Science.gov

Sample records for lddp proposes broadening

  1. 77 FR 2031 - Proposed Information Collection; Comment Request; Market Research To Broaden and Deepen U.S...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-13

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF COMMERCE International Trade Administration Proposed Information Collection; Comment Request; Market Research To Broaden and Deepen U.S. Exporter Base AGENCY: International Trade Administration, Commerce. ACTION:...

  2. Atypical phenotypes associated with pathogenic CHD7 variants and a proposal for broadening CHARGE syndrome clinical diagnostic criteria.

    PubMed

    Hale, Caitlin L; Niederriter, Adrienne N; Green, Glenn E; Martin, Donna M

    2016-02-01

    CHARGE syndrome (Coloboma of the eye, Heart defects, Atresia of the choanae, Retardation of growth and/or development, Genital and/or urinary anomalies, and Ear malformations, including deafness and vestibular disorders) is a genetic condition characterized by a specific and recognizable pattern of features. Heterozygous pathogenic variants in the chromodomain helicase DNA-binding protein 7 (CHD7) are the major cause of CHARGE syndrome, and have been identified in 70-90% of individuals fulfilling clinical diagnostic criteria. Since 2004, when CHD7 was discovered as the causative gene for CHARGE syndrome, the phenotypic spectrum associated with pathogenic CHD7 variants has expanded. Predicted pathogenic CHD7 variants have been identified in individuals with isolated features of CHARGE including autism and hypogonadotropic hypogonadism. Here, we present genotype and phenotype data from a cohort of 28 patients who were considered for a diagnosis of CHARGE syndrome, including one patient with atypical presentations and a pathogenic CHD7 variant. We also summarize published literature on pathogenic CHD7 variant positive individuals who have atypical clinical presentations. Lastly, we propose a revision to current clinical diagnostic criteria, including broadening of the major features associated with CHARGE syndrome and addition of pathogenic CHD7 variant status as a major criterion. PMID:26590800

  3. Resonance broadening and van der waals broadening

    NASA Astrophysics Data System (ADS)

    Mashonkina, L.

    2010-11-01

    Resonance broadening is important for the hydrogen lines in the spectra of F-type and later stars. In the corresponding temperature regime, the extended wings of the Balmer lines are used as a stellar effective temperature indicator. We show the effect of the use of two broadening theories, Ali & Griem (1965, 1966) and Barklem et al. (2000a, 2000b), on the effective temperature derived in non-LTE from Hα and Hβ in the Sun and the metal-poor star HD19445. Van der Waals broadening is important for strong spectral lines in the atmospheres of F-type and later stars. For the selected transitions in Ca I and Ca II, line profile comparisons are made between applying the van der Waals damping constants from laboratory measurements, the ABO perturbation theory, and the classic Unsöld approximation.

  4. Water Broadening of Oxygen

    NASA Astrophysics Data System (ADS)

    Drouin, Brian J.; Payne, Vivienne; Mlawer, Eli

    2013-06-01

    A need for precise air-mass retrievals utilizing the near-infrared O_2 A-band has motivated measurements of the water-broadening in oxygen. Experimental challenges have resulted in very little water broadened oxygen data, especially in the near-infrared where pressure broadened linewidth must compete with the relatively large thermal linewidth. Existing water broadening data^a for the O_2 A-band is of insufficient precision for application to the atmospheric data. Because of the nature of scattering processes, it is believed that broadening parameters for O_2 from one spectral region may be transferable to other spectral regions - so we investigated the O_2 60 GHz magnetic dipole Q branch which is also used prominently in remote sensing. Atmospheric retrievals of air-mass and temperature that use the 60 GHz magnetic dipole Q branch incorporate a water-broadening parameter that is scaled to self-broadened values, but there is only high temperature data that directly supports this hypothesis.^b We present precise O_2-H_2O broadening measurements for the magnetic dipole Q-branch and the pure-rotational band, measured at room temperature with a Zeeman-modulated absorption cell and a frequency-multiplier spectrometer. Here we will describe the apparatus and the measurement analysis. Inter-comparisons of these and other O_2 broadening data sets confirm the expectation of only minor band-to-band scaling of pressure broadening. The measurement provides a basis for fundamental parameterization of retrieval codes for the long-wavelength atmospheric measurements. Finally, we encourage the application of these measurements for retrievals of air-mass via remote sensing of the oxygen A-band. ^a E.M. Vess et al. J. Phys. Chem. A 116, 4069-4073 (2012). ^b G. Fanjoux et al. J. Chem. Phys. 101(2) 1061-1071 (1994).

  5. Broadening nanotechnology's impact on development

    NASA Astrophysics Data System (ADS)

    Beumer, Koen

    2016-05-01

    Discussions about nanotechnology and development focus on applications that directly address the needs of the world's poor. Nanotechnology can certainly make an impact in the fight against global poverty, but we need to broaden our imagination.

  6. Anomalous Broadening in Driven Dissipative Rydberg Systems

    NASA Astrophysics Data System (ADS)

    Goldschmidt, E. A.; Boulier, T.; Brown, R. C.; Koller, S. B.; Young, J. T.; Gorshkov, A. V.; Rolston, S. L.; Porto, J. V.

    2016-03-01

    We observe interaction-induced broadening of the two-photon 5 s -18 s transition in 87Rb atoms trapped in a 3D optical lattice. The measured linewidth increases by nearly 2 orders of magnitude with increasing atomic density and excitation strength, with corresponding suppression of resonant scattering and enhancement of off-resonant scattering. We attribute the increased linewidth to resonant dipole-dipole interactions of 18 s atoms with blackbody induced population in nearby n p states. Over a range of initial atomic densities and excitation strengths, the transition width is described by a single function of the steady-state density of Rydberg atoms, and the observed resonant excitation rate corresponds to that of a two-level system with the measured, rather than natural, linewidth. The broadening mechanism observed here is likely to have negative implications for many proposals with coherently interacting Rydberg atoms.

  7. Anomalous Broadening in Driven Dissipative Rydberg Systems.

    PubMed

    Goldschmidt, E A; Boulier, T; Brown, R C; Koller, S B; Young, J T; Gorshkov, A V; Rolston, S L; Porto, J V

    2016-03-18

    We observe interaction-induced broadening of the two-photon 5s-18s transition in ^{87}Rb atoms trapped in a 3D optical lattice. The measured linewidth increases by nearly 2 orders of magnitude with increasing atomic density and excitation strength, with corresponding suppression of resonant scattering and enhancement of off-resonant scattering. We attribute the increased linewidth to resonant dipole-dipole interactions of 18s atoms with blackbody induced population in nearby np states. Over a range of initial atomic densities and excitation strengths, the transition width is described by a single function of the steady-state density of Rydberg atoms, and the observed resonant excitation rate corresponds to that of a two-level system with the measured, rather than natural, linewidth. The broadening mechanism observed here is likely to have negative implications for many proposals with coherently interacting Rydberg atoms. PMID:27035299

  8. Broadening the Earthscan Industry

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Law Environmental, Inc. is a professional engineering and Earth sciences consulting firm. When a client, who operates an electricity generating plant required assistance in evaluating the effects of a heated water discharge on aquatic life, Law proposed a Visiting Investigator Program (VIP) to Stennis Space Center (SSC). The VIP is directed toward small companies who could use remote sensing profitably, but do not have the money to explore new technologies. SSC provided remote sensing data to Law enabling it to produce images of the thermal "plume," the water area affected by the discharge. After comparisons of plant and animal life with similar life in an unaffected control area, Law concluded that the discharge effect was not significant.

  9. Broadening the Educational Technology Foundations.

    ERIC Educational Resources Information Center

    Borras, Isabel

    A discussion of the role of educational technology (ET), particularly in second language teaching and learning, examines some theoretical foundations of ET and suggests why and how those foundations should be broadened. It first reviews the assets and shortcomings of three theories to which ET has been closely linked: behaviorism; neo-behaviorism;…

  10. Broadening the Definition of Learning.

    ERIC Educational Resources Information Center

    Visser, Yusra Laila; Rowland, Gordon; Visser, Jan

    2002-01-01

    Considers the implications that broadening the definition of learning would have for educators and educational technologists. This special issues addresses the task of redefining learning from a variety of perspectives. The authors draw on different frameworks of analysis, exploring what it means to be learning at levels ranging from the…

  11. Medical vest broadens treatment capability

    NASA Technical Reports Server (NTRS)

    Johnson, G. S.

    1970-01-01

    Universal sized vest, with specially tailored pockets designed to hold medical supplies, provides first aid/first care medical teams with broadened on-site capability. Vest is made of nylon, tough fibrous materials, and polyvinyl chloride. Design facilitates rapid donning, doffing, and adjustment.

  12. Null-broadening in a waveguide.

    PubMed

    Kim, J S; Hodgkiss, W S; Kuperman, W A; Song, H C

    2002-07-01

    Null-broadening, introduced in plane wave beamforming, is extended to an ocean waveguide in the context of matched field processing. The method is based on the minimum variance processor with white noise constraint and the distribution of fictitious sources using the theory of waveguide invariants. The proposed method is demonstrated in simulation as well as with data collected during the SWellEx-96 experiment. As another application, it is shown that the width of a null can be controlled in an adaptive time reversal mirror with a source-receive array. PMID:12141344

  13. Understanding Doppler Broadening of Gamma Rays

    SciTech Connect

    Rawool-Sullivan, Mohini; Sullivan, John P.

    2014-07-03

    Doppler-broadened gamma ray peaks are observed routinely in the collection and analysis of gamma-ray spectra. If not recognized and understood, the appearance of Doppler broadening can complicate the interpretation of a spectrum and the correct identification of the gamma ray-emitting material. We have conducted a study using a simulation code to demonstrate how Doppler broadening arises and provide a real-world example in which Doppler broadening is found. This report describes that study and its results.

  14. A Distributed Model for Teacher Mentoring: Broadening the Learning Community

    ERIC Educational Resources Information Center

    Frykholm, Jeffrey

    2005-01-01

    This article examines an innovative way of conceptualizing mentoring and develops the notion of a "distributed" model of mentoring, backed by snippets from professional development program that has sought to use the context of community to broaden the definition (and success) of mentoring for mathematical teachers. The author proposes a way of…

  15. Multigroup Free-atom Doppler-broadening Approximation. Experiment

    SciTech Connect

    Gray, Mark Girard

    2015-11-06

    The multigroup energy Doppler-broadening approximation agrees with continuous energy Dopplerbroadening generally to within ten percent for the total cross sections of 1H, 56Fe, and 235U at 250 lanl. Although this is probably not good enough for broadening from room temperature through the entire temperature range in production use, it is better than any interpolation scheme between temperatures proposed to date, and may be good enough for extrapolation from high temperatures. The method deserves further study since additional improvements are possible.

  16. Theory of quantum oscillations in self-broadening of 4{sup 2}S-n{sup 2}S Rydberg transitions in potassium

    SciTech Connect

    Herman, R. M.; Henry, M. E.

    1997-01-05

    A pseudohamiltonian impact theory for describing Rydberg transition line shapes is proposed. Preliminary results give lineshapes in reasonable agreement with experiment, including the quantum oscillations in alkali self broadening and shifting, and rare gas broadening.

  17. Stark broadening data for stellar plasma research.

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M. S.

    Results of an effort to provide to astrophysicists and physicists an as much as possible complete set of Stark broadening parameters needed for stellar opacity calculations, stellar atmosphere modelling, abundance determinations and diagnostics of different plasmas in astrophysics, physics and plasma technology, are presented. Stark broadening has been considered within the semiclassical perturbation, and the modified semiempirical approaches.

  18. Stark broadening of B IV spectral lines

    NASA Astrophysics Data System (ADS)

    Dimitrijević, Milan S.; Christova, Magdalena; Simić, Zoran; Kovačević, Andjelka; Sahal-Bréchot, Sylvie

    2016-08-01

    Stark broadening parameters for 157 multiplets of helium-like boron (B IV) have been calculated using the impact semiclassical perturbation formalism. Obtained results have been used to investigate the regularities within spectral series. An example of the influence of Stark broadening on B IV lines in DO white dwarfs is given.

  19. Stark broadening of B IV spectral lines

    NASA Astrophysics Data System (ADS)

    Dimitrijević, Milan S.; Christova, Magdalena; Simić, Zoran; Kovačević, Andjelka; Sahal-Bréchot, Sylvie

    2016-05-01

    Stark broadening parameters for 157 multiplets of helium like boron (B IV) have been calculated using the impact semiclassical perturbation formalism. Obtained results have been used to investigate the regularities within spectral series. An example of the influence of Stark broadening on B IV lines in DO white dwarfs is given.

  20. Rayleigh-backscattering doppler broadening correction for differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Fan, Lanlan; Zhang, Yinchao; Chen, Siying; Guo, Pan; Chen, He

    2015-11-01

    The spectral broadening by Rayleigh backscattering can cause large changes in water vapor echo signals, causing errors when the water vapor concentration is inversed by differential absorption lidar (DIAL). A correction algorithm is proposed to revise the errors due to the effect of laser spectral broadening. The relative errors of water vapor are calculated in cases of different aerosol distribution and temperature changes before and after correction. The results show that measurement errors due to the Doppler broadening are more than 5% before correction and a 2% measurement error after corrected for the case of a smooth, background aerosol distribution. However, due to the high aerosol gradients and strong temperature inversion, errors can be up to 40% and 10% with no corrections for this effect, respectively. The relative errors can reduce to less than 2% after correction. Hence, the correction algorithm for Rayleigh Doppler broadening can improve detection accuracy in H2O DIAL measurements especially when it is applied to high aerosol concentration or strong temperature inversion.

  1. Dynamic Stark broadening of Lyman-α

    NASA Astrophysics Data System (ADS)

    Stambulchik, Evgeny; Demura, Alexander V.

    2016-02-01

    Calculating lineshapes of atomic radiative transitions broadened by plasma is a complex problem lacking a general analytic solution, and several models have been suggested to treat it. Lyman-α is the simplest transition; paradoxically however, calculating the broadening of this spectral line in plasma results in a significant spread between different models. Here, we argue that the quasistatic broadening regime is never realized for the line core in a one-component plasma; instead, the broadening due to either electrons or ions alone evolves from the impact regime to another regime, also dynamical in nature. In the latter (referred to here as ‘rotational’ broadening), the linewidth only depends on the typical frequency of the plasma microfields and is independent of both the microfield magnitudes and the atomic properties of the transition. We also demonstrate that rotational broadening is asymptotically reached in the high-density/low-temperature limit by other transitions with an unshifted central component, such as the Balmer-α line. A simple expression is suggested interpolating between the two asymptotic regimes, applicable to broadening due to electrons and ions alike. The treatment is further extended to realistic two-component plasmas. Comparison to results of accurate computer simulations shows a good agreement over a very large range of plasma parameters, both for the case of one- and two-component plasmas.

  2. Thermally induced microstrain broadening in hexagonal zinc

    SciTech Connect

    Lawson, Andrew C; Valdez, James A; Roberts, Joyce A; Leineweber, Andreas; Mittemeijer, E J; Kreher, W

    2008-01-01

    Neutron powder-diffraction experiments on polycrystalline hexagonal zinc show considerable temperature-dependent line broadening. Whereas as-received zinc at 300 K exhibits narrow reflections, during cooling to a minimum temperature of 10K considerable line-broadening appears, which largely disappears again during reheating. The line broadening may be ascribed to microstrains induced by thermal microstresses due to the anisotropy of the thermal expansion (shrinkage) of hexagonal zinc. Differences between the thermal microstrains and theoretical predictions considering elastic deformation of the grains can be explained by plastic deformation and surface effects.

  3. Charge Correlations in Plasma Line Broadening

    SciTech Connect

    Wrighton, Jeffrey M.; Dufty, James W.

    2008-10-22

    The traditional theory of plasma line broadening is re-examined to correct for phenom-enological assumptions regarding charge correlations. Conditions for static ions are assumed, and the ion microfield distribution is introduced without neglecting ion-electron correlations, and with a precise definition for the ion field at the radiator. Radiator and plasma subsystems are defined so as to make a second order calculation of electron broadening valid for the case of high Z radiators. The electron broadening operator is identified in terms of the fluctuation of the electron density at the radiator, averaged over the entire plasma constrained by a given value for the ion microfield.

  4. Simulation of a spectral inhomogeneous broadening

    NASA Astrophysics Data System (ADS)

    Kozlov, V. V.; Rosanov, N. N.

    2014-06-01

    The standard approach that is used to simulate effects of inhomogeneous spectral broadening in a medium consisting of two- or multilevel systems is to calculate the microscopic polarization (the dipole moment of an individual system) as a function of the frequency detuning and further to average this quantity over detunings with corresponding weights. This just leads to the macroscopic polarization that appears in Maxwell's equations of electrodynamics of continuous media. Here, we study and develop an alternative method that has been recently proposed by N.V. Vysotina, N.N. Rozanov, and V.E. Semenov (Opt. Spectrosc. 106 (5), 713 (2009)) for calculation of the macroscopic polarization and that has been aimed at solving problems of computational quantum optics. In this approach, the frequency detuning is considered as a stochastic function of coordinates; in one-dimensional problems, of longitudinal coordinate z. At each step of evolution, the microscopic polarization is calculated for a randomly chosen fixed value of the detuning. Therefore, calculating the macroscopic polarization does not need an additional averaging over detunings; it is replaced by averaging over spatial coordinates, which is naturally performed when describing the radiation propagation through an ensemble of quantum systems. This radically reduces the amount of computations, especially in the context of the finite-difference time domain (FDTD) method.

  5. Multispectral Imaging Broadens Cellular Analysis

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Amnis Corporation, a Seattle-based biotechnology company, developed ImageStream to produce sensitive fluorescence images of cells in flow. The company responded to an SBIR solicitation from Ames Research Center, and proposed to evaluate several methods of extending the depth of field for its ImageStream system and implement the best as an upgrade to its commercial products. This would allow users to view whole cells at the same time, rather than just one section of each cell. Through Phase I and II SBIR contracts, Ames provided Amnis the funding the company needed to develop this extended functionality. For NASA, the resulting high-speed image flow cytometry process made its way into Medusa, a life-detection instrument built to collect, store, and analyze sample organisms from erupting hydrothermal vents, and has the potential to benefit space flight health monitoring. On the commercial end, Amnis has implemented the process in ImageStream, combining high-resolution microscopy and flow cytometry in a single instrument, giving researchers the power to conduct quantitative analyses of individual cells and cell populations at the same time, in the same experiment. ImageStream is also built for many other applications, including cell signaling and pathway analysis; classification and characterization of peripheral blood mononuclear cell populations; quantitative morphology; apoptosis (cell death) assays; gene expression analysis; analysis of cell conjugates; molecular distribution; and receptor mapping and distribution.

  6. Sound pulse broadening in stressed granular media.

    PubMed

    Langlois, Vincent; Jia, Xiaoping

    2015-02-01

    The pulse broadening and decay of coherent sound waves propagating in disordered granular media are investigated. We find that the pulse width of these compressional waves is broadened when the disorder is increased by mixing the beads made of different materials. To identify the responsible mechanism for the pulse broadening, we also perform the acoustic attenuation measurement by spectral analysis and the numerical simulation of pulsed sound wave propagation along one-dimensional disordered elastic chains. The qualitative agreement between experiment and simulation reveals a dominant mechanism by scattering attenuation at the high-frequency range, which is consistent with theoretical models of sound wave scattering in strongly random media via a correlation length. PMID:25768496

  7. Foreign-gas broadening of nitrous oxide absorption lines.

    NASA Technical Reports Server (NTRS)

    Tubbs, L. D.; Williams, D.

    1972-01-01

    We have measured the foreign-gas broadening coefficients for collisional broadening of lines in the nu-3 fundamental of N2O by He, Ne, Ar, Kr, Xe, H2, D2, and CH4. These coefficients, which give the ratio of the line-broadening ability of these gases to the line-broadening ability of N2, can be used with recent measurements and calculations of N2 broadening to obtain optical collision cross sections.

  8. Broadening Our View of Linguistic Diversity

    ERIC Educational Resources Information Center

    O'Neal, Debra; Ringler, Marjorie

    2010-01-01

    The definition of English language learners needs to be broadened to include the marginalized dialects of English. Not all native speakers speak Standard English, and even those who do need to learn Academic English to succeed in school. By using strategies developed for ELLs, teachers can help all students become fluent in the language of school.

  9. Pressure broadening of the ((dt. mu. )dee)* formation resonances

    SciTech Connect

    Cohen, J.S.; Leon, M.; Padial, N.T.

    1988-12-27

    The treatment of ((dt..mu..)dee)* formation at high densities as a pressure broadening process is discussed. Cross sections for collisions of the complex (dt..mu..)dee, and of the D/sub 2/ molecule from which it is formed, with the bath molecules have been accurately calculated. These cross sections are used to calculate the collisional width in three variations of the impact approximation that have been proposed for this problem. In general, the quasistatic approximation is shown to satisfy the usual conditions of muon-catalyzed fusion better than does the impact approximation. A preliminary rough treatment is presented to illustrate the quasistatic approximation.

  10. Smile to see the forest: Facially expressed positive emotions broaden cognition.

    PubMed

    Johnson, Kareem J; Waugh, Christian E; Fredrickson, Barbara L

    2010-02-19

    The broaden hypothesis, part of Fredrickson's (1998, 2001) broaden-and-build theory, proposes that positive emotions lead to broadened cognitive states. Here, we present evidence that cognitive broadening can be produced by frequent facial expressions of positive emotion. Additionally, we present a novel method of using facial electromyography (EMG) to discriminate between Duchenne (genuine) and non-Duchenne (non-genuine) smiles. Across experiments, Duchenne smiles occurred more frequently during positive emotion inductions than neutral or negative inductions. Across experiments, Duchenne smiles correlated with self-reports of specific positive emotions. In Experiment 1, high frequencies of Duchenne smiles predicted increased attentional breadth on a global-local visual processing task. In Experiment 2, high frequencies of Duchenne smiles predicted increased attentional flexibility on a covert attentional orienting task. These data underscore the value of using multiple methods to measure emotional experience in studies of emotion and cognition. PMID:23275681

  11. OBSERVATIONAL EVIDENCE FOR A CORRELATION BETWEEN MACROTURBULENT BROADENING AND LINE-PROFILE VARIATIONS IN OB SUPERGIANTS

    SciTech Connect

    Simon-Diaz, S.; Herrero, A.; Castro, N.; Uytterhoeven, K.; Puls, J.

    2010-09-10

    The spectra of O and B supergiants (Sgs) are known to be affected by a significant form of extra line broadening (usually referred to as macroturbulence) in addition to that produced by stellar rotation. Recent analyses of high-resolution spectra have shown that the interpretation of this line broadening as a consequence of large-scale turbulent motions would imply highly supersonic velocity fields in photospheric regions, making this scenario quite improbable. Stellar oscillations have been proposed as a likely alternative explanation. As part of a long-term observational project, we are investigating the macroturbulent broadening in O and B Sgs and its possible connection with spectroscopic variability phenomena and stellar oscillations. In this Letter, we present the first encouraging results of our project, namely, firm observational evidence for a strong correlation between the extra broadening and photospheric line-profile variations in a sample of 13 Sgs with spectral types ranging from O9.5 to B8.

  12. Line broadening interference for high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields

    SciTech Connect

    Wei, Zhiliang; Yang, Jian; Lin, Yanqin E-mail: chenz@xmu.edu.cn; Chen, Zhong E-mail: chenz@xmu.edu.cn; Chen, Youhe

    2015-04-07

    Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields.

  13. Spectral line broadening in magnetized black holes

    SciTech Connect

    Frolov, Valeri P.; Shoom, Andrey A.; Tzounis, Christos E-mail: ashoom@ualberta.ca

    2014-07-01

    We consider weakly magnetized non-rotating black holes. In the presence of a regular magnetic field the motion of charged particles in the vicinity of a black hole is modified. As a result, the position of the innermost stable circular orbit (ISCO) becomes closer to the horizon. When the Lorentz force is repulsive (directed from the black hole) the ISCO radius can reach the gravitational radius. In the process of accretion charged particles (ions) of the accreting matter can be accumulated near their ISCO, while neutral particles fall down to the black hole after they reach 6M radius. The sharp spectral line Fe α, emitted by iron ions at such orbits, is broadened when the emission is registered by a distant observer. In this paper we study this broadening effect and discuss how one can extract information concerning the strength of the magnetic field from the observed spectrum.

  14. Broadened diesel fuel specifications for rail applications

    SciTech Connect

    Cataldi, C.R.

    1988-01-01

    As the demand for distillate products increases, petroleum refiners find it increasingly expensive to meet the traditional specifications for jet and diesel fuels. Because those costs eventually show up in the price of fuel, the railroad industry has a diesel fuel research program to identify broadened specification fuels that cost less than standard fuels and which do not adversely affect engine performance or maintenance cost. Laboratory tests concentrated on cetane number, distillation range, and viscosity. The tests included 72 hours at idle speed, engine performance, and 500-hour endurance tests. Long-term field tests have verified the laboratory findings that cetane number can be reduced to 32 and 90 percent distillation point increased to 700/sup 0/F. Several railroads now have over three years of experience with broadened specification fuels in normal operations with no reported problems. With formal tests, some railroads have also relaxed their winter specifications for pour and cloud points.

  15. Process dependent nuclear k⊥ broadening effect

    NASA Astrophysics Data System (ADS)

    Schäfer, Andreas; Zhou, Jian

    2013-10-01

    We study the process dependent nuclear k⊥ broadening effect by employing the transverse momentum dependent (TMD) factorization approach in combination with the Mclerran-Venugopalan model. More specifically, we investigate how the parton transverse momentum distributions are affected by the process dependent gauge links in cold nuclear matter. In particular, our analysis also applies to the polarized cases including the nuclear quark Boer-Mulders function and the linearly polarized gluon distribution. Our main focus is on the nuclear TMDs at intermediate or large x.

  16. Shock-front broadening in polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Barber, J. L.; Kadau, K.

    2008-04-01

    We analyze a model for the evolution of shock fronts in polycrystalline materials. This model is based on the idea of Meyers and Carvalho [Mater. Sci. Eng. 24, 131 (1976)] that the shock velocity anisotropy within the polycrystal is the most important factor in shock front broadening. Our analysis predicts that the shock front width increases as the 1/2 power of the front penetration distance into the crystal. Our theoretical prediction is in plausible agreement with previous experimental results for the elastic precursor rise time, and it should therefore provide a useful shock width estimate. Furthermore, our theoretical framework is also applicable to other problems involving front propagation in heterogeneous media.

  17. Windowed multipole for cross section Doppler broadening

    NASA Astrophysics Data System (ADS)

    Josey, C.; Ducru, P.; Forget, B.; Smith, K.

    2016-02-01

    This paper presents an in-depth analysis on the accuracy and performance of the windowed multipole Doppler broadening method. The basic theory behind cross section data is described, along with the basic multipole formalism followed by the approximations leading to windowed multipole method and the algorithm used to efficiently evaluate Doppler broadened cross sections. The method is tested by simulating the BEAVRS benchmark with a windowed multipole library composed of 70 nuclides. Accuracy of the method is demonstrated on a single assembly case where total neutron production rates and 238U capture rates compare within 0.1% to ACE format files at the same temperature. With regards to performance, clock cycle counts and cache misses were measured for single temperature ACE table lookup and for windowed multipole. The windowed multipole method was found to require 39.6% more clock cycles to evaluate, translating to a 7.9% performance loss overall. However, the algorithm has significantly better last-level cache performance, with 3 fewer misses per evaluation, or a 65% reduction in last-level misses. This is due to the small memory footprint of the windowed multipole method and better memory access pattern of the algorithm.

  18. Action potential broadening in a presynaptic channelopathy.

    PubMed

    Begum, Rahima; Bakiri, Yamina; Volynski, Kirill E; Kullmann, Dimitri M

    2016-01-01

    Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca(2+) influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction. PMID:27381274

  19. Action potential broadening in a presynaptic channelopathy

    NASA Astrophysics Data System (ADS)

    Begum, Rahima; Bakiri, Yamina; Volynski, Kirill E.; Kullmann, Dimitri M.

    2016-07-01

    Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca2+ influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction.

  20. Commitment to Broadening Participation at NOAO

    NASA Astrophysics Data System (ADS)

    Garmany, Catharine D.; Norman, D.

    2011-01-01

    AURA and NOAO take seriously the importance of Broadening Participation in Astronomy. At the request of the AURA President, each of the AURA centers (NOAO, NSO, STSCI, Gemini) appointed a Diversity Advocates (DA). At NOAO this job is shared by Dara Norman and Katy Garmany, who were appointed by Dave Silva in Jan 2009. The DA's are members of the AURA Committee on Workforce and Diversity (WDC), a designated subcommittee of the AURA Board of Directors. The role of this committee includes reviewing activities and plans on an AURA wide basis aimed at broadening the participation within AURA, and reviewing AURA wide policies on the workforce. At NOAO, the role of the DAs spans a number of departments and activities. They serve on observatory search committees, and offer suggestions on how NOAO job searches can reach the most diverse audience. The DA's job is to insure that NOAO actively pursues every opportunity to increase diversity: to this end they are involved in outreach and educational activities that focus on workplace development and encourage inclusion of woman, minorities and persons with disabilities.

  1. Action potential broadening in a presynaptic channelopathy

    PubMed Central

    Begum, Rahima; Bakiri, Yamina; Volynski, Kirill E.; Kullmann, Dimitri M.

    2016-01-01

    Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca2+ influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction. PMID:27381274

  2. Broadening the definition of resilience and "reappraising" the use of appetitive motivation.

    PubMed

    Soenke, Melissa; O'Connor, Mary-Frances; Greenberg, Jeff

    2015-01-01

    Kalisch et al.'s PASTOR model synthesizes current knowledge of resilience, focusing on mechanisms as a common pathway to outcomes and highlighting neuroscience as a method for exploring this. We propose the model broaden its definition of resiliency to include positive indices of recovery, include positive affect as a mechanism, and approach motivation as distinct from overcoming aversive motivation. PMID:26785906

  3. Broaden Engineering Technology students' knowledge through hands-on with motion robotics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The skills and knowledge that employers value most are not always well-aligned with undergraduate engineering technology programs. With the support of a federal grant, we identify and propose to broaden the undergraduate student experience to include training in transferable skills with agricultura...

  4. Interface contributions to peak broadening in CE-ESI-MS

    SciTech Connect

    Udseth, H.R.; Barinaga, C.J.; Smith, R.D. ); Whitted, W.H. )

    1991-06-01

    The applications of capillary electrophoresis (CE) are expanding, and a number of commercial CE instruments are now available. Combining CE with mass spectroscopy (MS), first done with an electrospray ionization (ESI) interface, yields additional advantages. Other interfaces have been proposed, but CE-ESI-MS offers better sensitivity, reduced background, applicability to higher molecular weight (MW) compounds and a better interface design. Our aim has been to exploit the advantages of automated CE coupled to MS for separation of biological materials. Details of our instrument design are provided. Samples used for these studies were a mixture of myoglobin proteins (MW {approximately}17 kilodaltons) and a tryptic digest of tuna cytochrome c. The results show the ESI-MS interface does not broaden bands, and ion dissociation in the mass spectrometer permits the unambiguous identification of fragments in cases where mass alone is insufficient. 2 refs., 2 figs. (MHB)

  5. Enhancement of self-phase modulation induced spectral broadening in silicon suspended membrane waveguides

    NASA Astrophysics Data System (ADS)

    Zhang, Yaojing; Cheng, Zhenzhou; Liu, Linghai; Zhu, Bingqing; Wang, Jiaqi; Zhou, Wen; Wu, Xinru; Tsang, Hon Ki

    2016-05-01

    We experimentally observed a possibly enhanced self-phase modulation (SPM) in silicon suspended membrane waveguides (SMWs) by measuring the spectral broadening of optical pulses. The nonlinear coefficient n 2 and the two-photon absorption coefficient β 2 of silicon SMWs were measured to be (4.6 ± 0.9) × 10-18 m2 W-1 and 0.46 cm GW-1 at 1555 nm wavelength. We also proposed a method of using SPM-induced spectral broadening to obtain the coupling loss of a single grating coupler and experimentally compared the spectra of two grating couplers in silicon SMWs and in silicon-on-insulator waveguides.

  6. BROAD IRON LINES IN NEUTRONS STARS: DYNAMICAL BROADENING OR WIND SCATTERING?

    SciTech Connect

    Cackett, Edward M.; Miller, Jon M.

    2013-11-01

    Broad iron emission lines are observed in many accreting systems from black holes in active galactic nuclei and X-ray binaries to neutron star low-mass X-ray binaries. The origin of the line broadening is often interpreted as due to dynamical broadening and relativistic effects. However, alternative interpretations have been proposed, included broadening due to Compton scattering in a wind or accretion disk atmosphere. Here we explore the observational signatures expected from broadening in a wind, in particular that the iron line width should increase with an increase in the column density of the absorber (due to an increase in the number of scatterings). We study the data from three neutron star low-mass X-ray binaries where both a broad iron emission line and absorption lines are seen simultaneously, and show that there is no significant correlation between line width and column density. This favors an inner disk origin for the line broadening rather than scattering in a wind.

  7. Coherent forward broadening in cold atom clouds

    NASA Astrophysics Data System (ADS)

    Sutherland, R. T.; Robicheaux, F.

    2016-02-01

    It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Furthermore, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single-photon wave-function model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms at the back of the cloud are more excited than the atoms at the front. These calculations are conducted at the low densities relevant to recent experiments.

  8. Coherent Forward Broadening in Cold Atom Clouds

    NASA Astrophysics Data System (ADS)

    Sutherland, R. T.; Robicheaux, Francis

    2016-05-01

    It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Further, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single photon wavefunction model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms in the back of the cloud are more excited than the atoms in the front. These calculations are conducted at low densities relevant to recent experiments. This work was supported by the National Science Foundation under Grant No. 1404419-PHY.

  9. Shock front broadening in polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Barber, John; Kadau, Kai

    2008-03-01

    We analyze a model for the evolution of weak shock fronts (or elastic precursor waves) in polycrystalline materials. This model is based on the idea of Meyers and Carvalho [Mater. Sci. Eng. 24, 131 (1976)] that the shock velocity anisotropy within the polycrystal is the most important factor in shock front broadening. Our analysis predicts that the shock front width increases as the 1/2 power of the front penetration distance into the crystal. Our theoretical prediction is in plausible agreement with previous experimental results for the elastic precursor rise time, and it should therefore provide a useful shock width estimate. Furthermore, our theoretical framework is also applicable to other problems involving front propagation in heterogeneous media.

  10. Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening

    SciTech Connect

    Kraus, B.; Tittel, W.; Gisin, N.; Nilsson, M.; Kroell, S.; Cirac, J. I.

    2006-02-15

    We propose a method for efficient storage and recall of arbitrary nonstationary light fields, such as, for instance, single photon time-bin qubits or intense fields, in optically dense atomic ensembles. Our approach to quantum memory is based on controlled, reversible, inhomogeneous broadening and relies on a hidden time-reversal symmetry of the optical Bloch equations describing the propagation of the light field. We briefly discuss experimental realizations of our proposal.

  11. LBQ2D, Extending the Line Broadened Quasilinear Model to TAE-EP Interaction

    NASA Astrophysics Data System (ADS)

    Ghantous, Katy; Gorelenkov, Nikolai; Berk, Herbert

    2012-10-01

    The line broadened quasilinear model was proposed and tested on the one dimensional electrostatic case of the bump on tailfootnotetextH.L Berk, B. Breizman and J. Fitzpatrick, Nucl. Fusion, 35:1661, 1995 to study the wave particle interaction. In conventional quasilinear theory, the sea of overlapping modes evolve with time as the particle distribution function self consistently undergo diffusion in phase space. The line broadened quasilinear model is an extension to the conventional theory in a way that allows treatment of isolated modes as well as overlapping modes by broadening the resonant line in phase space. This makes it possible to treat the evolution of modes self consistently from onset to saturation in either case. We describe here the model denoted by LBQ2D which is an extension of the proposed one dimensional line broadened quasilinear model to the case of TAEs interacting with energetic particles in two dimensional phase space, energy as well as canonical angular momentum. We study the saturation of isolated modes in various regimes and present the analytical derivation and numerical results. Finally, we present, using ITER parameters, the case where multiple modes overlap and describe the techniques used for the numerical treatment.

  12. Droplet spectral broadening in marine stratus

    SciTech Connect

    Hudson, J.G.; Yum, Seong Soo

    1997-11-15

    Broadening of the cloud droplet (diameter < 50 {mu}m) spectrum with increased droplet size was found to depend on the vertical profiles of cloud water. Clouds with liquid water profiles resembling adiabatic conditions displayed constant spectral widths. Other clouds displayed broader droplet spectra and increasing broadness with mean droplet sizes. Less than adiabatic cloud liquid water profiles may be accounted for by conversion to drops (diameter > 50 {mu}m, i.e., drizzle). Broad droplet spectra were most closely associated with drizzle drops. Both the concentration, C and slope, k, of the cloud condensation nuclei (CCN) spectra were theoretically found to affect droplet spectral width. For individual cloud parcels a higher C and lower k each contributed to broader droplet spectra. When mixing among cloud parcels with different updrafts was considered, the predictions deviated especially at larger mean droplet diameters. Variations in updraft velocity result in differences in droplet concentrations and mean droplet sizes. The predictions for this internal mixing process showed greater droplet spectral widths for CCN spectra with higher k, especially at the larger mean droplet diameters. Instead of the individual parcel predictions of narrower droplet spectra at larger mean droplet sizes, internal mixing predicted increasing droplet spectral width with increasing mean droplet size. These predictions are consistent with the observations. First, when only cloud parcels with small mean droplet diameters (< 1 {mu}m) were considered, the polluted clouds that formed on CCN with higher C and lower k displayed broader droplet spectra than clean clouds. Cloud parcels with large mean droplet diameters (>12 {mu}m) and large {sigma} were observed only in clean conditions where k was high. Increasing droplet spectral width with mean droplet diameter (especially > 12 {mu}m) is typical of many observations here and elsewhere.

  13. Measurement of pressure broadening of the Kr absorption line at 811.3 nm with a diode laser

    NASA Astrophysics Data System (ADS)

    Mikheyev, Pavel A.; Churnyshov, Alexander K.; Ufimtsev, Nikolay I.; Ghildina, Anna R.; Azyazov, Valery N.; Heaven, Michael C.

    2016-03-01

    Optically pumped all-rare-gas laser (OPRGL) with unique properties was recently proposed. To study this promising laser system it is necessary to have reliable diagnostics for the active medium. A set of pressure broadening coefficients, for self- and foreign- gas collision partners, is needed for measurements of the number density of metastable atoms and temperature in a rare gas discharge plasma by means of spectroscopy. However, literature analysis had shown that pressure broadening coefficients for rare gas lines in mixtures that are of interest for OPRGL's are surprisingly hard to find, or were not yet measured. Diode laser absorption spectroscopy was employed for measurements of pressure broadening coefficients for the Krypton 811.3 nm line in an RF discharge. A multi-quantum well diode laser (L808P030, Thorlabs) with an original short external cavity was used as a source of probe radiation. The natural isotopic distribution of Kr was taken into account, and an appropriate fit function was constructed. This permitted the determination of pressure broadening coefficients using the natural mixture of isotopes. The coefficients for the Kr 811.3 nm line at 300 K, measured for the first time, were ξKr-Ne = (1.50 ± 0.05) ×10-10 s-1cm3 for broadening by Neon, and ξKr-Ar = (3.5 ± 0.3) ×10-10 s-1cm3 for broadening by Argon.

  14. abo-cross: Hydrogen broadening cross-section calculator

    NASA Astrophysics Data System (ADS)

    Barklem, P. S.; Anstee, S. D.; O'Mara, B. J.

    2015-07-01

    Line broadening cross sections for the broadening of spectral lines by collisions with neutral hydrogen atoms have been tabulated by Anstee & O'Mara (1995), Barklem & O'Mara (1997) and Barklem, O'Mara & Ross (1998) for s-p, p-s, p-d, d-p, d-f and f-d transitions. abo-cross, written in Fortran, interpolates in these tabulations to make these data more accessible to the end user. This code can be incorporated into existing spectrum synthesis programs or used it in a stand-alone mode to compute line broadening cross sections for specific transitions.

  15. Relativistic formulation for the Doppler-broadened line profile

    SciTech Connect

    Huang, Young-Sea; Chiue, Juang-Han; Huang, Yi-Chi; Hsiung, Te-Chih

    2010-07-15

    Profiles of spectral lines due to the thermal motion of light-emitting particles are formulated based on the classical and the relativistic Doppler effects, respectively. For the classical case, the well-known Doppler-broadened line profile is reproduced. For the relativistic case, the line profile obtained is asymmetrically broadened with increasing temperature. However, the peak frequency remains unshifted, in contrast to blueshifted, as has been predicted in the current literature. Reasoning is given as to why the relativistic Doppler-broadened line profile currently accepted is probably invalid.

  16. NASA broadened-specification fuels combustion technology program

    NASA Technical Reports Server (NTRS)

    Fear, J. S.

    1980-01-01

    The broadened-Specification Fuels Combustion Technology program's purpose is to evolve and demonstrate the technology required to enable current and next generation high-thrust, high-bypass-ratio turbofan engines to use fuels with broadened properties and to verify the evolved technology in full scale engine tests. The three phases of the program are combustor concept screening, combustor optimization testing, and engine verification testing. Constraints for designing combustion systems are outlined and problems to be expected in the use of broadened properties fuels are listed.

  17. Frequency band broadening of magnetospheric VLF emissions near the equator

    NASA Technical Reports Server (NTRS)

    Maeda, K.; Lin, C. S.

    1981-01-01

    The broadening of the whistler mode VLF emission band has frequently been observed by the equatorially orbiting S3-A (Explorer 45) satellite outside the midnight sector of the plasmasphere, during periods of geomagnetic disturbance. Prior to the broadening, the band of this emission is narrow with a sharp gap at the half electron gyrofrequency. The gradual broadening of the emission band on the low-frequency side is associated with the simultaneously observed spreading of the anisotropy of the ring current electrons to higher and wider energy ranges. Using the modeled distribution function, the linear growth rates of the cyclotron instability are calculated numerically. The results suggest that broadening of the VLF emission band near the plasmasphere can be caused by spreading of the ring current electron anisotropy toward higher energies.

  18. Doppler broadening in the β-proton- γ decay sequence

    NASA Astrophysics Data System (ADS)

    Schwartz, Sarah; Wrede, C.; Bennett, M. B.; Liddick, S. N.; Perez-Loureiro, D.; Bowe, A.; Chen, A. A.; Chipps, K. A.; Cooper, N.; Irvine, D.; McNeice, E.; Montes, F.; Naqvi, F.; Ortez, R.; Pain, S. D.; Pereira, J.; Prokop, C.; Quaglia, J.; Quinn, S. J.; Sakstrup, J.; Santia, M.; Shanab, S.; Simon, A.; Spyrou, A.; Thiagalingam, E.

    2015-10-01

    We report the first observation of Doppler-broadening in β delayed proton- γ decay. The broadening occurs because the daughter nucleus γ decays while recoiling from proton emission. A method to analyze β delayed nucleon emission was applied to two Doppler-broadened 25Al peaks from the 26P(βpγ)25Al decay. The method was first tested on the broad 1613 keV γ-ray peak using known center-of-mass proton energies as constraints. The method was then applied to the 1776 keV γ-ray peak from the 2720 keV excited state of 25Al. The broadening was used to determine a 26Si excitation energy of 13.3 +/- 1.0 (stat.) +/- 0.7 (syst.) MeV. This energy is consistent with proton emission from the known T = 2 isobaric analog state of 26P in 26Si.

  19. Nuclear broadening of transverse momentum in Drell-Yan reactions

    SciTech Connect

    Johnson, M. B.; Leitch, M. J.; McGaughey, P. L.; Moss, J. M.; Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan

    2007-03-15

    Data for Drell-Yan (DY) processes on nuclei are currently available from fixed target experiments up to the highest energy of {radical}(s)=40 GeV. The bulk of the data cover the range of short coherence length, where the amplitudes of the DY reaction on different nucleons do not interfere. In this regime, DY processes provide direct information about broadening of the transverse momentum of the projectile parton experiencing initial-state multiple interactions. We revise a previous analysis of data from the E772 experiment and perform a new analysis of broadening including data from the E866 experiment at Fermilab. We conclude that the observed broadening is about twice as large as the one found previously. This helps to settle controversies that arose from a comparison of the original determination of broadening with data from other experiments and reactions.

  20. Solar Wind Strahl Broadening by Self-Generated Plasma Waves

    NASA Technical Reports Server (NTRS)

    Pavan, J.; Vinas, A. F.; Yoon, P. H.; Ziebell, L. F.; Gaelzer, R.

    2013-01-01

    This Letter reports on the results of numerical simulations which may provide a possible explanation for the strahl broadening during quiet solar conditions. The relevant processes involved in the broadening are due to kinetic quasi-linear wave-particle interaction. Making use of static analytical electron distribution in an inhomogeneous field, it is found that self-generated electrostatic waves at the plasma frequency, i.e., Langmuir waves, are capable of scattering the strahl component, resulting in energy and pitch-angle diffusion that broadens its velocity distribution significantly. The present theoretical results provide an alternative or complementary explanation to the usual whistler diffusion scenario, suggesting that self-induced electrostatic waves at the plasma frequency might play a key role in broadening the solar wind strahl during quiet solar conditions.

  1. Broadening of infrared absorption lines at reduced temperatures - Carbon dioxide.

    NASA Technical Reports Server (NTRS)

    Tubbs, L. D.; Williams, D.

    1972-01-01

    An evacuated high-resolution Czerny-Turner spectrograph, which is described in this paper, has been used to determine the strengths S and self-broadening parameters for lines in the R branch of the nu (sub 3) fundamental of carbon dioxide at 298 and at 207 K. The values of self-broadening parameters at 207 K are greater than those to be expected on the basis of a fixed collision cross section.

  2. Correlations between Doppler and pressure broadening for the resonance interaction

    NASA Technical Reports Server (NTRS)

    Cooper, J.; Stacey, D. N.

    1975-01-01

    The correlation between Doppler and collisional broadening has been considered in detail for radiation in which the lower level of the transition is broadened by the resonance interaction. It is found that rather than a single Voigt profile, the profile of the radiation is essentially a sum of Voigt profiles. Although the widths of these profiles vary by some 40%, the over-all line shape is very close to the single Voigt shape obtained when correlation effects are neglected.

  3. Self-phase-modulation induced spectral broadening in silicon waveguides

    NASA Astrophysics Data System (ADS)

    Boyraz, Ozdal; Indukuri, Tejaswi; Jalali, Bahram

    2004-03-01

    The prospect for generating supercontinuum pulses on a silicon chip is studied. Using ~4ps optical pulses with 2.2GW/cm2 peak power, a 2 fold spectral broadening is obtained. Theoretical calculations, that include the effect of two-photon-absorption, indicate up to 5 times spectral broadening is achievable at 10x higher peak powers. Representing a nonlinear loss mechanism at high intensities, TPA limits the maximum optical bandwidth that can be generated.

  4. Spectral broadening measurements of the ionospheres of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Woo, R.; Armstrong, J. W.

    1980-01-01

    Using data obtained from radio occultation experiments of Pioneer 10 and 11, the theory for spectral broadening is compared with the theory of weak intensity scintillation. This comparison is possible because Pioneer's observed spectral broadening occurred when the intensity scintillations were weak. Good agreement is found, and the inferred characteristics of the electron density irregularities for the ionospheres of both Jupiter and Saturn are presented.

  5. It's Time To Broaden the Agenda.

    ERIC Educational Resources Information Center

    Krugman, Richard D.

    1998-01-01

    This keynote address reviews previous efforts at developing a research policy agenda for child abuse and neglect, reviews medical research directions in child sexual abuse, suggests the author's views of potential research areas, and suggests a policy infrastructure to further implementation of the conference's proposals. (DB)

  6. Research on Fast-Doppler-Broadening of neutron cross sections

    SciTech Connect

    Li, S.; Wang, K.; Yu, G.

    2012-07-01

    A Fast-Doppler-Broadening method is developed in this work to broaden Continuous Energy neutron cross-sections for Monte Carlo calculations. Gauss integration algorithm and parallel computing are implemented in this method, which is unprecedented in the history of cross section processing. Compared to the traditional code (NJOY, SIGMA1, etc.), the new Fast-Doppler-Broadening method shows a remarkable speedup with keeping accuracy. The purpose of using Gauss integration is to avoid complex derivation of traditional broadening formula and heavy load of computing complementary error function that slows down the Doppler broadening process. The OpenMP environment is utilized in parallel computing which can take full advantage of modern multi-processor computers. Combination of the two can reduce processing time of main actinides (such as {sup 238}U, {sup 235}U) to an order of magnitude of 1{approx}2 seconds. This new method is fast enough to be applied to Online Doppler broadening. It can be combined or coupled with Monte Carlo transport code to solve temperature dependent problems and neutronics-thermal hydraulics coupled scheme which is a big challenge for the conventional NJOY-MCNP system. Examples are shown to determine the efficiency and relative errors compared with the NJOY results. A Godiva Benchmark is also used in order to test the ACE libraries produced by the new method. (authors)

  7. The broaden-and-build theory of positive emotions.

    PubMed Central

    Fredrickson, Barbara L

    2004-01-01

    The broaden-and-build theory describes the form and function of a subset of positive emotions, including joy, interest, contentment and love. A key proposition is that these positive emotions broaden an individual's momentary thought-action repertoire: joy sparks the urge to play, interest sparks the urge to explore, contentment sparks the urge to savour and integrate, and love sparks a recurring cycle of each of these urges within safe, close relationships. The broadened mindsets arising from these positive emotions are contrasted to the narrowed mindsets sparked by many negative emotions (i.e. specific action tendencies, such as attack or flee). A second key proposition concerns the consequences of these broadened mindsets: by broadening an individual's momentary thought-action repertoire--whether through play, exploration or similar activities--positive emotions promote discovery of novel and creative actions, ideas and social bonds, which in turn build that individual's personal resources; ranging from physical and intellectual resources, to social and psychological resources. Importantly, these resources function as reserves that can be drawn on later to improve the odds of successful coping and survival. This chapter reviews the latest empirical evidence supporting the broaden-and-build theory and draws out implications the theory holds for optimizing health and well-being. PMID:15347528

  8. The broaden-and-build theory of positive emotions.

    PubMed

    Fredrickson, Barbara L

    2004-09-29

    The broaden-and-build theory describes the form and function of a subset of positive emotions, including joy, interest, contentment and love. A key proposition is that these positive emotions broaden an individual's momentary thought-action repertoire: joy sparks the urge to play, interest sparks the urge to explore, contentment sparks the urge to savour and integrate, and love sparks a recurring cycle of each of these urges within safe, close relationships. The broadened mindsets arising from these positive emotions are contrasted to the narrowed mindsets sparked by many negative emotions (i.e. specific action tendencies, such as attack or flee). A second key proposition concerns the consequences of these broadened mindsets: by broadening an individual's momentary thought-action repertoire--whether through play, exploration or similar activities--positive emotions promote discovery of novel and creative actions, ideas and social bonds, which in turn build that individual's personal resources; ranging from physical and intellectual resources, to social and psychological resources. Importantly, these resources function as reserves that can be drawn on later to improve the odds of successful coping and survival. This chapter reviews the latest empirical evidence supporting the broaden-and-build theory and draws out implications the theory holds for optimizing health and well-being. PMID:15347528

  9. A broadened classical master equation approach for nonadiabatic dynamics at metal surfaces: Beyond the weak molecule-metal coupling limit.

    PubMed

    Dou, Wenjie; Subotnik, Joseph E

    2016-01-14

    A broadened classical master equation (BCME) is proposed for modeling nonadiabatic dynamics for molecules near metal surfaces over a wide range of parameter values and with arbitrary initial conditions. Compared with a standard classical master equation-which is valid in the limit of weak molecule-metal couplings-this BCME should be valid for both weak and strong molecule-metal couplings. (The BCME can be mapped to a Fokker-Planck equation that captures level broadening correctly.) Finally, our BCME can be solved with a simple surface hopping algorithm; numerical tests of equilibrium and dynamical observables look very promising. PMID:26772563

  10. Broadening the Impact of Your Science

    NASA Astrophysics Data System (ADS)

    Rom, E. L.; Ryan, J. G.; Muller-Parker, G.

    2004-12-01

    The National Science Foundation encourages faculty in science, technology, engineering and mathematics fields to find ways to integrate their research and educational activities by funding programs that emphasize faculty development, undergraduate research opportunities, and informal science education. A joint presentation by program officers from the Directorate of Education and Human Resources (EHR) and the Directorate of Geosciences (GEO) at NSF will provide information about program goals, requirements, and the review process for a number of NSF programs relevant to geoscience faculty members, including the Course, Curriculum and Laboratory Improvement (CCLI), the Geoscience Education Program, COSEE, CAREER and Research Experience for Undergraduates (REU). Discussion will focus on program requirements and will include advice on successful project elements, and on how to prepare effective proposals that are responsive to these program solicitations, as well as to the Broader Impacts review criterion more generally.

  11. Stark Broadening Parameters for Neutral Oxygen Spectral Lines

    NASA Astrophysics Data System (ADS)

    Alonizan, N.; Qindeel, R.; Nessib, N. Ben; Sahal-Bréchot, S.; Dimitrijević, Milan S.

    2015-12-01

    Stark broadening parameters for nine neutral oxygen (O I) lines have been determined within the impact approximation and the semiclassical perturbation method. The atomic data have been taken from the TOPbase and NIST atomic databases. The electron and proton Stark widths and shifts and ion broadening parameter values for these O I lines have been calculated for electron density of 10 16 cm -3 and for 4 different electron temperatures in the range of 5000 K to 40000 K. These Stark broadening parameters are compared with our previous results (Ben Nessib, N. et al. 1996, Physica Scripta, 54, 603-613), where we calculated Stark broadening parameters for only four O I spectral lines and where Stark widths and shifts were compared with experimental and theoretical data available in the literature. In the present paper, we have also compared our results with the Griem's book (Griem, H. R. 1974, Spectral line broadening by plasmas) and VALD (Ryabchikova, T. et al. 2015, Physica Scripta, 90, 054005) values.

  12. Deconvolution of Stark broadened spectra for multi-point density measurements in a flow Z-pinch

    SciTech Connect

    Vogman, G. V.; Shumlak, U.

    2011-10-13

    Stark broadened emission spectra, once separated from other broadening effects, provide a convenient non-perturbing means of making plasma density measurements. A deconvolution technique has been developed to measure plasma densities in the ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are captured at 20 locations using a multi-chord spectroscopic system. Spectra that are time- and chord-integrated are well approximated by a Voigt function. The proposed method simultaneously resolves plasma electron density and ion temperature by deconvolving the spectral Voigt profile into constituent functions: a Gaussian function associated with instrument effects and Doppler broadening by temperature; and a Lorentzian function associated with Stark broadening by electron density. The method uses analytic Fourier transforms of the constituent functions to fit the Voigt profile in the Fourier domain. The method is discussed and compared to a basic least-squares fit. The Fourier transform fitting routine requires fewer fitting parameters and shows promise in being less susceptible to instrumental noise and to contamination from neighboring spectral lines. The method is evaluated and tested using simulated lines and is applied to experimental data for the 229.69 nm C III line from multiple chords to determine plasma density and temperature across the diameter of the pinch. As a result, these measurements are used to gain a better understanding of Z-pinch equilibria.

  13. Deconvolution of Stark broadened spectra for multi-point density measurements in a flow Z-pinch

    DOE PAGESBeta

    Vogman, G. V.; Shumlak, U.

    2011-10-13

    Stark broadened emission spectra, once separated from other broadening effects, provide a convenient non-perturbing means of making plasma density measurements. A deconvolution technique has been developed to measure plasma densities in the ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are captured at 20 locations using a multi-chord spectroscopic system. Spectra that are time- and chord-integrated are well approximated by a Voigt function. The proposed method simultaneously resolves plasma electron density and ion temperature by deconvolving the spectral Voigt profile into constituent functions: a Gaussian functionmore » associated with instrument effects and Doppler broadening by temperature; and a Lorentzian function associated with Stark broadening by electron density. The method uses analytic Fourier transforms of the constituent functions to fit the Voigt profile in the Fourier domain. The method is discussed and compared to a basic least-squares fit. The Fourier transform fitting routine requires fewer fitting parameters and shows promise in being less susceptible to instrumental noise and to contamination from neighboring spectral lines. The method is evaluated and tested using simulated lines and is applied to experimental data for the 229.69 nm C III line from multiple chords to determine plasma density and temperature across the diameter of the pinch. As a result, these measurements are used to gain a better understanding of Z-pinch equilibria.« less

  14. Shape of collision-broadened lines of carbon monoxide

    NASA Astrophysics Data System (ADS)

    Seleznev, A. F.; Fedoseev, G. V.; Koshelev, M. A.; Tretyakov, M. Yu.

    2015-08-01

    We consider lineshape of the rotational spectrum of a CO molecule under the conditions of prevailing collisional broadening. Several series of experimental data obtained at relatively high (up to 1000) signal-to-noise ratio of self-broadening and broadening by noble gases have been analyzed. We used for analysis several well known models beyond the Voigt profile. It is confirmed that the use of the Hartman-Tran profile needs certain requirements in order to obtain meaningful and unambiguous results. A simple numerical simulation is suggested to evaluate the result of the model usage for any particular set of experimental data. Parameters of the collisional line narrowing were obtained. It is shown that under the experimental conditions, deviations of the shape of the observed lines from the Voigt profile are solely due to the wind effect.

  15. Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking.

    PubMed

    Wang, Cheng; Schires, Kevin; Osiński, Marek; Poole, Philip J; Grillot, Frédéric

    2016-01-01

    In semiconductor lasers, current injection not only provides the optical gain, but also induces variation of the refractive index, as governed by the Kramers-Krönig relation. The linear coupling between the changes of the effective refractive index and the modal gain is described by the linewidth broadening factor, which is responsible for many static and dynamic features of semiconductor lasers. Intensive efforts have been made to characterize this factor in the past three decades. In this paper, we propose a simple, flexible technique for measuring the linewidth broadening factor of semiconductor lasers. It relies on the stable optical injection locking of semiconductor lasers, and the linewidth broadening factor is extracted from the residual side-modes, which are supported by the amplified spontaneous emission. This new technique has great advantages of insensitivity to thermal effects, the bias current, and the choice of injection-locked mode. In addition, it does not require the explicit knowledge of optical injection conditions, including the injection strength and the frequency detuning. The standard deviation of the measurements is less than 15%. PMID:27302301

  16. Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Schires, Kevin; Osiński, Marek; Poole, Philip J.; Grillot, Frédéric

    2016-06-01

    In semiconductor lasers, current injection not only provides the optical gain, but also induces variation of the refractive index, as governed by the Kramers-Krönig relation. The linear coupling between the changes of the effective refractive index and the modal gain is described by the linewidth broadening factor, which is responsible for many static and dynamic features of semiconductor lasers. Intensive efforts have been made to characterize this factor in the past three decades. In this paper, we propose a simple, flexible technique for measuring the linewidth broadening factor of semiconductor lasers. It relies on the stable optical injection locking of semiconductor lasers, and the linewidth broadening factor is extracted from the residual side-modes, which are supported by the amplified spontaneous emission. This new technique has great advantages of insensitivity to thermal effects, the bias current, and the choice of injection-locked mode. In addition, it does not require the explicit knowledge of optical injection conditions, including the injection strength and the frequency detuning. The standard deviation of the measurements is less than 15%.

  17. Toward a broadband astro-comb: effects of nonlinear spectral broadening in optical fibers.

    PubMed

    Chang, Guoqing; Li, Chih-Hao; Phillips, David F; Walsworth, Ronald L; Kärtner, Franz X

    2010-06-01

    We propose and analyze a new approach to generate a broadband astro-comb by spectral broadening of a narrowband astro-comb inside a highly nonlinear optical fiber. Numerical modeling shows that cascaded four-wave-mixing dramatically degrades the input comb's side-mode suppression and causes side-mode amplitude asymmetry. These two detrimental effects can systematically shift the center-of-gravity of astro-comb spectral lines as measured by an astrophysical spectrograph with resolution approximately 100,000; and thus lead to wavelength calibration inaccuracy and instability. Our simulations indicate that this performance penalty, as a result of nonlinear spectral broadening, can be compensated by using a filtering cavity configured for double-pass. As an explicit example, we present a design based on an Yb-fiber source comb (with 1 GHz repetition rate) that is filtered by double-passing through a low finesse cavity (finesse = 208), and subsequent spectrally broadened in a 2-cm, SF6-glass photonic crystal fiber. Spanning more than 300 nm with 16 GHz line spacing, the resulting astro-comb is predicted to provide 1 cm/s (approximately 10 kHz) radial velocity calibration accuracy for an astrophysical spectrograph. Such extreme performance will be necessary for the search for and characterization of Earth-like extra-solar planets, and in direct measurements of the change of the rate of cosmological expansion. PMID:20588402

  18. Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking

    PubMed Central

    Wang, Cheng; Schires, Kevin; Osiński, Marek; Poole, Philip J.; Grillot, Frédéric

    2016-01-01

    In semiconductor lasers, current injection not only provides the optical gain, but also induces variation of the refractive index, as governed by the Kramers-Krönig relation. The linear coupling between the changes of the effective refractive index and the modal gain is described by the linewidth broadening factor, which is responsible for many static and dynamic features of semiconductor lasers. Intensive efforts have been made to characterize this factor in the past three decades. In this paper, we propose a simple, flexible technique for measuring the linewidth broadening factor of semiconductor lasers. It relies on the stable optical injection locking of semiconductor lasers, and the linewidth broadening factor is extracted from the residual side-modes, which are supported by the amplified spontaneous emission. This new technique has great advantages of insensitivity to thermal effects, the bias current, and the choice of injection-locked mode. In addition, it does not require the explicit knowledge of optical injection conditions, including the injection strength and the frequency detuning. The standard deviation of the measurements is less than 15%. PMID:27302301

  19. Forward-scattered light: Spectral broadening and temporal coherence

    NASA Astrophysics Data System (ADS)

    Swanson, N. L.; van Winkle, D. H.

    1997-06-01

    Fabry-Pérot spectroscopy was used to observe a spectral broadening of 1.3+/-0.2 MHz in laser light forward scattered through a colloidal solution. Light from a single-mode argon-ion laser was collected after scattering through water to which measured amounts of diatomaceous earth or 0.08-μm-diam polystyrene spheres were successively added. The broadening is attributed to coupling between fluctuations in particle concentration and spontaneous thermal fluctuations. Though spontaneous fluctuations exist in all pure fluids, they are very weak in water. However, the presence of the particles induces temperature gradients in the fluid, which in turn induce fluctuations in particle concentration.

  20. Combustion technology overview. [the use of broadened property aircraft fuels

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, R. W.

    1980-01-01

    An overview of combustor technology developments required for use of broadened property fuels in jet aircraft is presented. The intent of current investigations is to determine the extent to which fuel properties can be varied, to obtain a data base of combustion - fuel quality effects, and to determine the trade-offs associated with broadened property fuels. Subcomponents of in-service combustors such as fuel injectors and liners, as well as air distributions and stoichiometry, are being altered to determine the extent to which fuel flexibility can be extended. Finally, very advanced technology consisting of new combustor concepts is being evolved to optimize the fuel flexibility of gas turbine combustors.

  1. Multigroup Free-atom Doppler-broadening Approximation. Theory

    SciTech Connect

    Gray, Mark Girard

    2015-11-06

    Multigroup cross sections at a one target temperature can be Doppler-broadened to multigroup cross sections at a higher target temperature by matrix multiplication if the group structure suf- ficiently resolves the original temperature continuous energy cross section. Matrix elements are the higher temperature group weighted averages of the integral over the lower temperature group boundaries of the free-atom Doppler-broadening kernel. The results match theory for constant and 1/v multigroup cross sections at 618 lanl group structure resolution.

  2. Trace Isotope Detection Enhanced by Coherent Elimination of Power Broadening

    SciTech Connect

    Conde, Alvaro Peralta; Brandt, Lukas; Halfmann, Thomas

    2006-12-15

    The selectivity and spectral resolution of traditional laser-based trace isotope analysis, i.e., resonance ionization mass spectrometry (RIMS), is limited by power broadening of the radiative transition. We use the fact that power broadening does not occur in coherently driven quantum systems when the probing and excitation processes are temporally separated to demonstrate significant improvement of trace element detection, even under conditions of strong signals. Specifically, we apply a coherent variant of RIMS to the detection of traces of molecular nitric oxide (NO) isobars. For large laser intensities, the detected isotope signal can be increased by almost 1 order of magnitude without any loss in spectral resolution.

  3. The Administration's Private Pension Proposal.

    ERIC Educational Resources Information Center

    American Enterprise Inst. for Public Policy Research, Washington, DC.

    This report examines legislation proposed by the Nixon administration to (1) make available to employed workers a new type of personal retirement plan having tax-deferral advantages, (2) apply pre-retirement vesting requirements to the private pension system, and (3) broaden tax-deferred retirement plans presently available to the self-employed…

  4. Measurements of air-broadened and nitrogen-broadened half-widths and shifts of ozone lines near 9 microns

    NASA Technical Reports Server (NTRS)

    Smith, M. A. H.; Rinsland, C. P.; Devi, Malathy V.; Benner, D. Chris; Thakur, K. B.

    1988-01-01

    Air- and nitrogen-broadened half-widths and line shifts at room temperature for more than 60 individual vibration-rotation transitions in the nu1 fundamental band of (O-16)3 and several transitions in the nu3 band were determined from infrared absorption spectra. These spectra were recorded at 0.005/cm resolution with a Fourier-transform spectrometer. A tunable-diode-laser spectrometer operating in the 1090-1150/cm region was also used to record data on oxygen-, nitrogen-, and air-broadened half-widths for selected individual transitions. The nitrogen- and air-broadened half-widths determined by these two different measurement techniques are consistent to within 4 percent. The results are in good agreement with other published measurements and calculations.

  5. Broadening and collisional interference of lines in the ir spectra of ammonia: Self-broadening in the ν2 band

    NASA Astrophysics Data System (ADS)

    Cherkasov, M. R.

    2016-06-01

    The relaxation parameters of lines of the P, Q, and R branches of the ammonia ν2 band are calculated in the case of self-broadening with the effects of collisional interference of doublet components taken into account. It is shown that the cross-relaxation parameters do not exceed, as a rule, several percent of the values of the self-broadening coefficients and, consequently, the isolated line approximation is applicable in a wide pressure range. The calculated results are compared with experimental data.

  6. The STARS Alliance: Viable Strategies for Broadening Participation in Computing

    ERIC Educational Resources Information Center

    Dahlberg, Teresa; Barnes, Tiffany; Buch, Kim; Rorrer, Audrey

    2011-01-01

    The Students and Technology in Academia, Research, and Service (STARS) Alliance is a nationally-connected system of regional partnerships among higher education, K-12 schools, industry and the community with a mission to broaden the participation of women, under-represented minorities and persons with disabilities in computing (BPC). Each regional…

  7. Quality's Higher Education Dividends: Broadened Custodianship and Global Public Scholarship

    ERIC Educational Resources Information Center

    Jacobs, Gerrie J.

    2010-01-01

    This paper speculates on the possible contribution of the quality movement to higher education and the perceived dividends received from this, in general, over the past two decades but also, more specifically, with reference to the author's institution in South Africa. The first major quality contribution is a gradual broadening of higher…

  8. Community Colleges Broadening Horizons through Service Learning, 2006-2009

    ERIC Educational Resources Information Center

    Robinson, Gail

    2007-01-01

    This brief introduces "Community Colleges Broadening Horizons through Service Learning," the American Association of Community Colleges' (AACC's) fifth national Learn and Serve America grant project and describes its grantee college programs. The goals of this grant project are to build on established foundations to integrate service learning…

  9. Extending, Broadening and Rethinking Existing Research on Transfer of Training

    ERIC Educational Resources Information Center

    Volet, Simone

    2013-01-01

    The aim of this Special Issue was to generate a new integrated agenda for research on transfer of training. It brought together scholars from diverse perspectives and invited them to strive toward synergy. This article examines how this collection of articles, as well as other bodies of literature, can help extend, broaden and rethink current…

  10. The relativistic Doppler broadening of the line absorption profile

    NASA Astrophysics Data System (ADS)

    Kichenassamy, S.; Krikorian, R.; Nikogosian, A.

    1982-06-01

    The classical results of Doppler broadening of the line absorption profile are generalized to a relativistic gas in thermal equilibrium by taking into account the relativistic variance of the volume absorption coefficients of the gas, as derived by L. H. Thomas. This variance produces a small correction, even in the non-relativistic approximation.

  11. Broadening of absorption band by coupled gap plasmon resonances in a near-infrared metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Cong, Jiawei; Yao, Hongbing; Gong, Daolei; Chen, Mingyang; Tong, Yanqun; Fu, Yonghong; Ren, Naifei

    2016-07-01

    We propose a strategy to broaden the absorption band of the conventional metamaterial absorber by incorporating alternating metal/dielectric films. Up to 7-fold increase in bandwidth and ∼95% average absorption are achieved arising from the coupling of induced multiple gap plasmon resonances. The resonance coupling is analytically demonstrated using the coupled oscillator model, which reveals that both the optimal coupling strength and the resonance wavelength matching are required for the enhancement of absorption bandwidth. The presented multilayer design is easily fabricated and readily implanted to other absorber configurations, offering a practical avenue for applications in photovoltaic cells and thermal emitters.

  12. Observation of Doppler broadening in β -delayed proton- γ decay

    DOE PAGESBeta

    Schwartz, S. B.; Wrede, C.; Bennett, M. B.; Liddick, S. N.; Pérez-Loureiro, D.; Bowe, A.; Chen, A. A.; Chipps, K. A.; Cooper, N.; Irvine, D.; et al

    2015-09-14

    Background: The Doppler broadening of gamma-ray peaks is due to nuclear recoil from beta-delayed nucleon emission can be used to measure the energies of the nucleons. This method has never been tested using beta-delayed proton emission or applied to a recoil heavier than A = 10. Purpose: To test and apply this Doppler broadening method using gamma-ray peaks from the P-26(beta p gamma)Al-25 decay sequence. Methods: A fast beam of P-26 was implanted into a planar Ge detector, which was used as a P-26 beta-decay trigger. The SeGA array of high-purity Ge detectors was used to detect gamma rays frommore » the P-26(beta p gamma)Al-25 decay sequence. Results: Radiative Doppler broadening in beta-delayed proton-gamma decay was observed for the first time. Moreover, the Doppler broadening analysis method was verified using the 1613-keV gamma-ray line for which the proton energies were previously known. The 1776-keV gamma ray de-exciting the 2720 keV Al-25 level was observed in P-26(beta p gamma)Al-25 decay for the first time and used to determine that the center-of-mass energy of the proton emission feeding the 2720-keV level is 5.1 +/- 1.0 (stat.) +/- 0.6 (syst.) MeV, corresponding to a Si-26 excitation energy of 13.3 +/- 1.0 (stat.) +/- 0.6 (syst.) MeV for the proton-emitting level. Conclusions: Finally, the Doppler broadening method has been demonstrated to provide practical measurements of the energies for beta-delayed nucleon emissions populating excited states of nuclear recoils at least as heavy as A = 25.« less

  13. A Global Fitting Approach For Doppler Broadening Thermometry

    NASA Astrophysics Data System (ADS)

    Amodio, Pasquale; Moretti, Luigi; De Vizia, Maria Domenica; Gianfrani, Livio

    2014-06-01

    Very recently, a spectroscopic determination of the Boltzmann constant, kB, has been performed at the Second University of Naples by means of a rather sophisticated implementation of Doppler Broadening Thermometry (DBT)1. Performed on a 18O-enriched water sample, at a wavelength of 1.39 µm, the experiment has provided a value for kB with a combined uncertainty of 24 parts over 106, which is the best result obtained so far, by using an optical method. In the spectral analysis procedure, the partially correlated speed-dependent hard-collision (pC-SDHC) model was adopted. The uncertainty budget has clearly revealed that the major contributions come from the statistical uncertainty (type A) and from the uncertainty associated to the line-shape model (type B)2. In the present work, we present the first results of a theoretical and numerical work aimed at reducing these uncertainty components. It is well known that molecular line shapes exhibit clear deviations from the time honoured Voigt profile. Even in the case of a well isolated spectral line, under the influence of binary collisions, in the Doppler regime, the shape can be quite complicated by the joint occurrence of velocity-change collisions and speed-dependent effects. The partially correlated speed-dependent Keilson-Storer profile (pC-SDKS) has been recently proposed as a very realistic model, capable of reproducing very accurately the absorption spectra for self-colliding water molecules, in the near infrared3. Unfortunately, the model is so complex that it cannot be implemented into a fitting routine for the analysis of experimental spectra. Therefore, we have developed a MATLAB code to simulate a variety of H218O spectra in thermodynamic conditions identical to the one of our DBT experiment, using the pC-SDKS model. The numerical calculations to determine such a profile have a very large computational cost, resulting from a very sophisticated iterative procedure. Hence, the numerically simulated spectra

  14. Calculation of pressure-broadened linewidths of SO2 and NO2.

    NASA Technical Reports Server (NTRS)

    Tejwani, G. D. T.

    1972-01-01

    The Anderson-Tsao-Curnutte theory of line broadening (1949, 1962) is applied to calculate the self-broadened and N2- and O2-broadened linewidths of SO2 and NO2. Computed linewidth values are in good agreement with available experimental results and with calculations by Murphy and Boggs (1967, 1969) on four self-broadened and one nitrogen-broadened lines. Air-broadened linewidths are also calculated for SO2 at 200, 250 and 300 K. The results are considered to be useful for predicting theoretical spectra of SO2 under atmospheric conditions.

  15. Solar wind ion distribution broadening by waves and transients

    NASA Astrophysics Data System (ADS)

    Stevens, M. L.; Kasper, J. C.; Case, A. W.; Szabo, A.; Koval, A.; Biesecker, D. A.

    2015-12-01

    Thermal plasma spectra in the solar wind are subject to peak-broadening by plasma waves and small-scale structures at effective frequencies faster than the measurement rate. Under strong turbulence conditions, the non-thermal contribution to proton peak broadening in many commonly-used solar wind measurements becomes comparable to that of the kinetic temperature. The DSCOVR spacecraft, which arrived at the first Earth-Sun Lagrange point in June 2015, bears the PLASMAG Faraday Cup Experiment. That instrument is identical in most respects to the Wind SWE Faraday Cup instrument that has been measuring 92-second proton spectra in the solar wind for the last twenty years. In this paper, the effective proton VDF peak width is compared at 92-second and 1-second resolution as a function of the ambient magnetic fluctuation amplitude on relevant timescales. This work will enable a more accurate understanding of the energy partition in the solar wind plasma.

  16. Positive emotions and the social broadening effects of Barack Obama.

    PubMed

    Ong, Anthony D; Burrow, Anthony L; Fuller-Rowell, Thomas E

    2012-10-01

    Past experiments have demonstrated that the cognitive broadening produced by positive emotions may extend to social contexts. Building on this evidence, we hypothesized that positive emotions triggered by thinking about Barack Obama may broaden and expand people's sense of self to include others. Results from an expressive-writing study demonstrated that African American college students prompted to write about Obama immediately prior to and after the 2008 presidential election used more plural self-references, fewer other-references, and more social references. Mediation analyses revealed that writing about Obama increased positive emotions, which in turn increased the likelihood that people thought in terms of more-inclusive superordinate categories (we and us rather than they and them). Implications of these findings for the role of positive emotions in perspective-taking and intergroup relations are considered. PMID:22905966

  17. Pulsed Spin Locking in Spin-1 NQR: Broadening Mechanisms

    NASA Astrophysics Data System (ADS)

    Malone, Michael W.

    Nuclear Quadrupole Resonance (NQR) is a branch of magnetic resonance physics that allows for the detection of spin I > 1/2 nuclei in crystalline and semi-crystalline materials. Through the application of a resonant radio frequency (rf) pulse, the nuclei's response is to create an oscillating magnetic moment at a frequency unique to the target substance. This creates the NQR signal, which is typically weak and rapidly decaying. The decay is due to the various line broadening mechanisms, the relative strengths of which are functions of the specific material, in addition to thermal relaxation processes. Through the application of a series of rf pulses the broadening mechanisms can be refocused, narrowing the linewidth and extending the signal in time. Three line broadening mechanisms are investigated to explain the NQR signal's linewidth and behavior. The first, electric field gradient (EFG) inhomogeneity, is due to variations in the local electric environment among the target nuclei, for instance from crystal imperfections. While EFG inhomogeneity can vary between samples of the same chemical composition and structure, the other broadening mechanisms of homonuclear and heteronuclear dipolar coupling are specific to this composition and structure. Simple analytical models are developed that explain the NQR signal response to pulse sequences by accounting for the behavior of each broadening mechanism. After a general theoretical introduction, a model of pairs of spin-1 nuclei is investigated, and the refocusing behaviors of EFG and homonuclear dipolar coupling are analyzed. This reveals the conditions where EFG is refocused but homonuclear dipolar coupling is not. In this case the resulting signal shows a rapid decay, the rate of which becomes a measure of interatomic distances. This occurs even in the more complex case of a powder sample with its many randomly oriented crystallites, under particular pulsing conditions. Many target NQR compounds are rich in hydrogen

  18. Fundamental edge broadening effects during focused electron beam induced nanosynthesis

    DOE PAGESBeta

    Schmied, Roland; Fowlkes, Jason Davidson; Winkler, Robert; Rack, Phillip D.; Plank, Harald

    2015-02-16

    In this study, we explore lateral broadening effects of 3D structures fabricated through focused electron beam induced deposition using MeCpPt(IV)Me3 precursor. In particular, the scaling behavior of proximity effects as a function of the primary electron energy and the deposit height is investigated through experiments and validated through simulations. Correlated Kelvin force microscopy and conductive atomic force microscopy measurements identified conductive and non-conductive proximity regions. It was determined that the highest primary electron energies enable the highest edge sharpness while lower energies contain a complex convolution of broadening effects. In addition, it is demonstrated that intermediate energies lead to evenmore » more complex proximity effects that significantly reduce lateral edge sharpness and thus should be avoided if desiring high lateral resolution.« less

  19. Fundamental edge broadening effects during focused electron beam induced nanosynthesis

    PubMed Central

    Schmied, Roland; Fowlkes, Jason D; Winkler, Robert; Rack, Phillip D

    2015-01-01

    Summary The present study explores lateral broadening effects of 3D structures fabricated through focused electron beam induced deposition using MeCpPt(IV)Me3 precursor. In particular, the scaling behavior of proximity effects as a function of the primary electron energy and the deposit height is investigated through experiments and validated through simulations. Correlated Kelvin force microscopy and conductive atomic force microscopy measurements identified conductive and non-conductive proximity regions. It was determined that the highest primary electron energies enable the highest edge sharpness while lower energies contain a complex convolution of broadening effects. Moreover, it is demonstrated that intermediate energies lead to even more complex proximity effects that significantly reduce lateral edge sharpness and thus should be avoided if desiring high lateral resolution. PMID:25821687

  20. Fundamental edge broadening effects during focused electron beam induced nanosynthesis

    SciTech Connect

    Schmied, Roland; Fowlkes, Jason Davidson; Winkler, Robert; Rack, Phillip D.; Plank, Harald

    2015-02-16

    In this study, we explore lateral broadening effects of 3D structures fabricated through focused electron beam induced deposition using MeCpPt(IV)Me3 precursor. In particular, the scaling behavior of proximity effects as a function of the primary electron energy and the deposit height is investigated through experiments and validated through simulations. Correlated Kelvin force microscopy and conductive atomic force microscopy measurements identified conductive and non-conductive proximity regions. It was determined that the highest primary electron energies enable the highest edge sharpness while lower energies contain a complex convolution of broadening effects. In addition, it is demonstrated that intermediate energies lead to even more complex proximity effects that significantly reduce lateral edge sharpness and thus should be avoided if desiring high lateral resolution.

  1. Nitrogen-broadened lines of ethane at 150 K

    NASA Technical Reports Server (NTRS)

    Chudamani, S.; Varanasi, P.; Giver, L. P.; Valero, F. P. J.

    1985-01-01

    Spectral transmittance has been measured in the nu9 fundamental band of C2H6 at 150 K using a Fourier transform spectrometer with apodized spectral resolution of 0.06/cm. Comparison of observed spectral transmittance with a line-by-line computation using the spectral catalog of Atakan et al. (1983) has yielded N2-broadened half-widths at 150 K.

  2. Temperature dependence of self-broadened halfwidths of CO2

    NASA Technical Reports Server (NTRS)

    Suarez, Carlos B.; Valero, Francisco P. J.

    1990-01-01

    The temperature dependence of self-broadened halfwidths of CO2 was studied in the temperature range 165-300 K for the band at 4978/cm. Assuming a power-law of the form gamma(T) = delta(T0)(T0/T)-exp n, the exponent has been determined for J = 6-32. An average value of n = 0.745 + or - 7 percent has been found.

  3. Detection of single nanoparticles and lentiviruses using microcavity resonance broadening.

    PubMed

    Shao, Linbo; Jiang, Xue-Feng; Yu, Xiao-Chong; Li, Bei-Bei; Clements, William R; Vollmer, Frank; Wang, Wei; Xiao, Yun-Feng; Gong, Qihuang

    2013-10-18

    A new label-free sensing mechanism is demonstrated experimentally by monitoring the whispering-gallery mode broadening in microcavities. It is immune to both noise from the probe laser and environmental disturbances, and is able to remove the strict requirement for ultra-high-Q mode cavities for sensitive nanoparticle detection. This ability to sense nanoscale objects and biological analytes is particularly crucial for wide applications. PMID:24303524

  4. Spectral broadening of interacting pigments: polarized absorption by photosynthetic proteins.

    PubMed Central

    Somsen, O J; van Grondelle, R; van Amerongen, H

    1996-01-01

    Excitonic interaction between pigment molecules is largely responsible for the static and dynamic spectroscopic properties of photosynthetic pigment-proteins. This paper provides a new description of its effect on polarized absorption spectroscopy, in particular on circular dichroism (CD). We investigate excitonic spectra of finite width and use "spectral moments" to compare 1) inhomogeneously broadened excitonic spectra, 2) spectra that are (homogeneously broadened by vibrations or electron-phonon interaction, and 3) spectra that are simulated by applying convolution after the interaction has been evaluated. Two cases are distinguished. If the excitonic splitting is smaller than the width of the interacting absorption bands, the broadening of the excitonic spectrum can be approximated by a convolution approach, although a correction is necessary for CD spectra. If the excitonic splitting exceeds the bandwidth, the well-known exchange narrowing occurs. We demonstrate that this is accompanied by redistribution of dipole strength and spectral shifts. The magnitude of a CD spectrum is conveniently expressed by its first spectral moment. As will be shown, this is independent of spectral broadening as well as dispersive shifts induced by pigment-protein interactions. Consequently, it provides a simple tool to relate the experimental CD spectrum of a pigment complex to the excitonic interactions from which it originates. To illustrate the potential of the presented framework, the spectroscopy of the LH2 pigment-protein complex from purple bacteria is analyzed and compared for dimer-like and ring-like structures. Furthermore, it is demonstrated that the variability of the CD of chlorosomes from green bacteria can be explained by small changes in the structure of their cylindrical bacteriochlorophyll c subunits. Images FIGURE 3 FIGURE 4 PMID:8889168

  5. Light shift and light broadening in the Rb-87 maser.

    NASA Technical Reports Server (NTRS)

    Busca, G.; Tetu, M.; Vanier, J.

    1973-01-01

    A description of measurements of light-shift and light-broadening parameters for an Rb-87 maser operating between the field independent levels is reported. A parallel study of the spectral profile of the D1 pumping line is described. Comparison between the experimental results and theoretical calculations, taking into account the spatial inhomogeneity of the pumping light in the absorption cell, is presented.

  6. Hydrogen Stark broadening by different kinds of model microfields

    NASA Astrophysics Data System (ADS)

    Seidel, J.

    1980-07-01

    A new model microfield is defined (the theta process) which in conjunction with the kangaroo process, is used to demonstrate the effects of different model microfields on hydrogen line profiles. The differences in the statistical features of the models give an estimate of the uncertainties associated with the method of model microfields. Stark broadening of hydrogen Lyman lines by either electrons or ions is investigated specifically.

  7. Hydrogen and Nitrogen Broadened Ethane and Propane Absorption Cross Sections

    NASA Astrophysics Data System (ADS)

    Hargreaves, Robert J.; Appadoo, Dominique; Billinghurst, Brant E.; Bernath, Peter F.

    2015-06-01

    High-resolution infrared absorption cross sections are presented for the ν9 band of ethane (C2H6) at 823 cm-1. These cross sections make use of spectra recorded at the Australian Synchrotron using a Fourier transform infrared spectrometer with maximum resolution of 0.00096 cm-1. The spectra have been recorded at 150, 120 and 90 K for hydrogen and nitrogen broadened C2H6. They cover appropriate temperatures, pressures and broadening gases associated with the atmospheres of the Outer Planets and Titan, and will improve atmospheric retrievals. The THz/Far-IR beamline at the Australian Synchrotron is unique in combining a high-resolution Fourier transform spectrometer with an 'enclosive flow cooling' (EFC) cell designed to study molecules at low temperatures. The EFC cell is advantageous at temperatures for which the vapor pressure is very low, such as C2H6 at 90 K. Hydrogen broadened absorption cross sections of propane between 700 and 1200 cm-1 will also be presented based on spectra obtained at the Canadian Light Source.

  8. Brillouin resonance broadening due to structural variations in nanoscale waveguides

    NASA Astrophysics Data System (ADS)

    Wolff, C.; Van Laer, R.; Steel, M. J.; Eggleton, B. J.; Poulton, C. G.

    2016-02-01

    We study the impact of structural variations (that is slowly varying geometry aberrations and internal strain fields) on the width and shape of the stimulated Brillouin scattering (SBS) resonance in nanoscale waveguides. We find that they lead to an inhomogeneous resonance broadening through two distinct mechanisms: firstly, the acoustic frequency is directly influenced via mechanical nonlinearities; secondly, the optical wave numbers are influenced via the opto-mechanical nonlinearity leading to an additional acoustic frequency shift via the phase-matching condition. We find that this second mechanism is proportional to the opto-mechanical coupling and, hence, related to the SBS-gain itself. It is absent in intra-mode forward SBS, while it plays a significant role in backward scattering. In backward SBS increasing the opto-acoustic overlap beyond a threshold defined by the fabrication tolerances will therefore no longer yield the expected quadratic increase in overall Stokes amplification. Finally, we illustrate in a numerical example that in backward SBS and inter-mode forward SBS the existence of two broadening mechanisms with opposite sign also opens the possibility to compensate the effect of geometry-induced broadening. Our results can be transferred to other micro- and nano-structured waveguide geometries such as photonic crystal fibres.

  9. Jet broadening in unstable non-Abelian plasmas

    SciTech Connect

    Dumitru, Adrian; Schenke, Bjoern; Strickland, Michael; Nara, Yasushi

    2008-08-15

    We perform numerical simulations of the SU(2) Boltzmann-Vlasov equation including both hard elastic particle collisions and soft interactions mediated by classical Yang-Mills fields. Using this technique we calculate the momentum-space broadening of high-energy jets in real time for both locally isotropic and anisotropic plasmas. In both cases we introduce a separation scale that separates hard and soft interactions and demonstrate that our results for jet broadening are independent of the precise separation scale chosen. For an isotropic plasma this allows us to calculate the jet transport coefficient q-circumflex including hard and soft nonequilibrium dynamics. For an anisotropic plasma the jet transport coefficient becomes a tensor with q-circumflex{sub L}{ne}q-circumflex{sub perpendicular}. We find that for weakly coupled anisotropic plasmas the fields develop unstable modes, forming configurations where B{sub perpendicular}>E{sub perpendicular} and E{sub z}>B{sub z}, which lead to q-circumflex{sub L}>q-circumflex{sub perpendicular}. We study whether the effect is strong enough to explain the experimental observation that high-energy jets traversing the plasma perpendicular to the beam axis experience much stronger broadening in rapidity, {delta}{eta}, than in azimuth, {delta}{phi}.

  10. An Experimental and Theoretical Study of Nitrogen-Broadened Acetylene Lines

    NASA Technical Reports Server (NTRS)

    Thibault, Franck; Martinez, Raul Z.; Bermejo, Dionisio; Ivanov, Sergey V.; Buzykin, Oleg G.; Ma, Qiancheng

    2014-01-01

    We present experimental nitrogen-broadening coefficients derived from Voigt profiles of isotropic Raman Q-lines measured in the 2 band of acetylene (C2H2) at 150 K and 298 K, and compare them to theoretical values obtained through calculations that were carried out specifically for this work. Namely, full classical calculations based on Gordon's approach, two kinds of semi-classical calculations based on Robert Bonamy method as well as full quantum dynamical calculations were performed. All the computations employed exactly the same ab initio potential energy surface for the C2H2N2 system which is, to our knowledge, the most realistic, accurate and up-to-date one. The resulting calculated collisional half-widths are in good agreement with the experimental ones only for the full classical and quantum dynamical methods. In addition, we have performed similar calculations for IR absorption lines and compared the results to bibliographic values. Results obtained with the full classical method are again in good agreement with the available room temperature experimental data. The quantum dynamical close-coupling calculations are too time consuming to provide a complete set of values and therefore have been performed only for the R(0) line of C2H2. The broadening coefficient obtained for this line at 173 K and 297 K also compares quite well with the available experimental data. The traditional Robert Bonamy semi-classical formalism, however, strongly overestimates the values of half-width for both Qand R-lines. The refined semi-classical Robert Bonamy method, first proposed for the calculations of pressure broadening coefficients of isotropic Raman lines, is also used for IR lines. By using this improved model that takes into account effects from line coupling, the calculated semi-classical widths are significantly reduced and closer to the measured ones.

  11. Modeling Solvent Broadening on the Vibronic Spectra of a Series of Coumarin Dyes. From Implicit to Explicit Solvent Models.

    PubMed

    Cerezo, Javier; Avila Ferrer, Francisco J; Prampolini, Giacomo; Santoro, Fabrizio

    2015-12-01

    We present a protocol to estimate the solvent-induced broadening of electronic spectra based on a model that explicitly takes into account the environment embedding the solute. Starting from a classical approximation of the solvent contribution to the spectrum, the broadening arises from the spread of the excitation energies due to the fluctuation of the solvent coordinates, and it is represented as a Gaussian line shape that convolutes the vibronic spectrum of the solute. The latter is computed in harmonic approximation at room temperature with a time-dependent approach. The proposed protocol for the computation of spectral broadening exploits molecular dynamics (MD) simulations performed on the solute-solvent system, keeping the solute degrees of freedom frozen, followed by the computation of the excitation properties with a quantum mechanics/molecular mechanics (QM/MM) approach. The factors that might influence each step of the protocol are analyzed in detail, including the selection of the empirical force field (FF) adopted in the MD simulations and the QM/MM partition of the system to compute the excitation energies. The procedure is applied to a family of coumarin dyes, and the results are compared with experiments and with the predictions of a very recent work (Cerezo et al., Phys. Chem. Chem. Phys. 2015, 17, 11401-11411), where an implicit model was adopted for the solvent. The final spectra of the considered coumarins were obtained without including ad hoc phenomenological parameters and indicate that the broadenings computed with explicit and implicit models both follow the experimental trend, increasing as the polarity change from the initial to the final state increases. More in detail, the implicit model provides larger estimations of the broadening that are closer to the experimental evidence, while explicit models appear to better capture relative differences arising from different solvents or different solutes. Possible inaccuracies of the adopted

  12. Strategies for broadening public involvement in space developments

    NASA Technical Reports Server (NTRS)

    Harris, Philip R.

    1992-01-01

    There is widespread public interest in and goodwill toward the space program. For NASA's plans for the next 25 years to be achieved, this public reservoir of support needs to be tapped and channeled. NASA endeavors have to reach out beyond the scientific, technological, and aerospace communities to foster wider participation in space exploration and exploitation. To broaden NASA support and spread out the financing of space activities, recommendations for consideration are offered in the area of economics, political, institutional, international, and managerial areas.

  13. Commercial observation satellites: broadening the sources of geospatial data

    NASA Astrophysics Data System (ADS)

    Baker, John C.; O'Connell, Kevin M.; Venzor, Jose A.

    2002-09-01

    Commercial observation satellites promise to broaden substantially the sources of imagery data available to potential users of geospatial data and related information products. We examine the new trend toward private firms acquiring and operating high-resolution imagery satellites. These commercial observation satellites build on the substantial experience in Earth observation operations provided by government-owned imaging satellites for civilian and military purposes. However, commercial satellites will require governments and companies to reconcile public and private interests in allowing broad public access to high-resolution satellite imagery data without creating national security risks or placing the private firms at a disadvantage compared with other providers of geospatial data.

  14. Curves of growth for van der Waals broadened spectral lines

    NASA Technical Reports Server (NTRS)

    Park, C.

    1980-01-01

    Curves of growth are evaluated for a spectral line broadened by the van der Waals interactions during collisions. The growth of the equivalent widths of such lines is shown to be dependent on the product of the perturber density and the 6/10 power of the van der Waals potential coefficient. When the parameter is small, the widths grow as the 1/2 power of the optical depth as they do for the Voigt profile: but when the parameter is large, they grow as 2/3 power and, hence, faster than the Voigt profile. An approximate analytical expression for the computed growth characteristics is given.

  15. Line-Shape Transition of Collision Broadened Lines

    NASA Astrophysics Data System (ADS)

    Harde, H.; Katzenellenbogen, N.; Grischkowsky, D.

    1995-02-01

    Using the newly developed technique of THz time-domain spectroscopy, we have measured the far-wing absorption line profile of the ensemble of collision broadened ground state rotational lines of methylchloride vapor out to more than 200 linewidths from resonance, corresponding to frequency offsets as much as 5× the resonant frequency. On these far wings the measured absorption is approximately an order of magnitude less than that predicted by the van Vleck-Weisskopf theory. Our observations show that at higher frequencies a transition occurs from the regime of the van Vleck-Weisskopf theory to the regime of the Lorentz theory.

  16. Numerical computation of doppler-broadening in the resonance domain

    SciTech Connect

    Sanchez, R.

    2013-07-01

    We have implemented an accurate and fast calculation of the Doppler-broadened kernel PT(E {yields} E') for neutron elastic scattering based on a gas model. An exponential cutoff which accounts for the asymptotic behavior of the error function helps limit the range of integration while eliminating difference effects. This allows for calculating a kernel library for {sup 238}U over a very fine energy grid covering the resonance range in only a few hours in a laptop. We give an example showing the impact of {sup 238}U elastic up-scattering on the values of self shielded cross sections. (authors)

  17. Selective optical pumping process in Doppler-broadened atoms

    SciTech Connect

    Liu Shuangqiang; Zhang Yundong; Fan Daikun; Wu Hao; Yuan Ping

    2011-04-10

    By solving the optical Bloch equations with the rate-equation approximation, we calculate the time dependence of the magnetic sublevel populations of Doppler-broadened atoms. With an increase of the left-circularly polarized pump intensity, the population fraction of a certain sublevel of the excited state almost reaches 0.3, resulting in anisotropy in the excited state, which is important to the optical filter based on circular birefringence and dichroism. Furthermore, numerical results show that the real saturation pump intensity for the moving atoms is much larger than that for the resting atoms.

  18. On the Stark Broadening of Lu III Spectral Lines

    NASA Astrophysics Data System (ADS)

    Majlinger, Zlatko; Simić, Zoran; Dimitrijević, Milan S.

    2015-12-01

    The electron-impact widths for 27 Lu III spectral lines have been calculated by using the modified semiempirical method. Calculations have been also performed with the published relativistic Hartree-Fock oscillator strengths and additionally, with the approximate formula of Cowley. With the obtained results, the influence of Stark broadening on Lu III lines was investigated in the spectra of A-type stars. The obtained data will be included in the STARK-B database, which is part of the Virtual Atomic and Molecular Data Center - VAMDC.

  19. Density measurements using coherence imaging spectroscopy based on Stark broadening

    SciTech Connect

    Lischtschenko, O.; Bystrov, K.; De Temmerman, G.; Howard, J.; Jaspers, R. J. E.; Koenig, R.

    2010-10-15

    A coherence imaging camera has been set up at Pilot-PSI. The system is to be used for imaging the plasma density through the Stark effect broadening of the H{sub {gamma}} line. Local density values are then obtained by the Abel inversion of the measured interferometric fringe contrast. This report will present the instrument setup and proof-of-principle demonstration. The inverted spatial electron density profiles obtained near the cascaded arc source of Pilot-PSI in discharges with axial magnetic field of B=0.4 T are compared with an independent measurement of electron density by Thomson scattering and good agreement is found.

  20. Broadening sources of Diginity and Affirmation in Work and Relationship

    PubMed Central

    Byars-Winston, Angela

    2012-01-01

    This article builds on assertions in Richardson’s (2012, this issue) Major Contribution on counseling for work and relationship. In this reaction, I expand on the relevance and potential of the counseling for work and relationship perspective to enrich the field of counseling psychology. My comments focus on three considerations to further extend the cultural relevance of Richardson’s work and relationship perspective: (1) broadening sources of dignity, (2) centering knowledge of marginalized communities, and (3) promoting psychologists’ critical consciousness. Richardson’s perspective holds great promise for being a guiding heuristic to inform counseling psychology research, theory, and practice. PMID:22563131

  1. Effects of inhomogeneous broadening on the resonance Raman excitation profile of lycopene

    NASA Astrophysics Data System (ADS)

    Cotting, J. E.; Hoskins, L. C.; Levan, M. E.

    1982-08-01

    The resonance Raman excitation profiles for the ν1, ν2, and ν3 vibrations of lycopene in ethyl alcohol, toluene, and carbon disulfide solvents have been measured. The results are interpreted in terms of a three-mode vibrational theory which includes both homogeneous and inhomogeneous broadening effects. Excellent agreement between calculated and observed excitation profiles and visible spectra was found, thus emphasizing the need to interpret resonance Raman data using a multimode vibrational model. The results indicate that the major broadening mechanism is homogeneous broadening, with about a 25% contribution from inhomogeneous broadening. The excitation profiles in carbon disulfide gave the largest inhomogeneous broadening.

  2. Quantum-state storage and processing for polarization qubits in an inhomogeneously broadened Λ-type three-level medium

    NASA Astrophysics Data System (ADS)

    Viscor, D.; Ferraro, A.; Loiko, Yu.; Mompart, J.; Ahufinger, V.

    2011-10-01

    We address the propagation of a single-photon pulse with two polarization components, i.e., a polarization qubit, in an inhomogeneously broadened “phaseonium” Λ-type three-level medium. We combine some of the nontrivial propagation effects characteristic for this kind of coherently prepared systems and the controlled reversible inhomogeneous broadening technique to propose several quantum information-processing applications, such as a protocol for polarization qubit filtering and sieving as well as a tunable polarization beam splitter. Moreover, we show that by imposing a spatial variation of the atomic coherence phase, an efficient quantum memory for the incident polarization qubit can be also implemented in Λ-type three-level systems.

  3. Expansion and broadening of coronal loop transients - A theoretical explanation

    NASA Technical Reports Server (NTRS)

    Mouschovias, T. CH.; Poland, A. I.

    1978-01-01

    Consequences are examined of the assumption that an observed coronal loop transient is a twisted rope of magnetic-field lines expanding and broadening in the background coronal plasma and magnetic field. It is shown that the expansion can be accounted for by the azimuthal component of the field; the observed broadening of the loop as it moves outward can be accounted for by the longitudinal component of the field. In order to have a net outward force and at the same time avoid a classical pinch (sausage) instability, the two components of the field must satisfy a certain inequality. It is predicted that, as the loop rises, the width (h) of its top portion should vary proportionally with distance (R) from the sun's center. This is in good agreement with measurements that show h is proportional to the 0.8 power of R. The prediction that the radius of curvature of the top portion of the loop should be proportional to R differs from the measured variation. The difference could be accounted for by a drag due to the background coronal field that flattens the loop's top.

  4. Attention and positive affect: temporal switching or spatial broadening?

    PubMed

    Phaf, R Hans

    2015-04-01

    Evolutionary reasoning and computation suggest that positive affect is associated with higher attentional flexibility than negative affect, even when affectively neutral material is processed. The affective modulation of interference in the Eriksen flanker task seems, however, more readily explained by a spatial broadening of attention due to positive affect. It is argued here that these results should also be interpreted in terms of an increased switching over time between flankers and target (i.e., flexibility). The two hypotheses were contrasted with positive and negative mood inductions in a masked-flanker task. The interval (Stimulus Onset Asynchrony; SOA) with which the masked flankers preceded the target letter was parametrically varied. In contrast to what is found with simultaneous non-masked flanker presentation, masking produced larger interference with negative than with positive moods. In addition, a crossover interaction between mood and SOA emerged. These results seem incompatible with a spatial broadening account and support an affective modulation account in terms of flexibility. PMID:25772099

  5. Improving Program Design and Assessment with Broadening Participation Resources

    NASA Astrophysics Data System (ADS)

    Siegfried, D.; Johnson, A.; Thomas, S. H.; Fauver, A.; Detrick, L.

    2012-12-01

    Many theoretical and research-based approaches suggest how to best use mentoring to enhance an undergraduate research program. The Institute for Broadening Participation's Pathways to Engineering and Pathways to Ocean Sciences projects synthesized a set of mentoring studies, theoretical sources, and other texts pertinent to undergraduate research program design into a suite of practical tools that includes an online mentoring manual, an online reference library of mentoring and diversity literature, and practical guides such as Using Social Media to Build Diversity in Your REU. The overall goal is to provide easy-to-access resources that can assist faculty and program directors in implementing or honing the mentoring elements in their research programs for undergraduates. IBP's Online Mentoring Manual addresses common themes, such as modeling, student self-efficacy, career development, retention and evaluation. The Online Diversity Reference Library provides a comprehensive, annotated selection of key policy documents, research studies, intervention studies, and other texts on broadening participation in science, technology, engineering and mathematics. IBP's suite of tools provides the theoretical underpinnings and research findings that can help leaders in education integrate site-appropriate mentoring elements into their educational programs. Program directors and faculty from a variety of program types and disciplines have benefitted from using the Manual and other resources. IBP continues the work of translating and synthesizing theory to practice and welcomes your participation and partnership in that effort.

  6. Positive mood broadens visual attention to positive stimuli

    PubMed Central

    Wadlinger, Heather A.; Isaacowitz, Derek M.

    2010-01-01

    In an attempt to investigate the impact of positive emotions on visual attention within the context of Fredrickson's (1998) broaden-and-build model, eye tracking was used in two studies to measure visual attentional preferences of college students (n=58, n=26) to emotional pictures. Half of each sample experienced induced positive mood immediately before viewing slides of three similarly-valenced images, in varying central-peripheral arrays. Attentional breadth was determined by measuring the percentage viewing time to peripheral images as well as by the number of visual saccades participants made per slide. Consistent with Fredrickson's theory, the first study showed that individuals induced into positive mood fixated more on peripheral stimuli than did control participants; however, this only held true for highly-valenced positive stimuli. Participants under induced positive mood also made more frequent saccades for slides of neutral and positive valence. A second study showed that these effects were not simply due to differences in emotional arousal between stimuli. Selective attentional broadening to positive stimuli may act both to facilitate later building of resources as well as to maintain current positive affective states. PMID:20431711

  7. Dispersion corrections to the Gaussian profile describing the Doppler broadening of spectral lines

    NASA Astrophysics Data System (ADS)

    Wójtewicz, S.; Wcisło, P.; Lisak, D.; Ciuryło, R.

    2016-04-01

    A dispersionally corrected Gaussian profile describing Doppler-broadened spectral line shapes is presented. Proposed corrections include the frequency dependence of the Doppler shifting caused by dispersion as well as by light frequency variation over the whole spectral line shape. It is shown that the frequency dependence of the Doppler shifting can have a non-negligible influence on the line-shape model and can affect the line shape even at the relative level of 10-5. Moreover, this effect also influences the determination of the line position at the level of kilohertz. Finally, the impact of the presented results on the Doppler width thermometry and precise molecular spectroscopy for fundamental studies is emphasized.

  8. Technical Note: Improved implementation of doppler broadening in MCNP5

    SciTech Connect

    Bartol, Laura J.; DeWerd, Larry A.

    2012-09-15

    Purpose: Incoherent scattering has a substantial effect on spectroscopic measurements and simulations. Many general-purpose Monte Carlo codes include models that account for the effects of bound electrons on incoherent scattering, including Doppler broadening (DB). This work investigates the DB model used in the Monte Carlo N-particle transport code (MCNP5). Methods: Simulations were run with three versions of MCNP5: v1.51, v1.60, and a modified form of v1.60 (v1.60m). All simulations used the MCPLIB04 photon data library, which presents the electron subshell data for incoherent scattering in the form of a probability density function. In v1.60m, the source code was altered to sample the electron subshell from a cumulative density function instead. Each version of the code was tested using an identical set of simulations that investigated DB in a slab of silicon at scattering angles of 15 Degree-Sign , 30 Degree-Sign , and 45 Degree-Sign . For each angle, simulations were run for multiple energies between 200 keV and 800 keV. The spectrum of singly-scattered photons at the exit of the slab was scored. Spectra were analytically calculated for comparison. Results: In v1.51, DB was modeled for incident photon energies below 760 keV, 384 keV, and 260 keV at scattering angles of 15 Degree-Sign , 30 Degree-Sign , and 45 Degree-Sign , respectively. Above these energy thresholds, v1.51 did not model DB. The spectra calculated using v1.60 and v1.60m exhibited DB for all energy-angle combinations; however, v1.60m, exhibited more energy broadening than did v1.60. The spectra calculated with v1.60m agreed with the analytical calculations. Conclusions: MCNP5 v1.51 and v1.60 model partial broadening when used with the MCPLIB04 data library. MCNP5 v1.60m models DB more accurately due to the form of the electron subshell data. In response to these results, Los Alamos National Laboratory has released a new photon data library, MCPLIB84, that presents the electron subshell data in

  9. X-ray Diffraction Measurement of GaInNAs/GaAs Double Quantum Well Structures with Novel Analysis Method for Broadening Factors

    NASA Astrophysics Data System (ADS)

    Nakashima, Kiichi; Tateno, Kouta

    2006-09-01

    The structural deterioration of GaInNAs/GaAs double-quantum-well (DQW) samples was analyzed by X-ray diffraction measurement with a novel peak broadening method. We effectively analyzed broadening properties by taking the difference between 004 X-ray satellite profiles measured with two different types of scanning configuration: a conventional configuration without a receiving slit and that with an analyzer crystal placed in front of a receiving detector. We found that the broadening due to structural deterioration can be simply and clearly analyzed by focusing attention on the difference between two types of profile shape, particularly at the valley minimum parts of satellite patterns. It is demonstrated that the difference at the valley minimum parts clearly represents various aspects of the deterioration of DQW structures. Particularly, it is remarkable that not only the degree of deterioration of the DQW structures but also the change in broadening mechanism due to the proceeding deterioration can be effectively analyzed. We propose and formulate a new simple method for analyzing the difference in valley shape by introducing two characteristic indices representing the difference. It is experimentally demonstrated that the new method is effective in both sensitively detecting and characterizing the deterioration of DQW structures by identifying broadening due to tilt distribution or lateral size effects of mosaic structures. From these results, it is concluded that the analysis of the valley minimum parts of profiles is a simple and effective tool for X-ray diffraction measurement.

  10. Photosynthetic innovation broadens the niche within a single species.

    PubMed

    Lundgren, Marjorie R; Besnard, Guillaume; Ripley, Brad S; Lehmann, Caroline E R; Chatelet, David S; Kynast, Ralf G; Namaganda, Mary; Vorontsova, Maria S; Hall, Russell C; Elia, John; Osborne, Colin P; Christin, Pascal-Antoine

    2015-10-01

    Adaptation to changing environments often requires novel traits, but how such traits directly affect the ecological niche remains poorly understood. Multiple plant lineages have evolved C4 photosynthesis, a combination of anatomical and biochemical novelties predicted to increase productivity in warm and arid conditions. Here, we infer the dispersal history across geographical and environmental space in the only known species with both C4 and non-C4 genotypes, the grass Alloteropsis semialata. While non-C4 individuals remained confined to a limited geographic area and restricted ecological conditions, C4 individuals dispersed across three continents and into an expanded range of environments, encompassing the ancestral one. This first intraspecific investigation of C4 evolutionary ecology shows that, in otherwise similar plants, C4 photosynthesis does not shift the ecological niche, but broadens it, allowing dispersal into diverse conditions and over long distances. Over macroevolutionary timescales, this immediate effect can be blurred by subsequent specialisation towards more extreme niches. PMID:26248677

  11. Broadening the interface bandwidth in simulation based training

    NASA Technical Reports Server (NTRS)

    Somers, Larry E.

    1989-01-01

    Currently most computer based simulations rely exclusively on computer generated graphics to create the simulation. When training is involved, the method almost exclusively used to display information to the learner is text displayed on the cathode ray tube. MICROEXPERT Systems is concentrating on broadening the communications bandwidth between the computer and user by employing a novel approach to video image storage combined with sound and voice output. An expert system is used to combine and control the presentation of analog video, sound, and voice output with computer based graphics and text. Researchers are currently involved in the development of several graphics based user interfaces for NASA, the U.S. Army, and the U.S. Navy. Here, the focus is on the human factors considerations, software modules, and hardware components being used to develop these interfaces.

  12. Coincidence Doppler Broadening of Positron Annihilation Radiation in Fe

    NASA Astrophysics Data System (ADS)

    do Nascimento, E.; Vanin, V. R.; Maidana, N. L.; Helene, O.

    2013-06-01

    We measured the Doppler broadening annihilation radiation spectrum in Fe, using 22NaCl as a positron source, and two Ge detectors in coincidence arrangement. The two-dimensional coincidence energy spectrum was fitted using a model function that included positron annihilation with the conduction band and 3d electrons, 3s and 3p electrons, and in-flight positron annihilation. Detectors response functions included backscattering and a combination of Compton and pulse pileup, ballistic deficit and shaping effects. The core electrons annihilation intensity was measured as 16.4(3) %, with almost all the remainder assigned to the less bound electrons. The obtained results are in agreement with published theoretical values.

  13. Phonon Properties of Materials from Neutron Resonance Doppler Broadening Measurements

    NASA Astrophysics Data System (ADS)

    Eric Lynn, J.

    2002-12-01

    At low temperatures the Doppler broadened widths of neutron resonances are strongly affected by the phonon characteristics of the material used for making the cross-section measurement. The Doppler width can be expressed in terms of the moments of the phonon spectrum carried by the atomic species with the resonant cross-section. Cross-section measurements made with tungsten and tantalum metals are reviewed here and compared with phonon information obtained by other methods. Applications of the method to a plutonium-gallium alloy and to some lanthanum barium cuprates are described briefly. We discuss possible extensions of the technique and how an epithermal flight path at the SNS may be advantageous.

  14. Comparing the line broadened quasilinear model to Vlasov code

    NASA Astrophysics Data System (ADS)

    Ghantous, K.; Berk, H. L.; Gorelenkov, N. N.

    2014-03-01

    The Line Broadened Quasilinear (LBQ) model is revisited to study its predicted saturation level as compared with predictions of a Vlasov solver BOT [Lilley et al., Phys. Rev. Lett. 102, 195003 (2009) and M. Lilley, BOT Manual. The parametric dependencies of the model are modified to achieve more accuracy compared to the results of the Vlasov solver both in regards to a mode amplitude's time evolution to a saturated state and its final steady state amplitude in the parameter space of the model's applicability. However, the regions of stability as predicted by LBQ model and BOT are found to significantly differ from each other. The solutions of the BOT simulations are found to have a larger region of instability than the LBQ simulations.

  15. Comparing the line broadened quasilinear model to Vlasov code

    SciTech Connect

    Ghantous, K.; Berk, H. L.; Gorelenkov, N. N.

    2014-03-15

    The Line Broadened Quasilinear (LBQ) model is revisited to study its predicted saturation level as compared with predictions of a Vlasov solver BOT [Lilley et al., Phys. Rev. Lett. 102, 195003 (2009) and M. Lilley, BOT Manual. The parametric dependencies of the model are modified to achieve more accuracy compared to the results of the Vlasov solver both in regards to a mode amplitude's time evolution to a saturated state and its final steady state amplitude in the parameter space of the model's applicability. However, the regions of stability as predicted by LBQ model and BOT are found to significantly differ from each other. The solutions of the BOT simulations are found to have a larger region of instability than the LBQ simulations.

  16. Calculation of pressure-broadened linewidths for CO in Ar

    NASA Technical Reports Server (NTRS)

    Green, S.

    1985-01-01

    Calculations of the pressure-broadening cross sections of CO in Ar have been made within the infinite-order sudden (IOS) and coupled states (CS) quantum scattering approximations. Two intermolecular potentials were used, a pairwise additive atom-atom potential which has been employed previously in semiclassical (modified Anderson theory) studies of this system and one calculated ab initio within an electron gas formalism. Predictions from the two potentials generally agree within about 25 percent and bracket experimental values (except for some recent high temperature data obtained in shock tube experiments). The CS approximation appears to be quite accurate although computationally expensive. The much cheaper IOS approximation is accurate for the J = 0-1 line but does not properly predict the dependence on line number. The quantum results are also compared with earlier semiclassical values.

  17. Standard line broadening impact theory for hydrogen including penetrating collisions.

    PubMed

    Alexiou, S; Poquérusse, A

    2005-10-01

    In recent years there has been significant interest in the emission spectra from high-density plasmas, as manifested by a number of experiments. At these high densities short range (small impact parameter) interactions become important and these cannot be adequately handled by the standard theory, whose predictions depend on some cutoffs, necessary to preserve unitarity, the long range approximation, and to ensure the validity of a semiclassical picture. Very recently, as a result of a debate concerning the broadening of isolated ion lines, the importance of penetration of bound electron wave functions by plasma electrons has been realized. By softening the interaction, penetration makes perturbative treatments more valid. The penetration effect has now been included analytically into the standard theory. It turns out that the integrations may be done in closed form in terms of the modified Bessel functions K0 and K1. This work develops the new theory and applies it to experimental measurements. PMID:16383542

  18. RESONANCE BROADENING AND HEATING OF CHARGED PARTICLES IN MAGNETOHYDRODYNAMIC TURBULENCE

    SciTech Connect

    Lynn, Jacob W.; Parrish, Ian J.; Quataert, Eliot; Chandran, Benjamin D. G.

    2012-10-20

    The heating, acceleration, and pitch-angle scattering of charged particles by magnetohydrodynamic (MHD) turbulence are important in a wide range of astrophysical environments, including the solar wind, accreting black holes, and galaxy clusters. We simulate the interaction of high-gyrofrequency test particles with fully dynamical simulations of subsonic MHD turbulence, focusing on the parameter regime with {beta} {approx} 1, where {beta} is the ratio of gas to magnetic pressure. We use the simulation results to calibrate analytical expressions for test particle velocity-space diffusion coefficients and provide simple fits that can be used in other work. The test particle velocity diffusion in our simulations is due to a combination of two processes: interactions between particles and magnetic compressions in the turbulence (as in linear transit-time damping; TTD) and what we refer to as Fermi Type-B (FTB) interactions, in which charged particles moving on field lines may be thought of as beads sliding along moving wires. We show that test particle heating rates are consistent with a TTD resonance that is broadened according to a decorrelation prescription that is Gaussian in time (but inconsistent with Lorentzian broadening due to an exponential decorrelation function, a prescription widely used in the literature). TTD dominates the heating for v{sub s} >> v{sub A} (e.g., electrons), where v{sub s} is the thermal speed of species s and v{sub A} is the Alfven speed, while FTB dominates for v{sub s} << v{sub A} (e.g., minor ions). Proton heating rates for {beta} {approx} 1 are comparable to the turbulent cascade rate. Finally, we show that velocity diffusion of collisionless, large gyrofrequency particles due to large-scale MHD turbulence does not produce a power-law distribution function.

  19. Implementation of on-the-fly doppler broadening in MCNP

    SciTech Connect

    Martin, W. R.; Wilderman, S.; Brown, F. B.; Yesilyurt, G.

    2013-07-01

    A new method to obtain Doppler broadened cross sections has been implemented into MCNP, removing the need to generate cross sections for isotopes at problem temperatures. When a neutron of energy E enters a material region that is at some temperature T, the cross sections for that material at temperature T are immediately obtained 'on-the-fly' (OTF) by interpolation using a high order functional expansion for the temperature dependence of the Doppler-broadened cross section for that isotope at the neutron energy E. The OTF cross sections agree with the NJOY-based cross sections for all neutron energies and all temperatures in the range specified by the user, e.g., 250 K - 3200 K. The OTF methodology has been successfully implemented into the MCNP Monte Carlo code and has been tested on several test problems by comparing MCNP with conventional ACE cross sections versus MCNP with OTF cross sections. The test problems include the Doppler defect reactivity benchmark suite and two full-core VHTR configurations, including one with multiphysics coupling using RELAP5-3D/ATHENA for the thermal-hydraulic analysis. The comparison has been excellent, verifying that the OTF libraries can be used in place of the conventional ACE libraries generated at problem temperatures. In addition, it has been found that the OTF methodology greatly reduces the complexity of the input for MCNP, resulting in an order of magnitude decrease in the number of input lines for full-core configurations. Finally, for full-core problems with multiphysics feedback, the memory required to store the cross section data is considerably reduced with OTF cross sections and the additional computational effort with OTF is modest, on the order of 10-15%. (authors)

  20. Foreign-gas collision broadening of the far-infrared spectrum of water vapor

    NASA Technical Reports Server (NTRS)

    Gasster, Samuel D.; Townes, Charles H.; Goorvitch, David; Valero, Francisco P. J.

    1988-01-01

    The far-infrared rotational spectrum of H2(O-16) has been studied in the spectral range 25-112/cm to measure the foreign-gas collision-broadened linewidths. Measurements of 17 lines broadened by nitrogen and 21 lines broadened by oxygen are reported. The measurements were made at 297 K. From these data, the widths due to air broadening are obtained. The experimental results are compared with recent theoretical calculations and with the case of a constant linewidth, equal to the average experimental width. There is some correlation between the relative experimental linewidths and the theoretical predictions. However, the simple assumption of a constant value for the collision-broadened linewidths gives a better representation for the case of N2- and O2-broadened linewidths than do present detailed theoretical calculations.

  1. Wall-collision line broadening of molecular oxygen within nanoporous materials

    SciTech Connect

    Xu, Can T.; Lewander, Maerta; Andersson-Engels, Stefan; Svensson, Tomas; Svanberg, Sune; Adolfsson, Erik

    2011-10-15

    Wall-collision broadening of near-infrared absorption lines of molecular oxygen confined in nanoporous zirconia is studied by employing high-resolution diode-laser spectroscopy. The broadening is studied for pores of different sizes under a range of pressures, providing new insights on how wall collisions and intermolecular collisions influence the total spectroscopic line profile. The pressure series show that wall-collision broadening is relatively more prominent under reduced pressures, enabling sensitive means to probe pore sizes of porous materials. In addition, we show that the total wall-collision-broadened profile strongly deviates from a Voigt profile and that wall-collision broadening exhibits an additive-like behavior to the pressure and Doppler broadening.

  2. Fabrication of a 2-DOF electromagnetic energy harvester with in-phase vibrational bandwidth broadening

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Jui; Wu, Jia-Yin

    2016-09-01

    A vibration structure with two-degrees-of-freedom is proposed to increase the usable bandwidth of a micromachined electromagnetic energy harvester. Compared with the structure of a pure cantilever harvester, the proposed structure is formed by integrating a spiral diaphragm into a U-shaped cantilever diaphragm. By performing finite element analysis, the resonance frequencies of the two diaphragms are designed with a slight shift, both lower than 300 Hz. In addition, to achieve output bandwidth broadening, electroplated copper coils on the spiral and the U-shaped cantilever are coupled and the connection sequences of the coupled coils are arranged such that single- or duo-mode tuning of the energy harvester can be realized. The harvester delivers powers of 22.1 and 21.5 nW at two resonance frequencies of 211 and 274 Hz, respectively, in the duo-mode operation. The proposed spiral–cantilever coupled energy harvester has lower resonance frequencies and broader bandwidth than a pure cantilever-type harvester of equal area, and can therefore harvest more energy from the environment.

  3. Air broadening coefficients for the ν3 band of hydroperoxyl radicals

    NASA Astrophysics Data System (ADS)

    Minamida, Maya; Tonokura, Kenichi

    2014-11-01

    Using mid-infrared laser absorption spectroscopy, we investigated the room-temperature pressure broadening coefficients for hydroperoxyl radicals (HO2) in nitrogen and oxygen over the 1060.0-1065.5 cm-1 range of the ν3 band. The HO2 radicals were produced by flash photolysis of a chlorine/1,4-cyclohexadiene/oxygen mixture. The 20 measured absorption profiles were analyzed with Voigt functions. Air broadening coefficients were estimated from the nitrogen- and oxygen-broadening results and compared with previous results. We discuss the dependence of air broadening on rotational states.

  4. Broadening and collisional interference of lines in the IR spectra of ammonia. Theory

    NASA Astrophysics Data System (ADS)

    Cherkasov, M. R.

    2016-06-01

    The general theory of relaxation spectral shape parameters in the impact approximation (M. R. Cherkasov, J. Quant. Spectrosc. Radiat. Transfer 141, 73 (2014)) is adapted to the case of line broadening of infrared spectra of ammonia. Specific features of line broadening of parallel and perpendicular bands are discussed. It is shown that in both cases the spectrum consists of independently broadened singlets and doublets; however, the components of doublets can be affected by collisional interference. The paper is the first part of a cycle of studies devoted to the problems of spectral line broadening of ammonia.

  5. N2-broadening coefficients of methyl chloride at room temperature

    NASA Astrophysics Data System (ADS)

    Bray, C.; Jacquemart, D.; Buldyreva, J.; Lacome, N.; Perrin, A.

    2012-07-01

    Methyl chloride is of interest for atmospheric applications, since this molecule is directly involved in the catalytic destruction of ozone in the lower stratosphere. In a previous work [Bray et al. JQSRT 2011;112:2446], lines positions and intensities of self-perturbed 12CH335Cl and 12CH337Cl have been studied into details for the 3.4 μm spectral region. The present work is focused on measurement and calculation of N2-broadening coefficients of the 12CH335Cl and 12CH337Cl isotopologues. High-resolution Fourier Transform spectra of CH3Cl-N2 mixtures at room-temperature have been recorded between 2800 and 3200 cm-1 at LADIR (using a classical source) and between 47 and 59 cm-1 at SOLEIL (using the synchrotron source on the AILES beamline). 612 mid-infrared transitions of the ν1 band and 86 far-infrared transitions of the pure rotational band have been analyzed using a multispectrum fitting procedure. Average accuracy on the deduced N2-broadening coefficients has been estimated to 5% and 10% in the mid- and far-infrared spectral regions, respectively. The J- and K-rotational dependences of these coefficients have been observed in the mid-infrared region and then a simulation has been performed using an empirical model for 0≤J≤50, K≤9. The 12CH335Cl-N2 line widths for 0≤J≤50 and K≤10 of the ν1 band and for 55≤J≤67 and K≤15 of the pure rotational band have been computed using a semi-classical approach involving exact trajectories and a real symmetric-top geometry of the active molecule. Finally, a global comparison with the experimental and theoretical data existing in the literature has been performed. Similar J- and K-rotational dependences have been appeared while no clear evidence for any vibrational or isotopic dependences have been pointed out.

  6. Broadening the Participation of Native Americans in Earth Science

    NASA Astrophysics Data System (ADS)

    Bueno Watts, Nievita

    Climate change is not a thing of the future. Indigenous people are being affected by climate changes now. Native American Earth scientists could help Native communities deal with both climate change and environmental pollution issues, but are noticeably lacking in Earth Science degree programs. The Earth Sciences produce the lowest percentage of minority scientists when compared with other science and engineering fields. Twenty semi-structured interviews were gathered from American Indian/ Alaska Native Earth Scientists and program directors who work directly with Native students to broaden participation in the field. Data was analyzed using qualitative methods and constant comparison analysis. Barriers Native students faced in this field are discussed, as well as supports which go the furthest in assisting achievement of higher education goals. Program directors give insight into building pathways and programs to encourage Native student participation and success in Earth Science degree programs. Factors which impede obtaining a college degree include financial barriers, pressures from familial obligations, and health issues. Factors which impede the decision to study Earth Science include unfamiliarity with geoscience as a field of study and career choice, the uninviting nature of Earth Science as a profession, and curriculum that is irrelevant to the practical needs of Native communities or courses which are inaccessible geographically. Factors which impede progress that are embedded in Earth Science programs include educational preparation, academic information and counseling and the prevalence of a Western scientific perspective to the exclusion of all other perspectives. Intradepartmental relationships also pose barriers to the success of some students, particularly those who are non-traditional students (53%) or women (80%). Factors which support degree completion include financial assistance, mentors and mentoring, and research experiences. Earth scientists

  7. Superradiance and Subradiance in an Inhomogeneously Broadened Ensemble of Two-Level Systems Coupled to a Low-Q Cavity

    SciTech Connect

    Temnov, Vasily V.; Woggon, Ulrike

    2005-12-09

    The collective spontaneous emission of a fully inverted inhomogeneously broadened ensemble of N two-level systems coupled to a single-mode low-Q cavity is investigated numerically using Monte Carlo wave function technique. An intrinsically bi-exponential emission dynamics is found when the time scales of superradiance {tau}{sub sr} and inhomogeneous dephasing T{sub 2}*{approx}1/{delta}{omega}{sub inh} become comparable: a fast superradiant is followed by a slow subradiant decay. Experimental configurations using ensembles of quantum dots coupled to optical microcavities are proposed as possible candidates to observe the combined superradiant and subradiant energy relaxation.

  8. Multimode instabilities in a homogeneously broadened ring laser

    SciTech Connect

    Lugiato, L.A.; Narducci, L.M.; Eschenazi, E.V.; Bandy, D.K.; Abraham, N.B.

    1985-09-01

    This paper contains a description of the behavior of a multimode unidirectional ring laser with a homogeneously broadened active medium. Our formulation is based on the conventional Maxwell-Bloch (MB) equations, but is distinguished from other treatments by the inclusion of a finite mirror reflectivity and an arbitrary value of the gain parameter. We review the steady-state behavior of the system and analyze the longitudinal profile of the field and of the atomic variables. With an appropriate transformation of variables, we transform the boundary conditions of the ring cavity into standard periodicity type, even in the presence of a finite reflectivity, and derive an infinite hierarchy of coupled mode equations. We analyze exactly the linear stability of the system, and investigate the dependence of the instability domain on the reflectivity and gain parameters. A numerical study of the full MB equations for a parameter range of the type explored in the recent experiments by Hillman et al. (Phys. Rev. Lett. 52, 1605 (1984)) reveals similarities, but also considerable differences between the results of the theory and the main experimental signatures of their instability. However, the injection of numerical noise shows the presence of numerous coexisting basins of attraction which are likely to play a significant role in the dynamics of a noisy laser.

  9. Broadening cell selection criteria with micropallet arrays of adherent cells.

    PubMed

    Wang, Yuli; Young, Grace; Aoto, Phillip C; Pai, Jeng-Hao; Bachman, Mark; Li, G P; Sims, Christopher E; Allbritton, Nancy L

    2007-10-01

    A host of technologies exists for the separation of living, nonadherent cells, with separation decisions typically based on fluorescence or immunolabeling of cells. Methods to separate adherent cells as well as to broaden the range of possible sorting criteria would be of high value and complementary to existing strategies. Cells were cultured on arrays of releasable pallets. The arrays were screened and individual cell(s)/pallets were released and collected. Conventional fluorescence and immunolabeling of cells were compatible with the pallet arrays, as were separations based on gene expression. By varying the size of the pallet and the number of cells cultured on the array, single cells or clonal colonies of cells were isolated from a heterogeneous population. Since cells remained adherent throughout the isolation process, separations based on morphologic characteristics, for example cell shape, were feasible. Repeated measurements of each cell in an array were performed permitting the selection of cells based on their temporal behavior, e.g. growth rate. The pallet array system provides the flexibility to select and collect adherent cells based on phenotypic and temporal criteria and other characteristics not accessible by alternative methods. PMID:17559133

  10. Workshops without Walls: Broadening Access to Science around the World

    PubMed Central

    Arslan, Betül K.; Boyd, Eric S.; Dolci, Wendy W.; Dodson, K. Estelle; Boldt, Marco S.; Pilcher, Carl B.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Astrobiology Institute (NAI) conducted two “Workshops Without Walls” during 2010 that enabled global scientific exchange—with no travel required. The second of these was on the topic “Molecular Paleontology and Resurrection: Rewinding the Tape of Life.” Scientists from diverse disciplines and locations around the world were joined through an integrated suite of collaborative technologies to exchange information on the latest developments in this area of origin of life research. Through social media outlets and popular science blogs, participation in the workshop was broadened to include educators, science writers, and members of the general public. In total, over 560 people from 31 US states and 30 other nations were registered. Among the scientific disciplines represented were geochemistry, biochemistry, molecular biology and evolution, and microbial ecology. We present this workshop as a case study in how interdisciplinary collaborative research may be fostered, with substantial public engagement, without sustaining the deleterious environmental and economic impacts of travel. PMID:21829326

  11. Dynamic Stark broadening as the Dicke narrowing effect

    NASA Astrophysics Data System (ADS)

    Calisti, A.; Mossé, C.; Ferri, S.; Talin, B.; Rosmej, F.; Bureyeva, L. A.; Lisitsa, V. S.

    2010-01-01

    A very fast method to account for charged particle dynamics effects in calculations of spectral line shape emitted by plasmas is presented. This method is based on a formulation of the frequency fluctuation model (FFM), which provides an expression of the dynamic line shape as a functional of the static distribution of frequencies. Thus, the main numerical work rests on the calculation of the quasistatic Stark profile. This method for taking into account ion dynamics allows a very fast and accurate calculation of Stark broadening of atomic hydrogen high- n series emission lines. It is not limited to hydrogen spectra. Results on helium- β and Lyman- α lines emitted by argon in microballoon implosion experiment conditions compared with experimental data and simulation results are also presented. The present approach reduces the computer time by more than 2 orders of magnitude as compared with the original FFM with an improvement of the calculation precision, and it opens broad possibilities for its application in spectral line-shape codes.

  12. Workshops Without Walls: broadening access to science around the world.

    PubMed

    Arslan, Betül K; Boyd, Eric S; Dolci, Wendy W; Dodson, K Estelle; Boldt, Marco S; Pilcher, Carl B

    2011-08-01

    The National Aeronautics and Space Administration (NASA) Astrobiology Institute (NAI) conducted two "Workshops Without Walls" during 2010 that enabled global scientific exchange--with no travel required. The second of these was on the topic "Molecular Paleontology and Resurrection: Rewinding the Tape of Life." Scientists from diverse disciplines and locations around the world were joined through an integrated suite of collaborative technologies to exchange information on the latest developments in this area of origin of life research. Through social media outlets and popular science blogs, participation in the workshop was broadened to include educators, science writers, and members of the general public. In total, over 560 people from 31 US states and 30 other nations were registered. Among the scientific disciplines represented were geochemistry, biochemistry, molecular biology and evolution, and microbial ecology. We present this workshop as a case study in how interdisciplinary collaborative research may be fostered, with substantial public engagement, without sustaining the deleterious environmental and economic impacts of travel. PMID:21829326

  13. Broadening Participation: Mentoring Community College Students in a Geoscience REU

    NASA Astrophysics Data System (ADS)

    Smith, M.; Osborn, J.

    2015-12-01

    Increasingly, REUs are recruiting from community colleges as a means of broadening participation of underrepresented minorities, women, and low-income students in STEM. As inclusion of community college students becomes normalized, defining the role of science faculty and preparing them to serve as mentors to community college students is a key component of well-designed programs. This session will present empirical research regarding faculty mentoring in the first two years of an NSF-REU grant to support community college students in a university's earth and environmental science labs. Given the documented benefits of undergraduate research on students' integration into the scientific community and their career trajectory in STEM, the focus of the investigation has been on the processes and impact of mentoring community college STEM researchers at a university serving a more traditionally privileged population; the degree to which the mentoring relationships have addressed community college students needs including their emotional, cultural and resource needs; and gaps in mentor training and the mentoring relationship identified by mentors and students.

  14. Correction of Doppler-broadened Rayleigh backscattering effects in H2O dial measurements

    NASA Technical Reports Server (NTRS)

    Ansmann, A.; Bosenberg, J.

    1986-01-01

    A general method of solutions for treating effects of Doppler-broadened Rayleigh backscattering in H2O Differential Absorption Lidar (DIAL) measurements are described and discussed. Errors in vertical DIAL measuremtns caused by this laser line broadening effect can be very large and, therfore, this effect has to be accounted for accurately. To analyze and correct effects of Doppler-broadened Rayleigh backscattering in DIAL experiments, a generalized DIAL approximation was derived starting from a lidar equation, which includes Doppler broadening. To evaluate the accuracy of H2O DIAL measurements, computer simulations were performed. It was concluded that correction of Doppler broadened Rayleigh backscattering is possible with good accuracy in most cases of tropospheric H2O DIAL measurements, but great care has to be taken when layers with steep gradients of Mie backscattering like clouds or inversion layers are present.

  15. Stark line broadening of the n=4 to 3 transitions in high-Z heliumlike ions

    SciTech Connect

    Loboda, P. A.; Lykov, V. A.; Popova, V. V.

    1995-05-01

    Stark line broadening of the n=4 to 3 transitions of He-like Ne, Mg, and Al in multicharged ion plasmas is considered. Line profiles calculations involved quasi-static ion broadening, impact electron broadening, natural, and Doppler broadening. Considerable effect of Stark line broadening due to plasma ions for the 4F-3D transitions of He-like Ne is demonstrated at the Ne-plasma parameters yielding a maximum gain in the theoretical modeling of the resonantly photopumped Na-Ne x-ray laser scheme under the conditions of the Saturn experiments. The sensitivity of the calculated line profiles to the intermediate coupling effects and different energy level data is also investigated. Calculated line profiles of the 4F-3D transitions in He-like Mg and Al are compared to the experimental and other theoretical data.

  16. Self-broadening of the hydrogen Balmer α line

    NASA Astrophysics Data System (ADS)

    Allard, N. F.; Kielkopf, J. F.; Cayrel, R.; van't Veer-Menneret, C.

    2008-03-01

    Context: Profiles of hydrogen lines in stellar spectra are determined by the properties of the hydrogen atom and the structure of the star's atmosphere. Hydrogen line profiles are therefore a very important diagnostic tool in stellar modeling. In particular they are widely used as effective temperature criterion for stellar atmospheres in the range T_eff 5500-7000 K. Aims: In cool stars such as the Sun hydrogen is largely neutral and the electron density is low. The line center width at half maximum and the spectral energy distribution in the wings are determined primarily by collisions with hydrogen atoms due to their high relative density. This work aims to provide benchmark calculations of Balmer α based on recent H2 potentials. Methods: For the first time an accurate determination of the broadening of Balmer α by atomic hydrogen is made in a unified theory of collisional line profiles using ab initio calculations of molecular hydrogen potential energies and transition matrix elements among singlet and triplet electronic states. Results: We computed the shape, width and shift of the Balmer α line perturbed by neutral hydrogen and studied their dependence on temperature. We present results over the full range of temperatures from 3000 to 12 000 K needed for stellar spectra models. Conclusions: Our calculations lead to larger values than those obtained with the commonly used Ali & Griem (1966, Phys. Rev. A, 144, 366) theory and are closer to the recent calculations of Barklem et al. (2000a, A&A, 355, L5; 2000b, A&A, 363, 1091). We conclude that the line parameters are dependent on the sum of many contributing molecular transitions, each with a different temperature dependence, and we provide tables for Balmer α. The unified line shape theory with complete molecular potentials also predicts additional opacity in the far non-Lorentzian wing.

  17. Broadening Undergraduate Research Skills With A New Astrophysics Laboratory Class

    NASA Astrophysics Data System (ADS)

    Smecker-Hane, Tammy A.; Barth, A. J.

    2009-05-01

    To broaden the research skills of undergraduate students at the University of California, Irvine, we created a new required laboratory class called Observational Astrophysics, designed to be taken by junior and senior physics majors specializing in astrophysics. Students spend the first two weeks learning the basics of observational astronomy (coordinate systems, telescopes, CCDs, etc.) and completing homework assignments. Students spend the next eight weeks performing three lab experiments that involve: 1) CCD imaging of Jupiter with an 8-inch Meade telescope, doing astrometry of the their four brightest moons, and fitting the moons' distance versus time to derive the moons' orbital period, semimajor axis and inclination and Jupiter's mass, 2) CCD imaging of star cluster with a 24-inch telescope, doing profile-fitting photometry with DAOPHOT and doing main-sequence fitting of their observed color-magnitude diagram with stellar evolutionary models to derive the cluster's distance, reddening, and age, and 3) reducing longslit spectra of an x-ray binary previously taken with the Keck 10-meter telescope, deriving the radial velocity curve from cross-correlating the spectra with stellar templates, and deriving a lower limit on the mass of the black hole. In this paper, we discuss the course, report on the student reactions, and summarize some of the important things we learned in creating the class. Students enjoy the class. Although they find it difficult, they highly value the experience because they realize they are learning crucial research skills that will greatly help them when go on to do summer research, attend graduate school or work to industry. We are open to sharing our lab manual and data with others who wish to augment their university's curriculum.

  18. Doppler Broadening Thermometry Based on Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hu, Shui-Ming; Cheng, Cunfeng; Wang, Jin; Tan, Yan; Sun, Yu Robert; Liu, An-Wen; Zhang, Jin-Tao

    2014-06-01

    A Doppler broadening thermometry is implemented using a laser-locked cavity ring-down spectrometer [1,2] combined with a temperature-stabilized sample cell. The temperature fluctuation of the gas sample cell is kept below 1 mK for hours. The probing laser is frequency locked at a longitudinal mode of a Fabry-Pérot interferometer made of ultra-low-expansion glass, and the spectral scan is implemented by scanning the sideband produced by an electro-optic modulator. As a result, a kHz precision has been maintained during the measurement of the spectrum of 10 GHz wide. A ro-vibrational line of C_2H_2 is measured at sample pressures of a few Pa. Using a pair of mirrors with a reflectivity of 0.99997 at 787 nm, we are able to detect absorption line profiles with a signal-to-noise ratio of 10^5. Fitting of the recorded spectra allows us to determine the Doppler width with a statistical uncertainty of 10 ppm. Further improvements on the experimental reproducibility and investigations on the collision effects will probably lead to an optical determination of the Boltzmann constant with an uncertainty of a few ppm. H. Pan, C.-F. Cheng, Y. R. Sun, B. Gao, A.-W. Liu, S.-M. Hu, ``Laser-locked, continuously tunable high resolution cavity ring-down spectrometer," Rev. Sci. Instrum. 82, 103110 (2011) Y. R. Sun, H. Pan, C.-F. Cheng, A.-W. Liu, J.-T. Zhang, S.-M. Hu, ``Application of cavity ring-down spectroscopy to the Boltzmann constant determination," Opt. Express, 19, 19993 (2011)

  19. Theory of Self-Phase Modulation and Spectral Broadening

    NASA Astrophysics Data System (ADS)

    Shen, Y. R.; Yang, Guo-Zhen

    Self-phase modulation refers to the phenomenon in which a laser beam propagating in a medium interacts with the medium and imposes a phase modulation on itself. It is one of those very fascinating effects discovered in the early days of nonlinear optics (Bloembergen and Lallemand, 1966; Brewer, 1967; Cheung et al., 1968; Lallemand, 1966; Jones and Stoicheff, 1964; Shimizu, 1967; Stoicheff, 1963). The physical origin of the phenomenon lies in the fact that the strong field of a laser beam is capable of inducing an appreciable intensity-dependent refractive index change in the medium. The medium then reacts back and inflicts a phase change on the incoming wave, resulting in self-phase modulation (SPM). Since a laser beam has a finite cross section, and hence a transverse intensity profile, SPM on the beam should have a transverse spatial dependence, equivalent to a distortion of the wave front. Consequently, the beam will appear to have self-diffracted. Such a self-diffraction action, resulting from SPM in space, is responsible for the well-known nonlinear optical phenomena of self-focusing and self-defocusing (Marburger, 1975; Shen, 1975). It can give rise to a multiple ring structure in the diffracted beam if the SPM is sufficiently strong (Durbin et al., 1981; Santamato and Shen, 1984). In the case of a pulsed laser input, the temporal variation of the laser intensity leads to an SPM in time. Since the time derivative of the phase of a wave is simply the angular frequency of the wave, SPM also appears as a frequency modulation. Thus, the output beam appears with a self-induced spectral broadening (Cheung et al., 1968; Gustafson et al., 1969; Shimizu, 1967).

  20. Some Strategies From SOARS for Broadening Participation in the Geosciences

    NASA Astrophysics Data System (ADS)

    Haacker-Santos, R.; Pandya, R.; Calhoun, A.

    2006-12-01

    The mission of SOARS® is to broaden participation in the geosciences by increasing the number of Black or African-American, American Indian or Alaska Native, Hispanic or Latino, female, and first-generation college students who enroll and succeed in graduate school in the atmospheric and related sciences. This mission contributes to national goals of developing a diverse, internationally competitive, and globally engaged workforce of scientists and engineers. SOARS is a multiyear undergraduate-to-graduate bridge program that uses three strategies: a strong learning community, a multidimensional mentoring program, and experience in research. Our presentation will describe SOARS' strategies in more detail, with an eye toward how such strategies might be adapted for other programs. To do this, we will draw upon recent research that documents how these strategies can be successfully implemented, including: - A survey of over 124 higher-education based STEM programs - A workshop report from the American Chemical Society emphasizing cooperation between industry and academia - An independent ethnographic study of the Significant Opportunities in Atmospheric and Related Science (SOARS®) program, administered by the University Corporation for Atmospheric Research (UCAR) In the 11 years since SOARS' founding, 104 students have participated in the program. Of those participants, 16 are still enrolled as undergraduates, and 60 have gone on to purse graduate school in STEM. Overall, this represents a success rate 91%. Of the 35 SOARS participants who have entered the workforce, 26 are in STEM related disciplines. Four SOARS participants have already earned their PhD, and additional 17 are in PhD programs. Seventeen protégés have earned Master's and entered the workforce, and 17 more protégés are enrolled in Master's programs.

  1. HOW MIGHT INDUSTRY GOVERNANCE BE BROADENED TO INCLUDE NONPROLIFERATION

    SciTech Connect

    Hund, Gretchen; Seward, Amy M.

    2009-10-06

    Broadening industry governance to support nonproliferation could provide significant new leverage in preventing the spread/diversion of nuclear, radiological, or dual-use material or technology that could be used in making a nuclear or radiological weapon. Industry is defined broadly to include 1) the nuclear industry, 2) dual-use industries, and 3) radioactive source manufacturers and selected radioactive source-user industries worldwide. This paper describes how industry can be an important first line of defense in detecting and thwarting proliferation, such as an illicit trade network or an insider theft case, by complementing and strengthening existing governmental efforts. For example, the dual-use industry can play a critical role by providing export, import, or security control information that would allow a government or the International Atomic Energy Agency (IAEA) to integrate this information with safeguards, export, import, and physical protection information it has to create a more complete picture of the potential for proliferation. Because industry is closest to users of the goods and technology that could be illicitly diverted throughout the supply chain, industry information can potentially be more timely and accurate than other sources of information. Industry is in an ideal position to help ensure that such illicit activities are detected. This role could be performed more effectively if companies worked together within a particular industry to promote nonproliferation by implementing an industry-wide self-regulation program. Performance measures could be used to ensure their materials and technologies are secure throughout the supply chain and that customers are legitimately using and/or maintaining oversight of these items. Nonproliferation is the overarching driver that industry needs to consider in adopting and implementing a self-regulation approach. A few foreign companies have begun such an approach to date; it is believed that, ultimately

  2. Impact of inhomogeneous broadening on optical polarization of high-inclination semipolar and nonpolar InxGa1 -xN /GaN quantum wells

    NASA Astrophysics Data System (ADS)

    Mounir, Christian; Schwarz, Ulrich T.; Koslow, Ingrid L.; Kneissl, Michael; Wernicke, Tim; Schimpke, Tilman; Strassburg, Martin

    2016-06-01

    We investigate the influence of inhomogeneous broadening on the optical polarization properties of high-inclination semipolar and nonpolar InxGa1 -xN /GaN quantum wells. Different planar m-plane and (20 2 ¯1 ¯) samples were grown (including core-shell microrods) and have been characterized by excitation-dependent polarization-resolved confocal micro-photoluminescence. The measured degree of linear polarization (DLP) is compared to theoretical predictions obtained by Fermi-Dirac statistical filling of the electronic band structure calculated by the k .p envelope function method. We show that our measured DLP at room temperature, as well as values reported by other groups, are systematically higher than the theoretical predictions. We propose to solve this discrepancy between theory and experiment by introducing inhomogeneous broadening in our calculations. Considering indium content fluctuations and the localization lengths of electrons and holes, different effective broadenings are applied to different subsets of subbands. We thereby show that inhomogeneous broadening leads to an increase of the DLP at room temperature. Furthermore, the dependence of the optical properties on the excitation density is better reproduced. Looking at the DLP as a function of the temperature gives us insight into the thermalization dynamics of charge carriers.

  3. Pressure Broadening of Several Terahertz Transitions of Water from 20K to 200K

    NASA Astrophysics Data System (ADS)

    Dick, Michael J.; Drouin, Brian J.; Pearson, John C.

    2009-06-01

    The pressure broadening of the 0_{00} to 1_{11}, 1_{11} to 2_{02}, 3_{03} to 3_{12}, 2_{21} to 3_{12} and 3_{12} to 3_{21} transitions of water by hydrogen and helium has been investigated using the collisional cooling technique. This technique has allowed the broadening to be examined over the temperature range of 20K to 200K, far below the freezing point of water. The results of the investigation show a general trend of two distinct regions of broadening for each rotational line. Above 50K, the temperature dependence of the broadening follows the expected power law behavior. Below 50K, the broadening decreases very rapidly with temperature. This behavior is similar to that observed in a recent study of the pressure broadening of the 556 GHz line of water completed in our lab. However, this behavior is in sharp contrast to that predicted by previous theoretical calculations. We will present the results of our current investigation. This will include a discussion comparing the current study with the results of the previous experimental and theoretical work. The pressure broadening is a window into the collisional excitation and the implications of our results for the interpretation of water spectra in the interstellar medium will be discussed.

  4. Isotopic Differences in CO Air Broadening and Shift Parameters

    NASA Astrophysics Data System (ADS)

    Smith, Mary-Ann H.; Malathy Devi, V.; Benner, D. Chris; Mantz, A. W.; Sung, K.; Brown, L. R.

    2012-10-01

    Line shape parameters were measured in the 2-0 bands at 2.3 µm for the three most abundant isotopologues of carbon monoxide at temperatures between 150 K and 298 K and total pressures up to 0.9 atm. These parameters include the Lorentz half-width coefficients with their temperature dependence exponents; pressure-induced line shift coefficients with their temperature dependences, speed dependence parameters, and off-diagonal relaxation matrix elements. For this, we recorded more than 50 high resolution (0.005 cm-1) spectra of CO and two of its isotopologues (13CO and C18O) using a coolable absorption cell [1] in the sample compartment of the Bruker IFS 125HR Fourier transform spectrometer at Jet Propulsion Laboratory. Line parameters were retrieved by broad-band constrained multispectrum least-squares fitting [2] of 16 or more spectra simultaneously. The individual line positions and intensities were constrained to their theoretical relationships in order to obtain the rovibrational (G, B, D, and H) and band intensity parameters, including Herman-Wallis coefficients, as has been done for CO2 previously [3]. Differences between the air-broadening results for the 12C16O band [4] and the 13C16O and 12C18O 2-0 bands [5] are examined. This research is supported by NASA’s Earth Science Atmospheric Composition Laboratory Research Program. Part of the research at the Jet Propulsion Laboratory, California Institute of Technology, the College of William and Mary, and Connecticut College was performed under contracts and grants with the National Aeronautics and Space Administration. 1. K. Sung et al., J. Mol. pectrosc. 262 (2010) 122. 2. D. C. Benner et al., J. Quant. Spectrosc. Radiat. Transfer 53 (1995) 705. 3. V. Malathy Devi et al., J. Mol. Spectrosc. 242 (2007) 90. 4. V. Malathy Devi et al., J. Quant. Spectrosc. Radiat. Transfer 113 (2012) 1013. 5. V. Malathy Devi et al., J. Mol. Spectrosc. 276-277 (2012) 33.

  5. Doppler Broadening Calculations of Compton Scattering for Molecules, Plastics, Tissues, and Few Biological Materials in the X-Ray Region: An Analysis in Terms of Compton Broadening and Geometrical Energy Broadening

    NASA Astrophysics Data System (ADS)

    Rao, D. V.; Cesareo, R.; Brunetti, A.; Gigante, G. E.; Akatsuka, T.; Takeda, T.; Itai, Y.

    2004-09-01

    Relativistic and nonrelativistic Compton profile cross sections for H, C, N, O, P, and Ca and for a few important biological materials such as water, polyethylene, lucite, polystyrene, nylon, polycarbonate, bakelite, fat, bone and calcium hydroxyapatite are estimated for a number of Kα x-ray energies and for 59.54 keV (Am-241) γ photons. Energy broadening and geometrical broadening (ΔG) is estimated by assuming θmin and θmax are symmetrically situated around θ=90°. FWHM of J(PZ) and FWHM of Compton energy broadening are evaluated at various incident photon energies. These values are estimated around the centroid of the Compton profile with an energy interval of 0.1 and 1.0 keV for 59.54 keV photons. Total Compton, individual shell, and Compton energy-absorption scattering cross sections are evaluated in the energy region from 0.005 to 0.5 MeV. It is an attempt to know the effect of Doppler broadening for single atoms, many of which constitute the biological materials.

  6. Proposal Writing.

    ERIC Educational Resources Information Center

    Grant, Andrew; And Others

    1988-01-01

    The basics of effective proposal writing, from content to structure to length, are presented in three articles: "Knowledge Is Power" (Andrew Grant, Emily S. Berkowitz), "Write on the Money" (Lucy Knight); and "The Problem Proposal." (MLW)

  7. Gain and Raman line-broadening with graphene coated diamond-shape nano-antennas.

    PubMed

    Paraskevaidis, Charilaos; Kuykendall, Tevye; Melli, Mauro; Weber-Bargioni, Alexander; Schuck, P James; Schwartzberg, Adam; Dhuey, Scott; Cabrini, Stefano; Grebel, Haim

    2015-10-01

    Using Surface Enhanced Raman Scattering (SERS), we report on intensity-dependent broadening in graphene-deposited broad-band antennas. The antenna gain curve includes both the incident frequency and some of the scattered mode frequencies. By comparing antennas with various gaps and types (bow-tie vs. diamond-shape antennas) we make the case that the line broadening did not originate from strain, thermal or surface potential. Strain, if present, further shifts and broadens those Raman lines that are included within the antenna gain curve. PMID:26332298

  8. Role of collisional broadening in Monte Carlo simulations of terahertz quantum cascade lasers

    SciTech Connect

    Matyas, Alpar; Lugli, Paolo; Jirauschek, Christian

    2013-01-07

    Using a generalized version of Fermi's golden rule, collisional broadening is self-consistently implemented into ensemble Monte Carlo carrier transport simulations, and its effect on the transport and optical properties of terahertz quantum cascade lasers is investigated. The inclusion of broadening yields improved agreement with the experiment, without a significant increase of the numerical load. Specifically, this effect is crucial for a correct modeling at low biases. In the lasing regime, broadening can lead to significantly reduced optical gain and output power, affecting the obtained current-voltage characteristics.

  9. Broadening the trans-contextual model of motivation: A study with Spanish adolescents.

    PubMed

    González-Cutre, D; Sicilia, Á; Beas-Jiménez, M; Hagger, M S

    2014-08-01

    The original trans-contextual model of motivation proposed that autonomy support from teachers develops students' autonomous motivation in physical education (PE), and that autonomous motivation is transferred from PE contexts to physical activity leisure-time contexts, and predicts attitudes, perceived behavioral control and subjective norms, and forming intentions to participate in future physical activity behavior. The purpose of this study was to test an extended trans-contextual model of motivation including autonomy support from peers and parents and basic psychological needs in a Spanish sample. School students (n = 400) aged between 12 and 18 years completed measures of perceived autonomy support from three sources, autonomous motivation and constructs from the theory of planned behavior at three different points in time and in two contexts, PE and leisure-time. A path analysis controlling for past physical activity behavior supported the main postulates of the model. Autonomous motivation in a PE context predicted autonomous motivation in a leisure-time physical activity context, perceived autonomy support from teachers predicted satisfaction of basic psychological needs in PE, and perceived autonomy support from peers and parents predicted need satisfaction in leisure-time. This study provides a cross-cultural replication of the trans-contextual model of motivation and broadens it to encompass basic psychological needs. PMID:24256054

  10. Using a Transdisciplinary Interpretive Lens to Broaden Reflections on Alleviating Poverty and Promoting Decent Work.

    PubMed

    Di Fabio, Annamaria; Maree, Jacobus G

    2016-01-01

    This article aims to broaden current reflections on definitions of decent work and poverty using a transdisciplinary interpretive lens comprising philosophical, juridical, economic, sociological, and psychological understandings. We (the authors) undertook an adapted systematic qualitative review to gather data on different perspectives on decent work and poverty. The article summarizes and compares reflections on the two constructs and proposes an enhancement of the current definition of decent work. The aim is to facilitate the identification and development of new research and intervention projects that can be implemented to promote fair and sustainable economic development, the provision of decent work, and the reduction of poverty globally. We believe that challenges should be dealt with pro-actively rather than reactively and that intervening at the level of primary prevention should lie at the heart of any strategy to promote decent work and alleviate poverty. Radical intervention is needed to ensure that future generations not only survive but develop, grow, and express themselves meaningfully through decent work. PMID:27148115

  11. Using a Transdisciplinary Interpretive Lens to Broaden Reflections on Alleviating Poverty and Promoting Decent Work

    PubMed Central

    Di Fabio, Annamaria; Maree, Jacobus G.

    2016-01-01

    This article aims to broaden current reflections on definitions of decent work and poverty using a transdisciplinary interpretive lens comprising philosophical, juridical, economic, sociological, and psychological understandings. We (the authors) undertook an adapted systematic qualitative review to gather data on different perspectives on decent work and poverty. The article summarizes and compares reflections on the two constructs and proposes an enhancement of the current definition of decent work. The aim is to facilitate the identification and development of new research and intervention projects that can be implemented to promote fair and sustainable economic development, the provision of decent work, and the reduction of poverty globally. We believe that challenges should be dealt with pro-actively rather than reactively and that intervening at the level of primary prevention should lie at the heart of any strategy to promote decent work and alleviate poverty. Radical intervention is needed to ensure that future generations not only survive but develop, grow, and express themselves meaningfully through decent work PMID:27148115

  12. Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores

    PubMed Central

    Gruener, Simon; Sadjadi, Zeinab; Hermes, Helen E.; Kityk, Andriy V.; Knorr, Klaus; Egelhaaf, Stefan U.; Rieger, Heiko; Huber, Patrick

    2012-01-01

    During spontaneous imbibition, a wetting liquid is drawn into a porous medium by capillary forces. In systems with comparable pore length and diameter, such as paper and sand, the front of the propagating liquid forms a continuous interface. Sections of this interface advance in a highly correlated manner due to an effective surface tension, which restricts front broadening. Here we investigate water imbibition in a nanoporous glass (Vycor) in which the pores are much longer than they are wide. In this case, no continuous liquid–vapor interface with coalesced menisci can form. Anomalously fast imbibition front roughening is experimentally observed by neutron imaging. We propose a theoretical pore-network model, whose structural details are adapted to the microscopic pore structure of Vycor glass and show that it displays the same large-scale roughening characteristics as observed in the experiment. The model predicts that menisci movements are uncorrelated, indicating that despite the connectivity of the network the smoothening effect of surface tension on the imbibition front roughening is negligible. These results suggest a new universality class of imbibition behavior, which is expected to occur in any matrix with elongated, interconnected pores of random radii. PMID:22689951

  13. DYNC2LI1 mutations broaden the clinical spectrum of dynein-2 defects

    PubMed Central

    Kessler, Kristin; Wunderlich, Ina; Uebe, Steffen; Falk, Nathalie S.; Gießl, Andreas; Helmut Brandstätter, Johann; Popp, Bernt; Klinger, Patricia; Ekici, Arif B.; Sticht, Heinrich; Dörr, Helmuth-Günther; Reis, André; Roepman, Ronald; Seemanová, Eva; Thiel, Christian T.

    2015-01-01

    Skeletal ciliopathies are a heterogeneous group of autosomal recessive osteochondrodysplasias caused by defects in formation, maintenance and function of the primary cilium. Mutations in the underlying genes affect the molecular motors, intraflagellar transport complexes (IFT), or the basal body. The more severe phenotypes are caused by defects of genes of the dynein-2 complex, where mutations in DYNC2H1, WDR34 and WDR60 have been identified. In a patient with a Jeune-like phenotype we performed exome sequencing and identified compound heterozygous missense and nonsense mutations in DYNC2LI1 segregating with the phenotype. DYNC2LI1 is ubiquitously expressed and interacts with DYNC2H1 to form the dynein-2 complex important for retrograde IFT. Using DYNC2LI1 siRNA knockdown in fibroblasts we identified a significantly reduced cilia length proposed to affect cilia function. In addition, depletion of DYNC2LI1 induced altered cilia morphology with broadened ciliary tips and accumulation of IFT-B complex proteins in accordance with retrograde IFT defects. Our results expand the clinical spectrum of ciliopathies caused by defects of the dynein-2 complex. PMID:26130459

  14. Measurement Of Magnetic Fields In Magnetized Plasmas Using Zeeman Broadening Diagnostics

    NASA Astrophysics Data System (ADS)

    Haque, Showera; Wallace, Matthew S.; Neill, Paul; Presura, Radu

    2015-11-01

    The Zeeman effect has been used to measure the magnetic field in high energy density plasmas. The measurements are difficult in this regime because the line broadening due to the high plasma density and temperature surpasses the Zeeman splitting. Using an idea proposed by Tessarin et al. (2011), we have measured the field in magnetized laser plasmas and the magnetized precursor of wire array z-pinches. Time-gated spectra with one-dimensional space-resolution were obtained at the Nevada Terawatt Facility for laser plasmas created by 20 J, 1 ns Leopard laser pulses, and expanding in the azimuthal magnetic field produced by the 0.6 MA Zebra pulsed power generator, and for wire array plasmas driven by the 1 MA configuration of the Zebra generator. We explore the response of the Al III 4s 2S1/2- 4p 2P1 / 2 , 3 / 2 doublet components and the C IV 3s 2S1/2- 3p 2P1 / 2 , 3 / 2 doublet components to the external magnetic field spatially along the plasma. In these measurements the Zeeman splitting was not resolved, but the magnetic field strength was measured from the difference between the widths of the line profiles. This work was supported by the DOE/OFES grant DE-SC0008829 and DOE/NNSA contract DE-FC52-06NA27616.

  15. Magnetic Field Measurement in Magnetized Laser Plasmas Using Zeeman Broadening Diagnostics

    NASA Astrophysics Data System (ADS)

    Haque, S.; Wallace, M. S.; Arias, A.; Morita, T.; Plechaty, C.; Huntington, C.; Martinez, D.; Ross, S. J.; Park, H.-S.; Presura, R.

    2013-10-01

    The Zeeman effect has been used to measure the magnetic field in high energy density plasmas. The measurements are difficult when the field orientation is fluctuating in the plasma volume or when the line broadening due to the high plasma density and temperature surpasses the Zeeman splitting. Based on an idea proposed by Tessarin et al. (2011), we implemented a solution to this problem to the field measurement in magnetized laser plasmas. High resolution spectra were obtained at the Nevada Terawatt Facility for plasmas created by 20 J, 400 fs Leopard laser pulses in the azimuthal magnetic field produced by the 0.6 MA Zebra pulsed power generator. The components of the Al III 3s 2S1/2 - 3p 2P1 / 2 , 3 / 2 were recorded with space resolution along the direction normal to the target, which coincided with the magnetic field radius. In several shots, the spectra were time gated for 10 ns at different values of the magnetic field. In these measurements the Zeeman splitting was not resolved, but the magnetic field strength can be measured from the difference between the widths of the line profiles. This work was supported by the DOE/OFES grant DE-SC0008829 and DOE/NNSA contract DE-FC52-06NA27616.

  16. Experimental and Theoretical Studies of Pressure Broadened Alkali-Metal Atom Resonance Lines

    NASA Technical Reports Server (NTRS)

    Shindo, F.; Zhu, C.; Kirby, K.; Babb, J. F.

    2006-01-01

    We are carrying out a joint theoretical and experimental research program to study the broadening of alkali atom resonance lines due to collisions with helium and molecular hydrogen for applications to spectroscopic studies of brown dwarfs and extrasolar giant planets.

  17. Buffer-gas-induced shift and broadening of hyperfine resonances in alkali-metal vapors

    NASA Astrophysics Data System (ADS)

    Oreto, P. J.; Jau, Y.-Y.; Post, A. B.; Kuzma, N. N.; Happer, W.

    2004-04-01

    We review the shift and broadening of hyperfine resonance lines of alkali-metal atoms in buffer gases. We present a simple theory both for the shift and the broadening induced by He gas. The theory is parametrized by the scattering length of slow electrons on He atoms and by the measured hyperfine intervals and binding energies of the S states of alkali-metal atoms. The calculated shifts and their temperature dependence are in good agreement with the published experimental data. The calculated broadening is 1.6 times smaller than the recent measurements, and more than 20 times smaller than the earlier measurements. We attribute much of the linewidth in the earlier experiments to possible small temperature gradients and the resulting inhomogeneous line broadening from the temperature dependence of hyperfine frequency shift at constant buffer-gas pressure.

  18. Progress with On-The-Fly Neutron Doppler Broadening in MCNP

    SciTech Connect

    Brown, Forrest B.; Martin, William R.; Yesilyurt, Gokhan; Wilderman, Scott

    2012-06-18

    The University of Michigan, ANL, and LANL have been collaborating on a US-DOE-NE University Programs project 'Implementation of On-the-Fly Doppler Broadening in MCNP5 for Multiphysics Simulation of Nuclear Reactors.' This talk describes the project and provides results from the initial implementation of On-The-Fly Doppler broadening (OTF) in MCNP and testing. The OTF methodology involves high precision fitting of Doppler broadened cross-sections over a wide temperature range (the target for reactor calculations is 250-3200K). The temperature dependent fits are then used within MCNP during the neutron transport, for OTF broadening based on cell temperatures. It is straightforward to extend this capability to cover any temperature range of interest, allowing the Monte Carlo simulation to account for a continuous distribution of temperature ranges throughout the problem geometry.

  19. Exciton dynamics in atomically thin MoS2: Interexcitonic interaction and broadening kinetics

    NASA Astrophysics Data System (ADS)

    Sim, Sangwan; Park, Jusang; Song, Jeong-Gyu; In, Chihun; Lee, Yun-Shik; Kim, Hyungjun; Choi, Hyunyong

    2013-08-01

    We report ultrafast pump-probe spectroscopy examining exciton dynamics in atomically thin MoS2. Spectrally and temporally resolved measurements are performed to investigate the interaction dynamics of two important direct-gap excitons (A and B) and their associated broadening kinetics. The two excitons show strongly correlated interexcitonic dynamic, in which the transient blue-shifted excitonic absorption originates from the internal A-B excitonic interaction. The observed complex spectral response is determined by the exciton collision-induced linewidth broadening; the broadening of the B-exciton linewidth in turn lowers the peak spectral amplitude of the A exciton. Resonant excitation at the B-exciton energy reveals that interexcitonic scattering plays a more important role in determining the broadening kinetics than free-carrier scattering.

  20. A universal equation for computing the beam broadening of incident electrons in thin films.

    PubMed

    Gauvin, Raynald; Rudinsky, Samantha

    2016-08-01

    A universal equation for computing the beam broadening of incident electrons in thin films is presented. This equation is based on the concepts of anomalous diffusion with the Hurst exponent H. When the thickness to elastic mean free path ratio, t/λ, is greater than 1, the Hurst exponent goes to 0.5 and this random walk behavior leads to the Goldstein et al. [1] beam broadening equation when non-relativistic screened Rutherford elastic cross-sections are used. When t/λ≪1, the lack of elastic collisions for the electron trajectories gives an H exponent of 1 and a different beam broadening equation is obtained. A general equation to compute the beam broadening that takes into account the variation of H with t/λ is presented and this equation was fitted and validated with Monte Carlo simulations of electron trajectories in thin films. PMID:27161415

  1. Broadening the U.S. alfalfa germplasm base

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over 4000 alfalfa (Medicago sativa L.) plant introductions (PIs) exist in the USDA-ARS National Plant Germplasm System (NPGS). NAAIC has discussed/proposed pre-breeding efforts to utilize this germplasm for creating pre-commercial alfalfa germplasm. Funding constraints have been one impediment to th...

  2. Water absorption lines, 931-961 nm - Selected intensities, N2-collision-broadening coefficients, self-broadening coefficients, and pressure shifts in air

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Gentry, B.; Schwemmer, G.; Wilkerson, T. D.

    1982-01-01

    Intensities were measured for 97 lines of H2O vapor between 932 and 961 nm. The lines were selected for their potential usefulness for remote laser measurements of H2O vapor in the earth's atmosphere. The spectra were obtained with several different H2O vapor abundances and N2 broadening gas pressures; the spectral resolution was 0.046/cm FWHM. Measured H2O line intensities range from 7 x 10 to the -25th to 7 x 10 to the -22nd/cm per (molecules/sq cm). H2O self-broadening coefficients were measured for 13 of these strongest lines; the mean value was 0.5/cm per atm. N2-collision-broadening coefficients were measured for 73 lines, and the average was 0.11 cm per atm HWHM. Pressure shifts in air were determined for a sample of six lines between 948 and 950 nm; these lines shift to lower frequency by an amount comparable to 0.1 of the collision-broadened widths measured in air or N2. The measured intensities of many lines of 300-000 band are much larger than expected from prior computations, in some cases by over an order of magnitude. Coriolis interactions with the stronger 201-000 band appear to be the primary cause of the enhancement of these line intensities.

  3. Stark broadening corrections to laser-induced fluorescence temperature measurements in a hydrogen arcjet plume.

    PubMed

    Storm, P V; Cappelli, M A

    1996-08-20

    Laser-induced fluorescence of the H(α) transition of atomic hydrogen has previously been performed in the plume of a hydrogen arcjet thruster. Measurements of plasma velocity and temperature, based on the Doppler shift and broadening of the H(α) line shape, were previously published [Appl. Opt. 32, 6117 (1993)]. In that paper the Stark broadening of the H(α) transition was estimated from static-ion calculations performed in the early 1970's and found to be negligible in comparison with the Doppler broadening. However, more recent dynamic-ion calculations have shown the Stark broadening to be considerably larger than was previously assumed, resulting in inaccurate temperature measurements. We present a reanalysis of the fluorescence data, taking into account the improved Stark broadening calculations. The correct atomic hydrogen translation temperature and electron number density are obtained from the Doppler and Stark broadening components of the measured line shape. The results indicate a substantial drop in temperature from those previously reported. PMID:21102917

  4. Photon storage in {lambda}-type optically dense atomic media. III. Effects of inhomogeneous broadening

    SciTech Connect

    Gorshkov, Alexey V.; Andre, Axel; Lukin, Mikhail D.; Soerensen, Anders S.

    2007-09-15

    In a recent paper [Gorshkov et al., Phys. Rev. Lett. 98, 123601 (2007)] and in the two preceding papers [Gorshkov et al., this issue, Phys. Rev. A 76, 033804 (2006); 76, 033805 (2006)], we used a universal physical picture to optimize and demonstrate equivalence between a wide range of techniques for storage and retrieval of photon wave packets in homogeneously broadened {lambda}-type atomic media, including the adiabatic reduction of the photon group velocity, pulse-propagation control via off-resonant Raman techniques, and photon-echo-based techniques. In the present paper, we generalize this treatment to include inhomogeneous broadening. In particular, we consider the case of Doppler-broadened atoms and assume that there is a negligible difference between the Doppler shifts of the two optical transitions. In this situation, we show that, at high enough optical depth, all atoms contribute coherently to the storage process as if the medium were homogeneously broadened. We also discuss the effects of inhomogeneous broadening in solid state samples. In this context, we discuss the advantages and limitations of reversing the inhomogeneous broadening during the storage time, as well as suggest a way for achieving high efficiencies with a nonreversible inhomogeneous profile.

  5. Non-symmetric broadening of the reflection notch in polymer stabilized cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Natarajan, Lalgudi V.; Voss, Jimmy R.; Tondiglia, Vincent P.; Yang, Deng-Ke; White, Timothy J.; Bunning, Timothy J.

    2010-08-01

    Non-symmetric broadening (to the blue side) of a cholesteric reflection notch was observed when a cell containing diacrylate and monoacrylate nematic LC monomers, a chiral dopant, nematic LC and a photoinitiator was exposed to very low intensity (microwatts) of 335 nm UV light. At very low intensity, the polymerization rate is very slow and takes a long time to complete as observed by real-time monitoring experiments. The polymerized scaffold templates the original liquid crystal helical structure. The 335 nm light is highly absorbed by the system which generates an intensity gradient throughout the thickness of the cell. This gradient produces a free radical density gradient in the later stage of the polymerization when diffusion is slowed by the growing polymer network. Since more monomer is consumed at the front half of the cell, a counter diffusion of chiral dopant towards the cell backside is observed. This leads to a local increase in the HTP causing a local blue shift of the notch wavelength. The net result observed in transmission is a broadening of the reflection bandwidth from 70 nm to 200 nm where the broadening occurs only to the blue side of the original notch. By varying the intensity of the UV source on one side of the substrate, the broadening magnitude could be controlled. Simultaneous UV illumination from both sides of the cell reduced the broadening considerably. The broadened notch was switchable at high electrical field (20V/μm).

  6. An In-situ method for the study of strain broadening usingsynchrotronx-ray diffraction

    SciTech Connect

    Tang, Chiu C.; Lynch, Peter A.; Cheary, Robert W.; Clark, Simon M.

    2006-12-15

    A tensonometer for stretching metal foils has beenconstructed for the study of strain broadening in x-ray diffraction lineprofiles. This device, which is designed for use on the powderdiffractometer in Station 2.3 at Daresbury Laboratory, allows in-situmeasurements to be performed on samples under stress. It can be used fordata collection in either transmission or reflection modes using eithersymmetric or asymmetric diffraction geometries. As a test case,measurements were carried out on a 18mum thick copper foil experiencingstrain levels of up to 5 percent using both symmetric reflection andsymmetric transmission diffraction. All the diffraction profilesdisplayed peak broadening and asymmetry which increased with strain. Themeasured profiles were analysed by the fundamental parameters approachusing the TOPAS peak fitting software. All the observed broadenedprofiles were modelled by convoluting a refineable diffraction profile,representing the dislocation and crystallite size broadening, with afixed instrumental profile pre-determined usinghigh quality LaB6reference powder. The de-convolution process yielded "pure" sampleintegral breadths and asymmetry results which displayed a strongdependence on applied strain and increased almost linearly with appliedstrain. Assuming crystallite size broadening in combination withdislocation broadening arising from fcc a/2<110>111 dislocations,we have extracted the variation of mechanic al property with strain. Theobservation of both peak asymmetry and broadening has been interpreted asa manifestation of a cellular structure with cell walls and cellinteriors possessing high and low dislocation densities.

  7. Gain and Raman line-broadening with graphene coated diamond-shape nano-antennas

    NASA Astrophysics Data System (ADS)

    Paraskevaidis, Charilaos; Kuykendall, Tevye; Melli, Mauro; Weber-Bargioni, Alexander; Schuck, P. James; Schwartzberg, Adam; Dhuey, Scott; Cabrini, Stefano; Grebel, Haim

    2015-09-01

    Using Surface Enhanced Raman Scattering (SERS), we report on intensity-dependent broadening in graphene-deposited broad-band antennas. The antenna gain curve includes both the incident frequency and some of the scattered mode frequencies. By comparing antennas with various gaps and types (bow-tie vs. diamond-shape antennas) we make the case that the line broadening did not originate from strain, thermal or surface potential. Strain, if present, further shifts and broadens those Raman lines that are included within the antenna gain curve.Using Surface Enhanced Raman Scattering (SERS), we report on intensity-dependent broadening in graphene-deposited broad-band antennas. The antenna gain curve includes both the incident frequency and some of the scattered mode frequencies. By comparing antennas with various gaps and types (bow-tie vs. diamond-shape antennas) we make the case that the line broadening did not originate from strain, thermal or surface potential. Strain, if present, further shifts and broadens those Raman lines that are included within the antenna gain curve. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03893f

  8. Design of suitable carrier buffer for free-flow zone electrophoresis by charge-to-mass ratio and band broadening analysis.

    PubMed

    Kong, Fan-Zhi; Yang, Ying; He, Yu-Chen; Zhang, Qiang; Li, Guo-Qing; Fan, Liu-Yin; Xiao, Hua; Li, Shan; Cao, Cheng-Xi

    2016-09-01

    In this work, charge-to-mass ratio (C/M) and band broadening analyses were combined to provide better guidance for the design of free-flow zone electrophoresis carrier buffer (CB). First, the C/M analyses of hemoglobin and C-phycocyanin (C-PC) under different pH were performed by CLC Protein Workbench software. Second, band dispersion due to the initial bandwidth, diffusion, and hydrodynamic broadening were discussed, respectively. Based on the analyses of the C/M and band broadening, a better guidance for preparation of free-flow zone electrophoresis CB was obtained. Series of experiments were performed to validate the proposed method. The experimental data showed high accordance with our prediction allowing the CB to be prepared easily with our proposed method. To further evaluate this method, C-PC was purified from crude extracts of Spirulina platensis with the selected separation condition. Results showed that C-PC was well separated from other phycobiliproteins that have similar physicochemical properties, and analytical grade product with purity up to 4.5 (A620/A280) was obtained. PMID:27465345

  9. Broadening the Cloaking Bandwidth with Non-Foster Metasurfaces

    NASA Astrophysics Data System (ADS)

    Chen, Pai-Yen; Argyropoulos, Christos; Alù, Andrea

    2013-12-01

    We introduce the concept and practical design of broadband, ultrathin cloaks based on non-Foster, negatively capacitive metasurfaces. By using properly tailored, active frequency-selective screens conformal to an object, within the realm of a practical realization, we show that it is possible to drastically reduce the scattering over a wide frequency range in the microwave regime, orders of magnitude broader than any available passive cloaking technology. The proposed active cloak may impact not only invisibility and camouflaging, but also practical antenna and sensing applications.

  10. Broadening the cloaking bandwidth with non-Foster metasurfaces.

    PubMed

    Chen, Pai-Yen; Argyropoulos, Christos; Alù, Andrea

    2013-12-01

    We introduce the concept and practical design of broadband, ultrathin cloaks based on non-Foster, negatively capacitive metasurfaces. By using properly tailored, active frequency-selective screens conformal to an object, within the realm of a practical realization, we show that it is possible to drastically reduce the scattering over a wide frequency range in the microwave regime, orders of magnitude broader than any available passive cloaking technology. The proposed active cloak may impact not only invisibility and camouflaging, but also practical antenna and sensing applications. PMID:24476265

  11. CRYSIZ: a program for computing crystallite size and strain from the broadening of powder diffraction lines

    SciTech Connect

    Hubbard, C.R.; Morosin, B.; Stewart, J.M.

    1996-09-01

    The program CRYSIZ is designed to take the powder diffraction line profiles for a well-crystallized sample, called a reference pattern, and for a sample of the same substance, called a broadened pattern, to produce measures of the mean crystallite size, the distribution of crystallite sizes, and the root mean square residual microstrain in the broadened sample. The data required are the two powder patterns and a series of directives to signal the calculations and plots to be done during the execution of the program. The program loads files containing the background corrected powder diffraction intensity data for both the reference and broadened patterns. Preliminary calculations find the centroids, full width at half maximums, integral breadths, spans over sum, and second moments. Two methods of deconvoluting the profile to calculate size and strain are allowed. Either the direct or the Stokes Fourier coefficient method of deconvolution may be chosen. In the direct method the profiles are extracted by numerical fitting. This method is slower but produces unfolded profiles free of ringing and the ``hook effect``. In this case the Fourier coefficients required for Warren-Averbach analysis are produced from the deconvoluted profile. In the Stokes method the diffraction pattern of each reference and broadened profile is Fourier transformed to produce a set of Fourier coefficients. The Fourier coefficients of the broadened profiles are divided by those of the reference pattern. The resulting coefficients are the Stokes coefficients. The Stokes coefficients are smoothed by a least- squares procedure in order to remove noise and quell ringing and hooking, then used as input to a reverse Fourier transform. This transform produces an ``unfolded powder line,`` which is a best estimate of the broadened profile with the reference profile and noise removed. The deconvolution of the reference profile gives a broadened profile due only to the crystallite size and strain.

  12. A broad-standard technique for correcting for band broadening in size-exclusion chromatography.

    PubMed

    Zhang, Peng; Mazoyer, Paul; Gilbert, Robert G

    2016-04-22

    Band broadening in size-exclusion chromatography (SEC) is always present to some extent. Broadening effects on averages such as the weight- and number average molecular weights (MW¯ and Mn¯ respectively) are minimal with modern SEC systems. However, broadening distorts the shape of the true molecular weight distribution (MWD), which causes problems if one wants to compare the detailed form of the MWD to a model. An addition to current methods for overcoming this problem is presented. One starts with a sufficiently wide range of samples whose exact values of Mn¯ andMW¯ have been measured by non-SEC methods (e.g. by fluorimetry and light scattering, respectively, of the sample without size separation). A true (unbroadened) molecular weight distribution for a sample can be obtained by deconvolution (here using a maximum-entropy algorithm) by fitting SEC data for these samples to these exact Mn¯ and MW¯ values to find the values of the parameters in a sufficiently flexible assumed broadening function. This was modelled using simulated band broadening and subsequent deconvolution, with the broadening parameters least-squares fitted to the "exact" sets of values of Mn¯ and MW¯. The results show that if these Mn¯ and MW¯ values are for a series of broad (not narrow) standards covering a sufficient range of molecular weight, then after deconvolution, a good representation of the original molecular weight distribution used in the simulation is obtained. The method should prove useful for water-soluble polymers, for which it is often difficult to obtain narrow standards of a wide range of molecular weight, as required in a number of well-established methods for correcting for band broadening. PMID:27016112

  13. Effect of pressure broadening on molecular absorption cross sections in exoplanetary atmospheres

    NASA Astrophysics Data System (ADS)

    Hedges, Christina; Madhusudhan, Nikku

    2016-05-01

    Spectroscopic observations of exoplanets are leading to unprecedented constraints on their atmospheric compositions. However, molecular abundances derived from spectra are degenerate with the absorption cross-sections which form critical input data in atmospheric models. Therefore, it is important to quantify the uncertainties in molecular cross-sections to reliably estimate the uncertainties in derived molecular abundances. However, converting line lists into cross-sections via line broadening involves a series of prescriptions for which the uncertainties are not well understood. We investigate and quantify the effects of various factors involved in line broadening in exoplanetary atmospheres - the profile evaluation width, pressure versus thermal broadening, broadening agent, spectral resolution and completeness of broadening parameters - on molecular absorption cross-sections. We use H2O as a case study as it has the most complete absorption line data. For low-resolution spectra (R ≲ 100) for representative temperatures and pressures (T ˜ 500-3000 K, P ≲ 1 atm) of H2-rich exoplanetary atmospheres, we find the median difference in cross-sections (δ) introduced by various aspects of pressure broadening to be ≲1 per cent. For medium resolutions (R ≲ 5000), including those attainable with James Webb Space Telescope, we find that δ can be up to 40 per cent. For high resolutions (R ˜ 105), δ can be ≳100 per cent, reaching ≳1000 per cent for low temperatures (T ≲ 500 K) and high pressures (P ≳ 1 atm). The effect is higher still for self-broadening. We generate a homogeneous data base of absorption cross-sections of molecules of relevance to exoplanetary atmospheres for which high-temperature line lists are available, particularly H2O, CO, CH4, CO2, HCN, and NH3.

  14. Effect of Surface Adsorption on Temporal and Spatial Broadening in Micro Free Flow Electrophoresis.

    PubMed

    Geiger, Matthew; Harstad, Rachel K; Bowser, Michael T

    2015-12-01

    Analyte adsorption onto surfaces presents a challenge for many separations, often becoming a significant source of peak broadening and asymmetry. We have shown that surface adsorption has no effect on peak position or spatial broadening in micro free flow electrophoresis (μFFE) separations. Surface adsorption does affect the time it takes an analyte to travel through the μFFE separation channel and therefore contributes to temporal broadening. These results were confirmed using μFFE separations of fluorescein, rhodamine 110, and rhodamine 123 in a low ionic strength buffer to promote surface adsorption. Peak widths and asymmetries were measured in both the temporal and spatial dimensions. Under these conditions rhodamine 123 exhibited significant interactions with the separation channel surface, causing increased peak broadening and asymmetry in the temporal dimension. Broadening or asymmetry in the spatial dimension was not significantly different than that of fluorescein, which did not interact with the capillary surface. The effect of strong surface interactions was assessed using μFFE separations of Chromeo P503 labeled myoglobin and cytochrome c. Myoglobin and cytochrome c were well resolved and gave rise to symmetrical peaks in the spatial dimension even under conditions where permanent adsorption onto the separation channel surface occurred. PMID:26496470

  15. Program Proposal

    ERIC Educational Resources Information Center

    Baskas, Richard S.

    2012-01-01

    A study was conducted to determine if a deficiency, or learning gap, existed in a particular working environment. To determine if an assessment was to be conducted, a program proposal would need to be developed to explore this situation. In order for a particular environment to react and grow with other environments, it must be able to take on…

  16. He-broadening and shift coefficients of water vapor lines in infrared spectral region

    NASA Astrophysics Data System (ADS)

    Petrova, T. M.; Solodov, A. M.; Solodov, A. A.; Deichuli, V. M.; Starikov, V. I.

    2015-11-01

    The water vapor line broadening and shift coefficients in the ν1+ν2, ν2+ν3, ν1+ν3, 2ν3, 2ν1, 2ν2+ν3, and ν1+2ν2 vibrational bands induced by helium pressure were measured using a Bruker IFS 125HR spectrometer. The vibrational bands 2ν3 and ν1+2ν2 were investigated for the first time. The interaction potential used in the calculations of broadening and shift coefficients was chosen as the sum of pair potentials, which were modeled by the Lennard-Jones (6-12) potentials. The vibrational and rotational contributions to this potential were obtained by use of the intermolecular potential parameters and intramolecular parameters of H2O molecule. The calculated values of the broadening and shift coefficients were compared with the experimental data.

  17. Measurements of H2O broadening coefficients of infrared methane lines

    NASA Astrophysics Data System (ADS)

    Delahaye, T.; Landsheere, X.; Pangui, E.; Huet, F.; Hartmann, J.-M.; Tran, H.

    2016-04-01

    H2O-broadening and shifting coefficients of 76 ro-vibrational transitions of methane in the mid-and near-infrared regions were measured for the first time. For this, eight spectra of methane diluted in water vapor were recorded with a high resolution Fourier Transform spectrometer for pressures ranging from 20 to 80 Torr and at 323 and 367 K. Line broadening and shifting coefficients were retrieved from the measured spectra through fits using Voigt profiles. Values at room temperature (296 K) were then deduced and compared with those of dry air. The results show that H2O-broadenings of methane lines are, on average, 34% larger than those for dry air.

  18. Spectral broadening in lithium niobate in a self-diffraction geometry using ultrashort pulses

    NASA Astrophysics Data System (ADS)

    Dharmadhikari, Jayashree A.; Dota, Krithika; Mathur, Deepak; Dharmadhikari, Aditya K.

    2016-05-01

    We report on broadband light generation in the impulsive regime in an un-doped lithium niobate (LiNbO3) crystal by two femtosecond laser pulses (36 fs) from a Ti-sapphire laser amplifier. We systematically investigate the role of incident intensity on spectral broadening. At relatively low incident intensity (0.7 TW cm-2), spectral broadening in the transmitted beam occurs due to the combined effect of self-phase modulation and cross-phase modulation. At higher incident intensity (10.2 TW cm-2), we observe generation of as many as 21 anti-Stokes orders due to coherent anti-Stokes Raman scattering in self-diffraction geometry. Moreover, we observe order-dependent spectral broadening of anti-Stokes lines that may be attributed to the competition with other nonlinear optical effects like cross-phase modulation.

  19. Spectral line shapes of self-broadened P-branch transitions of oxygen B band

    NASA Astrophysics Data System (ADS)

    Wójtewicz, S.; Cygan, A.; Masłowski, P.; Domysławska, J.; Lisak, D.; Trawiński, R. S.; Ciuryło, R.

    2014-09-01

    We used the Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectrometer assisted by the optical frequency comb for systematic line-shape study of self-broadened P-branch transitions of the O216B band [b1Σg+(v=1)←X3Σg-(v=0)]. In the line-shape analysis we take into account the line-narrowing effects described by Dicke narrowing or the speed dependence of collisional broadening. The relation between the parameters describing Dicke narrowing with the use of the soft- and hard-collision models is discussed and verified experimentally in the low pressure regime using the multispectrum fitting technique. We report line positions with uncertainties of about 170 kHz, the collisional broadening coefficients with 0.45% uncertainties, and line intensities with 0.5% uncertainties. We compare these results to data available in the literature.

  20. Speed-dependent effects and Dicke narrowing in nitrogen-broadened oxygen

    NASA Astrophysics Data System (ADS)

    Wójtewicz, S.; Masłowski, P.; Cygan, A.; Wcisło, P.; Zaborowski, M.; Piwiński, M.; Ciuryło, R.; Lisak, D.

    2015-11-01

    We present the line-shape analysis of the nitrogen-broadened P9 P9 oxygen B-band transition measured by the optical frequency comb-assisted Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectrometer. Perturbation by both oxygen and nitrogen molecules is taken into account simultaneously in the line-shape analysis. Several line-shape models describing physical effects such as Dicke narrowing, the speed dependence of collisional broadening and shifting, and the correlation between velocity- and phase-changing collisions were used in the analysis. The comparison between the hypergeometric and quadratic approximations of the speed-dependent effects is presented. Observed line narrowing is mostly determined by the speed dependence of the collisional broadening.

  1. Influence of Rayleigh-Doppler broadening on the selection of H2O dial system parameters

    NASA Technical Reports Server (NTRS)

    Ismail, S.; Browell, E. V.

    1986-01-01

    Computer simulations have enabled the performance of a H2O Differential Absorption Lidar (DIAL) system to be studied by spectrally analyzing the forward propagating and backscattered laser energy. The simulations were done for a high altitude (21 km) DIAL system operating in a nadir-viewing mode. The influence of Rayleigh Doppler broadening on DIAL measurement accuracies were evaluated and show that the Rayleigh broadening influence, which can be corrected to first order in regions free of large aerosol gradients, reduces the sensitivity of DIAL H2O measurement errors in the upper tropospheric region. The ability to correct the Rayleigh broadening and the selection of H2O DIAL parameters when all the systematic effects are combined, were discussed.

  2. Extraction of inhomogeneous broadening and nonradiative losses in InAs quantum-dot lasers

    SciTech Connect

    Chow, Weng W.; Liu, Alan Y.; Gossard, Arthur C.; Bowers, John E.

    2015-10-26

    We present a method to quantify inhomogeneous broadening and nonradiative losses in quantum dot lasers by comparing the gain and spontaneous emission results of a microscopic laser theory with measurements made on 1.3 μm InAs quantum-dot lasers. Calculated spontaneous-emission spectra are first matched to those measured experimentally to determine the inhomogeneous broadening in the experimental samples. This is possible because treatment of carrier scattering at the level of quantum kinetic equations provides the homogeneously broadened spectra without use of free parameters, such as the dephasing rate. We then extract the nonradiative recombination current associated with the quantum-dot active region from a comparison of measured and calculated gain versus current relations.

  3. The No Vibrational Fundamental Band: Temperature Dependence of N2-Broadening Coefficients

    NASA Technical Reports Server (NTRS)

    Spencer, M. N.; Chackerian, C., Jr.; Giver, L. P.; Brown, L. R.; Strawa, Anthony W. (Technical Monitor)

    1995-01-01

    Rovibrational spectra of the vibrational fundamental of nitric oxide have been recorded under N2-broadening conditions at 0.0056 cm(exp-1) resolution using the Solar McMath FTS at the Kitt Peak National Observatory. The temperature range for the experiments was 296 K to 183 K. The 30 cm absorption cell used for the measurements is cooled with a helium compressor and can operate at temperatures down to 60 K; vibration isolation of the cell allows its use with high performance Fourier Transform Spectrometers. From these spectra, N2-broadened line widths have been determined thru m = 16.5. Qualitative as well as quantitative discrepancies are observed between our experimental determinations of the temperature dependence of the broadening and theoretical calculations.

  4. Positive emotions broaden the scope of attention and thought-action repertoires

    PubMed Central

    Fredrickson, Barbara L.; Branigan, Christine

    2011-01-01

    The broaden-and-build theory (Fredrickson, 1998, 2001) hypothesises that positive emotions broaden the scope of attention and thought-action repertoires. Two experiments with 104 college students tested these hypotheses. In each, participants viewed a film that elicited (a) amusement, (b) contentment, (c) neutrality, (d) anger, or (e) anxiety. Scope of attention was assessed using a global-local visual processing task (Experiment 1) and thought-action repertoires were assessed using a Twenty Statements Test (Experiment 2). Compared to a neutral state, positive emotions broadened the scope of attention in Experiment 1 and thought-action repertoires in Experiment 2. In Experiment 2, negative emotions, relative to a neutral state, narrowed thought-action repertoires. Implications for promoting emotional well-being and physical health are discussed. PMID:21852891

  5. Foreign-gas-broadening effects in the 15-micron CO2 bands.

    NASA Technical Reports Server (NTRS)

    Reichle, H. G., Jr.; Young, C.

    1972-01-01

    The effects of N2, O2, Ar, and He on the absorption of radiation by the 15-micron perpendicular CO2 bands are reported. The investigation was carried out at medium resolution and at gas pressures less than 1 atm. The results of the study are presented in the form of a band-averaged broadening coefficient for N2, band-averaged broadening factors for O2, Ar, and He, and wavelength dependent broadening coefficients for N2, O2, Ar, and He. Comparisons are made with other experimental and theoretical results. In addition transmittances were calculated for homogeneous paths using some of the molecular parameters determined in the study and compared with measured transmittances.

  6. A meta-analysis of the magnetic line broadening in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Asensio Ramos, A.

    2014-03-01

    A multiline Bayesian analysis of the Zeeman broadening in the solar atmosphere is presented. A hierarchical probabilistic model, based on the simple but realistic Milne-Eddington approximation to the solution of the radiative transfer equation is used to explain the data in the optical and near infrared. Our method makes use of the full line profiles of more than 500 spectral lines from 4000 Å to 1.8 μm. Although the problem suffers from a strong degeneracy between the magnetic broadening and any other remaining broadening mechanism, the hierarchical model allows the magnetic contribution to be isolated with reliability. We obtain the cumulative distribution function for the field strength and use it to put reliable upper limits on the unresolved magnetic field strength in the solar atmosphere. The field is below 160-180 G with a 90% probability.

  7. Size Interplay between Polymer and Nanopores for the Band Broadening of SEC

    NASA Astrophysics Data System (ADS)

    Weiss, Ian; Ryu, Chang Yeol; Chang, Taihyun

    2012-02-01

    The size interplay between polymer chains and nanopores plays a key role in governing the retention time of polymer chains in liquid chromatography. These nanopores also contribute to the band broadening of the resulting peaks seen in most liquid chromatography systems including size exclusion chromatography (SEC). We have studied how the relationship between the size of the nanopores and the hydrodynamic radius of the polymers affects the band broadening during SEC. This related to Brown random motion of polymer chains in solution, whose motions are restricted by the presence of nanoporous stationary phase for the SEC. We have prepared model polystyrene samples with extremely narrow polydispersity (PDI < 1.0001) using temperature gradient interaction chromatography. Those model samples allow us to directly measure the band broadening of SEC using different size pore columns at various solvent conditions.

  8. Inhomogeneous broadening of electronic transitions in a liquid helium bubble: The role of shape fluctuations

    NASA Astrophysics Data System (ADS)

    Lerner, P. B.; Chadwick, M. B.; Sokolov, I. M.

    1993-02-01

    Recent experiments of Grimes et al. [ Phys. Rev. B 41, 6366 (1990)] and Parshin et al. [ JETP, 74, 68 (1992)] demonstrate a substatial broadening in the 1 s-1 p transition of a single electron trapped in a liquid helium bubble (“bubblonium”) compared to theoretical predictions based on natural radiative linewidth. We show that the larger observed linewidth can be explained by inhomogeneus broadening due to quantum quadrupole fluctuations in the bubble shape. A simple adiabaticity rule for the bubblonium transitions similar to the Franck-Condon principle for molecular transitions is established. Quantitative estimates of the additional inhomogeneous linewidth at T=0 and 2.2 K are provided. The full theoretical linewidth, due to inhomogeneous and homogeneous broadening, has a Voigt-profile shape, and accounts for the data reasonably well.

  9. Modal dispersion, pulse broadening and maximum transmission rate in GRIN optical fibers encompass a central dip in the core index profile

    NASA Astrophysics Data System (ADS)

    El-Diasty, Fouad; El-Hennawi, H. A.; El-Ghandoor, H.; Soliman, Mona A.

    2013-12-01

    Intermodal and intramodal dispersions signify one of the problems in graded-index multi-mode optical fibers (GRIN) used for LAN communication systems and for sensing applications. A central index dip (depression) in the profile of core refractive-index may occur due to the CVD fabrication processes. The index dip may also be intentionally designed to broaden the fundamental mode field profile toward a plateau-like distribution, which have advantages for fiber-source connections, fiber amplifiers and self-imaging applications. Effect of core central index dip on the propagation parameters of GRIN fiber, such as intermodal dispersion, intramodal dispersion and root-mean-square broadening, is investigated. The conventional methods usually study optical signal propagation in optical fiber in terms of mode characteristics and the number of modes, but in this work multiple-beam Fizeau interferometry is proposed as an inductive but alternative methodology to afford a radial approach to determine dispersion, pulse broadening and maximum transmission rate in GRIN optical fiber having a central index dip.

  10. Broadening our approaches to studying dispersal in raptors

    USGS Publications Warehouse

    Morrison, J.L.; Wood, P.B.

    2009-01-01

    Dispersal is a behavioral process having consequences for individual fitness and population dynamics. Recent advances in technology have spawned new theoretical examinations and empirical studies of the dispersal process in birds, providing opportunities for examining how this information may be applied to studies of the dispersal process in raptors. Many raptors are the focus of conservation efforts; thus, reliable data on all aspects of a species' population dynamics, including dispersal distances, movement rates, and mortality rates of dispersers, are required for population viability analyses that are increasingly used to inform management. Here, we address emerging issues and novel approaches used in the study of avian dispersal, and provide suggestions to consider when developing and implementing studies of dispersal in raptors. Clarifying study objectives is essential for selection of an appropriate methodology and sample size needed to obtain accurate estimates of movement distances and rates. Identifying an appropriate study-area size will allow investigators to avoid underestimating population connectivity and important population parameters. Because nomadic individuals of some species use temporary settling areas or home ranges before breeding, identification of these areas is critical for conservation efforts focusing on habitats other than breeding sites. Study designs for investigating raptor dispersal also should include analysis of environmental and social factors influencing dispersal, to improve our understanding of condition-dependent dispersal strategies. Finally, we propose a terminology for use in describing the variety of movements associated with dispersal behavior in raptors, and we suggest this terminology could be used consistently to facilitate comparisons among studies. ?? 2009 The Raptor Research Foundation, Inc.

  11. Nitrogen-broadened lineshapes in the oxygen A-band: Experimental results and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Predoi-Cross, Adriana; Holladay, Christopher; Heung, Henry; Bouanich, Jean-Pierre; Mellau, Georg Ch.; Keller, Reimund; Hurtmans, Daniel R.

    2008-09-01

    We report measurements for N 2-broadening, pressure-shift and line mixing coefficients for 55 oxygen transitions in the A-band retrieved using a multispectrum fitting technique. Nineteen laboratory absorption spectra were recorded at 0.02 cm -1 resolution using a multi-pass absorption cell with path length of 1636.9 cm and the IFS 120 Fourier transform spectrometer located at Justus-Liebig-University in Giessen, Germany. The total sample pressures ranged from 8.8 to 3004.5 Torr with oxygen volume mixing ratios in nitrogen ranging between 0.057 and 0.62. An Exponential Power Gap (EPG) scaling law was used to calculate the N 2-broadening and N 2-line mixing coefficients. The line broadening and shift coefficients for the A-band of oxygen self-perturbed and perturbed by N 2 are modeled using semiclassical calculations based on the Robert-Bonamy formalism and two intermolecular potentials. These potentials involve electrostatic contributions including the hexadecapole moment of the molecules and (a) a simple dispersion contribution with one adjustable parameter to fit the broadening coefficients or (b) the atom-atom Lennard-Jones model without such adjustable parameters. The first potential leads to very weak broadening coefficients for high J transitions whereas the second potential gives much more improved results at medium and large J values, in reasonable agreement with the experimental data. For the line shifts which mainly arise in our calculation from the electronic state dependence of the isotropic potential, their general trends with increasing J values can be well predicted, especially from the first potential. From the theoretical results, we have derived air-broadening and air-induced shift coefficients with an agreement comparable to that obtained for O 2-O 2 and O 2-N 2.

  12. Experimental Air-Broadened Line Parameters in the nu2 Band of CH3D

    NASA Technical Reports Server (NTRS)

    Cross, Adriana Predoi; Brawley-Tremblay, Shannon; Povey, Chad; Smith, Mary Ann H.

    2007-01-01

    In this study we report the first experimental measurements of air-broadening and air-induced pressure-shift coefficients for approximately 378 transitions in the nu2 fundamental band of CH3D. These results were obtained from analysis of 17 room temperature laboratory absorption spectra recorded at 0.0056 cm(exp -1) resolution using the McMath-Pierce Fourier transform spectrometer located on Kitt Peak, Arizona. Three absorption cells with path lengths of 10.2, 25 and 150 cm were used to record the spectra. The total sample pressures ranged from 0.129x10(exp -2) to 52.855x10(exp -2) atm with CH3D volume mixing ratios of approximately 0.0109 in air. The spectra were analyzed using a multispectrum non-linear least-squares fitting technique. We report measurements for air pressure-broadening coefficients for transitions with quantum numbers as high as J" = 20 and K = 15, where K" = K' equivalent to K (for a parallel band). The measured air broadening coefficients range from 0.0205 to 0.0835 cm(exp -1) atm(exp -1) at 296 K. All the measured pressure-shift coefficients are negative and are found to vary from about -0.0005 to -0.0080 cm(exp -1) atm(exp -1) at the temperature of the spectra. We have examined the dependence of the measured broadening and shift parameters on the J" and K quantum numbers and also developed empirical expressions to describe the broadening coefficients in terms of m (m = -J", J" and J" + 1 in the (sup Q)P- (sup Q)Q-, and (sup Q)R-branch, respectively) and K. On average, the empirical expressions reproduce the measured broadening coefficients to within 4.4%.

  13. N2-broadening coefficients of methyl chloride: Measurements at room temperature and calculations at atmospheric temperatures

    NASA Astrophysics Data System (ADS)

    Barbouchi Ramchani, A.; Jacquemart, D.; Dhib, M.; Aroui, H.

    2014-11-01

    Infrared spectroscopic study on methyl chloride is the first step for its accurate detection in the atmosphere. In our previous work [Barbouchi Ramchani et al. J Quant Spectrosc Radiat Transfer 2013;120:1-15], line positions, intensities and self-broadening coefficients of both 12CH335Cl and 12CH337Cl isotopologues have been studied in the 6.9 μm spectral region. The present work is focused on measurements of N2-broadening coefficients for transitions of 12CH335Cl and 12CH337Cl around 6.9 μm. For that, high-resolution Fourier transform spectra of CH3Cl-N2 mixtures have been recorded at room temperature using a rapid scan Bruker IFS 120 HR interferometer at LADIR. The N2-broadening coefficients have been retrieved using a Voigt profile and a multispectrum fitting procedure. The average accuracy of the N2-broadening obtained in this work has been estimated to be between 5% and 10% depending on the transitions. The rotational J- and K-dependences of the N2-broadening coefficients have been clearly observed and modeled using empirical polynomial expansions. The 12CH335Cl-N2 line-widths of the ν5 band have also been computed using a semi-classical approach for the PR, RR and QR sub-branches. A global comparison with the experimental data from this work but also existing in the literature was then performed. Similar J- and K-rotational dependences have been observed while no clear evidence of any vibrational or isotopic dependence has been pointed out. Finally, performing theoretical calculations of the N2-broadening coefficients at various temperatures of atmospheric interest between 200 and 296 K allowed deducing the temperature exponent of the 12CH335Cl-N2 line-widths.

  14. GEANT4 simulation of the effects of Doppler energy broadening in Compton imaging.

    PubMed

    Uche, C Z; Cree, M J; Round, W H

    2011-09-01

    A Monte Carlo approach was used to study the effects of Doppler energy broadening on Compton camera performance. The GEANT4 simulation toolkit was used to model the radiation transport and interactions with matter in a simulated Compton camera. The low energy electromagnetic physics model of GEANT4 incorporating Doppler broadening developed by Longo et al. was used in the simulations. The camera had a 9 × 9 cm scatterer and a 10 × 10 cm absorber with a scatterer to-absorber separation of 5 cm. Modelling was done such that only the effects of Doppler broadening were taken into consideration and effects of scatterer and absorber thickness and pixelation were not taken into account, thus a 'perfect' Compton camera was assumed. Scatterer materials were either silicon or germanium and the absorber material was cadmium zinc telluride. Simulations were done for point sources 10 cm in front of the scatterer. The results of the simulations validated the use of the low energy model of GEANT4. As expected, Doppler broadening was found to degrade the Compton camera imaging resolution. For a 140.5 keV source the resulting full-width-at-half-maximum (FWHM) of the point source image without accounting for Doppler broadening and using a silicon scatterer was 0.58 mm. This degraded to 7.1 mm when Doppler broadening was introduced and degraded further to 12.3 mm when a germanium scatterer was used instead of silicon. But for a 511 keV source, the FWHM was better than for a 140 keV source. The FWHM improved to 2.4 mm for a silicon scatterer and 4.6 mm for a germanium scatterer. Our result for silicon at 140.5 keV is in very good agreement with that published by An et al. PMID:21556971

  15. Electromagnetically induced transparency in a five-level cascade system under Doppler broadening: an analytical approach

    NASA Astrophysics Data System (ADS)

    Khoa, Dinh Xuan; Van Trong, Pham; Van Doai, Le; Bang, Nguyen Huy

    2016-03-01

    We develop an analytical approach on electromagnetically induced transparency (EIT) in a Doppler broadened medium consisting of five-level cascade systems excited by a strong coupling and weak probe laser fields. In a weak field limit of the probe light, EIT spectrum is interpreted as functions of controllable parameters of the coupling light and temperature of the medium. The theoretical interpretation of EIT spectrum is applied to the case of 85Rb atoms and compared with available experimental observation. Such an analytical interpretation provides quantitative parameters to control properties of the Doppler broadened EIT medium, and it is useful to find related applications.

  16. Measurement of electron density by Stark broadening in an ablative pulsed plasma thruster

    SciTech Connect

    Liu Feng; Nie Zongfu; Xu Xu; Zhou Qianhong; Li Linsen; Liang Rongqing

    2008-09-15

    Electron density was measured by Stark broadening in an ablative pulsed plasma thruster. The asymmetrical deconvolution is used to obtain Stark broadening. The result shows that the electron density in the discharge channel is 2.534x10{sup 22} m{sup -3} when the discharge energy is 5 J and the measured electron temperature is 18 000 K, and it is in excellent agreement with other experimental and theoretical data. The electron density in the discharge channel increases very minimally with increasing discharge energy.

  17. Cooling of cesium atomic beam with light from spectrally broadened diode lasers

    NASA Astrophysics Data System (ADS)

    Chan, Yat; Bhaskar, Natarajan D.

    1995-12-01

    We have used spectrally broadened counterpropagating radiation from tunable diode lasers to cool an atomic beam of cesium. This produces a continuous beam of cold atoms. The injection current to the single-mode diode laser is modulated at 10 MHz, resulting in spectrally broadened light for atomic cooling and optical pumping. The atomic beam is probed with a weak single-mode laser. This is a simple and relatively inexpensive method for producing a continuous supply of cold atoms. Copyright (c) 1995 Optical Society of America

  18. Collisional Shift and Broadening of Iodine Spectral Lines in Air Near 543 nm

    NASA Technical Reports Server (NTRS)

    Fletcher, D. G.; McDaniel, J. C.

    1995-01-01

    The collisional processes that influence the absorption of monochromatic light by iodine in air have been investigated. Measurements were made in both a static cell and an underexpanded jet flow over the range of properties encountered in typical compressible-flow aerodynamic applications. Experimentally measured values of the collisional shift and broadening coefficients were 0.058 +/- 0.004 and 0.53 +/- 0.010 GHz K(exp 0.7)/torr, respectively. The measured shift value showed reasonable agreement with theoretical calculations based on Lindholm-Foley collisional theory for a simple dispersive potential. The measured collisional broadening showed less favorable agreement with the calculated value.

  19. Covariance Matrix of a Double-Differential Doppler-broadened Elastic Scattering Cross Section

    SciTech Connect

    Arbanas, Goran; Becker, B.; Dagan, R; Dunn, Michael E; Larson, Nancy M; Leal, Luiz C; Williams, Mark L

    2012-01-01

    Legendre moments of a double-differential Doppler-broadened elastic neutron scattering cross section on {sup 238}U are computed near the 6.67 eV resonance at temperature T = 10{sup 3} K up to angular order 14. A covariance matrix of these Legendre moments is computed as a functional of the covariance matrix of the elastic scattering cross section. A variance of double-differential Doppler-broadened elastic scattering cross section is computed from the covariance of Legendre moments.

  20. Acousto-optics bandwidth broadening in a Bragg cell based on arbitrary synthesized signal methods.

    PubMed

    Peled, Itay; Kaminsky, Ron; Kotler, Zvi

    2015-06-01

    In this work, we present the advantages of driving a multichannel acousto-optical deflector (AOD) with a digitally synthesized multifrequency RF signal. We demonstrate a significant bandwidth broadening of ∼40% by providing well-tuned phase control of the array transducers. Moreover, using a multifrequency, complex signal, we manage to suppress the harmonic deflections and return most of the spurious energy to the main beam. This method allows us to operate the AOD with more than an octave of bandwidth with negligible spurious energy going to the harmonic beams and a total bandwidth broadening of over 70%. PMID:26192666

  1. Pressure broadening of vibrational Raman lines in N2 at temperatures below 300 K

    NASA Technical Reports Server (NTRS)

    Herring, G. C.; South, B. W.

    1994-01-01

    Using quasi-cw stimulated Raman gain spectroscopy, the pressure broadening coefficients for the N2 vibrational Q-branch transitions have been measured over the temperature range 113-297 K for the rotational components J = 4, 6, 8, 10, and 12. The experimental results are fit to a simple power law to give an empirical formula for the temperature dependence of the pressure broadening over the 100-300 K range. These results are also compared to previously published scaling laws that are based on collision induced rotational transition rates.

  2. Experimental transition probabilities and Stark-broadening parameters of neutral and single ionized tin

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1979-01-01

    Strengths and Stark-effect widths of the Sn I and Sn II lines prominent between 3200 and 7900 A are measured with a spectroscopic shock tube. Absolute strengths of 17 ionic lines are obtained with estimated (22-50)% accuracy and conform to appropriate quantum-mechanical sum rules. Relative transition probabilities for nine prominent neutral tin lines, normalized to radiative-lifetime data, are compared with other experiments and theoretical predictions. Parameters for Stark-effect broadening are measured over a range of plasma electron densities. Broadening data (with accuracies of 15-35%) for one neutral and ten ionic lines of tin are compared to theoretical predictions.

  3. Atom localization in a Doppler broadened medium via two standing-wave fields

    NASA Astrophysics Data System (ADS)

    Abd-Elnabi, Somia; Osman, Kariman I.

    2016-01-01

    The atom localization has been achieved in a four-level V-type atomic system interacting with two classical unidirectional standing-wave fields and weak probe field in a Doppler broadened medium under several conditions at very low temperature. The precision of the atom localization is compared with the system in the presence and absence of the Doppler broadened medium. The influence of some parameters such as the amplitude, wave vectors and the phase shift of the standing-wave fields on the atom localization is studied and has been found to obtain various atom localization patterns with symmetric shape.

  4. Homogeneous and inhomogeneous sources of optical transition broadening in room temperature CdSe/ZnS nanocrystal quantum dots

    SciTech Connect

    Wolf, M.; Berezovsky, J.

    2014-10-06

    We perform photoluminescence excitation measurements on individual CdSe/ZnS nanocrystal quantum dots (NCQDs) at room temperature to study optical transition energies and broadening. The observed features in the spectra are identified and compared to calculated transition energies using an effective mass model. The observed broadening is attributed to phonon broadening, spectral diffusion, and size and shape inhomogeneity. The former two contribute to the broadening transitions in individual QDs, while the latter contributes to the QD-to-QD variation. We find that phonon broadening is often not the dominant contribution to transition line widths, even at room temperature, and that broadening does not necessarily increase with transition energy. This may be explained by differing magnitude of spectral diffusion for different quantum-confined states.

  5. Envelope broadening and scattering attenuation of a scalar wavelet in random media having power-law spectra

    NASA Astrophysics Data System (ADS)

    Sato, Haruo

    2016-01-01

    frequency independent, and scattering attenuation is weak. When the random medium power spectra have a small role-off, however, the envelope broadening is large and increases with frequency, and the scattering attenuation is strong and increases with frequency. The proposed synthesis of MS envelopes is fully analytic; therefore, it can be a theoretical basis for the evaluation of random heterogeneity of the earth medium from the analysis of seismogram envelopes.

  6. Line intensities and collisional-broadening parameters for the nu4 and nu6 bands of carbonyl fluoride

    NASA Technical Reports Server (NTRS)

    May, Randy D.

    1992-01-01

    Line intensities, air- and self-broadening parameters have been measured for selected lines in the nu4 (1243/cm) and nu6 (774/cm) bands of carbonyl fluoride at 296 and 215 K using a tunable diode-laser spectrometer. Measured line intensities are in good agreement +/- 6 percent with recently reported values derived from rotational analyses of the nu4 and nu6 bands. The measured average air-broadening coefficient at 296 K also agrees well (+/- 5 percent) with N2-broadening coefficients determined from microwave studies, while the average self-broadening coefficient reported here is smaller than a previously reported value by 45 percent.

  7. Deconvolving instrumental and intrinsic broadening in core-shell x-ray spectroscopies

    SciTech Connect

    Fister, T. T.; Seidler, G. T.; Rehr, J. J.; Kas, J. J.; Nagle, K. P.; Elam, W. T.; Cross, J. O.

    2007-05-01

    Intrinsic and experimental mechanisms frequently lead to broadening of spectral features in core-shell spectroscopies. For example, intrinsic broadening occurs in x-ray absorption spectroscopy (XAS) measurements of heavy elements where the core-hole lifetime is very short. On the other hand, nonresonant x-ray Raman scattering (XRS) and other energy loss measurements are more limited by instrumental resolution. Here, we demonstrate that the Richardson-Lucy (RL) iterative algorithm provides a robust method for deconvolving instrumental and intrinsic resolutions from typical XAS and XRS data. For the K-edge XAS of Ag, we find nearly complete removal of {approx}9.3 eV full width at half maximum broadening from the combined effects of the short core-hole lifetime and instrumental resolution. We are also able to remove nearly all instrumental broadening in an XRS measurement of diamond, with the resulting improved spectrum comparing favorably with prior soft x-ray XAS measurements. We present a practical methodology for implementing the RL algorithm in these problems, emphasizing the importance of testing for stability of the deconvolution process against noise amplification, perturbations in the initial spectra, and uncertainties in the core-hole lifetime.

  8. Deconvolving instrumental and intrinsic broadening in core-shell x-ray spectroscopies

    NASA Astrophysics Data System (ADS)

    Fister, T. T.; Seidler, G. T.; Rehr, J. J.; Kas, J. J.; Elam, W. T.; Cross, J. O.; Nagle, K. P.

    2007-05-01

    Intrinsic and experimental mechanisms frequently lead to broadening of spectral features in core-shell spectroscopies. For example, intrinsic broadening occurs in x-ray absorption spectroscopy (XAS) measurements of heavy elements where the core-hole lifetime is very short. On the other hand, nonresonant x-ray Raman scattering (XRS) and other energy loss measurements are more limited by instrumental resolution. Here, we demonstrate that the Richardson-Lucy (RL) iterative algorithm provides a robust method for deconvolving instrumental and intrinsic resolutions from typical XAS and XRS data. For the K -edge XAS of Ag, we find nearly complete removal of ˜9.3eV full width at half maximum broadening from the combined effects of the short core-hole lifetime and instrumental resolution. We are also able to remove nearly all instrumental broadening in an XRS measurement of diamond, with the resulting improved spectrum comparing favorably with prior soft x-ray XAS measurements. We present a practical methodology for implementing the RL algorithm in these problems, emphasizing the importance of testing for stability of the deconvolution process against noise amplification, perturbations in the initial spectra, and uncertainties in the core-hole lifetime.

  9. Broadening Educational Outcomes: Social Relations, Skills Development, and Employability for Youth

    ERIC Educational Resources Information Center

    Dejaeghere, Joan; Wiger, Nancy Pellowski; Willemsen, Laura Wangsness

    2016-01-01

    This article argues that, if a global development aim is to address educational inequalities, the post-2015 agenda needs to conceptually and practically broaden the focus of learning to include social relations as important processes and outcomes for achieving educational equity. We draw on Sen's capability approach and Bourdieu's forms of capital…

  10. The origins of quantum interference and uncertainty broadening. A linear ribbon model approach

    SciTech Connect

    Tang, J.

    1996-02-01

    As an alternative to the orthodox Schroedinger wave mechanics or Heisenberg matrix mechanics approach, a simple linear ribbon model for quantum theory is presented. A different perspective and better physical insights into the origins of quantum interference and the mechanisms for uncertainty broadening are offered. Quantum interference in the atomic scale and superconducting behaviour in the macroscopic scale are compared.

  11. PULSE BROADENING MEASUREMENTS FROM THE GALACTIC CENTER PULSAR J1745-2900

    SciTech Connect

    Spitler, L. G.; Lee, K. J.; Eatough, R. P.; Kramer, M.; Karuppusamy, R.; Desvignes, G.; Champion, D. J.; Falcke, H.; Bassa, C. G.; Lyne, A. G.; Stappers, B. W.; Cognard, I.; Cordes, J. M.

    2014-01-01

    We present temporal scattering measurements of single pulses and average profiles of PSR J1745-2900, a magnetar recently discovered only 3 arcsec away from Sagittarius A* (Sgr A*), from 1.2 to 18.95 GHz using the Effelsberg 100 m Radio Telescope, the Nançay Decimetric Radio Telescope, and the Jodrell Bank Lovell Telescope. Single pulse analysis shows that the integrated pulse profile above 2 GHz is dominated by pulse jitter, while below 2 GHz the pulse profile shape is dominated by scattering. This is the first object in the Galactic center (GC) with both pulse broadening and angular broadening measurements. We measure a pulse broadening time scale at 1 GHz of τ{sub 1GHz} = 1.3 ± 0.2 and pulse broadening spectral index of α = –3.8 ± 0.2, which is several orders of magnitude lower than predicted by the NE2001 model (Cordes and Lazio 2002). If this scattering time scale is representative of the GC as a whole, then previous surveys should have detected many pulsars. The lack of detections implies either our understanding of scattering in the GC is incomplete or there are fewer pulsars in the GC than previously predicted. Given that magnetars are a rare class of radio pulsar, there are likely many canonical and millisecond pulsars in the GC, and not surprisingly, scattering in the GC is spatially complex.

  12. Attitudes and Motivation of Poor and Good Spellers: Broadening Planned Behavior Theory

    ERIC Educational Resources Information Center

    Sideridis, Georgios D.

    2005-01-01

    The purpose of the present study was to broaden planned behavior theory and examine its applicability to predict the academic achievement of students of low and high spelling ability. Two hundred fifty seven students, 54 low spellers and 203 high spellers from thirty elementary schools in northern Greece, participated in the study. Between groups…

  13. The No Vibrational Fundamental Band: Temperature Dependence of N2- Broadening Coefficients

    NASA Technical Reports Server (NTRS)

    Spencer, M. N.; Jr., C. Chackerian; Giver, L. P.; Brown, L. R.

    1995-01-01

    Rovibrational spectra of the vibrational fundamental of nitric oxide have been recorded under N2-broadening conditions using the Solar McMath FTS at the Kitt Peak National Observatory. The temperature range for the experiments was 296K to 183K. Qualitative as well as quantitative discrepancies are observed between these experimental determinations of the temperature dependence.

  14. Improved electron collisional line broadening for low-temperature ions and neutrals in plasma modeling

    SciTech Connect

    Johns, H. M.; Kilcrease, D. P.; Colgan, J.; Judge, E. J.; Barefield II, J. E.; Wiens, R. C.; Clegg, S. M.

    2015-09-29

    In this study, electron collisional broadening of observed spectral lines depends on plasma electron temperature and density. Including this effect in models of measured spectra is necessary to determine plasma conditions; however, computational limits make accurate line broadening treatments difficult to implement in large-scale plasma modeling efforts. In this paper, we report on improvements to the treatment of electron collisional line broadening and illustrate this with calculations using the Los Alamos ATOMIC code. We implement the Dimitrijevic and Konjevic modified semi-empirical model Dimitrijevic and Konjevic (1986 Astron. and Astrophy. 163 297 and 1987 Astron. Astrophys. 172 345), which we amend by employing oscillator strengths from Hartree–Fock calculations. This line broadening model applies to near-neutral plasmas with electron temperatures of Te ~ 1 eV and electron densities of Ne ~1017 cm-3. We evaluate the D.K.-inspired model against the previous hydrogenic approach in ATOMIC through comparison to NIST-rated measurements for selected neutral and singly-ionized Ca, O, Fe, and Sn lines using both fine-structure and configuration-averaged oscillator strengths. The new D.K.-inspired model is significantly more accurate than the previous hydrogenic model and we find the use of configuration-averaged oscillator strengths a good approximation for applications such as LIBS (laser induced breakdown spectroscopy), for which we demonstrate the use of the D.K.-inspired model.

  15. Wideband nonlinear spectral broadening in ultra-short ultra - silicon rich nitride waveguides.

    PubMed

    Choi, Ju Won; Chen, George F R; Ng, D K T; Ooi, Kelvin J A; Tan, Dawn T H

    2016-01-01

    CMOS-compatible nonlinear optics platforms with high Kerr nonlinearity facilitate the generation of broadband spectra based on self-phase modulation. Our ultra - silicon rich nitride (USRN) platform is designed to have a large nonlinear refractive index and low nonlinear losses at 1.55 μm for the facilitation of wideband spectral broadening. We investigate the ultrafast spectral characteristics of USRN waveguides with 1-mm-length, which have high nonlinear parameters (γ ∼ 550 W(-1)/m) and anomalous dispersion at 1.55 μm wavelength of input light. USRN add-drop ring resonators broaden output spectra by a factor of 2 compared with the bandwidth of input fs laser with the highest quality factors of 11000 and 15000. Two - fold self phase modulation induced spectral broadening is observed using waveguides only 430 μm in length, whereas a quadrupling of the output bandwidth is observed with USRN waveguides with a 1-mm-length. A broadening factor of around 3 per 1 mm length is achieved in the USRN waveguides, a value which is comparatively larger than many other CMOS-compatible platforms. PMID:27272558

  16. PROBLEM DEPENDENT DOPPLER BROADENING OF CONTINUOUS ENERGY CROSS SECTIONS IN THE KENO MONTE CARLO COMPUTER CODE

    SciTech Connect

    Hart, S. W. D.; Maldonado, G. Ivan; Celik, Cihangir; Leal, Luiz C

    2014-01-01

    For many Monte Carlo codes cross sections are generally only created at a set of predetermined temperatures. This causes an increase in error as one moves further and further away from these temperatures in the Monte Carlo model. This paper discusses recent progress in the Scale Monte Carlo module KENO to create problem dependent, Doppler broadened, cross sections. Currently only broadening the 1D cross sections and probability tables is addressed. The approach uses a finite difference method to calculate the temperature dependent cross-sections for the 1D data, and a simple linear-logarithmic interpolation in the square root of temperature for the probability tables. Work is also ongoing to address broadening theS (alpha , beta) tables. With the current approach the temperature dependent cross sections are Doppler broadened before transport starts, and, for all but a few isotopes, the impact on cross section loading is negligible. Results can be compared with those obtained by using multigroup libraries, as KENO currently does interpolation on the multigroup cross sections to determine temperature dependent cross-sections. Current results compare favorably with these expected results.

  17. Wideband nonlinear spectral broadening in ultra-short ultra - silicon rich nitride waveguides

    PubMed Central

    Choi, Ju Won; Chen, George F. R.; Ng, D. K. T.; Ooi, Kelvin J. A.; Tan, Dawn T. H.

    2016-01-01

    CMOS-compatible nonlinear optics platforms with high Kerr nonlinearity facilitate the generation of broadband spectra based on self-phase modulation. Our ultra – silicon rich nitride (USRN) platform is designed to have a large nonlinear refractive index and low nonlinear losses at 1.55 μm for the facilitation of wideband spectral broadening. We investigate the ultrafast spectral characteristics of USRN waveguides with 1-mm-length, which have high nonlinear parameters (γ ∼ 550 W−1/m) and anomalous dispersion at 1.55 μm wavelength of input light. USRN add-drop ring resonators broaden output spectra by a factor of 2 compared with the bandwidth of input fs laser with the highest quality factors of 11000 and 15000. Two – fold self phase modulation induced spectral broadening is observed using waveguides only 430 μm in length, whereas a quadrupling of the output bandwidth is observed with USRN waveguides with a 1-mm-length. A broadening factor of around 3 per 1 mm length is achieved in the USRN waveguides, a value which is comparatively larger than many other CMOS-compatible platforms. PMID:27272558

  18. Pulse sequences for dynamical decoupling in an optical lattice broadened by temporal frequency drift

    NASA Astrophysics Data System (ADS)

    Paul, Christopher R.; Zhuang, Chao; Cruz, Luciano S.; Maneshi, Samansa; Steinberg, Aephraim M.

    2009-05-01

    Despite the very long internal coherence time, transverse drift through an inhomogeneously broadened lattice leads to a rapid decay of a pulse-echo signal. We use higher-order echoes, or dynamical decoupling, to probe and subsequently eliminate the effects of this drift. We study the optimal structure of these pulse sequences for simultaneously canceling out different orders of the effect.

  19. Improved electron collisional line broadening for low-temperature ions and neutrals in plasma modeling

    DOE PAGESBeta

    Johns, H. M.; Kilcrease, D. P.; Colgan, J.; Judge, E. J.; Barefield II, J. E.; Wiens, R. C.; Clegg, S. M.

    2015-09-29

    In this study, electron collisional broadening of observed spectral lines depends on plasma electron temperature and density. Including this effect in models of measured spectra is necessary to determine plasma conditions; however, computational limits make accurate line broadening treatments difficult to implement in large-scale plasma modeling efforts. In this paper, we report on improvements to the treatment of electron collisional line broadening and illustrate this with calculations using the Los Alamos ATOMIC code. We implement the Dimitrijevic and Konjevic modified semi-empirical model Dimitrijevic and Konjevic (1986 Astron. and Astrophy. 163 297 and 1987 Astron. Astrophys. 172 345), which we amendmore » by employing oscillator strengths from Hartree–Fock calculations. This line broadening model applies to near-neutral plasmas with electron temperatures of Te ~ 1 eV and electron densities of Ne ~1017 cm-3. We evaluate the D.K.-inspired model against the previous hydrogenic approach in ATOMIC through comparison to NIST-rated measurements for selected neutral and singly-ionized Ca, O, Fe, and Sn lines using both fine-structure and configuration-averaged oscillator strengths. The new D.K.-inspired model is significantly more accurate than the previous hydrogenic model and we find the use of configuration-averaged oscillator strengths a good approximation for applications such as LIBS (laser induced breakdown spectroscopy), for which we demonstrate the use of the D.K.-inspired model.« less

  20. Improving Enzyme Activity and Broadening Selectivity for Biological Desulfurization and Upgrading of Petroleum Feedstocks

    SciTech Connect

    Abhijeet P. Borole; Choo Y. Hamilton; Karen Miller; Brian Davison; Matthew Grossman; Robert Shong

    2003-05-12

    The objective of this project was to develop improved biocatalysts for desulfurization and upgrading of petroleum feedstocks. The goal was to improve the activity and broaden the selectivity of desulfurization enzymes using directed evolution as a tool as well as to explore the impact of ring-opening on biological desulfurization

  1. Community Colleges Broadening Horizons through Service Learning, 1997-2000. Project Brief.

    ERIC Educational Resources Information Center

    Robinson, Gail

    This project brief provides a summary of the Community Colleges Broadening Horizons through Service Learning project, supported by the Corporation for National Service and administered by the American Association of Community Colleges. The project was developed to increase the number, quality, and sustainability of service learning programs in…

  2. An Experiment to Demonstrate the Energy Broadening of Annihilation Gamma Rays

    ERIC Educational Resources Information Center

    Ouseph, P. J.; DuBard, James L.

    1978-01-01

    Shows that when positions annihilate in solid materials the energy distribution of the annihilation gamma rays is much broader than that of a 0.511-Mev gamma peak. This broadening is caused by the momentum distribution of the electrons in the material. (Author/GA)

  3. Wideband nonlinear spectral broadening in ultra-short ultra - silicon rich nitride waveguides

    NASA Astrophysics Data System (ADS)

    Choi, Ju Won; Chen, George F. R.; Ng, D. K. T.; Ooi, Kelvin J. A.; Tan, Dawn T. H.

    2016-06-01

    CMOS-compatible nonlinear optics platforms with high Kerr nonlinearity facilitate the generation of broadband spectra based on self-phase modulation. Our ultra – silicon rich nitride (USRN) platform is designed to have a large nonlinear refractive index and low nonlinear losses at 1.55 μm for the facilitation of wideband spectral broadening. We investigate the ultrafast spectral characteristics of USRN waveguides with 1-mm-length, which have high nonlinear parameters (γ ∼ 550 W‑1/m) and anomalous dispersion at 1.55 μm wavelength of input light. USRN add-drop ring resonators broaden output spectra by a factor of 2 compared with the bandwidth of input fs laser with the highest quality factors of 11000 and 15000. Two – fold self phase modulation induced spectral broadening is observed using waveguides only 430 μm in length, whereas a quadrupling of the output bandwidth is observed with USRN waveguides with a 1-mm-length. A broadening factor of around 3 per 1 mm length is achieved in the USRN waveguides, a value which is comparatively larger than many other CMOS-compatible platforms.

  4. Electromagnetically-induced-transparency intensity-correlation power broadening in a buffer gas

    NASA Astrophysics Data System (ADS)

    Zheng, Aojie; Green, Alaina; Crescimanno, Michael; O'Leary, Shannon

    2016-04-01

    Electromagnetically-induced-transparency (EIT) noise correlation spectroscopy holds promise as a simple, robust method for performing high-resolution spectroscopy used in optical magnetometry and clocks. Of relevance to these applications, we report on the role of buffer gas pressure and magnetic field gradients on power broadening of Zeeman-EIT noise correlation resonances.

  5. Three Response Types for Broadening the Conception of Mathematical Problem Solving in Computerized Tests.

    ERIC Educational Resources Information Center

    Bennett, Randy Elliot; Morley, Mary; Quardt, Dennis

    2000-01-01

    Describes three open-ended response types that could broaden the conception of mathematical problem solving used in computerized admissions tests: (1) mathematical expression (ME); (2) generating examples (GE); and (3) and graphical modeling (GM). Illustrates how combining ME, GE, and GM can form extended constructed response problems. (SLD)

  6. Observation of Doppler broadening in β -delayed proton-γ decay

    NASA Astrophysics Data System (ADS)

    Schwartz, S. B.; Wrede, C.; Bennett, M. B.; Liddick, S. N.; Pérez-Loureiro, D.; Bowe, A.; Chen, A. A.; Chipps, K. A.; Cooper, N.; Irvine, D.; McNeice, E.; Montes, F.; Naqvi, F.; Ortez, R.; Pain, S. D.; Pereira, J.; Prokop, C.; Quaglia, J.; Quinn, S. J.; Sakstrup, J.; Santia, M.; Shanab, S.; Simon, A.; Spyrou, A.; Thiagalingam, E.

    2015-09-01

    Background: The Doppler broadening of γ -ray peaks due to nuclear recoil from β -delayed nucleon emission can be used to measure the energies of the nucleons. This method has never been tested using β -delayed proton emission or applied to a recoil heavier than A =10 . Purpose: To test and apply this Doppler broadening method using γ -ray peaks from the 26P(β p γ )25Al decay sequence. Methods: A fast beam of 26P was implanted into a planar Ge detector, which was used as a 26P β -decay trigger. The SeGA array of high-purity Ge detectors was used to detect γ rays from the 26P(β p γ )25Al decay sequence. Results: Radiative Doppler broadening in β -delayed proton-γ decay was observed for the first time. The Doppler broadening analysis method was verified using the 1613-keV γ -ray line for which the proton energies were previously known. The 1776-keV γ ray de-exciting the 2720 keV 25Al level was observed in 26P(β p γ )25Al decay for the first time and used to determine that the center-of-mass energy of the proton emission feeding the 2720-keV level is 5.1 ±1.0 (stat.) ±0.6 (syst.) MeV, corresponding to a 26Si excitation energy of 13.3 ±1.0 (stat.) ±0.6 (syst.) MeV for the proton-emitting level. Conclusions: The Doppler broadening method has been demonstrated to provide practical measurements of the energies for β -delayed nucleon emissions populating excited states of nuclear recoils at least as heavy as A =25 .

  7. Broadening the Study of Participation in the Life Sciences: How Critical Theoretical and Mixed-Methodological Approaches Can Enhance Efforts to Broaden Participation

    PubMed Central

    Metcalf, Heather

    2016-01-01

    This research methods Essay details the usefulness of critical theoretical frameworks and critical mixed-methodological approaches for life sciences education research on broadening participation in the life sciences. First, I draw on multidisciplinary research to discuss critical theory and methodologies. Then, I demonstrate the benefits of these approaches for researchers who study diversity and inclusion issues in the life sciences through examples from two critical mixed-methods studies of prominent issues in science, technology, engineering, and mathematics (STEM) participation and recognition. The first study pairs critical discourse analysis of the STEM workforce literature, data, and underlying surveys with quantitative analyses of STEM pathways into the workforce. This example illustrates the necessity of questioning popular models of retention. It also demonstrates the importance of intersecting demographic categories to reveal patterns of experience both within and between groups whose access to and participation in STEM we aim to improve. The second study’s critical approach applies research on inequities in prizes awarded by STEM professional societies toward organizational change. This example uses data from the life sciences professional societies to show the importance of placing data within context to broaden participation and understand challenges in creating sustainable change. PMID:27521238

  8. Broadening the Study of Participation in the Life Sciences: How Critical Theoretical and Mixed-Methodological Approaches Can Enhance Efforts to Broaden Participation.

    PubMed

    Metcalf, Heather

    2016-01-01

    This research methods Essay details the usefulness of critical theoretical frameworks and critical mixed-methodological approaches for life sciences education research on broadening participation in the life sciences. First, I draw on multidisciplinary research to discuss critical theory and methodologies. Then, I demonstrate the benefits of these approaches for researchers who study diversity and inclusion issues in the life sciences through examples from two critical mixed-methods studies of prominent issues in science, technology, engineering, and mathematics (STEM) participation and recognition. The first study pairs critical discourse analysis of the STEM workforce literature, data, and underlying surveys with quantitative analyses of STEM pathways into the workforce. This example illustrates the necessity of questioning popular models of retention. It also demonstrates the importance of intersecting demographic categories to reveal patterns of experience both within and between groups whose access to and participation in STEM we aim to improve. The second study's critical approach applies research on inequities in prizes awarded by STEM professional societies toward organizational change. This example uses data from the life sciences professional societies to show the importance of placing data within context to broaden participation and understand challenges in creating sustainable change. PMID:27521238

  9. Direct measurements of collisional Raman line broadening in the S-branch transitions of acetylene (C2H2)

    NASA Astrophysics Data System (ADS)

    Hsu, Paul S.; Stauffer, Hans U.; Jiang, Naibo; Gord, James R.; Roy, Sukesh

    2013-10-01

    We report direct measurements of the self- and N2-broadened Raman S-branch linewidths of acetylene (C2H2), obtained by employing time-resolved picosecond rotational coherent anti-Stokes Raman scattering spectroscopy. Using broadband 115-ps pump and Stokes pulses (˜135 cm-1 bandwidth) and a spectrally narrowed 90-ps probe pulse (˜0.2 cm-1 bandwidth), Raman-coherence lifetimes are measured at room temperature for the S-branch (ΔJ = +2) transitions associated with rotational quantum number J = 3-25. These directly measured Raman-coherence lifetimes, when converted to collisional linewidth broadening coefficients, differ from the previously reported broadening coefficients extracted from theoretical calculations by 6%-35% for self-broadening for C2H2 and by up to 60% for N2-broadened C2H2.

  10. Broadening parameters of the H2O-He collisional system for astrophysical applications

    NASA Astrophysics Data System (ADS)

    Petrova, T. M.; Solodov, A. M.; Solodov, A. A.; Starikov, V. I.

    2016-03-01

    The water vapor line broadening γ and shift δ coefficients in the ν1 + ν2, ν2 + ν3, ν1 + ν3, 2ν3, 2ν1, 2ν2 + ν3, and ν1 + 2ν2 vibrational bands were obtained from the analysis of the H2O-He absorption spectra, recorded in the region from 5000 to 7500 cm-1 with the spectral resolution of 0.01 cm-1 using a Bruker IFS 125HR FTIR spectrometer. The vibrational bands 2ν3 and ν1 + 2ν2 were investigated for the first time. The calculations of γ and δ were performed in the framework of the semi-classical method. The rotational contributions as well as the contributions connected with the accidental resonances were taken into account in the used H2O-He interaction potential. The analytical representation of the broadening coefficients γ at planetary temperatures was introduced and discussed.