Science.gov

Sample records for lcls-s1 optical transition

  1. Patterning via optical saturable transitions

    NASA Astrophysics Data System (ADS)

    Cantu, Precious

    For the past 40 years, optical lithography has been the patterning workhorse for the semiconductor industry. However, as integrated circuits have become more and more complex, and as device geometries shrink, more innovative methods are required to meet these needs. In the far-field, the smallest feature that can be generated with light is limited to approximately half the wavelength. This, so called far-field diffraction limit or the Abbe limit (after Prof. Ernst Abbe who first recognized this), effectively prevents the use of long-wavelength photons >300nm from patterning nanostructures <100nm. Even with a 193nm laser source and extremely complicated processing, patterns below ˜20nm are incredibly challenging to create. Sources with even shorter wavelengths can potentially be used. However, these tend be much more expensive and of much lower brightness, which in turn limits their patterning speed. Multi-photon reactions have been proposed to overcome the diffraction limit. However, these require very large intensities for modest gain in resolution. Moreover, the large intensities make it difficult to parallelize, thus limiting the patterning speed. In this dissertation, a novel nanopatterning technique using wavelength-selective small molecules that undergo single-photon reactions, enabling rapid top-down nanopatterning over large areas at low-light intensities, thereby allowing for the circumvention of the far-field diffraction barrier is developed and experimentally verified. This approach, which I refer to as Patterning via Optical Saturable Transitions (POST) has the potential for massive parallelism, enabling the creation of nanostructures and devices at a speed far surpassing what is currently possible with conventional optical lithographic techniques. The fundamental understanding of this technique goes beyond optical lithography in the semiconductor industry and is applicable to any area that requires the rapid patterning of large-area two or three

  2. The Multi Optical Transition Radiation System

    SciTech Connect

    Faus-Golfe, A.; Alabau-Gonzalvo, J.; Blanch Gutierrez, C.; McCormick, D.; Cruz, J.; Woodley, M.; White, G.; /SLAC

    2012-04-19

    The determination and monitoring of the transverse phase space in ATF2 is crucial in order to meet their performances specifications. Since the beam sizes at the Interaction Point (IP) depend strongly on the aberrations in the Final Focus System (FFS), accurate measurement upstream of the FFS is required to tune the beam sizes at the IP. The beam sizes as well as the emittance are measured in several locations in the beam diagnostic section of the Extraction Line (EXT line) of ATF2. The vertical beam sizes in the diagnostic section are of the order of 10 {mu}m this means that the devices have to image spot sizes as small as 5 {mu}m, with 10% accuracy a 2 {mu}m resolution device is necessary. The ATF2 EXT line is a beam line with low power and low repetition rate that make usable devices using solid targets. In contrast to a ring machine, where an individual bunch can be measured many times as it passes around the ring, the beam size and the emittance measurement in the LC or in the beam lines have to be performed in a single pass. This requires that the wire scan device types (laser or solid) sample across successive bunches within a train, often with an over-estimation of the beam size due to beam position and intensity jitter, and can take up to half a minute to complete the measurement. Although some of these effects could be corrected, as the jitter effect could be subtracted by using the nearby BPMs signals, this can be avoided by using Optical Transition Radiation (OTR) Monitors. These monitors are based on the transition radiation effect, a light cone emitted when the charged particle crosses a metallic interface. This light is emitted in a specular fashion so it can be focused on to a CCD and produces an image of the beam. OTRs are able to take many fast measurements and therefore to measure the emittance with high statistics, giving a low error and a good understanding of the emittance jitter. In this article, simulations of the expected beam sizes and

  3. Aqueous medium induced optical transitions in cerium oxide nanoparticles

    SciTech Connect

    Inerbaev, Talgat M.; Karakoti, Ajay S.; Kuchibhatla, S. V. N. T.; Kumar, Amit; Masunov, Artem E.; Seal, Sudipta

    2015-03-07

    Experimental and theoretical investigations were performed to investigate the effect of water on optical properties of nanoceria as a function of Ce3+ concentration. Theoretical studies based on density functional plane-wave calculations reveal that the indirect optical transitions in bare ceria nanoparticles are red-shifted with an increase in the concentration of Ce3+. However, ceria nanoparticles model with adsorbed water molecules show a blue shift in the indirect optical spectra under identical conditions. Direct optical transitions are almost independent of Ce3+ concentration but show a pronounced blue shift in the aqueous environment relative to the bare nanoparticles. The theoretical study is consistent with our experimental observation in difference of shift behaviour in bare and aqueous suspended ceria nanoparticles. This change from red- to blue-shift in indirect optical transitions is associated with the polarization effect of water molecules on f-electron states.

  4. Quantum phase transition of condensed bosons in optical lattices

    SciTech Connect

    Liang Junjun; Liang, J.-Q.; Liu, W.-M.

    2003-10-01

    In this paper we study the superfluid-Mott-insulator phase transition of ultracold dilute gas of bosonic atoms in an optical lattice by means of Green function method and Bogliubov transformation as well. The superfluid-Mott-insulator phase transition condition is determined by the energy-band structure with an obvious interpretation of the transition mechanism. Moreover the superfluid phase is explained explicitly from the energy spectrum derived in terms of Bogliubov approach.

  5. Observation of optical bistability due to resonator configuration transition

    NASA Astrophysics Data System (ADS)

    Lee, C. S.; Osada, H.

    1985-05-01

    In this Letter, a new kind of active optical bistability is discussed. The basic principle underlying the operation of the optically bistable laser is based on stable-unstable cavity configuration transitions of an active optical resonator. Generally speaking, a laser system showing both pump- and laser-induced lensing (focusing or defocusing) effects may display such a hysteresis loop in its input-output characteristics. This bistability is experimentally demonstrated using a flashlamp-pumped, Nd-doped gadolinium gallium garnet rod placed in a plane-parallel optical cavity.

  6. Optical feshbach resonance using the intercombination transition.

    PubMed

    Enomoto, K; Kasa, K; Kitagawa, M; Takahashi, Y

    2008-11-14

    We report control of the scattering wave function by an optical Feshbach resonance effect using ytterbium atoms. The narrow intercombination line (1S0-3P1) is used for efficient control as proposed by Ciuryło et al. [Phys. Rev. A 71, 030701(R) (2005)10.1103/PhysRevA.71.030701]. The manipulation of the scattering wave function is monitored with the change of a photoassociation rate caused by another laser. The optical Feshbach resonance is especially efficient for isotopes with large negative scattering lengths such as 172Yb, and we have confirmed that the scattering phase shift divided by the wave number, which gives the scattering length in the zero energy limit, is changed by about 30 nm. PMID:19113335

  7. Electric tuning of direct-indirect optical transitions in silicon

    PubMed Central

    Noborisaka, J.; Nishiguchi, K.; Fujiwara, A.

    2014-01-01

    Electronic band structures in semiconductors are uniquely determined by the constituent elements of the lattice. For example, bulk silicon has an indirect bandgap and it prohibits efficient light emission. Here we report the electrical tuning of the direct/indirect band optical transition in an ultrathin silicon-on-insulator (SOI) gated metal-oxide-semiconductor (MOS) light-emitting diode. A special Si/SiO2 interface formed by high-temperature annealing that shows stronger valley coupling enables us to observe phononless direct optical transition. Furthermore, by controlling the gate field, its strength can be electrically tuned to 16 times that of the indirect transition, which is nearly 800 times larger than the weak direct transition in bulk silicon. These results will therefore assist the development of both complementary MOS (CMOS)-compatible silicon photonics and the emerging “valleytronics” based on the control of the valley degree of freedom. PMID:25377598

  8. Multistate transitions and quantum oscillations of optical activity

    NASA Astrophysics Data System (ADS)

    Blanco, Celia; Hochberg, David

    2012-02-01

    We consider the effects of multistate transitions on the tunneling racemization of chiral molecules. This requires going beyond simple two-state models of enantiomers and to include transitions within a multiple-level quantum-mechanical system. We derive an effective two-level description which accounts for transitions from the enantiomers to an arbitrary number of excited states as an application of the Weisskopf-Wigner approximation scheme. Modifications to the optical activity from these additional states are considered in general terms under the assumption of CPT invariance and then under T invariance. Some formal dynamical analogies between enantiomers and the neutral K-meson system are discussed.

  9. Isotropically sensitive optical filter employing atomic resonance transitions

    DOEpatents

    Marling, John B.

    1981-01-01

    An ultra-high Q isotropically sensitive optical filter or optical detector employing atomic resonance transitions. More specifically, atomic resonance transitions utilized in conjunction with two optical bandpass filters provide an optical detector having a wide field of view (.about.2.pi. steradians) and very narrow acceptance bandwidth approaching 0.01 A. A light signal to be detected is transmitted through an outer bandpass filter into a resonantly absorbing atomic vapor, the excited atomic vapor then providing a fluorescence signal at a different wavelength which is transmitted through an inner bandpass filter. The outer and inner bandpass filters have no common transmission band, thereby resulting in complete blockage of all optical signals that are not resonantly shifted in wavelength by the intervening atomic vapor. Two embodiments are disclosed, one in which the light signal raises atoms contained in the atomic vapor from the ground state to an excited state from which fluorescence occurs, and the other in which a pump laser is used to raise the atoms in the ground state to a first excited state from which the light signal then is resonantly absorbed, thereby raising the atoms to a second excited state from which fluorescence occurs. A specific application is described in which an optical detector according to the present invention can be used as an underwater detector for light from an optical transmitter which could be located in an orbiting satellite.

  10. Engineering closed optical transitions in rare-earth ion crystals

    NASA Astrophysics Data System (ADS)

    Bartholomew, John G.; Ahlefeldt, Rose L.; Sellars, Matthew J.

    2016-01-01

    We propose a protocol to preserve the spin state of rare-earth ions when they are optically cycled. This technique uses large magnetic fields to increase the probability of an optically excited ion returning to its initial spin state. This Zeeman enhanced cyclicity is shown to be applicable to non-Kramers ions in various crystals irrespective of the site symmetry. The specific example of Pr3 +:Y2SiO5 is investigated to demonstrate that the protocol can create closed optical transitions even where the point group symmetry of the site is C1. In this example, the predicted cyclicity exceeds 104. This high level of cyclicity extends the usefulness of rare-earth ion crystals for applications in quantum and classical information processing. We explore the use of this technique to enable single-ion, spin-state optical readout and the creation of ensemble-based spectral features that are robust against optical cycling.

  11. Hyper-Ramsey spectroscopy of optical clock transitions

    SciTech Connect

    Yudin, V. I.; Taichenachev, A. V.; Oates, C. W.; Barber, Z. W.; Lemke, N. D.; Ludlow, A. D.; Sterr, U.; Lisdat, Ch.; Riehle, F.

    2010-07-15

    We present nonstandard optical Ramsey schemes that use pulses individually tailored in duration, phase, and frequency to cancel spurious frequency shifts related to the excitation itself. In particular, the field shifts and their uncertainties can be radically suppressed (by two to four orders of magnitude) in comparison with the usual Ramsey method (using two equal pulses) as well as with single-pulse Rabi spectroscopy. Atom interferometers and optical clocks based on two-photon transitions, heavily forbidden transitions, or magnetically induced spectroscopy could significantly benefit from this method. In the latter case, these frequency shifts can be suppressed considerably below a fractional level of 10{sup -17}. Moreover, our approach opens the door for high-precision optical clocks based on direct frequency comb spectroscopy.

  12. Isotropically sensitive optical filter employing atomic resonance transitions

    DOEpatents

    Marling, J.B.

    An ultra-high Q isotropically sensitive optical filter or optical detector is disclosed employing atomic resonance transitions. More specifically, atomic resonance transitions utilized in conjunction with two optical bandpass filters provide an optical detector having a wide field of view (approx. 2 ..pi.. steradians) and very narrow acceptance bandwidth approaching 0.01A. A light signal to be detected is transmitted through an outer bandpass filter into a resonantly absorbing atomic vapor, the excited atomic vapor than providing a fluorescence signal at a different wavelength which is transmitted through an inner bandpass filters have no common transmission band, therby resulting in complete blockage of all optical signals that are not resonantly shifted in wavelength by the intervening atomic vapor. Two embodiments are disclosed, one in which the light signal raises atoms contained in the atomic vapor from the ground state to an excited state from which fluorescence occurs, and the other in which a pump laser is used to raise the atoms in the ground state to a first excited state from which the light signal then is resonantly absorbed, thereby raising the atoms to a second excited state from which fluorescence occurs. A specific application is described in which an optical detector according to the present invention can be located in an orbiting satellite.

  13. Optical properties of transition metal oxide quantum wells

    SciTech Connect

    Lin, Chungwei; Posadas, Agham; Choi, Miri; Demkov, Alexander A.

    2015-01-21

    Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO{sub 3}/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered.

  14. Optical properties of transition metal oxide quantum wells

    NASA Astrophysics Data System (ADS)

    Lin, Chungwei; Posadas, Agham; Choi, Miri; Demkov, Alexander A.

    2015-01-01

    Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO3/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered.

  15. Optical Properties in Non-equilibrium Phase Transitions

    SciTech Connect

    Ao, T; Ping, Y; Widmann, K; Price, D F; Lee, E; Tam, H; Springer, P T; Ng, A

    2006-01-05

    An open question about the dynamical behavior of materials is how phase transition occurs in highly non-equilibrium systems. One important class of study is the excitation of a solid by an ultrafast, intense laser. The preferential heating of electrons by the laser field gives rise to initial states dominated by hot electrons in a cold lattice. Using a femtosecond laser pump-probe approach, we have followed the temporal evolution of the optical properties of such a system. The results show interesting correlation to non-thermal melting and lattice disordering processes. They also reveal a liquid-plasma transition when the lattice energy density reaches a critical value.

  16. Resolved Atomic Interaction Sidebands in an Optical Clock Transition

    SciTech Connect

    Bishof, M.; Lin, Y.; Swallows, M. D.; Ye, J.; Rey, A. M.; Gorshkov, A. V.

    2011-06-24

    We report the observation of resolved atomic interaction sidebands (ISB) in the {sup 87}Sr optical clock transition when atoms at microkelvin temperatures are confined in a two-dimensional optical lattice. The ISB are a manifestation of the strong interactions that occur between atoms confined in a quasi-one-dimensional geometry and disappear when the confinement is relaxed along one dimension. The emergence of ISB is linked to the recently observed suppression of collisional frequency shifts. At the current temperatures, the ISB can be resolved but are broad. At lower temperatures, ISB are predicted to be substantially narrower and useful spectroscopic tools in strongly interacting alkaline-earth gases.

  17. Spectra of Optical Functions and Transitions in Diamond

    NASA Astrophysics Data System (ADS)

    Sobolev, V. V.; Timonov, A. P.; Sobolev, V. Val.

    2000-02-01

    Spectra of a complete set of optical functions are obtained for three different diamond samples in the region from 0 to 32 eV. The calculations were performed by the Kramers-Kronig method using experimental reflection spectra. Special features and differences of the spectra of optical functions of the three samples are analyzed. Based on the method of joined Argand diagrams, the spectra of the dielectric constant are decomposed into elementary components for the first time, and their energies and oscillator strengths are determined. The component structure is in good agreement with the theoretical spectrum of the dielectric constant and the expected spectrum of the interband transitions.

  18. Clock Shifts of Optical Transitions in Ultracold Atomic Gases

    SciTech Connect

    Yu Zhenhua; Pethick, C. J.

    2010-01-08

    We calculate the shift, due to interatomic interactions, of an optical transition in an atomic Fermi gas trapped in an optical lattice, as in recent experiments of Campbell et al.[Science 324, 360 (2009)]. Using a pseudospin formalism to describe the density matrix of atoms, we derive a Bloch equation which incorporates both spatial inhomogeneity of the probe laser field and interatomic interactions. Expressions are given for the frequency shift as a function of pulse duration, detuning of the probe laser, and the spatial dependence of the electric field of the probe beam. In the low temperature semiclassical regime, we find that the magnitude of the shift is proportional to the temperature.

  19. The absolute frequency of the 87Sr optical clock transition

    NASA Astrophysics Data System (ADS)

    Campbell, Gretchen K.; Ludlow, Andrew D.; Blatt, Sebastian; Thomsen, Jan W.; Martin, Michael J.; de Miranda, Marcio H. G.; Zelevinsky, Tanya; Boyd, Martin M.; Ye, Jun; Diddams, Scott A.; Heavner, Thomas P.; Parker, Thomas E.; Jefferts, Steven R.

    2008-10-01

    The absolute frequency of the 1S0-3P0 clock transition of 87Sr has been measured to be 429 228 004 229 873.65 (37) Hz using lattice-confined atoms, where the fractional uncertainty of 8.6 × 10-16 represents one of the most accurate measurements of an atomic transition frequency to date. After a detailed study of systematic effects, which reduced the total systematic uncertainty of the Sr lattice clock to 1.5 × 10-16, the clock frequency is measured against a hydrogen maser which is simultaneously calibrated to the US primary frequency standard, the NIST Cs fountain clock, NIST-F1. The comparison is made possible using a femtosecond laser based optical frequency comb to phase coherently connect the optical and microwave spectral regions and by a 3.5 km fibre transfer scheme to compare the remotely located clock signals.

  20. Optical characterization of phase transitions in pure polymers and blends

    NASA Astrophysics Data System (ADS)

    Mannella, Gianluca A.; Brucato, Valerio; La Carrubba, Vincenzo

    2015-12-01

    To study the optical properties of polymeric samples, an experimental apparatus was designed on purpose and set up. The sample is a thin film enclosed between two glass slides and a PTFE frame, with a very thin thermocouple placed on sample for direct temperature measurement. This sample holder was placed between two aluminum slabs, equipped with a narrow slit for optical measurements and with electrical resistances for temperature control. Sample was enlightened by a laser diode, whereas transmitted light was detected with a photodiode. Measurements were carried out on polyethylene-terephtalate (PET) and two different polyamides, tested as pure polymers and blends. The thermal history imposed to the sample consisted in a rapid heating from ambient temperature to a certain temperature below the melting point, a stabilization period, and then a heating at constant rate. After a second stabilization period, the sample was cooled. The data obtained were compared with DSC measurements performed with the same thermal history. In correspondence with transitions detected via DSC (e.g. melting, crystallization and cold crystallization), the optical signal showed a steep variation. In particular, crystallization resulted in a rapid decrease of transmitted light, whereas melting gave up an increase of light transmitted by the sample. Further variations in transmitted light were recorded for blends, after melting: those results may be related to other phase transitions, e.g. liquid-liquid phase separation. All things considered, the apparatus can be used to get reliable data on phase transitions in polymeric systems.

  1. Optical characterization of phase transitions in pure polymers and blends

    SciTech Connect

    Mannella, Gianluca A.; Brucato, Valerio; La Carrubba, Vincenzo

    2015-12-17

    To study the optical properties of polymeric samples, an experimental apparatus was designed on purpose and set up. The sample is a thin film enclosed between two glass slides and a PTFE frame, with a very thin thermocouple placed on sample for direct temperature measurement. This sample holder was placed between two aluminum slabs, equipped with a narrow slit for optical measurements and with electrical resistances for temperature control. Sample was enlightened by a laser diode, whereas transmitted light was detected with a photodiode. Measurements were carried out on polyethylene-terephtalate (PET) and two different polyamides, tested as pure polymers and blends. The thermal history imposed to the sample consisted in a rapid heating from ambient temperature to a certain temperature below the melting point, a stabilization period, and then a heating at constant rate. After a second stabilization period, the sample was cooled. The data obtained were compared with DSC measurements performed with the same thermal history. In correspondence with transitions detected via DSC (e.g. melting, crystallization and cold crystallization), the optical signal showed a steep variation. In particular, crystallization resulted in a rapid decrease of transmitted light, whereas melting gave up an increase of light transmitted by the sample. Further variations in transmitted light were recorded for blends, after melting: those results may be related to other phase transitions, e.g. liquid-liquid phase separation. All things considered, the apparatus can be used to get reliable data on phase transitions in polymeric systems.

  2. Energy spectra and optical transitions in germanene quantum dots.

    PubMed

    Herath, Thakshila M; Apalkov, Vadym

    2016-04-27

    The band gap of buckled graphene-like materials, such as silicene and germanene, depends on external perpendicular electric field. Then a specially design profile of electric field can produce trapping potential for electrons. We study theoretically the energy spectrum and optical transitions for such designed quantum dots (QDs) in graphene-like materials. The energy spectra depend on the size of the QD and applied electric field in the region of the QD. The number of the states in the QD increases with increasing the size of the dot and the energies of the states have almost linear dependence on the applied electric field with the slope which increases with increasing the dot size. The optical properties of the QDs are characterized by two types of absorption spectra: interband (optical transitions between the states of the valence and conduction bands) and intraband (transitions between the states of conduction/valence band). The interband absorption spectra have triple-peak structure with peak separation around 10 meV, while intraband absorption spectra, which depend on the number of electrons in the dot, have double-peak structure. PMID:27008912

  3. Stimulated electronic transition concept for an erasable optical memory

    NASA Technical Reports Server (NTRS)

    Albin, Sacharia; Satira, James D.; Livingston, David L.; Shull, Thomas A.

    1992-01-01

    A new concept for an erasable optical memory is demonstrated using stimulated electronic transition (SET). Large bandgap semiconductors are suitable materials for the SET medium. The properties of MgS:Eu,Sm and SrS:Eu,Sm as possible media for the SET process are investigated. Quantum storage is achieved in the form of charges in deep levels in the medium and stimulated radiative recombination is used as the reading process. Unlike magneto-optic (M-O) and phase change (PC) processes, optical writing, reading and erasing are achieved without localized heating. The SET process will have an inherently faster data transfer rate and a higher storage density, and the medium will be more durable than the M-O and PC media. A possible application of the SET process in neural networks is also discussed.

  4. Advanced simulations of optical transition and diffraction radiation

    NASA Astrophysics Data System (ADS)

    Aumeyr, T.; Billing, M. G.; Bobb, L. M.; Bolzon, B.; Bravin, E.; Karataev, P.; Kruchinin, K.; Lefevre, T.; Mazzoni, S.

    2015-04-01

    Charged particle beam diagnostics is a key task in modern and future accelerator installations. The diagnostic tools are practically the "eyes" of the operators. The precision and resolution of the diagnostic equipment are crucial to define the performance of the accelerator. Transition and diffraction radiation (TR and DR) are widely used for electron beam parameter monitoring. However, the precision and resolution of those devices are determined by how well the production, transport and detection of these radiation types are understood. This paper reports on simulations of TR and DR spatial-spectral characteristics using the physical optics propagation (POP) mode of the Zemax advanced optics simulation software. A good consistency with theory is demonstrated. Also, realistic optical system alignment issues are discussed.

  5. Precise Measurement of Vibrational Transition Frequency of Optically Trapped Molecules

    NASA Astrophysics Data System (ADS)

    Kajita, Masatoshi; Gopakumar, Geetha; Abe, Minori; Hada, Masahiko

    2013-06-01

    We propose to measure the X^{2}Σ(v,N,F,M) =( 0,0,3/2,±3/2) →( v_{u},0,3/2,±3/2) ( v_{u}=1,2,3,4,,,,) transition frequencies of X^{6}Li molecules with the uncertainty lower than 10^{-16} (X: ^{174}Yb, ^{88}Sr, ^{40}Ca). Molecules are produced by photo-association of cold atoms and trapped in the optical lattices. Measurement with molecules in optical lattices is particularly advantageous for precision measurements because (1) the molecules and probe laser interact for a long time, (2) molecules are localized within the Lamb-Dicke region, (3) the measurement is possible with a large number of molecules, and (4) collision effects are suppressed (molecules are trapped at different positions in 2D lattices). Using the proper trap laser frequency, the Stark shift induced by the trap laser is eliminated as the Stark energy shift of the upper and lower states are equal (magic frequency). When the trap laser frequency is shifted from the magic frequency by 1 MHz, the Stark shift is less than 3×10^{-15}. The N=0→0 transition is one-photon forbidden, and it is stimulated by Raman transition using two lasers. When one of two Raman lasers is higher than the magic frequency and another is lower, the total Stark shift induced by two Raman lasers can be eliminated. Measurement of molecular vibrational transition frequencies is useful to test the variation in the proton-to-electron mass ratio. The ^{1}S_{0}-^{3}% P_{0} transition frequencies of ^{27}Al^{+} ion or ^{87}Sr atom are useful as the reference.

  6. High power beam profile monitor with optical transition radiation

    SciTech Connect

    Denard, J.C.; Piot, P.; Capek, K.; Feldl, E.

    1997-06-01

    A simple monitor has been built to measure the profile of the high power beam (800 kW) delivered by the CEBAF accelerator at Jefferson Lab. The monitor uses the optical part of the forward transition radiation emitted from a thin carbon foil. The small beam size to be measured, about 100 {mu}m, is challenging not only for the power density involved but also for the resolution the instrument must achieve. An important part of the beam instrumentation community believes the radiation being emitted into a cone of characteristic angle 1/{gamma} is originated from a region of transverse dimension roughly {lambda}{gamma}; thus the apparent size of the source of transition radiation would become very large for highly relativistic particles. This monitor measures 100 {mu}m beam sizes that are much smaller than the 3.2 mm {lambda}{gamma} limit; it confirms the statement of Rule and Fiorito that optical transition radiation can be used to image small beams at high energy. The present paper describes the instrument and its performance. The authors tested the foil in, up to 180 {mu}A of CW beam without causing noticeable beam loss, even at 800 MeV, the lowest CEBAF energy.

  7. Laboratory atomic transition data for precise optical quasar absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Murphy, Michael T.; Berengut, Julian C.

    2014-02-01

    Quasar spectra reveal a rich array of important astrophysical information about galaxies which intersect the quasar line of sight. They also enable tests of the variability of fundamental constants over cosmological time- and distance-scales. Key to these endeavours are the laboratory frequencies, isotopic and hyperfine structures of various metal-ion transitions. Here, we review and synthesize the existing information about these quantities for 43 transitions which are important for measuring possible changes in the fine-structure constant, α, using optical quasar spectra, i.e. those of Na, Mg, Al, Si, Ca, Cr, Mn, Fe, Ni and Zn. We also summarize the information currently missing that precludes more transitions being used. We present an up-to-date set of coefficients, q, which define the sensitivity of these transitions to variations in α. New calculations of isotopic structures and q-coefficients are performed for Si II and Ti II, including Si II λ1808 and Ti IIλλ1910.6/1910.9 for the first time. Finally, simulated absorption-line spectra are used to illustrate the systematic errors expected if the isotopic/hyperfine structures are omitted from profile fitting analyses. To ensure transparency, repeatability and currency of the data and calculations, we supply a comprehensive data base as Supporting Information. This will be updated as new measurements and calculations are performed.

  8. Evolution of molecular crystal optical phonons near structural phase transitions

    NASA Astrophysics Data System (ADS)

    Michki, Nigel; Niessen, Katherine; Xu, Mengyang; Markelz, Andrea

    Molecular crystals are increasingly important photonic and electronic materials. For example organic semiconductors are lightweight compared to inorganic semiconductors and have inexpensive scale up processing with roll to roll printing. However their implementation is limited by their environmental sensitivity, in part arising from the weak intermolecular interactions of the crystal. These weak interactions result in optical phonons in the terahertz frequency range. We examine the evolution of intermolecular interactions near structural phase transitions by measuring the optical phonons as a function of temperature and crystal orientation using terahertz time-domain spectroscopy. The measured orientation dependence of the resonances provides an additional constraint for comparison of the observed spectra with the density functional calculations, enabling us to follow specific phonon modes. We observe crystal reorganization near 350 K for oxalic acid as it transforms from dihydrate to anhydrous form. We also report the first THz spectra for the molecular crystal fructose through its melting point.

  9. Direct band gap carbon superlattices with efficient optical transition

    NASA Astrophysics Data System (ADS)

    Oh, Young Jun; Kim, Sunghyun; Lee, In-Ho; Lee, Jooyoung; Chang, K. J.

    2016-02-01

    We report pure carbon-based superlattices that exhibit direct band gaps and excellent optical absorption and emission properties at the threshold energy. The structures are nearly identical to that of cubic diamond except that defective layers characterized by five- and seven-membered rings are intercalated in the diamond lattice. The direct band gaps lie in the range of 5.6-5.9 eV, corresponding to wavelengths of 210-221 nm. The dipole matrix elements of direct optical transition are comparable to that of GaN, suggesting that the superlattices are promising materials as an efficient deep ultraviolet light emitter. Molecular dynamics simulations show that the superlattices are thermally stable even at a high temperature of 2000 K. We provide a possible route to the synthesis of superlattices through wafer bonding of diamond (100) surfaces.

  10. Fine Structure and Optical Depth in the Solar Transition Region

    NASA Astrophysics Data System (ADS)

    Plovanic, Jacob; Kankelborg, C. C.; Williamson, K.

    2011-05-01

    Unresolved fine structure in the solar transition region (TR) has long been inferred from measurements of density-sensitive line pairs showing low filling factor (< 0.01). Low filling factor models for the structure of the He II source region, however, have not been well studied. We propose a highly structured model of the lower atmosphere in which He II is formed at low filling factors, leading to high emission measure and an optically thin He II line. This transparent TR material is juxtaposed with absorbing chromospheric structures, leading to the nearly uniform center to limb behavior of the He II line as observed.

  11. Theory of optical transitions in conjugated polymers. II. Real systems

    NASA Astrophysics Data System (ADS)

    Marcus, Max; Tozer, Oliver Robert; Barford, William

    2014-10-01

    The theory of optical transitions developed in Barford and Marcus ["Theory of optical transitions in conjugated polymers. I. Ideal systems," J. Chem. Phys. 141, 164101 (2014)] for linear, ordered polymer chains is extended in this paper to model conformationally disordered systems. Our key result is that in the Born-Oppenheimer regime the emission intensities are proportional to S(1)/⟨IPR⟩, where S(1) is the Huang-Rhys parameter for a monomer. ⟨IPR⟩ is the average inverse participation ratio for the emitting species, i.e., local exciton ground states (LEGSs). Since the spatial coherence of LEGSs determines the spatial extent of chromophores, the significance of this result is that it directly relates experimental observables to chromophore sizes (where ⟨IPR⟩ is half the mean chromophore size in monomer units). This result is independent of the chromophore shape, because of the Born-Oppenheimer factorization of the many body wavefunction. We verify this prediction by density matrix renormalization group (DMRG) calculations of the Frenkel-Holstein model in the adiabatic limit for both linear, disordered chains and for coiled, ordered chains. We also model optical spectra for poly(p-phenylene) and poly(p-phenylene-vinylene) oligomers and polymers. For oligomers, we solve the fully quantized Frenkel-Holstein model via the DMRG method. For polymers, we use the much simpler method of solving the one-particle Frenkel model and employ the Born-Oppenheimer expressions relating the effective Franck-Condon factor of a chromophore to its inverse participation ratio. We show that increased disorder decreases chromophore sizes and increases the inhomogeneous broadening, but has a non-monotonic effect on transition energies. We also show that as planarizing the polymer chain increases the exciton band width, it causes the chromophore sizes to increase, the transition energies to decrease, and the broadening to decrease. Finally, we show that the absorption spectra are

  12. Resolution of Transverse Electron Beam Measurements using Optical Transition Radiation

    SciTech Connect

    Ischebeck, Rasmus; Decker, Franz-Josef; Hogan, Mark; Iverson, Richard H.; Krejcik, Patrick; Lincoln, Melissa; Siemann, Robert H.; Walz, Dieter; Clayton, Chris E.; Huang, Chengkun; Lu, Wei; Deng, Suzhi; Oz, Erdem; /Southern California U.

    2005-06-22

    In the plasma wakefield acceleration experiment E-167, optical transition radiation is used to measure the transverse profile of the electron bunches before and after the plasma acceleration. The distribution of the electric field from a single electron does not give a point-like distribution on the detector, but has a certain extension. Additionally, the resolution of the imaging system is affected by aberrations. The transverse profile of the bunch is thus convolved with a point spread function (PSF). Algorithms that deconvolve the image can help to improve the resolution. Imaged test patterns are used to determine the modulation transfer function of the lens. From this, the PSF can be reconstructed. The Lucy-Richardson algorithm is used to deconvolute this PSF from test images.

  13. Optical detection of the spin transition by reflectivity: application to ?

    NASA Astrophysics Data System (ADS)

    Morscheidt, W.; Jeftic, J.; Codjovi, E.; Linares, J.; Bousseksou, A.; Constant-Machado, H.; Varret, F.

    1998-08-01

    Apparatus for measuring a reflected light signal on crystalline or powder samples of thermochromic materials, such as `spin-crossover' materials, has been developed in conjunction with a helium cryostat enabling measurements from cryogenic to ambient temperatures. Depending on the intensity and wavelength of the incident light and optical properties of the sample, reflectivity measurements provide information about a relatively thin surface layer of the investigated compound. The thermal spin transition or photoexcitation from the low-spin state, which is usually coloured, to the high-spin state, which is white or transparent, is detected by a change in the relative intensity as shown on examples of 0957-0233/9/8/025/img10 crystalline powders (btr = bis - triazole). To compare the situation in the bulk, simultaneous magnetic measurements were performed.

  14. Magneto-optical transitions in bilayer graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Chung, Hsien-Ching; Lin, Ming-Fa

    We utilize the tight-binding theory to study the magneto-optical transitions in bilayer graphene nanoribbons. The magneto-absorption spectra highly depend on the stacking, edge orientation, ribbon width, and strength of magnetic field. The competition between the magnetic quantization and lateral confinement results in the coexistence of edge-dependent selection rules and magneto-absorption selection rule. The magneto-electronic properties, including energy dispersions, density of states, and wave functions, are also discussed in detail. One of us (Hsien-Ching Chung) thanks Ming-Hui Chung and Su-Ming Chen for financial support. This work was supported in part by the National Science Council of Taiwan under Grant Number NSC 102-2112-M-006-007-MY3.

  15. Optical transition radiation interferometry for the A0 photoinjector

    SciTech Connect

    Kazakevich, G.; Edwards, H.; Fliller, R.; Nagaitsev, S.; Ruan, J.; Thurman-Keup, R.; /Fermilab

    2008-06-01

    Optical Transition Radiation Interferometry (OTRI) is a promising diagnostic technique and has been successfully developed and used for investigation of relativistic beams. For mid-energy accelerators the technique is traditionally based on thin polymer films (the first one is being transparent for visible light), which causes beam multiple scattering of about 1 mrad. A disadvantage of those films is unacceptable vacuum properties for photoinjectors and accelerators using superconducting cavities. We have studied the application of thin mica sheets for the OTRI diagnostics at the A0 Photoinjector in comparison with 2.5 {micro}m thick Mylar films. This diagnostic is also applicable for the ILCTA-NML accelerator test facility that is planned at Fermilab. This report discusses the experimental setups of the OTR interferometer for the A0 Photoinjector and presents comparisons of simulations and measurements obtained using Mylar and mica-based interferometers.

  16. Multi Optical Transition Radiation System for ATF2

    SciTech Connect

    Alabau-Gonzalvo, Javier; Blanch Gutierrez, Cesar; Civera, Jose Vicente; Faus-Golfe, Angeles; Garcia-Garrigos, Juan; Cruz, Juan; McCormick, Douglas; White, Glen; /SLAC

    2012-07-13

    In this paper we describe the design, installation and first calibration tests of a Multi Optical Transition Radiation System in the beam diagnostic section of the Extraction (EXT) line of ATF2, close to the multi wire scanner system. This system will be a valuable tool for measuring beam sizes and emittances coming from the ATF Damping Ring. With an optical resolution of about 2 {micro}m an original OTR design (OTR1X) located after the septum at the entrance of the EXT line demonstrated the ability to measure a 5.5 {micro}m beam size in one beam pulse and to take many fast measurements. This gives the OTR the ability to measure the beam emittance with high statistics, giving a low error and a good understanding of emittance jitter. Furthermore the nearby wire scanners will be a definitive test of the OTR as a beam emittance diagnostic device. The multi-OTR system design proposed here is based on the existing OTR1X.

  17. Optical lattice polarization effects on magnetically induced optical atomic clock transitions

    SciTech Connect

    Taichenachev, A. V.; Yudin, V. I.; Oates, C. W.

    2007-08-15

    We derive the frequency shift for a forbidden optical transition J=0{yields}J{sup '}=0 caused by the simultaneous actions of an elliptically polarized lattice field and a static magnetic field. We find that a simple configuration of lattice and magnetic fields leads to a cancellation of this shift to first order in lattice intensity and magnetic field. In this geometry, the second-order lattice intensity shift can be minimized as well by use of optimal lattice polarization. Suppression of these shifts could considerably enhance the performance of the next generation of atomic clocks.

  18. Hyper-spectral imaging using an optical fiber transition element

    NASA Astrophysics Data System (ADS)

    Bush, Brett C.; Otten, Leonard J., III; Schmoll, Juergen

    2007-09-01

    The Bi-static Optical Imaging Sensor (BOIS) is a 2-D imaging sensor that operates in the short-wave infra-red (SWIR) spectral regime over wavelengths from approximately 1.0 to 2.4 microns. The conceptual design of the sensor is based on integral field spectroscopy techniques. The BOIS sensor utilizes a fiber transition element consisting of multiple optical fibers to map the 2-D spatial input scene into a 1-D linear array for injection into a hyper-spectral imaging (HSI) sensor. The HSI spectrometer acquires fast time resolution snapshots (60 Hz) of the entire input target scene in numerous narrowband spectral channels covering the SWIR spectral band. The BOIS sensor is developed to spatially observe the fast time-evolving radiative signature of targets over a variety of spectral bands, thus simultaneously characterizing the overall scene in four dimensions: 2 spatial, wavelength, and time. We describe the successful design, operation, and testing of a laboratory prototype version of the BOIS sensor as well as further development of a field version of the sensor. The goal of the laboratory prototype BOIS sensor was to validate the proof-of-concept ability in the 4-D measurement concept of this unique design. We demonstrate the 2-D spatial remapping of the input scene (using SWIR laser and blackbody cavity sources) in multiple spectral channels from the spatial versus spectral pixel output of the HSI snapshot. We also describe algorithms developed in the data processing to retrieve temperatures of the observation scene from the hyper-spectral measurements.

  19. Optical transitions of Er3+ ions in fluorozirconate glass

    NASA Astrophysics Data System (ADS)

    Shinn, M. D.; Sibley, W. A.; Drexhage, M. G.; Brown, R. N.

    1983-06-01

    Optical-absorption, -emission, and -excitation spectra are presented for Er3+ ions in fluorozirconate glass. Measured oscillator strengths of the transitions between J manifolds at 300 and 15 K are compared with calculated electric and magnetic dipole oscillator strengths. Radiative rates for five luminescing states were calculated. The nonradiative rates from these excited states were determined by calculating the difference between the measured rates and the calculated radiative rates. The low-temperature nonradiative rates are in agreement with the phenomenological energy-gap law followed by rare-earth ions in a number of crystals and glasses. The temperature dependence of the lifetimes was analyzed using the Huang-Rhys theory of multiphonon emission. Values for the 4I112 radiative and nonradiative rates obtained by the above methods are compared with those obtained applying the method Flaherty and DiBartolo used to study MnF2: Er3+. The multiphonon emission rates in fluorozirconate glass are much lower than the rates for the same levels of Er3+ in oxide glasses. Measurements of the bandwidths of the ground and excited states of Er3+ and the nearly exponential decay of the emissions indicate a relatively narrow distribution of site symmetries compared to oxide glasses.

  20. Transition metal doped semiconductor quantum dots: Optical and magnetic properties

    NASA Astrophysics Data System (ADS)

    Dahnovsky, Yuri; Proshchenko, Vitaly; Pimachev, Artem

    We study optical and magnetic properties of CdSe and Cd-Mn-Se quantum dots (QD). We find that there are two luminescence lines, one is fast and another is slow (~1ms). With the increase of a QD diameter the slow luminescence disappears at some critical QD size, thus only one line (fast) remains. Using the SAC SI computational method we find that D = 3.2 nm and D = 2.7 nm if the Mn impurity is located inside a QD or on a QD surface, respectively. For two or four Mn atoms in the quantum dot, now absorption takes place because the transition is spin-allowed. The DFT calculations of the magnetic state reveal that it is an antiferromagnet. We also study other quantum dots such as Cd-Mn-Se, Zn-Mn-S, and Zn-Mn-Se, doped and undoped. We find the slow luminescence energies for low concentrations of Mn impurities for each QD type. The calculations indicate that two luminescence lines, fast and slow, should always take place. However for Pb-Mn-S quantum dots there are now Mn levels inside a HOMO-LUMO gap, i.e., the Mn-levels are located in a PbS conduction band. The presence of Mn dopants increases the band gap and also removes the exciton peak. This effect is different to the other quantum dots.

  1. Experimental diagnostics using optical transition radiation at CEBAF

    NASA Astrophysics Data System (ADS)

    Denard, J.-C.; Rule, D.; Fiorito, R.; Adderley, P.; Jordan, K.; Capek, K.

    1995-05-01

    Optical Transition Radiation (OTR) devices have unique properties that allow them to complement the diagnostic tools more commonly used in particle accelerators. CEBAF is designed to produce a continuous electron beam accelerated up to 4 GeV by recirculating it five times through two 400 MeV superconducting linacs. We present two OTR applications that cannot be performed with standard fluorescent screens. The goal of the first one is to provide a multiturn ``viewer'' using the backward OTR emitted from a 0.8 μm thick aluminum foil. The foil must be thin enough to keep most of the beam in the machine after each passage. Looking at the successive turns in the linacs on the same screen will provide a new diagnostic device to help tune the machine. Replacing the ceramic of the present viewers with an Al foil is relatively simple and inexpensive. The preliminary results in single pass are encouraging. The goal of the second OTR application is to measure the emittance of high current continuous beams (≊200 μA) of low emittance (5 10-9 mrad) and size (≤50 μm rms). Standard fluorescent screens or wire scanners cannot withstand such an intense beam.

  2. Forbidden transitions in a magneto-optical trap

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Mishkatul

    This thesis deals with advances in atomic and molecular spectroscopy and scattering that have become possible as a result of the invention of laser cooling and trapping of atoms. Cold atomic ensembles are ideal candidates for high-resolution spectroscopy. The first part of this thesis explores forbidden-transition spectroscopy in the context of a Magneto-Optical Trap (MOT). It describes the first observation of a nondipole (E2) transition in an ultracold atomic vapor. The usefulness of such excitations for performing high-resolution, Autler-Townes, and multiphoton ionization spectroscopies is demonstrated. Results include the first measurement of the magnetic dipole constant of the 4P1/2 state of sodium. Efforts to create samples of ultracold molecules are at the forefront of experimental atomic and molecular physics. Cold polar molecules are in demand as ideal laboratories for Electron Dipole Moment (EDM) searches, as qubits in a scalable quantum computer, for making polar Bose-Einstein condensates (BECs), etc. The second part of this thesis describes one of the first instances of formation and detection of ultracold polar ground-state molecules. Ultracold 23Na133Cs molecules in the lowest electronic state were produced via photoassociation in a two-species MOT and detected using time-of-flight mass spectrometry. In a two-species BEC the interspecies scattering length determines the efficiency of sympathetic cooling, the stability and miscibility of the mixture as well as the strength of the coupling between the two species. The third part of this thesis describes a quantitative study of the 23Na- 85,87Rb alkali mixture. Accurate molecular potentials have been constructed for the ground state of Na-Rb. A first calculation of the two-species s-wave triplet and singlet scattering lengths has been made and used to predict, in the Thomas-Fermi approximation, the instability of a composite BEC in this system. The suppression of inelastic losses and the ensuing

  3. Theory of optical transitions in conjugated polymers. I. Ideal systems

    NASA Astrophysics Data System (ADS)

    Barford, William; Marcus, Max

    2014-10-01

    We describe a theory of linear optical transitions in conjugated polymers. The theory is based on three assumptions. The first is that the low-lying excited states of conjugated polymers are Frenkel excitons coupled to local normal modes, described by the Frenkel-Holstein model. Second, we assume that the relevant parameter regime is ℏω ≪ J, i.e., the adiabatic regime, and thus the Born-Oppenheimer factorization of the electronic and nuclear degrees of freedom is generally applicable. Finally, we assume that the Condon approximation is valid, i.e., the exciton-polaron wavefunction is essentially independent of the normal modes. Using these assumptions we derive an expression for an effective Huang-Rhys parameter for a chain (or chromophore) of N monomers, given by S(N) = S(1)/IPR, where S(1) is the Huang-Rhys parameter for an isolated monomer. IPR is the inverse participation ratio, defined by IPR = (∑n|Ψn|4)-1, where Ψn is the exciton center-of-mass wavefunction. Since the IPR is proportional to the spread of the exciton center-of-mass wavefunction, this is a key result, as it shows that S(N) decreases with chain length. As in molecules, in a polymer S(N) has two interpretations. First, ℏωS(N) is the relaxation energy of an excited state caused by its coupling to the normal modes. Second, S(N) appears in the definition of an effective Franck-Condon factor, F0v(N) = S(N)vexp ( - S(N))/v! for the vth vibronic manifold. We show that the 0 - 0 and 0 - 1 optical intensities are proportional to F00(N) and F01(N), respectively, and thus the ratio of the 0 - 1 to 0 - 0 absorption and emission intensities are proportional to S(N). These analytical results are checked by extensive DMRG calculations and found to be generally valid, particularly for emission. However, for large chain lengths higher-lying quasimomentum exciton states become degenerate with the lowest vibrational excitation of the lowest exciton state. When this happens there is mixing of the

  4. Universal empirical formula for optical transition energies of semiconducting single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Jamal, G. R. Ahmed; Mominuzzaman, S. M.

    2016-01-01

    A general empirical relation for calculating first seven optical transition energies of semiconducting single wall carbon nanotubes (SWCNTs) is proposed here for the first time. The proposed formula effectively relates first seven optical transition energies of semiconducting SWCNTs with their chiral indices (n, m) through exponential form containing two specific terms (n+2m) and (2n-m). Both mod 1 and mod 2 types of semiconducting tubes are considered here over a wide diameter range from 0.4 nm to 4.75 nm. It was observed that the proposed empirical relations can predict the recent experimental data of those optical transitions with high accuracy.

  5. Terahertz Optical Gain Based on Intersubband Transitions in Optically-Pumped Semiconductor Quantum Wells: Coherent Pumped-Probe Interactions

    NASA Technical Reports Server (NTRS)

    Liu, Ansheng; Ning, Cun-Zheng

    1999-01-01

    Terahertz optical gain due to intersubband transitions in optically-pumped semiconductor quantum wells (QW's) is calculated nonperturbatively. We solve the pump- field-induced nonequilibrium distribution function for each subband of the QW system from a set of rate equations that include both intrasubband and intersubband relaxation processes. The gain arising from population inversion and stimulated Raman processes is calculated in a unified manner. We show that the coherent pump and signal wave interactions contribute significantly to the THz gain. Because of the optical Stark effect and pump-induced population redistribution, optical gain saturation at larger pump intensities is predicted.

  6. Theory of optical transitions in conjugated polymers. I. Ideal systems

    SciTech Connect

    Barford, William; Marcus, Max

    2014-10-28

    We describe a theory of linear optical transitions in conjugated polymers. The theory is based on three assumptions. The first is that the low-lying excited states of conjugated polymers are Frenkel excitons coupled to local normal modes, described by the Frenkel-Holstein model. Second, we assume that the relevant parameter regime is ℏω ≪ J, i.e., the adiabatic regime, and thus the Born-Oppenheimer factorization of the electronic and nuclear degrees of freedom is generally applicable. Finally, we assume that the Condon approximation is valid, i.e., the exciton-polaron wavefunction is essentially independent of the normal modes. Using these assumptions we derive an expression for an effective Huang-Rhys parameter for a chain (or chromophore) of N monomers, given by S(N) = S(1)/IPR, where S(1) is the Huang-Rhys parameter for an isolated monomer. IPR is the inverse participation ratio, defined by IPR = (∑{sub n}|Ψ{sub n}|{sup 4}){sup −1}, where Ψ{sub n} is the exciton center-of-mass wavefunction. Since the IPR is proportional to the spread of the exciton center-of-mass wavefunction, this is a key result, as it shows that S(N) decreases with chain length. As in molecules, in a polymer S(N) has two interpretations. First, ℏωS(N) is the relaxation energy of an excited state caused by its coupling to the normal modes. Second, S(N) appears in the definition of an effective Franck-Condon factor, F{sub 0v}(N) = S(N){sup v}exp ( − S(N))/v! for the vth vibronic manifold. We show that the 0 − 0 and 0 − 1 optical intensities are proportional to F{sub 00}(N) and F{sub 01}(N), respectively, and thus the ratio of the 0 − 1 to 0 − 0 absorption and emission intensities are proportional to S(N). These analytical results are checked by extensive DMRG calculations and found to be generally valid, particularly for emission. However, for large chain lengths higher-lying quasimomentum exciton states become degenerate with the lowest vibrational excitation of the

  7. Observation of an optical Stark effect on vibrational and rotational transitions

    SciTech Connect

    Rahn, L.A.; Farrow, R.L.; Koszykowski, M.L.; Mattern, P.L.

    1980-08-25

    Vibrational and rotational Raman transitions are shown to be shifted to lower frequencies in the presence of a nonresonant, high-intensity optical field. Experimental results using coherent anti-Stokes Raman spectroscopy for hydrogen and nitrogen are presented. The magnitude of the observed shift is in agreement with a calculation which considers the coupling of the optical field to the internuclear separation via the molecular electronic polarizability. The magnitude of the shift is predicted to be proportional to the optical field intensity.

  8. Non-local Optical Topological Transitions and Critical States in Electromagnetic Metamaterials

    NASA Astrophysics Data System (ADS)

    Ishii, Satoshi; Narimanov, Evgenii

    2015-12-01

    Just as the topology of the Fermi surface defines the properties of the free electrons in metals and semiconductors, the geometry of the iso-frequency surface in the phase space of the propagating electromagnetic waves, determines the optical properties of the corresponding optical materials. Furthermore, in the direct analog to the Lifshitz transition in condensed matter physics, a change in the topology of iso-frequency surface has a dramatic effect on the emission, propagation and scattering of the electromagnetic waves. Here, we uncover a new class of such optical topological transitions in metamaterials, induced by the non-locality of the electromagnetic response inherent to these composites.

  9. Non-local Optical Topological Transitions and Critical States in Electromagnetic Metamaterials

    PubMed Central

    Ishii, Satoshi; Narimanov, Evgenii

    2015-01-01

    Just as the topology of the Fermi surface defines the properties of the free electrons in metals and semiconductors, the geometry of the iso-frequency surface in the phase space of the propagating electromagnetic waves, determines the optical properties of the corresponding optical materials. Furthermore, in the direct analog to the Lifshitz transition in condensed matter physics, a change in the topology of iso-frequency surface has a dramatic effect on the emission, propagation and scattering of the electromagnetic waves. Here, we uncover a new class of such optical topological transitions in metamaterials, induced by the non-locality of the electromagnetic response inherent to these composites. PMID:26670600

  10. Inducing Photonic Transitions between Discrete Modes in a Silicon Optical Microcavity

    NASA Astrophysics Data System (ADS)

    Dong, Po; Preble, Stefan F.; Robinson, Jacob T.; Manipatruni, Sasikanth; Lipson, Michal

    2008-01-01

    We show the existence of direct photonic transitions between modes of a silicon optical microcavity spaced apart in wavelength by over 8 nm. This is achieved by using ultrafast tuning of the refractive index of the cavity over a time interval that is comparable to the inverse of the frequency separation of modes. The demonstrated frequency mixing effect, i.e., the transitions between the modes, would enable on-chip silicon comb sources which can find wide applications in optical sensing, precise spectroscopy, and wavelength-division multiplexing for optical communications and interconnects.

  11. Non-local Optical Topological Transitions and Critical States in Electromagnetic Metamaterials.

    PubMed

    Ishii, Satoshi; Narimanov, Evgenii

    2015-01-01

    Just as the topology of the Fermi surface defines the properties of the free electrons in metals and semiconductors, the geometry of the iso-frequency surface in the phase space of the propagating electromagnetic waves, determines the optical properties of the corresponding optical materials. Furthermore, in the direct analog to the Lifshitz transition in condensed matter physics, a change in the topology of iso-frequency surface has a dramatic effect on the emission, propagation and scattering of the electromagnetic waves. Here, we uncover a new class of such optical topological transitions in metamaterials, induced by the non-locality of the electromagnetic response inherent to these composites. PMID:26670600

  12. Active Optical Metasurfaces Based on Defect-Engineered Phase-Transition Materials.

    PubMed

    Rensberg, Jura; Zhang, Shuyan; Zhou, You; McLeod, Alexander S; Schwarz, Christian; Goldflam, Michael; Liu, Mengkun; Kerbusch, Jochen; Nawrodt, Ronny; Ramanathan, Shriram; Basov, D N; Capasso, Federico; Ronning, Carsten; Kats, Mikhail A

    2016-02-10

    Active, widely tunable optical materials have enabled rapid advances in photonics and optoelectronics, especially in the emerging field of meta-devices. Here, we demonstrate that spatially selective defect engineering on the nanometer scale can transform phase-transition materials into optical metasurfaces. Using ion irradiation through nanometer-scale masks, we selectively defect-engineered the insulator-metal transition of vanadium dioxide, a prototypical correlated phase-transition material whose optical properties change dramatically depending on its state. Using this robust technique, we demonstrated several optical metasurfaces, including tunable absorbers with artificially induced phase coexistence and tunable polarizers based on thermally triggered dichroism. Spatially selective nanoscale defect engineering represents a new paradigm for active photonic structures and devices. PMID:26690855

  13. Feasibility study of optical boundary layer transition detection method

    NASA Technical Reports Server (NTRS)

    Azzazy, M.; Modarress, D.; Trolinger, J. D.

    1986-01-01

    A high sensitivity differential interferometer was developed to locate the region where the boundary layer flow undergoes transition from laminar to turbulent. Two laboratory experimental configurations were used to evaluate the performance of the interferometer: open shear layer, and low speed wind tunnel turbulent spot configuration. In each experiment, small temperature fluctuations were introduced as the signal source. Simultaneous cold wire measurements were compared with the interferometer data. The comparison shows that the interferometer is sensitive to very weak phase variations in the order of 0.001 the laser wavelength. An attempt to detect boundary layer transition over a flat plate at NASA-Langley Unitary Supersonic Wind Tunnel using the interferometer system was performed. The phase variations during boundary layer transition in the supersonic wind tunnel were beyond the minimum signal-to-noise level of the instrument.

  14. Photopyroelectric Calorimetry for the Thermal and Optical Study Over Phase Transitions

    NASA Astrophysics Data System (ADS)

    Zammit, U.; Mercuri, F.; Paoloni, S.; Marinelli, M.

    2015-06-01

    The capabilities of an upgraded photopyroelectric calorimetric setup to perform simultaneous evaluations of thermal and optical parameters for a more comprehensive evaluation of several phase transition studies are reported. It has been applied to the study of the nematic-isotropic phase transition of an 8CB liquid crystal hosted in a network of silica nanoparticles, of the sol-gel transition in hydrated parchment fibers and of the nematic-isotropic and the smecticA-nematic transitions of 8CB liquid crystal with inclusions of photochromic molecules.

  15. Theory of optical transitions in π-conjugated macrocycles.

    PubMed

    Marcus, Max; Coonjobeeharry, Jaymee; Barford, William

    2016-04-21

    We describe a theoretical and computational investigation of the optical properties of π-conjugated macrocycles. Since the low-energy excitations of these systems are Frenkel excitons that couple to high-frequency dispersionless phonons, we employ the quantized Frenkel-Holstein model and solve it via the density matrix renormalization group (DMRG) method. First we consider optical emission from perfectly circular systems. Owing to optical selection rules, such systems radiate via two mechanisms: (i) within the Condon approximation, by thermally induced emission from the optically allowed j = ± 1 states and (ii) beyond the Condon approximation, by emission from the j = 0 state via coupling with a totally non-symmetric phonon (namely, the Herzberg-Teller effect). Using perturbation theory, we derive an expression for the Herzberg-Teller correction and show via DMRG calculations that this expression soon fails as ħ ω/J and the size of the macrocycle increase. Next, we consider the role of broken symmetry caused by torsional disorder. In this case the quantum number j no longer labels eigenstates of angular momentum, but instead labels localized local exciton groundstates (LEGSs) or quasi-extended states (QEESs). As for linear polymers, LEGSs define chromophores, with the higher energy QEESs being extended over numerous LEGSs. Within the Condon approximation (i.e., neglecting the Herzberg-Teller correction) we show that increased disorder increases the emissive optical intensity, because all the LEGSs are optically active. We next consider the combined role of broken symmetry and curvature, by explicitly evaluating the Herzberg-Teller correction in disordered systems via the DMRG method. The Herzberg-Teller correction is most evident in the emission intensity ratio, I00/I01. In the Condon approximation I00/I01 is a constant function of curvature, whereas in practice it vanishes for closed rings and only approaches a constant in the limit of vanishing curvature. We

  16. Theory of optical transitions in π-conjugated macrocycles

    NASA Astrophysics Data System (ADS)

    Marcus, Max; Coonjobeeharry, Jaymee; Barford, William

    2016-04-01

    We describe a theoretical and computational investigation of the optical properties of π-conjugated macrocycles. Since the low-energy excitations of these systems are Frenkel excitons that couple to high-frequency dispersionless phonons, we employ the quantized Frenkel-Holstein model and solve it via the density matrix renormalization group (DMRG) method. First we consider optical emission from perfectly circular systems. Owing to optical selection rules, such systems radiate via two mechanisms: (i) within the Condon approximation, by thermally induced emission from the optically allowed j = ± 1 states and (ii) beyond the Condon approximation, by emission from the j = 0 state via coupling with a totally non-symmetric phonon (namely, the Herzberg-Teller effect). Using perturbation theory, we derive an expression for the Herzberg-Teller correction and show via DMRG calculations that this expression soon fails as ħ ω/J and the size of the macrocycle increase. Next, we consider the role of broken symmetry caused by torsional disorder. In this case the quantum number j no longer labels eigenstates of angular momentum, but instead labels localized local exciton groundstates (LEGSs) or quasi-extended states (QEESs). As for linear polymers, LEGSs define chromophores, with the higher energy QEESs being extended over numerous LEGSs. Within the Condon approximation (i.e., neglecting the Herzberg-Teller correction) we show that increased disorder increases the emissive optical intensity, because all the LEGSs are optically active. We next consider the combined role of broken symmetry and curvature, by explicitly evaluating the Herzberg-Teller correction in disordered systems via the DMRG method. The Herzberg-Teller correction is most evident in the emission intensity ratio, I00/I01. In the Condon approximation I00/I01 is a constant function of curvature, whereas in practice it vanishes for closed rings and only approaches a constant in the limit of vanishing curvature. We

  17. Optically decomposed near-band-edge structure and excitonic transitions in Ga2S3

    PubMed Central

    Ho, Ching-Hwa; Chen, Hsin-Hung

    2014-01-01

    The band-edge structure and band gap are key parameters for a functional chalcogenide semiconductor to its applications in optoelectronics, nanoelectronics, and photonics devices. Here, we firstly demonstrate the complete study of experimental band-edge structure and excitonic transitions of monoclinic digallium trisulfide (Ga2S3) using photoluminescence (PL), thermoreflectance (TR), and optical absorption measurements at low and room temperatures. According to the experimental results of optical measurements, three band-edge transitions of EA = 3.052 eV, EB = 3.240 eV, and EC = 3.328 eV are respectively determined and they are proven to construct the main band-edge structure of Ga2S3. Distinctly optical-anisotropic behaviors by orientation- and polarization-dependent TR measurements are, respectively, relevant to distinguish the origins of the EA, EB, and EC transitions. The results indicated that the three band-edge transitions are coming from different origins. Low-temperature PL results show defect emissions, bound-exciton and free-exciton luminescences in the radiation spectra of Ga2S3. The below-band-edge transitions are respectively characterized. On the basis of experimental analyses, the optical property of near-band-edge structure and excitonic transitions in the monoclinic Ga2S3 crystal is revealed. PMID:25142550

  18. Sub-micrometer transverse beam size diagnostics using optical transition radiation

    NASA Astrophysics Data System (ADS)

    Kruchinin, K.; Aryshev, A.; Karataev, P.; Bolzon, B.; Lefevre, T.; Mazzoni, S.; Shevelev, M.; Boogert, S. T.; Nevay, L. J.; Terunuma, N.; Urakawa, J.

    2014-05-01

    Optical transition radiation (OTR) arising when a relativistic charged particle crosses a boundary between two media with different optical properties is widely used as a tool for diagnostics of particle beams in modern accelerator facilities. The resolution of the beam profile monitors based on OTR depends on different effects of the optical system such as spherical and chromatic aberrations and diffraction. In this paper we present a systematic study of the different optical effects influencing the OTR beam profile monitor resolution. Obtained results have shown that such monitors can be used for sub-micrometer beam profile diagnostics. Further improvements and studies of the monitor are discussed.

  19. Systematic Study of the {sup 87}Sr Clock Transition in an Optical Lattice

    SciTech Connect

    Ludlow, Andrew D.; Boyd, Martin M.; Zelevinsky, Tanya; Foreman, Seth M.; Blatt, Sebastian; Notcutt, Mark; Ido, Tetsuya; Ye Jun

    2006-01-27

    With ultracold {sup 87}Sr confined in a magic wavelength optical lattice, we present the most precise study (2.8 Hz statistical uncertainty) to date of the {sup 1}S{sub 0}-{sup 3}P{sub 0} optical clock transition with a detailed analysis of systematic shifts (19 Hz uncertainty) in the absolute frequency measurement of 429 228 004 229 869 Hz. The high resolution permits an investigation of the optical lattice motional sideband structure. The local oscillator for this optical atomic clock is a stable diode laser with its hertz-level linewidth characterized by an octave-spanning femtosecond frequency comb.

  20. Measurement of Sub-Picosecond Electron Bunches via Electro-Optic Sampling of Coherent Transition Radiation

    SciTech Connect

    Maxwell, Timothy John

    2012-01-01

    Future collider applications as well as present high-gradient laser plasma wakefield accelerators and free-electron lasers operating with picosecond bunch durations place a higher demand on the time resolution of bunch distribution diagnostics. This demand has led to significant advancements in the field of electro-optic sampling over the past ten years. These methods allow the probing of diagnostic light such as coherent transition radiation or the bunch wakefields with sub-picosecond time resolution. We present results on the single-shot electro-optic spectral decoding of coherent transition radiation from bunches generated at the Fermilab A0 photoinjector laboratory. A longitudinal double-pulse modulation of the electron beam is also realized by transverse beam masking followed by a transverse-to-longitudinal phase-space exchange beamline. Live profile tuning is demonstrated by upstream beam focusing in conjunction with downstream monitoring of single-shot electro-optic spectral decoding of the coherent transition radiation.

  1. Extreme nonlinear response of ultranarrow optical transitions in cavity QED for laser stabilization

    SciTech Connect

    Martin, M. J.; Meiser, D.; Ye Jun; Holland, M. J.; Thomsen, J. W.

    2011-12-15

    We explore the potential of direct spectroscopy of ultranarrow optical transitions of atoms localized in an optical cavity. In contrast to stabilization against a reference cavity, which is the approach currently used for the most highly stabilized lasers, stabilization against an atomic transition does not suffer from Brownian thermal noise. Spectroscopy of ultranarrow optical transitions in a cavity operates in a very highly saturated regime in which nonlinear effects such as bistability play an important role. From the universal behavior of the Jaynes-Cummings model with dissipation, we derive the fundamental limits for laser stabilization using direct spectroscopy of ultranarrow atomic lines. We find that, with current lattice clock experiments, laser linewidths of about 1 mHz can be achieved in principle, and the ultimate limitations of this technique are at the 1 {mu}Hz level.

  2. Towards a portable optical clock based on a two-photon transition

    NASA Astrophysics Data System (ADS)

    Potnis, Shreyas; Jackson, Shira; Vutha, Amar

    2016-05-01

    Optical clocks based on narrow linewidth atomic transitions have achieved an unprecedented level of precision. These clocks rely on tight confinement of atoms by light, to mitigate Doppler shifts and atomic recoil, with the trapping light appropriately tuned to a ``magic'' wavelength to eliminate light shifts. An alternative approach is construct optical clocks using inherently Doppler-free two-photon transitions, which can lead to a substantially simplified architecture. The short cycle time and large atom numbers available with such a scheme enable rapid, high signal-to-noise measurements, paving the way for portable and autonomous clocks. We report on experimental progress towards constructing an optical clock based on the 4s21S0 --> 4 s 3 d1D2 two-photon transition in laser cooled 40Ca atoms.

  3. Robust Light State by Quantum Phase Transition in Non-Hermitian Optical Materials

    NASA Astrophysics Data System (ADS)

    Zhao, Han; Longhi, Stefano; Feng, Liang

    2015-11-01

    Robust light transport is the heart of optical information processing, leading to the search for robust light states by topological engineering of material properties. Here, it is shown that quantum phase transition, rather than topology, can be strategically exploited to design a novel robust light state. We consider an interface between parity-time (PT) symmetric media with different quantum phases and use complex Berry phase to reveal the associated quantum phase transition and topological nature. While the system possesses the same topological order within different quantum phases, phase transition from PT symmetry to PT breaking across the interface in the synthetic non-Hermitian metamaterial system facilitates novel interface states, which are robust against a variety of gain/loss perturbations and topological impurities and disorder. The discovery of the robust light state by quantum phase transition may promise fault-tolerant light transport in optical communications and computing.

  4. Robust Light State by Quantum Phase Transition in Non-Hermitian Optical Materials

    PubMed Central

    Zhao, Han; Longhi, Stefano; Feng, Liang

    2015-01-01

    Robust light transport is the heart of optical information processing, leading to the search for robust light states by topological engineering of material properties. Here, it is shown that quantum phase transition, rather than topology, can be strategically exploited to design a novel robust light state. We consider an interface between parity-time (PT) symmetric media with different quantum phases and use complex Berry phase to reveal the associated quantum phase transition and topological nature. While the system possesses the same topological order within different quantum phases, phase transition from PT symmetry to PT breaking across the interface in the synthetic non-Hermitian metamaterial system facilitates novel interface states, which are robust against a variety of gain/loss perturbations and topological impurities and disorder. The discovery of the robust light state by quantum phase transition may promise fault-tolerant light transport in optical communications and computing. PMID:26592765

  5. Spectroscopy of the 199Hg Optical Clock Transition at 265.5 nm

    NASA Astrophysics Data System (ADS)

    Lytle, Christian; Paul, Justin; Jones, R.

    2013-05-01

    Neutral Hg is an excellent candidate for a stable and accurate atomic clock. The doubly-forbidden clock transition at 265.5 nm can provide an extremely high-quality resonance factor (Q) when confined in an optical lattice at the Stark-shift free ``magic'' wavelength. A key feature of the Hg system is the expected reduced uncertainty of black-body radiation induced Stark shifts compared to other optically-based neutral atom clocks. We demonstrate precision spectroscopy of the 1S0 - 3P0 clock transition in 199Hg in a MOT. The MOT population of 106 atoms was depleted by over 70% using 3 mW from a cavity-stabilized probe laser tuned to the clock transition. We present our characterization of the transition and efforts to implement a stable Hg clock system.

  6. Multispectral optical metasurfaces enabled by achromatic phase transition

    NASA Astrophysics Data System (ADS)

    Zhao, Zeyu; Pu, Mingbo; Gao, Hui; Jin, Jinjin; Li, Xiong; Ma, Xiaoliang; Wang, Yanqin; Gao, Ping; Luo, Xiangang

    2015-10-01

    The independent control of electromagnetic waves with different oscillating frequencies is critical in the modern electromagnetic techniques, such as wireless communications and multispectral imaging. To obtain complete control of different light waves with optical materials, the chromatic dispersion should be carefully controlled, which is however extremely difficult. In this paper, we propose a method to control the behaviors of different light waves through a metasurface which is able to generate achromatic geometric phase. Using this approach, a doughnut-shaped and a solid light spot were achieved at the same focal plane using two light sources with different wavelengths as used in the stimulation emission depletion (STED) microscope system. In order to reveal the full capacity of such method, tight focusing at multiple wavelengths is also represented, where the focal spots of different wavelengths are located at the same position. The results provided here may open a new door to the design of subminiature optical components and integrated optical system operating at multiple wavelengths.

  7. Multispectral optical metasurfaces enabled by achromatic phase transition.

    PubMed

    Zhao, Zeyu; Pu, Mingbo; Gao, Hui; Jin, Jinjin; Li, Xiong; Ma, Xiaoliang; Wang, Yanqin; Gao, Ping; Luo, Xiangang

    2015-01-01

    The independent control of electromagnetic waves with different oscillating frequencies is critical in the modern electromagnetic techniques, such as wireless communications and multispectral imaging. To obtain complete control of different light waves with optical materials, the chromatic dispersion should be carefully controlled, which is however extremely difficult. In this paper, we propose a method to control the behaviors of different light waves through a metasurface which is able to generate achromatic geometric phase. Using this approach, a doughnut-shaped and a solid light spot were achieved at the same focal plane using two light sources with different wavelengths as used in the stimulation emission depletion (STED) microscope system. In order to reveal the full capacity of such method, tight focusing at multiple wavelengths is also represented, where the focal spots of different wavelengths are located at the same position. The results provided here may open a new door to the design of subminiature optical components and integrated optical system operating at multiple wavelengths. PMID:26503607

  8. Multispectral optical metasurfaces enabled by achromatic phase transition

    PubMed Central

    Zhao, Zeyu; Pu, Mingbo; Gao, Hui; Jin, Jinjin; Li, Xiong; Ma, Xiaoliang; Wang, Yanqin; Gao, Ping; Luo, Xiangang

    2015-01-01

    The independent control of electromagnetic waves with different oscillating frequencies is critical in the modern electromagnetic techniques, such as wireless communications and multispectral imaging. To obtain complete control of different light waves with optical materials, the chromatic dispersion should be carefully controlled, which is however extremely difficult. In this paper, we propose a method to control the behaviors of different light waves through a metasurface which is able to generate achromatic geometric phase. Using this approach, a doughnut-shaped and a solid light spot were achieved at the same focal plane using two light sources with different wavelengths as used in the stimulation emission depletion (STED) microscope system. In order to reveal the full capacity of such method, tight focusing at multiple wavelengths is also represented, where the focal spots of different wavelengths are located at the same position. The results provided here may open a new door to the design of subminiature optical components and integrated optical system operating at multiple wavelengths. PMID:26503607

  9. Optically pumped gas laser using electronic transitions in the NaRb molecule

    SciTech Connect

    Kaslin, V.M.; Yakushev, O.F.

    1983-12-01

    Laser superradiance was achieved for the first time as a result of an electronic transition in a diatomic heteronuclear molecule as a result of direct optical pumping. This superradiance was observed in the region of 670 nm due to a transition to the ground state X/sup 1/..sigma../sup +/ of the intermetallic alkali molecule NaRb pumped by radiation from a pulsed copper vapor laser (lambda = 510.6 nm).

  10. Optical properties across the insulator to metal transitions in vanadium oxide compounds.

    PubMed

    Perucchi, A; Baldassarre, L; Postorino, P; Lupi, S

    2009-08-12

    We review the optical properties of three vanadium oxide compounds V(2)O(3), VO(2) and V(3)O(5), belonging to the so-called Magnéli phase. Their electrodynamics across a metal to insulator transition is investigated as a function of both temperature and pressure. We analyse thoroughly the optical results, with a special emphasis on the infrared spectral weight. This allows us to discuss the nature of the mechanisms driving the phase transitions in the three compounds, pointing out the role of electron-electron and electron-phonon interactions in the various cases. PMID:21693963

  11. Magneto-optical spectra of transition metal dichalcogenides: A comparative study

    NASA Astrophysics Data System (ADS)

    Ho, Yen-Hung; Chiu, Chih-Wei; Su, Wu-Pei; Lin, Ming-Fa

    2014-12-01

    Following our previous work [Ho et al., Phys. Rev. B 89, 155316 (2014)], we systematically calculate the magneto-optical properties of various transition metal dichalcogenide monolayers. The intrinsic spin-orbit coupling gives rise to the spin-split electronic states, while a perpendicular magnetic field further induces a valley splitting. In magneto-optical spectra with linearly polarized light, spectral features are spin and valley-polarized. Compounds are different from one another in terms of transition energies and appearance of twin peaks. Our numerical results can serve as a guide for future experimental identification.

  12. Optical transitions of Dy/sup 3 +/ ions in fluorozirconate glass

    SciTech Connect

    Adam, J.L.; Docq, A.D.; Lucas, J.

    1988-08-01

    Optical absorption and emission spectra are presented for Dy/sup 3 +/ ions in fluorozirconate (ZBLA) glass. The measured oscillator strengths and radiative rates for several transitions are compared with calculated values. Radiative transition rates for the excited states are determined by using the Judd-Ofelt theory (B.R. Judd, Phys. Rev. 127, 750 (1962); G.S. Ofelt, J. Chem. Phys. 37, 511 (1962)). Thermal evolution of the radiative rate is observed for the /sup 4/F/sub 9/2/ level and is well accounted for by Start level thermalization. Energy transfer effects are responsible for the nonradiative transitions.

  13. Optical properties of transition metal oxide quantum wells

    NASA Astrophysics Data System (ADS)

    Demkov, Alexander; Choi, Miri; Butcher, Matthew; Rodriguez, Cesar; He, Qian; Posadas, Agham; Borisevich, Albina; Zollner, Stefan; Lin, Chungwei; Ortmann, Elliott

    2015-03-01

    We report on the investigation of SrTiO3/LaAlO3 quantum wells (QWs) grown by molecular beam epitaxy (MBE) on LaAlO3 substrate. Structures with different QW thicknesses ranging from two to ten unit cells were grown and characterized using x-ray photoemission spectroscopy, reflection high-energy electron diffraction (RHEED), scanning transmission electron microscopy (STEM). Optical properties (complex dielectric function) were measured by spectroscopic ellipsometry (SE) in the range of 1.0 eV to 6.0 eV at room temperature. We observed that the absorption edge was blue-shifted by approximately 0.39 eV as the STO quantum well thickness was reduced to two unit cells (uc). Density functional theory and tight-binding are used to model the optical response of these heterostructures. Our results demonstrate that the energy level of the first sub-band can be controlled by the QW thickness in a complex oxide material. We acknowledge support from Air Force Office of Scientific Research (FA9550-12-10494).

  14. Magneto-optical transitions between subbands with different quantum numbers in narrow gap HgTe-CdTe superlattices

    NASA Astrophysics Data System (ADS)

    Luo, H.; Yang, G. L.; Furdyna, J. K.; Ram-Mohan, L. R.

    1991-10-01

    Magneto-optical transitions induced by the coupling between the conduction and the valence bands through the momentum matrix element, and by the coupling terms between light and heavy holes resulting from an applied magnetic field are studied theoretically in narrow gap HgTe-CdTe superlattices. Selection rules and transition probabilities for the above transitions are presented and compared with allowed transitions. The numerical results for the transition probabilities show that some of the interband transitions with ΔN=±1 are significant and have to be considered in the studies of interband magneto-optical spectra of narrow gap superlattices.

  15. Optical study of phase transitions in single-crystalline RuP

    NASA Astrophysics Data System (ADS)

    Chen, R. Y.; Shi, Y. G.; Zheng, P.; Wang, L.; Dong, T.; Wang, N. L.

    2015-03-01

    RuP single crystals of MnP-type orthorhombic structure were synthesized by the Sn flux method. Temperature-dependent x-ray diffraction measurements reveal that the compound experiences two structural phase transitions, which are further confirmed by enormous anomalies shown in temperature-dependent resistivity and magnetic susceptibility. Particularly, the resistivity drops monotonically upon temperature cooling below the second transition, indicating that the material shows metallic behavior, in sharp contrast with the insulating ground state of polycrystalline samples. Optical conductivity measurements were also performed in order to unravel the mechanism of these two transitions. The measurement revealed a sudden reconstruction of band structure over a broad energy scale and a significant removal of conducting carriers below the first phase transition, while a charge-density-wave-like energy gap opens below the second phase transition.

  16. Effects of the host glass on optical transitions

    SciTech Connect

    Snitzer, E.

    1993-12-31

    All the glass lasers consist of various rare earths doped singly or in combinations in different glass bases. Because the transitions are between energy levels with the same f-electron configurations that are shielded by 5s and 5p electrons from the ligand field, the fluorescent lifetimes are of the order of a few milliseconds and the ligand field interaction is of the order of a few hundred cm{sup {minus}1}. Nevertheless, the host glass has a substantial influence because of the site symmetry, the presence of multiple sites and the quenching associated with the interaction between the rare earth and the phonon spectrum of the glass. The use of fiber lasers for oscillators, amplifiers, and superluminescent sources will be discussed. The ions of particular interest are Er, Pr, Nd, and Tm.

  17. Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms.

    PubMed

    Zhang, S Y; Wu, J T; Zhang, Y L; Leng, J X; Yang, W P; Zhang, Z G; Zhao, J Y

    2015-01-01

    Optical clocks have been the focus of science and technology research areas due to their capability to provide highest frequency accuracy and stability to date. Their superior frequency performance promises significant advances in the fields of fundamental research as well as practical applications including satellite-based navigation and ranging. In traditional optical clocks, ultrastable optical cavities, laser cooling and particle (atoms or a single ion) trapping techniques are employed to guarantee high stability and accuracy. However, on the other hand, they make optical clocks an entire optical tableful of equipment, and cannot work continuously for a long time; as a result, they restrict optical clocks used as very convenient and compact time-keeping clocks. In this article, we proposed, and experimentally demonstrated, a novel scheme of optical frequency standard based on comb-directly-excited atomic two-photon transitions. By taking advantage of the natural properties of the comb and two-photon transitions, this frequency standard achieves a simplified structure, high robustness as well as decent frequency stability, which promise widespread applications in various scenarios. PMID:26459877

  18. Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms

    PubMed Central

    Zhang, S. Y.; Wu, J. T.; Zhang, Y. L.; Leng, J. X.; Yang, W. P.; Zhang, Z. G.; Zhao, J. Y.

    2015-01-01

    Optical clocks have been the focus of science and technology research areas due to their capability to provide highest frequency accuracy and stability to date. Their superior frequency performance promises significant advances in the fields of fundamental research as well as practical applications including satellite-based navigation and ranging. In traditional optical clocks, ultrastable optical cavities, laser cooling and particle (atoms or a single ion) trapping techniques are employed to guarantee high stability and accuracy. However, on the other hand, they make optical clocks an entire optical tableful of equipment, and cannot work continuously for a long time; as a result, they restrict optical clocks used as very convenient and compact time-keeping clocks. In this article, we proposed, and experimentally demonstrated, a novel scheme of optical frequency standard based on comb-directly-excited atomic two-photon transitions. By taking advantage of the natural properties of the comb and two-photon transitions, this frequency standard achieves a simplified structure, high robustness as well as decent frequency stability, which promise widespread applications in various scenarios. PMID:26459877

  19. 75 FR 10799 - Transitions Optical, Inc.; Analysis to Aid Public Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... Transitions Optical, Inc.; Analysis to Aid Public Comment AGENCY: Federal Trade Commission. ACTION: Proposed... prohibiting unfair or deceptive acts or practices or unfair methods of competition. The attached Analysis to... public record for a period of thirty (30) days. The following Analysis to Aid Public Comment...

  20. Systematic Study of the ^87Sr Clock Transition in an Optical Lattice

    NASA Astrophysics Data System (ADS)

    Boyd, Martin; Ludlow, Andrew; Zelevinsky, Tanya; Foreman, Seth; Blatt, Sebastian; Notcutt, Mark; Ido, Tetsuya; Ye, Jun

    2006-05-01

    The ^1S0-^3P0 transition in ^87Sr is studied for the realization of an optical atomic clock, using μK atoms in a magic wavelength optical lattice [1]. The probe laser frequency is measured with an octave-spanning fs comb, which is referenced to a hydrogen maser (directly calibrated by the NIST primary Cs fountain clock) allowing high precision evaluation of potential systematic frequency shifts . By varying the lattice wavelength and trapping depth we find that the magic wavelength for the clock transition is 813.418(10) with a clock sensitivity to lattice deviations of ˜2 mHz/MHz for lattice intensities of 10 kW/cm^2. To explore the effect of atomic collisions on the clock frequency we varied the atomic density by a factor of 50 and did not find any shifts at the 3 x10-14 level. Dependence of the clock transition on magnetic fields has been examined as the hyperfine interaction (I = 9/2), which provides the small transition moment for the doubly forbidden clock transition, also results in a differential g factor of the ^3P0 and ^1S0 levels. We will report the latest results of this optical clock system. [1] A.D. Ludlow et al., Phys Rev Lett 96, 033003 (2006).

  1. Magneto-optics in transition metal diselenide monolayers

    NASA Astrophysics Data System (ADS)

    Wang, G.; Bouet, L.; Glazov, M. M.; Amand, T.; Ivchenko, E. L.; Palleau, E.; Marie, X.; Urbaszek, B.

    2015-09-01

    We perform photoluminescence experiments at 4 K on two different transition metal diselenide monolayers (MLs), namely MoSe2 and WSe2 in magnetic fields Bz up to 9 T applied perpendicular to the sample plane. In MoSe2 MLs the valley polarization of the neutral and the charged exciton (trion) can be tuned by the magnetic field, independent of the excitation laser polarization. In the investigated WSe2 ML sample the evolution of the trion valley polarization depends both on the applied magnetic field and the excitation laser helicity, while the neutral exciton valley polarization depends only on the latter. Remarkably, we observe a reversal of the sign of the trion polarization between WSe2 and MoSe2. For both systems we observe a clear Zeeman splitting for the neutral exciton and the trion of about ±2 meV at {{B}z}\\mp 9 T. The extracted Landé-factors for both exciton complexes in both materials are g≈ -4.

  2. Magnetic-dipole transitions in highly charged ions as a basis of ultraprecise optical clocks.

    PubMed

    Yudin, V I; Taichenachev, A V; Derevianko, A

    2014-12-01

    We evaluate the feasibility of using magnetic-dipole (M1) transitions in highly charged ions as a basis of an optical atomic clockwork of exceptional accuracy. We consider a range of possibilities, including M1 transitions between clock levels of the same fine-structure and hyperfine-structure manifolds. In highly charged ions these transitions lie in the optical part of the spectra and can be probed with lasers. The most direct advantage of our proposal comes from the low degeneracy of clock levels and the simplicity of atomic structure in combination with negligible quadrupolar shift. We demonstrate that such clocks can have projected fractional accuracies below the 10^{-20}-10^{-21} level for all common systematic effects, such as blackbody radiation, Zeeman, ac-Stark, and quadrupolar shifts. PMID:25526127

  3. The impact of quantum dot filling on dual-band optical transitions via intermediate quantum states

    SciTech Connect

    Wu, Jiang; Passmore, Brandon; Manasreh, M. O.

    2015-08-28

    InAs/GaAs quantum dot infrared photodetectors with different doping levels were investigated to understand the effect of quantum dot filling on both intraband and interband optical transitions. The electron filling of self-assembled InAs quantum dots was varied by direct doping of quantum dots with different concentrations. Photoresponse in the near infrared and middle wavelength infrared spectral region was observed from samples with low quantum dot filling. Although undoped quantum dots were favored for interband transitions with the absence of a second optical excitation in the near infrared region, doped quantum dots were preferred to improve intraband transitions in the middle wavelength infrared region. As a result, partial filling of quantum dot was required, to the extent of maintaining a low dark current, to enhance the dual-band photoresponse through the confined electron states.

  4. Optical Strong Coupling between near-Infrared Metamaterials and Intersubband Transitions in III-Nitride Heterostructures

    DOE PAGESBeta

    Benz, Alexander; Campione, Salvatore; Moseley, Michael W.; Wierer, Jonathan J.; Allerman, Andrew A.; Wendt, Joel R.; Brener, Igal

    2014-08-25

    We present the design, realization, and characterization of optical strong light–matter coupling between intersubband transitions within a semiconductor heterostructures and planar metamaterials in the near-infrared spectral range. The strong light–matter coupling entity consists of a III-nitride intersubband superlattice heterostructure, providing a two-level system with a transition energy of ~0.8 eV (λ ~1.55 μm) and a planar “dogbone” metamaterial structure. Furthermore, as the bare metamaterial resonance frequency is varied across the intersubband resonance, a clear anticrossing behavior is observed in the frequency domain. We found that this strongly coupled entity could enable the realization of electrically tunable optical filters, a newmore » class of efficient nonlinear optical materials, or intersubband-based light-emitting diodes.« less

  5. Optical Strong Coupling between near-Infrared Metamaterials and Intersubband Transitions in III-Nitride Heterostructures

    SciTech Connect

    Benz, Alexander; Campione, Salvatore; Moseley, Michael W.; Wierer, Jonathan J.; Allerman, Andrew A.; Wendt, Joel R.; Brener, Igal

    2014-08-25

    We present the design, realization, and characterization of optical strong light–matter coupling between intersubband transitions within a semiconductor heterostructures and planar metamaterials in the near-infrared spectral range. The strong light–matter coupling entity consists of a III-nitride intersubband superlattice heterostructure, providing a two-level system with a transition energy of ~0.8 eV (λ ~1.55 μm) and a planar “dogbone” metamaterial structure. Furthermore, as the bare metamaterial resonance frequency is varied across the intersubband resonance, a clear anticrossing behavior is observed in the frequency domain. We found that this strongly coupled entity could enable the realization of electrically tunable optical filters, a new class of efficient nonlinear optical materials, or intersubband-based light-emitting diodes.

  6. Single-shot electro-optic sampling of coherent transition radiation at the A0 Photoinjector

    SciTech Connect

    Maxwell, T.J.; Ruan, J.; Piot, P.; Thurman-Keup, R.; /Fermilab

    2011-08-01

    Future collider applications and present high-gradient laser plasma wakefield accelerators operating with picosecond bunch durations place a higher demand on the time resolution of bunch distribution diagnostics. This demand has led to significant advancements in the field of electro-optic sampling over the past ten years. These methods allow the probing of diagnostic light such as coherent transition radiation or the bunch wakefields with sub-picosecond time resolution. Potential applications in shot-to-shot, non-interceptive diagnostics continue to be pursued for live beam monitoring of collider and pump-probe experiments. Related to our developing work with electro-optic imaging, we present results on single-shot electro-optic sampling of the coherent transition radiation from bunches generated at the A0 photoinjector.

  7. Current-modulated optical properties of vanadium dioxide thin films in the phase transition region

    SciTech Connect

    Zhang, Shuyan; Kats, Mikhail A.; Cui, Yanjie; Zhou, You; Yao, Yu; Ramanathan, Shriram; Capasso, Federico

    2014-11-24

    Vanadium dioxide (VO{sub 2}) is a correlated electron material which undergoes an insulator-metal transition proximal to room temperature. The large change of optical properties across this phase transition is promising for tunable optical and optoelectronic devices especially at infrared frequencies. We demonstrate the ability to locally tune the optical properties on the micron scale through a simple design consisting of two electrodes patterned on a VO{sub 2} thin film. By current injection between the electrodes, a localized conducting path (metallic phase) can be formed within the insulating background. The width of the conducting path can be controlled by varying the applied current. Fourier transform infrared imaging shows that this current-modulated reflectance changes significantly over a distance on the order of the wavelength in the mid-infrared spectral range.

  8. Synthesis and study of optical properties of transition metals doped ZnS nanoparticles.

    PubMed

    Ramasamy, V; Praba, K; Murugadoss, G

    2012-10-01

    ZnS and transition metal (Mn, Co, Ni, Cu, Ag and Cd) doped ZnS were synthesized using chemical precipitation method in an air atmosphere. The structural and optical properties were studied using various techniques. The X-ray diffraction (XRD) analysis show that the particles are in cubic structure. The mean size of the nanoparticles calculated through Scherrer equation is in the range of 4-6.1 nm. Elemental dispersive (EDX) analysis of doped samples reveals the presence of doping ions. The scanning electron microscopic (SEM) and transmission electron microscopic (TEM) studies show that the synthesized particles are in spherical shape. Optical characterization of both undoped and doped samples was carried out by ultraviolet-visible (UV-Vis) and photoluminescence (PL) spectroscopy. The absorption spectra of all the samples are blue shifted from the bulk ZnS. An optimum doping level of the transition metals for enhanced PL properties are found through optical study. PMID:22938741

  9. Transiting exoplanets and magnetic spots characterized with optical interferometry

    NASA Astrophysics Data System (ADS)

    Ligi, R.; Mourard, D.; Lagrange, A.-M.; Perraut, K.; Chiavassa, A.

    2015-02-01

    Context. Stellar activity causes difficulties in the characterization of transiting exoplanets. In particular, the magnetic spots present on most exoplanet host stars can lead to false detections with radial velocity, photometry, or astrometry techniques. Studies have been performed to quantify their impact on infrared interferometry, but no such studies have been performed in the visible domain. This wavelength domain, however, allows reaching better angular resolution than in the infrared and is also the wavelength most often used for spectroscopic and photometric measurements. Aims: We use a standard case to completely analyse the impact of an exoplanet and a spot on interferometric observables and relate it to current instrument capabilities, taking into account realistic achievable precisions. Methods: We built a numerical code called COMETS using analytical formulae to perform a simple comparison of exoplanet and spot signals. We explored instrumental specificities needed to detect them, such as the required baseline length, the accuracy, and signal-to-noise ratio. We also discuss the impact of exoplanet and spot parameters on squared visibility and phase: exoplanet diameter and size, exoplanet position, spot temperature, star diameter. Results: According to our study, the main improvement to achieve is the instrument sensitivity. The accuracy on squared visibilities has to be improved by a factor 10 to detect an exoplanet of 0.10 mas, leading to <0.5% precision, along with phase measurements of ~5° accuracy beyond the first null of visibility. For an exoplanet of 0.05 mas, accuracies of ~0.1% and ~1° from the first null are required on squared visibilities and phases. Magnetic spots can mimic these signals, leading to false exoplanet characterization. Phase measurements from the third lobe are needed to distinguish between the spot and the exoplanet if they have the same radius. Conclusions: By increasing interferometer sensitivity, more objects will

  10. Optical and Near-UV Observations of the Transiting Extrasolar Planet TrES-4b

    NASA Astrophysics Data System (ADS)

    Smith, Carter-Thaxton; Turner, J.; Carleton, T.; Crawford, B.; Guvenen, B.; Hardegree-Ullman, K.; Small, L.; Towner, A. P.; Walker-LaFollette, A.; Henz, T.

    2013-01-01

    Using the Steward Observatory 61” Kuiper Telescope, The University of Arizona Astronomy Club conducted photometric observations of the transiting extrasolar planet TrES-4b as part of the Exoplanet Observation Project. Observations were made in the Bessell U, Harris B, and Harris R filters. Initial observations were made in 2009, with follow up observations in 2011. Basic data reduction and photometry was done using IRAF and determination of transit parameters was done using Transit Analysis Package (TAP) and JKTEBOP transit modeling code. We present an updated planetary mass, radius, density, surface gravity, Safronov number, equilibrium temperature, orbital distance, and orbital inclination for TrES-4b. In addition, we also searched for asymmetries between the near-UV and optical light curves. This project, started in spring 2009, has introduced many undergraduate students to research and given them valuable experience with data reduction and observation techniques.

  11. Band structure and optical transitions in LaFeO3: theory and experiment.

    PubMed

    Scafetta, Mark D; Cordi, Adam M; Rondinelli, James M; May, Steven J

    2014-12-17

    The optical absorption properties of LaFeO(3) (LFO) have been calculated using density functional theory and experimentally measured from several high quality epitaxial films using variable angle spectroscopic ellipsometry. We have analyzed the calculated absorption spectrum using different Tauc models and find the model based on a direct-forbidden transition gives the best agreement with the ab initio band gap energies and band dispersions. We have applied this model to the experimental data and determine the band gap of epitaxial LFO to be ∼2.34 eV, with a slight dependence on strain state. This approach has also been used to analyze the higher indirect transition at ∼3.4 eV. Temperature dependent ellipsometry measurements further confirm our theoretical analysis of the nature of the transitions. This works helps to provide a general approach for accurate determination of band gaps and transition energies in complex oxide materials. PMID:25406799

  12. Optically induced metal-to-dielectric transition in Epsilon-Near-Zero metamaterials

    PubMed Central

    Kaipurath, R. M.; Pietrzyk, M.; Caspani, L.; Roger, T.; Clerici, M.; Rizza, C.; Ciattoni, A.; Di Falco, A.; Faccio, D.

    2016-01-01

    Epsilon-Near-Zero materials exhibit a transition in the real part of the dielectric permittivity from positive to negative value as a function of wavelength. Here we study metal-dielectric layered metamaterials in the homogenised regime (each layer has strongly subwavelength thickness) with zero real part of the permittivity in the near-infrared region. By optically pumping the metamaterial we experimentally show that close to the Epsilon-Near-Zero (ENZ) wavelength the permittivity exhibits a marked transition from metallic (negative permittivity) to dielectric (positive permittivity) as a function of the optical power. Remarkably, this transition is linear as a function of pump power and occurs on time scales of the order of the 100 fs pump pulse that need not be tuned to a specific wavelength. The linearity of the permittivity increase allows us to express the response of the metamaterial in terms of a standard third order optical nonlinearity: this shows a clear inversion of the roles of the real and imaginary parts in crossing the ENZ wavelength, further supporting an optically induced change in the physical behaviour of the metamaterial. PMID:27292270

  13. Optically induced metal-to-dielectric transition in Epsilon-Near-Zero metamaterials

    NASA Astrophysics Data System (ADS)

    Kaipurath, R. M.; Pietrzyk, M.; Caspani, L.; Roger, T.; Clerici, M.; Rizza, C.; Ciattoni, A.; di Falco, A.; Faccio, D.

    2016-06-01

    Epsilon-Near-Zero materials exhibit a transition in the real part of the dielectric permittivity from positive to negative value as a function of wavelength. Here we study metal-dielectric layered metamaterials in the homogenised regime (each layer has strongly subwavelength thickness) with zero real part of the permittivity in the near-infrared region. By optically pumping the metamaterial we experimentally show that close to the Epsilon-Near-Zero (ENZ) wavelength the permittivity exhibits a marked transition from metallic (negative permittivity) to dielectric (positive permittivity) as a function of the optical power. Remarkably, this transition is linear as a function of pump power and occurs on time scales of the order of the 100 fs pump pulse that need not be tuned to a specific wavelength. The linearity of the permittivity increase allows us to express the response of the metamaterial in terms of a standard third order optical nonlinearity: this shows a clear inversion of the roles of the real and imaginary parts in crossing the ENZ wavelength, further supporting an optically induced change in the physical behaviour of the metamaterial.

  14. Optically induced metal-to-dielectric transition in Epsilon-Near-Zero metamaterials.

    PubMed

    Kaipurath, R M; Pietrzyk, M; Caspani, L; Roger, T; Clerici, M; Rizza, C; Ciattoni, A; Di Falco, A; Faccio, D

    2016-01-01

    Epsilon-Near-Zero materials exhibit a transition in the real part of the dielectric permittivity from positive to negative value as a function of wavelength. Here we study metal-dielectric layered metamaterials in the homogenised regime (each layer has strongly subwavelength thickness) with zero real part of the permittivity in the near-infrared region. By optically pumping the metamaterial we experimentally show that close to the Epsilon-Near-Zero (ENZ) wavelength the permittivity exhibits a marked transition from metallic (negative permittivity) to dielectric (positive permittivity) as a function of the optical power. Remarkably, this transition is linear as a function of pump power and occurs on time scales of the order of the 100 fs pump pulse that need not be tuned to a specific wavelength. The linearity of the permittivity increase allows us to express the response of the metamaterial in terms of a standard third order optical nonlinearity: this shows a clear inversion of the roles of the real and imaginary parts in crossing the ENZ wavelength, further supporting an optically induced change in the physical behaviour of the metamaterial. PMID:27292270

  15. Optical Properties and Electronic Transitions of YbFe2O4 Thin Films

    NASA Astrophysics Data System (ADS)

    Hinz, Josh; Pascolini, Michelle; Rai, Ram

    We present growth, structural, optical and electronic properties of Ytterbium-Iron-oxide, YbFe2O4, thin films. YbFe2O4 exhibits the unique physical properties due to the presence of Fe2+ and Fe3+ valance states within the triangular lattice structure. We prepared the compound by a solid state reaction starting with stoichiometric proportion of Yb2O3, Fe2O3, and FeO. The material was then deposited on c-axis sapphire substrates using a reactive electron beam deposition technique to produce ~100 nm thick films. Absorption, reflectance, and transmittance of the YbFe2O4 films were measured in the temperature range of 10 - 450 K. The optical spectra contain Fe d to d on-site transitions as well as O 2p to Fe 3d, Yb 6 s, and Yb 5 d charge-transfer transitions. In addition, the optical spectra exhibit strong temperature dependence, indicating evidence of a structural distortion of the crystal structure at ~180 +/-10 K as well as a magnetic transition at ~250 K. The detail analysis of the optical data in comparison with theoretical studies will be presented. National Science Foundation (DMR-1406766).

  16. Communication: Generalization of Koopmans’ theorem to optical transitions in the Hubbard model of graphene nanodots

    SciTech Connect

    Sheng, Weidong; Luo, Kaikai; Zhou, Aiping

    2015-01-14

    Koopmans’ theorem implies that the Hartree-Fock quasiparticle gap in a closed-shell system is equal to its single-particle energy gap. In this work, the theorem is generalized to optical transitions in the Hubbard model of graphene nanodots. Based on systematic configuration interaction calculations, it is proposed that the optical gap of a closed-shell graphene system within the Hubbard model is equal to its tight-binding single-particle energy gap in the absence of electron correlation. In these systems, the quasiparticle energy gap and exciton binding energy are found to be dominated by the long-range Coulomb interaction, and thus, both become small when only on-site Hubbard interactions are present. Moreover, the contributions of the quasiparticle and excitonic effects to the optical gap are revealed to nearly cancel each other, which results in an unexpected overlap of the optical and single-particle gaps of the graphene systems.

  17. Optical Limiting and Theoretical Modelling of Layered Transition Metal Dichalcogenide Nanosheets.

    PubMed

    Dong, Ningning; Li, Yuanxin; Feng, Yanyan; Zhang, Saifeng; Zhang, Xiaoyan; Chang, Chunxia; Fan, Jintai; Zhang, Long; Wang, Jun

    2015-01-01

    Nonlinear optical property of transition metal dichalcogenide (TMDC) nanosheet dispersions, including MoS2, MoSe2, WS2, and WSe2, was performed by using Z-scan technique with ns pulsed laser at 1064 nm and 532 nm. The results demonstrate that the TMDC dispersions exhibit significant optical limiting response at 1064 nm due to nonlinear scattering, in contrast to the combined effect of both saturable absorption and nonlinear scattering at 532 nm. Selenium compounds show better optical limiting performance than that of the sulfides in the near infrared. A liquid dispersion system based theoretical modelling is proposed to estimate the number density of the nanosheet dispersions, the relationship between incident laser fluence and the size of the laser generated micro-bubbles, and hence the Mie scattering-induced broadband optical limiting behavior in the TMDC dispersions. PMID:26415562

  18. Optical Limiting and Theoretical Modelling of Layered Transition Metal Dichalcogenide Nanosheets

    PubMed Central

    Dong, Ningning; Li, Yuanxin; Feng, Yanyan; Zhang, Saifeng; Zhang, Xiaoyan; Chang, Chunxia; Fan, Jintai; Zhang, Long; Wang, Jun

    2015-01-01

    Nonlinear optical property of transition metal dichalcogenide (TMDC) nanosheet dispersions, including MoS2, MoSe2, WS2, and WSe2, was performed by using Z-scan technique with ns pulsed laser at 1064 nm and 532 nm. The results demonstrate that the TMDC dispersions exhibit significant optical limiting response at 1064 nm due to nonlinear scattering, in contrast to the combined effect of both saturable absorption and nonlinear scattering at 532 nm. Selenium compounds show better optical limiting performance than that of the sulfides in the near infrared. A liquid dispersion system based theoretical modelling is proposed to estimate the number density of the nanosheet dispersions, the relationship between incident laser fluence and the size of the laser generated micro-bubbles, and hence the Mie scattering-induced broadband optical limiting behavior in the TMDC dispersions. PMID:26415562

  19. Electronic properties of 3d transitional metal pnictides: A comparative study by optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Cheng, B.; Hu, B. F.; Chen, R. Y.; Xu, G.; Zheng, P.; Luo, J. L.; Wang, N. L.

    2012-10-01

    Single-crystalline KFe2As2 and CaT2As2 (T=Fe, Co, Ni, and Cu) are synthesized and investigated by resistivity, susceptibility, and optical spectroscopy. It is found that CaCu2As2 exhibits a similar transition to the lattice abrupt collapse transitions discovered in CaFe2(As1-xPx)2 and Ca1-xRxFe2As2 (R = rare-earth element). The resistivity of KFe2As2 and CaT2As2 (T=Fe, Co, Ni, and Cu) approximately follows the similar T2 dependence at low temperature, but the magnetic behaviors vary with different samples. Optical measurement reveals that the optical response of CaCu2As2 is not sensitive to the transition at 50 K, with no indication of development of a new energy gap below the transition temperature. Using Drude-Lorentz model, we find that two Drude terms, a coherent one and an incoherent one, can fit the low-energy optical conductivity of KFe2As2 and CaT2As2 (T=Fe, Co, and Ni) very well. However, in CaCu2As2, which is a sp-band metal, the low-energy optical conductivity can be well described by a coherent Drude term. Lack of the incoherent Drude term in CaCu2As2 may be attributed to a weaker electronic correlation than in KFe2As2 and CaT2As2 (T=Fe, Co, and Ni). Spectral weight analysis of these samples indicates that the unconventional spectral weight transfer, which is related to Hund's coupling energy JH, is only observed in iron pnictides, supporting the viewpoint that JH may be a key clue in the search for the mechanism of magnetism and superconductivity in pnictides.

  20. Investigation of microwave transitions and nonlinear magneto-optical rotation in anti-relaxation-coated cells

    SciTech Connect

    Budker, D.; Hollberg, L.; Kimball, D.F.; Kitching, J.; Pustclny, S.; Robinson, H.G.; Yashchuk, V.V.

    2004-06-04

    Using laser optical pumping, widths and frequency shifts are determined for microwave transitions between the components of the ground-state hyperfine structure for {sup 85}Rb and {sup 87}Rb atoms contained in vapor cells with alkane anti-relaxation coatings. The results are compared with data on Zeeman relaxation obtained in nonlinear magneto-optical rotation (NMOR) experiments, a comparison important for quantitative understanding of spin-relaxation mechanisms in coated cells. By comparing cells manufactured over a forty-year period we demonstrate the long-term stability of coated cells, which may be useful for atomic clocks and magnetometers.

  1. Microwave transitions and nonlinear magneto-optical rotation in anti-relaxation-coated cells

    SciTech Connect

    Budker, D.; Hollberg, L.; Kitching, J.; Kimball, D.F.; Pustelny, S.; Yashchuk, V.V.

    2005-01-01

    Using laser optical pumping, widths and frequency shifts are determined for microwave transitions between ground-state hyperfine components of {sup 85}Rb and {sup 87}Rb atoms contained in vapor cells with alkane antirelaxation coatings. The results are compared with data on Zeeman relaxation obtained in nonlinear magneto-optical rotation experiments, a comparison important for quantitative understanding of spin-relaxation mechanisms in coated cells. By comparing cells manufactured over a 40-year period we demonstrate the long-term stability of coated cells, an important property for atomic clocks and magnetometers.

  2. Microwave transitions and nonlinear magneto-optical rotation in anti-relaxation-coated cells

    SciTech Connect

    Budker, Dmitry; Hollberg. Leo; Kimball, Derek F.; Kitching J.; Pustelny Szymon; Yashchuk, Valeriy V.

    2004-08-12

    Using laser optical pumping, widths and frequency shifts are determined for microwave transitions between ground-state hyperfine components of {sup 85}Rb and {sup 87}Rb atoms contained in vapor cells with alkane anti-relaxation coatings. The results are compared with data on Zeeman relaxation obtained in nonlinear magneto-optical rotation (NMOR) experiments, a comparison important for quantitative understanding of spin-relaxation mechanisms in coated cells. By comparing cells manufactured over a forty-year period we demonstrate the long-term stability of coated cells, an important property for atomic clocks and magnetometers.

  3. Optical coherence in atomic monolayer transition metal dichalcogenides limited by electron-phonon interactions

    NASA Astrophysics Data System (ADS)

    Dey, Prasenjit; Paul, Jagannath; Wang, Zefang; Stevens, Christopher; Liu, Cunming; Romero, Aldo; Shan, Jie; Hilton, David; Karaiskaj, Denis; Aldo Romero Collaboration; Zefang Wang, Jie Shan Collaboration; David HIlton Collaboration

    We systematically investigate the excitonic dephasing of three representative transition metal dichalcogenides, namely MoS2, MoSe2 and WSe2 atomic monolayer thick and bulk crystals, in order to gain proper understanding of the factors that determine the optical coherence in these materials. Coherent nonlinear optical spectroscopy, temperature dependent absorption combined with `ab initio' theoretical calculations of the phonon spectra, indicate electron-phonon interactions to be the limiting factor. The research at USF, Penn. State, and UAB is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0012635.

  4. Optically controlled polarizer using a ladder transition for high speed Stokesmetric Imaging and Quantum Zeno Effect based optical logic.

    PubMed

    Krishnamurthy, Subramanian; Wang, Y; Tu, Y; Tseng, S; Shahriar, M S

    2013-10-21

    We demonstrate an optically controlled polarizer at ~1323 nm using a ladder transition in a Rb vapor cell. The lower leg of the 5S(1/2),F = 1->5P(1/2),F = 1,2->6S(1/2),F = 1,2 transitions is excited by a Ti:Sapphire laser locked to a saturated absorption signal, representing the control beam. A tunable fiber laser at ~1323 nm is used to excite the upper leg of the transitions, representing the signal beam. When the control beam is linearly polarized, it produces an excitation of the intermediate level with a particular orientation of the angular momentum. Under ideal conditions, this orientation is transparent to the signal beam if it has the same polarization as the control beam and is absorbed when it is polarized orthogonally. We also present numerical simulations of the system using a comprehensive model which incorporates all the relevant Zeeman sub-levels in the system, and identify means to improve the performance of the polarizer. A novel algorithm to compute the evolution of large scale quantum system enabled us to perform this computation, which may have been considered too cumbersome to carry out previously. We describe how such a polarizer may serve as a key component for high-speed Stokesmetric imaging. We also show how such a polarizer, combined with an optically controlled waveplate, recently demonstrated by us, can be used to realize a high speed optical logic gate by making use of the Quantum Zeno Effect. Finally, we describe how such a logic gate can be realized at an ultra-low power level using a tapered nanofiber embedded in a vapor cell. PMID:24150297

  5. Two-Dimensional Transition Metal Dichalcogenides: Controlled Synthesis and Optical Characterization

    NASA Astrophysics Data System (ADS)

    Lin, Zhong; Gong, Yongji; Ye, Gonglan; Shi, Gang; Thee, Michael; Elias, Ana Laura; Perea-Lopez, Nestor; Feng, Simin; Lei, Yu; Zhou, Chanjing; Fujisawa, Kazunori; Carozo, Victor; Vajtai, Robert; Terrones, Humberto; Liu, Zheng; Ajayan, Pulickel; Terrones, Mauricio

    Chemical vapor deposition (CVD) is a bottom-up approach suitable for the synthesis of MoS2 and WS2 monolayers. In order to extend the application of CVD, we modified the precursors used during the deposition. We show that by using mixed transition metal precursors of MoS2/WO3 powders, alloyed monolayers of MoxW1-xS2 islands can be synthesized exhibiting a compositional gradient and a tunable optical band gap, as confirmed by Raman and photoluminescence measurements. We further show that adding tellurium powders into the transition metal precursors can lead to a 200 oC reduction in the synthesis temperature for MoS2 and WS2 monolayers. The materials synthesized at a reduced temperature maintain a high degree of crystallinity and optical properties.

  6. Conditional Spin Squeezing via Quantum Non-demolition Measurements with an Optical Cycling Transition

    NASA Astrophysics Data System (ADS)

    Weiner, Joshua; Cox, Kevin; Norcia, Matthew; Bohnet, Justin; Chen, Zilong; Thompson, James

    2013-04-01

    We present experimental progress towards quantum non-demolition (QND) measurements of the collective pseudo-spin Jz composed of the maximal mF hyperfine ground states of an ensemble of ˜10^5 ^87Rb atoms confined in a low finesse F = 710 optical cavity. Measuring the phase shift imposed by the atoms on a cavity probe field constitutes a QND measurement that can be used to prepare a conditionally spin squeezed state. By probing on a closed optical transition, we highly suppress both fundamental and technical noise due to Raman scattering compared to probing on an open transition. It may be possible to generate spin squeezed states with >10 dB enhancement in quantum phase estimation relative to the standard quantum limit. The resulting spin squeezed states may specifically enable magnetic field sensing beyond the standard quantum limit as well as broadly impact atomic sensors and tests of fundamental physics.

  7. Bending light via adiabatic optical transition in longitudinally modulated photonic lattices

    PubMed Central

    Han, Bin; Xu, Lei; Dou, Yiling; Xu, Jingjun; Zhang, Guoquan

    2015-01-01

    Bending light in a controllable way is desired in various applications such as beam steering, navigating and cloaking. Different from the conventional way to bend light by refractive index gradient, transformation optics or special beams through wavefront design such as Airy beams and surface plasmons, we proposed a mechanism to bend light via resonant adiabatic optical transition between Floquet-Bloch (FB) modes from different FB bands in longitudinally modulated photonic lattices. The band structure of longitudinally modulated photonic lattices was calculated by employing the concept of quasi-energy based on the Floquet-Bloch theory, showing the existence of band discontinuities at specific resonant points which cannot be revealed by the coupled-mode theory. Interestingly, different FB bands can be seamlessly connected at these resonant points in longitudinally modulated photonic lattices driven by adiabatically varying the longitudinal modulation period along the propagation direction, which stimulates the adiabatic FB mode transition between different FB bands. PMID:26511890

  8. Developments in on-line, electron-beam emittance measurements using optical transition radiation techniques

    SciTech Connect

    Feldman, R.B.; Lumpkin, A.H. ); Rule, D.W.; Fiorito, R.B. )

    1989-01-01

    We have developed image analysis software to facilitate the analysis of optical transition radiation (OTR) patterns generated by the electron beam from the Los Alamos free-electron laser facility. The software can be used for beam alignment, beam profile and angular divergence measurements, and the programs run on an IBM AT microcomputer. The programs and their use are described and some results shown. 2 refs., 17 figs.

  9. Bragg scattering as a probe of atomic wave functions and quantum phase transitions in optical lattices.

    PubMed

    Miyake, Hirokazu; Siviloglou, Georgios A; Puentes, Graciana; Pritchard, David E; Ketterle, Wolfgang; Weld, David M

    2011-10-21

    We have observed Bragg scattering of photons from quantum degenerate ^{87}Rb atoms in a three-dimensional optical lattice. Bragg scattered light directly probes the microscopic crystal structure and atomic wave function whose position and momentum width is Heisenberg limited. The spatial coherence of the wave function leads to revivals in the Bragg scattered light due to the atomic Talbot effect. The decay of revivals across the superfluid to Mott insulator transition indicates the loss of superfluid coherence. PMID:22107532

  10. Optical study of the piezochromic transition in CuMoO4 by pressure spectroscopy

    NASA Astrophysics Data System (ADS)

    Rodríguez, F.; Hernández, D.; Garcia-Jaca, J.; Ehrenberg, H.; Weitzel, H.

    2000-06-01

    The aim of this work is to investigate the origin of the piezochromism and thermochromism exhibited by the copper oxide CuMoO4. These optical phenomena are associated with structural phase transition (PT) from the triclinic α (green) modification to the γ (brownish-red) modification. The variation of the optical-absorption spectrum with pressure and temperature indicates that the piezochromic and thermochromic transitions can be reached from ambient conditions either by applying pressure at 2.5 kbar or by cooling at T=200 K. We show that the change of color at the α-->γ PT is due to the broadening of the first O2--->Cu2+ charge-transfer band, and the disappearance of an intense peak at 1.49 eV, related to the presence of pyramidal CuO5 complexes in α-CuMoO4. The measured oscillator strength suggests that this peak corresponds to the e-->b1 crystal-field transition within CuO5 rather than to an O2--->Cu2+ charge-transfer band. The correlation between optical and structural properties performed in this work confirms this interpretation, and also explains the strong dichroism exhibited by the crystal in the high-pressure γ- CuMoO4 modification.

  11. Using a Semiconductor-to-Metal Transition to Control Optical Transmission through Subwavelength Hole Arrays

    DOE PAGESBeta

    Donev, E. U.; Suh, J. Y.; Lopez, R.; Feldman, L. C.; Haglund, R. F.

    2008-01-01

    We describe a simple configuration in which the extraordinary optical transmission effect through subwavelength hole arrays in noble-metal films can be switched by the semiconductor-to-metal transition in an underlying thin film of vanadium dioxide. In these experiments, the transition is brought about by thermal heating of the bilayer film. The surprising reverse hysteretic behavior of the transmission through the subwavelength holes in the vanadium oxide suggest that this modulation is accomplished by a dielectric-matching condition rather than plasmon coupling through the bilayer film. The results of this switching, including the wavelength dependence, are qualitatively reproduced by a transfer matrix model.more » The prospects for effecting a similar modulation on a much faster time scale by using ultrafast laser pulses to trigger the semiconductor-to-metal transition are also discussed.« less

  12. The excitonic insulator route through a dynamical phase transition induced by an optical pulse

    NASA Astrophysics Data System (ADS)

    Brazovskii, S.; Kirova, N.

    2016-03-01

    We consider a dynamical phase transition induced by a short optical pulse in a system prone to thermodynamical instability. We address the case of pumping to excitons whose density contributes directly to the order parameter. To describe both thermodynamic and dynamic effects on equal footing, we adopt a view of the excitonic insulator for the phase transition and suggest a formation of the Bose condensate for the pumped excitons. The work is motivated by experiments in donor-acceptor organic compounds with a neutral- ionic phase transition coupled to the spontaneous lattice dimerization and to charge transfer excitons. The double nature of the ensemble of excitons leads to an intricate time evolution, in particular, to macroscopic quantum oscillations from the interference between the Bose condensate of excitons and the ground state of the excitonic insulator. The coupling of excitons and the order parameter also leads to self-trapping of their wave function, akin to self-focusing in optics. The locally enhanced density of excitons can surpass a critical value to trigger the phase transformation, even if the mean density is below the required threshold. The system is stratified in domains that evolve through dynamical phase transitions and sequences of merging. The new circumstances in experiments and theory bring to life, once again, some remarkable inventions made by L.V. Keldysh.

  13. Excitation rate coefficients and line ratios for the optical and ultraviolet transitions in S II

    NASA Technical Reports Server (NTRS)

    Cai, Wei; Pradhan, Anil K.

    1993-01-01

    New calculations are reported for electron excitation collision strengths, rate coefficients, transition probabilities, and line ratios for the astrophysically important optical and UV lines in S II. The collision strengths are calculated in the close coupling approximation using the R-matrix method. The present calculations are more extensive than previous ones, including all transitions among the 12 lowest LS terms and the corresponding 28 fine-structure levels in the collisional-radiative model for S II. While the present rate coefficients for electron impact excitation are within 10-30 percent of the previous values for the low-lying optical transitions employed as density diagnostics of H II regions and nebulae, the excitation rates for the UV transitions 4S super 0 sub 3/2 - 4Psub 1/2,3/2,5/2 differ significantly from earlier calculations, by up to factor of 2. We describe temperature and density sensitive flux ratios for a number of UV lines. The present UV results are likely to be of interest in a more accurate interpretation of S II emission from the Io plasma torus in the magnetosphere of Jupiter, as well as other UV sources observed from the IUE, ASTRO 1, and the HST.

  14. Optical and Spin Signatures of Transition Metal Impurities in Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Koehl, William; Whitely, Samuel J.; Diler, Berk; Bourassa, Alexandre; Awschalom, David D.; Son, Nguyen Tien

    Point defects and impurities are increasingly viewed as an important resource for solid-state implementations of quantum information technologies. Electronic spins bound to point defects like the nitrogen vacancy center in diamond and divacancy in silicon carbide are especially attractive because they function as long-lived qubit states that can be controlled optically at the single-site level. These capabilities have generated a growing interest in identifying other classes of point defect with similar properties, since discovery of such systems might allow for new ranges of functionality in solid-state quantum device design. Transition metal ions are a promising area for exploration, since they often introduce isolated electronic levels within the bandgaps of semiconductors and possess a wide variety of magnetic and optical properties. Here we describe recent experimental studies of the optical and spin properties of transition metal impurities in silicon carbide. Using ensemble spectroscopies, we evaluate their potential for use as optically-controllable spin states within this industrially-important, wide-bandgap, optoelectronic material. This work supported by the AFOSR, NSF MRSEC, and Argonne LDRD Program.

  15. Method of synthesizing a plurality of reactants and producing thin films of electro-optically active transition metal oxides

    DOEpatents

    Tracy, C.E.; Benson, D.K.; Ruth, M.R.

    1985-08-16

    A method of synthesizing a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of electro-optically active transition metal oxides.

  16. Optical absorption of gamma-irradiated lithium-borate glasses doped with different transition metal oxides

    NASA Astrophysics Data System (ADS)

    Marzouk, S. Y.; Elalaily, N. A.; Ezz-Eldin, F. M.; Abd-Allah, W. M.

    2006-06-01

    We have investigated the effect of gamma irradiation on the optical properties of Li 2O-B 2O 3 containing two concentrations (0.2 or 0.5 g) of each one of the following transition metals, V, Mn, Fe or Ni oxide glass samples. We studied the impacts of gamma irradiation in terms of the mechanism by which radiation-induced defects are generated. A resolution of the observed absorption spectra showed several bands which were induced by photo-reduction or photo-oxidation assumed to take place by photo-chemical reaction according to the type of transition metal oxide (TMO). Small deviations of these induced bands characteristic of the glass constituents were observed and explained in terms of the physical properties, in relation to different oxidation states of TMO in the glass matrix. The series Mn 2+, Fe 2+ and Ni 2+ ions shows a trend of increased photo-oxidation with increasing electronegativity or decreasing mass of the ions. The prepared samples were studied in terms of their dosimetric characteristics: calibration curves from 1.0524 to 42.096 kGy and fading at (25 and 50 °C). Thermal bleaching of irradiated glass was found to permit the reduction of the larger part of TMO ions in Li 2O-B 2O 3. Also, the results showed that the degeneration of the induced bands was faster at 50 than at 25 °C. The optical energy gap Eg was found to decrease with the increase of the radiation dose, and it is suggested that the mechanism of optical transition is forbidden by indirect transition.

  17. Bose–Einstein condensation versus Dicke–Hepp–Lieb transition in an optical cavity

    SciTech Connect

    Piazza, Francesco; Strack, Philipp; Zwerger, Wilhelm

    2013-12-15

    We provide an exact solution for the interplay between Bose–Einstein condensation and the Dicke–Hepp–Lieb self-organization transition of an ideal Bose gas trapped inside a single-mode optical cavity and subject to a transverse laser drive. Based on an effective action approach, we determine the full phase diagram at arbitrary temperature, which features a bi-critical point where the transitions cross. We calculate the dynamically generated band structure of the atoms and the associated suppression of the critical temperature for Bose–Einstein condensation in the phase with a spontaneous periodic density modulation. Moreover, we determine the evolution of the polariton spectrum due to the coupling of the cavity photons and the atomic field near the self-organization transition, which is quite different above or below the Bose–Einstein condensation temperature. At low temperatures, the critical value of the Dicke–Hepp–Lieb transition decreases with temperature and thus thermal fluctuations can enhance the tendency to a periodic arrangement of the atoms. -- Highlights: •Atoms inside a driven cavity can undergo two transitions: self-organization and BEC. •The phase diagram has four phases which coexist at a bi-critical point. •Atom–cavity coupling creates a dynamical lattice for the atoms. •Finite temperature can enhance the tendency towards self-organization. •We calculate the detailed spectrum of the polaritonic excitations.

  18. Optically Induced Indirect Photonic Transitions in a Slow Light Photonic Crystal Waveguide

    NASA Astrophysics Data System (ADS)

    Castellanos Muñoz, Michel; Petrov, Alexander Yu.; O'Faolain, Liam; Li, Juntao; Krauss, Thomas F.; Eich, Manfred

    2014-02-01

    We demonstrate indirect photonic transitions in a silicon slow light photonic crystal waveguide. The transitions are driven by an optically generated refractive index front that moves along the waveguide and interacts with a signal pulse copropagating in the structure. We experimentally confirm a theoretical model which indicates that the ratio of the frequency and wave vector shifts associated with the indirect photonic transition is identical to the propagation velocity of the refractive index front. The physical origin of the transitions achieved here is fundamentally different than in previously proposed refractive index modulation concepts with fixed temporal and spatial modulation frequencies; as here, the interaction with the refractive index front results in a Doppler-like signal frequency and wave vector shift. Consequently, the bandwidth over which perfect mode frequency and wave vector matching is achieved is not intrinsically limited by the shape of the photonic bands, and tuning of the indirect photonic transitions is possible without any need for geometrical modifications of the structure. Our device is genuinely nonreciprocal, as it provides different frequency shifts for co- and counterpropagating signal and index fronts.

  19. Photocurrent spectroscopy of exciton and free particle optical transitions in suspended carbon nanotube pn-junctions

    SciTech Connect

    Chang, Shun-Wen; Theiss, Jesse; Hazra, Jubin; Aykol, Mehmet; Kapadia, Rehan; Cronin, Stephen B.

    2015-08-03

    We study photocurrent generation in individual, suspended carbon nanotube pn-junction diodes formed by electrostatic doping using two gate electrodes. Photocurrent spectra collected under various electrostatic doping concentrations reveal distinctive behaviors for free particle optical transitions and excitonic transitions. In particular, the photocurrent generated by excitonic transitions exhibits a strong gate doping dependence, while that of the free particle transitions is gate independent. Here, the built-in potential of the pn-junction is required to separate the strongly bound electron-hole pairs of the excitons, while free particle excitations do not require this field-assisted charge separation. We observe a sharp, well defined E{sub 11} free particle interband transition in contrast with previous photocurrent studies. Several steps are taken to ensure that the active charge separating region of these pn-junctions is suspended off the substrate in a suspended region that is substantially longer than the exciton diffusion length and, therefore, the photocurrent does not originate from a Schottky junction. We present a detailed model of the built-in fields in these pn-junctions, which, together with phonon-assistant exciton dissociation, predicts photocurrents on the same order of those observed experimentally.

  20. Truncated Transition Densities for Analysis of (Nonlinear) Optical Properties of carbo-Chromophores.

    PubMed

    Poidevin, Corentin; Lepetit, Christine; Ben Amor, Nadia; Chauvin, Remi

    2016-08-01

    The optical properties of several quadrupolar carbo-benzene derivatives are investigated at various levels of calculation (TDDFT and CASPT2) and analyzed using a new theoretical tool here disclosed: The "visualization" of the transition dipole moment from the transition density truncated to the main monoexcitations involved in the electronic transition (TTD). The experimental or calculated one-photon UV-visible absorption spectra of the carbo-benzene derivatives fit with the Gouterman model originally proposed for porphyrins, where the first four excited states involve linear combinations of monoexcitations of the same four frontier molecular orbitals. The relative intensities of the absorption bands are analyzed from the transition dipole moments calculated from the TTDs and an analogy between porphyrins and carbo-benzenes is argued. The two-photon absorption (TPA) cross section related to the third-order nonlinear optical response is calculated for each two-photon-allowed excited state |f⟩ from the contribution of all possible intermediate excited states |i⟩ using the "sum-over-state" (SOS) scheme. The quadrupolar carbo-benzene derivatives fit into the three-level model, as their TPA cross section exhibits a dominant contribution of one of the intermediate excited states. The origin of TPA efficiency (enhancement) upon carbo-merisation of the C-C link to the para-substituents is discussed from the excitation energies of the intermediate and final excited states and from the two corresponding transition dipole moments (μ0i and μif). The latter may be calculated from the TTDs. PMID:27359162

  1. Transitions.

    ERIC Educational Resources Information Center

    Nathanson, Jeanne H., Ed.

    1993-01-01

    This theme issue on transitions for individuals with disabilities contains nine papers discussing transition programs and issues. "Transition Issues for the 1990s," by Michael J. Ward and William D. Halloran, discusses self-determination, school responsibility for transition, continued educational engagement of at-risk students, and service…

  2. Electronic and Optical properties of Vacancy Defects in two dimensional monolayer Transition metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Khan, Mahtab; Erementchouk, Mikhail; Leuenberger, Michael

    Defects play an important role in tailoring electronic and optical properties of two-dimensional monolayer transition metal dichalcogenides (TMDCs). Recently it has been shown that the presence of vacancy defects (VDs) in two-dimensional monolayer MoS_2 induces localized states which give rise to extra resonance peaks in both in-plane χ∥ and out-of-plane χ⊥ susceptibilities.1 In-plane χ∥ and out-of-plane χ⊥ susceptibilities are related to the presence of even and odd states with respect to the Mo plane, respectively1. Moreover, monolayer TMDCs have a large spin orbit coupling (SOC), originating from d-orbitals of heavy transition metals and being of the order of a few 100 meV. We present a more general picture of the electronic and optical properties of defected monolayer TMDCs. In particular, we consider MoS2, MoSe2, WS2 and WSe2 with three types of VDs (i) Mo, W vacancy, (ii) S2, Se2 vacancy, and (iii) S, Se vacancy. In addition, we investigate the effects of SOC on the band structures and the optical susceptibilities of VDs in TMDCs. 1. Mikhail Erementchouk, M. A. Khan, and Michael N. Leuenberger, Phys. Rev. B 92, 121401(R) (2015).

  3. Method of synthesizing a plurality of reactants and producing thin films of electro-optically active transition metal oxides

    DOEpatents

    Tracy, C. Edwin; Benson, David K.; Ruth, Marta R.

    1987-01-01

    A method of synthesizing electro-optically active reaction products from a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of electro-optically active transition metal oxides.

  4. Quantum criticality of a Bose gas in an optical lattice near the Mott transition

    NASA Astrophysics Data System (ADS)

    Rançon, A.; Dupuis, N.

    2012-01-01

    We derive the equation of state of bosons in an optical lattice in the framework of the Bose-Hubbard model. Near the density-driven Mott transition, the expression of the pressure P(μ,T) versus chemical potential and temperature is similar to that of a dilute Bose gas but with renormalized mass m* and scattering length a*. Here m* is the mass of the elementary excitations at the quantum critical point governing the transition from the superfluid phase to the Mott-insulating phase, while a* is related to their effective interaction at low energy. We use a nonperturbative renormalization-group approach to compute these parameters as a function of the ratio t/U between hopping amplitude and on-site repulsion.

  5. Electronic states and intraband terahertz optical transitions in InGaAs quantum rods

    NASA Astrophysics Data System (ADS)

    Prodanović, Nikola; Vukmirović, Nenad; Indjin, Dragan; Ikonić, Zoran; Harrison, Paul

    2012-04-01

    Strain-dependent eight-band k .p method is used to analyze the electronic structure and intraband optical transitions in self-assembled InGaAs quantum rods in the terahertz range. The calculation of absorption spectra for the growth- and in-plane-polarized radiation shows some similarities to those of quantum well and single quantum dot structures, augmented with contribution from transitions between the dot and quantum well states. The influence of rod height on the electronic structure and the intraband absorption spectra is also investigated. It is found that the energy of maximal terahertz absorption can be tailored by the rod height for both in-plane and in-growth polarized radiation.

  6. Nonequilibrium phase transition of interacting bosons in an intra-cavity optical lattice.

    PubMed

    Bakhtiari, M Reza; Hemmerich, A; Ritsch, H; Thorwart, M

    2015-03-27

    We investigate the nonlinear light-matter interaction of a Bose-Einstein condensate trapped in an external periodic potential inside an optical cavity which is weakly coupled to vacuum radiation modes and driven by a transverse pump field. Based on a generalized Bose-Hubbard model which incorporates a single cavity mode, we include the collective backaction of the atoms on the cavity light field and determine the nonequilibrium quantum phases within the nonperturbative bosonic dynamical mean-field theory. With the system parameters adapted to recent experiments, we find a quantum phase transition from a normal phase to a self-organized superfluid phase, which is related to the Hepp-Lieb-Dicke superradiance phase transition. For even stronger pumping, a self-organized Mott insulator phase arises. PMID:25860742

  7. High-accuracy optical clock based on the octupole transition in 171Yb+.

    PubMed

    Huntemann, N; Okhapkin, M; Lipphardt, B; Weyers, S; Tamm, Chr; Peik, E

    2012-03-01

    We experimentally investigate an optical frequency standard based on the 467 nm (642 THz) electric-octupole reference transition (2)S(1/2)(F=0)→(2)F(7/2)(F=3) in a single trapped (171)Yb(+) ion. The extraordinary features of this transition result from the long natural lifetime and from the 4f(13)6s(2) configuration of the upper state. The electric-quadrupole moment of the (2)F(7/2) state is measured as -0.041(5)ea(0)(2), where e is the elementary charge and a(0) the Bohr radius. We also obtain information on the differential scalar and tensorial components of the static polarizability and of the probe-light-induced ac Stark shift of the octupole transition. With a real-time extrapolation scheme that eliminates this shift, the unperturbed transition frequency is realized with a fractional uncertainty of 7.1×10(-17). The frequency is measured as 642 121 496 772 645.15(52) Hz. PMID:22463621

  8. High-Accuracy Optical Clock Based on the Octupole Transition in Yb+171

    NASA Astrophysics Data System (ADS)

    Huntemann, N.; Okhapkin, M.; Lipphardt, B.; Weyers, S.; Tamm, Chr.; Peik, E.

    2012-03-01

    We experimentally investigate an optical frequency standard based on the 467 nm (642 THz) electric-octupole reference transition S1/22(F=0)→F7/22(F=3) in a single trapped Yb+171 ion. The extraordinary features of this transition result from the long natural lifetime and from the 4f136s2 configuration of the upper state. The electric-quadrupole moment of the F7/22 state is measured as -0.041(5)ea02, where e is the elementary charge and a0 the Bohr radius. We also obtain information on the differential scalar and tensorial components of the static polarizability and of the probe-light-induced ac Stark shift of the octupole transition. With a real-time extrapolation scheme that eliminates this shift, the unperturbed transition frequency is realized with a fractional uncertainty of 7.1×10-17. The frequency is measured as 642 121 496 772 645.15(52) Hz.

  9. Acoustical and optical investigations of the size effect in nematic-isotropic phase transition in liquid crystal microemulsions

    NASA Astrophysics Data System (ADS)

    Maksimochkin, G. I.; Pasechnik, S. V.; Lukin, A. V.

    2015-07-01

    The absorption of ultrasound (at a frequency of 2.7 MHz) and the depolarized light transmission and scattering (at a wavelength of 630 nm) in liquid crystal (LC) emulsions have been studied during the nematic-isotropic (N-I) phase transition in LC droplets with radii ranging from 150 to 2300 nm. The obtained acoustical and optical data are used to determine the influence of the droplet size on characteristics of the N-I phase transition. It is shown that the acoustical and optical characteristics of LC emulsions have good prospects to be used for the investigation of phase transitions in submicron samples.

  10. Magneto-optical Phase Transition in a Nanostructured Co/Pd Thin Film

    NASA Astrophysics Data System (ADS)

    Nwokoye, Chidubem; Bennett, Lawrence; Della Torre, Edward; Siddique, Abid; Zhang, Ming; Wagner, Michael; Narducci, Frank

    Interest in the study of magnetism in nanostructures at low temperatures is growing. We report work that extends the magnetics experiments in that studied Bose-Einstein Condensation (BEC) of magnons in confined nanostructures. We report experimental investigation of the magneto-optical properties, influenced by photon-magnon interactions, of a Co/Pd thin film below and above the magnon BEC temperature. Comparison of results from SQUID and MOKE experiments revealed a phase transition temperature in both magnetic and magneto-optical properties of the material that is attributed to the magnon BEC. Recent research in magnonics has provided a realization scheme for developing magnon BEC qubit gates for a quantum computing processor. Future research work will explore this technology and find ways to apply quantum computing to address some computational challenges in communication systems. We recognize financial support from the Naval Air Systems Command Section 219 grant.

  11. Optical Coherence in Atomic-Monolayer Transition-Metal Dichalcogenides Limited by Electron-Phonon Interactions

    NASA Astrophysics Data System (ADS)

    Dey, P.; Paul, J.; Wang, Z.; Stevens, C. E.; Liu, C.; Romero, A. H.; Shan, J.; Hilton, D. J.; Karaiskaj, D.

    2016-03-01

    We systematically investigate the excitonic dephasing of three representative transition-metal dichalcogenides, namely, MoS2 , MoSe2 , and WSe2 atomic monolayer thick and bulk crystals, in order to gain a proper understanding of the factors that determine the optical coherence in these materials. Coherent nonlinear optical spectroscopy and temperature dependent absorption, combined with theoretical calculations of the phonon spectra, indicate electron-phonon interactions, to be the limiting factor. Surprisingly, the excitonic dephasing, differs only slightly between atomic monolayers and high quality bulk crystals, which indicates that material imperfections are not the limiting factor in atomically thin monolayer samples. The temperature dependence of the electronic band gap and the excitonic linewidth combined with "ab initio" calculations of the phonon energies and the phonon density of states reveal a strong interaction with the E ' and E " phonon modes.

  12. Bose-Einstein quantum phase transition in an optical lattice model

    SciTech Connect

    Aizenman, Michael; Lieb, Elliott H.; Seiringer, Robert; Solovej, Jan Philip; Yngvason, Jakob

    2004-08-01

    Bose-Einstein condensation (BEC) in cold gases can be turned on and off by an external potential, such as that presented by an optical lattice. We present a model of this phenomenon which we are able to analyze rigorously. The system is a hard core lattice gas at half of the maximum density and the optical lattice is modeled by a periodic potential of strength {lambda}. For small {lambda} and temperature, BEC is proved to occur, while at large {lambda} or temperature there is no BEC. At large {lambda} the low-temperature states are in a Mott insulator phase with a characteristic gap that is absent in the BEC phase. The interparticle interaction is essential for this transition, which occurs even in the ground state. Surprisingly, the condensation is always into the p=0 mode in this model, although the density itself has the periodicity of the imposed potential.

  13. Optically and thermally controlled terahertz metamaterial via transition between direct and indirect electromagnetically induced transparency

    SciTech Connect

    Sui, Jiawei Feng, Ls

    2014-12-15

    This passage presents a design of tunable terahertz metamaterials via transition between indirect and direct electromagnetically induced transparency (EIT) effects by changing semiconductor InSb’s properties to terahertz wave under optical and thermal stimuli. Mechanical model and its electrical circuit model are utilized in analytically calculating maximum transmission of transparency window. Simulated results show consistency with the analytical expressions. The results show that the metamaterials hold 98.4% modulation depth at 189 GHz between 300 K, σ{sub InSb} =256000 S/m, and 80 K, σ{sub InSb} =0.0162 S/m conditions , 1360 ps recovery time of the excited electrons in InSb under optical stimulus at 300 K mainly considering the direct EIT effect, and minimum bandwidth 1 GHz.

  14. Control of Optical Transitions with Magnetic Fields in Weakly Bound Molecules

    NASA Astrophysics Data System (ADS)

    McGuyer, B. H.; McDonald, M.; Iwata, G. Z.; Skomorowski, W.; Moszynski, R.; Zelevinsky, T.

    2015-07-01

    In weakly bound diatomic molecules, energy levels are closely spaced and thus more susceptible to mixing by magnetic fields than in the constituent atoms. We use this effect to control the strengths of forbidden optical transitions in 88Sr2 over 5 orders of magnitude with modest fields by taking advantage of the intercombination-line threshold. The physics behind this remarkable tunability is accurately explained with both a simple model and quantum chemistry calculations, and suggests new possibilities for molecular clocks. We show how mixed quantization in an optical lattice can simplify molecular spectroscopy. Furthermore, our observation of formerly inaccessible f -parity excited states offers an avenue for improving theoretical models of divalent-atom dimers.

  15. Bandwidth smearing in optical interferometry: analytic model of the transition to the double fringe packet

    NASA Astrophysics Data System (ADS)

    Lachaume, R.; Berger, J.-P.

    2012-07-01

    Bandwidth smearing is a chromatic aberration due to the finite frequency bandwidth. In long-baseline optical interferometry terms, it is when the angular extension of the source is greater than the coherence length of the interferogram. As a consequence, separated parts of the source will contribute to fringe packets that are not fully overlapping; it is a transition from the classical interferometric regime to a double or multiple fringe packet. While studied in radio interferometry, there has been little work on the matter in the optical, where observables are measured and derived in a different manner, and are more strongly impacted by the turbulent atmosphere. We provide here the formalism and a set of usable equations to model and correct for the impact of smearing on the fringe contrast and phase, with the case of multiple stellar systems in mind. The atmosphere is briefly modeled and discussed.

  16. Control of Optical Transitions with Magnetic Fields in Weakly Bound Molecules.

    PubMed

    McGuyer, B H; McDonald, M; Iwata, G Z; Skomorowski, W; Moszynski, R; Zelevinsky, T

    2015-07-31

    In weakly bound diatomic molecules, energy levels are closely spaced and thus more susceptible to mixing by magnetic fields than in the constituent atoms. We use this effect to control the strengths of forbidden optical transitions in (88)Sr2 over 5 orders of magnitude with modest fields by taking advantage of the intercombination-line threshold. The physics behind this remarkable tunability is accurately explained with both a simple model and quantum chemistry calculations, and suggests new possibilities for molecular clocks. We show how mixed quantization in an optical lattice can simplify molecular spectroscopy. Furthermore, our observation of formerly inaccessible f-parity excited states offers an avenue for improving theoretical models of divalent-atom dimers. PMID:26274416

  17. Theory of magic optical traps for Zeeman-insensitive clock transitions in alkali-metal atoms

    SciTech Connect

    Derevianko, Andrei

    2010-05-15

    Precision measurements and quantum-information processing with cold atoms may benefit from trapping atoms with specially engineered, 'magic' optical fields. At the magic trapping conditions, the relevant atomic properties remain immune to strong perturbations by the trapping fields. Here we develop a theoretical analysis of magic trapping for especially valuable Zeeman-insensitive clock transitions in alkali-metal atoms. The involved mechanism relies on applying a magic bias B field along a circularly polarized trapping laser field. We map out these B fields as a function of trapping laser wavelength for all commonly used alkalis. We also highlight a common error in evaluating Stark shifts of hyperfine manifolds.

  18. Progress on the Flash X-Ray Optical Transition Radiation Diagnostic

    SciTech Connect

    Tang, V; Houck, T; Brown, C

    2008-03-30

    This document summarizes the Flash X-Ray accelerator (FXR) optical transition radiation (OTR) spot-size diagnostics efforts in FY07. During this year, new analysis, simulation, and experimental approaches were utilized to interpret OTR spot data from both dielectric foils such as Kapton (VN type) and metal coated foils. Significant new findings of the intricacies involved in the diagnostic and of FXR operational issues were achieved. Geometry and temperature based effects were found to affect the beam image profiles from the OTR foils. These effects must be taken into account in order to deduce accurately the beam current density profile.

  19. Ellipsometric method for the measurement of temperature and optical constants of incandescent transition metals.

    PubMed

    Hansen, G P; Krishnan, S; Hauge, R H; Margrave, J L

    1989-05-15

    The development of a unique noncontact temperature measurement device utilizing rotating analyzer ellipsometry is described. The technique circumvents the necessity of spectral emissivity estimation by direct measurement concomitant with radiance brightness. Simultaneous determinations of dielectric constants and refractive indices allow changes in the physical and chemical state of a heated surface to be monitored. The results of optical property measurements at 633 nm as functions of temperature between 1000 and 2500 K for eight transition metals including Hf, Ir, Mo, Nb, Pd, Pt, Ta, and V are presented together with preliminary results of oxidation studies on iridium. PMID:20548762

  20. Transverse beam shape measurements of intense proton beams using optical transition radiation

    SciTech Connect

    Scarpine, Victor E.; /Fermilab

    2012-03-01

    A number of particle physics experiments are being proposed as part of the Department of Energy HEP Intensity Frontier. Many of these experiments will utilize megawatt level proton beams onto targets to form secondary beams of muons, kaons and neutrinos. These experiments require transverse size measurements of the incident proton beam onto target for each beam spill. Because of the high power levels, most beam intercepting profiling techniques will not work at full beam intensity. The possibility of utilizing optical transition radiation (OTR) for high intensity proton beam profiling is discussed. In addition, previous measurements of OTR beam profiles from the NuMI beamline are presented.

  1. Ellipsometric method for the measurement of temperature and optical constants of incandescent transition metals

    NASA Technical Reports Server (NTRS)

    Hansen, George P.; Krishnan, Shankar; Hauge, Robert H.; Margrave, John L.

    1989-01-01

    The development of a unique noncontact temperature measurement device utilizing rotating analyzer ellipsometry is described. The technique circumvents the necessity of spectral emissivity estimation by direct measurement concomitant with radiance brightness. Simultaneous determinations of dielectric constants and refractive indices allow changes in the physical and chemical state of a heated surface to be monitored. The results of optical property measurements at 633 nm as functions of temperature between 1000 and 2500 K for eight transition metals including Hf, Ir, Mo, Nb, Pd, Pt, Ta, and V are presented together with preliminary results of oxidation studies on iridium.

  2. Optical Properties of Fluid Hydrogen at the Transition to a Conducting State

    NASA Astrophysics Data System (ADS)

    McWilliams, R. Stewart; Dalton, D. Allen; Mahmood, Mohammad F.; Goncharov, Alexander F.

    2016-06-01

    We use fast transient transmission and emission spectroscopies in the pulse laser heated diamond anvil cell to probe the energy-dependent optical properties of hydrogen at pressures of 10-150 GPa and temperatures up to 6000 K. Hydrogen is absorptive at visible to near-infrared wavelengths above a threshold temperature that decreases from 3000 K at 18 GPa to 1700 K at 110 GPa. Transmission spectra at 2400 K and 141 GPa indicate that the absorptive hydrogen is semiconducting or semimetallic in character, definitively ruling out a first-order insulator-metal transition in the studied pressure range.

  3. Transitions.

    ERIC Educational Resources Information Center

    Field, David; And Others

    1992-01-01

    Includes four articles: "Career Aspirations" (Field); "Making the Transition to a New Curriculum" (Baker, Householder); "How about a 'Work to School' Transition?" (Glasberg); and "Technological Improvisation: Bringing CNC to Woodworking" (Charles, McDuffie). (SK)

  4. Transition.

    ERIC Educational Resources Information Center

    Thompson, Sandy, Ed.; And Others

    1990-01-01

    This "feature issue" focuses on transition from school to adult life for persons with disabilities. Included are "success stories," brief program descriptions, and a list of resources. Individual articles include the following titles and authors: "Transition: An Energizing Concept" (Paul Bates); "Transition Issues for the 1990s" (William Halloran…

  5. Effect of external electric field on the probability of optical transitions in InGaAs/GaAs quantum wells

    SciTech Connect

    Pikhtin, A. N. Komkov, O. S.; Bazarov, K. V.

    2006-05-15

    The effect of external electric field on interband optical transitions in single In{sub x}Ga{sub 1-x}As/GaAs quantum wells is studied by electroreflectance spectroscopy. A procedure is suggested for separating the contribution of particular exciton transitions to the complicated modulation spectrum. Nontrivial field dependences of the probability of optical transitions forbidden by the symmetry are observed experimentally. The data are compared with the corresponding theoretical dependences. The strength of the internal electric field in the region of the quantum well is determined from Frantz-Keldysh's oscillations. Under certain electric fields, the probability of transitions forbidden with no field is higher than the probability of transitions allowed by the symmetry.

  6. ADAPTIVE OPTICS IMAGES. II. 12 KEPLER OBJECTS OF INTEREST AND 15 CONFIRMED TRANSITING PLANETS

    SciTech Connect

    Adams, E. R.; Dupree, A. K.; Kulesa, C.; McCarthy, D.

    2013-07-01

    All transiting planet observations are at risk of contamination from nearby, unresolved stars. Blends dilute the transit signal, causing the planet to appear smaller than it really is, or producing a false positive detection when the target star is blended with an eclipsing binary. High spatial resolution adaptive optics images are an effective way of resolving most blends. Here we present visual companions and detection limits for 12 Kepler planet candidate host stars, of which 4 have companions within 4''. One system (KOI 1537) consists of two similar-magnitude stars separated by 0.''1, while KOI 174 has a companion at 0.''5. In addition, observations were made of 15 transiting planets that were previously discovered by other surveys. The only companion found within 1'' of a known planet is the previously identified companion to WASP-2b. An additional four systems have companions between 1'' and 4'': HAT-P-30b (3.''7, {Delta}Ks = 2.9), HAT-P-32b (2.''9, {Delta}Ks = 3.4), TrES-1b (2.''3, {Delta}Ks = 7.7), and WASP-P-33b (1.''9, {Delta}Ks = 5.5), some of which have not been reported previously. Depending on the spatial resolution of the transit photometry for these systems, these companion stars may require a reassessment of the planetary parameters derived from transit light curves. For all systems observed, we report the limiting magnitudes beyond which additional fainter objects located 0.''1-4'' from the target may still exist.

  7. Ab-initio study of the temperature effects on the optical properties of transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Molina-Sanchez, Alejandro; Palummo, Maurizia; Marini, Andrea; Wirtz, Ludger

    2015-03-01

    Research on ultra-thin two-dimensional materials has been booming since the discovery of graphene along with its interesting physical properties. The transition metal dichalcogenides as MoSare gaining considerable attention due to their potential application in photovoltaics and nanoscale transistors. The optical properties of these layered materials depend strongly on the number of layers. The paradigmatic example is the transition from indirect to direct bandgap when we change from multi-layer to single-layer MoS. In this work, we study the effects of the electron-phonon interaction on the optical properties of single-layer MoS. In the framework of the GW method we calculate the contribution of the electron-phonon coupling to the self-energy. This allows us to calculate the zero-point re-normalization of the quasi-particle energies and to include temperature effects. We discuss the bandgap dependence on the temperature, and the change in the linewidth of the quasi-particle states. The impact of temperature on the exciton states is also addressed.

  8. Optical gain for the interband optical transition in InAsP/InP quantum well wire in the influence of laser field intensity

    NASA Astrophysics Data System (ADS)

    Saravanan, S.; Peter, A. John

    2016-05-01

    Intense high frequency laser field induced electronic and optical properties of heavy hole exciton in the InAs0.8P0.2/InP quantum wire is studied taking into account the geometrical confinement effect. Laser field related exciton binding energies and the optical band gap in the InAs0.8P0.2/InP quantum well wire are investigated. The optical gain, for the interband optical transition, as a function of photon energy, in the InAs0.8P0.2/InP quantum wire, is obtained in the presence of intense laser field. The compact density matrix method is employed to obtain the optical gain. The obtained optical gain in group III-V narrow quantum wire can be applied for achieving the preferred telecommunication wavelength.

  9. Optical transition energies of isolated molecular monomers and weakly interacting two-dimensional aggregates

    NASA Astrophysics Data System (ADS)

    Forker, Roman; Dienel, Thomas; Krause, Andreas; Gruenewald, Marco; Meissner, Matthias; Kirchhuebel, Tino; Gröning, Oliver; Fritz, Torsten

    2016-04-01

    The optical excitation energies of organic dye molecules are often said to depend sensitively on the polarizability of the utilized substrate. To this end, we employ differential reflectance spectroscopy (DRS) to analyze the S0→S1 fundamental transition energies observed for 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) as a function of coverage on various surfaces, such as sp2-bonded insulating layers [graphene and hexagonal boron nitride (h-BN)], and noble metals pre-covered by a molecular wetting layer which prevents hybridization of the second-layer molecules with the metal states. We elucidate the optical absorbance behavior of PTCDA layers grown on h-BN/Rh(111) and on h-BN/Pt(111) and characterize their structures by means of scanning tunneling microscopy. Surprisingly, although the dielectric properties of the employed substrates differ substantially, only two main transition energies are observed: (i) PTCDAHE essentially mimics the behavior of isolated monomers on surfaces (particularly at submonolayer coverage), while (ii) PTCDALE, red-shifted by ≈70 meV (≈560 cm-1 ), is attributed to two-dimensional densely packed aggregates. This red-shift is in remarkable accordance with previous investigations for PTCDA on NaCl(100) and, therefore, likely arises from the same physical effects, namely the formation of two-dimensional excitonic bands and the polarizability of neighboring molecules within the monolayer. In distinction from earlier studies, we conclude that the polarizabilities of the employed substrates do not constitute the dominant contribution to the molecular S0→S1 transition energies observed here.

  10. Surface phase transitions in liquid Ga-Bi alloys studied by optical second harmonic generation

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Nattland, Detlef; Freyland, Werner

    2000-07-01

    Optical second harmonic generation (SHG) as a particularly surface sensitive technique was employed for the first time to investigate the surface phase behaviour of a liquid alloy, BixGa1-x, in different heating and cooling cycles up to 280 °C. The aim of these experiments is to establish a relatively simple experimental access to the surface phase diagrams of liquid alloys. Measurements of the characteristic changes of the SH signal have been performed on pure Bi and different Ga-rich alloys (xBi≤0.367). In pure bismuth the melting and freezing of the surface is indicated by a distinct polarization dependent variation of the SH intensities. Of particular interest is the characterization of the wetting transition found in Ga-Bi recently at the monotectic phase transition (xm = 0.085, Tm = 222 °C). Surprisingly, on first heating of the Ga-rich alloys up to 280 °C the SHG signals give no indication of the dramatic compositional change at the surface induced by the wetting transition. From these observations we conclude that the main source for the nonlinear polarization is the outermost layer of the alloy which in the wet and the non-wet state consists of an adsorbed Bi-rich monolayer. It is shown that SHG is very sensitive to structural changes at the surface. Most interestingly, on cooling of the Ga-rich alloys a Bi-rich film crystallizes on top of the bulk liquid alloy.

  11. Potential of electric quadrupole transitions in radium isotopes for single-ion optical frequency standards

    SciTech Connect

    Versolato, O. O.; Wansbeek, L. W.; Jungmann, K.; Timmermans, R. G. E.; Willmann, L.; Wilschut, H. W.

    2011-04-15

    We explore the potential of the electric quadrupole transitions 7s {sup 2}S{sub 1/2}-6d {sup 2}D{sub 3/2}, 6d {sup 2}D{sub 5/2} in radium isotopes as single-ion optical frequency standards. The frequency shifts of the clock transitions due to external fields and the corresponding uncertainties are calculated. Several competitive {sup A}Ra{sup +} candidates, with A= 223-229, are identified. In particular, we show that the transition 7s {sup 2}S{sub 1/2} (F=2,m{sub F}=0)-6d {sup 2}D{sub 3/2} (F=0,m{sub F}=0) at 828 nm in {sup 223}Ra{sup +}, with no linear Zeeman and electric quadrupole shifts, stands out as a relatively simple case, which could be exploited as a compact, robust, and low-cost atomic clock operating at a fractional frequency uncertainty of 10{sup -17}. With more experimental effort, the {sup 223,225,226}Ra{sup +} clocks could be pushed to a projected performance reaching the 10{sup -18} level.

  12. Magnetic phase transition in coherently coupled Bose gases in optical lattices

    NASA Astrophysics Data System (ADS)

    Barbiero, L.; Abad, M.; Recati, A.

    2016-03-01

    We describe the ground state of a gas of bosonic atoms with two coherently coupled internal levels in a deep optical lattice in a one-dimensional geometry. In the single-band approximation this system is described by a Bose-Hubbard Hamiltonian. The system has a superfluid and a Mott insulating phase that can be either paramagnetic or ferromagnetic. We characterize the quantum phase transitions at unit filling by means of a density-matrix renormalization-group technique and compare the results with a mean-field approach and an effective spin Hamiltonian. The presence of the ferromagnetic Ising-like transition modifies the Mott lobes. In the Mott insulating region the system maps to the ferromagnetic spin-1/2 X X Z model in a transverse field and the numerical results compare very well with the analytical results obtained from the spin model. In the superfluid regime quantum fluctuations strongly modify the phase transition with respect to the well-established mean-field three-dimensional classical bifurcation.

  13. Indirect interband transition induced by optical near fields with large wave numbers

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Maiku; Nobusada, Katsuyuki

    2016-05-01

    Optical near fields (ONFs) have Fourier components with large wave numbers that are two or three orders of magnitude larger than those of far-field propagating light owing to their nonuniformity in space. By utilizing these large wave numbers, the ONF is expected to induce an indirect interband transition between Bloch states having different wave numbers and directly generate an electron-hole pair without electron-phonon coupling. We perform time-dependent dynamics calculations of a one-dimensional periodic potential with an indirect band-gap structure and demonstrate that the ONF definitely induces an indirect interband transition. Instead of using the general Bloch boundary condition, which is usually imposed in conventional band structure calculations, we adopt an alternative boundary condition, the Born-von Kármán boundary condition, to appropriately treat indirect interband transitions. The calculated absorption spectra for the far-field and ONF excitations show different absorption edges and spectral patterns. We argue that this difference can be experimentally measured as evidence of the effects of the large wave numbers of the ONF.

  14. Hubble Space Telescope STIS Optical Transit Transmission Spectra of the Hot Jupiter HD 209458b

    NASA Astrophysics Data System (ADS)

    Sing, David K.; Vidal-Madjar, A.; Désert, J.-M.; Lecavelier des Etangs, A.; Ballester, G.

    2008-10-01

    We present the transmission spectra of the hot Jupiter HD 209458b taken with the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope. Our analysis combines data at two resolutions and applies a complete pixel-by-pixel limb-darkening correction to fully reveal the spectral line shapes of atmospheric absorption features. Terrestrial-based Na I and H I contamination are identified that mask the strong exoplanetary absorption signature in the Na core, which we find reaches total absorption levels of ~0.11% in a 4.4 Å band. The Na spectral line profile is characterized by a wide absorption profile at the lowest absorption depths and a sharp transition to a narrow absorption profile at higher absorption values. The transmission spectra also show the presence of an additional absorber at ~6250 Å, observed at both medium and low resolutions. We performed various limb-darkening tests, including using high-precision limb-darkening measurements of the Sun to characterize a general trend of ATLAS models to slightly overestimate the amount of limb darkening at all wavelengths, likely due to the limitations of the model's one-dimensional nature. We conclude that, despite these limitations, ATLAS models can still successfully model limb darkening in high signal-to-noise ratio transits of solar-type stars, like HD 209458, to a high level of precision over the entire optical regime (3000-10000 Å) at transit phases between second and third contact.

  15. Prediction of direct band gap silicon superlattices with dipole-allowed optical transition

    NASA Astrophysics Data System (ADS)

    Kim, Sunghyun; Oh, Young Jun; Lee, In-Ho; Lee, Jooyoung; Chang, K. J.

    While cubic diamond silicon (c-Si) is an important element in electronic devices, it has poor optical properties owing to its indirect gap nature, thereby limiting its applications to optoelectronic devices. Here, we report Si superlattice structures which are computationally designed to possess direct band gaps and excellent optical properties. The computational approach adopts density functional calculations and conformational space annealing for global optimization. The Si superlattices, which consist of alternating stacks of Si(111) layers and a defective layer with Seiwatz chains, have either direct or quasi-direct band gaps depending on the details of attacking layers. The photovoltaic efficiencies are calculated by solving Bethe-Salpeter equation together with quasiparticle G0W0 calculations. The strong direct optical transition is attributed to the overlap of the valence and conduction band edge states in the interface region. Our Si superlattices exhibit high thermal stability, with the energies lower by an order of magnitude than those of the previously reported Si allotropes. We discuss a possible route to the synthesis of the superlattices through wafer bonding. This work is supported by Samsung Science and Technology Foundation under Grant No. SSTF-BA1401-08.

  16. Low-temperature optical spectroscopy of single-layer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Plechinger, Gerd; Nagler, Philipp; Schüller, Christian; Korn, Tobias

    In recent years, layered materials beyond graphene have attracted immense interest in the scientific community. Among those, particularly the semiconducting transition metal dichalcogenides (TMDCs) in their monolayer form are in the focus of the current research due to their intriguing optical properties and their potential application in valleytronic-based devices. The optical properties are governed by excitonic features, even at room temperature. The excitons in monolayer TMDCs have unusually large binding energies due to the two-dimensional carrier confinement and weak dielectric screening. Here, we investigate the photoluminescence spectra of monolayer TMDCs at low temperatures. We present clear evidence for the existence of biexcitons in monolayer WS2, exhibiting a superlinear behavior in excitation-power-dependent measurements. Applying a gate-voltage in a FET-configuration, we can identify charge-neutral and negatively charged excitons (trions) in the optical spectrum of different TMDCs. The trion binding energies range in the order of 30 meV. The evolution of the excitonic peaks under the application of external magnetic fields give further insight into the internal structure of these materials.

  17. A Design Report for the Optical Transition Radiation Imager for the LCLS Undulator

    SciTech Connect

    Yang, Bingxin

    2010-12-13

    The Linac Coherent Light Source (LCLS), a free-electron x-ray laser, is under design and construction. Its high-intensity electron beam, 3400 A in peak current and 46 TW in peak power, is concentrated in a small area (37 micrometer in rms radius) inside its undulator. Ten optical transition radiation (OTR) imagers are planned between the undulator segments for characterizing the transverse profiles of the electron beam. In this note, we report on the optical and mechanical design of the OTR imager. Through a unique optical arrangement, using a near-normal-incidence screen and a multi-layer coated mirror, this imager will achieve a fine resolution (12 micrometer or better) over the entire field of view (8 mm x 5 mm), with a high efficiency for single-shot imaging. A digital camera will be used to read out the beam images in a programmable region (5 mm x 0.5 mm) at the full beam repetition rate (120 Hz), or over the entire field at a lower rate (10 Hz). Its built-in programmable amplifier will be used as an electronic intensity control.

  18. Molecular-Based Optical Measurement Techniques for Transition and Turbulence in High-Speed Flow

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Cutler, Andrew D.

    2013-01-01

    photogrammetry (for model attitude and deformation measurement) are excluded to limit the scope of this report. Other physical probes such as heat flux gauges, total temperature probes are also excluded. We further exclude measurement techniques that require particle seeding though particle based methods may still be useful in many high speed flow applications. This manuscript details some of the more widely used molecular-based measurement techniques for studying transition and turbulence: laser-induced fluorescence (LIF), Rayleigh and Raman Scattering and coherent anti-Stokes Raman scattering (CARS). These techniques are emphasized, in part, because of the prior experience of the authors. Additional molecular based techniques are described, albeit in less detail. Where possible, an effort is made to compare the relative advantages and disadvantages of the various measurement techniques, although these comparisons can be subjective views of the authors. Finally, the manuscript concludes by evaluating the different measurement techniques in view of the precision requirements described in this chapter. Additional requirements and considerations are discussed to assist with choosing an optical measurement technique for a given application.

  19. Optical properties of bcc transition metals in the range 0-40eV

    NASA Astrophysics Data System (ADS)

    Romaniello, P.; de Boeij, P. L.; Carbone, F.; van der Marel, D.

    2006-02-01

    We present a systematic analysis of the optical properties of bcc transition metals in the groups VB: V, Nb, and Ta, and VIB: paramagnetic Cr, Mo, and W. For this we use our formulation of time-dependent current-density-functional theory for the linear response of metals. The calculated dielectric and electron energy-loss functions are compared with our ellipsometry measurements and with data reported in literature, showing an overall good agreement. The experimental data of the dielectric functions presented by Nestell and Christy and by Weaver differ mostly in the low-frequency region. However, we found that their reflectivity data are in very good agreement up to about 3eV . We attribute this apparent discrepancy to the Drude-like extrapolation model used by Weaver in the Kramers-Kronig procedure to extract the optical constants from their reflectivity data. Our experiments are in good agreement with Nestell and Christy’s data. The calculated absorption spectra show some deviations from the experiments, in particular in the 3d metals. We assign the spectra in terms of transitions between pairs of bands and we analyze which parts of the Brillouin zone are mainly involved in the absorption. Our results suggest that the blueshift of some spectral features in our calculations can be attributed mainly to the incorrect description of the virtual d bands by the approximations used for the ground state exchange-correlation functional. These virtual bands are too weakly bound by the local density and generalized gradient approximations, in particular in the 3d metals. We calculate separately the inter- and intraband contributions to the absorption and we show using a k•p analysis that, within the scalar-relativistic approximation, interband transitions contribute to the absorption already at frequencies well below 0.5eV . This finding makes questionable the Drude-like behavior normally assumed in the experimental analysis of the linear response. We find that the

  20. Asymptotic behavior of apparent generalized oscillator strengths for optically forbidden transitions in rare-gas atoms

    SciTech Connect

    Suzuki, T. Y.; Suzuki, H.; Ohtani, S.; Takayanagi, T.; Okada, K.

    2007-03-15

    Apparent generalized oscillator strengths (apparent GOS's) have been measured for three types of optically forbidden transitions in rare-gas atoms as functions of the squared momentum transfer K{sup 2} at small K{sup 2} range ({<=}0.4 a.u.). The apparent GOS's were deduced from the differential cross sections for excitation, which were measured by means of the electron energy-loss spectroscopy. Electron impact energies were 100, 300, and 500 eV, and the scattering angles were from 0.8 degree sign to 10 degree sign . In the case where the first Born approximation does not hold, the apparent GOS as a function of K{sup 2} (the apparent GOS function) shows characteristic dependence on the electron collision energy according to the character of the transition. In the present observation, for the np{sup 6} {sup 1}S{sub 0}{yields}np{sup 5}(n+1)p{sup '}[1/2]{sub 0} transitions, the specific behavior has been observed in the apparent GOS functions characteristic of that for the {sup 1}S{sub 0}{yields}{sup 1}S{sub 0} type transition, in which the term symbols of the initial and the final states do not change. For the np{sup 6} {sup 1}S{sub 0}{yields}np{sup 5}(n+1)p[5/2]{sub 2,3}; [3/2]{sub 1,2} transitions, a certain new type of deviations from the first Born approximation, which is interpreted to be characteristic of the {sup 1}S{sub 0}{yields}{sup 1}D{sub 2} type transition, have been observed in the apparent GOS functions with some modifications depending on respective atomic species. For the 5p{sup 6} {sup 1}S{sub 0}{yields}5p{sup 5}5d [7/2]{sub 3}; [5/2]{sub 3} transitions in Xe, it is observed that the apparent GOS curves have no impact energy dependence for impact energies from 100 eV to 500 eV, which suggests that the first Born approximation is valid for such low impact energies and the curves agree with the Bethe-GOS. It is found that the GOS's varies in proportional to K{sup 4} at small K{sup 2} region ({<=}0.1 a.u.), which suggests that the octupole moment is

  1. Interplay of Cu and oxygen vacancy in optical transitions and screening of excitons in ZnO:Cu films

    SciTech Connect

    Darma, Yudi; Rusydi, Andrivo; Seng Herng, Tun; Marlina, Resti; Fauziah, Resti; Ding, Jun

    2014-02-24

    We study room temperature optics and electronic structures of ZnO:Cu films as a function of Cu concentration using a combination of spectroscopic ellipsometry, photoluminescence, and ultraviolet-visible absorption spectroscopy. Mid-gap optical states, interband transitions, and excitons are observed and distinguishable. We argue that the mid-gap states are originated from interactions of Cu and oxygen vacancy (Vo). They are located below conduction band (Zn4s) and above valence band (O2p) promoting strong green emission and narrowing optical band gap. Excitonic states are screened and its intensities decrease upon Cu doping. Our results show the importance of Cu and Vo driving the electronic structures and optical transitions in ZnO:Cu films.

  2. Multicomponent measurements of the Jefferson Lab energy recovery linac electron beam using optical transition and diffraction radiation

    NASA Astrophysics Data System (ADS)

    Holloway, M. A.; Fiorito, R. B.; Shkvarunets, A. G.; O'Shea, P. G.; Benson, S. V.; Douglas, D.; Evtushenko, P.; Jordan, K.

    2008-08-01

    High brightness electron accelerators, such as energy recovery linacs (ERL), often have complex particle distributions that can create difficulties in beam transport as well as matching to devices such as wigglers used to generate radiation from the beam. Optical transition radiation (OTR), OTR interferometry (OTRI), and optical diffraction-transition radiation interferometry (ODTRI) have proven to be effective tools for diagnosing both the spatial and angular distributions of charged particle beams. OTRI and ODTRI have been used to measure rms divergences, and optical transverse phase space mapping has been demonstrated using OTRI. In this work we present the results of diagnostic experiments using OTR and optical diffraction radiation conducted at the Jefferson Laboratory’s 115 MeV ERL which show the presence of two separate components within the beam’s spatial and angular distributions. By assuming a correlation between the spatial and angular features, we estimate an rms emittance value for each of the two components.

  3. Distinct Length Scales in the VO{sub 2} Metal–Insulator Transition Revealed by Bi-chromatic Optical Probing

    SciTech Connect

    Wang, Lei; Novikova, Irina B.; Klopf, John M.; Madaras, Scott E.; Williams, Gwyn P.; Madaras, Eric; Lu, Liwei; Wolf, Stuart A.; Lukaszew, Rosa A.

    2014-01-01

    Upon a heating-induced metal–instulator transition (MIT) in VO{sub 2}, microscopic metallic VO{sub 2} puddles nucleate and coarsen within the insulating matrix. This coexistence of the two phases across the transition spans distinct length scales as their relative domain sizes change. Far-field optical probing is applied to follow the dynamic evolution of the highly correlated metallic domains as the MIT progresses.

  4. Optical Transitions in Highly Charged Californium Ions with High Sensitivity to Variation of the Fine-Structure Constant

    NASA Astrophysics Data System (ADS)

    Berengut, J. C.; Dzuba, V. A.; Flambaum, V. V.; Ong, A.

    2012-08-01

    We study electronic transitions in highly charged Cf ions that are within the frequency range of optical lasers and have very high sensitivity to potential variations in the fine-structure constant, α. The transitions are in the optical range despite the large ionization energies because they lie on the level crossing of the 5f and 6p valence orbitals in the thallium isoelectronic sequence. Cf16+ is a particularly rich ion, having several narrow lines with properties that minimize certain systematic effects. Cf16+ has very large nuclear charge and large ionization energy, resulting in the largest α sensitivity seen in atomic systems. The lines include positive and negative shifters.

  5. Optical clock transition in a rare-earth-ion-doped crystal: coherence lifetime extension for quantum storage applications

    NASA Astrophysics Data System (ADS)

    Tongning, Robert-Christopher; Chanelière, Thierry; Le Gouët, Jean-Louis; Florencia Pascual-Winter, María

    2015-04-01

    Atomic clock transitions are desirable for quantum information storage and processing thanks to the protection from decoherence they provide. In the context of rare- earth-ion-doped crystals for quantum information storage, clock Zeeman or hyperfine transitions have been identified and exploited for long-lived storage in spin degrees of freedom. We present a theoretical and experimental analysis on the existence of an optical clock transition in Tm3+:YAG, in view of storage in optical coherences. The combination of a Zeeman-like term and a quadratic electronic Zeeman term in the Hamiltonian, lead to the existence of a magnetic field amplitude (12 mT) for which the derivative of the optical transition energy with respect to the field amplitude vanishes, regardless of the magnetic field orientation. We have verified this prediction through hole-burning spectroscopy experiments. In addition to that, a study of the behavior of the Hamiltonian as a function of the magnetic field orientation yields the direction for which both derivatives with respect to the magnetic field angular coordinates also vanish. The condition for an optical clock transition with three vanishing partial derivatives is met.

  6. Time-resolved electron-beam characterizations with optical transition radiation

    SciTech Connect

    Lumpkin, A.H.; Wilke, M.D.

    1992-09-01

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 {mu}s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatial position and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kicks are reported as a function of charge.

  7. Time-resolved electron-beam characterizations with optical transition radiation

    SciTech Connect

    Lumpkin, A.H. ); Wilke, M.D. )

    1992-01-01

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 {mu}s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatial position and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kicks are reported as a function of charge.

  8. Phonon sideband studies of the spin-triplet optical transition in diamond nitrogen-vacancy centers

    NASA Astrophysics Data System (ADS)

    Alkauskas, Audrius; Toyli, David M.; Buckley, Bob B.; Awschalom, David D.; van de Walle, Chris G.

    2013-03-01

    In the past decade, the nitrogen-vacancy center in diamond has emerged as a promising solid-state system for quantum-information processing, and also for nanoscale magnetic, electric, and thermal sensing. All of these applications are partly enabled because the spin of the center can be measured through photoluminescence. This calls for a deeper understanding of the photoluminescence spectrum, in particular its phonon side-band. In this work we study the coupling of lattice vibrations to the triplet (3E -->3A2) optical transition from first-principles electronic structure calculations. Our formulation includes both quasi-localized and bulk phonons, and leads to an excellent agreement of the calculated and the measured photoluminescence lineshape. This good agreement enables the application of the developed methodology to other defects in semiconductors that are currently being investigated as viable quantum bits. This work has been supported by the NSF, AFOSR, and the Swiss NSF.

  9. Optical Properties of Fluid Hydrogen at the Transition to a Conducting State.

    PubMed

    McWilliams, R Stewart; Dalton, D Allen; Mahmood, Mohammad F; Goncharov, Alexander F

    2016-06-24

    We use fast transient transmission and emission spectroscopies in the pulse laser heated diamond anvil cell to probe the energy-dependent optical properties of hydrogen at pressures of 10-150 GPa and temperatures up to 6000 K. Hydrogen is absorptive at visible to near-infrared wavelengths above a threshold temperature that decreases from 3000 K at 18 GPa to 1700 K at 110 GPa. Transmission spectra at 2400 K and 141 GPa indicate that the absorptive hydrogen is semiconducting or semimetallic in character, definitively ruling out a first-order insulator-metal transition in the studied pressure range. PMID:27391733

  10. Extended Coherence Time on the Clock Transition of Optically Trapped Rubidium

    SciTech Connect

    Kleine Buening, G.; Will, J.; Ertmer, W.; Rasel, E.; Klempt, C.; Arlt, J.; Ramirez-Martinez, F.; Rosenbusch, P.; Piechon, F.

    2011-06-17

    Optically trapped ensembles are of crucial importance for frequency measurements and quantum memories but generally suffer from strong dephasing due to inhomogeneous density and light shifts. We demonstrate a drastic increase of the coherence time to 21 s on the magnetic field insensitive clock transition of {sup 87}Rb by applying the recently discovered spin self-rephasing [C. Deutsch et al., Phys. Rev. Lett. 105, 020401 (2010)]. This result confirms the general nature of this new mechanism and thus shows its applicability in atom clocks and quantum memories. A systematic investigation of all relevant frequency shifts and noise contributions yields a stability of 2.4x10{sup -11{tau}-1/2}, where {tau} is the integration time in seconds. Based on a set of technical improvements, the presented frequency standard is predicted to rival the stability of microwave fountain clocks in a potentially much more compact setup.

  11. Effect of the glass transition of coating adhesive on temperature performance of fiber optic gyroscope and its optimization

    NASA Astrophysics Data System (ADS)

    Wang, Yueze; Wang, Tieshui; Ma, Lin; Yu, Hao; Liu, Bohan

    2015-10-01

    The fiber optic gyroscope (FOG)based on Sagnac effect has became to one of the most important sensors in developing due to light in quality, high accuracy, compact in dimension and long life and has played a very important role in both military and civil use. It is the most difficult problem that the FOG has an obvious bias drift caused by temperature change and temperature grade, so its application is limited to a great extent. Fiber coil is one of the most critical components in FOG. Here, the characteristic of temperature error of the fiber optical coil was analyzed. At first, by studying the glass transition of coating adhesive in the fiber coil, the element model of the fiber coil with the glass transition of coating adhesive in FOG was built. Then the discrete mathematics model of SHUPE error with the glass transition of coating adhesive in FOG was built. Finally, based on the temperature models mentioned above, the effects caused by the glass transition of coating adhesive on temperature performance of fiber optic gyroscope were analyzed. Theoretical analysis and experimental results show that effect caused by the glass transition of coating adhesive had seriously affected the temperature performance of FOG. By optimizing the glass transition temperature of coating adhesive, the SHUPE error of fiber coils can be reduced. At the same time, the amplitude uniformity of the SHUPE error can be improved greatly to reduce the difficulty in temperature compensation.

  12. Impact of local compressive stress on the optical transitions of single organic dye molecules

    NASA Astrophysics Data System (ADS)

    Stöttinger, Sven; Hinze, Gerald; Diezemann, Gregor; Oesterling, Ingo; Müllen, Klaus; Basché, Thomas

    2014-03-01

    The ability to mechanically control the optical properties of individual molecules is a grand challenge in nanoscience and could enable the manipulation of chemical reactivity at the single-molecule level. In the past, light has been used to alter the emission wavelength of individual molecules or modulate the energy transfer quantum yield between them. Furthermore, tensile stress has been applied to study the force dependence of protein folding/unfolding and of the chemistry and photochemistry of single molecules, although in these mechanical experiments the strength of the weakest bond limits the amount of applicable force. Here, we show that compressive stress modifies the photophysical properties of individual dye molecules. We use an atomic force microscope tip to prod individual molecules adsorbed on a surface and follow the effect of the applied force on the electronic states of the molecule by fluorescence spectroscopy. Applying a localized compressive force on an isolated molecule induces a stress that is redistributed throughout the structure. Accordingly, we observe reversible spectral shifts and even shifts that persist after retracting the microscope tip, which we attribute to transitions to metastable states. Using quantum-mechanical calculations, we show that these photophysical changes can be associated with transitions among the different possible conformers of the adsorbed molecule.

  13. Optically induced metal-insulator transition in gold::vanadium dioxide hybrid structures

    NASA Astrophysics Data System (ADS)

    Ferrara, Davon W.; Macquarrie, Evan R.; Nag, Joyeeta; Kaye, Anthony; Haglund, Richard F., Jr.

    2010-03-01

    Vanadium dioxide (VO2) is a strongly-correlated electron material with a well-known semi-conducting to metallic phase transition that can be induced thermally, optically, or electrically. By coating lithographically prepared arrays of gold nanoparticles (NPs) of diameters up to 200 nm with 60 nm thick films of VO2 via pulsed laser deposition, hybrid Au::VO2 structures were created. Due to the sensitivity of the Au particle-plasmon resonance (PPR), a temperature dependent shift in the PPR can be generated by switching the VO2 from one phase to another, creating a tunable plasmonic metamaterial. To study the low-power switching characteristics of these structures, transient absorption measurements were made using a chopped 780 nm pump laser, corresponding to the PPR resonance of the Au NPs, and 1550 nm CW probe. Additionally, pump-probe measurements were conducted on the structures using a Ti:sapphire oscillator with 100-fs pulses. Results show that the presence of Au NPs lowers the threshold laser power required to induce the phase transition. Finite element modeling was performed to better understand the complex thermodynamics of the structure.

  14. Observation of the 5 p3 /2→6 p3 /2 electric-dipole-forbidden transition in atomic rubidium using optical-optical double-resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Ponciano-Ojeda, F.; Hernández-Gómez, S.; López-Hernández, O.; Mojica-Casique, C.; Colín-Rodríguez, R.; Ramírez-Martínez, F.; Flores-Mijangos, J.; Sahagún, D.; Jáuregui, R.; Jiménez-Mier, J.

    2015-10-01

    Direct evidence of excitation of the 5 p3 /2→6 p3 /2 electric-dipole-forbidden transition in atomic rubidium is presented. The experiments were performed in a room-temperature rubidium cell with continuous-wave external cavity diode lasers. Optical-optical double-resonance spectroscopy with counterpropagating beams allows the detection of the nondipole transition free of Doppler broadening. The 5 p3 /2 state is prepared by excitation with a laser locked to the maximum F cyclic transition of the D2 line, and the forbidden transition is produced by excitation with a 911 nm laser. Production of the forbidden transition is monitored by detection of the 420 nm fluorescence that results from decay of the 6 p3 /2 state. Spectra with three narrow lines (≈13 MHz FWHM) with the characteristic F -1 , F , and F +1 splitting of the 6 p3 /2 hyperfine structure in both rubidium isotopes were obtained. The results are in very good agreement with a direct calculation that takes into account the 5 s →5 p3 /2 preparation dynamics, the 5 p3 /2→6 p3 /2 nondipole excitation geometry, and the 6 p3 /2→5 s1 /2 decay. The comparison also shows that the electric-dipole-forbidden transition is a very sensitive probe of the preparation dynamics.

  15. On the determination of the position of laminar-turbulent transition in boundary layer by optical methods

    NASA Astrophysics Data System (ADS)

    Bountin, D. A.; Gromyko, Yu. V.; Maslov, A. A.; Polivanov, P. A.; Sidorenko, A. A.

    2015-11-01

    As a rule, aerodynamic studies at hypersonic flow velocities are carried out in short-duration wind-tunnel facilities. For such facilities, optical diagnostic methods are most preferable. In the present study, we give for the first time a comparison of two methods for determining the end of laminar-turbulent transition: from the distribution of heat fluxes and from schlieren visualization data for the boundary-layer flow. Parametric data on the position of the transition are obtained. These data can be used in the future as reference ones while calibrating semi-empirical calculation models for the transition.

  16. Noise-to-signal transition of a Brownian particle in the cubic potential: II. optical trapping geometry

    NASA Astrophysics Data System (ADS)

    Zemánek, Pavel; Šiler, Martin; Brzobohatý, Oto; Jákl, Petr; Filip, Radim

    2016-06-01

    The noise-to-signal transitions belong to an exciting group of processes in physics. In Filip and Zemánek (2016, J. Opt. 18 065401) we theoretically analyse the stochastic noise-to-signal transition of overdamped Brownian motion of a particle in the cubic potential. In this part, we propose a feasible experimental setup for a proof-of-principle experiment that uses methods of optical trapping in shaped laser beams which provide cubic and quadratic potentials. Theoretical estimates and results from the numerical simulations indicate that the noise-to-signal transition can be observed under realistic experimental conditions.

  17. Reentrant Phenomenon in the Quantum Phase Transitions of a Gas of Bosons Trapped in an Optical Lattice

    NASA Astrophysics Data System (ADS)

    Kleinert, H.; Schmidt, S.; Pelster, A.

    2004-10-01

    We calculate the location of the quantum phase transitions of a Bose gas trapped in an optical lattice as a function of effective scattering length aeff and temperature T. Knowledge of recent high-loop results on the shift of the critical temperature at weak couplings is used to locate a nose in the phase diagram above the free Bose-Einstein critical temperature T(0)c, thus predicting the existence of a reentrant transition above T(0)c, where a condensate should form when increasing aeff. At zero temperature, the transition to the normal phase produces the experimentally observed Mott insulator.

  18. Electronic structure and optical properties of layered ternary transition-metal carbides and nitrides

    NASA Astrophysics Data System (ADS)

    Mo, Yuxiang

    2011-12-01

    The electronic structure and optical properties of Ti3AC 2 (A=Al, Si, Ge), Ti2AC (A=Al, Ga, In; Si, Ge, Sn; P, As; S), Ti2AlN, M2AlC (M=V, Nb, Cr) and Tan+1AlC n (n=1˜4) have been studied using first--principles orthogonalized linear combination of atomic orbitals (OLCAO) method. These layered ternary transition--metal carbides and nitrides are also commonly referred to as "MAX phases". Trends were observed for the calculated density of states (DOS) at Fermi--level, with respect to elemental variations and number of M and X layers. A local minimum of DOS(Ef) was found for Ti3AlC2, Ti2InC and Cr2AlC, predicting relatively high intrinsic structural stability. While a local maximum or an incline was discovered for Ti3GeC2, Ti2GeC, Ti2SnC, Ti 2PC, Nb2AlC, Ta2AlC, Ta4AlC3 and Ta5AlC4, indicating their lower intrinsic structural stability. Inter-band optical conductivities showed anisotropy, but not considerable. The reflectance and colors of the MAX phase compounds were also obtained.

  19. Phonon coupling in optical transitions for singlet-triplet pairs of bound excitons in semiconductors

    NASA Astrophysics Data System (ADS)

    Pistol, M. E.; Monemar, B.

    1986-05-01

    A model is presented for the observed strong difference in selection rules for coupling of phonons in the one-phonon sideband of optical spectra related to bound excitons in semiconductors. The present treatment is specialized to the case of a closely spaced pair of singlet-triplet character as the lowest electronic states, as is common for bound excitons associated with neutral complexes in materials like GaP and Si. The optical transition for the singlet bound-exciton state is found to couple strongly only to symmetric A1 modes. The triplet state has a similar coupling strength to A1 modes, but in addition strong contributions are found for replicas corresponding to high-density-of-states phonons TAX, LAX, and TOX. This can be explained by a treatment of particle-phonon coupling beyond the ordinary adiabatic approximation. A weak mixing between the singlet and triplet states is mediated by the phonon coupling, as described in first-order perturbation theory. The model derived in this work, for such phonon-induced mixing of closely spaced electronic states, is shown to explain the observed phonon coupling for several bound-exciton systems of singlet-triplet character in GaP. In addition, the observed oscillator strength of the forbidden triplet state may be explained as partly derived from phonon-induced mixing with the singlet state, which has a much larger oscillator strength.

  20. Rapid, all-optical crystal orientation imaging of two-dimensional transition metal dichalcogenide monolayers

    SciTech Connect

    David, Sabrina N.; Zhai, Yao; Zande, Arend M. van der; O'Brien, Kevin; Huang, Pinshane Y.; Chenet, Daniel A.; Hone, James C.; Zhang, Xiang; Yin, Xiaobo

    2015-09-14

    Two-dimensional (2D) atomic materials such as graphene and transition metal dichalcogenides (TMDCs) have attracted significant research and industrial interest for their electronic, optical, mechanical, and thermal properties. While large-area crystal growth techniques such as chemical vapor deposition have been demonstrated, the presence of grain boundaries and orientation of grains arising in such growths substantially affect the physical properties of the materials. There is currently no scalable characterization method for determining these boundaries and orientations over a large sample area. We here present a second-harmonic generation based microscopy technique for rapidly mapping grain orientations and boundaries of 2D TMDCs. We experimentally demonstrate the capability to map large samples to an angular resolution of ±1° with minimal sample preparation and without involved analysis. A direct comparison of the all-optical grain orientation maps against results obtained by diffraction-filtered dark-field transmission electron microscopy plus selected-area electron diffraction on identical TMDC samples is provided. This rapid and accurate tool should enable large-area characterization of TMDC samples for expedited studies of grain boundary effects and the efficient characterization of industrial-scale production techniques.

  1. Instantaneous electron beam emittance measurement system based on the optical transition radiation principle

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Guo; Wang, Yuan; Zhang, Kai-Zhi; Yang, Guo-Jun; Shi, Jin-Shui; Deng, Jian-Jun; Li, Jin

    2014-01-01

    One kind of instantaneous electron beam emittance measurement system based on the optical transition radiation principle and double imaging optical method has been set up. It is mainly adopted in the test for the intense electron-beam produced by a linear induction accelerator. The system features two characteristics. The first one concerns the system synchronization signal triggered by the following edge of the main output waveform from a Blumlein switch. The synchronous precision of about 1 ns between the electron beam and the image capture time can be reached in this way so that the electron beam emittance at the desired time point can be obtained. The other advantage of the system is the ability to obtain the beam spot and beam divergence in one measurement so that the calculated result is the true beam emittance at that time, which can explain the electron beam condition. It provides to be a powerful beam diagnostic method for a 2.5 kA, 18.5 MeV, 90 ns (FWHM) electron beam pulse produced by Dragon I. The ability of the instantaneous measurement is about 3 ns and it can measure the beam emittance at any time point during one beam pulse. A series of beam emittances have been obtained for Dragon I. The typical beam spot is 9.0 mm (FWHM) in diameter and the corresponding beam divergence is about 10.5 mrad.

  2. Investigation of Two-Dimensional Transition Metal Dichalcogenides by Optical and Scanning Tunneling Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rigosi, Albert F.

    The goal of this dissertation is not only to present works completed and projects initiated and accomplished, but to also attempt to teach some of the material to readers who have limited exposure to condensed matter. I will offer an introduction to two-dimensional transition metal dichalcogenide materials (2D TMDCs) and the mathematics required to understand the research conducted. Some effort will be given on explaining the experimental setups and preparations. Projects that required elaborate sample fabrication and the yielded results will be summarized. These results have heavy implications for the science behind bound electron-hole pairs, the effects of magnetic fields on such pairs, and extracting the useful optical properties from the material systems in which these pairs reside. Specialized fabrication techniques of samples for longer term projects that I led will also be presented, namely those of constructing heterostructures by stacking various 2D TMDCs for exploring the modulated properties of these novel arrangements. The latter portion of this dissertation will cover the nanoscopic dynamics of TMDC heterostructures. The Kramers-Kronig relations will be derived and discussed in detail. Data and results regarding the electronic structure of these materials, their heterostructures, and their custom alloys measured via scanning tunneling microscopy will be presented. Coupled with the measured optical properties, significant numerical quantities that characterize these materials are extracted. There will be several appendices that offer some supplementary information and basic summaries about all the projects that were initiated.

  3. Multisectional linear ion trap and novel loading method for optical spectroscopy of electron and nuclear transitions.

    PubMed

    Sysoev, Alexey A; Troyan, Victor I; Borisyuk, Peter V; Krasavin, Andrey V; Vasiliev, Oleg S; Palchikov, Vitaly G; Avdeev, Ivan A; Chernyshev, Denis M; Poteshin, Sergey S

    2015-01-01

    There is a growing need for the development of atomic and nuclear frequency standards because of the important contribution of methods for precision time and frequency measurements to the development of fundamental science, technology, and the economy. It is also conditioned by their potential use in optical clocks and quantum logic applications. It is especially important to develop a universal method that could allow one to use ions of most elements effectively (including ones that are not easily evaporated) proposed for the above-mentioned applications. A linear quadrupole ion trap for the optical spectroscopy of electron and nuclear transitions has been developed and evaluated experimentally. An ion source construction is based on an ultra-high vacuum evaporator in which a metal sample is subjected to an electron beam of energy up to 1 keV, resulting in the appearance of gaseous atoms and ions of various charge state. The linear ion trap consists of five successive quadrupole sections including an entrance quadrupole section, quadrupole mass filter, quadrupole ion guide, ion-trap section, and exit quadrupole section. The same radiofrequency but a different direct current voltage feeds the quadrupole sections. The instrument allows the mass and energy selected trapping of ions from ion beams of various intensities and their localization in the area of laser irradiation. The preliminary results presented show that the proposed instrument and methods allow one to produce effectively up to triply charged thorium ions as well as to trap ions for future spectroscopic study. The instrument is proposed for future use in optical clocks and quantum logic application development. PMID:25906029

  4. Homogeneous and inhomogeneous sources of optical transition broadening in room temperature CdSe/ZnS nanocrystal quantum dots

    SciTech Connect

    Wolf, M.; Berezovsky, J.

    2014-10-06

    We perform photoluminescence excitation measurements on individual CdSe/ZnS nanocrystal quantum dots (NCQDs) at room temperature to study optical transition energies and broadening. The observed features in the spectra are identified and compared to calculated transition energies using an effective mass model. The observed broadening is attributed to phonon broadening, spectral diffusion, and size and shape inhomogeneity. The former two contribute to the broadening transitions in individual QDs, while the latter contributes to the QD-to-QD variation. We find that phonon broadening is often not the dominant contribution to transition line widths, even at room temperature, and that broadening does not necessarily increase with transition energy. This may be explained by differing magnitude of spectral diffusion for different quantum-confined states.

  5. Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants.

    PubMed

    Godun, R M; Nisbet-Jones, P B R; Jones, J M; King, S A; Johnson, L A M; Margolis, H S; Szymaniec, K; Lea, S N; Bongs, K; Gill, P

    2014-11-21

    Singly ionized ytterbium, with ultranarrow optical clock transitions at 467 and 436 nm, is a convenient system for the realization of optical atomic clocks and tests of present-day variation of fundamental constants. We present the first direct measurement of the frequency ratio of these two clock transitions, without reference to a cesium primary standard, and using the same single ion of 171Yb+. The absolute frequencies of both transitions are also presented, each with a relative standard uncertainty of 6×10(-16). Combining our results with those from other experiments, we report a threefold improvement in the constraint on the time variation of the proton-to-electron mass ratio, μ/μ=0.2(1.1)×10(-16)  yr(-1), along with an improved constraint on time variation of the fine structure constant, α/α=-0.7(2.1)×10(-17)  yr(-1). PMID:25479482

  6. Experimental observation of magic-wavelength behavior of a microwave transition in optical lattice-trapped rubidium

    NASA Astrophysics Data System (ADS)

    Lundblad, Nathan; Schlosser, Malte; Porto, Trey

    2010-03-01

    We demonstrate the cancellation of the differential ac Stark shift of the microwave hyperfine clock transition in trapped ^87Rb atoms. Recent progress in metrology exploits so-called ``magic wavelengths," whereby an atomic ensemble can be trapped with laser light whose wavelength is chosen so that both levels of an optical atomic transition experience identical ac Stark shifts. Similar magic-wavelength techniques are not possible for the microwave hyperfine transitions in the alkalis, due to their simple electronic structure. We show, however, that ac Stark shift cancellation is indeed achievable for certain values of wavelength, polarization, and magnetic field. The cancellation comes at the expense of a small magnetic-field sensitivity. The technique demonstrated here has implications for experiments involving the precise control of optically-trapped neutral atoms.

  7. The Influence of the Aspheric Profiles for Transition Zone on Optical Performance of Human Eye After Conventional Ablation

    NASA Astrophysics Data System (ADS)

    Fang, L.

    2014-12-01

    The analysis in the impact of transition zone on the optical performance of human eye after laser refractive surgery is important for improving visual correction technology. By designing the ablation profiles of aspheric transition zone and creating the ablation profile for conventional refractive surgery in optical zone, the influence of aspheric transition zone on residual aberrations was studied. The results indicated that the ablation profiles of transition zone had a significant influence on the residual wavefront aberrations. For a hyperopia correction, the profile #9 shows a larger induced coma and spherical aberration when the translation of the centre of pupil remains constant. However, for a myopia astigmatism correction, the induced coma and spherical aberration in profile #1 shows relatively larger RMS values than those in other profiles. Therefore, the residual higher order aberrations may be decreased by optimizing ablation profiles of transition zone, but they cannot be eliminated. In order to achieve the best visual performance, the design of ablation pattern of transition zone played a crucial role.

  8. Optically controlled waveplate at a telecom wavelength using a ladder transition in Rb atoms for all-optical switching and high speed Stokesmetric imaging.

    PubMed

    Krishnamurthy, Subramanian; Tu, Y; Wang, Y; Tseng, S; Shahriar, M S

    2014-11-17

    We demonstrate an optically controlled waveplate at ~1323 nm using the 5S(1/2)-5P(1/2)-6S(1/2) ladder transition in a Rb vapor cell. The lower leg of the transitions represents the control beam, while the upper leg represents the signal beam. We show that we can place the signal beam in any arbitrary polarization state with a suitable choice of polarization of the control beam. Specifically, we demonstrate a differential phase retardance of ~180 degrees between the two circularly polarized components of a linearly polarized signal beam. We also demonstrate that the system can act as a Quarter Wave plate. The optical activity responsible for the phase retardation process is explained in terms of selection rules involving the Zeeman sublevels. As such, the system can be used to realize a fast Stokesmetric imaging system with a speed of ~3 MHz. When implemented using a tapered nano fiber embedded in a vapor cell, this system can be used to realize an ultra-low power all-optical switch as well as a Quantum Zeno Effect based all-optical logic gate by combining it with an optically controlled polarizer, previously demonstrated by us. We present numerical simulations of the system using a comprehensive model which incorporates all the relevant Zeeman sub-levels in the system, using a novel algorithm recently developed by us for efficient computation of the evolution of an arbitrary large scale quantum system. PMID:25402129

  9. Probing Transition Metal Dichalcogenide Monolayers and Heterostructures by Optical Spectroscopy and Scanning Tunneling Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hill, Heather M.

    Atomically thin two-dimensional materials, such as graphene and semiconductor transition metal dichalcogenides (TMDCs), exhibit remarkable and desirable optical and electronic properties. This dissertation focuses on the excitonic properties of monolayer TMDCs taken first in isolation and then in contact with another material. We begin with a study of the exciton binding energy in two monolayer TMDCs, WS2 and MoS2. We observe excited states of the exciton by two dierent optical spectroscopy techniques: reflectance contrast and photoluminescence excitation (PLE) spectroscopy. We fit a hydrogenic model to the energies associated with the excited states and infer a binding energy, which is an order of magnitude higher than the bulk material. In the second half of this work, we study two types of two-dimensional vertical heterostructures. First, we investigate heterostructures composed of monolayer WS2 partially capped with graphene one to four layers thick. Using reflectance contrast to measure the spectral broadening of the excitonic features, we measure the decrease in the coherence lifetime of the exciton in WS2 due to charge and energy transfer when in contact with graphene. We then compare our results with the exciton lifetime in MoS 2/WS2 and MoSe2/WSe2 heterostructures. In TMDC/TMDC heterostructures, the decrease in exciton lifetime is twice that in WS2/graphene heterostructures and due predominantly to charge transfer between the layers. Finally, we probe the band alignment in MoS2/WS2 heterostructures using scanning tunneling microscopy (STM) and spectroscopy (STS). We confirm the monolayer band gaps and the predicted type II band alignment in the heterostructure. Drawing from all the research presented, we arrive at a favorable conclusion about the viability of TMDC based devices.

  10. Dynamic contrast optical coherence tomography: quantitative measurement of microvascular transit-time distributions in vivo (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Merkle, Conrad W.; Srinivasan, Vivek J.

    2016-03-01

    Transit time is a fundamental microcirculatory parameter that is critical in determining oxygen delivery from capillaries to surrounding tissue. Recently, it was demonstrated theoretically that capillary transit-time heterogeneity potentially leads to non-uniform oxygen extraction in micro-domains. However, in spite of its importance, capillary transit-time distribution has been challenging to quantify comprehensively and efficiently at the microscopic level. Here, we introduce a method, called Dynamic Contrast Optical Coherence Tomography (DyC-OCT), based on dynamic cross-sectional OCT imaging of the kinetics of an intravascular tracer during its passage through the field-of-view. DyC-OCT is used to quantitatively measure the transit-time distribution in microvascular networks in cross-section at the single-capillary level. Transit-time metrics are derived from analysis of the temporal characteristics of the dynamic scattering signal, related to tracer concentration, using indicator-dilution theory. Since DyC-OCT does not require calibration of the optical focus, quantitative accuracy is achieved even deep in highly scattering brain tissue where the focal spot degrades. After direct validation of DyC-OCT against the dilution curves measured using a fluorescent plasma label in the surface pial vessels of a mouse brain, imaged through a thinned-skull, glass coverslip-reinforced cranial window, the laminar transit-time distribution was investigated in microvasculature across the entire depth of the mouse somatosensory cortex. Laminar trends were identified, with the earliest transit times in the middle cortical layers, and the lowest heterogeneity in cortical layer 4. The new DyC-OCT technique affords a novel perspective of microvascular networks, with the unique capability of performing simultaneous measurements of transit-time distributions across cortical laminae.

  11. Quasi-Direct Optical Transitions in Silicon Nanocrystals with Intensity Exceeding the Bulk.

    PubMed

    Lee, Benjamin G; Luo, Jun-Wei; Neale, Nathan R; Beard, Matthew C; Hiller, Daniel; Zacharias, Margit; Stradins, Paul; Zunger, Alex

    2016-03-01

    Comparison of the measured absolute absorption cross section on a per Si atom basis of plasma-synthesized Si nanocrystals (NCs) with the absorption of bulk crystalline Si shows that while near the band edge the NC absorption is weaker than the bulk, yet above ∼2.2 eV the NC absorbs up to 5 times more than the bulk. Using atomistic screened pseudopotential calculations we show that this enhancement arises from interface-induced scattering that enhances the quasi-direct, zero-phonon transitions by mixing direct Γ-like wave function character into the indirect X-like conduction band states, as well as from space confinement that broadens the distribution of wave functions in k-space. The absorption enhancement factor increases exponentially with decreasing NC size and is correlated with the exponentially increasing direct Γ-like wave function character mixed into the NC conduction states. This observation and its theoretical understanding could lead to engineering of Si and other indirect band gap NC materials for optical and optoelectronic applications. PMID:26898670

  12. Optical spectroscopy in turbid media utilizing an integrating sphere: mitochondrial chromophore analysis during metabolic transitions

    PubMed Central

    Chess, David J.; Billings, Eric; Covian, Raúl; Glancy, Brian; French, Stephanie; Taylor, Joni; de Bari, Heather; Murphy, Elizabeth; Balaban, Robert S.

    2013-01-01

    Recent evidence suggests that the activity of mitochondrial oxidative phosphorylation Complexes (MOPC) is modulated at multiple sites. Herein, a method of optically monitoring electron distribution within and between MOPC is described using a center-mounted sample in an integrating sphere (to minimize scattering effects) with a rapid-scanning spectrometer. The redox-sensitive MOPC absorbances (~465 to 630 nm) were modeled using linear least squares analysis with individual chromophore spectra. Classical mitochondrial activity transitions (e.g., ADP-induced increase in oxygen consumption) were used to characterize this approach. Most notable in these studies was the observation that intermediates of the catalytic cycle of cytochrome oxidase are dynamically modulated with metabolic state. The MOPC redox state, along with measurements of oxygen consumption and mitochondrial membrane potential, was used to evaluate the conductances of different sections of the electron transport chain. This analysis then was applied to mitochondria isolated from rabbit hearts subjected to ischemia-reperfusion (I/R). Surprisingly, I/R resulted in an inhibition of all measured MOPC conductances, suggesting a coordinated down-regulation of mitochondrial activity with this well-established cardiac perturbation. PMID:23665273

  13. Probing topological transitions in HgTe/CdTe quantum wells by magneto-optical measurements

    NASA Astrophysics Data System (ADS)

    Scharf, Benedikt; Matos-Abiague, Alex; Fabian, Jaroslav; Zutic, Igor

    2015-03-01

    In two-dimensional topological insulators, helical Quantum Spin Hall (QSH) states persist even at finite magnetic fields below a critical magnetic field Bc, above which only Quantum Hall (QH) states can be found. Using linear response theory, we theoretically investigate the magneto-optical properties of inverted HgTe/CdTe quantum wells, both for infinite two-dimensional and finite-strip geometries, and possible signatures of the transition between the QSH and QH regimes. In the absorption spectrum, several peaks arise due to non-equidistant Landau levels in both regimes. However, in the QSH regime, we find an additional absorption peak at low energies in the finite-strip geometry. This peak arises due to the presence of edge states in this geometry and persists for any Fermi level in the QSH regime, while in the QH regime the peak vanishes if the Fermi level is situated in the bulk gap. Thus, by sweeping the gate voltage, it is potentially possible to distinguish between the QSH and QH regimes. Moreover, we investigate the effect of spin-orbit coupling and finite temperature on this measurement scheme. This work is supported by U.S. ONR N000141310754, DFG Grants No. SCHA 1899/1-1 and SFB 689, as well as DOE-BES DE-SC0004890.

  14. Probing topological transitions in HgTe/CdTe quantum wells by magneto-optical measurements

    NASA Astrophysics Data System (ADS)

    Scharf, Benedikt; Matos-Abiague, Alex; Žutić, Igor; Fabian, Jaroslav

    2015-06-01

    In two-dimensional topological insulators, such as inverted HgTe/CdTe quantum wells, helical quantum spin Hall (QSH) states persist even at finite magnetic fields below a critical magnetic field Bc, above which only quantum Hall (QH) states can be found. Using linear-response theory, we theoretically investigate the magneto-optical properties of inverted HgTe/CdTe quantum wells, both for infinite two-dimensional and finite-strip geometries and for possible signatures of the transition between the QSH and QH regimes. In the absorption spectrum, several peaks arise due to nonequidistant Landau levels in both regimes. However, in the QSH regime, we find an additional absorption peak at low energies in the finite-strip geometry. This peak arises due to the presence of edge states in this geometry and persists for any Fermi level in the QSH regime, while in the QH regime the peak vanishes if the Fermi level is situated in the bulk gap. Thus, by sweeping the gate voltage, it is possible to experimentally distinguish between the QSH and QH regimes due to this signature. Moreover, we investigate the effect of spin-orbit coupling and finite temperature on this measurement scheme.

  15. Investigation of carrier transit motion in PCDTBT by optical SHG technique

    NASA Astrophysics Data System (ADS)

    Ahmad, Zubair; Mah Abdullah, Shahino; Taguchi, Dai; Sulaiman, Khaulah; Manaka, Takaaki; Iwamoto, Mitsumasa

    2014-10-01

    We analyze the carrier transit behavior in poly[N-9’-heptadecanyl-2,7-carbazole-alt-5,5-(4’,7’-di-2-thienyl-2’,1’,3’-benzothiadiazole)] (PCDTBT), which has been reported as a donor material for efficient bulk heterojunction photovoltaic devices. The transfer and transient carrier mobilities in the PCDTBT thin films have been measured and analyzed. The transfer mobility has been measured by the transfer curve of the OFET, whereas the transient mobility is recorded using a time-resolved electric field-induced optical second harmonic generation (TRM-SHG) technique. Using the TRM-SHG technique, the dynamic motion of the charge carriers in the PCDTBT thin films has been directly visualized. We anticipate that the analysis of the carrier motion by TRM-SHG will be effective for the understanding of carrier behavior in PCDTBT thin film and will help to make further improvements in the efficiency of the PCDTBT-based photovoltaic devices.

  16. Optical signatures of electric-field-driven magnetic phase transitions in graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Basak, Tista; Shukla, Alok

    2016-06-01

    Experimental challenges in identifying various types of magnetic ordering in graphene quantum dots (QDs) pose a major hurdle in the application of these nanostructures for spintronic devices. Based upon phase diagrams obtained by employing the π -electron Pariser-Parr-Pople (PPP) model Hamiltonian, we demonstrate that the magnetic states undergo phase transition under the influence of an external electric field. Our calculations of the electroabsorption spectra of these QDs indicate that the spectrum in question carries strong signatures of their magnetic state (FM vs AFM), thus suggesting the possibility of an all-optical characterization of their magnetic nature. Further, the gaps for the up and the down spins are the same in the absence of an external electric field, both for the antiferromagnetic (AFM) and the ferromagnetic (FM) states of QDs. But, once the QDs are exposed to a suitably directed external electric field, gaps for different spins split and exhibit distinct variations with respect to the strength of the field. The nature of variation exhibited by the energy gaps corresponding to the up and down spins is different for the AFM and FM configurations of QDs. This selective manipulation of the spin-polarized gap splitting by an electric field in finite graphene nanostructures can open up new frontiers in the design of graphene-based spintronic devices.

  17. Ferroelectric phase transition and optical performance of PLZnNZT transparent ceramics

    NASA Astrophysics Data System (ADS)

    Chu, Kaibin; Shi, Yue; Li, Kun; Fang, Bijun; Ding, Jianning

    2015-06-01

    Lead-based Pb0.97La0.02(Zn1/3Nb2/3)0.3(Zr0.53Ti0.47)0.7O3 (PLZnNZT) transparent ceramics with the addition of 2 wt% excess PbO were prepared by hot-pressing sintering method. The hot-pressing sintered PLZnNZT ceramics exhibit dense and large-grained microstructure, and perovskite structure with distorted cubic-like symmetry. The ceramics exhibit normal ferroelectric-like dielectric behavior with slightly diffused ferroelectric phase transition characteristic. The PLZnNZT ceramics exhibit fully developed, symmetric and saturated P-E hysteresis loop and large piezoelectric constant d33, being 468 pC/N. The ceramics with 120 μm thickness exhibit maximum transmittance of 53% at 850 nm when Fresnel losses was not included, almost totally transparent in the mid IR region (2500-5600 nm), and low-lying optical band gap energy Eg of 3.23 eV. Three diffused Raman bands centering around 240 cm-1, 560 cm-1 and 750 cm-1 are observed by micro-Raman spectroscopy, which can be attributed to F2g [BO6] bending vibration, A1g [BO6] stretching vibration and "soft mode" mixed by the bending and stretching vibrations, respectively, confirming the normal ferroelectric-like characteristic.

  18. Numerical simulations of the optical gain of crystalline fiber doped by rare earth and transition ion

    NASA Astrophysics Data System (ADS)

    Daoui, A. K.; Boubir, B.; Adouane, A.; Demagh, N.; Ghoumazi, M.

    2015-02-01

    A fiber laser is a laser whose gain medium is a doped fiber, although lasers whose cavity is made wholly of fibers have also been called fiber lasers. The gain media in a fiber laser is usually fiber doped with rare-earth ions, such as erbium (Er), neodymium (Nd), ytterbium (Yb), thulium (Tm), or praseodymium (Pr), which is doped into the core of the optical fiber, similar to those used to transmit telecommunications signals. Fiber lasers find many applications in materials processing, including cutting, welding, drilling, and marking metal. To maximize their market penetration, it is necessary to increase their output power. In this work, we present a detailed study based on the numerical simulation using MATLAB, of one of the principal characteristics of a fiber laser doped with rare earth ions and transition ion. The gain depends on several parameters such as the length of the doped fiber, the density, the pump power, noise, etc.). The used program resolves the state equations in this context together with those governing the light propagation phenomena. The developed code can also be used to study the dynamic operating modes of a doped fiber laser.

  19. Frequency stabilization of a 1083 nm fiber laser to ⁴He transition lines with optical heterodyne saturation spectroscopies.

    PubMed

    Gong, W; Peng, X; Li, W; Guo, H

    2014-07-01

    Two kinds of optical heterodyne saturation spectroscopies, namely, frequency modulation spectroscopy (FMS) and modulation transfer spectroscopy (MTS), are demonstrated for locking a fiber laser to the transition lines of metastable (4)He atoms around 1083 nm. The servo-loop error signals of FMS and MTS for stabilizing laser frequency are optimized by studying the dependence of the peak-to-peak amplitude and slope on the optical power of pump and probe beams. A comparison of the stabilization performances of FMS/MTS and polarization spectroscopy (PS) is presented, which shows that MTS exhibits relatively superior performance with the least laser frequency fluctuation due to its flat-background dispersive signal, originated from the four-wave mixing process. The Allan deviation of the stabilized laser frequency is 5.4 × 10(-12)@100 s with MTS for data acquired in 1000 s, which is sufficiently applicable for fields like laser cooling, optical pumping, and optical magnetometry. PMID:25085123

  20. Frequency stabilization of a 1083 nm fiber laser to {sup 4}He transition lines with optical heterodyne saturation spectroscopies

    SciTech Connect

    Gong, W.; Peng, X. Li, W.; Guo, H.

    2014-07-15

    Two kinds of optical heterodyne saturation spectroscopies, namely, frequency modulation spectroscopy (FMS) and modulation transfer spectroscopy (MTS), are demonstrated for locking a fiber laser to the transition lines of metastable {sup 4}He atoms around 1083 nm. The servo-loop error signals of FMS and MTS for stabilizing laser frequency are optimized by studying the dependence of the peak-to-peak amplitude and slope on the optical power of pump and probe beams. A comparison of the stabilization performances of FMS/MTS and polarization spectroscopy (PS) is presented, which shows that MTS exhibits relatively superior performance with the least laser frequency fluctuation due to its flat-background dispersive signal, originated from the four-wave mixing process. The Allan deviation of the stabilized laser frequency is 5.4 × 10{sup −12}@100 s with MTS for data acquired in 1000 s, which is sufficiently applicable for fields like laser cooling, optical pumping, and optical magnetometry.

  1. Frequency stabilization of a 1083 nm fiber laser to 4He transition lines with optical heterodyne saturation spectroscopies

    NASA Astrophysics Data System (ADS)

    Gong, W.; Peng, X.; Li, W.; Guo, H.

    2014-07-01

    Two kinds of optical heterodyne saturation spectroscopies, namely, frequency modulation spectroscopy (FMS) and modulation transfer spectroscopy (MTS), are demonstrated for locking a fiber laser to the transition lines of metastable 4He atoms around 1083 nm. The servo-loop error signals of FMS and MTS for stabilizing laser frequency are optimized by studying the dependence of the peak-to-peak amplitude and slope on the optical power of pump and probe beams. A comparison of the stabilization performances of FMS/MTS and polarization spectroscopy (PS) is presented, which shows that MTS exhibits relatively superior performance with the least laser frequency fluctuation due to its flat-background dispersive signal, originated from the four-wave mixing process. The Allan deviation of the stabilized laser frequency is 5.4 × 10-12@100 s with MTS for data acquired in 1000 s, which is sufficiently applicable for fields like laser cooling, optical pumping, and optical magnetometry.

  2. Interband optical transition energy and oscillator strength in a lead based CdSe quantum dot quantum well heterostructure

    SciTech Connect

    Saravanamoorthy, S. N.; Peter, A. John

    2015-06-24

    Binding energies of the exciton and the interband optical transition energies are studied in a CdSe/Pb{sub 1-x}Cd{sub x}Se/CdSe spherical quantum dot-quantum well nanostructure taking into account the geometrical confinement effect. The core and shell are taken as the same material. The initial and final states of energy and the overlap integrals of electron and hole wave functions are determined by the oscillator strength. The oscillator strength and the radiative transition life time with the dot radius are investigated for various Cd alloy content in the core and shell materials.

  3. Specific features of nonlinear optical properties of Eu3+ doped BiFeO3 nanopowders near antiferromagnetic transition

    NASA Astrophysics Data System (ADS)

    El Bahraoui, T.; Sekkati, M.; Taibi, M.; Abd-Lefdil, M.; El-Naggar, A. M.; AlZayed, N. S.; Albassam, A. A.; Kityk, I. V.; Maciag, A.

    2016-01-01

    The monitoring of the Eu3+ doped BiFeO3 nanopowders was performed near the antiferromagnetic transformation by photoinduced optical second harmonic generation. As photoinduced laser beams we have used bicolor coherent excitations of the Er:glass laser emitting at 1540 nm with frequency repetition about 15 ns. The studies of the photoinduced SHG were performed versus temperature including the temperature range of ferromagnetic-ferroelectric transition (350 °C…390 °C). The optimal light polarization and intensity ratio were chosen; the sensitivity of the photoinduced SHG to the multiferroic phase transitions was explored.

  4. Doppler-free two-photon absorption spectroscopy of rovibronic transition of naphthalene calibrated with an optical frequency comb

    NASA Astrophysics Data System (ADS)

    Nishiyama, A.; Nakashima, K.; Matsuba, A.; Misono, M.

    2015-12-01

    We performed Doppler-free two-photon absorption spectroscopy of naphthalene using an optical frequency comb as a frequency reference. Rotationally resolved rovibronic spectra were observed, and absolute frequencies of the rovibronic transitions were determined with an uncertainty of several tens of kHz. The resolution and precision of our system are finer than the natural width of naphthalene. We assigned 1466 lines of the Q (Ka) Q (J) transition and calculated molecular constants. We attribute systematic spectral line shifts to the Coriolis interaction, and discuss the origin of the spectral linewidths.

  5. Identifying and discriminating phase transitions along decaying shocks with line imaging Doppler interferometric velocimetry and streaked optical pyrometry

    NASA Astrophysics Data System (ADS)

    Millot, Marius

    2016-01-01

    Ultrafast line-imaging velocity interferometer system for any reflector and streaked optical pyrometry are now commonly used to obtain high precision equation of state and electronic transport data under dynamic compression at major high energy density science facilities. We describe a simple way to improve distinguishing phase transformation signatures from other signals when monitoring decaying shock waves. The line-imaging capability of these optical diagnostics offers additional supporting evidence to the assignment of particular anomalies—such as plateaus or reversals—to the occurrence of a phase transition along the Hugoniot. We illustrate the discussion with two example datasets collected during laser driven shock compression of quartz and stishovite.

  6. Magneto-optical measurement of anisotropy energy constant(s) for amorphous rare earth, transition metal alloys

    SciTech Connect

    Uber, R.E.; Mansuripur, M.

    1988-11-01

    Optical investigation of magneto-optical films is complementary to conventional torque and VSM magnetometry. In the authors' laboratory, they are now measuring anisotropy energy constants of RE-TM thin films at temperatures from ambient to 150/sup 0/C. An in-plane magnetic field (up to 16.5 KOe) is applied to a saturated sample with perpendicular magnetization. The movement away from the perpendicular direction is monitored using the polar Kerr effect. At the HeNe wavelength, the Kerr effect is principally due to the top 500 angstroms of the transition metal subnetwork in the films.

  7. Optical nonlinearity and structural phase-transition observation of organic dye-doped polymer silica hybrid material.

    PubMed

    Xu, L; Hou, Z; Liu, L; Xu, Z; Wang, W; Li, F; Ye, M

    1999-10-01

    The optical nonlinearity of organic dye-doped poly(methyl methacrylate) (PMMA)-silica-gel hybrid material was investigated by second-harmonic-generation measurement. We found that incorporation of in situ polymerized solgel precursors into the organic dye-doped PMMA significantly improved the nonlinear optical stability of the system. However, improvement of thermal stability occurred only when a sufficient amount of silica gel was incorporated. A structural phase transition from pure polymer to a hybrid system was found near a 10-mol.% silica-gel concentration. The optimum polymer/tetraethoxysilane molar ratio is 2:1 to 1:1. PMID:18079805

  8. Band Structure and Terahertz Optical Conductivity of Transition Metal Oxides: Theory and Application to CaRuO(3).

    PubMed

    Dang, Hung T; Mravlje, Jernej; Georges, Antoine; Millis, Andrew J

    2015-09-01

    Density functional plus dynamical mean field calculations are used to show that in transition metal oxides, rotational and tilting (GdFeO(3)-type) distortions of the ideal cubic perovskite structure produce a multiplicity of low-energy optical transitions which affect the conductivity down to frequencies of the order of 1 or 2 mV (terahertz regime), mimicking non-Fermi-liquid effects even in systems with a strictly Fermi-liquid self-energy. For CaRuO(3), a material whose measured electromagnetic response in the terahertz frequency regime has been interpreted as evidence for non-Fermi-liquid physics, the combination of these band structure effects and a renormalized Fermi-liquid self-energy accounts for the low frequency optical response which had previously been regarded as a signature of exotic physics. Signatures of deviations from Fermi-liquid behavior at higher frequencies (∼100  meV) are discussed. PMID:26382698

  9. Optical transitions in highly charged californium ions with high sensitivity to variation of the fine-structure constant.

    PubMed

    Berengut, J C; Dzuba, V A; Flambaum, V V; Ong, A

    2012-08-17

    We study electronic transitions in highly charged Cf ions that are within the frequency range of optical lasers and have very high sensitivity to potential variations in the fine-structure constant, α. The transitions are in the optical range despite the large ionization energies because they lie on the level crossing of the 5f and 6p valence orbitals in the thallium isoelectronic sequence. Cf(16+) is a particularly rich ion, having several narrow lines with properties that minimize certain systematic effects. Cf(16+) has very large nuclear charge and large ionization energy, resulting in the largest α sensitivity seen in atomic systems. The lines include positive and negative shifters. PMID:23006353

  10. Optical boundary-layer transition detection in a transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Azzazy, M.; Modarress, D.; Hall, R. M.

    1987-01-01

    A high-sensitivity interferometer has been developed and used to detect boundary-layer transitions over a symmetric airfoil. The tests, which included both natural and roughness-induced transitions, were performed in a transonic wind tunnel. The measurements showed a peak amplitude rms and higher energy in the spectrum of the signal associated with transition. The tests revealed that the interferometer system can be used to locate the transition region over three-dimensional aerodynamic models.

  11. Mg doping of thermochromic VO2 films enhances the optical transmittance and decreases the metal-insulator transition temperature

    NASA Astrophysics Data System (ADS)

    Mlyuka, N. R.; Niklasson, G. A.; Granqvist, C. G.

    2009-10-01

    Thermochromic films of MgxV1-xO2 were made by reactive dc magnetron sputtering onto heated glass. The metal-insulator transition temperature decreased by ˜3 K/at. %Mg, while the optical transmittance increased concomitantly. Specifically, the transmittance of visible light and of solar radiation was enhanced by ˜10% when the Mg content was ˜7 at. %. Our results point at the usefulness of these films for energy efficient fenestration.

  12. On the size-dependent magnetism and all-optical magnetization switching of transition-metal silicide nanostructures

    SciTech Connect

    Glushkov, G. I.; Tuchin, A. V.; Popov, S. V.; Bityutskaya, L. A.

    2015-12-15

    Theoretical investigations of the electronic structure, synthesis, and all-optical magnetization switching of transition-metal silicide nanostructures are reported. The magnetic moment of the nanostructures is studied as a function of the silicide cluster size and configuration. The experimentally demonstrated magnetization switching of nanostructured nickel silicide by circularly polarized light makes it possible to create high-speed storage devices with high density data recording.

  13. Dicke-model phase transition in the quantum motion of a Bose-Einstein condensate in an optical cavity.

    PubMed

    Nagy, D; Kónya, G; Szirmai, G; Domokos, P

    2010-04-01

    We show that the motion of a laser-driven Bose-Einstein condensate in a high-finesse optical cavity realizes the spin-boson Dicke model. The quantum phase transition of the Dicke model from the normal to the superradiant phase corresponds to the self-organization of atoms from the homogeneous into a periodically patterned distribution above a critical driving strength. The fragility of the ground state due to photon measurement induced backaction is calculated. PMID:20481867

  14. Bio-optical profile data report coastal transition zone program, R/V Point Sur, June 15-28, 1987

    NASA Technical Reports Server (NTRS)

    Davis, Curtiss O.; Rhea, W. Joseph

    1990-01-01

    Twenty vertical profiles of the bio-optical properties of the ocean were made during a research cruise on the R/V Point Sur, June 15 to 28, 1987, as part of the Coastal Transition Zone Program off Point Arena, California. Extracted chlorophyll values were also measured at some stations to provide calibration data for the in situ fluorometer. This summary provides investigators with an overview of the data collected. The entire data set is available in digital form.

  15. Bio-optical profile data report coastal transition zone program, R/V Thomas Washington, June 24 - July 21, 1988

    NASA Technical Reports Server (NTRS)

    Davis, Curtiss O.; Rhea, W. Joseph

    1990-01-01

    Twenty-three vertical profiles of the bio-optical properties of the ocean were made during a research cruise on the R/V Thomas Washington, June 24 to July 21, 1988, as part of the Coastal Transition Zone Program off Point Arena, California. A summary is given, to provide investigators with an overview of the data collected. The entire data set is available in digital form for interested researchers.

  16. Native defects as sources of optical transitions in MgAl2O4 spinel

    NASA Astrophysics Data System (ADS)

    Borges, P. D.; Cott, J.; Pinto, F. G.; Tronto, J.; Scolfaro, L.

    2016-07-01

    The outstanding physical and chemical properties of the magnesium aluminate (MgAl2O4) spinel makes it an important material for novel technological applications. Considering that a presence of native defects can promote important changes in those properties, in this work we present a study of the structural, electronic and thermodynamic properties of the MgAl2O4 spinel. The calculated formation energy for isolated defects, such as the vacancies of magnesium (V Mg), aluminum (V Al) and oxygen (V O), oxygen interstitial (Oi), magnesium and aluminum antisites (MgAl, AlMg), as well as some complex defects (V O + Oi, V O + AlMg, V O + MgAl, MgAl + AlMg) in the most stable charge states are shown. Through experimental data, we obtained that complex defects centers, such as V O , V O + Oi, V O + AlMg and VO + MgAl at different charge states are good candidates for the observed optical transitions at 4.75, 5.3, and 6.4 eV. Our findings were obtained from ab initio electronic structure calculations performed by using density functional theory. The Perdew–Burke–Ernzerhof generalized gradient approximation was used for the exchange-correlation potential. Furthermore, a modified Becke-Johnson exchange potential (GGA-mBJ) correction to the exchange potential were used to obtain a suitable value for the band gap energy, 7.40 eV, in accordance with the experimental one of 7.8 eV.

  17. Compositional dependence of optical transition energies in highly mismatched Zn1-xCdxTe1-yOy alloys

    NASA Astrophysics Data System (ADS)

    Tanaka, Tooru; Mizoguchi, Kosuke; Terasawa, Toshiki; Okano, Yuuki; Saito, Katsuhiko; Guo, Qixin; Nishio, Mitsuhiro; Yu, Kin Man; Walukiewicz, Wladek

    2016-02-01

    Highly mismatched Zn1-xCdxTe1-yOy layers with a wide range of Cd and O compositions of 0-0.7 and 0.005-0.02, respectively, were grown by molecular beam epitaxy for the application of intermediate band solar cells. The electron transition energies from the valence band (VB) to E- and E+ bands decreased with increasing Cd content. The variation of the transition energies was consistent with the theoretical calculation based on the band anticrossing model. The magnitude of the optical absorption due to electron transitions from the VB to E- band was strongly dependent on the Cd content because of the changing character of the E- band.

  18. Structural phase transition in IrTe2: A combined study of optical spectroscopy and band structure calculations

    PubMed Central

    Fang, A. F.; Xu, G.; Dong, T.; Zheng, P.; Wang, N. L.

    2013-01-01

    Ir1−xPtxTe2 is an interesting system showing competing phenomenon between structural instability and superconductivity. Due to the large atomic numbers of Ir and Te, the spin-orbital coupling is expected to be strong in the system which may lead to nonconventional superconductivity. We grew single crystal samples of this system and investigated their electronic properties. In particular, we performed optical spectroscopic measurements, in combination with density function calculations, on the undoped compound IrTe2 in an effort to elucidate the origin of the structural phase transition at 280 K. The measurement revealed a dramatic reconstruction of band structure and a significant reduction of conducting carriers below the phase transition. We elaborate that the transition is not driven by the density wave type instability but caused by the crystal field effect which further splits/separates the energy levels of Te (px, py) and Te pz bands. PMID:23362455

  19. The need for an optical transition detection system in the NTF

    NASA Technical Reports Server (NTRS)

    Fancher, M. F.

    1982-01-01

    Methods for transition detection were studied. The very high test and model costs necessitate testing of any new configuration over a range of Reynolds numbers for correlation with data obtained in conventional tunnels. The Reynolds number variations will be carried out at constant dynamic pressure, i.e., constant aeroelastic condition, by varying test temperature. Boundary layer transition cannot be expected to occur at the full scale location at significantly less than full-scale Reynolds numbers, and transition patterns will change with varying Reynolds number. Knowledge of the location of transition on model surfaces is essential for correct interpretation of drag data. The importance of transition, the limitations of artificial transition fixing, and their relation to the NTF are reviewed. The calculated minimum roughness height to instantaneously trip transition on a model transport wing over a range of Reynolds numbers of interest is shown in the NTF.

  20. Observation and absolute frequency measurements of the 1S0-3P0 optical clock transition in neutral ytterbium.

    PubMed

    Hoyt, C W; Barber, Z W; Oates, C W; Fortier, T M; Diddams, S A; Hollberg, L

    2005-08-19

    We report the direct excitation of the highly forbidden (6s2) 1S0 <--> (6s6p) 3P0 optical transition in two odd isotopes of neutral ytterbium. As the excitation laser frequency is scanned, absorption is detected by monitoring the depletion from an atomic cloud at approximately 70 microK in a magneto-optical trap. The measured frequency in 171Yb (F=1/2) is 518,295,836,591.6 +/- 4.4 kHz. The measured frequency in 173Yb (F=5/2) is 518,294,576,847.6 +/- 4.4 kHz. Measurements are made with a femtosecond-laser frequency comb calibrated by the National Institute of Standards and Technology cesium fountain clock and represent nearly a 10(6)-fold reduction in uncertainty. The natural linewidth of these J=0 to J=0 transitions is calculated to be approximately 10 mHz, making them well suited to support a new generation of optical atomic clocks based on confinement in an optical lattice. PMID:16196856

  1. Extended Pre-Transit Structures and the Exosphere Detected for HD189733b in Optical Hydrogen Balmer Line Absorption

    NASA Astrophysics Data System (ADS)

    Redfield, Seth; Cauley, P. Wilson; Jensen, Adam G.; Barman, Travis; Endl, Michael; Cochran, William

    2015-12-01

    We present two separate observations of HD189733b in the three strongest hydrogen Balmer lines (H-alpha, H-beta, and H-gamma), with HiRES on Keck I that show definitive in-transit absorption, confirming the detection with the HET by Jensen et al. (2012), as well as, significant pre-transit absorption. Recently, pre-transit absorption in UV metal transitions of the hot Jupiter exoplanets HD 189733b and WASP12-b have been interpreted as being caused by material compressed in a planetary bow shock, however our observations are the first to densely time-sample and redundantly detect these extended planetary structures. While our first observations (obtained in 2013 and presented in Cauley et al. 2015), were consistent with a bow shock, our subsequent observation taken in August 2015 show pre-transit absorption but with a pattern that is inconsistent with the 2013 model. Instead, the observations indicate significant variability in the strength and timing of the pre-transit absorption. We also find differences in the strength of the in-transit exospheric absorption as well. These changes could be indicative of variability in the extreme stellar wind properties found at just 8 stellar radii, which could drive the extended atmospheric interaction between star and planet. The pre-transit absorption in 2013 was first observed 65 minutes prior to transit (corresponding to a linear distance of ~7 planetary radii), although it could have started earlier. The pre-transit signal in 2015, which is well sampled, is first detected 165 minutes prior to transit (a linear distance of ~17 planetary radii). The line shape of the pre-transit feature and the shape of the time series absorption provide the strongest constraints on the morphology and physical characteristics of extended structures around the exoplanet. The absorption strength observed in the Balmer lines indicates an optically thick, but physically small, geometry. If part of this extended structure is a bow shock mediated

  2. Surface alignment, anchoring transitions, optical properties, and topological defects in the thermotropic nematic phase of organo-siloxane tetrapodes.

    PubMed

    Kim, Young-Ki; Senyuk, Bohdan; Shin, Sung-Tae; Kohlmeier, Alexandra; Mehl, Georg H; Lavrentovich, Oleg D

    2014-01-21

    We perform optical, surface anchoring, and textural studies of an organo-siloxane "tetrapode" material in the broad temperature range of the nematic phase. The optical, structural, and topological features are compatible with the uniaxial nematic order rather than with the biaxial nematic order, in the entire nematic temperature range -25 °C < T < 46 °C studied. For homeotropic alignment, the material experiences surface anchoring transition, but the director can be realigned into an optically uniaxial texture by applying a sufficiently strong electric field. The topological features of textures in cylindrical capillaries, in spherical droplets and around colloidal inclusions are consistent with the uniaxial character of the long-range nematic order. In particular, we observe isolated surface point defects - boojums and bulk point defects - hedgehogs that can exist only in the uniaxial nematic liquid crystal. PMID:24651889

  3. Variation of optical conductivity spectra in the course of bandwidth-controlled metal-insulator transitions in pyrochlore iridates

    NASA Astrophysics Data System (ADS)

    Ueda, K.; Fujioka, J.; Tokura, Y.

    2016-06-01

    We spectroscopically investigate a series of pyrochlore iridates R2Ir2O7 (R : rare-earth and Y ions) where the metal-insulator transitions are induced by systematic bandwidth control via chemical substitutions of R ions. We establish the phase diagram of R2Ir2O7 , as endorsed by the variation of the optical conductivity spectra, in which the competing phases including paramagnetic insulator (PI), paramagnetic metal (PM), and antiferromagnetic insulator (AFI) show up as a function of bandwidth and temperature. For small R -ionic radius (R = Y-Sm), i.e., strongly correlated region, pronounced peaks on the edge of the optical gap are discerned below the magnetic transition temperature TN, which is attributable to exciton and magnon sideband absorptions. It turns out that the estimated nearest-neighbor exchange interaction increases as R -ionic radius increases, whereas TN monotonically decreases, indicating that the all-in all-out magnetic order arises from the interplay among several exchange interactions inherent to extended 5 d orbitals on the frustrated lattice. For larger R -ionic radius (R = Sm-Pr), i.e., relatively weakly correlated region, the optical conductivity spectra markedly change below 0.3 eV in the course of PM-AFI transition, implying that the magnetic order induces the insulating state. In particular, we have found distinct electrodynamics in the composition of R =Nd0.5Pr0.5 which is located on the boundary of the quantum PM-AFI transition, pointing to the possible emergence of unconventional topological electronic phases related possibly to the correlated Weyl electrons.

  4. Steady-state linear optical properties and Kerr nonlinear optical response of a four-level quantum dot with phonon-assisted transition

    NASA Astrophysics Data System (ADS)

    Yan-Chao, She; Ting-Ting, Luo; Wei-Xi, Zhang; Mao-Wu, Ran; Deng-Long, Wang

    2016-01-01

    The linear optical properties and Kerr nonlinear optical response in a four-level loop configuration GaAs/AlGaAs semiconductor quantum dot are analytically studied with the phonon-assisted transition (PAT). It is shown that the changes among a single electromagnetically induced transparency (EIT) window, a double EIT window and the amplification of the probe field in the absorption curves can be controlled by varying the strength of PAT κ. Meanwhile, double switching from the anomalous dispersion regime to the normal dispersion regime can likely be achieved by increasing the Rabi energy of the external optical control field. Furthermore, we demonstrate that the group velocity of the probe field can be practically regulated by varying the PAT and the intensity of the optical control field. In the nonlinear case, it is shown that the large SPM and XPM can be achieved as linear absorption vanishes simultaneously, and the PAT can suppress both third-order self-Kerr and the cross-Kerr nonlinear effect of the QD. Our study is much more practical than its atomic counterpart due to its flexible design and the controllable interference strength, and may provide some new possibilities for technological applications. Project supported by the National Natural Science Foundation of China (Grant No. 61367003), the Scientific Research Fund of Hunan Provincial Education Department, China (Grant No. 12A140), and the Scientific Research Fund of Guizhou Provincial Education Department, China (Grant Nos. KY[2015]384 and KY[2015]446).

  5. Competition of optical transitions between direct and indirect bandgaps in Ge1-xSnx

    NASA Astrophysics Data System (ADS)

    Du, Wei; Ghetmiri, Seyed A.; Conley, Benjamin R.; Mosleh, Aboozar; Nazzal, Amjad; Soref, Richard A.; Sun, Greg; Tolle, John; Margetis, Joe; Naseem, Hameed A.; Yu, Shui-Qing

    2014-08-01

    Temperature-dependent photoluminescence (PL) study has been conducted in Ge1-xSnx films with Sn compositions of 0.9%, 3.2%, and 6.0% grown on Si. The competing between the direct and indirect bandgap transitions was clearly observed. The relative peak intensity of direct transition with respect to the indirect transition increases with an increase in temperature, indicating the direct transition dominates the PL at high temperature. Furthermore, as Sn composition increases, a progressive enhancement of direct transition was observed due to the reduction of direct-indirect valley separation, which experimentally confirms that the Ge1-xSnx could become the group IV-based direct bandgap material grown on Si by increasing the Sn content.

  6. Direct optical transitions at K- and H-point of Brillouin zone in bulk MoS2, MoSe2, WS2, and WSe2

    NASA Astrophysics Data System (ADS)

    Kopaczek, J.; Polak, M. P.; Scharoch, P.; Wu, K.; Chen, B.; Tongay, S.; Kudrawiec, R.

    2016-06-01

    Modulated reflectance (contactless electroreflectance (CER), photoreflectance (PR), and piezoreflectance (PzR)) has been applied to study direct optical transitions in bulk MoS2, MoSe2, WS2, and WSe2. In order to interpret optical transitions observed in CER, PR, and PzR spectra, the electronic band structure for the four crystals has been calculated from the first principles within the density functional theory for various points of Brillouin zone including K and H points. It is clearly shown that the electronic band structure at H point of Brillouin zone is very symmetric and similar to the electronic band structure at K point, and therefore, direct optical transitions at H point should be expected in modulated reflectance spectra besides the direct optical transitions at the K point of Brillouin zone. This prediction is confirmed by experimental studies of the electronic band structure of MoS2, MoSe2, WS2, and WSe2 crystals by CER, PR, and PzR spectroscopy, i.e., techniques which are very sensitive to critical points of Brillouin zone. For the four crystals besides the A transition at K point, an AH transition at H point has been observed in CER, PR, and PzR spectra a few tens of meV above the A transition. The spectral difference between A and AH transition has been found to be in a very good agreement with theoretical predictions. The second transition at the H point of Brillouin zone (BH transition) overlaps spectrally with the B transition at K point because of small energy differences in the valence (conduction) band positions at H and K points. Therefore, an extra resonance which could be related to the BH transition is not resolved in modulated reflectance spectra at room temperature for the four crystals.

  7. Millimagnitude Optical Photometry for the Transiting Planetary Candidate OGLE-TR-109

    NASA Astrophysics Data System (ADS)

    Fernández, José Miguel; Minniti, Dante; Pietrzynski, Grzegorz; Gieren, Wolfgang; Ruíz, María Teresa; Zoccali, Manuela; Udalski, Andrzej; Szeifert, Thomas

    2006-08-01

    We present precise V-band photometry for the low-amplitude transit candidate star OGLE-TR-109. This is an extreme case among the transiting candidates found by the OGLE group because of the early spectral type of the star (F0 V), the low transit amplitude (AI=0.008 mag), and the very short period (P=0.58909 days) of the orbiting companion. Using difference image photometry, we are able to achieve millimagnitude errors in the individual data points. One transit of this star is well defined in our light curve. This confirms the OGLE detection and rules out the possibility of a false positive. The measurement of this transit allows us to refine the transit amplitude (AV=0.006+/-0.001 mag) and the ephemerides for this interesting system, as well as the radius of the possible orbiting companion (RP=0.90RJ+/-0.09RJ) and the inclination of the orbit (i=77deg+/-5deg). Two other transits observed at lower S/N confirm the period of this system measured by OGLE. There is no evidence for a blend of the F-type main-sequence star with a redder eclipsing binary or for secondary transits in the present observations. The absence of ellipsoidal modulation in the light curve of the primary rules out a low-mass star companion or brown dwarf with M>14MJ+/-8MJ. The remaining possibilities for OGLE-TR-109 are a blend between the F-type star and a binary with a bluer primary star, or a new transiting extrasolar planet. Based on observations collected with the Very Large Telescope at Paranal Observatory [ESO Program 075.C-0427(A), J. M. F. and D. M. visiting observers].

  8. Molecular Dynamics at Electrical- and Optical-Driven Phase Transitions: Time-Resolved Infrared Studies Using Fourier-Transform Spectrometers

    NASA Astrophysics Data System (ADS)

    Peterseim, Tobias; Dressel, Martin

    2016-06-01

    The time-dependent optical properties of molecular systems are investigated by step-scan Fourier-transform spectroscopy in order to explore the dynamics at phase transitions and molecular orientation in the milli- and microsecond range. The electrical switching of liquid crystals traced by vibrational spectroscopy reveals a rotation of the molecules with a relaxation time of 2 ms. The photo-induced neutral-ionic transition in TTF-CA takes place by a suppression of the dimerization in the ionic phase and creation of neutral domains. The time-dependent infrared spectra, employed to investigate the domain-wall dynamics, depend on temperature and laser pulse intensity; the relaxation of the spectra follows a stretched-exponential decay with relaxation times in the microsecond range strongly dependent on temperature and laser intensity. We present all details of the experimental setups and thoroughly discuss the technical challenges.

  9. Time-domain separation of optical properties from structural transitions in resonantly bonded materials.

    PubMed

    Waldecker, Lutz; Miller, Timothy A; Rudé, Miquel; Bertoni, Roman; Osmond, Johann; Pruneri, Valerio; Simpson, Robert E; Ernstorfer, Ralph; Wall, Simon

    2015-10-01

    The extreme electro-optical contrast between crystalline and amorphous states in phase-change materials is routinely exploited in optical data storage and future applications include universal memories, flexible displays, reconfigurable optical circuits, and logic devices. Optical contrast is believed to arise owing to a change in crystallinity. Here we show that the connection between optical properties and structure can be broken. Using a combination of single-shot femtosecond electron diffraction and optical spectroscopy, we simultaneously follow the lattice dynamics and dielectric function in the phase-change material Ge2Sb2Te5 during an irreversible state transformation. The dielectric function changes by 30% within 100 fs owing to a rapid depletion of electrons from resonantly bonded states. This occurs without perturbing the crystallinity of the lattice, which heats with a 2-ps time constant. The optical changes are an order of magnitude larger than those achievable with silicon and present new routes to manipulate light on an ultrafast timescale without structural changes. PMID:26213898

  10. Time-domain separation of optical properties from structural transitions in resonantly bonded materials

    NASA Astrophysics Data System (ADS)

    Waldecker, Lutz; Miller, Timothy A.; Rudé, Miquel; Bertoni, Roman; Osmond, Johann; Pruneri, Valerio; Simpson, Robert E.; Ernstorfer, Ralph; Wall, Simon

    2015-10-01

    The extreme electro-optical contrast between crystalline and amorphous states in phase-change materials is routinely exploited in optical data storage and future applications include universal memories, flexible displays, reconfigurable optical circuits, and logic devices. Optical contrast is believed to arise owing to a change in crystallinity. Here we show that the connection between optical properties and structure can be broken. Using a combination of single-shot femtosecond electron diffraction and optical spectroscopy, we simultaneously follow the lattice dynamics and dielectric function in the phase-change material Ge2Sb2Te5 during an irreversible state transformation. The dielectric function changes by 30% within 100 fs owing to a rapid depletion of electrons from resonantly bonded states. This occurs without perturbing the crystallinity of the lattice, which heats with a 2-ps time constant. The optical changes are an order of magnitude larger than those achievable with silicon and present new routes to manipulate light on an ultrafast timescale without structural changes.

  11. Transition from two-dimensional photonic crystals to dielectric metasurfaces in the optical diffraction with a fine structure

    PubMed Central

    Rybin, Mikhail V.; Samusev, Kirill B.; Lukashenko, Stanislav Yu.; Kivshar, Yuri S.; Limonov, Mikhail F.

    2016-01-01

    We study experimentally a fine structure of the optical Laue diffraction from two-dimensional periodic photonic lattices. The periodic photonic lattices with the C4v square symmetry, orthogonal C2v symmetry, and hexagonal C6v symmetry are composed of submicron dielectric elements fabricated by the direct laser writing technique. We observe surprisingly strong optical diffraction from a finite number of elements that provides an excellent tool to determine not only the symmetry but also exact number of particles in the finite-length structure and the sample shape. Using different samples with orthogonal C2v symmetry and varying the lattice spacing, we observe experimentally a transition between the regime of multi-order diffraction, being typical for photonic crystals to the regime where only the zero-order diffraction can be observed, being is a clear fingerprint of dielectric metasurfaces characterized by effective parameters. PMID:27491952

  12. Transition from two-dimensional photonic crystals to dielectric metasurfaces in the optical diffraction with a fine structure.

    PubMed

    Rybin, Mikhail V; Samusev, Kirill B; Lukashenko, Stanislav Yu; Kivshar, Yuri S; Limonov, Mikhail F

    2016-01-01

    We study experimentally a fine structure of the optical Laue diffraction from two-dimensional periodic photonic lattices. The periodic photonic lattices with the C4v square symmetry, orthogonal C2v symmetry, and hexagonal C6v symmetry are composed of submicron dielectric elements fabricated by the direct laser writing technique. We observe surprisingly strong optical diffraction from a finite number of elements that provides an excellent tool to determine not only the symmetry but also exact number of particles in the finite-length structure and the sample shape. Using different samples with orthogonal C2v symmetry and varying the lattice spacing, we observe experimentally a transition between the regime of multi-order diffraction, being typical for photonic crystals to the regime where only the zero-order diffraction can be observed, being is a clear fingerprint of dielectric metasurfaces characterized by effective parameters. PMID:27491952

  13. Using bound exciton transitions to optically resolve neutral donor hyperfine states of various donor species in Silicon-28

    NASA Astrophysics Data System (ADS)

    Salvail, Jeff; Dluhy, Phillip; Saeedi, Kamyar; Szech, Michael; Riemann, Helge; Abromisov, Nikolai; Becker, Peter; Pohl, Hans-Joachim; Thewalt, Michael

    2014-03-01

    Phosphorus in silicon is established as a promising resource for use in quantum information processing tasks. The neutral donor hyperfine states have been shown to have record long coherence times, high fidelity gates via RF pulses, and projective readout via optical bound exciton transitions. As Shannon's theory of information tells us, we can process more information in an alphabet of more symbols, so there is motivation to look at donors with higher nuclear spin than the I = 1 / 2 of 31P, which provide access to Hilbert spaces of dimension greater than two. In this talk I will describe optical studies of the donors 75As (I = 3 / 2), 121Sb (I = 5 / 2), and 209Bi (I = 9 / 2) in 28Si.

  14. Investigation of optical transitions in InAs/GaAs(Sb)/AlAsSb quantum dots using modulation spectroscopy

    SciTech Connect

    Bittner, Zachary S. Hellstroem, Staffan; Polly, Stephen J.; Hubbard, Seth M.; Laghumavarapu, Ramesh B.; Liang, Baolai; Huffaker, Diana L.

    2014-12-22

    InAs quantum dots (QDs) were grown in an AlAs{sub 0.56}Sb{sub 0.44}/GaAs matrix in the unintentionally doped (uid) region of an In{sub 0.52}Al{sub 0.48}As solar cell, establishing a variety of optical transitions both into and out of the QDs. The ultimate goal is to demonstrate sequential absorption, where one photon is absorbed, promoting an electron from the valence band into the QD, and a second photon is absorbed in order to promote the trapped electron from a QD state into the host conduction band. In this study, we directly investigate the optical properties of the solar cell using photoreflectance and evaluate the possibility of sequential absorption by measuring spectral responsivity with broadband infrared illumination.

  15. Transition from two-dimensional photonic crystals to dielectric metasurfaces in the optical diffraction with a fine structure

    NASA Astrophysics Data System (ADS)

    Rybin, Mikhail V.; Samusev, Kirill B.; Lukashenko, Stanislav Yu.; Kivshar, Yuri S.; Limonov, Mikhail F.

    2016-08-01

    We study experimentally a fine structure of the optical Laue diffraction from two-dimensional periodic photonic lattices. The periodic photonic lattices with the C4v square symmetry, orthogonal C2v symmetry, and hexagonal C6v symmetry are composed of submicron dielectric elements fabricated by the direct laser writing technique. We observe surprisingly strong optical diffraction from a finite number of elements that provides an excellent tool to determine not only the symmetry but also exact number of particles in the finite-length structure and the sample shape. Using different samples with orthogonal C2v symmetry and varying the lattice spacing, we observe experimentally a transition between the regime of multi-order diffraction, being typical for photonic crystals to the regime where only the zero-order diffraction can be observed, being is a clear fingerprint of dielectric metasurfaces characterized by effective parameters.

  16. Optical transitions of Ho(3+) in oxyfluoride glasses and upconversion luminescence of Ho(3+)/Yb(3+)-codoped oxyfluoride glasses.

    PubMed

    Feng, Li; Wu, Yinsu

    2015-05-01

    Optical properties of Ho(3+)-doped SiO2-BaF2-ZnF2 glasses have been investigated on the basis of the Judd-Ofelt theory. Judd-Ofelt intensity parameters, radiative transition probabilities, fluorescence branching ratios and radiative lifetimes have been calculated for different glass compositions. Upconversion emissions were observed in Ho(3+)/Yb(3+)-codoped SiO2-BaF2-ZnF2 glasses under 980nm excitation. The effects of composition, concentration of the doping ions, and excitation pump power on the upconversion emissions were also systematically studied. PMID:25703369

  17. Initial optical transition radiation measurements of the electron beam for the Boeing Free-Electron Laser experiment

    SciTech Connect

    Lumpkin, A.H.; Fiorito, R.B.; Rule, D.W.; Dowell, D.H.; Sellyey, W.; Lowrey, A.R.; Naval Surface Warfare Center, Silver Spring, MD; Boeing Aerospace and Electronics, Seattle, WA )

    1989-01-01

    The potential for characterization of electron beams at {approximately}100 MeV at the Boeing Free-Electron Laser (FEL) facility by optical transition radiation (OTR) techniques has been demonstrated as an important complement to other diagnostic means. Electron beam properties such as spatial profile and position, current intensity, emittance, and energy were made accessible in an on-line manner. Initial examples including transport through the 5-m wiggler and the resolution of Cerenkov radiation and spontaneous emission radiation competitive sources are discussed. 11 refs., 13 figs.

  18. Effective collision strengths for optically allowed transitions among degenerate levels of hydrogenic ions with 2{<=}Z{<=}30

    SciTech Connect

    Hamada, K.; Aggarwal, K.M.; Akita, K.; Igarashi, A.; Keenan, F.P.; Nakazaki, S.

    2010-09-15

    The Coulomb-Born approximation is used to calculate electron-impact excitation collision strengths and effective collision strengths for optically allowed transitions among degenerate fine-structure levels of hydrogenic ions with 2{<=}Z{<=}30 and n{<=}5. Collision strengths are calculated over a wide range of energies up to E{sub j}/Z{sup 2}=10Ryd. Effective collision strengths are obtained over a wide temperature range up to 10{sup 8}K by integrating the collision strengths over a Maxwellian distribution of electron velocities.

  19. Structural phase transition and erasable optically memorized effect in layered γ-In2Se3 crystals

    NASA Astrophysics Data System (ADS)

    Ho, Ching-Hwa; Chen, Ying-Cen; Pan, Chia-Chi

    2014-01-01

    We have grown In2Se3 layered-type crystals using chemical vapor transport method with ICl3 as the transport agent. The as-grown crystals show two different color groups of black shiny for α-phase In2Se3 and red to yellow for γ-phase In2Se3. High-resolution transmission electron micro scopy verifies crystalline state and structural polytype of the as-grown In2Se3. The results indicate that the α-In2Se3 crystals present more crystalline states than those of the other amorphous γ-In2Se3. The amorphous effect on the advancing of optoelectronic property of γ-In2Se3 shows erasable optical-memorized effect in the disordered and polycrystalline γ-In2Se3 layers. Laser-induced photodarkening and annealed-recovery test verified that a reversible structural-phase transition of γ↔α can occur inside the γ-In2Se3. Thermoreflectance and Raman scattering measurements are carried out to identify the inter-phase transformation of the γ-In2Se3 polycrystals using different heat treatments. Direct band gaps and Raman vibration modes for the γ- and α-In2Se3 crystalline phases are, respectively, characterized and identified. The character of γ↔α inter-phase transition promotes feasible optical and optoelectronic applications of the γ-In2Se3 material in optical memory, optics, and solar-energy devices.

  20. Structural phase transition and erasable optically memorized effect in layered γ-In{sub 2}Se{sub 3} crystals

    SciTech Connect

    Ho, Ching-Hwa; Chen, Ying-Cen; Pan, Chia-Chi

    2014-01-21

    We have grown In{sub 2}Se{sub 3} layered-type crystals using chemical vapor transport method with ICl{sub 3} as the transport agent. The as-grown crystals show two different color groups of black shiny for α-phase In{sub 2}Se{sub 3} and red to yellow for γ-phase In{sub 2}Se{sub 3}. High-resolution transmission electron micro scopy verifies crystalline state and structural polytype of the as-grown In{sub 2}Se{sub 3}. The results indicate that the α-In{sub 2}Se{sub 3} crystals present more crystalline states than those of the other amorphous γ-In{sub 2}Se{sub 3}. The amorphous effect on the advancing of optoelectronic property of γ-In{sub 2}Se{sub 3} shows erasable optical-memorized effect in the disordered and polycrystalline γ-In{sub 2}Se{sub 3} layers. Laser-induced photodarkening and annealed-recovery test verified that a reversible structural-phase transition of γ↔α can occur inside the γ-In{sub 2}Se{sub 3}. Thermoreflectance and Raman scattering measurements are carried out to identify the inter-phase transformation of the γ-In{sub 2}Se{sub 3} polycrystals using different heat treatments. Direct band gaps and Raman vibration modes for the γ- and α-In{sub 2}Se{sub 3} crystalline phases are, respectively, characterized and identified. The character of γ↔α inter-phase transition promotes feasible optical and optoelectronic applications of the γ-In{sub 2}Se{sub 3} material in optical memory, optics, and solar-energy devices.

  1. Optical conductivity measurements of GaTa4Se8 under high pressure: evidence of a bandwidth-controlled insulator-to-metal Mott transition.

    PubMed

    Ta Phuoc, V; Vaju, C; Corraze, B; Sopracase, R; Perucchi, A; Marini, C; Postorino, P; Chligui, M; Lupi, S; Janod, E; Cario, L

    2013-01-18

    The optical properties of a GaTa(4)Se(8) single crystal are investigated under high pressure. At ambient pressure, the optical conductivity exhibits a charge gap of ≈0.12 eV and a broad midinfrared band at ≈0.55 eV. As pressure is increased, the low energy spectral weight is strongly enhanced and the optical gap is rapidly filled, pointing to an insulator to metal transition around 6 GPa. The overall evolution of the optical conductivity demonstrates that GaTa(4)Se(8) is a Mott insulator which undergoes a bandwidth-controlled Mott metal-insulator transition under pressure, in remarkably good agreement with theory. With the use of our optical data and ab initio band structure calculations, our results were successfully compared to the (U/D, T/D) phase diagram predicted by dynamical mean field theory for strongly correlated systems. PMID:23373949

  2. Giant magneto-optical Raman effect in a layered transition metal compound

    PubMed Central

    Ji, Jianting; Zhang, Anmin; Fan, Jiahe; Li, Yuesheng; Wang, Xiaoqun; Zhang, Jiandi; Plummer, E. W.; Zhang, Qingming

    2016-01-01

    We report a dramatic change in the intensity of a Raman mode with applied magnetic field, displaying a gigantic magneto-optical effect. Using the nonmagnetic layered material MoS2 as a prototype system, we demonstrate that the application of a magnetic field perpendicular to the layers produces a dramatic change in intensity for the out-of-plane vibrations of S atoms, but no change for the in-plane breathing mode. The distinct intensity variation between these two modes results from the effect of field-induced broken symmetry on Raman scattering cross-section. A quantitative analysis on the field-dependent integrated Raman intensity provides a unique method to precisely determine optical mobility. Our analysis is symmetry-based and material-independent, and thus the observations should be general and inspire a new branch of inelastic light scattering and magneto-optical applications. PMID:26884198

  3. Giant magneto-optical Raman effect in a layered transition metal compound.

    PubMed

    Ji, Jianting; Zhang, Anmin; Fan, Jiahe; Li, Yuesheng; Wang, Xiaoqun; Zhang, Jiandi; Plummer, E W; Zhang, Qingming

    2016-03-01

    We report a dramatic change in the intensity of a Raman mode with applied magnetic field, displaying a gigantic magneto-optical effect. Using the nonmagnetic layered material MoS2 as a prototype system, we demonstrate that the application of a magnetic field perpendicular to the layers produces a dramatic change in intensity for the out-of-plane vibrations of S atoms, but no change for the in-plane breathing mode. The distinct intensity variation between these two modes results from the effect of field-induced broken symmetry on Raman scattering cross-section. A quantitative analysis on the field-dependent integrated Raman intensity provides a unique method to precisely determine optical mobility. Our analysis is symmetry-based and material-independent, and thus the observations should be general and inspire a new branch of inelastic light scattering and magneto-optical applications. PMID:26884198

  4. Identification of intrinsic and extrinsic transitions in pentacene single crystals by optical methods (*)

    NASA Astrophysics Data System (ADS)

    He, Rui; Pinczuk, Aron; Lang, D. V.; Ramirez, A. P.

    2005-03-01

    Pentacene single crystals with different purity levels are studied by using photoluminescence and resonant Raman scattering. Two luminescence bands are identified as intrinsic optical emissions by recombination of free excitons and self- trapped excitons. The luminescence bands observed below 1.6eV are attributed to the extrinsic optical emissions. Raman scattering from the pentacene crystals exhibits resonance enhancements with the two intrinsic bands. Temperature dependence of the luminescence from the pentacene crystals reveals that optical emission from the self-trapped excitons are sensitive to the sample qualities between 50 and 100K, and its intensity can be quenched by extrinsic traps. (*) Supported primarily by the Nanoscale Science and Engineering Initiative of the NSF under NSF Award Number CHE-0117752 and by the NYSTAR, and by a research grant of the W. M. Keck Foundation. We thank Mark Hybertsen, I. Dujovne, and C. F. Hirjibehedin for their helpful discussions.

  5. Optical properties of TiN thin films close to the superconductor-insulator transition.

    SciTech Connect

    Pfuner, F.; Degiorgi, L.; Baturina, T. I.; Vinokur, V. M.; Baklanov, M. R.; Materials Science Division; ETH Zurich; Inst. Semiconductor Physics; IMEC Kapeldreef

    2009-11-10

    We present the intrinsic optical properties over a broad spectral range of TiN thin films deposited on an Si/SiO{sub 2} substrate. We analyze the measured reflectivity spectra of the film-substrate multilayer structure within a well-establish procedure based on the Fresnel equation and extract the real part of the optical conductivity of TiN. We identify the metallic contribution as well as the finite energy excitations and disentangle the spectral weight distribution among them. The absorption spectrum of TiN bears some similarities with the electrodynamic response observed in the normal state of the high-temperature superconductors. Particularly, a mid-infrared feature in the optical conductivity is quite reminiscent of a pseudogap-like excitation.

  6. LINKING Lyα AND LOW-IONIZATION TRANSITIONS AT LOW OPTICAL DEPTH

    SciTech Connect

    Jaskot, A. E.; Oey, M. S.

    2014-08-20

    We suggest that low optical depth in the Lyman continuum (LyC) may relate the Lyα emission, C II and Si II absorption, and C II* and Si II* emission seen in high-redshift galaxies. We base this analysis on Hubble Space Telescope Cosmic Origins Spectrograph spectra of four Green Pea (GP) galaxies, which may be analogs of z > 2 Lyα emitters (LAEs). In the two GPs with the strongest Lyα emission, the Lyα line profiles show reduced signs of resonant scattering. Instead, the Lyα profiles resemble the Hα line profiles of evolved star ejecta, suggesting that the Lyα emission originates from a low column density and similar outflow geometry. The weak C II absorption and presence of non-resonant C II* emission in these GPs support this interpretation and imply a low LyC optical depth along the line of sight. In two additional GPs, weak Lyα emission and strong C II absorption suggest a higher optical depth. These two GPs differ in their Lyα profile shapes and C II* emission strengths, however, indicating different inclinations of the outflows to our line of sight. With these four GPs as examples, we explain the observed trends linking Lyα, C II, and C II* in stacked LAE spectra, in the context of optical depth and geometric effects. Specifically, in some galaxies with strong Lyα emission, a low LyC optical depth may allow Lyα to escape with reduced scattering. Furthermore, C II absorption, C II* emission, and Lyα profile shape can reveal the optical depth, constrain the orientation of neutral outflows in LAEs, and identify candidate LyC emitters.

  7. Spontaneous shape transition of thin films into ZnO nanowires with high structural and optical quality.

    PubMed

    Guillemin, Sophie; Sarigiannidou, Eirini; Appert, Estelle; Donatini, Fabrice; Renou, Gilles; Bremond, Georges; Consonni, Vincent

    2015-10-28

    ZnO nanowires are usually formed by physical and chemical deposition techniques following the bottom-up approach consisting in supplying the reactants on a nucleation surface heated at a given temperature. We demonstrate an original alternative approach for the formation of ZnO nanowire arrays with high structural and optical quality, which is based on the spontaneous transformation of a ZnO thin film deposited by sol-gel process following a simple annealing. The development of these ZnO nanowires occurs through successive shape transitions, including the intermediate formation of pyramid-shaped islands. Their nucleation under near-equilibrium conditions is expected to be governed by thermodynamic considerations via the total free energy minimization related to the nanowire shape. It is further strongly assisted by the drastic reordering of the matter and by recrystallization phenomena through the massive transport of zinc and oxygen atoms towards the localized growth areas. The spontaneous shape transition process thus combines the easiness and low-cost of sol-gel process and simple annealing with the assets of the vapor phase deposition techniques. These findings cast a light on the fundamental mechanisms driving the spontaneous formation of ZnO nanowires and, importantly, reveal the great technological potential of the spontaneous shape transition process as a promising alternative approach to the more usual bottom-up approach. PMID:26416227

  8. Optical transitions in GaNAs quantum wells with variable nitrogen content embedded in AlGaAs

    NASA Astrophysics Data System (ADS)

    Elborg, M.; Noda, T.; Mano, T.; Sakuma, Y.

    2016-06-01

    We investigate the optical transitions of GaNxAs1-x quantum wells (QWs) embedded in wider band gap AlGaAs. A combination of absorption and emission spectroscopic techniques is employed to systematically investigate the properties of GaNAs QWs with N concentrations ranging from 0 - 3%. From measurement of the photocurrent spectra, we find that besides QW ground state and first excited transition, distinct increases in photocurrent generation are observed. Their origin can be explained by N-induced modifications in the density of states at higher energies above the QW ground state. Photoluminescence experiments reveal that peak position dependence with temperature changes with N concentration. The characteristic S-shaped dependence for low N concentrations of 0.5% changes with increasing N concentration where the low temperature red-shift of the S-shape gradually disappears. This change indicates a gradual transition from impurity picture, where localized N induced energy states are present, to alloying picture, where an impurity-band is formed. In the highest-N sample, photoluminescence emission shows remarkable temperature stability. This phenomenon is explained by the interplay of N-induced energy states and QW confined states.

  9. Optical birefringence and its critical behavior in the vicinity of nematic-smectic A phase transition in a binary mixture

    NASA Astrophysics Data System (ADS)

    Sarkar, Sudipta Kumar; Barman, Purna Chandra; Das, Malay Kumar

    2014-08-01

    Optical birefringence (Δn) measurements as a function of temperature have been performed for binary mixtures of octyloxy cyanobiphenyl (8OCB) and octyl cyanobiphenyl (8CB) liquid crystals by means of a high resolution temperature scanning technique. The temperature dependence of the birefringence (Δn) was determined from the transmitted intensity data for wavelengths λ=532 nm. Using a fitting procedure consistent with the mean field theory and the first order nature of nematic-isotropic (N-I) phase transition, the order parameter critical exponent β has been determined. The critical behavior of the nematic-smectic A (N-SmA) phase transition has been investigated from the high resolution birefringence data and the nature of this transition in the mixtures has been assessed. From the evolution of the critical exponent α, it has been possible to predict the limiting value of the McMillan ratio for the tricritical point (TCP) as well as the 3D-XY universality class.

  10. Changes of the optical characteristics of radiochromic films in the transition from EBT3 to EBT-XD films

    NASA Astrophysics Data System (ADS)

    Schoenfeld, Andreas A.; Wieker, Soeren; Harder, Dietrich; Poppe, Bjoern

    2016-07-01

    A new type of radiochromic film, the EBT-XD film, has been introduced with the aim to reduce the orientation effect and the lateral response artifact occurring in the use of radiochromic films together with flatbed scanners. The task of the present study is to quantify the changes of optical characteristics involved with the transition from the well-known EBT3 films to the new EBT-XD films, using the optical bench arrangement already applied by Schoenfeld et al (2014 Phys. Med. Biol. 59 3575–97). Largely reduced polarization effects and the almost complete loss of the anisotropy of the scattered light produced in a radiation-exposed film have been observed. The Rayleigh–Debye–Gans theory is used to understand these optical changes as arising from the reduced length-to-width ratio of the LiPCDA polymer crystals in the active layer of the EBT-XD film. The effect of these changes on the flatbed scanning artifacts will be shortly addressed, but treated in more detail in a further paper.

  11. Investigation of high-contrast velocity selective optical pumping resonance at the cycling transition of Cs using fluorescence technique

    NASA Astrophysics Data System (ADS)

    Dey, Saswati; Ray, Biswajit; Ghosh, Pradip Narayan; Cartaleva, Stefka; Slavov, Dimitar

    2015-12-01

    A high contrast (∼48%) Velocity Selective Optical Pumping (VSOP) resonance at the closed transition Fg=4→Fe=5 of Cs-D2 line is obtained in the fluorescence signal under co-propagating pump-probe configuration. We use a 5.2 μm cell operating at reduced temperature (∼55 °C) and the intensity of the pump-laser is kept lower than that of the probe-laser. The observed sharp narrow structure is suitable for side-arms frequency-locking of the cooling- (i.e. probe-) laser in a cold atom experiment, with possibility for "-Γ" to "-4Γ" red-detuning and "+Γ" to "+10Γ" blue-detuning using the standard properties of the commercially available electronics. We have developed a theoretical model corresponding to the thin cell, incorporating the atomic time-of-flight dependent optical pumping decay rate to describe the dimensional anisotropy of the thin cell. The model shows good qualitative agreement with the observation and simulates as well the cases of cells with smaller thickness. It also describes correctly the temperature dependence of the line broadening and shows the potential for further optimization and red-shift detuning above "-4Γ". It may be of interest for further development of miniaturized modules, like the recently developed portable small magneto-optical traps.

  12. The second- and third- order nonlinear optical properties and electronic transition of a NLO chromophore: A DFT study

    NASA Astrophysics Data System (ADS)

    Altürk, Sümeyye; Avci, Davut; Tamer, Ömer; Atalay, Yusuf

    2016-03-01

    It is well known that the practical applications of second-order and third-order nonlinear optical (NLO) materials have been reported in modern technology, such as optical data processing, transmission and storage, etc. In this respect, the linear and nonlinear optical parameters (the molecular static polarizability (α), and the first-order static hyperpolarizability (β0), the second-order static hyperpolarizability (γ)), UV-vis spectra and HOMO and LUMO energies of 2-(1'-(4'''-Methoxyphenyl)-5'-(thien-2″-yl)pyrrol-2'-yl)-1,3-benzothiazole were investigated by using the HSEh1PBE/6-311G(d,p) level of density functional theory. The UV-vis spectra were simulated using TD/HSEh1PBE/6- 311G(d,p) level, and the major contributions to the electronic transitions were obtained. The molecular hardness (η) and electronegativity (χ) parameters were also obtained by using molecular frontier orbital energies. The NLO parameters of the title compound were calculated, and obtained data were compared with that of para-Nitroaniline (pNA) which is a typical NLO material and the corresponding experimental data. Obtained data of the chromosphere display significant molecular second-and third-nonlinearity.

  13. Anisotropic optical properties of few-layer transition metal dichalcogenide ReS2

    NASA Astrophysics Data System (ADS)

    Li, Zhenglu; Cao, Ting; da Jornada, Felipe H.; Wu, Meng; Louie, Steven G.

    We present first-principles (DFT, GW and GW-BSE) calculations of the electronic and optical properties of few-layer rhenium disulfide (ReS2). Monolayer ReS2 shows strong many-electron effects with a fundamental quasiparticle band gap of 2.38 eV based on G0W0 calculation and a large exciton binding energy of 690 meV based on solving the Bethe-Salpeter equation. Highly anisotropic linear-polarized optical absorptions are revealed for few-layer and bulk ReS2. The band gap shows a decreasing trend with the optical polarization direction near the absorption edge gradually rotating from around 67 degree in the monolayer to 85 degree in the bulk, referencing to the Re-chain. Our calculations are consistent with recent experimental data and theoretical studies, and provide a systematic understanding of the electronic and optical properties in few-layer ReS2. This work was supported by National Science Foundation Grant No. DMR15-1508412 and the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Computational resources have been provided by DOE at Lawrence Berkeley National Laboratory's NERSC facility.

  14. Pressure coefficients for direct optical transitions in MoS2, MoSe2, WS2, and WSe2 crystals and semiconductor to metal transitions.

    PubMed

    Dybała, F; Polak, M P; Kopaczek, J; Scharoch, P; Wu, K; Tongay, S; Kudrawiec, R

    2016-01-01

    The electronic band structure of MoS2, MoSe2, WS2, and WSe2, crystals has been studied at various hydrostatic pressures experimentally by photoreflectance (PR) spectroscopy and theoretically within the density functional theory (DFT). In the PR spectra direct optical transitions (A and B) have been clearly observed and pressure coefficients have been determined for these transitions to be: αA = 2.0 ± 0.1 and αB = 3.6 ± 0.1 meV/kbar for MoS2, αA = 2.3 ± 0.1 and αB = 4.0 ± 0.1 meV/kbar for MoSe2, αA = 2.6 ± 0.1 and αB = 4.1 ± 0.1 meV/kbar for WS2, αA = 3.4 ± 0.1 and αB = 5.0 ± 0.5 meV/kbar for WSe2. It has been found that these coefficients are in an excellent agreement with theoretical predictions. In addition, a comparative study of different computational DFT approaches has been performed and analyzed. For indirect gap the pressure coefficient have been determined theoretically to be -7.9, -5.51, -6.11, and -3.79, meV/kbar for MoS2, MoSe2, WS2, and WSe2, respectively. The negative values of this coefficients imply a narrowing of the fundamental band gap with the increase in hydrostatic pressure and a semiconductor to metal transition for MoS2, MoSe2, WS2, and WSe2, crystals at around 140, 180, 190, and 240 kbar, respectively. PMID:27215469

  15. Pressure coefficients for direct optical transitions in MoS2, MoSe2, WS2, and WSe2 crystals and semiconductor to metal transitions

    PubMed Central

    Dybała, F.; Polak, M. P.; Kopaczek, J.; Scharoch, P.; Wu, K.; Tongay, S.; Kudrawiec, R.

    2016-01-01

    The electronic band structure of MoS2, MoSe2, WS2, and WSe2, crystals has been studied at various hydrostatic pressures experimentally by photoreflectance (PR) spectroscopy and theoretically within the density functional theory (DFT). In the PR spectra direct optical transitions (A and B) have been clearly observed and pressure coefficients have been determined for these transitions to be: αA = 2.0 ± 0.1 and αB = 3.6 ± 0.1 meV/kbar for MoS2, αA = 2.3 ± 0.1 and αB = 4.0 ± 0.1 meV/kbar for MoSe2, αA = 2.6 ± 0.1 and αB = 4.1 ± 0.1 meV/kbar for WS2, αA = 3.4 ± 0.1 and αB = 5.0 ± 0.5 meV/kbar for WSe2. It has been found that these coefficients are in an excellent agreement with theoretical predictions. In addition, a comparative study of different computational DFT approaches has been performed and analyzed. For indirect gap the pressure coefficient have been determined theoretically to be −7.9, −5.51, −6.11, and −3.79, meV/kbar for MoS2, MoSe2, WS2, and WSe2, respectively. The negative values of this coefficients imply a narrowing of the fundamental band gap with the increase in hydrostatic pressure and a semiconductor to metal transition for MoS2, MoSe2, WS2, and WSe2, crystals at around 140, 180, 190, and 240 kbar, respectively. PMID:27215469

  16. Pressure coefficients for direct optical transitions in MoS2, MoSe2, WS2, and WSe2 crystals and semiconductor to metal transitions

    NASA Astrophysics Data System (ADS)

    Dybała, F.; Polak, M. P.; Kopaczek, J.; Scharoch, P.; Wu, K.; Tongay, S.; Kudrawiec, R.

    2016-05-01

    The electronic band structure of MoS2, MoSe2, WS2, and WSe2, crystals has been studied at various hydrostatic pressures experimentally by photoreflectance (PR) spectroscopy and theoretically within the density functional theory (DFT). In the PR spectra direct optical transitions (A and B) have been clearly observed and pressure coefficients have been determined for these transitions to be: αA = 2.0 ± 0.1 and αB = 3.6 ± 0.1 meV/kbar for MoS2, αA = 2.3 ± 0.1 and αB = 4.0 ± 0.1 meV/kbar for MoSe2, αA = 2.6 ± 0.1 and αB = 4.1 ± 0.1 meV/kbar for WS2, αA = 3.4 ± 0.1 and αB = 5.0 ± 0.5 meV/kbar for WSe2. It has been found that these coefficients are in an excellent agreement with theoretical predictions. In addition, a comparative study of different computational DFT approaches has been performed and analyzed. For indirect gap the pressure coefficient have been determined theoretically to be ‑7.9, ‑5.51, ‑6.11, and ‑3.79, meV/kbar for MoS2, MoSe2, WS2, and WSe2, respectively. The negative values of this coefficients imply a narrowing of the fundamental band gap with the increase in hydrostatic pressure and a semiconductor to metal transition for MoS2, MoSe2, WS2, and WSe2, crystals at around 140, 180, 190, and 240 kbar, respectively.

  17. Influence of transition metal atoms doping on structural, electronic and nonlinear optical properties of Mg12O12 nanoclusters: A DFT study

    NASA Astrophysics Data System (ADS)

    Shamlouei, Hamid Reza; Nouri, Amin; Mohammadi, Asghar; Tehrani, Abbas Dadkhah

    2016-03-01

    Using density functional theory, we investigated the effect of transition metal doping on structural, electronic, energetic, linear and nonlinear optical properties of Mg12O12 nanocluster. The result revealed that transition metal atoms doping lead to reduce the Eg and increase the dipole moment. The doping of transition metal atom on Mg12O12 nanocluster enhances its polarizability value. Also polarizability values for doped nanoclusters decrease as the atomic number of transition metal increase. The first hyperpolarizability value dramatically increases as substitute a magnesium atom with a transition metal atom. Among the transition metal atom doped nanocage, scandium has the largest first hyperpolarizability value (β◦≈47,872 au). The stability and remarkable values of β◦ (for Sc, Ti and V doped of nanocage) suggest that these compounds may be applicable as NLO material in industrial.

  18. Forbidden optical transition in Ti-like Xe, Ba, and Ir

    SciTech Connect

    Bekker, H.; Windberger, A.; Binder, M.; López-Urrutia, J. R. Crespo; Versolato, O. O.; Klawitter, R.

    2015-01-09

    We present measurements of the (3d{sup 4}){sup 5}D{sub 2}−{sup 5}D{sub 3} transitions in the Ti-like ions Xe{sup 32+}, Ba{sup 34+}, and Ir{sup 55+} produced and trapped in the Heidelberg electron beam ion trap. The obtained wavelengths have a precision at the few ppm-level and are thereby the most precise measurements of these transitions up to date. For Z=60−75 semi-empirical calculations have shown excellent agreement, however our measurements combined with data from other works shows that outside this range predictions quickly deviate. The value obtained for Ir{sup 55+} 357.434(2) nm confirms the linear mismatch to ab initio calculations for Z > 70, as hypothesized in Utter et al., Phys. Rev. A 67, 012508 (2003)

  19. Optical transitions and upconversion properties of Er3+-doped chloride tellurite glasses

    NASA Astrophysics Data System (ADS)

    Wen, Lei; Li, Shun-Guang; Huang, Guo-Song; Hu, Li-Li; Jiang, Zhong-Hong

    2004-02-01

    Er3+-doped lead chloride tellurite glasses were prepared using the conventional melting and quenching method. The absorption spectra were measured and the Judd-Ofelt analysis was performed. The spectroscopic parameters such as the intensity parameters, transition probabilities, radiative lifetimes and branching ratios were obtained. Intense infrared emission and visible upconversion luminescence under 976 nm excitation were observed. For the 1.55 mum emission, the full width at half maximum and the emission cross sections are more than 50 nm and 8×10-20cm2, respectively. Three efficient visible luminescences centred at 525, 547 and 658 nm are assigned to the transitions from the excited states 2H11/2, 4S3/2 and 4F9/2 to the ground state 4I15/2, respectively. The upconversion mechanisms and the power-dependent intensities are also discussed and evaluated.

  20. Topological phase transitions on a triangular optical lattice with non-Abelian gauge fields

    NASA Astrophysics Data System (ADS)

    Iskin, M.

    2016-03-01

    We study the mean-field BCS-BEC evolution of a uniform Fermi gas on a single-band triangular lattice and construct its ground-state phase diagrams, showing a wealth of topological quantum phase transitions between gapped and gapless superfluids that are induced by the interplay of an out-of-plane Zeeman field and a generic non-Abelian gauge field.

  1. Optical absorption by Dirac excitons in single-layer transition-metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Trushin, Maxim; Goerbig, Mark Oliver; Belzig, Wolfgang

    2016-07-01

    We develop an analytically solvable model able to qualitatively explain nonhydrogenic exciton spectra observed recently in two-dimensional (2D) semiconducting transition-metal dichalcogenides. Our exciton Hamiltonian explicitly includes additional angular momentum associated with the pseudospin degree of freedom unavoidable in 2D semiconducting materials with honeycomb structure. We claim that this is the key ingredient for understanding the nonhydrogenic exciton spectra that was missing so far.

  2. Characterizing double-resonance optical-pumping spectra of cesium 6P3/2 - 8S1/2 excited-state transition and its application

    NASA Astrophysics Data System (ADS)

    Yang, Baodong; Liang, Qiangbing; Zhang, Tiancai; Wang, Junmin

    2010-11-01

    The spectra of cesium 6P3/2 - 8S1/2 excited-state transition have been obtained using double resonance optical-pumping (DROP) technique in a room-temperature vapor cell, and have shown a much better signal-to-noise ratio (SNR) compared with that using the traditional optical-optical double resonance (OODR) method. Furthermore, the line-width of DROP spectra is obviously narrowed by electromagnetically-induced transparency (EIT) effect in cesium 6S1/2 F=4 - 6P3/2 F'=5 - 8S1/2 F''=4 transitions. Finally, such DROP spectrum of 6P3/2 F'=5 - 8S1/2 F''=4 transition with a high SNR and a narrow line-width is applied into frequency stabilization of a 795 nm external-cavity diode laser, and the residual frequency fluctuation is ~ 600 kHz within 500 s.

  3. Interplay between low-energy optical phonon modes and structural transition in PrT2Zn20 (T=Ru and Ir)

    NASA Astrophysics Data System (ADS)

    Wakiya, K.; Onimaru, T.; Tsutsui, S.; Matsumoto, K. T.; Nagasawa, N.; Baron, A. Q. R.; Hasegawa, T.; Ogita, N.; Udagawa, M.; Takabatake, T.

    2015-03-01

    Atomic dynamics of PrT2Zn20 for T=Ru with a structural transition at Ts=138 K and T=Ir without such a transition have been studied by inelastic X-ray scattering (IXS) measurements. The IXS spectra for T=Ru reveal an optical phonon excitation at 3 meV. We assign it to low-energy vibration of the Zn atom at the 16c site by taking account of the first principles calculation [Hasegawa et al. 2012 J. Phys.: Conf. Proc. 391 012016]. For T=Ir, on the other hand, the optical excitation at 3 meV was not observed. The contrasting results indicate that the low-energy optical phonon mode has a role in the structural transition in PrRu2Zn20 and isostructural La counterparts.

  4. Linking Lyα and Low-ionization Transitions at Low Optical Depth

    NASA Astrophysics Data System (ADS)

    Jaskot, A. E.; Oey, M. S.

    2014-08-01

    We suggest that low optical depth in the Lyman continuum (LyC) may relate the Lyα emission, C II and Si II absorption, and C II* and Si II* emission seen in high-redshift galaxies. We base this analysis on Hubble Space Telescope Cosmic Origins Spectrograph spectra of four Green Pea (GP) galaxies, which may be analogs of z > 2 Lyα emitters (LAEs). In the two GPs with the strongest Lyα emission, the Lyα line profiles show reduced signs of resonant scattering. Instead, the Lyα profiles resemble the Hα line profiles of evolved star ejecta, suggesting that the Lyα emission originates from a low column density and similar outflow geometry. The weak C II absorption and presence of non-resonant C II* emission in these GPs support this interpretation and imply a low LyC optical depth along the line of sight. In two additional GPs, weak Lyα emission and strong C II absorption suggest a higher optical depth. These two GPs differ in their Lyα profile shapes and C II* emission strengths, however, indicating different inclinations of the outflows to our line of sight. With these four GPs as examples, we explain the observed trends linking Lyα, C II, and C II* in stacked LAE spectra, in the context of optical depth and geometric effects. Specifically, in some galaxies with strong Lyα emission, a low LyC optical depth may allow Lyα to escape with reduced scattering. Furthermore, C II absorption, C II* emission, and Lyα profile shape can reveal the optical depth, constrain the orientation of neutral outflows in LAEs, and identify candidate LyC emitters. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs GO-13293 and GO-12928.

  5. Population inversion on vibrational transitions of molecules under nonresonant optical excitation

    SciTech Connect

    Parkhomenko, A. I. Shalagin, A. M.

    2010-09-15

    The possibility of obtaining a population inversion on vibrational transitions of molecules through nonlinear effects when the pump radiation is absorbed in the wings of spectral lines is investigated theoretically. We show that a population inversion can be produced in molecules on vibrational transitions when intense pump radiation is absorbed in the blue wing of the R branch of the vibrational-rotational molecular spectrum. This effect is related to inequality of the probabilities of the absorption and stimulated emission of radiation and is attributable to collisional transitions between rotational levels. We have ascertained that the larger the rotational constant of the molecule and the higher the pump radiation intensity, the higher the effective frequency of the collisions that give rise to a population inversion. Using the carbon monoxide (CO) molecule as an example, we show that when intense ({approx}1010 W cm{sup -2}) pump radiation is absorbed in the blue wing of the R branch, a noticeable population inversion can be produced and the gain at the center of the R and P branches of the molecular spectrum can reach 0.011 and 0.250 cm{sup -1} at temperatures T = 300 and 100 K, respectively.

  6. Identification of optical transitions in cubic and hexagonal GaN by spatially resolved cathodoluminescence

    NASA Astrophysics Data System (ADS)

    Menniger, J.; Jahn, U.; Brandt, O.; Yang, H.; Ploog, K.

    1996-01-01

    The hexagonal and cubic phases of GaN are characterized by spatially resolved cathodoluminescence (CL) spectra from micrometer-size single crystals with either hexagonal or cubic habits grown by plasma-assisted molecular-beam epitaxy. At 5 K, distinct narrow excitonic lines are found at 3.472 and 3.272 eV for the hexagonal and cubic phase, yielding energy gaps of 3.500 and 3.300 eV, respectively. Detailed temperature- and intensity-dependent CL measurements on cubic GaN crystals enable us to clearly identify the exciton (free: 3.272 eV, bound: 3.263 eV) and the donor-acceptor pair (3.150 eV) transition. Moreover, we determine the donor-band and acceptor-band transition energy for this phase. In addition, phonon replicas of the exciton line and of the donor-acceptor pair transition are observed at 3.185 and 3.064 eV, respectively.

  7. Optical 4 f-4 f transitions in multiferroic HoMnO3

    NASA Astrophysics Data System (ADS)

    Loshkareva, N. N.; Moskvin, A. S.; Balbashov, A. M.

    2009-05-01

    In the absorption spectra of the hexagonal single-crystal manganite HoMnO3 in the paramagnetic ferroelectric state, lines near 1.1 and 2.0 μm were observed associated with the transitions 5 I 8 → 5 I 6 and 5 I 8 → 5 I 7, respectively, within the 4 f 10 configuration of the Ho3+ ion. At T = 80 K, to the 5 I 8 → 5 I 7 transition corresponds one band at 1.9 μm for both polarizations E ∥ c and E ⊥ c. As the temperature increases from 80 to 293 K, a low-energy band with a peak at 2.04 μm for E ⊥ c and a peak at 2.07 μm for E ∥ c arises associated with transitions from an excited Stark level of the ground 5 I 8 multiplet to the Stark levels of the 5 I 7 multiplet and with an increase in the population of the initial Stark level, the energy of which is ˜100 K.

  8. Optical design of the camera for Transiting Exoplanet Survey Satellite (TESS)

    NASA Astrophysics Data System (ADS)

    Chrisp, Michael; Clark, Kristin; Primeau, Brian; Dalpiaz, Michael; Lennon, Joseph

    2015-09-01

    The optical design of the wide field of view refractive camera with a 34 degree diagonal field for the TESS payload is described. This fast f/1.4 cryogenic camera, operating at -75°C, has no vignetting for maximum light gathering within the size and weight constraints. Four of these cameras capture full frames of star images for photometric searches of planet crossings. The optical design evolution, from the initial Petzval design, takes advantage of Forbes aspheres to develop a hybrid design form. This maximizes the correction from the two aspherics resulting in a reduction of average spot size by sixty percent in the final design. An external long wavelength pass filter has been replaced by an internal filter coating on a lens to save weight, and has been fabricated to meet the specifications. The stray light requirements are met by an extended lens hood baffle design, giving the necessary off-axis attenuation.

  9. Optical Design of the Camera for Transiting Exoplanet Survey Satellite (TESS)

    NASA Technical Reports Server (NTRS)

    Chrisp, Michael; Clark, Kristin; Primeau, Brian; Dalpiaz, Michael; Lennon, Joseph

    2015-01-01

    The optical design of the wide field of view refractive camera, 34 degrees diagonal field, for the TESS payload is described. This fast f/1.4 cryogenic camera, operating at -75 C, has no vignetting for maximum light gathering within the size and weight constraints. Four of these cameras capture full frames of star images for photometric searches of planet crossings. The optical design evolution, from the initial Petzval design, took advantage of Forbes aspheres to develop a hybrid design form. This maximized the correction from the two aspherics resulting in a reduction of average spot size by sixty percent in the final design. An external long wavelength pass filter was replaced by an internal filter coating on a lens to save weight, and has been fabricated to meet the specifications. The stray light requirements were met by an extended lens hood baffle design, giving the necessary off-axis attenuation.

  10. Transition operators in electromagnetic-wave diffraction theory. II - Applications to optics

    NASA Technical Reports Server (NTRS)

    Hahne, G. E.

    1993-01-01

    The theory developed by Hahne (1992) for the diffraction of time-harmonic electromagnetic waves from fixed obstacles is briefly summarized and extended. Applications of the theory are considered which comprise, first, a spherical harmonic expansion of the so-called radiation impedance operator in the theory, for a spherical surface, and second, a reconsideration of familiar short-wavelength approximation from the new standpoint, including a derivation of the so-called physical optics method on the basis of quasi-planar approximation to the radiation impedance operator, augmented by the method of stationary phase. The latter includes a rederivation of the geometrical optics approximation for the complete Green's function for the electromagnetic field in the presence of a smooth- and a convex-surfaced perfectly electrically conductive obstacle.

  11. Adsorption-induced changes of intramolecular optical transitions: PTCDA/NaCl and PTCDA/KCl.

    PubMed

    Hochheim, Manuel; Bredow, Thomas

    2015-09-15

    Structural and optical properties of isolated perylene-3,4,9,10-tetracarboxylic acid dianhydride molecules adsorbed on (100) oriented NaCl and KCl surfaces were studied theoretically to analyze the recently observed red-shift of the optical excitation spectrum after adsorption (Müller et al., Phys. Rev. B, 2011, 83, 241203; Paulheim et al. Phys. Chem. Chem. Phys., 2013, 15, 4906). The ground-state structures were obtained by periodic dispersion-corrected density functional theory (DFT) calculations. For the excited-state calculations, nonperiodic time-dependent DFT methods were applied for a cluster model embedded in point charges. The range-separated hybrid functional CAM-B3LYP was used. Correlation-consistent basis sets were used and the calculated excitation energies were extrapolated to the complete basis set limit. The shift of the first optical excitation energy was analyzed in terms of electronic and geometric contributions. It was found that both the distortion of the molecule due to the interaction with the surface and the electrostatic potential of the surface play an important role. PMID:26152591

  12. Observations of a mode transition in a hydrogen hollow cathode discharge using phase resolved optical emission spectroscopy

    SciTech Connect

    Dixon, Sam Charles, Christine; Dedrick, James; Boswell, Rod; Gans, Timo; O'Connell, Deborah

    2014-07-07

    Two distinct operational modes are observed in a radio frequency (rf) low pressure hydrogen hollow cathode discharge. The mode transition is characterised by a change in total light emission and differing expansion structures. An intensified CCD camera is used to make phase resolved images of Balmer α emission from the discharge. The low emission mode is consistent with a typical γ discharge, and appears to be driven by secondary electrons ejected from the cathode surface. The bright mode displays characteristics common to an inductive discharge, including increased optical emission, power factor, and temperature of the H{sub 2} gas. The bright mode precipitates the formation of a stationary shock in the expansion, observed as a dark region adjacent to the source-chamber interface.

  13. Singlet biradical{yields}singlet zwitterion optical transition in a twisted olefin

    SciTech Connect

    Piotrowiak, P.; Strati, G.; Smirnov, S.N.; Warman, J.M.; Schuddeboom, W.

    1996-09-18

    We report the first direct observation of the singlet biradical $YLD singlet zwitterion transition in a twisted olefin, biphenanthrenylidene. Biphenanthrenylidene (full name, bi-4H-cyclopenta[def]phenanthren-4-ylidene, abbreviated as BPH) is an analogue of tetraphenylethylene (TPE) and stilbene, both of which are the favorite models of photoisomerization reactions. The investigations have been focusing on the dynamics of the twisting motion of the double bond which leads to decoupling of the two halves of the olefin and results in the formation of the D{sub 2d} 90{degree}-twisted zwitterionic or biradical excited state. 13 refs., 2 figs., 1 tab.

  14. Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry

    SciTech Connect

    Liu, Hsiang-Lin Shen, Chih-Chiang; Su, Sheng-Han; Hsu, Chang-Lung; Li, Ming-Yang; Li, Lain-Jong

    2014-11-17

    Spectroscopic ellipsometry was used to characterize the complex refractive index of chemical-vapor-deposited monolayer transition metal dichalcogenides (TMDs). The extraordinary large value of the refractive index in the visible frequency range is obtained. The absorption response shows a strong correlation between the magnitude of the exciton binding energy and band gap energy. Together with the observed giant spin-orbit splitting, these findings advance the fundamental understanding of their novel electronic structures and the development of monolayer TMDs-based optoelectronic and spintronic devices.

  15. Optical transitions in magnesium aluminate spinel crystals of different compositions exposed to irradiation

    NASA Astrophysics Data System (ADS)

    Gritsyna, V. T.; Afanasyev-Charkin, I. V.; Kazarinov, Yu. G.; Sickafus, K. E.

    2004-06-01

    Optical absorption of magnesium aluminate spinel single crystals of different compositions MgO · nAl 2O 3 ( n=1.0 and 2.5) were investigated after irradiation with neutrons, X-rays and the UV-light to elucidate existence of specific absorption bands related to lattice defects. The radiation induced absorption envelope is shifted to higher energy and is larger in intensity in non-stoichiometric spinel in comparison with stoichiometric one at the same irradiation conditions. Deconvolution of difference optical spectra of irradiated crystals shows the shift of the F-type centers from 4.75 and 5.3 eV in stoichiometric crystals to 5.08 and 5.63 eV in MgO · 2.5Al 2O 3 for F +- and F-centers, respectively. The absorption bands at 3.1 and 3.78 eV are present in both stoichiometric and non-stoichiometric crystals and are identified as V-type centers. By changing the irradiation time and using isochronal annealing it was revealed that additional bands appear in optical absorption spectra at 4.15 eV for MgO · 1.0Al 2O 3 crystals and at 4.46 eV for MgO · 2.5Al 2O 3 crystals. From the shift of the band energy position and the high intensity of this band in non-stoichiometric spinel crystals, it could be identified with electronic centers related to lattice defects.

  16. Direct Excitation of the Forbidden Clock Transition in Neutral {sup 174}Yb Atoms Confined to an Optical Lattice

    SciTech Connect

    Barber, Z.W.; Hoyt, C.W.; Oates, C.W.; Hollberg, L.; Taichenachev, A.V.; Yudin, V.I.

    2006-03-03

    We report direct single-laser excitation of the strictly forbidden (6s{sup 2}){sup 1}S{sub 0}{r_reversible}(6s6p){sup 3}P{sub 0} clock transition in {sup 174}Yb atoms confined to a 1D optical lattice. A small ({approx}1.2 mT) static magnetic field was used to induce a nonzero electric dipole transition probability between the clock states at 578.42 nm. Narrow resonance linewidths of 20 Hz (FWHM) with high contrast were observed, demonstrating a resonance quality factor of 2.6x10{sup 13}. The previously unknown ac Stark shift-canceling (magic) wavelength was determined to be 759.35{+-}0.02 nm. This method for using the metrologically superior even isotope can be easily implemented in current Yb and Sr lattice clocks and can create new clock possibilities in other alkaline-earth-like atoms such as Mg and Ca.

  17. Kr-collision shift of the Rb D1 transition: The isoclinic point and precision optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Wells, N. P.; Driskell, T. U.; Camparo, J. C.

    2014-05-01

    Measuring the energy dependence of optical-transition collision shifts has proven extremely difficult, in part because of Doppler broadening and the manifold of overlapping hyperfine components that must be disentangled in the spectra. Here, we demonstrate an approach to these measurements based on spectroscopic isoclinic points. To illustrate the approach's efficacy, we investigated the Kr collision shift of the Rb D1 transition at 795 nm. For the expected Rb-Kr van der Waals interaction, the collision shift should scale like (T/To)κ, where To is a reference temperature and κtheo = 0.31. Exemplifying the difficulty of κ determinations, previous alkali-metal-noble-gas experimental measurements of κ have varied widely, sometimes in striking disagreement with theory (i.e., factor of 2 larger). In the present work, we not only demonstrate a measurement precision better than 10-10/°C, but with our technique we validate the theoretical scaling constant, finding κexpt = 0.36 ± 0.06.

  18. Emittance measurement of the Naval Postgraduate School linear accelerator using optical-transition-radiation techniques. Master's thesis

    SciTech Connect

    Hellstern, M.J.

    1991-09-01

    Using Optical Transition Radiation (OTR) beam diagnostics and Dr. Rule's clear foil interferometer analytic code, the normalized emittance of the Naval Postgraduate School (NPS) Linear Accelerator (linac) has been measured: the normalized horizontal emittance of 97 pi +/- 10 pi mm-mrad and the normalized vertical emittance of 54 pi +/- 8 pi mm-mrad. The experiment was performed independently twice using a Kapton foil/silicon mirror and a nitrocellulose foil/aluminum mirror Wartski interferometer. The Kapton foil provided an initial measurement of the emittance, and provided lessons learned for the nitrocellulose foil measurement. The emittance measurement of the NPS linac indicate that the value maybe too high for most free electron laser applications, but is very useful for radiation effect studies in high temperature superconductors, hardening, beam diagnostics, and for the production of x-rays through novel mechanisms such as transition radiation and parametric x-radiation generation. The beam divergence was determined by comparing theoretically calculated OTR patterns with the experimental data OTR patterns.

  19. Fractional Mott insulator-to-superfluid transition of Bose–Hubbard model in a trimerized Kagomé optical lattice

    NASA Astrophysics Data System (ADS)

    Chen, Qi-Hui; Li, Peng; Su, Haibin

    2016-06-01

    By generalizing the traditional single-site strong coupling expansion approach to a cluster one, we study the zero-temperature phase diagram of bosonic atoms in a trimerized Kagomé optical lattice. Some new features are present in this system. Due to the strong intra-trimer hopping interaction, there will be a new Mott insulator (MI), which is by definition incompressible but with a fractional filling per trimer. This is different from the traditional MI, which has an integral filling and originates only from the repulsive interaction between particles. We investigate the MI-to-superfluid transition and the nature of the fractional MI by calculating the critical exponents of phase transitions and the low-lying energy excitation spectra of quasiparticles (quasihole). We will show how the low-energy properties of this system can be understood qualitatively as a Bose–Hubbard model in triangular lattice from the point of view of the cluster strong coupling expansion. We also discuss how our results are related to experiment by studying the Bragg spectroscopy.

  20. Fractional Mott insulator-to-superfluid transition of Bose-Hubbard model in a trimerized Kagomé optical lattice.

    PubMed

    Chen, Qi-Hui; Li, Peng; Su, Haibin

    2016-06-29

    By generalizing the traditional single-site strong coupling expansion approach to a cluster one, we study the zero-temperature phase diagram of bosonic atoms in a trimerized Kagomé optical lattice. Some new features are present in this system. Due to the strong intra-trimer hopping interaction, there will be a new Mott insulator (MI), which is by definition incompressible but with a fractional filling per trimer. This is different from the traditional MI, which has an integral filling and originates only from the repulsive interaction between particles. We investigate the MI-to-superfluid transition and the nature of the fractional MI by calculating the critical exponents of phase transitions and the low-lying energy excitation spectra of quasiparticles (quasihole). We will show how the low-energy properties of this system can be understood qualitatively as a Bose-Hubbard model in triangular lattice from the point of view of the cluster strong coupling expansion. We also discuss how our results are related to experiment by studying the Bragg spectroscopy. PMID:27165440

  1. Optical transitions of Er3+ ions in RbMgF3 and RbMgF3: Mn

    NASA Astrophysics Data System (ADS)

    Shinn, M. D.; Windscheif, J. C.; Sardar, D. K.; Sibley, W. A.

    1982-09-01

    Optical absorption, emission, and excitation spectra, as well as lifetime values, are presented for Er3+ ions in RbMgF3. Previous workers have demonstrated that Er3+ ions can reside in a number of different site symmetries in crystalline hosts such as CaF2 and CdF2. The numerous sites in this type lattice are most likely due to compensating fluorine interstitials which are necessarily present for charge compensation. In a unit cell of RbMgF3 there are two nonequivalent Mg2+ sites with C3v symmetry. Evidence is presented in this paper that Er3+ ions in RbMgF3 substitute for Mg2+ ions in both types of sites. The charge compensation is not local, which leaves the symmetry of the Er3+ sites unchanged. Absorption data for Er3+-ion transitions in both sites are shown. Emission from Er3+ ions is observed from one type of site in RbMgF3 and from both types of sites in RbMgF3: Mn. Lifetime values for the 4S32 and 4F92 transitions are shorter than those normally measured in fluoride host lattices, and the emissions are quenched above 200 K. Energy migration among Er3+ ions and subsequent energy transfer to Mn2+-ion impurities are responsible for the steady-state and transient-emission behavior.

  2. An electro-optic experimental study of an unusual liquid crystal phase transition

    NASA Astrophysics Data System (ADS)

    Staines, Daniel; Wicks, Derek; Havens, Austin; Fernsler, Jonathan

    2009-11-01

    Liquid crystal phases are highly sensitive to their surroundings and they interact with light in unusual ways: the index of refraction is different depending on the polarization of the incident light. This combination of properties makes them ideal for low-power liquid crystal displays (LCD's), ubiquitous in today's portable electronic devices. They are also beautiful: optical textures of liquid crystals show bright colors, with the color corresponding to the amount of retardation in the light polarized along different axes. These phases are fluid, but can nevertheless be highly ordered. We have developed a novel experimental analysis using a photometric calculation of microscopy images to perform a series of experiments on several liquid crystal materials, called ``de Vries'' smectics. Using this system, we examined how the structure of these phases changed under the influence of different boundary conditions, temperature, and applied electric fields. These unusual materials show the bizarre behavior of appearing to become less ordered with decreasing temperature. This phase, which is not fully understood, has advantageous optical properties that could lead to the next generation of liquid crystal displays.

  3. Optical conductivity of Weyl semimetals and signatures of the gapped semimetal phase transition

    NASA Astrophysics Data System (ADS)

    Tabert, C. J.; Carbotte, J. P.

    2016-02-01

    The interband optical response of a three-dimensional Dirac cone is linear in photon energy (Ω ) . Here, we study the evolution of the interband response within a model Hamiltonian which contains Dirac, Weyl, and gapped semimetal phases. In the pure Dirac case, a single linear dependence is observed, while in the Weyl phase, we find two quasilinear regions with different slopes. These regions are also distinct from the large-Ω dependence. As the boundary between the Weyl (WSM) and gapped phases is approached, the slope of the low-Ω response increases, while the photon-energy range over which it applies decreases. At the phase boundary, a square root behavior is obtained which is followed by a gapped response in the gapped semimetal phase. The density of states parallels these behaviors with the linear law replaced by quadratic behavior in the WSM phase and the square root dependence at the phase boundary changed to |ω| 3 /2. The optical spectral weight under the intraband (Drude) response at low temperature (T ) and/or small chemical potential (μ ) is found to change from T2 (μ2) in the WSM phase to T3 /2 (|μ |3/2) at the phase boundary.

  4. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures

    PubMed Central

    Peng, Qiong; Wang, Zhenyu; Sa, Baisheng; Wu, Bo; Sun, Zhimei

    2016-01-01

    As a fast emerging topic, van der Waals (vdW) heterostructures have been proposed to modify two-dimensional layered materials with desired properties, thus greatly extending the applications of these materials. In this work, the stacking characteristics, electronic structures, band edge alignments, charge density distributions and optical properties of blue phosphorene/transition metal dichalcogenides (BlueP/TMDs) vdW heterostructures were systematically studied based on vdW corrected density functional theory. Interestingly, the valence band maximum and conduction band minimum are located in different parts of BlueP/MoSe2, BlueP/WS2 and BlueP/WSe2 heterostructures. The MoSe2, WS2 or WSe2 layer can be used as the electron donor and the BlueP layer can be used as the electron acceptor. We further found that the optical properties under visible-light irradiation of BlueP/TMDs vdW heterostructures are significantly improved. In particular, the predicted upper limit energy conversion efficiencies of BlueP/MoS2 and BlueP/MoSe2 heterostructures reach as large as 1.16% and 0.98%, respectively, suggesting their potential applications in efficient thin-film solar cells and optoelectronic devices. PMID:27553787

  5. Bound to continuum intersubband transition optical properties in the strain reducing layer-assisted InAs quantum dot structure

    NASA Astrophysics Data System (ADS)

    Parvizi, R.; Rezaei, G.

    2016-01-01

    In this paper, the impact of wetting layer, strain reducing layer and dot height on the electronic, linear and nonlinear optical properties of bound to continuum states transitions are investigated in a system of InAs truncated conical shaped quantum dot covered with the InxGa1-x As strain reducing layer. The electronic structure, containing two main states of S and wetting layer states (WL), was calculated by solving one electronic band Hamiltonian with effective-mass approximation. The results reveal that the presence of the strain reducing layer in the structure extends the quantum dot emission to longer wavelength which is reported as a red-shift of the photoluminescence (PL) peak in the experimental measurement. This study also highlights the possibility of improving the intersubband optical properties based on the significant size-dependence of the three layer dot matrix by employing the strain reducing and wetting layers. According to this simulation, relatively tall dots on the thick wetting layer introduce the optimized structure size for practical applications to meet the SRL assisted enhanced dot structure.

  6. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures.

    PubMed

    Peng, Qiong; Wang, Zhenyu; Sa, Baisheng; Wu, Bo; Sun, Zhimei

    2016-01-01

    As a fast emerging topic, van der Waals (vdW) heterostructures have been proposed to modify two-dimensional layered materials with desired properties, thus greatly extending the applications of these materials. In this work, the stacking characteristics, electronic structures, band edge alignments, charge density distributions and optical properties of blue phosphorene/transition metal dichalcogenides (BlueP/TMDs) vdW heterostructures were systematically studied based on vdW corrected density functional theory. Interestingly, the valence band maximum and conduction band minimum are located in different parts of BlueP/MoSe2, BlueP/WS2 and BlueP/WSe2 heterostructures. The MoSe2, WS2 or WSe2 layer can be used as the electron donor and the BlueP layer can be used as the electron acceptor. We further found that the optical properties under visible-light irradiation of BlueP/TMDs vdW heterostructures are significantly improved. In particular, the predicted upper limit energy conversion efficiencies of BlueP/MoS2 and BlueP/MoSe2 heterostructures reach as large as 1.16% and 0.98%, respectively, suggesting their potential applications in efficient thin-film solar cells and optoelectronic devices. PMID:27553787

  7. Magnetic and natural optical activity of f- f transitions in multiferroic Nd0.5Gd0.5Fe3(BO3)4

    NASA Astrophysics Data System (ADS)

    Malakhovskii, A. V.; Sukhachev, A. L.; Leont'ev, A. A.; Temerov, V. L.

    2016-05-01

    Spectra of absorption, magnetic circular dichroism, and natural circular dichroism of the f-f transitions 4 I 9/2 → 4 F 3/2, 2 H 9/2 + 4 F 5/2, 4 S 3/2 + 4 F 7/2, 2 G 7/2 + 4 G 5/2, 2 K 13/2 + 4 G 7/2, and 4 G 9/2 in the Nd3+ ions in the Nd0.5Gd0.5Fe3(BO3)4 crystal have been measured as a function of the temperature in the interval of 90-300 K. Temperature dependences of the magneto-optical activity (MOA) and natural optical activity (NOA) of the transitions have been obtained. It has been found that, in contrast to allowed transitions, the temperature dependence of the MOA of the f-f transitions does not obey the Curie-Weiss law and the NOA depends on temperature. The NOA of some transitions changes the sign with variation in temperature. These phenomena have been explained by the presence of three contributions to the allowance of the f-f transitions, which lead to three contributions of different signs to the MOA and NOA. The range of the MOA of the f-f transitions in the Nd3+ ion has been predicted theoretically and confirmed experimentally.

  8. Cooperative Two-Quanta Phase Transitions in Quantum Optics and Superconductivity

    NASA Astrophysics Data System (ADS)

    Enaki, Nicolae

    2010-09-01

    The behavior of an electronic subsystem in strong interaction with phonon subsystem, or quantified electromagnetic field (QEF) is discussed. In this case the correlation effect between first and second order electron-phonon interaction (or atom-QEF interaction) takes place. It is shown that the temperature dependence of two-quanta exchange between Fermi sub-system and thermal reservoir gives a non-linear behavior of the order parameter in superconductivity and super-radiance, accompanied by an increase of the electron correlations with increasing temperature. The same effect is considered for two-quanta scattering processes, in which one quantum is absorbed and another is emitted. It is demonstrated, that the order parameter in such a system firstly increases with temperature achieving the maximal value. After that it decreases as in traditional phase transition effects.

  9. Topological Optical Waveguiding in Silicon and the Transition between Topological and Trivial Defect States.

    PubMed

    Blanco-Redondo, Andrea; Andonegui, Imanol; Collins, Matthew J; Harari, Gal; Lumer, Yaakov; Rechtsman, Mikael C; Eggleton, Benjamin J; Segev, Mordechai

    2016-04-22

    One-dimensional models with topological band structures represent a simple and versatile platform to demonstrate novel topological concepts. Here we experimentally study topologically protected states in silicon at the interface between two dimer chains with different Zak phases. Furthermore, we propose and demonstrate that, in a system where topological and trivial defect modes coexist, we can probe them independently. Tuning the configuration of the interface, we observe the transition between a single topological defect and a compound trivial defect state. These results provide a new paradigm for topologically protected waveguiding in a complementary metal-oxide-semiconductor compatible platform and highlight the novel concept of isolating topological and trivial defect modes in the same system that can have important implications in topological physics. PMID:27152805

  10. Magnetic Properties of Sputtered Cobalt-Chromite Films and Magneto-Optics of Rare Earth Transition Metal Multilayers.

    NASA Astrophysics Data System (ADS)

    Li, Zhanming

    The goal of the thesis is to make contributions to the development of two new technologies for data storage: perpendicular recording and magneto-optic recording. In part A of the thesis, magnetic properties of CoCr thin films produced by dc magnetron sputtering are studied for various deposition conditions. In part B, new methods are developed for theoretical analysis of the magneto-optics of rare earth-transition metal multilayers, which can be used to optimize the readout. Part A. For dc magnetron sputtered CoCr films the perpendicular and parallel magnetic coercivities are found to be mainly controlled by the substrate temperature during film growth. Substrate temperatures between 180 and 300 C are necessary to fabricate CoCr thin films for recording media. Films produced in this manner have magnetic anisotropy constants ranging from -1.0 to +0.5 10^6erg/cc. The magnetic anisotropy has a complicated dependence on a large number if deposition parameters and can be best controlled by the dc sputtering power and the target-to-substrate distance. Based on microstructural analysis film properties are interpreted in terms of the adatom diffusion during film growth. It is found that high adatom mobility and low deposition rate promote positive magnetic anisotropy. The dielectric constants measured by ellipsometry are found to depend on the film thickness because of the change in film morphology during film growth. Part B. The 4 x 4 matrix method proposed by Lin -Chung and Teitler (P. J. Lin-Chung and S. Teitler, J. Opt. Soc. Am. A 1 703 (1984)) is applied to the magneto-optics of the rare earth-transition metal multilayer system. Based on a plane wave model, the above method enables one to calculate the sensitivity of the readout to the layer thicknesses as well as effects of oblique angle of incidence, anisotropy in the nonmagnetic part of the dielectric constants and misalignment of the magnetization. Finally, an improved model is presented to take into account the

  11. Pressure Sensor via Optical Detection Based on a 1D Spin Transition Coordination Polymer

    PubMed Central

    Jureschi, Cătălin M.; Linares, Jorge; Rotaru, Aurelian; Ritti, Marie Hélène; Parlier, Michel; Dîrtu, Marinela M.; Wolff, Mariusz; Garcia, Yann

    2015-01-01

    We have investigated the suitability of using the 1D spin crossover coordination polymer [Fe(4-(2′-hydroxyethyl)-1,2,4-triazole)3]I2·H2O, known to crossover around room temperature, as a pressure sensor via optical detection using various contact pressures up to 250 MPa. A dramatic persistent colour change is observed. The experimental data, obtained by calorimetric and Mössbauer measurements, have been used for a theoretical analysis, in the framework of the Ising-like model, of the thermal and pressure induced spin state switching. The pressure (P)-temperature (T) phase diagram calculated for this compound has been used to obtain the P-T bistability region. PMID:25621610

  12. Spectroscopic Studies of DB White Dwarfs: Improved Stark Profiles for Optical Transitions of Neutral Helium

    NASA Astrophysics Data System (ADS)

    Beauchamp, A.; Wesemael, F.; Bergeron, P.

    1997-02-01

    New Stark profiles for 21 He I lines and their forbidden components have been calculated for electron densities ranging from 1014 to 6 × 1017 cm-3, and for temperatures ranging from 10,000 K to 40,000 K. The profiles include quasi-static broadening by ions as well as electron broadening--the latter treated within the impact approximation near the core, and within the one-perturber approximation in the far wings. The calculated profiles also allow for line dissolution. These new profiles are the cornerstone of a recent reanalysis of the optical spectrum of a large sample of DB white dwarfs. Our calculations provide a very good match to the observed profiles of all the lines, provided that Stark broadening dominates other broadening mechanisms.

  13. Theoretical study of intraband optical transitions in conduction band of dot-in-a-well system

    SciTech Connect

    Chaganti, Venkata R.; Apalkov, Vadym

    2014-02-15

    We study numerically absorption optical spectra of n-doped InAs/In{sub 015}Ga{sub 085}As/GaAs quantum dot-in-a-well systems. The absorption spectra are mainly determined by the size of a quantum dot and have weak dependence on the thickness of quantum well and position of the dot in a well. The dot-in-a-well system is sensitive to both in-plane and out-of-plane polarizations of the incident light with much stronger absorption intensities for the in-plane-polarized light. The absorption spectrum of in-plane-polarized light has also a multi-peak structure with two or three peaks of comparable intensities, while the absorption spectrum of out-of-plane polarized light has a single well-pronounced peak.

  14. Optical Transients Powered by Magnetars: Dynamics, Light Curves, and Transition to the Nebular Phase

    NASA Astrophysics Data System (ADS)

    Wang, Ling-Jun; Wang, S. Q.; Dai, Z. G.; Xu, Dong; Han, Yan-Hui; Wu, X. F.; Wei, Jian-Yan

    2016-04-01

    Millisecond magnetars can be formed via several channels: core collapse of massive stars, accretion-induced collapse of white dwarfs (WDs), double WD mergers, double neutron star (NS) mergers, and WD-NS mergers. Because the mass of ejecta from these channels could be quite different, their light curves are also expected to be diverse. We evaluate the dynamic evolution of optical transients powered by millisecond magnetars. We find that the magnetar with a short spin-down timescale converts its rotational energy mostly into the kinetic energy of the transient, while the energy of a magnetar with a long spin-down timescale goes into radiation of the transient. This leads us to speculate that hypernovae could be powered by magnetars with short spin-down timescales. At late times the optical transients will gradually evolve into a nebular phase because of the photospheric recession. We treat the photosphere and nebula separately because their radiation mechanisms are different. In some cases the ejecta could be light enough that the magnetar can accelerate it to a relativistic speed. It is well known that the peak luminosity of a supernova (SN) occurs when the luminosity is equal to the instantaneous energy input rate, as shown by Arnett. We show that photospheric recession and relativistic motion can modify this law. The photospheric recession always leads to a delay of the peak time {t}{pk} relative to the time {t}× at which the SN luminosity equals the instantaneous energy input rate. Relativistic motion, however, may change this result significantly.

  15. Band structure and optical transitions in semiconducting double-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Makaev, D. V.; D'Yachkov, P. N.

    2006-11-01

    The electronic structure of semiconducting double-wall carbon nanotubes (CNTs) is calculated using the linearized augmented cylindrical wave method. The consideration is performed in the framework of the local density functional theory and the muffin-tin (MT) approximation for the one-electron Hamiltonian. The electronic spectrum of a double-wall CNT is determined by the free motion of electrons in the interatomic space of the two cylindrical layers, scattering by the MT spheres, and tunneling through the classically impenetrable region. Calculated results for double-wall CNTs of the ( n, 0)@( n', 0) zigzag type indicate that the shift of the band-gap width depends on whether n and n' are divided by 3 with a remainder of 1 or 2. It is found that, regardless of the type of the inner tube, the energy gap E g of the outer tube decreases by 0.15-0.22 eV if the tube belongs to the sequence n = 2 (mod 3). For the outer tubes of the sequence n = 1 (mod 3), the shifts of the band gap Δ E g are always negative -0.15 ≤ Δ E g ≤ -0.05 eV. In both cases, the shifts Δ E g weakly oscillate rather than decrease in going to tubes of a larger diameter d. For the inner tubes, the changes in the band gap Δ E g are more sensitive to the diameter. At 10 ≤ n ≤ 16, the shifts Δ E g are positive and the maximum value of Δ E g equals 0.39 and 0.32 for the sequences n = 2 (mod 3) and n = 1 (mod 3), respectively. In going to the inner tubes of a larger diameter, Δ E g rapidly drops and then oscillates in the range from -0.05 to 0.06 eV. The calculated results indicate that the shifts of the optical band gaps in core and shell tubes upon the formation of double-wall CNTs are significant, which must hinder the identification of double-wall CNTs by optical methods. On the other hand, the obtained results open up possibilities for a more detailed classification of double-wall nanotubes.

  16. SEEDS ADAPTIVE OPTICS IMAGING OF THE ASYMMETRIC TRANSITION DISK OPH IRS 48 IN SCATTERED LIGHT

    SciTech Connect

    Follette, Katherine B.; Close, Laird M.; Grady, Carol A.; Swearingen, Jeremy R.; Sitko, Michael L.; Champney, Elizabeth H.; Van der Marel, Nienke; Maaskant, Koen; Min, Michiel; Takami, Michihiro; Kuchner, Marc J; McElwain, Michael W.; Muto, Takayuki; Mayama, Satoshi; Fukagawa, Misato; Russell, Ray W.; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Abe, Lyu; and others

    2015-01-10

    We present the first resolved near-infrared imagery of the transition disk Oph IRS 48 (WLY 2-48), which was recently observed with ALMA to have a strongly asymmetric submillimeter flux distribution. H-band polarized intensity images show a ∼60 AU radius scattered light cavity with two pronounced arcs of emission, one from northeast to southeast and one smaller, fainter, and more distant arc in the northwest. K-band scattered light imagery reveals a similar morphology, but with a clear third arc along the southwestern rim of the disk cavity. This arc meets the northwestern arc at nearly a right angle, revealing the presence of a spiral arm or local surface brightness deficit in the disk, and explaining the east-west brightness asymmetry in the H-band data. We also present 0.8-5.4 μm IRTF SpeX spectra of this object, which allow us to constrain the spectral class to A0 ± 1 and measure a low mass accretion rate of 10{sup –8.5} M {sub ☉} yr{sup –1}, both consistent with previous estimates. We investigate a variety of reddening laws in order to fit the multiwavelength spectral energy distribution of Oph IRS 48 and find a best fit consistent with a younger, higher luminosity star than previous estimates.

  17. SEEDS Adaptive Optics Imaging of the Asymmetric Transition Disk Oph IRS 48 in Scattered Light

    NASA Astrophysics Data System (ADS)

    Follette, Katherine B.; Grady, Carol A.; Swearingen, Jeremy R.; Sitko, Michael L.; Champney, Elizabeth H.; van der Marel, Nienke; Takami, Michihiro; Kuchner, Marc J.; Close, Laird M.; Muto, Takayuki; Mayama, Satoshi; McElwain, Michael W.; Fukagawa, Misato; Maaskant, Koen; Min, Michiel; Russell, Ray W.; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Abe, Lyu; Akiyama, Eiji; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph; Currie, Thayne; Egner, Sebastian E.; Feldt, Markus; Goto, Miwa; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko; Henning, Thomas; Hodapp, Klaus; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R.; Kuzuhara, Masayuki; Kwon, Jungmi; Matsuo, Taro; Miyama, Shoken; Morino, Jun-Ichi; Moro-Martin, Amaya; Nishimura, Tetsuo; Pyo, Tae-Soo; Serabyn, Eugene; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Tomono, Daigo; Turner, Edwin L.; Watanabe, Makoto; Wisniewski, John P.; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide

    2015-01-01

    We present the first resolved near-infrared imagery of the transition disk Oph IRS 48 (WLY 2-48), which was recently observed with ALMA to have a strongly asymmetric submillimeter flux distribution. H-band polarized intensity images show a ~60 AU radius scattered light cavity with two pronounced arcs of emission, one from northeast to southeast and one smaller, fainter, and more distant arc in the northwest. K-band scattered light imagery reveals a similar morphology, but with a clear third arc along the southwestern rim of the disk cavity. This arc meets the northwestern arc at nearly a right angle, revealing the presence of a spiral arm or local surface brightness deficit in the disk, and explaining the east-west brightness asymmetry in the H-band data. We also present 0.8-5.4 μm IRTF SpeX spectra of this object, which allow us to constrain the spectral class to A0 ± 1 and measure a low mass accretion rate of 10-8.5 M ⊙ yr-1, both consistent with previous estimates. We investigate a variety of reddening laws in order to fit the multiwavelength spectral energy distribution of Oph IRS 48 and find a best fit consistent with a younger, higher luminosity star than previous estimates. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  18. Elimination of the Stark shift from the vibrational transition frequency of optically trapped {sup 174}Yb{sup 6}Li molecules

    SciTech Connect

    Kajita, Masatoshi; Gopakumar, Geetha; Abe, Minori; Hada, Masahiko

    2011-08-15

    Transition frequencies of cold molecules must be accurately evaluated to test the variance in the proton-to-electron mass ratio. Measuring the X {sup 2}{Sigma}(v,N)=(0,0){yields}(1,0) transition frequency of optically trapped {sup 174}Yb{sup 6}Li molecules is a promising method for achieving this goal. The Stark shifts induced by trap and probe (for the Raman transition) lasers are eliminated by choosing appropriate frequencies (magic frequencies) during the construction of the optical lattice. In the far-off resonance region, the Stark shift is found to be less than 10{sup -16} even when the laser frequencies are detuned from the magic frequencies by {approx}1 MHz.

  19. Comparison of the optical responses of O-poor and O-rich thermochromic VOX films during semiconductor-to-metal transition

    NASA Astrophysics Data System (ADS)

    Luo, Zhenfei; Wu, Zhiming; Wang, Tao; Xu, Xiangdong; Li, Weizhi; Li, Wei; Jiang, Yadong

    2012-09-01

    O-poor and O-rich thermochromic vanadium oxide (VOX) nanostructured thin films were prepared by applying reactive direct current magnetron sputtering and post-annealing in oxygen ambient. UV-visible spectrophotometer and spectroscopic ellipsometry were used to investigate the optical properties of films. It was found that, when the O-poor VOX thin film underwent semiconductor-to-metal transition, the values of optical conductivity and extinction coefficient in the visible region increased due to the existence of occupied band-gap states. This noticeable feature, however, was not observed for the O-rich film, which showed a similar optical behavior with the stoichiometric crystalline VO2 films reported in the literatures. Moreover, the O-poor VOX film exhibits consistent variations of transmission values in the visible/near-infrared region when it undergoes semiconductor-to-metal transition.

  20. Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass

    NASA Astrophysics Data System (ADS)

    Lin, Hai; Meredith, Gerald; Jiang, Shibin; Peng, Xiang; Luo, Tao; Peyghambarian, Nasser; Pun, Edwin Yue-Bun

    2003-01-01

    Er3+ doped Nb2O5-TeO2 (NT) glass suitable for developing optical fiber laser and amplifier has been fabricated and characterized. Intense and broad 1.53 μm infrared fluorescence and visible upconversion luminescence were observed under 975 nm diode laser and 798 nm laser excitation. For 1.53 μm emission band, the full width at half-maximum is 51 nm, the fluorescence lifetime is 2.6 ms, and the quantum efficiency is ˜100%. The maximum emission cross section is 8.52×10-21 cm2 at 1.532 μm, and is higher than the values in silicon and phosphate glasses. Under 798 nm excitation, efficient 531, 553, and 670 nm upconversion emissions are due to two-photon absorption processes. The "standardized" efficiency for the green upconversion light is 9.5×10-4, and this value is comparable to that reported for Er3+/Yb3+ codoped fluoride glasses. Intense visible upconversion fluorescence in Er3+ doped NT glass can be used in color display, undersea communication, and infrared sensor.

  1. a Measurement of the Optical Oscillator Strengths of Noble Gas Resonance Transitions in the Vacuum Ultraviolet

    NASA Astrophysics Data System (ADS)

    Ligtenberg, Robert Coenraad Gerard

    We report the results of an accurate measurement of optical oscillator strengths of the prominent resonance lines of He, Ne, Ar and Kr in the vacuum ultraviolet. To measure the oscillator strength of a resonance line we make use of the absorption of the resonance radiation as it passes through the gas to a detector. The transmission of this radiation through a layer of gas of finite thickness is measured as a function of the number density of the gas. The transmission function is fitted to this data to obtain the absorption oscillator strength. The accuracy of the present measurements ranges from 2.5% to 4% and is reflected in the uncertainties presented below. The results are for He I (58.4 nm) 0.2683 +/- 0.0075 (2.8%), He I (53.7 nm) 0.0717 +/- 0.0024 (3.4%), Ne I (74.4 nm) 0.01017 +/- 0.00030 (2.9%), Ne I (73.6 nm) 0.1369 +/- 0.0035 (2.6%), Ar I (106.7 nm) 0.0616 +/- 0.0021 (3.4%), Ar I (104.8 nm) 0.2297 +/- 0.0093 (4.0%), Kr I (123.6 nm) 0.1751 +/- 0.0049 (2.8%) and Kr I (116.5 nm) 0.1496 +/- 0.0038 (2.5%).

  2. Near IR interband transitions and optical parameters of metal-germanium contacts.

    PubMed

    Chan, E Y; Card, H C

    1980-04-15

    A theoretical and experimental study of the zero-bias quantum efficiency eta(0) for metal (Au, Cu, Ag)-Ge Schottky barrier photodetectors in the near IR range (1.1 microm < lambda < 1.8 microm) has been performed. By an interactive computer programming technique, the optical parameters of the metal thin film electrodes (index of refraction n and extinction coefficient k) as a function of wavelength and of film thickness are determined. Starting with a two-layer calculation of the reflectance R, transmittance T, and absorptance A of the metal electrode, it is found that the eta(0) in this near IR range is dominated by the band-to-band excitation of electrons in the Ge substrate. Using the minority carrier diffusion length L(p) as an adjustable parameter, good agreement between theoretical and experimental results was found for L(p) approximately 150 microm; this value was obtained independent of choice of metal or metal thickness justifying the above procedure. PMID:20221033

  3. Independent Control of Optical and Explosive Properties: Pyrazole-Tetrazine Complexes of First Row Transition Metals.

    PubMed

    Myers, Thomas W; Chavez, David E; Hanson, Susan K; Scharff, R Jason; Scott, Brian L; Veauthier, Jacqueline M; Wu, Ruilian

    2015-08-17

    Complexes of 3-amino-6-(3,5-dimethylpyrazole)tetrazine) (NH2TzDMP, 1) and 3-(3,3'-dinitroazetidine)-6-(3,5-dimethylpyrazole)tetrazine) (DNAZTzDMP, 2) with first row transition metal centers were synthesized. Reactions of Fe(II)(H2O)6(BF4)2 and Fe(NO3)3·9H2O with 1 and 2 both led to complexes of the form [(RTzDMP)3Fe]X2 (X = BF4, R = NH2 (3), DNAZ (4); X = NO3, R = NH2 (5), DNAZ (6)), which showed intense MLCT bands in the visible region of the spectrum. Ligands 1 and 2 also reacted with Cu(II)(NO3)2·5/2H2O to form [(RTzDMP)2Cu(NO3)][NO3] (R = NH2 (7), DNAZ (8)) in addition to reacting with Cu(I)(CH3CN)4(PF6) to form [(RTzDMP)2Cu][PF6] (R = NH2 (9), DNAZ (10)). Lastly reactions of 1 and 2 with Co(NO3)2·6H2O and Ni(NO3)2·6H2O led to [(NH2TzDMP)2Co(H2O) (NO3)][NO3] (11), [(DNAZTzDMP)2Co(H2O)2][NO3]2 (12), [(NH2TzDMP)3Ni][NO3]2 (13), and [(DNAZTzDMP)2Ni(H2O)2][NO3]2 (14). The complexes display rich electrochemical and photophysical properties that are unaffected by derivation with explosive groups. PMID:26237120

  4. Renormalization of optical transition strengths in semiconductor nanoparticles due to band mixing

    DOE PAGESBeta

    Velizhanin, Kirill A.

    2016-05-25

    We report that unique optical properties of semiconductor nanoparticles (SN) make them very promising in the multitude of applications including lasing, light emission and photovoltaics. In many of these applications it is imperative to understand the physics of interaction of electrons in a SN with external electromagnetic fields on the quantitative level. In particular, the strength of electron–photon coupling determines such important SN parameters as the radiative lifetime and absorption cross section. This strength is often assumed to be fully encoded by the so called Kane momentum matrix element. This parameter, however, pertains to a bulk semiconductor material and, asmore » such, is not sensitive to the quantum confinement effects in SNs. In this work we demonstrate that the quantum confinement, via the so called band mixing, can result in a significant suppression of the strength of electron interaction with electromagnetic field. Within the envelope function formalism we show how this suppression can be described by introducing an effective energy-dependent Kane momentum. Then, the effect of band mixing on the efficiencies of various photoinduced processes can be fully captured by the conventional formulae (e.g., spontaneous emission rate), once the conventional Kane momentum is substituted with the renormalized energy-dependent Kane momentum introduced in here. Lastly, as an example, we evaluate the energy-dependent Kane momentum for spherical PbSe and PbS SNs (i.e., quantum dots) and show that neglecting band mixing in these systems can result in the overestimation of absorption cross sections and emission rates by a factor of ~2.« less

  5. Growth evolution and phase transition from chalcocite to digenite in nanocrystalline copper sulfide: Morphological, optical and electrical properties

    PubMed Central

    Quintana-Ramirez, Priscilla Vasthi; Santos-Cruz, José; Vega-González, Marina; Martínez-Alvarez, Omar; Castaño-Meneses, Víctor Manuel; Acosta-Torres, Laura Susana; de la Fuente-Hernández, Javier

    2014-01-01

    Summary Copper sulfide is a promising p-type inorganic semiconductor for optoelectronic devices such as solar cells, due its small band gap energy and its electrical properties. In this work nanocrystalline copper sulfide (CuxS), with two stoichiometric ratios (x = 2, 1.8) was obtained by one-pot synthesis at 220, 230, 240 and 260 °C in an organic solvent and amorphous CuxS was obtained in aqueous solution. Nanoparticle-like nucleation centers are formed at lower temperatures (220 °C), mixtures of morphologies (nanorods, nanodisks and nanoprisms) are seen at 230 and 240 °C, in which the nanodisks are predominant, while big hexagonal/prismatic crystals are obtained at 260 °C according to TEM results. A mixture of chalcocite and digenite phases was found at 230 and 240 °C, while a clear transition to a pure digenite phase was seen at 260 °C. The evolution of morphology and transition of phases is consistent to the electrical, optical, and morphological properties of the copper sulfide. In fact, digenite Cu1.8S is less resistive (346 Ω/sq) and has a lower energy band gap (1.6 eV) than chalcocite Cu2S (5.72 × 105 Ω/sq, 1.87 eV). Low resistivity was also obtained in CuxS synthesized in aqueous solution, despite its amorphous structure. All CuxS products could be promising for optoelectronic applications. PMID:25247136

  6. Growth evolution and phase transition from chalcocite to digenite in nanocrystalline copper sulfide: Morphological, optical and electrical properties.

    PubMed

    Quintana-Ramirez, Priscilla Vasthi; Arenas-Arrocena, Ma Concepción; Santos-Cruz, José; Vega-González, Marina; Martínez-Alvarez, Omar; Castaño-Meneses, Víctor Manuel; Acosta-Torres, Laura Susana; de la Fuente-Hernández, Javier

    2014-01-01

    Copper sulfide is a promising p-type inorganic semiconductor for optoelectronic devices such as solar cells, due its small band gap energy and its electrical properties. In this work nanocrystalline copper sulfide (Cu x S), with two stoichiometric ratios (x = 2, 1.8) was obtained by one-pot synthesis at 220, 230, 240 and 260 °C in an organic solvent and amorphous Cu x S was obtained in aqueous solution. Nanoparticle-like nucleation centers are formed at lower temperatures (220 °C), mixtures of morphologies (nanorods, nanodisks and nanoprisms) are seen at 230 and 240 °C, in which the nanodisks are predominant, while big hexagonal/prismatic crystals are obtained at 260 °C according to TEM results. A mixture of chalcocite and digenite phases was found at 230 and 240 °C, while a clear transition to a pure digenite phase was seen at 260 °C. The evolution of morphology and transition of phases is consistent to the electrical, optical, and morphological properties of the copper sulfide. In fact, digenite Cu1.8S is less resistive (346 Ω/sq) and has a lower energy band gap (1.6 eV) than chalcocite Cu2S (5.72 × 10(5) Ω/sq, 1.87 eV). Low resistivity was also obtained in Cu x S synthesized in aqueous solution, despite its amorphous structure. All Cu x S products could be promising for optoelectronic applications. PMID:25247136

  7. Electric field-assisted metal insulator transition in vanadium dioxide (VO2) thin films: optical switching behavior and anomalous far-infrared emissivity variation

    NASA Astrophysics Data System (ADS)

    Crunteanu, Aurelian; Fabert, Marc; Cornette, Julie; Colas, Maggy; Orlianges, Jean-Christophe; Bessaudou, Annie; Cosset, Françoise

    2014-03-01

    We present the vanadium dioxide (VO2) thin films deposition using e-beam evaporation of a vanadium target under oxygen atmosphere on different substrates (sapphire, Si, SiO2/Si…) and we focus on their electrical and optical properties variations as the material undergoes a metal-insulator transition under thermal and electrical stimuli. The phase transition induces extremely abrupt changes in the electronic and optical properties of the material: the electrical resistivity increases up to 5 orders of magnitude while the optical properties (transmission, reflection, refractive index) are drastically modified. We present the integration of these films in simple planar optical devices and we demonstrate electrical-activated optical modulators for visible-infrared signals with high discrimination between the two states. We will highlight a peculiar behavior of the VO2 material in the infrared and far infrared regions (2- 20 μm), namely its anomalous emissivity change under thermal- end electrical activation (negative differential emittance phenomenon) with potential applications in active coatings for thermal regulation, optical limiting or camouflage coatings.

  8. Absolute optical frequency measurements of the cesium D1 transitions and their effect on alpha, the fine-structured constant

    NASA Astrophysics Data System (ADS)

    Calkins, Keith Gordon

    The fine-structure constant or electromagnetic coupling constant, alpha e, is a dimensionless ratio which unites many physics subfields. Although known precisely via experiments in each subfield, there is disagreement within and between subfields. In particular, precise values obtained via electron ge - 2 experiments which depend heavily on QED calculations have not always been in agreement with those obtained via muon g mu - 2 experiments. Also, solid state measurements (quantum hall effect and AC Josephson effect) often disagree with neutronic hmn measurements. alphae is often said to vary with energy but the question remains as to whether or not its low energy value is stable now or has been stable over the history of the universe. Improved precision helps resolve these issues as they relate to physics, possibly beyond the standard model. The Optical Frequency Measurements group in the Time and Frequency Division at the National Institute of Science and Technology (NIST, Boulder, CO) developed and maintains a femtosecond laser frequency comb which is calibrated with respect to the cesium fountain clock implementation of the second. A single frequency component of the femtosecond laser comb is used together with a solid state diode laser and cesium thermal beam to precisely measure the cesium D1 F ∈ {3,4} transition frequencies. The value of fD1centroid = 335 116 048 748.1(2.4) kHz obtained for the transition centroid is over fifteen times more precise than the most recent previous measurement. A precise value for the cesium D1 hyperfine splitting fHFe = 1 167 723.6(4.7) kHz is reported as well. This value is also over fifteen times more precise than the most recent previous measurement. These new neutral 133Cs 6s 2 S½ → 6p 2 P½ transition (D1) frequencies, when combined with the 2002 CODATA values of the Rydberg, proton/electron mass ratio, cesium atomic mass, and cesium recoil frequency, provide an almost QED-free value of alpha: alphae = 1/137.036 0000

  9. Energy Spread Monitoring for the JLAB Experimental Program: Synchrotron Light Interferometers, Optical Transition Radiation Monitors, and Wire Scanners

    SciTech Connect

    Chao, Y.-C.; Chevtsov, P.; Day, A.; Freyberger, A. P.; Hicks, R.; Joyce, M.; Denard, J.-C.

    2004-11-10

    The hypernuclear physics program at JLAB requires an electron beam with small transverse size ({sigma} {approx} 100 {mu}m) and an upper limit on the RMS energy spread of ({delta}E/E) < 3 x 10{sup -5}. To measure and monitor these parameters, a beam size and energy spread measurement system has been created. The system consists of a set of wire scanners, Optical Transition Radiation (OTR) detectors, and Synchrotron Light Interferometers (SLI). The energy spread is measured via a set of wire scans performed at specific locations in the transport line, which is an invasive process. During physics operation the energy spread is monitored continuously with the OTR and/or the SLI. These devices are non-invasive [or nearly non-invasive in the case of OTR] and operate over a very wide range of beam energies (1-6 GeV) and currents ({approx}100 {mu}A down to few {mu}A). All components of this system are automated in an EPICS accelerator control environment. The paper presents our operational experience with the beam size and energy spread measurement system and its maintenance.

  10. Energy Spread Monitoring for the JLAB Experimental Program: Synchrotron Light Interferometers, Optical Transition Radiation Monitors and Wire Scanners

    SciTech Connect

    Arne Freyberger; Yu-Chiu Chao; Pavel Chevtsov; Anthony Day; William Hicks; Michele Joyce; Jean-Claude Denard

    2004-05-01

    The hypernuclear physics program at JLAB requires an electron beam with small transverse size (sigma {approx} 100 {micro}m) and an upper limit on the RMS energy spread of delta E / E < 3 x 10{sup -}5. To measure and monitor these parameters, a beam size and energy spread measurement system has been created. The system consists of a set of wire scanners, Optical Transition Radiation (OTR) detectors, and Synchrotron Light Interferometers (SLI). The energy spread is measured via a set of wire scans performed at specific locations in the transport line, which is an invasive process. During physics operation the energy spread is monitored continuously with the OTR and/or the SLI. These devices are noninvasive [or nearly non-invasive in the case of OTR] and operate over a very wide range of beam energies (1.6 GeV) and currents ({approx}100 {micro}A down to few {micro}A). All components of this system are automated in an EPICS accelerator control environment. The paper presents our operational experience with the beam size and energy spread measurement system and its maintenance.

  11. IRAS F13308+5946: A POSSIBLE TRANSITION PHASE FROM TYPE I ULTRALUMINOUS INFRARED GALAXY TO OPTICAL QUASAR

    SciTech Connect

    Meng Xianmin; Wu Hong; Wang Jing; Gu Qiusheng; Cao Chen

    2010-08-01

    We present a stellar population synthesis study of a type I luminous infrared galaxy: IRAS F13308+5946. It is a quasar with absolute magnitude M{sub i} = -22.56 and has the spectral feature of a Seyfert 1.5 galaxy. Optical images show characteristics of later stages of a merger. With the help of the stellar synthesis code STARLIGHT and both Calzetti et al.'s and Leitherer et al.'s extinction curves, we estimate the past infrared (IR) luminosities of the host galaxy and find that it may have experienced an ultraluminous infrared galaxy (ULIRG) phase for nearly 300 Myr, so this galaxy has probably experienced a type I ULIRG phase. Both nuclear starburst (SB) and active galactic nuclei contribute to the present IR luminosity budget, with the SB contributing {approx}70%. The mass of the supermassive black hole is M{sub BH} = 1.8 x 10{sup 8} M{sub sun} and the Eddington ratio L{sub bol}/L{sub Edd} is 0.12, both of which are approximate typical values of Palomar-Green QSOs. These results indicate that IRAS F13308+5946 is probably at the transitional phase from a type I ULIRG to a classical QSO.

  12. Optical transition radiation used in the diagnostic of low energy and low current electron beams in particle accelerators

    SciTech Connect

    Silva, T. F.; Bonini, A. L.; Lima, R. R.; Maidana, N. L.; Malafronte, A. A.; Pascholati, P. R.; Vanin, V. R.; Martins, M. N.

    2012-09-15

    Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed.

  13. Optical transition radiation used in the diagnostic of low energy and low current electron beams in particle accelerators.

    PubMed

    Silva, T F; Bonini, A L; Lima, R R; Maidana, N L; Malafronte, A A; Pascholati, P R; Vanin, V R; Martins, M N

    2012-09-01

    Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed. PMID:23020369

  14. Optical study of the insulator-to-metal transition in LaxMnO3 thin films

    NASA Astrophysics Data System (ADS)

    Mohamed, W. S.; Maselli, P.; Calvani, P.; Baldassarre, L.; Orgiani, P.; Galdi, A.; Maritato, L.; Nucara, A.

    2014-09-01

    Lanthanum manganites with a massive concentration of La defects can be stabilized in the form of thin films, by exploiting the structural stress produced by a substrate such as SrTiO3. They undergo an insulator-to-metal transition (IMT) like those doped by divalent ions, which is here studied by measuring the optical conductivity of LaxMnO3-δ films with x = 0.66, 0.88, 0.98 and 1.10, and with δ ≃ 0, from the far infrared to the near ultraviolet, and between 20 and 300 K. The IMT is here a slow process which continues down to 100 K at least, more than 250 K below its onset at the Curie temperature Tc and at the TIMT measured from the dc resistivity. The metallization is here monitored through the increase of the Drude term and a transfer of spectral weight from a ‘hard’ midinfrared band MIR-2 peaked between 3000 and 5000 cm-1 at room temperature, to a ‘soft’ midinfrared band MIR-1 at ˜ 1000 cm-1 and to the Drude term. This evidence is in good agreement with a model of phase separation below Tc, where insulating and paramagnetic regions of small polarons coexist with conducting and ferromagnetic regions populated by large polarons and free carriers.

  15. Coherent optical transition radiation and self-amplified spontaneous emission generated by chicane-compressed electron beams

    SciTech Connect

    Lumpkin, A.H.; Dejus, R.J.; Sereno, N.S.; /Argonne

    2009-02-01

    Observations of strongly enhanced optical transition radiation (OTR) following significant bunch compression of photoinjector beams by a chicane have been reported during the commissioning of the Linac Coherent Light Source (LCLS) accelerator and recently at the Advanced Photon Source (APS) linac. These localized transverse spatial features involve signal enhancements of nearly a factor of 10 and 100 in the APS case at the 150-MeV and 375-MeV OTR stations, respectively. They are consistent with a coherent process seeded by noise and may be evidence of a longitudinal space charge (LSC) microbunching instability which leads to coherent OTR (COTR) emissions. Additionally, we suggest that localized transverse structure in the previous self-amplified spontaneous emission (SASE) free-electron laser (FEL) data at APS in the visible-UV regime as reported at FEL02 may be attributed to such beam structure entering the FEL undulators and inducing the SASE startup at those structures. Separate beam structures 120 microns apart in x and 2.9 nm apart in wavelength were reported. The details of these observations and operational parameters will be presented.

  16. Plastic Transition to Switch Nonlinear Optical Properties Showing the Record High Contrast in a Single-Component Molecular Crystal.

    PubMed

    Sun, Zhihua; Chen, Tianliang; Liu, Xitao; Hong, Maochun; Luo, Junhua

    2015-12-23

    To switch bulk nonlinear optical (NLO) effects represents an exciting new branch of NLO material science, whereas it remains a great challenge to achieve high contrast for "on/off" of quadratic NLO effects in crystalline materials. Here, we report the supereminent NLO-switching behaviors of a single-component plastic crystal, 2-(hydroxymethyl)-2-nitro-1,3-propanediol (1), which shows a record high contrast of at least ∼150, exceeding all the known crystalline switches. Such a breakthrough is clearly elucidated from the slowing down of highly isotropic molecular motions during plastic-to-rigid transition. The deep understanding of its intrinsic plasticity and superior NLO property allows the construction of a feasible switching mechanism. As a unique class of substances with short-range disorder embedded in long-range ordered crystalline lattice, plastic crystals enable response to external stimuli and fulfill specific photoelectric functions, which open a newly conceptual avenue for the designing of new functional materials. PMID:26619244

  17. Pressure dependence of optical transitions in In{sub 0.15}Ga{sub 0.85}N/GaN multiple quantum wells

    SciTech Connect

    Shan, W.; Ager, J.W. III, and; Walukiewicz, W.; Haller, E.E. |; McCluskey, M.D.; Johnson, N.M.; Bour, D.P.

    1998-10-01

    The effects of hydrostatic pressure on optical transitions in In{sub 0.15}Ga{sub 0.85}N/GaN multiple quantum wells (MQW{close_quote}s) have been studied. The optical transition associated with confined electron and hole states in the MQW{close_quote}s was found to shift linearly to higher energy with pressure but exhibit a significantly weaker pressure dependence compared to bulklike thick epitaxial-layer samples. Similar pressure coefficients obtained by both photomodulation and photoluminescence measurements rule out the possibility of the transition involving localized states deep in the band gap. We found that the difference in the compressibility of In{sub x}Ga{sub 1{minus}x}N and GaN induces a tensile strain in the compressively strained In{sub x}Ga{sub 1{minus}x}N well layers, partially compensating the externally applied hydrostatic pressure. This mechanical effect is primarily responsible for the smaller pressure dependence of the optical transitions in the In{sub x}Ga{sub 1{minus}x}N/GaN MQW{close_quote}s. In addition, the pressure-dependent measurements allow us to identify a spectral feature observed at an energy below the GaN band gap. We conclude that this feature is due to transitions from ionized Mg acceptor states to the conduction band in the {ital p}-type GaN cladding layer rather than a confined transition in the MQW{close_quote}s. {copyright} {ital 1998} {ital The American Physical Society}

  18. An amorphous-to-crystalline phase transition within thin silicon films grown by ultra-high-vacuum evaporation and its impact on the optical response

    NASA Astrophysics Data System (ADS)

    Orapunt, Farida; Tay, Li-Lin; Lockwood, David J.; Baribeau, Jean-Marc; Noël, Mario; Zwinkels, Joanne C.; O'Leary, Stephen K.

    2016-02-01

    A number of thin silicon films are deposited on crystalline silicon, native oxidized crystalline silicon, and optical quality fused quartz substrates through the use of ultra-high-vacuum evaporation at growth temperatures ranging from 98 to 572 °C. An analysis of their grazing incidence X-ray diffraction and Raman spectra indicates that a phase transition, from amorphous-to-crystalline, occurs as the growth temperature is increased. Through a peak decomposition process, applied to the Raman spectroscopy results, the crystalline volume fractions associated with these samples are plotted as a function of the growth temperature for the different substrates considered. It is noted that the samples grown on the crystalline silicon substrates have the lowest crystallanity onset temperature, whereas those grown on the optical quality fused quartz substrates have the highest crystallanity onset temperature; the samples grown on the native oxidized crystalline silicon substrates have a crystallanity onset temperature between these two limits. These resultant dependencies on the growth temperature provide a quantitative means of characterizing the amorphous-to-crystalline phase transition within these thin silicon films. It is noted that the thin silicon film grown on an optical quality fused quartz substrate at 572 °C, possessing an 83% crystalline volume fraction, exhibits an optical absorption spectrum which is quite distinct from that associated with the other thin silicon films. We suggest that this is due to the onset of sufficient long-range order in the film for wave-vector conservation to apply, at least partially. Finally, we use a semi-classical optical absorption analysis to study how this phase transition, from amorphous-to-crystalline, impacts the spectral dependence of the optical absorption coefficient.

  19. Energy transfer and non-linear optical properties at near ultraviolet wavelengths: Rare earth 4f yields 5d transitions in crystals and glasses

    NASA Astrophysics Data System (ADS)

    Hamilton, D. S.

    1992-08-01

    The following topics were studied: two-photon transitions from 4f ground state to 5d excited states in Ce(3+):CaF2; optical absorption and photoionization measurements from excited state of Ce(3+):Y3Al5O12; excited state photoionization of Ce(3+) ions in Ce(3+):CaF2; optical gain and loss studies in Ce(3+):LiYF4; Gd yields Cr energy transfer in Cr(3+):GSGG, Cr(3+):GSAG, and Cr(3+):GGG crystals; nonradiative relaxation in Ce(3+) doped crystals and glasses; and grating formation in impurity doped crystals.

  20. Intra- and inter-atomic optical transitions of Fe, Co, and Ni ferrocyanides studied using first-principles many-electron calculations

    NASA Astrophysics Data System (ADS)

    Watanabe, Shinta; Sawada, Yuki; Nakaya, Masato; Yoshino, Masahito; Nagasaki, Takanori; Kameyama, Tatsuya; Torimoto, Tsukasa; Inaba, Yusuke; Takahashi, Hideharu; Takeshita, Kenji; Onoe, Jun

    2016-06-01

    We have investigated the electronic structures and optical properties of Fe, Co, and Ni ferrocyanide nanoparticles using first-principles relativistic many-electron calculations. The overall features of the theoretical absorption spectra for Fe, Ni, and Co ferrocyanides calculated using a first-principles many-electron method well reproduced the experimental one. The origins of the experimental absorption spectra were clarified by performing a configuration analysis based on the many-electron wave functions. For Fe ferrocyanide, the experimental absorption peaks originated from not only the charge-transfer transitions from Fe2+ to Fe3+ but also the 3d-3d intra-transitions of Fe3+ ions. In addition, the spin crossover transition of Fe3+ predicted by the many-electron calculations was about 0.24 eV. For Co ferrocyanide, the experimental absorption peaks were mainly attributed to the 3d-3d intra-transitions of Fe2+ ions. In contrast to the Fe and Co ferrocyanides, Ni ferrocyanide showed that the absorption peaks originated from the 3d-3d intra-transitions of Ni3+ ions in a low-energy region, while from both the 3d-3d intra-transitions of Fe2+ ions and the charge-transfer transitions from Fe2+ to Ni3+ in a high-energy region. These results were quite different from those of density-functional theory (DFT) calculations. The discrepancy between the results of DFT calculations and those of many-electron calculations suggested that the intra- and inter-atomic transitions of transition metal ions are significantly affected by the many-body effects of strongly correlated 3d electrons.

  1. Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography.

    PubMed

    Chu, Cheng Hung; Shiue, Chiun Da; Cheng, Hsuen Wei; Tseng, Ming Lun; Chiang, Hai-Pang; Mansuripur, Masud; Tsai, Din Ping

    2010-08-16

    Amorphous thin films of Ge(2)Sb(2)Te(5), sputter-deposited on a ZnS-SiO(2) dielectric layer, are investigated for the purpose of understanding the structural phase-transitions that occur under the influence of tightly-focused laser beams. Selective chemical etching of recorded marks in conjunction with optical, atomic force, and electron microscopy as well as local electron diffraction analysis are used to discern the complex structural features created under a broad range of laser powers and pulse durations. Clarifying the nature of phase transitions associated with laser-recorded marks in chalcogenide Ge(2)Sb(2)Te(5) thin films provides useful information for reversible optical and electronic data storage, as well as for phase-change (thermal) lithography. PMID:20721232

  2. An optical transmission spectrum of the transiting hot Jupiter in the metal-poor WASP-98 planetary system

    NASA Astrophysics Data System (ADS)

    Mancini, L.; Giordano, M.; Mollière, P.; Southworth, J.; Brahm, R.; Ciceri, S.; Henning, Th.

    2016-09-01

    The WASP-98 planetary system represents a rare case of a hot Jupiter hosted by a metal-poor main-sequence star. We present a follow-up study of this system based on multiband photometry and high-resolution spectroscopy. Two new transit events of WASP-98 b were simultaneously observed in four passbands (g', r', i', z'), using the telescope-defocusing technique, yielding eight high-precision light curves with point-to-point scatters of less than 1 mmag. We also collected three spectra of the parent star with a high-resolution spectrograph, which we used to remeasure its spectral characteristics, in particular its metallicity. We found this to be very low, [Fe/H] = -0.49 ± 0.10, but larger than was previously reported, [Fe/H] = -0.60 ± 0.19. We used these new photometric and spectroscopic data to refine the orbital and physical properties of this planetary system, finding that the stellar and planetary mass measurements are significantly larger than those in the discovery paper. In addition, the multiband light curves were used to construct an optical transmission spectrum of WASP-98 b and probe the characteristics of its atmosphere at the terminator. We measured a lower radius at z' compared with the other three passbands. The maximum variation is between the r' and z' bands, has a confidence level of roughly 6σ and equates to 5.5 pressure scale heights. We compared this spectrum to theoretical models, investigating several possible types of atmospheres, including hazy, cloudy, cloud-free, and clear atmospheres with titanium and vanadium oxide opacities. We could not find a good fit to the observations, except in the extreme case of a clear atmosphere with TiO and VO opacities, in which the condensation of Ti and V was suppressed. As this case is unrealistic, our results suggest the presence of an additional optical-absorbing species in the atmosphere of WASP-98 b, of unknown chemical nature.

  3. An optical transmission spectrum of the transiting hot Jupiter in the metal-poor WASP-98 planetary system

    NASA Astrophysics Data System (ADS)

    Mancini, L.; Giordano, M.; Mollière, P.; Southworth, J.; Brahm, R.; Ciceri, S.; Henning, Th.

    2016-06-01

    The WASP-98 planetary system represents a rare case of a hot Jupiter hosted by a metal-poor main-sequence star. We present a follow-up study of this system based on multi-band photometry and high-resolution spectroscopy. Two new transit events of WASP-98 b were simultaneously observed in four passbands (g', r', i', z'), using the telescope-defocussing technique, yielding eight high-precision light curves with point-to-point scatters of less than 1 mmag. We also collected three spectra of the parent star with a high-resolution spectrograph, which we used to remeasure its spectral characteristics, in particular its metallicity. We found this to be very low, [Fe/H] = -0.49 ± 0.10, but larger than was previously reported, [Fe/H] = -0.60 ± 0.19. We used these new photometric and spectroscopic data to refine the orbital and physical properties of this planetary system, finding that the stellar and planetary mass measurements are significantly larger than those in the discovery paper. In addition, the multi-band light curves were used to construct an optical transmission spectrum of WASP-98 b and probe the characteristics of its atmosphere at the terminator. We measured a lower radius at z' compared with the other three passbands. The maximum variation is between the r' and z' bands, has a confidence level of roughly 6σ and equates to 5.5 pressure scale heights. We compared this spectrum to theoretical models, investigating several possible types of atmospheres, including hazy, cloudy, cloud-free, and clear atmospheres with titanium and vanadium oxide opacities. We could not find a good fit to the observations, except in the extreme case of a clear atmosphere with TiO and VO opacities, in which the condensation of Ti and V was suppressed. As this case is unrealistic, our results suggest the presence of an additional optical-absorbing species in the atmosphere of WASP-98 b, of unknown chemical nature.

  4. Transition of radiative recombination channels from delocalized states to localized states in a GaInP alloy with partial atomic ordering: a direct optical signature of Mott transition?

    PubMed

    Su, Z C; Ning, J Q; Deng, Z; Wang, X H; Xu, S J; Wang, R X; Lu, S L; Dong, J R; Yang, H

    2016-04-01

    Anderson localization is a predominant phenomenon in condensed matter and materials physics. In fact, localized and delocalized states often co-exist in one material. They are separated by a boundary called the mobility edge. Mott transition may take place between these two regimes. However, it is widely recognized that an apparent demonstration of Anderson localization or Mott transition is a challenging task. In this article, we present a direct optical observation of a transition of radiative recombination dominant channels from delocalized (i.e., local extended) states to Anderson localized states in the GaInP base layer of a GaInP/GaAs single junction solar cell by the means of the variable-temperature electroluminescence (EL) technique. It is found that by increasing temperature, we can boost a remarkable transition of radiative recombination dominant channels from the delocalized states to the localized states. The delocalized states are induced by the local atomic ordering domains (InP/GaP monolayer superlattices) while the localized states are caused by random distribution of indium (gallium) content. The efficient transfer and thermal redistribution of carriers between the two kinds of electronic states was revealed to result in both a distinct EL mechanism transition and an electrical resistance evolution with temperature. Our study gives rise to a self-consistent precise picture for carrier localization and transfer in a GaInP alloy, which is an extremely technologically important energy material for fabricating high-efficiency photovoltaic devices. PMID:26960547

  5. Transition of radiative recombination channels from delocalized states to localized states in a GaInP alloy with partial atomic ordering: a direct optical signature of Mott transition?

    NASA Astrophysics Data System (ADS)

    Su, Z. C.; Ning, J. Q.; Deng, Z.; Wang, X. H.; Xu, S. J.; Wang, R. X.; Lu, S. L.; Dong, J. R.; Yang, H.

    2016-03-01

    Anderson localization is a predominant phenomenon in condensed matter and materials physics. In fact, localized and delocalized states often co-exist in one material. They are separated by a boundary called the mobility edge. Mott transition may take place between these two regimes. However, it is widely recognized that an apparent demonstration of Anderson localization or Mott transition is a challenging task. In this article, we present a direct optical observation of a transition of radiative recombination dominant channels from delocalized (i.e., local extended) states to Anderson localized states in the GaInP base layer of a GaInP/GaAs single junction solar cell by the means of the variable-temperature electroluminescence (EL) technique. It is found that by increasing temperature, we can boost a remarkable transition of radiative recombination dominant channels from the delocalized states to the localized states. The delocalized states are induced by the local atomic ordering domains (InP/GaP monolayer superlattices) while the localized states are caused by random distribution of indium (gallium) content. The efficient transfer and thermal redistribution of carriers between the two kinds of electronic states was revealed to result in both a distinct EL mechanism transition and an electrical resistance evolution with temperature. Our study gives rise to a self-consistent precise picture for carrier localization and transfer in a GaInP alloy, which is an extremely technologically important energy material for fabricating high-efficiency photovoltaic devices.

  6. Optical properties of normal spinel MxCo3-xO4 (M=Cr and Cu): Coexistence of charge-transfer and crystal-field transitions

    NASA Astrophysics Data System (ADS)

    Kim, Kwang Joo; Park, Young Ran; Hyun, Dong Hoon; Lee, Sung Ho

    2004-08-01

    Optical properties of normal spinel MxCo3-xO4(M=CrandCu) films grown by sol-gel method have been investigated by the spectroscopic ellipsometry (SE) in the 1.5-4eV region. For x <1.0, the cubic lattice constant of CrxCo3-xO4 is found to increase linearly with x while that of CuxCo3-xO4 decreases slightly. By comparing the optical constants of the ternary oxides measured by SE with those of Co3O4, Mott-Hubbard, charge-transfer (CT) and crystal-field (CF) transitions are found to coexist in the same energy region. The changes in the optical absorption spectrum by Cr and Cu alloying into Co3O4 are explained in terms of the changes in the electronic structure of Co3O4 through the substitution of the octahedral Co3+ and the tetrahedral Co2+ sites of the spinel structure by Cr3+ and Cu2+ ions, respectively. The CT transitions are explained in terms of d states of the Co3+ and Co2+ ions and p states of O2- ion. The CF transitions are interpreted as originating from the CF multiplets of the octahedral Co3+ and Cr3+ ions.

  7. Lasing on the electronic B--X transition of the I/sub 2/ molecule optically pumped by a copper-vapor laser

    SciTech Connect

    Kaslin, V.M.; Petrash, G.G.; Yakushev, O.F.

    1980-04-01

    It is proposed to use pulsed metal-vapor lasers for optical pumping of gas lasers based on electronic transitions of molecules. This uncovers prospects for the development of effective lasers with high average and peak power, which are tunable in the visible and in the infrared. The first step in this direction are experiments on optical pumping of molecular iodine by a copper-vapor laser (lambda=5106 and 5782 A). Results of spectroscopic investigations are reported. It was found that the pumping is by five absorption lines of the X/sup 1/..sigma../sub g//sup +/-B/sup 3/Pi/sub 0//sup +//sub u/ system of the I/sub 2/ molecule, three of which give rise to lasing. The principal pumping was by the 5782 A line. Lasing was obtained on 14 vibrational transitions of the B/sup 3/Pi/sub 0//sup +//sub u/X/sup 1/..sigma../sub g//sup +/ system in the region 1.016--1.342 ..mu..m region. The average generation power in the multifrequency regime was 7 mW at an optical-energy conversion efficiency 4%. It was observed that a noticeable competition takes place between the pump channels of the 5106 and 5782 A lines, and leads to a decrease in the total lasing power. Prospects are discussed of using gas lasers on electronic transitions of molecules optically pumped by metal-vapor vapors, particularly for the development of frequency-tunable optical systems with intensity amplifiers.

  8. Observation and Absolute Frequency Measurements of the {sup 1}S{sub 0}-{sup 3}P{sub 0} Optical Clock Transition in Neutral Ytterbium

    SciTech Connect

    Hoyt, C.W.; Barber, Z.W.; Oates, C.W.; Fortier, T.M.; Diddams, S.A.; Hollberg, L.

    2005-08-19

    We report the direct excitation of the highly forbidden (6s{sup 2}){sup 1}S{sub 0}{r_reversible}(6s6p){sup 3}P{sub 0} optical transition in two odd isotopes of neutral ytterbium. As the excitation laser frequency is scanned, absorption is detected by monitoring the depletion from an atomic cloud at {approx}70 {mu}K in a magneto-optical trap. The measured frequency in {sup 171}Yb (F=1/2) is 518 295 836 591.6{+-}4.4 kHz. The measured frequency in {sup 173}Yb (F=5/2) is 518 294 576 847.6{+-}4.4 kHz. Measurements are made with a femtosecond-laser frequency comb calibrated by the National Institute of Standards and Technology cesium fountain clock and represent nearly a 10{sup 6}-fold reduction in uncertainty. The natural linewidth of these J=0 to J=0 transitions is calculated to be {approx}10 mHz, making them well suited to support a new generation of optical atomic clocks based on confinement in an optical lattice.

  9. Possibility of an optical clock using the 6 {sup 1}S{sub 0}{yields}6 {sup 3}P{sub 0}{sup o} transition in {sup 171,173}Yb atoms held in an optical lattice

    SciTech Connect

    Porsev, Sergey G.; Derevianko, Andrei; Fortson, E.N.

    2004-02-01

    We report calculations assessing the ultimate precision of an atomic clock based on the 578 nm 6 {sup 1}S{sub 0}{yields}6 {sup 3}P{sub 0} transition in Yb atoms confined in an optical lattice trap. We find that this transition has a natural linewidth less than 10 mHz in the odd Yb isotopes, caused by hyperfine coupling. The shift in this transition due to the trapping light acting through the lowest order ac polarizability is found to become zero at the magic trap wavelength of about 752 nm. The effects of Rayleigh scattering, multipole polarizabilities, vector polarizability, and hyperfine induced electronic magnetic moments can all be held below 1 mHz (about one part in 10{sup 18}). In the case of the hyperpolarizability, however, larger shifts due to nearly resonant terms cannot be ruled out without an accurate measurement of the magic wavelength.

  10. Abrupt changes in electronic relaxation and lattice dynamics across the structural phase transition in lightly doped Ca2RuO4 observed via time-resolved optical reflectivity

    NASA Astrophysics Data System (ADS)

    Chu, Hao; Torchinsky, Darius; Zhao, Liuyan; Rall, Patrick; Terrace, Jasminka; Cao, Gang; Hsieh, David; InstituteQuantum Information; Matter, California Institute of Technology Collaboration; Department of Physics; Astronomy, University of Kentucky Collaboration

    2015-03-01

    Ca2RuO4 is a multiband strongly correlated electron system that undergoes a structural phase transition at Ts 360K that is concomitant with an insulator-to-metal transition and a rearrangement of orbital occupancy. Understanding its structural and electronic response to ultrafast optical excitation can provide insight about the microscopic mechanism of this phase transition.We report temperature and fluence dependent time resolved optical reflectivity measurements from lightly doped Ca2RuO4 single crystals. Abrupt changes in both the electronic relaxation dynamics and multiple lattice vibrational modes are observed, including the softening of two optical phonon modes as Ts is approached. We will discuss the relevance of our results to existing theories of the mechanism underlying the structural phase transition in Ca2RuO4 as well as the possibility of photo-inducing this phase transition on ultrafast time scales.

  11. Optical diagnostic techniques in tribological analysis: Applications to wear film characterization, solid lubricant chemical transition, and electrical sliding contacts

    NASA Astrophysics Data System (ADS)

    Windom, Bret C.

    Friction and wear have undisputedly huge macroscopic effects on the cost and lifetime of many mechanical systems. The cost to replace parts and the cost to overcome the energy losses associated with friction, although small in nature, can be enormous over long operating times. The understanding of wear and friction begins with the understanding of the physics and chemistry between the reacting surfaces on a microscopic level. Light as a diagnostic tool is a good candidate to perform the very sensitive microscopic measurements needed to help understand the fundamental science occurring in friction/wear systems. Light's small length scales provide the capabilities to characterize very local surface phenomena, including thin transfer films and surface chemical transitions. Light-based diagnostic techniques provide nearly instantaneous results, enabling one to make in situ/real time measurements which could be used to track wear events and associated chemical kinetics. In the present study, two optical diagnostic techniques were investigated for the analysis of tribological systems. The first technique employed was Raman spectroscopy. Raman spectroscopy was investigated as a possible means for in situ measurement of thin transfer films in order to track the wear kinetics and structural transitions of bulk polymers. A micro-Raman system was designed, built, and characterized to track fresh wear films created from a pin-on-disk tribometer. The system proved capable of characterizing and tracking wear film thicknesses of ˜2 mum and greater. In addition, the system provided results indicating structural changes in the wear film as compared to the bulk when sliding speeds were increased. The spectral changes due to the altering of molecular vibrations can be attributed to the increase in temperature during high sliding speeds. Raman spectroscopy was also used to characterize the oxidation of molybdenum disulphide, a solid lubricant used in many applications, including high

  12. Infrared spectrum involving forbidden transitions & coriolis interaction and identification of optically pumped far infrared laser lines in asymmetrically mono-deuterated methanol (Methanol-D1)

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Indra

    2016-05-01

    In this paper new type of ΔK = 2 and 0 transitions have been identified in the Fourier Transform spectrum of Methanol-D1 (CH2DOH). These transitions are normally forbidden but a "Coriolis" type interaction with nearby states is believed to be contributing sufficient transition strength through intensity borrowing effect. This is the first time such forbidden transitions are reported to be identified in the excited states, in this molecule. The present conjecture is supported by observation of a many strong allowed transitions to upper terminating levels which are seen to be highly perturbed. This conclusion has been reached by comparing calculated energy levels using known molecular parameters (Pearson et al., 2012; Coudert et al., 2014; El Hilali et al., 2011; Quade et al., 1998; Richard Quade, 1998, 1999; Mukhopadhyay, 1997) and the actually observed FIR lines. The upper levels are seen to be upshifted from expected position. A closer look at the calculated energy values seems to indicate a possible interaction between the above states and other proximate torsional-rotational states could occur. The possible candidates for the interacting level manifolds are narrowed down through the presence of the forbidden transition. We also take the opportunity to propose alternate rotational quantum numbers for some of the assignments recently reported in the literature (El Hilali et al., 2011). Some ambiguities are pointed out on the data and the reported analysis. There remain too many such irregularities and we propose to gather a large body assigned transitions in a future catalog. Assignments and relevant comments on optically pumped FIR laser radiation are also made.

  13. ELECTRON-IMPACT EXCITATION OF Cr II: A THEORETICAL CALCULATION OF EFFECTIVE COLLISION STRENGTHS FOR OPTICALLY ALLOWED TRANSITIONS

    SciTech Connect

    Wasson, I. R.; Ramsbottom, C. A.; Scott, M. P.

    2011-10-01

    In this paper, we present electron-impact excitation collision strengths and Maxwellian averaged effective collision strengths for the complicated iron-peak ion Cr II. We consider specifically the allowed lines for transitions from the 3d {sup 5} and 3d {sup 4}4s even parity configuration states to the 3d {sup 4}4p odd parity configuration levels. The parallel suite of R-Matrix packages, RMATRX II, which have recently been extended to allow for the inclusion of relativistic effects, were used to compute the collision cross sections. A total of 108 LS{pi}/280 J{pi} levels from the basis configurations 3d {sup 5}, 3d {sup 4}4s, and 3d {sup 4}4p were included in the wavefunction representation of the target including all doublet, quartet, and sextet terms. Configuration interaction and correlation effects were carefully considered by the inclusion of seven more configurations and a pseudo-corrector 4d-bar type orbital. The 10 configurations incorporated into the Cr II model thus listed are 3d {sup 5}, 3d {sup 4}4s, 3d {sup 4}4p, 3d {sup 3}4s {sup 2}, 3d {sup 3}4p {sup 2}, 3d {sup 3}4s4p, 3d{sup 4}4d-bar, 3d{sup 3}4s4d-bar, 3d{sup 3}4p4d-bar, and 3d{sup 3}4d-bar{sup 2}, constituting the largest Cr II target model considered to date in a scattering calculation. The Maxwellian averaged effective collision strengths are computed for a wide range of electron temperatures 2000-100,000 K which are astrophysically significant. Care has been taken to ensure that the partial wave contributions to the collision strengths for these allowed lines have converged with 'top-up' from the Burgess-Tully sum rule incorporated. Comparisons are made with the results of Bautista et al. and significant differences are found for some of the optically allowed lines considered.

  14. Optical Transitions in Hybrid Perovskite Solar Cells: Ellipsometry, Density Functional Theory, and Quantum Efficiency Analyses for CH3NH3PbI3

    NASA Astrophysics Data System (ADS)

    Shirayama, Masaki; Kadowaki, Hideyuki; Miyadera, Tetsuhiko; Sugita, Takeshi; Tamakoshi, Masato; Kato, Masato; Fujiseki, Takemasa; Murata, Daisuke; Hara, Shota; Murakami, Takurou N.; Fujimoto, Shohei; Chikamatsu, Masayuki; Fujiwara, Hiroyuki

    2016-01-01

    Light-induced photocarrier generation is an essential process in all solar cells, including organic-inorganic hybrid (CH3NH3PbI3 ) solar cells, which exhibit a high short-circuit current density (Jsc ) of approximately 20 mA /cm2 . Although the high Jsc observed in the hybrid solar cells relies on strong electron-photon interaction, the optical transitions in the perovskite material remain unclear. Here, we report artifact-free CH3NH3PbI3 optical constants extracted from ultrasmooth perovskite layers without air exposure and assign all of the optical transitions in the visible and ultraviolet region unambiguously, based on density-functional theory (DFT) analysis that assumes a simple pseudocubic crystal structure. From the self-consistent spectroscopic ellipsometry analysis of the ultrasmooth CH3NH3PbI3 layers, we find that the absorption coefficients of CH3NH3PbI3 (α =3.8 ×104 cm-1 at 2.0 eV) are comparable to those of CuInGaSe2 and CdTe, and high α values reported in earlier studies are overestimated seriously by the extensive surface roughness of CH3NH3PbI3 layers. The polarization-dependent DFT calculations show that CH3NH3 + interacts strongly with the PbI3 - cage, modifying the CH3NH3PbI3 dielectric function in the visible region rather significantly. In particular, the transition matrix element of CH3NH3PbI3 varies, depending on the position of CH3NH3 + within the Pb—I network. When the effect of CH3NH3 + on the optical transition is eliminated in the DFT calculation, the CH3NH3PbI3 dielectric function deduced from DFT shows an excellent agreement with the experimental result. As a result, distinct optical transitions observed at E0(Eg)=1.61 eV , E1=2.53 eV , and E2=3.24 eV in CH3NH3PbI3 are attributed to the direct semiconductor-type transitions at the R , M , and X points in the pseudocubic Brillouin zone, respectively. We further perform the quantum efficiency (QE) analysis for a standard hybrid-perovskite solar cell incorporating a mesoporous TiO2

  15. Frequency Ratio of Two Optical Clock Transitions in Yb+ 171 and Constraints on the Time Variation of Fundamental Constants

    NASA Astrophysics Data System (ADS)

    Godun, R. M.; Nisbet-Jones, P. B. R.; Jones, J. M.; King, S. A.; Johnson, L. A. M.; Margolis, H. S.; Szymaniec, K.; Lea, S. N.; Bongs, K.; Gill, P.

    2014-11-01

    Singly ionized ytterbium, with ultranarrow optical clock transitions at 467 and 436 nm, is a convenient system for the realization of optical atomic clocks and tests of present-day variation of fundamental constants. We present the first direct measurement of the frequency ratio of these two clock transitions, without reference to a cesium primary standard, and using the same single ion of Yb+ 171 . The absolute frequencies of both transitions are also presented, each with a relative standard uncertainty of 6 ×1 0-16. Combining our results with those from other experiments, we report a threefold improvement in the constraint on the time variation of the proton-to-electron mass ratio, μ ˙ /μ =0.2 (1.1 )×1 0-16 yr-1 , along with an improved constraint on time variation of the fine structure constant, α ˙ /α =-0.7 (2.1 )×1 0-17 yr-1 .

  16. Influence of stress on optical transitions in GaN nanorods containing a single InGaN/GaN quantum disk

    SciTech Connect

    Zhuang, Y. D.; Shields, P. A.; Allsopp, D. W. E.; Bruckbauer, J.; Edwards, P. R.; Martin, R. W.

    2014-11-07

    Cathodoluminescence (CL) hyperspectral imaging has been performed on GaN nanorods containing a single InGaN quantum disk (SQD) with controlled variations in excitation conditions. Two different nanorod diameters (200 and 280 nm) have been considered. Systematic changes in the CL spectra from the SQD were observed as the accelerating voltage of the electron beam and its position of incidence are varied. It is shown that the dominant optical transition in the SQD varies across the nanorod as a result of interplay between the contributions of the deformation potential and the quantum-confined Stark effect to the transition energy as consequence of radial variation in the pseudomorphic strain.

  17. Effect of strain-polarization fields on optical transitions in AlGaN/GaN multi-quantum well structures

    NASA Astrophysics Data System (ADS)

    Kladko, V.; Kuchuk, A.; Naumov, A.; Safriuk, N.; Kolomys, O.; Kryvyi, S.; Stanchu, H.; Belyaev, A.; Strelchuk, V.; Yavich, B.; Mazur, Yu. I.; Ware, M. E.; Salamo, G. J.

    2016-02-01

    The influence of strain and barrier/well thickness ratio on recombination processes in multi-quantum well (MQW) Al0.1Ga0.9N/GaN structures was investigated using X-ray diffraction and Raman and photoluminescence spectroscopies. The deformation state of the wells and barriers was determined. In addition, the value of the polarization fields, the density of polarization charges, and the positions of energy levels for optical transitions within the quantum wells were calculated. It was established that compressive strain in the buffer layer as well as in the layers of the MQWs with respect to the buffer layer lead to the piezoelectric fields having equal sign in the well and the barrier. As a result, the recombination of donor-acceptor pairs dominates over transitions between electron and hole states in the quantum well.

  18. Miscible-immiscible quantum phase transition in coupled two-component Bose-Einstein condensates in one-dimensional optical lattices

    NASA Astrophysics Data System (ADS)

    Zhan, Fei; Sabbatini, Jacopo; Davis, Matthew J.; McCulloch, Ian P.

    2014-08-01

    We study the miscible-immiscible quantum phase transition in a linearly coupled binary Bose-Hubbard model in one dimension that can describe the low-energy properties of a two-component Bose-Einstein condensate in optical lattices. With the quantum many-body ground state obtained from the density matrix renormalization group algorithm, we calculate the characteristic physical quantities of the phase transition controlled by the linear coupling between the two components. Furthermore we calculate the Binder cumulant to determine the critical point and construct the phase diagram. The strong-coupling expansion shows that in the Mott insulator regime the model Hamiltonian can be mapped to a spin-1/2 XXZ model with a transverse magnetic field.

  19. Cluster dynamical mean field theory study of antiferromagnetic transition in the square-lattice Hubbard model: Optical conductivity and electronic structure

    NASA Astrophysics Data System (ADS)

    Sato, Toshihiro; Tsunetsugu, Hirokazu

    2016-08-01

    We numerically study optical conductivity σ (ω ) near the "antiferromagnetic" phase transition in the square-lattice Hubbard model at half filling. We use a cluster dynamical mean field theory and calculate conductivity including vertex corrections and, to this end, we have reformulated the vertex corrections in the antiferromagnetic phase. We find that the vertex corrections change various important details in temperature and ω dependencies of conductivity in the square lattice, and this contrasts sharply the case of the Mott transition in the frustrated triangular lattice. Generally, the vertex corrections enhance variations in the ω dependence, and sharpen the Drude peak and a high-ω incoherent peak in the paramagnetic phase. They also enhance the dip in σ (ω ) at ω =0 in the antiferromagnetic phase. Therefore, the dc conductivity is enhanced in the paramagnetic phase and suppressed in the antiferromagnetic phase, but this change occurs slightly below the transition temperature. We also find a temperature region above the transition temperature in which the dc conductivity shows an insulating behavior but σ (ω ) retains the Drude peak, and this region is stabilized by the vertex corrections. We also investigate which fluctuations are important in the vertex corrections and analyze momentum dependence of the vertex function in detail.

  20. Laser-Induced Optical Pumping Measurements of Cross Section for Fine- and Hyperfine-Structure Transitions in Sodium Induced by Collisions with Helium and Argon Atoms

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Sung, C. C.

    1999-01-01

    Optical pumping of the ground states of sodium can radically alter the shape of the laser-induced fluorescence excitation spectrum, complicating measurements of temperature, pressure, etc., which are based on these spectra. Modeling of the fluorescence using rate equations for the eight hyperfine states of the sodium D manifolds can be used to quantify the contribution to the ground state pumping of transitions among the hyperfine excited states induced by collisions with buffer gas atoms. This model is used here to determine, from the shape of experimental spectra, cross sections lor DELTA.F transitions of the P(sub 3/2) state induced by collisions with helium and argon atoms, for a range of values assumed for the P(sub 1/2), DELTA.F cross sections. The hyperfine cross sections measured using this method, which to our knowledge is novel, are compared with cross sections for transitions involving polarized magnetic substates m(sub F) measured previously using polarization sensitive absorption. Also, fine-structure transition cross sections were measured in the pumped vapor, giving agreement with previous measurements made in the absence of pumping.

  1. Laser Induced Optical Pumping Measurements of Cross Sections for Fine and Hyperfine Structure Transitions in Sodium Induced by Collisions with Helium Argon Atoms

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Sung, C. C.

    1998-01-01

    Optical pumping of the ground states of sodium can radically alter the shape of the laser induced fluorescence excitation spectrum, complicating measurements of temperature, pressure, etc., which are based on these spectra. Modeling of the fluorescence using rate equations for the eight hyperfine states of the sodium D manifolds can be used to quantify the contribution to the ground state pumping of transitions among the hyperfine excited states induced by collisions with buffer gas atoms. This model is used here to determine, from the shape of experimental spectra, cross sections for (Delta)F transitions of the P(sub 3/2) state induced by collisions with helium and argon atoms, for a range of values assumed for the P(sub 1/2), (Delta)F cross sections. The hyperfine cross sections measured using this method, which is thought to be novel, are compared with cross sections for transitions involving polarized magnetic substates, m(sub F), measured previously using polarization sensitive absorption. Also, fine structure transition ((Delta)J) cross sections were measured in the pumped vapor, giving agreement with previous measurements made in the absence of pumping.

  2. Dependence of the groundstate interband optical transition in InAs-GaSb superlattices on the width of the GaSb layers

    NASA Astrophysics Data System (ADS)

    Folkes, Patrick; Little, J.; Svensson, S.; Olver, K.; Amtout, A.; Krishna, S.

    2006-03-01

    We have investigated the optical characteristics of a set of InAs-GaSb superlattice structures (SLS) which have InAs layers with a fixed width of 25 å and GaSb layers whose width varies from stucture to structure over the range 25 å to 100 å. Photoluminescence measurements were carried out over the range 10K -- 100K on the SLS. Using photodiodes fabricated from the SLS, measurements of the photocurrent-excitation energy spectrum and the time-resolved photoconductivity were carried out at 78K. The observed dependence of the relative oscillator strength of the SLS band-edge transition on the GaSb layer width will be compared with theory^1. The effect of defects on the the optical and transport properties of the SLS and the dependence of this effect on the GaSb layer width will be discussed.

  3. Band-edge optical transitions in a nonpolar-plane GaN substrate: exciton–phonon coupling and temperature effects

    NASA Astrophysics Data System (ADS)

    Wang, M. Z.; Xu, S. J.

    2016-09-01

    We present a detailed investigation of the band-edge optical transitions involving the interacting exciton–phonon system, especially first-order longitudinal optical (LO) phonon-assisted luminescence of bound and free excitons in m- and c-plane GaN substrates in a low temperature range from 4 K to 40 K. The main luminescence features of all of the three kinds of excitons can be well described by the theoretical models that take exciton-LO-phonon coupling into account. The effective Bohr radii of the excitons play a key role in determining the Huang–Rhys factor characterizing the exciton-LO-phonon coupling strength in GaN. An interesting oscillatory structure is found to appear in the low-temperature luminescence spectra of the nonpolar-plane GaN substrate, which needs to be clarified by further investigations.

  4. Optical properties of (SrMnO₃)n/(LaMnO₃)₂n superlattices: an insulator-to-metal transition observed in the absence of disorder.

    PubMed

    Perucchi, Andrea; Baldassarre, Leonetta; Nucara, Alessandro; Calvani, Paolo; Adamo, Carolina; Schlom, Darrell G; Orgiani, Pasquale; Maritato, Luigi; Lupi, Stefano

    2010-12-01

    We measure the optical conductivity, σ1(ω), of (SrMnO3)n/(LaMnO3)2n superlattices (SL) for n = 1, 3, 5, and 8 and 10 < T < 400 K. Data show a T-dependent insulator to metal transition (IMT) for n ≤ 3, driven by the softening of a polaronic mid-infrared band. At n = 5 that softening is incomplete, while at the largest-period n = 8 compound the MIR band is independent of T and the SL remains insulating. One can thus first observe the IMT in a Manganite system in the absence of the disorder due to chemical doping. Unsuccessful reconstruction of the SL optical properties from those of the original bulk materials suggests that (SrMnO3)n/(LaMnO3)2n heterostructures give rise to a novel electronic state. PMID:21058711

  5. Energy transfer and non-linear optical properties at near ultraviolet wavelengths: Rare earth 4f yields 5d transitions in crystals and glasses

    SciTech Connect

    Hamilton, D.S.

    1992-08-01

    The following topics were studied: two-photon transitions from 4f ground state to 5d excited states in Ce{sup 3+}:CaF{sub 2}; optical absorption and photoionization measurements from excited state of Ce{sup 3+}:Y{sub 3}Al{sub 5}O{sub 12}; excited state photoionization of Ce{sup 3+} ions in Ce{sub 3+}:CaF{sub 2}; optical gain and loss studies in Ce{sup 3+}:LiYF{sub 4}; Gd {yields}Cr energy transfer in Cr{sup 3+}:GSGG, Cr{sup 3+}:GSAG and Cr{sup 3+}:GGG crystals; nonradiative relaxation in Ce{sup 3+} doped crystals and glasses; and grating formation in impurity doped crystals.

  6. Growth and optical properties of Bi{sub 12}SiO{sub 20} single crystals doped with first row transition metal and aluminum

    SciTech Connect

    Petrova, D.; Gospodinov, M.; Sveshtarov, P.

    1995-10-01

    Bi{sub 12}SiO{sub 20} single crystals co-doped with first row transition metals and aluminum were grown from the melt by the Czochralski technique. Optimal growth conditions for optically homogeneous crystals have been established. Dopant molar concentrations in the crystal were determined and segregation coefficients calculated. Transmission spectra were measured in the 0.38--0.85 {micro}m range. It was established that adding Al to the melt bleached the crystals and blue-shifted the entire transmission spectrum. Doping with Cu produced a strong photochromic effect after daylight exposure, changing the crystal color from yellow to red.

  7. Optical transitions of Tm3+ in oxyfluoride glasses and compositional and thermal effect on upconversion luminescence of Tm3+/Yb3+-codoped oxyfluoride glasses.

    PubMed

    Feng, Li; Wu, Yinsu; Liu, Zhuo; Guo, Tao

    2014-01-24

    Optical properties of Tm(3+)-doped SiO2-BaF2-ZnF2 glasses have been investigated on the basis of the Judd-Ofelt theory. Judd-Ofelt intensity parameters, radiative transition probabilities, fluorescence branching ratios and radiative lifetimes have been calculated for different glass compositions. Upconversion emissions were observed in Tm(3+)/Yb(3+)-codoped SiO2-BaF2-ZnF2 glasses under 980 nm excitation. The effects of composition, concentration of the doping ions, temperature, and excitation pump power on the upconversion emissions were also systematically studied. PMID:24051289

  8. Doppler-free approach to optical pumping dynamics in the 6S_1/2‑5D_5/2 electric quadrupole transition of cesium vapor

    NASA Astrophysics Data System (ADS)

    Chan, Eng Aik; Aljunid, Syed Abdullah; Zheludev, Nikolay I.; Wilkowski, David; Ducloy, Martial

    2016-05-01

    The $6S_{1/2}-5D_{5/2}$ electric quadrupole transition is investigated in Cesium vapor at room temperature via nonlinear Doppler-free 6P-6S-5D three-level spectroscopy. Frequency-resolved studies of individual E2 hyperfine lines allow one to analyze optical pumping dynamics, polarization selection rules and line intensities. It opens the way to studies of transfer of light orbital angular momentum to atoms, and the influence of metamaterials on E2 line spectra.

  9. The Optical Gravitational Lensing Experiment. Planetary and Low-Luminosity Object Transits in the Carina Fields of the Galactic Disk

    NASA Astrophysics Data System (ADS)

    Udalski, A.; Szewczyk, O.; Zebrun, K.; Pietrzynski, G.; Szymanski, M.; Kubiak, M.; Soszynski, I.; Wyrzykowski, L.

    2002-12-01

    We present results of the second "planetary and low-luminosity object transit" campaign conducted by the OGLE-III survey. Three fields (35' X 35' each) located in the Carina regions of the Galactic disk (l ≈ 290°) were monitored continuously in February-May 2002. About 1150 epochs were collected for each field. The search for low depth transits was conducted on about 103 000 stars with photometry better than 15 mmag. In total, we discovered 62 objects with shallow depth (≤ 0.08 mag) flat-bottomed transits. For each of these objects several individual transits were detected and photometric elements were determined. Also lower limits on radii of the primary and companion were calculated. The 2002 OGLE sample of stars with transiting companions contains considerably more objects that may be Jupiter-sized (R < 1.6 R_Jup) compared to our 2001 sample. There is a group of planetary candidates with the orbital periods close to or shorter than one day. If confirmed as planets, they would be the shortest period extrasolar planetary systems. In general, the transiting objects may be extrasolar planets, brown dwarfs, or M-type dwarfs. One should be, however, aware that in some cases unresolved blends of regular eclipsing stars can mimic transits. Future spectral analysis and eventual determination of the amplitude of radial velocity should allow final classification. High resolution spectroscopic follow-up observations are, therefore, strongly encouraged. All photometric data are available to the astronomical community from the OGLE INTERNET archive.

  10. Understanding ferromagnetism and optical absorption in 3d transition metal-doped cubic ZrO{sub 2} with the modified Becke-Johnson exchange-correlation functional

    SciTech Connect

    Boujnah, M.; Zaari, H.; El Kenz, A.; Labrim, H.; Benyoussef, A.; Mounkachi, O.

    2014-03-28

    The electronic structure, magnetic, and optical properties in cubic crystalline phase of Zr{sub 1−x}TM{sub x}O{sub 2} (TM = V, Mn, Fe, and Co) at x = 6.25% are studied using density functional theory with the Generalized Gradient Approximation and the modified Becke-Johnson of the exchange-correlation energy and potential. In our calculations, the zirconia is a p-type semiconductor and has a large band gap. We evaluated the possibility of long-range magnetic order for transition metal ions substituting Zr. Our results show that ferromagnetism is the ground state in V, Mn, and Fe-doped ZrO{sub 2} and have a high value of energy in Mn-doped ZrO{sub 2}. However, in Co-doped ZrO{sub 2}, antiferromagnetic ordering is more stable than the ferromagnetic one. The exchange interaction mechanism has been discussed to explain the responsible of this stability. Moreover, it has been found that the V, Mn, and Fe transition metals provide half-metallic properties considered to be the leading cause, responsible for ferromagnetism. Furthermore, the optical absorption spectra in the TM -doped cubic ZrO{sub 2} are investigated.

  11. A non-typical sequence of phase transitions in (NH4)3GeF7: optical and structural characterization.

    PubMed

    Mel'nikova, S V; Molokeev, M S; Laptash, N M; Misyul, S V

    2016-03-28

    Single crystals of germanium double salt (NH4)3GeF7 = (NH4)2GeF6·NH4F = (NH4)3[GeF6]F were grown and studied by the methods of polarization optics and X-ray diffraction. The birefringence Δn = (no - ne), the rotation angle of the optical indicatrix ϕ(T) and unit cell parameters were measured in the temperature range 100-400 K. Three structural phase transitions were found at the temperatures: T1↓ = 279.2 K (T1↑ = 279.4 K), T2↑ = 270 K (T2↓ = 268.9 K), T3↓ = 218 K (T3↑ = 227 K). An unusual sequence of symmetry transformations with temperature change was established: P4/mbm (Z = 2) (G1) ↔ Pbam (Z = 4) (G2) ↔ P21/c (Z = 4) (G3) ↔ Pa3[combining macron] (Z = 8) (G4). The crystal structures of different phases were determined. The experimental data were additionally interpreted by a group-theoretical analysis of the complete condensate of order parameters taking into account the critical and noncritical atomic displacements. Strengthening of the N-HF hydrogen bonds can be a driving force of the observed phase transitions. PMID:26903439

  12. Understanding electronic and optical properties of anatase TiO2 photocatalysts co-doped with nitrogen and transition metals.

    PubMed

    Meng, Qingsen; Wang, Tuo; Liu, Enzuo; Ma, Xinbin; Ge, Qingfeng; Gong, Jinlong

    2013-06-28

    This paper describes an investigation into the general trend in electronic properties of anatase TiO2 photocatalysts co-doped with transition metals and nitrogen employing first-principles density functional theory. Fourteen different transition metals (M), including Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, and Cd, have been considered. The characteristic band structures of the co-doping systems involving the transition metal series are presented. Our results indicate that the absorption edges of TiO2 are shifted to the visible-light region upon introduction of dopants, due to the reduced conduction band minimum (CBM) and the formation of impurity energy levels (IELs) in the band gap. These IELs are primarily formed from (a) the anti-bonding orbitals of the M-O (M indicates the doped transition metal) bonds, (b) the unsaturated nonbonding d orbitals of the doped transition metal (mainly d(xy), d(yz), and d(xz)), and (c) the Ti-O bonding/Ti-N anti-bonding orbitals of the bond next to the doped transition metal. When the valence d electrons of the doped metal are between 3 and 7, all three types of IELs appear in the band gap of the (M, N) co-doped systems. For systems doped with a metal of more than 7 valence electrons, only types (a) and (c) of IELs as well as the unoccupied pz state of N are observed. Based on our analysis, we propose that the co-doping systems such as (V, N), (Cr, N), and (Mn, N), which have the IELs with a significant bandwidth, are of great potential as candidates for photovoltaic applications in the visible light range. PMID:23652827

  13. Influence of inversion creation processes in atomic transitions on four-wave parametric oscillation process (FWPOP) under optical pumping of barium and europium vapor

    NASA Astrophysics Data System (ADS)

    Sokovikov, V. G.; Klimkin, A. V.; Prokopiev, V. E.

    2015-12-01

    Processes of inversion creation in a number of barium and europium atomic transitions under pumping of vapors by eximer XeCl* and KrF* lasers have been investigated. Qualitative study of inversion creation mechanisms that are common for barium and europium atoms has been carried out. Necessary conditions for observation of atom lines of Ba and Eu amplified spontaneous emission (ASE) have been formulated. It has been found that observed absence of long-wave satellites of Eu resonant lines is caused by ASE absence in atomic transitions 8p8P9/2 --> 6d8D07/2 and 8p8P9/2 --> 6d8D011/2 of europium atom. Whereas, absence of ASE in transitions 8p8P9/2 --> 6d8D07/2 and 8p8P9/2 --> 6d8D011/2 of Eu atom is a result of high offset, or starting of pre-dissociating pumping channel of 6d8D07/2,11/2 Eu levels. Problems, caused by of undetermined nature of resonant emission that is observed under optical pumping of europium and barium vapor, are discussed in this paper.

  14. Low-temperature high-density magneto-optical trapping of potassium using the open 4S{yields}5P transition at 405 nm

    SciTech Connect

    McKay, D. C.; Jervis, D.; Fine, D. J.; Simpson-Porco, J. W.; Edge, G. J. A.; Thywissen, J. H.

    2011-12-15

    We report the laser cooling and trapping of neutral potassium on an open transition. Fermionic {sup 40}K is captured using a magneto-optical trap (MOT) on the closed 4S{sub 1/2}{yields}4P{sub 3/2} transition at 767 nm and then transferred, with high efficiency, to a MOT on the open 4S{sub 1/2}{yields}5P{sub 3/2} transition at 405 nm. Because the 5P{sub 3/2} state has a smaller linewidth than the 4P{sub 3/2} state, the Doppler limit is reduced from 145 {mu}K to 24 {mu}K, and we observe temperatures as low as 63(6) {mu}K. The density of trapped atoms also increases, due to reduced temperature and reduced expulsive light forces. We measure a two-body loss coefficient of {beta}=1.4(1)x10{sup -10} cm{sup 3}/s near saturation intensity, and estimate an upper bound of 8x10{sup -18} cm{sup 2} for the ionization cross section of the 5P state at 405 nm. The combined temperature and density improvement in the 405 nm MOT is a twenty-fold increase in phase-space density over our 767 nm MOT, showing enhanced precooling for quantum gas experiments. A qualitatively similar enhancement is observed in a 405 nm MOT of bosonic {sup 41}K.

  15. Bi donor hyperfine state populations studied by optical transitions of donor bound excitons in enriched {sup 28}Si

    SciTech Connect

    Ilkhchy, K. Saeedi; Steger, M.; Thewalt, M. L. W.; Abrosimov, N.; Riemann, H.; Becker, P.; Pohl, H.-J.

    2013-12-04

    We report on the first optical studies of Bi donor bound excitons in {sup 28}Si, using absorption rather than emission spectroscopy, and a new noncontact photoconductivity method which has much higher sensitivity and spectral resolution than photoluminescence spectroscopy. Individual hyperfine components of this potential semiconductor qubit can be resolved under an applied magnetic field, and we find that strong nonresonant optical hyperpolarization towards both the I{sub z} = +9/2 and −9/2 hyperfine states can be observed, depending on the intensity of the above-gap excitation.

  16. Spatially direct and indirect optical transitions observed for AlInAs/AlGaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Neffati, R.; Saïdi, I.; Ben Radhia, S.; Ben Daly, A.; Maaref, M. A.; Boujdaria, K.; Lemaître, A.; Bernardot, F.; Testelin, C.

    2016-09-01

    The effects of the Aluminium concentration on the emission of Al0.45In0.55As/AlyGa1-y As quantum dots (QDs) are investigated by photoluminescence (PL), with the excitation power density as a variable parameter. The influence of a varying barrier composition on the QD emission is investigated theoretically and discussed with respect to PL measurements. For the highest barrier composition value (y = 0.77), we interpret the QD emission as originating from indirect type-II transitions involving electrons in the barrier X valley and heavy holes (HH), with S and P symmetry, in Al0.45In0.55As QDs. The PL spectra of the y = 0.38 sample exhibits three lines: two of them are related to indirect type-II transitions, in which the electron ground state belongs to the indirect gap (L and X) minima in the barrier conduction band, whereas the third transition is attributed to a direct type-I transitions.

  17. Absolute measurement of the 1S0 − 3P0 clock transition in neutral 88Sr over the 330 km-long stabilized fibre optic link

    PubMed Central

    Morzyński, Piotr; Bober, Marcin; Bartoszek-Bober, Dobrosława; Nawrocki, Jerzy; Krehlik, Przemysław; Śliwczyński, Łukasz; Lipiński, Marcin; Masłowski, Piotr; Cygan, Agata; Dunst, Piotr; Garus, Michał; Lisak, Daniel; Zachorowski, Jerzy; Gawlik, Wojciech; Radzewicz, Czesław; Ciuryło, Roman; Zawada, Michał

    2015-01-01

    We report a stability below 7 × 10−17 of two independent optical lattice clocks operating with bosonic 88Sr isotope. The value (429 228 066 418 008.3(1.9)syst (0.9)stat Hz) of the absolute frequency of the 1S0 – 3P0 transition was measured with an optical frequency comb referenced to the local representation of the UTC by the 330 km-long stabilized fibre optical link. The result was verified by series of measurements on two independent optical lattice clocks and agrees with recommendation of Bureau International des Poids et Mesures. PMID:26639347

  18. Microstructural and Optical properties of transition metal (Cu) doped ZnO diluted magnetic semiconductor nano thin films fabricated by sol gel method

    NASA Astrophysics Data System (ADS)

    Ozturk, Ozgur; Asikuzun, Elif; Tasci, A. Tolga; Arda, Lutfi; Demirozu Senol, Sevim; Celik, Sukru; Terzioglu, Cabir

    Undoped and Cu (Copper) doped ZnO (Zn1-xCuxO) semiconductor thin films were produced by using sol-gel method. Cu was doped 1%, 2%, 3%, 4% and 5% ratio. Methanol and monoethanolamine (MEA) were used as solvent and stabilizer. In this study, the effect of Cu doping was investigated on microstructural and optical properties of ZnO DMS thin films. XRD, SEM, AFM and UV-VIS spectrometer measurements were performed for the microstructural and optical characterization. XRD, SEM and AFM results were showed that all of Cu doped ZnO based thin films have a hexagonal structure. The grain size of Cu doped ZnO thin films and morphology of surface were changed with increasing Cu doping. The optical transmittance of transition metal (Cu) doped ZnO thin films were decreased with doping. Keywords:Diluted Magnetic Semiconductor (DMS), Thin Film, Cu-doping, Bandgap Energy, ZnO. This research has been supported by the Kastamonu University Scientific Research Projects Coordination Department under the Grant No. KU-BAP-05/2015-12 and the Scientific and Technological Research Council of Turkey (TUBITAK) Project No. 114F259.

  19. A high resolution electro-optical approach for investigating transition of soluble proteins to integral membrane proteins probed by colicin A.

    PubMed

    Honigmann, Alf; Pulagam, Lakshmi Padmavathi; Sippach, Michael; Bartsch, Philipp; Steinhoff, Heinz-Jürgen; Wagner, Richard

    2012-10-19

    The transition from water soluble state to an integral membrane protein state is a crucial step in the formation of the active form of many pore-forming or receptor proteins. Albeit this, high resolution techniques which allow assay of protein membrane binding and concomitant development of the final active form in the membrane await further development. Here, we describe a horizontal artificial bilayers setup allowing for simultaneous electrical and optical measurements at a single molecule level. We use the membrane binding and subsequent channel formation of colicin A (ColA) a water soluble bacteriocin secreted by some strains of Escherichia coli to demonstrate the potential of the combined electro-optical technique. Our results expand the knowledge on ColA molecular details which show that active ColA is monomeric; membrane binding is pH but not membrane-potential (Δϕ) dependent. ColA is at Δϕ=0 permeable for molecules ≥1 nm. Although ColA exhibits low ion conductance it facilitates permeation of large molecules. Our electro-optical recordings reveal ColA monomeric state and the chimeric character of its pore. PMID:23000162

  20. Free-Surface Optical Scattering as an Indicator of the Shock-Induced Solid-Liquid Phase Transition in Tin

    SciTech Connect

    Stevens, G. D.; Lutz, S. S.; Marshall, B. R.; Turley, W. D.; Veeser, L. R.; Furlanetto, M. R.; Hixson, R. S.; Holtkamp, D. B.; Jensen, B. J.; Rigg, P. A.; Wilke, M. D.

    2008-07-01

    When highly polished metal surfaces melt upon release after shock loading, they exhibit features that suggest significant surface changes accompany the phase transition. The reflection of light from such surfaces changes from specular (pre-shock) to diffuse upon melting. A familiar manifestation of this phenomenon is the loss of signal light in VISAR measurements, which occurs at pressures high enough to melt the free surface. Unlike many other potential material phase-sensitive diagnostics (e.g., reflectometry, conductivity) that show relatively small (1%–10%) changes, the specularity of reflection provides a more sensitive and definitive indication of the solid-liquid phase transition. Data will be presented that support the hypothesis that specularity changes indicate melt in a way that can be measured easily and unambiguously.

  1. Efficient Thermal-Light Interconversions Based on Optical Topological Transition in the Metal-Dielectric Multilayered Metamaterials.

    PubMed

    Zhou, Jing; Chen, Xi; Guo, L Jay

    2016-04-01

    Metal-dielectric multilayered metamaterials are proposed to work as wideband spectral-selective emitters/absorbers due to the topological change in isofrequency contour around the epsilon-near-zero point. By setting the transition at the border between the visible and IR ranges, the metal-dielectric multilayered metamaterials become good absorbers/emitters for visible light and good reflectors for IR light, which are desirable for efficient thermal-light interconversions. PMID:26891165

  2. Magneto-optical investigation of the field-induced transition in bilayer manganese oxide (La0.4Pr0.6)1.2Sr1.8Mn2O7

    NASA Astrophysics Data System (ADS)

    Cao, J.; Haraldsen, J. T.; Rai, R. C.; Brown, S.; Musfeldt, J. L.; Wei, X.; Wang, Y. J.; Apostu, M.; Suryanarayanan, R.; Revcolevschi, A.

    2006-03-01

    We measured the magneto-optical response of PrLSMO in order to investigate the microscopic aspects of the magnetic field driven paramagnetic insulator to ferromagnetic metal transition. With applied magnetic field, optical weight transfers to lower energy and develops a clear signature of ferromagnetic domains. Mn-O stretching and bending modes soften through the phase transition as well, demonstrating precisely how the lattice is coupled to the transition. We also extract the H-T optical phase diagram and compare it with that from resistivity, magnetization, and magnetostriction to show that the lattice responds more slowly than charge and spin at low temperature. Color rendering allows visualization of the thermochromic and magnetochromic effect.

  3. Near band edge anisotropic optical transitions in wide band gap semiconductor Cu2ZnSiS4

    NASA Astrophysics Data System (ADS)

    Levcenco, S.; Dumcenco, D.; Huang, Y. S.; Arushanov, E.; Tezlevan, V.; Tiong, K. K.; Du, C. H.

    2010-10-01

    In this study, anisotropic near band edge transitions of Cu2ZnSiS4 single crystals grown by chemical vapor transport were characterized by using polarization-dependent absorption, piezoreflectance (PzR) and surface photovoltage (SPV) spectroscopy techniques at room temperature. The measurements were carried out on the as grown basal plane with the normal along [2 1 0] and the axis c parallel to the long edge of the crystal platelet. Analysis of absorption and SPV spectra reveal indirect allowed transitions for the absorption edge of Cu2ZnSiS4. The estimated values of indirect band gap are 2.97 eV and 3.07 eV, respectively, for E ⊥c and E ∥c polarization configurations. The polarization-dependent PzR and SPV spectra in the vicinity of the direct band gap of Cu2ZnSiS4 reveal features E⊥ex and E∥ex at around 3.32 eV and 3.41 eV for E ⊥c and E ∥c polarizations, respectively. Both features E⊥ex and E∥ex are associated with the interband excitonic transitions at point Γ and can be explained by crystal-field splitting of valence band. Based on the experimental observations, a plausible band structure near band edge of Cu2ZnSiS4 is proposed.

  4. Assignment of the /Li-7/2 optically pumped laser transitions pumped by Ar/+/ and Kr/+/ laser lines

    NASA Technical Reports Server (NTRS)

    Verma, K. K.; Stwalley, W. C.; Zemke, W. T.

    1981-01-01

    Welling and Wellegehausen (1977) have reported a list of Na2 and Li2 lines (belonging to B-X and A-X systems) which lase when vapors of these dimers are pumped with an Ar(+) or Kr(+) laser. A description is presented of a fluorescence study of the A-X system of the (Li-7)2 molecule excited by a Kr(+) laser (6471 A). The optically pumped laser lines are identified as P and R doublets in two different fluorescence series. The conditions which favor lasing action of these lines are pointed out. All but one of the known optically pumped laser lines of (Li-7)2 along with their assignments are presented in a table. For each pumping line, several additional wavelengths are listed which satisfy the condition for laser oscillations and which might well lase well under slightly improved conditions.

  5. Phase-transition thresholds and vaporization phenomena for ultrasound phase-change nanoemulsions assessed via high-speed optical microscopy.

    PubMed

    Sheeran, Paul S; Matsunaga, Terry O; Dayton, Paul A

    2013-07-01

    Ultrasonically activated phase-change contrast agents (PCCAs) based on perfluorocarbon droplets have been proposed for a variety of therapeutic and diagnostic clinical applications. When generated at the nanoscale, droplets may be small enough to exit the vascular space and then be induced to vaporize with high spatial and temporal specificity by externally-applied ultrasound. The use of acoustical techniques for optimizing ultrasound parameters for given applications can be a significant challenge for nanoscale PCCAs due to the contributions of larger outlier droplets. Similarly, optical techniques can be a challenge due to the sub-micron size of nanodroplet agents and resolution limits of optical microscopy. In this study, an optical method for determining activation thresholds of nanoscale emulsions based on the in vitro distribution of bubbles resulting from vaporization of PCCAs after single, short (<10 cycles) ultrasound pulses is evaluated. Through ultra-high-speed microscopy it is shown that the bubbles produced early in the pulse from vaporized droplets are strongly affected by subsequent cycles of the vaporization pulse, and these effects increase with pulse length. Results show that decafluorobutane nanoemulsions with peak diameters on the order of 200 nm can be optimally vaporized with short pulses using pressures amenable to clinical diagnostic ultrasound machines. PMID:23760161

  6. Phase-transition thresholds and vaporization phenomena for ultrasound phase-change nanoemulsions assessed via high speed optical microscopy

    PubMed Central

    Sheeran, Paul S.; Matsunaga, Terry O.; Dayton, Paul A.

    2015-01-01

    Ultrasonically activated phase-change contrast agents (PCCAs) based on perfluorocarbon droplets have been proposed for a variety of therapeutic and diagnostic clinical applications. When generated at the nanoscale, droplets may be small enough to exit the vascular space and then be induced to vaporize with high spatial and temporal specificity by externally-applied ultrasound. The use of acoustical techniques for optimizing ultrasound parameters for given applications can be a significant challenge for nanoscale PCCAs due to the contributions of larger outlier droplets. Similarly, optical techniques can be a challenge due to the sub-micron size of nanodroplet agents and resolution limits of optical microscopy. In this study, an optical method for determining activation thresholds of nanoscale emulsions based on the in vitro distribution of bubbles resulting from vaporization of PCCAs after single, short (<10 cycles) ultrasound pulses is evaluated. Through ultra-high-speed microscopy it is shown that the bubbles produced early in the pulse from vaporized droplets are strongly affected by subsequent cycles of the vaporization pulse, and these effects increase with pulse length. Results show that decafluorobutane nanoemulsions with peak diameters on the order of 200 nm can be optimally vaporized with short pulses using pressures amenable to clinical diagnostic ultrasound machines. PMID:23760161

  7. One-step hydrothermal conversion of VO2(B) into W-doped VO2(M) and its phase transition and optical switching properties

    NASA Astrophysics Data System (ADS)

    Zhang, Yifu; Zhang, Xiongzhi; Huang, Yu; Huang, Chi; Niu, Fei; Meng, Changgong; Tan, Xiaoyu

    2014-02-01

    W-doped monoclinic vanadium dioxide VO2(M) nanobelts have been transformed from VO2(B) nanobelts in the presence of tungstic acid by a facile one-step hydrothermal route for the first time. The as-prepared samples were characterized by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and variable-temperature infrared spectroscopy (IR). The results show that W atoms are doped into the crystal lattice of VO2(M) matrix, and the morphology and size of the as-obtained VO2(M) nanobelts are dependent on that of the precursor VO2(B). The phase transition temperature (Tc) of W-doped VO2(M) can be tuned by W doping. The variable-temperature IR reveals that the as-synthesized W-doped VO2(M) nanobelts have outstanding thermochromic characters and optical switching properties.

  8. High-pressure optical absorption and x-ray-diffraction studies in RbI and KI approaching the metallization transition

    NASA Astrophysics Data System (ADS)

    Asaumi, K.; Suzuki, T.; Mori, T.

    1983-09-01

    The pressure dependence of the fundamental optical absorption edges in RbI and KI crystals has been investigated up to 70 GPa at room temperature by using high-pressure apparatus of sapphire and diamond anvil types. The absorption edges in RbI and KI are found to show some complicated behaviors below ~5 GPa within the uv region. Beyond ~5 GPa, absorption edges decrease monotonically with increasing pressure up to 70 GPa. The x-ray-diffraction study shows that the CsCl-type crystal structure remains stable up to 67 GPa after the NaCl- to CsCl-type phase transition at 0.4 GPa for RbI and at 1.9 GPa for KI, respectively. The metallization pressures of RbI and KI are estimated to be approximately 85 and 115 GPa, respectively.

  9. Photogalvanic effect in the HgTe/CdTe topological insulator due to edge-bulk optical transitions

    NASA Astrophysics Data System (ADS)

    Kaladzhyan, V.; Aseev, P. P.; Artemenko, S. N.

    2015-10-01

    We study theoretically the 2D HgTe/CdTe quantum well topological insulator illuminated by circularly polarized light with frequencies higher than the difference between the equilibrium Fermi level and the bottom of the conduction band (THz range). We show that electron-hole asymmetry results in spin-dependent electric dipole transitions between edge and bulk states, and we predict an occurrence of a circular photocurrent. If the edge state is tunnel-coupled to a conductor, then the photocurrent can be detected by measuring an electromotive force in the conductor, which is proportional to the photocurrent.

  10. Compositional dependence of optical interband transition energies in GeSn and GeSiSn alloys

    NASA Astrophysics Data System (ADS)

    Xu, Chi; Senaratne, Charutha L.; Kouvetakis, John; Menéndez, José

    2015-08-01

    The dielectric functions of GeSn and GeSiSn alloys were measured in the 1-6 eV energy range using spectroscopic ellipsometry. The contributions from the E1, E1 + Δ1, E0‧, E2, and E1‧ critical points in the joint density of electronic states were enhanced by computing numerical second derivatives of the measured dielectric function, and the resulting lineshapes were fitted with model expressions from which the critical point energies, amplitudes, broadenings, and phases were determined. A detailed analysis of the compositional dependence of the different transition energies is presented. By describing this dependence in terms of quadratic polynomials, the bowing parameter (quadratic coefficient) for each transition is determined. It is shown that the bowing parameters in the ternary alloy follow a distinct chemical trend, in which the ternary is well described in terms of bowing parameters for the underlying binary alloys, and these bowing parameters increase as a function of the size and electronegativity mismatch of the alloy constituents.

  11. Measurement of the optical properties of lunar rocks in the transition zone, resulting from observations made by Lunokhod 2

    NASA Technical Reports Server (NTRS)

    Lipskiy, Y. N.; Shevchenko, V. V.

    1977-01-01

    Photometric measurements were carried out directly on the lunar surface with the aid of a calibration device, a plate with fields of different brightness, placed in the field of view of the panoramic telephotometers. The brightness of the fields of the calibration plate were measured in preliminary studies, relative to the brightness of a magnesia screen. This permitted determination of the reflectance features of the surficial lunar material relative to the standard most widely used in brightness studies of natural substances. The total brightness of sections a few centimeters across was recorded in direct proximity to the apparatus. The total area investigated in one panorama was about one square meter. Several areas in the mare and highland regions were studied. The albedos of various surface objects were obtained. A comparison of the brightness measurements with data from the RIFMA-M instrument discloses a correlation of the albedo change with change in chemical composition of the surface rock. Direct photometric studies of the lunar surface in the "mare-highland" transition zone assist in tracing the transition from one type of rock to another, and in obtaining information on the processes of material exchange between these two types of lunar landscape.

  12. Optical properties and structural phase transitions of lead-halide based inorganic-organic 3D and 2D perovskite semiconductors under high pressure

    NASA Astrophysics Data System (ADS)

    Matsuishi, K.; Ishihara, T.; Onari, S.; Chang, Y. H.; Park, C. H.

    2004-11-01

    Optical absorption, photoluminescence and Raman scattering of lead-halide based inorganic-organic perovskite semiconductors were measured under quasi-hydrostatic pressure at room temperature. For the 3D perovskite semiconductor, (CH3NH3)PbBr3, the free exciton photoluminescence band exhibits red-shifts with pressure, and jumps to a higher energy by 0.07 eV at 0.8 GPa, which is associated with a phase transition from a cubic to an orthorhombic structure confirmed by Raman scattering. Above the phase transition pressure, the exciton band shows blue-shifts with further increasing pressure, and eventually disappears above 4.7 GPa. The results are compared with those for the 2D perovskite semiconductor, (C4H9NH3)2PbI4. First principles pseudopotential calculations were performed to investigate changes in octahedral distortion and electronic band structures with pressure. The calculations have explained the origins of the intriguing changes in the electronic states with pressure in view of bonding characters between atomic orbitals in octahedra.

  13. A comparative study of optical absorption and photocatalytic properties of nanocrystalline single-phase anatase and rutile TiO{sub 2} doped with transition metal cations

    SciTech Connect

    Kernazhitsky, L.; Shymanovska, V.; Gavrilko, T.; Naumov, V.; Kshnyakin, V.; Khalyavka, T.

    2013-02-15

    The effect of nanocrystalline TiO{sub 2} doping with transition metal cations (Cu{sup 2+}, Fe{sup 3+}, Co{sup 2+}, Cr{sup 3+}) on their optical absorption and photocatalytic properties was investigated. The obtained metal-doped TiO{sub 2} samples were characterized by X-ray diffraction, scanning electron microscopy, and UV-vis absorption spectroscopy. It is shown that doping effect on anatase (A) and rutile (R) properties is quite different, being much stronger and complicated on A than on R. Contrary to doped R, doped A revealed a significant red shift of the absorption edge along with the band gap narrowing. Photocatalytic activity of anatase increases upon doping in the order: AR/Co>R/Cu>R/Fe>R/Cr, indicating the inhibitory effect of impurity cations. This fact correlates with the decrease in the UV absorption of the doped rutile in the region of the Hg-lamp irradiation at 4.88 eV. - Graphical abstract: A red shift of the absorption edge of nanocrystalline single-phase anatase after doping with transition metal cations. Highlights: Black-Right-Pointing-Pointer Single-phase anatase and rutile powders surface-doped with transition metal cations. Black-Right-Pointing-Pointer Absorption edge and band gap of rutile do not change with surface doping. Black-Right-Pointing-Pointer Band gap of surface-doped anatase reduces being the lowest for A/Fe. Black-Right-Pointing-Pointer The surface-doping improves photocatalytic activity of anatase. Black-Right-Pointing-Pointer The surface-doping inhibits photocatalytic activity of rutile.

  14. Optical Temperature Sensing Behavior Through Stark Sublevels Transitions of Green and Red Upconversion Emissions for Er3+-Yb3+-Li+ Codoped TiO2 Phosphors.

    PubMed

    He, Y Y; Wu, J L; Wang, X H; Feng, Z Q; Dong, B

    2016-04-01

    The Er3+-Yb3+-Li+ codoped TiO2 phosphors have been prepared by sol-gel method. The green and red upconversion emissions were observed under a 976 nm laser diode excitation, which were ascribed to 2H11/2 --> 4I15/2, 4S3/2(I)/4S3/2(II) -->4I15/2, and 4F9/2(I)/4F9/2(II) -->4I15/2 transitions of Er3+ Stark sublevels. The fluorescence intensity ratios (FIR), which are corresponding to the transitions of 2H11/2/(4S3/2(I)+4S3/2(II))--> 4I5/2, 4S3/2(I)/4S3/2(II) -->4I15/2, and 4F9/2(II)/4F9/2(II) -->4I15/2, have been studied as a function of temperature in the range of 303 673 K. The temperature sensitivities have been calculated at the maximum value of 0.0020 K-1, 0.0015 K-1, and 0.0011 K-1 at the temperatures of 427 K, 350 K, and 273 K for the three coupled energy level transitions, respectively. The Er3+-Yb3+-Li+ codoped Ti02 phosphor with different temperature sensitivities by Stark sublevels indicated that it is a promising material for application in optical temperature sensing at a wide range of temperature. PMID:27451706

  15. Intermultiplet transitions in optically opaque EuBa{sub 2}Cu{sub 3}O{sub 7}: An inelastic neutron scattering study

    SciTech Connect

    Staub, U.; Soderholm, L.; Osborn, R.; Guillaume, M.; Furrer, A.; Trounov, V.

    1994-06-01

    We report the results of inelastic neutron scattering (INS) studies of the J=0 to J=1 magnetic transitions in EuBa{sub 2}Cu{sub 3}O{sub 7}. The low J values of these multiplets restrict our crystal field analysis to the second order crystalline electric field (CEF) parameters B{sub o}{sup 2} and B{sub 2}{sup 2} obtained by fitting the splitting of the J=l multiplet, and the spin-orbit coupling parameter, which is used to fit the energy of the J=0 to J=l multiplet splitting. We compare our results to those derived from other INS studies on different rare earths, as well as with B{sub o}{sup 2} and B{sub 2}{sup 2} derived from Moessbauer studies. The J=O to J=l splitting observed here is smaller than previously seen by optical spectroscopic studies on a variety of transparent, ionic compounds, necessitating the inclusion of a free-ion parameter in the fitting procedure. This work represents the first time that a complete excited multiplet has been seen for R in RBa{sub 2}CU{sub 3}O{sub 7}. These results are particularly germane to crystal field analyses of the light rare earth ions in optically opaque materials, where assumptions about free-ion parameters are essential for a meaningful analysis.

  16. Surface alignment, anchoring transitions, optical properties, and topological defects in the nematic phase of thermotropic bent-core liquid crystal A131

    NASA Astrophysics Data System (ADS)

    Senyuk, B.; Wonderly, H.; Mathews, M.; Li, Q.; Shiyanovskii, S. V.; Lavrentovich, O. D.

    2010-10-01

    We study optical, structural, and surface anchoring properties of thermotropic nematic bent-core material A131. The focus is on the features associated with orientational order as the material has been reported to exhibit not only the usual uniaxial nematic but also the biaxial nematic phase. We demonstrate that A131 experiences a surface anchoring transition from a perpendicular to tilted alignment when the temperature decreases. The features of the tilted state are consistent with surface-induced birefringence associated with smectic layering near the surface and a molecular tilt that changes along the normal to the substrates. The surface-induced birefringence is reduced to zero by a modest electric field that establishes a uniform uniaxial nematic state. Both refractive and absorptive optical properties of A131 are consistent with the uniaxial order. We found no evidence of the “polycrystalline” biaxial behavior in the cells placed in crossed electric and magnetic fields. We observe stable topological point defects (boojums and hedgehogs) and nonsingular “escaped” disclinations pertinent only to the uniaxial order. Finally, freely suspended films of A131 show uniaxial nematic and smectic textures; a decrease in the film thickness expands the temperature range of stability of smectic textures, supporting the idea of surface-induced smectic layering. Our conclusion is that A131 features only a uniaxial nematic phase and that the apparent biaxiality is caused by subtle surface effects rather than by the bulk biaxial phase.

  17. Influence of transition metal doping on the structural, optical, and magnetic properties of TiO2 films deposited on Si substrates by a sol–gel process

    PubMed Central

    2013-01-01

    Transition metal (TM)-doped TiO2 films (TM = Co, Ni, and Fe) were deposited on Si(100) substrates by a sol–gel method. With the same dopant content, Co dopants catalyze the anatase-to-rutile transformation (ART) more obviously than Ni and Fe doping. This is attributed to the different strain energy induced by the different dopants. The optical properties of TM-doped TiO2 films were studied with spectroscopic ellipsometry data. With increasing dopant content, the optical band gap (EOBG) shifts to lower energy. With the same dopant content, the EOBG of Co-doped TiO2 film is the smallest and that of Fe-doped TiO2 film is the largest. The results are related to electric disorder due to the ART. Ferromagnetic behaviors were clearly observed for TM-doped TiO2 films except the undoped TiO2 film which is weakly magnetic. Additionally, it is found that the magnetizations of the TM-doped TiO2 films decrease with increasing dopant content. PMID:24350904

  18. Substrate-induced renormalization of the quasiparticle and optical gaps in monolayer transition metal dichalcogenides from GW and GW-BSE calculations

    NASA Astrophysics Data System (ADS)

    da Jornada, Felipe H.; Ong, Chin Shen; Qiu, Diana Y.; Louie, Steven G.

    There has been a considerable effort to experimentally characterize the electronic and optical properties of novel atomically thin 2D semiconductors, such as mono- and few-layer transition metal dichalcogenides (TMDs). However, the role that different substrates play in these experiments still remains unclear. From a theoretical perspective, it is hard to include the substrate in an ab initio framework, while in experiments, it is often difficult to suspend these samples. Here, we present a new method to compute the substrate effect on the quasiparticle and optical properties of quasi-2D materials based on state-of-the-art ab initio GW and GW plus Bethe-Salpeter equation (GW-BSE) methods. We compute the effects of different metallic and semiconducting substrates, and show that the quasiparticle gap and exciton binding energy can be dramatically reduced even with semiconducting substrates. This work was supported by the National Science Foundation under Grant No. DMR15-1508412 and the DOE under Contract No. DE-AC02-05CH11231.

  19. Finding consistency between different views of the absorption enhancement of black carbon: An observationally constrained hybrid model to support a transition in optical properties with mass fraction

    NASA Astrophysics Data System (ADS)

    Coe, H.; Allan, J. D.; Whitehead, J.; Alfarra, M. R. R.; Villegas, E.; Kong, S.; Williams, P. I.; Ting, Y. C.; Haslett, S.; Taylor, J.; Morgan, W.; McFiggans, G.; Spracklen, D. V.; Reddington, C.

    2015-12-01

    The mixing state of black carbon is uncertain yet has a significant influence on the efficiency with which a particle absorbs light. In turn, this may make a significant contribution to the uncertainty in global model predictions of the black carbon radiative budget. Previous modelling studies that have represented this mixing state using a core-shell approach have shown that aged black carbon particles may be considerably enhanced compared to freshly emitted black carbon due to the addition of co-emitted, weakly absorbing species. However, recent field results have demonstrated that any enhancement of absorption is minor in the ambient atmosphere. Resolving these differences in absorption efficiency is important as they will have a major impact on the extent to which black carbon heats the atmospheric column. We have made morphology-independent measurements of refractory black carbon mass and associated weakly absorbing material in single particles from laboratory-generated diesel soot and black carbon particles in ambient air influenced by traffic and wood burning sources and related these to the optical properties of the particles. We compared our calculated optical properties with optical models that use varying mixing state assumptions and by characterising the behaviour in terms of the relative amounts of weakly absorbing material and black carbon in a particle we show a sharp transition in mixing occurs. We show that the majority of black carbon particles from traffic-dominated sources can be treated as externally mixed and show no absorption enhancement, whereas models assuming internal mixing tend to give the best estimate of the absorption enhancement of thickly coated black carbon particles from biofuel or biomass burning. This approach reconciles the differences in absorption enhancement previously observed and offers a systematic way of treating the differences in behaviour observed.

  20. Characterization by combined optical and FT infrared spectra of 3d-transition metal ions doped-bismuth silicate glasses and effects of gamma irradiation

    NASA Astrophysics Data System (ADS)

    ElBatal, F. H.; Abdelghany, A. M.; ElBatal, H. A.

    2014-03-01

    Optical and infrared absorption spectral measurements were carried out for binary bismuth silicate glass and other derived prepared samples with the same composition and containing additional 0.2% of one of 3d transition metal oxides. The same combined spectroscopic properties were also measured after subjecting the prepared glasses to a gamma dose of 8 Mrad. The experimental optical spectra reveal strong UV-near visible absorption bands from the base and extended to all TMs-doped samples and these specific extended and strong UV-near visible absorption bands are related to the contributions of absorption from both trace iron (Fe3+) ions present as contaminated impurities within the raw materials and from absorption of main constituent trivalent bismuth (Bi3+) ions. The strong UV-near visible absorption bands are observed to suppress any further UV bands from TM ions. The studied glasses show obvious resistant to gamma irradiation and only small changes are observed upon gamma irradiation. This observed shielding behavior is related to the presence of high Bi3+ ions with heavy mass causing the observed stability of the optical absorption. Infrared absorption spectra of the studied glasses reveal characteristic vibrational bands due to both modes from silicate network and the sharing of Bi-O linkages and the presence of TMs in the doping level (0.2%) causes no distinct changes within the number or position of the vibrational modes. The presence of high Bi2O3 content (70 mol%) appears to cause stability of the structural building units towards gamma irradiation as revealed by FTIR measurements.

  1. Investigation on the quantum-to-classical transition by optical parametric amplification: Generation and detection of multiphoton quantum superposition

    NASA Astrophysics Data System (ADS)

    De Martini, Francesco; Sciarrino, Fabio

    2015-02-01

    We review an extended research carried out on the theoretical and experimental realization of a macroscopic quantum superposition (MQS) made up with photons. The described scheme is based on a nonlinear process, the quantum injected optical parametric amplification, that transforms the quantum coherence of a single particle state, i.e. a Micro-qubit, into a Macro-qubit, consisting in a large number M of photons in quantum superposition. Since the adopted scheme was found resilient to decoherence, the MQS demonstration was carried out experimentally at room temperature with M ≥104. This result elicited an extended study on quantum cloning, quantum amplification and quantum decoherence. The MQS interference patterns for large M were revealed in the experiment and the bipartite Micro-Macro entanglement was also demonstrated for a limited number of generated particles. At last, the perspectives opened by this new method are considered in the view of further studies on quantum foundations and quantum measurement.

  2. Definition of Shifts of Optical Transitions Frequencies due to Pulse Perturbation Action by the Photon Echo Signal Form

    NASA Astrophysics Data System (ADS)

    Lisin, V. N.; Shegeda, A. M.; Samartsev, V. V.

    2015-09-01

    A relative phase shift between the different groups of excited dipoles, which appears as result of its frequency splitting due to action of a pulse of electric or magnetic fields, depends on a time, if the pulse overlaps in time with echo-pulse. As а consequence, the echo waveform is changed. The echo time form is modulated. The inverse modulation period well enough approximates Zeeman and pseudo-Stark splitting in the cases of magnetic and, therefore, electrical fields. Thus the g-factors of ground 4I15/2 and excited 4F9/2 optical states of Er3+ ion in LuLiF4 and YLiF4 have been measured and pseudo-Stark shift of R1 line in ruby has been determined.

  3. A Real-Time Orbit Determination Method for Smooth Transition from Optical Tracking to Laser Ranging of Debris

    PubMed Central

    Li, Bin; Sang, Jizhang; Zhang, Zhongping

    2016-01-01

    A critical requirement to achieve high efficiency of debris laser tracking is to have sufficiently accurate orbit predictions (OP) in both the pointing direction (better than 20 arc seconds) and distance from the tracking station to the debris objects, with the former more important than the latter because of the narrow laser beam. When the two line element (TLE) is used to provide the orbit predictions, the resultant pointing errors are usually on the order of tens to hundreds of arc seconds. In practice, therefore, angular observations of debris objects are first collected using an optical tracking sensor, and then used to guide the laser beam pointing to the objects. The manual guidance may cause interrupts to the laser tracking, and consequently loss of valuable laser tracking data. This paper presents a real-time orbit determination (OD) and prediction method to realize smooth and efficient debris laser tracking. The method uses TLE-computed positions and angles over a short-arc of less than 2 min as observations in an OD process where simplified force models are considered. After the OD convergence, the OP is performed from the last observation epoch to the end of the tracking pass. Simulation and real tracking data processing results show that the pointing prediction errors are usually less than 10″, and the distance errors less than 100 m, therefore, the prediction accuracy is sufficient for the blind laser tracking. PMID:27347958

  4. A Real-Time Orbit Determination Method for Smooth Transition from Optical Tracking to Laser Ranging of Debris.

    PubMed

    Li, Bin; Sang, Jizhang; Zhang, Zhongping

    2016-01-01

    A critical requirement to achieve high efficiency of debris laser tracking is to have sufficiently accurate orbit predictions (OP) in both the pointing direction (better than 20 arc seconds) and distance from the tracking station to the debris objects, with the former more important than the latter because of the narrow laser beam. When the two line element (TLE) is used to provide the orbit predictions, the resultant pointing errors are usually on the order of tens to hundreds of arc seconds. In practice, therefore, angular observations of debris objects are first collected using an optical tracking sensor, and then used to guide the laser beam pointing to the objects. The manual guidance may cause interrupts to the laser tracking, and consequently loss of valuable laser tracking data. This paper presents a real-time orbit determination (OD) and prediction method to realize smooth and efficient debris laser tracking. The method uses TLE-computed positions and angles over a short-arc of less than 2 min as observations in an OD process where simplified force models are considered. After the OD convergence, the OP is performed from the last observation epoch to the end of the tracking pass. Simulation and real tracking data processing results show that the pointing prediction errors are usually less than 10″, and the distance errors less than 100 m, therefore, the prediction accuracy is sufficient for the blind laser tracking. PMID:27347958

  5. Magneto-optical activity of f-f transitions in ErFe3(BO3)4 and ErAl3(BO3)4 single crystals

    NASA Astrophysics Data System (ADS)

    Malakhovskii, A. V.; Sukhachev, A. L.; Sokolov, V. V.; Kutsak, T. V.; Bondarev, V. S.; Gudim, I. A.

    2015-06-01

    Absorption, magnetic circular dichroism and natural circular dichroism spectra of ErFe3(BO3)4 and ErAl3(BO3)4 single crystals were measured as a function of temperature in the range of 90-293 K. It was found out that magneto-optical activity of the same f-f transitions in the studied crystals substantially differed and their temperature dependences did not follow the Curie-Weiss law in contrast to the properties of allowed transitions. The observed phenomena were accounted for by the nature of f-f transitions allowance. Properties of the transition 4I15/2→4S3/2 were studied in detail. In particular, the Zeeman splitting and the natural optical activity of the absorption lines composed of the transition were determined. The vibronic line with the very large natural optical activity was revealed and identified. Two nonequivalent Er3+ ion positions with the opposite chirality were found out in one of the excited states. Polarization properties of the 4I15/2→4S3/2 transition in the ErFe3(BO3)4 crystal have shown that the local symmetry of Er3+ ion in this crystal in the range of 90-293 K is lower than the D3 one. From the heat capacity measurements it was revealed, that the first order structural phase transition to lower symmetry occurred in ErFe3(BO3)4 at 433-439 K.

  6. The effect of temperature and pressure on optical absorption spectra of transition zone minerals - Implications for the radiative conductivity of the Earth's interior

    NASA Astrophysics Data System (ADS)

    Thomas, S.; Jacobsen, S. D.; Bina, C. R.; Goncharov, A. F.; Frost, D. J.; McCammon, C. A.

    2010-12-01

    Optical absorption spectra of high-pressure minerals can be used as indirect tools to calculate radiative conductivities of the Earth’s interior [e.g., 1]. Recent high-pressure studies imply that e.g. ringwoodite, γ-(Mg,Fe)2SiO4, does not become opaque in the near infrared and visible region, as previously assumed, but remains transparent to 21.5 GPa [2]. Therefore, it has been concluded that radiative heat transfer does not necessarily become blocked at high pressures of the mantle and ferromagnesian minerals actually might contribute to the heat flow in the Earth’s interior [2]. However, experimental results on temperature effects on radiative heat transfer are not available. We studied the effect of both, pressure and temperature, on the optical absorption of hydrous Fe-bearing ringwoodite, γ-(Mg,Fe)2SiO4, and hydrous Fe-bearing wadsleyite, β-(Mg,Fe)2SiO4, which are the main components of the Earth’s transition zone. Gem-quality single-crystals were synthesized at 18 GPa and 1400 °C in a 5000t multianvil apparatus. Crystals were analyzed by Mössbauer and Raman spectroscopy, electron microprobe analysis and single-crystal X-ray diffraction. For optical absorption measurements in the IR - VIS - UV spectral range (400 - 50000 cm-1) 50 µm sized single-crystals of ringwoodite and wadsleyite were double polished to thicknesses of 13 µm and 18 µm, respectively, and loaded in resistively heated diamond-anvil cells with argon as pressure medium. After taking measurements at high pressure and room temperature, ringwoodite was studied at 26 GPa up to 650 °C and wadsleyite spectra were recorded at 16 GPa up to 450 °C. At ambient pressure the absorption spectrum of ringwoodite reveals a crystal field band (Fe2+) at 12075 cm-1, an intervalence charge transfer band (Fe2+ to Fe3+) at 16491 cm-1, and an absorption edge due to ligand-metal charge transfer close to 30000 cm-1. The wadsleyite spectrum is characterized by a similar absorption edge in the VIS-UV range

  7. First Results from the MIT Optical Rapid Imaging System (MORIS) on the IRTF: A Stellar Occultation by Pluto and a Transit by Exoplanet XO-2b

    NASA Astrophysics Data System (ADS)

    Gulbis, A. A. S.; Bus, S. J.; Elliot, J. L.; Rayner, J. T.; Stahlberger, W. E.; Rojas, F. E.; Adams, E. R.; Person, M. J.; Chung, R.; Tokunaga, A. T.; Zuluaga, C. A.

    2011-04-01

    We present a high-speed, visible-wavelength imaging instrument: MORIS (the MIT Optical Rapid Imaging System). MORIS is mounted on the 3 m Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. Its primary component is an Andor iXon camera, a nearly 60" square field of view with high quantum efficiency, low read noise, low dark current, and full-frame readout rates ranging from as slow as desired to a maximum of between 3.5 Hz and 35 Hz (depending on the mode; read noise of 6 e- pixel-1 and 49 e- pixel-1 with electron-multiplying gain = 1, respectively). User-selectable binning and subframing can increase the cadence to a few hundred hertz. An electron-multiplying mode can be employed for photon counting, effectively reducing the read noise to subelectron levels at the expense of dynamic range. Data cubes, or individual frames, can be triggered to several-nanosecond accuracy using the Global Positioning System. MORIS is mounted on the side-facing exit window of SpeX, allowing simultaneous near-infrared and visible observations. Here, we describe the components, setup, and measured characteristics of MORIS. We also report results from the first science observations: the 2008 June 24 stellar occultation by Pluto and an extrasolar planetary transit by XO-2b. The Pluto occultation of a 15.8R magnitude star has a signal-to-noise ratio of 35 per atmospheric scale height and a midtime error of 0.32 s. The XO-2b transit reaches photometric precision of 0.5 mmag in 2 minutes and has a midtime timing precision of 23 s.

  8. A study of structural phase transition, vibration, optical, and magnetic properties of Fe-doped PbTiO3 nanostructured powders

    NASA Astrophysics Data System (ADS)

    Oanh, Le Thi Mai; Do, Danh Bich; Van Minh, Nguyen

    2016-07-01

    Crystal structure, surface morphology, vibration, optical, and magnetic properties of PbTi1- x Fe x O3 ( x = 0.00, 0.02, 0.04, 0.06, 0.08, and 0.10) nanoparticles prepared by sol-gel method have been investigated using X-ray diffraction (XRD) analysis, scanning electron microscopy, Raman scattering, ultraviolet-visible (UV-Vis) absorption spectroscopy, and magnetization measurements. PbTi1- x Fe x O3 nanoparticles exhibit a structural phase transition from tetragonal to cubic structure as Fe concentration increases from 0 to 10 %mol. This leads to the reduction in tetragonal c/a ratio from 1.052 for un-doped PbTiO3 to 1.017 for PbTi0.9Fe0.1O3 sample. Grain size of the PbTi1- x Fe x O3 nanoparticles decreases with increasing Fe content and obviously increases with increasing calcination temperature. Raman spectra not only indicate the structural phase transition, but also confirm the replacement of Ti cations by Fe in the host PbTiO3 crystal lattice. Moreover, PbTi1- x Fe x O3 presents a narrowed band gap, much smaller than that of pure PbTiO3, which even remarkably reduces with increasing calcination temperature. PbTi1- x Fe x O3 shows a decrease in room temperature ferromagnetism as calcination temperature increases which can be explained by the decrease in surface oxygen vacancy. Furthermore, high tetragonality PbTi1- x Fe x O3 nanocrystals calcined at 900 °C exhibit a rapid increase in saturation magnetization M s when Fe concentration exceeds 4 %mol. This reveals the major role of magnetic-polaron interaction in magnetism of high tetragonality PbTi1- x Fe x O3 nanocrystals.

  9. Phase transitions and crystal-field and exchange interactions in TbFe3(BO3)4 as seen via optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Popova, M. N.; Stanislavchuk, T. N.; Malkin, B. Z.; Bezmaternykh, L. N.

    2012-05-01

    High-resolution polarized broadband (1800-23 000 cm-1) optical absorption spectra of Tb3+ in TbFe3(BO3)4 single crystals are studied between room temperature and 4.2 K. The spectral signatures of the structural (R32-P3121, TS = 192 K) and magnetic (TN = 41 K) phase transitions are found and analyzed. Energies and symmetries of the Tb3+ crystal-field (CF) levels were determined for both the high-temperature R32 and the low-temperature P3121 structures of TbFe3(BO3)4 and compared with the calculated ones. It follows unambiguously from the spectral data that the ground state is the Γ1 + Γ2 quasi-doublet of the local D3 point symmetry group for Tb3+ in the R32 high-temperature structure. The CF calculations revealed the CF parameters and wavefunctions for Tb3+ in TbFe3(BO3)4. The value of the Tb-Fe exchange integral and of the effective magnetic field created by the ordered Fe subsystem were estimated as Jfd = 0.26 K and Beff = 3.92 T, using the observed splitting Δ = 32 cm-1 of the Tb3+ ground quasi-doublet at the temperature 5 K. The reliability of the obtained parameters was proven by modeling the literature data on the magnetic susceptibility of TbFe3(BO3)4. Lattice distortions below TS were evidenced by the observed changes of probabilities of the forced electric dipole transitions of Tb3+.

  10. Method of optical self-mixing for pulse wave transit time in comparison with other methods and correlation with blood pressure

    NASA Astrophysics Data System (ADS)

    Meigas, Kalju; Lass, Jaanus; Kattai, Rain; Karai, Deniss; Kaik, Juri

    2004-07-01

    This paper is a part of research to develop convenient method for continuous monitoring of arterial blood pressure by non-invasive and non-oscillometric way. A simple optical method, using self-mixing in a diode laser, is used for detection of skin surface vibrations near the artery. These vibrations, which can reveal the pulsate propagation of blood pressure waves along the vasculature, are used for pulse wave registration. The registration of the Pulse Wave Transit Time (PWTT) is based on computing the time delay in different regions of the human body using an ECG as a reference signal. In this study, the comparison of method of optical self-mixing with other methods as photoplethysmographic (PPG) and bioimpedance (BI) for PWTT is done. Also correlation of PWTT, obtained with different methods, with arterial blood pressure is calculated. In our study, we used a group of volunteers (34 persons) who made the bicycle exercise test. The test consisted of cycling sessions of increasing workloads during which the HR changed from 60 to 180 beats per minute. In addition, a blood pressure (NIBP) was registered with standard sphygmomanometer once per minute during the test and all NIBP measurement values were synchronized to other signals to find exact time moments where the systolic blood pressure was detected (Korotkoff sounds starting point). Computer later interpolated the blood pressure signal in order to get individual value for every heart cycle. The other signals were measured continuously during all tests. At the end of every session, a recovery period was included until person's NIBP and heart rate (HR) normalized. As a result of our study it turned out that time intervals that were calculated from plethysmographic (PPG) waveforms were in the best correlation with systolic blood pressure. The diastolic pressure does not correlate with any of the parameters representing PWTT. The pulse wave signals measured by laser and piezoelectric transducer are very similar

  11. Geometric, electronic and optical properties of zinc/tin codoped In2O3 modulated by the bixbyite/corundum phase transition

    NASA Astrophysics Data System (ADS)

    Lu, Ying-Bo; Li, Y. H.; Ling, Z. C.; Cong, Wei-Yan; Zhang, Peng; Xin, Y. Q.; Yang, T. L.

    2016-02-01

    As transparent conducting oxides (TCOs), In2O3 in the high pressure phase attracts extensive research interests. Because physical properties are determined by the geometric structures, we investigate the electronic and optical properties of Zn/Sn codoped In2O3 materials (IZTO) being modulated by the bixbyite/corundum phase transition via Density Functional Theory calculations. For IZTO in high pressure phase, i.e. corundum phase, Sn/Zn dopant pair tends to form face-sharing ZnO6 and SnO6 octahedrons. The radius differences between Zn2+/Sn4+ dopants and In3+ host cations make Jahn-Teller effect occur and IZTO transform from bixbyite to corundum phase under a slight higher pressure than that of pure In2O3. Although Zn/Sn cosubstitution of In ions may increase the free carrier effective mass m * near the band edge, when IZTO crystal transforms to corundum phase, the more dense packing structure results in stronger cation s-orbital overlaps than in bixbyite phase, which makes m * recover to a smaller value. In addition, corundum IZTO has a larger indirect band gap and a high dopant solubility. So these investigations may open a new way to search for TCOs materials with low indium content.

  12. Optical and infrared absorption spectra of 3d transition metal ions-doped sodium borophosphate glasses and effect of gamma irradiation

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.; ElBatal, F. H.; Azooz, M. A.; Ouis, M. A.; ElBatal, H. A.

    2012-12-01

    Undoped and transition metals (3d TM) doped sodium borophosphate glasses were prepared. UV-visible absorption spectra were measured in the region 200-900 nm before and after gamma irradiation. Experimental optical data indicate that the undoped sodium borophosphate glass reveals before irradiation strong and broad UV absorption and no visible bands could be identified. Such UV absorption is related to the presence of unavoidable trace iron impurities within the raw materials used for preparation of this base borophosphate glass. The TMs-doped glasses show absorption bands within the UV and/or visible regions which are characteristic to each respective TM ion in addition to the UV absorption observed from the host base glass. Infrared absorption spectra of the undoped and TMs-doped glasses reveal complex FTIR consisting of extended characteristic vibrational bands which are specific for phosphate groups as a main constituent but with the sharing of some vibrations due to the borate groups. This criterion was investigated and approved using DAT (deconvolution analysis technique). The effects of different TMs ions on the FTIR spectra are very limited due to the low doping level (0.2%) introduced in the glass composition. Gamma irradiation causes minor effect on the FTIR spectra specifically the decrease of intensities of some bands. Such behavior is related to the change of bond angles and/or bond lengths of some structural building units upon gamma irradiation.

  13. Structural, optical and transport properties of transition metals doped (A: Co, Ni and Cu) BiFe{sub 0.9}A{sub 0.1}O{sub 3}

    SciTech Connect

    Parveen, Azra Agrawal, Shraddha; Naqvi, A. H.

    2015-06-24

    Nanoparticles of pure and Transition metals doped (Co, Ni and Cu) BiFeO{sub 3} of the composition BiFe{sub 0.9}A{sub 0.1}O{sub 3} (A = Co, Ni and Cu) have been successfully synthesized by sol gel auto combustion method using citric acid as a chelating agent and calcinated at 300°C. Microstructural analyses were done by XRD, TEM and SEM techniques. The crystallite size was resolute by powder X-ray diffraction technique whereas, UV-VIS technique was used to study the optical properties and band gap (Eg) of all samples. The variation of a. c. conductivity has been studied as function of frequency. It was observed that doping causes decreases in the ac conductivity of the nanoparticles as compared with the pure nanoparticles. It was also observed that doping of Transition Metals affects the optical properties effectively and band gaps were also increased.

  14. Optical interband transitions in relaxor-based ferroelectric 0.93Pb(Zn1∕3Nb2∕3)O3–0.07PbTiO3 single crystal

    PubMed Central

    Sun, Enwei; Zhang, Rui; Wang, Zhu; Xu, Dapeng; Li, Liang; Cao, Wenwu

    2010-01-01

    The optical transmission spectrum of [111]c poled relaxor-based ferroelectric single crystal 0.93Pb(Zn1∕3Nb2∕3)O3–0.07PbTiO3 (PZN–0.07PT) was measured in the range of ultraviolet to near infrared. The optical absorption edge has been determined and the wavelength dependence of the absorption coefficient was calculated. The direct energy gap Egd=3.144 eV, indirect energy gap Egi=2.915 eV, and phonon energy Ep=0.097 eV (or 782 cm−1) were determined based on the theory of band to band transitions. It was also confirmed by Raman spectra that the indirect transition for the [111]c poled PZN–0.07PT single crystal is mainly due to the contribution of 780 cm−1 phonon corresponding to the Nb–O–Zn bond stretching mode. PMID:20634967

  15. Optical evaluation of multichannel radiative transitions originating from {sup 4}G{sub 5/2} level of Sm{sup 3+} in heavy-metal-gallate glasses

    SciTech Connect

    Zhang, J.; Yang, D. L.; Gong, H.; Lin, H.; Pun, E. Y. B.

    2010-06-15

    Conventional visible and novel infrared (IR) emissions of Sm{sup 3+} in heavy-metal-gallate glasses (Li{sub 2}O-K{sub 2}O-BaO-PbO-Bi{sub 2}O{sub 3}-Ga{sub 2}O{sub 3}, LKBPBG for short) with low phonon energy have been observed. Judd-Ofelt parameters {Omega}{sub 2} (3.00x10{sup -20} cm{sup 2}), {Omega}{sub 4} (5.19x10{sup -20} cm{sup 2}), and {Omega}{sub 6} (1.69x10{sup -20} cm{sup 2}) indicate a higher asymmetry and stronger covalent environment in the optical glasses. For the visible fluorescence bands peaked at 564, 601, 648, and 710 nm, the maximum stimulated emission cross-sections ({sigma}{sub e}) were derived to be 1.35x10{sup -22}, 9.21x10{sup -22}, 9.58x10{sup -22}, and 3.91x10{sup -22} cm{sup 2}, respectively, the values are larger than those in phosphate, oxyfluoroborate, tellurite, and calibo glasses obviously. The observed 1185 nm IR emission lies in the low-loss window of telecommunication system, and the maximum value of {sigma}{sub e} for this band was obtained to be 6.09x10{sup -23} cm{sup 2}. The characterization of multichannel radiative transitions of Sm{sup 3+} in LKBPBG glasses is beneficial in exposing its potential applications in visible and IR optoelectronic devices.

  16. Doppler-Free Spectroscopy of the {sup 1}S{sub 0}-{sup 3}P{sub 0} Optical Clock Transition in Laser-Cooled Fermionic Isotopes of Neutral Mercury

    SciTech Connect

    Petersen, M.; Chicireanu, R.; Dawkins, S. T.; Magalhaes, D. V.; Mandache, C.; Le Coq, Y.; Clairon, A.; Bize, S.

    2008-10-31

    We report direct laser spectroscopy of the {sup 1}S{sub 0}-{sup 3}P{sub 0} transition at 265.6 nm in fermionic isotopes of neutral mercury in a magneto-optical trap. Measurements of the frequency against the LNE-SYRTE primary reference using an optical frequency comb yield 1 128 575 290 808.4{+-}5.6 kHz in {sup 199}Hg and 1 128 569 561 139.6{+-}5.3 kHz in {sup 201}Hg. The uncertainty, allowed by the observation of the Doppler-free recoil doublet, is 4 orders of magnitude lower than previous indirect determinations. Mercury is a promising candidate for future optical lattice clocks due to its low sensitivity to blackbody radiation.

  17. Absolute frequency measurement of 1S0(F = 1/2)-3P0(F = 1/2) transition of 171Yb atoms in a one-dimensional optical lattice at KRISS

    NASA Astrophysics Data System (ADS)

    Park, Chang Yong; Yu, Dai-Hyuk; Lee, Won-Kyu; Eon Park, Sang; Kim, Eok Bong; Lee, Sun Kyung; Cho, Jun Woo; Yoon, Tai Hyun; Mun, Jongchul; Jong Park, Sung; Kwon, Taeg Yong; Lee, Sang-Bum

    2013-04-01

    We measured the absolute frequency of the optical clock transition 1S0(F = 1/2)-3P0(F = 1/2) of 171Yb atoms confined in a one-dimensional optical lattice and it was determined to be 518 295 836 590 863.5(8.1) Hz. The frequency was measured against Terrestrial Time (TT; the SI second on the geoid) using an optical frequency comb of which the frequency was phase-locked to an H-maser as a flywheel oscillator traceable to TT. The magic wavelength was also measured as 394 798.48(79) GHz. The results are in good agreement with two previous measurements of other institutes within the specified uncertainty of this work.

  18. Photoinduced phase transitions.

    PubMed

    Bennemann, K H

    2011-02-23

    Optically induced ultrafast electronic excitations with sufficiently long lifetimes may cause strong effects on phase transitions like structural and nonmetal→metal ones and on supercooling, supersaturation, etc. Examples are the transitions diamond→graphite, graphite→graphene, non-metal→metal, solid→liquid and vapor→liquid, solid. Photoinduced formation of graphene and water condensation of saturated or supersaturated vapor due to increased bonding amongst water molecules are of particular interest. These nonequilibrium transitions are an ultrafast response, on a few hundred fs time scale, to the fast low to large energy electronic excitations. The energy of the photons is converted into electronic energy via electronic excitations changing the cohesive energy. This changes the chemical potential controlling the phase transition. In view of the advances in laser optics photon induced transitions are expected to become an active area in nonequilibrium physics and phase transition dynamics. Conservation laws like energy or angular momentum conservation control the time during which the transitions occur. Since the photon induced effects result from weakening or strengthening of the bonding between the atoms or molecules transitions like solid/liquid, etc can be shifted in both directions. Photoinduced transitions will be discussed from a unified point of view. PMID:21411879

  19. Giant, ultrafast optical switching based on an Insulator-to-MetalTransition in VO2 Nano-particles: Photo-activation of shape-controlledplasmons at 1.55 mu-m

    SciTech Connect

    Rini, M.; Cavalleri, A.; Schoenlein, R.W.; Lopez, R.; Feldman,C.; Haglund, R.; Boatner, L.A.; Haynes, T.E.

    2004-07-01

    A new generation of devices where the electronic, optical or magnetic state of a system can be controlled optically on the ultrafast timescale is one of the most compelling technological ramifications of the rapidly advancing field of strongly correlated electrons. However, for real-world applications it is also necessary to incorporate these compounds in appropriate environments (e.g. optical fibers or silicon-based electronics), to ensure compatibility with existing technologies (e.g. telecom wavelengths), room temperature operation and limited power densities. Here, we report on the study of the photo-activated optical switching in nanorods of strongly correlated VO{sub 2}. The particles are grown by ion-implantation and self-assembly within a Silica matrix or an optical fiber, operate at room temperature and can be switched between the insulating and metallic phase within less than 100 fs. The energy threshold to achieve switching corresponds to approximately 500 pJ within the core of a single mode fiber and is compatible with current diode technologies. Tailoring of the spherical/cylindrical geometry results in control of the spectral response of the system, which is dominated by the impulsive formation of a surface plasmon upon the insulator-to-metal transition. The response at the technologically important 1.55 {micro}m wavelength is in this way maximized.

  20. The Optical Gravitational Lensing Experiment. Search for Planetary and Low- Luminosity Object Transits in the Galactic Disk. Results of 2001 Campaign -- Supplement

    NASA Astrophysics Data System (ADS)

    Udalski, A.; Zebrun, K.; Szymanski, M.; Kubiak, M.; Soszynski, I.; Szewczyk, O.; Wyrzykowski, L.; Pietrzynski, G.

    2002-06-01

    The photometric data collected during 2001 season OGLE-III planetary/low luminosity object transit campaign were reanalyzed with the new transit search technique -- the BLS method by Kovacs, Zucker and Mazeh. In addition to all presented in our original paper transits, additional 13 objects with transiting low-luminosity companions were discovered. We present here a supplement to our original catalog -- the photometric data, light curves and finding charts of all 13 new objects. The model fits to the transit light curves indicate that a few new objects may be Jupiter-sized (R<1.6 R_Jup). OGLE-TR-56 is a particularly interesting case. Its transit has only 13mmag depth, short duration and a period of 1.21190 days. Model fit indicates that the companion may be Saturn-sized if the passage were central. Spectroscopic follow-up observations are encouraged for final classification of the transiting objects as planets, brown dwarfs or late M-type dwarf stars. We also provide the most recent ephemerides of other most promising planetary transits: OGLE-TR-10 and OGLE-TR-40 based on observations collected in June 2002. All photometric data are available to the astronomical community from the OGLE Internet archive.

  1. Comparative magneto-optical investigation of d-d charge-transfer transitions in Fe3O4, CoFe2O4, and NiFe2O4

    NASA Astrophysics Data System (ADS)

    Kim, Kwang Joo; Lee, Han Seung; Lee, Myoung Hee; Lee, Sung Ho

    2002-06-01

    Magneto-optical transitions in CoFe2O4 and NiFe2O4 spinel ferrites are investigated in comparison with those in isostructural Fe3O4. The Kerr angle and ellipticity of the ferrites have been measured by magneto-optic Kerr effect (MOKE) spectroscopy in the 1.5-5 eV region. The results indicate that the d-d intervalence charge-transfer (IVCT) transitions, Co2+(t2g)[right arrow]Fe3+(eg), and Ni2+(t2g)[right arrow]Fe3+(eg), in the octahedral sites in CoFe2O4 and NiFe2O4 are located at about 3.6 and 4.5 eV, respectively, shifted to higher energies by about 1.5 and 2.4 eV, respectively, from the corresponding IVCT transition in Fe3O4, Fe2+(t2g)[right arrow]Fe3+(eg). The MOKE spectra of CoFe2O4 and NiFe2O4 also indicate that the IVCT transitions, Co2+(t2g)[right arrow]Fe3+(t2g) and Ni2+(t2g)[right arrow]Fe3+(t2g), exist at about 2.2 and 3.1 eV, respectively. On the other hand, the intersublattice charge-transfer (ISCT) transitions between the tetrahedral and the octahedral Fe3+ sites in CoFe2O4 and NiFe2O4 are observed at about 2.6 and 4.0 eV, same as the corresponding ISCT transitions in Fe3O4. The observed IVCT and ISCT transitions involving octahedral Fe3+ ion consistently give the crystal-field energy splitting of about 1.4 eV between its t2g and eg orbitals for all the compounds.

  2. Energy transfer and non-linear optical properties at near ultraviolet wavelengths: Rare earth 4f {yields} 5d transitions in crystals and glasses. Final report, June 1, 1984--May 31, 1992

    SciTech Connect

    Hamilton, D.S.

    1992-08-01

    The following topics were studied: two-photon transitions from 4f ground state to 5d excited states in Ce{sup 3+}:CaF{sub 2}; optical absorption and photoionization measurements from excited state of Ce{sup 3+}:Y{sub 3}Al{sub 5}O{sub 12}; excited state photoionization of Ce{sup 3+} ions in Ce{sub 3+}:CaF{sub 2}; optical gain and loss studies in Ce{sup 3+}:LiYF{sub 4}; Gd {yields}Cr energy transfer in Cr{sup 3+}:GSGG, Cr{sup 3+}:GSAG and Cr{sup 3+}:GGG crystals; nonradiative relaxation in Ce{sup 3+} doped crystals and glasses; and grating formation in impurity doped crystals.

  3. Doppler-free approach to optical pumping dynamics in the 6S1/2-5D5/2 electric quadrupole transition of cesium vapor.

    PubMed

    Chan, Eng Aik; Aljunid, Syed Abdullah; Zheludev, Nikolay I; Wilkowski, David; Ducloy, Martial

    2016-05-01

    The 6S1/2-5D5/2 electric quadrupole transition is investigated in cesium vapor at room temperature via nonlinear Doppler-free 6P-6S-5D three-level spectroscopy. Frequency-resolved studies of individual E2 hyperfine lines allow one to analyze the optical pumping dynamics, polarization selection rules, and line intensities. It opens the way to studies of transfer of light orbital angular momentum to atoms and the influence of metamaterials on E2 line spectra. PMID:27128060

  4. Transition Planning

    ERIC Educational Resources Information Center

    Statfeld, Jenna L.

    2011-01-01

    Post-school transition is the movement of a child with disabilities from school to activities that occur after the completion of school. This paper provides information about: (1) post-school transition; (2) transition plan; (3) transition services; (4) transition planning; (5) vocational rehabilitation services; (6) services that are available…

  5. Systematic study of structural, electronic, and optical properties of atomic-scale defects in the two-dimensional transition metal dichalcogenides M X2 (M = Mo , W; X = S , Se, Te)

    NASA Astrophysics Data System (ADS)

    Haldar, Soumyajyoti; Vovusha, Hakkim; Yadav, Manoj Kumar; Eriksson, Olle; Sanyal, Biplab

    2015-12-01

    In this work, we have systematically studied structural, electronic, and magnetic properties of atomic-scale defects in 2D transition metal dichalcogenides M X2 (M = Mo and W; X = S , Se, and Te) by density functional theory. Various types of defects, e.g., X vacancy, X interstitial, M vacancy, M interstitial, and M X and X X double vacancies, have been considered. It has been found that the X interstitial has the lowest formation energy (˜1 eV) for all the systems in the X -rich condition, whereas for the M -rich condition, X vacancy has the lowest formation energy except for M Te2 systems. Both these defects have very high equilibrium defect concentrations at growth temperatures (1000-1200 K) reported in literature. A pair of defects, e.g., two X vacancies or one M and one X vacancies, tend to occupy the nearest possible distance. No trace of magnetism has been found for any one of the defects considered. Apart from X interstitial, all other defects have defect states appearing in the band gap, which can greatly affect the electronic and optical properties of the pristine systems. Our calculated optical properties show that the defect states cause optical transitions at ˜1.0 eV, which can be beneficial for light emitting devices. The results of our systematic study are expected to guide the experimental nanoengineering of defects to achieve suitable properties related to band gap modifications and characterization of defect fingerprints via optical absorption measurements.

  6. Optical performance of an ultra-sensitive horn-coupled transition-edge-sensor bolometer with hemispherical backshort in the far infrared

    NASA Astrophysics Data System (ADS)

    Audley, Michael D.; de Lange, Gert; Gao, Jian-Rong; Khosropanah, Pourya; Hijmering, Richard; Ridder, Marcel; Mauskopf, Philip D.; Morozov, Dmitry; Trappe, Neil A.; Doherty, Stephen

    2016-04-01

    The next generation of far infrared space observatories will require extremely sensitive detectors that can be realized only by combining extremely low intrinsic noise with high optical efficiency. We have measured the broad-band optical response of ultra-sensitive transtion edge sensor (TES) bolometers ( NEP ≈ 2 aW / √{ Hz } ) in the 30-60-μm band where radiation is coupled to the detectors with a few-moded conical feedhorn and a hemispherical backshort. We show that these detectors have an optical efficiency of 60% (the ratio of the power detected by the TES bolometer to the total power propagating through the feedhorn). We find that the measured optical efficiency can be understood in terms of the modes propagating through the feedhorn with the aid of a spatial mode-filtering technique.

  7. Anisotropy of inter-band transitions and band structure of Cs3Zn6B9O21 nonlinear optical crystals

    NASA Astrophysics Data System (ADS)

    Bovgyra, O. V.; Kurlak, V. Y.; Chrunik, M.; Majchrowski, A.; Jaroszewicz, L. R.; Ozga, K.

    2016-06-01

    Polarized optical functions near the fundamental absorption edge of novel Cs3Zn6B9O21 nonlinear optical crystals possessing a wide UV transparency down to 190 nm were investigated. The anisotropy of optical functions is not well studied yet which restrains the further strategy of the formation on its base of solid state compounds with desirable properties. The studies were performed using a band structure calculations as well as the experimental measurements of fundamental polarized UV absorption edge and X-ray photoelectron spectra of the studied crystals. The experimental data were used for evaluation of scissor factors of the band structure. The results of the calculations were compared with the XPS and polarized absorption optical spectra of the investigated crystals. The introduction of the scissor factor was performed in order to obtain a sufficient agreement with experiment. The observed anisotropy of absorption may be explained by the anisotropy of carrier effective masses.

  8. Optical performance of an ultra-sensitive horn-coupled transition-edge-sensor bolometer with hemispherical backshort in the far infrared.

    PubMed

    Audley, Michael D; de Lange, Gert; Gao, Jian-Rong; Khosropanah, Pourya; Hijmering, Richard; Ridder, Marcel; Mauskopf, Philip D; Morozov, Dmitry; Trappe, Neil A; Doherty, Stephen

    2016-04-01

    The next generation of far infrared space observatories will require extremely sensitive detectors that can be realized only by combining extremely low intrinsic noise with high optical efficiency. We have measured the broad-band optical response of ultra-sensitive transtion edge sensor (TES) bolometers (NEP≈2aW/Hz) in the 30-60-μm band where radiation is coupled to the detectors with a few-moded conical feedhorn and a hemispherical backshort. We show that these detectors have an optical efficiency of 60% (the ratio of the power detected by the TES bolometer to the total power propagating through the feedhorn). We find that the measured optical efficiency can be understood in terms of the modes propagating through the feedhorn with the aid of a spatial mode-filtering technique. PMID:27131650

  9. Latching micro optical switch

    DOEpatents

    Garcia, Ernest J; Polosky, Marc A

    2013-05-21

    An optical switch reliably maintains its on or off state even when subjected to environments where the switch is bumped or otherwise moved. In addition, the optical switch maintains its on or off state indefinitely without requiring external power. External power is used only to transition the switch from one state to the other. The optical switch is configured with a fixed optical fiber and a movable optical fiber. The movable optical fiber is guided by various actuators in conjunction with a latching mechanism that configure the switch in one position that corresponds to the on state and in another position that corresponds to the off state.

  10. Boson sampling with displaced single-photon Fock states versus single-photon-added coherent states: The quantum-classical divide and computational-complexity transitions in linear optics

    NASA Astrophysics Data System (ADS)

    Seshadreesan, Kaushik P.; Olson, Jonathan P.; Motes, Keith R.; Rohde, Peter P.; Dowling, Jonathan P.

    2015-02-01

    Boson sampling is a specific quantum computation, which is likely hard to implement efficiently on a classical computer. The task is to sample the output photon-number distribution of a linear-optical interferometric network, which is fed with single-photon Fock-state inputs. A question that has been asked is if the sampling problems associated with any other input quantum states of light (other than the Fock states) to a linear-optical network and suitable output detection strategies are also of similar computational complexity as boson sampling. We consider the states that differ from the Fock states by a displacement operation, namely the displaced Fock states and the photon-added coherent states. It is easy to show that the sampling problem associated with displaced single-photon Fock states and a displaced photon-number detection scheme is in the same complexity class as boson sampling for all values of displacement. On the other hand, we show that the sampling problem associated with single-photon-added coherent states and the same displaced photon-number detection scheme demonstrates a computational-complexity transition. It transitions from being just as hard as boson sampling when the input coherent amplitudes are sufficiently small to a classically simulatable problem in the limit of large coherent amplitudes.

  11. Spectroscopy and isotope shifts of the 4s3d {sup 1}D{sub 2}-4s5p {sup 1}P{sub 1} repumping transition in magneto-optically trapped calcium atoms

    SciTech Connect

    Dammalapati, U.; Norris, I.; Burrows, C.; Arnold, A. S.; Riis, E.

    2010-02-15

    We investigate a repumping scheme for magneto-optically trapped calcium atoms. It is based on excitation of the 4s3d{sup 1}D{sub 2}-4s5p{sup 1}P{sub 1} transition at 672 nm with an extended cavity diode laser. The effect of the repumping is approximately a factor of three increase in trap lifetime and a doubling of the trapping efficiency from a Zeeman slowed thermal beam. Added to this, the 672-nm laser repumps atoms from an otherwise dark state to yield an overall increase in detected fluorescence signal from the magneto-optic trap (MOT) of more than an order of magnitude. Furthermore, we report isotope shift measurements of the 672-nm transition, for the first time, for four naturally occurring even isotopes. Using available charge radii data, the observed shifts, extending up to 4.3 GHz, display the expected linear dependence in a King plot analysis. The measured shifts are used to determine the isotope shifts of the remaining {sup 41,43,46}Ca isotopes. These might be of interest where less abundant isotopes are used enabling isotope selective repumping, resulting in enhanced trapping and detection efficiencies.

  12. Experimental link between the /sup 13/C NMR chemical shift of carbonyl carbons and the energy shifts observed in the n. -->. 3s optical transition of cyclic ketones

    SciTech Connect

    Cornish, T.J.; Baer, T.

    1988-09-14

    The n ..-->.. 3s transition energies of cold methylcyclopentanones and -cyclohexanones, as well as those of some branched-chain and bicyclic ketones, have been measured with 2 + 1 resonance-enhanced multiphoton ionization (REMPI). The energy shifts of the n ..-->.. 3s transition origins are found to correlate in a linear fashion with reported /sup 13/C NMR chemical shifts of the carbonyl carbon atoms. Several possible explanations for the experimental connection to NMR are discussed including consideration of both the paramagnetic and diamagnetic shielding contributions to the total chemical shift. 31 references, 3 figures, 1 table.

  13. Electromagnetically induced absorption and electromagnetically induced transparency for optical transitions F{sub g} → F{sub e} in the field of elliptically polarized waves

    SciTech Connect

    Lazebnyi, D. B. Brazhnikov, D. V.; Taichenachev, A. V.; Basalaev, M. Yu. Yudin, V. I.

    2015-12-15

    Nonlinear laser spectroscopy is considered in the scheme of two collinear waves with arbitrary elliptical polarizations. Emphasis is placed on investigating the nonlinear corrections in the absorption spectrum of one of the waves. The spontaneous transfer of low-frequency Zeeman coherence is shown to affect the sign of the subnatural-width resonance. For a closed transition, the direction of the resonance profile has been found to depend only on the angular momenta F{sub e} and F{sub g}. On this basis, a classification has been developed for various transitions by the direction of the subnatural-width resonance profile.

  14. An ultra-stable optical frequency standard for telecommunication purposes based upon the 5S1/2 → 5D5/2 two-photon transition in rubidium

    NASA Astrophysics Data System (ADS)

    Terra, Osama; Hussein, Hatem

    2016-02-01

    In this study, we report the development of a frequency standard for optical fiber communication applications based on a two-photon transition in rubidium at 385.2 THz. This standard kills two birds with one stone in the sense it is capable of providing us with two highly stable serviceable wavelengths at 778.1 and 1556.2 nm. In this system, we exploit the narrow line-width of a fiber laser emitting at 1556.2 nm in conjunction with an erbium-doped fiber amplifier to generate a sufficient second harmonic laser beam at 778.1 nm in a periodically polled lithium niobate waveguide mixer in order to probe and frequency-lock the laser to the 5S1/2 ( F g = 3)-5D5/2 ( F e = 5) hyperfine two-photon transition component in 85Rb. The metrological performance of the standard is evaluated with the aid of an optical frequency comb synthesizer. Allan variance measurement shows a stability of 4 × 10-12 at 1 s (limited by the comb stability), reaching a floor of 6.8 × 10-13 at 1000 s. After correction of all the major systematic frequency shifts including the light shift, the absolute frequency is found to be 385 285 142 374.0 (5.0) kHz. Moreover, the absolute frequencies of most of the hyperfine components of the 5S1/2-5D5/2 transition of the two naturally existing rubidium isotopes are measured using a femtosecond frequency comb synthesizer after stabilizing a laser on each component.

  15. Relativistic distorted-wave collision strengths for the 16 Δn=0 optically allowed transitions with n=2 in the 67 O-like ions with 26≤Z≤92

    SciTech Connect

    Fontes, Christopher J. Zhang, Hong Lin

    2015-01-15

    Relativistic distorted-wave collision strengths have been calculated for the 16 Δn=0 optically allowed transitions with n=2 in the 67 O-like ions with nuclear charge number Z in the range 26≤Z≤92. The calculations were made for the four final, or scattered, electron energies E{sup ′}=0.20,0.42,0.80, and 1.40, where E{sup ′} is in units of Z{sub eff}{sup 2} Ry with Z{sub eff}=Z−5.83. In the present calculations, an improved “top-up” method, which employs relativistic plane waves, was used to obtain the high partial-wave contribution for each transition, in contrast to the partial-relativistic Coulomb–Bethe approximation used in previous work by Zhang and Sampson [H.L. Zhang, D.H. Sampson, At. Data Nucl. Data Tables 82 (2002) 357]. In that earlier work, collision strengths were also provided for O-like ions, but for a more comprehensive data set consisting of all possible 45 Δn=0 transitions, six scattered energies, and the 79 ions with Z in the range 14≤Z≤92. The collision strengths covered in the present work should be more accurate than the corresponding data given by Zhang and Sampson [H.L. Zhang, D.H. Sampson, At. Data Nucl. Data Tables 82 (2002) 357] and are presented here to replace those earlier results.

  16. A DFT study of the structural, electronic and optical properties of transition metal doped fluorite oxides: Ce0.75M0.25O2 (M=Fe, Co, Ni)

    NASA Astrophysics Data System (ADS)

    Tian, Dong; Zeng, Chunhua; Fu, Yunchang; Wang, Hua; Luo, Hongchun; Xiang, Chao; Wei, Yonggang; Li, Kongzhai; Zhu, Xing

    2016-04-01

    The structural, electronic and optical properties of Ce1-xMxO2 (M=Fe, Co, Ni; x=0, 0.25) fluorite type oxides are studied by using the method of density functional theory (DFT) + U method. The calculated equilibrium lattice parameter, cell volume, bulk modulus and optical properties for CeO2 are in good agreement with the available experimental data and other theoretical results. The lattice parameter, cell volume, bulk modulus and bond length of Ce-O decreased after substituting Ce atom with Fe (or Co, Ni). Meanwhile, the band-gap (Eg) reduction is observed. It is interesting to find that doping of Fe (or Co, Ni) in CeO2 obviously decreases the O 2p-Ce 4f transition intensity and the covalent character of the Ce-O bond. On the contrary, the static dielectric constant ε0 and refractive index n0 for the doped system increased. Compared with the undoped CeO2, the doped system has steep absorption peaks ranging from 1.0 eV to 2.0 eV at lower energy, and it can be used for visible light absorption applications. The Ce0.75Co0.25O2 has a high refractive index and reflectivity, therefore it is suitable as a high-refractive index film material in single and multilayered optical coatings.

  17. Case study of ECG signal used as a reference signal in optical pulse transit time measurement of blood flow: the effect of different electrode placements on pulse transit time

    NASA Astrophysics Data System (ADS)

    Myllylä, Teemu S.; Vihriälä, Erkki V.; Korhonen, Vesa O.; Sorvoja, Hannu S. S.

    2013-02-01

    The electrocardiography (ECG) signal is often used as a reference signal when calculating pulse transit times (PTT) measured by photoplethysmographic (PPG) sensors. In addition, ECG measurements are widely used in clinical health monitoring. In clinical measurements, small changes in the time delays of R waves in relation to blood flow pulsations between each ECG measurement are not relevant. In most cases, they would not even be observed, due to the rather low sampling rates used in clinical ECG devices. However, in PTT measurements, where time delays are measured with an accuracy of milliseconds, the placement of ECG electrodes can have a distinct effect on the results. This paper presents case studies of ECG signals measured simultaneously and independently by two ECG devices. We explore what effect different placements of ECG electrodes have on the R wave of the QRS complex and how it should be taken into account when used as a reference signal in pulse transit time measurements of blood flow. Additionally, we study what kind of ECG electrode placements are most suitable for PTT measurements.

  18. Anomalous optical switching and thermal hysteresis during semiconductor-metal phase transition of VO{sub 2} films on Si substrate

    SciTech Connect

    Leahu, G.; Li Voti, R. Sibilia, C.; Bertolotti, M.

    2013-12-02

    We present a detailed infrared study of the semiconductor-to-metal transition (SMT) in a vanadium dioxide (VO{sub 2}) film deposited on silicon wafer. The VO{sub 2} phase transition is studied in the mid-infrared region by analyzing the transmittance and the reflectance measurements, and the calculated emissivity. The reflectance has been measured in two configurations: from the side of the VO{sub 2} film and from that of Si wafer. The results show a strong asymmetry between the emissivity in the two configurations, and the fact that the emissivity dynamic range from the silicon side is twice as large than that from the VO{sub 2} side. The temperature behaviour of the emissivity during the SMT put into evidence the phenomenon of the anomalous absorption in VO{sub 2}, which has been explained by applying the Maxwell Garnett effective medium approximation theory.

  19. Polarization selection rules and optical transitions in terbium activated yttrium tantalate phosphor under x-ray, vacuum-ultraviolet, and ultraviolet excitations

    SciTech Connect

    Nazarov, Mihail; Tsukerblat, Boris; Byeon, Clare Chisu; Arellano, Ivan; Popovici, Elisabeth-Jeanne; Noh, Do Young

    2009-01-01

    The terbium-activated yttrium tantalite (YTaO4:Tb{sup 3{sup +}}) phosphor is of great interest due to the interesting spectroscopic properties of rare earth ions in crystals and also practical use in x-ray imaging. Using the group-theoretical approach, we analyze the selection rules for the transition between Stark components of Tb{sup 3{sup +}} in symmetry of the actual crystal field and the polarization for the allowed transitions. The luminescence upon UV, vacuum-ultraviolet (VUV), and x-ray excitation is presented and discussed. The YTaO4:Tb{sup 3{sup +}} phosphors are found to be efficient VUV-excited luminescent materials that could be used not only in x-ray intensifying screens, but also in mercury-free fluorescent lamps or plasma display panels.

  20. Magneto-optical Signatures of a Cascade of Transitions in La 1.875Ba 0.125CuO 4

    SciTech Connect

    Karapetyan, Hovnatan; Hucker, M.; Gu, G.D.; Tranquada, J.M.; Fejer, M.M.; Xia, Jing; Kapitulnik, A.

    2012-09-14

    Recent experiments on the original cuprate high temperature superconductor, La{sub 2-x}Ba{sub x}CuO{sub 4}, revealed a remarkable sequence of phase transitions. Here we investigate such crystals with polar Kerr effect which is sensitive to time-reversal-symmetry breaking. Concurrent birefringence measurements accurately locate the structural phase transitions from high-temperature tetragonal to low temperature orthorhombic, and then to lower temperature tetragonal, at which temperature a strong Kerr signal onsets. Hysteretic behavior of the Kerr signal suggests that time-reversal symmetry is already broken well above room temperature, an effect that was previously observed in high quality YBa{sub 2}Cu{sub 3}O{sub 6+x} crystals.

  1. Optical spectra of LaMn0.5Ga0.5O3: A contribution to the assignment of the electronic transitions in manganites

    NASA Astrophysics Data System (ADS)

    Nucara, A.; Miletto Granozio, F.; Mohamed, W. S.; Vecchione, A.; Fittipaldi, R.; Perna, P. P.; Radovic, M.; Vitucci, F. M.; Calvani, P.

    2014-01-01

    We have prepared a LaMn0.5Ga0.5O3 thin film deposited by Pulsed Laser Deposition on a LSAT substrate and we have measured its transmittance in the visible and near UV range, from 300 to 10 K. The aim was to shed light on the origin of the electronic bands in the LMO family through a comparison with the corresponding spectra collected previously on the parent compound. Two out of the four bands detected have been assigned to the intersite d-d transitions between Mn+3 ions. The other ones were ascribed to the p-d Mn-O charge-transfer transitions. We are thus led to a “mixed” interpretation where both a Mott-Hubbard and a charge-transfer approach concur to interpret the electronic spectrum of those manganites.

  2. Effective medium based optical analysis with finite element method simulations to study photochromic transitions in Ag-TiO2 nanocomposite films

    NASA Astrophysics Data System (ADS)

    Abhilash, T.; Balasubrahmaniyam, M.; Kasiviswanathan, S.

    2016-03-01

    Photochromic transitions in silver nanoparticles (AgNPs) embedded titanium dioxide (TiO2) films under green light illumination are marked by reduction in strength and blue shift in the position of the localized surface plasmon resonance (LSPR) associated with AgNPs. These transitions, which happen in the sub-nanometer length scale, have been analysed using the variations observed in the effective dielectric properties of the Ag-TiO2 nanocomposite films in response to the size reduction of AgNPs and subsequent changes in the surrounding medium due to photo-oxidation. Bergman-Milton formulation based on spectral density approach is used to extract dielectric properties and information about the geometrical distribution of the effective medium. Combined with finite element method simulations, we isolate the effects due to the change in average size of the nanoparticles and those due to the change in the dielectric function of the surrounding medium. By analysing the dynamics of photochromic transitions in the effective medium, we conclude that the observed blue shift in LSPR is mainly because of the change in the dielectric function of surrounding medium, while a shape-preserving effective size reduction of the AgNPs causes decrease in the strength of LSPR.

  3. SOLITONS. BREATHERS: Polarisation effects in the formation of optical breathers at the inhomogeneously broadened J = 0 → J = 1 quantum transition

    NASA Astrophysics Data System (ADS)

    Volkov, A. V.; Parshkov, O. M.

    2008-09-01

    The formation and collisions of breathers excited by laser radiation at the inhomogeneously broadened J = 0 → J = 1 quantum transition are studied by numerical simulations in the slowly varying envelope approximation. Conditions are obtained under which laser pulses with the initial shape quite simply realised in experiments can be transformed into elliptically polarised breathers in the medium, each of the components of their field being a breather described by the theory of self-induced transparency at a nondegenerate quantum transition. It is shown that the collision of such breathers is not elastic in the general case and leads to the appearance of more general types of resonance breather-like pulses. Taking into account relaxation processes, the possibility of the formation of a breather at the 6p2 3P0 → 6p7s 3P1 transition in the 208Pb isotope is investigated. It is found that relaxation in some case not only causes the pulse decay but also changes the eccentricity of its polarisation ellipse.

  4. Spectroscopic characteristics of praseodymium-doped cubic double sodium-yttrium fluoride crystals Na0.4Y0.6F2.2:Pr3+. Intensities of optical transitions and luminescence kinetics

    NASA Astrophysics Data System (ADS)

    Tkachuk, A. M.; Ivanova, S. E.; Mirzaeva, A. A.; Joubert, M.-F.; Guyot, Y.

    2014-03-01

    Using the Bridgman-Stockbarger technique, we have grown a series of cubic crystals Na0.4Y0.6F2.2:Pr3+ (NYF:Pr3+) with a content of praseodymium in the range of 0.04-9 at %. We have determined the composition of crystals, evaluated their optical quality, and found the incorporation coefficient of Pr3+ ions into the Na0.4Y0.6F2.2 matrix ( K Pr ˜ 0.9). We have examined optical spectra of NaYF:Pr3+ crystals at room and low (7 K) temperatures in the range of 200-2500 nm. The low-temperature absorption spectra of NYF:Pr3+ crystals have been shown to consist of broad weakly structured bands. Based on the analysis of low-temperature absorption spectra, the structure of the Stark splitting of praseodymium levels has been represented in terms of a model of "quasi-centers," which are characterized by an inhomogeneous broadening of Stark components. From experimental absorption cross-section spectra at T = 300 K, we have calculated oscillator strengths for transitions from the ground state 3 H 4 to excited multiplets 3 H 5, 3 H 6, 3 F j ( j = 2, 3, 4), 1 G 4, 1 D 2, and (3 P j ,1 I 6) ( j = 0, 1, 2). Using the Judd-Ofelt method, we have determined intensity parameters Ω t and found that Ω2 = 0, Ω4 = 4.4 × 10-20, and Ω6 = 2.28 × 10-20 cm2. With these values, we have calculated the probabilities of radiative transitions, the branching coefficients, and the lifetimes of the radiative levels 1 D 2 and 3 P 0. The probabilities of multiphonon nonradiative transitions in NYF:Pr3+ crystals have been estimated. Using the method of kinetic spectroscopy with selective excitation, we have investigated the luminescence decay kinetics of praseodymium from the 3 P 0 and 1 D 2 levels upon their selective resonant excitation by nanosecond laser pulses. The inference has been made that Na0.4Y0.6F2.2:Pr3+ crystals are processable; admit doping by praseodymium in high concentrations; and, with respect to all their radiative characteristics, can be potentially considered as active media for

  5. Doping-Induced Type-II to Type-I Transition and Interband Optical Gain in InAs/AlSb Quantum Wells

    NASA Technical Reports Server (NTRS)

    Kolokolov, K. I.; Ning, C. Z.

    2003-01-01

    We show that proper doping of the barrier regions can convert the well-known type-II InAs/AlSb QWs to type I, producing strong interband transitions comparable to regular type-I QWs. The interband gain for TM mode is as high as 4000 l/cm, thus providing an important alternative material system in the mid-infrared wavelength range. We also study the TE and TM gain as functions of doping level and intrinsic electron-hole density.

  6. A unified derivation of Hamiltonian and optical transition matrix elements for open shell diatomic and polyatomic molecules using transformation tools of modern quantum mechanics

    NASA Astrophysics Data System (ADS)

    Schwenke, David W.

    2015-04-01

    In this work, we systematically derive the matrix elements of the nuclear rotation operators for open shell diatomic and polyatomic molecules in a parity adapted Hund's case (a) basis. Our expressions are valid for an arbitrary number of electrons and arbitrary electronic configurations. The common ad hoc sign changes of angular momentum operators are shown to be equivalent to a change in phase of basis functions. We show how to relate this basis to that required for scattering calculations. We also give the expressions for Einstein A coefficients for electric dipole, electric quadrupole, and magnetic dipole transitions.

  7. A unified derivation of Hamiltonian and optical transition matrix elements for open shell diatomic and polyatomic molecules using transformation tools of modern quantum mechanics

    SciTech Connect

    Schwenke, David W.

    2015-04-14

    In this work, we systematically derive the matrix elements of the nuclear rotation operators for open shell diatomic and polyatomic molecules in a parity adapted Hund’s case (a) basis. Our expressions are valid for an arbitrary number of electrons and arbitrary electronic configurations. The common ad hoc sign changes of angular momentum operators are shown to be equivalent to a change in phase of basis functions. We show how to relate this basis to that required for scattering calculations. We also give the expressions for Einstein A coefficients for electric dipole, electric quadrupole, and magnetic dipole transitions.

  8. Hot-electron cooling by acoustic and optical phonons in monolayers of MoS2 and other transition-metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Kaasbjerg, Kristen; Bhargavi, K. S.; Kubakaddi, S. S.

    2014-10-01

    We study hot-electron cooling by acoustic and optical phonons in monolayer MoS2. The cooling power P (Pe=P /n ) is investigated as a function of electron temperature Te (0-500 K) and carrier density n (1010-1013 cm-2) taking into account all relevant electron-phonon (el-ph) couplings. We find that the crossover from acoustic phonon dominated cooling at low Te to optical phonon dominated cooling at higher Te takes place at Te˜50 -75 K. The unscreened deformation potential (DP) coupling to the TA phonon is shown to dominate P due to acoustic phonon scattering over the entire temperature and density range considered. The cooling power due to screened DP coupling to the LA phonon and screened piezoelectric (PE) coupling to the TA and LA phonons is orders of magnitude lower. In the Bloch-Grüneisen (BG) regime, P ˜Te4(Te6) is predicted for unscreened (screened) el-ph interaction and P ˜n-1 /2(Pe˜n-3 /2) for both unscreened and screened el-ph interaction. The cooling power due to optical phonons is dominated by zero-order DP couplings and the Fröhlich interaction, and is found to be significantly reduced by the hot-phonon effect when the phonon relaxation time due to phonon-phonon scattering is large compared to the relaxation time due to el-ph scattering. The Te and n dependence of the hot-phonon distribution function is also studied. Our results for monolayer MoS2 are compared with those in conventional two-dimensional electron gases (2DEGs) as well as monolayer and bilayer graphene.

  9. Optical and structural characterization of nitrogen-rich InN: Transition from nearly intrinsic to strongly n-type degenerate with temperature

    SciTech Connect

    Hong Tran, Nhung; Huy Le, Binh; Fan, Shizhao; Zhao, Songrui; Mi, Zetian; Schmidt, Benjamin A.; Savard, Michel; Gervais, Guillaume; Butcher, Kenneth Scott A.

    2013-12-23

    We report on a detailed study of the structural and optical properties of nonstoichiometric nitrogen-rich InN grown on sapphire substrates, by migration enhanced afterglow deposition. The samples were polycrystalline, with the presence of InN dots. Unusually strong photoluminescence emission was measured at cryogenic temperatures, with the peak energy at ∼0.68 eV. Detailed analysis further shows that the sample has very low residual electron density in the range of ∼10{sup 16} cm{sup −3} at temperatures below 20 K.

  10. Relating C-band Microwave and Optical Satellite Observations as A Function of Snow Thickness on First-Year Sea Ice during the Winter to Summer Transition

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Yackel, J.

    2015-12-01

    The Arctic sea ice and its snow cover have a direct impact on both the Arctic and global climate system through their ability to moderate heat exchange across the ocean-sea ice-atmosphere (OSA) interface. Snow cover plays a key role in the OSA interface radiation and energy exchange, as it controls the growth and decay of first-year sea ice (FYI). However, meteoric accumulation and redistribution of snow on FYI is highly stochastic over space and time, which makes it poorly understood. Previous studies have estimated local-scale snow thickness distributions using in-situ technique and modelling but it is spatially limited and challenging due to logistic difficulties. Moreover, snow albedo is also critical for determining the surface energy balance of the OSA during the critical summer ablation season. Even then, due to persistent and widespread cloud cover in the Arctic at various spatio-temporal scales, it is difficult and unreliable to remotely measure albedo of snow cover on FYI in the optical spectrum. Previous studies demonstrate that only large-scale sea ice albedo was successfully estimated using optical-satellite sensors. However, space-borne microwave sensors, with their capability of all-weather and 24-hour imaging, can provide enhanced information about snow cover on FYI. Daily spaceborne C-band scatterometer data (ASCAT) and MODIS data are used to investigate the the seasonal co-evolution of the microwave backscatter coefficient and optical albedo as a function of snow thickness on smooth FYI. The research focuses on snow-covered FYI near Cambridge Bay, Nunavut (Fig.1) during the winter to advanced-melt period (April-June, 2014). The ACSAT time series (Fig.2) show distinct increase in scattering at melt onset indicating the first occurrence of melt water in the snow cover. The corresponding albedo exhibits no decrease at this stage. We show how the standard deviation of ASCAT backscatter on FYI during winter can be used as a proxy for surface roughness

  11. Kinetics of an oxygen - iodine active medium with iodine atoms optically pumped on the 2P1/2 - 2P3/2 transition

    NASA Astrophysics Data System (ADS)

    Zagidullin, M. V.; Malyshev, M. S.; Azyazov, V. N.

    2015-08-01

    The kinetics of the processes occurring in an O2 - I2 - He - H2O gas flow in which photodissociation of molecular iodine at a wavelength close to 500 nm and excitation of atomic iodine on the 2P1/2 - 2P3/2 transition by narrow-band radiation near 1315 nm are implemented successively has been analysed. It is shown that implementation of these processes allows one to form an oxygen - iodine medium with a high degree of dissociation of molecular iodine and a relative content of singlet oxygen O2(a1Δ) exceeding 10%. Having formed a supersonic gas flow with a temperature ~100 K from this medium, one can reach a small-signal gain of about 10-2 cm-1 on the 2P1/2 - 2P3/2 transition in iodine atoms. The specific power per unit flow cross section in the oxygen - iodine laser with this active medium may reach ~100 W cm-2.

  12. Temporal Distributions of Optical Energy Transitions and Photoluminescence Quenching in CuInS2 with ZnS Capping and Alloy

    NASA Astrophysics Data System (ADS)

    Rice, Quinton; Raut, Sangram; Kim, Wan-Joong; Rich, Ryan; Fudala, Rafal; Abdel-Fattah, Mahmoud; Tabibi, Bagher; Gryczynski, Ignacy; Gryczynski, Zygmunt; Jung, Sungsoo; Seo, Jaetae

    2014-05-01

    The semiconductor nanocrystals of CuInS2 are of great interest for optoelectronic and biomedical applications, because of no intrinsic toxicity related to the heavy metals of cadmium or lead chalcogenide nanomaterials, large tunability, and high color purity. The photonic energy evolution of CuInS2 quantum dots includes surface-trapped state recombination and defect-related donor-acceptor transition. The interface defect states of CuInS2/ZnS and quantum confinement modification of ZnCuInS2 adjust the temporal evolution of photonic transitions. The temporal evolution of shorter lifetime at surface-trapped states or interface states and longer lifetime at intrinsic defect-related states are widely distributed with relative distinct probabilities through the entire PL spectral region. The temperature-resolved PL reveals that the surface or interface-trapped electrons are thermally active even at low temperatures, but the electrons at intrinsic defect-related states are relatively stable. Acknowledgement: The work at HU is supported by NSF HRD-1137747 and ARO W911NF-11-1-0177.

  13. Dynamics of the magneto structural phase transition in La(Fe{sub 0.9}Co{sub 0.015}Si{sub 0.085}){sub 13} observed by magneto-optical imaging

    SciTech Connect

    Kuepferling, M. Basso, V.; Bennati, C.; Laviano, F.; Ghigo, G.

    2014-05-07

    We investigate the temperature induced ferromagnetic to paramagnetic phase transition in Co substituted La(Fe{sub x}Co{sub y}Si{sub 1−x−y}){sub 13} with x = 0.9 and low Co content of y = 0.015 (T{sub c}≃200 K) by means of magneto-optical imaging with indicator film and by calorimetry at very low temperature rates. We were able to visualize the motion of the ferromagnetic (FM)/paramagnetic (PM) front which is forming reproducible patterns independently of the temperature rate. The average velocity of the FM/PM front was calculated to be 10{sup −4} m/s during the continuous propagation and 4×10{sup −3} m/s during an avalanche. The heat flux was measured at low temperature rates by a differential scanning calorimeter and shows a reproducible sequence of individual and separated avalanches which occurs independently of the rate. We interpret the observed effects as the result of the athermal character of the phase transition.

  14. Phase diagram and incommensurate antiferroelectric structure in (Pb1-1.5xLax)(Zr0.42Sn0.40Ti0.18)O3 ceramics discovered by band-to-band optical transitions

    NASA Astrophysics Data System (ADS)

    Ding, X. J.; Xu, L. P.; Hu, Z. G.; Chen, X. F.; Wang, G. S.; Dong, X. L.; Chu, J. H.

    2014-09-01

    Optical properties and phase transitions of (Pb1-1.5xLax)(Zr0.42Sn0.40Ti0.18)O3 (PLZST 100x/42/40/18) ceramics with different compositions have been investigated by temperature dependent spectroscopic ellipsometry. Two interband critical points ( E c p 1 and E c p 2) located at about 3.9 and 5.1 eV can be obtained by fitting standard line shapes to the second derivatives of the complex dielectric functions. Based on the band-to-band transitions, the phase diagram of PLZST ceramics can be well presented. Moreover, a peculiar incommensurate antiferroelectric state has been found to exist above the temperature of the normal commensurate antiferroelectric tetragonal structure. It can be stable below Curie temperature, evolving slowly with decreasing temperature towards the commensurate structure, which is due to strong pinning of incommensurate domain walls. The phenomena can result from a competition between ferroelectric ordering and antiferroelectric ordering caused by the lanthanum modification.

  15. Electromodulation spectroscopy of direct optical transitions in Ge1-xSnx layers under hydrostatic pressure and built-in strain

    NASA Astrophysics Data System (ADS)

    Dybała, F.; Żelazna, K.; Maczko, H.; Gladysiewicz, M.; Misiewicz, J.; Kudrawiec, R.; Lin, H.; Chen, R.; Shang, C.; Huo, Y.; Kamins, T. I.; Harris, J. S.

    2016-06-01

    Unstrained Ge1-xSnx layers of various Sn concentration (1.5%, 3%, 6% Sn) and Ge0.97Sn0.03 layers with built-in compressive (ɛ = -0.5%) and tensile (ɛ = 0.3%) strain are grown by molecular beam epitaxy and studied by electromodulation spectroscopy (i.e., contactless electroreflectance and photoreflectance (PR)). In order to obtain unstrained GeSn layers and layers with different built-in in-plane strains, virtual InGaAs substrates of different compositions are grown prior to the deposition of GeSn layers. For unstrained Ge1-xSnx layers, the pressure coefficient for the direct band gap transition is determined from PR measurements at various hydrostatic pressures to be 12.2 ± 0.2 meV/kbar, which is very close to the pressure coefficient for the direct band gap transition in Ge (12.9 meV/kbar). This suggests that the hydrostatic deformation potentials typical of Ge can be applied to describe the pressure-induced changes in the electronic band structure of Ge1-xSnx alloys with low Sn concentrations. The same conclusion is derived for the uniaxial deformation potential, which describes the splitting between heavy-hole (HH) and light-hole (LH) bands as well as the strain-related shift of the spin-orbit (SO) split-off band. It is observed that the HH, LH, and SO related transitions shift due to compressive and tensile strain according to the Bir-Pikus theory. The dispersions of HH, LH, and SO bands are calculated for compressive and tensile strained Ge0.97Sn0.03 with the 8-band kp Hamiltonian including strain effects, and the mixing of HH and LH bands is discussed. In addition, the dispersion of the electronic band structure is calculated for unstrained Ge1-xSnx layers (3% and 6% Sn) at high hydrostatic pressure with the 8-band kp Hamiltonian, and the pressure-induced changes in the electronic band structure are discussed.

  16. Nonlinear and time-resolved optical study of the 112-type iron-based superconductor parent Ca1 -xLaxFeAs2 across its structural phase transition

    NASA Astrophysics Data System (ADS)

    Harter, J. W.; Chu, H.; Jiang, S.; Ni, N.; Hsieh, D.

    2016-03-01

    The newly discovered 112-type ferropnictide superconductors contain chains of As atoms that break the tetragonal symmetry between the a and b axes. This feature eliminates the need for uniaxial strain that is usually required to stabilize large single domains in the electronic nematic state that exists in the vicinity of magnetic order in the iron-based superconductors. We report detailed structural symmetry measurements of 112-type Ca0.73La0.27FeAs2 using rotational anisotropy optical second-harmonic generation. This technique is complementary to diffraction experiments and enables a precise determination of the point-group symmetry of a crystal. By combining our measurements with density functional theory calculations, we uncover a strong optical second-harmonic response of bulk electric dipole origin from the Fe and Ca 3 d -derived states that enables us to assign C2 as the crystallographic point group. This makes the 112-type materials high-temperature superconductors without a center of inversion, allowing for the possible mixing of singlet and triplet Cooper pairs in the superconducting state. We also perform pump-probe transient reflectivity experiments that reveal a 4.6-THz phonon mode associated with the out-of-plane motion of As atoms in the FeAs layers. We do not observe any suppression of the optical second-harmonic response or shift in the phonon frequency upon cooling through the reported monoclinic-to-triclinic transition at 58 K. This allows us to identify C1 as the low-temperature crystallographic point group but suggests that structural changes induced by long-range magnetic order are subtle and do not significantly affect electronic states near the Fermi level.

  17. Atomistic tight-binding study of electronic structure and interband optical transitions in GaBixAs1-x/GaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad; O'Reilly, Eoin P.

    2014-02-01

    Large-supercell tight-binding calculations are presented for GaBixAs1-x/GaAs single quantum wells (QWs) with Bi fractions x of 3.125% and 12.5%. Our results highlight significant distortion of the valence band states due to the alloy disorder. A large full-width-half-maximum (FWHM) is estimated in the ground state interband transition energy (≈33 meV) at 3.125% Bi, consistent with recent photovoltage measurements for similar Bi compositions. Additionally, the alloy disorder effects are predicted to become more pronounced as the QW width is increased. However, they are less strong at the higher Bi composition (12.5%) required for the design of temperature-stable lasers, with a calculated FWHM of ≈23.5 meV at x = 12.5%.

  18. Transition from a nanocrystalline phase to an amorphous phase in In-Si-O thin films: The correlation between the microstructure and the optical properties

    SciTech Connect

    Park, Jun-Woo; So, Hyeon Seob; Lee, Hosun; Lee, Hye-Min; Kim, Hyo-Joong; Kim, Han-Ki

    2015-04-21

    We investigated the structural and optical properties of In-Si-O thin films as the phase abruptly changes from nanocrystalline (nc) to amorphous (a) with increasing Si content. In-Si-O thin films were deposited on Si substrate using a co-sputtering deposition method. The RF power of the In{sub 2}O{sub 3} target was fixed at 100 W, while the power applied to the SiO{sub 2} target was varied between 0 W and 60 W. At the Si = 2.8 at. %, i.e., at the onset of amorphous phase, the optical properties, including the dielectric functions, optical gap energies, and phonon modes, changed abruptly which were triggered by changes in the crystallinity and surface morphology. X-ray diffraction (XRD) spectra showed crystalline (c-) In{sub 2}O{sub 3}-like peaks below Si = 2.2%. Additionally, a broad peak associated with an amorphous (a-) In{sub 2}O{sub 3} phase appeared above 2.8%. However, the Raman spectra of In-Si-O showed very weak peaks associated with c-In{sub 2}O{sub 3} below 2.2%, and then showed a strong Raman peak associated with a-In-Si-O above 2.8%. X-ray photoelectron spectroscopy measurements showed that oxygen vacancy-related peak intensities increased abruptly above Si = 2.8%. The contrasting results of XRD and Raman measurements can be explained as follows: first, the large enhancement in Drude tails in the a-In-Si-O phase was caused by Si-induced amorphization and a large increase in the density of oxygen vacancies in the In-Si-O thin films. Second, the apparently drastic increase of the Raman peak intensity near 364 cm{sup −1} (for amorphous phase, i.e., above Si = 2.8%) is attributed to a disorder-activated infrared mode caused by both the amorphization and the increase in the oxygen vacancy density in In-Si-O thin films.

  19. Chiral thiol-stabilized silver nanoclusters with well-resolved optical transitions synthesized by a facile etching procedure in aqueous solutions.

    PubMed

    Cathcart, Nicole; Mistry, Pretesh; Makra, Christy; Pietrobon, Brendan; Coombs, Neil; Jelokhani-Niaraki, Masoud; Kitaev, Vladimir

    2009-05-19

    A novel approach of cyclic reduction in oxidative conditions has been developed to prepare a single dominant species of chiral thiol-stabilized silver nanoclusters (AgNCs). Such AgNCs, which are stable in solution for up to a few days, have been obtained for the first time. The generality of the established procedure is proven by using several enantiomeric water-soluble thiols, including glutathione, as protective ligands. The prepared AgNCs featured prominent optical properties including a single pattern of UV-vis absorption with well-resolved peaks. The chirality of the clusters has been investigated by circular dichroism (CD) spectroscopy. CD spectra displayed strong characteristic signatures in the visible range. Tentative identification of the cluster composition is discussed. PMID:19358597

  20. High quality semipolar (11{sup ¯}02) AlGaN/AlN quantum wells with remarkably enhanced optical transition probabilities

    SciTech Connect

    Ichikawa, S. Iwata, Y.; Funato, M.; Kawakami, Y.; Nagata, S.

    2014-06-23

    Adjusting the growth conditions from those for c-plane growth realizes high-quality semipolar (11{sup ¯}02) AlGaN/AlN quantum wells (QWs) with atomically smooth surfaces and abrupt interfaces on AlN substrates. Upon comparing the optical properties to those of c-plane QWs using time-integrated and time-resolved photoluminescence spectroscopy, the estimated internal electric field is much smaller in (11{sup ¯}02) AlGaN/AlN QWs than in c-plane QWs. Thus, (11{sup ¯}02) AlGaN/AlN QWs have narrower emission line widths and remarkably faster radiative recombination lifetimes, realizing highly efficient deep ultraviolet emissions.

  1. Optic glioma

    MedlinePlus

    Glioma - optic; Optic nerve glioma; Juvenile pilocytic astrocytoma; Brain cancer - optic glioma ... Optic gliomas are rare. The cause of optic gliomas is unknown. Most optic gliomas are slow-growing ...

  2. Acoustic phonon assisted free-carrier optical absorption in an n-type monolayer MoS{sub 2} and other transition-metal dichalcogenides

    SciTech Connect

    Bhargavi, K. S.; Patil, Sukanya; Kubakaddi, S. S.

    2015-07-28

    The theory of free-carrier absorption (FCA) is given for monolayers of transition-metal dichalcogenides, particularly for molybdenum disulphide (MoS{sub 2}), when carriers are scattered by phonons. Explicit expressions for the absorption coefficient α are obtained and discussed for acoustic phonon scattering via screened deformation potential and piezoelectric coupling taking polarization of the radiation in the plane of the layer. It is found that α monotonously decreases with the increasing photon frequency Ω, increases with the increasing temperature T, and linearly depends on two-dimensional electron concentration n{sub s}. Effect of screening, which is ignored in all the earlier FCA studies, is found to reduce α significantly, attributing to the larger effective mass of the electrons. Results are also obtained in the classical and quantum limit giving the power laws α ∼ Ω{sup −2} and T. Comparison of the results is made with those in bulk semiconductors and semiconductor quantum wells.

  3. Molecular recognition of NO/NO+ via multicenter (charge-transfer) binding to bridged diarene donors. Effect of structure on the optical transitions and complexation thermodynamics.

    PubMed

    Rosokha, S V; Lindeman, S V; Rathore, R; Kochi, J K

    2003-05-16

    Bridged diarenes form very strong [1:1] complexes with nitrosonium/nitric oxide in which the NO moiety is optimally sandwiched in the cleft between a pair of cofacial aromatic rings which act as a molecular "Venus flytrap". The spectral features of these associates are generally similar to those for [1:1] and [2:1] nitrosonium complexes with mononuclear alkyl-substituted benzenes, and they are appropriately described within the LCAO molecular-orbital methodology and the Mulliken (charge-transfer) formulation of donor/acceptor electronic transitions. The thermodynamics study indicates that the efficient binding is determined by (i) the close matching of the donor/acceptor redox potentials and (ii) the ability of bridged diarenes for multicentered interactions with a single NO moiety. The best fit of the electronic and structural parameters is provided by a calixarene host that allows the interacting centers to be arranged in a manner similar to those extant in [2:1] nitrosonium complexes with analogous (nonbridged) aromatic donors; this results in its very strong noncovalent binding with nitrosonium/nitric oxide with the formation constant of K(B) approximately 10(8) M(-)(1) and free-energy change of -DeltaG degrees = 45 kJ mol(-)(1). Such strong, selective, and reversible bindings of nitrosonium/nitric oxide by (cofacial) aromatic centers thus provide the basis for the development of efficient NO sensors/absorbents and also suggest their potential relevance to biochemical systems. PMID:12737577

  4. Measurement of the Ultrafast Spectral Diffusion of the Optical Transition of Nitrogen Vacancy Centers in Nano-Size Diamond Using Correlation Interferometry

    NASA Astrophysics Data System (ADS)

    Wolters, Janik; Sadzak, Nikola; Schell, Andreas W.; Schröder, Tim; Benson, Oliver

    2013-01-01

    Spectral diffusion is the phenomenon of random jumps in the emission wavelength of narrow lines. This phenomenon is a major hurdle for applications of solid state quantum emitters like quantum dots, molecules, or diamond defect centers in an integrated quantum optical technology. Here, we provide further insight into the underlying processes of spectral diffusion of the zero-phonon line of single nitrogen vacancy centers in nano-size diamond by using a novel method based on photon correlation interferometry. The method works although the spectral diffusion rate is several orders of magnitude higher than the photon detection rate and thereby improves the time resolution of previous experiments with nano-size diamond by 6 orders of magnitude. We study the dependency of the spectral diffusion rate on the excitation power, temperature, and excitation wavelength under off-resonant excitation. Our results bring insight into the mechanism of spectral diffusion and suggest a strategy to increase the number of spectrally indistinguishable photons emitted by diamond nanocrystals.

  5. Measurement of the ultrafast spectral diffusion of the optical transition of nitrogen vacancy centers in nano-size diamond using correlation interferometry.

    PubMed

    Wolters, Janik; Sadzak, Nikola; Schell, Andreas W; Schröder, Tim; Benson, Oliver

    2013-01-11

    Spectral diffusion is the phenomenon of random jumps in the emission wavelength of narrow lines. This phenomenon is a major hurdle for applications of solid state quantum emitters like quantum dots, molecules, or diamond defect centers in an integrated quantum optical technology. Here, we provide further insight into the underlying processes of spectral diffusion of the zero-phonon line of single nitrogen vacancy centers in nano-size diamond by using a novel method based on photon correlation interferometry. The method works although the spectral diffusion rate is several orders of magnitude higher than the photon detection rate and thereby improves the time resolution of previous experiments with nano-size diamond by 6 orders of magnitude. We study the dependency of the spectral diffusion rate on the excitation power, temperature, and excitation wavelength under off-resonant excitation. Our results bring insight into the mechanism of spectral diffusion and suggest a strategy to increase the number of spectrally indistinguishable photons emitted by diamond nanocrystals. PMID:23383937

  6. Raman spectroscopy of optical transitions and vibrational energies of ∼1 nm HgTe extreme nanowires within single walled carbon nanotubes.

    PubMed

    Spencer, Joseph H; Nesbitt, John M; Trewhitt, Harrison; Kashtiban, Reza J; Bell, Gavin; Ivanov, Victor G; Faulques, Eric; Sloan, Jeremy; Smith, David C

    2014-09-23

    This paper presents a resonance Raman spectroscopy study of ∼1 nm diameter HgTe nanowires formed inside single walled carbon nanotubes by melt infiltration. Raman spectra have been measured for ensembles of bundled filled tubes, produced using tubes from two separate sources, for excitation photon energies in the ranges 3.39-2.61 and 1.82-1.26 eV for Raman shifts down to ∼25 cm(-1). We also present HRTEM characterization of the tubes and the results of DFT calculations of the phonon and electronic dispersion relations, and the optical absorption spectrum based upon the observed structure of the HgTe nanowires. All of the evidence supports the hypothesis that the observed Raman features are not attributable to single walled carbon nanotubes, i.e., peaks due to radial breathing mode phonons, but are due to the HgTe nanowires. The observed additional features are due to four distinct phonons, with energies 47, 51, 94, and 115 cm(-1), respectively, plus their overtones and combinations. All of these modes have strong photon energy resonances that maximize at around 1.76 eV energy with respect to incident laser. PMID:25163005

  7. Ultrasound assisted optical tomography: estimation of phase shift experienced by photon on transit through US insonified region for detection of breast tumor

    NASA Astrophysics Data System (ADS)

    Singh, Suheshkumar; Kanhirodan, Rajan; Vasu, R. M.

    2012-03-01

    A Monte Carlo model of ultrasound modulation of multiply scattered coherent light in a highly scattering media has been carried out for estimating the phase shift experienced by a photon beam on its transit through US insonified region. The phase shift is related to the tissue stiffness, thereby opening an avenue for possible breast tumor detection. When the scattering centers in the tissue medium is exposed to a deterministic forcing with the help of a focused ultrasound (US) beam, due to the fact that US-induced oscillation is almost along particular direction, the direction defined by the transducer axis, the scattering events increase, thereby increasing the phase shift experienced by light that traverses through the medium. The phase shift is found to increase with increase in anisotropy g of the medium. However, as the size of the focused region which is the region of interest (ROI) increases, a large number of scattering events take place within the ROI, the ensemble average of the phase shift (Δφ) becomes very close to zero. The phase of the individual photon is randomly distributed over 2π when the scattered photon path crosses a large number of ultrasound wavelengths in the focused region. This is true at high ultrasound frequency (1 MHz) when mean free path length of photon ls is comparable to wavelength of US beam. However, at much lower US frequencies (100 Hz), the wavelength of sound is orders of magnitude larger than ls, and with a high value of g (g 0.9), there is a distinct measurable phase difference for the photon that traverses through the insonified region. Experiments are carried out for validation of simulation results.

  8. Trapped Ion Optical Clocks at NPL

    SciTech Connect

    Margolis, H. S.; Barwood, G. P.; Hosaka, K.; Klein, H. A.; Lea, S. N.; Walton, B. R.; Webster, S. A.; Gill, P.; Huang, G.; Stannard, A.

    2006-11-07

    Forbidden transitions in single laser-cooled trapped ions provide highly stable and accurate references for optical frequency standards. This paper describes recent progress on strontium and ytterbium ion optical frequency standards under development at NPL.

  9. Optical Coherence Tomographic and Visual Results at Six Months after Transitioning to Aflibercept for Patients on Prior Ranibizumab or Bevacizumab Treatment for Exudative Age-Related Macular Degeneration (An American Ophthalmological Society Thesis)

    PubMed Central

    Chan, Clement K.; Jain, Atul; Sadda, Srinivas; Varshney, Neeta

    2014-01-01

    Purpose: To study optical coherence tomographic (OCT) results and vision at 6 months after transition (post-Tx) from intravitreal bevacizumab and/or ranibizumab to aflibercept for treatment of neovascular age-related macular degeneration (nAMD). The null hypothesis was the lack of improvements in OCT metrics and vision outcome in study eyes at 6 months after transitioning from bevacizumab or ranibizumab to aflibercept. Methods: This retrospective study assessed 6 monthly OCT (Cirrus) data after transitioning to aflibercept for eyes on prior Legacy-ranibizumab, Legacy-bevacizumab, or mixed treatment for nAMD. Outcome measures were subretinal fluid (SRF), cystoid macular edema (CME), pigment epithelial detachment (PED) heights and volumes, central 1- and 3-mm subfield, Macular Volume, and best spectacle and pinhole visual acuity (VA). A single masked investigator performed all OCT measurements. Results: One hundred eighty-nine eyes in 172 patients in Legacy-bevacizumab (95 eyes), Legacy-ranibizumab (84 eyes), or Mixed Group(10 eyes) were switched to aflibercept and followed for 6 months. Significant post-Tx reductions were noted in SRF/CME heights and volumes (all P<.001). Similar findings were noted for PED heights (122.8 μm vs 79.4 μm) and PED volumes (all P<.001). Post-Tx VA was better (20/43 vs 20/51, P<.001). There were no differences between Legacy-bevacizumab and Legacy-ranibizumab groups in OCT and VA changes. Post-Tx VA, SRF/CME, and PED heights and volumes were improved for Nonresponders (suboptimal response to bevacizumab/ranibizumab) (P=.001 to <.001), but not Responders (good responses to same). The only adverse event was a retinal pigment epithelial tear in one eye. Conclusions: Significant improvements in vision and OCT metrics developed in Nonresponders but not in Responders. Post-Tx VA and OCT measures were similar for eyes on prior bevacizumab or ranibizumab. Post-Tx adverse events were uncommon. PMID:25646034

  10. Optical disk media research discussed

    NASA Astrophysics Data System (ADS)

    Hou, J.; Gan, F.

    1986-03-01

    A review of the current status of the research and development on various optical disk media is presented. It is noted that research around the world on the media for the nonerasable optical disk is almost over, and that the nonerasable optical disk has been successfully used for CD, LD player and DRAW devices. On the other hand, great efforts are now being made to search the more suitable media for erasable optical disks. Extensive experiments on various material systems including optical characteristic change, phase transition and magneto-optical recording media are under way. It is expected that fruitful results will appear in the next 2 or 3 years.

  11. Facile synthesis, phase transition, optical switching and oxidation resistance properties of belt-like VO{sub 2}(A) and VO{sub 2}(M) with a rectangular cross section

    SciTech Connect

    Zhang, Yifu; Huang, Yanfen; Zhang, Juecheng; Wu, Weibing; Niu, Fei; Zhong, Yalan; Liu, Xinghai; Liu, Xin; Huang, Chi

    2012-08-15

    Highlights: ► Belt-like VO{sub 2}(A) with a rectangular cross section was synthesized. ► The formation mechanism of belt-like VO{sub 2}(A) was proposed. ► Belt-like VO{sub 2}(M) was prepared by the irreversible transformation of VO{sub 2}(A). ► VO{sub 2}(A) and VO{sub 2}(M) can be used as the optical switching materials. ► VO{sub 2}(A) and VO{sub 2}(M) have good oxidation resistance below 400 °C in air. -- Abstract: Belt-like VO{sub 2}(A) with a rectangular cross section (VA-RCS) was successfully synthesized using V{sub 2}O{sub 5}, H{sub 2}C{sub 2}O{sub 4}·2H{sub 2}O and H{sub 2}O as the starting materials by a facile hydrothermal approach. Some synthetic parameters, such as, the reaction time, reaction temperature and concentration of H{sub 2}C{sub 2}O{sub 4}·2H{sub 2}O, were systematically investigated to control the fabrication of belt-like VA-RCS. The formation mechanism of belt-like VA-RCS was proposed. Subsequently, belt-like VO{sub 2}(M) with a rectangular cross section (VM-RCS) was prepared by the irreversible transformation of VA-RCS at 700 °C for 2 h under the inert atmosphere. The phase transition temperature (T{sub c}) of VA-RCS and VM-RCS was evaluated by DSC test. The optical switching properties of VA-RCS and VM-RCS were studied by the variable-temperature infrared spectra, and it was found that the as-obtained VA-RCS and VM-RCS could be used as the optical switching materials. Furthermore, the oxidation resistance properties of VA-RCS and VM-RCS were investigated by TGA, indicating that they have good thermal stability and oxidation resistance below 400 °C in air.

  12. Optic neuritis

    MedlinePlus

    Retro-bulbar neuritis; Multiple sclerosis - optic neuritis; Optic nerve - optic neuritis ... The exact cause of optic neuritis is unknown. The optic nerve carries visual information from your eye to the brain. The nerve can swell when ...

  13. α- to β-[C 6H 4(NH 3) 2] 2Bi 2I 10 reversible solid-state transition, thermochromic and optical studies in the p-phenylenediamine-based iodobismuthate(III) material

    NASA Astrophysics Data System (ADS)

    Hrizi, Chakib; Trigui, Ameni; Abid, Younes; Chniba-Boudjada, Nassira; Bordet, Pierre; Chaabouni, Slaheddine

    2011-12-01

    α-[C 6H 4(NH 3) 2] 2Bi 2I 10, which is a new material containing low-dimensional iodobismuthate anions, was synthesized and through its single crystal X-ray diffraction measurements, was proven to crystallize at room temperature in the centrosymmetric space group P2 1/c. It consists of a p-phenylenediammonium dication and a discrete (0-D) anion built up of edge-sharing bioctahedron. Due to the hydrogen bonds and the interatomic distances (Bi-I, I⋯I and π-π) changes, α-phase was transformed into the corresponding centrosymmetric β-phase, β-[C 6H 4(NH 3) 2] 2Bi 2I 10, through a single-crystal to single-crystal transformation occurring upon cooling to -28/-26 °C. Below the transition temperature, β-[C 6H 4(NH 3) 2] 2Bi 2I 10 crystallizes in the monoclinic system, centrosymmetric space group P2 1/n. Besides, the optical transmission measurements on α-[C 6H 4(NH 3) 2] 2Bi 2I 10 thin films have revealed two absorption bands at 2.47 and 3.01 eV. Finally, two room temperature photoluminescence emissions attributed to excitons radiative recombinations confined within the bioctahedra Bi 2I 104-, were observed in the red spectral range at 1.9 and 2.05 eV energy.

  14. Optical and x-ray evidence of the ``de Vries'' Sm-A*-Sm-C* transition in a non-layer-shrinkage ferroelectric liquid crystal with very weak interlayer tilt correlation

    NASA Astrophysics Data System (ADS)

    Lagerwall, Jan P.; Giesselmann, Frank; Radcliffe, Marc D.

    2002-09-01

    A non-layer-shrinkage fluorinated ferroelectric liquid crystal compound, 8422[2F3], has been characterized by means of optical, x-ray, and calorimetric methods. The orientational distribution within macroscopic volumes, determined through wide-angle x-ray scattering and birefringence measurements, was found to be identical in the Sm-A* and helical Sm-C* phases. Together with the absence of layer shrinkage, this constitutes strong evidence that the second-order Sm-A*-Sm-C* transition in this material is well described by the diffuse cone model of de Vries. The absolute values of the layer spacing show that the molecules aggregate to antiparallel pairs. The molecular interaction across the layer boundaries will then occur only between fluorine atoms, leading to unusually weak interlayer tilt direction correlation. This explains the experimental observations of a very easily disturbed Sm-C* helix and a peculiar surface-stabilized texture. Tilt angle and birefringence values as a function of field and temperature have been evaluated in the Sm-A* and Sm-C* phases and the results corroborate the conclusions from the x-ray investigations.

  15. Optical and x-ray evidence of the "de Vries" Sm-A*-Sm-C* transition in a non-layer-shrinkage ferroelectric liquid crystal with very weak interlayer tilt correlation.

    PubMed

    Lagerwall, Jan P F; Giesselmann, Frank; Radcliffe, Marc D

    2002-09-01

    A non-layer-shrinkage fluorinated ferroelectric liquid crystal compound, 8422[2F3], has been characterized by means of optical, x-ray, and calorimetric methods. The orientational distribution within macroscopic volumes, determined through wide-angle x-ray scattering and birefringence measurements, was found to be identical in the Sm-A* and helical Sm-C* phases. Together with the absence of layer shrinkage, this constitutes strong evidence that the second-order Sm-A*-Sm-C* transition in this material is well described by the diffuse cone model of de Vries. The absolute values of the layer spacing show that the molecules aggregate to antiparallel pairs. The molecular interaction across the layer boundaries will then occur only between fluorine atoms, leading to unusually weak interlayer tilt direction correlation. This explains the experimental observations of a very easily disturbed Sm-C* helix and a peculiar surface-stabilized texture. Tilt angle and birefringence values as a function of field and temperature have been evaluated in the Sm-A* and Sm-C* phases and the results corroborate the conclusions from the x-ray investigations. PMID:12366132

  16. STELLAR TRANSITS IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Beky, Bence; Kocsis, Bence E-mail: bkocsis@cfa.harvard.edu

    2013-01-01

    Supermassive black holes (SMBHs) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGNs) produce a characteristic transit light curve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit light curves using the Novikov-Thorne thin accretion disk model, including general relativistic effects. Based on the expected properties of stellar cusps, we find that around 10{sup 6} solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low-mass AGNs to 1% photometric accuracy in optical, or {approx}10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Such observations could be used to constrain black hole mass, spin, inclination, and accretion rate. Transit rates and durations could give valuable information on the circumnuclear stellar clusters as well. Transit light curves could be used to image accretion disks with unprecedented resolution, allowing us to resolve the SMBH silhouette in distant AGNs.

  17. Stellar Transits in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Béky, Bence; Kocsis, Bence

    2013-01-01

    Supermassive black holes (SMBHs) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGNs) produce a characteristic transit light curve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit light curves using the Novikov-Thorne thin accretion disk model, including general relativistic effects. Based on the expected properties of stellar cusps, we find that around 106 solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low-mass AGNs to 1% photometric accuracy in optical, or ~10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Such observations could be used to constrain black hole mass, spin, inclination, and accretion rate. Transit rates and durations could give valuable information on the circumnuclear stellar clusters as well. Transit light curves could be used to image accretion disks with unprecedented resolution, allowing us to resolve the SMBH silhouette in distant AGNs.

  18. Progress in linear optics, non-linear optics and surface alignment of liquid crystals

    SciTech Connect

    Ong, H.L.; Meyer, R.B.; Hurd, A.J.; Karn, A.J.; Arakelian, S.M.; Shen, Y.R.; Sanda, P.N.; Dove, D.B.; Jansen, S.A.; Hoffmann, R.

    1989-01-01

    We first discuss the progress in linear optics, in particular, the formulation and application of geometrical-optics approximation and its generalization. We then discuss the progress in non-linear optics, in particular, the enhancement of a first-order Freedericksz transition and intrinsic optical bistability in homeotropic and parallel oriented nematic liquid crystal cells. Finally, we discuss the liquid crystal alignment and surface effects on field-induced Freedericksz transition. 50 refs.

  19. Metric transition

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This report describes NASA's metric transition in terms of seven major program elements. Six are technical areas involving research, technology development, and operations; they are managed by specific Program Offices at NASA Headquarters. The final program element, Institutional Management, covers both NASA-wide functional management under control of NASA Headquarters and metric capability development at the individual NASA Field Installations. This area addresses issues common to all NASA program elements, including: Federal, state, and local coordination; standards; private industry initiatives; public-awareness initiatives; and employee training. The concluding section identifies current barriers and impediments to metric transition; NASA has no specific recommendations for consideration by the Congress.

  20. Optical profile determining apparatus and associated methods including the use of a plurality of wavelengths in the reference beam and a plurality of wavelengths in a reflective transit beam

    NASA Technical Reports Server (NTRS)

    Montgomery, Robert M. (Inventor)

    2006-01-01

    An optical profile determining apparatus includes an optical detector and an optical source. The optical source generates a transmit beam including a plurality of wavelengths, and generates a reference beam including the plurality of wavelengths. Optical elements direct the transmit beam to a target, direct a resulting reflected transmit beam back from the target to the optical detector, and combine the reference beam with the reflected transmit beam so that a profile of the target is based upon fringe contrast produced by the plurality of wavelengths in the reference beam and the plurality of wavelengths in the reflected transmit beam.

  1. Profound Understanding of Effect of Transition Metal Dopant, Sintering Temperature, and pO2 on the Electrical and Optical Properties of Proton Conducting BaCe0.9Sm0.1O3-δ.

    PubMed

    Handal, Hala T; Hassan, Azfar; Leeson, Ryan; Eloui, Sherif M; Fitzpatrick, Martin; Thangadurai, Venkataraman

    2016-01-19

    This study reports the effect of transition metal (TM) substitution on the electrical and optical properties of BaCe0.9Sm0.1O3-δ (BCS). Concentrations of 5-10 mol % of each of Fe and Co have been doped for the B-site of BCS by citric acid autocombustion method. Powder X-ray diffraction has revealed the formation of an orthorhombic perovskite-type structure. FTIR confirmed a distortion in the lattice upon TM-doping in BCS. Scanning electron microscopy (SEM) images of 1400 °C sintered samples have manifested a higher densification in BaCe0.8Sm0.1Co0.1O3-δ (BCSC10) with a grain size ∼11 μm compared to the parent compound BCS (∼2 μm). Thermogravimetric (TG) analysis showed a water uptake in case of BaCe0.85Sm0.1Co0.05O3-δ (BCSC5), while BaCe0.85Sm0.1Fe0.05O3-δ (BCSF5) did not show a noteworthy uptake of water. TG has also proved that the incorporation of Fe and Co in BCS did not improve the chemical stability in CO2 at elevated temperature. The band gap estimated using Kubelka-Munk model based on the diffuse reflectance data was found to be the lowest for BCSC5 (2.47 eV). However, it increases upon lowering oxygen partial pressure (pO2), which was interpreted by a band structure modifications. Among the samples investigated, BCSC10 sintered at 1400 °C showed the highest electrical conductivity of 0.02 S cm(-1) in air at 600 °C, while its proton mobility appears to be negligible under the investigated humidity atmosphere. PMID:26695452

  2. Bi-stable optical actuator

    DOEpatents

    Holdener, Fred R.; Boyd, Robert D.

    2000-01-01

    The present invention is a bi-stable optical actuator device that is depowered in both stable positions. A bearing is used to transfer motion and smoothly transition from one state to another. The optical actuator device may be maintained in a stable position either by gravity or a restraining device.

  3. Optical atomic clocks

    NASA Astrophysics Data System (ADS)

    Poli, N.; Oates, C. W.; Gill, P.; Tino, G. M.

    2013-12-01

    In the last ten years extraordinary results in time and frequency metrology have been demonstrated. Frequency-stabilization techniques for continuous-wave lasers and femtosecond optical frequency combs have enabled a rapid development of frequency standards based on optical transitions in ultra-cold neutral atoms and trapped ions. As a result, today's best performing atomic clocks tick at an optical rate and allow scientists to perform high-resolution measurements with a precision approaching a few parts in 1018. This paper reviews the history and the state of the art in optical-clock research and addresses the implementation of optical clocks in a possible future redefinition of the SI second as well as in tests of fundamental physics.

  4. Superlattice optical device

    DOEpatents

    Biefeld, R.M.; Fritz, I.J.; Gourley, P.L.; Osbourn, G.C.

    A semiconductor optical device which includes a superlattice having direct transitions between conduction band and valence band states with the same wave vector, the superlattice being formed from a plurality of alternating layers of two or more different materials, at least the material with the smallest bandgap being an indirect bandgap material.

  5. Optical and infrared lasers

    NASA Technical Reports Server (NTRS)

    Javan, A.

    1978-01-01

    Quantum mechanical predictions for the gain of an optically pumped CW FIR laser are presented for cases in which one or both of the pump and FIR transitions are pressure or Doppler broadened. The results are compared to those based on the rate equation model. Some of the quantum mechanical predictions are verified in CH3OH.

  6. Superlattice optical device

    DOEpatents

    Biefeld, Robert M.; Fritz, Ian J.; Gourley, Paul L.; Osbourn, Gordon C.

    1986-01-01

    A semiconductor optical device which includes a superlattice having direct transitions between conduction band and valence band states with the same wave vector, the superlattice being formed from a plurality of alternating layers of two or more different materials, at least the material with the smallest bandgap being an indirect bandgap material.

  7. Phase control of nonadiabatic optical transitions

    NASA Astrophysics Data System (ADS)

    Hashmi, F. A.; Bouchene, M. A.

    2009-02-01

    We theoretically study the interaction of two time delayed, phase-locked, and nonresonant pulses with a two-level system in the strong field regime. The population transfer is shown to be extremely sensitive to the phase shift ϕ between the pulses, with efficient population transfer taking place only for ϕ close to π . This effect is explained in terms of nonadiabatic jump and rapid adiabatic passage phenomena.

  8. [Humanitarian transition].

    PubMed

    Mattei, Jean-François; Troit, Virginie

    2016-02-01

    In two centuries, modern humanitarian action has experienced several fractures often linked to crises. Although its professionalism and intervention force remain indisputable, it faces, since the 2000s, a new context that limits its ability to act and confronts it with new dilemmas, even though it must deal with needs for aid of unprecedented scale. These difficulties reveal a humanitarian transition period that was not anticipated. This transition period reflects the change from a dominant paradigm of North-South solidarity of Western origin to a much more complex model. This article provides a summary of the current mutations that are dominated by the States' assertion of sovereignty. Among the possible solutions, it argues for an ethical approach and a better integration of the research carried out in the Global South, prerequisites for building a true partnership and placing the victims at the heart of the operations which involve them. PMID:26936180

  9. Eliminating Transitions

    ERIC Educational Resources Information Center

    Gallick, Barb; Lee, Lisa

    2010-01-01

    Adults often find themselves transitioning from one activity to another in a short time span. Most of the time, they do not feel they have a lot of control over their schedules, but wish that they could carve out extended time to relax and focus on one project. Picture a group of children in the block area who have spent 15 or 20 minutes building…

  10. Polarization dependence of double-resonance optical pumping and electromagnetically induced transparency in the 5S{sub 1/2}-5P{sub 3/2}-5D{sub 5/2} transition of {sup 87}Rb atoms

    SciTech Connect

    Moon, Han Seb; Noh, Heung-Ryoul

    2011-09-15

    The polarization dependence of double-resonance optical pumping (DROP) in the ladder-type electromagnetically induced transparency (EIT) of the 5S{sub 1/2}-5P{sub 3/2}-5D{sub 5/2} transition of {sup 87}Rb atoms is studied. The transmittance spectra in the 5S{sub 1/2}(F=2)-5P{sub 3/2}(F'=3)-5D{sub 5/2}(F''=2,3,4) transition were observed as caused by EIT, DROP, and saturation effects in the various polarization combinations between the probe and coupling lasers. The features of the double-structure transmittance spectra in the 5S{sub 1/2}(F=2)-5P{sub 3/2}(F'=3)-5D{sub 5/2}(F''=4) cycling transition were attributed to the difference in saturation effect according to the transition routes between the Zeeman sublevels and the EIT according to the two-photon transition probability.

  11. Stimulated coherent transition radiation

    SciTech Connect

    Hung-chi Lihn

    1996-03-01

    Coherent radiation emitted from a relativistic electron bunch consists of wavelengths longer than or comparable to the bunch length. The intensity of this radiation out-numbers that of its incoherent counterpart, which extends to wavelengths shorter than the bunch length, by a factor equal to the number of electrons in the bunch. In typical accelerators, this factor is about 8 to 11 orders of magnitude. The spectrum of the coherent radiation is determined by the Fourier transform of the electron bunch distribution and, therefore, contains information of the bunch distribution. Coherent transition radiation emitted from subpicosecond electron bunches at the Stanford SUNSHINE facility is observed in the far-infrared regime through a room-temperature pyroelectric bolometer and characterized through the electron bunch-length study. To measure the bunch length, a new frequency-resolved subpicosecond bunch-length measuring system is developed. This system uses a far-infrared Michelson interferometer to measure the spectrum of coherent transition radiation through optical autocorrelation with resolution far better than existing time-resolved methods. Hence, the radiation spectrum and the bunch length are deduced from the autocorrelation measurement. To study the stimulation of coherent transition radiation, a special cavity named BRAICER is invented. Far-infrared light pulses of coherent transition radiation emitted from electron bunches are delayed and circulated in the cavity to coincide with subsequent incoming electron bunches. This coincidence of light pulses with electron bunches enables the light to do work on electrons, and thus stimulates more radiated energy. The possibilities of extending the bunch-length measuring system to measure the three-dimensional bunch distribution and making the BRAICER cavity a broadband, high-intensity, coherent, far-infrared light source are also discussed.

  12. Dynamo Transition

    SciTech Connect

    Verma, M. K.; Yadav, R.; Chandra, M.; Paul, S.; Wahi, P.

    2010-11-23

    In this article we review the experimental and numerical results related to the dynamo transitions. Recent experiments of Von Karman Sodium (VKS) exhibit various dynamo states including constant, time-periodic, and chaotic magnetic fields. Similarly pseudospectral simulations of dynamo show constant, time-periodic, quasiperiodic, and chaotic magnetic field configurations. One of the windows for the magnetic Prandtl number of unity shows period doubling route to chaos. Quasiperiodic route to chaos has been reported for the Prandtl number of 0.5. The dynamo simulations also reveal coexisting multiple attractors that were obtained for different initial conditions.

  13. Active Faraday optical frequency standard.

    PubMed

    Zhuang, Wei; Chen, Jingbiao

    2014-11-01

    We propose the mechanism of an active Faraday optical clock, and experimentally demonstrate an active Faraday optical frequency standard based on narrow bandwidth Faraday atomic filter by the method of velocity-selective optical pumping of cesium vapor. The center frequency of the active Faraday optical frequency standard is determined by the cesium 6 (2)S(1/2) F=4 to 6 (2)P(3/2) F'=4 and 5 crossover transition line. The optical heterodyne beat between two similar independent setups shows that the frequency linewidth reaches 281(23) Hz, which is 1.9×10(4) times smaller than the natural linewidth of the cesium 852-nm transition line. The maximum emitted light power reaches 75 μW. The active Faraday optical frequency standard reported here has advantages of narrow linewidth and reduced cavity pulling, which can readily be extended to other atomic transition lines of alkali and alkaline-earth metal atoms trapped in optical lattices at magic wavelengths, making it useful for new generation of optical atomic clocks. PMID:25361349

  14. Optic neuritis

    MedlinePlus

    ... pneumonia and other common upper respiratory tract infections Multiple sclerosis ... have optic neuritis without a disease such as multiple sclerosis have a good chance of recovery. Optic neuritis ...

  15. Optically switchable photonic metasurfaces

    SciTech Connect

    Waters, R. F.; MacDonald, K. F.; Hobson, P. A.; Zheludev, N. I.

    2015-08-24

    We experimentally demonstrate an optically switchable gallium-based metasurface, in which a reversible light-induced transition between solid and liquid phases occurring in a confined nanoscale surface layer of the metal drives significant changes in reflectivity and absorption. The metasurface architecture resonantly enhances the metal's “active plasmonic” phase-change nonlinearity by an order of magnitude, offering high contrast all-optical switching in the near-infrared range at low, μW μm{sup −2}, excitation intensities.

  16. Arbitrary unitary transformations on optical states using a quantum memory

    SciTech Connect

    Campbell, Geoff T.; Pinel, Olivier; Hosseini, Mahdi; Buchler, Ben C.; Lam, Ping Koy

    2014-12-04

    We show that optical memories arranged along an optical path can perform arbitrary unitary transformations on frequency domain optical states. The protocol offers favourable scaling and can be used with any quantum memory that uses an off-resonant Raman transition to reversibly transfer optical information to an atomic spin coherence.

  17. Optical extensometer

    DOEpatents

    Walker, Ray A.; Reich, Fred R.; Russell, James T.

    1978-01-01

    An optical extensometer is described using sequentially pulsed light beams for measuring the dimensions of objects by detecting two opposite edges of the object without contacting the object. The light beams may be of different distinguishable light characteristics, such as polarization or wave length, and are time modulated in an alternating manner at a reference frequency. The light characteristics are of substantially the same total light energy and are distributed symmetrically. In the preferred embodiment two light beam segments of one characteristic are on opposite sides of a middle segment of another characteristic. As a result, when the beam segments are scanned sequentially across two opposite edges of the object, they produce a readout signal at the output of a photoelectric detector that is compared with the reference signal by a phase comparator to produce a measurement signal with a binary level transition when the light beams cross an edge. The light beams may be of different cross sectional geometries, including two superimposed and concentric circular beam cross sections of different diameter, or two rectangular cross sections which intersect with each other substantially perpendicular so only their central portions are superimposed. Alternately, a row of three light beams can be used including two outer beams on opposite sides and separate from a middle beam. The three beams may all be of the same light characteristic. However it is preferable that the middle beam be of a different characteristic but of the same total energy as the two outer beams.

  18. Coherent Backscattering Reveals the Anderson Transition.

    PubMed

    Ghosh, S; Delande, D; Miniatura, C; Cherroret, N

    2015-11-13

    We develop an accurate finite-time scaling analysis of the angular width of the coherent backscattering (CBS) peak for waves propagating in 3D random media. Applying this method to ultracold atoms in optical speckle potentials, we show how to determine both the mobility edge and the critical exponent of the Anderson transition from the temporal behavior of the CBS width. Our method could be used in experiments to fully characterize the 3D Anderson transition. PMID:26613427

  19. Coherent Backscattering Reveals the Anderson Transition

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Delande, D.; Miniatura, C.; Cherroret, N.

    2015-11-01

    We develop an accurate finite-time scaling analysis of the angular width of the coherent backscattering (CBS) peak for waves propagating in 3D random media. Applying this method to ultracold atoms in optical speckle potentials, we show how to determine both the mobility edge and the critical exponent of the Anderson transition from the temporal behavior of the CBS width. Our method could be used in experiments to fully characterize the 3D Anderson transition.

  20. Nuclear interlevel transfer driven by electronic transitions

    SciTech Connect

    Solem, J.C.; Rinker, G.

    1985-01-01

    We show how a gamma-ray laser might be made by optically exciting a transfer of population from a long-lived isomer to an energetically adjacent short-lived state of the same nucleus. We compare the advantages of using transitions of high multipolarity versus transitions of low multi-polarity. Preliminary numerical investigations of the mechanism show it to be somewhat favorable. 35 refs., 4 figs.

  1. Multiple Scattering in Transit Transmission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Misra, Amit; Meadows, V.; Crisp, D.

    2014-01-01

    Exoplanet transit transmission spectroscopy is a powerful tool that has been used to characterize Jupiter and Neptune-sized transiting exoplanets, and a Super-Earth/Mini-Neptune. Because of the flat and featureless spectra for many of these planets, a large number of exoplanets are thought to have cloud or aerosol haze layers in their atmospheres. Clouds and aerosols lead to extinction of flux, but can also scatter photons into the beam to a distant observer. Most transit transmission spectroscopy models include extinction from cloud and aerosol particles, but do not include the effects of directional and multiple scattering from these particles. We have updated an existing transit transmission spectroscopy model to include a backwards Monte Carlo ray tracing scheme that simulates directional and multiple scattering from cloud and aerosol particles. For the paths which connect the host star to a distant observer, we generate a transit transmission spectrum using the calculated paths. We have run simulations for scattering functions ranging from isotropic to strongly forward scattering. We vary the optical depth from optically thin (max transmission of 10% on limb) to very optically thick (max transmission of 0.1%) and the particle vertical distribution from homogeneously distributed in the atmosphere to over a only one layer of the model atmosphere. We find that for a particle layer that is optically thin and confined to a narrow vertical extent, multiple scattering can lead to significant decreases in planetary absorption by nearly 30% when compared to model results with only extinction from clouds and aerosols.

  2. Optical microspectrometer

    DOEpatents

    Sweatt, William C.; Christenson, Todd R.

    2004-05-25

    An optical microspectrometer comprises a grism to disperse the spectra in a line object. A single optical microspectrometer can be used to sequentially scan a planar object, such as a dye-tagged microchip. Because the optical microspectrometer is very compact, multiple optical microspectrometers can be arrayed to provide simultaneous readout across the width of the planar object The optical microspectrometer can be fabricated with lithographic process, such as deep X-ray lithography (DXRL), with as few as two perpendicular exposures.

  3. Optically tunable optical filter

    NASA Astrophysics Data System (ADS)

    James, Robert T. B.; Wah, Christopher; Iizuka, Keigo; Shimotahira, Hiroshi

    1995-12-01

    We experimentally demonstrate an optically tunable optical filter that uses photorefractive barium titanate. With our filter we implement a spectrum analyzer at 632.8 nm with a resolution of 1.2 nm. We simulate a wavelength-division multiplexing system by separating two semiconductor laser diodes, at 1560 nm and 1578 nm, with the same filter. The filter has a bandwidth of 6.9 nm. We also use the same filter to take 2.5-nm-wide slices out of a 20-nm-wide superluminescent diode centered at 840 nm. As a result, we experimentally demonstrate a phenomenal tuning range from 632.8 to 1578 nm with a single filtering device.

  4. Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance.

    PubMed

    Wang, Hui; Tam, Felicia; Grady, Nathaniel K; Halas, Naomi J

    2005-10-01

    The optical properties of metals arise both from optical excitation of interband transitions and their collective electronic, or plasmon, response. Here, we examine the optical properties of Cu, whose strong interband transitions dominate its optical response in the visible region of the spectrum, in a nanoshell geometry. This nanostructure permits the geometrical tuning of the nanoparticle plasmon energy relative to the onset of interband transitions in the metal. Spectral overlap of the interband transitions of Cu with the nanoshell plasmon resonance results in a striking double-peaked plasmon resonance, a unique phenomenon previously unobserved in other noble or coinage metal nanostructures. PMID:16853342

  5. Experience with split transition lattices at RHIC

    SciTech Connect

    Montag, C.; Tepikian, S.; Blaskiewicz, M.; Brennan, J.M.

    2010-05-23

    During the acceleration process, heavy ion beams in RHIC cross the transition energy. When RHIC was colliding deuterons and gold ions during Run-8, lattices with different integer tunes were used for the two rings. This resulted in the two rings crossing transition at different times, which proved beneficial for the 'Yellow' ring, the RF system of which is slaved to the 'Blue' ring. For the symmetric gold-gold run in FY2010, lattices with different transition energies but equal tunes were implemented. We report the optics design concept as well as operational experience with this configuration.

  6. Different ways to active optical frequency standards

    NASA Astrophysics Data System (ADS)

    Pan, Duo; Xue, Xiaobo; Zhang, Xiaogang; Chen, Jingbiao

    2016-06-01

    Active optical frequency standard, or active optical clock, is a new concept of optical frequency standard, where a weak feedback with phase coherence information in optical bad-cavity limitation is formed, and the continuous self-sustained coherent stimulated emission between two atomic transition levels with population inversion is realized. Through ten years of both theoretical and experimental exploration, the narrow linewidth and suppression of cavity pulling effect of active optical frequency standard have been initially proved. In this paper, after a simple review, we will mainly present the most recent experimental progresses of active optical frequency standards in Peking University, including 4-level cesium active optical frequency standards and active Faraday optical frequency standards. The future development of active optical frequency standards is also discussed.

  7. Transitions: A Personal Perspective.

    ERIC Educational Resources Information Center

    Wood, Ann Stace

    1995-01-01

    Distinguishes between unchosen transitions (children maturing and leaving, parents aging, companies downsizing) and chosen ones (moving, divorce, marriage, career changes). Describes the steps one goes through: uneasiness, renewed energy, complaining, exploration, partial transition, and the completed transition. (JOW)

  8. Optical to optical interface device

    NASA Technical Reports Server (NTRS)

    Oliver, D. S.; Vohl, P.; Nisenson, P.

    1972-01-01

    The development, fabrication, and testing of a preliminary model of an optical-to-optical (noncoherent-to-coherent) interface device for use in coherent optical parallel processing systems are described. The developed device demonstrates a capability for accepting as an input a scene illuminated by a noncoherent radiation source and providing as an output a coherent light beam spatially modulated to represent the original noncoherent scene. The converter device developed under this contract employs a Pockels readout optical modulator (PROM). This is a photosensitive electro-optic element which can sense and electrostatically store optical images. The stored images can be simultaneously or subsequently readout optically by utilizing the electrostatic storage pattern to control an electro-optic light modulating property of the PROM. The readout process is parallel as no scanning mechanism is required. The PROM provides the functions of optical image sensing, modulation, and storage in a single active material.

  9. Optical probe

    DOEpatents

    Hencken, Kenneth; Flower, William L.

    1999-01-01

    A compact optical probe is disclosed particularly useful for analysis of emissions in industrial environments. The instant invention provides a geometry for optically-based measurements that allows all optical components (source, detector, rely optics, etc.) to be located in proximity to one another. The geometry of the probe disclosed herein provides a means for making optical measurements in environments where it is difficult and/or expensive to gain access to the vicinity of a flow stream to be measured. Significantly, the lens geometry of the optical probe allows the analysis location within a flow stream being monitored to be moved while maintaining optical alignment of all components even when the optical probe is focused on a plurality of different analysis points within the flow stream.

  10. Optical Communications

    ERIC Educational Resources Information Center

    Young, Matt

    1973-01-01

    Describes the characteristics and operational problems of optical waveguides, and concludes that the wide use of optical communications can be expected if difficulties in commercial production of components can be eliminated. (CC)

  11. Optical keyboard

    DOEpatents

    Veligdan, James T.; Feichtner, John D.; Phillips, Thomas E.

    2001-01-01

    An optical keyboard includes an optical panel having optical waveguides stacked together. First ends of the waveguides define an inlet face, and opposite ends thereof define a screen. A projector transmits a light beam outbound through the waveguides for display on the screen as a keyboard image. A light sensor is optically aligned with the inlet face for sensing an inbound light beam channeled through the waveguides from the screen upon covering one key of the keyboard image.

  12. PyTransit: Transit light curve modeling

    NASA Astrophysics Data System (ADS)

    Parviainen, Hannu

    2015-05-01

    PyTransit implements optimized versions of the Giménez and Mandel & Agol transit models for exoplanet transit light-curves. The two models are implemented natively in Fortran with OpenMP parallelization, and are accessed by an object-oriented python interface. PyTransit facilitates the analysis of photometric time series of exoplanet transits consisting of hundreds of thousands of data points, and of multipassband transit light curves from spectrophotometric observations. It offers efficient model evaluation for multicolour observations and transmission spectroscopy, built-in supersampling to account for extended exposure times, and routines to calculate the projected planet-to-star distance for circular and eccentric orbits, transit durations, and more.

  13. Method and apparatus for bistable optical information storage for erasable optical disks

    DOEpatents

    Land, Cecil E.; McKinney, Ira D.

    1990-01-01

    A method and an optical device for bistable storage of optical information, together with reading and erasure of the optical information, using a photoactivated shift in a field dependent phase transition between a metastable or a bias-stabilized ferroelectric (FE) phase and a stable antiferroelectric (AFE) phase in an lead lanthanum zirconate titanate (PLZT). An optical disk contains the PLZT. Writing and erasing of optical information can be accomplished by a light beam normal to the disk. Reading of optical information can be accomplished by a light beam at an incidence angle of 15 to 60 degrees to the normal of the disk.

  14. Method and apparatus for bistable optical information storage for erasable optical disks

    DOEpatents

    Land, C.E.; McKinney, I.D.

    1988-05-31

    A method and an optical device for bistable storage of optical information, together with reading and erasure of the optical information, using a photoactivated shift in a field dependent phase transition between a metastable or a bias-stabilized ferroelectric (FE) phase and a stable antiferroelectric (AFE) phase in a lead lanthanum zirconate titanate (PLZT). An optical disk contains the PLZT. Writing and erasing of optical information can be accomplished by a light beam normal to the disk. Reading of optical information can be accomplished by a light beam at an incidence angle of 15 to 60 degrees to the normal of the disk. 10 figs.

  15. Applications of optical Boolean matrix operations to graph theory.

    PubMed

    Gibson, P M; Caulfield, H J

    1991-09-10

    The transition from optical numerical matrix algebra to optical Boolean matrix algebra is explored in detail. All important Boolean matrix algebra tasks can be performed optically. Quantitative measurement is replaced by a simple light-or-no-light decision, something optics can do well. The parallelism advantage of optics becomes greater as the matrix size increases. As an illustration of utility, we consider graph theory. PMID:20706446

  16. Optical atomic clocks and metrology

    NASA Astrophysics Data System (ADS)

    Ludlow, Andrew

    2014-05-01

    The atomic clock has long demonstrated the capability to measure time or frequency with very high precision. Consequently, these clocks are used extensively in technological applications such as advanced synchronization or communication and navigation networks. Optical atomic clocks are next- generation timekeepers which reference narrowband optical transitions between suitable atomic states. Many optical time/frequency standards utilize state-of-the-art quantum control and precision measurement. Combined with the ultrahigh quality factors of the atomic resonances at their heart, optical atomic clocks have promised new levels of timekeeping precision, orders of magnitude higher than conventional atomic clocks based on microwave transitions. Such measurement capability enables and/or enhances many of the most exciting applications of these clocks, including the study of fundamental laws of physics through the measurement of time evolution. Here, I will highlight optical atomic clocks and their utility, as well as review recent advances in their development and performance. In particular, I will describe in detail the optical lattice clock and the realization of frequency measurement at the level of one part in 1018. To push the performance of these atomic timekeepers to such a level and beyond, several key advances are being explored worldwide. These will be discussed generally, with particular emphasis on our recent efforts at NIST in developing the optical lattice clock based on atomic ytterbium.

  17. 17 THz continuous-wave optical modulator

    NASA Astrophysics Data System (ADS)

    Weber, J. J.; Green, J. T.; Yavuz, D. D.

    2012-01-01

    We use coherently rotating hydrogen molecules and demonstrate a continuous-wave optical modulator at a frequency of 17.6 THz that can modulate any laser within the optical region of the spectrum. The molecules are coherently excited using two intense laser beams spaced by the Raman transition frequency inside a high-finesse cavity.

  18. Toward high throughput optical metamaterial assemblies.

    PubMed

    Fontana, Jake; Ratna, Banahalli R

    2015-11-01

    Optical metamaterials have unique engineered optical properties. These properties arise from the careful organization of plasmonic elements. Transitioning these properties from laboratory experiments to functional materials may lead to disruptive technologies for controlling light. A significant issue impeding the realization of optical metamaterial devices is the need for robust and efficient assembly strategies to govern the order of the nanometer-sized elements while enabling macroscopic throughput. This mini-review critically highlights recent approaches and challenges in creating these artificial materials. As the ability to assemble optical metamaterials improves, new unforeseen opportunities may arise for revolutionary optical devices. PMID:26560623

  19. Adaptive atom-optics in atom interferometry

    NASA Astrophysics Data System (ADS)

    Marable, M. L.; Savard, T. A.; Thomas, J. E.

    1997-02-01

    We suggest a general technique for creating virtual atom-optical elements which are adaptive. The shape and position of these elements is determined by the frequency distribution for optical fields which induce transitions in a high gradient potential. This adaptive method is demonstrated in an all-optical atom interferometer, by creating either a variable optical slit or a variable optical grating which is scanned across the atomic spatial patterns to measure the fringes. This method renders mechanical motion of the interferometer elements unnecessary.

  20. The nature of transition blazars

    SciTech Connect

    Ruan, J. J.; Anderson, S. F.; Plotkin, R. M.; Brandt, W. N.; Schneider, D. P.; Burnett, T. H.; Myers, A. D.

    2014-12-10

    Blazars are classically divided into the BL Lacertae (BLL) and flat-spectrum radio quasar (FSRQ) subclasses, corresponding to radiatively inefficient and efficient accretion regimes, respectively, largely based on the equivalent width (EW) of their optical broad emission lines (BELs). However, EW-based classification criteria are not physically motivated, and a few blazars have previously transitioned' from one subclass to the other. We present the first systematic search for these transition blazars in a sample of 602 unique pairs of repeat spectra of 354 blazars in the Sloan Digital Sky Survey, finding six clear cases. These transition blazars have bolometric Eddington ratios of ∼0.3 and low-frequency synchrotron peaks, and are thus FSRQ-like. We show that the strong EW variability (up to an unprecedented factor of >60) is due to swamping of the BELs from variability in jet continuum emission, which is stronger in amplitude and shorter in timescale than typical blazars. Although these transition blazars appear to switch between FSRQ and BLL according to the phenomenologically based EW scheme, we show that they are most likely rare cases of FSRQs with radiatively efficient accretion flows and especially strongly beamed jets. These results have implications for the decrease of the apparent BLL population at high redshifts, and may lend credence to claims of a negative BLL redshift evolution.