rf coupling coefficient can be increased from the typical critically coupled designs to an overcoupled design which also helps reduce the field build up time. Increasing the coupling coefficient from 1 to 2 reduces the heat load by another 25% and still limits the reflected power and coupling hole size to manageable levels.

  20. Democratizing Process Innovation? On Citizen Involvement in Public Sector BPM

    NASA Astrophysics Data System (ADS)

    Niehaves, Björn; Malsch, Robert

    ‘Open Innovation’ has been heavily discussed for product innovations; however, an information systems (IS) perspective on ‘process innovation’ has not yet been taken. Analyzing the example of the public sector in Germany, the paper seeks to investigate the factors that hinder and support ‘open process innovation’, a concept we define as the involvement of citizens in business process management (BPM) activities. With the help of a quantitative study (n=358), six factors are examined for their impact on citizen involvement in local government BPM initiatives. The results show that citizen involvement in reform processes is not primarily motivated by the aim of cost reduction, but rather related to legitimacy reasons and the intent to increase employee motivation. Based on these findings, implications for (design) theory and practice are discussed: Instead of detailed collaborative business processes modeling, the key of citizen involvement in public sector BPM lies in communication and mutual understanding.

  1. LCLS Ultrafast Science Instruments:Conceptual Design Report

    SciTech Connect

    Arthur, J.; Boutet, S.; Castagna, J-C.; Chapman, H.; Feng, Y.; Foyt, W.; Fritz, D.M.; Gaffney, K.J.; Gr|bel, G.; Hajdu, J.; Hastings, J.B.; Kurita, N.; Larsson, J.; Ludwig, K.; Messerschmidt, M.; Miao, J.; Reis, D.A.; Robert, A.; Stephenson, G.B.; Tschentscher, Th.; van Bakel, N.; /SLAC /LLNL, Livermore /DESY /Lund Inst. Tech. /Boston U. /UCLA /Michigan U. /Argonne

    2007-10-16

    The Stanford Linear Accelerator Center (SLAC), along with Argonne National Laboratory (ANL), Lawrence Livermore National Laboratory (LLNL), and the University of California at Los Angeles (UCLA), is constructing a Free-Electron Laser (FEL) facility, which will operate in the wavelength range 1.5 nm - 0.15 nm. This FEL, the Linac Coherent Light Source (LCLS), utilizes the SLAC linac and will produce sub-picosecond pulses of short wavelength X-rays with very high peak brightness and almost complete transverse coherence. The final one-third of the SLAC linac will be used as the source of electrons for the LCLS. The high energy electrons will be transported across the SLAC Research Yard, into a tunnel which will house a long undulator. In passing through the undulator, the electrons will be bunched by the force of their own synchrotron radiation and produce an intense, monochromatic, spatially coherent beam of X-rays. By varying the electron energy, the FEL X-ray wavelength will be tunable from 1.5 nm to 0.15 nm. The LCLS will include two experimental halls as well as X-ray optics and infrastructure necessary to create a facility that can be developed for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of designing and constructing three X-ray instruments in order to exploit the unique scientific capability of this new LCLS facility. The technical objective of the LCLS Ultrafast Science Instruments (LUSI) project is to design, build, and install at the LCLS three hard X-ray instruments that will complement the initial instrument included in the LCLS construction. As the science programs advance and new technological challenges appear, instrumentation needs to be developed and ready to conquer these new opportunities. The LCLS instrument concepts have been developed in close consultation with the scientific community through a

  2. Advanced Instrumentation for Ultrafast Science at the LCLS

    SciTech Connect

    Berrah, Nora

    2015-10-13

    This grant supported a Single Investigator and Small Group Research (SISGR) application to enable multi-user research in Ultrafast Science using the Linac Coherent Light Source (LCLS), the world’s first hard x-ray free electron laser (FEL) which lased for the first time at 1.5 Å on April 20, 2009. The goal of our proposal was to enable a New Era of Science by requesting funds to purchase and build Advanced Instrumentation for Ultrafast Science (AIUS), to utilize the intense, short x-ray pulses produced by the LCLS. The proposed instrumentation will allow peer review selected users to probe the ultrasmall and capture the ultrafast. These tools will expand on the investment already made in the construction of the light source and its instrumentation in both the LCLS and LUSI projects. The AIUS will provide researchers in the AMO, Chemical, Biological and Condensed Matter communities with greater flexibility in defining their scientific agenda at the LCLS. The proposed instrumentation will complement and significantly augment the present AMO instrument (funded through the LCLS project) through detectors and capabilities not included in the initial suite of instrumentation at the facility. We have built all of the instrumentations and they have been utilized by scientists. Please see report attached.

  3. Overview of Warm Dense Matter Experiments at LCLS

    NASA Astrophysics Data System (ADS)

    Galtier, Eric; Levy, Anna; Williams, Gareth; Fletcher, Luke; Dorchies, Fabien; Gaudin, Jérôme; Sperling, Philipp

    Warm Dense Matter (WDM) is found in numerous astrophysical systems, from giant planets to brown dwarves or cool dense stars. Being this intermediate regime where condensed matter or plasma theories do not apply, it can be produced in all laser-induced plasma experiments on Earth. As a consequence, understanding its properties is fundamental and the whole community is investigating this extreme state of matter. With the advent of the 4th generation of light sources, namely the Free Electron Lasers (FELs), a new way of producing and diagnosing WDM becomes available. In 2009, the Linac Coherent Light Source (LCLS) at SLAC was the first FEL to produce X-ray photons to be used by the user community. Since then, various experiments took place at LCLS to produce and measure specific physical properties of WDM. In this talk, we will present an overview of key experiments performed at LCLS to study WDM. The LCLS has been used in a variety of configuration: as the main heating mechanism, as a probe or both at the same time. When used as a probe, high power lasers have been used to shock matter and excite it into the WDM regime. Finally, we will describe exciting perspectives on the WDM research, as the LCLS-II will become available in about 5 years.

  4. XAL-Based Applications and Online Models for LCLS

    SciTech Connect

    Chu, P.; Woodley, M.; Iverson, R.; Krejcik, P.; White, G.; Wu, J.; Gan, Q.; /Beijing, Inst. High Energy Phys.

    2009-12-11

    XAL, a high-level accelerator application framework originally developed at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory, has been adopted by the Linac Coherent Light Source (LCLS) project. The work includes proper relational database schema modification to better suit XAL configuration data requirement, addition of new device types for LCLS online modeling purpose, longitudinal coordinate system change to better represent the LCLS electron beam rather than proton or ion beam in the original SNS XAL design, intensively benchmark with MAD and present SLC modeling system for the online model, and various new features to the XAL framework. Storing online model data in a relational database and providing universal access methods for other applications is also described here.

  5. Echo-seeding options for LCLS-II

    SciTech Connect

    Xiang, D.; Stupakov, G.; /SLAC

    2010-09-14

    The success of LCLS has opened up a new era of x-ray sciences. An upgrade to LCLS is currently being planned to enhance its capabilities. In this paper we study the feasibility of using the echo-enabled harmonic generation (EEHG) technique to generate narrow bandwidth soft x-ray radiation in the proposed LCLS-II soft x-ray beam line. We focus on the conceptual design, the technical implementation and the expected performances of the echo-seeding scheme. We will also show how the echo-seeding scheme allows one to generate two color x-ray pulses with the higher energy photons leading the lower energy ones as is favored in the x-ray pump-probe experiments.

  6. Characterization of RanBPM Molecular Determinants that Control Its Subcellular Localization

    PubMed Central

    Salemi, Louisa M.; Loureiro, Sandra O.; Schild-Poulter, Caroline

    2015-01-01

    RanBPM/RanBP9 is a ubiquitous, nucleocytoplasmic protein that is part of an evolutionary conserved E3 ubiquitin ligase complex whose function and targets in mammals are still unknown. RanBPM itself has been implicated in various cellular processes that involve both nuclear and cytoplasmic functions. However, to date, little is known about how RanBPM subcellular localization is regulated. We have conducted a systematic analysis of RanBPM regions that control its subcellular localization using RanBPM shRNA cells to examine ectopic RanBPM mutant subcellular localization without interference from the endogenously expressed protein. We show that several domains and motifs regulate RanBPM nuclear and cytoplasmic localization. In particular, RanBPM comprises two motifs that can confer nuclear localization, one proline/glutamine-rich motif in the extreme N-terminus which has a dominant effect on RanBPM localization, and a second motif in the C-terminus which minimally contributes to RanBPM nuclear targeting. We also identified a nuclear export signal (NES) which mutation prevented RanBPM accumulation in the cytoplasm. Likewise, deletion of the central RanBPM conserved domains (SPRY and LisH/CTLH) resulted in the relocalization of RanBPM to the nucleus, suggesting that RanBPM cytoplasmic localization is also conferred by protein-protein interactions that promote its cytoplasmic retention. Indeed we found that in the cytoplasm, RanBPM partially colocalizes with microtubules and associates with α-tubulin. Finally, in the nucleus, a significant fraction of RanBPM is associated with chromatin. Altogether, these analyses reveal that RanBPM subcellular localization results from the combined effects of several elements that either confer direct transport through the nucleocytoplasmic transport machinery or regulate it indirectly, likely through interactions with other proteins and by intramolecular folding. PMID:25659156

  7. Femtosecond Synchronization of Laser Systems for the LCLS

    SciTech Connect

    Byrd, John; Doolittle, Lawrence; Huang, Gang; Staples, John; Wilcox, Russell; Arthur, John; Frisch, Josef; White, William; /SLAC

    2012-08-24

    The scientific potential of femtosecond x-ray pulses at linac-driven free-electron lasers such as the Linac Coherent Light Source is tremendous. Time-resolved pump-probe experiments require a measure of the relative arrival time of each x-ray pulse with respect to the experimental pump laser. An optical timing system based on stabilized fiber links has been developed for the LCLS to provide this synchronization. Preliminary results show synchronization of the installed stabilized links at the sub-20-femtosecond level. We present details of the implementation at LCLS and potential for future development.

  8. Femtosecond Operation of the LCLS for User Experiments

    SciTech Connect

    Frisch, Josef; Bostedt, Christoph; Bozek, John; Brachmann, Axel; Coffee, Ryan; Decker, Franz-Josef; Ding, Yuantao; Dowell, David; Emma, Paul; Gilevich, Sasha; Haller, Gunther; Hays, Gregory; Hering, Philippe; Hill, Bruce; Huang, Zhirong; Iverson, Richard Kanter, Elliot; Kraessig, Bertold; Loos, Henrik; Miahnahri, Alan; Nuhn, Heinz-Dieter; /SLAC /SLAC /SLAC /SLAC /SLAC /SLAC /SLAC /SLAC /SLAC /SLAC /SLAC /LBL, Berkeley

    2010-09-02

    In addition to its normal operation at 250pC, the LCLS has operated with 20pC bunches delivering X-ray beams to users with energies between 800eV and 2 keV and with bunch lengths below 10 fs FWHM. A bunch arrival time monitor and timing transmission system provide users with sub 50 fs synchronization between a laser and the X-rays for pump/probe experiments. We describe the performance and operational experience of the LCLS for short bunch experiments.

  9. Surface Characterization of the LCLS RF Gun Cathode

    SciTech Connect

    Brachmann, Axel; Decker, Franz-Josef; Ding, Yuantao; Dowell, David; Emma, Paul; Frisch, Josef; Gilevich, Sasha; Hays, Gregory; Hering, Philippe; Huang, Zhirong; Iverson, Richard; Loos, Henrik; Miahnahri, Alan; Nordlund, Dennis; Nuhn, Heinz-Dieter; Pianetta, Piero; Turner, James; Welch, James; White, William; Wu, Juhao; Xiang, Dao; /SLAC

    2012-06-25

    The first copper cathode installed in the LCLS RF gun was used during LCLS commissioning for more than a year. However, after high charge operation (> 500 pC), the cathode showed a decline of quantum efficiency within the area of drive laser illumination. They report results of SEM, XPS and XAS studies that were carried out on this cathode after it was removed from the gun. X-ray absorption and X-ray photoelectron spectroscopy reveal surface contamination by various hydrocarbon compounds. In addition they report on the performance of the second installed cathode with emphasis on the spatial distribution of electron emission.

  10. Applications Where Snap is BPM for Radioactive Waste Assay

    SciTech Connect

    Miller, T.J.

    2008-07-01

    Historically, the Atomic Weapons Establishment (AWE) at Aldermaston in the United Kingdom (UK), has used a variety of assay techniques to measure the radioactive content of a diverse range of waste packages from decommissioning, operational and legacy sources. The regulator, the Environment Agency in the UK, places conditions and limits on AWE through an authorisation within the Radioactive Substances Act (RSA93). The conditions and limits require Best Practical Means (BPM) measurements to be used to demonstrate compliance with the authorisation. Hence, the assay technique employed needs to achieve a balance between risk of exposure, environmental considerations, technological considerations, health and safety considerations and cost effectiveness, without being grossly disproportionate in terms of money, time or trouble. Recently published work has concluded that the Spectral Non-destructive Assay Platform (SNAP) assay system is BPM for Depleted Uranium (DU) waste assay at AWE (1) and low level plutonium in soft drummed waste, HEPA filters and soils (2-4). The purpose of this paper is to highlight other applications where SNAP represents BPM for radioactive waste assay. This has been done by intercomparison studies of SNAP with other assay techniques, such as Segmented Gamma Scanner (SGS) and Passive Neutron Coincidence Counter (PNCC). It has been concluded that, for a large range of waste packages encountered at AWE, SNAP is BPM. (author)

  11. Development of BPM Electronics at the JLAB FEL

    SciTech Connect

    Daniel Sexton; Pavel Evtushenko; Kevin Jordan; Jianxun Yan; Steven Dutton; Steven Moore; Richard Evans; James Coleman

    2006-05-01

    A new version of BPM electronics based on the AD8362 RMS detector, which is a direct RF to DC converter, is under development at the JLAB FEL. Each of these new BPM electronics utilizes an embedded ColdFire Microprocessor for data processing and communication with the EPICS control system via TCP/IP. The ColdFire runs RTEMS, which is an open source real-time operating system. The JLAB FEL is a SRF Energy Recovery LINAC capable of running up to 10 mA CW beam with the micropulse up to 74.85 MHz. For diagnostic reasons and for the machine tune up, the micropulse frequency can be reduced to 1.17 MHz, which corresponds to about 160 ?A of beam current. It is required that the BPM system would be functional for all micropulse frequencies. By taking into account the headroom for the beam steering and current variations the dynamic range of the RF front end is required to be about 60 dB. A BPM resolution of at least 100 ?m is required, whereas better resolution is very desirable to make it possible for more accurate measurements of the electron beam optics. Some results of the RF front end development are presented as well as the first measurements made with an electron beam.

  12. Development of BPM Electronics at the JLAB FEL

    NASA Astrophysics Data System (ADS)

    Sexton, D.; Evtushenko, P.; Jordan, K.; Yan, J.; Dutton, S.; Moore, W.; Evans, R.; Coleman, J.

    2006-11-01

    A new version of BPM electronics based on the AD8362 RMS detector, which is a direct RF to DC converter, is under development at the JLAB FEL. Each of these new BPM electronics utilizes an embedded ColdFire Microprocessor for data processing and communication with the EPICS control system via TCP/IP. The ColdFire runs RTEMS, which is an open source real-time operating system. The JLAB FEL is a SRF Energy Recovery LINAC capable of running up to 10 mA CW beam with a 74.85 MHz micropulse frequency. For diagnostic reasons and for machine tune up, the micropulse frequency can be reduced to 1.17 MHz, which corresponds to about 160 μA of beam current. It is required that the BPM system would be functional for all micropulse frequencies. By taking into account the headroom for the beam steering and current variations the dynamic range of the RF front end is required to be about 60 dB. A BPM resolution of at least 100 μm is required, whereas better resolution is very desirable to make it possible for more accurate measurements of the electron beam optics. Some results of the RF front end development are presented as well as the first measurements made with an electron beam.

  13. Difference between BPM reading one bunch and the average of multi-bunch in Booster

    SciTech Connect

    Xi Yang

    2004-08-18

    Differences caused by BPM reading one bunch and multi-bunch average need to be well understood before the beam parameters, such as the synchrotron tune, betatron tune, and chromaticity, are extracted from those BPM data. It is easy to perform such a study using numerical simulation other than modifying the BPM electronics.

  14. Magnetic Measurement Results of the LCLS Undulator Quadrupoles

    SciTech Connect

    Anderson, Scott; Caban, Keith; Nuhn, Heinz-Dieter; Reese, Ed; Wolf, Zachary; /SLAC

    2011-08-18

    This note details the magnetic measurements and the magnetic center fiducializations that were performed on all of the thirty-six LCLS undulator quadrupoles. Temperature rise, standardization reproducibility, vacuum chamber effects and magnetic center reproducibility measurements are also presented. The Linac Coherent Light Source (LCLS) undulator beam line has 33 girders, each with a LCLS undulator quadrupole which focuses and steers the beam through the beam line. Each quadrupole has main quadrupole coils, as well as separate horizontal and vertical trim coils. Thirty-six quadrupoles, thirty-three installed and three spares were, manufactured for the LCLS undulator system and all were measured to confirm that they met requirement specifications for integrated gradient, harmonics and for magnetic center shifts after current changes. The horizontal and vertical dipole trims of each quadrupole were similarly characterized. Each quadrupole was also fiducialized to its magnetic center. All characterizing measurements on the undulator quads were performed with their mirror plates on and after a standardization of three cycles from -6 to +6 to -6 amps. Since the undulator quadrupoles could be used as a focusing or defocusing magnet depending on their location, all quadrupoles were characterized as focusing and as defocusing quadrupoles. A subset of the undulator quadrupoles were used to verify that the undulator quadrupole design met specifications for temperature rise, standardization reproducibility and magnetic center reproducibility after splitting. The effects of the mirror plates on the undulator quadrupoles were also measured.

  15. Triggering for Magnetic Field Measurements of the LCLS Undulators

    SciTech Connect

    Hacker, Kirsten

    2010-12-13

    A triggering system for magnetic field measurements of the LCLS undulators has been built with a National Instruments PXI-1002 and a Xylinx FPGA board. The system generates single triggers at specified positions, regardless of encoder sensor jitter about a linear scale.

  16. The LCLS Undulator Beam Loss Monitor Readout System

    SciTech Connect

    Dusatko, John; Browne, M.; Fisher, A.S.; Kotturi, D.; Norum, S.; Olsen, J.; /SLAC

    2012-07-23

    The LCLS Undulator Beam Loss Monitor System is required to detect any loss radiation seen by the FEL undulators. The undulator segments consist of permanent magnets which are very sensitive to radiation damage. The operational goal is to keep demagnetization below 0.01% over the life of the LCLS. The BLM system is designed to help achieve this goal by detecting any loss radiation and indicating a fault condition if the radiation level exceeds a certain threshold. Upon reception of this fault signal, the LCLS Machine Protection System takes appropriate action by either halting or rate limiting the beam. The BLM detector consists of a PMT coupled to a Cherenkov radiator located near the upstream end of each undulator segment. There are 33 BLMs in the system, one per segment. The detectors are read out by a dedicated system that is integrated directly into the LCLS MPS. The BLM readout system provides monitoring of radiation levels, computation of integrated doses, detection of radiation excursions beyond set thresholds, fault reporting and control of BLM system functions. This paper describes the design, construction and operational performance of the BLM readout system.

  17. LCLS-II high power RF system overview and progress

    SciTech Connect

    Yeremian, Anahid Dian

    2015-10-07

    A second X-ray free electron laser facility, LCLS-II, will be constructed at SLAC. LCLS-II is based on a 1.3 GHz, 4 GeV, continuous-wave (CW) superconducting linear accelerator, to be installed in the first kilometer of the SLAC tunnel. Multiple types of high power RF (HPRF) sources will be used to power different systems on LCLS-II. The main 1.3 GHz linac will be powered by 280 1.3 GHz, 3.8 kW solid state amplifier (SSA) sources. The normal conducting buncher in the injector will use four more SSAs identical to the linac SSAs but run at 2 kW. Two 185.7 MHz, 60 kW sources will power the photocathode dual-feed RF gun. A third harmonic linac section, included for linearizing the bunch energy spread before the first bunch compressor, will require sixteen 3.9 GHz sources at about 1 kW CW. A description and an update on all the HPRF sources of LCLS-II and their implementation is the subject of this paper.

  18. What Have we Learned from the LCLS Injector?

    SciTech Connect

    Zhou, Feng; Brachmann, Axel; /SLAC

    2012-03-19

    The LCLS injector reliably delivered a high quality electron beam since it started operations three years ago. Some initial commissioning results were described in Ref. [1]. This note is to summarize what we have understood from the LCLS injector including drive laser, cathode, RF gun, injector beam line elements, beam modeling and operations. What we have learned during the LCLS injector commissioning and operation has lead to modified specifications for the UV drive laser system. A flat temporal profile originally required in the LCLS design is not necessary to achieve a low emittance electron beam for the LCLS operations. According to our recent studies, a laser pulse with 3 ps Gaussian temporal profile (FWHM) can achieve a similar emittance compared to a flat temporal profile laser. The sensitivity of the emittance to the laser pulse length at 250 pC of bunch charge was studied, as shown in Figure 1. Only slight variations were observed for both projected and time-sliced emittances with laser pulses from 2.2 ps to 4.5 ps FWHM. Space charge forces certainly become weak but RF emittance which is proportional to the bunch length square increases due to the longer laser pulse. Thus, the projected emittance optimum may be a trade-off between space charge forces and RF emittance, while the time-sliced emittance determined by space charge forces may be slightly improved with a longer laser pulse length. Simulations and theory also show that spatial Gaussian-cut laser profile produces a better emittance compared to uniform profiles due to increased linearity of the space charge forces. Preliminary experimental data show that the emittance with a Gaussian-cut is almost as good as the one with uniform although not better than. In addition, the laser transmission through the iris for spatial Gaussian-cut is about twice the one for spatial uniform. More experimental studies with the new Coherent laser system are needed to make a more solid conclusion.

  19. EXPERIMENTAL RESULTS FROM A MICROWAVE CAVITY BEAM POSITION MONITOR.

    SciTech Connect

    BALAKIN,V.; BAZHAN,A.; LUNEV,P.; SOLYAK,N.; VOGEL,V.; ZHOGOLEV,P.; LISITSYN,A.; YAKIMENKO,V.

    1999-03-29

    Future Linear Colliders have hard requirements for the beam transverse position stability in the accelerator. A beam Position Monitor (BPM) with the resolution better than 0.1 micron in the single bunch regime is needed to control the stability of the beam position along the linac. Proposed BPM is based on the measurement of the asymmetrical mode excited by single bunch in the cavity. Four stages of signal processing (space-, time-, frequency- and phase-filtering providing the required signal-to-noise ratio) are used to obtain extremely high resolution. The measurement set-up was designed by BINP and installed at ATF/BNL to test experimentally this concept. The set-up includes three two-coordinates BPM's at the frequency of 13.566 GHz, and reference intensity/phase cavity. BPM's were mounted on support table. The two-coordinates movers allow to move and align BPM's along the straight line, using the signals from the beam. The position of each monitor is controlled by the sensors with the accuracy 0.03 micron. The information from three monitors allows to exclude angle and position jitter of the beam and measure BPM resolution. In the experiments the resolution of about 0.15 micron for 0.25 nC beam intensity was obtained, that is close to the value required.

  20. Identifying Lattice, Orbit, And BPM Errors in PEP-II

    SciTech Connect

    Decker, F.-J.; /SLAC

    2005-05-09

    The PEP-II B-Factory is delivering peak luminosities of up to 9.2 {center_dot} 10{sup 33} 1/cm{sup 2} {center_dot} l/s. This is very impressive especially considering our poor understanding of the lattice, absolute orbit and beam position monitor system (BPM). A few simple MATLAB programs were written to get lattice information, like betatron functions in a coupled machine (four all together) and the two dispersions, from the current machine and compare it the design. Big orbit deviations in the Low Energy Ring (LER) could be explained not by bad BPMs (only 3), but by many strong correctors (one corrector to fix four BPMs on average). Additionally these programs helped to uncover a sign error in the third order correction of the BPM system. Further analysis of the current information of the BPMs (sum of all buttons) indicates that there might be still more problematic BPMs.

  1. Comparison of RF BPM Receivers for NSLS-II Project

    SciTech Connect

    Pinayev,I.; Singh, O.

    2009-05-04

    The NSLS-II Light Source being built at Brookhaven National Laboratory requires submicron stability of the electron orbit in the storage ring in order to utilize fully very small emittances and electron beam sizes. This sets high stability requirements for beam position monitors and a program has been initiated for the purpose of characterizing RF beam position monitor (BPM) receivers in use at other light sources. Present state-of-the-art performance will be contrasted with more recently available technologies.

  2. BPM simulator for active and passive semiconductor IOC

    NASA Astrophysics Data System (ADS)

    Perrone, Guido; Petazzi, Diego; Gulisano, A.; Montrosset, Ivo

    1994-05-01

    We have added to our very general, user friendly simulator for integrated optical circuits the capability to analyze structures made with semiconductor materials whose characteristics are controlled with current injection. The simulator is interfaced with the optical layout generator SIGRAPHTM-Optik (by Siemens-Nixdorf) and it is based on a finite difference BPM with transparent boundary conditions. Some examples of applications are presented; they show the agreement with the results reported in the literature and the potentiality of the simulator.

  3. NSLS-II BPM System Protection from Rogue Mode Coupling

    SciTech Connect

    Blednykh, A.; Bach, B.; Borrelli, A.; Ferreira, M.; Hseuh, H.-C.; Hetzel, C.; Kosciuk, B.; Krinsky, S.; Singh, O.; Vetter, K.

    2011-03-28

    Rogue mode RF shielding has been successfully designed and implemented into the production multipole vacuum chambers. In order to avoid systematic errors in the NSLS-II BPM system we introduced frequency shift of HOM's by using RF metal shielding located in the antechamber slot of each multipole vacuum chamber. To satisfy the pumping requirement the face of the shielding has been perforated with roughly 50 percent transparency. It stays clear of synchrotron radiation in each chamber.

  4. Lattice Calibration with Turn-By-Turn BPM Data

    SciTech Connect

    Huang, Xiaobiao; Sebek, James; /SLAC

    2012-07-02

    Turn-by-turn beam position monitor (BPM) data from multiple BPMs are fitted with a tracking code to calibrate magnet strengths in a manner similar to the well known LOCO code. Simulation shows that this turn-by-turn method can be a quick and efficient way for optics calibration. The method is applicable to both linacs and ring accelerators. Experimental results for a section of the SPEAR3 ring is also shown.

  5. MEASUREMENT OF MULTIPOLE STRENGTHS FROM RHIC BPM DATA.

    SciTech Connect

    TOMAS,R.BAI,M.FISCHER,W.ET AL.

    2004-07-05

    Recently resonance driving terms were successfully measured in the CERN SPS and the BNL RHIC from the Fourier spectrum of BPM data. Based on these measurements a new analysis has been derived to extract multipole strengths. In this paper we present experimental measurements of sextupolar and skew quadrupolar strengths carried out at RHIC. A non-destructive measurement using an AC dipole is also presented.

  6. Girder Support Scheme for the LCLS Undulator System

    SciTech Connect

    Welch, J.

    2005-01-31

    Differential settlement of the foundation of the LCLS Undulator Hall will cause quadrupoles to move and the electron beam trajectory to distort. The resulting phase errors will decrease the FEL power and require time consuming beam-based alignment sessions to correct. By supporting quadrupoles on girders, with three quadrupoles to a girder, the foundation motion induced phase error between the beam and the X Ray radiation can be reduced by a factor of 5 compared with supporting each quadrupole with a separate column. This comes about because the motions of three quadrupoles on a girder are linearly correlated so their effect on the beam is largely canceled out. Thus a girder support scheme can significantly help to extend the time between required beam based alignments and contribute to a more stable operation of the LCLS FEL beam.

  7. Transverse Coherence of the LCLS X-Ray Beam

    SciTech Connect

    Not Available

    2010-12-01

    Self-amplifying spontaneous radiation free-electron lasers, such as the LCLS or the European X-FEL, rely on the incoherent, spontaneous radiation as the seed for the amplifying process. Though this method overcomes the need for an external seed source one drawback is the incoherence of the effective seed signal. The FEL process allows for a natural growth of the coherence because the radiation phase information is spread out within the bunch due to slippage and diffraction of the radiation field. However, at short wavelengths this spreading is not sufficient to achieve complete coherence. In this presentation we report on the results of numerical simulations of the LCLS X-ray FEL. From the obtained radiation field distribution the coherence properties are extracted to help to characterize the FEL as a light source.

  8. Transverse Coherence Properties of the LCLS X-Ray Beam

    SciTech Connect

    Reiche, S.; /UCLA

    2007-04-16

    Self-amplifying spontaneous radiation free-electron lasers, such as the LCLS or the European X-FEL, rely on the incoherent, spontaneous radiation as the seed for the amplifying process. Though this method overcomes the need for an external seed source one drawback is the incoherence of the effective seed signal. The FEL process allows for a natural growth of the coherence because the radiation phase information is spread out within the bunch due to slippage and diffraction of the radiation field. However, at short wavelengths this spreading is not sufficient to achieve complete coherence. In this presentation we report on the results of numerical simulations of the LCLS X-ray FEL. From the obtained radiation field distribution the coherence properties are extracted to help to characterize the FEL as a light source.

  9. CSPAD upgrades and CSPAD V1.5 at LCLS

    NASA Astrophysics Data System (ADS)

    Herrmann, S.; Hart, P.; Dragone, A.; Freytag, D.; Herbst, R.; Pines, J.; Weaver, M.; Carini, G. A.; Thayer, J. B.; Shawn, O.; Kenney, C. J.; Haller, G.

    2014-03-01

    After improving the PCB level electronics the next step in our continuing upgrade program of LCLS Cornell-SLAC Pixel Array Detector (CSPAD) cameras is the use of a new improved ASIC named CSPAD V1.5. The upgraded ASIC includes on chip DACs to set the bias currents of all amplifiers. The new chip also supports power cycling by design. Together this simplifies the PCB level complexity and eases the integration of many ASICs into one camera. Homogeneity across the full reticle size chip was improved by redesigning the power distribution. The upgrade included modifications of the gain latches and the per pixel comparators. Results from the upgraded cameras used at LCLS will be presented and discussed.

  10. Transverse-coherence properties of the FEL at the LCLS

    SciTech Connect

    Ding, Yuantao; Huang, Zhirong; Ocko, Samuel A.; /MIT, Cambridge, Dept. Phys.

    2010-09-02

    The recently commissioned Linac Coherent Light Source is an x-ray free-electron laser at the SLAC National Accelerator Laboratory, which is now operating at x-ray wavelengths of 20-1.2 Angstrom with peak brightness nearly ten orders of magnitude beyond conventional synchrotron sources. Understanding of coherence properties of the radiation from SASE FELs at LCLS is of great practical importance for some user experiments. We present the numerical analysis of the coherence properties at different wavelengths based on a fast algorithmusing ideal and start-end simulated FEL fields. The sucessful commissioning and operation of the linac coherent light source (LCLS) [1] has demonstrated that the x-ray free-electron laser (FEL) has come of age; these types of x-ray sources are poised to revolutionize the ultra-fast x-ray sciences. The LCLS and other hard x-ray FELs under construction are based on the principle of self-amplified spontaneous emission (SASE) [2, 3], where the amplification process starts from the shot noise in the electron beam. A large number of transverse radiation modes are also excited when the electron beam enters the undulator. The FEL collective instability in the electron beam causes the modulation of the electron density to increase exponentially, and after sufficient undulator distances, a single transverse mode starts to dominate. As a result, SASE FEL is almost fully coherent in the transverse dimension. Understanding of transverse coherence properties of the radiation from SASE FELs is of great practical importance. The longitudinal coherence properties of SASE FELs have been studied before [4]. Some studies on the transverse coherence can be found in previous papers, for example, in ref. [5, 6, 7, 8, 9]. In this paper, we first discuss a new numerical algorithm based on Markov chain Monte Carlo techniques to calculate the FEL transverse coherence. Then we focus on the numerical analysis of the LCLS FEL transverse coherence.

  11. LCLS XTOD Tunnel Vacuum Transport System (XVTS) Final Design Report

    SciTech Connect

    Shen, S

    2006-10-16

    The design of the X-Ray Vacuum Transport System (XVTS) for the Linac Coherent Light Source (LCLS) X-ray Transport, Optics and Diagnostics (XTOD) system has been analyzed and configured by the Lawrence Livermore National Laboratory's New Technologies Engineering Division (NTED) as requested by the SLAC/LCLS program. A preliminary design review was held on 11/14/05 [1][2]. This FDR (Final Design Report) presents system configuration, detailed analyses and selection of the mechanical and electrical components for the XTOD tunnel section, as well as the response to all issues raised in the review committee report. Also included are the plans for procurement, mechanical integration, schedule and the cost estimates. It should be noticed that, after the XVTS PDR, LCLS management has decided to lower the number of beamlines from three to one, and shorten the tunnel length from 212 m to 184 m. [3][4] The final design of XVTS system is completed. The major subjects presented in this report are: (1) Design of the complete system. (2) System analysis results. (3) ES&H issues and plan. (4) Project cost estimates and schedule.

  12. Radiation Protection Studies for LCLS Tune Up Dump

    SciTech Connect

    Santana-Leitner, M.; Fass, A.; Mao, S.; Nuhn, H.D.; Roesler, S.; Rokni, S.; Vollaire, J.; /SLAC

    2010-04-29

    The Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center is a pioneer fourth generation hard x-ray free electron laser that shall start to deliver laser pulses in 2009. Among other components of LCLS that present radiation protection concerns, the tune up dump (tdund) is of special interest because it also constitutes an issue for machine protection, as it is placed close to radiation sensitive components, like electronic devices and permanent magnets in the undulators. This paper first introduces the stopper of tdund looking at the heat load, and then it describes the shielding around the dump necessary to maintain the prompt and residual dose within design values. Next, preliminary comparisons of the magnetization loss in a dedicated on-site magnet irradiation experiment with FLUKA simulations serve to characterize the magnetic response to radiation of magnets like those of LCLS. The previous knowledge, together with the limit for the allowed demagnetization, are used to estimate the lifetime of the undulator. Further simulations provide guidelines on which lifetime can be expected for an electronic device placed at a given distance of tdund.

  13. Characterization of Second Harmonic Afterburner Radiation at the LCLS

    SciTech Connect

    Nuhn, Heinz-Dieter

    2010-09-14

    During commissioning of the Linac Coherent Light Source (LCLS) x-ray Free Electron Laser (FEL) at the SLAC National Accelerator Laboratory it was shown that saturation lengths much shorter than the installed length of the undulator line can routinely be achieved. This frees undulator segments that can be used to provide enhanced spectral properties and at the same time, test the concept of FEL Afterburners. In December 2009 a project was initiated to convert undulator segments at the down-beam end of the undulator line into Second Harmonic Afterburners (SHAB) to enhance LCLS radiation levels in the 10-20 keV energy range. This is being accomplished by replacement of gap-shims increasing the fixed gaps from 6.8 mm to 9.9 mm, which reduces their K values from 3.50 to 2.25 and makes the segments resonant at the second harmonic of the upstream unmodified undulators. This paper reports experimental results of the commissioning of the SHAB extension to LCLS.

  14. Performance of a High Resolution Cavity Beam Position Monitor System

    SciTech Connect

    Walston, S; Boogert, S; Chung, C; Fitsos, P; Frisch, J; Gronberg, J; Hayano, H; Honda, Y; Kolomensky, Y; Lyapin, A; Malton, S; May, J; McCormick, D; Meller, R; Miller, D; Orimoto, T; Ross, M; Slater, M; Smith, S; Smith, T; Terunuma, N; Thomson, M; Urakawa, J; Vogel, V; Ward, D; White, G

    2006-12-18

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than one nanometer. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 {micro}rad over a dynamic range of approximately {+-} 20 {micro}m.

  15. Performance of a High Resolution Cavity Beam Position Monitor System

    SciTech Connect

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Joe; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Honda, Yosuke; Kolomensky, Yury; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David John; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; /Fermilab /UC, Berkeley /LBL, Berkeley /Cambridge U. /Royal Holloway, U. of London /Cornell U., LNS /LLNL, Livermore /University Coll. London /SLAC /Caltech /KEK, Tsukuba

    2007-06-08

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than one nanometer. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 {mu}rad over a dynamic range of approximately {+-} 20 {mu}m.

  16. High resolution upgrade of the ATF damping ring BPM system

    SciTech Connect

    Terunuma, N.; Urakawa, J.; Frisch, J.; May, J.; McCormick, D.; Nelson, J.; Seryi, A.; Smith, T.; Woodley, M.; Briegel, C.; Dysert, R.; /Fermilab

    2008-05-01

    A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished in its first stage, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R&D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital downconversion techniques, digital signal processing, and also tests a new automatic gain error correction schema. The technical concept and realization, as well as preliminary results of beam studies are presented.

  17. Design of the 15 GHz BPM test bench for the CLIC test facility to perform precise stretched-wire RF measurements

    NASA Astrophysics Data System (ADS)

    Zorzetti, Silvia; Fanucci, Luca; Galindo Muñoz, Natalia; Wendt, Manfred

    2015-09-01

    The Compact Linear Collider (CLIC) requires a low emittance beam transport and preservation, thus a precise control of the beam orbit along up to 50 km of the accelerator components in the sub-μm regime is required. Within the PACMAN3 (Particle Accelerator Components Metrology and Alignment to the Nanometer Scale) PhD training action a study with the objective of pre-aligning the electrical centre of a 15 GHz cavity beam position monitor (BPM) to the magnetic centre of the main beam quadrupole is initiated. Of particular importance is the design of a specific test bench to study the stretched-wire setup for the CLIC Test Facility (CTF3) BPM, focusing on the aspects of microwave signal excitation, transmission and impedance-matching, as well as the mechanical setup and reproducibility of the measurement method.

  18. First Results of the LCLS Laser-Heater System

    SciTech Connect

    Emma, P; Boyce, R.F.; Brachmann, A.; Carr, R.; Decker, F.-J.; Ding, Y.; Dowell, D.; Edstrom, S.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Huang, Z.; Iverson, R.; Levashov, Y.; Loos, H.; Miahnahri, A.; Nuhn, H.-D.; Poling, B.; Ratner, D.; Spampinati, S.; /SLAC

    2011-12-16

    The Linac Coherent Light Source (LCLS) is an x-ray Free-Electron Laser (FEL) project that has just achieved its first lasing at 1.5 {angstrom} radiation wavelength. The very bright electron beam required to drive this FEL is susceptible to a microbunching instability in the magnetic bunch compressors that may increase the slice energy spread beyond the FEL tolerance. To control the slice energy spread and to suppress the microbunching instability, a laser heater (LH) system is installed in the LCLS injector area at 135 MeV, right before the RF deflector that is used for the time-resolved electron diagnostics. This unique component is used to add a small level of intrinsic energy spread to the electron beam in order to Landau damp the microbunching instability before it potentially breaks up the high brightness electron beam. The system was fully installed and tested in the fall of 2008, and effects of heating on the electron beam and the x-ray FEL were studied during the 2009 commissioning period. The laser heater system is composed of a 4-dipole chicane; a 9-period, planar, permanent-magnet, adjustable-gap undulator at the center of the chicane; one OTR screen on each side of the undulator for electron/laser spatial alignment; and an IR laser (up to 15-MW power) which co-propagates with the electron beam inside the undulator generating a 758-nm energy modulation along the bunch. The final two dipoles of the 4-dipole chicane time-smear this modulation leaving only a thermal-like intrinsic energy spread within the bunch. Table 1 lists the main parameters for this system. The very bright electron beam required for an x-ray free-electron laser (FEL), such as the LCLS, is susceptible to a microbunching instability in the magnetic bunch compressors, prior to the FEL undulator. The uncorrelated electron energy spread in the LCLS can be increased by an order of magnitude to provide strong Landau damping against the instability without degrading the FEL performance. To

  19. Wakefield Calculations for the LCLS in Multbunch Operation

    SciTech Connect

    Bane, K; /SLAC

    2011-10-17

    Normally the Linac Coherent Light Source (LCLS) operates in single-bunch mode, sending a bunch of up to 250 pC charge at 120 Hz through the linac and the undulator, and the resulting FEL radiation into one of the experimental hutches. With two bunches per rf pulse, each pulse could feed either two experiments or one experiment in a pump-probe type configuration. Two-bunch FEL operation has already been briefly tested at the LCLS, and works reasonably well, although not yet routinely. In this report we study the longitudinal and transverse long-range (bunch-to-bunch) wakefields of the linacs and their effects on LCLS performance in two-bunch mode, which is initially the most likely scenario. The longitudinal wake changes the average energy at the second bunch, and the transverse wake misaligns the second bunch (in transverse phase space) in the presence of e.g. transverse injection jitter or quad misalignments. Finally, we extend the study to consider the LCLS with trains of up to 20 bunches per rf pulse. In the LCLS the bunch is created in an rf gun, and then passes in sequence through Linac 0, Linac 1, Linac X, Bunch Compressor 1 (BC 1), Linac 2, BC 2, Linac 3, and finally the undulator. In the process the bunch energy reaches 13.5 GeV and peak current 3 kA. In Table 1 we present some machine and beam parameters in three of the linacs that we will use in the calculations: initial beam energy E{sub 0}, total accelerator length L, average beta function {beta}{sub y}, bunch peak current I, and rf phase (with respect to crest) {phi}; the final energy of a linac equals E{sub 0} of the following linac, and in Linac 3 is E{sub f} = 13.5 GeV. (The X-band linac, with L = 60 cm, has wake effects that are small compared to the other linacs, and will not be discussed.) In this report we limit our study to trains of equally populated, equally spaced bunches with a total length of less than 100 ns. The charge of each bunch is eN{sub b} = 250 pC.

  20. Fermilab Recycler Ring BPM Upgrade Based on Digital Receiver Technology

    SciTech Connect

    Webber, R.; Crisp, J.; Prieto, P.; Voy, D.; Briegel, C.; McClure, C.; West, R.; Pordes, S.; Mengel, M.

    2004-11-10

    Electronics for the 237 BPMs in the Fermilab Recycler Ring have been upgraded from a log-amplifier based system to a commercially produced digitizer-digital down converter based system. The hardware consists of a pre-amplifier connected to a split-plate BPM, an analog differential receiver-filter module and an 8-channel 80-MHz digital down converter VME board. The system produces position and intensity with a dynamic range of 30 dB and a resolution of {+-}10 microns. The position measurements are made on 2.5-MHz bunched beam and barrier buckets of the un-bunched beam. The digital receiver system operates in one of six different signal processing modes that include 2.5-MHz average, 2.5-MHz bunch-by-bunch, 2.5-MHz narrow band, unbunched average, un-bunched head/tail and 89-kHz narrow band. Receiver data is acquired on any of up to sixteen clock events related to Recycler beam transfers and other machine activities. Data from the digital receiver board are transferred to the front-end CPU for position and intensity computation on an on-demand basis through the VME bus. Data buffers are maintained for each of the acquisition events and support flash, closed orbit and turn-by-turn measurements. A calibration system provides evaluation of the BPM signal path and application programs.

  1. Upgrade of BPM Electronics for the SPring-8 Storage Ring

    SciTech Connect

    Sasaki, Shigeki; Fujita, Takahiro; Shoji, Masazumi; Takashima, Takeo

    2006-11-20

    SPring-8, a 3rd generation synchrotron light source, has operated since 1997. Improvement of BPM performance is required as a part of upgrading activities of the storage ring as a light source. We have developed new electronics circuits for signal processing of the storage ring BPM, with target performance of sub-{mu}m range resolution with sufficiently fast measurement speed and good long-term stability. A set of the new circuits consists of multiplexers, an RF amplifier, a mixer, an IF amplifier, and a local oscillator for analog signal processing. The IF amplifier outputs are sampled with 16-bit 2-MSPS ADC on ADC boards and the data are sent to a DSP board. The sampled data are processed and converted to position information in the DSP. A multiplexing method was employed to have a better stability of the performance by cancellation of variation common to each channel. Evaluation of the performance by using a prototype shows that position resolution well into the sub-{mu}m range has been achieved with a bandwidth of 1 kHz, and long-term stability of within 1 {mu}m has also been achieved.

  2. Penetration of the LCLS Injector Shield Wall at Sector 20

    SciTech Connect

    Dowell, D

    2010-12-10

    Penetrations through the LCLS injector shield wall are needed for the alignment of the accelerator, a diagnostic laser beam and utilities, and are shown in figure 1. The 1-inch diameter LCLS injector beam tube is blocked by the PPS stopper when the injector side of the wall is occupied. The two 3-inch diameter penetrations above and to the left of the beam tube are used by Precision Alignment and will be open only during installation of the injector beamline. Additional 3-inch diameter penetrations are for laser beams which will be used for electron beam diagnostics. These will not be plugged when the injector occupied. Other penetrations for the RF waveguide and other utilities are approximately 13-inch from the floor and as such are far from the line-of-sight of any radiation sources. The waveguide and utility penetrations pass only through the thicker wall as shown in the figure. The principal issue is with the two laser penetrations, since these will be open when the linac is operating and people are in the LCLS injector area. A principal concern is radiation streaming through the penetrations due to direct line-of sight of the PEP-2 lines. To answer this, fans of rays were traced through the 3-inch diameter laser penetrations as shown in Figures 2 and 3. Figure 2 gives the top view of the shield walls, the main linac and PEP-2 lines, and the ray-fans. The fans appear to originate between the walls since their angular envelope is defined by the greatest angle possible when rays are just on the 3-inch diameter at the inner most and outermost wall surfaces. The crossovers of all possible rays lie half way between these two surfaces. As the end-on view of Figure 3 clearly shows, there is no direct line-of-sight through the laser penetrations of the PEP-2 or linac beamlines.

  3. Commissioning of the Delta Polarizing Undulator at LCLS

    SciTech Connect

    Nuhn, Heinz-Dieter

    2015-09-25

    The Linac Coherent Light Source (LCLS) generates linearly polarized, intense, high-brightness x-ray pulses from planar fixed-gap undulators. While the fixed-gap design supports a very successful and tightly controlled alignment concept, it provides only limited taper capability (up to 1% through canted pole and horizontal position adjustability) and lacks polarization control. The latter is of great importance for soft x-ray experiments. A new 3.2-m-long compact undulator (based on the Cornell University Delta design) has been developed and installed in place of the last LCLS undulator segment (U33) in October 2014. This undulator provides full control of the polarization degree and K value. Used on its own, it produces fully polarized radiation in the selected state (linear, circular or elliptical) but at low intensity. To increase the output power by orders of magnitude, the electron beam is micro-bunched by several (~10) of the upstream LCLS undulator segments operated in the linear FEL regime. As unavoidable by-product, this microbunching process produces moderate amounts of horizontally linear polarized radiation which mixes with the radiation produced by the Delta undulator. This unwanted radiation component has been greatly reduced by the reverse taper configuration, as suggested by E. Schneidmiller and M. Yurkov. Full elimination of the linear polarized component was achieved through spatial separation combined with transverse collimation. The paper describes these and other methods tested during commissioning. It also presents results of polarization measurements showing high degrees of circular polarization in the soft x-ray wavelength range (500 eV - 1500 eV).

  4. Design studies for the LCLS 120 Hz RF gun

    SciTech Connect

    Wang, X.J.; Babzien, M.; Ben-Zvi, I.; Chang, X.Y.; Pjerov, S.; Woodle, M.

    2000-11-01

    A preliminary design studies were carried out at Brookhaven National Laboratory for a photocathode RF gun injection system for LCLS 120 Hz operation. The starting point for the design is 50 Hz BNL Gun IV developed by a BNL/KEK/SHI collaboration. The basic parameters of the 120 Hz gun is discussed in this report. The complete photocathode RF gun injection system is described for a 120 Hz operation. The injector system includes photocathode RF gun, emittance compensation solenoid magnet, laser system and laser beam delivery system, and electron beam diagnostics. The basic design parameters, mechanical modification and the performance will be presented in this report.

  5. APPLICATION OF NEURAL NETWORK ALGORITHMS FOR BPM LINEARIZATION

    SciTech Connect

    Musson, John C.; Seaton, Chad; Spata, Mike F.; Yan, Jianxun

    2012-11-01

    Stripline BPM sensors contain inherent non-linearities, as a result of field distortions from the pickup elements. Many methods have been devised to facilitate corrections, often employing polynomial fitting. The cost of computation makes real-time correction difficult, particulalry when integer math is utilized. The application of neural-network technology, particularly the multi-layer perceptron algorithm, is proposed as an efficient alternative for electrode linearization. A process of supervised learning is initially used to determine the weighting coefficients, which are subsequently applied to the incoming electrode data. A non-linear layer, known as an activation layer, is responsible for the removal of saturation effects. Implementation of a perceptron in an FPGA-based software-defined radio (SDR) is presented, along with performance comparisons. In addition, efficient calculation of the sigmoidal activation function via the CORDIC algorithm is presented.

  6. Process-aware EHR BPM systems: two prototypes and a conceptual framework.

    PubMed

    Webster, Charles; Copenhaver, Mark

    2010-01-01

    Systematic methods to improve the effectiveness and efficiency of electronic health record-mediated processes will be key to EHRs playing an important role in the positive transformation of healthcare. Business process management (BPM) systematically optimizes process effectiveness, efficiency, and flexibility. Therefore BPM offers relevant ideas and technologies. We provide a conceptual model based on EHR productivity and negative feedback control that links EHR and BPM domains, describe two EHR BPM prototype modules, and close with the argument that typical EHRs must become more process-aware if they are to take full advantage of BPM ideas and technology. A prediction: Future extensible clinical groupware will coordinate delivery of EHR functionality to teams of users by combining modular components with executable process models whose usability (effectiveness, efficiency, and user satisfaction) will be systematically improved using business process management techniques. PMID:20841659

  7. Development of an S-band cavity-type beam position monitor for a high power THz free-electron laser

    SciTech Connect

    Noh, Seon Yeong; Kim, Eun-San Hwang, Ji-Gwang; Heo, A.; Won, Jang Si; Vinokurov, Nikolay A.; Jeong, Young UK Hee Park, Seong; Jang, Kyu-Ha

    2015-01-15

    A cavity-type beam position monitor (BPM) has been developed for a compact terahertz (THz) free-electron laser (FEL) system and ultra-short pulsed electron Linac system at the Korea Atomic Energy Research Institute (KAERI). Compared with other types of BPMs, the cavity-type BPM has higher sensitivity and faster response time even at low charge levels. When electron beam passes through the cavity-type BPM, it excites the dipole mode of the cavity of which amplitude depends linearly on the beam offset from the center of the cavity. Signals from the BPM were measured as a function of the beam offset by using an oscilloscope. The microtron accelerator for the KAERI THz FEL produces the electron beam with an energy of 6.5 MeV and pulse length of 5 μs with a micropulse of 10-20 ps at the frequency of 2.801 GHz. The macropulse beam current is 40 mA. Because the microtron provides multi-bunch system, output signal would be the superposition of each single bunch. So high output signal can be obtained from superposition of each single bunch. The designed position resolution of the cavity-type BPM in multi-bunch is submicron. Our cavity-type BPM is made of aluminum and vacuum can be maintained by indium sealing without brazing process, resulting in easy modification and cost saving. The resonance frequency of the cavity-type BPM is 2.803 GHz and the cavity-type BPM dimensions are 200 × 220 mm (length × height) with a pipe diameter of 38 mm. The measured position sensitivity was 6.19 (mV/mm)/mA and the measured isolation between the X and Y axis was −39 dB. By measuring the thermal noise of system, position resolution of the cavity-type BPM was estimated to be less than 1 μm. In this article, we present the test results of the S-band cavity-type BPM and prove the feasibility of the beam position measurement with high resolution using this device.

  8. Development of an S-band cavity-type beam position monitor for a high power THz free-electron laser

    NASA Astrophysics Data System (ADS)

    Noh, Seon Yeong; Kim, Eun-San; Hwang, Ji-Gwang; Heo, A.; won Jang, Si; Vinokurov, Nikolay A.; Jeong, Young UK; Hee Park, Seong; Jang, Kyu-Ha

    2015-01-01

    A cavity-type beam position monitor (BPM) has been developed for a compact terahertz (THz) free-electron laser (FEL) system and ultra-short pulsed electron Linac system at the Korea Atomic Energy Research Institute (KAERI). Compared with other types of BPMs, the cavity-type BPM has higher sensitivity and faster response time even at low charge levels. When electron beam passes through the cavity-type BPM, it excites the dipole mode of the cavity of which amplitude depends linearly on the beam offset from the center of the cavity. Signals from the BPM were measured as a function of the beam offset by using an oscilloscope. The microtron accelerator for the KAERI THz FEL produces the electron beam with an energy of 6.5 MeV and pulse length of 5 μs with a micropulse of 10-20 ps at the frequency of 2.801 GHz. The macropulse beam current is 40 mA. Because the microtron provides multi-bunch system, output signal would be the superposition of each single bunch. So high output signal can be obtained from superposition of each single bunch. The designed position resolution of the cavity-type BPM in multi-bunch is submicron. Our cavity-type BPM is made of aluminum and vacuum can be maintained by indium sealing without brazing process, resulting in easy modification and cost saving. The resonance frequency of the cavity-type BPM is 2.803 GHz and the cavity-type BPM dimensions are 200 × 220 mm (length × height) with a pipe diameter of 38 mm. The measured position sensitivity was 6.19 (mV/mm)/mA and the measured isolation between the X and Y axis was -39 dB. By measuring the thermal noise of system, position resolution of the cavity-type BPM was estimated to be less than 1 μm. In this article, we present the test results of the S-band cavity-type BPM and prove the feasibility of the beam position measurement with high resolution using this device.

  9. THz Pump and X-Ray Probe Development at LCLS

    SciTech Connect

    Fisher, Alan S; Durr, Hermann; Lindenberg, Aaron; Stanford U., Materials Sci.Dept.; Reis, David; Frisch, Josef; Loos, Henrik; Petree, Mark; Daranciang, Dan; Fuchs, Matthias; Ghimire, Shambhu; Goodfellow, John; /Stanford U., Materials Sci. Dept.

    2011-11-08

    We report on measurements of broadband, intense, coherent transition radiation at terahertz frequencies, generated as the highly compressed electron bunches in Linear Coherent Light Source (LCLS) pass through a thin metal foil. The foil is inserted at 45{sup o} to the electron beam, 31 m downstream of the undulator. The THz emission passes downward through a diamond window to an optical table below the beamline. A fully compressed 350-pC bunch produces up to 0.5 mJ in a nearly half-cycle pulse of 50 fs FWHM with a spectrum peaking at 10 THz. We estimate a peak field at the focus of over 2.5 GV/m. A 20-fs Ti:sapphire laser oscillator has recently been installed for electro-optic measurements. We are developing plans to add an x-ray probe to this THz pump, by diffracting FEL x rays onto the table with a thin silicon crystal. The x rays would arrive with an adjustable time delay after the THz. This will provide a rapid start to user studies of materials excited by intense single-cycle pulses and will serve as a step toward a THz transport line for LCLS-II.

  10. Position Stability Monitoring of THEthe LCLS Undulator Quadrupoles

    SciTech Connect

    Nuhn, Heinz Dieter; Gassner, Georg; Peters, Franz; /SLAC

    2012-03-26

    X-ray FELs demand that the positions of undulator components be stable to less than 1 {mu}m per day. Simultaneously, the undulator length increases significantly in order to saturate at x-ray wavelengths. To minimize the impact of the outside environment, the Linac Coherent Light Source (LCLS) undulator is placed underground, but reliable data about ground motion inside such a tunnel was not available in the required stability range during the planning phase. Therefore, a new position monitor system had been developed and installed with the LCLS undulator. This system is capable of measuring x, y, roll, pitch and yaw of each of the 33 undulator quadrupoles with respect to stretched wires. Instrument resolution is about 10 nm and instrument drift is negligible. Position data of individual quadrupoles can be correlated along the entire 132-m long undulator. The system has been under continuous operation since 2009. This report describes long term experiences with the running system and the observed positional stability of the undulator quadrupoles.

  11. The Matter in Extreme Conditions (MEC) instrument at LCLS

    NASA Astrophysics Data System (ADS)

    Nagler, Bob

    2015-06-01

    The last five years have seen the commissioning of and first user experiments on both the Free Electron Laser in Hamburg (FLASH) and the Linac Coherent Light Source (LCLS) in Stanford, and more are slated to come online in the next couple of years . The high photon frequency (i.e. larger than the plasma frequency of solid density), short pulse length (i.e. 10s to 100s of femtoseconds) and large photon number per pulse (i.e. 1012 photons per pulse) make it an ideal source to create and study states of matter at high energy density, a long-standing scientific challenge. Indeed, while matter in extreme conditions, which for the purpose of this talk we define as states under pressure up to hundreds of GPa and with temperatures ranging between 1eV and 1000eV, has been studied through dynamic shock compression and there has been significant progress made over many decades. However, large uncertainties still exist in the atomic structure and crystallographic structure, existence of high pressure phases, scattering factors, and equation of state of matter in extreme conditions. The Matter in Extreme Condition (MEC) instrument at LCLS is designed to overcome the unique experimental challenges that the study of matter in extreme conditions bring. It combines a suite of diagnostics and high power and energy optical lasers, which are standard fare in this research field, with the unmatched LCLS X-ray beam, to create an instrument that will be at the forefront of, and have a major impact on MEC science, in particular in the field of high pressure, warm dense matter, high energy density, and ultra-high intensity laser-matter interaction studies. The LCLS beam allows for unique investigation in all these extreme states using diagnostic methods such as X-ray Thomson Scattering, X-ray emission spectroscopy, X-ray diffraction, X-ray absorption spectroscopy, X-ray phase-contrast imaging, and pumping specific absorption lines to study (dense) plasma kinetics. Augmented with optical

  12. STUDY OF THE RHIC BPM SMA CONNECTOR FAILURE PROBLEM

    SciTech Connect

    LIAW,C.; SIKORA, R.; SCHROEDER, R.

    2007-06-25

    About 730 BPMs are mounted on the RHIC CQS and Triplet super-conducting magnets. Semi-rigid coaxial cables are used to bring the electrical signal from the BPM feedthroughs to the outside flanges. at the ambient temperature. Every year around 10 cables will lose their signals during the operation. The connection usually failed at the warm end of the cable. The problems were either the solder joint failed or the center conductor retracted out of the SMA connector. Finite element analyses were performed to understand the failure mechanism of the solder joint. The results showed that (1) The SMA center conductor can separate from the mating connector due to the thermal retraction. (2) The maximum thermal stress at the warm end solder joint can exceed the material strength of the Pb37/Sn63 solder material and (3) The magnet ramping frequency (-10 Hz), during the machine startup, can possibly resonant the coaxial cable and damage the solder joints, especially when a fracture is initiated. Test results confirmed that by using the silver bearing solder material (a higher strength material) and by crimping the cable at the locations close to the SMA connector (to prevent the center conductor from retracting) can effectively resolve the connector failure problem.

  13. Probing Complexity using the LCLS and the ALS

    SciTech Connect

    Berrah, Nora

    2015-02-19

    The goal of our research program is to investigate fundamental interactions between photons and molecular/nano-systems to advance our quantitative understanding of electron correlations, charge transfer and many body phenomena. Our research projects focus on probing, on a femtosecond time-scale, multi-electron interactions and tracing nuclear motion in order to understand, and ultimately control energy flow and charge transfer processes from electromagnetic radiation to matter. The experiments will be carried out with state of the art instrumentation built by the P.I. team with funds from a DoE "Single Investigator and Small Group Research" (SISGR) grant. The research projects carried out the past three years consisted of first experiments using the linac coherent light source (LCLS) x-ray free electron laser (FEL) facility at the SLAC National Laboratory, as well as the study of correlated processes in select anions using the ALS. A report for the past cycle is described in section II. These studies have paved the way for our renewal application for the next three years. Our research interests for the next three years extend our past and present research by carrying out time-resolved measurements described in section III. They will consist of: a) The study of molecular dynamics that happen on ultrafast time scales, using pump-probe schemes and the study of non-linear physics in the x-ray regime via multi-photon absorption from the LCLS. This will be achieved by measuring and examining both electronic and nuclear dynamics subsequent to the interaction of molecules and nano-systems with LCLS pulses of various wavelength, intensity and pulse duration as described in section III.A. b) The study of molecular dynamics and correlated processes via absorption of vuv-soft x-rays from the Advanced Light Source (ALS) at Lawrence Berkeley Laboratory to provide single-photon ionization baseline results for LCLS studies. In addition, we will study the photodetachment of anions

  14. Electron Bunch Length Measurement for LCLS at SLAC

    SciTech Connect

    Zelazny, M.; Allison, S.; Chevtsov, Sergei; Emma, P.; Kotturi, K.d.; Loos, H.; Peng, S.; Rogind, D.; Straumann, T.; /SLAC

    2007-10-04

    At Stanford Linear Accelerator Center (SLAC) a Bunch Length Measurement system has been developed to measure the length of the electron bunch for its new Linac Coherent Light Source (LCLS). This destructive measurement uses a transverse-mounted RF deflector (TCAV) to vertically streak the electron beam and an image taken with an insertable screen and a camera. The device control software was implemented with the Experimental Physics and Industrial Control System (EPICS) toolkit. The analysis software was implemented in Matlab{trademark} using the EPICS/Channel Access Interface for Scilab{trademark} and Matlab{trademark} (labCA). This architecture allowed engineers and physicists to develop and integrate their control and analysis without duplication of effort.

  15. Commissioning of the LCLS Linac and Bunch Compressors

    SciTech Connect

    Akre, R.; Brachmann, A.; Decker, F.-J.; Ding, Y.; Dowell, D.; Emma#, P.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Huang, Z.; Iverson, R.; Limborg-Deprey, C.; Loos, H.; Molloy, S.; Miahnahri, A.; Nuhn, H.-D.; Ratner, D.; Turner, J.; Welch, J.; White, W.; /SLAC

    2008-08-20

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) project under construction at SLAC [1]. The injector section, from drive-laser and RF photocathode gun through the first bunch compressor, was commissioned in the spring and summer of 2007. The second phase of commissioning, including the second bunch compressor and various main linac modifications, was completed in January through August of 2008. We report here on experience gained during this second phase of machine commissioning, including the injector, the first and second bunch compressor stages, the linac up to 14 GeV, and beam stability measurements. The final commissioning phase, including the undulator and the long transport line from the linac, is set to begin in December 2008, with first light expected in July 2009.

  16. Evaluation of Laser Stabilization and Imaging Systems for LCLS-II - Oral Presentation

    SciTech Connect

    Barry, Matthew

    2015-08-19

    This presentation covers data collected on two commercial laser stabilization systems, Guidestar-II and MRC, and two optical imaging systems. Additionally, general information about LCLS-II and how to go about continuing-testing is covered.

  17. Cavity Alighment Using Beam Induced Higher Order Modes Signals in the TTF Linac

    SciTech Connect

    Ross, M.; Frisch, J.; Hacker, K.E.; Jones, R.M.; McCormick, D.; O'Connell, C.; Smith, T.; Napoly, O.; Paparella, R.; Baboi, N.; Wendt, M.; /DESY

    2005-07-06

    Each nine cell superconducting (SC) accelerator cavity in the TESLA Test Facility (TTF) at DESY [1] has two higher order mode (HOM) couplers that efficiently remove the HOM power [2]. They can also provide useful diagnostic signals. The most interesting modes are in the first 2 cavity dipole passbands. They are easy to identify and their amplitude depends linearly on the beam offset from the cavity axis making them excellent beam position monitors (BPM). By steering the beam through an eight-cavity cryomodule, we can use the HOM signals to estimate internal residual alignment errors and minimize wakefield related beam emittance growth. We built and tested a time-domain based waveform recorder system that captures information from each mode in these two bands on each beam pulse. In this paper we present a preliminary experimental study of the single-bunch generated HOM signals at the TTF linac including estimates of cavity alignment precision and HOM BPM resolution.

  18. High Precision SC Cavity alignment Measurements with Higher Order Modes

    SciTech Connect

    Molloy, Stephen; Frisch, Josef; Hendrickson, Linda; McCormick, Douglas; May, Justin; Ross, Marc; Smith, Tonee; Eddy, Nathan; Nagaitsev, Sergei; Baboi, Nicoleta; Hensler, Olaf; Petrosyan, Lyudvig; Napoly, Olivier; Paparella, Rita; Simon, Claire; /DSM, DAPNIA, Saclay

    2007-06-14

    Experiments at the FLASH linac at DESY have demonstrated that the higher order modes (HOMs) induced in superconducting cavities can be used to provide a variety of beam and cavity diagnostics. The centers of the cavities can be determined from the beam orbit which produces minimum power in the dipole HOM modes. The phase and amplitude of the dipole modes can be used as a high resolution beam position monitor. For most superconducting accelerators, the existing HOM couplers provide the necessary signals, and the downmix and digitizing electronics are straightforward, similar to those for a conventional BPM.

  19. Availability Performance and Considerations for LCLS X-Ray FEL at SLAC

    SciTech Connect

    Allen, W.B.; Brachmann, A.; Colocho, W.; Stanek, M.; Warren, J.; /SLAC

    2011-08-16

    The Linac Coherent Light Source (LCLS) is an X-ray Free Electron Laser (FEL) facility located at the SLAC National Accelerator Laboratory. LCLS has been in operation since spring 2009, and it has completed its 3rd user run. LCLS is the first in its class of X-ray FEL user facilities, and presents different availability challenges compared to storage ring light sources. This paper presents recent availability performance of the FEL as well as factors to consider when defining the operational availability figure of merit for user runs. During LCLS [1] user runs, an availability of 95% has been set as a goal. In run III, LCLS photon and electron beam systems achieved availabilities of 94.8% and 96.7%, respectively. The total availability goal can be distributed among subsystems to track performance and identify areas that need attention in order to maintain and improve hardware reliability and operational availability. Careful beam time accounting is needed to understand the distribution of down time. The LCLS complex includes multiple experimental hutches for X-ray science, and each user program has different requirements of a set of parameters that the FEL can be configured to deliver. Since each user may have different criteria for what is considered 'acceptable beam', the quality of the beam must be considered to determine the X-ray beam availability.

  20. The Coherent X-ray Imaging (CXI) Instrument at the Linac Coherent Light Source (LCLS)

    SciTech Connect

    Boutet, Sebastien; Williams, Garth J.; /SLAC

    2011-08-16

    The Linac Coherent Light Source (LCLS) has become the first ever operational hard X-ray Free Electron Laser in 2009. It will operate as a user facility capable of delivering unique research opportunities in multiple fields of science. The LCLS and the LCLS Ultrafast Science Instruments (LUSI) construction projects are developing instruments designed to make full use of the capabilities afforded by the LCLS beam. One such instrument is being designed to utilize the LCLS coherent beam to image with high resolution any sub-micron object. This instrument is called the Coherent X-ray Imaging (CXI) instrument. This instrument will provide a flexible optical system capable of tailoring key beam parameters for the users. A suite of shot-to-shot diagnostics will also be provided to characterize the beam on every pulse. The provided instrumentation will include multi-purpose sample environments, sample delivery and a custom detector capable of collecting 2D data at 120 Hz. In this article, the LCLS will be briefly introduced along with the technique of Coherent X-ray Diffractive Imaging (CXDI). A few examples of scientific opportunities using the CXI instrument will be described. Finally, the conceptual layout of the instrument will be presented along with a description of the key requirements for the overall system and specific devices required.

  1. Enhancement of transactivation activity of Rta of Epstein-Barr virus by RanBPM.

    PubMed

    Chang, Li-Kwan; Liu, Shih-Tung; Kuo, Chung-Wen; Wang, Wen-Hung; Chuang, Jian-Ying; Bianchi, Elisabetta; Hong, Yi-Ren

    2008-05-30

    Epstein-Barr virus (EBV) expresses the immediate-early protein Rta to activate the transcription of EBV lytic genes and the lytic cycle. We show that RanBPM acts as a binding partner of Rta in yeast two-hybrid analysis. The binding was confirmed by glutathione-S-transferase pull-down assay. A coimmunoprecipitation experiment and confocal microscopy revealed that RanBPM and Rta interact in vivo and colocalize in the nucleus. The interaction appears to involve the SPRY domain in RanBPM and the region between amino acid residues 416 to 476 in Rta. The interaction promotes the transactivation activity of Rta in activating the transcription of BMLF1 and p21 in transient transfection assays. Additionally, RanBPM interacts with SUMO-E2 (Ubc9) to promote sumoylation of Rta by SUMO-1. This fact explains why the expression of RanBPM enhances the transactivation activity of Rta. Taken together, the present results indicate a new role of RanBPM in regulating a viral protein that is critical to EBV lytic activation. PMID:18455188

  2. BPM2.0. Fossil-Fired Boilers

    SciTech Connect

    Winslow, J.C.

    1988-01-01

    BOILER PERFORMANCE MODEL (BPM2.0) is a set of programs for predicting the heat transfer performance of fossil-fired utility boilers. The programs can model a wide variety of boiler designs, provide boiler performance estimates for coal, oil or gaseous fuels, determine the influence of slagging and fouling characteristics on boiler performance, and calculate performance factors for tradeoff analyses comparing boilers and fuels. Given a set of target operating conditions, the programs can estimate control settings, gas and steam operating profiles through the boiler, overall boiler efficiency, and fuel consumption. The programs are broken into three categories: data, calculation, and reports with a central processor program acting as the link allowing the user to access any of the data or calculation programs and easily move between programs. The calculations are divided among the following five programs: heat duty calculation, combustion calculation, furnace performance calculation, convection pass performance calculation, and air heater performance calculation. The programs can model subcritical or supercritical boilers, most configurations of convective passes including boilers that achieve final reheat steam temperature control by split back pass, boilers with as many as two reheat circuits and/or multiple attemperator stations in series, and boilers with or without economizers and/or air heaters. Either regenerative or tubular air heaters are supported. For wall-fired or tangentially-fired furnaces, the furnace performance program predicts the temperature of the flue gases leaving the furnace. It accounts for variations in excess air, gas recirculation, burner tilt, wall temperature, and wall cleanliness. For boilers having radiant panels or platens above the furnace, the convective pass program uses the results of the combustion chamber calculation to estimate the gas temperature entering the convective pass.

  3. BPM3.0. Fossil-Fired Boilers

    SciTech Connect

    Winslow, J.C.

    1992-03-01

    The BOILER PERFORMANCE MODEL (BPM3.0) is a set of programs for predicting the heat transfer performance of fossil-fired utility boilers. The programs can model a wide variety of boiler designs, provide boiler performance estimates for coal, oil or gaseous fuels, determine the influence of slagging and fouling characteristics on boiler performance, and calculate performance factors for tradeoff analyses comparing boilers and fuels. Given a set of target operating conditions, the programs can estimate control settings, gas and steam operating profiles through the boiler, overall boiler efficiency, and fuel consumption. The programs are broken into three categories: data, calculation, and reports with a central processor program acting as the link allowing the user to access any of the data or calculation programs and easily move between programs. The calculations are divided among the following five programs: heat duty calculation, combustion calculation, furnace performance calculation, convection pass performance calculation, and air heater performance calculation. The programs can model subcritical or supercritical boilers, most configurations of convective passes including boilers that achieve final reheat steam temperature control by split back pass, boilers with as many as two reheat circuits and/or multiple attemperator stations in series, and boilers with or without economizers and/or air heaters. Either regenerative or tubular air heaters are supported. For wall-fired or tangentially-fired furnaces, the furnace performance program predicts the temperature of the flue gases leaving the furnace. It accounts for variations in excess air, gas recirculation, burner tilt, wall temperature, and wall cleanliness. For boilers having radiant panels or platens above the furnace, the convective pass program uses the results of the combustion chamber calculation to estimate the gas temperature entering the convective pass.

  4. Electron Beam Alignment Strategy in the LCLS Undulators

    SciTech Connect

    Nuhn, H.-D.; Emma, P.J.; Gassner, G.L.; LeCocq, C.M.; Peters, E.; Ruland, R.E.; /SLAC

    2007-01-03

    The x-ray FEL process puts very tight tolerances on the straightness of the electron beam trajectory (2 {micro}m rms) through the LCLS undulator system. Tight but less stringent tolerances of 80 {micro}m rms vertical and 140 {micro}m rms horizontally are to be met for the placement of the individual undulator segments with respect to the beam axis. The tolerances for electron beam straightness can only be met through beam-based alignment (BBA) based on electron energy variations. Conventional alignment will set the start conditions for BBA. Precision-fiducialization of components mounted on remotely adjustable girders and the use of beam-finder wires (BFW) will satisfy placement tolerances. Girder movement due to ground motion and temperature changes will be monitored continuously by an alignment monitoring system (ADS) and remotely corrected. This stabilization of components as well as the monitoring and correction of the electron beam trajectory based on BPMs and correctors will increase the time between BBA applications. Undulator segments will be periodically removed from the undulator Hall and measured to monitor radiation damage and other effects that might degrade undulator tuning.

  5. Time-resolved pump-probe experiments at the LCLS

    SciTech Connect

    Glownia, James; Cryan, J.; Andreasson, J.; Belkacem, A.; Berrah, N.; Blaga, C.L.; Bostedt, C.; Bozek, J.; DiMauro, L.F.; Fang, L.; Frisch, J.; Gessner, O.; Guhr, M.; Hajdu, J.; Hertlein, M.P.; Hoener, M.; Huang, G.; Kornilov, O.; Marangos, J.P.; March, A.M.; McFarland, B.K.; /SLAC /Stanford U., Phys. Dept. /SLAC /IRAMIS, Saclay /Stanford U., Phys. Dept. /Georgia Tech /Argonne /Kansas State U. /SLAC /Stanford U., Phys. Dept. /SLAC /Stanford U., Appl. Phys. Dept. /Stanford U., Appl. Phys. Dept. /SLAC /LBNL /Argonne /SLAC /SLAC /Stanford U., Appl. Phys. Dept. /Stanford U., Phys. Dept.

    2011-08-12

    The first time-resolved x-ray/optical pump-probe experiments at the SLAC Linac Coherent Light Source (LCLS) used a combination of feedback methods and post-analysis binning techniques to synchronize an ultrafast optical laser to the linac-based x-ray laser. Transient molecular nitrogen alignment revival features were resolved in time-dependent x-ray-induced fragmentation spectra. These alignment features were used to find the temporal overlap of the pump and probe pulses. The strong-field dissociation of x-ray generated quasi-bound molecular dications was used to establish the residual timing jitter. This analysis shows that the relative arrival time of the Ti:Sapphire laser and the x-ray pulses had a distribution with a standard deviation of approximately 120 fs. The largest contribution to the jitter noise spectrum was the locking of the laser oscillator to the reference RF of the accelerator, which suggests that simple technical improvements could reduce the jitter to better than 50 fs.

  6. Identifying Longitudinal Jitter Sources in the LCLS Linac

    SciTech Connect

    Decker, Franz-Josef; Akre, Ron; Brachmann, Axel; Craft, Jim; Ding, Yuantao; Dowell, David; Emma, Paul; Frisch, Josef; Huang, Zhirong; Iverson, Richard; Krasnykh, Anatoly; Loos, Henrik; Nuhn, Heinz-Dieter; Ratner, Daniel; Smith, Tonee; Turner, James; Welch, James; White, William; Wu, Juhao; /SLAC

    2012-07-06

    The Linac Coherent Light Source (LCLS) at SLAC is an x-ray Free Electron Laser (FEL) with wavelengths of 0.15 nm to 1.5 nm. The electron beam stability is important for good lasing. While the transverse jitter of the beam is about 10-20% of the rms beam sizes, the jitter in the longitudinal phase space is a multiple of the energy spread and bunch length. At the lower energy of 4.3 GeV (corresponding to the longest wavelength of 1.5 nm) the relative energy jitter can be 0.125%, while the rms energy spread is with 0.025% five times smaller. An even bigger ratio exists for the arrival time jitter of 50 fs and the bunch duration of about 5 fs (rms) in the low charge (20 pC) operating mode. Although the impact to the experiments is reduced by providing pulse-by-pulse data of the measured energy and arrival time, it would be nice to understand and mitigate the root causes of this jitter. The thyratron of the high power supply of the RF klystrons is one of the main contributors. Another suspect is the multi-pacting in the RF loads. Phase measurements down to 0.01 degree (equals 10 fs) along the RF pulse were achieved, giving hints to the impact of the different sources.

  7. Location of Maximum Credible Beam Losses in LCLS Injector

    SciTech Connect

    Mao, Stan

    2010-12-13

    The memo describes the maximum credible beam the LCLS injector can produce and lose at various locations along the beamline. The estimation procedure is based upon three previous reports [1, 2, 3]. While specific numbers have been updated to accurately reflect the present design parameters, the conclusions are very similar to those given in Ref 1. The source of the maximum credible beam results from the explosive electron emission from the photocathode if the drive laser intensity exceeds the threshold for plasma production. In this event, the gun's RF field can extract a large number of electrons from this plasma which are accelerated out of the gun and into the beamline. This electron emission persists until it has depleted the gun of all its energy. Hence the number of electrons emitted per pulse is limited by the amount of stored RF energy in the gun. It needs to be emphasized that this type of emission is highly undesirable, as it causes permanent damage to the cathode.

  8. Measurement, sorting and tuning of LCLS undulator magnets

    NASA Astrophysics Data System (ADS)

    Vasserman, Isaac; Sasaki, Shigemi; Dejus, Roger; Moog, Elizabeth; Trakhtenberg, Emil; Vinokurov, Nikolai

    2002-05-01

    Currently, a Linac Coherent Light Source (LCLS) prototype undulator is under construction. The prototype is a 3.4-m-long hybrid-type undulator with fixed gap of 6 mm. The period length is 30 mm and the number of poles is 226. For this undulator, 450 NdFeB magnet blocks are used. This project does not have demanding requirements for multipole component errors, but the field strength at x=0 should be as precise as possible to provide proper particle steering and phase errors. The first set of magnetic blocks has been measured. The strength and direction of magnetization of the magnet blocks are measured using a Helmholtz coil system. In addition to this, Hall probe measurements are performed for magnet blocks while they are mounted in a specially designed cassette with vanadium-permendur poles. The magnet blocks will be sorted using these data to minimize errors. Computer simulations show that magnets may be sorted in decreasing strengths with little or no additional tuning of the undulators.

  9. Experimental Studies with Spatial Gaussian-Cut Laser for the LCLS Photocathode Gun

    SciTech Connect

    Zhou, F.; Brachmann, A.; Emma, P.; Gilevich, S.; Huang, Z.; /SLAC

    2011-12-13

    To simplify the LCLS operation and further enhance the injector performances, we are evaluating the various parameters including the photocathode drive laser system. Extensive simulations show that both the projected and time-sliced emittances with spatial Gaussian profiles having reasonable tail-cut are better than those with uniform one. The simulated results are also supported by theoretical analyses. In the LCLS, the spatial uniform or Gaussian-cut laser profiles are conveniently obtained by adjusting the optics of the telescope upstream of an iris, used to define laser size on the cathode. Preliminary beam studies at the LCLS injector show that both the projected and time-sliced emittances with spatial Gaussian-cut laser are almost as good as, although not better than, those with uniform one. In addition, the laser transmission through the iris with the Gaussian-cut profile is twice with uniform one, which can significantly ease LCLS copper cathode/laser operations and thus improve the LCLS operation efficiency. More beam studies are planned to measure FEL performances with the Gaussian-cut in comparison with the uniform one. All simulations and measurements are presented in the paper.

  10. Performance of a reentrant cavity beam position monitor

    NASA Astrophysics Data System (ADS)

    Simon, Claire; Luong, Michel; Chel, Stéphane; Napoly, Olivier; Novo, Jorge; Roudier, Dominique; Rouvière, Nelly; Baboi, Nicoleta; Mildner, Nils; Nölle, Dirk

    2008-08-01

    The beam-based alignment and feedback systems, essential operations for the future colliders, require high resolution beam position monitors (BPMs). In the framework of the European CARE/SRF program, a reentrant cavity BPM with its associated electronics was developed by the CEA/DSM/Irfu in collaboration with DESY. The design, the fabrication, and the beam test of this monitor are detailed within this paper. This BPM is designed to be inserted in a cryomodule, work at cryogenic temperature in a clean environment. It has achieved a resolution better than 10μm and has the possibility to perform bunch to bunch measurements for the x-ray free electron laser (X-FEL) and the International Linear Collider (ILC). Its other features are a small size of the rf cavity, a large aperture (78 mm), and an excellent linearity. A first prototype of a reentrant cavity BPM was installed in the free electron laser in Hamburg (FLASH), at Deutsches Elektronen-Synchrotron (DESY) and demonstrated its operation at cryogenic temperature inside a cryomodule. The second, installed, also, in the FLASH linac to be tested with beam, measured a resolution of approximately 4μm over a dynamic range ±5mm in single bunch.

  11. RanBPM Protein Acts as a Negative Regulator of BLT2 Receptor to Attenuate BLT2-mediated Cell Motility*

    PubMed Central

    Wei, Jun-Dong; Kim, Joo-Young; Kim, Ae-Kyoung; Jang, Sung Key; Kim, Jae-Hong

    2013-01-01

    BLT2, a low affinity receptor for leukotriene B4 (LTB4), is a member of the G protein-coupled receptor family and is involved in many signal transduction pathways associated with various cellular phenotypes, including chemotactic motility. However, the regulatory mechanism for BLT2 has not yet been demonstrated. To understand the regulatory mechanism of BLT2, we screened and identified the proteins that bind to BLT2. Using a yeast two-hybrid assay with the BLT2 C-terminal domain as bait, we found that RanBPM, a previously proposed scaffold protein, interacts with BLT2. We demonstrated the specific interaction between BLT2 and RanBPM by GST pulldown assay and co-immunoprecipitation assay. To elucidate the biological function of the RanBPM-BLT2 interaction, we evaluated the effects of RanBPM overexpression or knockdown. We found that BLT2-mediated motility was severely attenuated by RanBPM overexpression and that knockdown of endogenous RanBPM by shRNA strongly promoted BLT2-mediated motility, suggesting a negative regulatory function of RanBPM toward BLT2. Furthermore, we observed that the addition of BLT2 ligands caused the dissociation of BLT2 and RanBPM, thus releasing the negative regulatory effect of RanBPM. Finally, we propose that Akt-induced BLT2 phosphorylation at residue Thr355, which occurs after the addition of BLT2 ligands, is a potential mechanism by which BLT2 dissociates from RanBPM, resulting in stimulation of BLT2 signaling. Taken together, our results suggest that RanBPM acts as a negative regulator of BLT2 signaling to attenuate BLT2-mediated cell motility. PMID:23928309

  12. Asteroseismology of the Crystallized ZZ Ceti Star BPM 37093: A Different View (Part II)

    NASA Astrophysics Data System (ADS)

    Fontaine, G.; Brassard, P.

    2005-07-01

    BPM 37093 is a pulsating white dwarf of the ZZ Ceti type massive enough to have undergone partial crystallization. Recently, on the basis of asteroseismological techniques, Metcalfe et al. (2004) claimed to have measured the fraction of crystallized matter in BPM 37093, a value upward of 90%. If true, this is a most significant achievement, well worthy of further scrutiny. In this spirit, we have reexamined the data available -- 8 periods -- with our own independent model building code and period matching code in parameter space. We present the second and final part of the results of our investigations in this communication.

  13. Beam diagnostics via model independent analysis of the turn-by-turn BPM data

    SciTech Connect

    Xi Yang

    2004-08-11

    Model independent analysis (MIA) can be used to obtain all the eigen modes included in the turn-by-turn BPM data. Not only the synchrotron tune and betatron tune can be obtained from the fast Fourier transforms (FFT) of the temporal eigen vector of the corresponding mode, but also the error mode, which could be caused by the different gain of a BPM, can be observed in both the temporal and spatial eigen vectors of the error mode. It can be applied as a diagnostic tool for Booster.

  14. Long bunch trains measured using a prototype cavity beam position monitor for the Compact Linear Collider

    NASA Astrophysics Data System (ADS)

    Cullinan, F. J.; Boogert, S. T.; Farabolini, W.; Lefevre, T.; Lunin, A.; Lyapin, A.; Søby, L.; Towler, J.; Wendt, M.

    2015-11-01

    The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the reference cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2 /3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Finally, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.

  15. BEAM DIAGNOSTICS USING BPM SIGNALS FROM INJECTED AND STORED BEAMS IN A STORAGE RING

    SciTech Connect

    Wang, G.M.; Shaftan; T.; Cheng; W.X.; Fliller; R.; Heese; R.; Singh; O.; Willeke; F.

    2011-03-28

    Many modern light sources are operating in top-off injection mode or are being upgraded to top-off injection mode. The storage ring always has the stored beam and injected beam for top-off injection mode. So the BPM data is the mixture of both beam positions and the injected beam position cannot be measured directly. We propose to use dedicated wide band BPM electronics in the NSLS II storage ring to retrieve the injected beam trajectory with the singular value decomposition (SVD) method. The beam position monitor (BPM) has the capability to measure bunch-by-bunch beam position. Similar electronics can be used to measure the bunch-by-bunch beam current which is necessary to get the injection beam position. The measurement precision of current needs to be evaluated since button BPM sum signal has position dependence. The injected beam trajectory can be measured and monitored all the time without dumping the stored beam. We can adjust and optimize the injected beam trajectory to maximize the injection efficiency. We can also measure the storage ring acceptance by mapping the injected beam trajectory.

  16. Ultraviolet carbon lines in the spectrum of the white dwarf BPM 11668

    NASA Technical Reports Server (NTRS)

    Wegner, G.

    1983-01-01

    The southern hemisphere DC white dwarf BPM 11668 has been found to show strong ultraviolet lines of neutral carbon using observations from the IUE satellite. This star seems typical of the growing number of DC white dwarfs found to be of this type and appears to have a carbon abundance near C:He = 0.0001, with an effective temperature of 8500 K.

  17. Detection of Instrumental Drifts in the PEP II LER BPM System

    SciTech Connect

    Wittmer, W.; Fisher, A.S.; Martin, D.J.; Sebek, J.J.; /SLAC

    2007-11-07

    During the last PEP-II run a major goal was to bring the Low-Energy Ring optics as close as possible to the design. A large number of BPMs exhibited sudden artificial jumps that interfered with this effort. The source of the majority of these jumps had been traced to the filter-isolator boxes (FIBs) near the BPM buttons. A systematic approach to find and repair the failing units had been developed and implemented. Despite this effort, the instrumental orbit jumps never completely disappeared. To trace the source of this behavior a test setup, using a spare Bergoz MX-BPM processor (kindly provided by SPEAR III at SSRL), was connected in parallel to various PEP-II BPM processors. In the course of these measurements a slow instrumental orbit drift was found which was clearly not induced by a moving positron beam. Based on the size of the system and the limited time before PEP-II closes in Oct.2008, an accelerator improvement project was initiated to install BERGOZ BPM-MX processors close to all sextupoles.

  18. S-Band Waveguide Reconfiguration Options for the LCLS RF Gun and L0 Klystron Feeds

    SciTech Connect

    McIntosh, P.

    2005-01-28

    This note highlights the possible re-configuration options for the existing WR284 S-band waveguide in the klystron gallery, to enable those existing 5045 klystrons to power the RF Gun and the L0 accelerating structures for LCLS. A reconfiguration decision based on the pros and cons for each option is subsequently identified.

  19. Results of the SLAC LCLS Gun High-Power RF Tests

    SciTech Connect

    Dowell, D.H.; Jongewaard, E.; Limborg-Deprey, C.; Schmerge, J.F.; Li, Z.; Xiao, L.; Wang, J.; Lewandowski, J.; Vlieks, A.; /SLAC

    2007-11-02

    The beam quality and operational requirements for the Linac Coherent Light Source (LCLS) currently being constructed at SLAC are exceptional, requiring the design of a new RF photocathode gun for the electron source. Based on operational experience at SLAC's GTF and SDL and ATF at BNL as well as other laboratories, the 1.6cell s-band (2856MHz) gun was chosen to be the best electron source for the LCLS, however a significant redesign was necessary to achieve the challenging parameters. Detailed 3-D analysis and design was used to produce near-perfect rotationally symmetric rf fields to achieve the emittance requirement. In addition, the thermo-mechanical design allows the gun to operate at 120Hz and a 140MV/m cathode field, or to an average power dissipation of 4kW. Both average and pulsed heating issues are addressed in the LCLS gun design. The first LCLS gun is now fabricated and has been operated with high-power RF. The results of these high-power tests are presented and discussed.

  20. Analysis on Achieving a Minimum Bunch Length in LCLS Bunch Compressor One

    SciTech Connect

    Sun, Yipeng; Huang, Zhirong; Ding, Yuantao; Wu, Juhao; ,

    2011-08-19

    An ultra-short bunch is required by different applications in many aspects. In this paper, the condition to achieve a minimum bunch length at the Linac Coherent Light Source (LCLS) [1] bunch compressor one (BC1) is analyzed analytically and evaluated by simulation. The space charge, wake field and coherent synchrotron radiation (CSR) effects are not discussed here.

  1. Resolution of a High Performance Cavity Beam Position Monitor System

    SciTech Connect

    Walston, S; Chung, C; Fitsos, P; Gronberg, J; Ross, M; Khainovski, O; Kolomensky, Y; Loscutoff, P; Slater, M; Thomson, M; Ward, D; Boogert, S; Vogel, V; Meller, R; Lyapin, A; Malton, S; Miller, D; Frisch, J; Hinton, S; May, J; McCormick, D; Smith, S; Smith, T; White, G; Orimoto, T; Hayano, H; Honda, Y; Terunuma, N; Urakawa, J

    2005-09-12

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved - ideally using beam-based stability measurements. It has been estimated that RF cavity beam position monitors (BPMs) could provide position measurement resolutions of less than one nanometer and could form the basis of the desired beam-based stability measurement. We have developed a high resolution RF cavity BPM system. A triplet of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. A metrology system for the three BPMs was recently installed. This system employed optical encoders to measure each BPM's position and orientation relative to a zero-coefficient of thermal expansion carbon fiber frame and has demonstrated that the three BPMs behave as a rigid-body to less than 5 nm. To date, we have demonstrated a BPM resolution of less than 20 nm over a dynamic range of +/- 20 microns.

  2. Resolution of a High Performance Cavity Beam Positron Monitor System

    SciTech Connect

    Walston, S.; Chung, C.; Fitsos, P.; Gronberg, J.; Ross, M.; Khainovski, O.; Kolomensky, Y.; Loscutoff, P.; Slater, M.; Thomson, M.; Ward, D.; Boogert, S.; Vogel, V.; Meller, R.; Lyapin, A.; Malton, S.; Miller, D.; Frisch, J.; Hinton, S.; May, J.; McCormick, D.; /SLAC /Caltech /KEK, Tsukuba

    2007-07-06

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved--ideally using beam-based stability measurements. It has been estimated that RF cavity beam position monitors (BPMs) could provide position measurement resolutions of less than one nanometer and could form the basis of the desired beam-based stability measurement. We have developed a high resolution RF cavity BPM system. A triplet of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. A metrology system for the three BPMs was recently installed. This system employed optical encoders to measure each BPM's position and orientation relative to a zero-coefficient of thermal expansion carbon fiber frame and has demonstrated that the three BPMs behave as a rigid-body to less than 5 nm. To date, we have demonstrated a BPM resolution of less than 20 nm over a dynamic range of +/- 20 microns.

  3. Linac Coherent Light Source II (LCLS-II) Conceptual Design Report

    SciTech Connect

    Stohr, J

    2011-11-16

    The LCLS-II Project is designed to support the DOE Office of Science mission, as described in the 22 April 2010 Mission Need Statement. The scope of the Project was chosen to provide an increase in capabilities and capacity for the facility both at project completion in 2017 and in the subsequent decade. The Project is designed to address all points of the Mission Need Statement (MNS): (1) Expanded spectral reach; (2) Capability to provide x-ray beams with controllable polarization; (3) Capability to provide 'pump' pulses over a vastly extended range of photon energies to a sample, synchronized to LCLS-II x-ray probe pulses with controllable inter-pulse time delay; and (4) Increase of user access through parallel rather than serial x-ray beam use within the constraint of a $300M-$400M Total Project Cost (TPC) range. The LCLS-II Project will construct: (1) A hard x-ray undulator source (2-13 keV); (2) A soft x-ray undulator source (250-2,000 eV); (3) A dedicated, independent electron source for these new undulators, using sectors 10-20 of the SLAC linac; (4) Modifications to existing SLAC facilities for the injector and new shielded enclosures for the undulator sources, beam dumps and x-ray front ends; (5) A new experiment hall capable of accommodating four experiment stations; and (6) Relocation of the two soft x-ray instruments in the existing Near Experiment Hall (NEH) to the new experiment hall (Experiment Hall-II). A key objective of LCLS-II is to maintain near-term international leadership in the study of matter on the fundamental atomic length scale and the associated ultrafast time scales of atomic motion and electronic transformation. Clearly, such studies promise scientific breakthroughs in key areas of societal needs like energy, environment, health and technology, and they are uniquely enabled by forefront X-ray Free Electron Laser (X-FEL) facilities. While the implementation of LCLS-II extends to about 2017, it is important to realize that LCLS-II only

  4. Reprogramming LCLs to iPSCs Results in Recovery of Donor-Specific Gene Expression Signature

    PubMed Central

    Thomas, Samantha M.; Kagan, Courtney; Pavlovic, Bryan J.; Burnett, Jonathan; Patterson, Kristen; Pritchard, Jonathan K.; Gilad, Yoav

    2015-01-01

    Renewable in vitro cell cultures, such as lymphoblastoid cell lines (LCLs), have facilitated studies that contributed to our understanding of genetic influence on human traits. However, the degree to which cell lines faithfully maintain differences in donor-specific phenotypes is still debated. We have previously reported that standard cell line maintenance practice results in a loss of donor-specific gene expression signatures in LCLs. An alternative to the LCL model is the induced pluripotent stem cell (iPSC) system, which carries the potential to model tissue-specific physiology through the use of differentiation protocols. Still, existing LCL banks represent an important source of starting material for iPSC generation, and it is possible that the disruptions in gene regulation associated with long-term LCL maintenance could persist through the reprogramming process. To address this concern, we studied the effect of reprogramming mature LCL cultures from six unrelated donors to iPSCs on the ensuing gene expression patterns within and between individuals. We show that the reprogramming process results in a recovery of donor-specific gene regulatory signatures, increasing the number of genes with a detectable donor effect by an order of magnitude. The proportion of variation in gene expression statistically attributed to donor increases from 6.9% in LCLs to 24.5% in iPSCs (P < 10-15). Since environmental contributions are unlikely to be a source of individual variation in our system of highly passaged cultured cell lines, our observations suggest that the effect of genotype on gene regulation is more pronounced in iPSCs than in LCLs. Our findings indicate that iPSCs can be a powerful model system for studies of phenotypic variation across individuals in general, and the genetic association with variation in gene regulation in particular. We further conclude that LCLs are an appropriate starting material for iPSC generation. PMID:25950834

  5. Analysis of New High-Q0 SRF Cavity Tests by Nitrogen Gas Doping at Jefferson Lab

    SciTech Connect

    Palczewski, Ari D.; Geng, Rongli; Reece, Charles E.

    2014-12-01

    In order to refine systematic understanding and establish confident process control, Jefferson Lab has joined with partners to investigate and thoroughly characterize the dramatically higher Q0 of 1.3 GHz niobium cavities first reported by FNAL in 2013[1]. With partial support from the LCLS-II project, JLab has undertaken a parametric study of nitrogen doping in vacuum furnace at 800 °C followed by variable depth surface removal in the 5 - 20 μm range. Q0 above 3×1010 are typical at 2.0 K and 16 MV/m accelerating field. We report observations from the single cell study and current interpretations. In addition to the parametric single cell study, we also report on the ongoing serial testing of six nitrogen-doped 9-cell cavities as baseline prototypes for LCLS-II.

  6. Cavity magnomechanics.

    PubMed

    Zhang, Xufeng; Zou, Chang-Ling; Jiang, Liang; Tang, Hong X

    2016-03-01

    A dielectric body couples with electromagnetic fields through radiation pressure and electrostrictive forces, which mediate phonon-photon coupling in cavity optomechanics. In a magnetic medium, according to the Korteweg-Helmholtz formula, which describes the electromagnetic force density acting on a medium, magneostrictive forces should arise and lead to phonon-magnon interaction. We report such a coupled phonon-magnon system based on ferrimagnetic spheres, which we term as cavity magnomechanics, by analogy to cavity optomechanics. Coherent phonon-magnon interactions, including electromagnetically induced transparency and absorption, are demonstrated. Because of the strong hybridization of magnon and microwave photon modes and their high tunability, our platform exhibits new features including parametric amplification of magnons and phonons, triple-resonant photon-magnon-phonon coupling, and phonon lasing. Our work demonstrates the fundamental principle of cavity magnomechanics and its application as a new information transduction platform based on coherent coupling between photons, phonons, and magnons. PMID:27034983

  7. Cavity magnomechanics

    PubMed Central

    Zhang, Xufeng; Zou, Chang-Ling; Jiang, Liang; Tang, Hong X.

    2016-01-01

    A dielectric body couples with electromagnetic fields through radiation pressure and electrostrictive forces, which mediate phonon-photon coupling in cavity optomechanics. In a magnetic medium, according to the Korteweg-Helmholtz formula, which describes the electromagnetic force density acting on a medium, magneostrictive forces should arise and lead to phonon-magnon interaction. We report such a coupled phonon-magnon system based on ferrimagnetic spheres, which we term as cavity magnomechanics, by analogy to cavity optomechanics. Coherent phonon-magnon interactions, including electromagnetically induced transparency and absorption, are demonstrated. Because of the strong hybridization of magnon and microwave photon modes and their high tunability, our platform exhibits new features including parametric amplification of magnons and phonons, triple-resonant photon-magnon-phonon coupling, and phonon lasing. Our work demonstrates the fundamental principle of cavity magnomechanics and its application as a new information transduction platform based on coherent coupling between photons, phonons, and magnons. PMID:27034983

  8. Higher Order Modes HOM___s in Coupled Cavities of the Flash Module ACC39

    SciTech Connect

    Shinton, I.R.R.; Jones, R.M.; Li, Z.; Zhang, P.; /Manchester U. /Cockcroft Inst. Accel. Sci. Tech. /DESY

    2012-09-14

    We analyse the higher order modes (HOM's) in the 3.9GHz bunch shaping cavities installed in the FLASH facility at DESY. A suite of finite element computer codes (including HFSS and ACE3P) and globalised scattering matrix calculations (GSM) are used to investigate the modes in these cavities. This study is primarily focused on the dipole component of the multiband expansion of the wakefield, with the emphasis being on the development of a HOM-based BPM system for ACC39. Coupled inter-cavity modes are simulated together with a limited band of trapped modes.

  9. Analog signal pre-processing for the Fermilab Main Injector BPM upgrade

    SciTech Connect

    Saewert, A.L.; Rapisarda, S.M.; Wendt, M.; /Fermilab

    2006-05-01

    An analog signal pre-processing scheme was developed, in the framework of the Fermilab Main Injector Beam Position Monitor (BPM) Upgrade, to interface BPM pickup signals to the new digital receiver based read-out system. A key component is the 8-channel electronics module, which uses separate frequency selective gain stages to acquire 53 MHz bunched proton, and 2.5 MHz anti-proton signals. Related hardware includes a filter and combiner box to sum pickup electrode signals in the tunnel. A controller module allows local/remote control of gain settings and activation of gain stages, and supplies test signals. Theory of operation, system overview, and some design details are presented, as well as first beam measurements of the prototype hardware.

  10. Beam-based calibrations of the BPM offset at C-ADS Injector II

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Long; Wang, Zhi-Jun; Feng, Chi; Dou, Wei-Ping; Tao, Yue; Jia, Huan; Wang, Wang-Sheng; Liu, Shu-Hui; He, Yuan

    2016-07-01

    Beam-based BPM offset calibration was carried out for Injector II at the C-ADS demonstration facility at the Institute of Modern Physics (IMP), Chinese Academy of Science (CAS). By using the steering coils integrated in the quadrupoles, the beam orbit can be effectively adjusted and BPM positions recorded at the Medium Energy Beam Transport of the Injector II Linac. The studies were done with a 2 mA, 2.1 MeV proton beam in pulsed mode. During the studies, the “null comparison method” was applied for the calibration. This method is less sensitive to errors compared with the traditional transmission matrix method. In addition, the quadrupole magnet’s center can also be calibrated with this method. Supported by National Natural Science Foundation of China (91426303, 11525523)

  11. BPM Design and Impedance Considerations for a Rotatable Collimator for the LHC Collimation Upgrade

    SciTech Connect

    Smith, Jeffrey Claiborne; Keller, Lewis; Lundgren, Steven; Markiewicz, Thomas; Young, Andrew; /SLAC

    2010-08-26

    The Phase II upgrade to the LHC collimation system calls for complementing the 30 high robust Phase I graphite secondary collimators with 30 high Z Phase II collimators. This paper reports on BPM and impedance considerations and measurements of the integrated BPMs in the prototype rotatable collimator to be installed in the Super Proton Synchrotron (SPS) at CERN. The BPMs are necessary to align the jaws with the beam. Without careful design the beam impedance can result in unacceptable heating of the chamber wall or beam instabilities. The impedance measurements involve utilizing both a single displaced wire and two wires excited in opposite phase to disentangle the driving and detuning transverse impedances. Trapped mode resonances and longitudinal impedance are to also be measured and compared with simulations. These measurements, when completed, will demonstrate the device is fully operational and has the impedance characteristics and BPM performance acceptable for installation in the SPS.

  12. High Resolution BPM Upgrade for the ATF Damping Ring at KEK

    SciTech Connect

    Eddy, N.; Briegel, C.; Fellenz, B.; Gianfelice-Wendt, E.; Prieto, P.; Rechenmacher, R.; Semenov, A.; Voy, D.; Wendt, M.; Zhang, D.; Terunuma, N.; /KEK, Tsukuba

    2011-08-17

    A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R&D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital down-conversion techniques, digital signal processing, and also implements a new automatic gain error correction schema. The technical concept and realization as well as results of beam studies are presented. The next generation of linear colliders require ultra-low vertical emittance of <2 pm-rad. The damping ring at the KEK Accelerator Test Facility (ATF) is designed to demonstrate this mission critical goal. A high resolution beam position monitor (BPM) system for the damping ring is one of the key tools for realizing this goal. The BPM system needs to provide two distnict measurements. First, a very high resolution ({approx}100-200nm) closed-orbit measurement which is averaged over many turns and realized with narrowband filter techniques - 'narrowband mode'. This is needed to monitor and steer the beam along an optimum orbit and to facilitate beam-based alignment to minimize non-linear field effects. Second, is the ability to make turn by turn (TBT) measurements to support optics studies and corrections necessary to achieve the design performance. As the TBT measurement necessitates a wider bandwidth, it is often referred to as 'wideband mode'. The BPM upgrade was initiated as a KEK/SLAC/FNAL collaboration in the frame of the Global Design Initiative of the International Linear Collider. The project was realized and completed using Japan-US funds with Fermilab as the core partner.

  13. Human Dectin-1 isoform E is a cytoplasmic protein and interacts with RanBPM.

    PubMed

    Xie, Jianhui; Sun, Maoyun; Guo, Liang; Liu, Weicheng; Jiang, Jianhai; Chen, Xiaoning; Zhou, Lei; Gu, Jianxin

    2006-09-01

    Human Dectin-1, a type II transmembrane receptor, is alternatively spliced, generating eight isoforms. Of these isoforms, the isoform E (hDectin-1E) is structurally unique, containing a complete C-type lectin-like domain as well as an ITAM-like sequence. So far, little is known about its function. In the present study, we demonstrated that hDectin-1E was not secreted and it mainly resided in the cytoplasm. Using yeast two-hybrid screening, we identified a Ran-binding protein, RanBPM, as an interacting partner of hDectin-1E. GST pull-down assays showed that RanBPM interacted directly with hDectin-1E and the region containing SPRY domain was sufficient for the interaction. The binding of hDectin-1E and RanBPM was further confirmed in vivo by co-immunoprecipitation assay and confocal microscopic analysis. Taken together, our data provide a clue to the understanding of the function about hDectin-1E. PMID:16870151

  14. Time Series Spectroscopic and Photometric Observations of the Massive DAV BPM 37093

    NASA Astrophysics Data System (ADS)

    Nitta, Atsuko; Kepler, S. O.; Chene, Andre–Nicolas; Koester, D.; Provencal, J. L.; Sullivan, D. J.; Chote, Paul; Safeko, Ramotholo; Kanaan, Antonio; Romero, Alejandra; Corti, Mariela; Corti, Mariela; Kilic, Mukremin; Winget, D. E.

    2015-06-01

    BPM 37093 was the first of only a handful of massive (1.05+/-0.05 M⊙; Bergeron 2004;Koester & Allard 2000) white dwarf pulsators discovered (Kanaan et al. 1992). These stars are particularly interesting because the crystallized mass-fraction as a function of mass and temperature is poorly constrained by observation, yet this process adds 1-2 Gyr uncertainty in ages of the oldest white dwarf stars observed and hence, in the ages of associations that contain them (Abrikosov 1960; Kirzhnits 1960; Salpeter 1961). Last year, we discovered that ESO uses BPM 37093 as a standard star and extracted corresponding spectra from the public archive. The data suggested a large variation in the observed hydrogen line profiles that could potentially be due to pulsations, but the measurement did not reach a detection-quality threshold. To further explore this possibility, though, we obtained 4hrs of continuous time series spectroscopy of BPM 37093 with Gemini in the Northern Spring of 2014. We present our preliminary results from these data along with those from the accompanying time series photometric observations we gathered from Mt. John (New Zealand), South African Astronomical Observatory (SAAO), Panchromatic Robotic optical Monitoring and Polarimetry Telescopes (PROMPT) in Chile, and Complejo Astronomico El Leoncito (Argentina) to support the Gemini observations.

  15. Exploring Mbar shock conditions and isochorically heated aluminum at the MEC end station of the LCLS

    SciTech Connect

    Fletcher, L. B.; Lee, H. J.; SLAC, aff; Barbrel, B.; Gauthier, M.; Galtier, E.; Nagler, B.; Doppner, T.; LePape, S.; Ma, T.; Pak, A.; Turnbull, D.; White, T.; Gregori, G.; Wei, M.; Falcone, R. W.; Heimann, P.; Zastrau, U.; Hastings, J. B.; Glenzer, S. H.

    2015-02-05

    Recent experiments performed at the Matter in Extreme Conditions end station (MEC) of the Linac Coherent Light Source (LCLS) have demonstrated the first spectrally resolved measurements of plasmons from isochorically heated aluminum. The experiments have been performed using a seeded 8-keV x-ray laser beam as a pump and probe to both volumetrically heat and scatter x-rays from aluminum. Collective x-ray Thomson scattering spectra show a well-resolved plasmon feature that is down-shifted in energy by 19 eV. In addition, Mbar shock pressures from laser-compressed aluminum foils using Velocity Interferometer System for Any Reflector (VISAR) have been measured. The combination of experiments fully demonstrates the possibility to perform warm dense matter studies at the LCLS with unprecedented accuracy and precision.

  16. Simulations of Ion Migration in the LCLS RF Gun and Injector

    SciTech Connect

    Brachmann, Axel; Dowell, David; /SLAC

    2012-06-25

    The motivation for this work was the observed surface contamination of the first LCLS RF gun copper cathode. We will present the results of simulations in regards to ion migration in the LCLS gun. Ions of residual gases will be created by interaction of molecular gas species with the UV drive laser beam and by the electron beam itself. The larger part of those ionized molecules remain in the vicinity of creation, are transported towards beam line walls or away from the cathode. However a small fraction gains enough kinetic energy, focused by RF and magnetic fields and propagates to the cathode, producing an undesirable increase of the cathode's surface work function. Although this fraction is small, during long term operation, this effect may become a significant factor limiting the source performance.

  17. Start-to-End Simulations of the LCLS Accelerator and FEL Performance at Very Low Charge

    SciTech Connect

    Ding, Y; Brachmann, A.; Decker, F.-J.; Dowell, D.; Emma, P.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Huang, Z.; Iverson, R.; Loos, H.; Miahnahri, A.; Nuhn, H.-D.; Ratner, D.; Turner, J.; Welch, J.; White, W.; Wu, J.; Pellegrini, C.; /UCLA

    2009-05-26

    The Linac Coherent Light Source (LCLS) is an x-ray Free-electron Laser (FEL) being commissioned at Stanford Linear Accelerator Center (SLAC). Recent beam measurements have shown that, using the LCLS injector-linac-compressors, the beam emittance is very small at 20 pC. In this paper we perform start-to-end simulations of the entire accelerator including the FEL undulator and study the FEL performance versus the bunch charge. At 20 pC charge, these calculations associated with the measured beam parameters suggest the possibility of generating a longitudinally coherent single x-ray spike with 2-femtosecond (fs) duration at a wavelength of 1.5 nm. At 100 pC charge level, our simulations show an x-ray pulse with 10 femtosecond duration and up to 10{sup 12} photons at a wavelength of 1.5 {angstrom}. These results open exciting possibilities for ultrafast science and single shot molecular imaging.

  18. Calculation of the Beam Field in the LCLS Bunch Length Monitor

    SciTech Connect

    Stupakov, G.; Ding, Y.; Huang, Z.; /SLAC

    2006-06-07

    Maintaining a stable bunch length and peak current is a critical step for the reliable operation of a SASE based x-ray source. In the LCLS, relative bunch length monitors (BLM) right after both bunch compressors are proposed based on the coherent radiation generated by the short electron bunch. Due to its diagnostic setup, the standard far field synchrotron radiation formula and well-developed numerical codes do not apply for the analysis of the BLM performance. In this paper, we develop a calculation procedure to take into account the near field effect, the effect of a short bending magnet, and the diffraction effect of the radiation transport optics. We find the frequency response of the BLM after the first LCLS bunch compressor and discuss its expected performance.

  19. Engineering Specification Document (ESD) of X-ray Vacuum Transport System (XVTS) for LCLS XTOD

    SciTech Connect

    Shen, S

    2006-01-25

    The vacuum system of the X-Ray Vacuum Transport System (XVTS) for the Linac Coherent Light Source (LCLS) X-ray Transport, Optics and Diagnostics (XTOD) system has been analyzed and configured by the Lawrence Livermore National Laboratory's New Technologies Engineering Division (NTED) as requested by the SLAC/LCLS program. The preliminary system layout, detailed analyses and suggested selection of the vacuum components for the XTOD tunnel section are presented in the preliminary design report [1]. This document briefly reviews the preliminary design and provides engineering specifications for the system, which can be used as 'design to' specifications for the final design. Also included are the requirements of plans for procurement, mechanical integration, schedule and the cost estimates.

  20. Multi-Pulse Effects in the Damage to the LCLS Reflective Optics

    SciTech Connect

    Ryutov, D

    2004-07-29

    A number of experiments to be performed on the planned Linac Coherent Light Source (LCLS) will have to use various types of reflective optics (see, e.g., [1]). On the other hand, LCLS will operate at a rate of 120 x-ray pulses per second. Therefore, when considering effects leading to the damage to its optics, one has to be concerned not only with a possible damage within one pulse, but also with effects accumulating during many pulses. We identify and analyze two of such effects: a thermal fatigue, and the intensity-dependent radiation damage. The first effect is associated with thermal stresses and deformations that occur in every pulse. The heating of the surface layers of the optics leads to a peculiar distribution of stresses, with a strong concentration near the surface. The quasistatic analysis of this problem was presented in [2]. In the present study, we show that transients in both transverse and longitudinal acoustic perturbations play a significant role and generally worsen the situation. If the maximum stresses approach the yield strength, the thermal fatigue causes degradation of the surface within a few thousands pulses. The second effect is related to formation of clusters of ionized atoms which lead to gross deformation of the lattice and formation of numerous vacancies and interstitials. At maximum LCLS fluxes, the number of displacements per atom may reach values exceeding unity during a few hours of operation of LCLS, meaning degradation of reflective properties of the surface of the optics. We derive constraints on the admissible fluence per pulse and suggest ways for decreasing the impact of the multipulse effects.

  1. Next Generation Endstation for Concurrent Measurements of Charged Products and Photons in LCLS FEL Experiments

    NASA Astrophysics Data System (ADS)

    Osipov, T.; Rolles, D.; Bostedt, C.; Castagna, J.-C.; Hartmann, R.; Bozek, J. D.; Schlichting, I.; Strüder, L.; Ullrich, J.; Berrah, N.

    2012-11-01

    We are designing and building the next generation multi-purpose instrumentation especially adapted to accommodate unique large-area, single-photon counting pnCCD detectors together with advanced many-particle ion and electron imaging spectrometers (reaction microscope, REMI; velocity map imaging, VMI; magnetic bottle) for simultaneous detection of scattered and fluorescent photons and charged particles in experiments at the LCLS FEL.

  2. Linac Coherent Light Source (LCLS) Bunch-Length Monitor using Coherent Radiation

    SciTech Connect

    Wu, Juhao; Emma, P.; /SLAC

    2007-03-21

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) based on the final kilometer of the Stanford Linear Accelerator. One of the most critical diagnostic devices is the bunch length monitor (BLM), which is to be installed right after each compressor utilizing coherent radiation from the last bending magnet. We describe the components and the optical layout of such a BLM. Based on the setup geometry, we discuss some issues about the coherent radiation signal.

  3. Report on the Instrument Development Workshop for Biological Imaging Experiments at LCLS

    SciTech Connect

    Chapman, H; Hajdu, J; Hodgson, K

    2004-08-13

    The Linac Coherent Light Source (LCLS) will launch a new era in X-ray science by providing 200 fs pulses of X rays with a peak brightness up to 10 orders of magnitude greater than current sources. One of the most exciting and far-reaching experiments that this new source will enable is single-particle diffraction imaging, whereby atomic-resolution structure of biological macromolecules, complexes, or viruses could be obtained without the need for crystallization. Time-resolved structures and dynamic processes could be studied, with time steps as short as the LCLS pulse duration. Many of the components of a diffraction imaging experiment have been demonstrated individually, such as image reconstruction and electrospray mass-spectrometer particle selection. There are many issues that cannot be resolved until bright pulsed X-ray sources become available in 2005 to test theories. Bringing all the techniques together to field an experiment at LCLS in 2009 is a challenging, but quite feasible, undertaking that requires a coordinated and sustained effort of the community.

  4. X-ray Vision for Aerosol Scientists: LCLS Snapshots of Soot (Narrated)

    ScienceCinema

    None

    2014-06-03

    This short conceptual animation depicts how scientists can now simultaneously capture fractal morphology (structure), chemical composition and nanoscale imagery of individual aerosol particles in flight. These particles, known as "PM2.5" because they are smaller than 2.5 microns in diameter, affect climate by interacting with sunlight and impact human health by entering the lungs. The single LCLS laser pulses travel to the Atomic, Molecular and Optical Sciences (AMO) laboratory in the Near Experimental Hall. As we zoom in, we see deep inside a simplified aerosol inlet, where the complex fractal structure of the soot particles, each one completely unique, is shown. Individual soot particles are then delivered into the pulses of the LCLS beam, which destroys them. X-rays are scattered to the detector before the particle is destroyed, giving information about the morphology of the particle. Ion fragments released in the explosion are sent into a mass spectrometer, which measures their mass-to-charge ratio -- giving scientists information about the chemical composition of the particle. Many different particles are analyzed in this manner, allowing scientists to probe variations in the particles due to changes in their environment before being sent through the aerosol inlet. The final visual of aerosols emitted from a factory is representative of the goal that such LCLS aerosol dynamics experiments can provide critical feedback into modeling and understanding combustion, aerosol processes in manufacturing or aerosol effects on climate change.

  5. Calculating the Loss factor of the LCLS Beam Line Elements for Ultra-Shrot Bunches

    SciTech Connect

    Novokhatski, A.; /SLAC

    2009-10-17

    The Linac Coherent Light Source (LCLS) is a SASE 1.5-15 {angstrom} x-ray Free-Electron Laser (FEL) facility. Since an ultra-short intense bunch is used in the LCLS operation one might suggest that wake fields, generated in the vacuum chamber, may have an effect on the x-ray production because these fields can change the beam particle energies thereby increasing the energy spread in a bunch. At LCLS a feedback system precisely controls the bunch energy before it enters a beam transport line after the linac. However, in the transport line and later in the undulator section the bunch energy and energy spread are not under feedback control and may change due to wake field radiation, which depends upon the bunch current or on a bunch length. The linear part of the energy spread can be compensated in the upstream linac; the energy loss in the undulator section can be compensated by varying the K-parameter of the undulators, however we need a precise knowledge of the wake fields in this part of the machine. Resistive wake fields are known and well calculated. We discuss an additional part of the wake fields, which comes from the different vacuum elements like bellows, BPMs, transitions, vacuum ports, vacuum valves and others. We use the code 'NOVO' together with analytical estimations for the wake potential calculations.

  6. Measurements of the LCLS Laser Heater and its impact on the x-ray FEL Performance

    SciTech Connect

    Huang, Zhirong; Brachmann, A.; Decker, F.-J.; Ding, Y.; Dowell, D.; Emma, P.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Iverson, R.; Loos, H.; Miahnahri, A.; Nuhn, H.-D.; Ratner, D.; Stupakov, G.; Turner, J.; Welch, J.; White, W.; Wu, J.; Xiang, D.

    2009-12-17

    The very bright electron beam required for an x-ray free-electron laser (FEL), such as the Linac Coherent Light Source (LCLS), is susceptible to a microbunching instability in the magnetic bunch compressors, prior to the FEL undulator. The uncorrelated electron energy spread in the LCLS can be increased by an order of magnitude to provide strong Landau damping against the instability without degrading the FEL performance. To this end, a 'laser-heater' system has been installed in the LCLS injector, which modulates the energy of a 135-MeV electron bunch with an IR laser beam in a short undulator, enclosed within a four-dipole chicane. In this paper, we report detailed measurements of laser heater-induced energy spread, including the unexpected self-heating phenomenon when the laser energy is very low. We discuss the suppression of the microbunching instability with the laser heater and its impact on the x-ray FEL performance. We also present the analysis of these experimental results and develop a three-dimensional longitudinal space charge model to explain the self-heating effect.

  7. Toward TW-Level, Hard X-Ray Pulses at LCLS

    SciTech Connect

    Fawley, W.M.; Frisch, J.; Huang, Z.; Jiao, Y.; Nuhn, H.-D.; Pellegrini, C.; Reiche, S.; Wu, J,; /SLAC

    2011-12-13

    Coherent diffraction imaging of complex molecules such as proteins requires a large number (e.g., {approx} 10{sup 13}/pulse) of hard X-ray photons within a time scale of {approx} 10 fs or less. This corresponds to a peak power of {approx} 1 TW, much larger than that currently generated by LCLS or other proposed X-ray free electron lasers (FELs). We study the feasibility of producing such pulses using a LCLS-like, low charge electron beam, as will be possible in the LCLS-II upgrade project, employing a configuration beginning with a SASE amplifier, followed by a 'self-seeding' crystal monochromator, and finishing with a long tapered undulator. Our results suggest that TW-level output power at 8.3 keV is possible from a total undulator system length around 200 m. In addition power levels larger than 100 GW are generated at the third harmonic. We present a tapering strategy that extends the original 'resonant particle' formalism by optimizing the transport lattice to maximize optical guiding and enhance net energy extraction. We discuss the transverse and longitudinal coherence properties of the output radiation pulse and the expected output pulse energy sensitivity, both to taper errors and to power fluctuations on the monochromatized SASE seed.

  8. X-ray Vision for Aerosol Scientists: LCLS Snapshots of Soot (Narrated)

    SciTech Connect

    2012-10-22

    This short conceptual animation depicts how scientists can now simultaneously capture fractal morphology (structure), chemical composition and nanoscale imagery of individual aerosol particles in flight. These particles, known as "PM2.5" because they are smaller than 2.5 microns in diameter, affect climate by interacting with sunlight and impact human health by entering the lungs. The single LCLS laser pulses travel to the Atomic, Molecular and Optical Sciences (AMO) laboratory in the Near Experimental Hall. As we zoom in, we see deep inside a simplified aerosol inlet, where the complex fractal structure of the soot particles, each one completely unique, is shown. Individual soot particles are then delivered into the pulses of the LCLS beam, which destroys them. X-rays are scattered to the detector before the particle is destroyed, giving information about the morphology of the particle. Ion fragments released in the explosion are sent into a mass spectrometer, which measures their mass-to-charge ratio -- giving scientists information about the chemical composition of the particle. Many different particles are analyzed in this manner, allowing scientists to probe variations in the particles due to changes in their environment before being sent through the aerosol inlet. The final visual of aerosols emitted from a factory is representative of the goal that such LCLS aerosol dynamics experiments can provide critical feedback into modeling and understanding combustion, aerosol processes in manufacturing or aerosol effects on climate change.

  9. Parallel Computation of Integrated Electromagnetic, Thermal and Structural Effects for Accelerator Cavities

    SciTech Connect

    Akcelik, V.; Candel, A.E.; Kabel, A.C.; Ko, K.; Lee, L.; Li, Z.; Ng, C.K.; Xiao, L.; /SLAC

    2011-11-02

    The successful operation of accelerator cavities has to satisfy both rf and mechanical requirements. It is highly desirable that electromagnetic, thermal and structural effects such as cavity wall heating and Lorentz force detuning in superconducting rf cavities can be addressed in an integrated analysis. Based on the SLAC parallel finite-element code infrastructure for electromagnetic modeling, a novel multi-physics analysis tool has been developed to include additional thermal and mechanical effects. The parallel computation enables virtual prototyping of accelerator cavities on computers, which would substantially reduce the cost and time of a design cycle. The multi-physics tool is applied to the LCLS rf gun for electromagnetic, thermal and structural analyses.

  10. Parallel Computation of Intergrated Electronmagnetic, Thermal and Structural Effects for Accelerator Cavities

    SciTech Connect

    Akcelik, V.; Candel, A.; Kabel, A.; Lee, L-Q.; Li, Z.; Ng, C-K.; Xiao, L.; Ko, K.

    2008-07-02

    The successful operation of accelerator cavities has to satisfy both rf and mechanical requirements. It is highly desirable that electromagnetic, thermal and structural effects such as cavity wall heating and Lorentz force detuning in superconducting rf cavities can be addressed in an integrated analysis. Based on the SLAC parallel finite-element code infrastructure for electromagnetic modeling, a novel multi-physics analysis tool has been developed to include additional thermal and mechanical effects. The parallel computation enables virtual prototyping of accelerator cavities on computers, which would substantially reduce the cost and time of a design cycle. The multi-physics tool is applied to the LCLS rf gun for electromagnetic, thermal and structural analyses.

  11. High Precision SC Cavity Diagnostics with HOM Measurements

    SciTech Connect

    Frisch, Josef; Hendrickson, Linda; McCormick, Douglas; May, Justin; Molloy, Stephen; Ross, Marc; /SLAC

    2006-08-18

    Experiments at the FLASH linac at DESY have demonstrated that the Higher Order Modes induced in Superconducting Cavities can be used to provide a variety of beam and cavity diagnostics. The centers of the cavities can be determined from the beam orbit which produces minimum power in the dipole HOM modes. The phase and amplitude of the dipole modes can be used as a high resolution beam position monitor, and the phase of the monopole modes to measure the beam phase relative to the accelerator RF. Beam orbit feedback which minimizes the dipole HOM power in a set of structures has been demonstrated. For most SC accelerators, the existing HOM couplers provide the necessary signals, and the down mix and digitizing electronics are straightforward, similar to those for a conventional BPM.

  12. Fast BPM data distribution for global orbit feedback using commercial gigabit ethernet technology

    SciTech Connect

    Hulsart, R.; Cerniglia, P.; Michnoff, R.; Minty, M.

    2011-03-28

    In order to correct beam perturbations in RHIC around 10Hz, a new fast data distribution network was required to deliver BPM position data at rates several orders of magnitude above the capability of the existing system. The urgency of the project limited the amount of custom hardware that could be developed, which dictated the use of as much commercially available equipment as possible. The selected architecture uses a custom hardware interface to the existing RHIC BPM electronics together with commercially available Gigabit Ethernet switches to distribute position data to devices located around the collider ring. Using the minimum Ethernet packet size and a field programmable gate array (FPGA) based state machine logic instead of a software based driver, real-time and deterministic data delivery is possible using Ethernet. The method of adapting this protocol for low latency data delivery, bench testing of Ethernet hardware, and the logic to construct Ethernet packets using FPGA hardware will be discussed. A robust communications system using almost all commercial off-the-shelf equipment was developed in under a year which enabled retrofitting of the existing RHIC BPM system to provide 10 KHz data delivery for a global orbit feedback scheme using 72 BPMs. Total latencies from data acquisition at the BPMs to delivery at the controller modules, including very long transmission distances, were kept under 100 {micro}s, which provide very little phase error in correcting the 10 Hz oscillations. Leveraging off of the speed of Gigabit Ethernet and wide availability of Ethernet products enabled this solution to be fully implemented in a much shorter time and at lower cost than if a similar network was developed using a proprietary method.

  13. Using complexity metrics with R-R intervals and BPM heart rate measures

    PubMed Central

    Wallot, Sebastian; Fusaroli, Riccardo; Tylén, Kristian; Jegindø, Else-Marie

    2013-01-01

    Lately, growing attention in the health sciences has been paid to the dynamics of heart rate as indicator of impending failures and for prognoses. Likewise, in social and cognitive sciences, heart rate is increasingly employed as a measure of arousal, emotional engagement and as a marker of interpersonal coordination. However, there is no consensus about which measurements and analytical tools are most appropriate in mapping the temporal dynamics of heart rate and quite different metrics are reported in the literature. As complexity metrics of heart rate variability depend critically on variability of the data, different choices regarding the kind of measures can have a substantial impact on the results. In this article we compare linear and non-linear statistics on two prominent types of heart beat data, beat-to-beat intervals (R-R interval) and beats-per-min (BPM). As a proof-of-concept, we employ a simple rest-exercise-rest task and show that non-linear statistics—fractal (DFA) and recurrence (RQA) analyses—reveal information about heart beat activity above and beyond the simple level of heart rate. Non-linear statistics unveil sustained post-exercise effects on heart rate dynamics, but their power to do so critically depends on the type data that is employed: While R-R intervals are very susceptible to non-linear analyses, the success of non-linear methods for BPM data critically depends on their construction. Generally, “oversampled” BPM time-series can be recommended as they retain most of the information about non-linear aspects of heart beat dynamics. PMID:23964244

  14. Transmission line analysis of beam deflection in a BPM stripline kicker

    SciTech Connect

    Caporaso, G.J.; Chen, Yu Ju; Poole, B.

    1997-05-01

    In the usual treatment of impedances of beamline structures the electromagnetic response is computed under the assumption that the source charge trajectory is parallel to the propagation axis and is unaffected by the wake of the structure. For high energy beams of relatively low current this is generally a valid assumption. Under certain conditions the assumption of a parallel source charge trajectory is no longer valid and the effects of the changing trajectory must be included in the analysis. Here the usual transmission line analysis that has been applied to BPM type transverse kickers is extended to include the self-consistent motion of the beam in the structure.

  15. Morphology, microstructure, stress and damage properties of thin film coatings for the LCLS x-ray mirrors

    SciTech Connect

    Soufli, R; Baker, S L; Robinson, J C; Gullikson, E M; McCarville, T J; Pivovaroff, M J; Stefan, P; Hau-Riege, S P; Bionta, R

    2009-04-23

    The development and properties of reflective coatings for the x-ray offset mirror systems of the Linac Coherent Light Source (LCLS) free-electron laser (FEL) are discussed in this manuscript. The uniquely high instantaneous dose of the LCLS FEL beam translates to strict limits in terms of materials choice, thus leading to an x-ray mirror design consisting of a reflective coating deposited on a silicon substrate. Coherent wavefront preservation requirements for these mirrors result in stringent surface figure and finish specifications. DC-magnetron sputtered B{sub 4}C and SiC thin film coatings with optimized stress, roughness and figure properties for the LCLS x-ray mirrors are presented. The evolution of microstructure, morphology, and stress of these thin films versus deposition conditions is discussed. Experimental results on the performance of these coatings with respect to FEL damage are also presented.

  16. Reduction of X-BPM systematic errors by modification of lattice in the APS storage ring.

    SciTech Connect

    Decker, G.

    1999-04-20

    With recent developments, X-ray beam position monitors (BPMs) are capable of making accurate photon position measurements down to the sub-micron level. The true performance of X-ray beam position monitors when installed on insertion device beamlines is, however, severely limited due to the stray radiation traveling along the beamline that contaminates the insertion device photons. The stray radiation emanates from upstream and downstream dipole magnet fringe fields, from steering correctors, and from sextupoles and quadrupoles with offset trajectories. While significant progress has been made at the APS using look-up tables derived from translation stage scans to compensate for this effect, performance of ID X-BPMs to date is at the 10 to 20 micron level. A research effort presently underway to address this issue involves the introduction of a chicane into the accelerator lattice to steer the stray radiation away from the X-ray BPM blades. A horizontal parallel translation of the insertion device allows only ID photons and radiation from two nearby correctors to travel down the beamline, simplifying the radiation pattern considerably. A detailed ray tracing analysis has shown that stray radiation gets displaced by up to 2 cm horizontally at the X-BPM locations so that it can be easily masked. Results from such a modified lattice, implemented for one of the insertion devices, are reported here.

  17. BPM ANALOG FRONT-END ELECTRONICS BASED ON THE AD8307 LOG AMPLIFIER

    SciTech Connect

    R. SHURTER; ET AL

    2000-06-01

    Beam position monitor (BPM) signal-processing electronics utilizing the Analog Devices AD8307 logarithmic amplifier has been developed for the Low Energy Demonstration Accelerator (LEDA), part of the Accelerator Production of Tritium (APT) project at Los Alamos. The low-pass filtered 350 MHz fundamental signal from each of the four microstrip electrodes in a BPM is ''detected'' by an AD8307 log amp, amplified and scaled to accommodate the 0 to +5V input of an analog-to-digital (A/D) converter. The resultant four digitized signals represent a linear power relationship to the electrode signals, which are in turn related to beam current and position. As the AD8307 has a potential dynamic range of approximately 92 dB, much attention must be given to noise reduction, sources of which can be digital signals on the same board, power supplies, inter-channel coupling, stray RF and others. This paper will describe the operational experience of this particular analog front-end electronic circuit design.

  18. Evaluation of Laser Stabilization and Imaging Systems for LCLS-II - Final Paper

    SciTech Connect

    Barry, Matthew

    2015-08-20

    By combining the top performing commercial laser beam stabilization system with the most ideal optical imaging configuration, the beamline for the Linear Accelerator Coherent Light Source II (LCLS-II) will deliver the highest quality and most stable beam to the cathode. To determine the optimal combination, LCLS-II beamline conditions were replicated and the systems tested with a He-Ne laser. The Guidestar-II and MRC active laser beam stabilization systems were evaluated for their ideal positioning and stability. Both a two and four lens optical imaging configuration was then evaluated for beam imaging quality, magnification properties, and natural stability. In their best performances when tested over fifteen hours, Guidestar-II kept the beam stable over approximately 70-110um while the MRC system kept it stable over approximately 90-100um. During short periods of time, Guidestar-II kept the beam stable between 10-20um, but was more susceptible to drift over time, while the MRC system maintained the beam between 30-50um with less overall drift. The best optical imaging configuration proved to be a four lens system that images to the iris located in the cathode room and from there, imaged to the cathode. The magnification from the iris to the cathode was 2:1, within an acceptable tolerance to the expected 2.1:1 magnification. The two lens configuration was slightly more stable in small periods of time (less than 10 minutes) without the assistance of a stability system, approximately 55um compared to approximately 70um, but the four lens configurations beam image had a significantly flatter intensity distribution compared to the two lens configuration which had a Gaussian distribution. A final test still needs to be run with both stability systems running at the same time through the four lens system. With this data, the optimal laser beam stabilization system can be determined for the beamline of LCLS-II.

  19. Spectral-Angular Characteristics of the LCLS in the Near and Far Fields

    SciTech Connect

    Tatchyn, R.; /SLAC

    2006-02-17

    The unusually long insertion devices being prepared for Angstrom-wavelength Free Electron Lasers (FELs) will generate spectral-angular distributions in the proposed experimental areas substantially different from those conventionally calculated for the far field. In this paper we report on computational simulations of near vs. far field distributions for the SLAC linac Coherent Light Source (LCLS) undulator, an insertion device approximately 140 meters long. The properties of the coherent radiation as a limiting case of the near-field emission, for the special condition of a microbunched beam radiating along the undulator axis, are reviewed.

  20. Tests of Coordinate Transfer from Magnetic to Mechanical Reference for LCLS Undulator Fiducialization

    SciTech Connect

    Levashov, Yu.

    2010-12-13

    Fiducialization of the LCLS undulators will be based on magnetic measurements by Hall probe. Pointed magnets, proposed by I.Vasserman for quadrupole lens fiducialization will be used as an intermediate reference. A prototype of the pointed magnet fixture has been made and tested. In this note we will describe a procedure for measuring the position of the center of the Hall probe sensitive area with respect to the undulator fiducial marks. The pointed magnet calibration procedure, a two-point algorithm for locating the magnetic center of the fixture, and test results are presented.

  1. Status of LCLS - II QA Systems Collaboration for Cyromodule Construction at TJNAF and FNAL

    SciTech Connect

    McEwen, E. A.; Leung, J.; Bookwalter, V.; Blowers, J.; Szal, J.

    2015-09-25

    At the Thomas Jefferson National Accelerator Facility (Jefferson Lab), we are supporting the LCLS-II Project at SLAC. The plan is to build thirty-five 1.3 GHz continuous wave cryomodules, production to be split between JLab and FNAL (Fermilab). This has required a close collaboration between the partner labs, including enhancing our existing quality systems to include this collaboration. This overview describes the current status of the Quality System development as of August 2015, when the partner labs start the assembly of the prototype cryomodules.

  2. Cavity magnomechanics

    NASA Astrophysics Data System (ADS)

    Zou, Chang-Ling; Zhang, Xufeng; Jiang, Liang; Tang, Hong

    2016-05-01

    Recently, cavity magnonics has attracted much attention for potential applications of coherent information transduction and hybrid quantum devices. The magnon is a collective spin wave excitation in ferromagnetic material. It is magnetically tunability, with long coherence time and non-reciprocical interaction with electro-magnetic fields. We report the coherent coupling between magnon, microwave photon and phonon. First, we demonstrate strong coupling and ultrastrong coupling between the magnon in YIG sphere and microwave photon in three-dimensional cavity. Then, based on the hybridized magnon-photon modes, we observe the triply resonant magnon-mcirowave photon-phonon coupling, where the ultrahigh-Q mechanical vibration of YIG sphere is dispersively coupled with the magnon via magnetostrictive interaction. We observe interesting phenomena, including electromagnetically induced transparency/absorption and parametric amplification. In particular, benefit from the large tunability of the magnon, we demonstrate a tunable microwave amplifier with gain as high as 30 dB. The single crystal YIG also has excellent optical properties, and thus provide a unique platform bridging MHz, GHz and THz information carriers. Finally, we present the latest progress towards coherent magnon to optical photon conversion.

  3. Interactions of an Arabidopsis RanBPM homologue with LisH-CTLH domain proteins revealed high conservation of CTLH complexes in eukaryotes

    PubMed Central

    2012-01-01

    Background RanBPM (Ran-binding protein in the microtubule-organizing centre) was originally reported as a centrosome-associated protein in human cells. However, RanBPM protein containing highly conserved SPRY, LisH, CTLH and CRA domains is currently considered as a scaffolding protein with multiple cellular functions. A plant homologue of RanBPM has not yet been characterized. Results Based on sequence similarity, we identified a homologue of the human RanBPM in Arabidopsis thaliana. AtRanBPM protein has highly conserved SPRY, LisH, CTLH and CRA domains. Cell fractionation showed that endogenous AtRanBPM or expressed GFP-AtRanBPM are mainly cytoplasmic proteins with only a minor portion detectable in microsomal fractions. AtRanBPM was identified predominantly in the form of soluble cytoplasmic complexes ~230 – 500 kDa in size. Immunopurification of AtRanBPM followed by mass spectrometric analysis identified proteins containing LisH and CRA domains; LisH, CRA, RING-U-box domains and a transducin/WD40 repeats in a complex with AtRanBPM. Homologues of identified proteins are known to be components of the C-terminal to the LisH motif (CTLH) complexes in humans and budding yeast. Microscopic analysis of GFP-AtRanBPM in vivo and immunofluorescence localization of endogenous AtRanBPM protein in cultured cells and seedlings of Arabidopsis showed mainly cytoplasmic and nuclear localization. Absence of colocalization with γ-tubulin was consistent with the biochemical data and suggests another than a centrosomal role of the AtRanBPM protein. Conclusion We showed that as yet uncharacterized Arabidopsis RanBPM protein physically interacts with LisH-CTLH domain-containing proteins. The newly identified high molecular weight cytoplasmic protein complexes of AtRanBPM showed homology with CTLH types of complexes described in mammals and budding yeast. Although the exact functions of the CTLH complexes in scaffolding of protein degradation, in protein interactions and in

  4. Laser Safety for the Experimental Halls at SLAC_s Linac Coherent Light Source (LCLS)

    SciTech Connect

    Woods, Michael; Anthony, Perry; Barat, Ken; Gilevich, Sasha; Hays, Greg; White, William E.; /SLAC

    2009-01-15

    The LCLS at the SLAC National Accelerator Laboratory will be the world's first source of an intense hard x-ray laser beam, generating x-rays with wavelengths of 1nm and pulse durations less than 100fs. The ultrafast x-ray pulses will be used in pump-probe experiments to take stop-motion pictures of atoms and molecules in motion, with pulses powerful enough to take diffraction images of single molecules, enabling scientists to elucidate fundamental processes of chemistry and biology. Ultrafast conventional lasers will be used as the pump. In 2009, LCLS will deliver beam to the Atomic Molecular and Optical (AMO) Experiment, located in one of 3 x-ray Hutches in the Near Experimental Hall (NEH). The NEH includes a centralized Laser Hall, containing up to three Class 4 laser systems, three x-ray Hutches for experiments and vacuum transport tubes for delivering laser beams to the Hutches. The main components of the NEH laser systems are a Ti:sapphire oscillator, a regen amplifier, green pump lasers for the oscillator and regen, a pulse compressor and a harmonics conversion unit. Laser safety considerations and controls for the ultrafast laser beams, multiple laser controlled areas, and user facility issues are discussed.

  5. Measurement and Analysis of Field Emission Electrons in the LCLS Gun

    SciTech Connect

    Dowell, D.H.; Jongewaard, E.; Limborg-Deprey, C.; Schmerge, J.F.; Vlieks, A.; /SLAC

    2007-11-02

    The field emission was measured during the high-power testing of the LCLS photocathode RF gun. A careful study and analysis of the field emission electrons, or dark current is important in assessing the gun's internal surface quality in actual operation, especially those surfaces with high fields. The first indication of a good RF gun design and fabrication is short processing time to the required fields and low electron emission at high fields. The charge per 2 microsecond long RF pulse (the dark charge) was measured as a function of the peak cathode field for the 1.6 cell, 2.856GHz LCLS RF gun. Faraday cup data was taken for cathode peak RF fields up to 120MV/m producing a maximum of 0.6nC/RF pulse for a diamond-turned polycrystalline copper cathode installed in the gun. Digitized images of the dark charge were taken using a 100 micron thick YAG crystal for a range of solenoid fields to determine the location and angular distribution of the field emitters. The FN plots and emitter image analysis will be described in this paper.

  6. BPM Button Optimization to Minimize Distortion Due to Trapped Mode Heating

    SciTech Connect

    Cameron,P.; Blednyk, A.; Kosciuk, B.; Pinayev, I.; Ravindranath, I.; Singh, O

    2009-05-04

    The outer circumference of a BPM button and the inner circumference of the button housing comprise a transmission line. This transmission line typically presents an impedance of a few tens of ohms to the beam, and couples very weakly to the 50 ohm coaxial transmission line that comprises the signal path out of the button. The modes which are consequently excited and trapped often have quality factors of several hundred, permitting resonant excitation by the beam. The thermal distortion resulting from trapped mode heating is potentially problematic for achieving the high precision beam position measurements needed to provide the sub-micron beam position stability required by light source users. We present a button design that has been optimized via material selection and component geometry to minimize both the trapped mode heating and the resulting thermal distortion.

  7. Measurements of a newly designed BPM for the Tevatron Electron Lens 2

    SciTech Connect

    Scarpine, V.E.; Fellenz, B.; Kuznetsov, G.; Kamerdzhiev, V.; Olson, M.; Shiltsev, V.D.; Zhang, X.L.; /Fermilab

    2006-05-01

    Fermilab has developed a second electron lens (TEL-2) for beam-beam compensation in the Tevatron as part of its Run II upgrade program. Operation of the beam position monitors (BPMs) in the first electron lens (TEL-1) showed a systematic transverse position difference between short proton bunches (2 ns sigma) and long electron pulses ({approx}1 us) of up to {approx}1.5 mm. This difference was attributed to frequency dependence in the BPM system. The TEL-2 BPMs utilize a new compact four plate design with grounding strips between plates to minimize crosstalk. In-situ measurements of these new BPMs are made using a stretched wire pulsed with both proton and electron beam formats. In addition, longitudinal impedance measurements of the TEL-2 are presented. Signal processing algorithm studies indicate that the frequency dependent transverse position offset may be reduced to {approx}0.1 mm for the beam structures of interest.

  8. Design and Manufacturing Criteria for Beam Position Monitor (BPM) of Taiwan Photon Source (TPS)

    SciTech Connect

    Hsueh, H. P.; Chang, C. C.; Hsu, S. N.; Huang, I. T.; Chen, Y. B.; Kuan, C. K.; Hsiung, G. Y.; Chen, J. R.

    2010-06-23

    There are quite some considerations when the button feedthrough is designed and manufactured in a new 3rd generation synchrotron light source like the to-be-constructed TPS. It is the responsibility of the button feedthrough designer to design a feedthrough with the lowest probable HOM problem. It is also required for the designer to analyze the consequences for each possible mechanical error during manufacturing and therefore set standards of tolerance. We have been using MAFIA to optimize the design of feedthrough including flange type on bending chamber section and primary BPM on insertion device section. We also have set some criteria for feedthrough manufacturing, inspection, and welding based on hands-on experience on feedthrough electrical properties measuring, sorting, inspection, and laser welding. Here we will present the MAFIA results, electrical measurement results, and laser welding results and analysis. Criteria based on these results will also be presented.

  9. Noninterceptive transverse emittance measurements using BPM for Chinese ADS R&D project

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Jun; Feng, Chi; He, Yuan; Dou, Weiping; Tao, Yue; Chen, Wei-long; Jia, Huan; Liu, Shu-hui; Wang, Wang-sheng; Zhang, Yong; Wu, Jian-qiang; Zhang, Sheng-hu; Zhang, X. L.

    2016-04-01

    The noninterceptive four-dimensional transverse emittance measurements are essential for commissioning the high power continue-wave (CW) proton linacs as well as their operations. The conventional emittance measuring devices such as slits and wire scanners are not well suited under these conditions due to sure beam damages. Therefore, the method of using noninterceptive Beam Position Monitor (BPM) is developed and demonstrated on Injector Scheme II at the Chinese Accelerator Driven Sub-critical System (China-ADS) proofing facility inside Institute of Modern Physics (IMP) [1]. The results of measurements are in good agreements with wire scanners and slits at low duty-factor pulsed (LDFP) beam. In this paper, the detailed experiment designs, data analysis and result benchmarking are presented.

  10. BPM Motors in Residential Gas Furnaces: What are theSavings?

    SciTech Connect

    Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

    2006-05-12

    Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This paper examines both types of blower motors in non-condensing non-weatherized gas furnaces at a range of static pressures. Fan performance data is based on manufacturer product literature and laboratory tests. We use field-measured static pressure in ducts to get typical system curves to calculate how furnaces would operate in the field. We contrast this with the electricity consumption of a furnace blower operating under the DOE test procedure and manufacturer rated conditions. Furnace electricity use is also affected by operating modes that happen at the beginning and end of each furnace firing cycle. These operating modes are the pre-purge and post-purge by the draft inducer, the on-delay and off-delay of the blower, and the hot surface ignitor operation. To accurately calculate this effect, we use the number of firing cycles in a typical California house in the Central Valley of California. Cooling hours are not considered in the DOE test procedure. We also account for furnace blower use by the air conditioner and stand-by power. Overall BPM motors outperform PSC motors, but the total electricity savings are significantly less than projected using the DOE test procedure conditions. The performance gains depend on the static pressure of the household ducts, which are typically much higher than in the test procedures.

  11. Impact of nitrogen doping of niobium superconducting cavities on the sensitivity of surface resistance to trapped magnetic flux

    NASA Astrophysics Data System (ADS)

    Gonnella, Dan; Kaufman, John; Liepe, Matthias

    2016-02-01

    Future particle accelerators such as the SLAC "Linac Coherent Light Source-II" (LCLS-II) and the proposed Cornell Energy Recovery Linac require hundreds of superconducting radio-frequency (SRF) niobium cavities operating in continuous wave mode. In order to achieve economic feasibility of projects such as these, the cavities must achieve a very high intrinsic quality factor (Q0) to keep cryogenic losses within feasible limits. To reach these high Q0's in the case of LCLS-II, nitrogen-doping of niobium cavities has been selected as the cavity preparation technique. When dealing with Q0's greater than 1 × 1010, the effects of ambient magnetic field on Q0 become significant. Here, we show that the sensitivity to RF losses from trapped magnetic field in a cavity's walls is strongly dependent on the cavity preparation. Specifically, standard electropolished and 120 °C baked cavities show a sensitivity of residual resistance from trapped magnetic flux of ˜0.6 and ˜0.8 nΩ/mG trapped, respectively, while nitrogen-doped cavities show a higher sensitivity of residual resistance from trapped magnetic flux of ˜1 to 5 nΩ/mG trapped. We show that this difference in sensitivities is directly related to the mean free path of the RF surface layer of the niobium: shorter mean free paths lead to less sensitivity of residual resistance to trapped magnetic flux in the dirty limit (ℓ ≪ ξ0), while longer mean free paths lead to lower sensitivity of residual resistance to trapped magnetic flux in the clean limit (ℓ ≫ ξ0). These experimental results are also shown to have good agreement with recent theoretical predictions for pinned vortex lines oscillating in RF fields.

  12. Development, characterization and experimental performance of x-ray optics for the LCLS free-electron laser

    SciTech Connect

    Soufli, R; Pivovaroff, M J; Baker, S L; Robinson, J C; Gullikson, E M; Mc Carville, T J; Stefan, P M; Aquila, A L; Ayers, J; McKernan, M A; Bionta, R M

    2008-09-10

    This manuscript discusses the development of reflective optics for the x-ray offset mirror systems of the Linac Coherent Light Source (LCLS), a 0.15-1.5 nm free-electron laser (FEL) at the Stanford Linear Accelerator Center (SLAC). The unique properties (such as the high peak brightness) of the LCLS FEL beam translate to strict limits in terms of materials choice, thus leading to an x-ray mirror design consisting of a reflective coating deposited on a silicon substrate. Furthermore, the physics requirements for these mirrors result in stringent surface figure and finish specifications that challenge the state-of-the-art in x-ray substrate manufacturing, thin film deposition, and metrology capabilities. Recent experimental results on the development, optimization, and characterization of the LCLS soft x-ray mirrors are presented in this manuscript, including: precision surface metrology on the silicon substrates, and the development of boron carbide reflective coatings with reduced stress and thickness variation < 0.14 nm rms across the 175-mm clear aperture area of the LCLS soft x-ray mirrors.

  13. Cavity magnomechanics

    NASA Astrophysics Data System (ADS)

    Zhang, Xufeng; Zou, Changling; Jiang, Liang; Tang, Hong X.

    Mechanical oscillators have been recently widely utilized to couple with optical and microwave photons in a variety of hybrid quantum systems, but they all lack the tunability. The magnetostrictive force provides an alternative mechanism to allow phonon to couple with a different type of information carrier-magnon, the collective excitation of magnetization whose frequency can be tuned by a bias magnetic field. Here, we demonstrate an intriguing hybrid system that consists of a magnonic, a mechanical, and a microwave resonator. The magnon-phonon interaction results in hallmark coherent phenomena such as magnomechanically induced transparency/absorption and magnomechanical parametric amplification. The magnetic field dependence of magnon provides our system with unprecedented tunability. Moreover, the great flexibility of our system allows us to achieve triple resonance among magnon, phonon and photon, which drastically enhances the magnomechanical interaction. Our work demonstrates the fundamental principle of cavity magnetomechanics, opening up great opportunities in various applications, such as tunable microwave filter and amplifier, long-lifetime quantum memories, microwave-to-optics conversion.

  14. Measurements of Compression and Emittance Growth after the First LCLS Bunch Compressor Chicane

    SciTech Connect

    Bane, K.; Ding, Y.; Emma, P.; Frisch, J.; Huang, Z.; Loos, H.; Sannibale, F.; Sonnad, K.; Stupakov, G.; Wu, J.; Zolotorev, M.; Prat, E.; /DESY

    2007-11-02

    The Linac Coherent Light Source (LCLS) is a SASE xray free-electron laser project presently under construction at SLAC. The injector section from RF photocathode gun through first bunch compressor chicane was installed during the fall of 2006. The first bunch compressor is located at 250 MeV and nominally compresses a 1-nC electron bunch from an rms length of about 1 mm to 0.2 mm. Transverse phase space and bunch length diagnostics are located immediately after the chicane. We present preliminary measurements and simulations of the longitudinal and transverse phase space after the chicane in various beam conditions, including extreme compression with micron-scale current spikes.

  15. Characterization and use of the spent beam for serial operation of LCLS

    DOE PAGESBeta

    Boutet, Sébastien; Foucar, Lutz; Barends, Thomas R. M.; Botha, Sabine; Doak, R. Bruce; Koglin, Jason E.; Messerschmidt, Marc; Nass, Karol; Schlichting, Ilme; Seibert, M. Marvin; et al

    2015-04-11

    X-ray free-electron laser sources such as the Linac Coherent Light Source offer very exciting possibilities for unique research. However, beam time at such facilities is very limited and in high demand. This has led to significant efforts towards beam multiplexing of various forms. One such effort involves re-using the so-called spent beam that passes through the hole in an area detector after a weak interaction with a primary sample. This beam can be refocused into a secondary interaction region and used for a second, independent experiment operating in series. The beam profile of this refocused beam was characterized for amore » particular experimental geometry at the Coherent X-ray Imaging instrument at LCLS. A demonstration of this multiplexing capability was performed with two simultaneous serial femtosecond crystallography experiments, both yielding interpretable data of sufficient quality to produce electron density maps.« less

  16. Characterization and use of the spent beam for serial operation of LCLS

    SciTech Connect

    Boutet, Sébastien; Foucar, Lutz; Barends, Thomas R. M.; Botha, Sabine; Doak, R. Bruce; Koglin, Jason E.; Messerschmidt, Marc; Nass, Karol; Schlichting, Ilme; Seibert, M. Marvin; Shoeman, Robert L.; Williams, Garth J.

    2015-04-11

    X-ray free-electron laser sources such as the Linac Coherent Light Source offer very exciting possibilities for unique research. However, beam time at such facilities is very limited and in high demand. This has led to significant efforts towards beam multiplexing of various forms. One such effort involves re-using the so-called spent beam that passes through the hole in an area detector after a weak interaction with a primary sample. This beam can be refocused into a secondary interaction region and used for a second, independent experiment operating in series. The beam profile of this refocused beam was characterized for a particular experimental geometry at the Coherent X-ray Imaging instrument at LCLS. A demonstration of this multiplexing capability was performed with two simultaneous serial femtosecond crystallography experiments, both yielding interpretable data of sufficient quality to produce electron density maps.

  17. Operating the LCLS Gas Attenuator and Gas Detector System with Apertures of 6mm Diameter

    SciTech Connect

    Ryutov, D.D.; Bionta, R.M.; Hau-Riege, S.P.; Kishiyama, K.I.; Roeben, M.D.; Shen, S.; Stefan, P.M.; /SLAC

    2010-11-17

    The possibility of increasing the apertures of the LCLS gas attenuator/gas detector system is considered. It is shown that increase of the apertures from 3 to 6 mm, together with 4-fold reduction of the operation pressure does not adversely affect the vacuum conditions upstream or downstream. No change of the pump speed and the lengths of the differential pumping cells is required. One minor modification is the use of 1.5 cm long tubular apertures in the end cells of the differential pumping system. Reduction of the pressure does not affect performance of the gas attenuator/gas detector system at the FEL energies below, roughly, 2 keV. Some minor performance degradation occurs at higher energies.

  18. LCLS, a 1.5 Angstrom Free Electron Laser: Opportunities and Challenges

    NASA Astrophysics Data System (ADS)

    Hastings, Jerome

    2005-05-01

    The dream of a laser operating at hard x-ray wavelengths is about to be realized. The Linac Coherent Light Source will be the world's first hard x-ray free electron laser reaching 1.5 Angstroms in the fundamental. The scientific opportunities span the breadth of science studied today with photons and extends the photon matter interactions into unchartered regimes with unprecedented fields at Angstrom wavelengths. Along with these opportunities come technical challenges. The background, performance and opportunities for the LCLS will be described. The technical challenges will be highlighted and the status of their solutions will be discussed. Finally, as with other accelerator based light sources even before the first saturated 1.5 Angstrom beam has been produced ideas for shorter pulses, higher energies and variable polarization are being discussed. These `future' options will be highlighted.

  19. Characterization and use of the spent beam for serial operation of LCLS

    PubMed Central

    Boutet, Sébastien; Foucar, Lutz; Barends, Thomas R. M.; Botha, Sabine; Doak, R. Bruce; Koglin, Jason E.; Messerschmidt, Marc; Nass, Karol; Schlichting, Ilme; Seibert, M. Marvin; Shoeman, Robert L.; Williams, Garth J.

    2015-01-01

    X-ray free-electron laser sources such as the Linac Coherent Light Source offer very exciting possibilities for unique research. However, beam time at such facilities is very limited and in high demand. This has led to significant efforts towards beam multiplexing of various forms. One such effort involves re-using the so-called spent beam that passes through the hole in an area detector after a weak interaction with a primary sample. This beam can be refocused into a secondary interaction region and used for a second, independent experiment operating in series. The beam profile of this refocused beam was characterized for a particular experimental geometry at the Coherent X-ray Imaging instrument at LCLS. A demonstration of this multiplexing capability was performed with two simultaneous serial femtosecond crystallography experiments, both yielding interpretable data of sufficient quality to produce electron density maps. PMID:25931079

  20. Creation of optically-thin solid-density plasmas using LCLS

    NASA Astrophysics Data System (ADS)

    Preston, T.; Vinko, S. M.; Ciricosta, O.; Hollebon, P.; Wark, J. S.; Burian, T.; Chalupsky, J.; Vozda, V.; Minitti, M.; Dakovski, G.; Hall, F.; Spindloe, C.; Zastrau, U.

    2015-11-01

    The advent of X-ray free-electron-lasers such as LCLS provides the capability to truly isochorically heat solid-density matter on femtosecond time-scales. K-shell emission from such plasmas has provided new information on ionization potential depression and collisional ionisation rates. However, in previous work the targets were 1- μm thick, resulting in high-opacity on the K-shell transitions. We report here results of a detailed study of K-shell emission from exactly solid-density Mg plasmas with thicknesses ranging from 500 down to 25 nm - just over 100 atoms across. A curve-of-growth analysis exhibits text-book behavior, and confirms peak optical depths for the thinnest targets well below unity, in excellent agreement with simulations. The rich data-set provides information on line-widths, collisional dynamics, and radiation transfer in solid density plasmas.

  1. Measurements and Modeling of Coherent Synchrotron Radiation and its Impact on the LCLS Electron Beam

    SciTech Connect

    Bane, K.L.F.; Decker, F.-J.; Ding, Y.; Dowell, D.; Emma, P.; Frisch, J.; Huang, Z.; Iverson, R.; Limborg-Deprey, C.; Loos, H.; Nuhn, H.-D.; Ratner, D.; Stupakov, G.; Turner, J.; Welch, J.; Wu, J.; /SLAC

    2008-12-18

    In order to reach the high peak current required for an x-ray free electron laser, two separate magnetic dipole chicanes are used in the Linac Coherent Light Source (LCLS) accelerator to compress the electron bunch length in stages. In these bunch compressors, coherent synchrotron radiation (CSR) can be emitted either by a short electron bunch or by any longitudinal density modulation that may be on the bunch. In this paper, we report detailed measurements of the CSR-induced energy loss and transverse emittance growth in these compressors. Good agreement is found between the experimental results and multi-particle tracking studies. We also describe direct observations of CSR at optical wavelengths and compare with analytical models based on beam microbunching.

  2. Design and Implementation of an Acoustic X-ray Detector to Measure the LCLS Beam Energy

    SciTech Connect

    Loos, Jennifer L.; /San Jose State U. /SLAC

    2010-08-25

    On April 11, 2009, first light was seen from LCLS. The present apparatus being used to measure the x-ray beam energy is the Total Energy Sensor which uses a suite of thermal sensors. Another device is needed to cross-check the energy measurements. This new diagnostic tool utilizes radiation acoustic phenomena to determine the x-ray beam energy. A target is hit by the x-rays from the beam, and a voltage is generated in two piezoelectric sensors attached to the target in response to the consequent deformation. Once the voltage is known, the power can be obtained. Thermal sensors will also be attached to the target for calibration purposes. Material selection and design were based on: durability, ultra-high vacuum compatibility, safety and thermal properties. The target material was also chosen for its acoustic properties which were determined from tests using a frequency generator and laser. Initial tests suggest the device will function as anticipated.

  3. Dual frequency optical cavity

    DOEpatents

    George, E.V.; Schipper, J.F.

    Method and apparatus for generating two distinct laser frequencies in an optical cavity, using a T configuration laser cavity and means for intermittently increasing or decreasing the index of refraction n of an associated transmission medium in one arm of the optical cavity to enhance laser action in one arm or the second arm of the cavity.

  4. Dual frequency optical cavity

    DOEpatents

    George, E. Victor; Schipper, John F.

    1985-01-01

    Method and apparatus for generating two distinct laser frequencies in an optical cavity, using a "T" configuration laser cavity and means for intermittently increasing or decreasing the index of refraction n of an associated transmission medium in one arm of the optical cavity to enhance laser action in one arm or the second arm of the cavity.

  5. RESONANT CAVITY EXCITATION SYSTEM

    DOEpatents

    Baker, W.R.

    1959-08-01

    A cavity excitation circuit is described for rapidly building up and maintaining high-level oscillations in a resonant cavity. The circuit overcomes oscillation buildup slowing effects such as ion locking in the cavity by providing for the selective application of an amplified accelerating drive signal to the main cavity exciting oscillator during oscillation buildup and a direct drive signal to the oscillator thereafter.

  6. Low-flux measurements with Cornell's LCLS integrating pixel array detector

    NASA Astrophysics Data System (ADS)

    Philipp, Hugh T.; Tate, Mark W.; Gruner, Sol M.

    2011-11-01

    Next generation light sources are revolutionizing x-ray science by delivering ultra-intense, hard x-ray pulses many orders of magnitude brighter and shorter in duration than previously achievable. Maximizing the scientific potential of these light sources requires the development of suitable detectors. Experiments such as coherent x-ray imaging of single particles require detectors that can record extremely high instantaneous flux rates produced by femtosecond x-ray pulses (i.e. thousands of photons incident on a single pixel of an area detector in a few femtoseconds) while also being able to accurately distinguish single photon events so that many thousands of frames of data can be used to reconstruct extremely low flux information (e.g. less than 1/1000 photons per pixel per frame). This paper presents data from an integrating pixel array detector (PAD) possessing the ability to record high- and low-flux x-ray data at an X-ray Free Electron Laser (XFEL). Methods are presented to process extremely low-flux data (less than 1/10000 8-keV x-rays per pixel per frame) to accurately recover diffraction patterns from thousands of frames. The data were collected using a detector developed by Cornell for the Linac Coherent Light Source (LCLS) at SLAC National Lab. A copy of this detector was delivered to SLAC in the middle of 2008. The ASIC developed for this detector was used by SLAC as the basis for the CS-PAD (Cornell SLAC-PAD) being used on the Coherent X-ray Imaging beamline at the LCLS. These methods extend beyond XFEL applications because they allow for the suppression of dark accumulation noise which typically limits the low-flux capability of integrating detectors on conventional x-ray sources.

  7. LCLS X-ray mirror measurements using a large aperture visible light interferometer

    SciTech Connect

    McCarville, T; Soufli, R; Pivovaroff, M

    2011-03-02

    Synchrotron or FEL X-ray mirrors are required to deliver an X-ray beam from its source to an experiment location, without contributing significantly to wave front distortion. Accurate mirror figure measurements are required prior to installation to meet this intent. This paper describes how a 300 mm aperture phasing interferometer was calibrated to <1 nm absolute accuracy and used to mount and measure 450 mm long flats for the Linear Coherent Light Source (LCLS) at Stanford Linear Accelerator Center. Measuring focus mirrors with an interferometer requires additional calibration, because high fringe density introduces systematic errors from the interferometer's imaging optics. This paper describes how these errors can be measured and corrected. The calibration approaches described here apply equally well to interferometers larger than 300 mm aperture, which are becoming more common in optics laboratories. The objective of this effort was to install LCLS flats with < 10 nm of spherical curvature, and < 2 nm rms a-sphere. The objective was met by measuring the mirrors after fabrication, coating and mounting, using a 300 mm aperture phasing interferometer calibrated to an accuracy < 1 nm. The key to calibrating the interferometer accurately was to sample the error using independent geometries that are available. The results of those measurements helped identify and reduce calibration error sources. The approach used to measure flats applies equally well to focus mirrors, provided an additional calibration is performed to measure the error introduced by fringe density. This calibration has been performed on the 300 mm aperture interferometer, and the measurement correction was evaluated for a typical focus mirror. The 300 mm aperture limitation requires stitching figure measurements together for many X-ray mirrors of interest, introducing another possible error source. Stitching is eliminated by applying the calibrations described above to larger aperture instruments

  8. Photon storage cavities

    SciTech Connect

    Kim, K.J.; Sessler, A.M.

    1991-08-01

    A general analysis is presented of a photon storage cavity, coupled to free-electron laser (FEL) cavity. It is shown that if the coupling between the FEL cavity and the storage cavity is unidirectional (for example, a ring resonator storage cavity) then storage is possible, but that if the coupling is bi-directional then storage is not possible. Parameters are presented for an infra-red FEL storage cavity giving an order of magnitude increase in the instantaneous photon power within the storage cavity. 4 refs., 3 figs.

  9. Segmented trapped vortex cavity

    NASA Technical Reports Server (NTRS)

    Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)

    2010-01-01

    An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

  10. WFC3 Micro-arcsecond astrometry of the possible SNIa progenitor BPM 71214

    NASA Astrophysics Data System (ADS)

    Debes, John

    2012-10-01

    We propose to use the newly commissioned scanning mode on WFC3 to obtain astrometric measurements of the ~0.008 AU WD/M dwarf binary BPM 71214. This system is a fascinating mystery for post-common envelope binary evolution and may be a SN1a progenitor. COS spectra of the WD in the system shows that it is rapidly rotating with a vsin i of 200 km/s, implying that it has already accreted significant mass from its companion, but mass transfer has since stopped. The COS spectra imply a near Chandrasekar mass for the WD, while optical spectroscopy suggests a mass of 0.8 M_Sun. We propose to take four orbits of WFC3 observations in scanning mode to obtain astrometric measurements of this system at a per-measurement precision of ~30~micro-arcseconds. Such measurements will definitively constrain the mass of the WD and fully solve for both masses in the binary.

  11. Preliminary design of the BPM electronics memory scanner/dual boxcar averager for the advanced photon source

    NASA Astrophysics Data System (ADS)

    Votaw, A. J.

    1992-07-01

    The memory scanner/dual boxcar averager are VXI modules that are part of the Advanced Photon Source (APS) beam position monitor (BPM) data acquisition system. Each pair of modules is designed to gather and process digital data from up to nine digital channels transmitting the BPM data from the storage ring (360 locations) and the synchrotron (80 locations). They store beam history in a buffer, store the latest scan of all channels, and provide boxcar averaged X and Y position data for the global orbit feedback system, provide boxcar average X and Y position data for beam diagnostics, and a buffered output of SCDU data as it is scanned for the beam abort interlock system. The system's capability to support single pass, closed orbit, and tune measurement functions is also be briefly described.

  12. Preliminary design of the BPM electronics memory scanner/dual boxcar averager for the Advanced Photon Source

    SciTech Connect

    Votaw, A.J.

    1992-01-01

    The memory scanner/dual boxcar averager are VXI modules that are part of the Advanced Photon Source (APS) beam position monitor (BPM) data acquisition system. Each pair of modules is designed to gather and process digital data from up to nine digital channels transmitting the BPM data from the storage ring (360 locations) and the synchrotron (80 locations). They store beam history in a buffer, store the latest scan of all channels, and provide boxcar averaged X and Y position data for the global orbit feedback system, provide boxcar average X and Y position data for beam diagnostics, and a buffered output of SCDU data as it is scanned for the beam abort interlock system. The system's capability to support single pass, closed orbit and tune measurement functions will also be briefly described.

  13. Preliminary design of the BPM electronics memory scanner/dual boxcar averager for the Advanced Photon Source

    SciTech Connect

    Votaw, A.J.

    1992-12-31

    The memory scanner/dual boxcar averager are VXI modules that are part of the Advanced Photon Source (APS) beam position monitor (BPM) data acquisition system. Each pair of modules is designed to gather and process digital data from up to nine digital channels transmitting the BPM data from the storage ring (360 locations) and the synchrotron (80 locations). They store beam history in a buffer, store the latest scan of all channels, and provide boxcar averaged X and Y position data for the global orbit feedback system, provide boxcar average X and Y position data for beam diagnostics, and a buffered output of SCDU data as it is scanned for the beam abort interlock system. The system`s capability to support single pass, closed orbit and tune measurement functions will also be briefly described.

  14. Research and development toward a 4.5-1.5{angstrom} linac coherent light source (LCLS) at SLAC

    SciTech Connect

    Tatchyn, R.; Arthur, J.; Baltay, M.

    1995-12-31

    In recent years significant studies have been initiated on the theoretical and technical feasibility of utilizing a portion of the 3km S-band accelerator at the Stanford Linear Accelerator Center (SLAC) to drive a short wavelength (4.5-1.5 {Angstrom}) Linac Coherent Light Source (LCLS), a Free-Electron Laser (FEL) operating in the Self-Amplified Spontaneous Emission (SASE) regime. Electron beam requirements for single-pass saturation include: (1) a peak current in the 3-7 kA range, (2) a relative energy spread of <0.05%, ad (3) a transverse emittance, {epsilon}{le}{lambda}/4{pi}, where {lambda}[m] is the output wavelength. Requirements on the insertion device include field error levels of 0.1-0.2% for keeping the electron bunch centered on and in phase with the amplified photons, and a focusing beta of 4-8 m for inhibiting the dilution of its transverse density. Although much progress techniques necessary for LCLS operation down to {approximately}20 {angstrom}, a substantial amount of research and development is still required in a number of theoretical and experimental areas leading to the construction and operation of a 4.5-1.5 {angstrom} LCLS. In this paper we report on a research and development program underway and in planning at SLAC for addressing critical questions in these areas. These include the construction and operation of a linac test stand for developing laser-driven photocathode rf guns with normalized emittances approaching 1 mm-mr; development of advanced beam compression, stability, an emittance control techniques at multi-GeV energies; the construction and operation of a FEL Amplifier Test Experiment (FATE) for theoretical and experimental studies of SASE at IR wavelengths; an undulator development program to investigate superconducting, hybrid/permanent magnet (hybrid/PM), and pulsed-Cu technologies; theoretical and computational studies of high-gain FEL physics and LCLS component designs.

  15. Optimization for Single-Spike X-Ray FELs at LCLS with a Low Charge Beam

    SciTech Connect

    Wang, L.; Ding, Y.; Huang, Z.; /SLAC

    2011-12-14

    The Linac Coherent Light Source is an x-ray free-electron laser at the SLAC National Accelerator Laboratory, which is operating at x-ray wavelengths of 20-1.2 Angstrom with peak brightness nearly ten orders of magnitude beyond conventional synchrotron radiation sources. At the low charge operation mode (20 pC), the x-ray pulse length can be <10 fs. In this paper we report our numerical optimization and simulations to produce even shorter x-ray pulses by optimizing the machine and undulator setup at 20 pC charge. In the soft x-ray regime, with combination of slotted-foil or undulator taper, a single spike x-ray pulse is achievable with peak FEL power of a few 10s GW. Linac Coherent Light Source (LCLS), the world's first hard x-ray Free electron laser (FEL), has started operation since 2009. With nominal operation charge of 250 pC, the generated x-ray pulse length is from 70 fs to a few hundred fs. This marks the beginning of a new era of ultrashort x-ray sciences. In addition, a low charge (20pC) operation mode has also been established. Since the collective effects are reduced at the low charge mode, we can increase the compression factor and still achieve a few kA peak current. The expected electron beam and x-ray pulses are less than 10 fs. There are growing interests in even shorter x-ray pulses, such as fs to sub-fs regime. One of the simple solutions is going to even lower charge. As discussed, single-spike x-ray pulses can be generated using 1 pC charge. However, this charge level is out of the present LCLS diagnostic range. 20 pC is a reasonable operation charge at LCLS, based on the present diagnostic system. At 20 pC in the soft x-ray wavelength regime, we have experimentally demonstrated that FEL can work at undercompression or over-compression mode, such as 1 degree off the full-compression; at full-compression, however, there is almost no lasing. In hard x-ray wavelength regime, we observed that there are reasonable photons generated even at full

  16. Design of a diamond-crystal monochromator for the LCLS hard x-ray self-seeding project

    NASA Astrophysics Data System (ADS)

    Shu, D.; Shvyd'ko, Y.; Amann, J.; Emma, P.; Stoupin, S.; Quintana, J.

    2013-03-01

    As the result of collaborations between the Advanced Photon Source (APS), Argonne National Laboratory, and the Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory, we have designed and constructed a diamond crystal monochromator for the LCLS hard x-ray self-seeding project. The novel monochromator is ultrahigh-vacuum compatible to meet the LCLS linear accelerator vacuum environmental requirement. A special graphite holder was designed for strain-free mount of the 110-μm thin synthetic diamond crystal plate provided by Technological Institute for Super-hard and Novel Carbon Materials of Russia (TISNCM). An in-vacuum multi-axis precision positioning mechanism is designed to manipulate the thin-film diamond holder with resolutions and stabilities required by the hard x-ray self-seeding physics. Optical encoders, limit switches, and hardware stops are established in the mechanism to ensure system reliability and to meet the accelerator personal and equipment safety interlock requirements. Molybdenum shields are installed in the monochromator to protect the encoders and associated electronics from radiation damage. Mechanical specifications, designs, and preliminary test results of the diamond monochromator are presented in this paper.

  17. Determination of the neon double core hole lifetime using high-intensity x-rays from the LCLS

    NASA Astrophysics Data System (ADS)

    Krässig, B.; Kanter, E. P.; Doumy, G.; March, A. M.; Southworth, S. H.; Young, L.; Bozek, J. D.; Bostedt, C.; Messerschmidt, M.

    2014-05-01

    The concentration of x-ray photons in a focussed radiation pulse at the SLAC Linac Coherent Light Source (LCLS) exposes atoms to multiple sequential photoabsorption processes. For ~keV x rays the absorption in neon targets primarily the 1s shell and hollow neon atoms are readily created when the rate of photoabsorption exceeds that of inner-shell decay. With typical LCLS parameters and a ~1 micron focus, we observed double core-hole states in neon for up to ~20% of 1s ionization events. For comparison, electron-electron correlations lead to double-to-single core-hole ratios of just 0.3% under single photon absorption conditions. Using the high-resolution electron time-of-flight spectrometers of the LCLS AMO Physics end station, we measured the Ne KK-KLL Auger hypersatellite spectrum and determined the lifetime of the Ne2+(1s-2) doubly core-excited state. The results are compared to theoretical predictions. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Dept. of Energy, Contract DE-AC02-06CH11357.

  18. Fabrication of Cryogenic Manganite Bolometers to Measure the Total Energy at the LCLS Free Electron X-ray Laser

    SciTech Connect

    Drury, O B; Yong, G J; Kolagani, R M; Liang, Y; Gardner, C; Ables, E; Fong, K W; Bionta, R M; Friedrich, S

    2008-06-14

    We are developing cryogenic bolometers to measure the total energy of the Linac Coherent Light Source (LCLS) free electron X-ray laser that is currently being built at the Stanford Linear Accelerator Center. LCLS will produce ultrashort {approx}200 fs X-ray laser pulses with {approx}10{sup 13} photons at 0.8 keV up to {approx}10{sup 12} photons at 8 keV per pulse at a repeat interval as short as 8 ms, and will be accompanied by a halo of spontaneous undulator radiation. Our bolometer consists of a 375 {micro}m thick Si absorber and a Nd{sub 0.67}Sr{sub 0.33}MnO{sub 3} sensor operated at its metal-insulator transition. It will measure the total energy of each pulse with a precision of <1%, and is designed to meet the conflicting requirements of radiation hardness, sensitivity, linearity over a dynamic range of three orders of magnitude, and readout speed compatible with the LCLS pulse rate. Here we discuss bolometer design and fabrication, and the photoresponse of prototype devices to pulsed optical lasers.

  19. Research and Development Toward a 4.5-1.5 {Angstrom} Linac Coherent Light Source (LCLS) at SLAC

    SciTech Connect

    Tatchyn, R.; Arthur, J.; Baltay, M.

    1995-08-01

    In recent years significant studies have been initiated on the feasibility of utilizing a portion of the 3km S-band accelerator at SLAC to drive a short wavelength (4.5-1.5 A) Linac Coherent Light Source (LCLS), a Free Electron Laser (FEL) operating in the Self- Amplified Spontaneous Emission (SASE) regime. Electron beam requirements for single-pass saturation in a minimal time include: (1) a peak current in the 7 kA range, (2) a relative energy spread of {lt}0.05%, and (3) a transverse emittance, {epsilon}[r-m], approximating the diffraction limit condition {epsilon} = {lambda} / 4{pi}, where lambda(m) is the output wavelength. Requirements on the insertion device include field error levels of 0.02% for keeping the electron bunch centered on and in phase with the amplified photons, and a focusing beta of 8 m/rad for inhibiting the dilution of its transverse density. Although much progress has been made in developing individual components and beam processing techniques necessary for LCLS operation down to approx. 20 A, a substantial amount of research and development is still required in a number of theoretical and experimental areas leading to the construction and operation of a 4.5-1.5 A LCLS. In this paper we report on a research and development program underway and in planning at SLAC for addressing critical questions in these areas.

  20. Linac Coherent Light Source (LCLS) at 2--4 nm using the SLAC linac

    SciTech Connect

    Seeman, J.T.; Bane, K.; Boyce, R.; Loew, G.; Morton, P.; Nuhn, H.D.; Paterson, J.; Pianetta, P.; Raubenheimer, T.; Tatchyn, R.; Vylet, V.; Winick, H.; Pellegrini, C.; Rosenzweig, J.; Travish, G.; Prosnitz, D.; Scharlemann, E.T.; Halbach, K.; Kim, K.J.; Xie, M.

    1993-08-01

    The authors describe the possible use of the SLAC linac to drive a unique, powerful, short wavelength Linac Coherent Light Source (LCLS). Using the FEL principle, lasing is achieved in a single pass of a high peak current electron beam through a long undulator by self-amplified-spontaneous-emission (SASE). The main components are a high-brightness electron RF gun with a photocathode, two electron bunch length compressors, the existing SLAC linac, beam diagnostics, and a long undulator combined with a FODO quadrupole focusing system. The RF gun, to be installed about 1 km from the end of the SLAC linac, would produce a single bunch of 6 x 10{sup 9} electrons with an invariant emittance of about 3 mm-mrad and a bunch length of about 500 {mu}m. That bunch is then accelerated to 100 MeV and compressed to a length of about 200 {mu}m. The main SLAC linac accelerates the bunch to 2 GeV were a second bunch compressor reduces the length to 30--40 {mu}m and produces a peak current of 2--3 kA. The bunch is then accelerated to 7--8 GeV and transported to a 50--70 m long undulator. Using electrons below 8 GeV, the undulator could operate at wavelengths down to 2 nm, producing about 10 GW peak power in sub-ps light pulses. At a linac repetition rate of 120 Hz, the average power is about 1 W. Linac operation at lower beam energies provides longer wavelength radiation. After the undulator, the beam is deposited in a dump. The LCLS light pulses are then distributed to multiple user stations using grazing incident mirrors. Length compression, emittance control, phase stability, FEL design criteria, and parameter tolerances are discussed. A demonstration experiment is also described which uses the SLAC linac and (possibly) the PALADIN undulator to study SASE to power saturation at wavelengths of 40--360 nm.

  1. Spatially-resolved X-ray Scattering off shock-compressed carbon at the LCLS

    NASA Astrophysics Data System (ADS)

    Zastrau, Ulf

    2015-06-01

    The diversity of the electronic properties of carbon makes it of key interest to the material science community; nowhere is this more evident than in the myriad potential applications of structured allotropes like grapheme and nano tubes. By contrast, at the high pressures typical of planetary and stellar interiors, the behavior of carbon is poorly understood with large uncertainties in the conductivity and even the material phase. There is growing evidence of the abundance of diamond in the interiors of the ice giant planets Uranus and Neptune; the conductivity of which could potentially influence models for the origin of the unusual magnetic fields of these planets. In laboratory experiments, practical issues with gradients in the temperature and density of shock compressed matter have hindered accurate measurement and further from distinguishing theoretical models. Here, we present spatially resolved x-ray scattering experiments using LCLS free electron laser to examine and understand the gradients of thermal properties under dynamic shock loading. We employed curved mosaic and perfect imaging crystals. Compared with hydro-dynamic simulations, we present time-resolved data on plasmon dispersion, axial compression gradients and finally carbon melting at shock coalescence.

  2. The LCLS variable-energy hard X-ray single-shot spectrometer

    SciTech Connect

    Rich, David; Zhu, Diling; Turner, James; Zhang, Dehong; Hill, Bruce; Feng, Yiping

    2016-01-01

    The engineering design, implementation, operation and performance of the new variable-energy hard X-ray single-shot spectrometer (HXSSS) for the LCLS free-electron laser (FEL) are reported. The HXSSS system is based on a cylindrically bent Si thin crystal for dispersing the incident polychromatic FEL beam. A spatially resolved detector system consisting of a Ce:YAG X-ray scintillator screen, an optical imaging system and a low-noise pixelated optical camera is used to record the spectrograph. The HXSSS provides single-shot spectrum measurements for users whose experiments depend critically on the knowledge of the self-amplified spontaneous emission FEL spectrum. It also helps accelerator physicists for the continuing studies and optimization of self-seeding, various improved mechanisms for lasing mechanisms, and FEL performance improvements. The designed operating energy range of the HXSSS is from 4 to 20 keV, with the spectral range of order larger than 2% and a spectral resolution of 2 × 10-5or better. Those performance goals have all been achieved during the commissioning of the HXSSS.

  3. The LCLS variable-energy hard X-ray single-shot spectrometer

    SciTech Connect

    Rich, David; Zhu, Diling; Turner, James; Zhang, Dehong; Hill, Bruce; Feng, Yiping

    2016-01-01

    The engineering design, implementation, operation and performance of the new variable-energy hard X-ray single-shot spectrometer (HXSSS) for the LCLS free-electron laser (FEL) are reported. The HXSSS system is based on a cylindrically bent Si thin crystal for dispersing the incident polychromatic FEL beam. A spatially resolved detector system consisting of a Ce:YAG X-ray scintillator screen, an optical imaging system and a low-noise pixelated optical camera is used to record the spectrograph. The HXSSS provides single-shot spectrum measurements for users whose experiments depend critically on the knowledge of the self-amplified spontaneous emission FEL spectrum. It also helps accelerator physicists for the continuing studies and optimization of self-seeding, various improved mechanisms for lasing mechanisms, and FEL performance improvements. The designed operating energy range of the HXSSS is from 4 to 20 keV, with the spectral range of order larger than 2% and a spectral resolution of 2 × 10-5or better. Those performance goals have all been achieved during the commissioning of the HXSSS.

  4. The LCLS variable-energy hard X-ray single-shot spectrometer.

    PubMed

    Rich, David; Zhu, Diling; Turner, James; Zhang, Dehong; Hill, Bruce; Feng, Yiping

    2016-01-01

    The engineering design, implementation, operation and performance of the new variable-energy hard X-ray single-shot spectrometer (HXSSS) for the LCLS free-electron laser (FEL) are reported. The HXSSS system is based on a cylindrically bent Si thin crystal for dispersing the incident polychromatic FEL beam. A spatially resolved detector system consisting of a Ce:YAG X-ray scintillator screen, an optical imaging system and a low-noise pixelated optical camera is used to record the spectrograph. The HXSSS provides single-shot spectrum measurements for users whose experiments depend critically on the knowledge of the self-amplified spontaneous emission FEL spectrum. It also helps accelerator physicists for the continuing studies and optimization of self-seeding, various improved mechanisms for lasing mechanisms, and FEL performance improvements. The designed operating energy range of the HXSSS is from 4 to 20 keV, with the spectral range of order larger than 2% and a spectral resolution of 2 × 10(-5) or better. Those performance goals have all been achieved during the commissioning of the HXSSS. PMID:26698039

  5. Data Acquisition in a High Harmonic Generation Lab and at LCLS

    SciTech Connect

    Hirokawa, Takako; /U. Colorado, Boulder /SLAC

    2011-06-22

    In this paper, we examine data acquisition in a high harmonic generation (HHG) lab and preliminary data analysis with the Cyclohexadiene Collaboration at the Linac Coherent Lightsource (LCLS) at SLAC National Accelerator Laboratory. HHG experiments have a large number of parameters that need to be monitored constantly. In particular, the pressure of the target is critical to HHG yield. However, this pressure can fluctuate wildly and without a tool to monitor it, it is difficult to analyze the correlation between HHG yield and the pressure. I used the Arduino microcontroller board and created a complementary MATLAB graphical user interface (GUI), thereby enhancing the ease with which users can acquire time-stamped parameter data. Using the Arduino, it is much easier to match the pressure to the corresponding HHG yield. Collecting data by using the Arduino and the GUI is flexible, user-friendly, and cost-effective. In the future, we hope to be able to control and monitor parts of the lab with the Arduino alone. While more parameter information is needed in the HHG lab, we needed to reduce the amount of data during the cyclohexadiene collaboration. This was achieved by sorting the data into bins and filtering out unnecessary details. This method was highly effective in that it minimized the amount of data without losing any valuable information. This effective preliminary data analysis technique will continue to be used to decrease the size of the collected data.

  6. A Design Report for the Optical Transition Radiation Imager for the LCLS Undulator

    SciTech Connect

    Yang, Bingxin

    2010-12-13

    The Linac Coherent Light Source (LCLS), a free-electron x-ray laser, is under design and construction. Its high-intensity electron beam, 3400 A in peak current and 46 TW in peak power, is concentrated in a small area (37 micrometer in rms radius) inside its undulator. Ten optical transition radiation (OTR) imagers are planned between the undulator segments for characterizing the transverse profiles of the electron beam. In this note, we report on the optical and mechanical design of the OTR imager. Through a unique optical arrangement, using a near-normal-incidence screen and a multi-layer coated mirror, this imager will achieve a fine resolution (12 micrometer or better) over the entire field of view (8 mm x 5 mm), with a high efficiency for single-shot imaging. A digital camera will be used to read out the beam images in a programmable region (5 mm x 0.5 mm) at the full beam repetition rate (120 Hz), or over the entire field at a lower rate (10 Hz). Its built-in programmable amplifier will be used as an electronic intensity control.

  7. ePix: a class of architectures for second generation LCLS cameras

    NASA Astrophysics Data System (ADS)

    Dragone, A.; Caragiulo, P.; Markovic, B.; Herbst, R.; Reese, B.; Herrmann, S. C.; Hart, P. A.; Segal, J.; Carini, G. A.; Kenney, C. J.; Haller, G.

    2014-03-01

    ePix is a novel class of ASIC architectures, based on a common platform, optimized to build modular scalable detectors for LCLS. The platform architecture is composed of a random access analog matrix of pixel with global shutter, fast parallel column readout, and dedicated sigma-delta analog-to-digital converters per column. It also implements a dedicated control interface and all the required support electronics to perform configuration, calibration and readout of the matrix. Based on this platform a class of front-end ASICs and several camera modules, meeting different requirements, can be developed by designing specific pixel architectures. This approach reduces development time and expands the possibility of integration of detector modules with different size, shape or functionality in the same camera. The ePix platform is currently under development together with the first two integrating pixel architectures: ePix100 dedicated to ultra low noise applications and ePix10k for high dynamic range applications.

  8. Cavity turnover and equilibrium cavity densities in a cottonwood bottomland

    USGS Publications Warehouse

    Sedgwick, James A.; Knopf, Fritz L.

    1992-01-01

    A fundamental factor regulating the numbers of secondary cavity nesting (SCN) birds is the number of extant cavities available for nesting. The number of available cavities may be thought of as being in an approximate equilibrium maintained by a very rough balance between recruitment and loss of cavities. Based on estimates of cavity recruitment and loss, we ascertained equilibrium cavity densities in a mature plains cottonwood (Populus sargentii) bottomland along the South Platte River in northeastern Colorado. Annual cavity recruitment, derived from density estimates of primary cavity nesting (PCN) birds and cavity excavation rates, was estimated to be 71-86 new cavities excavated/100 ha. Of 180 active cavities of 11 species of cavity-nesting birds found in 1985 and 1986, 83 were no longer usable by 1990, giving an average instantaneous rate of cavity loss of r = -0.230. From these values of cavity recruitment and cavity loss, equilibrium cavity density along the South Platte is 238-289 cavities/100 ha. This range of equilibrium cavity density is only slightly above the minimum of 205 cavities/100 ha required by SCN's and suggests that cavity availability may be limiting SCN densities along the South Platte River. We submit that snag management alone does not adequately address SCN habitat needs, and that cavity management, expressed in terms of cavity turnover and cavity densities, may be more useful.

  9. Cavity Beam Position Monitor System for ATF2

    SciTech Connect

    Boogert, Stewart; Boorman, Gary; Swinson, Christina; Ainsworth, Robert; Molloy, Stephen; Aryshev, Alexander; Honda, Yosuke; Tauchi, Toshiaki; Terunuma, Nobuhiro; Urakawa, Junji; Frisch, Josef; May, Justin; McCormick, Douglas; Nelson, Janice; Smith, Tonee; White, Glen; Woodley, Mark; Heo, Ae-young; Kim, Eun-San; Kim, Hyoung-Suk; Kim, Youngim; /Kyungpook Natl. U. /University Coll. London /Kyungpook Natl. U. /Fermilab /Pohang Accelerator Lab.

    2012-07-09

    The Accelerator Test Facility 2 (ATF2) in KEK, Japan, is a prototype scaled demonstrator system for the final focus required for a future high energy lepton linear collider. The ATF2 beam-line is instrumented with a total of 38 C and S band resonant cavity beam position monitors (CBPM) with associated mixer electronics and digitizers. The current status of the BPM system is described, with a focus on operational techniques and performance. The ATF2 C-band system is performing well, with individual CBPM resolution approaching or at the design resolution of 50 nm. The changes in the CBPM calibration observed over three weeks can probably be attributed to thermal effects on the mixer electronics systems. The CW calibration tone power will be upgraded to monitor changes in the electronics gain and phase. The four S-band CBPMs are still to be investigated, the main problem associated with these cavities is a large cross coupling between the x and y ports. This combined with the large design dispersion in that degion makes the digital signal processing difficult, although various techniques exist to determine the cavity parameters and use these coupled signals for beam position determination.

  10. Design and Start-to-End Simulation of an X-Band RF Driven Hard X-Ray FEL with LCLS Injector

    SciTech Connect

    Sun, Yipeng; /SLAC

    2012-08-20

    In this note, it is briefly discussed the accelerator design and start-to-end 3D macro particles simulation (using ELEGANT and GENESIS) of an X-band RF driven hard X-ray FEL with LCLS injector. A preliminary design and LiTrack 1D simulation studies were presented before in an older publication [1]. In numerical simulations this X-band RF driven hard X-ray FEL achieves/exceeds LCLS-like performance in a much shorter overall length of 350 m, compared with 1200 m in the LCLS case. One key feature of this design is that it may achieve a higher final beam current of 5 kA plus a uniform energy profile, mainly due to the employment of stronger longitudinal wake fields in the last X-band RF linac [2].

  11. Photon pulse filtering and modulation based on the extreme temporal compression and correlated energy spread of the electron bunches in the SLAC Linac Coherent Light Source (LCLS)

    SciTech Connect

    Tatchyn, R.

    1993-05-01

    The LCLS photon pulses are expected to attain unprecedented levels of brightness and brevity in the 300--400eV range. Nominally, the photon pulse length will be dominated by the electron bunch length, while the performance of conventional x-ray reflecting and band-shaping optics will be limited by : 1) peak power damage, and 2) transform-limited monochromatization. In this paper we describe how: 1) the correlated energy spread in the electron bunch can be used to selectably compress the LCLS photon pulses to below their nominal length; 2) gas optics can be used to mitigate peak damage problems; 3) the LCLS pulse structure can, in principle, accommodate schemes based on ``disposable`` optics; and 4) pulse lengthening schemes can be used to extend the attainable degree of monochromatization.

  12. Conditioning of BPM pickup signals for operations of the Duke storage ring with a wide range of single-bunch current

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Li, Jing-Yi; Huang, Sen-Lin; Z. Wu, W.; Hao, H.; P., Wang; K. Wu, Y.

    2014-10-01

    The Duke storage ring is a dedicated driver for the storage ring based oscillator free-electron lasers (FELs), and the High Intensity Gamma-ray Source (HIGS). It is operated with a beam current ranging from about 1 mA to 100 mA per bunch for various operations and accelerator physics studies. High performance operations of the FEL and γ-ray source require a stable electron beam orbit, which has been realized by the global orbit feedback system. As a critical part of the orbit feedback system, the electron beam position monitors (BPMs) are required to be able to precisely measure the electron beam orbit in a wide range of the single-bunch current. However, the high peak voltage of the BPM pickups associated with high single-bunch current degrades the performance of the BPM electronics, and can potentially damage the BPM electronics. A signal conditioning method using low pass filters is developed to reduce the peak voltage to protect the BPM electronics, and to make the BPMs capable of working with a wide range of single-bunch current. Simulations and electron beam based tests are performed. The results show that the Duke storage ring BPM system is capable of providing precise orbit measurements to ensure highly stable FEL and HIGS operations.

  13. Electromagnetic SCRF Cavity Tuner

    SciTech Connect

    Kashikhin, V.; Borissov, E.; Foster, G.W.; Makulski, A.; Pischalnikov, Y.; Khabiboulline, T.; /Fermilab

    2009-05-01

    A novel prototype of SCRF cavity tuner is being designed and tested at Fermilab. This is a superconducting C-type iron dominated magnet having a 10 mm gap, axial symmetry, and a 1 Tesla field. Inside the gap is mounted a superconducting coil capable of moving {+-} 1 mm and producing a longitudinal force up to {+-} 1.5 kN. The static force applied to the RF cavity flanges provides a long-term cavity geometry tuning to a nominal frequency. The same coil powered by fast AC current pulse delivers mechanical perturbation for fast cavity tuning. This fast mechanical perturbation could be used to compensate a dynamic RF cavity detuning caused by cavity Lorentz forces and microphonics. A special configuration of magnet system was designed and tested.

  14. Degenerate astigmatic cavities

    NASA Astrophysics Data System (ADS)

    Courtois, Jérémie; Mohamed, Ajmal; Romanini, Daniele

    2013-10-01

    At the output of a high-finesse cavity a succession of Lissajous patterns may be observed as the cavity length is finely tuned inside a “degenerate region” around a reentrant spherical configuration. This behavior is ascribed to a small parasitic astigmatism of the cavity mirrors. Simple geometrical optics modeling confirms this hypothesis, and then a more realistic analysis using transverse Gaussian modes reveals that the Lissajous patterns correspond to an organization of the astigmatism-split modes into a finer substructure of degenerate modes relative to that of a reentrant spherical cavity. This provides a thorough understanding of the field patterns observed in the degenerate region, including an intriguing spatial symmetry of the patterns corresponding to opposite displacements with respect to a specific central cavity length. This investigation represents a generalization of the theory of reentrant spherical cavities to the astigmatic case.

  15. Cavity enhanced terahertz modulation

    SciTech Connect

    Born, N.; Scheller, M.; Moloney, J. V.; Koch, M.

    2014-03-10

    We present a versatile concept for all optical terahertz (THz) amplitude modulators based on a Fabry-Pérot semiconductor cavity design. Employing the high reflectivity of two parallel meta-surfaces allows for trapping selected THz photons within the cavity and thus only a weak optical modulation of the semiconductor absorbance is required to significantly damp the field within the cavity. The optical switching yields to modulation depths of more than 90% with insertion efficiencies of 80%.

  16. The Physics of the Gas Attenuator for the Linac Coherent Light Source (LCLS)

    SciTech Connect

    Ryutov, D.D.; Bionta, R.M.; Hau-Riege, S.P.; Kishiyama, K.I.; McMahon, D.; Roeben, M.D.; Shen, S.; Stefan, P.M.; /SLAC

    2011-02-07

    A systematic assessment of a variety of physics issues affecting the performance of the LCLS X-ray beam attenuator is presented. Detailed analysis of the gas flow in the gas attenuator and in the apertures is performed. A lot of attention is directed towards the gas ionization and heating by intense X-ray pulses. The role of these phenomena in possible deviations of the attenuation coefficient from its 'dialed in' value is evaluated and found small in most cases. Other sources of systematic and statistical errors are also discussed. The regimes where the errors may reach a few percent correspond to the lower X-ray energies (less than 2 keV) and highest beam intensities. Other effects discussed include chemical interaction of the gas with apertures, shock formation in the transonic flow in the apertures of the attenuator, generation of electromagnetic wakes in the gas, and head-to-tail variation of the attenuation caused by the ionization of gas or solid. Possible experimental tests of the consistency of the physics assumptions used in the concept of the gas attenuator are discussed. Interaction of X-rays with the solid attenuator (that will be used at higher X-ray energies, from 2.5 to 8 keV) is considered and thermo-mechanical effects caused by the beam heating are evaluated. Wave-front distortions induced by non-uniform heating of both the solid and the gas are found to be small. An overall conclusion drawn from the analysis presented is that the attenuator will be a reliable and highly versatile device, provided that some caution is exercised in its use for highest beam intensities at lowest X-ray energies.

  17. Characterization of cavity wakes

    NASA Astrophysics Data System (ADS)

    Kidd, James A.

    Scope and Method of Study. This research focused on flow over deep cavities at subsonic speeds with emphasis on the wake downstream of the cavity. Cavity wake behaviors have not been studied in detail and are a major concern for air vehicles with cavities and in particular for optical sensor systems installed in cavities. Other key behaviors for sensor survival and performance are cavity resonance and turbulence scales in the shear layer. A wind tunnel test apparatus was developed to explore cavity and wake characteristics. It consisted of a test section insert for the OSU Indraft Wind Tunnel with an additional contraction cone for significantly increased speed. The test section included a variable depth cavity in a boundary layer splitter plate/fairing assembly, a Y-Z traverse and pitot rake with in-situ pressure transducers for high frequency response. Flows were measured over clean cavities with length to depth (L/D) ratios of 4 to 1/2 and on cavities with a porous fence for resonance suppression. Measurements were taken in streamwise and cross-stream sections to three cavity lengths downstream of the cavity trailing edge. Flow visualization using laser sheet and smoke injection was also used. Findings and Conclusions. The high speed insert demonstrated a significant new capability for the OSU wind tunnel, reaching speeds of 0.35 Mach (390 feet/second) in a 14"x14" test section. Inlet room flow was found to be quite unsteady and recommendations are made for improved flow and quantitative visualization. Key findings for cavity wake flow include its highly three dimensional nature with asymmetric peaks in cross section with boundary layer thicknesses and integral length scales several times that of a normal flat plate turbulent boundary layer (TBL). Turbulent intensities (TI) of 35% to 55% of freestream speeds were measured for the clean configuration. Fence configuration TI's were 20% to 35% of free stream and, in both configurations, TI's decayed to

  18. Optically measuring interior cavities

    DOEpatents

    Stone, Gary Franklin

    2009-11-03

    A method of measuring the three-dimensional volume or perimeter shape of an interior cavity includes the steps of collecting a first optical slice of data that represents a partial volume or perimeter shape of the interior cavity, collecting additional optical slices of data that represents a partial volume or perimeter shape of the interior cavity, and combining the first optical slice of data and the additional optical slices of data to calculate of the three-dimensional volume or perimeter shape of the interior cavity.

  19. Optically measuring interior cavities

    DOEpatents

    Stone, Gary Franklin

    2008-12-21

    A method of measuring the three-dimensional volume or perimeter shape of an interior cavity includes the steps of collecting a first optical slice of data that represents a partial volume or perimeter shape of the interior cavity, collecting additional optical slices of data that represents a partial volume or perimeter shape of the interior cavity, and combining the first optical slice of data and the additional optical slices of data to calculate of the three-dimensional volume or perimeter shape of the interior cavity.

  20. Liquid laser cavities

    NASA Technical Reports Server (NTRS)

    Bjorklund, S.; Filipescu, N.; Kellermeyer, G. L.; Mc Avoy, N.

    1969-01-01

    Liquid laser cavities have plenum chambers at the ends of the capillary cell which are terminated in transparent optical flats. By use of these cavities, several new europium chelates and a terbium chelate can provide laser action in solution at room temperature.

  1. Passivated niobium cavities

    DOEpatents

    Myneni, Ganapati Rao; Hjorvarsson, Bjorgvin; Ciovati, Gianluigi

    2006-12-19

    A niobium cavity exhibiting high quality factors at high gradients is provided by treating a niobium cavity through a process comprising: 1) removing surface oxides by plasma etching or a similar process; 2) removing hydrogen or other gases absorbed in the bulk niobium by high temperature treatment of the cavity under ultra high vacuum to achieve hydrogen outgassing; and 3) assuring the long term chemical stability of the niobium cavity by applying a passivating layer of a superconducting material having a superconducting transition temperature higher than niobium thereby reducing losses from electron (cooper pair) scattering in the near surface region of the interior of the niobium cavity. According to a preferred embodiment, the passivating layer comprises niobium nitride (NbN) applied by reactive sputtering.

  2. CAVITY EXCITATION CIRCUIT

    DOEpatents

    Franck, J.V.

    1959-10-20

    An electronic oscillator is described for energizing a resonant cavity and to a system for stabilizing the operatin g frequency of the oscillator at the particular frequency necessary to establish a particular preferred field configuration or mode in the cavity, in this instance a linear accelerator. A freely rnnning oscillator has an output coupled to a resonant cavity wherein a field may be built up at any one of several adjacent frequencies. A pickup loop in the cavity is suitably shielded and positioned in the cavity so that only energy at the panticular desired frequency is fed back to stabilize the oscillator. A phase and gain control is in cluded in the feedback line.

  3. LCLS X-Ray FEL Output Performance in the Presence of Highly Time-Dependent Undulator Wakefields

    SciTech Connect

    Fawley, W.M.; Bane, K.L.F.; Emma, P.; Huang, Z.; Nuhn, H.-D.; Stupakov, G.; Reiche, S.; /UCLA

    2005-09-30

    Energy loss due to wakefields within a long undulator, if not compensated by an appropriate tapering of the magnetic field strength, can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive-wall component is the most critical and depends upon the chamber material (e.g., Cu) and its radius. Of recent interest[1] is the so-called ''AC'' component of the resistive-wall wake which can lead to strong variations on very short timescales (e.g., {approx} 20 fs). To study the expected performance of the LCLS in the presence of these wakefields, we have made an extensive series of start-to-end SASE simulations with tracking codes PARMELA and ELEGANT, and time-dependent FEL simulation codes GENESIS1.3 and GINGER. We discuss the impact of the wakefield losses upon output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation of the time-dependent wake losses obtained with a slight z-dependent taper in the undulator field. We compare the taper results to those predicted analytically[2].

  4. Optimization of the LCLS X-Ray FEL Output Performance in the Presence of Strong Undulator Wakefields

    SciTech Connect

    Reiche, S.; Bane, K.L.F.; Emma, P.; Huang, Z.; Nuhn, H.D.; Stupakov, G.V.; Fawley, W.M.; /LBL, Berkeley

    2006-03-17

    The Linac Coherent Light Source (LCLS) Free-Electron Laser will operate in the wavelength range of 1.5 to 15 Angstroms. Energy loss due to wakefields within the long undulator can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive component is the most critical and depends upon the chamber material (e.g. Cu) and its radius. To study the expected performance in the presence of these wakefields, we make a series of start-to-end simulations with tracking codes PARMELA and ELEGANT and time-dependent FEL simulation codes Genesis 1.3 and Ginger. We discuss the impact of the wakefield on output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation obtained with a slight z dependent taper in the undulator field. We compare these results to those obtained by decreasing the bunch charge or increasing the vacuum chamber radius. We also compare our results to those predicted in concurrent analytical work.

  5. LCLS X-Ray FEL Output Performance in the Presence of HighlyTime-Dependent Undulator Wakefields

    SciTech Connect

    Bane, Karl L.F.; Emma, Paul; Huang, Heinz-Dieter Nuhn; Stupakov,Gennady; Fawley, William M.; Reiche, Sven

    2005-08-25

    Energy loss due to wakefields within a long undulator, if not compensated by an appropriate tapering of the magnetic field strength, can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive-wall component is the most critical and depends upon the chamber material (e.g., Cu) and its radius. Of recent interest[1] is the so-called ''AC'' component of the resistive-wall wake which can lead to strong variations on very short timescales (e.g., {approx} 20 0fs). To study the expected performance of the LCLS in the presence of these wakefields, we have made an extensive series of start-to-end SASE simulations with tracking codes PARMELA and ELEGANT, and time-dependent FEL simulation codes GENESIS1.3 and GINGER. We discuss the impact of the wakefield losses upon output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation of the time-dependent wake losses obtained with a slight z-dependent taper in the undulator field. We compare the taper results to those predicted analytically[2].

  6. Electron transport of a Linac Coherent Light Source (LCLS) using the SLAC linac

    SciTech Connect

    Bane, K.L.; Raubenheimer, T.O.; Seeman, J.T.

    1993-05-01

    A linac configuration providing a low emittance high peak current electron beam is under study for a potential Linac Coherent Light Source (LCLS) based on the SLAC accelerator. The parameters of the final electron bunch are nearing the technological limits of present accelerators in both transverse and longitudinal phase space. In this note we describe a layout of the RF gun, linac, and bunch compressors to deliver the required bunch properties. We consider a bunch that is generated by an rf gun and accelerated to 7 GeV in 900 m of SLAC linac structure before it enters the wiggler. We assume that the rf gun generates a gaussian beam with an energy of 10 MeV, a population N = 6 {times} 10{sup 9}e{sup {minus}}, an rms length {sigma}{sub z} = 0.5 mm, an rms energy spread {sigma}{sub {delta}} = 0.2%, and normalized rms emittances {gamma}{epsilon}{sub x,y} = 3 mm-mrad. At the end of the linac, we require that the peak current {cflx I} {approx_gt} 2.5 kA and the peak-to-peak energy spread {Delta}{delta} {approx_lt} 0.2%. To obtain the required high peak current, we need to compress the bunch length by a factor greater than 10. In deciding at what position in the linac to compress we need to consider three issues: the longitudinal wakefield in the linac, this increases the beam`s energy spread and is harder to compensate with short bunches, the transverse wakefield and rf deflections in the linac, these increase the transverse emittance of the beam and are more severe for long bunches, and the effects of phase and current jitter which will change the bunch length and therefore the peak current of the beam. In this paper, we will describe how we compress the bunch to meet these three criteria. Then, we will briefly describe the bunch compressor optics and finally we will mention some details specific to the SLAC site.

  7. Hydroforming of elliptical cavities

    DOE PAGESBeta

    Singer, W.; Singer, X.; Jelezov, I.; Kneisel, Peter

    2015-02-27

    Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with resultsmore » of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients Eacc up to 35 MV/m after buffered chemical polishing (BCP) and up to 42 MV/m after electropolishing (EP). More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients Eacc of 30–35 MV/m were measured after BCP and Eacc up to 40 MV/m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of Eacc = 30–35 MV/m. One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and double-cell cavities of the TESLA shape have

  8. Hydroforming of elliptical cavities

    NASA Astrophysics Data System (ADS)

    Singer, W.; Singer, X.; Jelezov, I.; Kneisel, P.

    2015-02-01

    Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with results of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients Eacc up to 35 MV /m after buffered chemical polishing (BCP) and up to 42 MV /m after electropolishing (EP). More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients Eacc of 30 - 35 MV /m were measured after BCP and Eacc up to 40 MV /m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of Eacc=30 - 35 MV /m . One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and double-cell cavities of the TESLA shape have been

  9. Tuned optical cavity magnetometer

    DOEpatents

    Okandan, Murat; Schwindt, Peter

    2010-11-02

    An atomic magnetometer is disclosed which utilizes an optical cavity formed from a grating and a mirror, with a vapor cell containing an alkali metal vapor located inside the optical cavity. Lasers are used to magnetically polarize the alkali metal vapor and to probe the vapor and generate a diffracted laser beam which can be used to sense a magnetic field. Electrostatic actuators can be used in the magnetometer for positioning of the mirror, or for modulation thereof. Another optical cavity can also be formed from the mirror and a second grating for sensing, adjusting, or stabilizing the position of the mirror.

  10. Hydroforming of elliptical cavities

    SciTech Connect

    Singer, W.; Singer, X.; Jelezov, I.; Kneisel, Peter

    2015-02-27

    Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with results of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients Eacc up to 35 MV/m after buffered chemical polishing (BCP) and up to 42 MV/m after electropolishing (EP). More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients Eacc of 30–35 MV/m were measured after BCP and Eacc up to 40 MV/m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of Eacc = 30–35 MV/m. One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and double

  11. CIRCULAR CAVITY SLOT ANTENNA

    DOEpatents

    Kerley, P.L.

    1959-01-01

    A small-size antenna having a doughnut-shaped field pattern and which can act both as an antenna and a resonant circuit is described. The antenna is of the slotted type and comprises a resonant cavity with a center hole. A circular slot is provided in one wall of the cavity concentric with the hole and a radio frequency source is connected across the slot. The pattern and loading of the antenna are adjusted by varying the position and shape of a center element slidably disposed within the hole and projecting from the slotted side of the resonant cavity. The disclosed structure may also be used to propagate the oscillator signal down a transniission line by replacing the center element with one leg of the transmission line in a spaced relation from the walls of the cavity.

  12. The Turn-on of LCLS: the X-Ray Free Electron Laser at SLAC ( Keynote - 2011 JGI User Meeting)

    ScienceCinema

    Drell, Persis [SLAC Director

    2011-06-08

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. SLAC National Laboratory Director Persis Drell gives a keynote talk on "The Turn-on of LCLS: the X-Ray Free-Electron Laser at SLAC" at the 6th Genomics of Energy & Environment Meeting on March 22, 2011

  13. The Turn-on of LCLS: the X-Ray Free Electron Laser at SLAC ( Keynote - 2011 JGI User Meeting)

    SciTech Connect

    Drell, Persis

    2011-03-22

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. SLAC National Laboratory Director Persis Drell gives a keynote talk on "The Turn-on of LCLS: the X-Ray Free-Electron Laser at SLAC" at the 6th Genomics of Energy & Environment Meeting on March 22, 2011

  14. High-field strong-focusing undulator designs for X-ray Linac Coherent Light Source (LCLS) applications

    SciTech Connect

    Caspi, S.; Schlueter, R. |; Tatchyn, R.

    1995-05-01

    Linac-driven X-Ray Free Electron Lasers (e.g., Linac Coherent Light Sources (LCLSs)), operating on the principle of single-pass saturation in the Self-Amplified Spontaneous Emission (SASE) regime typically require multi-GeV beam energies and undulator lengths in excess of tens of meters to attain sufficient gain in the 1{angstrom}--0.1{angstrom} range. In this parameter regime, the undulator structure must provide: (1) field amplitudes B{sub 0} in excess of 1T within periods of 4cm or less, (2) peak on-axis focusing gradients on the order of 30T/m, and (3) field quality in the 0.1%--0.3% range. In this paper the authors report on designs under consideration for a 4.5--1.5 {angstrom} LCLS based on superconducting (SC), hybrid/PM, and pulsed-Cu technologies.

  15. Ultra-precise characterization of LCLS hard X-ray focusing mirrors by high resolution slope measuring deflectometry.

    PubMed

    Siewert, Frank; Buchheim, Jana; Boutet, Sébastien; Williams, Garth J; Montanez, Paul A; Krzywinski, Jacek; Signorato, Riccardo

    2012-02-13

    We present recent results on the inspection of a first diffraction-limited hard X-ray Kirkpatrick-Baez (KB) mirror pair for the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). The full KB system - mirrors and holders - was under inspection by use of high resolution slope measuring deflectometry. The tests confirmed that KB mirrors of 350mm aperture length characterized by an outstanding residual figure error of <1 nm rms has been realized. This corresponds to the residual figure slope error of about 0.05µrad rms, unprecedented on such long elliptical mirrors. Additional measurements show the clamping of the mirrors to be a critical step for the final - shape preserving installation of such outstanding optics. PMID:22418212

  16. Ring resonant cavities for spectroscopy

    DOEpatents

    Zare, Richard N.; Martin, Juergen; Paldus, Barbara A.; Xie, Jinchun

    1999-01-01

    Ring-shaped resonant cavities for spectroscopy allow a reduction in optical feedback to the light source, and provide information on the interaction of both s- and p-polarized light with samples. A laser light source is locked to a single cavity mode. An intracavity acousto-optic modulator may be used to couple light into the cavity. The cavity geometry is particularly useful for Cavity Ring-Down Spectroscopy (CRDS).

  17. Ring resonant cavities for spectroscopy

    DOEpatents

    Zare, R.N.; Martin, J.; Paldus, B.A.; Xie, J.

    1999-06-15

    Ring-shaped resonant cavities for spectroscopy allow a reduction in optical feedback to the light source, and provide information on the interaction of both s- and p-polarized light with samples. A laser light source is locked to a single cavity mode. An intracavity acousto-optic modulator may be used to couple light into the cavity. The cavity geometry is particularly useful for Cavity Ring-Down Spectroscopy (CRDS). 6 figs.

  18. Light Driven Energy Research at LCLS: Planned Pump-Probe X-ray Spectroscopy Studies on Photosynthetic Water Splitting

    NASA Astrophysics Data System (ADS)

    Bergmann, Uwe

    2010-02-01

    Arguably the most important chemical reaction on earth is the photosynthetic splitting of water to molecular oxygen by the Mn-containing oxygen-evolving complex (Mn-OEC) in the protein known as photosystem II (PSII). It is this reaction which has, over the course of some 3.8 billion years, gradually filled our atmosphere with O2 and consequently enabled and sustained the evolution of complex aerobic life. Coupled to the reduction of carbon dioxide, biological photosynthesis contributes foodstuffs for nutrition while recycling CO2 from the atmosphere and replacing it with O2. By utilizing sunlight to power these energy-requiring reactions, photosynthesis also serves as a model for addressing societal energy needs as we enter an era of diminishing fossil hydrocarbon resources. Understanding, at the molecular level, the dynamics and mechanism of how nature has solved this problem is of fundamental importance and could be critical to aid in the design of manufactured devices to accomplish the conversion of sunlight into useful electrochemical energy and transportable fuel in the foreseeable future. In order to understand the photosynthetic splitting of water by the Mn-OEC we need to be able to follow the reaction in real time at an atomic level. A powerful probe to study the electronic and molecular structure of the Mn-OEC is x-ray spectroscopy. Here, in particular x-ray emission spectroscopy (XES) has two crucial qualities for LCLS based time-dependent pump-probe studies of the Mn-OEC: a) it directly probes the Mn oxidation state and ligation, b) it can be performed with wavelength dispersive optics to avoid the necessity of scanning in pump probe experiments. Recent results and the planned time dependent experiments at LCLS will be discussed. )

  19. Resonant soft x-ray scattering endstation for time-resolved pump-probe measurements at LCLS

    NASA Astrophysics Data System (ADS)

    Chuang, Yi-De; Doering, Dionisio; Cruz, Alejandro G.; Tahir, Nadeem; Andresen, Nord C.; Chow, Ken P.; Contarato, Devis; Cummings, Curtis L.; Domning, Edward E.; Joseph, John; Pepper, John S.; Smith, Brian V.; Zizka, G.; Ford, Christopher; Lee, Wei-Sheng; Weaver, Matt; Patthey, Luc; Weizeowick, John; Denes, Peter; Hussain, Zahid

    2012-10-01

    Localized charge, spin and orbital degrees of freedom can compete with electronic itinerancy and such competition lies at the heart of emergent material properties. To study these electronic orderings, resonant soft X-ray scattering (RSXS) spectroscopy has been demonstrated as one of the most powerful direct probes, and its time-resolved capability can be implemented through pump-probe technique. The ultrafast/ultra-intense X-ray pulses from LCLS can be used as the probe in the time-resolved RSXS experiments, but the inherent fluctuations in intensity and timing between pulses can degrade the superior temporal resolution. To overcome such fluctuations, a compact fast CCD (cFCCD) was developed to enable shot-by-shot data acquisitions and a dedicated RSXS endstation, constructed to house this cFCCD and other single-channel photon detectors, has been extensively used at both ALS and LCLS. Time-resolved RSXS experiments on La1.75Sr0.25 NiO4 nickelate have revealed an unexpected transient behavior of charge and spin ordering (CO/SO) states. After 800nm laser excitation, the CO can be fully suppressed at higher pump fluence while SO remains detectable, creating a transient state that is not accessible by tuning thermodynamic variables. Furthermore, two distinct time scales are identified in the recovery of CO and can be attributed to the amplitude (fast) and phase (slow) dynamics of order parameter. A new version of cFCCD, with eight times the detection area and the readout electronics moved into vacuum side to minimize the pickup noise, has been developed and will be incorporated into the RSXS endstation.

  20. Video Toroid Cavity Imager

    SciTech Connect

    Gerald, Rex E. II; Sanchez, Jairo; Rathke, Jerome W.

    2004-08-10

    A video toroid cavity imager for in situ measurement of electrochemical properties of an electrolytic material sample includes a cylindrical toroid cavity resonator containing the sample and employs NMR and video imaging for providing high-resolution spectral and visual information of molecular characteristics of the sample on a real-time basis. A large magnetic field is applied to the sample under controlled temperature and pressure conditions to simultaneously provide NMR spectroscopy and video imaging capabilities for investigating electrochemical transformations of materials or the evolution of long-range molecular aggregation during cooling of hydrocarbon melts. The video toroid cavity imager includes a miniature commercial video camera with an adjustable lens, a modified compression coin cell imager with a fiat circular principal detector element, and a sample mounted on a transparent circular glass disk, and provides NMR information as well as a video image of a sample, such as a polymer film, with micrometer resolution.

  1. Metasurface external cavity laser

    SciTech Connect

    Xu, Luyao Curwen, Christopher A.; Williams, Benjamin S.; Hon, Philip W. C.; Itoh, Tatsuo; Chen, Qi-Sheng

    2015-11-30

    A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.

  2. Metasurface external cavity laser

    NASA Astrophysics Data System (ADS)

    Xu, Luyao; Curwen, Christopher A.; Hon, Philip W. C.; Chen, Qi-Sheng; Itoh, Tatsuo; Williams, Benjamin S.

    2015-11-01

    A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.

  3. Multicolor cavity soliton.

    PubMed

    Luo, Rui; Liang, Hanxiao; Lin, Qiang

    2016-07-25

    We show a new class of complex solitary wave that exists in a nonlinear optical cavity with appropriate dispersion characteristics. The cavity soliton consists of multiple soliton-like spectro-temporal components that exhibit distinctive colors but coincide in time and share a common phase, formed together via strong inter-soliton four-wave mixing and Cherenkov radiation. The multicolor cavity soliton shows intriguing spectral locking characteristics and remarkable capability of spectrum management to tailor soliton frequencies, which would be very useful for versatile generation and manipulation of multi-octave spanning phase-locked Kerr frequency combs, with great potential for applications in frequency metrology, optical frequency synthesis, and spectroscopy. PMID:27464131

  4. The auroral plasma cavity

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1981-01-01

    A region of diminished plasma density has been found to occur at the source of auroral kilometric radiation (AKR). The density within this auroral plasma cavity, determined from limited Hawkeye wave data, was less than 1/cu cm from 1.8 to 3 earth radii geocentric, at 70 deg + or - 3 deg invariant magnetic latitude. The altitude variation of the magnetic field produces a minimum in the ratio of plasma frequency to cyclotron frequency within the cavity which accounts for the observed spectrum of AKR.

  5. Melatonin and Oral Cavity

    PubMed Central

    Cengiz, Murat İnanç; Cengiz, Seda; Wang, Hom-Lay

    2012-01-01

    While initially the oral cavity was considered to be mainly a source of various bacteria, their toxins and antigens, recent studies showed that it may also be a location of oxidative stress and periodontal inflammation. Accordingly, this paper focuses on the involvement of melatonin in oxidative stress diseases of oral cavity as well as on potential therapeutic implications of melatonin in dental disorders. Melatonin has immunomodulatory and antioxidant activities, stimulates the proliferation of collagen and osseous tissue, and acts as a protector against cellular degeneration associated with aging and toxin exposure. Arising out of its antioxidant actions, melatonin protects against inflammatory processes and cellular damage caused by the toxic derivates of oxygen. As a result of these actions, melatonin may be useful as a coadjuvant in the treatment of certain conditions of the oral cavity. However, the most important effect of melatonin seems to result from its potent antioxidant, immunomodulatory, protective, and anticancer properties. Thus, melatonin could be used therapeutically for instance, locally, in the oral cavity damage of mechanical, bacterial, fungal, or viral origin, in postsurgical wounds caused by tooth extractions and other oral surgeries. Additionally, it can help bone formation in various autoimmunological disorders such as Sjorgen syndrome, in periodontal diseases, in toxic effects of dental materials, in dental implants, and in oral cancers. PMID:22792106

  6. Broadband cavity electromagnetically induced transparency

    SciTech Connect

    Wei Xiaogang; Wang Yanhua; Zhang Jiepeng; Zhu Yifu

    2011-10-15

    Cavity electromagnetically induced transparency (EIT) is created in a three-level atomic system confined in a cavity and coupled to a free-space control laser and is manifested as a narrow transmission peak of a probe laser coupled into the cavity mode and tuned to the two-photon Raman resonance with the control laser. Cavity EIT can be observed with a control laser detuned from the atomic transition frequency in a range limited by the vacuum Rabi splitting of two cavity-atom normal modes. This leads to the broadband cavity EIT obtained in the coupled-cavity-atom system with a free-space, broadband control laser. We report an experimental observation of broadband cavity EIT in cold Rb atoms with a frequency-modulated control laser and discuss its application in multichannel and multifrequency light memory.

  7. Seamless/bonded niobium cavities

    NASA Astrophysics Data System (ADS)

    Singer, W.

    2006-07-01

    Technological aspects and performance of seamless cavities produced by hydroforming are presented. Problems related to the fabrication of seamless cavities from bulk niobium are mainly solved thanks to the progress of the last years. The highest achieved accelerating gradients are comparable for both seamless and welded versions (ca. 40 MV/m) Nevertheless further development of seamless cavities is desirable in order to avoid the careful preparation of parts for welding and get reliable statistic. Fabrication of NbCu clad cavities from bimetallic tubes is an interesting option that gives new opportunity to the seamless technique. On the one hand it allows reducing the niobium costs contribution; on the other hand it increases the thermal stability of the cavity. The highest accelerating gradient achieved on seamless NbCu clad single cell cavities (ca. 40 MV/m) is comparable to the one reached on bulk Nb cavities. Fabrication of multi-cell NbCu cavities by hydroforming was recently proven.

  8. Effective Cavity Length of Gyrotrons

    NASA Astrophysics Data System (ADS)

    Thumm, Manfred

    2014-12-01

    Megawatt-class gyrotron oscillators for electron cyclotron heating and non-inductive current drive (ECH&CD) in magnetically confined thermonuclear fusion plasmas have relatively low cavity quality factors in the range of 1000 to 2000. The effective length of their cavities cannot be simply deduced from the cavity electric field profile, since this has by far not a Gaussian shape. The present paper presents a novel method to estimate the effective length of a gyrotron cavity just from the eigenvalue of the operating TEm,n mode, the cavity radius and the exact oscillation frequency which may be numerically computed or precisely measured. This effective cavity length then can be taken to calculate the Fresnel parameter in order to confirm that the cavity is not too short so that the transverse structure of any mode in the cavity is the same as that of the corresponding mode in a long circular waveguide with the same diameter.

  9. Hollow waveguide cavity ringdown spectroscopy

    NASA Technical Reports Server (NTRS)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  10. Prospects for high power linac coherent light source (LCLS) development in the 1000 A˚-1 A˚ wavelength range

    NASA Astrophysics Data System (ADS)

    Tatchyn, R.; Bane, K.; Boyce, R.; Loew, G.; Miller, R.; Nuhn, H.-D.; Palmer, D.; Paterson, J.; Raubenheimer, T.; Seeman, J.; Winick, H.; Yeremian, D.; Pellegrini, C.; Rosenzweig, J.; Travish, G.; Prosnitz, D.; Scharlemann, E. T.; Caspi, S.; Fawley, W.; Halbach, K.; Kim, K.-J.; Schlueter, R.; Xie, M.; Bonifacio, R.; De Salvo, L.; Pierini, P.

    1995-05-01

    Electron bunch requirements for single-pass saturation of a Free-Electron Laser (FEL) operating at full transverse coherence in the Self-Amplified Spontaneous Emission (SASE) mode include: 1) a high peak current, 2) a sufficiently low relative energy spread, and 3) a transverse emittance ɛ[r-m] satisfying the condition ɛ≤λ/4π, where λ[m] is the output wavelength of the FEL. In the insertion device that induces the coherent amplification, the prepared electron bunch must be kept on a trajector sufficiently collinear with the amplified photons without significant dilution of its transverse density. In this paper we discuss a Linac Coherent Light Source (LCLS) based on a high energy accelerator such as, e.g., the 3 km S-band structure at the Stanford Linear Accelerator Center (SLAC), followed by a long high-precision undulator with superimposed quadrupole (FODO) focusing, to fulfill the given requirements for SASE operation in the 1000 Å-1 Å range. The electron source for the linac, an RF gun with a laser-excited photocathode featuring a normalized emittance in the 1-3 mm-mrad range, a longitudinal bunch duration of the order of 3 ps, and approximately 10-9 C/bunch, is a primary determinant of the required low transverse and longitudinal emittances. Acceleration of the injected bunch to energies in the 5-25 GeV range is used to reduce the relative longitudinal energy spread in the bunch, as well as to reduce the transverse emittance to values consistent with the cited wavelength regime. Two longitudinal compression stages are employed to increase the peak bunch current to the 2-5 kA levels required for sufficiently rapid saturation. The output radiation is delivered, via a grazing-incidence mirror bank, to optical instrumentation and a multi-user beam line system. Technological requirements for LCLS operation at 40 Å, 4.5 Å, and 1.5 Å are examined.

  11. Prospects for high power Linac Coherent Light Source (LCLS) development in the 1000{angstrom} {minus} 1{angstrom} wavelength range

    SciTech Connect

    Tatchyn, R.; Bane, K.; Boyce, R.

    1994-03-01

    Electron bunch requirements for single-pass saturation of a Free-Electron Laser (FEL) operating at full transverse coherence in the Self-Amplified Spontaneous Emission (SASE) mode include: (1) a high peak current, (2) a sufficiently low relative energy spread, and (3) a transverse emittance {var_epsilon}[r-m] satisfying the condition {var_epsilon} {le} {lambda}A/4{pi}, where {lambda}[m] is the output wavelength of the FEL. In the insertion device that induces the coherent amplification, the prepared electron bunch must be kept on a trajectory sufficiently collinear with the amplified photons without significant dilution of its transverse density. In this paper we discuss a Linac Coherent Light Source (LCLS) based on a high energy accelerator such as, e.g., the 3km S-band structure at the Stanford Linear Accelerator Center (SLAC), followed by a long high-precision undulator with superimposed quadrupole (FODO) focusing, to fulfill the given requirements for SASE operation in the 1000{Angstrom}--1{Angstrom} range. The electron source for the linac, an RF gun with a laser-excited photocathode featuring a normalized emittance in the 1--3 mm-mrad range, a longitudinal bunch duration of the order of 3 ps, and approximately 10{sup {minus}9} C/bunch, is a primary determinant of the required low transverse and longitudinal emittances. Acceleration of the injected bunch to energies in the 5--25 GeV range is used to reduce the relative longitudinal energy spread in the bunch, as well as to reduce the transverse emittance to values consistent with the cited wavelength regime. Two longitudinal compression stages are employed to increase the peak bunch current to the 2--5 kA levels required for sufficiently rapid saturation. The output radiation is delivered, via a grazing-incidence mirror bank, to optical instrumentation and a multi-user beam line system. Technological requirements for LCLS operation at 40{Angstrom}, 4.5{Angstrom}, and 1.5{Angstrom} are examined.

  12. Digital Cavity Resonance Monitor, alternative method of measuring cavity microphonics

    SciTech Connect

    Tomasz Plawski; G. Davis; Hai Dong; J. Hovater; John Musson; Thomas Powers

    2005-09-20

    As is well known, mechanical vibration or microphonics in a cryomodule causes the cavity resonance frequency to change at the vibration frequency. One way to measure the cavity microphonics is to drive the cavity with a Phase Locked Loop. Measurement of the instantaneous frequency or PLL error signal provides information about the cavity microphonic frequencies. Although the PLL error signal is available directly, precision frequency measurements require additional instrumentation, a Cavity Resonance Monitor (CRM). The analog version of such a device has been successfully used for several cavity tests [1]. In this paper we present a prototype of a Digital Cavity Resonance Monitor designed and built in the last year. The hardware of this instrument consists of an RF downconverter, digital quadrature demodulator and digital processor motherboard (Altera FPGA). The motherboard processes received data and computes frequency changes with a resolution of 0.2 Hz, with a 3 kHz output bandwidth.

  13. CAVITY CONTROL ALGORITHM

    SciTech Connect

    Tomasz Plawski, J. Hovater

    2010-09-01

    A digital low level radio frequency (RF) system typically incorporates either a heterodyne or direct sampling technique, followed by fast ADCs, then an FPGA, and finally a transmitting DAC. This universal platform opens up the possibilities for a variety of control algorithm implementations. The foremost concern for an RF control system is cavity field stability, and to meet the required quality of regulation, the chosen control system needs to have sufficient feedback gain. In this paper we will investigate the effectiveness of the regulation for three basic control system algorithms: I&Q (In-phase and Quadrature), Amplitude & Phase and digital SEL (Self Exciting Loop) along with the example of the Jefferson Lab 12 GeV cavity field control system.

  14. Cavity enhanced atomic magnetometry

    PubMed Central

    Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer

    2015-01-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations. PMID:26481853

  15. Cavity enhanced atomic magnetometry.

    PubMed

    Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer

    2015-01-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations. PMID:26481853

  16. Cavity enhanced atomic magnetometry

    NASA Astrophysics Data System (ADS)

    Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer

    2015-10-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations.

  17. What Are Oral Cavity and Oropharyngeal Cancers?

    MedlinePlus

    ... about oral cavity and oropharyngeal cancers? What are oral cavity and oropharyngeal cancers? Cancer starts when cells in ... the parts of the mouth and throat. The oral cavity (mouth) and oropharynx (throat) The oral cavity includes ...

  18. Gyromultiplier with sectioned cavity

    SciTech Connect

    Bandurkin, I. V.; Mishakin, S. V.

    2010-11-15

    A novel scheme of a self-exciting single-cavity terahertz gyromultiplier is proposed and theoretically investigated. Simulations predict a possibility to obtain a power of 75 W at the frequency of 1.3 THz from the 80 kV/0.7 A electron beam when operating at the fourth cyclotron harmonic at the relatively low magnetic field of 14 T.

  19. Single mode cavity laser

    SciTech Connect

    Martin, D.W.; Levy, J.L.

    1984-01-17

    This external cavity laser utilizes an unstable resonator in conjuction with a high reflectivity stripe end mirror which is oriented substantially parallel to the plane of the maximum divergence of the laser diode output beam and whose axis is substantially parallel to the plane of the junction of the laser diode. This configuration operates with high efficiency to select only the fundamental mode of the laser diode with a minimal divergence in the output beam.

  20. RF Cavity Characterization with VORPAL

    SciTech Connect

    C. Nieter, C. Roark, P. Stoltz, C.D. Zhou, F. Marhauser

    2011-03-01

    When designing a radio frequency (RF) accelerating cavity structure various figures of merit are considered before coming to a final cavity design. These figures of merit include specific field and geometry based quantities such as the ratio of the shunt impedance to the quality factor (R/Q) or the normalized peak fields in the cavity. Other important measures of cavity performance include the peak surface fields as well as possible multipacting resonances in the cavity. High fidelity simulations of these structures can provide a good estimate of these important quantities before any cavity prototypes are built. We will present VORPAL simulations of a simple pillbox structure where these quantities can be calculated analytically and compare them to the results from the VORPAL simulations. We will then use VORPAL to calculate these figures of merit and potential multipacting resonances for two cavity designs under development at Jefferson National Lab for Project X.

  1. Crab Cavities for Linear Colliders

    SciTech Connect

    Burt, G.; Ambattu, P.; Carter, R.; Dexter, A.; Tahir, I.; Beard, C.; Dykes, M.; Goudket, P.; Kalinin, A.; Ma, L.; McIntosh, P.; Shulte, D.; Jones, Roger M.; Bellantoni, L.; Chase, B.; Church, M.; Khabouline, T.; Latina, A.; Adolphsen, C.; Li, Z.; Seryi, Andrei; /SLAC

    2011-11-08

    Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favour a 3.9 GHz superconducting, multi-cell cavity as the solution for ILC, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are fundamental issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.

  2. Melting and band gap-dynamics of shock-compressed graphite diagnosed by x-ray scattering at the LCLS

    NASA Astrophysics Data System (ADS)

    Zastrau, Ulf; Lee, Hae Ja

    2015-11-01

    The diversity of the electronic properties of carbon makes it of key interest to the material science community; By contrast, at the high pressures typical of planetary and stellar interiors, the behavior of carbon is poorly understood with large uncertainties in the conductivity and even the material phase. Tremendous efforts have been made to measure properties of warm dense matter (WDM) in extreme conditions, e.g. temperatures in excess of 1000 K of temperature and pressures in the Mbar regime. In laboratory experiments, practical issues with gradients in the temperature and density of shock compressed matter have hindered accurate measurement and further from distinguishing theoretical models. Here, we present measurements of melting of graphite upon coalescence of two counter-propagating shocks using combinations of spatially and spectrally resolved x-ray scattering methods at the LCLS free electron laser. The MEC nanosecond lasers launch counter-propagating shock waves into graphite. At shock coalescence, pressures in excess of 1 Mbar are reached. At given time delay, we measure scattering from the sample using 5070 eV x-ray pulses. We employed curved mosaic and perfect imaging crystals for spatially resolved x-ray scattering. Compared with hydrodynamics simulations, we present data on plasmon dispersion, axial compression gradients and finally carbon melting at shock coalescence. We have indication for a widening of the band gap during compression of the solid, while the band gab fully closes in the melt. UZ was supported by the German Volkswagen Foundation.

  3. Soft X-ray betatron radiation characterization for warm-dense matter studies at LCLS-MEC

    NASA Astrophysics Data System (ADS)

    Schumaker, W.; Cordamine, F.; Fry, A.; Galtier, E.; Granados, E.; Heimann, P.; Kotick, J.; Lee, Hae Ja; Glenzer, S. H.; Barbrel, B.; Sanders, A.; Falcone, R.; Ravarsio, A.; Gaudin, J.; Pollock, B. B.; Albert, F.

    2015-11-01

    Laser wakefield acceleration (LWFA) can produce high-energy (>100 MeV) electron beams with ultra-short durations (<100 fs) in a compact, mm-scale plasma. Transverse motion of the electrons in the wakefield leads to the emission of synchrotron-like X-ray beams, called betatron radiation, with peak photon energies >10 keV and source sizes of a few microns. These X-ray beams are presumed to retain the short-pulse characteristic of the electrons, resulting in high peak brightness and peak energy, making the source an excellent candidate for ultrafast temporally resolved pump-probe applications, especially for free-electron laser (FEL) and high-energy density (HED) experiments. Presented here are some of first experimental measurements of betatron in the soft X-ray regime (<1 keV) using X-ray mirrors and a grating spectrometer to collect, transport, and focus betatron X-rays for pump-probe experiments at the LCLS Matter-in-Extreme Conditions (MEC) facility.

  4. Design and characterization of the ePix10k: a high dynamic range integrating pixel ASIC for LCLS detectors

    NASA Astrophysics Data System (ADS)

    Caragiulo, P.; Dragone, A.; Markovic, B.; Herbst, R.; Nishimura, K.; Reese, B.; Herrmann, S.; Hart, P.; Blaj, G.; Segal, J.; Tomada, A.; Hasi, J.; Carini, G.; Kenney, C.; Haller, G.

    2015-05-01

    ePix10k is a variant of a novel class of integrating pixel ASICs architectures optimized for the processing of signals in second generation LINAC Coherent Light Source (LCLS) X-Ray cameras. The ASIC is optimized for high dynamic range application requiring high spatial resolution and fast frame rates. ePix ASICs are based on a common platform composed of a random access analog matrix of pixel with global shutter, fast parallel column readout, and dedicated sigma-delta analog to digital converters per column. The ePix10k variant has 100um×100um pixels arranged in a 176×192 matrix, a resolution of 140e- r.m.s. and a signal range of 3.5pC (10k photons at 8keV). In its final version it will be able to sustain a frame rate of 2kHz. A first prototype has been fabricated and characterized. Performance in terms of noise, linearity, uniformity, cross-talk, together with preliminary measurements with bump bonded sensors are reported here.

  5. X-ray diffraction experiments on the Materials in Extreme Conditions (MEC) LCLS x-ray FEL beamline

    NASA Astrophysics Data System (ADS)

    Smith, Raymond; Fratanduono, Dayne; Wicks, June; Duffy, Tom; Lee, Hae Ja; Granados, Eduardo; Heimann, Philip; Gleason, Arianna; Bolme, Cynthia; Swift, Damian; Coppari, Federica; Eggert, Jon; Collins, Rip

    2015-06-01

    The experiments described here were conducted on the MEC beamline hutch at the SLAC Linac Coherent Light Source. A 10 ns 527 nm laser pulse was used to shock compress 60-100 μm thick NaCl and Graphite samples. LCLS x-rays (40 fs, 8 keV), scattered off the shocked sample, were recorded on several pixel array detectors positioned downstream. The diffracted x-ray pattern allows us to determine changes in crystal structure at Mbar pressures and over nanosecond timescales. In this talk we detail the experimental setup, the current capabilities of the MEC laser and the considerations for optimizing the target design. We will describe the wave interactions within the shock-compressed target and the use of a 1D hydrocode to describe the pressure, temperature and density conditions within the target assembly as a function of time and Lagrangian position. We present observations of the B1-B2 phase transition in NaCl and subsequent back transformation during release to ambient pressure, and compare these findings to gas gun and static data. We also present results from a preliminary study of the shock-induced graphite to diamond transformation.

  6. Bendable Focusing X-Ray Optics for the ALS and the LCLS/FEL: Design, Metrology, and Performance

    SciTech Connect

    Yashchuk, V. V.; Yuan, S.; Baker, S.; Bozek, J.; Celestre, R.; Church, M.; Goldberg, K. A.; Fernandez-Perea, M.; Kelez, N.; Kunz, M.; McKinney, W. R.; Morrison, G.; Padmore, H. A.; Soufli, R.; Tamura, N.; Warwick, T.

    2010-06-02

    We review the recent development of bendable x-ray optics used for focusing of beams of soft and hard x-rays at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory and at the Linac Coherent Light Source (LCLS) x-ray free electron laser (FEL) at the Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory. For simultaneous focusing in the tangential and sagittal directions, two elliptically cylindrical reflecting elements, a Kirkpatrick-Baez (KB) pair, are used. Because fabrication of elliptical surfaces is complicated, the cost of directly fabricated tangential elliptical cylinders is often prohibitive. Moreover, such optics cannot be easily readjusted for use in multiple, different experimental arrangements, e.g. at different focal distances. This is in contrast to flat optics that are simpler to manufacture and easier to measure by conventional interferometry. The tangential figure of a flat substrate is changed by placing torques (couples) at each end. Depending on the applied couples, one can tune the shape close to a desired tangential cylinder, ellipse or parabola. We review the nature of the bending, requirements and approaches to the mechanical design, describe original optical and at-wavelength techniques for optimal tuning of bendable optics and alignment on the beamline, and provide beamline performance of the bendable optics used for sub-micro and nano focusing of soft x-rays.

  7. Superconducting cavities and modulated RF

    SciTech Connect

    Farkas, Z.D.

    1981-02-01

    If a cavity has an infinite Q/sub o/, 81.5% of the energy contained in a pulse incident upon the cavity is transferred into the cavity by the end of the pulse if the cavity Q/sub e/ is chosen so that the cavity time constant is 0.796 pulse width (T/sub a/). As Q/sug o/ decreases, the energy in the cavity at the end of the pulse decreases very slowly as long as T/sub a/ is much less than the unloaded cavity time constant, T/sub co/. SC cavities with very high Q/sub o/ enable one to obtain very high gradients with a low power cw source. At high gradients, however, one often does not attain the high Q/sub o/ predicted by theory. Therefore, if one is inteerested in attaining maximum energy in the cavity, as is the case for RF processing and diagnostics, for a given available source energy there is no point in keeping the power on for longer than 0.1 T/sub co/ because the energy expended after 0.1 T/sub co/ is wasted. Therefore, to attain high fields at moderate Q/sub o/, pulsed operation is indicated. This note derives the fields and energy stored and dissipated in the cavity when Q/sub e/ is optimized for a given T/sub a/. It shows how to use this data to measure Q/sub o/ of an SC cavity as a function of field level, how to process the cavity with high RF fields, how to operate SC cavities in the pulsed mode to obtain higher efficiencies and gradients. Experimental results are also reported.

  8. Applications of cavity optomechanics

    SciTech Connect

    Metcalfe, Michael

    2014-09-15

    Cavity-optomechanics” aims to study the quantum properties of mechanical systems. A common strategy implemented in order to achieve this goal couples a high finesse photonic cavity to a high quality factor mechanical resonator. Then, using feedback forces such as radiation pressure, one can cool the mechanical mode of interest into the quantum ground state and create non-classical states of mechanical motion. On the path towards achieving these goals, many near-term applications of this field have emerged. After briefly introducing optomechanical systems and describing the current state-of-the-art experimental results, this article summarizes some of the more exciting practical applications such as ultra-sensitive, high bandwidth accelerometers and force sensors, low phase noise x-band integrated microwave oscillators and optical signal processing such as optical delay-lines, wavelength converters, and tunable optical filters. In this rapidly evolving field, new applications are emerging at a fast pace, but this article concentrates on the aforementioned lab-based applications as these are the most promising avenues for near-term real-world applications. New basic science applications are also becoming apparent such as the generation of squeezed light, testing gravitational theories and for providing a link between disparate quantum systems.

  9. Multicolor cavity metrology.

    PubMed

    Izumi, Kiwamu; Arai, Koji; Barr, Bryan; Betzwieser, Joseph; Brooks, Aidan; Dahl, Katrin; Doravari, Suresh; Driggers, Jennifer C; Korth, W Zach; Miao, Haixing; Rollins, Jameson; Vass, Stephen; Yeaton-Massey, David; Adhikari, Rana X

    2012-10-01

    Long-baseline laser interferometers used for gravitational-wave detection have proven to be very complicated to control. In order to have sufficient sensitivity to astrophysical gravitational waves, a set of multiple coupled optical cavities comprising the interferometer must be brought into resonance with the laser field. A set of multi-input, multi-output servos then lock these cavities into place via feedback control. This procedure, known as lock acquisition, has proven to be a vexing problem and has reduced greatly the reliability and duty factor of the past generation of laser interferometers. In this article, we describe a technique for bringing the interferometer from an uncontrolled state into resonance by using harmonically related external fields to provide a deterministic hierarchical control. This technique reduces the effect of the external seismic disturbances by 4 orders of magnitude and promises to greatly enhance the stability and reliability of the current generation of gravitational-wave detectors. The possibility for using multicolor techniques to overcome current quantum and thermal noise limits is also discussed. PMID:23201656

  10. Observation of Cavity Rydberg Polaritons

    NASA Astrophysics Data System (ADS)

    Georgakopoulos, Alexandros; Jia, Ningyuan; Ryou, Albert; Schine, Nathan; Sommer, Ariel; Simon, Jonathan

    2016-05-01

    We demonstrate hybridization of optical cavity photons with atomic Rydberg excitations using electromagnetically induced transparency (EIT). The resulting dark state Rydberg polaritons exhibit a compressed frequency spectrum and enhanced lifetime indicating strong light-matter mixing. We study the coherence properties of cavity Rydberg polaritons and identify the generalized EIT linewidth for optical cavities. Strong collective coupling suppresses polariton losses due to inhomogeneous broadening, which we demonstrate by using different Rydberg levels with a range of polarizabilities. Our results point the way towards using cavity Rydberg polaritons as a platform for creating photonic quantum materials.

  11. Cavity coalescence in superplastic deformation

    SciTech Connect

    Stowell, M.J.; Livesey, D.W.; Ridley, N.

    1984-01-01

    An analysis of the probability distribution function of particles randomly dispersed in a solid has been applied to cavitation during superplastic deformation and a method of predicting cavity coalescence developed. Cavity size distribution data were obtained from two microduplex nickel-silver alloys deformed superplastically to various extents at elevated temperature, and compared to theoretical predictions. Excellent agreement occurred for small void sizes but the model underestimated the number of voids in the largest size groups. It is argued that the discrepancy results from a combination of effects due to non-random cavity distributions and to enhanced growth rates and incomplete spheroidization of the largest cavities.

  12. Nanofriction in Cavity Quantum Electrodynamics.

    PubMed

    Fogarty, T; Cormick, C; Landa, H; Stojanović, Vladimir M; Demler, E; Morigi, Giovanna

    2015-12-01

    The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-range Coulomb repulsion and the cavity-induced interactions. The latter are due to multiple scatterings of laser photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon decay. We study the stationary states of ions coupled with a mode of a standing-wave cavity as a function of the cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures controlled by the cavity parameters and by the ions' phase. These features are imprinted in the radiation emitted by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics. PMID:26684118

  13. Extremely Large Cusp Diamagnetic Cavities

    NASA Astrophysics Data System (ADS)

    Chen, J.; Fritz, T. A.

    2002-05-01

    Extremely large diamagnetic cavities with a size of as large as 6 Re have been observed in the dayside high-altitude cusp regions. Some of the diamagnetic cavities were independent of the IMF directions, which is unexpected by the current MHD (or ISM) models, suggesting that the cusp diamagnetic cavities are different from the magnetospheric sash, which provides a challenge to the existing MHD (or ISM) models. Associated with these cavities are ions with energies from 40 keV up to 8 MeV. The charge state distribution of these cusp cavity ions was indicative of their seed populations being a mixture of the ionospheric and the solar wind particles. The intensities of the cusp cavity energetic ions were observed to increase by as large as four orders of the magnitudes. During high solar wind pressure period on April 21, 1999, the POLAR spacecraft observed lower ion flux in the dayside high-latitude magnetosheath than that in the neighbouring cusp cavities. These observations indicate that the dayside high-altitude cusp diamagnetic cavity is a key region for transferring the solar wind energy, mass, and momentum into the Earth's magnetosphere. These energetic particles in the cusp diamagnetic cavity together with the cusp's connectivity have significant global impacts on the geospace environment research and will be shedding light on the long-standing unsolved fundamental issue about the origins of the energetic particles in the ring current and in upstream ion events.

  14. Extremely large cusp diamagnetic cavities

    NASA Astrophysics Data System (ADS)

    Chen, J.; Fritz, T.; Siscoe, G.

    Extremely large diamagnetic cavities with a size of as large as 6 Re have been observed in the dayside high-altitude cusp regions. These diamagnetic cavities are always there day by day. Some of the diamagnetic cavities have been observed in the morningside during intervals when the IMF By component was positive (duskward), suggesting that the cusp diamagnetic cavities are different from the magnetospheric sash predicted by MHD simulations. Associated with these cavities are ions with energies from 40 keV up to 8 MeV. The charge state distribution of these cusp cavity ions was indicative of their seed populations being a mixture of the ionospheric and the solar wind particles. The intensities of the cusp cavity energetic ions were observed to increase by as large as four orders of the magnitudes. These observations indicate that the dayside high-altitude cusp diamagnetic cavity is a key region for transferring the solar wind energy, mass, and momentum into the Earth's magnetosphere. These energetic particles in the cusp diamagnetic cavity together with the cusp's connectivity to the entire magnetopause may have significant global impacts on the geospace environment. They will possibly be shedding light on the long-standing unsolved fundamental issue about the origins of the energetic particles in the ring current and in the regions upstream of the subsolar magnetopause where energetic ion events frequently are observed.

  15. Nanofriction in Cavity Quantum Electrodynamics

    NASA Astrophysics Data System (ADS)

    Fogarty, T.; Cormick, C.; Landa, H.; Stojanović, Vladimir M.; Demler, E.; Morigi, Giovanna

    2015-12-01

    The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-range Coulomb repulsion and the cavity-induced interactions. The latter are due to multiple scatterings of laser photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon decay. We study the stationary states of ions coupled with a mode of a standing-wave cavity as a function of the cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures controlled by the cavity parameters and by the ions' phase. These features are imprinted in the radiation emitted by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics.

  16. A scanning cavity microscope.

    PubMed

    Mader, Matthias; Reichel, Jakob; Hänsch, Theodor W; Hunger, David

    2015-01-01

    Imaging the optical properties of individual nanosystems beyond fluorescence can provide a wealth of information. However, the minute signals for absorption and dispersion are challenging to observe, and only specialized techniques requiring sophisticated noise rejection are available. Here we use signal enhancement in a high-finesse scanning optical microcavity to demonstrate ultra-sensitive imaging. Harnessing multiple interactions of probe light with a sample within an optical resonator, we achieve a 1,700-fold signal enhancement compared with diffraction-limited microscopy. We demonstrate quantitative imaging of the extinction cross-section of gold nanoparticles with a sensitivity less than 1 nm(2); we show a method to improve the spatial resolution potentially below the diffraction limit by using higher order cavity modes, and we present measurements of the birefringence and extinction contrast of gold nanorods. The demonstrated simultaneous enhancement of absorptive and dispersive signals promises intriguing potential for optical studies of nanomaterials, molecules and biological nanosystems. PMID:26105690

  17. Accessory oral cavity

    PubMed Central

    Gnaneswaran, Manica Ramamoorthy; Varadarajan, Usha; Srinivasan, Ramesh; Kamatchi, Sangeetha

    2012-01-01

    This is a rare case report of a patient around 11 years with the complaint of extra mouth who reported to the hospital for removal of that extra mouth. On examination there was accessory oral cavity with small upper and lower lips, seven teeth and saliva was drooling out. Under general anesthesia crevicular incision from 32 to 43 was put and labial gingiva with alveolar mucosa was reflected completely and bone exposed to lower border of mandible. There were seven teeth resembling lower permanent anterior teeth in the accessory mouth, which was excised with the accessory lips. 41 extracted and osteotomy carried out extending the incision from the extracted site and osteotomy carried out. Dermoid cyst both below and above the mylohyoid muscle and rudimentary tongue found and excised and the specimen sent for histopathological examination. The wound was closed and uneventful healing noted to the satisfaction of the patient. This is a rare and interesting case which has been documented. PMID:23833508

  18. A scanning cavity microscope

    PubMed Central

    Mader, Matthias; Reichel, Jakob; Hänsch, Theodor W.; Hunger, David

    2015-01-01

    Imaging the optical properties of individual nanosystems beyond fluorescence can provide a wealth of information. However, the minute signals for absorption and dispersion are challenging to observe, and only specialized techniques requiring sophisticated noise rejection are available. Here we use signal enhancement in a high-finesse scanning optical microcavity to demonstrate ultra-sensitive imaging. Harnessing multiple interactions of probe light with a sample within an optical resonator, we achieve a 1,700-fold signal enhancement compared with diffraction-limited microscopy. We demonstrate quantitative imaging of the extinction cross-section of gold nanoparticles with a sensitivity less than 1 nm2; we show a method to improve the spatial resolution potentially below the diffraction limit by using higher order cavity modes, and we present measurements of the birefringence and extinction contrast of gold nanorods. The demonstrated simultaneous enhancement of absorptive and dispersive signals promises intriguing potential for optical studies of nanomaterials, molecules and biological nanosystems. PMID:26105690

  19. Quench studies of ILC cavities

    SciTech Connect

    Eremeev, Grigory; Geng, Rongli; Palczewski, Ari; Dai, Jin

    2011-07-01

    Quench limits accelerating gradient in SRF cavities to a gradient lower than theoretically expected for superconducting niobium. Identification of the quenching site with thermometry and OST, optical inspection, and replica of the culprit is an ongoing effort at Jefferson Lab aimed at better understanding of this limiting phenomenon. In this contribution we present our finding with several SRF cavities that were limited by quench.

  20. Trislot-cavity microstrip antenna

    NASA Technical Reports Server (NTRS)

    Ellis, H., Jr.

    1981-01-01

    Flush-mountable assembly composed of disk radiator sandwiched between planes of metal-clad dielectric board has greater bandwidths and beamwidths than simple disk antenna. Conducting planes connect so that disk is enclosed in cavity with Y-shaped slot in top plane. Cavity is excited by microwave energy from disk and radiates from trislot aperature.

  1. Mechanical Properties of Niobium Cavities

    SciTech Connect

    Ciovati, Gianluigi; Dhakal, Pashupati; Matalevich, Joseph R.; Myneni, Ganapati Rao

    2015-09-01

    The mechanical stability of bulk Nb cavity is an important aspect to be considered in relation to cavity material, geometry and treatments. Mechanical properties of Nb are typically obtained from uniaxial tensile tests of small samples. In this contribution we report the results of measurements of the resonant frequency and local strain along the contour of single-cell cavities made of ingot and fine-grain Nb of different purity subjected to increasing uniform differential pressure, up to 6 atm. Measurements have been done on cavities subjected to different heat treatments. Good agreement between finite element analysis simulations and experimental data in the elastic regime was obtained with a single set of values of Young’s modulus and Poisson’s ratio. The experimental results indicate that the yield strength of medium-purity ingot Nb cavities is higher than that of fine-grain, high-purity Nb.

  2. Superconducting Storage Cavity for RHIC

    SciTech Connect

    Ben-Zvi,I.

    2009-01-02

    This document provides a top-level description of a superconducting cavity designed to store hadron beams in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It refers to more detailed documents covering the various issues in designing, constructing and operating this cavity. The superconducting storage cavity is designed to operate at a harmonic of the bunch frequency of RHIC at a relatively low frequency of 56 MHz. The current storage cavities of RHIC operate at 197 MHz and are normal-conducting. The use of a superconducting cavity allows for a high gap voltage, over 2 MV. The combination of a high voltage and low frequency provides various advantages stemming from the resulting large longitudinal acceptance bucket.

  3. Monochromatic radio frequency accelerating cavity

    DOEpatents

    Giordano, Salvatore

    1985-01-01

    A radio frequency resonant cavity having a fundamental resonant frequency and characterized by being free of spurious modes. A plurality of spaced electrically conductive bars are arranged in a generally cylindrical array within the cavity to define a chamber between the bars and an outer solid cylindrically shaped wall of the cavity. A first and second plurality of mode perturbing rods are mounted in two groups at determined random locations to extend radially and axially into the cavity thereby to perturb spurious modes and cause their fields to extend through passageways between the bars and into the chamber. At least one body of lossy material is disposed within the chamber to damp all spurious modes that do extend into the chamber thereby enabling the cavity to operate free of undesired spurious modes.

  4. Monochromatic radio frequency accelerating cavity

    DOEpatents

    Giordano, S.

    1984-02-09

    A radio frequency resonant cavity having a fundamental resonant frequency and characterized by being free of spurious modes. A plurality of spaced electrically conductive bars are arranged in a generally cylindrical array within the cavity to define a chamber between the bars and an outer solid cylindrically shaped wall of the cavity. A first and second plurality of mode perturbing rods are mounted in two groups at determined random locations to extend radially and axially into the cavity thereby to perturb spurious modes and cause their fields to extend through passageways between the bars and into the chamber. At least one body of lossy material is disposed within the chamber to damp all spurious modes that do extend into the chamber thereby enabling the cavity to operate free of undesired spurious modes.

  5. Changeability of Oral Cavity Environment

    PubMed Central

    Surdacka, Anna; Strzyka³a, Krystyna; Rydzewska, Anna

    2007-01-01

    Objectives In dentistry, the results of in vivo studies on drugs, dental fillings or prostheses are routinely evaluated based on selected oral cavity environment parameters at specific time points. Such evaluation may be confounded by ongoing changes in the oral cavity environment induced by diet, drug use, stress and other factors. The study aimed to confirm oral cavity environment changeability. Methods 24 healthy individuals aged 20–30 had their oral cavity environment prepared by having professional hygiene procedures performed and caries lesions filled. Baseline examination and the examination two years afterwards, evaluated clinical and laboratory parameters of oral cavity environment. Caries incidence was determined based on DMFT and DMFS values, oral cavity hygiene on Plaque Index (acc. Silness & Loe) and Hygiene Index (acc. O’Leary), and the gingival status on Gingival Index (acc. Loe & Silness) and Gingival Bleeding Index (acc. Ainamo & Bay). Saliva osmolarity, pH and concentrations of Ca2+, Pi, Na+, Cl−, total protein, albumins, F− and Sr2+ were determined. Results The results confirmed ongoing changeability of the oral cavity environment. After 2 years of the study reduction in oral cavity hygiene parameters PLI and HI (P<0.1), and gingival indices as well as lower saliva concentration of Ca2+ (P<.001), Pi (P<.06), K+ (P<.04), Sr2+ (P<.03), Na+ (P<.1), against the baseline values, were observed. Total protein and albumin saliva concentrations were also significantly lower. Conclusion Physiological oral cavity environment is subject to constant, individually different, changes which should be considered when analysing studies that employ oral cavity environment parameters. PMID:19212491

  6. Stages of Lip and Oral Cavity Cancer

    MedlinePlus

    ... Cavity and Oropharyngeal Cancer Screening Research Lip and Oral Cavity Cancer Treatment (PDQ®)–Patient Version General Information About Lip and Oral Cavity Cancer Go to Health Professional Version Key Points ...

  7. Initial Results and Future Plans for the Soft X-ray Instrument for Materials at the Linac Coherent Light Source (LCLS)

    NASA Astrophysics Data System (ADS)

    Schlotter, William; Krupin, Oleg; Minitti, Michael; Turner, Joshua

    2012-02-01

    For two years ultrafast high intensity x-ray pulses have been available at the Linac Coherent Light Source, the x-ray free electron laser at the SLAC National Accelerator Laboratory. The soft x-ray instrument (SXR) operates at an energy range from 480eV-2000eV and features a plane grating monochromator as well as a bendable refocusing mirror system. The measured performance of the instrument will be presented as well as the future direction for instrumentation development. [4pt] Acknowledgement: This research was carried out on the SXR Instrument at the Linac Coherent Light Source (LCLS), a division of SLAC National Accelerator Laboratory and an Office of Science user facility operated by Stanford University for the U.S. Department of Energy. The SXR Instrument is funded by a consortium whose membership includes the LCLS, Stanford University through the Stanford Institute for Materials Energy Sciences (SIMES), Lawrence Berkeley National Laboratory (LBNL), University of Hamburg through the BMBF priority program FSP 301, and the Center for Free Electron Laser Science (CFEL).

  8. Frequency-feedback cavity enhanced spectrometer

    DOEpatents

    Hovde, David Christian; Gomez, Anthony

    2015-08-18

    A spectrometer comprising an optical cavity, a light source capable of producing light at one or more wavelengths transmitted by the cavity and with the light directed at the cavity, a detector and optics positioned to collect light transmitted by the cavity, feedback electronics causing oscillation of amplitude of the optical signal on the detector at a frequency that depends on cavity losses, and a sensor measuring the oscillation frequency to determine the cavity losses.

  9. Composite resonator vertical cavity laser diode

    SciTech Connect

    Choquette, K.D.; Hou, H.Q.; Chow, W.W.; Geib, K.M.; Hammons, B.E.

    1998-05-01

    The use of two coupled laser cavities has been employed in edge emitting semiconductor lasers for mode suppression and frequency stabilization. The incorporation of coupled resonators within a vertical cavity laser opens up new possibilities due to the unique ability to tailor the interaction between the cavities. Composite resonators can be utilized to control spectral and temporal properties within the laser; previous studies of coupled cavity vertical cavity lasers have employed photopumped structures. The authors report the first composite resonator vertical cavity laser diode consisting of two optical cavities and three monolithic distributed Bragg reflectors. Cavity coupling effects and two techniques for external modulation of the laser are described.

  10. Progressive cavity pump

    SciTech Connect

    Mueller, J.W.

    1989-04-04

    A progressive cavity pump is described, comprising: a first housing portion defining an inlet; a second housing portion attachable to the first housing portion and defining an outlet; a substantially elastomeric stator comprising an outer portion removably attached to the first and second housing portions, having a first end and a second end spaced from the first end, an inner portion defining a pumping chamber and spaced an annular end portion interconnecting the first ends of the outer and inner portions; a rotor disposed in the inner portion of the stator and extending through the pumping chamber for pumping fluid from the inlet to the outlet in response to rotation of the rotor; and an elongated member disposed in the housing portions and generally annularly between the inner and outer portions of the stator and longitudinally between the annular end portion of the stator and a portion of the second housing portion, the member being removable from the housing portions and separable from the stator.

  11. Nonlocal Intracranial Cavity Extraction

    PubMed Central

    Manjón, José V.; Eskildsen, Simon F.; Coupé, Pierrick; Romero, José E.; Collins, D. Louis; Robles, Montserrat

    2014-01-01

    Automatic and accurate methods to estimate normalized regional brain volumes from MRI data are valuable tools which may help to obtain an objective diagnosis and followup of many neurological diseases. To estimate such regional brain volumes, the intracranial cavity volume (ICV) is often used for normalization. However, the high variability of brain shape and size due to normal intersubject variability, normal changes occurring over the lifespan, and abnormal changes due to disease makes the ICV estimation problem challenging. In this paper, we present a new approach to perform ICV extraction based on the use of a library of prelabeled brain images to capture the large variability of brain shapes. To this end, an improved nonlocal label fusion scheme based on BEaST technique is proposed to increase the accuracy of the ICV estimation. The proposed method is compared with recent state-of-the-art methods and the results demonstrate an improved performance both in terms of accuracy and reproducibility while maintaining a reduced computational burden. PMID:25328511

  12. Novel Crab Cavity RF Design

    SciTech Connect

    Dudas, A.; Neubauer, M. L.; Sah, R.; Rimmer, B.; Wang, H.

    2011-03-01

    A 20-50 MV integrated transverse voltage is required for the Electron-Ion Collider. The most promising of the crab cavity designs that have been proposed in the last five years are the TEM type crab cavities because of the higher transverse impedance. The TEM design approach is extended here to a hybrid crab cavity that includes the input power coupler as an integral part of the design. A prototype was built with Phase I monies and tested at JLAB. The results reported on, and a system for achieving 20-50 MV is proposed.

  13. Call for Papers: Cavity QED

    NASA Astrophysics Data System (ADS)

    Lange, W.; Gerard, J.-M.

    2003-06-01

    Cavity QED interactions of light and matter have been investigated in a wide range of systems covering the spectrum from microwaves to optical frequencies, using media as diverse as single atoms and semiconductors. Impressive progress has been achieved technologically as well as conceptually. This topical issue of Journal of Optics B: Quantum and Semiclassical Optics is intended to provide a comprehensive account of the current state of the art of cavity QED by uniting contributions from researchers active across this field. As Guest Editors of this topical issue, we invite manuscripts on current theoretical and experimental work on any aspects of cavity QED. The topics to be covered will include, but are not limited to: bulletCavity QED in optical microcavities bulletSemiconductor cavity QED bulletQuantum dot cavity QED bulletRydberg atoms in microwave cavities bulletPhotonic crystal cavity QED bulletMicrosphere resonators bulletMicrolasers and micromasers bulletMicrodroplets bulletDielectric cavity QED bulletCavity QED-based quantum information processing bulletQuantum state engineering in cavities The DEADLINE for submission of contributions is 31 July 2003 to allow the topical issue to appear in about February 2004. All papers will be peer-reviewed in accordance with the normal refereeing procedures and standards of Journal of Optics B: Quantum and Semiclassical Optics. Advice on publishing your work in the journal may be found at www.iop.org/journals/authors/jopb. Submissions should ideally be in either standard LaTeX form or Microsoft Word. There are no page charges for publication. In addition to the usual 50 free reprints, the corresponding author of each paper published will receive a complimentary copy of the topical issue. Contributions to the topical issue should if possible be submitted electronically at www.iop.org/journals/jopb. or by e-mail to jopb@iop.org. Authors unable to submit online or by e-mail may send hard copy contributions (enclosing the

  14. Tapered cavity surface emitting distributed Bragg reflector lasers

    NASA Astrophysics Data System (ADS)

    Luo, Hui

    2000-09-01

    High power, diffraction-limited semiconductor lasers are required for a wide range of applications such as pumping for EDFAs, Raman amplifiers, and for free space optical communications. Unstable resonator has been identified as a very promising concept to develop these lasers. The objective of this research is to investigate and develop tapered cavity unstable resonator grating coupled surface emitting lasers (TCSELs). The laser consists of a ridge section, a tapered gain section and a DBR grating section. The ridge is used to ensure single lateral mode operation. The taper is used to achieve high power from a large aperture. The grating is used to provide feedback and surface outcoupling. This laser design has several key features including high output power, near diffraction-limited beam, low divergence angle, single longitudinal mode operation, and integration with dynamic functionality such as wavelength tuning and beam steering. In this dissertation the design, fabrication and characterization of TCSELs are discussed. The theory of TCSELs is presented. As a theoretical investigation, a comprehensive numerical modeling based on finite difference beam propagation method (FD-BPM) for semiconductor laser is developed. The model includes major parameters affecting device performance such as current spreading, carrier diffusion, nonlinear gain- carrier relation, gain saturation, carrier induced antiguiding and thermal lensing. The simulation results are presented and effects of design parameters on device performance are discussed. TCSELs with different device design and functionality are fabricated. The characterization results are discussed. High power operation is obtained under both pulsed and continuous wave (CW) operation. Collimated near diffraction-limited beam is demonstrated with moderate power. Single longitudinal mode operation with high side mode suppression ratio is observed. Wavelength tuning and beam steering is achieved using current injection to

  15. CRAB Cavity in CERN SPS

    SciTech Connect

    Kim, H.J.; Sen, T.; /Fermilab

    2010-05-01

    Beam collisions with a crossing angle at the interaction point are often necessary in colliders to reduce the effects of parasitic collisions which induce emittance growth and decrease beam lifetime. The crossing angle reduces the geometrical overlap of the beams and hence the luminosity. Crab cavity offer a promising way to compensate the crossing angle and to realize effective head-on collisions. Moreover, the crab crossing mitigates the synchro-betatron resonances due to the crossing angle. A crab cavity experiment in SPS is proposed as a proof of principle before deciding on a full crab-cavity implementation in the LHC. In this paper, we investigate the effects of a single crab cavity on beam dynamics in the SPS and life time.

  16. Geometry-invariant resonant cavities

    NASA Astrophysics Data System (ADS)

    Liberal, I.; Mahmoud, A. M.; Engheta, N.

    2016-03-01

    Resonant cavities are one of the basic building blocks in various disciplines of science and technology, with numerous applications ranging from abstract theoretical modelling to everyday life devices. The eigenfrequencies of conventional cavities are a function of their geometry, and, thus, the size and shape of a resonant cavity is selected to operate at a specific frequency. Here we demonstrate theoretically the existence of geometry-invariant resonant cavities, that is, resonators whose eigenfrequencies are invariant with respect to geometrical deformations of their external boundaries. This effect is obtained by exploiting the unusual properties of zero-index metamaterials, such as epsilon-near-zero media, which enable decoupling of the temporal and spatial field variations in the lossless limit. This new class of resonators may inspire alternative design concepts, and it might lead to the first generation of deformable resonant devices.

  17. Geometry-invariant resonant cavities

    PubMed Central

    Liberal, I.; Mahmoud, A. M.; Engheta, N.

    2016-01-01

    Resonant cavities are one of the basic building blocks in various disciplines of science and technology, with numerous applications ranging from abstract theoretical modelling to everyday life devices. The eigenfrequencies of conventional cavities are a function of their geometry, and, thus, the size and shape of a resonant cavity is selected to operate at a specific frequency. Here we demonstrate theoretically the existence of geometry-invariant resonant cavities, that is, resonators whose eigenfrequencies are invariant with respect to geometrical deformations of their external boundaries. This effect is obtained by exploiting the unusual properties of zero-index metamaterials, such as epsilon-near-zero media, which enable decoupling of the temporal and spatial field variations in the lossless limit. This new class of resonators may inspire alternative design concepts, and it might lead to the first generation of deformable resonant devices. PMID:27010103

  18. [Radiotherapy for oral cavity cancers].

    PubMed

    Lapeyre, M; Biau, J; Racadot, S; Moreira, J F; Berger, L; Peiffert, D

    2016-09-01

    Intensity modulated radiation therapy (IMRT) and brachytherapy are standard techniques for the irradiation of oral cavity cancers. These techniques are detailed in terms of indication, preparation, delineation and selection of the volumes, dosimetry and patient positioning control. PMID:27521039

  19. Normal Conducting RF Cavity for MICE

    SciTech Connect

    Li, D.; DeMello, A.; Virostek, S.; Zisman, M.; Summers, D.

    2010-05-23

    Normal conducting RF cavities must be used for the cooling section of the international Muon Ionization Cooling Experiment (MICE), currently under construction at Rutherford Appleton Laboratory (RAL) in the UK. Eight 201-MHz cavities are needed for the MICE cooling section; fabrication of the first five cavities is complete. We report the cavity fabrication status including cavity design, fabrication techniques and preliminary low power RF measurements.

  20. LCLS: Ultrafast Science

    SciTech Connect

    Bucksbaum, Philip

    2005-06-28

    Everyone knows that lasers can be bright. From Goldfinger to Star Wars, intense lasers carry a 'death ray' reputation in popular culture. But what is intense light, anyway? How can you even make or direct something that will blast to smithereens any material that it encounters? And how can something as ephemeral as a ray of light turn into an irresistible force? Is there an ultimate intensity, a brightest light? We'll answer these questions, and more.

  1. Nanoscale Images of Airborne PM2.5: Aerosol Dynamics with the LCLS X-ray Laser

    NASA Astrophysics Data System (ADS)

    Bogan, M. J.

    2012-12-01

    It is now possible to capture images of individual airborne PM2.5 particles - including soot, NaCl particles and engineered nanoparticles - with 20-40 nm resolution (Loh et al Nature 2012). Ions released during the imaging process provide information on the chemical content of the isolated particles. The scattering signal used to compose the image also provides the fractal dimension of individual particles. This new paradigm of aerosol dynamics is enabled by the incredible brightness and ultrashort pulses available at X-ray free electron laser (FEL) facilities, such as the Linac Coherent Light Source (LCLS) and the FLASH FEL facility in Hamburg. Femtosecond long x-ray pulses deliver sufficient photons (10^12 per pulse) to detect scattered X-rays off individual particles injected at >100 m/s into vacuum through an aerodynamic lens stack. The intensity of the scattered X-rays measured by an area detector is fed into lensless imaging algorithms to reconstruct an image of the particle that caused the scattering. X-ray FELs can peer inside the individual airborne particles and are a sensitive probe of particle crystallinity. The development of this method and applications to imaging micron-sized soot, water droplets and biological aerosols will be discussed. A primary long-term goal of the research is to take snapshots of airborne particles as they change their size, shape and chemical make-up in response to their environment. "Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight" ND Loh, C Hampton, A Martin, D Starodub, R Sierra, A Barty, A Aquila, J Schulz, L Lomb, J Steinbrener, R Shoeman, S Kassemeyer, C Bostedt, J. Bozek, S Epp, B. Erk, R Hartmann, D Rolles, A Rudenko, B Rudek, L Foucar, N Kimmel, G Weidenspointner, G Hauser, P Holl, E. Pedersoli, M Liang, M Hunter, L Gumprecht, N Coppola, C Wunderer, H Graafsma, F Maia, T Ekeberg, M Hantke, H Fleckenstein, H. Hirsemann, K Nass, T White, H Tobias, G Farquar, W Benner, S Hau

  2. Coupling of an overdriven cavity

    SciTech Connect

    Garbin, H.D.

    1993-11-01

    It is well known that when a nuclear test is conducted in a sufficiently large cavity, the resulting seismic signal is sharply reduced when compared to a normal tamped event. Cavity explosions are of interest in the seismic verification community because of this possibility of reducing the seismic energy generated which can lower signal amplitudes and make detection difficult. Reduced amplitudes would also lower seismic yield estimates which has implications in a Threshold Test Ban Treaty (TTBT). In the past several years, there have been a number of nuclear tests at NTS (Nevada Test Site) inside hemispherical cavities. Two such tests were MILL YARD and MISTY ECHO which had instrumentation at the surface and in the free-field. These two tests differ in one important aspect. MILL YARD was completely decoupled i.e., the cavity wall behaved in an elastic manner. It was estimated that MILL YARD`s ground motion was reduced by a factor of at least 70. In contrast, MISTY ECHO was detonated in a hemispherical cavity with the same dimensions as MILL YARD, but with a much larger device yield. This caused an inelastic behavior on the wall and the explosion was not fully decoupled.

  3. The ESS spoke cavity cryomodules

    SciTech Connect

    Bousson, Sebastien; Duthil, Patxi; Reynet, Denis; Thermeau, Jean-Pierre

    2014-01-29

    The European Spallation Source (ESS) is a multi-disciplinary research centre under design and construction in Lund, Sweden. This new facility is funded by a collaboration of 17 European countries and is expected to be up to 30 times brighter than today’s leading facilities and neutron sources. The ESS will enable new opportunities for researchers in the fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics. A 5 MW long pulse proton accelerator is used to reach this goal. The pulsed length is 2.86 ms, the repetition frequency is 14 Hz (4 % duty cycle), and the beam current is 62.5 mA. It is composed of one string of spoke cavity cryomodule and two strings of elliptical cavity cryomodules. This paper introduces the thermo-mechanical design and expected operation of the ESS spoke cavity cryomodules. These cryomodules contain two double spoke bulk Niobium cavities operating at 2 K and at a frequency of 352.21 MHz. The superconducting section of the Spoke Linac accelerates the beam from 90 MeV to 220 MeV. A Spoke Cavity Cryomodule Technology Demonstrator will be built and tested in order to validate the ESS series production.

  4. The ESS elliptical cavity cryomodules

    NASA Astrophysics Data System (ADS)

    Darve, Christine; Bosland, Pierre; Devanz, Guillaume; Olivier, Gilles; Renard, Bertrand; Thermeau, Jean-Pierre

    2014-01-01

    The European Spallation Source (ESS) is a multi-disciplinary research centre under design and construction in Lund, Sweden. This new facility is funded by a collaboration of 17 European countries and is expected to be up to 30 times brighter than today's leading facilities and neutron sources. The ESS will enable new opportunities for researchers in the fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics. A 5 MW long pulse proton accelerator is used to reach this goal. The pulsed length is 2.86 ms, the repetition frequency is 14 Hz (4 % duty cycle), and the beam current is 62.5 mA. The superconducting section of the Linac accelerates the beam from 80 MeV to 2.0 GeV. It is composed of one string of spoke cavity cryomodule and two strings of elliptical cavity cryomodules. These cryomodules contain four elliptical Niobium cavities operating at 2 K and at a frequency of 704.42 MHz. This paper introduces the thermo-mechanical design, the prototyping and the expected operation of the ESS elliptical cavity cryomodules. An Elliptical Cavity Cryomodule Technology Demonstrator (ECCTD) will be built and tested in order to validate the ESS series production.

  5. The ESS spoke cavity cryomodules

    NASA Astrophysics Data System (ADS)

    Bousson, Sebastien; Darve, Christine; Duthil, Patxi; Elias, Nuno; Molloy, Steve; Reynet, Denis; Thermeau, Jean-Pierre

    2014-01-01

    The European Spallation Source (ESS) is a multi-disciplinary research centre under design and construction in Lund, Sweden. This new facility is funded by a collaboration of 17 European countries and is expected to be up to 30 times brighter than today's leading facilities and neutron sources. The ESS will enable new opportunities for researchers in the fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics. A 5 MW long pulse proton accelerator is used to reach this goal. The pulsed length is 2.86 ms, the repetition frequency is 14 Hz (4 % duty cycle), and the beam current is 62.5 mA. It is composed of one string of spoke cavity cryomodule and two strings of elliptical cavity cryomodules. This paper introduces the thermo-mechanical design and expected operation of the ESS spoke cavity cryomodules. These cryomodules contain two double spoke bulk Niobium cavities operating at 2 K and at a frequency of 352.21 MHz. The superconducting section of the Spoke Linac accelerates the beam from 90 MeV to 220 MeV. A Spoke Cavity Cryomodule Technology Demonstrator will be built and tested in order to validate the ESS series production.

  6. The ESS elliptical cavity cryomodules

    SciTech Connect

    Darve, Christine; Bosland, Pierre; Devanz, Guillaume; Renard, Bertrand; Olivier, Gilles; Thermeau, Jean-Pierre

    2014-01-29

    The European Spallation Source (ESS) is a multi-disciplinary research centre under design and construction in Lund, Sweden. This new facility is funded by a collaboration of 17 European countries and is expected to be up to 30 times brighter than today’s leading facilities and neutron sources. The ESS will enable new opportunities for researchers in the fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics. A 5 MW long pulse proton accelerator is used to reach this goal. The pulsed length is 2.86 ms, the repetition frequency is 14 Hz (4 % duty cycle), and the beam current is 62.5 mA. The superconducting section of the Linac accelerates the beam from 80 MeV to 2.0 GeV. It is composed of one string of spoke cavity cryomodule and two strings of elliptical cavity cryomodules. These cryomodules contain four elliptical Niobium cavities operating at 2 K and at a frequency of 704.42 MHz. This paper introduces the thermo-mechanical design, the prototyping and the expected operation of the ESS elliptical cavity cryomodules. An Elliptical Cavity Cryomodule Technology Demonstrator (ECCTD) will be built and tested in order to validate the ESS series production.

  7. Cavity optomechanics and its applications

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Mishkatul

    2009-05-01

    Cavity optomechanics is an emerging field at the intersection of quantum optics, atomic physics, nanoscience and gravitational wave interferometry. It involves cavities (with one or more mechanical degrees of freedom) driven by laser radiation. The ensuing optical control of macroscopic mechanical motion may have implications for precision sensing, coherent control of atoms and molecules, and quantum information processing. Due to recent innovations optomechanical physics has been realized in a variety of experimental systems spanning many orders of magnitude in mass and time-scales. In this talk, I will first introduce the basic paradigm of a laser-driven two mirror cavity used for cooling a vibrational mode. A three-mirror configuration recently implemented using a partially transmissive dielectric membrane in a high finesse cavity will then be discussed, and shown to be superior to the two-mirror design in a number of ways. One implication of the three-mirror configuration is the possibility of scaling optomechanical techniques to multiple oscillators. This topic will be explored by analysing the case of two membranes in a cavity where it will be shown that the collective(center-of-mass and breathing) modes of vibration can be cooled independently, analogous to a chain of trapped ions. Finally, future directions for possible applications to the control of atoms and molecules will be indicated briefly.

  8. Phoxonic crystals and cavity optomechanics

    NASA Astrophysics Data System (ADS)

    Djafari-Rouhani, Bahram; El-Jallal, Said; Pennec, Yan

    2016-05-01

    Phoxonic crystals are dual phononic/photonic crystals exhibiting simultaneously band gaps for both types of excitations. Therefore, they have the ability to confine phonons and photons in the same cavity and in turn allow the enhancement of their interaction. In this paper, we review some of our theoretical works on cavity optomechanical interactions in different types of phoxonic crystals, including two-dimensional, slab, and nanobeam structures. Two mechanisms are behind the phonon-photon interaction, namely the photoelastic and the moving interface effects. Coupling rates of a few MHz are obtained with high-frequency phonons of a few GHz. Finally, we give some preliminary results about the optomechanical interaction when a metallic nanoparticle is introduced into the cavity, giving rise to coupled photon-plasmon modes or, in the case of very small particles, to an enhancement of the electric field at the position of the particle. xml:lang="fr"

  9. RRR Characteristics for SRF cavities

    NASA Astrophysics Data System (ADS)

    Jung, Yoochul; Hyun, Myungook; Joung, Mijoung

    2015-10-01

    The first heavy ion accelerator is being constructed by the rare isotope science project (RISP) launched by the Institute of Basic Science (IBS) in South Korea. Four different types of superconducting cavities were designed, and prototypes such as a quarter-wave resonator (QWR), a half-wave resonator (HWR) and a single-spoke resonator (SSR) were fabricated. One of the critical factors determining the performances of superconducting cavities is the residual resistance ratio (RRR). The RRR values essentially represent how pure niobium is and how fast niobium can transmit heat. In general, the RRR degrades during electron beam welding due to impurity incorporation. Thus, it is important to maintain the RRR above a certain value at which a niobium cavity shows target performance. In this study, RRR degradation related with electron beam welding conditions, for example, the welding power, welding speed, and vacuum level, will be discussed.

  10. Experimental cavity pressure distributions at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Stallings, Robert L., Jr.; Wilcox, Floyd J., Jr.

    1987-01-01

    An investigation was conducted to define pressure distributions for rectangular cavities over a range of free-stream Mach numbers and cavity dimensions. These pressure distributions together with schlieren photographs are used to define the critical values of cavity length-to-depth ratio that separate open type cavity flows from closed type cavity flows. For closed type cavity flow, the shear layer expands over the cavity leading edge and impinges on the cavity floor, whereas for open type cavity flow, the shear layer bridges the cavity. The tests were conducted by using a flat-plate model permitting the cavity length to be remotely varied from 0.5 to 12 in. Cavity depths and widths were varied from 0.5 to 2.5 in. The flat-plate boundary layer approaching the cavity was turbulent and had a thickness of approximately 0.2 in. at the cavity front face for the range of test Mach numbers from 1.5 to 2.86. Presented are a discussion of the results and a complete tabulation of the experimental data.

  11. Synchronization in an optomechanical cavity.

    PubMed

    Shlomi, Keren; Yuvaraj, D; Baskin, Ilya; Suchoi, Oren; Winik, Roni; Buks, Eyal

    2015-03-01

    We study self-excited oscillations (SEO) in an on-fiber optomechanical cavity. Synchronization is observed when the optical power that is injected into the cavity is periodically modulated. A theoretical analysis based on the Fokker-Planck equation evaluates the expected phase space distribution (PSD) of the self-oscillating mechanical resonator. A tomography technique is employed for extracting PSD from the measured reflected optical power. Time-resolved state tomography measurements are performed to study phase diffusion and phase locking of the SEO. The detuning region inside which synchronization occurs is experimentally determined and the results are compared with the theoretical prediction. PMID:25871175

  12. Progress on a Be Cavity Design

    SciTech Connect

    Li, D.; Palmer, R.; Stratakis, D.; Virostek, S.; Zisman, Michael S.

    2010-12-24

    Previous RF experiments with normal-conducting cavities have demonstrated that there is a significant degradation in maximum gradient when the cavity is subjected to a strong axial magnetic field. We have developed a model suggesting that a cavity with beryllium walls may perform better than copper cavities. In this paper we outline the issues that led us to propose fabricating a Be-wall cavity. We also discuss a concept for fabricating such a cavity and mention some of the manufacturing issues we expect to face.

  13. Analog detection for cavity lifetime spectroscopy

    DOEpatents

    Zare, Richard N.; Harb, Charles C.; Paldus, Barbara A.; Spence, Thomas G.

    2003-01-01

    An analog detection system for determining a ring-down rate or decay rate 1/.tau. of an exponentially decaying ring-down beam issuing from a lifetime or ring-down cavity during a ring-down phase. Alternatively, the analog detection system determines a build-up rate of an exponentially growing beam issuing from the cavity during a ring-up phase. The analog system can be employed in continuous wave cavity ring-down spectroscopy (CW CRDS) and pulsed CRDS (P CRDS) arrangements utilizing any type of ring-down cavity including ring-cavities and linear cavities.

  14. Analog detection for cavity lifetime spectroscopy

    DOEpatents

    Zare, Richard N.; Harb, Charles C.; Paldus, Barbara A.; Spence, Thomas G.

    2001-05-15

    An analog detection system for determining a ring-down rate or decay rate 1/.tau. of an exponentially decaying ring-down beam issuing from a lifetime or ring-down cavity during a ring-down phase. Alternatively, the analog detection system determines a build-up rate of an exponentially growing beam issuing from the cavity during a ring-up phase. The analog system can be employed in continuous wave cavity ring-down spectroscopy (CW CRDS) and pulsed CRDS (P CRDS) arrangements utilizing any type of ring-down cavity including ring-cavities and linear cavities.

  15. Large-mode enhancement cavities.

    PubMed

    Carstens, Henning; Holzberger, Simon; Kaster, Jan; Weitenberg, Johannes; Pervak, Volodymyr; Apolonski, Alexander; Fill, Ernst; Krausz, Ferenc; Pupeza, Ioachim

    2013-05-01

    In passive enhancement cavities the achievable power level is limited by mirror damage. Here, we address the design of robust optical resonators with large spot sizes on all mirrors, a measure that promises to mitigate this limitation by decreasing both the intensity and the thermal gradient on the mirror surfaces. We introduce a misalignment sensitivity metric to evaluate the robustness of resonator designs. We identify the standard bow-tie resonator operated close to the inner stability edge as the most robust large-mode cavity and implement this cavity with two spherical mirrors with 600 mm radius of curvature, two plane mirrors and a round trip length of 1.2 m, demonstrating a stable power enhancement of near-infrared laser light by a factor of 2000. Beam radii of 5.7 mm × 2.6 mm (sagittal × tangential 1/e(2) intensity radius) on all mirrors are obtained. We propose a simple all-reflective ellipticity compensation scheme. This will enable a significant increase of the attainable power and intensity levels in enhancement cavities. PMID:23670017

  16. Facing rim cavities fluctuation modes

    NASA Astrophysics Data System (ADS)

    Casalino, Damiano; Ribeiro, André F. P.; Fares, Ehab

    2014-06-01

    Cavity modes taking place in the rims of two opposite wheels are investigated through Lattice-Boltzmann CFD simulations. Based on previous observations carried out by the authors during the BANC-II/LAGOON landing gear aeroacoustic study, a resonance mode can take place in the volume between the wheels of a two-wheel landing gear, involving a coupling between shear-layer vortical fluctuations and acoustic modes resulting from the combination of round cavity modes and wheel-to-wheel transversal acoustic modes. As a result, side force fluctuations and tonal noise side radiation take place. A parametric study of the cavity mode properties is carried out in the present work by varying the distance between the wheels. Moreover, the effects due to the presence of the axle are investigated by removing the axle from the two-wheel assembly. The azimuthal properties of the modes are scrutinized by filtering the unsteady flow in narrow bands around the tonal frequencies and investigating the azimuthal structure of the filtered fluctuation modes. Estimation of the tone frequencies with an ad hoc proposed analytical formula confirms the observed modal properties of the filtered unsteady flow solutions. The present study constitutes a primary step in the description of facing rim cavity modes as a possible source of landing gear tonal noise.

  17. Fibre ring cavity semiconductor laser

    SciTech Connect

    Duraev, V P; Medvedev, S V

    2013-10-31

    This paper presents a study of semiconductor lasers having a polarisation maintaining fibre ring cavity. We examine the operating principle and report main characteristics of a semiconductor ring laser, in particular in single- and multiple-frequency regimes, and discuss its application areas. (lasers)

  18. "Grinding" cavities in polyurethane foam

    NASA Technical Reports Server (NTRS)

    Brower, J. R.; Davey, R. E.; Dixon, W. F.; Robb, P. H.; Zebus, P. P.

    1980-01-01

    Grinding tool installed on conventional milling machine cuts precise cavities in foam blocks. Method is well suited for prototype or midsize production runs and can be adapted to computer control for mass production. Method saves time and materials compared to bonding or hot wire techniques.

  19. ADPF spoke cavity cryomodule concept

    SciTech Connect

    Kelley, J. P.; Roybal, P. L.; La Fave, R. P.; Waynert, J. A.; Schrage, D. L.; Schmierer, E. N.; Krawczyk, F. L.; Garnett, R. W.

    2001-01-01

    The Accelerator Driven Test Facility (ADTF) is being developed as a reactor concepts test bed for transmutation of nuclear waste. A 13.3 mA continuous-wave (CW) proton beam will be accelerated to 600 MeV and impinged on a spallation target. The subsequent neutron shower is used to create a nuclear reaction within a subcritical assembly of waste material that reduces the waste half-life from the order of 10{sup 5} years to 10{sup 2} years. Additionally, significant energy is produced that can be used to generate electrical power. The ADTF proton accelerator consists of room-temperature (RT) structures that accelerate the beam to 6.7-MeV and superconducting (SC) elements that boost the beam's energy to 600-MeV. Traditional SC elliptical cavities experience structural difficulties at low energies due to their geometry. Therefore, stiff-structured SC spoke cavities have been adopted for the energy range between 6.7 and 109 MeV. Elliptical cavities are used at the higher energies. This paper describes a multi-spoke-cavity cryomodule concept for ADTF.

  20. Nanobeam cavities for Reconfigurable Photonics

    NASA Astrophysics Data System (ADS)

    Deotare, Parag B.

    We investigate the design, fabrication, and experimental characterization of high quality factor photonic crystal nanobeam cavities, with theoretical quality factors of 1.4 x 107 in silicon, operating at ˜ 1550 nm. By detecting the cross-polarized resonantly scattered light from a normally incident laser beam, we measure a quality factor of nearly 7.5 x 105. We show on-chip integration of the cavities using waveguides and an inverse taper geometry based mode size converters, and also demonstrate tuning of the optical resonance using thermo-optic effect. We also study coupled cavities and show that the single nanobeam cavity modes are coupled into even and odd superposition modes. Using electrostatic force and taking advantage of the highly dispersive nature of the even mode to the nanobeam separation, we demonstrate dynamically reconfigurable optical filters tunable continuously and reversibly over a 9.5 nm wavelength range. The electrostatic force, obtained by applying bias voltages directly to the nanobeams, is used to control the spacing between the nanobeams, which in turn results in tuning of the cavity resonance. The observed tuning trends were confirmed through simulations that modeled the electrostatic actuation as well as the optical resonances in our reconfigurable geometries. Finally we demonstrate reconfiguration of coupled cavities by using optical gradient force induced mechanical actuation. Propagating waveguide modes that exist over wide wavelength range are used to actuate the structures and in that way control the resonance of a localized cavity mode. Using this all-optical approach, more than 18 linewidths of tuning range is demonstrated. Using an on-chip temperature self-referencing method that we developed, we determined that 20% of the total tuning was due to optomechanical reconfiguration and the rest due to thermo-optic effects. By operating the device at frequencies higher than the thermal cut-off, we show high speed operation dominated by

  1. Linear beam dynamics and ampere class superconducting RF cavities at RHIC

    NASA Astrophysics Data System (ADS)

    Calaga, Rama R.

    The Relativistic Heavy Ion Collider (RHIC) is a hadron collider designed to collide a range of ions from protons to gold. RHIC operations began in 2000 and has successfully completed five physics runs with several species including gold, deuteron, copper, and polarized protons. Linear optics and coupling are fundamental issues affecting the collider performance. Measurement and correction of optics and coupling are important to maximize the luminosity and sustain stable operation. A numerical approach, first developed at SLAC, was implemented to measure linear optics from coherent betatron oscillations generated by ac dipoles and recorded at multiple beam position monitors (BPMs) distributed around the collider. The approach is extended to a fully coupled 2D case and equivalence relationships between Hamiltonian and matrix formalisms are derived. Detailed measurements of the transverse coupling terms are carried out at RHIC and correction strategies are applied to compensate coupling both locally and globally. A statistical approach to determine BPM reliability and performance over the past three runs and future improvements also discussed. Aiming at a ten-fold increase in the average heavy-ion luminosity, electron cooling is the enabling technology for the next luminosity upgrade (RHIC II). Cooling gold ion beams at 100 GeV/nucleon requires an electron beam of approximately 54 MeV and a high average current in the range of 50-200 mA. All existing e-Coolers are based on low energy DC accelerators. The only viable option to generate high current, high energy, low emittance CW electron beam is through a superconducting energy-recovery linac (SC-ERL). In this option, an electron beam from a superconducting injector gun is accelerated using a high gradient (˜ 20 MV/m) superconducting RF (SRF) cavity. The electrons are returned back to the cavity with a 180° phase shift to recover the energy back into the cavity before being dumped. A design and development of a half

  2. Extinction measurement with open-path cavity ring-down technique of variable cavity length.

    PubMed

    Cui, Hao; Li, Bincheng; Han, Yanling; Wang, Jing; Gao, Chunming; Wang, Yafei

    2016-06-13

    Open-path cavity ring down (OPCRD) technique with variable cavity length was developed to measure optical extinction including scattering and absorption of air in laboratory environment at 635 nm wavelength. By moving the rear cavity mirror of the ring-down cavity to change cavity length, ring-down time with different cavity lengths was experimentally obtained and the dependence of total cavity loss on cavity length was determined. The extinction coefficient of air was determined by the slope of linear dependence of total cavity loss on cavity length. The extinction coefficients of air with different particle concentrations at 635 nm wavelength were measured to be from 10.46 to 84.19 Mm-1 (ppm/m) in a normal laboratory environment. This variable-cavity-length OPCRD technique can be used for absolute extinction measurement and real-time environmental monitoring without closed-path sample cells and background measurements. PMID:27410351

  3. Optical cavity furnace for semiconductor wafer processing

    DOEpatents

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  4. 21 CFR 872.3260 - Cavity varnish.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DENTAL DEVICES Prosthetic Devices § 872.3260 Cavity varnish. (a) Identification. Cavity varnish is a... restorative materials. The device is intended to prevent penetration of restorative materials, such as...

  5. Understanding cavity resonances with intracavity dispersion properties

    SciTech Connect

    Sheng Jiteng; Wu Haibin; Mumba, M.; Gea-Banacloche, J.; Xiao Min

    2011-02-15

    We experimentally study the strongly coupled three-level atom-cavity system at both cavity and coupling frequency detuning cases. Side peak splitting and anti-crossing-like phenomena are observed under different experimental conditions. Intracavity dispersion properties are used to explain qualitatively the complicated cavity resonance structures in the composite system of inhomogeneously broadened three-level atoms inside an optical ring cavity with relatively strong driving intensities.

  6. Power coupler for the ILC crab cavity

    SciTech Connect

    Burt, G.; Dexter, A.; Jenkins, R.; Beard, C.; Goudket, P.; McIntosh, P.A.; Bellantoni, Leo; /Fermilab

    2007-06-01

    The ILC crab cavity will require the design of an appropriate power coupler. The beam-loading in dipole mode cavities is considerably more variable than accelerating cavities, hence simulations have been performed to establish the required external Q. Simulations of a suitable coupler were then performed and were verified using a normal conducting prototype with variable coupler tips.

  7. Computer codes for RF cavity design

    SciTech Connect

    Ko, K.

    1992-08-01

    In RF cavity design, numerical modeling is assuming an increasingly important role with the help of sophisticated computer codes and powerful yet affordable computers. A description of the cavity codes in use in the accelerator community has been given previously. The present paper will address the latest developments and discuss their applications to cavity toning and matching problems.

  8. The nasal cavity microbiota of healthy adults

    PubMed Central

    2014-01-01

    Background The microbiota of the nares has been widely studied. However, relatively few studies have investigated the microbiota of the nasal cavity posterior to the nares. This distinct environment has the potential to contain a distinct microbiota and play an important role in health. Results We obtained 35,142 high-quality bacterial 16S rRNA-encoding gene sequence reads from the nasal cavity and oral cavity (the dorsum of the tongue and the buccal mucosa) of 12 healthy adult humans and deposited these data in the Sequence Read Archive (SRA) of the National Center for Biotechnology Information (NCBI) (Bioproject: PRJNA248297). In our initial analysis, we compared the bacterial communities of the nasal cavity and the oral cavity from ten of these subjects. The nasal cavity bacterial communities were dominated by Actinobacteria, Firmicutes, and Proteobacteria and were statistically distinct from those on the tongue and buccal mucosa. For example, the same Staphylococcaceae operational taxonomic unit (OTU) was present in all of the nasal cavity samples, comprising up to 55% of the community, but Staphylococcaceae was comparatively uncommon in the oral cavity. Conclusions There are clear differences between nasal cavity microbiota and oral cavity microbiota in healthy adults. This study expands our knowledge of the nasal cavity microbiota and the relationship between the microbiota of the nasal and oral cavities. PMID:25143824

  9. 21 CFR 872.3260 - Cavity varnish.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cavity varnish. 872.3260 Section 872.3260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3260 Cavity varnish. (a) Identification. Cavity varnish is...

  10. 21 CFR 872.3260 - Cavity varnish.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cavity varnish. 872.3260 Section 872.3260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3260 Cavity varnish. (a) Identification. Cavity varnish is...

  11. 21 CFR 872.3260 - Cavity varnish.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cavity varnish. 872.3260 Section 872.3260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3260 Cavity varnish. (a) Identification. Cavity varnish is...

  12. 21 CFR 872.3260 - Cavity varnish.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cavity varnish. 872.3260 Section 872.3260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3260 Cavity varnish. (a) Identification. Cavity varnish is...

  13. Non-reacting flow visualization of supersonic combustor based on cavity and cavity-strut flameholder

    NASA Astrophysics Data System (ADS)

    Zhao, Yanhui; Liang, Jianhan; Zhao, Yuxin

    2016-04-01

    Nano-particle planer laser scattering and particle image velocimetry technology are employed to observe the flow field of scramjet combustors based on cavity and cavity-strut flameholder. Density field and velocity distribution inside combustors are obtained. Mainstream fluid enters into cavity nearby side wall in experimental observation because side wall shock waves interact with bottom wall boundary layer. Cavity fluid is entrained into mainstream in the middle of combustor meanwhile. Flow past cavity displays obvious three dimensional characteristics in both combustors. But cavity-strut combustor displays asymmetrical flow field because of strut configuration. Mass exchange between mainstream and cavity fluid is evaluated by statistic mass flow rate into cavity. Mass flow rate near side wall is raised to 6.62 times of the value in the middle of cavity combustor while it is 5.1 times in cavity-strut combustor. Further study is needed to injection strategies and realistic flow characteristics on condition of combustion.

  14. Status of the ILC Crab Cavity Development

    SciTech Connect

    Burt, G.; Dexter, A.; Beard, C.; Goudket, P.; McIntosh, P.; Bellantoni, L.; Grimm, T.; Li, Z.; Xiao, L.; /SLAC

    2011-10-20

    The International Linear Collider (ILC) will require two dipole cavities to 'crab' the electron and positron bunches prior to their collision. It is proposed to use two 9 cell SCRF dipole cavities operating at a frequency of 3.9 GHz, with a transverse gradient of 3.8MV/m in order to provide the required transverse kick. Extensive numerical modelling of this cavity and its couplers has been performed. Aluminium prototypes have been manufactured and tested to measure the RF properties of the cavity and couplers. In addition single cell niobium prototypes have been manufactured and tested in a vertical cryostat. The International Collider (ILC) [1] collides bunches of electrons and positrons at a crossing angle of 14 mrad. The angle between these bunches causes a loss in luminosity due to geometric effects [2]. The luminosity lost from this geometric effect can be recovered by rotating the bunches into alignment prior to collision. One possible method of rotating the bunches is to use a crab cavity [3]. A crab cavity is a transverse defecting cavity, where the phase of the cavity is such that the head and tail of the bunch receive equal and opposite kicks. As the bunches are only 500 nm wide in the horizontal plane, the cavity phase must be strictly controlled to avoid the bunch centre being deflected too much. In order to keep the phase stability within the required limits it is required that the cavity be superconducting to avoid thermal effects in both the cavity and its RF source. At the location of the crab cavity in the ILC there is only 23 cm separation between the centre of the cavity and the extraction line, hence the cavity must be small enough to fit in this space. This, along with the difficulty of making high frequency SRF components, set the frequency of the cavity to 3.9 GHz.

  15. A micropillar for cavity optomechanics

    NASA Astrophysics Data System (ADS)

    Kuhn, Aurélien; Neuhaus, Leonhard; Van Brackel, Emmanuel; Chartier, Claude; Ducloux, Olivier; Le Traon, Olivier; Michel, Christophe; Pinard, Laurent; Flaminio, Raffaele; Deléglise, Samuel; Briant, Tristan; Cohadon, Pierre-François; Heidmann, Antoine

    2014-12-01

    Demonstrating the quantum ground state of a macroscopic mechanical object is a major experimental challenge in physics, at the origin of the rapid emergence of cavity optomechanics. We have developed a new generation of optomechanical devices, based on a microgram quartz micropillar with a very high mechanical quality factor. The structure is used as end mirror in a Fabry-Perot cavity with a high optical finesse, leading to ultra-sensitive interferometric measurement of the resonator displacement. We expect to reach the ground state of this optomechanical resonator by combining cryogenic cooling in a dilution fridge at 30 mK and radiation-pressure cooling. We have already carried out a quantum-limited measurement of the micropillar thermal noise at low temperature.

  16. A micropillar for cavity optomechanics

    SciTech Connect

    Kuhn, Aurélien; Neuhaus, Leonhard; Deléglise, Samuel; Briant, Tristan; Cohadon, Pierre-François; Heidmann, Antoine; Van Brackel, Emmanuel; Chartier, Claude; Ducloux, Olivier; Le Traon, Olivier; Michel, Christophe; Pinard, Laurent; Flaminio, Raffaele

    2014-12-04

    Demonstrating the quantum ground state of a macroscopic mechanical object is a major experimental challenge in physics, at the origin of the rapid emergence of cavity optomechanics. We have developed a new generation of optomechanical devices, based on a microgram quartz micropillar with a very high mechanical quality factor. The structure is used as end mirror in a Fabry-Perot cavity with a high optical finesse, leading to ultra-sensitive interferometric measurement of the resonator displacement. We expect to reach the ground state of this optomechanical resonator by combining cryogenic cooling in a dilution fridge at 30 mK and radiation-pressure cooling. We have already carried out a quantum-limited measurement of the micropillar thermal noise at low temperature.

  17. RF cavity vacuum interlock system

    NASA Astrophysics Data System (ADS)

    Jordan, K.; Crawford, K.; Bundy, R.; Dylla, H. F.; Heckman, J.; Marshall, J.; Nichols, R.; Osullivan, S.; Preble, J.; Robb, J.

    1992-03-01

    The Continuous Electron Beam Accelerator Facility (CEBAF), a continuous wave (CW) 4 GeV Electron Accelerator is undergoing construction in Newport News, Virginia. When completed in 1994, the accelerator will be the largest installation of radio-frequency superconductivity. Production of cryomodules, the fundamental building block of the machine, has started. A cryomodule consists of four sets of pairs of 1497 MHz, 5 cell niobium cavities contained in separate helium vessels and mounted in a cryostat with appropriate end caps for helium supply and return. Beam vacuum of the cavities, the connecting beam piping, the waveguides, and the cryostat insulating vacuum are crucial to the performance of the machine. The design and initial experience of the vacuum systems for the first 2 1/4 cryomodules that makeup the 45 MEV injector are discussed.

  18. Grinding Inside A Toroidal Cavity

    NASA Technical Reports Server (NTRS)

    Mayer, Walter; Adams, James F.; Burley, Richard K.

    1987-01-01

    Weld lines ground smooth within about 0.001 in. Grinding tool for smoothing longitudinal weld lines inside toroidal cavity includes curved tunnel jig to guide grinding "mouse" along weld line. Curvature of tunnel jig matched to shape of toroid so grinding ball in mouse follows circular arc of correct radius as mouse is pushed along tunnel. Tool enables precise control of grindout shape, yet easy to use.

  19. Microwave energy storage in resonant cavities

    SciTech Connect

    Alvarez, R.A.

    1983-02-01

    One method of generating short, high-power microwave pulses is to store rf energy in a resonant cavity over a relatively long fill time and extract is rapidly. A power gain roughly equal to the ratio of fill time to extraction time can be obtained. During the filling of a resonant cavity some of the energy is lost in heating the cavity walls, and some will generally be reflected at the input coupling of the cavity. In this paper we discuss the time dependence of the stored energy and related quantities and the way in which it depends on the coupling of the source to the cavity.

  20. Controlled directional scattering cavity for tubular absorbers

    DOEpatents

    Winston, Roland

    1982-01-01

    A specular cavity is provided in which an optical receiver is emplaced. The cavity is provided with a series of V groove-like indentations (or pyramidal-type indentations) which redirect energy entering between the receiver and cavity structure onto the receiver. The aperture opening of each V groove is less than half the cavity opening and in most preferred embodiments, much less than half. This enables the optical receiver to be emplaced a distance g from the cavity wherein 0.414r

  1. LHC crab-cavity aspects and strategy

    SciTech Connect

    Calaga, R.; Tomas, R.; Zimmermann, F.

    2010-05-23

    The 3rd LHC Crab Cavity workshop (LHC-CC09) took place at CERN in October 2009. It reviewed the current status and identified a clear strategy towards a future crab-cavity implementation. Following the success of crab cavities in KEK-B and the strong potential for luminosity gain and leveling, CERN will pursue crab crossing for the LHC upgrade. We present a summary and outcome of the variousworkshop sessions which have led to the LHC crab-cavity strategy, covering topics like layout, cavity design, integration, machine protection, and a potential validation test in the SPS.

  2. Vented Cavity Radiant Barrier Assembly And Method

    DOEpatents

    Dinwoodie, Thomas L.; Jackaway, Adam D.

    2000-05-16

    A vented cavity radiant barrier assembly (2) includes a barrier (12), typically a PV module, having inner and outer surfaces (18, 22). A support assembly (14) is secured to the barrier and extends inwardly from the inner surface of the barrier to a building surface (14) creating a vented cavity (24) between the building surface and the barrier inner surface. A low emissivity element (20) is mounted at or between the building surface and the barrier inner surface. At least part of the cavity exit (30) is higher than the cavity entrance (28) to promote cooling air flow through the cavity.

  3. Cavity lining in primary teeth.

    PubMed

    Chauhan, Ravi

    2016-03-01

    Data sourcesEmbase, Medline, Cochrane Central, Biomed Central and Open Grey databases and bibliographies of identified studies.Study selectionRandomised controlled trials investigating humans with primary caries lesions receiving operative treatment involving caries removal and restoration, with minimum two treatment groups comparing different cavity treatments before restoration (no lining versus lining) were included.Data extraction and synthesisData were extracted independently by two reviewers and study quality assessed using the Cochrane risk of bias tool. Random effect meta-analysis was carried out.ResultsThree studies involving a total of 89 patients were included. All the studies involved primary teeth and were conducted in Brazil. Follow-up periods ranged from 26-53 months. All the studies were considered to be at high risk of bias. Restoring the cavity without lining did not significantly affect the risk of failure. The quality of the evidence was low.ConclusionsCurrent evidence does not support strong recommendations to use or not to use liners after caries removal and before restoring cavities. Our findings are restricted to primary teeth after selective excavation, with only one liner (calcium hydroxide) being used for comparison. PMID:27012571

  4. Optomechanic interactions in phoxonic cavities

    SciTech Connect

    Djafari-Rouhani, Bahram; Oudich, Mourad; Pennec, Yan; El-Jallal, Said

    2014-12-15

    Phoxonic crystals are periodic structures exhibiting simultaneous phononic and photonic band gaps, thus allowing the confinement of both excitations in the same cavity. The phonon-photon interaction can be enhanced due to the overlap of both waves in the cavity. In this paper, we discuss some of our recent theoretical works on the strength of the optomechanic coupling, based on both photoelastic and moving interfaces mechanisms, in different (2D, slabs, strips) phoxonic crystals cavities. The cases of two-dimensional infinite and slab structures will enable us to mention the important role of the symmetry and degeneracy of the modes, as well as the role of the materials whose photoelastic constants can be wavelength dependent. Depending on the phonon-photon pair, the photoelastic and moving interface mechanisms can contribute in phase or out-of-phase. Then, the main part of the paper will be devoted to the optomechanic interaction in a corrugated nanobeam waveguide exhibiting dual phononic/photonic band gaps. Such structures can provide photonic modes with very high quality factor, high frequency phononic modes of a few GHz inside a gap and optomechanical coupling rate reaching a few MHz.

  5. Angioleiomyoma of the Nasal Cavity

    PubMed Central

    Arruda, Milena Moreira; Monteiro, Daniela Yasbek; Fernandes, Atilio Maximino; Menegatti, Vanessa; Thomazzi, Emerson; Hubner, Ricardo Arthur; Lima, Luiz Guilherme Cernaglia Aureliano de

    2014-01-01

    Introduction Vascular leiomyoma of the nasal cavity is an extremely rare tumor that represents less than 1% of all vascular leiomyomas. It is more prevalent in women between the fourth and sixth decades, reaching primarily the inferior nasal turbinates. Objectives Reporting and assisting the systematization of more accurate diagnostic methods in clinical and complementary investigation of vascular leiomyoma in the nasal cavity. Resumed Report We present the case of a 49-year-old woman diagnosed with vascular leiomyoma in the nasal cavity, which manifested mainly with nasal obstruction. During investigation, computer tomography was not diagnostic, the cytologic study was not conclusive, and according to the biopsy, it was a squamous papilloma. Conclusion We suggest that the technical difficulty in obtaining an adequate amount of material for preoperative biopsy, associated with the topography of the lesion in the vestibular nasal region, may have contributed to changing the postoperative diagnosis. Thus, pathologic study of the surgical fragment is the more accurate method for diagnosis. PMID:25992133

  6. Botryomycosis in a lung cavity

    PubMed Central

    Vinay, D; Ramasubramanian, V; Gopalakrishnan, Ram; Jessani, Laxman G

    2016-01-01

    Botryomycosis is a rare pyogranulomatous disease characterized by suppurative and often granulomatous bacterial infection of the skin, soft tissues and viscera. Only about 90 cases have been reported in world literature till date: 75% of them are cases of cutaneous botryomycosis. Of the 18 reported cases of primary pulmonary botryomycosis, only one had histologically proven botryomycosis in a lung cavity. We report here a case of primary pulmonary botryomycosis occurring in a lung cavity, which is to the best of our knowledge first such case from India. The index case was a 62 year old female who presented to us with recurrent episodes of non-massive streaky hemoptysis with CT chest revealing ‘Air Crescent’ sign with a probable fungal ball in a left upper lobe cavity. Left upper pulmonary lobectomy was done and histopathology of the cavitary tissue revealed Splendore-Hoeppli phenomenon and features suggestive of Botryomycosis. Tissue culture from the cavitary specimen grew Pseudomonas aeruginosa. Botryomycosis can mimic Aspergilloma radiologically as was seen in our case, but therapy is often a combination of both medical and surgical measures unlike Aspergilloma. PMID:27625451

  7. Filling cavities or restoring teeth?

    PubMed

    Versluis, Antheunis; Versluis-Tantbirojn, Daranee

    2011-01-01

    Teeth seldom fracture under normal functional loading. This indicates that the natural tooth design is optimized for the distribution of regular masticatory forces by means of its properties and structure. When a tooth is restored with an intracoronal restoration, however, the incidence of tooth fracture increases. Since remaining tissues do not change, the restorative actions apparently alter the original stress distributions. In this study, the effect of different restoration types (unbonded amalgam and bonded composite restorations) were compared with the original stress conditions of the intact tooth, using finite element analysis. It was shown that an unbonded amalgam restoration did not restore the original stress conditions but led to much higher stresses in the buccal and lingual enamel and to higher tensile stresses in the cavity floor. The unbonded amalgam thus filled the cavity but did not restore the tooth. In contrast, a bonded composite restoration restored the original stress pattern in the tooth if there was no polymerization shrinkage. Polymerization shrinkage causes residual tensile stresses in the dentin around the cavity and in the buccal and lingual enamel. Residual tensile stresses in the buccal and lingual enamel are momentary compensated by compressive stress components during occlusal loading. It was concluded that bonding and elimination of residual stresses are prerequisites for restoring the original tooth integrity. PMID:21748978

  8. Botryomycosis in a lung cavity.

    PubMed

    Vinay, D; Ramasubramanian, V; Gopalakrishnan, Ram; Jessani, Laxman G

    2016-01-01

    Botryomycosis is a rare pyogranulomatous disease characterized by suppurative and often granulomatous bacterial infection of the skin, soft tissues and viscera. Only about 90 cases have been reported in world literature till date: 75% of them are cases of cutaneous botryomycosis. Of the 18 reported cases of primary pulmonary botryomycosis, only one had histologically proven botryomycosis in a lung cavity. We report here a case of primary pulmonary botryomycosis occurring in a lung cavity, which is to the best of our knowledge first such case from India. The index case was a 62 year old female who presented to us with recurrent episodes of non-massive streaky hemoptysis with CT chest revealing 'Air Crescent' sign with a probable fungal ball in a left upper lobe cavity. Left upper pulmonary lobectomy was done and histopathology of the cavitary tissue revealed Splendore-Hoeppli phenomenon and features suggestive of Botryomycosis. Tissue culture from the cavitary specimen grew Pseudomonas aeruginosa. Botryomycosis can mimic Aspergilloma radiologically as was seen in our case, but therapy is often a combination of both medical and surgical measures unlike Aspergilloma. PMID:27625451

  9. Novel Geometries for the LHC Crab Cavity

    SciTech Connect

    Hall, B.; Burt, G.; Smith, J. D.A.; Rimmer, R.; Wang, H.; Delayen, J.; Calaga, R.

    2009-05-01

    In 2017 the LHC is envisioned to increase its luminosity via an upgrade. This upgrade is likely to require a large crossing angle hence a crab cavity is required to align the bunches prior to collision. There are two possible schemes for crab cavity implementation, global and local. In a global crab cavity the crab cavity is far from the IP and the bunch rotates back and forward as it traverses around the accelerator in a closed orbit. For this scheme a two-cell elliptical squashed cavity at 800 MHz is preferred. To avoid any potential beam instabilities all the parasitic modes of the cavities must be damped strongly, however crab cavities have lower order and same order modes in addition to the usual higher order modes and hence a novel damping scheme must be used to provide sufficient damping of these modes. In the local scheme two crab cavities are placed at each side of the IP two start and stop rotation of the bunches. This would require crab cavities much smaller transversely than in the global scheme but the frequency cannot be increased any higher due to the long bunch length of the LHC beam. This will require a novel compact crab cavity design. A superconducting version of a two rod coaxial deflecting cavity as a suitable design is proposed in this paper.

  10. Control of Cavity Resonance Using Oscillatory Blowing

    NASA Technical Reports Server (NTRS)

    Scarfe, Alison Lamp; Chokani, Ndaona

    2000-01-01

    The near-zero net mass oscillatory blowing control of a subsonic cavity flow has been experimentally investigated. An actuator was designed and fabricated to provide both steady and oscillatory blowing over a range of blowing amplitudes and forcing frequencies. The blowing was applied just upstream of the cavity front Wall through interchangeable plate configurations These configurations enabled the effects of hole size, hole shape, and blowing angle to be examined. A significant finding is that in terms of the blowing amplitude, the near zero net mass oscillatory blowing is much more effective than steady blowing; momentum coefficients Lip two orders of magnitude smaller than those required for steady blowing are sufficient to accomplish the same control of cavity resonance. The detailed measurements obtained in the experiment include fluctuating pressure data within the cavity wall, and hot-wire measurements of the cavity shear layer. Spectral and wavelet analysis techniques are applied to understand the dynamics and mechanisms of the cavity flow with control. The oscillatory blowing, is effective in enhancing the mixing in the cavity shear layer and thus modifying the feedback loop associated with the cavity resonance. The nonlinear interactions in the cavity flow are no longer driven by the resonant cavity modes but by the forcing associated with the oscillatory blowing. The oscillatory blowing does not suppress the mode switching behavior of the cavity flow, but the amplitude modulation is reduced.

  11. Novel Geometries for the LHC Crab Cavity

    SciTech Connect

    B. Hall,G. Burt,C. Lingwood,Robert Rimmer,Haipeng Wang; Hall, B.; Burt, G.; Lingwood, C.; Rimmer, Robert; Wang, Haipeng

    2010-05-01

    The planned luminosity upgrade to LHC is likely to necessitate a large crossing angle and a local crab crossing scheme. For this scheme crab cavities align bunches prior to collision. The scheme requires at least four such cavities, a pair on each beam line either side of the interaction point (IP). Upstream cavities initiate rotation and downstream cavities cancel rotation. Cancellation is usually done at a location where the optics has re-aligned the bunch. The beam line separation near the IP necessitates a more compact design than is possible with elliptical cavities such as those used at KEK. The reduction in size must be achieved without an increase in the operational frequency to maintain compatibility with the long bunch length of the LHC. This paper proposes a suitable superconducting variant of a four rod coaxial deflecting cavity (to be phased as a crab cavity), and presents analytical models and simulations of suitable designs.

  12. Highly stable piezoelectrically tunable optical cavities

    NASA Astrophysics Data System (ADS)

    Möhle, Katharina; Kovalchuk, Evgeny V.; Döringshoff, Klaus; Nagel, Moritz; Peters, Achim

    2013-05-01

    We have implemented highly stable and tunable frequency references using optical high finesse cavities which incorporate a piezo actuator. As piezo material we used ceramic PZT, crystalline quartz, or PZN-PT single crystals. Lasers locked to these cavities show a relative frequency stability better than 1× 10^{-14}, which is most likely not limited by the piezo actuators. The piezo cavities can be electrically tuned over more than one free spectral range (>1.5 GHz) with only a minor decrease in frequency stability. Furthermore, we present a novel cavity design, where the piezo actuator is prestressed between the cavity spacer components. This design features a hermetically sealable intra cavity volume suitable for, e.g., cavity enhanced spectroscopy.

  13. Scaled experiments of explosions in cavities

    NASA Astrophysics Data System (ADS)

    Grun, J.; Cranch, G. A.; Lunsford, R.; Compton, S.; Walton, O. R.; Weaver, J.; Dunlop, W.; Fournier, K. B.

    2016-05-01

    Consequences of an explosion inside an air-filled cavity under the earth's surface are partly duplicated in a laboratory experiment on spatial scales 1000 smaller. The experiment measures shock pressures coupled into a block of material by an explosion inside a gas-filled cavity therein. The explosion is generated by suddenly heating a thin foil that is located near the cavity center with a short laser pulse, which turns the foil into expanding plasma, most of whose energy drives a blast wave in the cavity gas. Variables in the experiment are the cavity radius and explosion energy. Measurements and GEODYN code simulations show that shock pressures measured in the block exhibit a weak dependence on scaled cavity radius up to ˜25 m/kt1/3, above which they decrease rapidly. Possible mechanisms giving rise to this behavior are described. The applicability of this work to validating codes used to simulate full-scale cavity explosions is discussed.

  14. Shape Determination for Deformed Electromagnetic Cavities

    SciTech Connect

    Akcelik, Volkan; Ko, Kwok; Lee, Lie-Quan; Li, Zhenghai; Ng, Cho-Kuen; Xiao, Liling; /SLAC

    2007-12-10

    The measured physical parameters of a superconducting cavity differ from those of the designed ideal cavity. This is due to shape deviations caused by both loose machine tolerances during fabrication and by the tuning process for the accelerating mode. We present a shape determination algorithm to solve for the unknown deviations from the ideal cavity using experimentally measured cavity data. The objective is to match the results of the deformed cavity model to experimental data through least-squares minimization. The inversion variables are unknown shape deformation parameters that describe perturbations of the ideal cavity. The constraint is the Maxwell eigenvalue problem. We solve the nonlinear optimization problem using a line-search based reduced space Gauss-Newton method where we compute shape sensitivities with a discrete adjoint approach. We present two shape determination examples, one from synthetic and the other from experimental data. The results demonstrate that the proposed algorithm is very effective in determining the deformed cavity shape.

  15. Novel Geometries for the LHC Crab Cavity

    SciTech Connect

    B. Hall, G. Burt, C. Lingwood, R. Rimmer, H. Wang

    2010-05-23

    The planned luminosity upgrade to LHC is likely to necessitate a large crossing angle and a local crab crossing scheme. For this scheme crab cavities align bunches prior to collision. The scheme requires at least four such cavities, a pair on each beam line either side of the interaction point (IP). Upstream cavities initiate rotation and downstream cavities cancel rotation. Cancellation is usually done at a location where the optics has re-aligned the bunch. The beam line separation near the IP necessitates a more compact design than is possible with elliptical cavities such as those used at KEK. The reduction in size must be achieved without an increase in the operational frequency to maintain compatibility with the long bunch length of the LHC. This paper proposes a suitable superconducting variant of a four rod coaxial deflecting cavity (to be phased as a crab cavity), and presents analytical models and simulations of suitable designs.

  16. Cavity Optomechanics at Millikelvin Temperatures

    NASA Astrophysics Data System (ADS)

    Meenehan, Sean Michael

    The field of cavity optomechanics, which concerns the coupling of a mechanical object's motion to the electromagnetic field of a high finesse cavity, allows for exquisitely sensitive measurements of mechanical motion, from large-scale gravitational wave detection to microscale accelerometers. Moreover, it provides a potential means to control and engineer the state of a macroscopic mechanical object at the quantum level, provided one can realize sufficiently strong interaction strengths relative to the ambient thermal noise. Recent experiments utilizing the optomechanical interaction to cool mechanical resonators to their motional quantum ground state allow for a variety of quantum engineering applications, including preparation of non-classical mechanical states and coherent optical to microwave conversion. Optomechanical crystals (OMCs), in which bandgaps for both optical and mechanical waves can be introduced through patterning of a material, provide one particularly attractive means for realizing strong interactions between high-frequency mechanical resonators and near-infrared light. Beyond the usual paradigm of cavity optomechanics involving isolated single mechanical elements, OMCs can also be fashioned into planar circuits for photons and phonons, and arrays of optomechanical elements can be interconnected via optical and acoustic waveguides. Such coupled OMC arrays have been proposed as a way to realize quantum optomechanical memories, nanomechanical circuits for continuous variable quantum information processing and phononic quantum networks, and as a platform for engineering and studying quantum many-body physics of optomechanical meta-materials. However, while ground state occupancies (that is, average phonon occupancies less than one) have been achieved in OMC cavities utilizing laser cooling techniques, parasitic absorption and the concomitant degradation of the mechanical quality factor fundamentally limit this approach. On the other hand, the high

  17. Characterization of the ePix100 prototype: a front-end ASIC for second-generation LCLS integrating hybrid pixel detectors

    NASA Astrophysics Data System (ADS)

    Caragiulo, P.; Dragone, A.; Markovic, B.; Herbst, R.; Nishimura, K.; Reese, B.; Herrmann, S.; Hart, P.; Blaj, G.; Segal, J.; Tomada, A.; Hasi, J.; Carini, G.; Kenney, C.; Haller, G.

    2014-09-01

    ePix100 is the first variant of a novel class of integrating pixel ASICs architectures optimized for the processing of signals in second generation LINAC Coherent Light Source (LCLS) X-Ray cameras. ePix100 is optimized for ultra-low noise application requiring high spatial resolution. ePix ASICs are based on a common platform composed of a random access analog matrix of pixel with global shutter, fast parallel column readout, and dedicated sigma-delta analog to digital converters per column. The ePix100 variant has 50μmx50μm pixels arranged in a 352x384 matrix, a resolution of 50e- r.m.s. and a signal range of 35fC (100 photons at 8keV). In its final version it will be able to sustain a frame rate of 1kHz. A first prototype has been fabricated and characterized and the measurement results are reported here.

  18. Observation and characterization of cavity Rydberg polaritons

    NASA Astrophysics Data System (ADS)

    Ningyuan, Jia; Georgakopoulos, Alexandros; Ryou, Albert; Schine, Nathan; Sommer, Ariel; Simon, Jonathan

    2016-04-01

    We experimentally demonstrate the emergence of a robust quasiparticle, the cavity Rydberg polariton, when an optical cavity photon hybridizes with a collective Rydberg excitation of a laser-cooled atomic ensemble. Free-space Rydberg polaritons have recently drawn intense interest as tools for quantum information processing and few-body quantum science. Here, we explore the properties of their cavity counterparts in the single-particle sector, observing an enhanced lifetime and slowed dynamics characteristic of cavity dark polaritons. We measure the range of cavity frequencies over which the polaritons persist, corresponding to the spectral width available for polariton quantum dynamics, and the speed limit for quantum information processing. Further, we observe a cavity-induced suppression of inhomogeneous broadening channels and demonstrate the formation of Rydberg polaritons in a multimode cavity. In conjunction with recent demonstrations of Rydberg-induced cavity nonlinearities, our results point the way towards using cavity Rydberg polaritons as a platform for creating high-fidelity photonic quantum materials and, more broadly, indicate that cavity dark polaritons offer enhanced stability and control uniquely suited to optical quantum information processing applications beyond the Rydberg paradigm.

  19. Outbursts from cavities in comets

    NASA Astrophysics Data System (ADS)

    Ipatov, S.

    2014-07-01

    In 2005 the impact module of the Deep Impact (DI) spacecraft collided with Comet 9P/Tempel 1. Based on analysis of the images made during the first 13 minutes after the collision of the DI impact module with the comet, Ipatov and A'Hearn [1] studied time variations of ejection of material after this impact. Observed brightness of the cloud of ejected material was mainly due to particles with diameters d<3 micron, and so we discussed ejection of such particles. It was shown that, besides the normal ejection of material from the crater, at time t_{e} after the DI collision between 8 s and 60 s there was a considerable additional ejection (a triggered outburst) of small (micron size) particles. It increased the mean velocities of observed small ejected particles (compared with the normal ejection). It is difficult to explain the time variations in the brightness of the DI cloud at distance 1cavity with dust and gas under pressure. Though the model of a layered target can play some role in an explanation of the variation in brightness of the DI cloud, it cannot explain all details of such variation (for example, at t_{e} sim 10 s there was simultaneously a jump in the direction from the place of ejection to the brightest pixel in an image of the DI cloud by 50 degrees, an increase in the rate of ejection of small particles, and an increase in the brightness of the brightest pixel; at t_{e} ≈ 60 s there was a sharp decrease in the rate of ejection of small particles, and at t_{e} ≈ 60 s the direction from the place of ejection to the brightest pixel returned to the direction at 1 < t_{e} <12 s; the mean ejection velocities of observed particles were almost the same at t_{e} about 10-20 s, etc.). In [1] it was concluded that particles could not increase their velocities by more than a few meters per second during those

  20. Broadband tuning of optomechanical cavities

    NASA Astrophysics Data System (ADS)

    Wiederhecker, Gustavo S.; Manipatruni, Sasikanth; Lee, Sunwoo; Lipson, Michal

    2011-01-01

    We demonstrate broadband tuning of an optomechanical microcavity optical resonance by exploring the large optomechanical coupling of a double-wheel microcavity and its uniquely low mechanical stiffness. Using a pump laser with only 13 mW at telecom wavelengths we show tuning of the silicon nitride microcavity resonances over 32 nm. This corresponds to a tuning power efficiency of only 400 $\\mu$W/nm. By choosing a relatively low optical Q resonance ($\\approx$18,000) we prevent the cavity from reaching the regime of regenerative optomechanical oscillations. The static mechanical displacement induced by optical gradient forces is estimated to be as large as 60 nm.

  1. A terahertz plasmon cavity detector

    SciTech Connect

    Dyer, G. C.; Vinh, N. Q.; Allen, S. J.; Aizin, G. R.; Mikalopas, J.; Reno, J. L.; Shaner, E. A.

    2010-11-08

    Sensitivity of a plasmonic detector is enhanced by integrating a broadband log-periodic antenna with a two-dimensional plasma cavity that is defined by source, drain, and multiple gates of a GaAs/AlGaAs high electron mobility transistor. Both narrow-band terahertz detection and a rich harmonic spectrum are evident. With a bolometric sensor in the channel, we report responsivity, on resonance at 235-240 GHz and at 20 K, of up to 7 kV/W and a noise equivalent power of 5x10{sup -10} W/Hz{sup 1/2}.

  2. Basketballs as spherical acoustic cavities

    NASA Astrophysics Data System (ADS)

    Russell, Daniel A.

    2010-06-01

    The sound field resulting from striking a basketball is found to be rich in frequency content, with over 50 partials in the frequency range of 0-12 kHz. The frequencies are found to closely match theoretical expectations for standing wave patterns inside a spherical cavity. Because of the degenerate nature of the mode shapes, explicit identification of the modes is not possible without internal investigation with a microphone probe. A basketball proves to be an interesting application of a boundary value problem involving spherical coordinates.

  3. Cavity quantum electro-optics

    SciTech Connect

    Tsang, Mankei

    2010-06-15

    The quantum dynamics of the coupling between a cavity optical field and a resonator microwave field via the electro-optic effect is studied. This coupling has the same form as the optomechanical coupling via radiation pressure, so all previously considered optomechanical effects can in principle be observed in electro-optic systems as well. In particular, I point out the possibilities of laser cooling of the microwave mode, entanglement between the optical mode and the microwave mode via electro-optic parametric amplification, and back-action-evading optical measurements of a microwave quadrature.

  4. Mass renormalization in cavity QED

    SciTech Connect

    Matloob, Reza

    2011-01-15

    We show that the presence of a background medium and a boundary surface or surfaces in cavity QED produces no change in the energy shift of a free charged particle due to its coupling to the fluctuating electromagnetic field of the vacuum. This clarifies that the electromagnetic and the observed mass of the charged particle are not affected by the modification of the field of the vacuum. The calculations are nonrelativistic and restricted to the dipole approximation but are otherwise based on the general requirements of causality.

  5. Turbine disk cavity aerodynamics and heat transfer

    NASA Astrophysics Data System (ADS)

    Johnson, B. V.; Daniels, W. A.

    1992-07-01

    Experiments were conducted to define the nature of the aerodynamics and heat transfer for the flow within the disk cavities and blade attachments of a large-scale model, simulating the Space Shuttle Main Engine (SSME) turbopump drive turbines. These experiments of the aerodynamic driving mechanisms explored the following: (1) flow between the main gas path and the disk cavities; (2) coolant flow injected into the disk cavities; (3) coolant density; (4) leakage flows through the seal between blades; and (5) the role that each of these various flows has in determining the adiabatic recovery temperature at all of the critical locations within the cavities. The model and the test apparatus provide close geometrical and aerodynamic simulation of all the two-stage cavity flow regions for the SSME High Pressure Fuel Turbopump and the ability to simulate the sources and sinks for each cavity flow.

  6. Rebuild of Capture Cavity 1 at Fermilab

    SciTech Connect

    Harms, E.; Arkan, T.; Borissov, E.; Dhanaraj, N.; Hocker, A.; Orlov, Y.; Peterson, T.; Premo, K.

    2014-01-01

    The front end of the proposed Advanced Superconducting Test Accelerator at Fermilab employs two single cavity cryomodules, known as 'Capture Cavity 1' and 'Capture Cavity 2', for the first stage of acceleration. Capture Cavity 1 was previously used as the accelerating structure for the A0 Photoinjector to a peak energy of ~14 MeV. In its new location a gradient of ~25 MV/m is required. This has necessitated a major rebuild of the cryomodule including replacement of the cavity with a higher gradient one. Retrofitting the cavity and making upgrades to the module required significant redesign. The design choices and their rationale, summary of the rebuild, and early test results are presented.

  7. Tunable-cavity QED with phase qubits

    NASA Astrophysics Data System (ADS)

    Whittaker, Jed D.; da Silva, Fabio; Allman, Michael Shane; Lecocq, Florent; Cicak, Katarina; Sirois, Adam; Teufel, John; Aumentado, Jose; Simmonds, Raymond W.

    2014-03-01

    We describe a tunable-cavity QED architecture with an rf SQUID phase qubit inductively coupled to a single-mode, resonant cavity with a tunable frequency that allows for both tunneling and dispersive measurements. Dispersive measurement is well characterized by a three-level model, strongly dependent on qubit anharmonicity, qubit-cavity coupling and detuning. The tunable cavity frequency provides dynamic control over the coupling strength and qubit-cavity detuning helping to minimize Purcell losses and cavity-induced dephasing during qubit operation. The maximum decay time T1 = 1 . 5 μs is limited by dielectric losses from a design geometry similar to planar transmon qubits. This work supported by NIST and NSA grant EAO140639.

  8. An Experimental Investigation of Supersonic Cavity Flows

    NASA Astrophysics Data System (ADS)

    Zhuang, Ning; Alvi, Farrukh. S.; Shih, Chiang; Krothapalli, Anjaneyulu; Alkislar, Mehmet. B.

    2003-11-01

    A series of experiments were conducted on supersonic, Mach = 2, cavity flow over variable length / depth ratios, L/D=1 ˜5. Large-scale structures in the cavity shear layer were clearly captured by particle image velocimetry method. The convective velocities of the structures were measured around 60% of the freestream velocity. Supersonic microjets at the leading edge of the cavity were implemented to control the flow-induced resonance in the cavities. The size and strength of the large-scale structure were also significant altered by the microjets. More than 9 dB reduction in Prms and more than 20 dB reduction in cavity tones were obtained with an extremely low mass flux, the cavity blowing ratio Bc < 0.2%.

  9. Coupled-cavity drift-tube linac

    DOEpatents

    Billen, J.H.

    1996-11-26

    A coupled-cavity drift-tube linac (CCDTL) combines features of the Alvarez drift-tube linac (DTL) and the {pi}-mode coupled-cavity linac (CCL). In one embodiment, each accelerating cavity is a two-cell, 0-mode DTL. The center-to-center distance between accelerating gaps is {beta}{lambda}, where {lambda} is the free-space wavelength of the resonant mode. Adjacent accelerating cavities have oppositely directed electric fields, alternating in phase by 180 degrees. The chain of cavities operates in a {pi}/2 structure mode so the coupling cavities are nominally unexcited. The CCDTL configuration provides an rf structure with high shunt impedance for intermediate velocity charged particles, i.e., particles with energies in the 20-200 MeV range. 5 figs.

  10. Coupled-cavity drift-tube linac

    DOEpatents

    Billen, James H.

    1996-01-01

    A coupled-cavity drift-tube linac (CCDTL) combines features of the Alvarez drift-tube linac (DTL) and the .pi.-mode coupled-cavity linac (CCL). In one embodiment, each accelerating cavity is a two-cell, 0-mode DTL. The center-to-center distance between accelerating gaps is .beta..lambda., where .lambda. is the free-space wavelength of the resonant mode. Adjacent accelerating cavities have oppositely directed electric fields, alternating in phase by 180 degrees. The chain of cavities operates in a .pi./2 structure mode so the coupling cavities are nominally unexcited. The CCDTL configuration provides an rf structure with high shunt impedance for intermediate velocity charged particles, i.e., particles with energies in the 20-200 MeV range.

  11. Cavity-Dumped Communication Laser Design

    NASA Technical Reports Server (NTRS)

    Roberts, W. T.

    2003-01-01

    Cavity-dumped lasers have significant advantages over more conventional Q-switched lasers for high-rate operation with pulse position modulation communications, including the ability to emit laser pulses at 1- to 10-megahertz rates, with pulse widths of 0.5 to 5 nanoseconds. A major advantage of cavity dumping is the potential to vary the cavity output percentage from pulse to pulse, maintaining the remainder of the energy in reserve for the next pulse. This article presents the results of a simplified cavity-dumped laser model, establishing the requirements for cavity efficiency and projecting the ultimate laser efficiency attainable in normal operation. In addition, a method of reducing or eliminating laser dead time is suggested that could significantly enhance communication capacity. The design of a laboratory demonstration laser is presented with estimates of required cavity efficiency and demonstration potential.

  12. Mounting system for optical frequency reference cavities

    NASA Technical Reports Server (NTRS)

    Notcutt, Mark (Inventor); Hall, John L. (Inventor); Ma, Long-Sheng (Inventor)

    2008-01-01

    A technique for reducing the vibration sensitivity of laser-stabilizing optical reference cavities is based upon an improved design and mounting method for the cavity, wherein the cavity is mounted vertically. It is suspended at one plane, around the spacer cylinder, equidistant from the mirror ends of the cavity. The suspension element is a collar of an extremely low thermal expansion coefficient material, which surrounds the spacer cylinder and contacts it uniformly. Once the collar has been properly located, it is cemented in place so that the spacer cylinder is uniformly supported and does not have to be squeezed at all. The collar also includes a number of cavities partially bored into its lower flat surface, around the axial bore. These cavities are support points, into which mounting base pins will be inserted. Hence the collar is supported at a minimum of three points.

  13. Quantum coherence in a coupled-cavity array

    NASA Astrophysics Data System (ADS)

    Cao, De-Wei; Zhang, Yixin; Wang, Jicheng; Hu, Zheng-Da

    2016-05-01

    The dynamical properties of quantum coherence in the system of two-coupled-cavities, each of which resonantly interacts with a two-level atom, is investigated via the relative entropy measure. We focus on the coherences for the atom-atom, atom-cavity and cavity-cavity subsystems and find that the dynamical behaviors of these coherences depend largely on the cavity-cavity coupling, which may indicate the Mott insulator-superfluid transition in the thermodynamic limit. We also study the influences of the initial cavity-cavity correlation on the coherences and show that the initial correlation of the cavity-cavity subsystem can enhance the revival ability for the atom-atom and cavity-cavity coherences while reduce that for the atom-cavity coherence. Besides, we demonstrate the qualitative difference of dynamics between coherence and entanglement. Finally, the influences of dissipations including cavity losses and atomic decays on the coherence are explored.

  14. Breakthrough: Record-Setting Cavity

    ScienceCinema

    Ciovati, Gianluigi

    2014-05-21

    Gianluigi "Gigi" Ciovati, a superconducting radiofrequency scientist, discusses how scientists at the U.S. Department of Energy's Jefferson Lab in Newport News, VA, used ARRA funds to fabricate a niobium cavity for superconducting radiofrequency accelerators that has set a world record for energy efficiency. Jefferson Lab's scientists developed a new, super-hot treatment process that could soon make it possible to produce cavities more quickly and at less cost, benefitting research and healthcare around the world. Accelerators are critical to our efforts to study the structure of matter that builds our visible universe. They also are used to produce medical isotopes and particle beams for diagnosing and eradicating disease. And they offer the potential to power future nuclear power plants that produce little or no radioactive waste.around the world. Accelerators are critical to our efforts to study the structure of matter that builds our visible universe. They also are used to produce medical isotopes and particle beams for diagnosing and eradicating disease. And they offer the potential to power future nuclear power plants that produce little or no radioactive waste.

  15. Silicon Integrated Cavity Optomechanical Transducer

    NASA Astrophysics Data System (ADS)

    Zou, Jie; Miao, Houxun; Michels, Thomas; Liu, Yuxiang; Srinivasan, Kartik; Aksyuk, Vladimir

    2013-03-01

    Cavity optomechanics enables measurements of mechanical motion at the fundamental limits of precision imposed by quantum mechanics. However, the need to align and couple devices to off-chip optical components hinders development, miniaturization and broader application of ultrahigh sensitivity chip-scale optomechanical transducers. Here we demonstrate a fully integrated and optical fiber pigtailed optomechanical transducer with a high Q silicon micro-disk cavity near-field coupled to a nanoscale cantilever. We detect the motion of the cantilever by measuring the resonant frequency shift of the whispering gallery mode of the micro-disk. The sensitivity near the standard quantum limit can be reached with sub-uW optical power. Our on-chip approach combines compactness and stability with great design flexibility: the geometry of the micro-disk and cantilever can be tailored to optimize the mechanical/optical Q factors and tune the mechanical frequency over two orders of magnitudes. Electrical transduction in addition to optical transduction was also demonstrated and both can be used to effectively cool the cantilever. Moreover, cantilevers with sharp tips overhanging the chip edge were fabricated to potentially allow the mechanical cantilever to be coupled to a wide range of off-chip systems, such as spins, DNA, nanostructures and atoms on clean surfaces.

  16. SPINNING MOTIONS IN CORONAL CAVITIES

    SciTech Connect

    Wang, Y.-M.; Stenborg, G. E-mail: guillermo.stenborg.ctr.ar@nrl.navy.mi

    2010-08-20

    In movies made from Fe XII 19.5 nm images, coronal cavities that graze or are detached from the solar limb appear as continually spinning structures, with sky-plane projected flow speeds in the range 5-10 km s{sup -1}. These whirling motions often persist in the same sense for up to several days and provide strong evidence that the cavities and the immediately surrounding streamer material have the form of helical flux ropes viewed along their axes. A pronounced bias toward spin in the equatorward direction is observed during 2008. We attribute this bias to the poleward concentration of the photospheric magnetic flux near sunspot minimum, which leads to asymmetric heating along large-scale coronal loops and tends to drive a flow from higher to lower latitudes; this flow is converted into an equatorward spinning motion when the loops pinch off to form a flux rope. As sunspot activity increases and the polar fields weaken, we expect the preferred direction of the spin to reverse.

  17. Breakthrough: Record-Setting Cavity

    SciTech Connect

    Ciovati, Gianluigi

    2012-03-01

    Gianluigi "Gigi" Ciovati, a superconducting radiofrequency scientist, discusses how scientists at the U.S. Department of Energy's Jefferson Lab in Newport News, VA, used ARRA funds to fabricate a niobium cavity for superconducting radiofrequency accelerators that has set a world record for energy efficiency. Jefferson Lab's scientists developed a new, super-hot treatment process that could soon make it possible to produce cavities more quickly and at less cost, benefitting research and healthcare around the world. Accelerators are critical to our efforts to study the structure of matter that builds our visible universe. They also are used to produce medical isotopes and particle beams for diagnosing and eradicating disease. And they offer the potential to power future nuclear power plants that produce little or no radioactive waste.around the world. Accelerators are critical to our efforts to study the structure of matter that builds our visible universe. They also are used to produce medical isotopes and particle beams for diagnosing and eradicating disease. And they offer the potential to power future nuclear power plants that produce little or no radioactive waste.

  18. Resonant-cavity antenna for plasma heating

    DOEpatents

    Perkins, Jr., Francis W.; Chiu, Shiu-Chu; Parks, Paul; Rawls, John M.

    1987-01-01

    Disclosed is a resonant coil cavity wave launcher for energizing a plasma immersed in a magnetic field. Energization includes launching fast Alfven waves to excite ion cyclotron frequency resonances in the plasma. The cavity includes inductive and capacitive reactive members spaced no further than one-quarter wavelength from a first wall confinement chamber of the plasma. The cavity wave launcher is energized by connection to a waveguide or transmission line carrying forward power from a remote radio frequency energy source.

  19. Compact Superconducting Crabbing and Deflecting Cavities

    SciTech Connect

    De Silva, Payagalage Subashini Uddika

    2012-09-01

    Recently, new geometries for superconducting crabbing and deflecting cavities have been developed that have significantly improved properties over those the standard TM{sub 110} cavities. They are smaller, have low surface fields, high shunt impedance and, more importantly for some of them, no lower-order-mode with a well-separated fundamental mode. This talk will present the status of the development of these cavities.

  20. Dither Cavity Length Controller with Iodine Locking

    NASA Astrophysics Data System (ADS)

    Lawson, Marty; Eloranta, Ed

    2016-06-01

    A cavity length controller for a seeded Q-switched frequency doubled Nd:YAG laser is constructed. The cavity length controller uses a piezo-mirror dither voltage to find the optimum length for the seeded cavity. The piezo-mirror dither also dithers the optical frequency of the output pulse. [1]. This dither in optical frequency is then used to lock to an Iodine absorption line.

  1. Grating cavity dual wavelength dye laser.

    PubMed

    Zapata-Nava, Oscar Javier; Rodríguez-Montero, Ponciano; Iturbe-Castillo, M David; Treviño-Palacios, Carlos Gerardo

    2011-02-14

    We report simultaneous dual wavelength dye laser emission using Littman-Metcalf and Littrow cavity configurations with minimum cavity elements. Dual wavelength operation is obtained by laser operation in two optical paths inside the cavity, one of which uses reflection in the circulating dye cell. Styryl 14 laser dye operating in the 910 nm to 960 nm was used in a 15%:85% PC/EG solvent green pumped with a Q-switched doubled Nd3+:YAG laser. PMID:21369171

  2. Optical microfiber-based photonic crystal cavity

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Sun, Yi-zhi; Andrews, Steve; Li, Zhi-yuan; Ding, Wei

    2016-01-01

    Using a focused ion beam milling technique, we fabricate broad stop band (∼10% wide) photonic crystal (PhC) cavities in adiabatically-tapered silica fibers. Abrupt structural design of PhC mirrors efficiently reduces radiation loss, increasing the cavity finesse to ∼7.5. Further experiments and simulations verify that the remaining loss is mainly due to Ga ion implantation. Such a microfiber PhC cavity probably has potentials in many light-matter interaction applications.

  3. Outbursts and cavities in comets

    NASA Astrophysics Data System (ADS)

    Ipatov, Sergei

    Based on analysis of the images made during the first 13 minutes after the collision of the impact module of the Deep Impact (DI) spacecraft with Comet 9P/Tempel 1, Ipatov & A'Hearn [1] studied time variations of ejection of material after this impact. They showed that, besides the normal ejection, at time t_{e} after the DI collision between 8 s and 60 s there was a considerable additional ejection (a triggered outburst) of small (micron size) particles. It increased the mean velocities of observed small ejected particles (compared with the normal ejection). The outburst could be caused by excavation of a large cavity with dust and gas under pressure. The largest cavity excavated after the collision could be relatively deep because a considerable excess ejection lasted during about 50 s. Schultz et al. [2] concluded that the diameter d_{tc} of the DI transient crater was about 200 m. Some authors support smaller values of d_{tc}. The depth of the DI crater at t_{e}=8 s was estimated in [3] to be about 6 m for d_{tc}=200 m and 4 m for d_{tc}=100 m. The distance between the pre-impact surface of Comet 9P/Tempel 1 and the upper border of the largest excavated cavity equal to about 4-6 m, and sizes of particles inside the cavities of a few microns are in good agreement with the results obtained by Kossacki & Szutowicz [4]. In their models of the explosion of Comet 17P/Holmes, the initial sublimation front of the CO ice was located at a depth of 4 m, 10 m, or 20 m, and calculations were finished when the CO pressure exceeded the threshold value 10 kPa. It was shown that the pressure of CO vapor can rise to this value only when the nucleus is composed of very fine grains, a few microns in radius. The porous structure of comets provides enough space for sublimation. The projection of the velocity of the leading edge of the DI cloud (onto the plane perpendicular to the line of sight) was about 100-200 m/s and is typical for outburst particles ejected from comets

  4. Design of the ILC Crab Cavity System

    SciTech Connect

    Adolphsen, C.; Beard, C.; Bellantoni, L.; Burt, G.; Carter, R.; Chase, B.; Church, M.; Dexter, A.; Dykes, M.; Edwards, H.; Goudket, P; Jenkins, R.; Jones, R.M.; Kalinin, A.; Khabiboulline, T.; Ko, K.; Latina, A.; Li, Z.; Ma, L.; McIntosh, P.; Ng, C.; /SLAC /Daresbury /Fermilab /Cockcroft Inst. Accel. Sci. Tech. /CERN

    2007-08-15

    The International Linear Collider (ILC) has a 14 mrad crossing angle in order to aid extraction of spent bunches. As a result of the bunch shape at the interaction point, this crossing angle at the collision causes a large luminosity loss which can be recovered by rotating the bunches prior to collision using a crab cavity. The ILC baseline crab cavity is a 9-cell superconducting dipole cavity operating at a frequency of 3.9 GHz. In this paper the design of the ILC crab cavity and its phase control system, as selected for the RDR in February 2007 is described in fuller detail.

  5. Cavity-locked ring down spectroscopy

    DOEpatents

    Zare, Richard N.; Paldus, Barbara A.; Harb, Charles C.; Spence, Thomas

    2000-01-01

    Distinct locking and sampling light beams are used in a cavity ring-down spectroscopy (CRDS) system to perform multiple ring-down measurements while the laser and ring-down cavity are continuously locked. The sampling and locking light beams have different frequencies, to ensure that the sampling and locking light are decoupled within the cavity. Preferably, the ring-down cavity is ring-shaped, the sampling light is s-polarized, and the locking light is p-polarized. Transmitted sampling light is used for ring-down measurements, while reflected locking light is used for locking in a Pound-Drever scheme.

  6. Optically coupled cavities for wavelength switching

    NASA Astrophysics Data System (ADS)

    Costazo-Caso, Pablo A.; Granieri, Sergio; Siahmakoun, Azad

    2011-01-01

    An optical bistable device which presents hysteresis behavior is proposed and experimentally demonstrated. The system finds applications in wavelength switching, pulse reshaping and optical bistability. It is based on two optically coupled cavities named master and slave. Each cavity includes a semiconductor optical amplifier (SOA), acting as the gain medium of the laser, and two pair of fiber Bragg gratings (FBG) which define the lasing wavelength (being different in each cavity). Finally, a variable optical coupler (VOC) is employed to couple both cavities. Experimental characterization of the system performance is made analyzing the effects of the coupling coefficient between the two cavities and the driving current in each SOA. The properties of the hysteretic bistable curve and switching can be controlled by adjusting these parameters and the loss in the cavities. By selecting the output wavelength (λ1 or λ2) with an external filter it is possible to choose either the invert or non-invert switched signal. Experiments were developed employing both optical discrete components and a photonic integrated circuit. They show that for 8 m-long cavities the maximum switching frequency is about 500 KHz, and for 4 m-long cavities a minimum rise-time about 21 ns was measured. The switching time can be reduced by shortening the cavity lengths and using photonic integrated circuits.

  7. Quantum teleportation with atoms trapped in cavities

    SciTech Connect

    Cho, Jaeyoon; Lee, Hai-Woong

    2004-09-01

    We propose a scheme to implement the quantum teleportation protocol with single atoms trapped in cavities. The scheme is based on the adiabatic passage and the polarization measurement. We show that it is possible to teleport the internal state of an atom trapped in a cavity to an atom trapped in another cavity with the success probability of 1/2 and the fidelity of 1. The scheme is resistant to a number of considerable imperfections such as the violation of the Lamb-Dicke condition, weak atom-cavity coupling, spontaneous emission, and detection inefficiency.

  8. Theory of clustered-cavity gyroklystron

    NASA Astrophysics Data System (ADS)

    Nusinovich, G. S.; Antonsen, T. M.; Guo, H.; Granatstein, V. L.

    2002-09-01

    An analytical theory of a new device configuration, a clustered-cavity gyroklystron, is developed. The device considered has two clusters of cavities: an input cluster and an output cluster. The results show that, by using a cluster cavity concept, the bandwidth of gyroklystrons can be enlarged significantly without sacrifice of gain or efficiency which may lead to the development of a new type of high power, moderate bandwidth millimeter-wave amplifier. The theory has also been used to analyze the effect of stagger tuning between cavity frequencies within a single cluster, as well as between different clusters on the bandwidth and gain of the device.

  9. Mechanical Properties of Ingot Nb Cavities

    SciTech Connect

    Ciovati, Gianluigi; Dhakal, Pashupati; Kneisel, Peter; Mammosser, John; Matalevich, Joseph; Rao Myneni, Ganapati

    2014-07-01

    This contribution presents the results of measurements of the resonant frequency and of strain along the contour of a single-cell cavity made of ingot Nb subjected to increasing uniform differential pressure, up to 6 atm. The data were used to infer mechanical properties of this material after cavity fabrication, by comparison with the results from simulation calculations done with ANSYS. The objective is to provide useful information about the mechanical properties of ingot Nb cavities which can be used in the design phase of SRF cavities intended to be built with this material.

  10. BPM testing, analysis, and correction

    SciTech Connect

    Fitzgerald, J.A.; Crisp, J.; McCrory, E.; Vogel, G.

    1998-12-01

    A general purpose stretched-wire test station has been developed and used for mapping Beam Position Monitors (BPMs). A computer running LabVIEW software controlling a network analyzer and x-y positioning tables operates the station and generates data files. The data is analyzed in Excel and can be used to generate correction tables. Test results from a variety of BPMs used for the Fermilab Main Injector and elsewhere will be presented. {copyright} {ital 1998 American Institute of Physics.}

  11. BPM testing, analysis, and correction

    SciTech Connect

    Fitzgerald, James A.; Crisp, James; McCrory, Elliott; Vogel, Greg

    1998-12-10

    A general purpose stretched-wire test station has been developed and used for mapping Beam Position Monitors (BPMs). A computer running LabVIEW software controlling a network analyzer and x-y positioning tables operates the station and generates data files. The data is analyzed in Excel and can be used to generate correction tables. Test results from a variety of BPMs used for the Fermilab Main Injector and elsewhere will be presented.

  12. FXR accelerator cavity impedance experiments

    SciTech Connect

    Avalle, C.A.

    1998-01-05

    One of the goals of the present Flash X-Ray (FXR) accelerator upgrade effort [1][2] at Lawrence Livermore National Laboratory (LLNL) is to reduce the cavity transverse impedance, since it has been shown that beam stability is significantly affected by this parameter [3]. Recently, we have evaluated various techniques and cell modifications to accomplish that, both through lab measurements and computer models. A spare cell, identical in every way to cells in the accelerator, was specially modified for the experiments. The impedance measurements were done without the beam, by applying twin-wire techniques. This report describes the results of these experiments and suggests possible cell modifications to improve their performance. The techniques and modifications which are suggested might also be applicable to AHF and DARHT-2 long-pulse accelerator development.

  13. Wigner rotations in laser cavities.

    PubMed

    Başkal, S; Kim, Y S

    2002-08-01

    The Wigner rotation is important in many branches of physics, chemistry, and engineering sciences. It is a group theoretical effect resulting from two Lorentz boosts. The net effect is one boost followed or preceded by a rotation. While the term "Wigner rotation" is derived from Wigner's little group whose transformations leave the four-momentum of a given particle invariant, it is shown that the Wigner rotation is different from the rotations in the little group. This difference is clearly spelled out, and it is shown to be possible to construct the corresponding Wigner rotation from the little-group rotation. It is shown also that the ABCD matrix for light beams in a laser cavity shares the same mathematics as the little-group rotation, from which the Wigner rotation can be constructed. PMID:12241308

  14. Cavity approximation for graphical models.

    PubMed

    Rizzo, T; Wemmenhove, B; Kappen, H J

    2007-07-01

    We reformulate the cavity approximation (CA), a class of algorithms recently introduced for improving the Bethe approximation estimates of marginals in graphical models. In our formulation, which allows for the treatment of multivalued variables, a further generalization to factor graphs with arbitrary order of interaction factors is explicitly carried out, and a message passing algorithm that implements the first order correction to the Bethe approximation is described. Furthermore, we investigate an implementation of the CA for pairwise interactions. In all cases considered we could confirm that CA[k] with increasing k provides a sequence of approximations of markedly increasing precision. Furthermore, in some cases we could also confirm the general expectation that the approximation of order k , whose computational complexity is O(N(k+1)) has an error that scales as 1/N(k+1) with the size of the system. We discuss the relation between this approach and some recent developments in the field. PMID:17677405

  15. Mini-cavity-dumped laser

    NASA Technical Reports Server (NTRS)

    Reed, E.

    1981-01-01

    Lasers for use in high precision satellite ranging systems consist typically of an oscillator followed by several amplifier stages. While the shortest optical pulses are achieved by using a mode locked oscillator, such an oscillator is incompatible with the compact design needed in future, highly mobile systems. The laser oscillator achieves pulse lengths approaching those obtainable by mode locking, but in a much more compact and stable design. The oscillator uses two LiNbO3 Pockels cells inside the resonator. One Q-switches the oscillator, and the other is used in a pulse slicing scheme to cavity dump a portion of the circulating optical energy. The length of the optical output pulse measured at 425 + or - 50 picoseconds.

  16. Geophysical observations at cavity collapse

    NASA Astrophysics Data System (ADS)

    Jousset, Philippe; Bazargan-Sabet, Behrooz; Lebert, François; Bernardie, Séverine; Gourry, Jean-Christophe

    2010-05-01

    In Lorraine region (France) salt layers at about 200 meters depth are exploited by Solvay using solution mining methodology which consists in extracting the salt by dissolution, collapsing the cavern overburden during the exploitation phase and finally reclaiming the landscape by creating a water area. In this process, one of the main challenges for the exploiting company is to control the initial 120-m diameter collapse so as to minimize possible damages. In order to detect potential precursors and understand processes associated with such collapses, a wide series of monitoring techniques including micro seismics, broad-band seismology, hydro-acoustic, electromagnetism, gas probing, automatic leveling, continuous GPS, continuous gravity and borehole extensometry was set-up in the frame of an in-situ study carried out by the "Research Group for the Impact and Safety of Underground Works" (GISOS, France). Equipments were set-up well before the final collapse, giving a unique opportunity to analyze a great deal of information prior to and during the collapse process which has been successfully achieved on February the 13th, 2009 by controlling the cavity internal pressure. In this work, we present the results of data recorded by a network of 3 broadband seismometers, 2 accelerometers, 2 tilt-meters and a continuously gravity meter. We relate the variations of the brine pumping rate with the evolutions of the induced geophysical signals and finally we propose a first mechanical model for describing the controlled collapse. Beyond the studied case, extrapolation of the results obtained might contribute to the understanding of uncontrolled cavity collapses, such as pit-craters or calderas at volcanoes.

  17. Folded cavity design for a ruby resonator

    NASA Technical Reports Server (NTRS)

    Arunkumar, K. A.; Trolinger, James D.

    1988-01-01

    A folded cavity laser resonator operating in the TEM(00) mode has been built and tested. The new oscillator configuration leads to an increase in efficiency and to better line narrowing due to the increased number of passes through the laser rod and tuning elements, respectively. The modification is shown to lead to cavity ruggedization.

  18. High-current SRF cavity design

    NASA Astrophysics Data System (ADS)

    Meidlinger, D.; Grimm, T. L.; Hartung, W.

    2006-07-01

    For high current applications, it is desirable for the cavity shape to have a low longitudinal loss factor and to have a high beam-breakup threshold current. This paper briefly describes three different cavities designed for this purpose: a six-cell elliptical cavity for particles traveling at the speed of light, a two-cell elliptical cavity for subluminal particle speeds, and a single cell cavity which uses the TM012 mode for acceleration. SUPERFISH simulations predict the peak fields in both of the elliptical cavities will not exceed the TeSLA values by more than 10% but both will have 28.7% larger apertures. The elliptical designs assume the bunch frequency equals the accelerating mode frequency. The beam pipe radius is chosen so that the cutoff frequency is less than twice that of the accelerating mode. Hence all of the monopole and dipole higher-order modes (HOMs) that can be driven by the beam have low loaded Q values. This simplifies the problem of HOM damping. The TM012 cavity is predicted to have much higher peak fields than a π-mode elliptical cavity, but offers potential advantages from its simplified shape; it is essentially a circular waveguide with curved end plates. This basic shape results in easier fabrication and simplified tuning.

  19. Fast tuning of superconducting microwave cavities

    SciTech Connect

    Sandberg, M.; Wilson, C. M.; Persson, F.; Johansson, G.; Shumeiko, V.; Bauch, T.; Duty, T.; Delsing, P.

    2008-11-07

    Photons are fundamental excitations of electromagnetic fields and can be captured in cavities. For a given cavity with a certain size, the fundamental mode has a fixed frequency f which gives the photons a specific 'color'. The cavity also has a typical lifetime {tau}, which results in a finite linewidth {delta}f. If the size of the cavity is changed fast compared to {tau}, and so that the frequency change {delta}f>>{delta}f, then it is possible to change the 'color' of the captured photons. Here we demonstrate superconducting microwave cavities, with tunable effective lengths. The tuning is obtained by varying a Josephson inductance at one end of the cavity. We show data on four different samples and demonstrate tuning by several hundred linewidths in a time {delta}t<<{tau}. Working in the few photon limit, we show that photons stored in the cavity at one frequency will leak out from the cavity with the new frequency after the detuning. The characteristics of the measured devices make them suitable for different applications such as dynamic coupling of qubits and parametric amplification.

  20. Design of multilamp nonimaging laser pump cavities

    SciTech Connect

    Kuppenheimer, J.D. Jr.

    1989-12-01

    A technique has been developed to design single laser rod, multiple flash lamp pump cavities that allow all of the energy generated by the lamp to pass through the laser rod before entering another lamp cavity. The effective lamp and rod perimeters are matched, guaranteeing maximal concentration and uniformity of pumping.

  1. Geometric Model of a Coronal Cavity

    NASA Technical Reports Server (NTRS)

    Kucera, Therese A.; Gibson, S. E.; Ratawicki, D.; Dove, J.; deToma, G.; Hao, J.; Hudson, H. S.; Marque, C.; McIntosh, P. S.; Reeves, K. K.; Schmidt, D. J.; Sterling, A. C.; Tripathi, D. K.; Williams, D. R.; Zhang, M.

    2010-01-01

    We observed a coronal cavity from August 8-18 2007 during a multi-instrument observing campaign organized under the auspices of the International Heliophysical Year (IHY). Here we present initial efforts to model the cavity with a geometrical streamer-cavity model. The model is based the white-light streamer mode] of Gibson et a]. (2003 ), which has been enhanced by the addition of a cavity and the capability to model EUV and X-ray emission. The cavity is modeled with an elliptical cross-section and Gaussian fall-off in length and width inside the streamer. Density and temperature can be varied in the streamer and cavity and constrained via comparison with data. Although this model is purely morphological, it allows for three-dimensional, multi-temperature analysis and characterization of the data, which can then provide constraints for future physical modeling. Initial comparisons to STEREO/EUVI images of the cavity and streamer show that the model can provide a good fit to the data. This work is part of the effort of the International Space Science Institute International Team on Prominence Cavities

  2. Long Josepshon Junction in a Resonant Cavity

    NASA Astrophysics Data System (ADS)

    Tornes, Ivan

    2005-03-01

    We present a model for an underdamped long Josephson junction coupled to a single-mode electromagnetic cavity, and carry out numerical calculations using this model in various regimes. The coupling may occur through either the electric or the magnetic field of the cavity mode. When a current is injected into the junction, we find that the time-averaged voltage exhibits self-induced resonant steps due to coupling between the current in the junction and the electric field of the cavity mode. These steps are similar to those observed and calculated in small Josephson junctions. When a soliton is present in the junction (corresponding to a quantum of magnetic flux parallel to the junction plates), the SIRS's disappear if the electric field in the cavity is spatially uniform. If the cavity mode has a spatially varying electric field, there is a strong coupling between the soliton and the cavity mode. This coupling causes the soliton to become phase-locked to the cavity mode, and produces step-like anomalies on the soliton branch of the IV characteristics. If the coupling is strong enough, the frequency of the cavity mode is greatly red-shifted from its uncoupled value. We present simple geometrical arguments and a simple analytical model which account for this behavior. This work was supported by NSF grant DMR04-13395.

  3. Developing of superconducting niobium cavities for accelerators

    NASA Astrophysics Data System (ADS)

    Pobol, I. L.; Yurevich, S. V.

    2015-11-01

    The results of a study of structure and mechanical properties of welding joints, superconducting characteristics of the material after joining of welded components of superconducting radio frequency cavities are presented. The paper also describes the results of testing of the RF 1.3 GHz single-cell niobium cavity manufactured in the PTI NAS Belarus.

  4. Large grain cavities from pure niobium ingot

    DOEpatents

    Myneni, Ganapati Rao; Kneisel, Peter; Cameiro, Tadeu

    2012-03-06

    Niobium cavities are fabricated by the drawing and ironing of as cast niobium ingot slices rather than from cold rolled niobium sheet. This method results in the production of niobium cavities having a minimum of grain boundaries at a significantly reduced cost as compared to the production of such structures from cold rolled sheet.

  5. Mode suppression means for gyrotron cavities

    DOEpatents

    Chodorow, Marvin; Symons, Robert S.

    1983-08-09

    In a gyrotron electron tube of the gyro-klystron or gyro-monotron type, having a cavity supporting an electromagnetic mode with circular electric field, spurious resonances can occur in modes having noncircular electric field. These spurious resonances are damped and their frequencies shifted by a circular groove in the cavity parallel to the electric field.

  6. Compact microwave cavity for hydrogen atomic clock

    NASA Technical Reports Server (NTRS)

    Zhang, Dejun; Zhang, Yan; Fu, Yigen; Zhang, Yanjun

    1992-01-01

    A summary is presented that introduces the compact microwave cavity used in the hydrogen atomic clock. Special emphasis is placed on derivation of theoretical calculating equations of main parameters of the microwave cavity. A brief description is given of several methods for discriminating the oscillating modes. Experimental data and respective calculated values are also presented.

  7. Cavity cooling a single charged levitated nanosphere.

    PubMed

    Millen, J; Fonseca, P Z G; Mavrogordatos, T; Monteiro, T S; Barker, P F

    2015-03-27

    Optomechanical cavity cooling of levitated objects offers the possibility for laboratory investigation of the macroscopic quantum behavior of systems that are largely decoupled from their environment. However, experimental progress has been hindered by particle loss mechanisms, which have prevented levitation and cavity cooling in a vacuum. We overcome this problem with a new type of hybrid electro-optical trap formed from a Paul trap within a single-mode optical cavity. We demonstrate a factor of 100 cavity cooling of 400 nm diameter silica spheres trapped in vacuum. This paves the way for ground-state cooling in a smaller, higher finesse cavity, as we show that a novel feature of the hybrid trap is that the optomechanical cooling becomes actively driven by the Paul trap, even for singly charged nanospheres. PMID:25860743

  8. Casimir forces of metallic microstructures into cavities

    NASA Astrophysics Data System (ADS)

    Kenanakis, George; Soukoulis, Costas M.; Economou, Eleftherios N.

    2015-08-01

    A theoretical estimate of the Casimir force of a metallic structure embedded into a cubic cavity is proposed. We demonstrate that by calculating the eigenmodes of the system we can determine the Casimir force, which can be either attractive or repulsive, by simply changing the geometry of the structures relative to the walls of the cavity. In this analysis, several cases of structures are taken into account, from rectangular slabs to chiral "omega" particles, and the predicted data are consistent with recent literature. We demonstrate that the sidewalls of the studied cavity contribute decisively to the repulsive Casimir force between the system and the nearby top surface of the cavity. Finally, we provide evidence that the medium embedded into the studied cavity (and especially its permittivity) can change the intensity of the Casimir force, while its repulsive nature, once established (owing to favorable geometrical features), remains quite robust.

  9. Cavity cooling below the recoil limit.

    PubMed

    Wolke, Matthias; Klinner, Julian; Keßler, Hans; Hemmerich, Andreas

    2012-07-01

    Conventional laser cooling relies on repeated electronic excitations by near-resonant light, which constrains its area of application to a selected number of atomic species prepared at moderate particle densities. Optical cavities with sufficiently large Purcell factors allow for laser cooling schemes, avoiding these limitations. Here, we report on an atom-cavity system, combining a Purcell factor above 40 with a cavity bandwidth below the recoil frequency associated with the kinetic energy transfer in a single photon scattering event. This lets us access a yet-unexplored regime of atom-cavity interactions, in which the atomic motion can be manipulated by targeted dissipation with sub-recoil resolution. We demonstrate cavity-induced heating of a Bose-Einstein condensate and subsequent cooling at particle densities and temperatures incompatible with conventional laser cooling. PMID:22767925

  10. Large Grain Superconducting RF Cavities at DESY

    SciTech Connect

    Singer, W.; Brinkmann, A.; Ermakov, A.; Iversen, J.; Kreps, G.; Matheisen, A.; Proch, D.; Reschke, D.; Singer, X.; Spiwek, M.; Wen, H.; Brokmeier, H. G.

    2007-08-09

    The DESY R and D program on cavities fabricated from large grain niobium explores the potential of this material for the production of approx. 1000 nine-cell cavities for the European XFEL. The program investigates basic material properties, comparing large grain material to standard sheet niobium, as well as fabrication and preparation aspects. Several single-cell cavities of TESLA shape have been fabricated from large grain niobium. A gradient up to 41 MV/m at Q0 = 1.4{center_dot}1010 (TB = 2K) was measured after electropolishing. The first three large grain nine-cell cavities worldwide have been produced under contract of DESY with ACCEL Instruments Co. The first tests have shown that all three cavities reach an accelerating gradient up to 30 MV/m after BCP (Buffered Chemical Polishing) treatment, what exceeds the XFEL requirements for RF test in the vertical cryostat.

  11. Performance of 3-cell Seamless Niobium cavities

    SciTech Connect

    Kneisel, Peter K.; Ciovati, Gianluigi; Jelezov, I.; Singer, W.; Singer, X.

    2009-11-01

    In the last several months we have surface treated and cryogenically tested three TESLA-type 3-cell cavities, which had been manufactured at DESY as seamless assemblies by hydroforming. The cavities were completed at JLab with beam tube/flange assemblies. All three cavities performed very well after they had been post-purified with titanium at 1250C for 3 hrs. The cavities, two of which consisted of an end cell and 2 center cells and one was a center cell assembly, achieved gradients of Eacc = 32 MV/m, 34 MV/m and 35 MV/m without quenches. The performance was limited by the appearance of the “Q-drop” in the absence of field emission. This contribution reports about the various measurements undertaken with these cavities.

  12. Voltage control of cavity magnon polariton

    NASA Astrophysics Data System (ADS)

    Kaur, S.; Yao, B. M.; Rao, J. W.; Gui, Y. S.; Hu, C.-M.

    2016-07-01

    We have experimentally investigated the microwave transmission of the cavity-magnon-polariton (CMP) generated by integrating a low damping magnetic insulator onto a 2D microwave cavity. The high tunability of our planar cavity allows the cavity resonance frequency to be precisely controlled using a DC voltage. By appropriately tuning the voltage and magnetic bias, we can observe the cavity photon magnon coupling and the magnetic coupling between a magnetostatic mode and the generated CMP. The dispersion of the generated CMP was measured by either tuning the magnetic field or the applied voltage. This electrical control of CMP may open up avenues for designing advanced on-chip microwave devices that utilize light-matter interaction.

  13. Fast thermometry for superconducting rf cavity testing

    SciTech Connect

    Orris, Darryl; Bellantoni, Leo; Carcagno, Ruben H.; Edwards, Helen; Harms, Elvin Robert; Khabiboulline, Timergali N.; Kotelnikov, Sergey; Makulski, Andrzej; Nehring, Roger; Pischalnikov, Yuriy; /Fermilab

    2007-06-01

    Fast readout of strategically placed low heat capacity thermometry can provide valuable information of Superconducting RF (SRF) cavity performance. Such a system has proven very effective for the development and testing of new cavity designs. Recently, several resistance temperature detectors (RTDs) were installed in key regions of interest on a new 9 cell 3.9 GHz SRF cavity with integrated HOM design at FNAL. A data acquisition system was developed to read out these sensors with enough time and temperature resolution to measure temperature changes on the cavity due to heat generated from multipacting or quenching within power pulses. The design and performance of the fast thermometry system will be discussed along with results from tests of the 9 cell 3.9GHz SRF cavity.

  14. Microphonics Measurements in SRF Cavities for RIA

    SciTech Connect

    Kelly, M.P.; Fuerst, Joel; Kedzie, M.; Sharamentov, S.I.; Shepard, Kenneth; Delayen, Jean

    2003-05-01

    Phase stabilization of the RIA drift tube cavities in the presence of microphonics will be a key issue for RIA. Due to the relatively low beam currents (lte 0.5 pmA) required for the RIA driver, microphonics will impact the rf power required to control the cavity fields. Microphonics measurements on the ANL Beta=0.4 single spoke cavity and on the ANL Beta=0.4 two-cell spoke cavity have been performed many at high fields and using a new "cavity resonance monitor" device developed in collaboration with JLAB. Tests on a cold two-cell spoke are the first ever on a multi-cell spoke geometry. The design is essentially a production model with an integral stainless steel housing to hold the liquid helium bath.

  15. [Hemangiopericytoma in nasal cavity: a case report].

    PubMed

    Hu, Honghai; Shi, Qifeng; Chen, Jidong

    2015-05-01

    We report a case of a 46 year old female patient with nasal hemangiopericytoma. She complained of left nasal congestion, pus snot for 10 years, sometimes with left nasal bleeding. Physical examination: in the left nasal tract saw red soft neoplasm, roughness surface, easy bleeding when touched. Sinus CT shows: bilateral maxillary sinus, ethmoid sinus, sphenoid sinus and the left posterior nasal cavity lesions, considering inflammation with the formation of polyps, tumor not excluded. The left nasal cavity neoplasm biopsy shows: hemangioma of left nasal cavity. After admission in general anesthesia, we do transnasal endoscopic sinus openning operation and the left nasal cavity neoplasm resection. Postoperative pathological examination shows: the left nasal cavity hemangiopericytoma. Immunohistochemical showed: Vimentin(+), Smooth muscle actin(+), Desmin(-), endothelial cells CD31(-) and CD34(-). No postoperative radiotherapy or chemotherapy, no tumor recurrence. After one year of follow-up, the contact was lost. PMID:26281069

  16. Vertical-Cavity Surface-Emitting Lasers

    NASA Astrophysics Data System (ADS)

    Wilmsen, Carl W.; Temkin, Henryk; Coldren, Larry A.

    2002-01-01

    1. Introduction to VCSELs L. A. Coldren, C. W. Wilmsen and H. Temkin; 2. Fundamental issues in VCSEL design L. A. Coldren and Eric R. Hegblom; 3. Enhancement of spontaneous emission in microcavities E. F. Schubert and N. E. J. Hunt; 4. Epitaxy of vertical-cavity lasers R. P. Schneider Jr and Y. H. Young; 5. Fabrication and performance of vertical-cavity surface-emitting lasers Kent D. Choquette and Kent Geib; 6. Polarization related properties of vertical cavity lasers Dmitri Kuksenkov and Henryk Temkin; 7. Visible light emitting vertical cavity lasers Robert L. Thornton; 8. Long-wavelength vertical-cavity lasers Dubrakovo I. Babic, Joachim Piprek and John E. Bowers; 9. Overview of VCSEL applications Richard C. Williamson; 10. Optical interconnection applications and required characteristics Kenichi Kasahara; 11. VCSEL-based fiber-optic data communications Kenneth Hahn and Kirk Giboney; 12. VCSEL-based smart pixels for free space optoelectronic processing C. W. Wilmsen.

  17. Optical nanofiber-based photonic crystal cavity.

    PubMed

    Nayak, K P; Zhang, Pengfei; Hakuta, K

    2014-01-15

    We demonstrate the fabrication of photonic crystal (PhC) cavities on optical nanofibers using femtosecond laser ablation. PhC cavities with cavity lengths varying from 0.54 to 3.43 mm are fabricated by controlling the profile of the nanocrater array formed on the nanofiber. Such PhC cavities show high transmission of 87% for a finesse of 39. For higher finesse values from 150 to 500, the transmission can still be maintained at 20%-25%. Due to the strong confinement of the field and the efficient coupling to single-mode optical fibers, such nanofiber-based PhC cavities may become an interface between quantum and classical networks. PMID:24562114

  18. Aligning a reflection cavity by Anderson's method.

    PubMed

    Reasenberg, Robert D

    2012-06-01

    The sounding rocket principle of equivalence measurement uses a set of four laser gauges operating in Fabry-Perot cavities to determine the relative acceleration of two test masses that are chemically different. One end of each cavity is a flat mirror on a test mass. Because the test masses are unconstrained and thus expected to rotate slightly during measurement, and because the distance measurements are made at the sub-picometer level, it is essential to have real-time alignment of the beam entering the cavity. However, the cavity must be used in reflection and space is limited. We show that Anderson's alignment method can be used in reflection, but that it requires that the Fabry-Perot cavity have mirrors with significantly unequal reflectivities. PMID:22695543

  19. Low Froude number water entry cavity dynamics

    NASA Astrophysics Data System (ADS)

    Kominiarczuk, Jakub K.

    2005-11-01

    We analyze the dynamics of the projectile and the water entry cavity in low Froude number water impact where both kinetic and gravitational potential energy play a role. An experimental investigation is conducted where the impact and cavity development of billiard balls hitting a calm water surface at Froude number of O(10) are captured using high speed video camera at 1000 to 2000 frames per second. The phenomena associated with water entry at low impact speeds are complex as gravity, cavity pressure, flow separation, and splash generation significantly influence the cavity shape, surface closure and pinch off. For comparison, an existing analytical theory for the dynamics of water entry cavities for very high speeds is generalized and extended to low Froude number regime. In particular, this closed-form solution now accounts for effects of gravity and flow separation around the projectile. The comparison between the analytic solution and experimental results is excellent.

  20. Superconducting cavity tuner performance at CEBAF

    SciTech Connect

    Marshall, J.; Preble, J.; Schneider, W.

    1993-06-01

    At the Continuous Electron Beam Accelerator Facility (CEBAF), a 4 GeV, multipass CW electron beam is to be accelerated by 338 SRF, 5-cell niobium cavities operating at a resonant frequency of 1497 MHz. Eight cavities arranged as four pairs comprise a cyromodule, a croygenically isolated linac subdivision. The frequency is controlled by a mechanical tune attached to the first and fifth cell of the cavity which elastically deforms the cavity and thereby alters its resonant frequency. The tuner is driven by a stepper motor mounted external to the cryomodule that transfers torque through two rotary feedthroughs. A linear variable differential transducer (LVDT) mounted on the tuner monitors the displacement, and two limit switches interlock the movement beyond a 400 kHz bandwidth. Since the cavity has a loaded Q of 6.6 {center_dot} 10{sup 6}, the control system must maintain the frequency of the cavity to within {plus_minus} 50 Hz of the drive frequency for efficient coupling. This requirement is somewhat difficult to achieve since the difference in thermal contractions of the cavity and the tuner creates a frequency hystersis of approximately 10 kHz. The cavity is also subject to frequency shifts due to pressure fluctuations of the helium bath as well as radiation pressure. This requires that each cavity be characterized in terms of frequency change as a function of applied motor steps to allow proper tuning operations. This paper describes the electrical and mechanical performance of the cavity tuner during the commissioning and operation of the cryomodulus manufactured to date.

  1. Design of half-reentrant SRF cavities

    NASA Astrophysics Data System (ADS)

    Meidlinger, M.; Grimm, T. L.; Hartung, W.

    2006-07-01

    The shape of a TeSLA inner cell can be improved to lower the peak surface magnetic field at the expense of a higher peak surface electric field by making the cell reentrant. Such a single-cell cavity was designed and tested at Cornell, setting a world record accelerating gradient [V. Shemelin et al., An optimized shape cavity for TESLA: concept and fabrication, 11th Workshop on RF Superconductivity, Travemünde, Germany, September 8-12, 2003; R. Geng, H. Padamsee, Reentrant cavity and first test result, Pushing the Limits of RF Superconductivity Workshop, Argonne National Laboratory, September 22-24, 2004]. However, the disadvantage to a cavity is that liquids become trapped in the reentrant portion when it is vertically hung during high pressure rinsing. While this was overcome for Cornell’s single-cell cavity by flipping it several times between high pressure rinse cycles, this may not be feasible for a multi-cell cavity. One solution to this problem is to make the cavity reentrant on only one side, leaving the opposite wall angle at six degrees for fluid drainage. This idea was first presented in 2004 [T.L. Grimm et al., IEEE Transactions on Applied Superconductivity 15(6) (2005) 2393]. Preliminary designs of two new half-reentrant (HR) inner cells have since been completed, one at a high cell-to-cell coupling of 2.1% (high- kcc HR) and the other at 1.5% (low- kcc HR). The parameters of a HR cavity are comparable to a fully reentrant cavity, with the added benefit that a HR cavity can be easily cleaned with current technology.

  2. Cavity solitons and localized patterns in a finite-size optical cavity

    SciTech Connect

    Kozyreff, G.; Gelens, L.

    2011-08-15

    In appropriate ranges of parameters, laser-driven nonlinear optical cavities can support a wide variety of optical patterns, which could be used to carry information. The intensity peaks appearing in these patterns are called cavity solitons and are individually addressable. Using the Lugiato-Lefever equation to model a perfectly homogeneous cavity, we show that cavity solitons can only be located at discrete points and at a minimal distance from the edges. Other localized states which are attached to the edges are identified. By interpreting these patterns in an information coding frame, the information capacity of this dynamical system is evaluated. The results are explained analytically in terms of the the tail characteristics of the cavity solitons. Finally, the influence of boundaries and of cavity imperfections on cavity solitons are compared.

  3. Treatment Options for Recurrent Lip and Oral Cavity Cancer

    MedlinePlus

    ... Cavity and Oropharyngeal Cancer Screening Research Lip and Oral Cavity Cancer Treatment (PDQ®)–Patient Version General Information About Lip and Oral Cavity Cancer Go to Health Professional Version Key Points ...

  4. Treatment Options by Stage (Lip and Oral Cavity Cancer)

    MedlinePlus

    ... Cavity and Oropharyngeal Cancer Screening Research Lip and Oral Cavity Cancer Treatment (PDQ®)–Patient Version General Information About Lip and Oral Cavity Cancer Go to Health Professional Version Key Points ...

  5. Treatment Option Overview (Lip and Oral Cavity Cancer)

    MedlinePlus

    ... Cavity and Oropharyngeal Cancer Screening Research Lip and Oral Cavity Cancer Treatment (PDQ®)–Patient Version General Information About Lip and Oral Cavity Cancer Go to Health Professional Version Key Points ...

  6. Forward Modeling of a Coronal Cavity

    NASA Technical Reports Server (NTRS)

    Kucera, T. A.; Gibson, S. E.; Schmit, D. J.

    2011-01-01

    We apply a forward model of emission from a coronal cavity in an effort to determine the temperature and density distribution in the cavity. Coronal cavities are long, low-density structures located over filament neutral lines and are often seen as dark elliptical features at the solar limb in white light, EUV and X-rays. When these structures erupt they form the cavity portions of CMEs The model consists of a coronal streamer model with a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel length. Temperature and density can be varied as a function of altitude both in the cavity and streamer. We apply this model to a cavity observed in Aug. 2007 by a wide array of instruments including Hinode/EIS, STEREO/EUVI and SOHO/EIT. Studies such as these will ultimately help us understand the the original structures which erupt to become CMEs and ICMES, one of the prime Solar Orbiter objectives.

  7. A selection of high gradient cavity experiments

    SciTech Connect

    Peter Kneisel

    1998-01-01

    In the two years since the 7th SRF workshop, a variety of cavity tests have been carried out with the objective to reproducibly achieve surface electric rf fields above 40 MV/m with no or only very little electron loading. This paper reports about a collection of tests on single cell and multi-cell cavities, which received standard surface treatments such as buffered chemical polishing and high pressure ultrapure water rinsing, but no heat treatments. Often the cavities were limited by quenches, posting a limit of 700 to 1,000 Oersted on achievable peak magnetic fields of high purity niobium RRR values between 200 and 250. In a seamless single cell cavity fabricated by V. Palmieri of INFN Legnaro by spinning, a very promising gradient of E{sub acc}=25 MV/m was measured. In collaboration with CERN, several tests on sputtering niobium prepared at CERN were also carried out, and accelerating gradients up to 25 MV/m were achieved. A single cell cavity, electron beam welded after electrochemical buffing, showed only good performance--E{sub p} > 50 MV/m--after the removal of more than 100 {micro}m of material. However, this cavity showed rather heavy Q disease even when cooled down rapidly; the Q degradation could be partially reversed by diffusing the oxygen from an anodized Nb{sub 2}O{sub 5} layer into the niobium by heating the cavity in-situ at T=250 C.

  8. Hydroforming of Tesla Cavities at Desy

    SciTech Connect

    W. Singer; H. Kaiser; X. Singer; I. Gonin; I. Zhelezov; T. Khabibullin; P. Kneisel; K. Saito

    2000-07-01

    Since several years the development of seamless niobium cavity fabrication by hydro forming is being pursued at DESY. This technique offers the possibility of lower cost of fabrication and perhaps better rf performance of the cavities because of the elimination of electron-beam welds, which in the standard fabrication technique have sometimes lead to inferior cavity performance due to defects. Several single cell 1300 MHz cavities have been formed from high purity seamless niobium tubes, which are under computer control expanded with internal pressure while simultaneously being swaged axially. The seamless tubes have been made by either back extrusion and flow forming or by spinning or deep drawing. Standard surface treatment techniques such as high temperature post purification, buffered chemical polishing (BCP), electropolishing (EP) and high pressure ultra pure water rinsing (HPR) have been applied to these cavities. The cavities exhibited high Q - values of 2 x 10{sup 10} at 2K and residual resistances as low as 3 n{Omega} after the removal of a surface layer of app. 100 {micro}m by BCP. Surprisingly, even at high gradients up to the maximum measured values of E{sub acc} {approx} 33 MV/m the Q-value did not decrease in the absence of field emission as often observed. After electropolishing of additional 100 {micro}m one of the cavities reached an accelerating gradient of E{sub acc} {ge} 42 MV/m.

  9. Optimized Multi-Ion Cavity Coupling

    NASA Astrophysics Data System (ADS)

    Begley, Stephen; Vogt, Markus; Gulati, Gurpreet Kaur; Takahashi, Hiroki; Keller, Matthias

    2016-06-01

    Recent technological advances in cavity quantum electrodynamics (CQED) are paving the way to utilize multiple quantum emitters confined in a single optical cavity. In such systems, it is crucially important to control the quantum mechanical coupling of individual emitters to the cavity mode. In this regard, combining ion trap technologies with CQED provides a particularly promising approach due to the well-established motional control over trapped ions. Here, we experimentally demonstrate coupling of up to five trapped ions in a string to a high-finesse optical cavity. By changing the axial position and spacing of the ions in a fully deterministic manner, we systematically characterize their coupling to the cavity mode through visibility measurements of the cavity emission. In good agreement with the theoretical model, the results demonstrate that the geometrical configuration of multiple trapped ions can be manipulated to obtain optimal cavity coupling. Our system presents a new ground for exploring CQED with multiple quantum emitters, enabled by the highly controllable collective light-matter interaction.

  10. Optimized Multi-Ion Cavity Coupling.

    PubMed

    Begley, Stephen; Vogt, Markus; Gulati, Gurpreet Kaur; Takahashi, Hiroki; Keller, Matthias

    2016-06-01

    Recent technological advances in cavity quantum electrodynamics (CQED) are paving the way to utilize multiple quantum emitters confined in a single optical cavity. In such systems, it is crucially important to control the quantum mechanical coupling of individual emitters to the cavity mode. In this regard, combining ion trap technologies with CQED provides a particularly promising approach due to the well-established motional control over trapped ions. Here, we experimentally demonstrate coupling of up to five trapped ions in a string to a high-finesse optical cavity. By changing the axial position and spacing of the ions in a fully deterministic manner, we systematically characterize their coupling to the cavity mode through visibility measurements of the cavity emission. In good agreement with the theoretical model, the results demonstrate that the geometrical configuration of multiple trapped ions can be manipulated to obtain optimal cavity coupling. Our system presents a new ground for exploring CQED with multiple quantum emitters, enabled by the highly controllable collective light-matter interaction. PMID:27314716

  11. Upgraded cavities for the positron accumulator ring of the APS

    SciTech Connect

    Kang, Y.W.; Jiang, X.; Mangra, D.

    1997-08-01

    Upgraded versions of cavities for the APS positron accumulator ring (PAR) have been built and are being tested. Two cavities are in the PAR: a fundamental 9.8-MHz cavity and a twelfth harmonic 117.3-MHz cavity. Both cavities have been manufactured for higher voltage operation with improved Q-factors, reliability, and tuning capability. Both cavities employ current-controlled ferrite tuners for control of the resonant frequency. The harmonic cavity can be operated in either a pulsed mode or a CW mode. The rf properties of the cavities are presented.

  12. Demonstration of superconducting micromachined cavities

    SciTech Connect

    Brecht, T. Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J.

    2015-11-09

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  13. Demonstration of superconducting micromachined cavities

    NASA Astrophysics Data System (ADS)

    Brecht, T.; Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J.

    2015-11-01

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  14. Cavity-Enhanced Ultrafast Spectroscopy

    NASA Astrophysics Data System (ADS)

    Allison, Thomas

    2016-05-01

    Ultrafast optical spectroscopy methods, such as transient absorption spectroscopy and 2D-spectroscopy, are widely used across many disciplines. However, these techniques are typically restricted to optically thick samples, such as solids and liquid solutions. Using a frequency comb laser and optical cavities, we present a new technique for performing ultrafast optical spectroscopy with high sensitivity, enabling work in dilute gas-phase molecular beams. Resonantly enhancing the probe pulses, we demonstrate transient absorption measurements with a detection limit of ΔOD = 2 ×10-10 (1 ×10-9 /√{Hz}). Resonantly enhancing the pump pulses allows us to produce a high excitation fraction at high repetition-rate, so that signals can be recorded from samples with optical densities as low as OD 10-8 , or column densities < 1010 molecules/ cm2. To our knowledge, this represents a 5,000-fold improvement of the state-of-the-art. This work was supported by the National Science Foundation under Grant Number 1404296.

  15. Jet dynamics after cavity collapse

    NASA Astrophysics Data System (ADS)

    Gordillo, Jose Manuel; Gekle, Stephan; van der Meer, Devaraj; Lohse, Detlef

    2008-11-01

    It has been recently shown -Gekle, Gordillo, van der Meer and Lohse, Phys. Rev. Lett., 2008 (submitted)- that the liquid velocity field after cavity collapse can be analytically described as a superposition of a discontinuous line of sinks plus a concentrated point sink. This theory is able to quantitatively predict the axial and radial positions of the base of the high speed jets ejected. Nevertheless, the flow field within the fast sharp pointed jets shooting up and downwards cannot be predicted using this simplified description. Instead, we will show that downstream of a small region with a size of the order of the jet base, in which the liquid is accelerated upwards, liquid velocity and jet shape can be described by a simple unidirectional model in remarkable agreement with simulations. Up to first order, fluid particles conserve their velocities but we also show that, no matter how large the local Weber number at pinch-off is, capillarity ends up playing a role in the breakup of the ejected liquid jets.

  16. Numerical modeling of vertical cavity semiconductor lasers

    SciTech Connect

    Chow, W.W.; Hadley, G.R.

    1996-08-01

    A vertical cavity surface emitting laser (VCSEL) is a diode laser whose optical cavity is formed by growing or depositing DBR mirror stacks that sandwich an active gain region. The resulting short cavity supports lasing into a single longitudinal mode normal to the wafer, making these devices ideal for a multitude of applications, ranging from high-speed communication to high-power sources (from 2D arrays). This report describes the development of a numerical VCSEL model, whose goal is to both further their understanding of these complex devices and provide a tool for accurate design and data analysis.

  17. Analytical investigation of cavity blackbody lasers

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1985-01-01

    The characteristics of an ideal blackbody cavity lasant were outlined. The choice of an ideal lasant is a complex process depending on a large number of factors, including the choice of a cooling medium and a buffer gas. Planck's radiation law limits the power input per unit area into a CO2 blackbody cavity laser making the surface area for high powered lasers excessively large. It is suggested that an alternative application might be small 1 W lasers for communication and surveillance, because it would be easy to maintain the cavity temperatures in synchronous orbits where 72 minutes each day are spent in the Earth's shadow.

  18. Single photons from dissipation in coupled cavities

    NASA Astrophysics Data System (ADS)

    Flayac, H.; Savona, V.

    2016-07-01

    We propose a single-photon source based on a pair of weakly nonlinear optical cavities subject to a one-directional dissipative coupling. When both cavities are driven by mutually coherent fields, sub-Poissonian light is generated in the target cavity even when the nonlinear energy per photon is much smaller than the dissipation rate. The sub-Poissonian character of the field holds over a delay measured by the inverse photon lifetime, as in the conventional photon blockade, thus allowing single-photon emission under pulsed excitation. We discuss a possible implementation of the dissipative coupling relevant to photonic platforms.

  19. Clamshell microwave cavities having a superconductive coating

    DOEpatents

    Cooke, D. Wayne; Arendt, Paul N.; Piel, Helmut

    1994-01-01

    A microwave cavity including a pair of opposing clamshell halves, such halves comprised of a metal selected from the group consisting of silver, copper, or a silver-based alloy, wherein the cavity is further characterized as exhibiting a dominant TE.sub.011 mode is provided together with an embodiment wherein the interior concave surfaces of the clamshell halves are coated with a superconductive material. In the case of copper clamshell halves, the microwave cavity has a Q-value of about 1.2.times.10.sup.5 as measured at a temperature of 10K and a frequency of 10 GHz.

  20. Mold Cavity Roughness vs. Flow of Polymer

    NASA Astrophysics Data System (ADS)

    Stanek, Michal; Manas, Miroslav; Manas, David

    2009-07-01

    Injection molding represents such a way of polymer processing that requires injection of polymer melt into the mold cavity with very high injection rate. The fluidity of polymers is affected by many parameters (mold design, melt temperature, injection rate and pressure). The main objective of this paper is the study of influence of surface roughness of mold cavity of the polymer melts flow. Evaluation of set of data obtained by experiments where the testing conditions were widely changed shows that quality of cavity surface affects on the length of flow.

  1. Cavity-Controlled Chemistry in Molecular Ensembles

    NASA Astrophysics Data System (ADS)

    Herrera, Felipe; Spano, Frank C.

    2016-06-01

    The demonstration of strong and ultrastrong coupling regimes of cavity QED with polyatomic molecules has opened new routes to control chemical dynamics at the nanoscale. We show that strong resonant coupling of a cavity field with an electronic transition can effectively decouple collective electronic and nuclear degrees of freedom in a disordered molecular ensemble, even for molecules with high-frequency quantum vibrational modes having strong electron-vibration interactions. This type of polaron decoupling can be used to control chemical reactions. We show that the rate of electron transfer reactions in a cavity can be orders of magnitude larger than in free space for a wide class of organic molecular species.

  2. Cavity-Assisted Spin Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Zhu, Chuanzhou; Dong, Lin; Pu, Han

    We consider a single ultracold atom trapped inside a single-mode optical cavity, where a two-photon Raman process induces an effective coupling between atom's pseudo-spin and external center-of-mass (COM) motion. Without the COM motion, this system is described by the Jaynes-Cummings (JC) model. We show how the atomic COM motion dramatically modifies the predictions based on the JC model. We also investigated the situation when cavity pumping and decay are taken into account. We take a quantum Master equation approach to study this open system and again show how the cavity-induced spin-orbit coupling affects the properties of the system.

  3. Atomic hydrogen maser active oscillator cavity and bulb design optimization

    NASA Technical Reports Server (NTRS)

    Peters, H. E.; Washburn, P. J.

    1984-01-01

    The performance characteristics and reliability of the active oscillator atomic hydrogen maser depend upon oscillation parameters which characterize the interaction region of the maser, the resonant cavity and atom storage bulb assembly. With particular attention to use of the cavity frequency switching servo (1) to reduce cavity pulling, it is important to maintain high oscillation level, high atomic beam flux utilization efficiency, small spin exchange parameter and high cavity quality factor. It is also desirable to have a small and rigid cavity and bulb structure and to minimize the cavity temperature sensitivity. Curves for a novel hydrogen maser cavity configuration which is partially loaded with a quartz dielectric cylinder and show the relationships between cavity length, cavity diameter, bulb size, dielectric thickness, cavity quality factor, filling factor and cavity frequency temperature coefficient are presented. The results are discussed in terms of improvement in maser performance resulting from particular design choices.

  4. Striped-double cavity fabry-perot interferometers using both glass and air cavities

    SciTech Connect

    Perry, S; Steinmetz, L

    1998-07-08

    We have used piezo-driven Fabry-Perot interferometers in the past far many continuous velocity-time measurements of fast moving surfaces. In order to avoid the annoying drift of some of these devices, we have developed and used inexpensive, solid glass, striped etalons with lengths up to 64 mm. Usable apertures are 35 mm by 80 mm with a finess of 25. A roundabout technique was devised for double cavity operation. We built a passive thermal housing for temperature stability, with tilt and height adjustments. We have also developed and used our first fixed etalon air-spaced cavity with a rotatable glass double- cavity insert. The rotation allows the referee cavity fractional order to be adjusted separately from that of the main cavity. It needs very little thermal protection, and eliminates the need for a roundabout scheme for double cavity operation, but is more costly than the solid glass version I

  5. Perturbing Open Cavities: Anomalous Resonance Frequency Shifts in a Hybrid Cavity-Nanoantenna System.

    PubMed

    Ruesink, Freek; Doeleman, Hugo M; Hendrikx, Ruud; Koenderink, A Femius; Verhagen, Ewold

    2015-11-13

    The influence of a small perturbation on a cavity mode plays an important role in fields like optical sensing, cavity quantum electrodynamics, and cavity optomechanics. Typically, the resulting cavity frequency shift directly relates to the polarizability of the perturbation. Here, we demonstrate that particles perturbing a radiating cavity can induce strong frequency shifts that are opposite to, and even exceed, the effects based on the particles' polarizability. A full electrodynamic theory reveals that these anomalous results rely on a nontrivial phase relation between cavity and nanoparticle radiation, allowing backaction via the radiation continuum. In addition, an intuitive model based on coupled mode theory is presented that relates the phenomenon to retardation. Because of the ubiquity of dissipation, we expect these findings to benefit the understanding and engineering of a wide class of systems. PMID:26613442

  6. Photonic crystal cavities with metallic Schottky contacts

    SciTech Connect

    Quiring, W.; Al-Hmoud, M.; Reuter, D.; Zrenner, A.; Rai, A.; Wieck, A. D.

    2015-07-27

    We report about the fabrication and analysis of high Q photonic crystal cavities with metallic Schottky-contacts. The structures are based on GaAs n-i membranes with an InGaAs quantum well in the i-region and nanostructured low ohmic metal top-gates. They are designed for photocurrent readout within the cavity and fast electric manipulations. The cavity structures are characterized by photoluminescence and photocurrent spectroscopy under resonant excitation. We find strong cavity resonances in the photocurrent spectra and surprisingly high Q-factors up to 6500. Temperature dependent photocurrent measurements in the region between 4.5 K and 310 K show an exponential enhancement of the photocurrent signal and an external quantum efficiency up to 0.26.

  7. Visual cavity analysis in molecular simulations

    PubMed Central

    2013-01-01

    Molecular surfaces provide a useful mean for analyzing interactions between biomolecules; such as identification and characterization of ligand binding sites to a host macromolecule. We present a novel technique, which extracts potential binding sites, represented by cavities, and characterize them by 3D graphs and by amino acids. The binding sites are extracted using an implicit function sampling and graph algorithms. We propose an advanced cavity exploration technique based on the graph parameters and associated amino acids. Additionally, we interactively visualize the graphs in the context of the molecular surface. We apply our method to the analysis of MD simulations of Proteinase 3, where we verify the previously described cavities and suggest a new potential cavity to be studied. PMID:24564409

  8. Wakefield Damping for the CLIC Crab Cavity

    SciTech Connect

    Ambattu, P.K.; Burt, G.; Dexter, A.C.; Carter, R.G.; Khan, V.; Jones, R.M.; Dolgashev, V.; /SLAC

    2011-12-01

    A crab cavity is required in the CLIC to allow effective head-on collision of bunches at the IP. A high operating frequency is preferred as the deflection voltage required for a given rotation angle and the RF phase tolerance for a crab cavity are inversely proportional to the operating frequency. The short bunch spacing of the CLIC scheme and the high sensitivity of the crab cavity to dipole kicks demand very high damping of the inter-bunch wakes, the major contributor to the luminosity loss of colliding bunches. This paper investigates the nature of the wakefields in the CLIC crab cavity and the possibility of using various damping schemes to suppress them effectively.

  9. Deflecting light into resonant cavities for spectroscopy

    DOEpatents

    Zare, Richard N.; Martin, Juergen; Paldus, Barbara A.

    1998-01-01

    Light is coupled into a cavity ring down spectroscopy (CRDS) resonant cavity using an acousto-optic modulator. The AOM allows in-coupling efficiencies in excess of 40%, which is two to three orders of magnitude higher than in conventional systems using a cavity mirror for in-coupling. The AOM shutoff time is shorter than the roundtrip time of the cavity. The higher light intensities lead to a reduction in shot noise, and allow the use of relatively insensitive but fast-responding detectors such as photovoltaic detectors. Other deflection devices such as electro-optic modulators or elements used in conventional Q-switching may be used instead of the AOM. The method is particularly useful in the mid-infrared, far-infrared, and ultraviolet wavelength ranges, for which moderately reflecting input mirrors are not widely available.

  10. Deflecting light into resonant cavities for spectroscopy

    DOEpatents

    Zare, R.N.; Martin, J.; Paldus, B.A.

    1998-09-29

    Light is coupled into a cavity ring down spectroscopy (CRDS) resonant cavity using an acousto-optic modulator. The AOM allows in-coupling efficiencies in excess of 40%, which is two to three orders of magnitude higher than in conventional systems using a cavity mirror for in-coupling. The AOM shutoff time is shorter than the roundtrip time of the cavity. The higher light intensities lead to a reduction in shot noise, and allow the use of relatively insensitive but fast-responding detectors such as photovoltaic detectors. Other deflection devices such as electro-optic modulators or elements used in conventional Q-switching may be used instead of the AOM. The method is particularly useful in the mid-infrared, far-infrared, and ultraviolet wavelength ranges, for which moderately reflecting input mirrors are not widely available. 5 figs.

  11. Atom interferometry in an optical cavity.

    PubMed

    Hamilton, Paul; Jaffe, Matt; Brown, Justin M; Maisenbacher, Lothar; Estey, Brian; Müller, Holger

    2015-03-13

    We propose and demonstrate a new scheme for atom interferometry, using light pulses inside an optical cavity as matter wave beam splitters. The cavity provides power enhancement, spatial filtering, and a precise beam geometry, enabling new techniques such as low power beam splitters (<100  μW), large momentum transfer beam splitters with modest power, or new self-aligned interferometer geometries utilizing the transverse modes of the optical cavity. As a first demonstration, we obtain Ramsey-Raman fringes with >75% contrast and measure the acceleration due to gravity, g, to 60  μg/sqrt[Hz] resolution in a Mach-Zehnder geometry. We use >10(7) cesium atoms in the compact mode volume (600  μm 1/e(2) waist) of the cavity and show trapping of atoms in higher transverse modes. This work paves the way toward compact, high sensitivity, multiaxis interferometry. PMID:25815912

  12. Reducing the convective losses of cavity receivers

    NASA Astrophysics Data System (ADS)

    Flesch, Robert; Grobbel, Johannes; Stadler, Hannes; Uhlig, Ralf; Hoffschmidt, Bernhard

    2016-05-01

    Convective losses reduce the efficiency of cavity receivers used in solar power towers especially under windy conditions. Therefore, measures should be taken to reduce these losses. In this paper two different measures are analyzed: an air curtain and a partial window which covers one third of the aperture opening. The cavity without modifications and the usage of a partial window were analyzed in a cryogenic wind tunnel at -173°C. The cryogenic environment allows transforming the results from the small model cavity to a large scale receiver with Gr≈3.9.1010. The cavity with the two modifications in the wind tunnel environment was analyzed with a CFD model as well. By comparing the numerical and experimental results the model was validated. Both modifications are capable of reducing the convection losses. In the best case a reduction of about 50 % was achieved.

  13. Analysis and control of cavity flow

    NASA Astrophysics Data System (ADS)

    Kourta, A.; Vitale, E.

    2008-07-01

    A flow above a cavity leads to an unsteady separated flow. This configuration exhibits an intense aeroacoustic coupling, where very intense aerodynamic noise can be emitted. Moreover, a majority of tangential flow above a cavity has an oscillatory character, resulting from a strong coupling between the acoustic and the flow dynamics. In the present work, we are interested in characterizing the dynamics and the frequency distribution of a cavity flow. First, the dynamics of the cavity are analyzed and the frequency distribution is established, which is followed by a study of nonlinear interaction. An open loop control using a synthetic jet is then applied in order to reduce noise generation. Finally, by choosing suitable jet parameters a significant noise reduction is obtained.

  14. Selected computations of transonic cavity flows

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher A.

    1993-01-01

    An efficient diagonal scheme implemented in an overset mesh framework has permitted the analysis of geometrically complex cavity flows via the Reynolds averaged Navier-Stokes equations. Use of rapid hyperbolic and algebraic grid methods has allowed simple specification of critical turbulent regions with an algebraic turbulence model. Comparisons between numerical and experimental results are made in two dimensions for the following problems: a backward-facing step; a resonating cavity; and two quieted cavity configurations. In three-dimensions the flow about three early concepts of the stratospheric Observatory For Infrared Astronomy (SOFIA) are compared to wind-tunnel data. Shedding frequencies of resolved shear layer structures are compared against experiment for the quieted cavities. The results demonstrate the progress of computational assessment of configuration safety and performance.

  15. Degreasing and cleaning superconducting RF Niobium cavities

    SciTech Connect

    Rauchmiller, Michael; Kellett, Ron; /Fermilab

    2011-09-01

    The purpose and scope of this report is to detail the steps necessary for degreasing and cleaning of superconducting RF Niobium cavities in the A0 clean room. It lists the required equipment and the cleaning procedure.

  16. Constant field gradient planar cavity structure

    SciTech Connect

    Kang, Yoon W.; Kustom, R.L.

    1997-12-01

    A cavity structure is described having at least two opposing planar housing members spaced apart to accommodate the passage of a particle beam through the structure between the members. Each of the housing members have a plurality of serially aligned hollows defined therein, and also passages, formed in the members, which interconnect serially adjacent hollows to provide communication between the hollows. The opposing planar housing members are spaced and aligned such that the hollows in one member cooperate with corresponding hollows in the other member to form a plurality of resonant cavities aligned along the particle beam within the cavity structure. To facilitate the obtaining of a constant field gradient within the cavity structure, the passages are configured so as to be incrementally narrower in the direction of travel of the particle beam. In addition, the spacing distance between the opposing housing members is configured to be incrementally smaller in the direction of travel of the beam.

  17. Constant field gradient planar coupled cavity structure

    DOEpatents

    Kang, Yoon W.; Kustom, Robert L.

    1999-01-01

    A cavity structure having at least two opposing planar housing members spaced apart to accommodate the passage of a particle beam through the structure between the members. Each of the housing members have a plurality of serially aligned hollows defined therein, and also passages, formed in the members, which interconnect serially adjacent hollows to provide communication between the hollows. The opposing planar housing members are spaced and aligned such that the hollows in one member cooperate with corresponding hollows in the other member to form a plurality of resonant cavities aligned along the particle beam within the cavity structure. To facilitate the obtaining of a constant field gradient within the cavity structure, the passages are configured so as to be incrementally narrower in the direction of travel of the particle beam. In addition, the spacing distance between the opposing housing members is configured to be incrementally smaller in the direction of travel of the beam.

  18. Plasma Treatment of Niobium SRF Cavity Surfaces

    SciTech Connect

    J. Upadhyay, M. Raskovic, L. Vuskovic, S. Popovic, A.-M. Valente-Feliciano, L. Phillips

    2010-05-01

    Plasma based surface modification provides an excellent opportunity to eliminate non- superconductive pollutants in the penetration depth region of the SRF cavity surface and to remove mechanically damaged surface layer improving surface roughness. We have demonstrated on flat samples that plasma etching in Ar / Cl2 of bulk Nb is a viable alternative surface preparation technique to BCP and EP methods, with comparable etching rates. The geometry of SRF cavities made of bulk Nb defines the use of asymmetric RF discharge configuration for plasma etching. In a specially designed single cell cavity with sample holders, discharge parameters are combined with etched surface diagnostics to obtain optimum combination of etching rates, roughness and homogeneity in a variety of discharge types, conditions, and sequences. The optimized experimental conditions will ultimately be applied to single cell SRF cavities.

  19. Progressive cavity pump for downhole inflatable packer

    SciTech Connect

    Clark, J.A.

    1992-03-24

    This patent describes a downhole inflatable packer pump. It comprises: case means for attaching to a lower testing string portion and having an inlet and an outlet, the outlet being communicable with an inflatable packer at a location below the pump; mandrel means, rotatably disposed within the case means, for connecting to an upper testing string portion for mutual rotation therewith and rotating within the case means; an elastomeric pump stator disposed in the case means, the stator having a convoluted inner surface; a rotor extending form the mandrel means and into the stator, the rotor having a convoluted outer surface, the stator and rotor defining a plurality of cavities therebetween, whereby rotation of the rotor within the stator moves fluid progressively from cavity to cavity and thereby from the inlet to the outlet; passageway means for providing fluid communication between the lower testing string portion and the upper testing string portion, the passageway means being sealing separated from the cavities.

  20. Ultrastable lasers based on vibration insensitive cavities

    SciTech Connect

    Millo, J.; Magalhaes, D. V.; Mandache, C.; Le Coq, Y.; English, E. M. L.; Westergaard, P. G.; Lodewyck, J.; Bize, S.; Lemonde, P.; Santarelli, G.

    2009-05-15

    We present two ultrastable lasers based on two vibration insensitive cavity designs, one with vertical optical axis geometry, the other horizontal. Ultrastable cavities are constructed with fused silica mirror substrates, shown to decrease the thermal noise limit, in order to improve the frequency stability over previous designs. Vibration sensitivity components measured are equal to or better than 1.5x10{sup -11}/m s{sup -2} for each spatial direction, which shows significant improvement over previous studies. We have tested the very low dependence on the position of the cavity support points, in order to establish that our designs eliminate the need for fine tuning to achieve extremely low vibration sensitivity. Relative frequency measurements show that at least one of the stabilized lasers has a stability better than 5.6x10{sup -16} at 1 s, which is the best result obtained for this length of cavity.