Sample records for ldl-scavenger receptor sites

  1. Expression of the macrophage scavenger receptor, a multifunctional lipoprotein receptor, in microglia associated with senile plaques in Alzheimer's disease.

    PubMed Central

    Christie, R. H.; Freeman, M.; Hyman, B. T.

    1996-01-01

    The macrophage scavenger receptor is a multifunctional receptor whose ligands include oxidized low density lipoprotein (LDL), as well as several other polyanionic macromolecules. Although the capacity of the receptor to bind modified LDL has implicated it in the process of atherosclerosis, its physiological role remains uncertain. We have examined human brain for expression of macrophage scavenger receptor as part of ongoing studies of lipoprotein receptors in the central nervous system. The receptor is expressed on microglia, but not on astrocytes, neurons, or vessel-associated structures. In Alzheimer disease, there is strong expression of the scavenger receptor in association with senile plaques. Images Figure 2 Figure 3 Figure 4 PMID:8579103

  2. The LDL receptor.

    PubMed

    Goldstein, Joseph L; Brown, Michael S

    2009-04-01

    In this article, the history of the LDL receptor is recounted by its codiscoverers. Their early work on the LDL receptor explained a genetic cause of heart attacks and led to new ways of thinking about cholesterol metabolism. The LDL receptor discovery also introduced three general concepts to cell biology: receptor-mediated endocytosis, receptor recycling, and feedback regulation of receptors. The latter concept provides the mechanism by which statins selectively lower plasma LDL, reducing heart attacks and prolonging life.

  3. FH Afrikaner-3 LDL receptor mutation results in defective LDL receptors and causes a mild form of familial hypercholesterolemia.

    PubMed

    Graadt van Roggen, J F; van der Westhuyzen, D R; Coetzee, G A; Marais, A D; Steyn, K; Langenhoven, E; Kotze, M J

    1995-06-01

    Three founder-related gene mutations (FH Afrikaner-1, -2, and -3) that affect the LDL receptor are responsible for 90% of the familial hypercholesterolemia (FH) in South African Afrikaners. Patients heterozygous for the FH Afrikaner-1 (FH1) mutation, which results in receptors having approximately 20% of normal receptor activity, have significantly lower plasma cholesterol levels and milder clinical symptoms than heterozygotes with the FH Afrikaner-2 mutation, which completely abolishes LDL receptor activity. In this study we re-created the FH3 mutation (Asp154-->Asn) in exon 4 by site-directed mutagenesis and analyzed the expression of the mutant receptors in Chinese hamster ovary cells. The mutation resulted in the formation of LDL receptors that are markedly defective in their ability to bind LDL, whereas binding of apoE-containing beta-VLDL is less affected. The mutant receptors are poorly expressed on the cell surface as a result of significant degradation of receptor precursors. The plasma cholesterol levels of 31 FH3 heterozygotes were similar to FH1 heterozygotes but significantly lower than FH2 heterozygotes. The FH1 and FH3 heterozygotes also tended to be less severely affected clinically (by coronary heart disease and xanthomata) than FH2 patients. This study demonstrates that mutational heterogeneity in the LDL receptor gene influences the phenotypic expression of heterozygous FH and that severity of expression correlates with the activity of the LDL receptor measured in vitro. The results further indicate that knowledge of the specific mutation underlying FH in heterozygotes is valuable in determining the potential risk of premature atherosclerosis and should influence the clinical management of FH patients.

  4. The Effect of a Shear Flow on the Uptake of LDL and Ac-LDL by Cultured Vascular Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Niwa, Koichi; Karino, Takeshi

    The effects of a shear flow on the uptake of fluorescence-labeled low-density lipoprotein (DiI-LDL), acetylated LDL (DiI-Ac-LDL), and lucifer yellow (LY; a tracer of fluid-phase endocytosis) by cultured bovine aortic ECs were studied using a rotating-disk shearing apparatus. It was found that 2hours’ exposure of ECs to a laminar shear flow that imposed ECs an area-mean shear stress of 10dynes/cm2 caused an increase in the uptake of DiI-LDL and LY. By contrast, the uptake of DiI-Ac-LDL was decreased by exposure of the ECs to a shear flow. Addition of dextran sulfate (DS), a competitive inhibitor of scavenger receptors, reversed the effect of a shear flow on the uptake of DiI-Ac-LDL, resulting in an increase by the imposition of a shear flow, while the uptake of DiI-LDL and LY remained unaffected. It was concluded that a shear flow promotes the endocytosis of DiI-LDL and LY by ECs, but suppresses the uptake of DiI-Ac-LDL by ECs by inhibiting scavenger receptor-mediated endocytosis.

  5. Blueberry diet protect against atherosclerosis in apoE-deficient mice by inhibiting scavenger receptor expression

    USDA-ARS?s Scientific Manuscript database

    Atherosclerosis is an inflammatory process that leads to the onset of cardiovascular disease. The scavenger receptor-mediated uptake of oxLDL by macrophages leads to foam cell formation, which is an initial event in the formation of atherosclerotic fatty streak lesions. In this report, the mechanism...

  6. Dietary fatty acids regulate hepatic low density lipoprotein (LDL) transport by altering LDL receptor protein and mRNA levels.

    PubMed Central

    Horton, J D; Cuthbert, J A; Spady, D K

    1993-01-01

    The concentration of LDL in plasma is strongly influenced by the amount and the type of lipid in the diet. Recent studies in the hamster have shown that dietary fatty acids differentially affect circulating LDL levels primarily by altering receptor-dependent LDL uptake in the liver. To investigate the mechanistic basis of this effect, rates of receptor-dependent LDL transport in the liver were correlated with LDL receptor protein and mRNA levels in hamsters fed safflower oil or coconut oil and varying amounts of cholesterol. Hepatic LDL receptor activity was significantly lower in animals fed coconut oil than in animals fed safflower oil at all levels of cholesterol intake (26, 53, and 61% lower at cholesterol intakes of 0, 0.06, and 0.12%, respectively). These fatty acid-induced changes in hepatic LDL receptor activity were accompanied by parallel changes in hepatic LDL receptor protein and mRNA levels, suggesting that dietary fatty acids regulate the LDL receptor pathway largely at the mRNA level. Images PMID:8349814

  7. Anti-atherosclerotic potential of gossypetin via inhibiting LDL oxidation and foam cell formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jing-Hsien; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan; Tsai, Chia-Wen

    Gossypetin, a flavone originally isolated from Hibiscus species, has been shown to possess antioxidant, antimicrobial, and antimutagenic activities. Here, we investigated the mechanism(s) underlying the anti-atherosclerotic potential of gossypetin. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) scavenging activity assay showed that the addition of > 50 μM of gossypetin could scavenge over 50% of DPPH radicals. The inhibitory effects of gossypetin on the lipid and protein oxidation of LDL were defined by thiobarbituric acid reactive substance (TBARS) assay, the relative electrophoretic mobility (REM) of oxidized LDL (ox-LDL), and fragmentation of apoB in the Cu{sup 2+}-induced oxidation of LDL. Gossypetin showed potential in reducing ox-LDL-induced foammore » cell formation and intracellular lipid accumulation, and uptake ability of macrophages under non-cytotoxic concentrations. Molecular data showed that these influences of gossypetin might be mediated via peroxisome proliferator-activated receptor α (PPARα)/liver-X receptor α (LXRα)/ATP-binding cassette transporter A1 (ABCA1) and PPARγ/scavenger receptor CD36 pathways, as demonstrated by the transfection of PPARα siRNA or PPARγ expression vector. Our data implied that gossypetin regulated the PPAR signals, which in turn led to stimulation of cholesterol removal from macrophages and delay atherosclerosis. These results suggested that gossypetin potentially could be developed as an anti-atherosclerotic agent. - Highlights: • The anti-atherosclerotic effect of gossypetin in vitro was examined. • Gossypetin inhibited LDL oxidation. • Gossypetin showed potential in reducing on the formation of foam cells. • Gossypetin functions against ox-LDL through PPARa activation and PPARγ depression.« less

  8. Upregulation of endothelial receptor for oxidized LDL (LOX-1) by oxidized LDL and implications in apoptosis of human coronary artery endothelial cells: evidence from use of antisense LOX-1 mRNA and chemical inhibitors.

    PubMed

    Li, D; Mehta, J L

    2000-04-01

    A specific lectin-like endothelial receptor for oxidized low density lipoprotein (LOX-1), distinct from the scavenger receptor in monocytes/macrophages, has been identified and cloned. In this study, we examined the regulation of LOX-1 by oxidized low density lipoprotein (ox-LDL) and determined the role of LOX-1 in ox-LDL-induced apoptosis of cultured human coronary artery endothelial cells (HCAECs). Incubation of HCAECs with ox-LDL (40 microg/mL), but not native LDL, for 24 hours markedly increased LOX-1 expression (mRNA and protein). After 48 hours of preincubation of HCAECs with a specific antisense to LOX-1 mRNA (antisense LOX-1), ox-LDL-mediated upregulation of LOX-1 was suppressed (P<0.01). In contrast, treatment of HCAECs with sense LOX-1 had no effect. Ox-LDL also induced apoptosis (determined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling and DNA laddering) of HCAECs in a concentration- and time-dependent fashion. LOX-1 played an important role in ox-LDL-mediated apoptosis of HCAECs because antisense LOX-1 inhibited this effect of ox-LDL. Polyinosinic acid and carrageenan, 2 different chemical inhibitors of LOX-1, also decreased ox-LDL-mediated apoptosis of HCAECs. Nuclear factor (NF)-kappaB was markedly activated in ox-LDL-treated HCAECs. The critical role of NF-kappaB activation became evident in experiments with antisense LOX-1, which abolished ox-LDL-mediated NF-kappaB activation. In this process, an NF-kappaB inhibitor, caffeic acid phenethyl ester, also inhibited ox-LDL-mediated apoptosis of HCAECs. These findings indicate that ox-LDL upregulates its own endothelial receptor. Ox-LDL-induced apoptosis is mediated by the action of LOX-1. In this process, NF-kappaB activation may play an important role as a signal transduction mechanism.

  9. LOX-1, OxLDL, and Atherosclerosis

    PubMed Central

    Catapano, Alberico Luigi

    2013-01-01

    Oxidized low-density lipoprotein (OxLDL) contributes to the atherosclerotic plaque formation and progression by several mechanisms, including the induction of endothelial cell activation and dysfunction, macrophage foam cell formation, and smooth muscle cell migration and proliferation. Vascular wall cells express on their surface several scavenger receptors that mediate the cellular effects of OxLDL. The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is the main OxLDL receptor of endothelial cells, and it is expressed also in macrophages and smooth muscle cells. LOX-1 is almost undetectable under physiological conditions, but it is upregulated following the exposure to several proinflammatory and proatherogenic stimuli and can be detected in animal and human atherosclerotic lesions. The key contribution of LOX-1 to the atherogenic process has been confirmed in animal models; LOX-1 knockout mice exhibit reduced intima thickness and inflammation and increased expression of protective factors; on the contrary, LOX-1 overexpressing mice present an accelerated atherosclerotic lesion formation which is associated with increased inflammation. In humans, LOX-1 gene polymorphisms were associated with increased susceptibility to myocardial infarction. Inhibition of the LOX-1 receptor with chemicals or antisense nucleotides is currently being investigated and represents an emerging approach for controlling OxLDL-LOX-1 mediated proatherogenic effects. PMID:23935243

  10. Scavenger Receptors: Emerging Roles in Cancer Biology and Immunology

    PubMed Central

    Yu, Xiaofei; Guo, Chunqing; Fisher, Paul B.; Subjeck, John R.; Wang, Xiang-Yang

    2015-01-01

    Scavenger receptors constitute a large family of evolutionally conserved protein molecules that are structurally and functionally diverse. Although scavenger receptors were originally identified based on their capacity to scavenge modified lipoproteins, these molecules have been shown to recognize and bind to a broad spectrum of ligands, including modified and unmodified host-derived molecules or microbial components. As a major subset of innate pattern recognition receptors, scavenger receptors are mainly expressed on myeloid cells and function in a wide range of biological processes, such as endocytosis, adhesion, lipid transport, antigen presentation, and pathogen clearance. In addition to playing a crucial role in maintenance of host homeostasis, scavenger receptors have been implicated in the pathogenesis of a number of diseases, e.g., atherosclerosis, neurodegeneration, or metabolic disorders. Emerging evidence has begun to reveal these receptor molecules as important regulators of tumor behavior and host immune responses to cancer. This review summarizes our current understanding on the newly identified, distinct functions of scavenger receptors in cancer biology and immunology. The potential of scavenger receptors as diagnostic biomarkers and novel targets for therapeutic interventions to treat malignancies is also highlighted. PMID:26216637

  11. Mitogenic signaling of urokinase receptor-deficient kidney fibroblasts: actions of an alternative urokinase receptor and LDL receptor-related protein.

    PubMed

    Zhang, Guoqiang; Cai, Xiaohe; López-Guisa, Jesús M; Collins, Sarah J; Eddy, Allison A

    2004-08-01

    The urokinase receptor (uPAR) attenuates myofibroblast recruitment and fibrosis in the kidney. This study examined the role of uPAR and its co-receptor LDL receptor-related protein (LRP) in the regulation of kidney fibroblast proliferation and extracellular signal-regulated kinase (ERK) signaling. Compared with uPAR+/+ cells, uPAR-/- kidney fibroblasts were hyperproliferative. UPAR-/- fibroblast proliferation was 60% inhibited by an ERK kinase inhibitor. LRP protein was reduced and extracellular accumulation of urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type 1 (PAI-1) proteins were greater in uPAR-/- cultures. Addition of functional uPA protein or LRP antisense RNA significantly increased ERK signaling and cell mitosis in both genotypes. Enhanced uPAR-/- fibroblast proliferation was reversed by a recombinant nonfunctional uPA peptide. The density of cell-bound fluor-uPA was similar between uPAR-/- and uPAR+/+ fibroblasts (78 +/- 6 versus 92 +/- 16 units). These data suggest that uPAR-deficient kidney fibroblasts express lower levels of its scavenger co-receptor LRP, resulting in greater extracellular accumulation of uPA and PAI-1. Enhanced proliferation of uPAR-/- fibroblasts seems to be mediated by uPA-dependent ERK signaling via an alternative urokinase receptor.

  12. Effects of young barley leaf extract and antioxidative vitamins on LDL oxidation and free radical scavenging activities in type 2 diabetes.

    PubMed

    Yu, Y-M; Chang, W-C; Chang, C-T; Hsieh, C-L; Tsai, C E

    2002-04-01

    The effects of supplementation of young barley leaf extract (BL) and/or antioxidative vitamins C and E on different low-density lipoprotein (LDL) subfractions susceptibility to oxidation and free radical scavenging activities in patients with type 2 diabetes were evaluated. Thirty-six type 2 diabetic patients were enrolled in this study. The subjects received one of the following supplements daily for 4 weeks: 15 g BL, 200 mg vitamin C and 200 mg vitamin E (CE), or BL plus CE (BL + CE). The lucigenin-chemiluminescence (CL) and luminol-CL levels in blood were significantly reduced in all groups. Vitamin E content of LDL subfractions increased significantly following supplements, especially for BL + CE group. The percent increase of lag times in the BL + CE was significantly higher than those in the BL or CE group. The antioxidative effect of BL + CE was the greatest for small, dense LDL (Sd-LDL) with further increases in percentage of lag times 4 folds compared to BL alone. Our results indicate that supplementation with BL may help to scavenge oxygen free radicals, save the LDL-vitamin E content, and inhibit LDL oxidation. Furthermore, the addition of vitamins C and E to BL can inhibit the Sd-LDL oxidation more effectively, which may protect against vascular diseases in type 2 diabetic patients.

  13. The alpha-fetoprotein third domain receptor binding fragment: in search of scavenger and associated receptor targets.

    PubMed

    Mizejewski, G J

    2015-01-01

    Recent studies have demonstrated that the carboxyterminal third domain of alpha-fetoprotein (AFP-CD) binds with various ligands and receptors. Reports within the last decade have established that AFP-CD contains a large fragment of amino acids that interact with several different receptor types. Using computer software specifically designed to identify protein-to-protein interaction at amino acid sequence docking sites, the computer searches identified several types of scavenger-associated receptors and their amino acid sequence locations on the AFP-CD polypeptide chain. The scavenger receptors (SRs) identified were CD36, CD163, Stabilin, SSC5D, SRB1 and SREC; the SR-associated receptors included the mannose, low-density lipoprotein receptors, the asialoglycoprotein receptor, and the receptor for advanced glycation endproducts (RAGE). Interestingly, some SR interaction sites were localized on the AFP-derived Growth Inhibitory Peptide (GIP) segment at amino acids #480-500. Following the detection studies, a structural subdomain analysis of both the receptor and the AFP-CD revealed the presence of epidermal growth factor (EGF) repeats, extracellular matrix-like protein regions, amino acid-rich motifs and dimerization subdomains. For the first time, it was reported that EGF-like sequence repeats were identified on each of the three domains of AFP. Thereafter, the localization of receptors on specific cell types were reviewed and their functions were discussed.

  14. ApoA-II modulates the association of HDL with class B scavenger receptors SR-BI and CD36.

    PubMed

    de Beer, Maria C; Castellani, Lawrence W; Cai, Lei; Stromberg, Arnold J; de Beer, Frederick C; van der Westhuyzen, Deneys R

    2004-04-01

    The class B scavenger receptors SR-BI and CD36 exhibit a broad ligand binding specificity. SR-BI is well characterized as a HDL receptor that mediates selective cholesteryl ester uptake from HDL. CD36, a receptor for oxidized LDL, also binds HDL and mediates selective cholesteryl ester uptake, although much less efficiently than SR-BI. Apolipoprotein A-II (apoA-II), the second most abundant HDL protein, is considered to be proatherogenic, but the underlying mechanisms are unclear. We previously showed that apoA-II modulates SR-BI-dependent binding and selective uptake of cholesteryl ester from reconstituted HDL. To investigate the effect of apoA-II in naturally occurring HDL on these processes, we compared HDL without apoA-II (from apoA-II null mice) with HDLs containing differing amounts of apoA-II (from C57BL/6 mice and transgenic mice expressing a mouse apoA-II transgene). The level of apoA-II in HDL was inversely correlated with HDL binding and selective cholesteryl ester uptake by both scavenger receptors, particularly CD36. Interestingly, for HDL lacking apoA-II, the efficiency with which CD36 mediated selective uptake reached a level similar to that of SR-BI. These results demonstrate that apoA-II exerts a marked effect on HDL binding and selective lipid uptake by the class B scavenger receptors and establishes a potentially important relationship between apoA-II and CD36.

  15. Lipid accumulation in smooth muscle cells under LDL loading is independent of LDL receptor pathway and enhanced by hypoxic conditions.

    PubMed

    Wada, Youichiro; Sugiyama, Akira; Yamamoto, Takashi; Naito, Makoto; Noguchi, Noriko; Yokoyama, Shinji; Tsujita, Maki; Kawabe, Yoshiki; Kobayashi, Mika; Izumi, Akashi; Kohro, Takahide; Tanaka, Toshiya; Taniguchi, Hirokazu; Koyama, Hidenori; Hirano, Ken-ichi; Yamashita, Shizuya; Matsuzawa, Yuji; Niki, Etsuo; Hamakubo, Takao; Kodama, Tatsuhiko

    2002-10-01

    The effect of a variety of hypoxic conditions on lipid accumulation in smooth muscle cells (SMCs) was studied in an arterial wall coculture and monocultivation model. Low density lipoprotein (LDL) was loaded under various levels of oxygen tension. Oil red O staining of rabbit and human SMCs revealed that lipid accumulation was greater under lower oxygen tension. Cholesterol esters were shown to accumulate in an oxygen tension-dependent manner by high-performance liquid chromatographic analysis. Autoradiograms using radiolabeled LDL indicated that LDL uptake was more pronounced under hypoxia. This result holds in the case of LDL receptor-deficient rabbit SMCs. However, cholesterol biosynthesis and cellular cholesterol release were unaffected by oxygen tension. Hypoxia significantly increases LDL uptake and enhances lipid accumulation in arterial SMCs, exclusive of LDL receptor activity. Although the molecular mechanism is not clear, the model is useful for studying lipid accumulation in arterial wall cells and the difficult-to-elucidate events in the initial stage of atherogenesis.

  16. Lack of a direct role for macrosialin in oxidized LDL metabolism.

    PubMed

    de Beer, Maria C; Zhao, Zhenze; Webb, Nancy R; van der Westhuyzen, Deneys R; de Villiers, Willem J S

    2003-04-01

    Murine macrosialin (MS), a scavenger receptor family member, is a heavily glycosylated transmembrane protein expressed predominantly in macrophage late endosomes. MS is also found on the cell surface where it is suggested, on the basis of ligand blotting, to bind oxidized LDL (oxLDL). Here we report on the regulation of MS by an atherogenic high-fat diet and oxLDL, and on the inability of MS in transfected cells to bind oxLDL. MS expression was markedly increased in the livers of atherosclerosis-susceptible C57BL/6 and atherosclerosis-resistant C3H/HeJ mice fed an atherogenic high-fat diet. In resident-mouse peritoneal macrophages, treatment with oxLDL upregulated MS mRNA and protein expression 1.5- to 3-fold. MS, overexpressed in COS-7 cells through adenovirus mediated gene transfer, bound oxLDL by ligand blotting. However, no binding of oxLDL to MS was observed in intact transfected COS-7 and Chinese hamster ovary cells, despite significant cell surface expression of MS. Furthermore, inhibition of MS through gene silencing did not affect the binding of oxLDL to macrophages. We conclude that although MS expression in macrophages and Kupffer cells is responsive to a proatherogenic inflammatory diet and to oxLDL, MS does not function as an oxLDL receptor on the cell surface.

  17. Involvement of neuron-derived orphan receptor-1 (NOR-1) in LDL-induced mitogenic stimulus in vascular smooth muscle cells: role of CREB.

    PubMed

    Rius, Jordi; Martínez-González, José; Crespo, Javier; Badimon, Lina

    2004-04-01

    Low density lipoproteins (LDLs) modulate the expression of key genes involved in atherogenesis. Recently, we have shown that the transcription factor neuron-derived orphan receptor-1 (NOR-1) is involved in vascular smooth muscle cell (VSMC) proliferation. Our aim was to analyze whether NOR-1 is involved in LDL-induced mitogenic effects in VSMC. LDL induced NOR-1 expression in a time- and dose-dependent manner. Antisense oligonucleotides against NOR-1 inhibit DNA synthesis induced by LDL in VSMCs as efficiently as antisense against the protooncogene c-fos. The upregulation of NOR-1 mRNA levels by LDL involves pertusis-sensitive G protein-coupled receptors, Ca2+ mobilization, protein kinases A (PKA) and C (PKC) activation, and mitogen-activated protein kinase pathways (MAPK) (p44/p42 and p38). LDL promotes cAMP response element binding protein (CREB) activation (phosphorylation in Ser133). In transfection assays a dominant-negative of CREB inhibits NOR-1 promoter activity, while mutation of specific (cAMP response element) CRE sites in the NOR-1 promoter abolishes LDL-induced NOR-1 promoter activity. In VSMCs, LDL-induced mitogenesis involves NOR-1 upregulation through a CREB-dependent mechanism. CREB could play a role in the modulation by LDL of key genes (containing CRE sites) involved in atherogenesis.

  18. Inhibitory effect of Piper betel leaf extracts on copper-mediated LDL oxidation and oxLDL-induced lipid accumulation via inducing reverse cholesterol transport in macrophages.

    PubMed

    Ma, Gwo-Chin; Wu, Pei-Fang; Tseng, Hsien-Chun; Chyau, Charng-Cherng; Lu, Hsiu-Chin; Chou, Fen-Pi

    2013-12-15

    Piper betel leaf (PBL) has the biological capabilities of detoxification and can work as an anti-inflammatory agent and an anti-oxidant. In this study, we evaluated the anti-oxidative activity of the extract of Piper betel leaves (PBLs) on the basis of Cu(2+)-mediated oxidation, and its ability to prevent foam cell formation in a model for oxidised low density lipoprotein (oxLDL)-induced lipid accumulation in macrophages. Our data demonstrated that PBLs were able to inhibit LDL oxidation in vitro and are able to reduce the lipid accumulation in macrophages. We showed the underlying mechanisms to be the following: PBLs up-regulated the protein levels of the class A and class B scavenger receptors, the membrane lipid transporter ABCA1, and its upstream regulator Liver X receptor (LXR) in the macrophages exposed to oxLDL. The results suggested that PBLs activated the reverse cholesterol transport mechanism to enhance the metabolism of the oxLDL that could prevent both lipid accumulation and foam cell formation and further minimise the possible damage of vessels caused by the oxLDL. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Development, food intake, and ethinylestradiol influence hepatic triglyceride lipase and LDL-receptor mRNA levels in rats.

    PubMed

    Staels, B; Jansen, H; van Tol, A; Stahnke, G; Will, H; Verhoeven, G; Auwerx, J

    1990-07-01

    The influence of development and ethinylestradiol on low density lipoprotein (LDL)-receptor mRNA and hepatic triglyceride lipase (HTGL) activity and mRNA levels was studied in rat liver and intestine. Intestinal LDL-receptor mRNA levels are maximal in the perinatal period, whereas liver LDL-receptor and HTGL mRNA levels are highest after weaning in adult life. All mRNA levels reach a maximum between day 15 and 20 when rats still consume a lipid-rich diet, and increase twofold during weaning. Liver and intestinal LDL-receptor mRNA levels are not influenced by ovariectomy, but increase after ethinylestradiol treatment. Liver LDL-receptor mRNA shows a dose-dependent increase after ethinylestradiol and a sevenfold rise in liver LDL-receptor mRNA is attained with a dose of 2000 micrograms/day. Intestinal LDL-receptor mRNA increases slightly more than twofold after ethinylestradiol and this increase is not dose-dependent. Changes in LDL-receptor mRNA are independent of changes in food intake induced by ethinylestradiol treatment, since they are still observed after pair-feeding. The ethinylestradiol-induced increases in LDL-receptor mRNA levels are reflected by decreased serum apoB levels. HTGL mRNA levels increase after ovariectomy and show a dose-dependent decrease after ethinylestradiol. Pair-feeding abolishes the increase seen after ovariectomy, while the estrogen-mediated decrease is attenuated. These alterations in HTGL mRNA are reflected by similar changes in liver HTGL activity.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Scavenger receptor function of mouse Fcγ receptor III contributes to progression of atherosclerosis in apolipoprotein E hyperlipidemic mice.

    PubMed

    Zhu, Xinmei; Ng, Hang Pong; Lai, Yen-Chun; Craigo, Jodi K; Nagilla, Pruthvi S; Raghani, Pooja; Nagarajan, Shanmugam

    2014-09-01

    Recent studies showed loss of CD36 or scavenger receptor-AI/II (SR-A) does not ameliorate atherosclerosis in a hyperlipidemic mouse model, suggesting receptors other than CD36 and SR-A may also contribute to atherosclerosis. In this report, we show that apolipoprotein E (apoE)-CD16 double knockout (DKO; apoE-CD16 DKO) mice have reduced atherosclerotic lesions compared with apoE knockout mice. In vivo and in vitro foam cell analyses showed apoE-CD16 DKO macrophages accumulated less neutral lipids. Reduced foam cell formation in apoE-CD16 DKO mice is not due to change in expression of CD36, SR-A, and LOX-1. This led to a hypothesis that CD16 may have scavenger receptor activity. We presented evidence that a soluble form of recombinant mouse CD16 (sCD16) bound to malondialdehyde-modified low-density lipoprotein (MDALDL), and this binding is blocked by molar excess of MDA- modified BSA and anti-MDA mAbs, suggesting CD16 specifically recognizes MDA epitopes. Interestingly, sCD16 inhibited MDALDL binding to macrophage cell line, as well as soluble forms of recombinant mouse CD36, SR-A, and LOX-1, indicating CD16 can cross-block MDALDL binding to other scavenger receptors. Anti-CD16 mAb inhibited immune complex binding to sCD16, whereas it partially inhibited MDALDL binding to sCD16, suggesting MDALDL binding site may be in close proximity to the immune complex binding site in CD16. Loss of CD16 expression resulted in reduced levels of MDALDL-induced proinflammatory cytokine expression. Finally, CD16-deficient macrophages showed reduced MDALDL-induced Syk phosphorylation. Collectively, our findings suggest scavenger receptor activity of CD16 may, in part, contribute to the progression of atherosclerosis. Copyright © 2014 by The American Association of Immunologists, Inc.

  1. Scavenger Receptor Class B Type 1 Deletion Led to Coronary Atherosclerosis and Ischemic Heart Disease in Low-density Lipoprotein Receptor Knockout Mice on Modified Western-type Diet

    PubMed Central

    Liao, Jiawei; Guo, Xin; Wang, Mengyu; Dong, Chengyan; Gao, Mingming; Wang, Huan; Kayoumu, Abudurexiti; Shen, Qiang; Wang, Yuhui; Wang, Fan; Liu, George

    2017-01-01

    Aim: Atherosclerosis-prone apolipoprotein E (apoE) or low-density lipoprotein receptor (LDL-R) knockout (KO) mice are generally resistant to developing coronary atherosclerosis (CA) and ischemic heart disease (IHD). However, studies have demonstrated the occurrence of spontaneous CA and IHD in scavenger receptor class B type 1 (SR-BI)/apoE double KO (dKO) mice, which suggests that SR-BI could be a potential target for the prevention and therapy of CA and IHD. This possibility was later investigated in SR-BI/LDL-R dKO mice, but no signs of CA or IHD was identified when mice were fed a normal western-type diet. Here we explored whether SR-BI deletion could result in CA and IHD in LDL-R KO mice when fed a modified western-type diet containing higher (0.5%) cholesterol. Methods: Cardiac functions were detected by electrocardiography, single photon emission computed tomography (SPECT), echocardiography (Echo) and 2,3,5-triphenyltetrazolium chloride staining. CA was visualized by hematoxylin-eosin staining. Results: After 12 weeks on the modified diet, SR-BI/LDL-R dKO mice developed cardiac ischemia/infarction, together with systolic dysfunction and left ventricular dilatation. CA was most severe at the aortic sinus level to an extent that no dKO mice survived to 20 weeks on the modified diet. None of control mice, however, developed CA or IHD. Conclusions: SR-BI deletion led to CA and IHD in LDL-R KO mice when fed the modified western-type diet. We established SR-BI/LDL-R dKO mice as a diet-induced murine model of human IHD and developed detection methods, using a combination of SPECT and Echo, for effective in vivo evaluation of cardiac functions. PMID:27373983

  2. Stabilization and cytoskeletal-association of LDL receptor mRNA are mediated by distinct domains in its 3' untranslated region.

    PubMed

    Wilson, G M; Vasa, M Z; Deeley, R G

    1998-05-01

    The mRNA encoding the human low density lipoprotein (LDL) receptor is transiently stabilized after phorbol ester treatment of HepG2 cells and has been shown to associate with components of the cytoskeleton in this cell line (G. M. Wilson, E. A. Roberts, and R. G. Deeley, J. Lipid Res. 1997. 38: 437-446). Using an episomal expression system, fragments of the 3' untranslated region (3'UTR) of LDL receptor mRNA were transcribed in fusion with the coding region of beta-globin mRNA in HepG2 cells. Analyses of the decay kinetics of these beta-globin-LDL receptor fusion mRNA deletion mutants showed that sequences in the proximal 3'UTR of LDL receptor mRNA including several AU-rich elements (AREs) were sufficient to confer short constitutive mRNA half-life in the heterologous system. Stabilization of LDL receptor mRNA in the presence of PMA required sequences in the distal 3'UTR, at or near three Alu-like repetitive elements. Furthermore, the 3'UTR of LDL receptor mRNA conferred cytoskeletal association on the otherwise unassociated beta-globin mRNA, by a mechanism involving at least two distinct RNA elements. Comparisons of decay kinetics and subcellular localization of endogenous LDL receptor mRNA and beta-globin-LDL receptor mRNA fusions in HepG2 cells have demonstrated that several cis-acting elements in the receptor 3'UTR contribute to post-transcriptional regulation of receptor expression, and provide further support for involvement of the cytoskeleton in the regulation of LDL receptor mRNA turnover.

  3. The LDL receptor gene family: signaling functions during development.

    PubMed

    Howell, B W; Herz, J

    2001-02-01

    The traditional views regarding the biological functions of the low-density lipoprotein (LDL) receptor gene family have been revisited recently with new evidence that at least some of the members of this receptor family act as signal-transduction molecules. Known for their role in endocytosis, particularly of their namesake the LDLs, and for their role in the prevention of atherosclerosis, these receptors belong to an ancient family with numerous ligands, effector molecules and functions. Recent evidence implicates this family of receptors in diverse signaling pathways, long-term potentiation and neuronal degeneration.

  4. Hibiscus anthocyanins-rich extract inhibited LDL oxidation and oxLDL-mediated macrophages apoptosis.

    PubMed

    Chang, Yun-Ching; Huang, Kai-Xun; Huang, An-Chung; Ho, Yung-Chyuan; Wang, Chau-Jong

    2006-07-01

    The oxidative modification of low-density lipoprotein (LDL) plays a key role in the pathogenesis of atherosclerosis. Anti-oxidative reagents, which can effectively inhibit LDL oxidation, may prevent atherosclerosis via reducing early atherogenesis, and slowing down the progression to advance stages. As shown in previous studies Hibiscus sabdariffa L. is a natural plant containing a lot of pigments that was found to possess anti-oxidative of activity. Therefore, in this study, we evaluated the anti-oxidative activity of Hibiscus anthocyanins (HAs) by measuring their effects on LDL oxidation (in cell-free system) and anti-apoptotic abilities (in RAW264.7 cells). HAs have been tested in vitro examining their relative electrophoretic mobility (REM), Apo B fragmentation, thiobarbituric acid relative substances (TBARS) and radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity assay. The anti-oxidative activity of HAs was defined by relative electrophoretic mobility of oxLDL (decrease of 50% at 2 mg/ml), fragmentation of Apo B (inhibition of 61% at 1mg/ml), and TBARS assay (IC(50): 0.46 mg/ml) in the Cu(2+)-mediated oxidize LDL. Furthermore, the addition of >0.1 mg/ml of HAs could scavenge over 95% of free DPPH radicals, HAs showed strong potential in inhibiting LDL oxidation induced by copper. In addition, to determine whether oxLDL-induced apoptosis in macrophages is inhibited by HAs, we studied the viability, morphology and caspase-3 expression of RAW 264.7 cells. MTT assay, Leukostate staining analysis and Western blotting reveals that HAs could inhibit oxLDL-induced apoptosis. According to these findings, we suggest that HAs may be used to inhibit LDL oxidation and oxLDL-mediated macrophage apoptosis, serving as a chemopreventive agent. However, further investigations into the specificity and mechanism(s) of HAs are needed.

  5. Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro

    PubMed Central

    Podrez, Eugene A.; Schmitt, David; Hoff, Henry F.; Hazen, Stanley L.

    1999-01-01

    Oxidized LDL is implicated in atherosclerosis; however, the pathways that convert LDL into an atherogenic form in vivo are not established. Production of reactive nitrogen species may be one important pathway, since LDL recovered from human atherosclerotic aorta is enriched in nitrotyrosine. We now report that reactive nitrogen species generated by the MPO-H2O2-NO2– system of monocytes convert LDL into a form (NO2-LDL) that is avidly taken up and degraded by macrophages, leading to massive cholesterol deposition and foam cell formation, essential steps in lesion development. Incubation of LDL with isolated MPO, an H2O2-generating system, and nitrite (NO2–)— a major end-product of NO metabolism—resulted in nitration of apolipoprotein B 100 tyrosyl residues and initiation of LDL lipid peroxidation. The time course of LDL protein nitration and lipid peroxidation paralleled the acquisition of high-affinity, concentration-dependent, and saturable binding of NO2-LDL to human monocyte–derived macrophages and mouse peritoneal macrophages. LDL modification and conversion into a high-uptake form occurred in the absence of free metal ions, required NO2–, occurred at physiological levels of Cl–, and was inhibited by heme poisons, catalase, and BHT. Macrophage binding of NO2-LDL was specific and mediated by neither the LDL receptor nor the scavenger receptor class A type I. Exposure of macrophages to NO2-LDL promoted cholesteryl ester synthesis, intracellular cholesterol and cholesteryl ester accumulation, and foam cell formation. Collectively, these results identify MPO-generated reactive nitrogen species as a physiologically plausible pathway for converting LDL into an atherogenic form. PMID:10359564

  6. A nonsense mutation in the LDL receptor gene leads to familial hypercholesterolemia in the Druze sect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landsberger, D.; Meiner, V.; Reshef, A.

    1992-02-01

    Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the LDL receptor gene. Here the authors characterize and LDL receptor mutation that is associated with a distinct haplotype and causes FH in the Druze, a small Middle Eastern Islamic sect with a high degree of inbreeding. The mutation was found in FH families from two distinct Druze villages from the Golan Heights (northern Israel). It was not found either in another Druze FH family residing in a different geographical area nor in eight Arab and four Jewish FH heterozygote index cases whose hypercholesterolemia cosegregates with an identicalmore » LDL receptor gene haplotype. The mutation, a single-base substitution, results in a termination codon in exon 4 of the LDL receptor gene that encodes for the fourth repeat of the binding domain of the mature receptor. It can be diagnosed by allele-specific oligonucleotide hybridization of PCR-amplified DNA from FH patients.« less

  7. Fluid-phase pinocytosis of LDL by macrophages: a novel target to reduce macrophage cholesterol accumulation in atherosclerotic lesions.

    PubMed

    Kruth, Howar S

    2013-01-01

    Circulating low-density lipoprotein (LDL) that enters the blood vessel wall is the main source of cholesterol that accumulates within atherosclerotic plaques. Much of the deposited cholesterol accumulates within plaque macrophages converting these macrophages into cholesterol-rich foamy looking cells. Cholesterol accumulation in macrophages contributes to cholesterol retention within the vessel wall, and promotes vessel wall inflammation and thrombogenicity. Thus, how macrophages accumulate cholesterol and become foam cells has been the subject of intense investigation. It is generally believed that macrophages accumulate cholesterol only through scavenger receptor-mediated uptake of modified LDL. However, an alternative mechanism for macrophage foam cell formation that does not depend on LDL modification or macrophage receptors has been elucidated. By this alternative mechanism, macrophages show receptor-independent uptake of unmodified native LDL that is mediated by fluid-phase pinocytosis. In receptor-independent, fluid-phase pinocytosis, macrophages take up LDL as part of the fluid that they ingest during micropinocytosis within small vesicles called micropinosomes, and by macropinocytosis within larger vacuoles called macropinosomes. This produces cholesterol accumulation in macrophages to levels characteristic of macrophage foam cells in atherosclerotic plaques. Fluid-phase pinocytosis of LDL is a plausible mechanism that can explain how macrophages accumulate cholesterol and become disease-causing foam cells. Fluid-phase pinocytosis of LDL is a relevant pathway to target for modulating macrophage cholesterol accumulation in atherosclerosis. Recent studies show that phosphoinositide 3-kinase (PI3K), liver X receptors (LXRs), the macrophage colony-stimulating factor (M-CSF) receptor, and protein kinase C (PKC) mediate macrophage macropinocytosis of LDL, and thus, these may be relevant targets to inhibit macrophage cholesterol accumulation in atherosclerosis.

  8. Regulation of the LDL receptor gene expression by hormones.

    PubMed

    Streicher, R; Kotzka, J; Müller-Wieland, D; Krone, W

    1998-01-01

    Promoter activity of the LDL receptor gene is stimulated by insulin and estradiol and mediated by SRE-1, which acts as a hormone sensitive cis-elemente. Using the antisense technique we reveal that SREBP-1 is selectively involved in the signal transduction pathway of insulin and IGF-I.

  9. Dihydromyricetin ameliorates atherosclerosis in LDL receptor deficient mice.

    PubMed

    Liu, Ting Ting; Zeng, Yi; Tang, Kun; Chen, XueMeng; Zhang, Wei; Xu, Xiao Le

    2017-07-01

    Dihydromyricetin, the most abundant flavonoid in Ampelopsis grossedentata, exerts numerous pharmacological activities, including anti-inflammatory, antioxidant, hepatoprotective, and lipid regulatory activities; however, its protective effect against atherosclerosis remains poorly understood. The aim of the present study was to evaluate the effects of dihydromyricetin on high fat diet (HFD)-induced atherosclerosis using LDL receptor deficient (LDLr -/- ) mice. Blood samples were collected for determination of serum lipid profiles, oxidized LDL (ox-LDL) and pro-inflammatory cytokines. Histology, hepatic lipid content, quantification of atherosclerosis, assessment of oxidative stress and inflammation were performed on liver and aorta samples by molecular biology methods. The effects of dihydromyricetin on ox-LDL-induced human umbilical vein endothelial cells (HUVECs) dysfunction and foam cell formation were further studied. (1) Dihydromyricetin ameliorated hyperlipidemia, reduced serum ox-LDL, IL-6 and TNF-α levels in HFD-fed LDLr -/- mice. Moreover, (2) dihydromyricetin suppressed hepatic lipid accumulation and increased protein expressions of PPARα, LXRα and ABCA1. (3) It inhibited atherosclerotic lesion formation and favoured features of plaque stability. (4) Dihydromyricetin prevented hepatic and aortic inflammation as evidenced by the reduced IL-6 and TNF-α mRNA expression; (5) it prevented hepatic and aortic oxidative stress by normalizing activities of antioxidant enzymes in the liver and suppressing reactive oxygen species generation and NOX2 protein expression in both liver and aorta; (6) it inhibited oxLDL-induced injury, monocytes adhesion and oxidative stress in HUVECs and (7) inhibited macrophage foam cell formation and enhanced cholesterol efflux. These findings suggest that dihydromyricetin could reduce atherosclerosis via its pleiotropic effects, including improvement of endothelial dysfunction, inhibition of macrophage foam cell formation

  10. Impaired binding affinity of electronegative low-density lipoprotein (LDL) to the LDL receptor is related to nonesterified fatty acids and lysophosphatidylcholine content.

    PubMed

    Benítez, Sonia; Villegas, Virtudes; Bancells, Cristina; Jorba, Oscar; González-Sastre, Francesc; Ordóñez-Llanos, Jordi; Sánchez-Quesada, José Luis

    2004-12-21

    The binding characteristics of electropositive [LDL(+)] and electronegative LDL [LDL(-)] subfractions to the LDL receptor (LDLr) were studied. Saturation kinetic studies in cultured human fibroblasts demonstrated that LDL(-) from normolipemic (NL) and familial hypercholesterolemic (FH) subjects had lower binding affinity than their respective LDL(+) fractions (P < 0.05), as indicated by higher dissociation constant (K(D)) values. FH-LDL(+) also showed lower binding affinity (P < 0.05) than NL-LDL(+) (K(D), sorted from lower to higher affinity: NL-LDL(-), 33.0 +/- 24.4 nM; FH-LDL(-), 24.4 +/- 7.1 nM; FH-LDL(+), 16.6 +/- 7.0 nM; NL-LDL(+), 10.9 +/- 5.7 nM). These results were confirmed by binding displacement studies. The impaired affinity binding of LDL(-) could be attributed to altered secondary and tertiary structure of apolipoprotein B, but circular dichroism (CD) and tryptophan fluorescence (TrpF) studies revealed no structural differences between LDL(+) and LDL(-). To ascertain the role of increased nonesterified fatty acids (NEFA) and lysophosphatidylcholine (LPC) content in LDL(-), LDL(+) was enriched in NEFA or hydrolyzed with secretory phospholipase A(2). Modification of LDL gradually decreased the affinity to LDLr in parallel to the increasing content of NEFA and/or LPC. Modified LDLs with a NEFA content similar to that of LDL(-) displayed similar affinity. ApoB structure studies of modified LDLs by CD and TrpF showed no difference compared to LDL(+) or LDL(-). Our results indicate that NEFA loading or phospholipase A(2) lipolysis of LDL leads to changes that affect the affinity of LDL to LDLr with no major effect on apoB structure. Impaired affinity to the LDLr shown by LDL(-) is related to NEFA and/or LPC content rather than to structural differences in apolipoprotein B.

  11. The ligand-binding profile of HARE: hyaluronan and chondroitin sulfates A, C, and D bind to overlapping sites distinct from the sites for heparin, acetylated low-density lipoprotein, dermatan sulfate, and CS-E.

    PubMed

    Harris, Edward N; Weigel, Paul H

    2008-08-01

    The hyaluronic acid receptor for endocytosis (HARE)/ Stabilin-2 is the primary systemic scavenger receptor for hyaluronan (HA), the chondroitin sulfates (CS), dermatan sulfate (DS), and nonglycosaminoglycan (GAG) ligands such as acetylated low-density lipoprotein (AcLDL), pro-collagen propeptides, and advanced glycation end products. We recently discovered that HARE is also a systemic scavenger receptor for heparin (Hep) (Harris EN, Weigel JA, Weigel PH. 2008. The human hyaluronan receptor for endocytosis [HARE/Stabilin-2] is a systemic clearance receptor for heparin. J Biol Chem. 283:17341-17350). Our goal was to map the binding sites of eight different ligands within HARE. We used biotinylated GAGs and radio-iodinated streptavidin or AcLDL to assess the binding activities of ligands directly or indirectly (by competition with unlabeled ligands) in endocytosis assays using stable cell lines expressing the 315 or 190 kDa HA receptor for endocytosis (315- or 190-HARE) isoforms, and ELISA-like assays, with purified recombinant soluble 190-HARE ecto-domain. For example, Hep binding to HARE was competed by DS, CS-E, AcLDL, and dextran sulfate, but not by other CS types, HA, dextran, or heparosan. (125)I-AcLDL binding to HARE was partially competed by Hep and dextran sulfate, but not competed by HA. Two ligands, DS and CS-E, competed with both Hep and HA to some degree. Hep and HA binding or endocytosis is mutually inclusive; binding of these two GAGs occurs with functionally separate, noncompetitive, and apparently noninteracting domains. Thus, HARE binds to HA and Hep simultaneously. Although the domain(s) responsible for Hep binding remains unknown, the Link domain was required for HARE binding to HA, CS-A, CS-C, and CS-D. These results enable us to outline, for the first time, a binding activity map for multiple ligands of HARE.

  12. The ligand-binding profile of HARE: hyaluronan and chondroitin sulfates A, C, and D bind to overlapping sites distinct from the sites for heparin, acetylated low-density lipoprotein, dermatan sulfate, and CS-E

    PubMed Central

    Harris, Edward N.; Weigel, Paul H.

    2008-01-01

    The hyaluronic acid receptor for endocytosis (HARE)/ Stabilin-2 is the primary systemic scavenger receptor for hyaluronan (HA), the chondroitin sulfates (CS), dermatan sulfate (DS), and nonglycosaminoglycan (GAG) ligands such as acetylated low-density lipoprotein (AcLDL), pro-collagen propeptides, and advanced glycation end products. We recently discovered that HARE is also a systemic scavenger receptor for heparin (Hep) (Harris EN, Weigel JA, Weigel PH. 2008. The human hyaluronan receptor for endocytosis [HARE/Stabilin-2] is a systemic clearance receptor for heparin. J Biol Chem. 283:17341–17350). Our goal was to map the binding sites of eight different ligands within HARE. We used biotinylated GAGs and radio-iodinated streptavidin or AcLDL to assess the binding activities of ligands directly or indirectly (by competition with unlabeled ligands) in endocytosis assays using stable cell lines expressing the 315 or 190 kDa HA receptor for endocytosis (315- or 190-HARE) isoforms, and ELISA-like assays, with purified recombinant soluble 190-HARE ecto-domain. For example, Hep binding to HARE was competed by DS, CS-E, AcLDL, and dextran sulfate, but not by other CS types, HA, dextran, or heparosan. 125I-AcLDL binding to HARE was partially competed by Hep and dextran sulfate, but not competed by HA. Two ligands, DS and CS-E, competed with both Hep and HA to some degree. Hep and HA binding or endocytosis is mutually inclusive; binding of these two GAGs occurs with functionally separate, noncompetitive, and apparently noninteracting domains. Thus, HARE binds to HA and Hep simultaneously. Although the domain(s) responsible for Hep binding remains unknown, the Link domain was required for HARE binding to HA, CS-A, CS-C, and CS-D. These results enable us to outline, for the first time, a binding activity map for multiple ligands of HARE. PMID:18499864

  13. Synthetic LDL as targeted drug delivery vehicle

    DOEpatents

    Forte, Trudy M [Berkeley, CA; Nikanjam, Mina [Richmond, CA

    2012-08-28

    The present invention provides a synthetic LDL nanoparticle comprising a lipid moiety and a synthetic chimeric peptide so as to be capable of binding the LDL receptor. The synthetic LDL nanoparticle of the present invention is capable of incorporating and targeting therapeutics to cells expressing the LDL receptor for diseases associated with the expression of the LDL receptor such as central nervous system diseases. The invention further provides methods of using such synthetic LDL nanoparticles.

  14. Cytokine Decoy and Scavenger Receptors as Key Regulators of Immunity and Inflammation

    PubMed Central

    Bonecchi, Raffaella; Garlanda, Cecilia; Mantovani, Alberto; Riva, Federica

    2017-01-01

    IL-1R2 was the first decoy receptor to be described. Subsequently receptors which act as pure decoys or scavengers or trigger dampening of cytokine signaling have been described for cytokines and chemokines. Here we review the current understanding of the mode of action and significance in pathology of the chemokine atypical receptor ACKR2, the IL-1 decoy receptor IL-1R2 and the atypical IL-1 receptor family IL-1R8. Decoy and scavenger receptors with no or atypical signaling have emerged as a general strategy conserved in evolution to tune the action of cytokines, chemokines and growth factors. PMID:27498604

  15. Control of scavenger receptor-mediated endocytosis by novel ligands of different length.

    PubMed

    Guaderrama-Díaz, Margarita; Solís, Carlos F; Velasco-Loyden, Gabriela; Laclette, Juan P; Mas-Oliva, Jaime

    2005-03-01

    The scavenger receptor recognized as a multiligand family of receptors falls in the group that is internalised through endocytosis. In this report we used several recombinant fragments of the tapeworm protein paramyosin, known to form filamentous dimers that bind collagenous structures as ligands of different length for the class A type I scavenger receptor (SR-AI). While native CHO cells are unresponsive to any of the recombinant fragments, it is shown that CHO cells transfected with this receptor efficiently internalise recombinant fragments that correspond to two thirds of the full-length paramyosin. In contrast, recombinant products corresponding to one-third of the full-length paramyiosin are not internalised. It is also shown that important molecules in the organization of the coated pit, are enriched when the two-thirds long paramyosin fragments were bound and internalised through the SR-AI. Moreover, internalisation of these fragments trigger a classical apoptotic pathway shown by the presence of TUNEL positive cells and the appearance of apoptotic bodies. We report paramyosin as a new ligand for the scavenger receptor and provide evidence supporting the notion that these receptors upon the formation of arrays with length-specific molecules, not only trigger endocytosis but also seem to regulate the synthesis of molecules involved in the organization of coated pits.

  16. Expression of lectin-like oxidized LDL receptor-1 in smooth muscle cells after vascular injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eto, Hideyuki; Miyata, Masaaki; Kume, Noriaki

    Lectin-like oxidized LDL receptor-1 (LOX-1) is an oxidized LDL receptor, and its role in restenosis after angioplasty remains unknown. We used a balloon-injury model of rabbit aorta, and reverse transcription-polymerase chain reaction revealed that LOX-1 mRNA expression was modest in the non-injured aorta, reached a peak level 2 days after injury, and remained elevated until 24 weeks after injury. Immunohistochemistry and in situ hybridization showed that LOX-1 was not detected in the media of non-injured aorta but expressed in both medial and neointimal smooth muscle cells (SMC) at 2 and 24 weeks after injury. Low concentrations of ox-LDL (10 {mu}g/mL)more » stimulated the cultured SMC proliferation, which was inhibited by antisense oligonucleotides of LOX-1 mRNA. Double immunofluorescense staining showed the colocalization of LOX-1 and proliferating cell nuclear antigen in human restenotic lesion. These results suggest that LOX-1 mediates ox-LDL-induced SMC proliferation and plays a role in neointimal formation after vascular injury.« less

  17. Expression of lectin-like oxidized LDL receptor-1 in smooth muscle cells after vascular injury.

    PubMed

    Eto, Hideyuki; Miyata, Masaaki; Kume, Noriaki; Minami, Manabu; Itabe, Hiroyuki; Orihara, Koji; Hamasaki, Shuichi; Biro, Sadatoshi; Otsuji, Yutaka; Kita, Toru; Tei, Chuwa

    2006-03-10

    Lectin-like oxidized LDL receptor-1 (LOX-1) is an oxidized LDL receptor, and its role in restenosis after angioplasty remains unknown. We used a balloon-injury model of rabbit aorta, and reverse transcription-polymerase chain reaction revealed that LOX-1 mRNA expression was modest in the non-injured aorta, reached a peak level 2 days after injury, and remained elevated until 24 weeks after injury. Immunohistochemistry and in situ hybridization showed that LOX-1 was not detected in the media of non-injured aorta but expressed in both medial and neointimal smooth muscle cells (SMC) at 2 and 24 weeks after injury. Low concentrations of ox-LDL (10 microg/mL) stimulated the cultured SMC proliferation, which was inhibited by antisense oligonucleotides of LOX-1 mRNA. Double immunofluorescence staining showed the colocalization of LOX-1 and proliferating cell nuclear antigen in human restenotic lesion. These results suggest that LOX-1 mediates ox-LDL-induced SMC proliferation and plays a role in neointimal formation after vascular injury.

  18. Role of scavenger receptors in the pathophysiology of chronic liver diseases.

    PubMed

    Armengol, Carolina; Bartolí, Ramon; Sanjurjo, Lucía; Serra, Isabel; Amézaga, Núria; Sala, Margarita; Sarrias, Maria-Rosa

    2013-01-01

    Scavenger receptors comprise a large family of structurally diverse proteins that are involved in many homeostatic functions. They recognize a wide range of ligands, from pathogen-associated molecular patterns (PAMPs) to endogenous, as well as modified host-derived molecules (DAMPs). The liver deals with blood micro-organisms and DAMPs released from injured organs, thus performing vital metabolic and clearance functions that require the uptake of nutrients and toxins. Many liver cell types, including hepatocytes and Kupffer cells, express scavenger receptors that play key roles in hepatitis C virus entry, lipid uptake, and macrophage activation, among others. Chronic liver disease causes high morbidity and mortality worldwide. Hepatitis virus infection, alcohol abuse, and non-alcoholic fatty liver are the main etiologies associated with this disease. In this context, continuous inflammation as a result of liver damage leads to hepatic fibrosis, which frequently brings about cirrhosis and ultimately hepatocellular carcinoma. In this review, we will summarize the role of scavenger receptors in the pathophysiology of chronic liver diseases. We will also emphasize their potential as biomarkers of advanced liver disease, including cirrhosis and cancer.

  19. Andrographolide Inhibits Oxidized LDL-Induced Cholesterol Accumulation and Foam Cell Formation in Macrophages.

    PubMed

    Lin, Hung-Chih; Lii, Chong-Kuei; Chen, Hui-Chun; Lin, Ai-Hsuan; Yang, Ya-Chen; Chen, Haw-Wen

    2018-01-01

    oxLDL is involved in the pathogenesis of atherosclerotic lesions through cholesterol accumulation in macrophage foam cells. Andrographolide, the bioactive component of Andrographis paniculata, possesses several biological activities such as anti-inflammatory, anti-oxidant, and anticancer functions. Scavenger receptors (SRs), including class A SR (SR-A) and CD36, are responsible for the internalization of oxLDL. In contrast, receptors for reverse cholesterol transport, including ABCA1 and ABCG1, mediate the efflux of cholesterol from macrophage foam cells. Transcription factor liver X receptor [Formula: see text] (LXR[Formula: see text] plays a key role in lipid metabolism and inflammation as well as in the regulation of ABCA1 and ABCG1 expression. Because of the contribution of inflammation to macrophage foam cell formation and the potent anti-inflammatory activity of andrographolide, we hypothesized that andrographolide might inhibit oxLDL-induced macrophage foam cell formation. The results showed that andrographolide reduced oxLDL-induced lipid accumulation in macrophage foam cells. Andrographolide decreased the mRNA and protein expression of CD36 by inducing the degradation of CD36 mRNA; however, andrographolide had no effect on SR-A expression. In contrast, andrographolide increased the mRNA and protein expression of ABCA1 and ABCG1, which were dependent on LXR[Formula: see text]. Andrographolide enhanced LXR[Formula: see text] nuclear translocation and DNA binding activity. Treatment with the LXR[Formula: see text] antagonist GGPP and transfection with LXR[Formula: see text] siRNA reversed the ability of andrographolide to stimulate ABCA1 and ABCG1 protein expression. In conclusion, inhibition of CD36-mediated oxLDL uptake and induction of ABCA1- and ABCG1-dependent cholesterol efflux are two working mechanisms by which andrographolide inhibits macrophage foam cell formation, which suggests that andrographolide could be a potential candidate to prevent

  20. Inhibition of the NLRP3 inflammasome attenuates foam cell formation of THP-1 macrophages by suppressing ox-LDL uptake and promoting cholesterol efflux.

    PubMed

    Chen, Liang; Yao, Qiying; Xu, Siwei; Wang, Hongyan; Qu, Peng

    2018-01-01

    The NOD-like receptor family, pyrin domain-containing protein 3 (NLRP3) inflammasome plays an important role in the development of atherosclerosis. The activated NLRP3 inflammasome has been reported to promote macrophage foam cell formation, but not all studies have obtained the same result, and how NLRP3 inflammasome is involved in the formation of foam cells remains elusive. We used selective NLRP3 inflammasome inhibitors and NLRP3-deficient THP-1 cells to assess the effect of NLRP3 inflammasome inhibition on macrophage foam cell formation, oxidized low-density lipoprotein (ox-LDL) uptake, esterification, and cholesterol efflux, as well as the expression of associated proteins. Inhibition of the NLRP3 inflammasome attenuated foam cell formation, diminished ox-LDL uptake, and promoted cholesterol efflux from THP-1 macrophages. Moreover, it downregulated CD36, acyl coenzyme A: cholesterol acyltransferase-1 and neutral cholesterol ester hydrolase expression; upregulated ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type I (SR-BI) expression; but had no effect on the expression of scavenger receptor class A and ATP-binding cassette transporter G1. Collectively, our findings show that inhibition of the NLRP3 inflammasome decreases foam cell formation of THP-1 macrophages via suppression of ox-LDL uptake and enhancement of cholesterol efflux, which may be due to downregulation of CD36 expression and upregulation of ABCA1 and SR-BI expression, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Haloperidol inhibits the development of atherosclerotic lesions in LDL receptor knockout mice.

    PubMed

    van der Sluis, Ronald J; Nahon, Joya E; Reuwer, Anne Q; Van Eck, Miranda; Hoekstra, Menno

    2015-05-01

    Antipsychotic drugs have been shown to modulate the expression of ATP-binding cassette transporter A1 (ABCA1), a key factor in the anti-atherogenic reverse cholesterol transport process, in vitro. Here we evaluated the potential of the typical antipsychotic drug haloperidol to modulate the cholesterol efflux function of macrophages in vitro and their susceptibility to atherosclerosis in vivo. Thioglycollate-elicited peritoneal macrophages were used for in vitro studies. Hyperlipidaemic low-density lipoprotein (LDL) receptor knockout mice were implanted with a haloperidol-containing pellet and subsequently fed a Western-type diet for 5 weeks to induce the development of atherosclerotic lesions in vivo. Haloperidol induced a 54% decrease in the mRNA expression of ABCA1 in peritoneal macrophages. This coincided with a 30% decrease in the capacity of macrophages to efflux cholesterol to apolipoprotein A1. Haloperidol treatment stimulated the expression of ABCA1 (+51%) and other genes involved in reverse cholesterol transport, that is, CYP7A1 (+98%) in livers of LDL receptor knockout mice. No change in splenic ABCA1 expression was noted. However, the average size of the atherosclerotic size was significantly smaller (-31%) in the context of a mildly more atherogenic metabolic phenotype upon haloperidol treatment. More importantly, haloperidol markedly lowered MCP-1 expression (-70%) and secretion (-28%) by peritoneal macrophages. Haloperidol treatment lowered the susceptibility of hyperlipidaemic LDL receptor knockout mice to develop atherosclerotic lesions. Our findings suggest that the beneficial effect of haloperidol on atherosclerosis susceptibility can be attributed to its ability to inhibit macrophage chemotaxis. © 2015 The British Pharmacological Society.

  2. Trapping of oxidized LDL in lysosomes of Kupffer cells is a trigger for hepatic inflammation.

    PubMed

    Bieghs, Veerle; Walenbergh, Sofie M A; Hendrikx, Tim; van Gorp, Patrick J; Verheyen, Fons; Olde Damink, Steven W; Masclee, Ad A; Koek, Ger H; Hofker, Marten H; Binder, Christoph J; Shiri-Sverdlov, Ronit

    2013-08-01

    Non-alcoholic steatohepatitis (NASH) is characterized by steatosis and inflammation. The transition from steatosis towards NASH represents a key step in pathogenesis, as it will set the stage for further severe liver damage. Under normal conditions, lipoproteins that are endocytosed by Kupffer cells (KCs) are easily transferred from the lysosomes into the cytoplasm. Oxidized LDL (oxLDL) that is taken up by the macrophages in vitro is trapped within the lysosomes, while acetylated LDL (acLDL) is leading to normal lysosomal hydrolysis, resulting in cytoplasmic storage. We have recently demonstrated that hepatic inflammation is correlated with lysosomal trapping of lipids. So far, a link between lysosomal trapping of oxLDL and inflammation was not established. We hypothesized that lysosomal trapping of oxLDL in KCs will lead to hepatic inflammation. Ldlr(-/-) mice were injected with LDL, acLDL and oxLDL and sacrificed after 2, 6 and 24 h. Electron microscopy of KCs demonstrated that after oxLDL injection, small lipid inclusions were present inside the lysosomes after all time points and were mostly pronounced after 6 and 24 h. In contrast, no lipid inclusions were present inside KCs after LDL or acLDL injection. Hepatic expression of several inflammatory genes and scavenger receptors was higher after oxLDL injections compared with LDL or acLDL. These data suggest that trapping of oxLDL inside lysosomes of KCs in vivo is causally linked to increased hepatic inflammatory gene expression. Our novel observations provide new bases for prevention and treatment of NASH. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Two novel partial deletions of LDL-receptor gene in Italian patients with familial hypercholesterolemia (FH Siracusa and FH Reggio Emilia).

    PubMed

    Garuti, R; Lelli, N; Barozzini, M; Tiozzo, R; Ghisellini, M; Simone, M L; Li Volti, S; Garozzo, R; Mollica, F; Vergoni, W; Bertolini, S; Calandra, S

    1996-03-01

    In the present study we report two novel partial deletions of the LDL-R gene. The first (FH Siracusa), found in an FH-heterozygote, consists of a 20 kb deletion spanning from the 5' flanking region to the intron 2 of the LDL-receptor gene. The elimination of the promoter and the first two exons prevents the transcription of the deleted allele, as shown by Northern blot analysis of LDL-R mRNA isolated from the proband's fibroblasts. The second deletion (FH Reggio Emilia), which eliminates 11 nucleotides of exon 10, was also found in an FH heterozygote. The characterization of this deletion was made possible by a combination of techniques such as single strand conformation polymorphism (SSCP) analysis, direct sequence of exon 10 and cloning of the normal and deleted exon 10 from the proband's DNA. The 11 nt deletion occurs in a region of exon 10 which contains three triplets (CTG) and two four-nucleotides (CTGG) direct repeats. This structural feature might render this region more susceptible to a slipped mispairing during DNA duplication. Since this deletion causes a shift of the BamHI site at the 5' end of exon 10, a method has been devised for its rapid screening which is based on the PCR amplification of exon 10 followed by BamHI digestion. FH Reggio Emilia deletion produces a shift in the reading frame downstream from Lys458, leading to a sequence of 51 novel amino acids before the occurrence of a premature stop codon (truncated receptor). However, since RT-PCR failed to demonstrate the presence of the mutant LDL-R mRNA in proband fibroblasts, it is likely that the amount of truncated receptor produced in these cells is negligible.

  4. Haloperidol inhibits the development of atherosclerotic lesions in LDL receptor knockout mice

    PubMed Central

    van der Sluis, Ronald J; Nahon, Joya E; Reuwer, Anne Q; Van Eck, Miranda; Hoekstra, Menno

    2015-01-01

    Background and Purpose Antipsychotic drugs have been shown to modulate the expression of ATP-binding cassette transporter A1 (ABCA1), a key factor in the anti-atherogenic reverse cholesterol transport process, in vitro. Here we evaluated the potential of the typical antipsychotic drug haloperidol to modulate the cholesterol efflux function of macrophages in vitro and their susceptibility to atherosclerosis in vivo. Experimental Approach Thioglycollate-elicited peritoneal macrophages were used for in vitro studies. Hyperlipidaemic low-density lipoprotein (LDL) receptor knockout mice were implanted with a haloperidol-containing pellet and subsequently fed a Western-type diet for 5 weeks to induce the development of atherosclerotic lesions in vivo. Key Results Haloperidol induced a 54% decrease in the mRNA expression of ABCA1 in peritoneal macrophages. This coincided with a 30% decrease in the capacity of macrophages to efflux cholesterol to apolipoprotein A1. Haloperidol treatment stimulated the expression of ABCA1 (+51%) and other genes involved in reverse cholesterol transport, that is, CYP7A1 (+98%) in livers of LDL receptor knockout mice. No change in splenic ABCA1 expression was noted. However, the average size of the atherosclerotic size was significantly smaller (−31%) in the context of a mildly more atherogenic metabolic phenotype upon haloperidol treatment. More importantly, haloperidol markedly lowered MCP-1 expression (−70%) and secretion (−28%) by peritoneal macrophages. Conclusions and Implications Haloperidol treatment lowered the susceptibility of hyperlipidaemic LDL receptor knockout mice to develop atherosclerotic lesions. Our findings suggest that the beneficial effect of haloperidol on atherosclerosis susceptibility can be attributed to its ability to inhibit macrophage chemotaxis. PMID:25572138

  5. Scavenger Receptors and Resistance to Inhaled Allergens

    DTIC Science & Technology

    2010-02-01

    throughput manner which will enable future studies. We plan to continue two especially interesting aspects of these studies. First, the epigenetic control...directs mod- ified proteins to antigen presentation. Eur. J. Immunol. 29: 512–521. 30. Granucci, F., F. Petralia, M. Urbano , S. Citterio, F. Di Tota, L...11 Suppl:S32-6. 50. Granucci F, Petralia F, Urbano M, Citterio S, Di Tota F, Santambrogio L, Ricciardi-Castagnoli P: The scavenger receptor MARCO

  6. Lower Squalene Epoxidase and Higher Scavenger Receptor Class B Type 1 Protein Levels Are Involved in Reduced Serum Cholesterol Levels in Stroke-Prone Spontaneously Hypertensive Rats.

    PubMed

    Michihara, Akihiro; Mido, Mayuko; Matsuoka, Hiroshi; Mizutani, Yurika

    2015-01-01

    A lower serum cholesterol level was recently shown to be one of the causes of stroke in an epidemiological study. Spontaneously hypertensive rats stroke-prone (SHRSP) have lower serum cholesterol levels than normotensive Wistar-Kyoto rats (WKY). To elucidate the mechanisms responsible for the lower serum cholesterol levels in SHRSP, we determined whether the amounts of cholesterol biosynthetic enzymes or the receptor and transporter involved in cholesterol uptake and efflux in the liver were altered in SHRSP. When the mRNA levels of seven cholesterol biosynthetic enzymes were measured using real-time polymerase chain reaction (PCR), farnesyl pyrophosphate synthase and squalene epoxidase (SQE) levels in the liver of SHRSP were significantly lower than those in WKY. SQE protein levels were significantly reduced in tissues other than the brain of SHRSP. No significant differences were observed in low-density lipoprotein (LDL) receptor (uptake of serum LDL-cholesterol) or ATP-binding cassette transporter A1 (efflux of cholesterol from the liver/formation of high-density lipoprotein (HDL)) protein levels in the liver and testis between SHRSP and WKY, whereas scavenger receptor class B type 1 (SRB1: uptake of serum HDL-cholesterol) protein levels were higher in the livers of SHRSP. These results indicated that the lower protein levels of SQE and higher protein levels of SRB1 in the liver were involved in the reduced serum cholesterol levels in SHRSP.

  7. Is the scavenger receptor MARCO a new immune checkpoint?

    PubMed

    Arredouani, Mohamed S

    2014-11-01

    Whereas macrophages use the scavenger receptor MARCO primarily in antimicrobial immunity by interacting with both exogenous and endogenous environments, in dendritic cells (DCs) MARCO is believed to pleiotropically link innate to adaptive immunity. MARCO exerts a significant modulatory effect on TLR-induced DC activation, thus offering novel avenues in cancer immunotherapy.

  8. Arsenic augments the uptake of oxidized LDL by upregulating the expression of lectin-like oxidized LDL receptor in mouse aortic endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, Ekhtear; Ota, Akinobu, E-mail: aota@aichi-med-u.ac.jp; Karnan, Sivasundaram

    Although chronic arsenic exposure is a well-known risk factor for cardiovascular diseases, including atherosclerosis, the molecular mechanism underlying arsenic-induced atherosclerosis remains obscure. Therefore, this study aimed to elucidate this molecular mechanism. We examined changes in the mRNA level of the lectin-like oxidized LDL (oxLDL) receptor (LOX-1) in a mouse aortic endothelial cell line, END-D, after sodium arsenite (SA) treatment. SA treatment significantly upregulated LOX-1 mRNA expression; this finding was also verified at the protein expression level. Flow cytometry and fluorescence microscopy analyses showed that the cellular uptake of fluorescence (Dil)-labeled oxLDL was significantly augmented with SA treatment. In addition, anmore » anti-LOX-1 antibody completely abrogated the augmented uptake of Dil-oxLDL. We observed that SA increased the levels of the phosphorylated forms of nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-κB)/p65. SA-induced upregulation of LOX-1 protein expression was clearly prevented by treatment with an antioxidant, N-acetylcysteine (NAC), or an NF-κB inhibitor, caffeic acid phenethylester (CAPE). Furthermore, SA-augmented uptake of Dil-oxLDL was also prevented by treatment with NAC or CAPE. Taken together, our results indicate that arsenic upregulates LOX-1 expression through the reactive oxygen species-mediated NF-κB signaling pathway, followed by augmented cellular oxLDL uptake, thus highlighting a critical role of the aberrant LOX-1 signaling pathway in the pathogenesis of arsenic-induced atherosclerosis. - Highlights: • Sodium arsenite (SA) increases LOX-1 expression in mouse aortic endothelial cells. • SA enhances cellular uptake of oxidized LDL in dose-dependent manner. • SA-induced ROS generation enhances phosphorylation of NF-κB. • SA upregulates LOX-1 expression through ROS-activated NF-κB signaling pathway.« less

  9. Hematopoietic G-protein-coupled receptor kinase 2 deficiency decreases atherosclerotic lesion formation in LDL receptor-knockout mice

    PubMed Central

    Otten, Jeroen J. T.; de Jager, Saskia C. A.; Kavelaars, Annemieke; Seijkens, Tom; Bot, Ilze; Wijnands, Erwin; Beckers, Linda; Westra, Marijke M.; Bot, Martine; Busch, Matthias; Bermudez, Beatriz; van Berkel, Theo J. C.; Heijnen, Cobi J.; Biessen, Erik A. L.

    2013-01-01

    Leukocyte chemotaxis is deemed instrumental in initiation and progression of atherosclerosis. It is mediated by G-protein-coupled receptors (e.g., CCR2 and CCR5), the activity of which is controlled by G-protein-coupled receptor kinases (GRKs). In this study, we analyzed the effect of hematopoietic deficiency of a potent regulator kinase of chemotaxis (GRK2) on atherogenesis. LDL receptor-deficient (LDLr−/−) mice with heterozygous hematopoietic GRK2 deficiency, generated by bone marrow transplantation (n=15), displayed a dramatic attenuation of plaque development, with 79% reduction in necrotic core and increased macrophage content. Circulating monocytes decreased and granulocytes increased in GRK2+/− chimeras, which could be attributed to diminished granulocyte colony-forming units in bone marrow. Collectively, these data pointed to myeloid cells as major mediators of the impaired atherogenic response in GRK2+/− chimeras. LDLr−/− mice with macrophage/granulocyte-specific GRK2 deficiency (LysM-Cre GRK2flox/flox; n=8) failed to mimic the aforementioned phenotype, acquitting these cells as major responsible subsets for GRK2 deficiency-associated atheroprotection. To conclude, even partial hematopoietic GRK2 deficiency prevents atherosclerotic lesion progression beyond the fatty streak stage, identifying hematopoietic GRK2 as a potential target for intervention in atherosclerosis.—Otten, J. J. T., de Jager, S. C. A., Kavelaars, A., Seijkens, T., Bot, I., Wijnands, E., Beckers, L., Westra, M. M., Bot, M., Busch, M., Bermudez, B., van Berkel, T. J. C., Heijnen, C. J., Biessen, E. A. L. Hematopoietic G-protein-coupled receptor kinase 2 deficiency decreases atherosclerotic lesion formation in LDL receptor-knockout mice. PMID:23047899

  10. In vitro photodynamic effects of scavenger receptor targeted-photoactivatable nanoagents on activated macrophages.

    PubMed

    Yi, Bong Gu; Park, Ok Kyu; Jeong, Myeong Seon; Kwon, Seung Hae; Jung, Jae In; Lee, Seongsoo; Ryoo, Sungwoo; Kim, Sung Eun; Kim, Jin Won; Moon, Won-Jin; Park, Kyeongsoon

    2017-04-01

    Scavenger receptors (SRs) expressed on the activated macrophages in inflammation sites have been considered as the most interesting and important target biomarker for targeted drug delivery, imaging and therapy. In the present study, we fabricated the scavenger receptor-A (SR-A) targeted-photoactivatable nanoagents (termed as Ce6/DS-DOCA) by entrapping chlorin e6 (Ce6) into the amphiphilic dextran sulfate-deoxycholic acid (DS-DOCA) conjugates via physically hydrophobic interactions. Insoluble Ce6 was easily encapsulated into DS-DOCA nanoparticles by a dialysis method and the loading efficiency was approximately 51.7%. The Ce6/DS-DOCA formed nano-sized self-assembled aggregates (28.8±5.6nm in diameter), confirmed by transmission electron microscope, UV/Vis and fluorescence spectrophotometer. The Ce6/DS-DOCA nanoagents could generate highly reactive singlet oxygen under laser irradiation. Also, in vitro studies showed that they were more specifically taken up by lipopolysaccharide (LPS)-induced activated macrophages (RAW 264.7) via a SR-A-mediated endocytosis, relative to by non-activated macrophages, and notably induced cell death of activated macrophages under laser irradiation. Therefore, SR-A targetable and photoactivatable Ce6/DS-DOCA nanoagents with more selective targeting to the activated macrophages will have great potential for treatment of inflammatory diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Negatively Cooperative Binding of High Density Lipoprotein to the HDL Receptor SR-BI†

    PubMed Central

    Nieland, Thomas J.F.; Xu, Shangzhe; Penman, Marsha; Krieger, Monty

    2011-01-01

    Scavenger receptor class B, type I (SR-BI) is a high-density lipoprotein (HDL) receptor, which also binds low density lipoprotein (LDL), and mediates the cellular selective uptake of cholesteryl esters from lipoproteins. SR-BI also is a co-receptor for hepatitis C virus and a signaling receptor that regulates cell metabolism. Many investigators have reported that lipoproteins bind to SR-BI via a single class of independent (not interacting), high affinity binding sites (one site model). We have re-investigated the ligand concentration dependence of 125I-HDL binding to SR-BI and SR-BI-mediated specific uptake of [3H]CE from [3H]CE-HDL using an expanded range of ligand concentrations (<1 µg protein/ml, lower than previously reported). Scatchard and non-linear least squares model fitting analyses of the binding and uptake data were both inconsistent with a single class of independent binding sites binding univalent lipoprotein ligands. The data are best fit by models in which SR-BI has either two independent classes of binding sites, or one class of sites exhibiting negative cooperativity due to either classic allostery or ensemble effects (‘ lattice model’). Similar results were observed for LDL. Application of the ‘infinite dilution’ dissociation rate method established that the binding of 125I-HDL to SR-BI at 4 °C exhibits negative cooperativity. The unexpected complexity of the interactions of lipoproteins with SR-BI should be taken into account when interpreting the results of experiments that explore the mechanism(s) by which SR-BI mediates ligand binding, lipid transport and cell signaling. PMID:21254782

  12. Increased binding of LDL and VLDL to apo B,E receptors of hepatic plasma membrane of rats treated with Fibernat.

    PubMed

    Venkatesan, Nandini; Devaraj, S Niranjali; Devaraj, H

    2003-10-01

    Research has focussed on the hypocholesterolemic effects of certain types of dietary fiber such as enhancing conversion of hepatic cholesterol to bile acids or increase in catabolism of low density lipoprotein (LDL) via the apo B,E receptor. The effect of oral administration of a unique fibre cocktail of fenugreek seed powder, guar gum and wheat bran (Fibernat) and its varied effects on some aspects of lipid metabolism and cholesterol homeostasis in rats were examined. Rats were administered Fibernat along with the atherogenic diet containing 1.5 % cholesterol and 0.1 % cholic acid. Amounts of hepatic lipids, hepatic and fecal bile acids and activity of hepatic triglyceride lipase (HTGL) were determined. Transmission electron microscopic examination of the liver tissue and extent of uptake of (125)I-LDL and (125)I-VLDL by the hepatic apo B,E receptor was carried out. Food intake and body weight gain were similar between the 3 different dietary groups. Fibernat intake significantly increased apo B,E receptor expression in rat liver as reflected by an increase in the maximum binding capacity (B(max)) of the apo B,E receptor to (125)I-LDL and (125)I-VLDL. The activity of HTGL was increased by approximately 1.5-fold in Fibernat-fed rats as compared to those fed the atherogenic diet alone. A marked hypocholesterolemic effect was observed. Cholesterol homeostasis was achieved in Fibernat-fed rats. Two possible mechanisms are postulated to be responsible for the observed hypocholesterolemic effect a) an increase in conversion of cholesterol to bile acids and b) possibly by intra-luminal binding which resulted in increased fecal excretion of bile acids and neutral sterols. The resulting reduction in cholesterol content of liver cells coupled with upregulation of hepatic apo B,E receptors and increased clearance of circulating atherogenic lipoproteins-LDL and very low density lipoprotein (LDL and VLDL)-is the main mechanism involved in the hypocholesterolemic effect of

  13. Human plasma paraoxonase 1 (PON1) arylesterase activity during aging: correlation with susceptibility of LDL oxidation.

    PubMed

    Mehdi, Mohammad Murtaza; Rizvi, Syed Ibrahim

    2012-08-01

    The role of free radicals has long been proposed as a cause for the aging process. Oxidative stress is considered a major factor for altering many physiological processes and enzymatic activities during aging and is also known to play a major role in the development of several age-dependent diseases. Paraoxonase 1 (PON1) is an anti-atherosclerotic enzyme that mainly prevents accumulation of lipoperoxides and inhibits the lipid oxidation in low-density lipoproteins (LDL). This study was undertaken to investigate the antioxidant behavior of PON1 by measuring its arylesterase activity. The susceptibility of LDL for oxidation and the radical scavenging activity of plasma were also measured during aging in humans. Arylesterase activity of PON1 was measured in plasma of human subjects between 20 and 81 years of age of both genders. The susceptibility of LDL for oxidation and radical scavenging activity were measured in plasma. Decrease in plasma arylesterase activity of PON1, increase in susceptibility of LDL for oxidation and decrease in plasma radical scavenging activity were observed as a function of human age. The study provides evidence of a relationship between PON1 activity, LDL oxidation and free radical scavenging activity of plasma. The present results emphasize the dependency of PON1 activity to prevailing oxidative stress during human aging. Our findings assume significance in view of the possible categorization of PON1 as a longevity gene. Copyright © 2012 IMSS. Published by Elsevier Inc. All rights reserved.

  14. Molecular and functional characterization of the scavenger receptor CD36 in zebrafish and common carp.

    PubMed

    Fink, Inge R; Benard, Erica L; Hermsen, Trudi; Meijer, Annemarie H; Forlenza, Maria; Wiegertjes, Geert F

    2015-02-01

    CD36 is a scavenger receptor which has been studied closely in mammals where it is expressed by many different cell types and plays a role in highly diverse processes, both homeostatic and pathologic. It is among other things important in the innate immune system, in angiogenesis, and in clearance of apoptotic cells, and it is also involved in lipid metabolism and atherosclerosis. Recently, in the cephalochordate amphioxus a primitive CD36 family member was described, which was present before the divergence of CD36 from other scavenger receptor B family members, SCARB1 and SCARB2. Not much is known on the Cd36 molecule in teleost fish. We therefore studied Cd36 in both zebrafish and common carp, two closely related cyprinid fish species. Whereas a single cd36 gene is present in zebrafish, carp has two cd36 genes, and all show conserved synteny compared to mammalian CD36. The gene expression of carp cd36 is high in brain, ovary and testis but absent in immune organs. Although in mammals CD36 expression in erythrocytes, monocytes and macrophages is high, gene expression studies in leukocyte subtypes of adult carp and zebrafish larvae, including thrombocytes and macrophages provided no indication for any substantial expression of cd36 in immune cell types. Surprisingly, analysis of the cd36 promoter region does show the presence of several binding sites for transcription factors known to regulate immune responses. Overexpression of carp cd36 locates the receptor on the cell surface of mammalian cell lines consistent with the predicted topology of cyprinid Cd36 with a large extracellular domain, two transmembrane domains, and short cytoplasmic tails at both ends. Gene expression of cd36 is down-regulated during infection of zebrafish with Mycobacterium marinum, whereas knockdown of cd36 in zebrafish larvae led to higher bacterial burden upon such infection. We discuss the putative role for Cd36 in immune responses of fish in the context of other members of the

  15. Lectin-Like Oxidized LDL Receptor-1 Is an Enhancer of Tumor Angiogenesis in Human Prostate Cancer Cells

    PubMed Central

    González-Chavarría, Iván; Cerro, Rita P.; Parra, Natalie P.; Sandoval, Felipe A.; Zuñiga, Felipe A.; Omazábal, Valeska A.; Lamperti, Liliana I.; Jiménez, Silvana P.; Fernandez, Edelmira A.; Gutiérrez, Nicolas A.; Rodriguez, Federico S.; Onate, Sergio A.; Sánchez, Oliberto; Vera, Juan C.; Toledo, Jorge R.

    2014-01-01

    Altered expression and function of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) has been associated with several diseases such as endothelial dysfunction, atherosclerosis and obesity. In these pathologies, oxLDL/LOX-1 activates signaling pathways that promote cell proliferation, cell motility and angiogenesis. Recent studies have indicated that olr1 mRNA is over-expressed in stage III and IV of human prostatic adenocarcinomas. However, the function of LOX-1 in prostate cancer angiogenesis remains to be determined. Our aim was to analyze the contribution of oxLDL and LOX-1 to tumor angiogenesis using C4-2 prostate cancer cells. We analyzed the expression of pro-angiogenic molecules and angiogenesis on prostate cancer tumor xenografts, using prostate cancer cell models with overexpression or knockdown of LOX-1 receptor. Our results demonstrate that the activation of LOX-1 using oxLDL increases cell proliferation, and the expression of the pro-angiogenic molecules VEGF, MMP-2, and MMP-9 in a dose-dependent manner. Noticeably, these effects were prevented in the C4-2 prostate cancer model when LOX-1 expression was knocked down. The angiogenic effect of LOX-1 activated with oxLDL was further demonstrated using the aortic ring assay and the xenograft model of tumor growth on chorioallantoic membrane of chicken embryos. Consequently, we propose that LOX-1 activation by oxLDL is an important event that enhances tumor angiogenesis in human prostate cancer cells. PMID:25170920

  16. Use of LDL receptor-targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier.

    PubMed

    Molino, Yves; David, Marion; Varini, Karine; Jabès, Françoise; Gaudin, Nicolas; Fortoul, Aude; Bakloul, Karima; Masse, Maxime; Bernard, Anne; Drobecq, Lucile; Lécorché, Pascaline; Temsamani, Jamal; Jacquot, Guillaume; Khrestchatisky, Michel

    2017-05-01

    The blood-brain barrier (BBB) prevents the entry of many drugs into the brain and, thus, is a major obstacle in the treatment of CNS diseases. There is some evidence that the LDL receptor (LDLR) is expressed at the BBB and may participate in the transport of endogenous ligands from blood to brain, a process referred to as receptor-mediated transcytosis. We previously described a family of peptide vectors that were developed to target the LDLR. In the present study, in vitro BBB models that were derived from wild-type and LDLR-knockout animals ( ldlr -/- ) were used to validate the specific LDLR-dependent transcytosis of LDL via a nondegradative route. We next showed that LDLR-targeting peptide vectors, whether in fusion or chemically conjugated to an Ab Fc fragment, promote binding to apical LDLR and transendothelial transfer of the Fc fragment across BBB monolayers via the same route as LDL. Finally, we demonstrated in vivo that LDLR significantly contributes to the brain uptake of vectorized Fc. We thus provide further evidence that LDLR is a relevant receptor for CNS drug delivery via receptor-mediated transcytosis and that the peptide vectors we developed have the potential to transport drugs, including proteins or Ab based, across the BBB.-Molino, Y., David, M., Varini, K., Jabès, F., Gaudin, N., Fortoul, A., Bakloul, K., Masse, M., Bernard, A., Drobecq, L., Lécorché, P., Temsamani, J., Jacquot, G., Khrestchatisky, M. Use of LDL receptor-targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier. © FASEB.

  17. A randomized trial and novel SPR technique identifies altered lipoprotein-LDL receptor binding as a mechanism underlying elevated LDL-cholesterol in APOE4s

    PubMed Central

    Calabuig-Navarro, M. V.; Jackson, K. G.; Kemp, C. F.; Leake, D. S.; Walden, C. M.; Lovegrove, J. A.; Minihane, A. M.

    2017-01-01

    At a population level APOE4 carriers (~25% Caucasians) are at higher risk of cardiovascular diseases. The penetrance of genotype is however variable and influenced by dietary fat composition, with the APOE4 allele associated with greater LDL-cholesterol elevation in response to saturated fatty acids (SFA). The etiology of this greater responsiveness is unknown. Here a novel surface plasmon resonance technique (SPR) is developed and used, along with hepatocyte (with the liver being the main organ modulating lipoprotein metabolism and plasma lipid levels) uptake studies to establish the impact of dietary fatty acid composition on, lipoprotein-LDL receptor (LDLR) binding, and hepatocyte uptake, according to APOE genotype status. In men prospectively recruited according to APOE genotype (APOE3/3 common genotype, or APOE3/E4), triglyceride-rich lipoproteins (TRLs) were isolated at fasting and 4–6 h following test meals rich in SFA, unsaturated fat and SFA with fish oil. In APOE4s a greater LDLR binding affinity of postprandial TRL after SFA, and lower LDL binding and hepatocyte internalization, provide mechanisms for the greater LDL-cholesterol raising effect. The SPR technique developed may be used for the future study of the impact of genotype, and physiological and behavioral variables on lipoprotein metabolism. Trial registration number NCT01522482. PMID:28276521

  18. Macrophage heterogeneity and cholesterol homeostasis: classically-activated macrophages are associated with reduced cholesterol accumulation following treatment with oxidized LDL.

    PubMed

    Chu, Eugene M; Tai, Daven C; Beer, Jennifer L; Hill, John S

    2013-02-01

    Macrophages are centrally involved during atherosclerosis development and are the predominant cell type that accumulates cholesterol in the plaque. Macrophages however, are heterogeneous in nature reflecting a variety of microenvironments and different phenotypes may be more prone to contribute towards atherosclerosis progression. Using primary human monocyte-derived macrophages, we sought to evaluate one aspect of atherogenic potential of different macrophage phenotypes by determining their propensity to associate with and accumulate oxidized low density lipoprotein (oxLDL). Classically-activated macrophages treated simultaneously with interferon γ (IFNγ) and tumor necrosis factor α (TNFα) associated with less oxLDL and accumulated less cholesterol compared to untreated controls. The combined treatment of IFNγ and TNFα reduced the mRNA expression of CD36 and the expression of both cell surface CD36 and macrophage scavenger receptor 1 (MSR1) protein. Under oxLDL loaded conditions, IFNγ and TNFα did not reduce macrophage protein expression of the transcription factor peroxisome proliferator-actived receptor γ (PPARγ) which is known to positively regulate CD36 expression. However, macrophages treated with IFNγ attenuated the ability of the PPARγ-specific agonist rosiglitazone from upregulating cell surface CD36 protein expression. Our results demonstrate that the observed reduction of cholesterol accumulation in macrophages treated with IFNγ and TNFα following oxLDL treatment was due at least in part to reduced cell surface CD36 and MSR1 protein expression. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Leucine-rich Repeats of Bacterial Surface Proteins Serve as Common Pattern Recognition Motifs of Human Scavenger Receptor gp340*

    PubMed Central

    Loimaranta, Vuokko; Hytönen, Jukka; Pulliainen, Arto T.; Sharma, Ashu; Tenovuo, Jorma; Strömberg, Nicklas; Finne, Jukka

    2009-01-01

    Scavenger receptors are innate immune molecules recognizing and inducing the clearance of non-host as well as modified host molecules. To recognize a wide pattern of invading microbes, many scavenger receptors bind to common pathogen-associated molecular patterns, such as lipopolysaccharides and lipoteichoic acids. Similarly, the gp340/DMBT1 protein, a member of the human scavenger receptor cysteine-rich protein family, displays a wide ligand repertoire. The peptide motif VEVLXXXXW derived from its scavenger receptor cysteine-rich domains is involved in some of these interactions, but most of the recognition mechanisms are unknown. In this study, we used mass spectrometry sequencing, gene inactivation, and recombinant proteins to identify Streptococcus pyogenes protein Spy0843 as a recognition receptor of gp340. Antibodies against Spy0843 are shown to protect against S. pyogenes infection, but no function or host receptor have been identified for the protein. Spy0843 belongs to the leucine-rich repeat (Lrr) family of eukaryotic and prokaryotic proteins. Experiments with truncated forms of the recombinant proteins confirmed that the Lrr region is needed in the binding of Spy0843 to gp340. The same motif of two other Lrr proteins, LrrG from the Gram-positive S. agalactiae and BspA from the Gram-negative Tannerella forsythia, also mediated binding to gp340. Moreover, inhibition of Spy0843 binding occurred with peptides containing the VEVLXXXXW motif, but also peptides devoid of the XXXXW motif inhibited binding of Lrr proteins. These results thus suggest that the conserved Lrr motif in bacterial proteins serves as a novel pattern recognition motif for unique core peptides of human scavenger receptor gp340. PMID:19465482

  20. Influence of specific mutations at the LDL-receptor gene locus on the response to simvastatin therapy in Afrikaner patients with heterozygous familial hypercholesterolaemia.

    PubMed

    Jeenah, M; September, W; Graadt van Roggen, F; de Villiers, W; Seftel, H; Marais, D

    1993-01-04

    Simvastatin, an inhibitor of HMG CoA reductase, lowers the plasma total cholesterol and LDL-cholesterol concentration in familial hypercholesterolemic patients. The efficacy of the drug shows considerable inter-individual variation, however. In this study we have assessed the influence of certain LDL-receptor gene mutations on this variation. A group of 20 male and female heterozygotic familial hypercholesterolemic patients, all Afrikaners and each bearing one of two different LDL receptor gene mutations, FH Afrikaner-1 (FH1) and FH Afrikaner-2 (FH2), was treated with simvastatin (40 mg once daily) for 18 months. The average reduction in total plasma cholesterol was 35.3% in the case of the FH2 men but only 23.2% in that of the FH1 men (P = 0.005); the reduction in LDL cholesterol concentrations was also greater in the FH2 group (39% as opposed to 27.1%, P = 0.02). The better response of the FH2 group was also evident when men and women were considered together. Female FH1 patients responded better to simvastatin treatment, however, than did males with the same gene defect. Mutations at the LDL-receptor locus may thus play a significant role in the variable efficacy of the drug. The particular mutations in the males of this group may have contributed up to 35% of the variance in total cholesterol response and 29% of the variance in LDL-cholesterol response to simvastatin treatment.

  1. Clinical and pathophysiological evidence supporting the safety of extremely low LDL levels-The zero-LDL hypothesis.

    PubMed

    Masana, Luis; Girona, Josefa; Ibarretxe, Daiana; Rodríguez-Calvo, Ricardo; Rosales, Roser; Vallvé, Joan-Carles; Rodríguez-Borjabad, Cèlia; Guardiola, Montserrat; Rodríguez, Marina; Guaita-Esteruelas, Sandra; Oliva, Iris; Martínez-Micaelo, Neus; Heras, Mercedes; Ferré, Raimon; Ribalta, Josep; Plana, Núria

    While the impact of very low concentrations of low-density lipoprotein cholesterol (LDL-C) on cardiovascular prevention is very reassuring, it is intriguing to know what effect these extremely low LDL-C concentrations have on lipid homoeostasis. The evidence supporting the safety of extremely low LDL levels comes from genetic studies and clinical drug trials. Individuals with lifelong low LDL levels due to mutations in genes associated with increased LDL-LDL receptor (LDLR) activity reveal no safety issues. Patients achieving extremely low LDL levels in the IMPROVE-IT and FOURIER, and the PROFICIO and ODYSSEY programs seem not to have an increased prevalence of adverse effects. The main concern regarding extremely low LDL-C plasma concentrations is the adequacy of the supply of cholesterol, and other molecules, to peripheral tissues. However, LDL proteomic and kinetic studies reaffirm that LDL is the final product of endogenous lipoprotein metabolism. Four of 5 LDL particles are cleared through the LDL-LDLR pathway in the liver. Given that mammalian cells have no enzymatic systems to degrade cholesterol, the LDL-LDLR pathway is the main mechanism for removal of cholesterol from the body. Our focus, therefore, is to review, from a physiological perspective, why such extremely low LDL-C concentrations do not appear to be detrimental. We suggest that extremely low LDL-C levels due to increased LDLR activity may be a surrogate of adequate LDL-LDLR pathway function. Copyright © 2018 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  2. Regulation of hepatic LDL receptors by mTORC1 and PCSK9 in mice

    PubMed Central

    Ai, Ding; Chen, Chiyuan; Han, Seongah; Ganda, Anjali; Murphy, Andrew J.; Haeusler, Rebecca; Thorp, Edward; Accili, Domenico; Horton, Jay D.; Tall, Alan R.

    2012-01-01

    Individuals with type 2 diabetes have an increased risk of atherosclerosis. One factor underlying this is dyslipidemia, which in hyperinsulinemic subjects with early type 2 diabetes is typically characterized by increased VLDL secretion but normal LDL cholesterol levels, possibly reflecting enhanced catabolism of LDL via hepatic LDLRs. Recent studies have also suggested that hepatic insulin signaling sustains LDLR levels. We therefore sought to elucidate the mechanisms linking hepatic insulin signaling to regulation of LDLR levels. In WT mice, insulin receptor knockdown by shRNA resulted in decreased hepatic mTORC1 signaling and LDLR protein levels. It also led to increased expression of PCSK9, a known post-transcriptional regulator of LDLR expression. Administration of the mTORC1 inhibitor rapamycin caused increased expression of PCSK9, decreased levels of hepatic LDLR protein, and increased levels of VLDL/LDL cholesterol in WT but not Pcsk9–/– mice. Conversely, mice with increased hepatic mTORC1 activity exhibited decreased expression of PCSK9 and increased levels of hepatic LDLR protein levels. Pcsk9 is regulated by the transcription factor HNF1α, and our further detailed analyses suggest that increased mTORC1 activity leads to activation of PKCδ, reduced activity of HNF4α and HNF1α, decreased PCSK9 expression, and ultimately increased hepatic LDLR protein levels, which result in decreased circulating LDL levels. We therefore suggest that PCSK9 inhibition could be an effective way to reduce the adverse side effect of increased LDL levels that is observed in transplant patients taking rapamycin as immunosuppressive therapy. PMID:22426206

  3. Human scavenger receptor class B type I is expressed with cell-specific fashion in both initial and terminal site of reverse cholesterol transport.

    PubMed

    Nakagawa-Toyama, Yumiko; Hirano, Ken-ichi; Tsujii, Ken-ichi; Nishida, Makoto; Miyagawa, Jun-ichiro; Sakai, Naohiko; Yamashita, Shizuya

    2005-11-01

    The reverse cholesterol transport (RCT) is one of the major protective systems against atherosclerosis, in which high-density lipoprotein (HDL) removes cholesterol from lipid-laden cells and delivers it to the liver. Scavenger receptor class B type I (SR-BI) is a HDL receptor in the liver and adrenal glands and is involved in the selective uptake of cholesteryl ester from HDL, which has been extensively, analyzed using rodent models. However, the expression and regulation of the human homologue of this receptor are not known yet. We previously reported that this receptor is expressed in in vitro differentiated macrophages and its expression is up-regulated by the addition of modified lipoproteins into the medium [Hirano K, Yamashita S, Nakagawa Y, et al. Expression of human scavenger receptor class B type I in cultured human monocyte-derived macrophages and atherosclerotic lesions. Circ Res 1999;85:108-16]. In order to further investigate the physiological significance of this receptor in humans, we have performed extensive immunohistochemical analyses with specimens of the liver and adrenal glands as well as arteries with different stages of atherosclerotic lesions. In human liver and adrenal glands, a positive SR-BI immunoreactivity was detected in both hepatic and adrenal parenchymal cells as well as Kupffer cells. These parenchymal cells had a strong signal on the cell surface, whereas Kupffer cells showed a heterogeneous and punctate pattern. In human aorta and coronary arteries, SR-BI was highly expressed in atherosclerotic plaques, but not in non-atherosclerotic lesions. Double immunostaining revealed that SR-BI was expressed in a subpopulation of macrophages, of which staining pattern was similar to that observed in Kupffer cells. These data clearly demonstrated that SR-BI was expressed with cell-specific fashions in both the initial and terminal step of RCT in humans. Thus, SR-BI might be physiologically relevant and have distinct tissue-specific functions.

  4. Site-specific O-glycosylation of members of the low-density lipoprotein receptor superfamily enhances ligand interactions.

    PubMed

    Wang, Shengjun; Mao, Yang; Narimatsu, Yoshiki; Ye, Zilu; Tian, Weihua; Goth, Christoffer K; Lira-Navarrete, Erandi; Pedersen, Nis B; Benito-Vicente, Asier; Martin, Cesar; Uribe, Kepa B; Hurtado-Guerrero, Ramon; Christoffersen, Christina; Seidah, Nabil G; Nielsen, Rikke; Christensen, Erik I; Hansen, Lars; Bennett, Eric P; Vakhrushev, Sergey Y; Schjoldager, Katrine T; Clausen, Henrik

    2018-05-11

    The low-density lipoprotein receptor (LDLR) and related receptors are important for the transport of diverse biomolecules across cell membranes and barriers. Their functions are especially relevant for cholesterol homeostasis and diseases, including neurodegenerative and kidney disorders. Members of the LDLR-related protein family share LDLR class A (LA) repeats providing binding properties for lipoproteins and other biomolecules. We previously demonstrated that short linker regions between these LA repeats contain conserved O -glycan sites. Moreover, we found that O -glycan modifications at these sites are selectively controlled by the GalNAc-transferase isoform, GalNAc-T11. However, the effects of GalNAc-T11-mediated O -glycosylation on LDLR and related receptor localization and function are unknown. Here, we characterized O -glycosylation of LDLR-related proteins and identified conserved O -glycosylation sites in the LA linker regions of VLDLR, LRP1, and LRP2 (Megalin) from both cell lines and rat organs. Using a panel of gene-edited isogenic cell line models, we demonstrate that GalNAc-T11-mediated LDLR and VLDLR O -glycosylation is not required for transport and cell-surface expression and stability of these receptors but markedly enhances LDL and VLDL binding and uptake. Direct ELISA-based binding assays with truncated LDLR constructs revealed that O -glycosylation increased affinity for LDL by ∼5-fold. The molecular basis for this observation is currently unknown, but these findings open up new avenues for exploring the roles of LDLR-related proteins in disease. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. EETs Attenuate Ox-LDL-Induced LTB4 Production and Activity by Inhibiting p38 MAPK Phosphorylation and 5-LO/BLT1 Receptor Expression in Rat Pulmonary Arterial Endothelial Cells.

    PubMed

    Jiang, Jun-xia; Zhang, Shui-juan; Xiong, Yao-kang; Jia, Yong-liang; Sun, Yan-hong; Lin, Xi-xi; Shen, Hui-juan; Xie, Qiang-min; Yan, Xiao-feng

    2015-01-01

    Cytochrome P-450 epoxygenase (EPOX)-derived epoxyeicosatrienoic acids (EETs), 5-lipoxygenase (5-LO), and leukotriene B4 (LTB4), the product of 5-LO, all play a pivotal role in the vascular inflammatory process. We have previously shown that EETs can alleviate oxidized low-density lipoprotein (ox-LDL)-induced endothelial inflammation in primary rat pulmonary artery endothelial cells (RPAECs). Here, we investigated whether ox-LDL can promote LTB4 production through the 5-LO pathway. We further explored how exogenous EETs influence ox-LDL-induced LTB4 production and activity. We found that treatment with ox-LDL increased the production of LTB4 and further led to the expression and release of both monocyte chemoattractant protein-1 (MCP-1/CCL2) and intercellular adhesion molecule-1 (ICAM-1). All of the above ox-LDL-induced changes were attenuated by the presence of 11,12-EET and 14,15-EET, as these molecules inhibited the 5-LO pathway. Furthermore, the LTB4 receptor 1 (BLT1 receptor) antagonist U75302 attenuated ox-LDL-induced ICAM-1 and MCP-1/CCL2 expression and production, whereas LY255283, a LTB4 receptor 2 (BLT2 receptor) antagonist, produced no such effects. Moreover, in RPAECs, we demonstrated that the increased expression of 5-LO and BLT1 following ox-LDL treatment resulted from the activation of nuclear factor-κB (NF-κB) via the p38 mitogen-activated protein kinase (MAPK) pathway. Our results indicated that EETs suppress ox-LDL-induced LTB4 production and subsequent inflammatory responses by downregulating the 5-LO/BLT1 receptor pathway, in which p38 MAPK phosphorylation activates NF-κB. These results suggest that the metabolism of arachidonic acid via the 5-LO and EPOX pathways may present a mutual constraint on the physiological regulation of vascular endothelial cells.

  6. EETs Attenuate Ox-LDL-Induced LTB4 Production and Activity by Inhibiting p38 MAPK Phosphorylation and 5-LO/BLT1 Receptor Expression in Rat Pulmonary Arterial Endothelial Cells

    PubMed Central

    Xiong, Yao-kang; Jia, Yong-liang; Sun, Yan-hong; Lin, Xi-xi; Shen, Hui-juan; Xie, Qiang-min; Yan, Xiao-feng

    2015-01-01

    Cytochrome P-450 epoxygenase (EPOX)-derived epoxyeicosatrienoic acids (EETs), 5-lipoxygenase (5-LO), and leukotriene B4 (LTB4), the product of 5-LO, all play a pivotal role in the vascular inflammatory process. We have previously shown that EETs can alleviate oxidized low-density lipoprotein (ox-LDL)-induced endothelial inflammation in primary rat pulmonary artery endothelial cells (RPAECs). Here, we investigated whether ox-LDL can promote LTB4 production through the 5-LO pathway. We further explored how exogenous EETs influence ox-LDL-induced LTB4 production and activity. We found that treatment with ox-LDL increased the production of LTB4 and further led to the expression and release of both monocyte chemoattractant protein-1 (MCP-1/CCL2) and intercellular adhesion molecule-1 (ICAM-1). All of the above ox-LDL-induced changes were attenuated by the presence of 11,12-EET and 14,15-EET, as these molecules inhibited the 5-LO pathway. Furthermore, the LTB4 receptor 1 (BLT1 receptor) antagonist U75302 attenuated ox-LDL-induced ICAM-1 and MCP-1/CCL2 expression and production, whereas LY255283, a LTB4 receptor 2 (BLT2 receptor) antagonist, produced no such effects. Moreover, in RPAECs, we demonstrated that the increased expression of 5-LO and BLT1 following ox-LDL treatment resulted from the activation of nuclear factor-κB (NF-κB) via the p38 mitogen-activated protein kinase (MAPK) pathway. Our results indicated that EETs suppress ox-LDL-induced LTB4 production and subsequent inflammatory responses by downregulating the 5-LO/BLT1 receptor pathway, in which p38 MAPK phosphorylation activates NF-κB. These results suggest that the metabolism of arachidonic acid via the 5-LO and EPOX pathways may present a mutual constraint on the physiological regulation of vascular endothelial cells. PMID:26035589

  7. The rat macrophage scavenger receptor CD163: expression, regulation and role in inflammatory mediator production.

    PubMed

    Polfliet, Machteld M J; Fabriek, Babs O; Daniëls, Wouter P; Dijkstra, Christine D; van den Berg, Timo K

    2006-01-01

    The monoclonal antibody ED2 is widely used to define macrophages (mphi) in the rat. We have recently identified the ED2 antigen as the rat CD163 glycoprotein. CD163 is a member of the scavenger receptor cysteine-rich group B (SRCR-B) family and functions as a scavenger receptor for hemoglobin-haptoglobin complexes. Moreover, CD163 has also been indicated as a marker for alternatively activated mphi. In the current study, we identify rat CD163/ED2-antigen as a marker for mature tissue mphi. Rat CD163 is constitutively expressed on most subpopulations of mature tissue mphi, including splenic red pulp mphi, thymic cortical mphi, Kupffer cells in the liver, resident bone marrow mphi and central nervous system perivascular and meningeal mphi, but is apparently absent from monocytes. Rat CD163 expression can be promoted by glucocorticoids, and this can be further enhanced by IL4. Finally, engagement of rat CD163 on peritoneal mphi induces the production of pro-inflammatory mediators, including NO, IL-1beta, IL-6 and TNF-alpha. Collectively, our findings identify rat CD163 as a broadly expressed macrophage scavenger receptor that may play a role in the activation of mphi during hemolytic and/or inflammatory conditions.

  8. Structures of class A macrophage scavenger receptors. Electron microscopic study of flexible, multidomain, fibrous proteins and determination of the disulfide bond pattern of the scavenger receptor cysteine-rich domain.

    PubMed

    Resnick, D; Chatterton, J E; Schwartz, K; Slayter, H; Krieger, M

    1996-10-25

    Structures of secreted forms of the human type I and II class A macrophage scavenger receptors were studied using biochemical and biophysical methods. Proteolytic analysis was used to determine the intramolecular disulfide bonds in the type I-specific scavenger receptor cysteine-rich (SRCR) domain: Cys2-Cys7, Cys3-Cys8, and Cys5-Cys6. This pattern is likely to be shared by the highly homologous domains in the many other members of the SRCR domain superfamily. Electron microscopy using rotary shadowing and negative staining showed that the type I and II receptors are extended molecules whose contour lengths are approximately 440 A. They comprised two adjacent fibrous segments, an alpha-helical coiled-coil ( approximately 230 A, including a contribution from the N-terminal spacer domain) and a collagenous triple helix ( approximately 210 A). The type I molecules also contained a C-terminal globular structure ( approximately 58 x 76 A) composed of three SRCR domains. The fibrous domains were joined by an extremely flexible hinge. The angle between these domains varied from 0 to 180 degrees and depended on the conditions of sample preparation. Unexpectedly, at physiologic pH, the prevalent angle seen using rotary shadowing was 0 degrees , resulting in a structure that is significantly more compact than previously suggested. The apparent juxtaposition of the fibrous domains at neutral pH provides a framework for future structure-function studies of these unusual multiligand receptors.

  9. Liver heparan sulfate proteoglycans mediate clearance of triglyceride-rich lipoproteins independently of LDL receptor family members

    PubMed Central

    MacArthur, Jennifer M.; Bishop, Joseph R.; Stanford, Kristin I.; Wang, Lianchun; Bensadoun, André; Witztum, Joseph L.; Esko, Jeffrey D.

    2007-01-01

    We examined the role of hepatic heparan sulfate in triglyceride-rich lipoprotein metabolism by inactivating the biosynthetic gene GlcNAc N-deacetylase/N-sulfotransferase 1 (Ndst1) in hepatocytes using the Cre-loxP system, which resulted in an approximately 50% reduction in sulfation of liver heparan sulfate. Mice were viable and healthy, but they accumulated triglyceride-rich lipoprotein particles containing apoB-100, apoB-48, apoE, and apoCI-IV. Compounding the mutation with LDL receptor deficiency caused enhanced accumulation of both cholesterol- and triglyceride-rich particles compared with mice lacking only LDL receptors, suggesting that heparan sulfate participates in the clearance of cholesterol-rich lipoproteins as well. Mutant mice synthesized VLDL normally but showed reduced plasma clearance of human VLDL and a corresponding reduction in hepatic VLDL uptake. Retinyl ester excursion studies revealed that clearance of intestinally derived lipoproteins also depended on hepatocyte heparan sulfate. These findings show that under normal physiological conditions, hepatic heparan sulfate proteoglycans play a crucial role in the clearance of both intestinally derived and hepatic lipoprotein particles. PMID:17200715

  10. Overexpression of 15-lipoxygenase in the vascular endothelium is associated with increased thymic apoptosis in LDL receptor-deficient mice.

    PubMed

    Afek, A; Zurgil, N; Bar-Dayan, Y; Polak-Charcon, S; Goldberg, I; Deutsch, M; Kopolovich, J; Keren, G; Harats, D; George, J

    2004-01-01

    15-Lipoxygenase (15-LO) is a nonheme iron-containing enzyme that catalyzes the peroxidation of fatty acids. Herein, we studied the effect of 15-LO overexpression in the vascular endothelium on thymocyte apoptosis by evaluating thymuses from low-density lipoprotein receptor-deficient (LDL-RD) mice and LDL-RD/15-LO mice. Thymuses were evaluated by immunohistochemistry and by TUNEL whereas in vitro studies were carried out by employing freshly isolated thymocytes from the respective mice and evaluation of apoptosis by propidium iodide and annexin V cytometry. The apoptotic index in LDL-RD/15-LO mice was significantly higher than in the LDL-RD mice. In the thymic medulla the difference was smaller, although still significant. Freshly isolated thymus cells from LDL-RD/15-LO mice exhibited a higher rate of spontaneous cell death than controls. Incubation of thymus cells in the presence of the cell-permeable caspase-3 inhibitor DEVD-CMK resulted in a decrease in the frequency of apoptotic cells in LDL-RD/15-LO thymocytes, whereas no effect was evident in control thymocytes. The antioxidant N-acetylcysteine causes the increase in apoptosis in both groups. LDL-RD/15-LO mice exhibit increased thymocyte apoptosis both in vivo and in vitro. These findings may suggest a role for 15-LO in the natural selection of thymocytes.

  11. Dietary saturated triacylglycerols suppress hepatic low density lipoprotein receptor activity in the hamster.

    PubMed

    Spady, D K; Dietschy, J M

    1985-07-01

    The liver plays a key role in the regulation of circulating levels of low density lipoproteins (LDL) because it is both the site for the production of and the major organ for the degradation of this class of lipoproteins. In this study, the effects of feeding polyunsaturated or saturated triacylglycerols on receptor-dependent and receptor-independent hepatic LDL uptake were measured in vivo in the hamster. In control animals, receptor-dependent LDL transport manifested an apparent Km value of 85 mg/dl (plasma LDL-cholesterol concentration) and reached a maximum transport velocity of 131 micrograms of LDL-cholesterol/hr per g, whereas receptor-independent uptake increased as a linear function of plasma LDL levels. Thus, at normal plasma LDL-cholesterol concentrations, the hepatic clearance rate of LDL equaled 120 and 9 microliter/hr per g by receptor-dependent and receptor-independent mechanisms, respectively. As the plasma LDL-cholesterol was increased, the receptor-dependent (but not the receptor-independent) component declined. When cholesterol (0.12%) alone or in combination with polyunsaturated triacylglycerols was fed for 30 days, receptor-dependent clearance was reduced to 36-42 microliter/hr per g, whereas feeding of cholesterol plus saturated triacylglycerols essentially abolished receptor-dependent LDL uptake (5 microliter/hr per g). When compared to the appropriate kinetic curves, these findings indicated that receptor-mediated LDL transport was suppressed approximately equal to 30% by cholesterol feeding alone and this was unaffected by the addition of polyunsaturated triacylglycerols to the diet. In contrast, receptor-dependent uptake was suppressed approximately equal to 90% by the intake of saturated triacylglycerols. As compared to polyunsaturated triacylglycerols, the intake of saturated lipids was also associated with significantly higher plasma LDL-cholesterol concentrations and lower levels of cholesteryl esters in the liver.

  12. Endothelial cytoprotection from oxidized LDL by some crude Melanesian plant extracts is not related to their antioxidant capacity.

    PubMed

    Owen, Patrick L; Matainaho, Teatulohi; Sirois, Martin; Johns, Timothy

    2007-01-01

    Habitual consumption of some Melanesian medicinal and food plants may influence atherosclerosis development via their antioxidant capacity at the endothelial level. Areca nut (AN; Areca catechu), piper inflorescence (PBI; Piper betle), betel quid (BQ), guava buds (GB; Psidium guajava), the leaves (NL), juice (NJ), fruit (NF), and root (NR) of noni (Morinda citrifolia), the propagules of raw (MBR), and cooked (MBC) mangrove (Bruguiera gymnorrhiza) were evaluated for their ability to scavenge the 1,1-diphenyl-2-picryl-hydrazyle (DPPH) radical, to protect human low-density lipoprotein (LDL) from Cu2+-catalyzed oxidation and to protect cultured bovine aortal endothelial cells (BAEC) from oxidized LDL (oxLDL)-induced cytotoxicity. Polyphenol-rich extracts AN, PBI, and BQ were potent DPPH scavengers, having similar activity to quercetin and able to protect LDL from oxidation in a dose-dependent manner at concentrations higher than 10 microg/mL, but were pro-oxidants at lower concentrations. These extracts were cytotoxic to BAEC at concentrations above 10 microg/mL and were unable to prevent oxLDL endotheliopathy. GB and NR at 10 mug/mL displayed both the ability to delay LDL oxidation and prevent oxLDL cytotoxicity, although the latter lacked the ability to scavenge the DPPH radical. At higher concentrations, however, both were cytotoxic in themselves. The remaining noni extracts NF, NJ, NL, and both mangrove extracts MBC and MBR were unable to protect LDL from oxidation at all tested concentrations, but were effective cytoprotective agents at 50 microg/mL. All extracts were able to prevent an oxLDL-mediated increase in intracellular aldehyde generation but had little effect on extracellular peroxidation as measured by thiobarbituric acid reactive substances (TBARS). On the basis of this model system, we conclude that the antioxidant benefits of AN, PBI, and BQ may be offset by their enhancement of their cytotoxic effects of oxLDL toward BAEC, whereas GB and low

  13. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease

    USDA-ARS?s Scientific Manuscript database

    Scavenger receptor BI (SR-BI) is the major receptor for high-density lipoprotein (HDL) cholesterol (HDL-C). In humans, high amounts of HDL-C in plasma are associated with a lower risk of coronary heart disease (CHD). Mice that have depleted Scarb1 (SR-BI knockout mice) have markedly elevated HDL-C l...

  14. Fetuin mediates hepatic uptake of negatively charged nanoparticles via scavenger receptor.

    PubMed

    Nagayama, Susumu; Ogawara, Ken-ichi; Minato, Keiko; Fukuoka, Yoshiko; Takakura, Yoshinobu; Hashida, Mitsuru; Higaki, Kazutaka; Kimura, Toshikiro

    2007-02-01

    We tried to evaluate the possible involvement of fetuin in the scavenger receptors (SRs)-mediated hepatic uptake of polystyrene nanospheres with the size of 50 nm (NS-50), which has surface negative charge (zeta potential=-21.8+/-2.3 mV). The liver perfusion studies in rats revealed that the hepatic uptake of NS-50 pre-coated with fetuin (NS-50-fetuin) was significantly inhibited by poly inosinic acid (poly I), a typical inhibitor of SRs, whereas that of plain NS-50 or NS-50 pre-coated with BSA (NS-50-BSA) was not. The uptake of NS-50-fetuin by cultured Kupffer cells was also significantly inhibited by poly I, and anti-class A scavenger receptors (SR-A) antibody, suggesting that fetuin on NS-50 mediated the recognition and internalization of NS-50 by Kupffer cells and at least SR-A would be responsible for the uptake. Taken that Western blot analysis confirmed that fetuin certainly adsorbed on the surface of NS-50 after the incubation of NS-50 with serum, the results obtained in the present study indicate that fetuin would be one of the serum proteins that were substantially involved in the hepatic uptake of NS-50 via SRs.

  15. LDL oxidation by platelets propagates platelet activation via an oxidative stress-mediated mechanism.

    PubMed

    Carnevale, Roberto; Bartimoccia, Simona; Nocella, Cristina; Di Santo, Serena; Loffredo, Lorenzo; Illuminati, Giulio; Lombardi, Elisabetta; Boz, Valentina; Del Ben, Maria; De Marco, Luigi; Pignatelli, Pasquale; Violi, Francesco

    2014-11-01

    Platelets generate oxidized LDL (ox-LDL) via NOX2-derived oxidative stress. We investigated if once generated by activated platelets ox-LDL can propagate platelet activation. Experiments were performed in platelets from healthy subjects (HS), hyper-cholesterolemic patients and patients with NOX2 hereditary deficiency. Agonist-stimulated platelets from HS added with LDL were associated with a dose-dependent increase of reactive oxidant species and ox-LDL. Agonist-stimulated platelets from HS added with a fixed dose of LDL (57.14 μmol/L) or added with homogenized human atherosclerotic plaque showed enhanced ox-LDL formation (approximately +50% and +30% respectively), which was lowered by a NOX2 inhibitor (approximately -35% and -25% respectively). Compared to HS, ox-LDL production was more pronounced in agonist-stimulated platelet rich plasma (PRP) from hyper-cholesterolemic patients but was almost absent in PRP from NOX2-deficient patients. Platelet aggregation and 8-iso-PGF2α-ΙΙΙ formation increased in LDL-treated washed platelets (+42% and +53% respectively) and PRP (+31% and +53% respectively). Also, LDL enhanced platelet-dependent thrombosis at arterial shear rate (+33%) but did not affect platelet activation in NOX2-deficient patients. Platelet activation by LDL was significantly inhibited by CD36 or LOX1 blocking peptides, two ox-LDL receptor antagonists, or by a NOX2 inhibitor. LDL-added platelets showed increased p38MAPK (+59%) and PKC (+51%) phosphorylation, p47(phox) translocation to platelet membrane (+34%) and NOX2 activation (+30%), which were inhibited by ox-LDL receptor antagonists. Platelets oxidize LDL, which in turn amplify platelet activation via specific ox-LDL receptors; both effects are mediated by NOX2 activation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Antioxidant properties and inhibitory effects of Satureja khozestanica essential oil on LDL oxidation induced-CuSO4 in vitro

    PubMed Central

    Bagheri, Shahrokh; Ahmadvand, Hassan; Khosrowbeygi, Ali; Ghazanfari, Farshid; Jafari, Narges; Nazem, Habibolah; Hosseini, Reza Haji

    2013-01-01

    Objective To assess various antioxidative activities of Satureja khozestanica essential oil (SKE) and its effect on oxidation of low density lipoprotein (LDL) induced by CuSO4 in vitro by monitoring the formation of conjugated dienes and malondialdehyde (MDA). Methods The formation of conjugated dienes, lag time and MDA were measured. Inhibition of this Cu-induced oxidation was studied in the presence of several concentrations of SKE. Also total antioxidant activity and free radical scavenging of SKE were determinated. Results It was demonstrated that SKE was able to inhibit LDL oxidation and decrease the resistance of LDL against oxidation. The inhibitory effects of SKE on LDL oxidation were dose-dependent at concentrations ranging from 50 to 200 µg/mL. Total antioxidant capacity of SKE was (3.20±0.40) nmol of ascorbic acid equivalents/g SKE. The SKE showed remarkable scavenging activity on 2, 2-diphenyl-picrylhydrazyl, IC50 (5.30±0.11) ng/mL. Conclusions This study shows that SKE is a source of potent antioxidants and prevents the oxidation of LDL in vitro and it may be suitable for use in food and pharmaceutical applications. PMID:23570012

  17. Human LDL Structural Diversity Studied by IR Spectroscopy

    PubMed Central

    Fernández-Higuero, José A.; Salvador, Ana M.; Martín, Cesar; Milicua, José Carlos G.; Arrondo, José L. R.

    2014-01-01

    Lipoproteins are responsible for cholesterol traffic in humans. Low density lipoprotein (LDL) delivers cholesterol from liver to peripheral tissues. A misleading delivery can lead to the formation of atherosclerotic plaques. LDL has a single protein, apoB-100, that binds to a specific receptor. It is known that the failure associated with a deficient protein-receptor binding leads to plaque formation. ApoB-100 is a large single lipid-associated polypeptide difficulting the study of its structure. IR spectroscopy is a technique suitable to follow the different conformational changes produced in apoB-100 because it is not affected by the size of the protein or the turbidity of the sample. We have analyzed LDL spectra of different individuals and shown that, even if there are not big structural changes, a different pattern in the intensity of the band located around 1617 cm−1 related with strands embedded in the lipid monolayer, can be associated with a different conformational rearrangement that could affect to a protein interacting region with the receptor. PMID:24642788

  18. [Plasma scavenger receptor BI and CD36 expression change and susceptibility of atherosclerosis in patients post liver transplantation].

    PubMed

    Chen, Xin; Xue, Jinhong; Zhang, Shuyi; Sun, Liying; Lu, Chengzhi

    2014-02-01

    To explore the association between expression changes of plasma macrophages scavenger receptor (SR)-BI and CD36 and risk of arteriosclerosis in end-stage liver disease (ESLD) patients post liver transplantation. A total of 20 liver transplantation patients were included. Clinical data including blood pressure, blood lipid, blood glucose, incidence of new-onset cardiovascular events were obtained. Plasma macrophages scavenger receptor SR-BIand CD36 expressions were detected by polymerase chain reaction (RT-PCR) and Western-blot before and at 1 year after liver transplantation. The serum levels of TC [(5.34 ± 0.87) mmol/L vs. (4.27 ± 0.91) mmol/L], TG [(2.47 ± 0.81) mmol/L vs. (1.02 ± 0.49) mmol/L] and LDL-C [(3.36 ± 0.67) mmol/L vs. (2.14 ± 0.74) mmol/L] were significantly increased (P < 0.05) while the serum level of HDL-C [(0.98 ± 0.84) mmol/L vs. (1.58 ± 0.34) mmol/L] was significantly reduced (P < 0.05) at 1 year post transplantation compared to before-transplantation levels. One patient developed non-ST segment elevation myocardial infarction and treated with percutaneous coronary intervention, another patient developed atrial fibrillation at one year after transplantation. The plasma mRNA expression of SR-BI was reduced (20.44 ± 0.60 vs. 23.12 ± 0.69, P < 0.05) while the expression of CD36 mRNA was upregulated (20.91 ± 0.35 vs. 18.55 ± 0.62, P < 0.05) at 1 year after liver transplantation compare with that of before the transplantation. Similarly, the plasma protein expression of SR-BIwas reduced (0.21 ± 0.13 vs. 0.64 ± 0.28, P < 0.05) while the protein expression of CD36 was upregulated (0.94 ± 0.13 vs. 0.42 ± 0.19, P < 0.05) at 1 year after liver transplantation compare with that of before the transplantation. Plasma expression changes of SR-BI and CD36 might contribute to the dyslipidemia and contribute to the atherosclerosis susceptibility after liver transplantation.

  19. Inhibition of lysophosphatidic acid receptors 1 and 3 attenuates atherosclerosis development in LDL-receptor deficient mice.

    PubMed

    Kritikou, Eva; van Puijvelde, Gijs H M; van der Heijden, Thomas; van Santbrink, Peter J; Swart, Maarten; Schaftenaar, Frank H; Kröner, Mara J; Kuiper, Johan; Bot, Ilze

    2016-11-24

    Lysophosphatidic acid (LPA) is a natural lysophospholipid present at high concentrations within lipid-rich atherosclerotic plaques. Upon local accumulation in the damaged vessels, LPA can act as a potent activator for various types of immune cells through its specific membrane receptors LPA 1/3. LPA elicits chemotactic, pro-inflammatory and apoptotic effects that lead to atherosclerotic plaque progression. In this study we aimed to inhibit LPA signaling by means of LPA 1/3 antagonism using the small molecule Ki16425. We show that LPA 1/3 inhibition significantly impaired atherosclerosis progression. Treatment with Ki16425 also resulted in reduced CCL2 production and secretion, which led to less monocyte and neutrophil infiltration. Furthermore, we provide evidence that LPA 1/3 blockade enhanced the percentage of non-inflammatory, Ly6C low monocytes and CD4 + CD25 + FoxP3 + T-regulatory cells. Finally, we demonstrate that LPA 1/3 antagonism mildly reduced plasma LDL cholesterol levels. Therefore, pharmacological inhibition of LPA 1/3 receptors may prove a promising approach to diminish atherosclerosis development.

  20. Lectin-like oxidized LDL receptor-1 expresses in mouse bone marrow-derived mesenchymal stem cells and stimulates their proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fenxi; Stem Cell and Biotheraphy Technology Research Center, College of Lifescience and Technology, Xinxiang Medical University, Xinxiang 453003; Wang, Congrui

    The bone marrow-derived mesenchymal stem cells (bmMSCs) have been widely used in cell transplant therapy, and the proliferative ability of bmMSCs is one of the determinants of the therapy efficiency. Lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) as a transmembrane protein is responsible for binding, internalizing and degrading oxidized low density lipoprotein (ox-LDL). It has been identified that LOX-1 is expressed in endothelial cells, vascular smooth muscle cells, cardiomyocytes, fibroblasts and monocytes. In these cells, low concentration of ox-LDL (<40 μg/mL) stimulates their proliferation via LOX-1 activation. However, it is poor understood that whether LOX-1 is expressed in bmMSCs andmore » which role it plays. In this study, we investigated the status of LOX-1 expression in bmMSCs and its function on bmMSC proliferation. Our results showed that primary bmMSCs exhibiting a typical fibroblast-like morphology are positive for CD44 and CD90, but negative for CD34 and CD45. LOX-1 in both mRNA and protein levels is highly expressed in bmMSCs. Meanwhile, bmMSCs exhibit a strong potential to take up ox-LDL. Moreover, LOX-1 expression in bmMSCs is upregulated by ox-LDL with a dose- and time-dependent manner. Presence of ox-LDL also enhances the proliferation of bmMSCs. Knockdown of LOX-1 expression significantly inhibits ox-LDL-induced bmMSC proliferation. These findings indicate that LOX-1 plays a role in bmMSC proliferation. - Highlights: ► LOX-1 expresses in bmMSCs and mediates uptake of ox-LDL. ► Ox-LDL stimulates upregulation of LOX-1 in bmMSCs. ► Ox-LDL promotes bmMSC proliferation and expression of Mdm2, phosphor-Akt, phosphor-ERK1/2 and phosphor-NF-κB. ► LOX-1 siRNA inhibits ox-LDL-induced bmMSC proliferation and expression cell survival signals.« less

  1. Large Impact of Low Concentration Oxidized LDL on Angiogenic Potential of Human Endothelial Cells: A Microarray Study

    PubMed Central

    Khaidakov, Magomed; Mitra, Sona; Wang, Xianwei; Ding, Zufeng; Bora, Nalini; Lyzogubov, Valery; Romeo, Francesco; Schichman, Steven A.; Mehta, Jawahar L.

    2012-01-01

    Oxidized LDL (ox-LDL) is a key factor in atherogenesis. It is taken up by endothelial cells primarily by ox-LDL receptor-1 (LOX-1). To elucidate transcriptional responses, we performed microarray analysis on human coronary artery endothelial cells (HCAECs) exposed to small physiologic concentration of ox-LDL- 5 µg/ml for 2 and 12 hours. At 12 hours, cultures treated with ox-LDL exhibited broad shifts in transcriptional activity involving almost 1500 genes (>1.5 fold difference, p<0.05). Resulting transcriptome was enriched for genes associated with cell adhesion (p<0.002), angiogenesis (p<0.0002) and migration (p<0.006). Quantitative PCR analysis revealed that LOX-1 expression in HCAECs is at least an order of magnitude greater than the expression of other major ox-LDL specific receptors CD36 and MSR1. In keeping with the data on LOX-1 expression, pre-treatment of HCAECs with LOX-1 neutralizing antibody resulted in across-the-board inhibition of cellular response to ox-LDL. Ox-LDL upregulated a number of pro-angiogenic genes including multiple receptors, ligands and transcription factors and altered the expression of a number of genes implicated in both stimulation and inhibition of apoptosis. From a functional standpoint, physiologic concentrations of ox-LDL stimulated tube formation and inhibited susceptibility to apoptosis in HCAECs. In addition, ox-LDL exposure resulted in upregulation of miR-1974, miR-1978 and miR-21 accompanied with significant over-presentation of their target genes in the downregulated portion of ox-LDL transcriptome. Our observations indicate that ox-LDL at physiologic concentrations induces broad transcriptional responses which are mediated by LOX-1, and are, in part, shaped by ox-LDL-dependent miRNAs. We also suggest that angiogenic effects of ox-LDL are partially based on upregulation of several receptors that render cells hypersensitive to angiogenic stimuli. PMID:23115646

  2. Gender disparity in LDL-induced cardiovascular damage and the protective role of estrogens against electronegative LDL

    PubMed Central

    2014-01-01

    Background Increased levels of the most electronegative type of LDL, L5, have been observed in the plasma of patients with metabolic syndrome (MetS) and ST-segment elevation myocardial infarction and can induce endothelial dysfunction. Because men have a higher predisposition to developing coronary artery disease than do premenopausal women, we hypothesized that LDL electronegativity is increased in men and promotes endothelial damage. Methods L5 levels were compared between middle-aged men and age-matched, premenopausal women with or without MetS. We further studied the effects of gender-influenced LDL electronegativity on aortic cellular senescence and DNA damage in leptin receptor–deficient (db/db) mice by using senescence-associated–β-galactosidase and γH2AX staining, respectively. We also studied the protective effects of 17β-estradiol and genistein against electronegative LDL–induced senescence in cultured bovine aortic endothelial cells (BAECs). Results L5 levels were higher in MetS patients than in healthy subjects (P < 0.001), particularly in men (P = 0.001). LDL isolated from male db/db mice was more electronegative than that from male or female wild-type mice. In addition, LDL from male db/db mice contained abundantly more apolipoprotein CIII and induced more BAEC senescence than did female db/db or wild-type LDL. In the aortas of db/db mice but not wild-type mice, we observed cellular senescence and DNA damage, and the effect was more significant in male than in female db/db mice. Pretreatment with 17β-estradiol or genistein inhibited BAEC senescence induced by male or female db/db LDL and downregulated the expression of lectin-like oxidized LDL receptor-1 and tumor necrosis factor-alpha protein. Conclusion The gender dichotomy of LDL-induced cardiovascular damage may underlie the increased propensity to coronary artery disease in men. PMID:24666525

  3. Delineation of molecular pathways that regulate hepatic PCSK9 and LDL receptor expression during fasting in normolipidemic hamsters

    PubMed Central

    Wu, Minhao; Dong, Bin; Cao, Aiqin; Li, Hai; Liu, Jingwen

    2015-01-01

    Background PCSK9 has emerged as a key regulator of serum LDL-C metabolism by promoting the degradation of hepatic LDL receptor (LDLR). In this study, we investigated the effect of fasting on serum PCSK9, LDL-C, and hepatic LDLR expression in hamsters and further delineated the molecular pathways involved in fasting-induced repression of PCSK9 transcription. Results Fasting had insignificant effects on serum total cholesterol and HDL-C levels, but reduced LDL-C, triglyceride and insulin levels. The decrease in serum LDL-C was accompanied by marked reductions of hepatic PCSK9 mRNA and serum PCSK9 protein levels with concomitant increases of hepatic LDLR protein amounts. Fasting produced a profound impact on SREBP1 expression and its transactivating activity, while having modest effects on mRNA expressions of SREBP2 target genes in hamster liver. Although PPARα mRNA levels in hamster liver were elevated by fasting, ligand-induced activation of PPARα with WY14643 compound in hamster primary hepatocytes did not affect PCSK9 mRNA or protein expressions. Further investigation on HNF1α, a critical transactivator of PCSK9, revealed that fasting did not alter its mRNA expression, however, the protein abundance of HNF1α in nuclear extracts of hamster liver was markedly reduced by prolonged fasting. Conclusion Fasting lowered serum LDL-C in hamsters by increasing hepatic LDLR protein amounts via reductions of serum PCSK9 levels. Importantly, our results suggest that attenuation of SREBP1 transactivating activity owing to decreased insulin levels during fasting is primarily responsible for compromised PCSK9 gene transcription, which was further suppressed after prolonged fasting by a reduction of nuclear HNF1α protein abundance. PMID:22954675

  4. L-arginine prevents xanthoma development and inhibits atherosclerosis in LDL receptor knockout mice.

    PubMed

    Aji, W; Ravalli, S; Szabolcs, M; Jiang, X C; Sciacca, R R; Michler, R E; Cannon, P J

    1997-01-21

    The potential antiatherosclerotic actions of NO were investigated in four groups of mice (n = 10 per group) lacking functional LDL receptor genes, an animal model of familial hypercholesterolemia. Group 1 was fed a regular chow diet. Groups 2 through 4 were fed a 1.25% high-cholesterol diet. In addition, group 3 received supplemental L-arginine and group 4 received L-arginine and N omega-nitro-L-arginine (L-NA), an inhibitor of NO synthase (NOS). Animals were killed at 6 months; aortas were stained with oil red O for planimetry and with antibodies against constitutive and inducible NOSs. Plasma cholesterol was markedly increased in the animals receiving the high-cholesterol diet. Xanthomas appeared in all mice fed the high-cholesterol diet alone but not in those receiving L-arginine. Aortic atherosclerosis was present in all mice on the high-cholesterol diet. The mean atherosclerotic lesion area was reduced significantly (P < .01) in the cholesterol-fed mice given L-arginine compared with those receiving the high-cholesterol diet alone. The mean atherosclerotic lesion area was significantly larger (P < .01) in cholesterol-fed mice receiving L-arginine + L-NA than in those on the high-cholesterol diet alone. Within the atherosclerotic plaques, endothelial cells immunoreacted for endothelial cell NOS; macrophages, foam cells, and smooth muscle cells immunostained strongly for inducible NOS and nitrotyrosine residues. The data indicate that L-arginine prevents xanthoma formation and reduces atherosclerosis in LDL receptor knockout mice fed a high-cholesterol diet. The abrogation of the beneficial effects of L-arginine by L-NA suggests that the antiatherosclerotic actions of L-arginine are mediated by NOS. The data suggest that L-arginine may be beneficial in familial hypercholesterolemia.

  5. Calpain Inhibition Attenuates Angiotensin II-induced Abdominal Aortic Aneurysms and Atherosclerosis in LDL Receptor Deficient Mice

    PubMed Central

    Subramanian, Venkateswaran; Uchida, Haruhito Adam; Ijaz, Talha; Moorleghen, Jessica J.; Howatt, Deborah A.; Balakrishnan, Anju

    2011-01-01

    Chronic infusion of angiotensin II (AngII) augments atherosclerosis and abdominal aortic aneurysm (AAAs) formation in hypercholesterolemic mice. AngII-induced AAAs are associated with medial macrophage accumulation and matrix metalloproteinase (MMP) activation. Inhibition of calpain, a calcium-activated neutral cysteine protease, by overexpression of its endogenous inhibitor, calpastatin, attenuates AngII-induced leukocyte infiltration, perivascular inflammation, and MMP activation in mice. The purpose of this study was to define whether pharmacological inhibition of calpain influences AngII-induced AAAs in hypercholesterolemic mice. Male LDL receptor −/− mice were fed a fat-enriched diet and administered with either vehicle or a calpain-specific inhibitor, BDA-410 (30 mg/kg/day) for 5 weeks. After 1 week of feeding, mice were infused with AngII (1,000 ng/kg/min) for 4 weeks. AngII-infusion profoundly increased aortic calpain protein and activity. BDA-410 administration had no effect on plasma cholesterol concentrations or AngII-increased systolic blood pressure. Calpain inhibition significantly attenuated AngII-induced AAA formation and atherosclerosis development. BDA-410 administration attenuated activation of MMP12, pro-inflammatory cytokines (IL-6, MCP-1) and macrophage infiltration into the aorta. BDA-410 administration significantly attenuated thioglycollate-elicited macrophage accumulation in the peritoneal cavity. We conclude that calpain inhibition using BDA-410 attenuated AngII-induced AAA formation and atherosclerosis development in LDL receptor −/− mice. PMID:21964156

  6. Monocyte-macrophage membrane possesses free radicals scavenging activity: stimulation by polyphenols or by paraoxonase 1 (PON1).

    PubMed

    Rosenblat, M; Elias, A; Volkova, N; Aviram, M

    2013-04-01

    In the current study, we analysed free radicals scavenging activity of monocytes-macrophages in the absence or presence of antioxidants such as polyphenols or paraoxonase 1 (PON1). THP-1 human monocytic cell line, murine J774A.1 macrophages, as well as human primary monocytes have the capability to scavenge free radicals, as measured by the 1-diphenyl-2-picryl-hydrazyl (DPPH) assay. This effect (which could be attributed to the cell's membrane) was cell number and incubation time dependent. Upon incubation of J774A.1 macrophages with acetylated LDL (Ac-LDL), with VLDL, or with the radical generator, AAPH, the cells' lipid peroxides content, and paraoxonase 2 (PON2) activity were significantly increased. While non-treated cells decreased DPPH absorbance by 65%, the Ac-LDL-, VLDL- or AAPH-treated cells, decreased it by only 33%, 30%, or 45%, respectively. We next analysed the effect of J774A.1 macrophage enrichment with antioxidants, such as polyphenols or PON1 on the cells' free radicals scavenging activity. Non-treated cells decreased DPPH absorbance by 50%, whereas vitamin E-, punicalagin- or PJ-treated cells significantly further decreased it, by 75%. Similarly, in PON1-treated cells DPPH absorbance was further decreased by 63%, in association with 23% increment in PON1 catalytic activity. In cells under oxidative stress [treated with AAPH-, or with oxidized LDL], PON1 activity was decreased by 31% or 40%, as compared to the activity observed in PON1 incubated with non-treated cells. We conclude that monocytes-macrophages possess free radicals scavenging activity, which is decreased under atherogenic conditions, and increased upon cell enrichment with potent antioxidants such as nutritional polyphenols, or PON1.

  7. CBLB502, an agonist of Toll-like receptor 5, has antioxidant and scavenging free radicals activities in vitro.

    PubMed

    Li, Weiguang; Ge, Changhui; Yang, Liu; Wang, Ruixue; Lu, Yiming; Gao, Yan; Li, Zhihui; Wu, Yonghong; Zheng, Xiaofei; Wang, Zhaoyan; Zhang, Chenggang

    2016-01-01

    The bacterial protein flagellin is the known agonist of Toll-like receptor 5 (TLR5). It has been reported that CBLB502, a novel agonist of TLR5 derived from Salmonella flagellin, could reduce radiation toxicity in mouse and primate models, protect mice from dermatitis and oral mucositis caused by radiation, inhibit acute renal ischemic failure, and inhibit the growth of A549 lung cancer cell. The property of CBLB502 is able to bind to TLR5 and activates NF-κB signaling. In this study, we investigated the antioxidant potential and free radicals scavenging properties of CBLB502 in vitro. Interestingly, we found that CBLB502 has a direct and distinct antioxidant capacity and can efficiently scavenge a variety of free radicals, including superoxide anion, hydroxyl radical, and ABTS cation (ABTS(+)). Through wave scanning and kinetic evaluation of scavenging ABTS(+), we found that the ABTS(+) scavenging process of CBLB502 is relatively slow, and the ABTS(+) scavenging activity of CBLB502 has a consistently kinetics characteristics. In conclusion, our results suggested that CBLB502 has antioxidant and scavenging free radicals activities in vitro. It is implied that CBLB502 might partially promote the beneficial protective effect through its scavenging free radicals. Copyright © 2015. Published by Elsevier B.V.

  8. The protective effect of bergamot oil extract on lecitine-like oxyLDL receptor-1 expression in balloon injury-related neointima formation.

    PubMed

    Mollace, Vincenzo; Ragusa, Salvatore; Sacco, Iolanda; Muscoli, Carolina; Sculco, Francesca; Visalli, Valeria; Palma, Ernesto; Muscoli, Saverio; Mondello, Luigi; Dugo, Paola; Rotiroti, Domenicantonio; Romeo, Francesco

    2008-06-01

    Lectin-like oxyLDL receptor-1 (LOX-1) has recently been suggested to be involved in smooth muscle cell (SMC) proliferation and neointima formation in injured blood vessels. This study evaluates the effect of the nonvolatile fraction (NVF), the antioxidant component of bergamot essential oil (BEO), on LOX-1 expression and free radical generation in a model of rat angioplasty. Common carotid arteries injured by balloon angioplasty were removed after 14 days for histopathological, biochemical, and immunohistochemical studies. Balloon injury led to a significant restenosis with SMC proliferation and neointima formation, accompanied by increased expression of LOX-1 receptor, malondialdehyde and superoxide formation, and nitrotyrosine staining. Pretreatment of rats with BEO-NVF reduced the neointima proliferation together with free radical formation and LOX-1 expression in a dose-dependent manner. These results suggest that natural antioxidants may be relevant in the treatment of vascular disorders in which proliferation of SMCs and oxyLDL-related endothelial cell dysfunction are involved.

  9. Development of a new LDL-based transport system for hydrophobic/amphiphilic drug delivery to cancer cells.

    PubMed

    Huntosova, Veronika; Buzova, Diana; Petrovajova, Dana; Kasak, Peter; Nadova, Zuzana; Jancura, Daniel; Sureau, Franck; Miskovsky, Pavol

    2012-10-15

    Low-density lipoproteins (LDL), a natural in vivo carrier of cholesterol in the vascular system, play a key role in the delivery of hydrophobic/amphiphilic photosensitizers to tumor cells in photodynamic therapy of cancer. To make this delivery system even more efficient, we have constructed a nano-delivery system by coating of LDL surface by dextran. Fluorescence spectroscopy, confocal fluorescence imaging, stopped-flow experiments and flow-cytometry were used to characterize redistribution of hypericin (Hyp), a natural occurring potent photosensitizer, loaded in LDL/dextran complex to free LDL molecules as well as to monitor cellular uptake of Hyp by U87-MG cells. It is shown that the redistribution process of Hyp between LDL molecules is significantly suppressed by dextran coating of LDL surface. The modification of LDL molecules by dextran does not inhibit their recognition by cellular LDL receptors and U-87 MG cellular uptake of Hyp loaded in LDL/dextran complex appears to be similar to that one observed for Hyp transported by unmodified LDL particles. Thus, it is proposed that dextran modified LDL molecules could be used as a basis for construction of a drug transport system for targeted delivery of hydrophobic/amphiphilic drugs to cancer cells expressing high level of LDL receptors. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Oxidized LDL binding to LOX-1 upregulates VEGF expression in cultured bovine chondrocytes through activation of PPAR-{gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanata, Sohya; Akagi, Masao; Nishimura, Shunji

    It has been reported that vascular endothelial growth factor (VEGF) and its receptors play an important role in the destruction of articular cartilage in osteoarthritis through increased production of matrix metalloproteinases. We investigated whether the oxidized low-density lipoprotein (ox-LDL) binding to lectin-like ox-LDL receptor-1 (LOX-1) upregulates VEGF expression in cultured bovine articular chondrocytes (BACs). Ox-LDL markedly increased VEGF mRNA expression and protein release in time- and dose-dependent manners, which was significantly suppressed by anti-LOX-1 antibody pretreatment. Activation of peroxisome proliferator-activated receptor (PPAR)-{gamma} was evident in BACs with ox-LDL addition and was attenuated by anti-LOX-1 antibody. The specific PPAR-{gamma} inhibitor GW9662more » suppressed ox-LDL-induced VEGF expression. These results suggest that the ox-LDL/LOX-1 system upregulates VEGF expression in articular cartilage, at least in part, through activation of PPAR-{gamma} and supports the hypothesis that ox-LDL is involved in cartilage degradation via LOX-1.« less

  11. Decorin and biglycan retain LDL in disease-prone valvular and aortic subendothelial intimal matrix

    PubMed Central

    Neufeld, Edward B.; Zadrozny, Leah M.; Phillips, Darci; Aponte, Angel; Yu, Zu-Xi; Balaban, Robert S.

    2014-01-01

    Objective Subendothelial LDL retention by intimal matrix proteoglycans is an initial step in atherosclerosis and calcific aortic valve disease. Herein, we identify decorin and biglycan as the proteoglycans that preferentially retain LDL in intimal matrix at disease-prone sites in normal valve and vessel wall. Methods The porcine aortic valve and renal artery ostial diverter, initiation sites of calcific valve disease and renal atherosclerosis, respectively, from normal non-diseased animals were used as models in these studies. Results Fluorescent human LDL was selectively retained on the lesion-prone collagen/proteoglycan-enriched aortic surface of the valve, where the elastic lamina is depleted, as previously observed in lesion-prone sites in the renal ostium. iTRAQ mass spectrometry of valve and diverter protein extracts identified decorin and biglycan as the major subendothelial intimal matrix proteoglycans electrostatically retained on human LDL affinity columns. Decorin levels correlated with LDL binding in lesion-prone sites in both tissues. Collagen binding to LDL was shown to be proteoglycan-mediated. All known basement membrane proteoglycans bound LDL suggesting they may modulate LDL uptake into the subendothelial matrix. The association of purified decorin with human LDL in an in vitro microassay was blocked by serum albumin and heparin suggesting anti-atherogenic roles for these proteins in vivo. Conclusions LDL electrostatic interactions with decorin and biglycan in the valve leaflets and vascular wall is a major source of LDL retention. The complementary electrostatic sites on LDL or these proteoglycans may provide a novel therapeutic target for preventing one of the earliest events in these cardiovascular diseases. PMID:24529131

  12. Effective compounds in the fruit of Muntingia calabura Linn. cultivated in Taiwan evaluated with scavenging free radicals and suppressing LDL oxidation.

    PubMed

    Lin, Jau-Tien; Chen, Yi-Chen; Chang, Yan-Zin; Chen, Ting-Yu; Yang, Deng-Jye

    2017-04-19

    Scavenging effect of 2,2-diphenyl -2-picrylhydrazyl hydrate (DPPH) radicals, inhibitory effect of low-density lipoprotein (LDL) oxidation, Trolox equivalent antioxidant capacity (TEAC), and phenolic contents were used for the activity-guided separation to identify the effective compounds of Muntingia calabura Linn. fruit. Its ethanol extract with higher phenolic content and antioxidant activities was subjected to silica gel column chromatographic separation, which was sequentially eluted with n-hexane, 10-90% ethyl acetate (EA) in n-hexane, EA, EA/acetone (50/50, v/v), acetone, acetone/methanol (MeOH) (50/50, v/v), and MeOH; fifteen fractions (Fr. 1-15) were obtained. Fractions 13 and 14 with better antioxidant effects were mixed followed by purification of the effective compounds using HPLC. Two major compounds were isolated and identified as gallic acid and 1,2-benzenedicarboxylic acid diisooctyl ester through high performance liquid chromatography-mass spectrometry (HPLC-MS) and nuclear magnetic resonance (NMR) measurements. Their amounts in the fruit were 3.76 and 4.62 mg g -1 . This study is the first report to clarify the effective antioxidant compounds of M. calabura Linn. fruit.

  13. Development of contrast agents targeted to macrophage scavenger receptors for MRI of vascular inflammation

    PubMed Central

    Gustafsson, Björn; Youens, Susan; Louie, Angelique Y.

    2008-01-01

    Atherosclerosis is a leading cause of death in the U.S. Because there is a potential to prevent coronary and arterial diseases through early diagnosis, there is a need for methods to image arteries in the sub-clinical stage as well as clinical stage using various non-invasive techniques, including Magnetic Resonance Imaging (MRI). We describe a development of a novel MRI contrast agent targeted to plaques that will allow imaging of lesion formation. The contrast agent is directed to macrophages, one of the earliest components of developing plaques. Macrophages are labeled through the macrophage scavenger receptor A, a macrophage specific cell surface protein, using an MRI contrast agent derived from scavenger receptor ligands. We have synthesized and characterized these contrast agents with a range of relaxivities. In vitro studies show that the targeted contrast agent accumulates in macrophages and solution studies indicate that micromolar concentrations are sufficient to produce contrast in an MR image. Cell toxicity and initial biodistribution studies indicate low toxicity, no detectable retention in normal blood vessels, and rapid clearance from blood. The promising performance of this contrast agent targeted towards vascular inflammation opens doors to tracking of other inflammatory diseases such as tumor immunotherapy and transplant acceptance using MRI. PMID:16536488

  14. Activation of GPR55 Receptors Exacerbates oxLDL-Induced Lipid Accumulation and Inflammatory Responses, while Reducing Cholesterol Efflux from Human Macrophages.

    PubMed

    Lanuti, Mirko; Talamonti, Emanuela; Maccarrone, Mauro; Chiurchiù, Valerio

    2015-01-01

    The G protein-coupled receptor GPR55 has been proposed as a new cannabinoid receptor associated with bone remodelling, nervous system excitability, vascular homeostasis as well as in several pathophysiological conditions including obesity and cancer. However, its physiological role and underlying mechanism remain unclear. In the present work, we demonstrate for the first time its presence in human macrophages and its increased expression in ox-LDL-induced foam cells. In addition, pharmacological activation of GPR55 by its selective agonist O-1602 increased CD36- and SRB-I-mediated lipid accumulation and blocked cholesterol efflux by downregulating ATP-binding cassette (ABC) transporters ABCA1 and ABCG1, as well as enhanced cytokine- and pro-metalloprotease-9 (pro-MMP-9)-induced proinflammatory responses in foam cells. Treatment with cannabidiol, a selective antagonist of GPR55, counteracted these pro-atherogenic and proinflammatory O-1602-mediated effects. Our data suggest that GPR55 could play deleterious role in ox-LDL-induced foam cells and could be a novel pharmacological target to manage atherosclerosis and other related cardiovascular diseases.

  15. Activation of GPR55 Receptors Exacerbates oxLDL-Induced Lipid Accumulation and Inflammatory Responses, while Reducing Cholesterol Efflux from Human Macrophages

    PubMed Central

    Lanuti, Mirko; Talamonti, Emanuela; Maccarrone, Mauro; Chiurchiù, Valerio

    2015-01-01

    The G protein-coupled receptor GPR55 has been proposed as a new cannabinoid receptor associated with bone remodelling, nervous system excitability, vascular homeostasis as well as in several pathophysiological conditions including obesity and cancer. However, its physiological role and underlying mechanism remain unclear. In the present work, we demonstrate for the first time its presence in human macrophages and its increased expression in ox-LDL-induced foam cells. In addition, pharmacological activation of GPR55 by its selective agonist O-1602 increased CD36- and SRB-I-mediated lipid accumulation and blocked cholesterol efflux by downregulating ATP-binding cassette (ABC) transporters ABCA1 and ABCG1, as well as enhanced cytokine- and pro-metalloprotease-9 (pro-MMP-9)-induced proinflammatory responses in foam cells. Treatment with cannabidiol, a selective antagonist of GPR55, counteracted these pro-atherogenic and proinflammatory O-1602-mediated effects. Our data suggest that GPR55 could play deleterious role in ox-LDL-induced foam cells and could be a novel pharmacological target to manage atherosclerosis and other related cardiovascular diseases. PMID:25970609

  16. Innate scavenger receptor-A regulates adaptive T helper cell responses to pathogen infection

    PubMed Central

    Xu, Zhipeng; Xu, Lei; Li, Wei; Jin, Xin; Song, Xian; Chen, Xiaojun; Zhu, Jifeng; Zhou, Sha; Li, Yong; Zhang, Weiwei; Dong, Xiaoxiao; Yang, Xiaowei; Liu, Feng; Bai, Hui; Chen, Qi; Su, Chuan

    2017-01-01

    The pattern recognition receptor (PRR) scavenger receptor class A (SR-A) has an important function in the pathogenesis of non-infectious diseases and in innate immune responses to pathogen infections. However, little is known about the role of SR-A in the host adaptive immune responses to pathogen infection. Here we show with mouse models of helminth Schistosoma japonicum infection and heat-inactivated Mycobacterium tuberculosis stimulation that SR-A is regulated by pathogens and suppresses IRF5 nuclear translocation by direct interaction. Reduced abundance of nuclear IRF5 shifts macrophage polarization from M1 towards M2, which subsequently switches T-helper responses from type 1 to type 2. Our study identifies a role for SR-A as an innate PRR in regulating adaptive immune responses. PMID:28695899

  17. Selective uptake and efflux of cholesteryl linoleate in LDL by macrophages expressing 12/15-lipoxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Yoshitaka; Zhu, Hong; Xu, Wanpeng

    Oxidation of low density lipoprotein (LDL) is a critical step for airtightness, and the role of the 12/15-lipoxygenase (12/15-Lox) as well as LDL receptor-related protein (Lp) expressed in macrophages in this process has been suggested. The oxygenation of cholesteryl linoleate in LDL by mouse macrophage-like Joe.1 cells over expressing 12/15-Lox was inhibited by an anti-Lp antibody but not by an anti-LDL receptor antibody. When the cells were incubated with LDL double-labeled by [{sup 3}H]cholesteryl linoleate and [{sup 125}I]apo B, association with the cells of [{sup 3}H]cholesteryl linoleate expressed as LDL protein equivalent exceeded that of [{sup 125}I]apo B, indicating selectivemore » uptake of [{sup 3}H]cholesteryl linoleate from LDL to these cells. An anti-Lp antibody inhibited the selective uptake of [{sup 3}H]cholesteryl ester by 62% and 81% with the 12/15-Lox-expressing cells and macrophages, respectively. Furthermore, addition of LDL to the culture medium of the [{sup 3}H]cholesteryl linoleate-labeled 12/15-Lox-expressing cells increased the release of [{sup 3}H]cholesteryl linoleate to the medium in LDL concentration- and time-dependent manners. The transport of [{sup 3}H]cholesteryl linoleate from the cells to LDL was also inhibited by an anti-Lp antibody by 75%. These results strongly suggest that Lp contributes to the LDL oxidation by 12/15-Lox in macrophages by selective uptake and efflux of cholesteryl ester in the LDL particle.« less

  18. Health risk reduction behaviors model for scavengers exposed to solid waste in municipal dump sites in Nakhon Ratchasima Province, Thailand

    PubMed Central

    Thirarattanasunthon, Phiman; Siriwong, Wattasit; Robson, Mark; Borjan, Marija

    2012-01-01

    The aim of this study was to evaluate the effect of comprehensive health risk protection behaviors, knowledge, attitudes, and practices among scavengers in open dump sites. A control group of 44 scavengers and an intervention group of 44 scavengers participated in this study. Interventions included the use of personal protective equipment, health protection training, and other measures. The analysis showed significant differences before and after the intervention program and also between the control and intervention groups. These observations suggest that further action should be taken to reduce adverse exposure during waste collection. To reduce health hazards to workers, dump site scavenging should be incorporated into the formal sector program. Solid waste and the management of municipal solid waste has become a human and environmental health issue and future research should look at constructing a sustainable model to help protect the health of scavengers and drive authorities to adopt safer management techniques. PMID:22969307

  19. Uptake of lactosylated low-density lipoprotein by galactose-specific receptors in rat liver.

    PubMed

    Bijsterbosch, M K; Van Berkel, T J

    1990-08-15

    The liver contains two types of galactose receptors, specific for Kupffer and parenchymal cells respectively. These receptors are only expressed in the liver, and therefore are attractive targets for the specific delivery of drugs. We provided low-density lipoprotein (LDL), a particle with a diameter of 23 nm in which a variety of drugs can be incorporated, with terminal galactose residues by lactosylation. Radioiodinated LDL, lactosylated to various extents (60-400 mol of lactose/ mol of LDL), was injected into rats. The plasma clearance and hepatic uptake of radioactivity were correlated with the extent of lactosylation. Highly lactosylated LDL (greater than 300 lactose/LDL) is completely cleared from the blood by liver within 10 min. Pre-injection with N-acetylgalactosamine blocks liver uptake, which indicates that the hepatic recognition sites are galactose-specific. The hepatic uptake occurs mainly by parenchymal and Kupffer cells. At a low degree of lactosylation, approx. 60 lactose/LDL, the specific uptake (ng/mg of cell protein) is 28 times higher in Kupffer cells than in parenchymal cells. However, because of their much larger mass, parenchymal cells are the main site of uptake. At high degrees of lactosylation (greater than 300 lactose/LDL), the specific uptake in Kupffer cells is 70-95 times that in parenchymal cells. Under these conditions, Kupffer cells are, despite their much smaller mass, the main site of uptake. Thus not only the size but also the surface density of galactose on lactosylated LDL is important for the balance of uptake between Kupffer and parenchymal cells. This knowledge should allow us to design particulate galactose-bearing carriers for the rapid transport of various drugs to either parenchymal cells or Kupffer cells.

  20. In vitro study of LDL transport under pressurized (convective) conditions.

    PubMed

    Cancel, Limary M; Fitting, Andrew; Tarbell, John M

    2007-07-01

    It is difficult to assess the transport pathways that carry low-density lipoprotein (LDL) into the artery wall in vivo, and there has been no previous in vitro study that has examined transendothelial transport under physiologically relevant pressurized (convective) conditions. Therefore, we measured water, albumin, and LDL fluxes across bovine aortic endothelial cell (BAEC) monolayers in vitro and determined the relative contributions of vesicles, paracellular transport through "breaks" in the tight junction, and "leaky" junctions associated with dying or dividing cells. Our results show that leaky junctions are the dominant pathway for LDL transport (>90%) under convective conditions and that albumin also has a significant component of transport through leaky junctions (44%). Transcellular transport of LDL by receptor-mediated processes makes a minor contribution (<10%) to overall transport under convective conditions.

  1. Dan-Lou Prescription Inhibits Foam Cell Formation Induced by ox-LDL via the TLR4/NF-κB and PPARγ Signaling Pathways.

    PubMed

    Gao, Li-Na; Zhou, Xin; Lu, Yu-Ren; Li, Kefeng; Gao, Shan; Yu, Chun-Quan; Cui, Yuan-Lu

    2018-01-01

    Atherosclerosis is the major worldwide cause of mortality for patients with coronary heart disease. Many traditional Chinese medicine compound prescriptions for atherosclerosis treatment have been tried in patients. Dan-Lou prescription, which is improved from Gualou-Xiebai-Banxia decoction, has been used to treat chest discomfort (coronary atherosclerosis) for approximately 2,000 years in China. Although the anti-inflammatory activities of Dan-Lou prescription have been proposed previously, the mechanism remains to be explored. Based on the interaction between inflammation and atherosclerosis, we further investigated the effect of Dan-Lou prescription on macrophage-derived foam cell formation and disclosed the underlying mechanisms. In the oxidative low-density lipoprotein (ox-LDL) induced foam cells model using murine macrophage RAW 264.7 cells, the ethanol extract from Dan-Lou prescription (EEDL) reduced ox-LDL uptake and lipid deposition by inhibiting the protein and mRNA expression of Toll-like receptor (TLR)4 and scavenger receptor (SR)B1. After stimulation with ox-LDL, the metabolic profile of macrophages was also changed, while the intervention of the EEDL mainly regulated the metabolism of isovalerylcarnitine, arachidonic acid, cholesterol, aspartic acid, arginine, lysine, L-glutamine and phosphatidylethanolamine (36:3), which participated in the regulation of the inflammatory response, lipid accumulation and cell apoptosis. In total, 27 inflammation-related gene targets were screened, and the biological mechanisms, pathways and biological functions of the EEDL on macrophage-derived foam cells were systemically analyzed by Ingenuity Pathway Analysis system (IPA). After verification, we found that EEDL alleviated ox-LDL induced macrophage foam cell formation by antagonizing the mRNA and protein over-expression of PPARγ, blocking the phosphorylation of IKKα/β, IκBα and NF-κB p65 and maintaining the expression balance between Bax and Bcl-2. In

  2. Refolding and characterization of the functional ligand-binding domain of human lectin-like oxidized LDL receptor.

    PubMed

    Xie, Qiuhong; Matsunaga, Shigeru; Shi, Xiaohua; Ogawa, Setsuko; Niimi, Setsuko; Wen, Zhesheng; Tokuyasu, Ken; Machida, Sachiko

    2003-11-01

    Lectin-like oxidized low-density lipoprotein receptor (LOX-1), a type II membrane protein that can recognize a variety of structurally unrelated macromolecules, plays an important role in host defense and is implicated in atherogenesis. To understand the interaction between human LOX-1 and its ligands, in this study the functional C-type lectin-like domain (CTLD) of LOX-1 was reconstituted at high efficiency from inactive aggregates in Escherichia coli using a refolding technique based on an artificial chaperone. The CD spectra of the purified domain suggested that the domain has alpha-helical structure and the blue shift of Trp residues was observed on refolding of the domain. Like wild-type hLOX-1, the refolded CTLD domain was able to bind modified LDL. Thus, even though CTLD contains six Cys residues that form disulfide bonds, it recovered its specific binding ability on refolding. This suggests that the correct disulfide bonds in CTLD were formed by the artificial chaperone technique. Although the domain lacked N-glycosylation, it showed high affinity for its ligand in surface plasmon resonance experiments. Thus, unglycosylated CTLD is sufficient for binding modified LDL.

  3. Alternative activation of macrophages and pulmonary fibrosis are modulated by scavenger receptor, macrophage receptor with collagenous structure.

    PubMed

    Murthy, Shubha; Larson-Casey, Jennifer L; Ryan, Alan J; He, Chao; Kobzik, Lester; Carter, A Brent

    2015-08-01

    Alternative activation of alveolar macrophages is linked to fibrosis following exposure to asbestos. The scavenger receptor, macrophage receptor with collagenous structure (MARCO), provides innate immune defense against inhaled particles and pathogens; however, a receptor for asbestos has not been identified. We hypothesized that MARCO acts as an initial signaling receptor for asbestos, polarizes macrophages to a profibrotic M2 phenotype, and is required for the development of asbestos-induced fibrosis. Compared with normal subjects, alveolar macrophages isolated from patients with asbestosis express higher amounts of MARCO and have greater profibrotic polarization. Arginase 1 (40-fold) and IL-10 (265-fold) were higher in patients. In vivo, the genetic deletion of MARCO attenuated the profibrotic environment and pulmonary fibrosis in mice exposed to chrysotile. Moreover, alveolar macrophages from MARCO(-/-) mice polarize to an M1 phenotype, whereas wild-type mice have higher Ym1 (>3.0-fold) and nearly 7-fold more active TGF-β1 in bronchoalveolar lavage (BAL) fluid (BALF). Arg(432) and Arg(434) in domain V of MARCO are required for the polarization of macrophages to a profibrotic phenotype as mutation of these residues reduced FIZZ1 expression (17-fold) compared with cells expressing MARCO. These observations demonstrate that a macrophage membrane protein regulates the fibrotic response to lung injury and suggest a novel target for therapeutic intervention. © FASEB.

  4. Mechanism of tacrolimus-induced chronic renal fibrosis following transplantation is regulated by ox-LDL and its receptor, LOX-1

    PubMed Central

    Deng, Shi; Jin, Tao; Zhang, Li; Bu, Hong; Zhang, Peng

    2016-01-01

    Chronic renal allograft dysfunction (CRAD) is the most common cause of graft failure following renal transplantation. However, the underlying mechanisms remain to be fully elucidated. Immunosuppressants and hyperlipidemia are associated with renal fibrosis following long-term use. The present study aimed to determine the effects of tacrolimus (FK506) and lipid metabolism disorder on CRAD. In vitro and in vivo models were used for this investigation. Cells of the mouse proximal renal tubular epithelial cell strain, NRK-52E, were cultured either with oxidized low-density lipoprotein (ox-LDL), FK506, ox-LDL combined with FK506, or vehicle, respectively. Changes in cell morphology and changes in the levels of lectin-like ox-LDL receptor-1 (LOX-1), reactive oxygen species (ROS), hydrogen peroxide and fibrosis-associated genes were evaluated at 24, 48 and 72 h. In separate experiment, total of 60 Sprague-Dawley rats were divided randomly into four groups, which included a high-fat group, FK506 group, high-fat combined with FK506 group, and control group. After 2, 4 and 8 weeks, the serum lipid levels, the levels of ox-LDL, ROS, and the expression levels of transforming growth factor (TGF)-β1 and connective tissue growth factor were determined. The in vitro and in vivo models revealed that lipid metabolism disorder and FK506 caused oxidative stress and a fibrogenic response. In addition, decreased levels of LOX-1 markedly reduced the levels of TGF-β1 in the in vitro model. Taken together, FK506 and dyslipidemia were found to be associated with CRAD following transplantation. PMID:27633115

  5. Towards increased selectivity of drug delivery to cancer cells: development of a LDL-based nanodelivery system for hydrophobic photosensitizers

    NASA Astrophysics Data System (ADS)

    Buzova, Diana; Huntosova, Veronika; Kasak, Peter; Petrovajova, Dana; Joniova, Jaroslava; Dzurova, Lenka; Nadova, Zuzana; Sureau, Franck; Midkovsky, Pavol; Jancura, Daniel

    2012-10-01

    Low-density lipoproteins (LDL), a natural in vivo carrier of cholesterol in the vascular system, play a key role in the delivery of hydrophobic photosensitizers (pts) to tumor cells in photodynamic therapy (PDT) of cancer. To make this delivery system even more efficient, we have constructed a nano-delivery system by coating of LDL surface by polyethylene glycol (PEG) and dextran. Fluorescence spectroscopy and confocal fluorescence imaging were used to characterize redistribution of hypericin (Hyp), a natural potent pts, loaded in LDL/PEG and LDL/dextran complexes to free LDL molecules as well as to monitor cellular uptake of Hyp by U87-MG cells. It was shown than the redistribution process of Hyp between LDL molecules is significantly suppressed by dextran coating of LDL surface. On the other hand, PEG does not significantly influence this process. The modification of LDL molecules by the polymers does not inhibit their recognition by cellular LDL receptors. U-87 MG cellular uptake of Hyp loaded in LDL/PEG and LDL/dextran complexes appears to be similar to that one observed for Hyp transported by unmodified LDL particles. It is proposed that by polymers modified LDL molecules could be used as a basis for construction of a drug transport system for targeted delivery of hydrophobic drugs to cancer cells expressing high level of LDL receptors.

  6. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells

    PubMed Central

    Kraehling, Jan R.; Chidlow, John H.; Rajagopal, Chitra; Sugiyama, Michael G.; Fowler, Joseph W.; Lee, Monica Y.; Zhang, Xinbo; Ramírez, Cristina M.; Park, Eon Joo; Tao, Bo; Chen, Keyang; Kuruvilla, Leena; Larriveé, Bruno; Folta-Stogniew, Ewa; Ola, Roxana; Rotllan, Noemi; Zhou, Wenping; Nagle, Michael W.; Herz, Joachim; Williams, Kevin Jon; Eichmann, Anne; Lee, Warren L.; Fernández-Hernando, Carlos; Sessa, William C.

    2016-01-01

    In humans and animals lacking functional LDL receptor (LDLR), LDL from plasma still readily traverses the endothelium. To identify the pathways of LDL uptake, a genome-wide RNAi screen was performed in endothelial cells and cross-referenced with GWAS-data sets. Here we show that the activin-like kinase 1 (ALK1) mediates LDL uptake into endothelial cells. ALK1 binds LDL with lower affinity than LDLR and saturates only at hypercholesterolemic concentrations. ALK1 mediates uptake of LDL into endothelial cells via an unusual endocytic pathway that diverts the ligand from lysosomal degradation and promotes LDL transcytosis. The endothelium-specific genetic ablation of Alk1 in Ldlr-KO animals leads to less LDL uptake into the aortic endothelium, showing its physiological role in endothelial lipoprotein metabolism. In summary, identification of pathways mediating LDLR-independent uptake of LDL may provide unique opportunities to block the initiation of LDL accumulation in the vessel wall or augment hepatic LDLR-dependent clearance of LDL. PMID:27869117

  7. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells.

    PubMed

    Kraehling, Jan R; Chidlow, John H; Rajagopal, Chitra; Sugiyama, Michael G; Fowler, Joseph W; Lee, Monica Y; Zhang, Xinbo; Ramírez, Cristina M; Park, Eon Joo; Tao, Bo; Chen, Keyang; Kuruvilla, Leena; Larriveé, Bruno; Folta-Stogniew, Ewa; Ola, Roxana; Rotllan, Noemi; Zhou, Wenping; Nagle, Michael W; Herz, Joachim; Williams, Kevin Jon; Eichmann, Anne; Lee, Warren L; Fernández-Hernando, Carlos; Sessa, William C

    2016-11-21

    In humans and animals lacking functional LDL receptor (LDLR), LDL from plasma still readily traverses the endothelium. To identify the pathways of LDL uptake, a genome-wide RNAi screen was performed in endothelial cells and cross-referenced with GWAS-data sets. Here we show that the activin-like kinase 1 (ALK1) mediates LDL uptake into endothelial cells. ALK1 binds LDL with lower affinity than LDLR and saturates only at hypercholesterolemic concentrations. ALK1 mediates uptake of LDL into endothelial cells via an unusual endocytic pathway that diverts the ligand from lysosomal degradation and promotes LDL transcytosis. The endothelium-specific genetic ablation of Alk1 in Ldlr-KO animals leads to less LDL uptake into the aortic endothelium, showing its physiological role in endothelial lipoprotein metabolism. In summary, identification of pathways mediating LDLR-independent uptake of LDL may provide unique opportunities to block the initiation of LDL accumulation in the vessel wall or augment hepatic LDLR-dependent clearance of LDL.

  8. Scavenger Receptor C Mediates Phagocytosis of White Spot Syndrome Virus and Restricts Virus Proliferation in Shrimp

    PubMed Central

    Yang, Ming-Chong; Shi, Xiu-Zhen; Yang, Hui-Ting; Sun, Jie-Jie; Xu, Ling; Wang, Xian-Wei; Zhao, Xiao-Fan

    2016-01-01

    Scavenger receptors are an important class of pattern recognition receptors that play several important roles in host defense against pathogens. The class C scavenger receptors (SRCs) have only been identified in a few invertebrates, and their role in the immune response against viruses is seldom studied. In this study, we firstly identified an SRC from kuruma shrimp, Marsupenaeus japonicus, designated MjSRC, which was significantly upregulated after white spot syndrome virus (WSSV) challenge at the mRNA and protein levels in hemocytes. The quantity of WSSV increased in shrimp after knockdown of MjSRC, compared with the controls. Furthermore, overexpression of MjSRC led to enhanced WSSV elimination via phagocytosis by hemocytes. Pull-down and co-immunoprecipitation assays demonstrated the interaction between MjSRC and the WSSV envelope protein. Electron microscopy observation indicated that the colloidal gold-labeled extracellular domain of MjSRC was located on the outer surface of WSSV. MjSRC formed a trimer and was internalized into the cytoplasm after WSSV challenge, and the internalization was strongly inhibited after knockdown of Mjβ-arrestin2. Further studies found that Mjβ-arrestin2 interacted with the intracellular domain of MjSRC and induced the internalization of WSSV in a clathrin-dependent manner. WSSV were co-localized with lysosomes in hemocytes and the WSSV quantity in shrimp increased after injection of lysosome inhibitor, chloroquine. Collectively, this study demonstrated that MjSRC recognized WSSV via its extracellular domain and invoked hemocyte phagocytosis to restrict WSSV systemic infection. This is the first study to report an SRC as a pattern recognition receptor promoting phagocytosis of a virus. PMID:28027319

  9. Naphthalocyanine-reconstituted LDL nanoparticles for in vivo cancer imaging and treatment

    PubMed Central

    Song, Liping; Li, Hui; Sunar, Ulas; Chen, Juan; Corbin, Ian; Yodh, Arjun G; Zheng, Gang

    2007-01-01

    Low density lipoproteins (LDLs) are naturally occurring nanoparticles that are biocompatible, biodegradable and non-immunogenic. Moreover, the size of LDL particle is precisely controlled (~22 nm) by its apoB-100 component, setting them apart from liposomes and lipid micelles. LDL particles have long been proposed as a nanocarrier for targeted delivery of diagnostics and therapeutics to LDL receptor (LDLR)-positive cancers. Here, we report the design and synthesis of a novel naphthalocyanine (Nc)-based photodynamic therapy (PDT) agent, SiNcBOA, and describe its efficient reconstitution into LDL core (100:1 payload). Possessing a near-infrared (NIR) absorption wavelength (>800 nm) and extremely high extinction coefficient (>105 M–1cm–1), SiNcBOA holds the promise of treating deeply seated tumors. Reconstituted LDL particles (r-Nc-LDL) maintain the size and shape of native LDL as determined by transmission electron microscopy, and also retain their LDLR-mediated uptake by cancer cells as demonstrated by confocal microscopy. Its preferential uptake by tumor vs normal tissue was confirmed in vivo by noninvasive optical imaging technique, demonstrating the feasibility of using this nanoparticle for NIR imaging-guided PDT of cancer. PMID:18203443

  10. Obeticholic acid raises LDL-cholesterol and reduces HDL-cholesterol in the Diet-Induced NASH (DIN) hamster model.

    PubMed

    Briand, François; Brousseau, Emmanuel; Quinsat, Marjolaine; Burcelin, Rémy; Sulpice, Thierry

    2018-01-05

    The use of rat and mouse models limits the translation to humans for developing novel drugs targeting nonalcoholic steatohepatitis (NASH). Obeticholic acid (OCA) illustrates this limitation since its dyslipidemic effect in humans cannot be observed in these rodents. Conversely, Golden Syrian hamsters have a lipoprotein metabolism mimicking human dyslipidemia since it does express the cholesteryl ester transfer protein (CETP). We therefore developed a Diet-Induced NASH (DIN) hamster model and evaluated the impact of OCA. Compared with chow fed controls, hamsters fed for 20 weeks with a free-choice (FC) diet, developed obesity, insulin resistance, dyslipidemia and NASH (microvesicular steatosis, inflammation, hepatocyte ballooning and perisinusoidal to bridging fibrosis). After 20 weeks of diet, FC fed hamsters were treated without or with obeticholic acid (15mg/kg/day) for 5 weeks. Although a non-significant trend towards higher dietary caloric intake was observed, OCA significantly lowered body weight after 5 weeks of treatment. OCA significantly increased CETP activity and LDL-C levels by 20% and 27%, and reduced HDL-C levels by 20%. OCA blunted hepatic gene expression of Cyp7a1 and Cyp8b1 and reduced fecal bile acids mass excretion by 64% (P < 0.05). Hamsters treated with OCA showed a trend towards higher scavenger receptor Class B type I (SR-BI) and lower LDL-receptor hepatic protein expression. OCA reduced NAS score for inflammation (P < 0.01) and total NAS score, although not significantly. Compared to mouse and rat models, the DIN hamster replicates benefits and side effects of OCA as observed in humans, and should be useful for evaluating novel drugs targeting NASH. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. SKI-II--a sphingosine kinase 1 inhibitor--exacerbates atherosclerosis in low-density lipoprotein receptor-deficient (LDL-R-/-) mice on high cholesterol diet.

    PubMed

    Potì, Francesco; Ceglarek, Uta; Burkhardt, Ralph; Simoni, Manuela; Nofer, Jerzy-Roch

    2015-05-01

    Sphingosine 1-phosphate (S1P) is a lysosphingolipid associated with high-density lipoproteins (HDL) that contributes to their anti-atherogenic potential. We investigated whether a reduction in S1P plasma levels affects atherosclerosis in low-density lipoprotein receptor deficient (LDL-R-/-) mice. LDL-R-/- mice on Western diet containing low (0.25% w/w) or high (1.25% w/w) cholesterol were treated for 16 weeks with SKI-II, a sphingosine kinase 1 inhibitor that significantly reduced plasma S1P levels. SKI-II treatment increased atherosclerotic lesions in the thoracic aorta in mice on high but not low cholesterol diet. This compound did not affect body weight, blood cell counts and plasma total and HDL cholesterol, but decreased triglycerides. In addition, mice on high cholesterol diet receiving SKI-II showed elevated levels of tumor necrosis factor-α and endothelial adhesion molecules (sICAM-1, sVCAM-1). Prolonged lowering of plasma S1P produces pro-atherogenic effects in LDL-R-/- mice that are evident under condition of pronounced hypercholesterolemia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Habitat of in vivo transformation influences the levels of free radical scavengers in Clinostomum complanatum: implications for free radical scavenger based vaccines against trematode infections.

    PubMed

    Zafar, Atif; Rizvi, Asim; Ahmad, Irshad; Ahmad, Masood

    2014-01-01

    Since free radical scavengers of parasite origin like glutathione-S-transferase and superoxide dismutase are being explored as prospective vaccine targets, availability of these molecules within the parasite infecting different hosts as well as different sites of infection is of considerable importance. Using Clinostomum complanatum, as a model helminth parasite, we analysed the effects of habitat of in vivo transformation on free radical scavengers of this trematode parasite. Using three different animal models for in vivo transformation and markedly different sites of infection, progenetic metacercaria of C. complanatum were transformed to adult ovigerous worms. Whole worm homogenates were used to estimate the levels of lipid peroxidation, a marker of oxidative stress and free radical scavengers. Site of in vivo transformation was found to drastically affect the levels of free radical scavengers in this model trematode parasite. It was observed that oxygen availability at the site of infection probably influences levels of free radical scavengers in trematode parasites. This is the first report showing that habitat of in vivo transformation affects levels of free radical scavengers in trematode parasites. Since free radical scavengers are prospective vaccine targets and parasite infection at ectopic sites is common, we propose that infections at different sites, may respond differently to free radical scavenger based vaccines.

  13. The regulation of 3-hydroxy-3-methylglutaryl-CoA reductase activity, cholesterol esterification and the expression of low-density lipoprotein receptors in cultured monocyte-derived macrophages.

    PubMed Central

    Knight, B L; Patel, D D; Soutar, A K

    1983-01-01

    Human blood monocytes cultured in medium containing 20% whole serum showed the greatest activity of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase and [14C]acetate incorporation into non-saponifiable lipids around the 7th day after seeding, the period of greatest growth. Although there was enough low-density lipoprotein (LDL) in the medium to saturate the LDL receptors that were expressed by normal cells at that time, HMG-CoA reductase activity and acetate incorporation were as high in normal cells as in cells from familial-hypercholesterolaemic (FH) patients. Both the addition of extra LDL, which interacted with the cells by non-saturable processes, and receptor-mediated uptake of acetylated LDL significantly reduced reductase activity and increased incorporation of [14C]oleate into cholesteryl esters in normal cells and cells from FH patients ('FH cells'), and reduced the expression of LDL receptors in normal cells. Pre-incubation for 20h in lipoprotein-deficient medium apparently increased the number of LDL receptors expressed by normal cells but reduced the activity of HMG-CoA reductase in both normal and FH cells. During subsequent incubations the same rate of degradation of acetylated LDL and of non-saturable degradation of LDL by FH cells was associated with the same reduction in HMG-CoA reductase activity, although LDL produced a much smaller stimulation of oleate incorporation into cholesteryl esters. In normal cells pre-incubated without lipoproteins, receptor-mediated uptake of LDL could abolish reductase activity and the expression of LDL receptors. The results suggested that in these cells, receptor-mediated uptake of LDL might have a greater effect on reductase activity and LDL receptors than the equivalent uptake of acetylated LDL. It is proposed that endogenous synthesis is an important source of cholesterol for growth of normal cells, and that the site at which cholesterol is deposited in the cells may determine the nature and extent of the

  14. HlSRB, a Class B Scavenger Receptor, Is Key to the Granulocyte-Mediated Microbial Phagocytosis in Ticks

    PubMed Central

    Aung, Kyaw Min; Boldbaatar, Damdinsuren; Umemiya-Shirafuji, Rika; Liao, Min; Tsuji, Naotoshi; Xuenan, Xuan; Suzuki, Hiroshi; Kume, Aiko; Galay, Remil Linggatong; Tanaka, Tetsuya; Fujisaki, Kozo

    2012-01-01

    Ixodid ticks transmit various pathogens of deadly diseases to humans and animals. However, the specific molecule that functions in the recognition and control of pathogens inside ticks is not yet to be identified. Class B scavenger receptor CD36 (SRB) participates in internalization of apoptotic cells, certain bacterial and fungal pathogens, and modified low-density lipoproteins. Recently, we have reported on recombinant HlSRB, a 50-kDa protein with one hydrophobic SRB domain from the hard tick, Haemaphysalis longicornis. Here, we show that HlSRB plays vital roles in granulocyte-mediated phagocytosis to invading Escherichia coli and contributes to the first-line host defense against various pathogens. Data clearly revealed that granulocytes that up-regulated the expression of cell surface HlSRB are almost exclusively involved in hemocyte-mediated phagocytosis for E. coli in ticks, and post-transcriptional silencing of the HlSRB-specific gene ablated the granulocytes' ability to phagocytose E. coli and resulted in the mortality of ticks due to high bacteremia. This is the first report demonstrating that a scavenger receptor molecule contributes to hemocyte-mediated phagocytosis against exogenous pathogens, isolated and characterized from hematophagous arthropods. PMID:22479406

  15. Phthalocyanine-labeled LDL for tumor imaging and photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Li, Hui; Marotta, Diane; Kim, Soungkyoo; Chance, Britton; Glickson, Jerry D.; Busch, Theresa M.; Zheng, Gang

    2005-01-01

    Current limitation of both near-infrared (NIR) tumor imaging and photodynamic therapy (PDT) is their lack of sufficient tumor-to-tissue contrast due to the relatively non-specific nature of delivering dye to the tumor, which has led to false negatives for NIR imaging and inadequate therapeutic ratio for PDT. Hence, agents targeting "cancer signatures", i.e. molecules that accumulate selectively in cancer cells, are particular attractive. One of these signatures is low-density-lipoprotein receptor (LDLR), which is overexpressed in many tumors. We have developed pyropheophorbide cholesterol oleate reconstituted LDL as a LDLR-targeting photosensitizer (PS) and demonstrated its LDLR-mediated uptake in vitro and in vivo. To improve the labeling efficiency for achieving high probe/protein ratio, tetra-t-butyl silicon phthalocyanine bearing two oleate moieties at its axial positions, (tBu)4SiPcBOA, was designed and synthesized. This compound was designed to 1) prevent the PS aggregation; 2) improve the PS solubility in non-polar solvent; and 3) maximize the PS binding to LDL phospholipid monolayer. Using this novel strategy, (tBu)4SiPcBOA was reconstituted into LDL (r-SiPcBOA-LDL) with a very high payload (500:1 molar ratio). In addition, (tBu)4SiPcBOA reconstituted acetylated LDL (r-SiPcBOA)-AcLDL with similar payload was also prepared. Since Ac-LDL cannot bind to LDLR, (r-SiPcBOA)-AcLDL can serve as the negative control to evaluate LDLR targeting specificity. For biological evaluation of these new agents, confocal microscopy and in vitro PDT protocols were performed using LDLR-overexpressing human hepatoblastoma G2 (HepG2) tumor model. These studies suggest that LDL serves as a delivery vehicle to bring large amount of the NIR/PDT agents selectively to tumor cells overexpressing LDLR.

  16. Scavenger receptor WC1 contributes to the γδ T cell response to Leptospira.

    PubMed

    Wang, Fei; Herzig, Carolyn T A; Chen, Chuang; Hsu, Haoting; Baldwin, Cynthia L; Telfer, Janice C

    2011-03-01

    WC1 molecules are exclusively expressed on the surface of γδ T cells. They belong to the scavenger receptor cysteine-rich (SRCR) superfamily and are encoded by a multi-gene family. WC1 molecules have been grouped on the basis of antibody reactivity. The expression of WC1 molecules from these serologically defined groups is correlated with differences in γδ T cell responses. The expression of receptors within the WC1.1 group correlates with the capacity of γδ T cells to respond to Leptospira antigen. In this study, we used RNA interference to directly investigate the role of WC1 expression in the response to Leptospira borgpetersenii. We found that when three out of thirteen WC1 gene products were downregulated by RNA interference, γδ T cell proliferation and IFN-γ production in response to Leptospira antigen was significantly reduced. Our data demonstrate that specific receptors in the WC1 family directly participate in Leptospira recognition and/or activation of γδ T cells. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Regulation of plasma cholesterol by hepatic low-density lipoprotein receptors.

    PubMed

    Kovanen, P T

    1987-02-01

    The endogenous lipoprotein system (very low-density lipoprotein [VLDL], intermediate-density lipoprotein [IDL], low-density lipoprotein [LDL] cascade) holds the key to understanding the mechanisms by which hormones, diet, and drugs interact to regulate the plasma cholesterol level. Crucial components of this system are hepatic LDL receptors that mediate the uptake and degradation of plasma LDL. With experimental animals, it has been possible to demonstrate that hepatic LDL receptors are sensitive to hormonal, dietary, and pharmacologic manipulation. The decrease in number of hepatic LDL receptors in hypothyroidism or after cholesterol feeding leads to elevation of plasma LDL cholesterol levels. Conversely, the increase in number of hepatic LDL receptors results in lowering of plasma LDL cholesterol levels. This can be observed in hyperthyroidism, during administration of pharmacologic doses of 17 alpha-ethinyl estradiol, or during treatment with cholesterol-lowering drugs such as the bile acid-binding resins and cholesterol-synthesis inhibitors. Since cholesterol excretion from the body occurs via the liver, the increased efficiency of disposal of plasma cholesterol by increasing hepatic LDL receptors will ultimately lead to depletion of excessive body cholesterol. Pharmacologic regulation of hepatic LDL receptors should be a valuable tool in the prevention and therapy of atherosclerosis.

  18. Developmental programming of lipid metabolism and aortic vascular function in C57BL/6 mice: a novel study suggesting an involvement of LDL-receptor.

    PubMed

    Chechi, Kanta; McGuire, John J; Cheema, Sukhinder K

    2009-04-01

    We have previously shown that a maternal high-fat diet, rich in saturated fatty acids (SFA), alters the lipid metabolism of their adult offspring. The present study was designed to investigate 1) whether alterations in hepatic LDL-receptor (LDL-r) expression may serve as a potential mechanism of developmental programming behind the altered lipid metabolism of the offspring, 2) whether altered lipid metabolism leads to aortic vascular dysfunction in the offspring, 3) whether deleterious effects of SFA exposure preweaning are influenced by postweaning diet, and 4) whether gender-specific programming effects are observed. Female C57Bl/6 mice were fed a high-SFA diet or regular chow during gestation and lactation while their pups, both male and female, received either SFA or a chow diet after weaning. Male offspring obtained from mothers fed an SFA diet and those who continued on chow postweaning had higher plasma triglycerides and total cholesterol, whereas female offspring had higher plasma total and LDL cholesterol levels, lower hepatic LDL-r mRNA expression, and reduced aortic contractile responses compared with the offspring that were fed chow throughout the study. A comparison of the postweaning diet revealed significantly lower hepatic LDL-r expression along with significantly higher plasma LDL-cholesterol concentration in the female offspring that were obtained from mothers fed an SFA diet and who continued on an SFA diet postweaning, compared with the female offspring that were obtained from mothers fed an SFA diet but who continued on chow postweaning. In conclusion, we report a novel observation of hepatic LDL-r-mediated programming of altered lipid metabolism, along with aortic vascular dysfunction, in the female offspring of mothers fed a high-SFA diet. Male offspring only exhibited dyslipidemia, suggesting gender-mediated programming. This study further highlighted the role of postweaning diets in overriding the effects of maternal programming.

  19. Cryptotanshinone inhibits oxidized LDL-induced adhesion molecule expression via ROS dependent NF-κB pathways

    PubMed Central

    Zhao, Wenwen; Wu, Chuanhong; Chen, Xiuping

    2016-01-01

    ABSTRACT Adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin, play important roles in the initial stage of atherosclerosis. Cryptotanshinone (CPT), a natural compound isolated from Salvia miltiorrhiza Bunge, exhibits anti-atherosclerotic activity although the underlying mechanisms remain elusive. In this study, the protective effect of CPT against oxidized low-density lipoprotein (ox-LDL)-induced adhesion molecule expression was investigated in human umbilical vein endothelial cells. Ox-LDL significantly induced ICAM-1, VCAM-1, and E-selectin expression at the mRNA and protein levels but reduced eNOS phosphorylation and NO generation, which were reversed by CPT pretreatment. Sodium nitroprusside, a NO donor, N-acetyl-L-cysteine (NAC), a reactive oxygen species (ROS) scavenger, and BAY117082, a NF-κB inhibitor, inhibited ox-LDL-induced ICAM-1, VCAM-1, and E-selectin expression. Ox-LDL-induced ROS production was significantly inhibited by CPT and NAC. Furthermore, ox-LDL activated the NF-κB signaling pathway by inducing phosphorylation of IKKβ and IκBα, promoting the interaction of IKKβ and IκBα, and increasing p65 nuclear translocation, which were significantly inhibited by CPT. In addition, CPT, NAC, and BAY117082 inhibited ox-LDL-induced membrane expression of ICAM-1, VCAM-1, E-selectin, and endothelial–monocyte adhesion and restored eNOS phosphorylation and NO generation. Results suggested that CPT inhibited ox-LDL-induced adhesion molecule expression by decreasing ROS and inhibiting the NF-κB pathways, which provides new insight into the anti-atherosclerotic mechanism of CPT. PMID:26647279

  20. The scavenger receptor SR-A I/II (CD204) signals via the receptor tyrosine kinase Mertk during apoptotic cell uptake by murine macrophages

    PubMed Central

    Todt, Jill C.; Hu, Bin; Curtis, Jeffrey L.

    2008-01-01

    Apoptotic cells (AC) must be cleared by macrophages (Mø) to resolve inflammation effectively. Mertk and scavenger receptor A (SR-A) are two of many receptors involved in AC clearance. As SR-A lacks enzymatic activity or evident intracellular signaling motifs, yet seems to signal in some cell types, we hypothesized that SR-A signals via Mer receptor tyrosine kinase (Mertk), which contains a multisubstrate docking site. We induced apoptosis in murine thymocytes by dexamethasone and used Western blotting and immunoprecipitation to analyze the interaction of Mertk and SR-A in the J774A.1 (J774) murine Mø cell line and in peritoneal Mø of wild-type mice and SR-A−/− mice. Phagocytosis (but not adhesion) of AC by J774 was inhibited by anti-SR-A or function-blocking SR-A ligands. In resting J774, SR-A was associated minimally with unphosphorylated (monomeric) Mertk; exposure to AC induced a time-dependent increase in association of SR-A with Mertk in a direct or indirect manner. Anti-SR-A inhibited AC-induced phosphorylation of Mertk and of phospholipase Cγ2, essential steps in AC ingestion. Relative to tissue Mø of wild-type mice, AC-induced Mertk phosphorylation was reduced and delayed in tissue Mø of SR-A−/− mice, as was in vitro AC ingestion at early time-points. Thus, during AC uptake by murine Mø, SR-A is essential for optimal phosphorylation of Mertk and subsequent signaling required for AC ingestion. These data support the Mertk/SR-A complex as a potential target to manipulate AC clearance and hence, resolution of inflammation and infections. PMID:18511575

  1. Lowbush blueberries inhibit scavenger receptors CD36 and SR-A expression and attenuate foam cell formation in ApoE-deficient mice

    USDA-ARS?s Scientific Manuscript database

    Blueberries have recently been reported to reduce atherosclerotic lesion progression in apoE deficient (apoE-/-) mice. However, the underlying mechanisms are not fully understood. The objective of this study was to determine whether blueberries altered scavenger receptors expression and foam cell fo...

  2. Direct recognition of superparamagnetic nanocrystals by macrophage scavenger receptor SR-AI.

    PubMed

    Chao, Ying; Karmali, Priya P; Mukthavaram, Rajesh; Kesari, Santosh; Kouznetsova, Valentina L; Tsigelny, Igor F; Simberg, Dmitri

    2013-05-28

    Scavenger receptors (SRs) are molecular pattern recognition receptors that have been shown to mediate opsonin-independent uptake of therapeutic and imaging nanoparticles, underlying the importance of SRs in nanomedicine. Unlike pathogens, engineered nanomaterials offer great flexibility in control of surface properties, allowing addressing specific questions regarding the molecular mechanisms of nanoparticle recognition. Recently, we showed that SR-type AI/II mediates opsonin-independent internalization of dextran superparamagnetic iron oxide (SPIO) nanoparticles via positively charged extracellular collagen-like domain. To understand the mechanism of opsonin-independent SPIO recognition, we tested the binding and uptake of nanoparticles with different surface coatings by SR-AI. SPIO coated with 10 kDa dextran was efficiently recognized and taken up by SR-AI transfected cells and J774 macrophages, while SPIO with 20 kDa dextran coating or cross-linked dextran hydrogel avoided the binding and uptake. Nanoparticle negative charge density and zeta-potential did not correlate with SR-AI binding/uptake efficiency. Additional experiments and computer modeling revealed that recognition of the iron oxide crystalline core by the positively charged collagen-like domain of SR-AI is sterically hindered by surface polymer coating. Importantly, the modeling revealed a strong complementarity between the surface Fe-OH groups of the magnetite crystal and the charged lysines of the collagen-like domain of SR-AI, suggesting a specific recognition of SPIO crystalline surface. These data provide an insight into the molecular recognition of nanocrystals by innate immunity receptors and the mechanisms whereby polymer coatings promote immune evasion.

  3. Adverse signaling of scavenger receptor class B1 and PGC1s in alcoholic hepatosteatosis and steatohepatitis and protection by betaine in rat.

    PubMed

    Varatharajalu, Ravi; Garige, Mamatha; Leckey, Leslie C; Arellanes-Robledo, Jaime; Reyes-Gordillo, Karina; Shah, Ruchi; Lakshman, M Raj

    2014-07-01

    Because scavenger receptor class B type 1 is the cholesterol uptake liver receptor, whereas peroxisome proliferator-activated receptor γ coactivator-1β (PGC-1β) and PGC-1α are critical for lipid synthesis and degradation, we investigated the roles of these signaling molecules in the actions of ethanol-polyunsaturated fatty acids and betaine on hepatosteatosis and steatohepatitis. Ethanol-polyunsaturated fatty acid treatment caused the following: i) hepatosteatosis, as evidenced by increased liver cholesterol and triglycerides, lipid score, and decreased serum adiponectin; ii) marked inhibition of scavenger receptor class B type 1 glycosylation, its plasma membrane localization, and its hepatic cholesterol uptake function; and iii) moderate steatohepatitis, as evidenced by histopathological characteristics, increased liver tumor necrosis factor α and IL-6, decreased glutathione, and elevated serum alanine aminotransferase. These actions of ethanol involved up-regulated PGC-1β, sterol regulatory element-binding proteins 1c and 2, acetyl-CoA carboxylase, and HMG-CoA reductase mRNAs/proteins and inactive non-phosphorylated AMP kinase; and down-regulated silence regulator gene 1 and PGC-1α mRNA/proteins and hepatic fatty acid oxidation. Betaine markedly blunted all these actions of ethanol on hepatosteatosis and steatohepatitis. Therefore, we conclude that ethanol-mediated impaired post-translational modification, trafficking, and function of scavenger receptor class B type 1 may account for alcoholic hyperlipidemia. Up-regulation of PGC-1β and lipid synthetic genes and down-regulation of silence regulator gene 1, PGC-1α, adiponectin, and lipid degradation genes account for alcoholic hepatosteatosis. Induction of proinflammatory cytokines and depletion of endogenous antioxidant, glutathione, account for alcoholic steatohepatitis. We suggest betaine as a potential therapeutic agent because it effectively protects against adverse actions of ethanol. Copyright

  4. Common founder mutation in the LDL receptor gene causing familial hypercholesterolaemia in the Icelandic population.

    PubMed

    Gudnason, V; Sigurdsson, G; Nissen, H; Humphries, S E

    1997-01-01

    Haplotype analysis in 18 apparently unrelated families with familial hypercholesterolaemia (FH) in Iceland has identified at least five different chromosomes cosegregating with hypercholesterolaemia. The most common haplotype was identified in 11 of the 18 families, indicating a responsible for FH in the Icelandic population. By using single-strand conformation polymorphism (SSCP) and direct sequencing of amplified DNA, we identified a novel mutation (a T to a C) in the second nucleotide in the 5' part of intron 4 in the LDL receptor gene. This mutation was present in approximately 60% of the FH families (10/18), supporting the prediction of a common founder. These families could be traced to a common ancestor in half of the cases by going back no further than the eighteenth century. The mutation was predicted to affect correct splicing of exon 4, and analysis at the cellular level demonstrated an abnormal mRNA containing intron 4 sequence in lymphoblastoid cells from a patient carrying this mutation. Translation of the mRNA would lead to a premature stop codon and a truncated nonfunctional protein of 285 amino acids. The novel sequence change created a new restriction site for the restriction endonuclease NlaIII, and using this assay, 29 unrelated individuals with possible FH attending a lipid clinic for treatment were examined for this mutation. Two individuals in this group of patients were found to be carriers of this mutation, supporting the suggestion of a founder mutation. Using this assay for the detection of FH in the Icelandic population should identify > 60% of these individuals.

  5. Antiatherosclerotic effects of Artemisia princeps Pampanini cv. Sajabal in LDL receptor deficient mice.

    PubMed

    Han, Jong-Min; Kim, Min-Jung; Baek, Seung-Hwa; An, Sojin; Jin, Yue-Yan; Chung, Hae-Gon; Baek, Nam-In; Choi, Myung-Sook; Lee, Kyung-Tae; Jeong, Tae-Sook

    2009-02-25

    Antiatherosclerotic effects of ethanolic extracts of Artemisia princeps Pampanini cv. Sajabal (ESJ) were investigated in low-density lipoprotein receptor deficient (LDLR(-/-)) mice. The Western diet-induced high levels of total cholesterol and triglyceride were similar in the ESJ and control groups. However, circulating oxidized LDL was significantly decreased in the ESJ group (p < 0.05). ESJ also markedly decreased aortic expression levels of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), tumor necrosis factor-alpha (TNF-alpha), and interleukin-1 beta (IL-1 beta), and reduced the aortic lesion formation and macrophage accumulation by 36.7% (p < 0.05) and 43% (p < 0.01) in the control group, respectively. Additionally, ESJ inhibited atherogenic properties with cytokine-induced surface expression of cell adhesion molecules, chemokines, and monocyte adhesion to the human umbilical vein endothelial cells (HUVECs), and simultaneously suppressed nuclear factor-kappaB (NF-kappaB) activation. These results suggest that ethanolic extracts of Artemisia princeps Pampanini cv. Sajabal contributes to the antiatherosclerotic and anti-inflammatory activities in LDLR(-/-) mice.

  6. Group 1B phospholipase A₂ inactivation suppresses atherosclerosis and metabolic diseases in LDL receptor-deficient mice.

    PubMed

    Hollie, Norris I; Konaniah, Eddy S; Goodin, Colleen; Hui, David Y

    2014-06-01

    Previous studies have shown that inactivation of the group 1B phospholipase A2 (Pla2g1b) suppresses diet-induced obesity, hyperglycemia, insulin resistance, and hyperlipidemia in C57BL/6 mice. A possible influence of Pla2g1b inactivation on atherosclerosis has not been addressed previously. The current study utilized LDL receptor-deficient (Ldlr(-/-)) mice with plasma lipid levels and distribution similar to hyperlipidemic human subjects as a preclinical animal model to test the effectiveness of Pla2g1b inactivation on atherosclerosis. The Pla2g1b(+/+)Ldlr(-/-) and Pla2g1b(-/-)Ldlr(-/-) mice were fed a low fat chow diet or a hypercaloric diet with 58.5 kcal% fat and 25 kcal% sucrose for 10 weeks. Minimal differences were observed between Pla2g1b(+/+)Ldlr(-/-) and Pla2g1b(-/-)Ldlr(-/-) mice when the animals were maintained on the low fat chow diet. However, when the animals were maintained on the hypercaloric diet, the Pla2g1(+/+)Ldlr(-/-) mice showed the expected body weight gain but the Pla2g1b(-/-)Ldlr(-/-) mice were resistant to diet-induced body weight gain. The Pla2g1b(-/-)Ldlr(-/-) mice also displayed lower fasting glucose, insulin, and plasma lipid levels compared to the Pla2g1b(+/+)Ldlr(-/-) mice, which displayed robust hyperglycemia, hyperinsulinemia, and hyperlipidemia in response to the hypercaloric diet. Importantly, atherosclerotic lesions in the aortic roots were also reduced 7-fold in the Pla2g1b(-/-)Ldlr(-/-) mice. The effectiveness of Pla2g1b inactivation to suppress diet-induced body weight gain and reduce diabetes and atherosclerosis in LDL receptor-deficient mice suggests that pharmacological inhibition of Pla2g1b may be a viable strategy to decrease diet-induced obesity and the risk of diabetes and atherosclerosis in humans. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Bicarbonate-dependent, carbonate radical anion-driven tocopherol-mediated human LDL peroxidation: an in vitro and in vivo study.

    PubMed

    Lapenna, Domenico; Ciofani, Giuliano; Cuccurullo, Chiara; Neri, Matteo; Giamberardino, Maria Adele; Cuccurullo, Franco

    2012-11-01

    We have here investigated possible occurrence of bicarbonate-dependent, carbonate radical anion (CO(3)(•-))-driven tocopherol-mediated human LDL peroxidation (TMP) in vitro and in vivo. CO(3)(•-), generated in vitro by the SOD1/H(2)O(2)/bicarbonate system, readily promoted TMP, which was dependent on α-tocopherol and bicarbonate concentrations, and was inhibited by the CO(3)(•-) scavenger ethanol; moreover, TMP induced in vitro by the SOD1/H(2)O(2)/bicarbonate system occurred in the presence of α-tocopherol that typically underwent slow oxidative consumption. In the in vivo clinical setting, we showed that, compared to controls, hypertensive patients with diuretic-induced metabolic alkalosis and heightened blood bicarbonate concentration had lipid hydroperoxide burden and decreased α-tocopherol content in the LDL fraction, with direct significant correlation between the LDL levels of α-tocopherol and those of lipid hydroperoxides; remarkably, after resolution of metabolic alkalosis, together with normalization of blood bicarbonate concentration, the LDL content of lipid hydroperoxides was decreased and that of α-tocopherol augmented significantly. These findings suggest bicarbonate-dependent, CO(3)(•-)-driven LDL TMP in vivo. In conclusion, the present study highlights the occurrence of bicarbonate-dependent, CO(3)(•-)-driven human LDL TMP, the role of which in pathological conditions such as atherosclerosis warrants, however, further investigation.

  8. Novel lipid modifying drugs to lower LDL cholesterol.

    PubMed

    Cupido, Arjen J; Reeskamp, Laurens F; Kastelein, John J P

    2017-08-01

    Statins have long been the cornerstone for the prevention of cardiovascular disease (CVD). However, because of perceived adverse effects and insufficient efficacy in certain groups of patients, considerable interest exists in the search for alternatives to lower LDL-cholesterol (LDL-C), and the recent approvals of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors underlines the success of this quest. Here, we give an updated overview on the most recent developments in the area of LDL-C lowering agents. The clinical effects of the PCSK9 inhibitors are promising, especially now that the FOURIER and SPIRE programmes are published. Most cholesterylester-transfer protein inhibitors, however, except anacetrapib, have been discontinued because of either toxicity or lack of efficacy in large cardiovascular outcome trials. Other agents - like mipomersen, lomitapide, ETC-1002, and gemcabene - aim to lower LDL-C in different ways than solely through the LDL receptor, opening up possibilities for treating patients not responding to conventional therapies. New discoveries are also being made at the DNA and RNA level, with mipomersen being the first approved therapy based on RNA intervention in the United States for homozygous familial hypercholesterolemia. Recent years have witnessed a new beginning for cholesterol-lowering compounds. With increased knowledge of lipid metabolism a score of new therapeutic targets has been identified. Mechanisms for modulation of those targets are also becoming more diverse while statins remain the backbone of CVD prevention, the new alternatives, such as PCSK9 monoclonals will probably play an important additional role in treatment of patients at risk for CVD.

  9. Ezetimibe increases intestinal expression of the LDL receptor gene in dyslipidaemic men with insulin resistance.

    PubMed

    Drouin-Chartier, Jean-Philippe; Tremblay, André J; Lemelin, Valéry; Lépine, Marie-Claude; Lamarche, Benoît; Couture, Patrick

    2016-12-01

    To gain further insight into intestinal cholesterol homeostasis in dyslipidaemic men with insulin resistance (IR) by examining the impact of treatment with ezetimibe on the expression of key genes involved in cholesterol synthesis and LDL receptor (R)-mediated uptake of lipoproteins. A total of 25 men with dyslipidaemia and IR were recruited to participate in this double-blind, randomized, crossover, placebo-controlled trial. Participants received 10 mg/day ezetimibe or placebo for periods of 12 weeks each. Intestinal gene expression was measured by quantitative PCR in duodenal biopsy samples collected by gastroduodenoscopy at the end of each treatment. A total of 20 participants completed the protocol. Treatment with ezetimibe significantly increased intestinal LDLR (+16.2%; P = .01), 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoAR; +14.0%; P = .04) and acetyl-Coenzyme A acetyltransferase 2 (ACAT-2) mRNA expression (+12.5%; P = .03). Changes in sterol regulatory element-binding transcription factor 2 (SREBP-2) expression were significantly correlated with changes in HMG-CoAR (r = 0.55; P < .05), ACAT-2 (r = 0.69; P < .001) and proprotein convertase substilisin/kexin type 9 (PCSK9) expression (r = 0.45; P < .05). These results show that inhibition of intestinal cholesterol absorption by ezetimibe increases expression of the LDLR gene, supporting the concept that increased LDL clearance with ezetimibe treatment occurs not only in the liver but also in the small intestine. © 2016 John Wiley & Sons Ltd.

  10. Impaired receptor-mediated catabolism of low density lipoprotein in the WHHL rabbit, an animal model of familial hypercholesterolemia

    PubMed Central

    Bilheimer, David W.; Watanabe, Yoshio; Kita, Toru

    1982-01-01

    The homozygous WHHL (Watanabe heritable hyperlipidemic) rabbit displays either no or only minimal low density lipoprotein (LDL) receptor activity on cultured fibroblasts and liver membranes and has therefore been proposed as an animal model for human familial hypercholesterolemia. To assess the impact of this mutation on LDL metabolism in vivo, we performed lipoprotein turnover studies in normal and WHHL rabbits using both native rabbit LDL and chemically modified LDL (i.e., methyl-LDL) that does not bind to LDL receptors. The total fractional catabolic rate (FCR) for LDL in the normal rabbit was 3.5-fold greater than in the WHHL rabbit. Sixty-seven percent of the total FCR for LDL in the normal rabbit was due to LDL receptor-mediated clearance and 33% was attributable to receptor-independent processes; in the WHHL rabbit, essentially all of the LDL was catabolized via receptor-independent processes. Despite a 17.5-fold elevated plasma pool size of LDL apoprotein (apo-LDL) in WHHL as compared to normal rabbits, the receptor-independent FCR—as judged by the turnover of methyl-LDL—was similar in the two strains. Thus, the receptor-independent catabolic processes are not influenced by the mutation affecting the LDL receptor. The WHHL rabbits also exhibited a 5.6-fold increase in the absolute rate of apo-LDL synthesis and catabolism. In absolute terms, the WHHL rabbit cleared 19-fold more apo-LDL via receptor-independent processes than did the normal rabbit and cleared virtually none by the receptor-dependent pathway. These results indicate that the homozygous WHHL rabbit shares a number of metabolic features in common with human familial hypercholesterolemia and should serve as a useful model for the study of altered lipoprotein metabolism associated with receptor abnormalities. We also noted that the in vivo metabolic behavior of human and rabbit LDL in the normal rabbit differed such that the mean total FCR for human LDL was only 64% of the mean total FCR for

  11. The macrophage pattern recognition scavenger receptors SR-A and CD36 protect against microbial induced pregnancy loss

    PubMed Central

    Ebersole, Jeffery L.; de Villiers, Willem J. S.

    2014-01-01

    Objectives and design Microbial products can act via stress-induced signaling cascades to link dysregulated endogenous microbiota to immune activation (e.g., macrophages) and pregnancy loss. Our previous studies demonstrated that mice deficient in the macrophage pattern recognition scavenger receptors, SR-A and CD36, are more susceptible to inflammatory complications including gut leakiness and experimental colitis. We hypothesized that bacterial penetration of the maternal mucosal surfaces and replication in embryonic fluids compromise the fetal status and can result in miscarriage. Materials and methods Eighty pregnant ICR and SR-A/CD36-deficient mice were injected via tail vein or intraperitoneally with commensal bacteria (Streptococcus cricetus and/or Actinobacillus sp.) or sham controls. Dams were monitored daily for physical distress, pain and abortion. Results Dams injected with single dose bacterial inoculum did not develop clinical symptoms. Day old pups injected with bacteria developed internal focal abscesses, lost weight but recovered after 1 week. Dams receiving a second bacterial inoculum delivered dead fetuses. However, SR-A/CD36-deficnet dams demonstrated 100% fetal death via aborted fetuses, and significant up-regulation of the proinflammatory markers (IL-6, serum Amyloid A) 24–74 h after single inoculum. Conclusions These data indicate that macrophage scavenger receptors are required for the fetal protection against microbial attack and support that maternal transfer of innate immunity contributes to this protection. PMID:20711846

  12. Natural Biflavonoids Modulate Macrophage–Oxidized LDL Interaction In Vitro and Promote Atheroprotection In Vivo

    PubMed Central

    Tabares-Guevara, Jorge H.; Lara-Guzmán, Oscar J.; Londoño-Londoño, Julian A.; Sierra, Jelver A.; León-Varela, Yudy M.; Álvarez-Quintero, Rafael M.; Osorio, Edison J.; Ramirez-Pineda, José R.

    2017-01-01

    The accumulation of oxidized ApoB-100-containing lipoproteins in the vascular intima and its subsequent recognition by macrophages results in foam cell formation and inflammation, key events during atherosclerosis development. Agents targeting this process are considered potentially atheroprotective. Since natural biflavonoids exert antioxidant and anti-inflammatory effects, we evaluated the atheroprotective effect of biflavonoids obtained from the tropical fruit tree Garcinia madruno. To this end, the pure biflavonoid aglycones morelloflavone (Mo) and volkensiflavone (Vo), as well as the morelloflavone’s glycoside fukugiside (Fu) were tested in vitro in primary macrophages, whereas a biflavonoid fraction with defined composition (85% Mo, 10% Vo, and 5% Amentoflavone) was tested in vitro and in vivo. All biflavonoid preparations were potent reactive oxygen species (ROS) scavengers in the oxygen radical absorbance capacity assay, and most importantly, protected low-density lipoprotein particle from both lipid and protein oxidation. In biflavonoid-treated macrophages, the surface expression of the oxidized LDL (oxLDL) receptor CD36 was significantly lower than in vehicle-treated macrophages. Uptake of fluorescently labeled oxLDL and cholesterol accumulation were also attenuated in biflavonoid-treated macrophages and followed a pattern that paralleled that of CD36 surface expression. Fu and Vo inhibited oxLDL-induced ROS production and interleukin (IL)-6 secretion, respectively, whereas all aglycones, but not the glucoside Fu, inhibited the secretion of one or more of the cytokines IL-1β, IL-12p70, and monocyte chemotactic protein-1 (MCP-1) in lipopolysaccharide (LPS)-stimulated macrophages. Interestingly, in macrophages primed with low-dose LPS and stimulated with cholesterol crystals, IL-1β secretion was significantly and comparably inhibited by all biflavonoid preparations. Intraperitoneal administration of the defined biflavonoid fraction into ApoE−/− mice

  13. PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates.

    PubMed

    Lindholm, Marie W; Elmén, Joacim; Fisker, Niels; Hansen, Henrik F; Persson, Robert; Møller, Marianne R; Rosenbohm, Christoph; Ørum, Henrik; Straarup, Ellen M; Koch, Troels

    2012-02-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a therapeutic target for the reduction of low-density lipoprotein cholesterol (LDL-C). PCSK9 increases the degradation of the LDL receptor, resulting in high LDL-C in individuals with high PCSK9 activity. Here, we show that two locked nucleic acid (LNA) antisense oligonucleotides targeting PCSK9 produce sustained reduction of LDL-C in nonhuman primates after a loading dose (20 mg/kg) and four weekly maintenance doses (5 mg/kg). PCSK9 messenger RNA (mRNA) and serum PCSK9 protein were reduced by 85% which resulted in a 50% reduction in circulating LDL-C. Serum total cholesterol (TC) levels were reduced to the same extent as LDL-C with no reduction in high-density lipoprotein levels, demonstrating a specific pharmacological effect on LDL-C. The reduction in hepatic PCSK9 mRNA correlated with liver LNA oligonucleotide content. This verified that anti-PCSK9 LNA oligonucleotides regulated LDL-C through an antisense mechanism. The compounds were well tolerated with no observed effects on toxicological parameters (liver and kidney histology, alanine aminotransferase, aspartate aminotransferase, urea, and creatinine). The pharmacologic evidence and initial safety profile of the compounds used in this study indicate that LNA antisense oligonucleotides targeting PCSK9 provide a viable therapeutic strategy and are potential complements to statins in managing high LDL-C.

  14. Ocimum basilicum ethanolic extract decreases cholesterol synthesis and lipid accumulation in human macrophages.

    PubMed

    Bravo, Elena; Amrani, Souliman; Aziz, Mohammed; Harnafi, Hicham; Napolitano, Mariarosaria

    2008-12-01

    Macrophage lipid accumulation induced by low density lipoproteins (LDL) plays a pivotal role in atherosclerotic plaque development. Previous work showed that Ocimum basilicum extract, used as hypocholesterolemic agent by traditional medicine in Morocco, has hypolipidemic activity in rat acute hyperlipimidemia. This study investigated the effects of ethanolic extract of O. basilicum on lipid accumulation in human macrophages. As modification of LDL increase atherogenicity of the particles we evaluated the effects of the extract on LDL oxidation. The extract caused a dose-related increase of LDL-resistance to Cu(2+)-induced oxidation. Furthermore, at the dose of 60 microg/ml, significantly decreases the accumulation of macrophage lipid droplets induced by modified LDL evaluated as by red-oil staining. Cholesterol esterification and triacylglycerol synthesis in the cells were not affected. Macrophage treatment with 60 microg/ml, but not 20 microg/ml, of the extract reduced newly synthesized unesterified cholesterol by about 60% and decreased scavenger receptors activity by about 20-30%, evaluated by the internalization of cholesterol carried by [(3)H]CE-aggregated-LDL. The results suggest that O. basilicum ethanolic extract has the capability to reduce foam cell formation through the reduction of cholesterol synthesis and the modulation of the activity of surface scavenger receptors.

  15. Compared with saturated fatty acids, dietary monounsaturated fatty acids and carbohydrates increase atherosclerosis and VLDL cholesterol levels in LDL receptor-deficient, but not apolipoprotein E-deficient, mice

    PubMed Central

    Merkel, Martin; Velez-Carrasco, Wanda; Hudgins, Lisa C.; Breslow, Jan L.

    2001-01-01

    Heart-healthy dietary recommendations include decreasing the intake of saturated fatty acids (SFA). However, the relative benefit of replacing SFA with monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), or carbohydrates (CARB) is still being debated. We have used two mouse models of atherosclerosis, low density lipoprotein receptor-deficient (LDLRKO) and apolipoprotein E-deficient (apoEKO) mice to measure the effects of four isocaloric diets enriched with either SFA, MUFA, PUFA, or CARB on atherosclerotic lesion area and lipoprotein levels. In LDLRKO mice, compared with the SFA diet, the MUFA and CARB diets significantly increased atherosclerosis in both sexes, but the PUFA diet had no effect. The MUFA and CARB diets also increased very low density lipoprotein-cholesterol (VLDL-C) and LDL-cholesterol (LDL-C) in males and VLDL-C levels in females. Analysis of data from LDLRKO mice on all diets showed that atherosclerotic lesion area correlated positively with VLDL-C levels (males: r = 0.47, P < 0.005; females: r = 0.52, P < 0.001). In contrast, in apoEKO mice there were no significant dietary effects on atherosclerosis in either sex. Compared with the SFA diet, the CARB diet significantly decreased VLDL-C in males and the MUFA, PUFA, and CARB diets decreased VLDL-C and the CARB diet decreased LDL-C in females. In summary, in LDLRKO mice the replacement of dietary SFA by either MUFA or CARB causes a proportionate increase in both atherosclerotic lesion area and VLDL-C. There were no significant dietary effects on atherosclerotic lesion area in apoEKO mice. These results are surprising and suggest that, depending on the underlying genotype, dietary MUFA and CARB can actually increase atherosclerosis susceptibility, probably by raising VLDL-C levels through a non-LDL receptor, apoE-dependent pathway. PMID:11606787

  16. Compared with saturated fatty acids, dietary monounsaturated fatty acids and carbohydrates increase atherosclerosis and VLDL cholesterol levels in LDL receptor-deficient, but not apolipoprotein E-deficient, mice.

    PubMed

    Merkel, M; Velez-Carrasco, W; Hudgins, L C; Breslow, J L

    2001-11-06

    Heart-healthy dietary recommendations include decreasing the intake of saturated fatty acids (SFA). However, the relative benefit of replacing SFA with monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), or carbohydrates (CARB) is still being debated. We have used two mouse models of atherosclerosis, low density lipoprotein receptor-deficient (LDLRKO) and apolipoprotein E-deficient (apoEKO) mice to measure the effects of four isocaloric diets enriched with either SFA, MUFA, PUFA, or CARB on atherosclerotic lesion area and lipoprotein levels. In LDLRKO mice, compared with the SFA diet, the MUFA and CARB diets significantly increased atherosclerosis in both sexes, but the PUFA diet had no effect. The MUFA and CARB diets also increased very low density lipoprotein-cholesterol (VLDL-C) and LDL-cholesterol (LDL-C) in males and VLDL-C levels in females. Analysis of data from LDLRKO mice on all diets showed that atherosclerotic lesion area correlated positively with VLDL-C levels (males: r = 0.47, P < 0.005; females: r = 0.52, P < 0.001). In contrast, in apoEKO mice there were no significant dietary effects on atherosclerosis in either sex. Compared with the SFA diet, the CARB diet significantly decreased VLDL-C in males and the MUFA, PUFA, and CARB diets decreased VLDL-C and the CARB diet decreased LDL-C in females. In summary, in LDLRKO mice the replacement of dietary SFA by either MUFA or CARB causes a proportionate increase in both atherosclerotic lesion area and VLDL-C. There were no significant dietary effects on atherosclerotic lesion area in apoEKO mice. These results are surprising and suggest that, depending on the underlying genotype, dietary MUFA and CARB can actually increase atherosclerosis susceptibility, probably by raising VLDL-C levels through a non-LDL receptor, apoE-dependent pathway.

  17. The potent free radical scavenger alpha-lipoic acid improves memory in aged mice: putative relationship to NMDA receptor deficits.

    PubMed

    Stoll, S; Hartmann, H; Cohen, S A; Müller, W E

    1993-12-01

    alpha-Lipoic acid (alpha-LA) improved longer-term memory of aged female NMRI mice in the habituation in the open field test at a dose of 100 mg/kg body weight for 15 days. In a separate experiment, no such effect could be found for young mice. alpha-LA alleviated age-related NMDA receptor deficits (Bmax) without changing muscarinic, benzodiazepine, and alpha 2-adrenergic receptor deficits in aged mice. The carbachol-stimulated accumulation of inositol monophosphates was not changed by the treatment with alpha-LA. These results give tentative support to the hypothesis that alpha-LA improves memory in aged mice, probably by a partial compensation of NMDA receptor deficits. Possible modes of action of alpha-LA based on its free radical scavenger properties are discussed in relation to the membrane hypothesis of aging.

  18. Antioxidant vitamins and enzymatic and synthetic oxygen-derived free radical scavengers in the prevention and treatment of cardiovascular disease.

    PubMed

    Nayak, D U; Karmen, C; Frishman, W H; Vakili, B A

    2001-01-01

    Oxygen-derived free radical formation can lead to cellular injury and death. Under normal situations, the human body has a free radical scavenger system (catalase, superoxide dismutase) that can detoxify free radicals. Antioxidant vitamins and enzymatic and synthetic oxygen-derived free radical scavengers have been used clinically to prevent the formation of oxidized LDL and to prevent reperfusion injury, which is often caused by free radicals. In this article, the pathogenesis of free radical production and cell injury are discussed, and therapeutic approaches for disease prevention are presented.

  19. ATVB Council Statement: Non-statin LDL-lowering Therapy and Cardiovascular Risk Reduction

    PubMed Central

    Hegele, Robert A.; Gidding, Samuel S.; Ginsberg, Henry N.; McPherson, Ruth; Raal, Frederick J.; Rader, Daniel J.; Robinson, Jennifer G.; Welty, Francine K.

    2015-01-01

    Pharmacologic reduction of low-density lipoprotein (LDL) cholesterol using statin drugs is foundational therapy to reduce cardiovascular disease (CVD) risk. Here we consider the place of non-statin therapies that also reduce LDL cholesterol in prevention of CVD. Among conventional non-statins, placebo-controlled randomized clinical trials showed that bile acid sequestrants, niacin and fibrates given as monotherapy each reduce CVD end points. From trials in which patients’ LDL cholesterol was already well-controlled on a statin, adding ezetimibe incrementally reduced CVD end points, while adding a fibrate or niacin showed no incremental benefit. Among emerging non-statins, monoclonal antibodies against proprotein convertase subtilisin kexin type 9 (PCSK9) added to a statin and given for up to 78 weeks showed preliminary evidence of reductions in CVD outcomes. While these promising early findings contributed to the recent approval of these agents in Europe and the US, much larger and longer duration outcomes studies are ongoing for definitive proof of CVD benefits. Other non-statin agents recently approved in the US include lomitapide and mipomersen, which both act via distinctive LDL-receptor independent mechanisms to substantially reduce LDL cholesterol in homozygous familial hypercholesterolemia. We also address some unanswered questions, including measuring alternative biochemical variables to LDL cholesterol, evidence for treating children with monitoring of subclinical atherosclerosis, and potential risks of extremely low LDL cholesterol. As evidence for benefit in CVD prevention accumulates, we anticipate that clinical practice will shift towards more assertive LDL-lowering treatment, using both statins and non-statins initiated earlier in appropriately selected patients. PMID:26376908

  20. The cannabinoid WIN55,212-2 protects against oxidized LDL-induced inflammatory response in murine macrophages[S

    PubMed Central

    Hao, Ming-xiu; Jiang, Li-sheng; Fang, Ning-yuan; Pu, Jun; Hu, Liu-hua; Shen, Ling-Hong; Song, Wei; He, Ben

    2010-01-01

    The endocannabinoid system has recently been attracted interest for its anti-inflammatory and anti-oxidative properties. In this study, we investigated the role of the endocannabinoid system in regulating the oxidized low-density lipoprotein (oxLDL)-induced inflammatory response in macrophages. RAW264.7 mouse macrophages and peritoneal macrophages isolated from Sprague-Dawley (SD) rats were exposed to oxLDL with or without the synthetic cannabinoid WIN55,212-2. To assess the inflammatory response, reactive oxygen species (ROS) and tumor necrosis factor alpha (TNF- α) levels were determined, and activation of the mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-kappa B signaling pathways were assessed. We observed that: i) oxLDL strongly induced ROS generation and TNF- α secretion in murine macrophages; ii) oxLDL-induced TNF- α and ROS levels could be lowered considerably by WIN55,212-2 via inhibition of MAPK (ERK1/2) signaling and NF-kappa B activity; and iii) the effects of WIN55212-2 were attenuated by the selective CB2 receptor antagonist AM630. These results demonstrate the involvement of the endocannabinoid system in regulating the oxLDL-induced inflammatory response in macrophages, and indicate that the CB2 receptor may offer a novel pharmaceutical target for treating atherosclerosis. PMID:20305287

  1. Oxidized LDL triggers changes in oxidative stress and inflammatory biomarkers in human macrophages.

    PubMed

    Lara-Guzmán, Oscar J; Gil-Izquierdo, Ángel; Medina, Sonia; Osorio, Edison; Álvarez-Quintero, Rafael; Zuluaga, Natalia; Oger, Camille; Galano, Jean-Marie; Durand, Thierry; Muñoz-Durango, Katalina

    2018-05-01

    Oxidized low-density lipoprotein (oxLDL) is a well-recognized proatherogenic particle that functions in atherosclerosis. In this study, we established conditions to generate human oxLDL, characterized according to the grade of lipid and protein oxidation, particle size and oxylipin content. The induction effect of the cellular proatherogenic response was assessed in foam cells by using an oxLDL-macrophage interaction model. Uptake of oxLDL, reactive oxygen species production and expression of oxLDL receptors (CD36, SR-A and LOX-1) were significantly increased in THP-1 macrophages. Analyses of 35 oxylipins revealed that isoprostanes (IsoP) and prostaglandins (PGs) derived from the oxidation of arachidonic, dihomo gamma-linolenic and eicosapentaenoic acids were strongly and significantly induced in macrophages stimulated with oxLDL. Importantly, the main metabolites responsible for the THP1-macrophage response to oxLDL exposure were the oxidative stress markers 5-epi-5-F 2t -IsoP, 15-E 1t -IsoP, 8-F 3t -IsoP and 15-keto-15-F 2t -IsoP as well as inflammatory markers PGDM, 17-trans-PGF 3α , and 11β-PGF 2α , all of which are reported here, for the first time, to function in the interaction of oxLDL with THP-1 macrophages. By contrast, a salvage pathway mediated by anti-inflammatory PGs (PGE 1 and 17-trans-PGF 3α ) was also identified, suggesting a response to oxLDL-induced injury. In conclusion, when THP-1 macrophages were treated with oxLDL, a specific induction of biomarkers related to oxidative stress and inflammation was triggered. This work contributes to our understanding of initial atherogenic events mediated by oxLDL-macrophage interactions and helps to generate new approaches for their modulation. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. The ubiquitin ligase Nedd4 mediates oxidized low-density lipoprotein-induced downregulation of insulin-like growth factor-1 receptor

    PubMed Central

    Higashi, Yusuke; Sukhanov, Sergiy; Parthasarathy, Sampath; Delafontaine, Patrice

    2008-01-01

    Oxidized low-density lipoprotein (LDL) is proatherogenic and induces smooth muscle cell apoptosis, which contributes to atherosclerotic plaque destabilization. We showed previously that oxidized LDL downregulates insulin-like growth factor-1 receptor in human smooth muscle cells and that this is critical for induction of apoptosis. To identify mechanisms, we exposed smooth muscle cells to 60 μg/ml oxidized LDL or native LDL and assessed insulin-like growth factor-1 receptor mRNA levels, protein synthesis rate, and receptor protein stability. Oxidized LDL decreased insulin-like growth factor-1 receptor mRNA levels by 30% at 8 h compared with native LDL, and this decrease was maintained for up to 20 h. However, insulin-like growth factor-1 receptor protein synthesis rate was not altered by oxidized LDL. Pulse-chase labeling experiments revealed that oxidized LDL reduced insulin-like growth factor-1 receptor protein half-life to 12.2 ± 1.7 h from 24.4 ± 4.7 h with native LDL. This destabilization of insulin-like growth factor-1 receptor protein was accompanied by enhanced receptor ubiquitination. Overexpression of dominant-negative Nedd4 prevented oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor, suggesting that Nedd4 was the ubiquitin ligase that mediated receptor downregulation. However, the proteasome inhibitors lactacystin, MG-132, and proteasome inhibitor-1 failed to block oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor. Thus oxidized LDL downregulates insulin-like growth factor-1 receptor by destabilizing the protein via Nedd4-enhanced ubiquitination, leading to degradation via a proteasome-independent pathway. This finding provides novel insights into oxidized LDL-triggered oxidant signaling and mechanisms of smooth muscle cell depletion that contribute to plaque destabilization and coronary events. PMID:18723765

  3. Site-specific O-glycosylation of N-terminal serine residues by polypeptide GalNAc-transferase 2 modulates human δ-opioid receptor turnover at the plasma membrane.

    PubMed

    Lackman, Jarkko J; Goth, Christoffer K; Halim, Adnan; Vakhrushev, Sergey Y; Clausen, Henrik; Petäjä-Repo, Ulla E

    2018-01-01

    G protein-coupled receptors (GPCRs) are an important protein family of signalling receptors that govern a wide variety of physiological functions. The capacity to transmit extracellular signals and the extent of cellular response are largely determined by the amount of functional receptors at the cell surface that is subject to complex and fine-tuned regulation. Here, we demonstrate that the cell surface expression level of an inhibitory GPCR, the human δ-opioid receptor (hδOR) involved in pain and mood regulation, is modulated by site-specific N-acetylgalactosamine (GalNAc) -type O-glycosylation. Importantly, we identified one out of the 20 polypeptide GalNAc-transferase isoforms, GalNAc-T2, as the specific regulator of O-glycosylation of Ser6, Ser25 and Ser29 in the N-terminal ectodomain of the receptor. This was demonstrated by in vitro glycosylation assays using peptides corresponding to the hδOR N-terminus, Vicia villosa lectin affinity purification of receptors expressed in HEK293 SimpleCells capable of synthesizing only truncated O-glycans, GalNAc-T edited cell line model systems, and site-directed mutagenesis of the putative O-glycosylation sites. Interestingly, a single-nucleotide polymorphism, at residue 27 (F27C), was found to alter O-glycosylation of the receptor in efficiency as well as in glycosite usage. Furthermore, flow cytometry and cell surface biotinylation assays using O-glycan deficient CHO-ldlD cells revealed that the absence of O-glycans results in decreased receptor levels at the plasma membrane due to enhanced turnover. In addition, mutation of the identified O-glycosylation sites led to a decrease in the number of ligand-binding competent receptors and impaired agonist-mediated inhibition of cyclic AMP accumulation in HEK293 cells. Thus, site-specific O-glycosylation by a selected GalNAc-T isoform can increase the stability of a GPCR, in a process that modulates the constitutive turnover and steady-state levels of functional receptors

  4. Exendin-4 ameliorates oxidized-LDL-induced inhibition of macrophage migration in vitro via the NF-κB pathway.

    PubMed

    Ma, Ge-fei; Chen, Song; Yin, Lei; Gao, Xiang-dong; Yao, Wen-bing

    2014-02-01

    To investigate the effects of the glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 on oxidized low-density lipoprotein (ox-LDL)-induced inhibition of macrophage migration and the mechanisms underlying the effects of exendin-4. Primary peritoneal macrophages were extracted from the peritoneal cavity of mice treated with 3% thioglycollate (2 mL, ip). Migration of the macrophages was examined using a cell migration assay. Macrophage migration-related factors including leptin-like ox-LDL receptor (LOX-1), cyclooxygenase 2 (COX-2), tumor necrosis factor (TNF)-α, interleukin-1 (IL-1)β, matrix metalloproteinase-2 (MMP-2), intercellular adhesion molecule (ICAM)-1 and macrophage migration inhibitory factor (MIF) were measured using semi-quantitative RT-PCR. Expression of MIF and ICAM-1 proteins was examined with ELISA. Gelatin zymography was used to evaluate the activity of MMP-9. Activation of the NF-κB pathway was determined by confocal laser scanning microscopy. Treatment of the macrophages with ox-LDL (50 μg/mL) markedly suppressed the macrophage migration. Furthermore, ox-LDL treatment substantially increased the expression of the macrophage migration-related factors, the activity of MMP-9 and the translocation of the NF-κB p65 subunit. These effects of ox-LDL were significantly ameliorated by pretreatment with the specific NF-κB inhibitor ammonium pyrrolidine dithiocarbamate (100 μmol/L). These effects of ox-LDL were also significantly ameliorated by pretreatment with exendin-4 (25 and 50 nmol/L). Exendin-4 ameliorates the inhibition of ox-LDL on macrophage migration in vitro, via suppressing ox-LDL-induced expression of ICAM-1 and MIF, which is probably mediated by the NF-κB pathway.

  5. Scavenger receptor-B1 and luteal function in mice.

    PubMed

    Jiménez, Leonor Miranda; Binelli, Mario; Bertolin, Kalyne; Pelletier, R Marc; Murphy, Bruce D

    2010-08-01

    During luteinization, circulating high-density lipoproteins supply cholesterol to ovarian cells via the scavenger receptor-B1 (SCARB1). In the mouse, SCARB1 is expressed in cytoplasm and periphery of theca, granulosa, and cumulus cells of developing follicles and increases dramatically during formation of corpora lutea. Blockade of ovulation in mice with meloxicam, a prostaglandin synthase-2 inhibitor, resulted in follicles with oocytes entrapped in unexpanded cumulus complexes and with granulosa cells with luteinized morphology and expressing SCARB1 characteristic of luteinization. Mice bearing null mutation of the Scarb1 gene (SCARB1(-/-)) had ovaries with small corpora lutea, large follicles with hypertrophied theca cells, and follicular cysts with blood-filled cavities. Plasma progesterone concentrations were decreased 50% in mice with Scarb1 gene disruption. When SCARB1(-/-) mice were treated with a combination of mevinolin [an inhibitor of 3-hydroxy-3-methylglutaryl CoA reductase (HMGR)] and chloroquine (an inhibitor of lysosomal processing of low-density lipoproteins), serum progesterone was further reduced. HMGR protein expression increased in SCARB1(-/-) mice, independent of treatment. It was concluded that theca, granulosa, and cumulus cells express SCARB1 during follicle development, but maximum expression depends on luteinization. Knockout of SCARB1(-/-) leads to ovarian pathology and suboptimal luteal steroidogenesis. Therefore, SCARB1 expression is essential for maintaining normal ovarian cholesterol homeostasis and luteal steroid synthesis.

  6. Proteomic plasma membrane profiling reveals an essential role for gp96 in the cell surface expression of LDLR family members, including the LDL receptor and LRP6.

    PubMed

    Weekes, Michael P; Antrobus, Robin; Talbot, Suzanne; Hör, Simon; Simecek, Nikol; Smith, Duncan L; Bloor, Stuart; Randow, Felix; Lehner, Paul J

    2012-03-02

    The endoplasmic reticulum chaperone gp96 is required for the cell surface expression of a narrow range of proteins, including toll-like receptors (TLRs) and integrins. To identify a more comprehensive repertoire of proteins whose cell surface expression is dependent on gp96, we developed plasma membrane profiling (PMP), a technique that combines SILAC labeling with selective cell surface aminooxy-biotinylation. This approach allowed us to compare the relative abundance of plasma membrane (PM) proteins on gp96-deficient versus gp96-reconstituted murine pre-B cells. Analysis of unfractionated tryptic peptides initially identified 113 PM proteins, which extended to 706 PM proteins using peptide prefractionation. We confirmed a requirement for gp96 in the cell surface expression of certain TLRs and integrins and found a marked decrease in cell surface expression of four members of the extended LDL receptor family (LDLR, LRP6, Sorl1 and LRP8) in the absence of gp96. Other novel gp96 client proteins included CD180/Ly86, important in the B-cell response to lipopolysaccharide. We highlight common structural motifs in these client proteins that may be recognized by gp96, including the beta-propeller and leucine-rich repeat. This study therefore identifies the extended LDL receptor family as an important new family of proteins whose cell surface expression is regulated by gp96.

  7. Proteomic Plasma Membrane Profiling Reveals an Essential Role for gp96 in the Cell Surface Expression of LDLR Family Members, Including the LDL Receptor and LRP6

    PubMed Central

    2012-01-01

    The endoplasmic reticulum chaperone gp96 is required for the cell surface expression of a narrow range of proteins, including toll-like receptors (TLRs) and integrins. To identify a more comprehensive repertoire of proteins whose cell surface expression is dependent on gp96, we developed plasma membrane profiling (PMP), a technique that combines SILAC labeling with selective cell surface aminooxy-biotinylation. This approach allowed us to compare the relative abundance of plasma membrane (PM) proteins on gp96-deficient versus gp96-reconstituted murine pre-B cells. Analysis of unfractionated tryptic peptides initially identified 113 PM proteins, which extended to 706 PM proteins using peptide prefractionation. We confirmed a requirement for gp96 in the cell surface expression of certain TLRs and integrins and found a marked decrease in cell surface expression of four members of the extended LDL receptor family (LDLR, LRP6, Sorl1 and LRP8) in the absence of gp96. Other novel gp96 client proteins included CD180/Ly86, important in the B-cell response to lipopolysaccharide. We highlight common structural motifs in these client proteins that may be recognized by gp96, including the beta-propeller and leucine-rich repeat. This study therefore identifies the extended LDL receptor family as an important new family of proteins whose cell surface expression is regulated by gp96. PMID:22292497

  8. Oxidized LDL but not total LDL is associated with HbA1c in individuals without diabetes.

    PubMed

    Spessatto, Débora; Brum, Liz Marina Bueno Dos Passos; Camargo, Joíza Lins

    2017-08-01

    This study investigates the association between HbA1c, LDL and oxi-LDL in individuals without diabetes (DM). One hundred and ninety-six individuals, without DM, were enrolled and divided into three groups according to HbA1c and fasting plasma glucose values. HbA1c, oxi-LDL, LDL, and other biochemical measurements of lipid profile were also carried out. oxi-LDL levels showed significant differences among all groups and group 3 presented higher values [34U/L (27-46); 44U/L (37-70); and 86U/L (49-136); p<0.001; for groups 1, 2 and 3, respectively]. There was also a significant difference in oxi-LDL/HDL and oxi-LDL/LDL ratios among all groups (p<0.001). There was no significant difference in total cholesterol (TC), triglycerides and LDL values among groups. HbA1c showed moderate positive associations with oxi-LDL (r=0.431; p<0.001), oxi-LDL/HDL ratio (r=0.423, p<0.001), and oxi-LDL/LDL ratio (r=0.359, p<0.001). There were lower associations between HbA1c and TC (r=0.142; p=0.048), triglycerides (r=0.155; p=0.030), LDL (r=0.148; p=0.039), non-HDL (r=0.192; p=0.007) and Apo B (r=0.171, p<0.001). The positive associations between HbA1c and oxi-LDL, oxi-LDL/HDL and oxi-LDL/LDL ratios remained significant even after adjustment by multiple linear regression analysis for the variables alcohol consumption, use of medicine, BMI, and age. oxi-LDL levels are significantly associated with HbA1c in non-diabetic individuals. However, the levels of traditional atherogenic lipids only showed a weak association with HbA1c levels. Those at high risk of developing DM or cardiovascular disease have higher levels of oxi-LDL. These data favor to the use of HbA1c as a biomarker to identify individuals at risk of developing complications even in non-diabetic glycemic levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Electronegative LDL induces priming and inflammasome activation leading to IL-1β release in human monocytes and macrophages.

    PubMed

    Estruch, M; Rajamäki, K; Sanchez-Quesada, J L; Kovanen, P T; Öörni, K; Benitez, S; Ordoñez-Llanos, J

    2015-11-01

    Electronegative LDL (LDL(−)), a modified LDL fraction found in blood, induces the release of inflammatory mediators in endothelial cells and leukocytes. However, the inflammatory pathways activated by LDL(−) have not been fully defined. We aim to study whether LDL(−) induced release of the first-wave proinflammatory IL-1β in monocytes and monocyte-derived macrophages (MDM) and the mechanisms involved. LDL(−) was isolated from total LDL by anion exchange chromatography. Monocytes and MDM were isolated from healthy donors and stimulated with LDL(+) and LDL(−) (100 mg apoB/L). In monocytes, LDL(−) promoted IL-1β release in a time-dependent manner, obtaining at 20 h-incubation the double of IL-1β release induced by LDL(−) than by native LDL. LDL(−)-induced IL-1β release involved activation of the CD14-TLR4 receptor complex. LDL(−) induced priming, the first step of IL-1β release, since it increased the transcription of pro-IL-1β (8-fold) and NLRP3 (3-fold) compared to native LDL. Several findings show that LDL(−) induced inflammasome activation, the second step necessary for IL-1β release. Preincubation of monocytes with K+ channel inhibitors decreased LDL(−)-induced IL-1β release. LDL(−) induced formation of the NLRP3-ASC complex. LDL(−) triggered 2-fold caspase-1 activation compared to native LDL and IL-1β release was strongly diminished in the presence of the caspase-1 inhibitor Z-YVAD. In MDM, LDL(−) promoted IL-1β release, which was also associated with caspase-1 activation. LDL(−) promotes release of biologically active IL-1β in monocytes and MDM by induction of the two steps involved: priming and NLRP3 inflammasome activation. By IL-1β release, LDL(−) could regulate inflammation in atherosclerosis.

  10. Tempol improves lipid profile and prevents left ventricular hypertrophy in LDL receptor gene knockout (LDLr-/-) mice on a high-fat diet.

    PubMed

    Viana Gonçalves, Igor Cândido; Cerdeira, Cláudio Daniel; Poletti Camara, Eduardo; Dias Garcia, José Antônio; Ribeiro Pereira Lima Brigagão, Maísa; Bessa Veloso Silva, Roberta; Bitencourt Dos Santos, Gérsika

    2017-09-01

    Dyslipidemia is associated with increased risk of cardiovascular disease and atherosclerosis, and hence with high morbidity and mortality. This study investigated the effects of the nitroxide 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (Tempol) on lipid profile and cardiac morphology in low-density lipoprotein (LDL) receptor gene knockout (LDLr-/-) mice. Male LDLr-/- mice (three months old, approximately 22 g weight) were divided into the following groups: controls, including (1) standard chow (SC, n=8) and (2) high-fat diet (HFD, n=8); and treatment, including (3) standard chow + Tempol (SC+T, n=8) (30 mg/kg administered by gavage, once daily) and (4) high-fat diet + Tempol (HFD+T, n=8) (30 mg/kg). After 30 days of the diet/treatment, whole blood was collected for analysis of biochemical parameters (total cholesterol, triglycerides [TG], high-density lipoprotein [HDL], LDL, and very low-density lipoprotein [VLDL]). The heart was removed through thoracotomy and histological analysis of the left ventricle was performed. A significant increase in TG, LDL, and VLDL and marked left ventricular hypertrophy (LVH) were demonstrated in the HFD group relative to the SC group (p<0.05), while Tempol treatment (HFD+T group) significantly (p<0.05) prevented increases in the levels of these lipid profile markers and attenuated LVH compared with the HFD group. In this study, Tempol showed potential for the prevention of events related to serious diseases of the cardiovascular system. Copyright © 2017 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Exendin-4 ameliorates oxidized-LDL-induced inhibition of macrophage migration in vitro via the NF-κB pathway

    PubMed Central

    Ma, Ge-fei; Chen, Song; Yin, Lei; Gao, Xiang-dong; Yao, Wen-bing

    2014-01-01

    Aim: To investigate the effects of the glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 on oxidized low-density lipoprotein (ox-LDL)-induced inhibition of macrophage migration and the mechanisms underlying the effects of exendin-4. Methods: Primary peritoneal macrophages were extracted from the peritoneal cavity of mice treated with 3% thioglycollate (2 mL, ip). Migration of the macrophages was examined using a cell migration assay. Macrophage migration-related factors including leptin-like ox-LDL receptor (LOX-1), cyclooxygenase 2 (COX-2), tumor necrosis factor (TNF)-α, interleukin-1 (IL-1)β, matrix metalloproteinase-2 (MMP-2), intercellular adhesion molecule (ICAM)-1 and macrophage migration inhibitory factor (MIF) were measured using semi-quantitative RT-PCR. Expression of MIF and ICAM-1 proteins was examined with ELISA. Gelatin zymography was used to evaluate the activity of MMP-9. Activation of the NF-κB pathway was determined by confocal laser scanning microscopy. Results: Treatment of the macrophages with ox-LDL (50 μg/mL) markedly suppressed the macrophage migration. Furthermore, ox-LDL treatment substantially increased the expression of the macrophage migration-related factors, the activity of MMP-9 and the translocation of the NF-κB p65 subunit. These effects of ox-LDL were significantly ameliorated by pretreatment with the specific NF-κB inhibitor ammonium pyrrolidine dithiocarbamate (100 μmol/L). These effects of ox-LDL were also significantly ameliorated by pretreatment with exendin-4 (25 and 50 nmol/L). Conclusion: Exendin-4 ameliorates the inhibition of ox-LDL on macrophage migration in vitro, via suppressing ox-LDL-induced expression of ICAM-1 and MIF, which is probably mediated by the NF-κB pathway. PMID:24335838

  12. Further LDL cholesterol lowering through targeting PCSK9 for coronary artery disease.

    PubMed

    Cao, Guoqing; Qian, Yue-Wei; Kowala, Mark C; Konrad, Robert J

    2008-12-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a serine protease that belongs to the proprotein convertase family. PCSK9 is synthesized as a zymogen and its prodomain is cleaved by its own catalytic activity. The cleaved prodomain forms a protein complex with the rest of the PCSK9 carboxyl terminus within the endoplasmic reticulum and is secreted. Secreted PCSK9 has been shown to be able to reduce low-density lipoprotein receptor (LDLR) levels in vitro and in vivo. Thus PCSK9 has emerged as an important player modulating LDLR levels and plasma LDL cholesterol. Furthermore, PCSK9 deficiency leads to significantly lowered LDL cholesterol levels in humans and provides dramatic protection against coronary heart disease. We review here the current understanding of PCSK9 and its potential as a therapeutic target through which to reduce LDL cholesterol for prevention and treatment of coronary heart disease.

  13. LDL receptor-related protein mediates cell-surface clustering and hepatic sequestration of chylomicron remnants in LDLR-deficient mice.

    PubMed

    Yu, K C; Chen, W; Cooper, A D

    2001-06-01

    It has been proposed that in the liver, chylomicron remnants (lipoproteins carrying dietary lipid) may be sequestered before being internalized by hepatocytes. To study this, chylomicron remnants labeled with a fluorescent dye were perfused into isolated livers of LDL receptor-deficient (LDLR-deficient) mice (Ldlr(-/-)) and examined by confocal microscopy. In contrast to livers from normal mice, there was clustering of the chylomicron remnants on the cell surface in the space of DISSE: These remnant clusters colocalized with clusters of LDLR-related protein (LRP) and could be eliminated by low concentrations of receptor-associated protein, an inhibitor of LRP. When competed with ligands of heparan sulfate proteoglycans (HSPGs), the remnant clusters still appeared but were fewer in number, although syndecans (membrane HSPGs) colocalized with the remnant clusters. This suggests that the clustering of remnants is not dependent on syndecans but that the syndecans may modify the binding of remnants. These results establish that sequestration is a novel process, the clustering of remnants in the space of DISSE: The clustering involves remnants binding to the LRP, and this may be stabilized by binding with syndecans, eventually followed by endocytosis.

  14. Ox-LDL increases OX40L in endothelial cells through a LOX-1-dependent mechanism

    PubMed Central

    Dong, Q.; Xiang, R.; Zhang, D.Y.; Qin, S.

    2013-01-01

    Oxidative low-density lipoprotein (Ox-LDL) is a key risk factor for the development of atherosclerosis, and it can stimulate the expression of a variety of inflammatory signals. As a new and highly sensitive inflammation index, OX40L may be a key to understanding the mechanisms that regulate interactions between cells within the vessel wall and inflammatory mediators during the development of atherosclerosis. To investigate whether Ox-LDL regulates OX40L expression through an oxidized LDL-1 receptor (LOX-1)-mediated mechanism, we investigated the effect of different concentrations of Ox-LDL (50, 100, 150 µg/mL) on endothelial cell proliferation and apoptosis. Stimulation with Ox-LDL increased OX40L protein 1.44-fold and mRNA 4.0-fold in endothelial cells, and these effects were inhibited by blocking LOX-1. These results indicate that LOX-1 plays an important role in the chronic inflammatory process in blood vessel walls. Inhibiting LOX-1 may reduce blood vessel inflammation and provide a therapeutic option to limit atherosclerosis progression. PMID:24068192

  15. Scavenger receptor B1 (SR-B1) profoundly excludes high density lipoprotein (HDL) apolipoprotein AII as it nibbles HDL-cholesteryl ester.

    PubMed

    Gillard, Baiba K; Bassett, G Randall; Gotto, Antonio M; Rosales, Corina; Pownall, Henry J

    2017-05-26

    Reverse cholesterol transport (transfer of macrophage-cholesterol in the subendothelial space of the arterial wall to the liver) is terminated by selective high density lipoprotein (HDL)-cholesteryl ester (CE) uptake, mediated by scavenger receptor class B, type 1 (SR-B1). We tested the validity of two models for this process: "gobbling," i.e. one-step transfer of all HDL-CE to the cell and "nibbling," multiple successive cycles of SR-B1-HDL association during which a few CEs transfer to the cell. Concurrently, we compared cellular uptake of apoAI with that of apoAII, which is more lipophilic than apoAI, using HDL-[ 3 H]CE labeled with [ 125 I]apoAI or [ 125 I]apoAII. The studies were conducted in CHO-K1 and CHO-ldlA7 cells (LDLR -/- ) with (CHO-SR-B1) and without SR-B1 overexpression and in human Huh7 hepatocytes. Relative to CE, both apoAI and apoAII were excluded from uptake by all cells. However, apoAII was more highly excluded from uptake (2-4×) than apoAI. To distinguish gobbling versus nibbling mechanisms, media from incubations of HDL with CHO-SR-B1 cells were analyzed by non-denaturing PAGE, size-exclusion chromatography, and the distribution of apoAI, apoAII, cholesterol, and phospholipid among HDL species as a function of incubation time. HDL size gradually decreased, i.e. nibbling, with the concurrent release of lipid-free apoAI; apoAII was retained in an HDL remnant. Our data support an SR-B1 nibbling mechanism that is similar to that of streptococcal serum opacity factor, which also selectively removes CE and releases apoAI, leaving an apoAII-rich remnant. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Elimination of a ligand gating site generates a supersensitive olfactory receptor.

    PubMed

    Sharma, Kanika; Ahuja, Gaurav; Hussain, Ashiq; Balfanz, Sabine; Baumann, Arnd; Korsching, Sigrun I

    2016-06-21

    Olfaction poses one of the most complex ligand-receptor matching problems in biology due to the unparalleled multitude of odor molecules facing a large number of cognate olfactory receptors. We have recently deorphanized an olfactory receptor, TAAR13c, as a specific receptor for the death-associated odor cadaverine. Here we have modeled the cadaverine/TAAR13c interaction, exchanged predicted binding residues by site-directed mutagenesis, and measured the activity of the mutant receptors. Unexpectedly we observed a binding site for cadaverine at the external surface of the receptor, in addition to an internal binding site, whose mutation resulted in complete loss of activity. In stark contrast, elimination of the external binding site generated supersensitive receptors. Modeling suggests this site to act as a gate, limiting access of the ligand to the internal binding site and thereby downregulating the affinity of the native receptor. This constitutes a novel mechanism to fine-tune physiological sensitivity to socially relevant odors.

  17. Elimination of a ligand gating site generates a supersensitive olfactory receptor

    PubMed Central

    Sharma, Kanika; Ahuja, Gaurav; Hussain, Ashiq; Balfanz, Sabine; Baumann, Arnd; Korsching, Sigrun I.

    2016-01-01

    Olfaction poses one of the most complex ligand-receptor matching problems in biology due to the unparalleled multitude of odor molecules facing a large number of cognate olfactory receptors. We have recently deorphanized an olfactory receptor, TAAR13c, as a specific receptor for the death-associated odor cadaverine. Here we have modeled the cadaverine/TAAR13c interaction, exchanged predicted binding residues by site-directed mutagenesis, and measured the activity of the mutant receptors. Unexpectedly we observed a binding site for cadaverine at the external surface of the receptor, in addition to an internal binding site, whose mutation resulted in complete loss of activity. In stark contrast, elimination of the external binding site generated supersensitive receptors. Modeling suggests this site to act as a gate, limiting access of the ligand to the internal binding site and thereby downregulating the affinity of the native receptor. This constitutes a novel mechanism to fine-tune physiological sensitivity to socially relevant odors. PMID:27323929

  18. Scavenger receptor mediates systemic RNA interference in ticks.

    PubMed

    Aung, Kyaw Min; Boldbaatar, Damdinsuren; Umemiya-Shirafuji, Rika; Liao, Min; Xuenan, Xuan; Suzuki, Hiroshi; Galay, Remil Linggatong; Tanaka, Tetsuya; Fujisaki, Kozo

    2011-01-01

    RNA interference is an efficient method to silence gene and protein expressions. Here, the class B scavenger receptor CD36 (SRB) mediated the uptake of exogenous dsRNAs in the induction of the RNAi responses in ticks. Unfed female Haemaphysalis longicornis ticks were injected with a single or a combination of H. longicornis SRB (HlSRB) dsRNA, vitellogenin-1 (HlVg-1) dsRNA, and vitellogenin receptor (HlVgR) dsRNA. We found that specific and systemic silencing of the HlSRB, HlVg-1, and HlVgR genes was achieved in ticks injected with a single dsRNA of HlSRB, HlVg-1, and HlVgR. In ticks injected first with HlVg-1 or HlVgR dsRNA followed 96 hours later with HlSRB dsRNA (HlVg-1/HlSRB or HlVgR/HlSRB), gene silencing of HlSRB was achieved in addition to first knockdown in HlVg-1 or HlVgR, and prominent phenotypic changes were observed in engorgement, mortality, and hatchability, indicating that a systemic and specific double knockdown of target genes had been simultaneously attained in these ticks. However, in ticks injected with HlSRB dsRNA followed 96 hours later with HlVg-1 or HlVgR dsRNAs, silencing of HlSRB was achieved, but no subsequent knockdown in HlVgR or HlVg-1 was observed. The Westernblot and immunohistochemical examinations revealed that the endogenous HlSRB protein was fully abolished in midguts of ticks injected with HlSRB/HlVg-1 dsRNAs but HlVg-1 was normally expressed in midguts, suggesting that HlVg-1 dsRNA-mediated RNAi was fully inhibited by the first knockdown of HlSRB. Similarly, the abolished localization of HlSRB protein was recognized in ovaries of ticks injected with HlSRB/HlVgR, while normal localization of HlVgR was observed in ovaries, suggesting that the failure to knock-down HlVgR could be attributed to the first knockdown of HlSRB. In summary, we demonstrated for the first time that SRB may not only mediate the effective knock-down of gene expression by RNAi but also play essential roles for systemic RNAi of ticks.

  19. Scavenger Receptor Mediates Systemic RNA Interference in Ticks

    PubMed Central

    Aung, Kyaw Min; Boldbaatar, Damdinsuren; Umemiya-Shirafuji, Rika; Liao, Min; Xuenan, Xuan; Suzuki, Hiroshi; Linggatong Galay, Remil; Tanaka, Tetsuya; Fujisaki, Kozo

    2011-01-01

    RNA interference is an efficient method to silence gene and protein expressions. Here, the class B scavenger receptor CD36 (SRB) mediated the uptake of exogenous dsRNAs in the induction of the RNAi responses in ticks. Unfed female Haemaphysalis longicornis ticks were injected with a single or a combination of H. longicornis SRB (HlSRB) dsRNA, vitellogenin-1 (HlVg-1) dsRNA, and vitellogenin receptor (HlVgR) dsRNA. We found that specific and systemic silencing of the HlSRB, HlVg-1, and HlVgR genes was achieved in ticks injected with a single dsRNA of HlSRB, HlVg-1, and HlVgR. In ticks injected first with HlVg-1 or HlVgR dsRNA followed 96 hours later with HlSRB dsRNA (HlVg-1/HlSRB or HlVgR/HlSRB), gene silencing of HlSRB was achieved in addition to first knockdown in HlVg-1 or HlVgR, and prominent phenotypic changes were observed in engorgement, mortality, and hatchability, indicating that a systemic and specific double knockdown of target genes had been simultaneously attained in these ticks. However, in ticks injected with HlSRB dsRNA followed 96 hours later with HlVg-1 or HlVgR dsRNAs, silencing of HlSRB was achieved, but no subsequent knockdown in HlVgR or HlVg-1 was observed. The Westernblot and immunohistochemical examinations revealed that the endogenous HlSRB protein was fully abolished in midguts of ticks injected with HlSRB/HlVg-1 dsRNAs but HlVg-1 was normally expressed in midguts, suggesting that HlVg-1 dsRNA-mediated RNAi was fully inhibited by the first knockdown of HlSRB. Similarly, the abolished localization of HlSRB protein was recognized in ovaries of ticks injected with HlSRB/HlVgR, while normal localization of HlVgR was observed in ovaries, suggesting that the failure to knock-down HlVgR could be attributed to the first knockdown of HlSRB. In summary, we demonstrated for the first time that SRB may not only mediate the effective knock-down of gene expression by RNAi but also play essential roles for systemic RNAi of ticks. PMID:22145043

  20. Interferon alpha bioactivity critically depends on Scavenger receptor class B type I function

    PubMed Central

    Vasquez, Marcos; Fioravanti, Jessica; Aranda, Fernando; Paredes, Vladimir; Gomar, Celia; Ardaiz, Nuria; Fernandez-Ruiz, Veronica; Méndez, Miriam; Nistal-Villan, Estanislao; Larrea, Esther; Gao, Qinshan; Gonzalez-Aseguinolaza, Gloria; Prieto, Jesus; Berraondo, Pedro

    2016-01-01

    ABSTRACT Scavenger receptor class B type I (SR-B1) binds pathogen-associated molecular patterns participating in the regulation of the inflammatory reaction but there is no information regarding potential interactions between SR-B1 and the interferon system. Herein, we report that SR-B1 ligands strongly regulate the transcriptional response to interferon α (IFNα) and enhance its antiviral and antitumor activity. This effect was mediated by the activation of TLR2 and TLR4 as it was annulled by the addition of anti-TLR2 or anti-TLR4 blocking antibodies. In vivo, we maximized the antitumor activity of IFNα co-expressing in the liver a SR-B1 ligand and IFNα by adeno-associated viruses. This gene therapy strategy eradicated liver metastases from colon cancer with reduced toxicity. On the other hand, genetic and pharmacological inhibition of SR-B1 blocks the clathrin-dependent interferon receptor recycling pathway with a concomitant reduction in IFNα signaling and bioactivity. This effect can be applied to enhance cancer immunotherapy with oncolytic viruses. Indeed, SR-B1 antagonists facilitate replication of oncolytic viruses amplifying their tumoricidal potential. In conclusion, SR-B1 agonists behave as IFNα enhancers while SR-B1 inhibitors dampen IFNα activity. These results demonstrate that SR-B1 is a suitable pharmacology target to enhance cancer immunotherapy based on IFNα and oncolytic viruses. PMID:27622065

  1. Prevention of oxLDL uptake leads to decreased atherosclerosis in hematopoietic NPC1-deficient Ldlr-/- mice.

    PubMed

    Jeurissen, Mike L J; Walenbergh, Sofie M A; Houben, Tom; Gijbels, Marion J J; Li, Jieyi; Hendrikx, Tim; Oligschlaeger, Yvonne; van Gorp, Patrick J; Binder, Christoph J; Donners, Marjo M P C; Shiri-Sverdlov, Ronit

    2016-12-01

    Atherosclerosis is a chronic inflammatory disease of medium and large vessels and is typically characterized by the predominant accumulation of low-density lipoprotein (LDL)-cholesterol inside macrophages that reside in the vessel walls. Previous studies clearly demonstrated an association specifically between the oxidized type of LDL (oxLDL) and atherosclerotic lesion formation. Further observations revealed that these atherosclerotic lesions displayed enlarged, lipid-loaded lysosomes. By increasing natural antibodies against oxLDL, pneumococcal vaccination has been shown to reduce atherosclerosis in LDL receptor knockout (Ldlr -/- ) mice. Relevantly, loss of the lysosomal membrane protein Niemann-Pick Type C1 (NPC1) led to lysosomal accumulation of various lipids and promoted atherosclerosis. Yet, the importance of lysosomal oxLDL accumulation inside macrophages, compared to non-modified LDL, in atherosclerosis has never been established. By transplanting NPC1 bone marrow into lethally irradiated Ldlr -/- mice, a hematopoietic mouse model for lysosomal cholesterol accumulation was created. Through injections with heat-inactivated pneumococci, we aimed to demonstrate the specific contribution of lysosomal oxLDL accumulation inside macrophages in atherosclerosis development. While there were no differences in plaque morphology, a reduction in plaque size and plaque inflammation was found in immunized NPC1 mut -transplanted mice, compared to non-immunized NPC1 mut -transplanted mice. Lysosomal oxLDL accumulation within macrophages contributes to murine atherosclerosis. Future intervention strategies should focus specifically on preventing oxLDL, unlike non-modified LDL, from being internalized into lysosomes. Such an intervention can have an additive effect to current existing treatments against atherosclerosis. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  2. Citrullus lanatus `Sentinel' (Watermelon) Extract Reduces Atherosclerosis in LDL Receptor Deficient Mice

    PubMed Central

    Poduri, Aruna; Rateri, Debra L.; Saha, Shubin K.; Saha, Sibu; Daugherty, Alan

    2012-01-01

    Watermelon (Citrullus lanatus or C. lanatus) has many potentially bioactive compounds including citrulline, which may influence atherosclerosis. In this study, we determined the effects of C. lanatus, provided as an extract of the cultivar `sentinel', on hypercholesterolemia-induced atherosclerosis in mice. Male LDL receptor deficient mice at 8 weeks old were given either C. lanatus `sentinel' extract (2% vol/vol; n=10) or a mixture of matching carbohydrates (2% vol/vol; n=8) as the control in drinking water, while fed a saturated fat-enriched diet for 12 weeks ad libitum. Mice consuming C. lanatus `sentinel' extract had significantly increased plasma citrulline concentrations. Systolic blood pressure was comparable between the two groups. Consumption of C. lanatus `sentinel' extract led to lower body weight and fat mass without influencing lean mass. There were no differences in food and water intake, and urine output between the two groups. C. lanatus `sentinel' extract administration decreased plasma cholesterol concentrations that were attributed to reductions of intermediate/low density lipoprotein cholesterol. Plasma concentrations of MCP-1 and IFN-γ were decreased and IL-10 increased in mice consuming C. lanatus `sentinel' extract. Intake of C. lanatus `sentinel' extract resulted in reductions of atherosclerosis in both aortic arch and thoracic regions. In conclusion, consumption of C. lanatus `sentinel' extract led to reduced body weight gain, decreased plasma cholesterol concentrations, improved homeostasis of pro- and anti-inflammatory cytokines, and attenuated development of atherosclerosis without affecting systolic blood pressure in hypercholesterolemic mice. PMID:22902326

  3. LDL receptor-related protein 1 regulates the abundance of diverse cell-signaling proteins in the plasma membrane proteome.

    PubMed

    Gaultier, Alban; Simon, Gabriel; Niessen, Sherry; Dix, Melissa; Takimoto, Shinako; Cravatt, Benjamin F; Gonias, Steven L

    2010-12-03

    LDL receptor-related protein 1 (LRP1) is an endocytic receptor, reported to regulate the abundance of other receptors in the plasma membrane, including uPAR and tissue factor. The goal of this study was to identify novel plasma membrane proteins, involved in cell-signaling, that are regulated by LRP1. Membrane protein ectodomains were prepared from RAW 264.7 cells in which LRP1 was silenced and control cells using protease K. Peptides were identified by LC-MS/MS. By analysis of spectral counts, 31 transmembrane and secreted proteins were regulated in abundance at least 2-fold when LRP1 was silenced. Validation studies confirmed that semaphorin4D (Sema4D), plexin domain-containing protein-1 (Plxdc1), and neuropilin-1 were more abundant in the membranes of LRP1 gene-silenced cells. Regulation of Plxdc1 by LRP1 was confirmed in CHO cells, as a second model system. Plxdc1 coimmunoprecipitated with LRP1 from extracts of RAW 264.7 cells and mouse liver. Although Sema4D did not coimmunoprecipitate with LRP1, the cell-surface level of Sema4D was increased by RAP, which binds to LRP1 and inhibits binding of other ligands. These studies identify Plxdc1, Sema4D, and neuropilin-1 as novel LRP1-regulated cell-signaling proteins. Overall, LRP1 emerges as a generalized regulator of the plasma membrane proteome.

  4. Inhibition of Macrophage CD36 Expression and Cellular Oxidized Low Density Lipoprotein (oxLDL) Accumulation by Tamoxifen: A PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR (PPAR)γ-DEPENDENT MECHANISM.

    PubMed

    Yu, Miao; Jiang, Meixiu; Chen, Yuanli; Zhang, Shuang; Zhang, Wenwen; Yang, Xiaoxiao; Li, Xiaoju; Li, Yan; Duan, Shengzhong; Han, Jihong; Duan, Yajun

    2016-08-12

    Macrophage CD36 binds and internalizes oxidized low density lipoprotein (oxLDL) to facilitate foam cell formation. CD36 expression is activated by peroxisome proliferator-activated receptor γ (PPARγ). Tamoxifen, an anti-breast cancer medicine, has demonstrated pleiotropic functions including cardioprotection with unfully elucidated mechanisms. In this study, we determined that treatment of ApoE-deficient mice with tamoxifen reduced atherosclerosis, which was associated with decreased CD36 and PPARγ expression in lesion areas. At the cellular level, we observed that tamoxifen inhibited CD36 protein expression in human THP-1 monocytes, THP-1/PMA macrophages, and human blood monocyte-derived macrophages. Associated with decreased CD36 protein expression, tamoxifen reduced cellular oxLDL accumulation in a CD36-dependent manner. At the transcriptional level, tamoxifen decreased CD36 mRNA expression, promoter activity, and the binding of the PPARγ response element in CD36 promoter to PPARγ protein. Tamoxifen blocked ligand-induced PPARγ nuclear translocation and CD36 expression, but it increased PPARγ phosphorylation, which was due to that tamoxifen-activated ERK1/2. Furthermore, deficiency of PPARγ expression in macrophages abolished the inhibitory effect of tamoxifen on CD36 expression or cellular oxLDL accumulation both in vitro and in vivo Taken together, our study demonstrates that tamoxifen inhibits CD36 expression and cellular oxLDL accumulation by inactivating the PPARγ signaling pathway, and the inhibition of macrophage CD36 expression can be attributed to the anti-atherogenic properties of tamoxifen. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Interaction study between synthetic glycoconjugate ligands and endocytic receptors using flow cytometry.

    PubMed

    Yura, Hirofumi; Ishihara, Masayuki; Kanatani, Yasuhiro; Takase, Bonpei; Hattori, Hidemi; Suzuki, Shinya; Kawakami, Mitsuyuki; Matsui, Takemi

    2006-04-01

    Flow cytometric analysis of synthetic galactosyl polymers, asialofetuin and LDL derivatives labeled with FITC (Fluorescein Isothiocyanate) was carried out to determine the phenotypes of endocytic receptors, such as asialoglycoprotein (ASPG) and the LDL receptor, on various types of cells. When FITC-labeled galactosyl polystyrene (GalCPS), being a synthetic ligand of ASPG, was applied to rat hepatocytes and human cancer cells (Hep G2 and Chang Liver), surface fluorescence intensities varied according to receptor expression on the cells. The fluorescence intensity originates from the calcium-dependent binding of the FITC-labeled GalCPS. Although unaltered by pre-treatment with glucosyl polystyrene (GluCPS), fetuin and LDL, the fluorescence intensity was suppressed by pre-treatment with (non-labeled) GalCPS and asialofetuin. Flow cytometry allowed us to demonstrate that the calcium-dependent binding of FITC-labeled LDL (prepared from rabbits) upon the addition of 17alpha-ethinyl estradiol enhances LDL receptor expression, and the expression is suppressed upon the addition of a monoclonal antibody to the LDL receptor. The binding efficiency based on the combination of FITC-labeled ligands suggests a possible application for the classification of cell types and conditions corresponding to endocytic receptor expression without the need for immuno-active antibodies or radiolabeled substances. Furthermore, the synthetic glycoconjugate (GalCPS) is shown to be a sensitive and useful marker for classification based on cell phenotype using flow cytometry.

  6. Survey of energy harvesting and energy scavenging approaches for on-site powering of wireless sensor- and microinstrument-networks

    NASA Astrophysics Data System (ADS)

    Lee, D.; Dulai, G.; Karanassios, Vassili

    2013-05-01

    Energy (or power) harvesting can be defined as the gathering and either storing or immediately using energy "freely" available in a local environment. Examples include harvesting energy from obvious sources such as photon-fluxes (e.g., solar), or wind or water waves, or from unusual sources such as naturally occurring pH differences. Energy scavenging can be defined as gathering and storing or immediately re-using energy that has been discarded, for instance, waste heat from air conditioning units, from in-door lights or from everyday actions such as walking or from body-heat. Although the power levels that can be harvested or scavenged are typically low (e.g., from nWatt/cm2 to mWatt/cm2), the key motivation is to harvest or to scavenge energy for a wide variety of applications. Example applications include powering devices in remote weather stations, or wireless Bluetooth headsets, or wearable computing devices or for sensor networks for health and bio-medical applications. Beyond sensors and sensor networks, there is a need to power compete systems, such as portable and energy-autonomous chemical analysis microinstruments for use on-site. A portable microinstrument is one that offers the same functionality as a large one but one that has at least one critical component in the micrometer regime. This paper surveys continuous or discontinuous energy harvesting and energy scavenging approaches (with particular emphasis on sensor and microinstrument networks) and it discusses current trends. It also briefly explores potential future directions, for example, for nature-inspired (e.g., photosynthesis), for human-power driven (e.g., for biomedical applications, or for wearable sensor networks) or for nanotechnology-enabled energy harvesting and energy scavenging approaches.

  7. Metabolism of native and naturally occurring multiple modified low density lipoprotein in smooth muscle cells of human aortic intima.

    PubMed

    Tertov, V V; Orekhov, A N

    1997-01-01

    The subfraction of low density lipoprotein (LDL) with low sialic acid content that caused accumulation of cholesterol esters in human aortic smooth muscle cells has been found in the blood of coronary atherosclerosis patients. It was demonstrated that this subfraction consists of LDL with small size, high electronegative charge, reduced lipid content, altered tertiary structure of apolipoprotein B, etc. LDL of this subfraction is naturally occurring multiple-modified LDL (nomLDL). In this study we compared the binding, uptake and proteolytic degradation of native LDL and nomLDL by smooth muscle cells cultured from human grossly normal intima, fatty streaks, and atherosclerotic plaques. Uptake of nomLDL by normal and atherosclerotic cells was 3.5- and 6-fold, respectively, higher than uptake of native LDL. Increased uptake of nomLDL was due to increased binding of this LDL by intimal smooth muscle cells. The enhanced binding is explained by the interaction of nomLDL with cellular receptors other than LDL-receptor. Modified LDL interacted with the scavenger receptor, asialoglycoprotein receptor, and also with cell surface proteoglycans. Rates of degradation of nomLDL were 1.5- and 5-fold lower than degradation of native LDL by normal and atherosclerotic cells, respectively. A low rate of nomLDL degradation was also demonstrated in homogenates of intimal cells. Activities of lysosomal proteinases of atherosclerotic cells were decreased compared with normal cells. Pepstatin A, a cathepsin D inhibitor, completely inhibited lipoprotein degradation, while serine, thiol, or metallo-proteinase inhibitors had partial effect. This fact reveals that cathepsin D is involved in initial stages of apoB degradation by intimal smooth muscle cells. Obtained data show that increased uptake and decreased lysosomal degradation of nomLDL may be the main cause of LDL accumulation in human aortic smooth muscle cells, leading to foam cell formation.

  8. Surfactant protein A (SP-A)-mediated clearance of Staphylococcus aureus involves binding of SP-A to the staphylococcal adhesin eap and the macrophage receptors SP-A receptor 210 and scavenger receptor class A.

    PubMed

    Sever-Chroneos, Zvjezdana; Krupa, Agnieszka; Davis, Jeremy; Hasan, Misbah; Yang, Ching-Hui; Szeliga, Jacek; Herrmann, Mathias; Hussain, Muzafar; Geisbrecht, Brian V; Kobzik, Lester; Chroneos, Zissis C

    2011-02-11

    Staphylococcus aureus causes life-threatening pneumonia in hospitals and deadly superinfection during viral influenza. The current study investigated the role of surfactant protein A (SP-A) in opsonization and clearance of S. aureus. Previous studies showed that SP-A mediates phagocytosis via the SP-A receptor 210 (SP-R210). Here, we show that SP-R210 mediates binding and control of SP-A-opsonized S. aureus by macrophages. We determined that SP-A binds S. aureus through the extracellular adhesin Eap. Consequently, SP-A enhanced macrophage uptake of Eap-expressing (Eap(+)) but not Eap-deficient (Eap(-)) S. aureus. In a reciprocal fashion, SP-A failed to enhance uptake of Eap(+) S. aureus in peritoneal Raw264.7 macrophages with a dominant negative mutation (SP-R210(DN)) blocking surface expression of SP-R210. Accordingly, WT mice cleared infection with Eap(+) but succumbed to sublethal infection with Eap- S. aureus. However, SP-R210(DN) cells compensated by increasing non-opsonic phagocytosis of Eap(+) S. aureus via the scavenger receptor scavenger receptor class A (SR-A), while non-opsonic uptake of Eap(-) S. aureus was impaired. Macrophages express two isoforms: SP-R210(L) and SP-R210(S). The results show that WT alveolar macrophages are distinguished by expression of SP-R210(L), whereas SR-A(-/-) alveolar macrophages are deficient in SP-R210(L) expressing only SP-R210(S). Accordingly, SR-A(-/-) mice were highly susceptible to both Eap(+) and Eap(-) S. aureus. The lungs of susceptible mice generated abnormal inflammatory responses that were associated with impaired killing and persistence of S. aureus infection in the lung. In conclusion, alveolar macrophage SP-R210(L) mediates recognition and killing of SP-A-opsonized S. aureus in vivo, coordinating inflammatory responses and resolution of S. aureus pneumonia through interaction with SR-A.

  9. Surfactant Protein A (SP-A)-mediated Clearance of Staphylococcus aureus Involves Binding of SP-A to the Staphylococcal Adhesin Eap and the Macrophage Receptors SP-A Receptor 210 and Scavenger Receptor Class A*

    PubMed Central

    Sever-Chroneos, Zvjezdana; Krupa, Agnieszka; Davis, Jeremy; Hasan, Misbah; Yang, Ching-Hui; Szeliga, Jacek; Herrmann, Mathias; Hussain, Muzafar; Geisbrecht, Brian V.; Kobzik, Lester; Chroneos, Zissis C.

    2011-01-01

    Staphylococcus aureus causes life-threatening pneumonia in hospitals and deadly superinfection during viral influenza. The current study investigated the role of surfactant protein A (SP-A) in opsonization and clearance of S. aureus. Previous studies showed that SP-A mediates phagocytosis via the SP-A receptor 210 (SP-R210). Here, we show that SP-R210 mediates binding and control of SP-A-opsonized S. aureus by macrophages. We determined that SP-A binds S. aureus through the extracellular adhesin Eap. Consequently, SP-A enhanced macrophage uptake of Eap-expressing (Eap+) but not Eap-deficient (Eap−) S. aureus. In a reciprocal fashion, SP-A failed to enhance uptake of Eap+ S. aureus in peritoneal Raw264.7 macrophages with a dominant negative mutation (SP-R210(DN)) blocking surface expression of SP-R210. Accordingly, WT mice cleared infection with Eap+ but succumbed to sublethal infection with Eap- S. aureus. However, SP-R210(DN) cells compensated by increasing non-opsonic phagocytosis of Eap+ S. aureus via the scavenger receptor scavenger receptor class A (SR-A), while non-opsonic uptake of Eap− S. aureus was impaired. Macrophages express two isoforms: SP-R210L and SP-R210S. The results show that WT alveolar macrophages are distinguished by expression of SP-R210L, whereas SR-A−/− alveolar macrophages are deficient in SP-R210L expressing only SP-R210S. Accordingly, SR-A−/− mice were highly susceptible to both Eap+ and Eap− S. aureus. The lungs of susceptible mice generated abnormal inflammatory responses that were associated with impaired killing and persistence of S. aureus infection in the lung. In conclusion, alveolar macrophage SP-R210L mediates recognition and killing of SP-A-opsonized S. aureus in vivo, coordinating inflammatory responses and resolution of S. aureus pneumonia through interaction with SR-A. PMID:21123169

  10. The allosteric site regulates the voltage sensitivity of muscarinic receptors.

    PubMed

    Hoppe, Anika; Marti-Solano, Maria; Drabek, Matthäus; Bünemann, Moritz; Kolb, Peter; Rinne, Andreas

    2018-01-01

    Muscarinic receptors (M-Rs) for acetylcholine (ACh) belong to the class A of G protein-coupled receptors. M-Rs are activated by orthosteric agonists that bind to a specific site buried in the M-R transmembrane helix bundle. In the active conformation, receptor function can be modulated either by allosteric modulators, which bind to the extracellular receptor surface or by the membrane potential via an unknown mechanism. Here, we compared the modulation of M 1 -Rs and M 3 -Rs induced by changes in voltage to their allosteric modulation by chemical compounds. We quantified changes in receptor signaling in single HEK 293 cells with a FRET biosensor for the G q protein cycle. In the presence of ACh, M 1 -R signaling was potentiated by voltage, similarly to positive allosteric modulation by benzyl quinolone carboxylic acid. Conversely, signaling of M 3 -R was attenuated by voltage or the negative allosteric modulator gallamine. Because the orthosteric site is highly conserved among M-Rs, but allosteric sites vary, we constructed "allosteric site" M 3 /M 1 -R chimeras and analyzed their voltage dependencies. Exchanging the entire allosteric sites eliminated the voltage sensitivity of ACh responses for both receptors, but did not affect their modulation by allosteric compounds. Furthermore, a point mutation in M 3 -Rs caused functional uncoupling of the allosteric and orthosteric sites and abolished voltage dependence. Molecular dynamics simulations of the receptor variants indicated a subtype-specific crosstalk between both sites, involving the conserved tyrosine lid structure of the orthosteric site. This molecular crosstalk leads to receptor subtype-specific voltage effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. TRPV4 calcium-permeable channel is a novel regulator of oxidized LDL-induced macrophage foam cell formation.

    PubMed

    Goswami, Rishov; Merth, Michael; Sharma, Shweta; Alharbi, Mazen O; Aranda-Espinoza, Helim; Zhu, Xiaoping; Rahaman, Shaik O

    2017-09-01

    Cardiovascular disease is the number one cause of death in United States, and atherosclerosis, a chronic inflammatory arterial disease, is the most dominant underlying pathology. Macrophages are thought to orchestrate atherosclerosis by generating lipid-laden foam cells and by secreting inflammatory mediators. Emerging data support a role for a mechanical factor, e.g., matrix stiffness, in regulation of macrophage function, vascular elasticity, and atherogenesis. However, the identity of the plasma membrane mechanosensor and the mechanisms by which pro-atherogenic signals are transduced/maintained are unknown. We have obtained evidence that TRPV4, an ion channel in the transient receptor potential vanilloid family and a known mechanosensor, is the likely mediator of oxidized low-density lipoprotein (oxLDL)-dependent macrophage foam cell formation, a critical process in atherogenesis. Specifically, we found that: i) genetic ablation of TRPV4 or pharmacologic inhibition of TRPV4 activity by a specific antagonist blocked oxLDL-induced macrophage foam cell formation, and ii) TRPV4 deficiency prevented pathophysiological range matrix stiffness or scratch-induced exacerbation of oxLDL-induced foam cell formation. Mechanistically, we found that: i) plasma membrane localization of TRPV4 was sensitized to the increasing level of matrix stiffness, ii) lack of foam cell formation in TRPV4 null cells was not due to lack of expression of CD36, a major receptor for oxLDL, and iii) TRPV4 channel activity regulated oxLDL uptake but not its binding on macrophages. Altogether, these findings identify a novel role for TRPV4 in regulating macrophage foam cell formation by modulating uptake of oxLDL. These findings suggest that therapeutic targeting of TRPV4 may provide a selective approach to the treatment of atherosclerosis. Copyright © 2017. Published by Elsevier Inc.

  12. High-oleic canola oil consumption enriches LDL particle cholesteryl oleate content and reduces LDL proteoglycan binding in humans.

    PubMed

    Jones, Peter J H; MacKay, Dylan S; Senanayake, Vijitha K; Pu, Shuaihua; Jenkins, David J A; Connelly, Philip W; Lamarche, Benoît; Couture, Patrick; Kris-Etherton, Penny M; West, Sheila G; Liu, Xiaoran; Fleming, Jennifer A; Hantgan, Roy R; Rudel, Lawrence L

    2015-02-01

    Oleic acid consumption is considered cardio-protective according to studies conducted examining effects of the Mediterranean diet. However, animal models have shown that oleic acid consumption increases LDL particle cholesteryl oleate content which is associated with increased LDL-proteoglycan binding and atherosclerosis. The objective was to examine effects of varying oleic, linoleic and docosahexaenoic acid consumption on human LDL-proteoglycan binding in a non-random subset of the Canola Oil Multi-center Intervention Trial (COMIT) participants. COMIT employed a randomized, double-blind, five-period, cross-over trial design. Three of the treatment oil diets: 1) a blend of corn/safflower oil (25:75); 2) high oleic canola oil; and 3) DHA-enriched high oleic canola oil were selected for analysis of LDL-proteoglycan binding in 50 participants exhibiting good compliance. LDL particles were isolated from frozen plasma by gel filtration chromatography and LDL cholesteryl esters quantified by mass-spectrometry. LDL-proteoglycan binding was assessed using surface plasmon resonance. LDL particle cholesterol ester fatty acid composition was sensitive to the treatment fatty acid compositions, with the main fatty acids in the treatments increasing in the LDL cholesterol esters. The corn/safflower oil and high-oleic canola oil diets lowered LDL-proteoglycan binding relative to their baseline values (p = 0.0005 and p = 0.0012, respectively). At endpoint, high-oleic canola oil feeding resulted in lower LDL-proteoglycan binding than corn/safflower oil (p = 0.0243) and DHA-enriched high oleic canola oil (p = 0.0249), although high-oleic canola oil had the lowest binding at baseline (p = 0.0344). Our findings suggest that high-oleic canola oil consumption in humans increases cholesteryl oleate percentage in LDL, but in a manner not associated with a rise in LDL-proteoglycan binding. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. High-oleic canola oil consumption enriches LDL particle cholesteryl oleate content and reduces LDL proteoglycan binding in humans

    PubMed Central

    Jones, Peter J. H.; MacKay, Dylan. S.; Senanayake, Vijitha K.; Pu, Shuaihua; Jenkins, David J. A.; Connelly, Philip W.; Lamarche, Benoît; Couture, Patrick; Kris-Etherton, Penny M.; West, Sheila G.; Liu, Xiaoran; Fleming, Jennifer A.; Hantgan, Roy R.; Rudel, Lawrence L.

    2015-01-01

    Oleic acid consumption is considered cardio-protective according to studies conducted examining effects of the Mediterranean diet. However, animal models have shown that oleic acid consumption increases LDL particle cholesteryl oleate content which is associated with increased LDL-proteoglycan binding and atherosclerosis. The objective was to examine effects of varying oleic, linoleic and docosahexaenoic acid consumption on human LDL-proteoglycan binding in a non-random subset of the Canola Oil Multi-center Intervention Trial (COMIT) participants. COMIT employed a randomized, double-blind, five-period, cross-over trial design. Three of the treatment oil diets; 1) a blend of corn/safflower oil (25:75); 2) high oleic canola oil; and 3) DHA-enriched high oleic canola oil were selected for analysis of LDL-proteoglycan binding in 50 participants exhibiting good compliance. LDL particles were isolated from frozen plasma by gel filtration chromatography and LDL cholesteryl esters quantified by mass-spectrometry. LDL-proteoglycan binding was assessed using surface plasmon resonance. LDL particle cholesterol ester fatty acid composition was sensitive to the treatment fatty acid compositions, with the main fatty acids in the treatments increasing in the LDL cholesterol esters. The corn/safflower oil and high-oleic canola oil diets lowered LDL-proteoglycan binding relative to their baseline values (p=0.0005 and p=0.0012, respectively). At endpoint, high-oleic canola oil feeding resulted in lower LDL-proteoglycan binding than corn/safflower oil (p=0.0243) and DHA-enriched high oleic canola oil (p=0.0249), although high-oleic canola oil had the lowest binding at baseline (p=0.0344). Our findings suggest that high-oleic canola oil consumption in humans increases cholesteryl oleate percentage in LDL, but in a manner not associated with a rise in LDL-proteoglycan binding. PMID:25528432

  14. Two common low density lipoprotein receptor gene mutations cause familial hypercholesterolemia in Afrikaners.

    PubMed

    Leitersdorf, E; Van der Westhuyzen, D R; Coetzee, G A; Hobbs, H H

    1989-09-01

    Familial hypercholesterolemia (FH), an autosomal dominant disease caused by mutations in the LDL receptor gene, is five times more frequent in the Afrikaner population of South Africa than it is in the population of the United States and Europe. It has been proposed that the high frequency is due to a founder effect. In this paper, we characterized 24 mutant LDL receptor alleles from 12 Afrikaner individuals homozygous for FH. We identified two mutations that together makeup greater than 95% of the mutant LDL receptor genes represented in our sample. Both mutations were basepair substitutions that result in single-amino acid changes. Each mutation can be detected readily with the polymerase chain reaction and restriction analysis. The finding of two common LDL receptor mutations in the Afrikaner FH homozygotes predicts that these mutations will predominate in the Afrikaner population and that the high frequency of FH is due to a founder effect. The increased incidence of ischemic heart disease in the Afrikaner population may in part be due to the high frequency of these two mutations in the LDL receptor gene.

  15. Inclisiran in Patients at High Cardiovascular Risk with Elevated LDL Cholesterol.

    PubMed

    Ray, Kausik K; Landmesser, Ulf; Leiter, Lawrence A; Kallend, David; Dufour, Robert; Karakas, Mahir; Hall, Tim; Troquay, Roland P T; Turner, Traci; Visseren, Frank L J; Wijngaard, Peter; Wright, R Scott; Kastelein, John J P

    2017-04-13

    In a previous study, a single injection of inclisiran, a chemically synthesized small interfering RNA designed to target PCSK9 messenger RNA, was found to produce sustained reductions in low-density lipoprotein (LDL) cholesterol levels over the course of 84 days in healthy volunteers. We conducted a phase 2, multicenter, double-blind, placebo-controlled, multiple-ascending-dose trial of inclisiran administered as a subcutaneous injection in patients at high risk for cardiovascular disease who had elevated LDL cholesterol levels. Patients were randomly assigned to receive a single dose of placebo or 200, 300, or 500 mg of inclisiran or two doses (at days 1 and 90) of placebo or 100, 200, or 300 mg of inclisiran. The primary end point was the change from baseline in LDL cholesterol level at 180 days. Safety data were available through day 210, and data on LDL cholesterol and proprotein convertase subtilisin-kexin type 9 (PCSK9) levels were available through day 240. A total of 501 patients underwent randomization. Patients who received inclisiran had dose-dependent reductions in PCSK9 and LDL cholesterol levels. At day 180, the least-squares mean reductions in LDL cholesterol levels were 27.9 to 41.9% after a single dose of inclisiran and 35.5 to 52.6% after two doses (P<0.001 for all comparisons vs. placebo). The two-dose 300-mg inclisiran regimen produced the greatest reduction in LDL cholesterol levels: 48% of the patients who received the regimen had an LDL cholesterol level below 50 mg per deciliter (1.3 mmol per liter) at day 180. At day 240, PCSK9 and LDL cholesterol levels remained significantly lower than at baseline in association with all inclisiran regimens. Serious adverse events occurred in 11% of the patients who received inclisiran and in 8% of the patients who received placebo. Injection-site reactions occurred in 5% of the patients who received injections of inclisiran. In our trial, inclisiran was found to lower PCSK9 and LDL cholesterol levels

  16. Targeting the Hemoglobin Scavenger receptor CD163 in Macrophages Highly Increases the Anti-inflammatory Potency of Dexamethasone

    PubMed Central

    Graversen, Jonas H; Svendsen, Pia; Dagnæs-Hansen, Frederik; Dal, Jakob; Anton, Gabriele; Etzerodt, Anders; Petersen, Mikkel D; Christensen, Peter A; Møller, Holger J; Moestrup, Søren K

    2012-01-01

    Synthetic glucocorticoids are potent anti-inflammatory drugs but serious side effects such as bone mobilization, muscle mass loss, immunosuppression, and metabolic alterations make glucocorticoid therapy a difficult balance. The therapeutic anti-inflammatory effect of glucocorticoids relies largely on the suppressed release of tumor-necrosis factor-α and other cytokines by macrophages at the sites of inflammation. We have now developed a new biodegradable anti-CD163 antibody-drug conjugate that specifically targets the glucocorticoid, dexamethasone to the hemoglobin scavenger receptor CD163 in macrophages. The conjugate, that in average contains four dexamethasone molecules per antibody, exhibits retained high functional affinity for CD163. In vitro studies in rat macrophages and in vivo studies of Lewis rats showed a strong anti-inflammatory effect of the conjugate measured as reduced lipopolysaccharide-induced secretion of tumor-necrosis factor-α. The in vivo potency of conjugated dexamethasone was about 50-fold that of nonconjugated dexamethasone. In contrast to a strong systemic effect of nonconjugated dexamethasone, the equipotent dose of the conjugate had no such effect, measured as thymus lymphocytes apoptosis, body weight loss, and suppression of endogenous cortisol levels. In conclusion, the study shows antibody-drug conjugates as a future approach in anti-inflammatory macrophage-directed therapy. Furthermore, the data demonstrate CD163 as an excellent macrophage target for anti-inflammatory drug delivery. PMID:22643864

  17. Scavenger receptor B1 facilitates macrophage uptake of silver nanoparticles and cellular activation

    NASA Astrophysics Data System (ADS)

    Aldossari, Abdullah A.; Shannahan, Jonathan H.; Podila, Ramakrishna; Brown, Jared M.

    2015-07-01

    Due to increased use of silver nanoparticles (AgNPs) for their antimicrobial activity, concerns have risen regarding potential adverse human health effects. Scavenger receptor B1 (SR-B1), a major receptor for high-density lipoprotein (HDL), is expressed by macrophages and has also been reported to play a role in recognition of negatively charged particles. We, therefore, hypothesized that SR-B1 mediates macrophage uptake of AgNPs and inflammatory activation. To test this hypothesis, we exposed a mouse macrophage cell line RAW264.7 (RAW) and bone marrow-derived macrophages (BMDM) to 20 nm citrate-suspended AgNPs. To verify the role of the SR-B1 receptor, we utilized a SR-B1 inhibitor (Blt2). In vitro studies demonstrated uptake of AgNPs and HDL-coated AgNPs by macrophages which were significantly reduced following pretreatment with Blt2. Inflammatory cytokine arrays revealed that macrophages exposed to AgNPs up-regulated expression of Tnf- α, Oncostatin m (OSM), Ccl4, Il17f, Ccl7, and Ccl2, whereas Il16 was found to be down-regulated. Macrophage activation was observed following AgNP and HDL-coated AgNP exposure as measured by OSM protein production and increased surface expression of CD86. These markers of activation were reduced with Blt2 pretreatment. The in vitro findings were confirmed in vivo through pulmonary instillation of AgNPs in mice. Pulmonary instillation of AgNPs resulted in a recruitment of inflammatory cells that were reduced in SR-B1-deficient mice or following Blt2 pretreatment. This study suggests that SR-B1 plays a major role in cellular recognition of AgNPs and the induction of cell responses that could contribute to inflammation caused by AgNP exposure.

  18. CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL.

    PubMed

    Bartuzi, Paulina; Billadeau, Daniel D; Favier, Robert; Rong, Shunxing; Dekker, Daphne; Fedoseienko, Alina; Fieten, Hille; Wijers, Melinde; Levels, Johannes H; Huijkman, Nicolette; Kloosterhuis, Niels; van der Molen, Henk; Brufau, Gemma; Groen, Albert K; Elliott, Alison M; Kuivenhoven, Jan Albert; Plecko, Barbara; Grangl, Gernot; McGaughran, Julie; Horton, Jay D; Burstein, Ezra; Hofker, Marten H; van de Sluis, Bart

    2016-03-11

    The low-density lipoprotein receptor (LDLR) plays a pivotal role in clearing atherogenic circulating low-density lipoprotein (LDL) cholesterol. Here we show that the COMMD/CCDC22/CCDC93 (CCC) and the Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) complexes are both crucial for endosomal sorting of LDLR and for its function. We find that patients with X-linked intellectual disability caused by mutations in CCDC22 are hypercholesterolaemic, and that COMMD1-deficient dogs and liver-specific Commd1 knockout mice have elevated plasma LDL cholesterol levels. Furthermore, Commd1 depletion results in mislocalization of LDLR, accompanied by decreased LDL uptake. Increased total plasma cholesterol levels are also seen in hepatic COMMD9-deficient mice. Inactivation of the CCC-associated WASH complex causes LDLR mislocalization, increased lysosomal degradation of LDLR and impaired LDL uptake. Furthermore, a mutation in the WASH component KIAA0196 (strumpellin) is associated with hypercholesterolaemia in humans. Altogether, this study provides valuable insights into the mechanisms regulating cholesterol homeostasis and LDLR trafficking.

  19. Influence of Honey on the Suppression of Human Low Density Lipoprotein (LDL) Peroxidation (In vitro)

    PubMed Central

    Abd El-Hady, Faten K.

    2009-01-01

    The antioxidant activity of four honey samples from different floral sources (Acacia, Coriander, Sider and Palm) were evaluated with three different assays; DPPH free radical scavenging assay, superoxide anion generated in xanthine–xanthine oxidase (XOD) system and low density lipoprotein (LDL) peroxidation assay. The dark Palm and Sider honeys had the highest antioxidant activity in the DPPH assay. But all the honey samples exhibited more or less the same highly significant antioxidant activity within the concentration of 1mg honey/1 ml in XOD system and LDL peroxidation assays. The chemical composition of these samples was investigated by GC/MS and HPLC analysis, 11 compounds being new to honey. The GC/MS revealed the presence of 90 compounds, mainly aliphatic acids (37 compounds), which represent 54.73, 8.72, 22.87 and 64.10% and phenolic acids (15 compound) 2.3, 1.02, 2.07 and 11.68% for Acacia, Coriander, Sider and Palm honeys. In HPLC analysis, 19 flavonoids were identified. Coriander and Sider honeys were characterized by the presence of large amounts of flavonoids. PMID:18955249

  20. Influence of Honey on the Suppression of Human Low Density Lipoprotein (LDL) Peroxidation (In vitro).

    PubMed

    Hegazi, Ahmed G; Abd El-Hady, Faten K

    2009-03-01

    The antioxidant activity of four honey samples from different floral sources (Acacia, Coriander, Sider and Palm) were evaluated with three different assays; DPPH free radical scavenging assay, superoxide anion generated in xanthine-xanthine oxidase (XOD) system and low density lipoprotein (LDL) peroxidation assay. The dark Palm and Sider honeys had the highest antioxidant activity in the DPPH assay. But all the honey samples exhibited more or less the same highly significant antioxidant activity within the concentration of 1mg honey/1 ml in XOD system and LDL peroxidation assays. The chemical composition of these samples was investigated by GC/MS and HPLC analysis, 11 compounds being new to honey. The GC/MS revealed the presence of 90 compounds, mainly aliphatic acids (37 compounds), which represent 54.73, 8.72, 22.87 and 64.10% and phenolic acids (15 compound) 2.3, 1.02, 2.07 and 11.68% for Acacia, Coriander, Sider and Palm honeys. In HPLC analysis, 19 flavonoids were identified. Coriander and Sider honeys were characterized by the presence of large amounts of flavonoids.

  1. Olive Oil Polyphenols Decrease LDL Concentrations and LDL Atherogenicity in Men in a Randomized Controlled Trial.

    PubMed

    Hernáez, Álvaro; Remaley, Alan T; Farràs, Marta; Fernández-Castillejo, Sara; Subirana, Isaac; Schröder, Helmut; Fernández-Mampel, Mireia; Muñoz-Aguayo, Daniel; Sampson, Maureen; Solà, Rosa; Farré, Magí; de la Torre, Rafael; López-Sabater, María-Carmen; Nyyssönen, Kristiina; Zunft, Hans-Joachim F; Covas, María-Isabel; Fitó, Montserrat

    2015-08-01

    Olive oil polyphenols have shown protective effects on cardiovascular risk factors. Their consumption decreased oxidative stress biomarkers and improved some features of the lipid profile. However, their effects on LDL concentrations in plasma and LDL atherogenicity have not yet been elucidated. Our objective was to assess whether the consumption of olive oil polyphenols could decrease LDL concentrations [measured as apolipoprotein B-100 (apo B-100) concentrations and the total number of LDL particles] and atherogenicity (the number of small LDL particles and LDL oxidizability) in humans. The study was a randomized, cross-over controlled trial in 25 healthy European men, aged 20-59 y, in the context of the EUROLIVE (Effect of Olive Oil Consumption on Oxidative Damage in European Populations) study. Volunteers ingested 25 mL/d raw low-polyphenol-content olive oil (LPCOO; 366 mg/kg) or high-polyphenol-content olive oil (HPCOO; 2.7 mg/kg) for 3 wk. Interventions were preceded by 2-wk washout periods. Effects of olive oil polyphenols on plasma LDL concentrations and atherogenicity were determined in the sample of 25 men. Effects on lipoprotein lipase (LPL) gene expression were assessed in another sample of 18 men from the EUROLIVE study. Plasma apo B-100 concentrations and the number of total and small LDL particles decreased (mean ± SD: by 5.94% ± 16.6%, 11.9% ± 12.0%, and 15.3% ± 35.1%, respectively) from baseline after the HPCOO intervention. These changes differed significantly from those after the LPCOO intervention, which resulted in significant increases of 6.39% ± 16.6%, 4.73% ± 22.0%, and 13.6% ± 36.4% from baseline (P < 0.03). LDL oxidation lag time increased by 5.0% ± 10.3% from baseline after the HPCOO intervention, which was significantly different only relative to preintervention values (P = 0.038). LPL gene expression tended to increase by 26% from baseline after the HPCOO intervention (P = 0.08) and did not change after the LPCOO intervention

  2. A survey of operational characteristics, socioeconomic and health effects of scavenging activity in Lagos, Nigeria.

    PubMed

    Afon, Abel

    2012-07-01

    This study presents the social, economic, health and environmental implications of solid waste scavenging activity in Olusosun, one of the government's designated open waste dumpsites in Lagos, Nigeria. Using incidental or convenience sampling methods of questionnaire administration, 112 scavengers were sampled. It was established that scavenging on the site was only possible through registration with an associate on site. Recovering items from hills of waste involved physical energy and the use of manually-operated rudimentary equipment. Thus, 87% of the scavengers were males in their early twenties (minimum age = 19 years; maximum age = 35 years; mean = 26.7 years; SD = 4.2). The daily mean income from the exercise was Naira 480.80 (Naira 160 = $1.00). The most important method of arriving at the selling prices of the scavenged products was the use of scale measurement. Although the scavengers were aware that scavenging exposed them to both environmental and health hazards, they continued scavenging for economic and social reasons. The study concluded that because of the level of employment provided and the large number of people directly involved (1243 on this site alone), outright banning, even when the open dump is closed down, without rehabilitating the scavengers will constitute a social, economic and security threat to the community. Scavenging should, therefore, be integrated fully into the waste-management system and regulated.

  3. Key Role of the Scavenger Receptor MARCO in Mediating Adenovirus Infection and Subsequent Innate Responses of Macrophages.

    PubMed

    Maler, Mareike D; Nielsen, Peter J; Stichling, Nicole; Cohen, Idan; Ruzsics, Zsolt; Wood, Connor; Engelhard, Peggy; Suomalainen, Maarit; Gyory, Ildiko; Huber, Michael; Müller-Quernheim, Joachim; Schamel, Wolfgang W A; Gordon, Siamon; Jakob, Thilo; Martin, Stefan F; Jahnen-Dechent, Willi; Greber, Urs F; Freudenberg, Marina A; Fejer, György

    2017-08-01

    The scavenger receptor MARCO is expressed in several subsets of naive tissue-resident macrophages and has been shown to participate in the recognition of various bacterial pathogens. However, the role of MARCO in antiviral defense is largely unexplored. Here, we investigated whether MARCO might be involved in the innate sensing of infection with adenovirus and recombinant adenoviral vectors by macrophages, which elicit vigorous immune responses in vivo Using cells derived from mice, we show that adenovirus infection is significantly more efficient in MARCO-positive alveolar macrophages (AMs) and in AM-like primary macrophage lines (Max Planck Institute cells) than in MARCO-negative bone marrow-derived macrophages. Using antibodies blocking ligand binding to MARCO, as well as gene-deficient and MARCO-transfected cells, we show that MARCO mediates the rapid adenovirus transduction of macrophages. By enhancing adenovirus infection, MARCO contributes to efficient innate virus recognition through the cytoplasmic DNA sensor cGAS. This leads to strong proinflammatory responses, including the production of interleukin-6 (IL-6), alpha/beta interferon, and mature IL-1α. These findings contribute to the understanding of viral pathogenesis in macrophages and may open new possibilities for the development of tools to influence the outcome of infection with adenovirus or adenovirus vectors. IMPORTANCE Macrophages play crucial roles in inflammation and defense against infection. Several macrophage subtypes have been identified with differing abilities to respond to infection with both natural adenoviruses and recombinant adenoviral vectors. Adenoviruses are important respiratory pathogens that elicit vigorous innate responses in vitro and in vivo The cell surface receptors mediating macrophage type-specific adenovirus sensing are largely unknown. The scavenger receptor MARCO is expressed on some subsets of naive tissue-resident macrophages, including lung alveolar macrophages

  4. Increased LDL electronegativity in chronic kidney disease disrupts calcium homeostasis resulting in cardiac dysfunction.

    PubMed

    Chang, Kuan-Cheng; Lee, An-Sheng; Chen, Wei-Yu; Lin, Yen-Nien; Hsu, Jing-Fang; Chan, Hua-Chen; Chang, Chia-Ming; Chang, Shih-Sheng; Pan, Chia-Chi; Sawamura, Tatsuya; Chang, Chi-Tzong; Su, Ming-Jai; Chen, Chu-Huang

    2015-07-01

    Chronic kidney disease (CKD), an independent risk factor for cardiovascular disease, is associated with abnormal lipoprotein metabolism. We examined whether electronegative low-density lipoprotein (LDL) is mechanistically linked to cardiac dysfunction in patients with early CKD. We compared echocardiographic parameters between patients with stage 2 CKD (n = 88) and normal controls (n = 89) and found that impaired relaxation was more common in CKD patients. Reduction in estimated glomerular filtration rate was an independent predictor of left ventricular relaxation dysfunction. We then examined cardiac function in a rat model of early CKD induced by unilateral nephrectomy (UNx) by analyzing pressure-volume loop data. The time constant of isovolumic pressure decay was longer and the maximal velocity of pressure fall was slower in UNx rats than in controls. When we investigated the mechanisms underlying relaxation dysfunction, we found that LDL from CKD patients and UNx rats was more electronegative than LDL from their respective controls and that LDL from UNx rats induced intracellular calcium overload in H9c2 cardiomyocytes in vitro. Furthermore, chronic administration of electronegative LDL, which signals through lectin-like oxidized LDL receptor-1 (LOX-1), induced relaxation dysfunction in wild-type but not LOX-1(-/-) mice. In in vitro and in vivo experiments, impaired cardiac relaxation was associated with increased calcium transient resulting from nitric oxide (NO)-dependent nitrosylation of SERCA2a due to increases in inducible NO synthase expression and endothelial NO synthase uncoupling. In conclusion, LDL becomes more electronegative in early CKD. This change disrupts SERCA2a-regulated calcium homeostasis, which may be the mechanism underlying cardiorenal syndrome. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Thematic review series: patient-oriented research. What we have learned about VLDL and LDL metabolism from human kinetics studies.

    PubMed

    Parhofer, Klaus G; Barrett, P Hugh R

    2006-08-01

    Lipoprotein metabolism is the result of a complex network of many individual components. Abnormal lipoprotein concentrations can result from changes in the production, conversion, or catabolism of lipoprotein particles. Studies in hypolipoproteinemia and hyperlipoproteinemia have elucidated the processes that control VLDL secretion as well as VLDL and LDL catabolism. Here, we review the current knowledge regarding apolipoprotein B (apoB) metabolism, focusing on selected clinically relevant conditions. In hypobetalipoproteinemia attributable to truncations in apoB, the rate of secretion is closely linked to the length of apoB. On the other hand, in patients with the metabolic syndrome, it appears that substrate, in the form of free fatty acids, coupled to the state of insulin resistance can induce hypersecretion of VLDL-apoB. Studies in patients with familial hypercholesterolemia, familial defective apoB, and mutant forms of proprotein convertase subtilisin/kexin type 9 show that mutations in the LDL receptor, the ligand for the receptor, or an intracellular chaperone for the receptor are the most important determinants in regulating LDL catabolism. This review also demonstrates the variance of results within similar, or even the same, phenotypic conditions. This underscores the sensitivity of metabolic studies to methodological aspects and thus the importance of the inclusion of adequate controls in studies.

  6. Study of low-density lipoprotein receptor regulation by oral (steroid) contraceptives: desogestrel, levonorgestrel and ethinyl estradiol in JEG-3 cell line and placental tissue.

    PubMed

    Ramakrishnan, Gopalakrishnan; Rana, Anita; Das, Chandana; Chandra, Nimai Chand

    2007-10-01

    The aim of this study was to compare in vitro the role of two oral contraceptives, desogestrel (a less androgenic derivative of levonorgestrel) and levonorgestrel--alone and in combination with ethinyl estradiol--on low-density lipoprotein (LDL) receptor regulation by assessing receptor protein expression and functional effectiveness. Placental tissue and cultured placental cells (JEG-3) were used to study the expression and endocytotic activity of LDL receptor protein. The expression of the receptor was assessed by immunocytochemistry and immunoblot assays with and without contraceptive challenge. Functioning activity of LDL receptor was studied by measuring the rate of uptake of LDL by placental cells. Quantification of LDL was based on the total cholesterol content of the lipoprotein. A combination of desogestrel (20 ng/mL of incubation medium) and ethinyl estradiol (10 ng/mL of incubation medium) maintained the LDL receptor at high level of expression and functioning mode. In contrast, the double-blind preparation of levonorgestrel (20 ng/mL) and ethinyl estradiol (10 ng/mL) had shown much lower expression as well as receptor-mediated LDL uptake. The concentration of contraceptives used in this study was similar to the prevailing concentration of oral contraceptives in clinical use. Higher expression of LDL receptor and enhanced rate of LDL uptake by the receptor protein projects the possibility that there might be less atherosclerosis-related disorders from the combination of desogestrol and ethinyl estradiol.

  7. Two common low density lipoprotein receptor gene mutations cause familial hypercholesterolemia in Afrikaners.

    PubMed Central

    Leitersdorf, E; Van der Westhuyzen, D R; Coetzee, G A; Hobbs, H H

    1989-01-01

    Familial hypercholesterolemia (FH), an autosomal dominant disease caused by mutations in the LDL receptor gene, is five times more frequent in the Afrikaner population of South Africa than it is in the population of the United States and Europe. It has been proposed that the high frequency is due to a founder effect. In this paper, we characterized 24 mutant LDL receptor alleles from 12 Afrikaner individuals homozygous for FH. We identified two mutations that together makeup greater than 95% of the mutant LDL receptor genes represented in our sample. Both mutations were basepair substitutions that result in single-amino acid changes. Each mutation can be detected readily with the polymerase chain reaction and restriction analysis. The finding of two common LDL receptor mutations in the Afrikaner FH homozygotes predicts that these mutations will predominate in the Afrikaner population and that the high frequency of FH is due to a founder effect. The increased incidence of ischemic heart disease in the Afrikaner population may in part be due to the high frequency of these two mutations in the LDL receptor gene. Images PMID:2569482

  8. Identification and characterization of class B scavenger receptor CD36 from the hard tick, Haemaphysalis longicornis.

    PubMed

    Aung, Kyaw Min; Boldbaatar, Damdinsuren; Liao, Min; Umemiya-Shirafuji, Rika; Nakao, Sumihiro; Matsuoka, Terushige; Tanaka, Tetsuya; Fujisaki, Kozo

    2011-02-01

    Scavenger receptors (SRs) are cell-surface proteins and exhibit distinctive ligand-binding properties, recognizing a wide range of ligands that include microbial surface constituents and intact microbes. The class B scavenger receptor CD36 (SRB) is predominantly expressed by macrophages and is considered important in innate immunity. We here show the identification and characterization of SRB from the hard ixodid tick, Haemaphysalis longicornis (HlSRB). The full-length cDNA was 2,908 bp, including an ORF encoding of 1,518 amino acids with a pI value of 5.83. H. longicornis SRB contains a hydrophobic SRB domain and four centrally clustered cysteine residues for arrangement of disulfide bridges. Deduced amino acid sequence has an identity of 30-38% with the SRB of other organisms. RT-PCR analysis showed that mRNA transcripts were expressed in multiple organs of adult ticks but with a different transcript level in the developmental stages of H. longicornis ticks. His-tagged recombinant HlSRB was expressed in Escherichia coli with an expected molecular mass of 50 kDa. In Western blot analysis, mouse anti-rHlSRB serum recognized a strong reaction with a 50 kDa protein band in lysates prepared from egg and adult tick but showed a weak reaction with lysates of larva and nymph. In an indirect immunofluorescent antibody test, HlSRB antiserum recognized the protein located on the midgut, salivary glands, and ovary of partially fed H. longicornis females. Silencing of the HlSRB gene by RNAi led to a significant reduction in the engorged female body weight. It is noteworthy that more than a dozen SRB orthologs have been identified in the genomes of insect species with functions related to pheromone signaling, innate immunity, phagocytic clearance of apoptotic cells, and various aspects of the fatty acid metabolism. This is the first report of the identification and characterization of the SRB homologue in Chelicerata, including ticks, horseshoe crabs, scorpions, spiders, and

  9. oxLDL induces endothelial cell proliferation via Rho/ROCK/Akt/p27kip1 signaling: opposite effects of oxLDL and cholesterol loading.

    PubMed

    Zhang, Chongxu; Adamos, Crystal; Oh, Myung-Jin; Baruah, Jugajyoti; Ayee, Manuela A A; Mehta, Dolly; Wary, Kishore K; Levitan, Irena

    2017-09-01

    Oxidized modifications of LDL (oxLDL) play a key role in the development of endothelial dysfunction and atherosclerosis. However, the underlying mechanisms of oxLDL-mediated cellular behavior are not completely understood. Here, we compared the effects of two major types of oxLDL, copper-oxidized LDL (Cu 2+ -oxLDL) and lipoxygenase-oxidized LDL (LPO-oxLDL), on proliferation of human aortic endothelial cells (HAECs). Cu 2+ -oxLDL enhanced HAECs' proliferation in a dose- and degree of oxidation-dependent manner. Similarly, LPO-oxLDL also enhanced HAEC proliferation. Mechanistically, both Cu 2+ -oxLDL and LPO-oxLDL enhance HAEC proliferation via activation of Rho, Akt phosphorylation, and a decrease in the expression of cyclin-dependent kinase inhibitor 1B (p27 kip1 ). Both Cu 2+ -oxLDL or LPO-oxLDL significantly increased Akt phosphorylation, whereas an Akt inhibitor, MK2206, blocked oxLDL-induced increase in HAEC proliferation. Blocking Rho with C3 or its downstream target ROCK with Y27632 significantly inhibited oxLDL-induced Akt phosphorylation and proliferation mediated by both Cu 2+ - and LPO-oxLDL. Activation of RhoA was blocked by Rho-GDI-1, which also abrogated oxLDL-induced Akt phosphorylation and HAEC proliferation. In contrast, blocking Rac1 in these cells had no effect on oxLDL-induced Akt phosphorylation or cell proliferation. Moreover, oxLDL-induced Rho/Akt signaling downregulated cell cycle inhibitor p27 kip1 Preloading these cells with cholesterol, however, prevented oxLDL-induced Akt phosphorylation and HAEC proliferation. These findings provide a new understanding of the effects of oxLDL on endothelial proliferation, which is essential for developing new treatments against neovascularization and progression of atherosclerosis. Copyright © 2017 the American Physiological Society.

  10. The small dense LDL particle/large buoyant LDL particle ratio is associated with glucose metabolic status in pregnancy.

    PubMed

    Chen, Yanmin; Du, Mengkai; Xu, Jianyun; Chen, Danqing

    2017-12-14

    The lipoprotein subfraction particle profile can be used to improve clinical assessments of cardiovascular disease risk and contribute to early detection of atherogenic dyslipidemia. Lipid alterations in gestational diabetes have been extensively studied, but the results have been inconsistent. Here, we investigated serum lipoprotein subfraction particle levels and their association with glucose metabolic status in pregnancy. Twenty-eight pregnant women with gestational diabetes and 56 pregnant women with normal glucose tolerance matched for body mass index were enrolled in this study. We assessed fasting serum lipid concentrations and lipoprotein subfraction particle levels in participants between 24 and 28 weeks of gestation. The level of low-density lipoprotein (LDL) cholesterol was significantly lower in women with gestational diabetes than in those with normal glucose tolerance, but the triglyceride and high-density lipoprotein (HDL) cholesterol levels of the two groups were similar. Lipoprotein particle analysis showed that very-low-density lipoprotein (VLDL) particle number and the small dense LDL particle/large buoyant LDL particle (sdLDL-P/lbLDL-P) ratio were significantly higher in women with gestational diabetes than in those with normal glucose tolerance (P = 0.013 and P = 0.015, respectively). In multivariate analysis, fasting glucose was independently and positively associated with sdLDL-P/lbLDL-P ratio even after adjustment for maternal age, gestational weight gain, BMI and LDL cholesterol (standardized Beta = 0.214, P = 0.029). The sdLDL-P/lbLDL-P ratio is higher in GDM compared with non-diabetic pregnant women, and positively and independently associated with fasting glucose in pregnant women.

  11. Ginkgolide B Reduces LOX-1 Expression by Inhibiting Akt Phosphorylation and Increasing Sirt1 Expression in Oxidized LDL-Stimulated Human Umbilical Vein Endothelial Cells

    PubMed Central

    Chen, Beidong; Li, Xingguang; Qi, Ruomei

    2013-01-01

    Oxidized low-density lipoprotein (ox-LDL) is an important risk factor in the development of atherosclerosis. LOX-1, a lectin-like receptor for ox-LDL, is present primarily on endothelial cells and upregulated by ox-LDL, tumor necrosis factor a, shear stress, and cytokines in atherosclerosis. Recent studies demonstrated that ginkgolide B, a platelet-activating factor receptor antagonist, has antiinflammatory and antioxidant effects on endothelial and nerve cells. The present study investigated the effects of ginkgolide B on LOX-1 expression and the possible mechanism of action. Our results showed that ginkgolide B inhibited LOX-1 and intercellular cell adhesion molecule-1 (ICAM-1) expression in ox-LDL-stimulated endothelial cells through a mechanism associated with the attenuation of Akt activation. Similar data were obtained by silencing Akt and LY294002. We also evaluated Sirt1 and nuclear factor erythroid 2-related factor 2 (Nrf2) expression. These molecules play a protective role in endothelial cell injury. The results showed that ginkgolide B increased Sirt1 expression in ox-LDL-treated cells. The inhibitory effects of ginkgolide B on LOX-1 and ICAM-1 expression were reduced in Sirt1 siRNA-transfected cells. Nrf2 expression was increased in ox-LDL-treated cells, and ginkgolide B downregulated Nrf2 expression. These results suggest that ginkgolide B reduces Nrf2 expression by inhibiting LOX-1 expression, consequently reducing oxidative stress injury in ox-LDL-stimulated cells. Altogether, these results indicate that the protective effect of ginkgolide B on endothelial cells may be attributable to a decrease in LOX-1 expression and an increase in Sirt1 expression in ox-LDL-stimulated endothelial cells, the mechanism of which is linked to the inhibition of Akt activation. Ginkgolide B may be a multiple-target drug that exerts protective effects in ox-LDL-treated human umbilical vein endothelial cells. PMID:24069345

  12. Loss of Function of P2X7 Receptor Scavenger Activity in Aging Mice: A Novel Model for Investigating the Early Pathogenesis of Age-Related Macular Degeneration.

    PubMed

    Vessey, Kirstan A; Gu, Ben J; Jobling, Andrew I; Phipps, Joanna A; Greferath, Ursula; Tran, Mai X; Dixon, Michael A; Baird, Paul N; Guymer, Robyn H; Wiley, James S; Fletcher, Erica L

    2017-08-01

    Age-related macular degeneration (AMD) is a leading cause of irreversible, severe vision loss in Western countries. Recently, we identified a novel pathway involving P2X7 receptor scavenger function expressed on ocular immune cells as a risk factor for advanced AMD. In this study, we investigate the effect of loss of P2X7 receptor function on retinal structure and function during aging. P2X7-null and wild-type C57bl6J mice were investigated at 4, 12, and 18 months of age for macrophage phagocytosis activity, ocular histological changes, and retinal function. Phagocytosis activity of blood-borne macrophages decreased with age at 18 months in the wild-type mouse. Lack of P2X7 receptor function reduced phagocytosis at all ages compared to wild-type mice. At 12 months of age, P2X7-null mice had thickening of Bruchs membrane and retinal pigment epithelium dysfunction. By 18 months of age, P2X7-null mice displayed phenotypic characteristics consistent with early AMD, including Bruchs membrane thickening, retinal pigment epithelium cell loss, retinal functional deficits, and signs of subretinal inflammation. Our present study shows that loss of function of the P2X7 receptor in mice induces retinal changes representing characteristics of early AMD, providing a valuable model for investigating the role of scavenger receptor function and the immune system in the development of this age-related disease. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. Evaluation of a novel virtual screening strategy using receptor decoy binding sites.

    PubMed

    Patel, Hershna; Kukol, Andreas

    2016-08-23

    Virtual screening is used in biomedical research to predict the binding affinity of a large set of small organic molecules to protein receptor targets. This report shows the development and evaluation of a novel yet straightforward attempt to improve this ranking in receptor-based molecular docking using a receptor-decoy strategy. This strategy includes defining a decoy binding site on the receptor and adjusting the ranking of the true binding-site virtual screen based on the decoy-site screen. The results show that by docking against a receptor-decoy site with Autodock Vina, improved Receiver Operator Characteristic Enrichment (ROCE) was achieved for 5 out of fifteen receptor targets investigated, when up to 15 % of a decoy site rank list was considered. No improved enrichment was seen for 7 targets, while for 3 targets the ROCE was reduced. The extent to which this strategy can effectively improve ligand prediction is dependent on the target receptor investigated.

  14. CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL

    PubMed Central

    Bartuzi, Paulina; Billadeau, Daniel D.; Favier, Robert; Rong, Shunxing; Dekker, Daphne; Fedoseienko, Alina; Fieten, Hille; Wijers, Melinde; Levels, Johannes H.; Huijkman, Nicolette; Kloosterhuis, Niels; van der Molen, Henk; Brufau, Gemma; Groen, Albert K.; Elliott, Alison M.; Kuivenhoven, Jan Albert; Plecko, Barbara; Grangl, Gernot; McGaughran, Julie; Horton, Jay D.; Burstein, Ezra; Hofker, Marten H.; van de Sluis, Bart

    2016-01-01

    The low-density lipoprotein receptor (LDLR) plays a pivotal role in clearing atherogenic circulating low-density lipoprotein (LDL) cholesterol. Here we show that the COMMD/CCDC22/CCDC93 (CCC) and the Wiskott–Aldrich syndrome protein and SCAR homologue (WASH) complexes are both crucial for endosomal sorting of LDLR and for its function. We find that patients with X-linked intellectual disability caused by mutations in CCDC22 are hypercholesterolaemic, and that COMMD1-deficient dogs and liver-specific Commd1 knockout mice have elevated plasma LDL cholesterol levels. Furthermore, Commd1 depletion results in mislocalization of LDLR, accompanied by decreased LDL uptake. Increased total plasma cholesterol levels are also seen in hepatic COMMD9-deficient mice. Inactivation of the CCC-associated WASH complex causes LDLR mislocalization, increased lysosomal degradation of LDLR and impaired LDL uptake. Furthermore, a mutation in the WASH component KIAA0196 (strumpellin) is associated with hypercholesterolaemia in humans. Altogether, this study provides valuable insights into the mechanisms regulating cholesterol homeostasis and LDLR trafficking. PMID:26965651

  15. Dietary cholesterol worsens adipose tissue macrophage accumulation and atherosclerosis in obese LDL receptor-deficient mice

    PubMed Central

    Subramanian, Savitha; Han, Chang Yeop; Chiba, Tsuyoshi; McMillen, Timothy S.; Wang, Shari A.; Haw, Antonio; Kirk, Elizabeth A.; O’Brien, Kevin D.; Chait, Alan

    2009-01-01

    Objective Chronic systemic inflammation accompanies obesity and predicts development of cardiovascular disease. Dietary cholesterol has been shown to increase inflammation and atherosclerosis in LDL receptor-deficient (LDLR-/-) mice. This study was undertaken to determine whether dietary cholesterol and obesity have additive effects on inflammation and atherosclerosis. Methods and Results LDLR-/- mice were fed chow, high fat, high carbohydrate (diabetogenic) diet without (DD) or with added cholesterol (DDC) for 24 weeks. Effects on adipose tissue, inflammatory markers and atherosclerosis were studied. Despite similar weight gain between DD and DDC groups, addition of dietary cholesterol increased insulin resistance relative to DD. Adipocyte hypertrophy, macrophage accumulation and local inflammation were observed in intra-abdominal adipose tissue in DD and DDC, but were significantly higher in the DDC group. Circulating levels of the inflammatory protein serum amyloid A (SAA) were 4.4-fold higher in DD animals and 15-fold higher in DDC animals than controls, suggesting chronic systemic inflammation. Hepatic SAA mRNA levels were similarly elevated. Atherosclerosis was increased in the DD-fed animals and further increased in the DDC group. Conclusions Obesity-induced macrophage accumulation in adipose tissue is exacerbated by dietary cholesterol. These local inflammatory changes in adipose tissue are associated with insulin resistance, systemic inflammation and increased atherosclerosis in this mouse model. PMID:18239153

  16. Hematopoietic Sphingosine 1-Phosphate Lyase Deficiency Decreases Atherosclerotic Lesion Development in LDL-Receptor Deficient Mice

    PubMed Central

    Bot, Martine; Van Veldhoven, Paul P.; de Jager, Saskia C. A.; Johnson, Jason; Nijstad, Niels; Van Santbrink, Peter J.; Westra, Marijke M.; Van Der Hoeven, Gerd; Gijbels, Marion J.; Müller-Tidow, Carsten; Varga, Georg; Tietge, Uwe J. F.; Kuiper, Johan; Van Berkel, Theo J. C.; Nofer, Jerzy-Roch

    2013-01-01

    Aims Altered sphingosine 1-phosphate (S1P) homeostasis and signaling is implicated in various inflammatory diseases including atherosclerosis. As S1P levels are tightly controlled by S1P lyase, we investigated the impact of hematopoietic S1P lyase (Sgpl1−/−) deficiency on leukocyte subsets relevant to atherosclerosis. Methods and Results LDL receptor deficient mice that were transplanted with Sgpl1−/− bone marrow showed disrupted S1P gradients translating into lymphopenia and abrogated lymphocyte mitogenic and cytokine response as compared to controls. Remarkably however, Sgpl1−/− chimeras displayed mild monocytosis, due to impeded stromal retention and myelopoiesis, and plasma cytokine and macrophage expression patterns, that were largely compatible with classical macrophage activation. Collectively these two phenotypic features of Sgpl1 deficiency culminated in diminished atherogenic response. Conclusions Here we not only firmly establish the critical role of hematopoietic S1P lyase in controlling S1P levels and T cell trafficking in blood and lymphoid tissue, but also identify leukocyte Sgpl1 as critical factor in monocyte macrophage differentiation and function. Its, partly counterbalancing, pro- and anti-inflammatory activity spectrum imply that intervention in S1P lyase function in inflammatory disorders such as atherosclerosis should be considered with caution. PMID:23700419

  17. High concentrations of AGE-LDL and oxidized LDL in circulating immune complexes are associated with progression of retinopathy in type 1 diabetes.

    PubMed

    Lopes-Virella, Maria F; Baker, Nathaniel L; Hunt, Kelly J; Lyons, Timothy J; Jenkins, Alicia J; Virella, Gabriel

    2012-06-01

    To determine whether immunocomplexes (ICs) containing advanced glycation end product (AGE)-LDL (AGE-LDL) and oxidized LDL (oxLDL) contribute to the development of retinopathy over a 16-year period in subjects with type 1 diabetes. Levels of AGE-LDL and oxLDL in ICs were measured in 517 patients of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) cohort. Retinopathy was assessed by stereoscopic fundus photography. Cox proportional hazards models were used to assess the effect of AGE-LDL-ICs and oxLDL-ICs on retinopathy progression. In unadjusted models, higher baseline levels of AGE-LDL-ICs and oxLDL-ICs significantly predicted progression of diabetic retinopathy outcomes. After adjustment by study-design variables (treatment group, retinopathy cohort, duration of type 1 diabetes, and baseline albumin excretion rate [AER], hemoglobin A(1c) (HbA(1c)), and Early Treatment Diabetic Retinopathy Study [ETDRS] score), one SD increase in IC levels was associated with 47% (hazard ratio [HR] 1.47 [95% CI 1.19-1.81]; AGE-LDL-IC) and 45% (1.45 [1.17-1.80]; oxLDL-IC) increased risk of developing proliferative diabetic retinopathy (PDR) and 37% (1.37 [1.12-1.66]; to both ICs) increased risk of progressing to severe nonproliferative retinopathy. Analyses were stratified by retinopathy cohort because results differed between primary and secondary cohorts. For AGE-LDL-ICs, HR for progression to PDR was 2.38 (95% CI 1.30-4.34) in the primary cohort and attenuated in the secondary cohort (1.29 [1.03-1.62]). Similar results were observed for oxLDL-ICs. Increased levels of AGE-LDL and oxLDL in ICs are associated with increased risk for progression to advanced retinopathy in patients with type 1 diabetes, indicating that the antibody response to modified LDL plays a significant role in retinopathy progression.

  18. PPARδ modulates oxLDL-induced apoptosis of vascular smooth muscle cells through a TGF-β/FAK signaling axis.

    PubMed

    Hwang, Jung Seok; Eun, So Young; Ham, Sun Ah; Yoo, Taesik; Lee, Won Jin; Paek, Kyung Shin; Do, Jeong Tae; Lim, Dae-Seog; Seo, Han Geuk

    2015-05-01

    The peroxisome proliferator-activated receptor delta (PPARδ) has been implicated in the modulation of vascular homeostasis. However, its roles in the apoptotic cell death of vascular smooth muscle cells (VSMCs) are poorly understood. Here, we demonstrate that PPARδ modulates oxidized low-density lipoprotein (oxLDL)-induced apoptosis of VSMCs through the transforming growth factor-β (TGF-β) and focal adhesion kinase (FAK) signaling pathways. Activation of PPARδ by GW501516, which is a specific ligand, significantly inhibited oxLDL-induced cell death and generation of reactive oxygen species in VSMCs. These inhibitory effects were significantly reversed in the presence of small interfering (si)RNA against PPARδ, or by blockade of the TGF-β or FAK signaling pathways. Furthermore, PPARδ-mediated recovery of FAK phosphorylation suppressed by oxLDL was reversed by SB431542, a specific ALK5 receptor inhibitor, indicating that a TGF-β/FAK signaling axis is involved in the action of PPARδ. Among the protein kinases activated by oxLDL, p38 mitogen-activated protein kinase was suppressed by ligand-activated PPARδ. In addition, oxLDL-induced expression and translocation of pro-apoptotic or anti-apoptotic factors were markedly affected in the presence of GW501516. Those effects were reversed by PPARδ siRNA, or inhibitors of TGF-β or FAK, which also suggests that PPARδ exerts its anti-apoptotic effect via a TGF-β/FAK signaling axis. Taken together, these findings indicate that PPARδ plays an important role in the pathophysiology of disease associated with apoptosis of VSMC, such as atherosclerosis and restanosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. MicroRNA-98 rescues proliferation and alleviates ox-LDL-induced apoptosis in HUVECs by targeting LOX-1

    PubMed Central

    Chen, Zhibo; Wang, Mian; He, Qiong; Li, Zilun; Zhao, Yang; Wang, Wenjian; Ma, Jieyi; Li, Yongxin; Chang, Guangqi

    2017-01-01

    Oxidized low-density lipoprotein (ox-LDL) is a major and critical mediator of atherosclerosis, and the underlying mechanism is thought to involve the ox-LDL-induced dysfunction of endothelial cells (ECs). MicroRNAs (miRNAs), which are a group of small non-coding RNA molecules that post-transcriptionally regulate the expression of target genes, have been associated with diverse cellular functions and the pathogenesis of various diseases, including atherosclerosis. miRNA-98 (miR-98) has been demonstrated to be involved in the regulation of cellular apoptosis; however, the role of miR-98 in ox-LDL-induced dysfunction of ECs and atherosclerosis has yet to be elucidated. Therefore, the present study aimed to investigate the role of miR-98 in ox-LDL-induced dysfunction of ECs and the underlying mechanism. It was demonstrated that miR-98 expression was markedly downregulated in ox-LDL-treated human umbilical vein ECs (HUVECs) and that miR-98 promoted the proliferation and alleviated apoptosis of HUVECs exposed to ox-LDL. In addition, the results demonstrated that lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) was a direct target of miR-98 in HUVECs, as indicated by a luciferase assay. The results of the present study suggested that miR-98 may inhibit the uptake of toxic ox-LDL, maintain HUVEC proliferation and protect HUVECs against apoptosis via the suppression of LOX-1. PMID:28565756

  20. HDL (Good), LDL (Bad) Cholesterol and Triglycerides

    MedlinePlus

    ... Thromboembolism Aortic Aneurysm More HDL (Good), LDL (Bad) Cholesterol and Triglycerides Updated:May 3,2018 Cholesterol isn’ ... be measured by a blood test. LDL (Bad) Cholesterol LDL cholesterol is called “bad” cholesterol. Think of ...

  1. Scavenging nucleic acid debris to combat autoimmunity and infectious disease

    NASA Astrophysics Data System (ADS)

    Holl, Eda K.; Shumansky, Kara L.; Borst, Luke B.; Burnette, Angela D.; Sample, Christopher J.; Ramsburg, Elizabeth A.; Sullenger, Bruce A.

    2016-08-01

    Nucleic acid-containing debris released from dead and dying cells can be recognized as damage-associated molecular patterns (DAMPs) or pattern-associated molecular patterns (PAMPs) by the innate immune system. Inappropriate activation of the innate immune response can engender pathological inflammation and autoimmune disease. To combat such diseases, major efforts have been made to therapeutically target the pattern recognition receptors (PRRs) such as the Toll-like receptors (TLRs) that recognize such DAMPs and PAMPs, or the downstream effector molecules they engender, to limit inflammation. Unfortunately, such strategies can limit the ability of the immune system to combat infection. Previously, we demonstrated that nucleic acid-binding polymers can act as molecular scavengers and limit the ability of artificial nucleic acid ligands to activate PRRs. Herein, we demonstrate that nucleic acid scavengers (NASs) can limit pathological inflammation and nucleic acid-associated autoimmunity in lupus-prone mice. Moreover, we observe that such NASs do not limit an animal’s ability to combat viral infection, but rather their administration improves survival when animals are challenged with lethal doses of influenza. These results indicate that molecules that scavenge extracellular nucleic acid debris represent potentially safer agents to control pathological inflammation associated with a wide range of autoimmune and infectious diseases.

  2. Insulin Mimetic Peptide Disrupts the Primary Binding Site of the Insulin Receptor*

    PubMed Central

    Lawrence, Callum F.; Margetts, Mai B.; Menting, John G.; Smith, Nicholas A.; Smith, Brian J.; Ward, Colin W.; Lawrence, Michael C.

    2016-01-01

    Sets of synthetic peptides that interact with the insulin receptor ectodomain have been discovered by phage display and reported in the literature. These peptides were grouped into three classes termed Site 1, Site 2, and Site 3 based on their mutual competition of binding to the receptor. Further refinement has yielded, in particular, a 36-residue Site 2-Site 1 fusion peptide, S519, that binds the insulin receptor with subnanomolar affinity and exhibits agonist activity in both lipogenesis and glucose uptake assays. Here, we report three-dimensional crystallographic detail of the interaction of the C-terminal, 16-residue Site 1 component (S519C16) of S519 with the first leucine-rich repeat domain (L1) of the insulin receptor. Our structure shows that S519C16 binds to the same site on the L1 surface as that occupied by a critical component of the primary binding site, namely the helical C-terminal segment of the insulin receptor α-chain (termed αCT). In particular, the two phenylalanine residues within the FYXWF motif of S519C16 are seen to engage the insulin receptor L1 domain surface in a fashion almost identical to the respective αCT residues Phe701 and Phe705. The structure provides a platform for the further development of peptidic and/or small molecule agents directed toward the insulin receptor and/or the type 1 insulin-like growth factor receptor. PMID:27281820

  3. Differential reactivities of four homogeneous assays for LDL-cholesterol in serum to intermediate-density lipoproteins and small dense LDL: comparisons with the Friedewald equation.

    PubMed

    Yamashita, Shizuya; Kawase, Ryota; Nakaoka, Hajime; Nakatani, Kazuhiro; Inagaki, Miwako; Yuasa-Kawase, Miyako; Tsubakio-Yamamoto, Kazumi; Sandoval, Jose C; Masuda, Daisaku; Ohama, Tohru; Nakagawa-Toyama, Yumiko; Matsuyama, Akifumi; Nishida, Makoto; Ishigami, Masato

    2009-12-01

    In routine clinical laboratory testing and numerous epidemiological studies, LDL-cholesterol (LDL-C) has been estimated commonly using the Friedewald equation. We investigated the relationship between the Friedewald equation and 4 homogeneous assays for LDL-C. LDL-C was determined by 4 homogeneous assays [liquid selective detergent method: LDL-C (L), selective solubilization method: LDL-C (S), elimination method: LDL-C (E), and enzyme selective protecting method: LDL-C (P)]. Samples with discrepancies between the Friedewald equation and the 4 homogeneous assays for LDL-C were subjected to polyacrylamide gel electrophoresis and the beta-quantification method. The correlations between the Friedewald equation and the 4 homogeneous LDL-C assays were as follows: LDL-C (L) (r=0.962), LDL-C (S) (r=0.986), LDL-C (E) (r=0.946) and LDL-C (P) (r=0.963). Discrepancies were observed in sera from type III hyperlipoproteinemia patients and in sera containing large amounts of midband and small dense LDL on polyacrylamide gel electrophoresis. LDL-C (S) was most strongly correlated with the beta-quantification method even in sera from patients with type III hyperlipoproteinemia. Of the 4 homogeneous assays for LDL-C, LDL-C (S) exhibited the closest correlation with the Friedewald equation and the beta-quantification method, thus reflecting the current clinical databases for coronary heart disease.

  4. G-protein estrogen receptor as a regulator of low-density lipoprotein cholesterol metabolism: cellular and population genetic studies.

    PubMed

    Hussain, Yasin; Ding, Qingming; Connelly, Philip W; Brunt, J Howard; Ban, Matthew R; McIntyre, Adam D; Huff, Murray W; Gros, Robert; Hegele, Robert A; Feldman, Ross D

    2015-01-01

    Estrogen deficiency is linked with increased low-density lipoprotein (LDL) cholesterol. The hormone receptor mediating this effect is unknown. G-protein estrogen receptor (GPER) is a recently recognized G-protein-coupled receptor that is activated by estrogens. We recently identified a common hypofunctional missense variant of GPER, namely P16L. However, the role of GPER in LDL metabolism is unknown. Therefore, we examined the association of the P16L genotype with plasma LDL cholesterol level. Furthermore, we studied the role of GPER in regulating expression of the LDL receptor and proprotein convertase subtilisin kexin type 9. Our discovery cohort was a genetically isolated population of Northern European descent, and our validation cohort consisted of normal, healthy women aged 18 to 56 years from London, Ontario. In addition, we examined the effect of GPER on the regulation of proprotein convertase subtilisin kexin type 9 and LDL receptor expression by the treatment with the GPER agonist, G1. In the discovery cohort, GPER P16L genotype was associated with a significant increase in LDL cholesterol (mean±SEM): 3.18±0.05, 3.25±0.08, and 4.25±0.33 mmol/L, respectively, in subjects with CC (homozygous for P16), CT (heterozygotes), and TT (homozygous for L16) genotypes (P<0.05). In the validation cohort (n=339), the GPER P16L genotype was associated with a similar increase in LDL cholesterol: 2.17±0.05, 2.34±0.06, and 2.42±0.16 mmol/L, respectively, in subjects with CC, CT, and TT genotypes (P<0.05). In the human hepatic carcinoma cell line, the GPER agonist, G1, mediated a concentration-dependent increase in LDL receptor expression, blocked by either pretreatment with the GPER antagonist G15 or by shRNA-mediated GPER downregulation. G1 also mediated a GPER- and concentration-dependent decrease in proprotein convertase subtilisin kexin type 9 expression. GPER activation upregulates LDL receptor expression, probably at least, in part, via proprotein convertase

  5. Effect of thyroid function on LDL oxidation.

    PubMed

    Costantini, F; Pierdomenico, S D; De Cesare, D; De Remigis, P; Bucciarelli, T; Bittolo-Bon, G; Cazzolato, G; Nubile, G; Guagnano, M T; Sensi, S; Cuccurullo, F; Mezzetti, A

    1998-05-01

    In this study, the effect of different levels of thyroid hormone and metabolic activity on low density lipoprotein (LDL) oxidation was investigated. Thus, in 16 patients with hyperthyroidism, 16 with hypothyroidism, and 16 age- and sex-matched healthy normolipidemic control subjects, the native LDL content in lipid peroxides, vitamin E, beta-carotene, and lycopene, as well as the susceptibility of these particles to undergo lipid peroxidation, was assessed. Hyperthyroidism was associated with significantly higher lipid peroxidation, as characterized by a higher native LDL content in lipid peroxides, a lower lag phase, and a higher oxidation rate than in the other two groups. This elevated lipid peroxidation was associated with a lower LDL antioxidant concentration. Interestingly, hypothyroid patients showed an intermediate behavior. In fact, in hypothyroidism, LDL oxidation was significantly lower than in hyperthyroidism but higher than in the control group. Hypothyroidism was also characterized by the highest beta-carotene LDL content, whereas vitamin E was significantly lower than in control subjects. In hyperthyroidism but not in the other two groups, LDL oxidation was strongly influenced by free thyroxine blood content. In fact in this group, the native LDL lipid peroxide content and the lag phase were directly and indirectly, respectively, related to free thyroxine blood levels. On the contrary, in hypothyroidism LDL oxidation was strongly and significantly related to serum lipids. In conclusion, both hypothyroidism and hyperthyroidism are characterized by higher levels of LDL oxidation when compared with normolipidemic control subjects. In hyperthyroid patients, the increased lipid peroxidation was strictly related to free thyroxine levels, whereas in hypothyroidism it was strongly influenced by serum lipids.

  6. Athero-inflammatory nanotherapeutics: Ferulic acid-based poly(anhydride-ester) nanoparticles attenuate foam cell formation by regulating macrophage lipogenesis and reactive oxygen species generation.

    PubMed

    Chmielowski, Rebecca A; Abdelhamid, Dalia S; Faig, Jonathan J; Petersen, Latrisha K; Gardner, Carol R; Uhrich, Kathryn E; Joseph, Laurie B; Moghe, Prabhas V

    2017-07-15

    Enhanced bioactive anti-oxidant formulations are critical for treatment of inflammatory diseases, such as atherosclerosis. A hallmark of early atherosclerosis is the uptake of oxidized low density lipoprotein (oxLDL) by macrophages, which results in foam cell and plaque formation in the arterial wall. The hypolipidemic, anti-inflammatory, and antioxidative properties of polyphenol compounds make them attractive targets for treatment of atherosclerosis. However, high concentrations of antioxidants can reverse their anti-atheroprotective properties and cause oxidative stress within the artery. Here, we designed a new class of nanoparticles with anti-oxidant polymer cores and shells comprised of scavenger receptor targeting amphiphilic macromolecules (AMs). Specifically, we designed ferulic acid-based poly(anhydride-ester) nanoparticles to counteract the uptake of high levels of oxLDL and regulate reactive oxygen species generation (ROS) in human monocyte derived macrophages (HMDMs). Compared to all compositions examined, nanoparticles with core ferulic acid-based polymers linked by diglycolic acid (PFAG) showed the greatest inhibition of oxLDL uptake. At high oxLDL concentrations, the ferulic acid diacids and polymer nanoparticles displayed similar oxLDL uptake. Treatment with the PFAG nanoparticles downregulated the expression of macrophage scavenger receptors, CD-36, MSR-1, and LOX-1 by about 20-50%, one of the causal factors for the decrease in oxLDL uptake. The PFAG nanoparticle lowered ROS production by HMDMs, which is important for maintaining macrophage growth and prevention of apoptosis. Based on these results, we propose that ferulic acid-based poly(anhydride ester) nanoparticles may offer an integrative strategy for the localized passivation of the early stages of the atheroinflammatory cascade in cardiovascular disease. Future development of anti-oxidant formulations for atherosclerosis applications is essential to deliver an efficacious dose while

  7. Arabidopsis histone demethylases LDL1 and LDL2 control primary seed dormancy by regulating DELAY OF GERMINATION 1 and ABA signaling-related genes.

    PubMed

    Zhao, Minglei; Yang, Songguang; Liu, Xuncheng; Wu, Keqiang

    2015-01-01

    Seed dormancy controls germination and plays a critical role in regulating the beginning of the life cycle of plants. Seed dormancy is established and maintained during seed maturation and is gradually broken during dry storage (after-ripening). The plant hormone abscisic acid (ABA) and DELAY OF GERMINATION1 (DOG1) protein are essential regulators of seed dormancy. Recent studies revealed that chromatin modifications are also involved in the transcription regulation of seed dormancy. Here, we showed that two Arabidopsis histone demethylases, LYSINESPECIFIC DEMETHYLASE LIKE 1 and 2 (LDL1 and LDL2) act redundantly in repressing of seed dormancy. LDL1 and LDL2 are highly expressed in the early silique developing stage. The ldl1 ldl2 double mutant displays increased seed dormancy, whereas overexpression of LDL1 or LDL2 in Arabidopsis causes reduced dormancy. Furthermore, we showed that LDL1 and LDL2 repress the expression of seed dormancy-related genes, including DOG1, ABA2 and ABI3 during seed dormancy establishment. Furthermore, genetic analysis revealed that the repression of seed dormancy by LDL1 and LDL2 requires DOG1, ABA2, and ABI3. Taken together, our findings revealed that LDL1 and LDL2 play an essential role in seed dormancy.

  8. Optimization and in Vivo Validation of Peptide Vectors Targeting the LDL Receptor.

    PubMed

    Jacquot, Guillaume; Lécorché, Pascaline; Malcor, Jean-Daniel; Laurencin, Mathieu; Smirnova, Maria; Varini, Karine; Malicet, Cédric; Gassiot, Fanny; Abouzid, Karima; Faucon, Aude; David, Marion; Gaudin, Nicolas; Masse, Maxime; Ferracci, Géraldine; Dive, Vincent; Cisternino, Salvatore; Khrestchatisky, Michel

    2016-12-05

    Active targeting and delivery to pathophysiological organs of interest is of paramount importance to increase specific accumulation of therapeutic drugs or imaging agents while avoiding systemic side effects. We recently developed a family of new peptide ligands of the human and rodent LDL receptor (LDLR), an attractive cell-surface receptor with high uptake activity and local enrichment in several normal or pathological tissues (Malcor et al., J. Med. Chem. 2012, 55 (5), 2227). Initial chemical optimization of the 15-mer, all natural amino acid compound 1/VH411 (DSGL[CMPRLRGC] c DPR) and structure-activity relationship (SAR) investigation led to the cyclic 8 amino acid analogue compound 22/VH445 ([cMPRLRGC] c ) which specifically binds hLDLR with a K D of 76 nM and has an in vitro blood half-life of ∼3 h. Further introduction of non-natural amino acids led to the identification of compound 60/VH4106 ([(d)-"Pen"M"Thz"RLRGC] c ), which showed the highest K D value of 9 nM. However, this latter analogue displayed the lowest in vitro blood half-life (∼1.9 h). In the present study, we designed a new set of peptide analogues, namely, VH4127 to VH4131, with further improved biological properties. Detailed analysis of the hLDLR-binding kinetics of previous and new analogues showed that the latter all displayed very high on-rates, in the 10 6 s -1. M -1 range, and off-rates varying from the low 10 -2 s -1 to the 10 -1 s -1 range. Furthermore, all these new analogues showed increased blood half-lives in vitro, reaching ∼7 and 10 h for VH4129 and VH4131, respectively. Interestingly, we demonstrate in cell-based assays using both VH445 and the most balanced optimized analogue VH4127 ([cM"Thz"RLRG"Pen"] c ), showing a K D of 18 nM and a blood half-life of ∼4.3 h, that its higher on-rate correlated with a significant increase in both the extent of cell-surface binding to hLDLR and the endocytosis potential. Finally, intravenous injection of tritium-radiolabeled 3 H

  9. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease.

    PubMed

    Zanoni, Paolo; Khetarpal, Sumeet A; Larach, Daniel B; Hancock-Cerutti, William F; Millar, John S; Cuchel, Marina; DerOhannessian, Stephanie; Kontush, Anatol; Surendran, Praveen; Saleheen, Danish; Trompet, Stella; Jukema, J Wouter; De Craen, Anton; Deloukas, Panos; Sattar, Naveed; Ford, Ian; Packard, Chris; Majumder, Abdullah al Shafi; Alam, Dewan S; Di Angelantonio, Emanuele; Abecasis, Goncalo; Chowdhury, Rajiv; Erdmann, Jeanette; Nordestgaard, Børge G; Nielsen, Sune F; Tybjærg-Hansen, Anne; Schmidt, Ruth Frikke; Kuulasmaa, Kari; Liu, Dajiang J; Perola, Markus; Blankenberg, Stefan; Salomaa, Veikko; Männistö, Satu; Amouyel, Philippe; Arveiler, Dominique; Ferrieres, Jean; Müller-Nurasyid, Martina; Ferrario, Marco; Kee, Frank; Willer, Cristen J; Samani, Nilesh; Schunkert, Heribert; Butterworth, Adam S; Howson, Joanna M M; Peloso, Gina M; Stitziel, Nathan O; Danesh, John; Kathiresan, Sekar; Rader, Daniel J

    2016-03-11

    Scavenger receptor BI (SR-BI) is the major receptor for high-density lipoprotein (HDL) cholesterol (HDL-C). In humans, high amounts of HDL-C in plasma are associated with a lower risk of coronary heart disease (CHD). Mice that have depleted Scarb1 (SR-BI knockout mice) have markedly elevated HDL-C levels but, paradoxically, increased atherosclerosis. The impact of SR-BI on HDL metabolism and CHD risk in humans remains unclear. Through targeted sequencing of coding regions of lipid-modifying genes in 328 individuals with extremely high plasma HDL-C levels, we identified a homozygote for a loss-of-function variant, in which leucine replaces proline 376 (P376L), in SCARB1, the gene encoding SR-BI. The P376L variant impairs posttranslational processing of SR-BI and abrogates selective HDL cholesterol uptake in transfected cells, in hepatocyte-like cells derived from induced pluripotent stem cells from the homozygous subject, and in mice. Large population-based studies revealed that subjects who are heterozygous carriers of the P376L variant have significantly increased levels of plasma HDL-C. P376L carriers have a profound HDL-related phenotype and an increased risk of CHD (odds ratio = 1.79, which is statistically significant). Copyright © 2016, American Association for the Advancement of Science.

  10. Superiority of dietary safflower oil over olive oil in lowering serum cholesterol and increasing hepatic mRnas for the LDL receptor and cholesterol 7alpha-hydroxylase in exogenously hypercholesterolemic (exHC) rats.

    PubMed

    Sato, M; Yoshida, S; Nagao, K; Imaizumi, K

    2000-06-01

    The exogenously hypercholesterolemic (ExHC) rat is a strain segregated from SD rats with a high response to dietary cholesterol. To understand the underlying mechanism(s) for this hypercholesterolemia, the interactive effects of dietary fatty acid and the susceptibility of rats to dietary cholesterol on the serum cholesterol concentration and hepatic mRNA abundance of the low-density lipoprotein (LDL) receptor, cholesterol 7alpha-hydroxylase (7alpha-hydroxylase) and 3-hydroxyl-3methylglutaryl (HMG) CoA reductase were examined. Both strains were fed on a diet supplemented with 10% each of olive, safflower or coconut oil with or without the addition of 1% cholesterol for one week. The ExHC rats fed on olive, safflower and coconut oil in combination with cholesterol respectively resulted in a 3.5-, 2.0- and 2.1-fold higher serum cholesterol concentration than that in the animals fed on the corresponding dietary fats without any supplementation of cholesterol (p < 0.01 by dietary cholesterol or type of fat). The dietary cholesterol dependent-elevation of serum cholesterol in the SD rats was less than 1.5-fold (p<0.01) and there was no dietary fat effect. The ExHC rats fed on the safflower oil-containing diet supplemented with cholesterol resulted in a higher mRNA abundance of the LDL receptor and 7alpha-hydroxylase than in the corresponding fat-fed rats without cholesterol (p<0.05). There was no dietary cholesterol-dependent change of mRNA abundance in either strain fed on olive or coconut oil, except for a decreased abundance of HMG CoA reductase mRNA in the olive oil-fed ExHC rats and coconut oil-fed Sprague-Dawley (SD) rats (p<0.05). These results indicate that the hepatic mRNA abundance of the LDL receptor and of 7alpha-hydroxylase depended on the dietary combination of cholesterol and a fatty acid and suggest that a linoleic acid-rich diet may alleviate exogenous hypercholesterolemia by activating the process involved in the hepatic uptake and biliary excretion of

  11. Scavenger Receptor-A deficiency impairs immune response of microglia and astrocytes potentiating Alzheimer's disease pathophysiology.

    PubMed

    Cornejo, Francisca; Vruwink, Marianne; Metz, Claudia; Muñoz, Paola; Salgado, Nicole; Poblete, Joaquín; Andrés, María Estela; Eugenín, Jaime; von Bernhardi, Rommy

    2018-03-01

    Late onset Alzheimer disease's (LOAD) main risk factor is aging. Although it is not well known which age-related factors are involved in its development, evidence points out to the involvement of an impaired amyloid-β (Aβ) clearance in the aged brain among possible causes. Glial cells are the main scavengers of the brain, where Scavenger Receptor class A (SR-A) emerges as a relevant player in AD because of its participation in Aβ uptake and in the modulation of glial cell inflammatory response. Here, we show that SR-A expression is reduced in the hippocampus of aged animals and APP/PS1 mice. Given that Aβ deposition increases in the aging brain, we generated a triple transgenic mouse, which accumulates Aβ and is knockout for SR-A (APP/PS1/SR-A -/- ) to evaluate Aβ accumulation and the inflammatory outcome of SR-A depletion in the aged brain. The lifespan of APP/PS1/SR-A -/- mice was greatly reduced, accompanied by a 3-fold increase in plasmatic pro-inflammatory cytokines, and reduced performance in a working memory behavioral assessment. Microglia and astrocytes lacking SR-A displayed impaired oxidative response and nitric oxide production, produced up to 7-fold more pro-inflammatory cytokines and showed a 12-fold reduction in anti-inflammatory cytokines release, with conspicuous changes in lipopolysaccharide-induced glial activation. Isolated microglia from young and adult mice lacking SR-A showed a 50% reduction in phagocytic activity. Our results indicate that reduced expression of SR-A can deregulate glial inflammatory response and potentiate Aβ accumulation, two mechanisms that could contribute to AD progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Connective Tissue Growth Factor Domain 4 Amplifies Fibrotic Kidney Disease through Activation of LDL Receptor-Related Protein 6.

    PubMed

    Johnson, Bryce G; Ren, Shuyu; Karaca, Gamze; Gomez, Ivan G; Fligny, Cécile; Smith, Benjamin; Ergun, Ayla; Locke, George; Gao, Benbo; Hayes, Sebastian; MacDonnell, Scott; Duffield, Jeremy S

    2017-06-01

    Connective tissue growth factor (CTGF), a matrix-associated protein with four distinct cytokine binding domains, has roles in vasculogenesis, wound healing responses, and fibrogenesis and is upregulated in fibroblasts and myofibroblasts in disease. Here, we investigated the role of CTGF in fibrogenic cells. In mice, tissue-specific inducible overexpression of CTGF by kidney pericytes and fibroblasts had no bearing on nephrogenesis or kidney homeostasis but exacerbated inflammation and fibrosis after ureteral obstruction. These effects required the WNT receptor LDL receptor-related protein 6 (LRP6). Additionally, pericytes isolated from these mice became hypermigratory and hyperproliferative on overexpression of CTGF. CTGF is cleaved in vivo into distinct domains. Treatment with recombinant domain 1, 1+2 (N terminus), or 4 (C terminus) independently activated myofibroblast differentiation and wound healing responses in cultured pericytes, but domain 4 showed the broadest profibrotic activity. Domain 4 exhibited low-affinity binding to LRP6 in in vitro binding assays, and inhibition of LRP6 or critical signaling cascades downstream of LRP6, including JNK and WNT/ β -catenin, inhibited the biologic activity of domain 4. Administration of blocking antibodies specifically against CTGF domain 4 or recombinant Dickkopf-related protein-1, an endogenous inhibitor of LRP6, effectively inhibited inflammation and fibrosis associated with ureteral obstruction in vivo Therefore, domain 4 of CTGF and the WNT signaling pathway are important new targets in fibrosis. Copyright © 2017 by the American Society of Nephrology.

  13. Emerging LDL therapies: Mipomersen-antisense oligonucleotide therapy in the management of hypercholesterolemia.

    PubMed

    Toth, Peter P

    2013-01-01

    Familial hypercholesterolemia (FH) is characterized by severe elevations in low-density lipoprotein cholesterol (LDL-C) and poses considerable treatment challenges. Substantive LDL-C reductions are difficult to achieve with standard therapies, and many patients with FH do not tolerate currently available lipid-lowering medications. Mipomersen is an antisense oligonucleotide injectable drug that was recently approved by the Food and Drug Administration for the treatment of homozygous FH. It is complementary in sequence to a segment of the human apolipoprotein (Apo) B-100 messenger RNA and specifically binds to it, blocking translation of the gene product. Reducing the production of Apo B-100 reduces hepatic production of very low-density lipoprotein, consequently decreasing circulating levels of atherogenic very low-density lipoprotein remnants, intermediate-density lipoproteins, LDL, and lipoprotein(a) particles. Results from a pivotal trial conducted in patients with homozygous FH, and supporting trials in patients with heterozygous FH with coronary artery disease (CAD) (LDL-C ≥ 100 mg/dL, triglycerides < 200 mg/dL), severe hypercholesterolemia (LDL-C ≥ 300 mg/dL or ≥ 200 mg/dL with CAD), and individuals at high risk for CAD (LDL-C ≥ 100 mg/dL, triglycerides ≤ 200 mg/dL), have indicated that mipomersen reduces all Apo B-containing atherogenic lipoproteins. The average LDL-C reduction was >100 mg/dL in homozygous FH and severe hypercholesterolemia populations. The main on-treatment adverse events were mild-to-moderate injection site reactions and flu-like symptoms. Available data regarding the efficacy, safety and tolerability of mipomersen, including results at up to 104 weeks of therapy, support the use of mipomersen for the treatment of FH. Copyright © 2013 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  14. Association Between Baseline LDL-C Level and Total and Cardiovascular Mortality After LDL-C Lowering: A Systematic Review and Meta-analysis.

    PubMed

    Navarese, Eliano P; Robinson, Jennifer G; Kowalewski, Mariusz; Kolodziejczak, Michalina; Andreotti, Felicita; Bliden, Kevin; Tantry, Udaya; Kubica, Jacek; Raggi, Paolo; Gurbel, Paul A

    2018-04-17

    Effects on specific fatal and nonfatal end points appear to vary for low-density lipoprotein cholesterol (LDL-C)-lowering drug trials. To evaluate whether baseline LDL-C level is associated with total and cardiovascular mortality risk reductions. Electronic databases (Cochrane, MEDLINE, EMBASE, TCTMD, ClinicalTrials.gov, major congress proceedings) were searched through February 2, 2018, to identify randomized clinical trials of statins, ezetimibe, and PCSK9-inhibiting monoclonal antibodies. Two investigators abstracted data and appraised risks of bias. Intervention groups were categorized as "more intensive" (more potent pharmacologic intervention) or "less intensive" (less potent, placebo, or control group). The coprimary end points were total mortality and cardiovascular mortality. Random-effects meta-regression and meta-analyses evaluated associations between baseline LDL-C level and reductions in mortality end points and secondary end points including major adverse cardiac events (MACE). In 34 trials, 136 299 patients received more intensive and 133 989 received less intensive LDL-C lowering. All-cause mortality was lower for more vs less intensive therapy (7.08% vs 7.70%; rate ratio [RR], 0.92 [95% CI, 0.88 to 0.96]), but varied by baseline LDL-C level. Meta-regression showed more intensive LDL-C lowering was associated with greater reductions in all-cause mortality with higher baseline LDL-C levels (change in RRs per 40-mg/dL increase in baseline LDL-C, 0.91 [95% CI, 0.86 to 0.96]; P = .001; absolute risk difference [ARD], -1.05 incident cases per 1000 person-years [95% CI, -1.59 to -0.51]), but only when baseline LDL-C levels were 100 mg/dL or greater (P < .001 for interaction) in a meta-analysis. Cardiovascular mortality was lower for more vs less intensive therapy (3.48% vs 4.07%; RR, 0.84 [95% CI, 0.79 to 0.89]) but varied by baseline LDL-C level. Meta-regression showed more intensive LDL-C lowering was associated with a greater reduction in

  15. Oxytocin inhibits ox-LDL-induced adhesion of monocytic THP-1 cells to human brain microvascular endothelial cells.

    PubMed

    Liu, Shuyan; Pan, Shengying; Tan, Jing; Zhao, Weina; Liu, Fengguo

    2017-12-15

    The attachment of monocytes to human brain microvascular endothelial cells (HBMVEs) caused by oxidized low-density lipoprotein (ox-LDL) is associated with an early event and the pathological progression of cerebrovascular diseases. Oxytocin (OT) is a human peptide hormone that is traditionally used as a medication to facilitate childbirth. However, little information is available regarding the physiological function of OT in brain endothelial dysfunction. In the present study, our results indicate that the oxytocin receptor (OTR) was expressed in human brain microvascular endothelial cells (HBMVEs) and was upregulated in response to ox-LDL in a concentration-dependent manner. Notably, OT significantly suppressed ox-LDL-induced attachment of THP-1 monocytes to HBMVEs. Furthermore, we found that OT reduced the expression of adhesion molecules, such as VCAM-1 and E-selectin. Interestingly, it was shown that OT could restore ox-LDL-induced reduction of KLF4 in HBMVEs. Importantly, knockdown of KLF4 abolished the inhibitory effects of OT on ox-LDL-induced expressions of VCAM-1 and E-selectin as well as the adhesion of human monocytic THP-1 cells to endothelial HBMVEs. Mechanistically, we found that the stimulatory effects of OT on KLF4 expression are mediated by the MEK5/MEF2A pathway. Copyright © 2017. Published by Elsevier Inc.

  16. LDL-C levels in older people: Cholesterol homeostasis and the free radical theory of ageing converge.

    PubMed

    Mc Auley, Mark T; Mooney, Kathleen M

    2017-07-01

    The cardiovascular disease (CVD) risk factor, low density lipoprotein cholesterol (LDL-C) increases with age, up until the midpoint of life in males and females. However, LDL-C can decrease with age in older men and women. Intriguingly, a recent systematic review also revealed an inverse association between LDL-C levels and cardiovascular mortality in older people; low levels of LDL-C were associated with reduced risk of mortality. Such findings are puzzling and require a biological explanation. In this paper a hypothesis is proposed to explain these observations. We hypothesize that the free radical theory of ageing (FRTA) together with disrupted cholesterol homeostasis can account for these observations. Based on this hypothesis, dysregulated hepatic cholesterol homeostasis in older people is characterised by two distinct metabolic states. The first state accounts for an older person who has elevated plasma LDL-C. This state is underpinned by the FRTA which suggests there is a decrease in cellular antioxidant capacity with age. This deficiency enables hepatic reactive oxidative species (ROS) to induce the total activation of HMG-CoA reductase, the key rate limiting enzyme in cholesterol biosynthesis. An increase in cholesterol synthesis elicits a corresponding rise in LDL-C, due to the downregulation of LDL receptor synthesis, and increased production of very low density lipoprotein cholesterol (VLDL-C). In the second state of dysregulation, ROS also trigger the total activation of HMG-CoA reductase. However, due to an age associated decrease in the activity of cholesterol-esterifying enzyme, acyl CoA: cholesterol acyltransferase, there is restricted conversion of excess free cholesterol (FC) to cholesterol esters. Consequently, the secretion of VLDL-C drops, and there is a corresponding decrease in LDL-C. As intracellular levels of FC accumulate, this state progresses to a pathophysiological condition akin to nonalcoholic fatty liver disease. It is our

  17. Very low density lipoprotein receptor in Alzheimer disease.

    PubMed

    Helbecque, N; Amouyel, P

    2000-08-15

    The apolipoprotein (APO) E4 isoform is associated with an accelerated rate of Alzheimer disease (AD) expression in sporadic as well as late-onset familial forms of the disease but the precise mechanism is unknown. In an attempt to approach the possible mechanisms involved, APOE receptors have been studied. They all belong to the low density lipoprotein (LDL) receptor family and share the same structural motifs. Some of them are preferentially expressed in the brain such as the LDL receptor related protein, the apolipoprotein E receptor 2, and the very low density lipoprotein (VLDL) receptor. These receptors have been suspected to be involved in Alzheimer disease at various levels. Among them, the VLDL receptor was extensively explored. Although genetic studies conducted on a polymorphism in the promoter of the VLDL receptor in Japanese and Caucasian populations gave divergent results, this does not exclude a possible involvement of the VLDL receptor in AD. Copyright 2000 Wiley-Liss, Inc.

  18. Radical scavenger can scavenge lipid allyl radicals complexed with lipoxygenase at lower oxygen content.

    PubMed

    Koshiishi, Ichiro; Tsuchida, Kazunori; Takajo, Tokuko; Komatsu, Makiko

    2006-04-15

    Lipoxygenases have been proposed to be a possible factor that is responsible for the pathology of certain diseases, including ischaemic injury. In the peroxidation process of linoleic acid by lipoxygenase, the E,Z-linoleate allyl radical-lipoxygenase complex seems to be generated as an intermediate. In the present study, we evaluated whether E,Z-linoleate allyl radicals on the enzyme are scavenged by radical scavengers. Linoleic acid, the content of which was greater than the dissolved oxygen content, was treated with soya bean lipoxygenase-1 (ferric form) in the presence of radical scavenger, CmP (3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl). The reaction rate between oxygen and lipid allyl radical is comparatively faster than that between CmP and lipid allyl radical. Therefore a reaction between linoleate allyl radical and CmP was not observed while the dioxygenation of linoleic acid was ongoing. After the dissolved oxygen was depleted, CmP stoichiometrically trapped linoleate-allyl radicals. Accompanied by this one-electron redox reaction, the resulting ferrous lipoxygenase was re-oxidized to the ferric form by hydroperoxylinoleate. Through the adduct assay via LC (liquid chromatography)-MS/MS (tandem MS), four E,Z-linoleate allyl radical-CmP adducts corresponding to regio- and diastereo-isomers were detected in the linoleate/lipoxygenase system, whereas E,E-linoleate allyl radical-CmP adducts were not detected at all. If E,Z-linoleate allyl radical is liberated from the enzyme, the E/Z-isomer has to reach equilibrium with the thermodynamically favoured E/E-isomer. These data suggested that the E,Z-linoleate allyl radicals were not liberated from the active site of lipoxygenase before being trapped by CmP. Consequently, we concluded that the lipid allyl radicals complexed with lipoxygenase could be scavenged by radical scavengers at lower oxygen content.

  19. Radical scavenger can scavenge lipid allyl radicals complexed with lipoxygenase at lower oxygen content

    PubMed Central

    Koshiishi, Ichiro; Tsuchida, Kazunori; Takajo, Tokuko; Komatsu, Makiko

    2006-01-01

    Lipoxygenases have been proposed to be a possible factor that is responsible for the pathology of certain diseases, including ischaemic injury. In the peroxidation process of linoleic acid by lipoxygenase, the E,Z-linoleate allyl radical–lipoxygenase complex seems to be generated as an intermediate. In the present study, we evaluated whether E,Z-linoleate allyl radicals on the enzyme are scavenged by radical scavengers. Linoleic acid, the content of which was greater than the dissolved oxygen content, was treated with soya bean lipoxygenase-1 (ferric form) in the presence of radical scavenger, CmP (3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl). The reaction rate between oxygen and lipid allyl radical is comparatively faster than that between CmP and lipid allyl radical. Therefore a reaction between linoleate allyl radical and CmP was not observed while the dioxygenation of linoleic acid was ongoing. After the dissolved oxygen was depleted, CmP stoichiometrically trapped linoleate-allyl radicals. Accompanied by this one-electron redox reaction, the resulting ferrous lipoxygenase was re-oxidized to the ferric form by hydroperoxylinoleate. Through the adduct assay via LC (liquid chromatography)–MS/MS (tandem MS), four E,Z-linoleate allyl radical–CmP adducts corresponding to regio- and diastereo-isomers were detected in the linoleate/lipoxygenase system, whereas E,E-linoleate allyl radical–CmP adducts were not detected at all. If E,Z-linoleate allyl radical is liberated from the enzyme, the E/Z-isomer has to reach equilibrium with the thermodynamically favoured E/E-isomer. These data suggested that the E,Z-linoleate allyl radicals were not liberated from the active site of lipoxygenase before being trapped by CmP. Consequently, we concluded that the lipid allyl radicals complexed with lipoxygenase could be scavenged by radical scavengers at lower oxygen content. PMID:16396633

  20. Influence of elastin-derived peptides, glucose, LDL and oxLDL on nitric oxide synthase expression in human umbilical artery endothelial cells.

    PubMed

    Garczorz, Wojciech; Francuz, Tomasz; Gmiński, Jan; Likus, Wirginia; Siemianowicz, Krzysztof; Jurczak, Teresa; Strzałka-Mrozik, Barbara

    2011-01-01

    Endothelial dysfunction plays an important role in the development of atherosclerosis. Elastin-derived peptides (EDP), hyperglycemia, hypercholesterolemia and oxidized LDL have a proven proatherosclerotic potential. Nitric oxide generated by endothelial nitric oxide synthase (eNOS; EC 1.14.13.39) is an important vasorelaxant. Here we studied the influence of those proatherosclerotic factors on eNOS gene and protein expression in artery-derived endothelial cells. Human umbilical artery endothelial cells (HUAEC) were incubated with or without: glucose (270 mg/dl), LDL (200 mg/dl), oxidized LDL (oxLDL 25 mg/dl) or κ-elastin (0.5 and 2.5 µg/ml). Gene expression was assessed by real time RT-PCR, whilst the eNOS protein by ELISA. In cells incubated with 2.5 µg/ml of κ-elastin, a 31 % increase of eNOS mRNA expression was observed, but the protein level remained unchanged. OxLDL, LDL and glucose decreased the eNOS protein level by 74 %, 37 % and 29 %, respectively. OxLDL decreased eNOS mRNA by 42 %. LDL non-significantly decreased eNOS mRNA expression. An elevated glucose level did not affect the eNOS mRNA expression. Hyperglycemia and an elevated level of LDL, particularly oxLDL, decreased the level of eNOS protein in endothelial cells. As κ-elastin did not decrease the expression of eNOS gene in HUAEC, the proatherogenic properties of elastin-derived peptides are unlikely to be due to their influence on eNOS.

  1. PCSK9 Inhibitors: Novel Therapeutic Strategies for Lowering LDL-Cholesterol.

    PubMed

    Liu, Zhao-Peng; Wang, Yan

    2018-04-22

    Statins are currently the major therapeutic strategies to lower low-density lipoprotein cholesterol (LDL-C) levels. However, a number of hypercholesterolemia patients still have a residual cardiovascular disease (CVD) risk despite taking the maximum-tolerated dose of statins. Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to low-density lipoprotein receptor (LDLR), inducing its degradation in the lysosome and inhibiting LDLR recirculating to the cell membranes. The gain-of-function mutations in PCSK9 elevate the LDL-C levels in plasma. Therefore, PCSK9 inhibitors become novel therapeutic approaches in the treatment of hypercholesterolemia. Several PCSK9 inhibitors have been under investigation, and much progress has been made in clinical trials, especially for monoclonal antibodies (MoAbs). Two MoAbs, evolocumab and alirocumab, are now in clinical use. In this review, we summarize the development of PCSK9 inhibitors, including antisense oligonucleotides (ASOs), small interfering RNA (siRNA), small molecule inhibitor, MoAbs, mimetic peptides and adnectins, and the related safety issues. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Low-density-lipoprotein (LDL)-bound flavonoids increase the resistance of LDL to oxidation and glycation under pathophysiological concentrations of glucose in vitro.

    PubMed

    Wu, Chi-Hao; Lin, Jer-An; Hsieh, Wen-Ching; Yen, Gow-Chin

    2009-06-10

    The higher susceptibility of low-density lipoprotein (LDL) to oxidation and glycation in diabetes has been shown to be related to poor glycemic control. The aim of this study was to determine whether LDL-bound flavonoids attenuate high-glucose (HG)-mediated LDL oxidation and glycation. For this purpose, human plasma was preincubated with individual flavonoids for 3 h, followed by sequential ultracentrifugation and extensive dialysis to remove unbound flavonoid samples. Enriched LDL was subsequently isolated and challenged for its resistance to oxidation and glycation. Results showed that glucose (5-30 mM) dose-dependently accelerates copper (Cu(2+))-mediated LDL oxidative modification. The enrichment of flavonoids such as luteolin, naringenin, and kaempferol significantly increased the resistance of LDL to oxidation and prevented endogenous alpha-tocopherol consumption caused by HG/Cu(2+) (p < 0.05). The long-term glycation of LDL, which was measured by advanced glycation endproducts (AGEs)-related fluorescence and boronate affinity chromatography, was found to be inhibited by LDL-bound flavonoids in the following order: rutin > luteolin > quercetin > kaempferol > naringenin > catechin approximately EC > naringin. Moreover, a solid-phase extraction system with HPLC-diode array detection provided evidence that flavonoids were bound to LDL particles to a certain extent concurrently facilitating the lipoprotein antioxidant and antiglycation activities. In conclusion, this study supports the hypothesis that HG promoted oxidative and glycative modifications of LDL. This is the first study to show that the introduction of flavonoids into LDL particles protects the lipoprotein against glycotoxin-mediated adverse effects.

  3. Ras/Mitogen-activated Protein Kinase (MAPK) Signaling Modulates Protein Stability and Cell Surface Expression of Scavenger Receptor SR-BI*

    PubMed Central

    Wood, Peta; Mulay, Vishwaroop; Darabi, Masoud; Chan, Karen Cecilia; Heeren, Joerg; Pol, Albert; Lambert, Gilles; Rye, Kerry-Anne; Enrich, Carlos; Grewal, Thomas

    2011-01-01

    The mitogen-activated protein kinase (MAPK) Erk1/2 has been implicated to modulate the activity of nuclear receptors, including peroxisome proliferator activator receptors (PPARs) and liver X receptor, to alter the ability of cells to export cholesterol. Here, we investigated if the Ras-Raf-Mek-Erk1/2 signaling cascade could affect reverse cholesterol transport via modulation of scavenger receptor class BI (SR-BI) levels. We demonstrate that in Chinese hamster ovary (CHO) and human embryonic kidney (HEK293) cells, Mek1/2 inhibition reduces PPARα-inducible SR-BI protein expression and activity, as judged by reduced efflux onto high density lipoprotein (HDL). Ectopic expression of constitutively active H-Ras and Mek1 increases SR-BI protein levels, which correlates with elevated PPARα Ser-21 phosphorylation and increased cholesterol efflux. In contrast, SR-BI levels are insensitive to Mek1/2 inhibitors in PPARα-depleted cells. Most strikingly, Mek1/2 inhibition promotes SR-BI degradation in SR-BI-overexpressing CHO cells and human HuH7 hepatocytes, which is associated with reduced uptake of radiolabeled and 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyane-labeled HDL. Loss of Mek1/2 kinase activity reduces SR-BI expression in the presence of bafilomycin, an inhibitor of lysosomal degradation, indicating down-regulation of SR-BI via proteasomal pathways. In conclusion, Mek1/2 inhibition enhances the PPARα-dependent degradation of SR-BI in hepatocytes. PMID:21525007

  4. Involvement of Escherichia coli in pathogenesis of xanthogranulomatous cholecystitis with scavenger receptor class A and CXCL16-CXCR6 interaction.

    PubMed

    Sawada, Seiko; Harada, Kenichi; Isse, Kumiko; Sato, Yasunori; Sasaki, Motoko; Kaizaki, Yasuharu; Nakanuma, Yasuni

    2007-10-01

    Xanthogranulomatous cholecystitis (XGC) is characterized by the infiltration of numerous foamy macrophages. Bacterial infection is thought to be involved in the pathogenesis of XGC. Using XGC and cultured murine biliary epithelial cells (BEC), the participation of E. coli and the role of the scavenger receptor class A (SCARA), as well as chemokine(C-X-C motif) ligand 16 (CXCL16) and its receptor chemokine(C-X-C motif) receptor 6 (CXCR6), were examined in the pathogenesis of XGC. E. coli components and genes were detected in XGC on immunohistochemistry and polymerase chain reaction (PCR), respectively. SCARA-recognizing E. coli was found in foamy macrophages aggregated in xanthogranulomatous lesions. CXCL16, which functions as a membrane-bound molecule and soluble chemokine to induce adhesion and migration of CXCR6(+) cells, was detected on gallbladder epithelia, and CXCR6(+)/CD8(+) T cells and CXCR6(+)/CD68(+) macrophages were also accumulated. In cultured BEC, CXCL16 mRNA and secreted soluble CXCL16 were constantly detected and upregulated by treatment with E. coli and lipopolysaccharide through Toll-like receptor 4. These suggest that SCARA in macrophages is involved in the phagocytosis of E. coli followed by foamy changes and that bacterial infection causes the upregulation of CXCL16 in gallbladder epithelia, leading to the chemoattraction of macrophages via CXCL16-CXCR6 interaction and formation of the characteristic histology of XGC.

  5. Horizontal semi-dry electroblotting for the detection of the low density lipoprotein receptor in solubilized liver membranes.

    PubMed

    Himber, J

    1993-08-01

    A high efficiency transfer of the low density lipoprotein (LDL) receptor proteins from polyacrylamide slab gel onto immobilizing nitrocellulose membranes using the horizontal semi-dry electrophoretic system is described. The transfer of the LDL receptors from solubilized rat liver microsomes was performed between two graphite plate electrodes in a continuous buffer system containing methanol and sodium dodecyl sulfate. The protein transfer was achieved in only 150 min at a constant current of 0.8 mA/cm2 at room temperature with very low Joule heat development. The homogeneous electric field yield between the two electrode plates produced a satisfactory transfer of the LDL-receptor protein band in spite of its high molecular weight, and only few protein traces remained in the polyacrylamide gel after blotting. This improved method allows a rapid and quantitative transfer of the LDL receptors without protein denaturation, since the specific binding activity of the blotted receptor is retained as demonstrated by ligand-blotting and immunoblotting.

  6. Boundary scavenging in the Pacific Ocean - A comparison of Be-10 and Pa-231

    NASA Technical Reports Server (NTRS)

    Anderson, R. F.; Lao, Y.; Broecker, W. S.; Trumbore, S. E.; Hofmann, H. J.

    1990-01-01

    Measurements of U, Th, Pa-231, and Be-10 concentrations were conducted in Holocene sediments from several sites representing open-ocean and ocean-margin environments in the Pacific Ocean. The results show that boundary scavenging plays a major role in the removal of Be-10 from the Pacific. Deposition of Be-10 is more than an order of magnitude greater at margin sites than at deep central Pacific sites, while Pa-231 is 4- to 5-fold greater at margin sites. The factors controling boundary scavenging of Pa and Be are discussed.

  7. Malondialdehyde-Acetaldehyde (MAA) Adducted Surfactant Protein Alters Macrophage Functions through Scavenger Receptor A

    PubMed Central

    Sapkota, Muna; Kharbanda, Kusum K.; Wyatt, Todd A.

    2016-01-01

    Background Reactive aldehydes like acetaldehyde and malondialdehyde generated as a result of alcohol metabolism and cigarette smoke exposure lead to the formation of malondialdehyde-acetaldehyde-adducted proteins (MAA adducts). These aldehydes can adduct to different proteins such as bovine serum album (BSA) and surfactant proteins A or D (SPA, SPD). Macrophages play an important role in innate immunity, but the effect of MAA adducts on macrophage function has not yet been examined. Because macrophage scavenger receptor A (SRA; CD204) mediates the uptake of modified proteins, we hypothesized that the effects of MAA modified proteins on macrophage function are primarily mediated through SRA. Methods and Results We tested this hypothesis by exposing SPD-MAA to macrophages and measuring functions. SPD-MAA treatment significantly stimulated pro-inflammatory cytokine TNF-α release in the macrophage cell line, RAW 264.7. A significant reduction in phagocytosis of zymosan particles was also observed. SPD-MAA stimulated a significant dose-dependent increase in TNF-α and IL-6 release from peritoneal macrophages of WT mice. But a significantly less TNF-α and IL-6 were released from peritoneal macrophages of SRA−/− mice. We observed a significant reduction in phagocytosis of zymosan particles in peritoneal macrophages from WT mice treated with SPD-MAA. No further SPD-MAA-induced reduction was seen in peritoneal macrophages form SRA−/− mice. SPD-MAA treatment significantly increased SRA mRNA expression, but had no effect on surface receptor protein expression. Protein kinase C alpha inhibitor and NF-κB inhibitor significantly reduced pro-inflammatory cytokine release in response to SPD-MAA. Conclusion In conclusion, our data demonstrate that SRA is important for MAA-adducted protein-mediated effect on macrophage functions. PMID:27783409

  8. Elevated circulating LDL phenol levels in men who consumed virgin rather than refined olive oil are associated with less oxidation of plasma LDL.

    PubMed

    de la Torre-Carbot, Karina; Chávez-Servín, Jorge L; Jaúregui, Olga; Castellote, Ana I; Lamuela-Raventós, Rosa M; Nurmi, Tarja; Poulsen, Henrik E; Gaddi, Antonio V; Kaikkonen, Jari; Zunft, Hans-Franz; Kiesewetter, Holger; Fitó, Montserrat; Covas, María-Isabel; López-Sabater, M Carmen

    2010-03-01

    In human LDL, the bioactivity of olive oil phenols is determined by the in vivo disposition of the biological metabolites of these compounds. Here, we examined how the ingestion of 2 similar olive oils affected the content of the metabolic forms of olive oil phenols in LDL in men. The oils differed in phenol concentrations as follows: high (629 mg/L) for virgin olive oil (VOO) and null (0 mg/L) for refined olive oil (ROO). The study population consisted of a subsample from the EUROLIVE study and a randomized controlled, crossover design was used. Intervention periods lasted 3 wk and were preceded by a 2-wk washout period. The levels of LDL hydroxytyrosol monosulfate and homovanillic acid sulfate, but not of tyrosol sulfate, increased after VOO ingestion (P < 0.05), whereas the concentrations of circulating oxidation markers, including oxidized LDL (oxLDL), conjugated dienes, and hydroxy fatty acids, decreased (P < 0.05). The levels of LDL phenols and oxidation markers were not affected by ROO consumption. The relative increase in the 3 LDL phenols was greater when men consumed VOO than when they consumed ROO (P < 0.05), as was the relative decrease in plasma oxLDL (P = 0.001) and hydroxy fatty acids (P < 0.001). Plasma oxLDL concentrations were negatively correlated with the LDL phenol levels (r = -0.296; P = 0.013). Phenols in LDL were not associated with other oxidation markers. In summary, the phenol concentration of olive oil modulates the phenolic metabolite content in LDL after sustained, daily consumption. The inverse relationship of these metabolites with the degree of LDL oxidation supports the in vivo antioxidant role of olive oil phenolics compounds.

  9. Decorin GAG synthesis and TGF-β signaling mediate Ox-LDL-induced mineralization of human vascular smooth muscle cells.

    PubMed

    Yan, Jianyun; Stringer, Sally E; Hamilton, Andrew; Charlton-Menys, Valentine; Götting, Christian; Müller, Benjamin; Aeschlimann, Daniel; Alexander, M Yvonne

    2011-03-01

    Decorin and oxidized low-density lipoprotein (Ox-LDL) independently induce osteogenic differentiation of vascular smooth muscle cells (VSMCs). We aimed to determine whether decorin glycosaminoglycan (GAG) chain synthesis contributes to Ox-LDL-induced differentiation and calcification of human VSMCs in vitro. Human VSMCs treated with Ox-LDL to induce oxidative stress showed increased alkaline phosphatase (ALP) activity, accelerated mineralization, and a difference in both decorin GAG chain biosynthesis and CS/DS structure compared with untreated controls. Ox-LDL increased mRNA abundance of both xylosyltransferase (XT)-I, the key enzyme responsible for GAG chain biosynthesis and Msx2, a marker of osteogenic differentiation. Furthermore, downregulation of XT-I expression using small interfering RNA blocked Ox-LDL-induced VSMC mineralization. Adenoviral-mediated overexpression of decorin, but not a mutated unglycanated form, accelerated mineralization of VSMCs, suggesting GAG chain addition on decorin is crucial for the process of differentiation. The decorin-induced VSMC osteogenic differentiation involved activation of the transforming growth factor (TGF)-β pathway, because it was attenuated by blocking of TGF-β receptor signaling and because decorin overexpression potentiated phosphorylation of the downstream signaling molecule smad2. These studies provide direct evidence that oxidative stress-mediated decorin GAG chain synthesis triggers TGF-β signaling and mineralization of VSMCs in vitro.

  10. The heterodimeric sweet taste receptor has multiple potential ligand binding sites.

    PubMed

    Cui, Meng; Jiang, Peihua; Maillet, Emeline; Max, Marianna; Margolskee, Robert F; Osman, Roman

    2006-01-01

    The sweet taste receptor is a heterodimer of two G protein coupled receptors, T1R2 and T1R3. This discovery has increased our understanding at the molecular level of the mechanisms underlying sweet taste. Previous experimental studies using sweet receptor chimeras and mutants show that there are at least three potential binding sites in this heterodimeric receptor. Receptor activity toward the artificial sweeteners aspartame and neotame depends on residues in the amino terminal domain of human T1R2. In contrast, receptor activity toward the sweetener cyclamate and the sweet taste inhibitor lactisole depends on residues within the transmembrane domain of human T1R3. Furthermore, receptor activity toward the sweet protein brazzein depends on the cysteine rich domain of human T1R3. Although crystal structures are not available for the sweet taste receptor, useful homology models can be developed based on appropriate templates. The amino terminal domain, cysteine rich domain and transmembrane helix domain of T1R2 and T1R3 have been modeled based on the crystal structures of metabotropic glutamate receptor type 1, tumor necrosis factor receptor, and bovine rhodopsin, respectively. We have used homology models of the sweet taste receptors, molecular docking of sweet ligands to the receptors, and site-directed mutagenesis of the receptors to identify potential ligand binding sites of the sweet taste receptor. These studies have led to a better understanding of the structure and function of this heterodimeric receptor, and can act as a guide for rational structure-based design of novel non-caloric sweeteners, which can be used in the fighting against obesity and diabetes.

  11. Class A1 scavenger receptor modulates glioma progression by regulating M2-like tumor-associated macrophage polarization

    PubMed Central

    Zhang, Hanwen; Zhang, Wenbin; Sun, Xuan; Dang, Ruoyu; Zhou, Rongmei; Bai, Hui; Ben, Jingjing; Zhu, Xudong; Zhang, Yan; Yang, Qing; Xu, Yong; Chen, Qi

    2016-01-01

    Macrophages enhance glioma development and progression by shaping the tumor microenvironment. Class A1 scavenger receptor (SR-A1), a pattern recognition receptor primarily expressed in macrophages, is up-regulated in many human solid tumors. We found that SR-A1 expression in 136 human gliomas was positively correlated with tumor grade (P<0.01), but not prognosis or tumor recurrence. SR-A1-expressing macrophages originated primarily from circulating monocytes attracted to tumor tissue, and were almost twice as numerous as resident microglia in glioma tissues (P<0.001). The effects of SR-A1 on glioma proliferation and invasion were assessed in vivo using an SR-A1-deficient murine orthotopic glioma model. SR-A1 deletion promoted M2-like tumor-associated macrophage (TAM) polarization in mice by activating STAT3 and STAT6, which resulted in robust orthotopic glioma proliferation and angiogenesis. Finally, we found that HSP70 might be an endogenous ligand that activates SR-A1-dependent anti-tumorigenic pathways in gliomas, although its expression does not appear informative for diagnostic purposes. Our findings demonstrate a relationship between TAMs, SR-A1 expression and glioma growth and provide new insights into the pathogenic role of TAMs in glioma. PMID:27367025

  12. 6-Shogaol Protects against Oxidized LDL-Induced Endothelial Injruries by Inhibiting Oxidized LDL-Evoked LOX-1 Signaling

    PubMed Central

    Wang, Yun kai; Hong, Ya Jun; Yao, Yong hua; Huang, Xiao Min; Liu, Xue Bo; Zhang, Chun Yu; Zhang, Lei; Xu, Xiaoliang Leon

    2013-01-01

    Endothelial dysfunction and oxLDL are believed to be early and critical events in atherogenesis. 6-Shogaol is the major bioactive compound present in Zingiber officinale and possesses the anti-atherosclerotic effect. However, the mechanisms remain poorly understood. The goal of this study was to investigate the effects of 6-shogaol on oxLDL-induced Human umbilical vein endothelial cells (HUVECs) injuries and its possible molecular mechanisms. Hence, we studied the effects of 6-shogaol on cell apoptosis, cellular reactive oxygen species (ROS), NF-κB activation, Bcl-2 expression, and caspase -3, -8, -9 activities. In addition, E-selectin, MCP-1, and ICAM-1 were determined by ELISA. Our study show that oxLDL increased LOX-1 expression, ROS levels, NF-κB, caspases-9 and -3 activation and decreased Bcl-2 expression in HUVECs. These alterations were attenuated by 6-shogaol. Cotreatment with 6-shogaol and siRNA of LOX-1 synergistically reduced oxLDL-induced caspases -9, -3 activities and cell apoptosis. Overexpression of LOX-1 attenuated the protection by 6-shogaol and suppressed the effects of 6-shogaol on oxLDL-induced oxidative stress. In addition, oxLDL enhanced the activation of NF-κB and expression of adhesion molecules. Pretreatment with 6-shogaol, however, exerted significant cytoprotective effects in all events. Our data indicate that 6-shogaol might be a potential natural antiapoptotic agent for the treatment of atherosclerosis. PMID:23533490

  13. 6-Shogaol Protects against Oxidized LDL-Induced Endothelial Injruries by Inhibiting Oxidized LDL-Evoked LOX-1 Signaling.

    PubMed

    Wang, Yun Kai; Hong, Ya Jun; Yao, Yong Hua; Huang, Xiao Min; Liu, Xue Bo; Zhang, Chun Yu; Zhang, Lei; Xu, Xiaoliang Leon

    2013-01-01

    Endothelial dysfunction and oxLDL are believed to be early and critical events in atherogenesis. 6-Shogaol is the major bioactive compound present in Zingiber officinale and possesses the anti-atherosclerotic effect. However, the mechanisms remain poorly understood. The goal of this study was to investigate the effects of 6-shogaol on oxLDL-induced Human umbilical vein endothelial cells (HUVECs) injuries and its possible molecular mechanisms. Hence, we studied the effects of 6-shogaol on cell apoptosis, cellular reactive oxygen species (ROS), NF- κ B activation, Bcl-2 expression, and caspase -3, -8, -9 activities. In addition, E-selectin, MCP-1, and ICAM-1 were determined by ELISA. Our study show that oxLDL increased LOX-1 expression, ROS levels, NF- κ B, caspases-9 and -3 activation and decreased Bcl-2 expression in HUVECs. These alterations were attenuated by 6-shogaol. Cotreatment with 6-shogaol and siRNA of LOX-1 synergistically reduced oxLDL-induced caspases -9, -3 activities and cell apoptosis. Overexpression of LOX-1 attenuated the protection by 6-shogaol and suppressed the effects of 6-shogaol on oxLDL-induced oxidative stress. In addition, oxLDL enhanced the activation of NF- κ B and expression of adhesion molecules. Pretreatment with 6-shogaol, however, exerted significant cytoprotective effects in all events. Our data indicate that 6-shogaol might be a potential natural antiapoptotic agent for the treatment of atherosclerosis.

  14. Effect of mipomersen on LDL-cholesterol in patients with severe LDL-hypercholesterolaemia and atherosclerosis treated by lipoprotein apheresis (The MICA-Study).

    PubMed

    Waldmann, Elisa; Vogt, Anja; Crispin, Alexander; Altenhofer, Julia; Riks, Ina; Parhofer, Klaus G

    2017-04-01

    In this study, we evaluated the effect of mipomersen in patients with severe LDL-hypercholesterolaemia and atherosclerosis, treated by lipid lowering drugs and regular lipoprotein apheresis. This prospective, randomized, controlled phase II single center trial enrolled 15 patients (9 males, 6 females; 59 ± 9 y, BMI 27 ± 4 kg/m 2 ) with established atherosclerosis, LDL-cholesterol ≥130 mg/dL (3.4 mmol/L) despite maximal possible drug therapy, and fulfilling German criteria for regular lipoprotein apheresis. All patients were on stable lipid lowering drug therapy and regular apheresis for >3 months. Patients randomized to treatment (n = 11) self-injected mipomersen 200 mg sc weekly, at day 4 after apheresis, for 26 weeks. Patients randomized to control (n = 4) continued apheresis without injection. The primary endpoint was the change in pre-apheresis LDL-cholesterol. Of the patients randomized to mipomersen, 3 discontinued the drug early (<12 weeks therapy) for side effects. For these, another 3 were recruited and randomized. Further, 4 patients discontinued mipomersen between 12 and 26 weeks for side effects (moderate to severe injection site reactions n = 3 and elevated liver enzymes n = 1). In those treated for >12 weeks, mipomersen reduced pre-apheresis LDL-cholesterol significantly by 22.6 ± 17.0%, from a baseline of 4.8 ± 1.2 mmol/L to 3.7 ± 0.9 mmol/L, while there was no significant change in the control group (+1.6 ± 9.3%), with the difference between the groups being significant (p=0.02). Mipomersen also decreased pre-apheresis lipoprotein(a) (Lp(a)) concentration from a median baseline of 40.2 mg/dL (32.5,71) by 16% (-19.4,13.6), though without significance (p=0.21). Mipomersen reduces LDL-cholesterol (significantly) and Lp(a) (non-significantly) in patients on maximal lipid-lowering drug therapy and regular apheresis, but is often associated with side effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Elevated Levels of LDL-C are Associated With ApoE4 but Not With the rs688 Polymorphism in the LDLR Gene.

    PubMed

    Cahua-Pablo, Gabriel; Cruz, Miguel; Moral-Hernández, Oscar Del; Leyva-Vázquez, Marco A; Antúnez-Ortiz, Diana L; Cahua-Pablo, José A; Alarcón-Romero, Luz Del Carmen; Ortuño-Pineda, Carlos; Moreno-Godínez, Ma Elena; Hernández-Sotelo, Daniel; Flores-Alfaro, Eugenia

    2016-07-01

    Apolipoprotein E (ApoE) 4 isoform has been associated with elevated levels of cholesterol, low-density lipoprotein cholesterol (LDL-C), and triglycerides (TGs), meanwhile several polymorphisms in the LDL receptor (LDLR) gene have been associated with increased levels of total cholesterol and LDL-C. We studied 400 women from Southwest Mexico. Anthropometric features and biochemical profile were evaluated, and genotyping of single nucleotide polymorphisms rs429358 and rs7412 in the APOE gene and rs688 in the LDLR gene was determined by TaqMan assays. We found significant association between LDL-C (odds ratio [OR] = 3.3, 95% confidence interval [CI]: 1.9-5.7) and marginal association with TG (OR = 1.7, 95% CI: 1.0-2.9) of atherogenic risk in women carriers of the ApoE4 isoform compared to ApoE3. The TT genotype of rs688 in the LDLR gene was not found to be associated with elevated levels of total cholesterol or LDL-C. Our results show that carrier women of the ApoE4 isoform are more likely to have elevated levels of LDL-C and therefore increased risk of developing atherosclerosis. © The Author(s) 2015.

  16. Scavenging of black carbon in mixed phase clouds at the high alpine site Jungfraujoch

    NASA Astrophysics Data System (ADS)

    Cozic, J.; Verheggen, B.; Mertes, S.; Connolly, P.; Bower, K.; Petzold, A.; Baltensperger, U.; Weingartner, E.

    2007-04-01

    The scavenging of black carbon (BC) in liquid and mixed phase clouds was investigated during intensive experiments in winter 2004, summer 2004 and winter 2005 at the high alpine research station Jungfraujoch (3580 m a.s.l., Switzerland). Aerosol residuals were sampled behind two well characterized inlets; a total inlet which collected cloud particles (droplets and ice particles) as well as interstitial (unactivated) aerosol particles; an interstitial inlet which collected only interstitial aerosol particles. BC concentrations were measured behind each of these inlets along with the submicrometer aerosol number size distribution, from which a volume concentration was derived. These measurements were complemented by in-situ measurements of cloud microphysical parameters. BC was found to be scavenged into the condensed phase to the same extent as the bulk aerosol, which suggests that BC was covered with soluble material through aging processes, rendering it more hygroscopic. The scavenged fraction of BC (FScav,BC), defined as the fraction of BC that is incorporated into cloud droplets and ice crystals, decreases with increasing cloud ice mass fraction (IMF) from FScav,BC=60% in liquid phase clouds to FScav,BC~5-10% in mixed-phase clouds with IMF>0.2. This can be explained by the evaporation of liquid droplets in the presence of ice crystals (Wegener-Bergeron-Findeisen process), releasing BC containing cloud condensation nuclei back into the interstitial phase. In liquid clouds, the scavenged BC fraction is found to decrease with decreasing cloud liquid water content. The scavenged BC fraction is also found to decrease with increasing BC mass concentration since there is an increased competition for the available water vapour.

  17. Scavenging of black carbon in mixed phase clouds at the high alpine site Jungfraujoch

    NASA Astrophysics Data System (ADS)

    Cozic, J.; Verheggen, B.; Mertes, S.; Connolly, P.; Bower, K.; Petzold, A.; Baltensperger, U.; Weingartner, E.

    2006-11-01

    The scavenging of black carbon (BC) in liquid and mixed phase clouds was investigated during intensive experiments in winter 2004, summer 2004 and winter 2005 at the high alpine research station Jungfraujoch (3580 m a.s.l., Switzerland). Aerosol residuals were sampled behind two well characterized inlets; a total inlet which collected cloud particles (drops and ice particles) as well as interstitial aerosol particles; an interstitial inlet which collected only interstitial (unactivated) aerosol particles. BC concentrations were measured behind each of these inlets along with the submicrometer aerosol number size distribution, from which a volume concentration was derived. These measurements were complemented by in-situ measurements of cloud microphysical parameters. BC was found to be scavenged into the cloud phase to the same extent as the bulk aerosol, which suggests that BC was covered with soluble material through aging processes, rendering it more hygroscopic. The scavenged fraction of BC (FScav,BC), defined as the fraction of BC that is incorporated into cloud droplets and ice crystals, decreases with increasing cloud ice mass fraction (IMF) from FScav,BC=60% in liquid phase clouds to FScav,BC~10% in mixed-phase clouds with IMF>0.2. This is explained by the evaporation of liquid droplets in the presence of ice crystals (Wegener-Bergeron-Findeisen process), releasing BC containing cloud condensation nuclei back into the interstitial phase. In liquid clouds, the scavenged BC fraction is found to decrease with decreasing cloud liquid water content. The scavenged BC fraction is also found to decrease with increasing BC mass concentration since there is an increased competition for the available water vapour.

  18. OxLDL or TLR2-induced cytokine response is enhanced by oxLDL-independent novel domain on mouse CD35

    USDA-ARS?s Scientific Manuscript database

    OxLDL binding to CD36 is shown to result in macrophage activation and foam cell formation that have been implicated in atherosclerosis. However, CD36 has also been shown to induce inflammatory response to other ligands besides oxLDL. During the course of blocking CD36 oxLDL binding function using an...

  19. Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Yuka; Tada-Oikawa, Saeko; Ichihara, Gaku

    Metal oxide nanoparticles are widely used in industry, cosmetics, and biomedicine. However, the effects of exposure to these nanoparticles on the cardiovascular system remain unknown. The present study investigated the effects of nanosized TiO{sub 2} and ZnO particles on the migration and adhesion of monocytes, which are essential processes in atherosclerogenesis, using an in vitro set-up of human umbilical vein endothelial cells (HUVECs) and human monocytic leukemia cells (THP-1). We also examined the effects of exposure to nanosized metal oxide particles on macrophage cholesterol uptake and foam cell formation. The 16-hour exposure to ZnO particles increased the level of monocytemore » chemotactic protein-1 (MCP-1) and induced the migration of THP-1 monocyte mediated by increased MCP-1. Exposure to ZnO particles also induced adhesion of THP-1 cells to HUVECs. Moreover, exposure to ZnO particles, but not TiO{sub 2} particles, upregulated the expression of membrane scavenger receptors of modified LDL and increased cholesterol uptake in THP-1 monocytes/macrophages. In the present study, we found that exposure to ZnO particles increased macrophage cholesterol uptake, which was mediated by an upregulation of membrane scavenger receptors of modified LDL. These results suggest that nanosized ZnO particles could potentially enhance atherosclerogenesis and accelerate foam cell formation. - Highlights: • Effects of metal oxide nanoparticles on foam cell formation were investigated. • Exposure to ZnO nanoparticles induced migration and adhesion of monocytes. • Exposure to ZnO nanoparticles increased macrophage cholesterol uptake. • Expression of membrane scavenger receptors of modified LDL was also increased. • These effects were not observed after exposure to TiO{sub 2} nanoparticles.« less

  20. Reconstruction of Toll-like receptor 9-mediated responses in HEK-Blue hTLR9 cells by transfection of human macrophage scavenger receptor 1 gene.

    PubMed

    Ohtsuki, Shozo; Takahashi, Yuki; Inoue, Takao; Takakura, Yoshinobu; Nishikawa, Makiya

    2017-10-20

    We used human Toll-like receptor 9 (hTLR9)-expressing HEK-Blue hTLR9 cells, which release secreted embryonic alkaline phosphatase (SEAP) upon response to CpG DNA, to evaluate the immunological properties of nucleic acid drug candidates. Our preliminary studies showed that phosphodiester CpG DNA hardly induced any SEAP secretion in HEK-Blue hTLR9 cells. In the current study, therefore, we developed HEK-Blue hTLR9 cells transduced with human macrophage scavenger receptor-1 (hMSR1), a cell-surface DNA receptor, and determined whether HEK-Blue hTLR9/hMSR1 cells respond to phosphorothioate (PS) CpG DNA and phosphodiester (PO) CpG DNA. We selected PS CpG2006, a single-stranded PO CpG DNA (ssCpG), and a tetrapod-like structured DNA (tetrapodna) containing ssCpG (tetraCpG) as model TLR9 ligands. Alexa Fluor 488-labeled ligands were used for flow cytometry. Unlike the mock-transfected HEK-Blue hTLR9 cells, the HEK-Blue hTLR9/hMSR1 cells efficiently took up all three CpG DNAs. SEAP release was almost proportional to the uptake. Treatment of HEK-Blue hTLR9/hMSR1 cells with an anti-hMSR1 antibody significantly reduced the uptake of ssCpG and tetraCpG. Collectively, reconstruction of TLR9-mediated responses to CpG DNA in HEK-Blue hTLR9 cells can be used to evaluate the toxicity of nucleic acid drug candidates with diverse physicochemical properties.

  1. Hepatic Scavenger Receptor BI Protects Against Polymicrobial-induced Sepsis through Promoting LPS Clearance in Mice*

    PubMed Central

    Guo, Ling; Zheng, Zhong; Ai, Junting; Huang, Bin; Li, Xiang-An

    2014-01-01

    Recent studies revealed that scavenger receptor BI (SR-BI or Scarb1) plays a critical protective role in sepsis. However, the mechanisms underlying this protection remain largely unknown. In this study, using Scarb1I179N mice, a mouse model specifically deficient in hepatic SR-BI, we report that hepatic SR-BI protects against cecal ligation and puncture (CLP)-induced sepsis as shown by 75% fatality in Scarb1I179N mice, but only 21% fatality in C57BL/6J control mice. The increase in fatality in Scarb1I179N mice was associated with an exacerbated inflammatory cytokine production. Further study demonstrated that hepatic SR-BI exerts its protection against sepsis through its role in promoting LPS clearance without affecting the inflammatory response in macrophages, the glucocorticoid production in adrenal glands, the leukocyte recruitment to peritoneum or the bacterial clearance in liver. Our findings reveal hepatic SR-BI as a critical protective factor in sepsis and point out that promoting hepatic SR-BI-mediated LPS clearance may provide a therapeutic approach for sepsis. PMID:24719333

  2. Polymorphic haplotypes and recombination rates at the LDL receptor gene locus in subjects with and without familial hypercholesterolemia who are from different populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miserez, A.R.; Chiodetti, N.; Keller, U.

    1993-04-01

    RFLPs at the low-density lipoprotein (LDL) receptor locus for TaqI, StuI, HincII, AvaII, ApaLI (5[prime] and 3[prime]), PvuII, and NcoI were studied in Swiss and German families with familial hypercholesterolemia (FH). A total of 1,104 LDL receptor alleles were analyzed using Southern blotting and new PCR-based techniques for detection of the TaqI, StuI, HincII, AvaII, NcoI RFLPs. Two hundred fifty-six independent haplotypes from 368 individuals of 61 unrelated Swiss families, as well as 114 independent haplotypes from 184 subjects of 25 unrelated German families, were constructed. In 76 families, clinical diagnosis of FH was confirmed by cosegregation analysis. Of themore » 43 unique haplotypes consisting of seven RFLPs detected in the Swiss and Germans, only 9 were common in both population samples. Analysis of linkage disequilibrium revealed nonrandom associations between several of the investigated RFLPs. ApaLI (5[prime]), NcoI, PvuII, TaqI, and AvaII or HincII were particularly informative. Relative frequencies, heterozygosity indexes, and PICs of the RFLPs from the Swiss and Germans were compared with values calculated from reported haplotype data for Italians, Icelanders, North American Caucasians, South African Caucasians, and Japanese. Pairwise comparisons of population samples by common RFLPs demonstrated unexpected differences even between geographically adjacent populations (e.g., the Swiss and Germans). Furthermore, genetic distances from the Germans to the other Caucasians were larger than to the Japanese. An unexpected lack of correlation between linkage disequilibria and physical distances was detected for the German and Japanese data, possibly because of nonuniform recombination with excessively high rates between exon 13 and intron 15. Hence, the present study revealed a striking variety of polymorphic haplotypes and heterogeneity of RFLP frequencies and recombination rates among the seven population samples. 60 refs., 2 figs., 8 tabs.« less

  3. Analysis of flow and LDL concentration polarization in siphon of internal carotid artery: Non-Newtonian effects.

    PubMed

    Sharifi, Alireza; Niazmand, Hamid

    2015-10-01

    Carotid siphon is known as one of the risky sites among the human intracranial arteries, which is prone to formation of atherosclerotic lesions. Indeed, scientists believe that accumulation of low density lipoprotein (LDL) inside the lumen is the major cause of atherosclerosis. To this aim, three types of internal carotid artery (ICA) siphon have been constructed to examine variations of hemodynamic parameters in different regions of the arteries. Providing real physiological conditions, blood considered as non-Newtonian fluid and real velocity and pressure waveforms have been employed as flow boundary conditions. Moreover, to have a better estimation of risky sites, the accumulation of LDL particles has been considered, which has been usually ignored in previous relevant studies. Governing equations have been discretized and solved via open source OpenFOAM software. A new solver has been built to meet essential parameters related to the flow and mass transfer phenomena. In contrast to the common belief regarding negligible effect of blood non-Newtonian behavior inside large arteries, current study suggests that the non-Newtonian blood behavior is notable, especially on the velocity field of the U-type model. In addition, it is concluded that neglecting non-Newtonian effects underestimates the LDL accumulation up to 3% in the U-type model at the inner side of both its bends. However, in the V and C type models, non-Newtonian effects become relatively small. Results also emphasize that the outer part of the second bend at the downstream is also at risk similar to the inner part of the carotid bends. Furthermore, from findings it can be implied that the risky sites strongly depend on the ICA shape since the extension of the risky sites are relatively larger for the V-type model, while the LDL concentrations are higher for the C-type model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. HI-6 assisted Catalytic Scavenging of VX by Acetylcholinesterase Choline Binding Site Mutants

    PubMed Central

    Hrvat, Nikolina Maček; Žunec, Suzana; Taylor, Palmer; Radić, Zoran; Kovarik, Zrinka

    2016-01-01

    The high toxicity of organophosphorus compounds originates from covalent inhibition of acetylcholinesterase (AChE), an essential enzyme in cholinergic neurotransmission. Poisonings that lead to life-threatening toxic manifestations require immediate treatment that combines administration of anticholinergic drugs and an aldoxime as a reactivator of AChE. An alternative approach to reduce the in vivo toxicity of OPs focuses on the use of bioscavengers against the parent organophosphate. Our previous research showed that AChE mutagenesis can enable aldoximes to substantially accelerate the reactivation of OP-enzyme conjugates, while dramatically slowing down rates of OP-conjugate dealkylation (aging). Herein, we demonstrate an efficient HI-6-assisted VX detoxification, both ex vivo in human blood and in vivo in mice by hAChE mutants modified at the choline binding site (Y337A and Y337A/F338A). The catalytic scavenging of VX in mice improved therapeutic outcomes preventing lethality and resulted in a delayed onset of toxicity symptoms. PMID:27083141

  5. Malondialdehyde-acetaldehyde (MAA) adducted proteins bind to scavenger receptor A in airway epithelial cells.

    PubMed

    Berger, John P; Simet, Samantha M; DeVasure, Jane M; Boten, Jessica A; Sweeter, Jenea M; Kharbanda, Kusum K; Sisson, Joseph H; Wyatt, Todd A

    2014-08-01

    Co-exposure to cigarette smoke and ethanol generates malondialdehyde and acetaldehyde, which can subsequently lead to the formation of aldehyde-adducted proteins. We have previously shown that exposure of bronchial epithelial cells to malondialdehyde-acetaldehyde (MAA) adducted protein increases protein kinase C (PKC) activity and proinflammatory cytokine release. A specific ligand to scavenger receptor A (SRA), fucoidan, blocks this effect. We hypothesized that MAA-adducted protein binds to bronchial epithelial cells via SRA. Human bronchial epithelial cells (BEAS-2B) were exposed to MAA-adducted protein (either bovine serum albumin [BSA-MAA] or surfactant protein D [SPD-MAA]) and SRA examined using confocal microscopy, fluorescent activated cell sorting (FACS), and immunoprecipitation. Differentiated mouse tracheal epithelial cells (MTEC) cultured by air-liquid interface were assayed for MAA-stimulated PKC activity and keratinocyte-derived chemokine (KC) release. Specific cell surface membrane dye co-localized with upregulated SRA after exposure to MAA for 3-7 min and subsided by 20 min. Likewise, MAA-adducted protein co-localized to SRA from 3 to 7 min with a subsequent internalization of MAA by 10 min. These results were confirmed using FACS analysis and revealed a reduced mean fluorescence of SRA after 3 min. Furthermore, increased amounts of MAA-adducted protein could be detected by Western blot in immunoprecipitated SRA samples after 3 min treatment with MAA. MAA stimulated PKCε-mediated KC release in wild type, but not SRA knockout mice. These data demonstrate that aldehyde-adducted proteins in the lungs rapidly bind to SRA and internalize this receptor prior to the MAA-adducted protein stimulation of PKC-dependent inflammatory cytokine release in airway epithelium. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Malondialdehyde-acetaldehyde (MAA) adducted proteins bind to scavenger receptor A in airway epithelial cells

    PubMed Central

    Berger, John P.; Simet, Samantha M.; DeVasure, Jane M.; Boten, Jessica A.; Sweeter, Jenea M.; Kharbanda, Kusum K.; Sisson, Joseph H.; Wyatt, Todd A.

    2014-01-01

    Co-exposure to cigarette smoke and ethanol generates malondialdehyde and acetaldehyde, which can subsequently lead to the formation of aldehyde-adducted proteins. We have previously shown that exposure of bronchial epithelial cells to malondialdehyde-acetaldehyde (MAA) adducted protein increases protein kinase C (PKC) activity and proinflammatory cytokine release. A specific ligand to scavenger receptor A (SRA), fucoidan, blocks this effect. We hypothesized that MAA-adducted protein binds to bronchial epithelial cells via SRA. Human bronchial epithelial cells (BEAS-2B) were exposed to MAA-adducted protein (either bovine serum albumin [BSA-MAA] or surfactant protein D [SPD-MAA]) and SRA examined using confocal microscopy, fluorescent activated cell sorting (FACS), and immunoprecipitation. Differentiated mouse tracheal epithelial cells (MTEC) cultured by air-liquid interface were assayed for MAA-stimulated PKC activity and keratinocyte-derived chemokine (KC) release. Specific cell surface membrane dye co-localized with upregulated SRA after exposure to MAA for 3–7 min and subsided by 20 min. Likewise, MAA-adducted protein co-localized to SRA from 3–7 min with a subsequent internalization of MAA by 10 min. These results were confirmed using FACS analysis and revealed a reduced mean fluorescence of SRA after 3 min. Furthermore, increased amounts of MAA-adducted protein could be detected by Western blot in immunoprecipitated SRA samples after 3 min treatment with MAA. MAA stimulated PKCε-mediated KC release in wild type, but not SRA knockout mice. These data demonstrate that aldehyde-adducted proteins in the lungs rapidly bind to SRA and internalize this receptor prior to the MAA-adducted protein stimulation of PKC-dependent inflammatory cytokine release in airway epithelium. PMID:24880893

  7. Antagonism of scavenger receptor CD36 by 5A peptide prevents chronic kidney disease progression in mice independent of blood pressure regulation

    PubMed Central

    Souza, Ana Carolina P.; Bocharov, Alexander V.; Baranova, Irina; Vishnyakova, Tatyana; Huang, Yuning G.; Wilkins, Kenneth J.; Hu, Xuzhen; Street, Jonathan M.; Alvarez-Prats, Alejandro; Mullick, Adam E.; Patterson, Amy P.; Remaley, Alan; Eggerman, Thomas L.; Yuen, Peter S.T.; Star, Robert A.

    2016-01-01

    Scavenger receptor CD36 participates in lipid metabolism and inflammatory pathways important for cardiovascular disease and chronic kidney disease (CKD). Few pharmacological agents are available to slow the progression of CKD. However, apolipoprotein AI-mimetic peptide 5A antagonizes CD36 in vitro. To test the efficacy of 5A, and to test the role of CD36 during CKD, we compared wild type to CD36 knockout mice and wild type mice treated with 5A, in a progressive CKD model that resembles human disease. Knockout and 5A-treated wild type mice were protected from CKD progression without changes in blood pressure and had reductions in cardiovascular risk surrogate markers that are associated with CKD. Treatment with 5A did not further protect CD36 knockout mice from CKD progression, implicating CD36 as its main site of action. In a separate model of kidney fibrosis, 5A-treated wild type mice had less macrophage infiltration and interstitial fibrosis. Peptide 5A exerted anti-inflammatory effects in the kidney and decreases renal expression of inflammasome genes. Thus, CD36 is a new therapeutic target for CKD and its associated cardiovascular risk factors. Peptide 5A may be a promising new agent to slow CKD progression. PMID:26994575

  8. Effects of Ethanol on Phosphorylation Site Mutants of Recombinant NMDA Receptors

    PubMed Central

    Xu, Minfu; Smothers, Corigan T.; Woodward, John J.

    2010-01-01

    N-methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels activated by the neurotransmitter glutamate. These channels are highly expressed by brain neurons and are critically involved in excitatory synaptic transmission. Results from previous studies show that both native and recombinant NMDA receptors are inhibited by ethanol at concentrations associated with signs of behavioral impairment and intoxication. Given the important role that NMDA receptors play in synaptic transmission and brain function, it is important to understand the factors that regulate the ethanol inhibition of these receptors. One dynamic mechanism for regulating ethanol action may be via phosphorylation of NMDA subunits by serine-threonine and tyrosine kinases. Both NR1 and NR2 subunits contain multiple sites of phosphorylation and in the NR1 subunit, most of these are contained within the C1 domain, a carboxy-terminal cassette that is subject to alternative splicing. While results from our previous studies suggest that single phosphorylation sites do not greatly affect ethanol sensitivity of NMDA receptors, it is likely that in vivo, these subunits are phosphorylated at multiple sites by different kinases. In the present study, we constructed a series of NMDA receptor mutants at serine (S) or threonine (T) residues proposed to be sites of phosphorylation by PKA and various isoforms of PKC. Ethanol (100 mM) inhibited currents from wild-type NR1/2A and NR1/2B receptors expressed in HEK293 cells by approximately 25% and 30% respectively. This inhibition was not different in single site mutants expressing alanine (A) or aspartate/glutamate (D/E) at positions T879, S896 or T900. The mutant NR1(S890D) showed greater ethanol inhibition than NR1(890A) containing receptors although this was only observed when it was combined with the NR2A subunit. Ethanol inhibition was not altered by aspartate substitution at four serines (positions 889, 890, 896, 897) or when T879D was added to the four

  9. Receptor-ligand binding sites and virtual screening.

    PubMed

    Hattotuwagama, Channa K; Davies, Matthew N; Flower, Darren R

    2006-01-01

    Within the pharmaceutical industry, the ultimate source of continuing profitability is the unremitting process of drug discovery. To be profitable, drugs must be marketable: legally novel, safe and relatively free of side effects, efficacious, and ideally inexpensive to produce. While drug discovery was once typified by a haphazard and empirical process, it is now increasingly driven by both knowledge of the receptor-mediated basis of disease and how drug molecules interact with receptors and the wider physiome. Medicinal chemistry postulates that to understand a congeneric ligand series, or set thereof, is to understand the nature and requirements of a ligand binding site. Likewise, structural molecular biology posits that to understand a binding site is to understand the nature of ligands bound therein. Reality sits somewhere between these extremes, yet subsumes them both. Complementary to rules of ligand design, arising through decades of medicinal chemistry, structural biology and computational chemistry are able to elucidate the nature of binding site-ligand interactions, facilitating, at both pragmatic and conceptual levels, the drug discovery process.

  10. Substance P receptor binding sites are expressed by glia in vivo after neuronal injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantyh, P.W.; Johnson, D.J.; Boehmer, C.G.

    1989-07-01

    In vitro studies have demonstrated that glia can express functional receptors for a variety of neurotransmitters. To determine whether similar neurotransmitter receptors are also expressed by glia in vivo, the authors examined the glial scar in the transected optic nerve of the albino rabbit by quantitative receptor autoradiography. Receptor binding sites for radiolabeled calcitonin gene-related peptide, cholecystokinin, galanin, glutamate, somatostatin, substance P, and vasoactive intestinal peptide were examined. Specific receptor binding sites for each of these neurotransmitters were identified in the rabbit forebrain but were not detected in the normal optic nerve or tract. In the transected optic nerve andmore » tract, only receptor binding sites for substance P were expressed at detectable levels. The density of substance P receptor binding sites observed in this glial scar is among the highest observed in the rabbit forebrain. Ligand displacement and saturation experiments indicate that the substance P receptor binding site expressed by the glial scar has pharmacological characteristics similar to those of substance P receptors in the rabbit striatum, rat brain, and rat and canine gut. The present study demonstrates that glial cells in vivo express high concentrations of substance P receptor binding sites after transection of retinal ganglion cell axons. Because substance P has been shown to regulate inflammatory and immune responses in peripheral tissues, substance P may also, by analogy, be involved in regulating the glial response to injury in the central nervous system.« less

  11. Exploration of N-arylpiperazine Binding Sites of D2 Dopaminergic Receptor.

    PubMed

    Soskic, Vukic; Sukalovic, Vladimir; Kostic-Rajacic, Sladjana

    2015-01-01

    The crystal structures of the D3 dopamine receptor and several other G-protein coupled receptors (GPCRs) were published in recent times. Those 3D structures are used by us and other scientists as a template for the homology modeling and ligand docking analysis of related GPCRs. Our main scientific interest lies in the field of pharmacologically active N-arylpiperazines that exhibit antipsychotic and/or antidepressant properties, and as such are dopaminergic and serotonergic receptor ligands. In this short review article we are presenting synthesis and biological data on the new N-arylpipereazine as well our results on molecular modeling of the interactions of those N-arylpiperazines with the model of D2 dopamine receptors. To obtain that model the crystal structure of the D3 dopamine receptor was used. Our results show that the N-arylpiperazines binding site consists of two pockets: one is the orthosteric binding site where the N-arylpiperazine part of the ligand is docked and the second is a non-canonical accessory binding site for N-arylpipereazine that is formed by a second extracellular loop (ecl2) of the receptor. Until now, the structure of this receptor region was unresolved in crystal structure analyses of the D3 dopamine receptor. To get a more complete picture of the ligand - receptor interaction, DFT quantum mechanical calculations on N-arylpiperazine were performed and the obtained models were used to examine those interactions.

  12. TmSR-C, scavenger receptor class C, plays a pivotal role in antifungal and antibacterial immunity in the coleopteran insect Tenebrio molitor.

    PubMed

    Kim, Soo Gon; Jo, Yong Hun; Seong, Jeong Hwan; Park, Ki Beom; Noh, Mi Young; Cho, Jun Ho; Ko, Hye Jin; Kim, Chang Eun; Tindwa, Hamisi; Patnaik, Bharat Bhusan; Bang, In Seok; Lee, Yong Seok; Han, Yeon Soo

    2017-10-01

    Scavenger receptors (SRs) constitute a family of membrane-bound receptors that bind to multiple ligands. The SR family of proteins is involved in removing cellular debris, oxidized low-density lipoproteins, and pathogens. Specifically, class C scavenger receptors (SR-C) have also been reported to be involved in phagocytosis of gram-positive and -negative bacteria in Drosophila and viruses in shrimp. However, reports are unavailable regarding the role of SR-C in antifungal immune mechanisms in insects. In this study, a full-length Tenebrio molitor SR-C (TmSR-C) sequence was obtained by 5'- and 3'-Rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR). The TmSR-C full-length cDNA comprised 1671 bp with 5'- and 3'-untranslated regions of 23- and 107-bp, respectively. TmSR-C encodes a putative protein of 556 amino acid residues that is constitutively expressed in all tissues of late instar larvae and 2-day-old adults, with the highest transcript levels observed in hemocytes of larvae and adults. TmSR-C mRNA showed a 2.5-fold and 3-fold increase at 24 and 6 h after infection with Candida albicans and β-glucan, respectively. Immunoassay with TmSR-C polyclonal antibody showed induction of the putative protein in the cytosols of hemocytes at 3 h after inoculation of C. albicans. RNA interference (RNAi)-based gene silencing and phagocytosis assays were used to understand the role of TmSR-C in antifungal immunity. Silencing of TmSR-C transcripts reduced the survivability of late instar larvae at 2 days post-inoculation of C. albicans, Escherichia coli, or Staphylococcus aureus. Furthermore, in TmSR-C-silenced larvae, there was a decline in the rate of microorganism phagocytosis. Taken together, results of this study suggest that TmSR-C plays a pivotal role in phagocytosing not only fungi but also gram-negative and -positive bacteria in T. molitor. Copyright © 2017. Published by Elsevier Ltd.

  13. Impact of Cyanidin-3-Glucoside on Glycated LDL-Induced NADPH Oxidase Activation, Mitochondrial Dysfunction and Cell Viability in Cultured Vascular Endothelial Cells

    PubMed Central

    Xie, Xueping; Zhao, Ruozhi; Shen, Garry X.

    2012-01-01

    Elevated levels of glycated low density lipoprotein (glyLDL) are frequently detected in diabetic patients. Previous studies demonstrated that glyLDL increased the production of reactive oxygen species (ROS), activated NADPH oxidase (NOX) and suppressed mitochondrial electron transport chain (mETC) enzyme activities in vascular endothelial cells (EC). The present study examined the effects of cyanidin-3-glucoside (C3G), a type of anthocyanin abundant in dark-skinned berries, on glyLDL-induced ROS production, NOX activation and mETC enzyme activity in porcine aortic EC (PAEC). Co-treatment of C3G prevented glyLDL-induced upregulation of NOX4 and intracellular superoxide production in EC. C3G normalized glyLDL-induced inhibition on the enzyme activities of mETC Complex I and III, as well as the abundances of NADH dehydrogenase 1 in Complex I and cytochrome b in Complex III in EC. Blocking antibody for the receptor of advanced glycation end products (RAGE) prevented glyLDL-induced changes in NOX and mETC enzymes. Combination of C3G and RAGE antibody did not significantly enhance glyLDL-induced inhibition of NOX or mETC enzymes. C3G reduced glyLDL-induced RAGE expression with the presence of RAGE antibody. C3G prevented prolonged incubation with the glyLDL-induced decrease in cell viability and the imbalance between key regulators for cell viability (cleaved caspase 3 and B cell Lyphoma-2) in EC. The findings suggest that RAGE plays an important role in glyLDL-induced oxidative stress in vascular EC. C3G may prevent glyLDL-induced NOX activation, the impairment of mETC enzymes and cell viability in cultured vascular EC. PMID:23443099

  14. Impact of cyanidin-3-glucoside on glycated LDL-induced NADPH oxidase activation, mitochondrial dysfunction and cell viability in cultured vascular endothelial cells.

    PubMed

    Xie, Xueping; Zhao, Ruozhi; Shen, Garry X

    2012-11-27

    Elevated levels of glycated low density lipoprotein (glyLDL) are frequently detected in diabetic patients. Previous studies demonstrated that glyLDL increased the production of reactive oxygen species (ROS), activated NADPH oxidase (NOX) and suppressed mitochondrial electron transport chain (mETC) enzyme activities in vascular endothelial cells (EC). The present study examined the effects of cyanidin-3-glucoside (C3G), a type of anthocyanin abundant in dark-skinned berries, on glyLDL-induced ROS production, NOX activation and mETC enzyme activity in porcine aortic EC (PAEC). Co-treatment of C3G prevented glyLDL-induced upregulation of NOX4 and intracellular superoxide production in EC. C3G normalized glyLDL-induced inhibition on the enzyme activities of mETC Complex I and III, as well as the abundances of NADH dehydrogenase 1 in Complex I and cytochrome b in Complex III in EC. Blocking antibody for the receptor of advanced glycation end products (RAGE) prevented glyLDL-induced changes in NOX and mETC enzymes. Combination of C3G and RAGE antibody did not significantly enhance glyLDL-induced inhibition of NOX or mETC enzymes. C3G reduced glyLDL-induced RAGE expression with the presence of RAGE antibody. C3G prevented prolonged incubation with the glyLDL-induced decrease in cell viability and the imbalance between key regulators for cell viability (cleaved caspase 3 and B cell Lyphoma-2) in EC. The findings suggest that RAGE plays an important role in glyLDL-induced oxidative stress in vascular EC. C3G may prevent glyLDL-induced NOX activation, the impairment of mETC enzymes and cell viability in cultured vascular EC.

  15. 2,4,8-trihydroxybicyclo [3.2.1]octan-3-one scavenges free radicals and protects against xenobiotic-induced cytotoxicity.

    PubMed

    Srivastava, Anup; Jagan Mohan Rao, L; Shivanandappa, T

    2012-03-01

    Currently, there is a great deal of interest in the study of natural compounds with free-radical-scavenging activity because of their potential role in maintaining human health and preventing diseases. In this paper, we report the antioxidant and cytoprotective properties of 2,4,8-trihydroxybicyclo [3.2.1]octan-3-one (TBO) isolated from the aqueous extract of Decalepis hamiltonii roots. Our results show that TBO is a potent scavenger of superoxide (O(2)·-), hydroxyl (·OH), nitric oxide (·NO) and lipid peroxide (LOO·) - physiologically relevant free radicals with IC(50) values in nmolar (42-281) range. TBO also exhibited concentration-dependent secondary antioxidant activities such as reducing power, metal-chelating activity and inhibition of protein carbonylation. Further, TBO at nmolar concentration prevented CuSO(4)-induced human LDL oxidation. Apart from the in vitro free-radical-scavenging activity, TBO demonstrated cytoprotective activity in primary hepatocytes and Ehrlich ascites tumour (EAT) cells against oxidative-stress-inducing xenobiotics. The mechanism of cytoprotective action involved maintaining the intracellular glutathione (GSH), scavenging of reactive oxygen species (ROS) and inhibiting lipid peroxidation (LPO). Based on the results, it is suggested that TBO is a novel bioactive molecule with implications in both prevention and amelioration of diseases involving oxidative stress as well as in the general well-being.

  16. Key role for scavenger receptor B-I in the integrative physiology of host defense during bacterial pneumonia.

    PubMed

    Gowdy, K M; Madenspacher, J H; Azzam, K M; Gabor, K A; Janardhan, K S; Aloor, J J; Fessler, M B

    2015-05-01

    Scavenger receptor B-I (SR-BI) is a multirecognition receptor that regulates cholesterol trafficking and cardiovascular inflammation. Although it is expressed by neutrophils (PMNs) and lung-resident cells, no role for SR-BI has been defined in pulmonary immunity. Herein, we report that, compared with SR-BI(+/+) counterparts, SR-BI(-/-) mice suffer markedly increased mortality during bacterial pneumonia associated with higher bacterial burden in the lung and blood, deficient induction of the stress glucocorticoid corticosterone, higher serum cytokines, and increased organ injury. SR-BI(-/-) mice had significantly increased PMN recruitment and cytokine production in the infected airspace. This was associated with defective hematopoietic cell-dependent clearance of lipopolysaccharide from the airspace and increased cytokine production by SR-BI(-/-) macrophages. Corticosterone replacement normalized alveolar neutrophilia but not alveolar cytokines, bacterial burden, or mortality, suggesting that adrenal insufficiency derepresses PMN trafficking to the SR-BI(-/-) airway in a cytokine-independent manner. Despite enhanced alveolar neutrophilia, SR-BI(-/-) mice displayed impaired phagocytic killing. Bone marrow chimeras revealed this defect to be independent of the dyslipidemia and adrenal insufficiency of SR-BI(-/-) mice. During infection, SR-BI(-/-) PMNs displayed deficient oxidant production and CD11b externalization, and increased surface L-selectin, suggesting defective activation. Taken together, SR-BI coordinates several steps in the integrated neutrophilic host defense response to pneumonia.

  17. The single-particle mixing state and cloud scavenging of black carbon: a case study at a high-altitude mountain site in southern China

    NASA Astrophysics Data System (ADS)

    Zhang, Guohua; Lin, Qinhao; Peng, Long; Bi, Xinhui; Chen, Duohong; Li, Mei; Li, Lei; Brechtel, Fred J.; Chen, Jianxin; Yan, Weijun; Wang, Xinming; Peng, Ping'an; Sheng, Guoying; Zhou, Zhen

    2017-12-01

    In the present study, a ground-based counterflow virtual impactor (GCVI) was used to sample cloud droplet residual (cloud RES) particles, while a parallel PM2.5 inlet was used to sample cloud-free or cloud interstitial (cloud INT) particles. The mixing state of black carbon (BC)-containing particles and the mass concentrations of BC in the cloud-free, RES and INT particles were investigated using a single-particle aerosol mass spectrometer (SPAMS) and two aethalometers, respectively, at a mountain site (1690 m a. s. l. ) in southern China. The measured BC-containing particles were extensively internally mixed with sulfate and were scavenged into cloud droplets (with number fractions of 0.05-0.45) to a similar (or slightly lower) extent as all the measured particles (0.07-0.6) over the measured size range of 0.1-1.6 µm. The results indicate the preferential activation of larger particles and/or that the production of secondary compositions shifts the BC-containing particles towards larger sizes. BC-containing particles with an abundance of both sulfate and organics were scavenged less than those with sulfate but limited organics, implying the importance of the mixing state on the incorporation of BC-containing particles into cloud droplets. The mass scavenging efficiency of BC with an average of 33 % was similar for different cloud events independent of the air mass. This is the first time that both the mixing state and cloud scavenging of BC in China have been reported. Our results would improve the knowledge on the concentration, mixing state, and cloud scavenging of BC in the free troposphere.

  18. Plant Carbohydrate Scavenging through TonB-Dependent Receptors: A Feature Shared by Phytopathogenic and Aquatic Bacteria

    PubMed Central

    Boulanger, Alice; Lautier, Martine; Guynet, Catherine; Denancé, Nicolas; Vasse, Jacques

    2007-01-01

    TonB-dependent receptors (TBDRs) are outer membrane proteins mainly known for the active transport of iron siderophore complexes in Gram-negative bacteria. Analysis of the genome of the phytopathogenic bacterium Xanthomonas campestris pv. campestris (Xcc), predicts 72 TBDRs. Such an overrepresentation is common in Xanthomonas species but is limited to only a small number of bacteria. Here, we show that one Xcc TBDR transports sucrose with a very high affinity, suggesting that it might be a sucrose scavenger. This TBDR acts with an inner membrane transporter, an amylosucrase and a regulator to utilize sucrose, thus defining a new type of carbohydrate utilization locus, named CUT locus, involving a TBDR for the transport of substrate across the outer membrane. This sucrose CUT locus is required for full pathogenicity on Arabidopsis, showing its importance for the adaptation to host plants. A systematic analysis of Xcc TBDR genes and a genome context survey suggested that several Xcc TBDRs belong to other CUT loci involved in the utilization of various plant carbohydrates. Interestingly, several Xcc TBDRs and CUT loci are conserved in aquatic bacteria such as Caulobacter crescentus, Colwellia psychrerythraea, Saccharophagus degradans, Shewanella spp., Sphingomonas spp. or Pseudoalteromonas spp., which share the ability to degrade a wide variety of complex carbohydrates and display TBDR overrepresentation. We therefore propose that TBDR overrepresentation and the presence of CUT loci designate the ability to scavenge carbohydrates. Thus CUT loci, which seem to participate to the adaptation of phytopathogenic bacteria to their host plants, might also play a very important role in the biogeochemical cycling of plant-derived nutrients in marine environments. Moreover, the TBDRs and CUT loci identified in this study are clearly different from those characterized in the human gut symbiont Bacteroides thetaiotaomicron, which allow glycan foraging, suggesting a convergent

  19. Host scavenger receptor SR-BI plays a dual role in the establishment of malaria parasite liver infection.

    PubMed

    Rodrigues, Cristina D; Hannus, Michael; Prudêncio, Miguel; Martin, Cécilie; Gonçalves, Lígia A; Portugal, Sílvia; Epiphanio, Sabrina; Akinc, Akin; Hadwiger, Philipp; Jahn-Hofmann, Kerstin; Röhl, Ingo; van Gemert, Geert-Jan; Franetich, Jean-François; Luty, Adrian J F; Sauerwein, Robert; Mazier, Dominique; Koteliansky, Victor; Vornlocher, Hans-Peter; Echeverri, Christophe J; Mota, Maria M

    2008-09-11

    An obligatory step of malaria parasite infection is Plasmodium sporozoite invasion of host hepatocytes, and host lipoprotein clearance pathways have been linked to Plasmodium liver infection. By using RNA interference to screen lipoprotein-related host factors, we show here that the class B, type I scavenger receptor (SR-BI) is the strongest regulator of Plasmodium infection among these factors. Inhibition of SR-BI function reduced P. berghei infection in Huh7 cells, and overexpression of SR-BI led to increased infection. In vivo silencing of liver SR-BI expression in mice and inhibition of SR-BI activity in human primary hepatocytes reduced infection by P. berghei and by P. falciparum, respectively. Heterozygous SR-BI(+/-) mice displayed reduced P. berghei infection rates correlating with liver SR-BI expression levels. Additional analyses revealed that SR-BI plays a dual role in Plasmodium infection, affecting both sporozoite invasion and intracellular parasite development, and may therefore constitute a good target for malaria prophylaxis.

  20. Cytokeratin 8 in Association with sdLDL and ELISA Development

    PubMed Central

    Ashmaig, Mohmed

    2015-01-01

    Background: Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality worldwide. Cytokeratins (CKs) which may also be expressed in vascular smooth muscle cells (SMCs) are generally considered to be markers for the differentiation of epithelial cells. Small, dense, low-density lipoprotein (sdLDL) particles, also termed LDL-IV, independently predict risk of CVD. Aims: The aims of this study were to develop an analytical method, apart from ultracentrifugation capable of isolating sdLDL in order to study any associated proteins. Materials and Methods: Using modified gradient gel electrophoresis (GGE), de-identified sdLDL-enriched plasma was used to physically elute and isolate sdLDL particles. To validate the finding, additional plasma from 77 normal and 48 higher risk subjects were used to measure sdLDL particles and CK8. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting method were used to identify the characteristics of proteins associated with sdLDL. An enzyme-linked immunosorbent assay (ELISA) method was developed and validated for the measurement of CK8 in plasma. Results: The validation of the CK8 ELISA method showed good analytical performance. The isolated sdLDL particles were verified with nondenaturing GGE with the apolipoprotein B component confirmed by Western immunoblotting. Confirmed by SDS-PAGE and Western immunoblotting, CK8 was associated with sdLDL. Two-tailed statistical analysis showed that CK8 and sdLDL particles were significantly higher in the high-risk CVD group compared to control group (P < 0.01 and P < 0.01, respectively). Conclusion: This study reports a novel association between CK8 and sdLDL in individuals with CVD who have a predominance of sdLDL. PMID:26713292

  1. Hyperglycemia and oxidized-LDL exert a deleterious effect on endothelial progenitor cell migration in type 2 diabetes mellitus.

    PubMed

    Hamed, Saher; Brenner, Benjamin; Abassi, Zaid; Aharon, Anat; Daoud, Deeb; Roguin, Ariel

    2010-09-01

    Type 2 diabetes mellitus (DM) patients with coronary artery disease (CAD) have elevated plasma oxidized-LDL (OxLDL) levels and impaired neovascularization. Hyperglycemia and hyperlipidemia impair endothelial progenitor cell (EPC) migration, and endothelial nitric oxide (NO) bioavailability and NO synthase (NOS) activity are essential for EPC migration. Stromal-derived factor-1alpha (SDF1alpha) contributes to EPC mobilization and homing by stimulating the CXC receptor-4 (CXCR4) on the EPC plasmalemma to activate the Pi3K/Akt/eNOS signaling pathway. Therefore, we investigated the effect of high glucose (HG) and OxLDL on the migration and NO bioavailability of EPCs from healthy individuals, and then correlated the findings with those of EPCs from type 2 DM patients with and without CAD. EPCs from 15 healthy and 55 patients were exposed to HG, OxLDL, or both before evaluating EPC count, migration and NO production, and expression of CXCR4 and members of Pi3K/Akt/eNOS signaling cascade. Counts, migration, CXCR4 expression, and NO production were significantly reduced in EPCs from DM and CAD patients compared with that obtained in EPCs from healthy, and were further reduced in DM patients with CAD. The expression of CXCR4 and activation of Pi3K/Akt/eNOS signaling cascade were suppressed in OxLDL- and HG-treated EPCs, and this suppression was exacerbated when EPCs were treated simultaneously with HG and OxLDL. Hyperglycemia and elevated circulating OxLDL in DM patients with CAD severely impair EPC migration. These results suggest that the underlying mechanism for this impaired EPC migration is linked to the CXCR4/Pi3K/Akt/eNOS signaling pathway. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. Nur77 inhibits oxLDL induced apoptosis of macrophages via the p38 MAPK signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Qin; Han, Fei; Peng, Shi

    2016-03-18

    The interaction between macrophages and oxLDL plays a crucial role in the initiation and progression of atherosclerosis. As a key initiator in a number of plaque promoting processes, oxLDL induces variable effects such as cell apoptosis or proliferation. Orphan nuclear receptor Nur77 is potently induced in macrophages by diverse stimuli, suggesting that it is of importance in vascular inflammation resulting in atherosclerosis, but whether Nur77 induction is detrimental or protective is unclear. In our study, we explore the role of Nur77 in the regulation of oxLDL-induced macrophage apoptosis and the signaling pathways that are involved. We found that oxLDL inducedmore » Nur77 expression in a dose and time dependent fashion, and cell viability was decreased in parallel. To determine whether Nur77 induction contributes to the loss of cell viability or is a protective mechanism, the effect of Nur77 overexpression was examined. Importantly, Nur77 overexpression inhibited the oxLDL-induced decrease of cell viability, inhibited the production of apoptotic bodies and restored DNA synthesis following oxLDL exposure. Furthermore, we found that Nur77 induction is mediated through the p38 MAPK signaling pathway. After pretreatment with SB203580, cell viability was decreased, the expression of CyclinA2 and PCNA was attenuated and the percentage of cell apoptosis was enhanced. Likewise, Nur77 overexpression increased the expression of the cell cycle genes PCNA and p21, and attenuated the increase in caspase-3. On the other hand, knockdown of Nur77 expression by specific siRNA resulted in the increased expression of caspase 3. The results demonstrate that Nur77 is induced by oxLDL via the p38 MAPK signaling pathway, which is involved in the regulation of cell survival. Nur77 enhanced cell survival via suppressing apoptosis, without affecting cell proliferation of activated macrophages, which may be beneficial in patients with atherosclerosis. - Highlights: • oxLDL could

  3. Modulation of cutaneous scavenger receptor B1 levels by exogenous stressors impairs "in vitro" wound closure.

    PubMed

    Muresan, Ximena Maria; Sticozzi, Claudia; Belmonte, Giuseppe; Savelli, Vinno; Evelson, Pablo; Valacchi, Giuseppe

    2018-06-01

    Scavenger receptor B1 (SR-B1) is a trans-membrane protein, involved in tissue reverse cholesterol transport. Several studies have demonstrated that SR-B1 is also implicated in other physiological processes, such as bacteria and apoptotic cells recognition and regulation of intracellular tocopherol and carotenoids levels. Among the tissues where it is localized, SR-B1 has been shown to be significantly expressed in human epidermis. Our group has demonstrated that SR-B1 levels are down-regulated in human cultured keratinocytes by environmental stressors, such as cigarette smoke, via cellular redox imbalance. Our present study aimed to investigate whether such down-regulation was confirmed in a 3D skin model and under other environmental challengers such as particulate matter and ozone. We also investigated the association between oxidation-induced SR-B1 modulation and impaired wound closure. The data obtained showed that not only cigarette, but also the other environmental stressors reduced SR-B1 expression in epidermal cutaneous tissues and that this effect might be involved in impaired wound healing. Published by Elsevier B.V.

  4. The composition and metabolism of large and small LDL

    USDA-ARS?s Scientific Manuscript database

    Decreased size and increased density of LDL have been associated with increased coronary heart disease (CHD) risk. Elevated plasma concentrations of small dense LDL (sdLDL) correlate with high plasma triglycerides and low HDL cholesterol levels. This review highlights recent findings about the met...

  5. High-density lipoprotein promotes endothelial cell migration and reendothelialization via scavenger receptor-B type I.

    PubMed

    Seetharam, Divya; Mineo, Chieko; Gormley, Andrew K; Gibson, Linda L; Vongpatanasin, Wanpen; Chambliss, Ken L; Hahner, Lisa D; Cummings, Melissa L; Kitchens, Richard L; Marcel, Yves L; Rader, Daniel J; Shaul, Philip W

    2006-01-06

    Vascular disease risk is inversely related to circulating levels of high-density lipoprotein (HDL) cholesterol. However, the mechanisms by which HDL provides vascular protection are unclear. The disruption of endothelial monolayer integrity is an important contributing factor in multiple vascular disorders, and vascular lesion severity is tempered by enhanced endothelial repair. Here, we show that HDL stimulates endothelial cell migration in vitro in a nitric oxide-independent manner via scavenger receptor B type I (SR-BI)-mediated activation of Rac GTPase. This process does not require HDL cargo molecules, and it is dependent on the activation of Src kinases, phosphatidylinositol 3-kinase, and p44/42 mitogen-activated protein kinases. Rapid initial stimulation of lamellipodia formation by HDL via SR-BI, Src kinases, and Rac is also demonstrable. Paralleling the in vitro findings, carotid artery reendothelialization after perivascular electric injury is blunted in apolipoprotein A-I(-/-) mice, and reconstitution of apolipoprotein A-I expression rescues normal reendothelialization. Furthermore, reendothelialization is impaired in SR-BI(-/-) mice. Thus, HDL stimulates endothelial cell migration via SR-BI-initiated signaling, and these mechanisms promote endothelial monolayer integrity in vivo.

  6. HI-6 assisted catalytic scavenging of VX by acetylcholinesterase choline binding site mutants.

    PubMed

    Maček Hrvat, Nikolina; Žunec, Suzana; Taylor, Palmer; Radić, Zoran; Kovarik, Zrinka

    2016-11-25

    The high toxicity of organophosphorus compounds originates from covalent inhibition of acetylcholinesterase (AChE), an essential enzyme in cholinergic neurotransmission. Poisonings that lead to life-threatening toxic manifestations require immediate treatment that combines administration of anticholinergic drugs and an aldoxime as a reactivator of AChE. An alternative approach to reduce the in vivo toxicity of OPs focuses on the use of bioscavengers against the parent organophosphate. Our previous research showed that AChE mutagenesis can enable aldoximes to substantially accelerate the reactivation of OP-enzyme conjugates, while dramatically slowing down rates of OP-conjugate dealkylation (aging). Herein, we demonstrate an efficient HI-6-assisted VX detoxification, both ex vivo in human blood and in vivo in mice by hAChE mutants modified at the choline binding site (Y337A and Y337A/F338A). The catalytic scavenging of VX in mice improved therapeutic outcomes preventing lethality and resulted in a delayed onset of toxicity symptoms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. The distribution of lectin receptor sites in human breast lesions.

    PubMed

    Skutelsky, E; Hoenig, S; Griffel, B; Alroy, J

    1988-08-01

    Conflicting data regarding the status of A, B, H and T antigens in epithelium of normal, mastopathies, fibroadenomas and carcinomas of the breast stimulated us to re-examine the carbohydrate residues in these condition. Currently, we extended the number of carbohydrate residues studied by using ten different biotinylated lectins as probes and avidin-biotin-peroxidase complex (ABC) as a visualant. In addition, the pattern of lectin staining of cancerous cells in primary and metastatic sites was compared. In primary and metastatic breast carcinomas, lectin receptor sites were stained more intensely with Concanavalia ensiformi agglutinin (*Con A), Ricinus communis agglutinin-I (RCA-I) and wheat germ agglutinin (WGA), than in normal breast, in mastopathies or in fibroadenomas. Cryptic receptor sites for peanut agglutinin (PNA) were stained in all cases of breast carcinomas, while free PNA sites stained only in a few cases of well-differentiated carcinomas. Receptors sites for Ulex europaeus agglutinin-I (UEA-I) stained non-malignant epithelium of patients with blood group H but did not stain malignant cells. The results show significant differences in lectin-binding patterns and staining intensities between normal and non-malignant, and malignant epithelial breast cells. Furthermore, these results indicate that in malignant cells, there is an increased content of sialic acid-rich carbohydrates but not of asialylated glycoconjugates.

  8. LDL electronegativity index: a potential novel index for predicting cardiovascular disease.

    PubMed

    Ivanova, Ekaterina A; Bobryshev, Yuri V; Orekhov, Alexander N

    2015-01-01

    High cardiovascular risk conditions are frequently associated with altered plasma lipoprotein profile, such as elevated low-density lipoprotein (LDL) and LDL cholesterol and decreased high-density lipoprotein. There is, however, accumulating evidence that specific subclasses of LDL may play an important role in cardiovascular disease development, and their relative concentration can be regarded as a more relevant risk factor. LDL particles undergo multiple modifications in plasma that can lead to the increase of their negative charge. The resulting electronegative LDL [LDL(-)] subfraction has been demonstrated to be especially atherogenic, and became a subject of numerous recent studies. In this review, we discuss the physicochemical properties of LDL(-), methods of its detection, atherogenic activity, and relevance of the LDL electronegativity index as a potential independent predictor of cardiovascular risk.

  9. LDL electronegativity index: a potential novel index for predicting cardiovascular disease

    PubMed Central

    Ivanova, Ekaterina A; Bobryshev, Yuri V; Orekhov, Alexander N

    2015-01-01

    High cardiovascular risk conditions are frequently associated with altered plasma lipoprotein profile, such as elevated low-density lipoprotein (LDL) and LDL cholesterol and decreased high-density lipoprotein. There is, however, accumulating evidence that specific subclasses of LDL may play an important role in cardiovascular disease development, and their relative concentration can be regarded as a more relevant risk factor. LDL particles undergo multiple modifications in plasma that can lead to the increase of their negative charge. The resulting electronegative LDL [LDL(–)] subfraction has been demonstrated to be especially atherogenic, and became a subject of numerous recent studies. In this review, we discuss the physicochemical properties of LDL(–), methods of its detection, atherogenic activity, and relevance of the LDL electronegativity index as a potential independent predictor of cardiovascular risk. PMID:26357481

  10. [Association between food behavior and hypercholesterolemia-LDL in university students].

    PubMed

    Salazar Ruiz, Erika Nohemi; Márquez Sandoval, Yolanda Fabiola; Vizmanos Lamotte, Bárbara; Altamirano Martínez, Martha Betzaida; Salgado Bernabé, Aralia Berenice; Salgado Goytia, Lorenzo; Muñoz Valle, José Francisco; Parra Rojas, Isela

    2015-06-01

    Hypercholesterolemia-LDL (H-LDL) is associated with increased risk of cardiovascular disease. The association between H-LDL and feeding has focused on nutritional aspects. The study of the association between eating behavior (EB) and H-LDL in university students, could provide nutritional elements for correction and/or prevention in this population. To assess the association between EB and H-LDL in university students. A cross-sectional study was carried out in a sample of 167 students from the Autonomous University of Guerrero, Mexico. LDL cholesterol in serum was measured and a concentration ≥100 mg/dL was considered hypercholesterolemia. The EB was assessed using a previously validated questionnaire. The association between EB and H-LDL was determined with a bivariate logistic regression, adjusting for sex, age, socioeconomic status, smoking, energy intake, physical activity, presence or absence of obesity and family history. Eating lunch (morning snack) was related with 63% lower risk of H-LDL (OR 0.37; 95% CI 0.15, 0.90). Take food away from home once or twice a week was associated with a fourfold increased risk of H-LDL (R 5.14; 95% CI 1.12, 23.62). Subjects who reported consuming excess food (1 or 2, and 3 or more times/week) had higher risk of H-LDL (OR 3.26; 95% CI 1.10, 9.64 and OR 10.52; 95% CI 2.66, 41.60 respectively). Some usual EB of the university students (Guerrero, Mexico) involve greater risk of H-LDL. To encourage actions corrective and/or preventive focused on these EB, could improve the health of this population. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  11. Electronegative L5-LDL induces the production of G-CSF and GM-CSF in human macrophages through LOX-1 involving NF-κB and ERK2 activation.

    PubMed

    Yang, Tzu-Ching; Chang, Po-Yuan; Kuo, Tzu-Ling; Lu, Shao-Chun

    2017-12-01

    Circulating levels of granulocyte colony-stimulating factor (G-CSF) and granulocyte macrophage colony-stimulating factor (GM-CSF) are associated with the severity of acute myocardial infarction (AMI). However, what causes increases in G-CSF and GM-CSF is unclear. In this study, we investigated whether L5-low-density lipoprotein (LDL), a mildly oxidized LDL from AMI, can induce G-CSF and GM-CSF production in human macrophages. L1-LDL and L5-LDL were isolated through anion-exchange chromatography from AMI plasma. Human macrophages derived from THP-1 and peripheral blood mononuclear cells were treated with L1-LDL, L5-LDL, or copper-oxidized LDL (Cu-oxLDL) and G-CSF and GM-CSF protein levels in the medium were determined. In addition, the effects of L5-LDL on G-CSF and GM-CSF production were tested in lectin-type oxidized LDL receptor-1 (LOX-1), CD36, extracellular signal-regulated kinase (ERK) 1, and ERK2 knockdown THP-1 macrophages. L5-LDL but not L1-LDL or Cu-oxLDL significantly induced production of G-CSF and GM-CSF in macrophages. In vitro oxidation of L1-LDL and L5-LDL altered their ability to induce G-CSF and GM-CSF, suggesting that the degree of oxidation is critical for the effects. Knockdown and antibody neutralization experiments suggested that the effects were caused by LOX-1. In addition, nuclear factor (NF)-κB and ERK1/2 inhibition resulted in marked reductions of L5-LDL-induced G-CSF and GM-CSF production. Moreover, knockdown of ERK2, but not ERK1, hindered L5-LDL-induced G-CSF and GM-CSF production. The results indicate that L5-LDL, a naturally occurring mild oxidized LDL, induced G-CSF and GM-CSF production in human macrophages through LOX-1, ERK2, and NF-κB dependent pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Relationship of baseline HDL subclasses, small dense LDL and LDL triglyceride to cardiovascular events in the AIM-HIGH clinical trial

    PubMed Central

    Albers, John J; Slee, April; Fleg, Jerome L; O’Brien, Kevin D; Marcovina, Santica M

    2016-01-01

    Background and aims Previous results of the AIM-HIGH trial showed that baseline levels of the conventional lipid parameters were not predictive of future cardiovascular (CV) outcomes. The aims of this secondary analysis were to examine the levels of cholesterol in high density lipoprotein (HDL) subclasses (HDL2-C and HDL3-C), small dense low density lipoprotein (sdLDL-C), and LDL triglyceride (LDL-TG) at baseline, as well as the relationship between these levels and CV outcomes. Methods Individuals with CV disease and low baseline HDL-C levels were randomized to simvastatin plus placebo or simvastatin plus extended release niacin (ERN), 1,500 to 2,000 mg/day, with ezetimibe added as needed in both groups to maintain an on-treatment LDL-C in the range of 40 to 80 mg/dL. The primary composite endpoint was death from coronary disease, nonfatal myocardial infarction, ischemic stroke, hospitalization for acute coronary syndrome, or symptom-driven coronary or cerebrovascular revascularization. HDL-C, HDL3-C, sdLDL-C and LDL-TG were measured at baseline by detergent-based homogeneous assays. HDL2-C was computed by the difference between HDL-C and HDL3-C. Analyses were performed on 3,094 study participants who were already on statin therapy prior to enrollment in the trial. Independent contributions of lipoprotein fractions to CV events were determined by Cox proportional hazards modeling. Results Baseline HDL3-C was protective against CV events (HR: 0.84, p=0.043) while HDL-C, HDL2-C, sdLDL-C and LDL-TG were not event-related (HR: 0.96, p=0.369; HR: 1.07, p=0.373; HR: 1.05, p=0.492; HR: 1.03, p=0.554, respectively). Conclusions The results of this secondary analysis of the AIM-HIGH Study indicate that levels of HDL3-C, but not other lipoprotein fractions, are predictive of CV events, suggesting that the HDL3 subclass may be primarily responsible for the inverse association of HDL-C and CV disease. PMID:27320173

  13. Debris buster is a Drosophila scavenger receptor essential for airway physiology.

    PubMed

    Wingen, Almut; Carrera, Pilar; Ekaterini Psathaki, Olympia; Voelzmann, André; Paululat, Achim; Hoch, Michael

    2017-10-01

    Scavenger receptors class B (SR-B) are multifunctional transmembrane proteins, which in vertebrates participate in lipid transport, pathogen clearance, lysosomal delivery and intracellular sorting. Drosophila has 14 SR-B members whose functions are still largely unknown. Here, we reveal a novel role for the SR-B family member Debris buster (Dsb) in Drosophila airway physiology. Larvae lacking dsb show yeast avoidance behavior, hypoxia, and severe growth defects associated with impaired elongation and integrity along the airways. Furthermore, in dsb mutant embryos, the barrier function of the posterior spiracles, which are critical for gas exchange, is not properly established and liquid clearance is locally impaired at the spiracular lumen. We found that Dsb is specifically expressed in a group of distal epithelial cells of the posterior spiracle organ and not throughout the entire airways. Furthermore, tissue-specific knockdown and rescue experiments demonstrate that Dsb function in the airways is only required in the posterior spiracles. Dsb localizes in intracellular vesicles, and a subset of these associate with lysosomes. However, we found that depletion of proteins involved in vesicular transport to the apical membrane, but not in lysosomal function, causes dsb-like airway elongation defects. We propose a model in which Dsb sorts components of the apical extracellular matrix which are essential for airway physiology. Since SR-B LIMP2-deficient mice show reduced expression of several apical plasma membrane proteins, sorting of proteins to the apical membrane is likely an evolutionary conserved function of Dsb and LIMP2. Our data provide insights into a spatially confined function of the SR-B Dsb in intracellular trafficking critical for the physiology of the whole tubular airway network. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The lectin-like oxidized low-density lipoprotein receptor-1 as therapeutic target for atherosclerosis, inflammatory conditions and longevity.

    PubMed

    Ulrich-Merzenich, Gudrun; Zeitler, Heike

    2013-08-01

    The lectin-like oxidized LDL receptor-1 (LOX-1) is a scavenger receptor and is regarded as a central element in the initiation of endothelial dysfunction and its further progression to atherosclerosis. Increasing numbers of studies suggest that therapeutic strategies to modulate LOX-1 will have a broad spectrum of applications ranging from cardiovascular diseases to longevity. The dual role of LOX-1 as a culprit molecule in the process of atherosclerosis and as a danger signal in various tissues is introduced. The structure of the receptor, its ligands and its modulation by known drugs, by natural products (e.g., statins, imipramine, salicylate-based drugs, procyanidins, curcumin) and by new strategies (antisenseRNA, miRNA, pyrrole-imidazol-polyamides, LOX-1 antibodies, lipid apheresis) are described. Therapeutic approaches via transcript regulation, allowing a modulation of LOX-1, may be an easier and safer strategy than a blockade of the receptor. Considering the wide distribution of LOX-1 on different tissues, research on the mechanisms of LOX-1 modulation by drugs and natural products applying "omic"-technologies will not only allow a better understanding of the role of LOX-1 in the processes of atherosclerosis, inflammation and longevity but also support the development of specific LOX-1 modulators, avoiding the initiation of molecular mechanisms which lead to adverse events.

  15. Mapping General Anesthetic Sites in Heteromeric γ-Aminobutyric Acid Type A Receptors Reveals a Potential For Targeting Receptor Subtypes.

    PubMed

    Forman, Stuart A; Miller, Keith W

    2016-11-01

    IV general anesthetics, including propofol, etomidate, alphaxalone, and barbiturates, produce important actions by enhancing γ-aminobutyric acid type A (GABAA) receptor activation. In this article, we review scientific studies that have located and mapped IV anesthetic sites using photoaffinity labeling and substituted cysteine modification protection. These anesthetics bind in transmembrane pockets between subunits of typical synaptic GABAA receptors, and drugs that display stereoselectivity also show remarkably selective interactions with distinct interfacial sites. These results suggest strategies for developing new drugs that selectively modulate distinct GABAA receptor subtypes.

  16. Macrophage Sortilin Promotes LDL Uptake, Foam Cell Formation, and Atherosclerosis

    PubMed Central

    Patel, Kevin M.; Strong, Alanna; Tohyama, Junichiro; Jin, Xueting; Morales, Carlos R.; Billheimer, Jeffery; Millar, John; Kruth, Howard; Rader, Daniel J.

    2015-01-01

    Rationale Non-coding gene variants at the SORT1 locus are strongly associated with LDL-C levels as well as with coronary artery disease (CAD). SORT1 encodes a protein called sortilin, and hepatic sortilin modulates LDL metabolism by targeting apoB-containing lipoproteins to the lysosome. Sortilin is also expressed in macrophages, but its role in macrophage uptake of LDL and in atherosclerosis independent of plasma LDL-C levels is unknown. Objective To determine the effect of macrophage sortilin expression on LDL uptake, foam cell formation, and atherosclerosis. Methods and Results We crossed Sort1−/− mice onto a ‘humanized’ Apobec1−/−; hAPOB Tg background and determined that Sort1 deficiency on this background had no effect on plasma LDL-C levels but dramatically reduced atherosclerosis in the aorta and aortic root. In order to test whether this effect was a result of macrophage sortilin deficiency, we transplanted Sort1−/−;LDLR−/− or Sort1+/+;LDLR−/− bone marrow into Ldlr−/− mice and observed a similar reduction in atherosclerosis in mice lacking hematopoetic sortilin without an effect on plasma LDL-C levels. In an effort to determine the mechanism by which hematopoetic sortilin deficiency reduced atherosclerosis, we found no effect of sortilin deficiency on macrophage recruitment or LPS-induced cytokine release in vivo. In contrast, sortilin deficient macrophages had significantly reduced uptake of native LDL ex vivo and reduced foam cell formation in vivo, whereas sortilin overexpression in macrophages resulted in increased LDL uptake and foam cell formation. Conclusions Macrophage sortilin deficiency protects against atherosclerosis by reducing macrophage uptake of LDL. Sortilin-mediated uptake of native LDL into macrophages may be an important mechanism of foam cell formation and contributor to atherosclerosis development. PMID:25593281

  17. Antisense oligonucleotide reduction of apoB-ameliorated atherosclerosis in LDL receptor-deficient mice[S

    PubMed Central

    Mullick, Adam E.; Fu, Wuxia; Graham, Mark J.; Lee, Richard G.; Witchell, Donna; Bell, Thomas A.; Whipple, Charles P.; Crooke, Rosanne M.

    2011-01-01

    Chronic elevations of plasma apolipoprotein B (apoB) are strongly associated with cardiovascular disease. We have previously demonstrated that inhibition of hepatic apoB mRNA using antisense oligonucleotides (ASO) results in reductions of apoB, VLDL, and LDL in several preclinical animal models and humans. In this study, we evaluated the anti-atherogenic effects of a murine-specific apoB ASO (ISIS 147764) in hypercholesterolemic LDLr deficient (LDLr−/−) mice. ISIS 147764 was administered weekly at 25-100 mg/kg for 10-12 weeks and produced dose-dependent reductions of hepatic apoB mRNA and plasma LDL by 60-90%. No effects on these parameters were seen in mice receiving control ASOs. ApoB ASO treatment also produced dose-dependent reductions of aortic en face and sinus atherosclerosis from 50-90%, with high-dose treatment displaying less disease than the saline-treated, chow-fed LDLr−/− mice. No changes in intestinal cholesterol absorption were seen with apoB ASO treatment, suggesting that the cholesterol-lowering pharmacology of 147764 was primarily due to inhibition of hepatic apoB synthesis and secretion. In summary, ASO-mediated suppression of apoB mRNA expression profoundly reduced plasma lipids and atherogenesis in LDLr−/− mice, leading to the hypothesis that apoB inhibition in humans with impaired LDLr activity may produce similar effects. PMID:21343632

  18. Effects of vulture exclusion on carrion consumption by facultative scavengers.

    PubMed

    Hill, Jacob E; DeVault, Travis L; Beasley, James C; Rhodes, Olin E; Belant, Jerrold L

    2018-03-01

    Vultures provide an essential ecosystem service through removal of carrion, but globally, many populations are collapsing and several species are threatened with extinction. Widespread declines in vulture populations could increase the availability of carrion to other organisms, but the ways facultative scavengers might respond to this increase have not been thoroughly explored. We aimed to determine whether facultative scavengers increase carrion consumption in the absence of vulture competition and whether they are capable of functionally replacing vultures in the removal of carrion biomass from the landscape. We experimentally excluded 65 rabbit carcasses from vultures during daylight hours and placed an additional 65 carcasses that were accessible to vultures in forested habitat in South Carolina, USA during summer (June-August). We used motion-activated cameras to compare carrion use by facultative scavenging species between the experimental and control carcasses. Scavenging by facultative scavengers did not increase in the absence of competition with vultures. We found no difference in scavenger presence between control carcasses and those from which vultures were excluded. Eighty percent of carcasses from which vultures were excluded were not scavenged by vertebrates, compared to 5% of carcasses that were accessible to vultures. At the end of the 7-day trials, there was a 10.1-fold increase in the number of experimental carcasses that were not fully scavenged compared to controls. Facultative scavengers did not functionally replace vultures during summer in our study. This finding may have been influenced by the time of the year in which the study took place, the duration of the trials, and the spacing of carcass sites. Our results suggest that under the warm and humid conditions of our study, facultative scavengers would not compensate for loss of vultures. Carcasses would persist longer in the environment and consumption of carrion would likely shift from

  19. Nicotinic Cholinergic Receptor Binding Sites in the Brain: Regulation in vivo

    NASA Astrophysics Data System (ADS)

    Schwartz, Rochelle D.; Kellar, Kenneth J.

    1983-04-01

    Tritiated acetylcholine was used to measure binding sites with characteristics of nicotinic cholinergic receptors in rat brain. Regulation of the binding sites in vivo was examined by administering two drugs that stimulate nicotinic receptors directly or indirectly. After 10 days of exposure to the cholinesterase inhibitor diisopropyl fluorophosphate, binding of tritiated acetylcholine in the cerebral cortex was decreased. However, after repeated administration of nicotine for 10 days, binding of tritiated acetylcholine in the cortex was increased. Saturation analysis of tritiated acetylcholine binding in the cortices of rats treated with diisopropyl fluorophosphate or nicotine indicated that the number of binding sites decreased and increased, respectively, while the affinity of the sites was unaltered.

  20. Higher chylomicron remnants and LDL particle numbers associate with CD36 SNPs and DNA methylation sites that reduce CD36.

    PubMed

    Love-Gregory, Latisha; Kraja, Aldi T; Allum, Fiona; Aslibekyan, Stella; Hedman, Åsa K; Duan, Yanan; Borecki, Ingrid B; Arnett, Donna K; McCarthy, Mark I; Deloukas, Panos; Ordovas, Jose M; Hopkins, Paul N; Grundberg, Elin; Abumrad, Nada A

    2016-12-01

    Cluster of differentiation 36 (CD36) variants influence fasting lipids and risk of metabolic syndrome, but their impact on postprandial lipids, an independent risk factor for cardiovascular disease, is unclear. We determined the effects of SNPs within a ∼410 kb region encompassing CD36 and its proximal and distal promoters on chylomicron (CM) remnants and LDL particles at fasting and at 3.5 and 6 h following a high-fat meal (Genetics of Lipid Lowering Drugs and Diet Network study, n = 1,117). Five promoter variants associated with CMs, four with delayed TG clearance and five with LDL particle number. To assess mechanisms underlying the associations, we queried expression quantitative trait loci, DNA methylation, and ChIP-seq datasets for adipose and heart tissues that function in postprandial lipid clearance. Several SNPs that associated with higher serum lipids correlated with lower adipose and heart CD36 mRNA and aligned to active motifs for PPARγ, a major CD36 regulator. The SNPs also associated with DNA methylation sites that related to reduced CD36 mRNA and higher serum lipids, but mixed-model analyses indicated that the SNPs and methylation independently influence CD36 mRNA. The findings support contributions of CD36 SNPs that reduce adipose and heart CD36 RNA expression to inter-individual variability of postprandial lipid metabolism and document changes in CD36 DNA methylation that influence both CD36 expression and lipids. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  1. REACTOR FUEL SCAVENGING MEANS

    DOEpatents

    Coffinberry, A.S.

    1962-04-10

    A process for removing fission products from reactor liquid fuel without interfering with the reactor's normal operation or causing a significant change in its fuel composition is described. The process consists of mixing a liquid scavenger alloy composed of about 44 at.% plutoniunm, 33 at.% lanthanum, and 23 at.% nickel or cobalt with a plutonium alloy reactor fuel containing about 3 at.% lanthanum; removing a portion of the fuel and scavenger alloy from the reactor core and replacing it with an equal amount of the fresh scavenger alloy; transferring the portion to a quiescent zone where the scavenger and the plutonium fuel form two distinct liquid layers with the fission products being dissolved in the lanthanum-rich scavenger layer; and the clean plutonium-rich fuel layer being returned to the reactor core. (AEC)

  2. Role of contact inhibition in the regulation of receptor-mediated uptake of low density lipoprotein in cultured vascular endothelial cells.

    PubMed Central

    Vlodavsky, I; Fielding, P E; Fielding, C J; Gospodarowicz, D

    1978-01-01

    Bovine vascular endothelial cells during logarithmic growth bind, internalize, and degrade low density lipoprotein (LDL) via a receptor-mediated pathway. However, contact-inhibited (confluent) monolayers bind but do not internalize LDL. This is in contrast to aortic smooth muscle cells or endothelial cells that have lost the property of contact inhibition. These cells internalize and degrade LDL at both high and low cell densities. The LDL receptors of smooth muscle and sparse endothelial cells down-regulate in response to LDL. In contrast, normal endothelial cells at confluency show little response. When contact inhibition in endothelial monolayers was locally released by wounding, and LDL was present, only cells released from contact inhibition accumulated LDL cholesterol. In smooth muscle cells under the same conditions, the entire culture interiorized lipid. It thus appears that in endothelial cells, unlike smooth muscle cells, contact inhibition is the major factor regulating cellular uptake of LDL cholesteryl ester. Reversal of contact inhibition by wounding provides a mechanism by which the endothelium could be the primary initiator of the atherosclerotic plaque. Images PMID:203937

  3. Precipitation scavenging of aerosol particles at a rural site in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Zikova, Nadezda; Zdimal, Vladimir

    2017-04-01

    Wet deposition is an important removal mechanism of atmospheric aerosol (AA) in the troposphere, transferring AA to the Earth surface in an aqueous form (Seinfeld and Pandis, 1998). Deposition consists of in-cloud (ICS) and below-cloud (BCS) scavenging, both processes depending on the size, chemical composition and concentration of the AA particles (e.g. Laakso et al., 2003; Ladino et al., 2011). Due to the complexity of the processes and high instrumentation and time demands, a complete understanding is still a challenge, although both phenomena have been extensively studied recently (e.g. Andronache et al. 2006; Chate et al. 2011; Collett et al. 2008). In this work, the influence of ICS and BCS, described by the obscurities (mist, fog and shallow fog) and precipitation (drizzle, rain, snow, rain with snow), on submicron atmospheric aerosol particle number size distributions (PNSD) was studied using 5 years of measurements at the rural background station Košetice. The typical PNSD during individual meteorological phenomena were compared, and the change in the concentrations before and after the beginning of the phenomenon, the scavenging coefficient lambda_s, and the rate of change of the AA concentrations with time were computed. It was found that both obscurities and precipitation have a strong influence on the AA concentrations, both on the total number concentrations and on the particle number size distributions. The scavenging not only lowers the total AA concentrations, it even changes the number of modes on the PNSDs. The PNSD main mode is shifted to the larger particles, and the concentrations of particles smaller than 50 nm in diameter are considerably lower. In nucleation mode, however, wet scavenging does not seem to be the main process influencing the AA concentrations, although its considerable effect on the concentration was proved. During obscurities, there is a typical PNSD to which the PNSD converge at any mist/fog/shallow fog event. The

  4. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial.

    PubMed

    Raal, Frederick J; Santos, Raul D; Blom, Dirk J; Marais, A David; Charng, Min-Ji; Cromwell, William C; Lachmann, Robin H; Gaudet, Daniel; Tan, Ju L; Chasan-Taber, Scott; Tribble, Diane L; Flaim, Joann D; Crooke, Stanley T

    2010-03-20

    Homozygous familial hypercholesterolaemia is a rare genetic disorder in which both LDL-receptor alleles are defective, resulting in very high concentrations of LDL cholesterol in plasma and premature coronary artery disease. This study investigated whether an antisense inhibitor of apolipoprotein B synthesis, mipomersen, is effective and safe as an adjunctive agent to lower LDL cholesterol concentrations in patients with this disease. This randomised, double-blind, placebo-controlled, phase 3 study was undertaken in nine lipid clinics in seven countries. Patients aged 12 years and older with clinical diagnosis or genetic confirmation of homozygous familial hypercholesterolaemia, who were already receiving the maximum tolerated dose of a lipid-lowering drug, were randomly assigned to mipomersen 200 mg subcutaneously every week or placebo for 26 weeks. Randomisation was computer generated and stratified by weight (<50 kg vs >/=50 kg) in a centralised blocked randomisation, implemented with a computerised interactive voice response system. All clinical, medical, and pharmacy personnel, and patients were masked to treatment allocation. The primary endpoint was percentage change in LDL cholesterol concentration from baseline. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00607373. 34 patients were assigned to mipomersen and 17 to placebo; data for all patients were analysed. 45 patients completed the 26-week treatment period (28 mipomersen, 17 placebo). Mean concentrations of LDL cholesterol at baseline were 11.4 mmol/L (SD 3.6) in the mipomersen group and 10.4 mmol/L (3.7) in the placebo group. The mean percentage change in LDL cholesterol concentration was significantly greater with mipomersen (-24.7%, 95% CI -31.6 to -17.7) than with placebo (-3.3%, -12.1 to 5.5; p=0.0003). The most common adverse events were injection-site reactions (26 [76%] patients in mipomersen group vs four [24%] in placebo group). Four (12

  5. Oxidized Low-Density Lipoprotein Suppresses Expression of Prostaglandin E Receptor Subtype EP3 in Human THP-1 Macrophages

    PubMed Central

    Sui, Xuxia; Liu, Yanmin; Li, Qi; Liu, Gefei; Song, Xuhong; Su, Zhongjing; Chang, Xiaolan; Zhou, Yingbi; Liang, Bin; Huang, Dongyang

    2014-01-01

    EP3, one of four prostaglandin E2 (PGE2) receptors, is significantly lower in atherosclerotic plaques than in normal arteries and is localized predominantly in macrophages of the plaque shoulder region. However, mechanisms behind this EP3 expression pattern are still unknown. We investigated the underlying mechanism of EP3 expression in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 macrophages with oxidized low-density lipoprotein (oxLDL) treatment. We found that oxLDL decreased EP3 expression, in a dose-dependent manner, at both the mRNA and protein levels. Moreover, oxLDL inhibited nuclear factor-κB (NF-κB)-dependent transcription of the EP3 gene by the activation of peroxisome proliferator-activated receptor-γ (PPAR-γ). Finally, chromatin immunoprecipitation revealed decreased binding of NF-κB to the EP3 promoter with oxLDL and PPAR-γ agonist treatment. Our results show that oxLDL suppresses EP3 expression by activation of PPAR-γ and subsequent inhibition of NF-κB in macrophages. These results suggest that down-regulation of EP3 expression by oxLDL is associated with impairment of EP3-mediated anti-inflammatory effects, and that EP3 receptor activity may exert a beneficial effect on atherosclerosis. PMID:25333975

  6. Relationship of baseline HDL subclasses, small dense LDL and LDL triglyceride to cardiovascular events in the AIM-HIGH clinical trial.

    PubMed

    Albers, John J; Slee, April; Fleg, Jerome L; O'Brien, Kevin D; Marcovina, Santica M

    2016-08-01

    Previous results of the AIM-HIGH trial showed that baseline levels of the conventional lipid parameters were not predictive of future cardiovascular (CV) outcomes. The aims of this secondary analysis were to examine the levels of cholesterol in high density lipoprotein (HDL) subclasses (HDL2-C and HDL3-C), small dense low density lipoprotein (sdLDL-C), and LDL triglyceride (LDL-TG) at baseline, as well as the relationship between these levels and CV outcomes. Individuals with CV disease and low baseline HDL-C levels were randomized to simvastatin plus placebo or simvastatin plus extended release niacin (ERN), 1500 to 2000 mg/day, with ezetimibe added as needed in both groups to maintain an on-treatment LDL-C in the range of 40-80 mg/dL. The primary composite endpoint was death from coronary disease, nonfatal myocardial infarction, ischemic stroke, hospitalization for acute coronary syndrome, or symptom-driven coronary or cerebrovascular revascularization. HDL-C, HDL3-C, sdLDL-C and LDL-TG were measured at baseline by detergent-based homogeneous assays. HDL2-C was computed by the difference between HDL-C and HDL3-C. Analyses were performed on 3094 study participants who were already on statin therapy prior to enrollment in the trial. Independent contributions of lipoprotein fractions to CV events were determined by Cox proportional hazards modeling. Baseline HDL3-C was protective against CV events (HR: 0.84, p = 0.043) while HDL-C, HDL2-C, sdLDL-C and LDL-TG were not event-related (HR: 0.96, p = 0.369; HR: 1.07, p = 0.373; HR: 1.05, p = 0.492; HR: 1.03, p = 0.554, respectively). The results of this secondary analysis of the AIM-HIGH Study indicate that levels of HDL3-C, but not other lipoprotein fractions, are predictive of CV events, suggesting that the HDL3 subclass may be primarily responsible for the inverse association of HDL-C and CV disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Low-density lipoprotein receptor genetic polymorphism in chronic hepatitis C virus Egyptian patients affects treatment response.

    PubMed

    Naga, Mazen; Amin, Mona; Algendy, Dina; Elbadry, Ahmed; Fawzi, May; Foda, Ayman; Esmat, Serag; Sabry, Dina; Rashed, Laila; Gabal, Samia; Kamal, Manal

    2015-10-21

    To correlate a genetic polymorphism of the low-density lipoprotein (LDL) receptor with antiviral responses in Egyptian chronic hepatitis C virus (HCV) patients. Our study included 657 HCV-infected patients with genotype 4 who received interferon-based combination therapy. Patients were divided into two groups based on their response to therapy: 356 were responders, and 301 were non-responders. Patients were compared to 160 healthy controls. All patients and controls underwent a thorough physical examination, measurement of body mass index (BMI) and the following laboratory tests: serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, albumin, total bilirubin, direct bilirubin, prothrombin time, prothrombin concentration, INR, complete blood count, serum creatinine, fasting blood sugar, HCV antibody, and hepatitis B surface antigen. All HCV patients were further subjected to the following laboratory tests: HCV-RNA using quantitative polymerase chain reaction (PCR), antinuclear antibodies, thyroid-stimulating hormone, an LDL receptor (LDLR) genotype study of LDLR exon8c.1171G>A and exon10c.1413G>A using real-time PCR-based assays, abdominal ultrasonography, ultrasonographic-guided liver biopsy, and histopathological examination of liver biopsies. Correlations of LDL receptor polymorphisms with HAI, METAVIR score, presence of steatosis, and BMI were performed in all cases. There were no statistically significant differences in response rates between the different types of interferon used or LDLR exon10c.1413G>A. However, there was a significant difference in the frequency of the LDL receptor exon8c.1171G>A genotype between cases (AA: 25.9%, GA: 22.2%, GG: 51.9%) and controls (AA: 3.8%, GA: 53.1% and GG: 43.1%) (P < 0.001). There was a statistically significant difference in the frequency of the LDLR exon 8C:1171 G>A polymorphism between responders (AA: 3.6%, GA: 15.2%, GG: 81.2%) and non-responders (AA: 52.2%, GA: 30.6%, GG: 17.2%) (P < 0

  8. LDL: The "Bad" Cholesterol

    MedlinePlus

    ... and HDL (good) cholesterol: LDL stands for low-density lipoproteins. It is called the "bad" cholesterol because ... cholesterol in your arteries. HDL stands for high-density lipoproteins. It is called the "good" cholesterol because ...

  9. Oxidized-LDL induce morphological changes and increase stiffness of endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chouinard, Julie A.; Research Centre on Aging, Sherbrooke Geriatric University Institute, Sherbrooke, Quebec; Grenier, Guillaume

    There is increasing evidence suggesting that oxidized low-density lipoproteins (ox-LDL) play a critical role in endothelial injury contributing to the age-related physio-pathological process of atherosclerosis. In this study, the effects of native LDL and ox-LDL on the mechanical properties of living human umbilical vein endothelial cells (HUVEC) were investigated by atomic force microscopy (AFM) force measurements. The contribution of filamentous actin (F-actin) and vimentin on cytoskeletal network organization were also examined by fluorescence microscopy. Our results revealed that ox-LDL had an impact on the HUVEC shape by interfering with F-actin and vimentin while native LDL showed no effect. AFM colloidalmore » force measurements on living individual HUVEC were successfully used to measure stiffness of cells exposed to native and ox-LDL. AFM results demonstrated that the cell body became significantly stiffer when cells were exposed for 24 h to ox-LDL while cells exposed for 24 h to native LDL displayed similar rigidity to that of the control cells. Young's moduli of LDL-exposed HUVEC were calculated using two models. This study thus provides quantitative evidence on biomechanical mechanisms related to endothelial cell dysfunction and may give new insight on strategies aiming to protect endothelial function in atherosclerosis.« less

  10. New paradigms in chemokine receptor signal transduction: Moving beyond the two-site model.

    PubMed

    Kleist, Andrew B; Getschman, Anthony E; Ziarek, Joshua J; Nevins, Amanda M; Gauthier, Pierre-Arnaud; Chevigné, Andy; Szpakowska, Martyna; Volkman, Brian F

    2016-08-15

    Chemokine receptor (CKR) signaling forms the basis of essential immune cellular functions, and dysregulated CKR signaling underpins numerous disease processes of the immune system and beyond. CKRs, which belong to the seven transmembrane domain receptor (7TMR) superfamily, initiate signaling upon binding of endogenous, secreted chemokine ligands. Chemokine-CKR interactions are traditionally described by a two-step/two-site mechanism, in which the CKR N-terminus recognizes the chemokine globular core (i.e. site 1 interaction), followed by activation when the unstructured chemokine N-terminus is inserted into the receptor TM bundle (i.e. site 2 interaction). Several recent studies challenge the structural independence of sites 1 and 2 by demonstrating physical and allosteric links between these supposedly separate sites. Others contest the functional independence of these sites, identifying nuanced roles for site 1 and other interactions in CKR activation. These developments emerge within a rapidly changing landscape in which CKR signaling is influenced by receptor PTMs, chemokine and CKR dimerization, and endogenous non-chemokine ligands. Simultaneous advances in the structural and functional characterization of 7TMR biased signaling have altered how we understand promiscuous chemokine-CKR interactions. In this review, we explore new paradigms in CKR signal transduction by considering studies that depict a more intricate architecture governing the consequences of chemokine-CKR interactions. Published by Elsevier Inc.

  11. Activation of PKC{beta}{sub II} and PKC{theta} is essential for LDL-induced cell proliferation of human aortic smooth muscle cells via Gi-mediated Erk1/2 activation and Egr-1 upregulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, Kyung-Sun; Department of Pharmacy, Chungnam National University, Yuseong, Daejeon; Kim, Dong-Uk

    Native LDL may be a mitogenic stimulus of VSMC proliferation in lesions where endothelial disruption occurs. Recent studies have demonstrated that the mitogenic effects of LDL are accompanied by Erk1/2 activation via an unknown G-protein-coupled receptor (GPCR). In this article, we report that LDL translocated PKC{beta}{sub II} and PKC{theta} from cytosol to plasma membrane, and inhibition of PKC{beta}{sub II} and PKC{theta} decreased LDL effects via the deactivation of Erk1/2. Moreover, pertussis toxin, but not cholera toxin or heparin, inhibited LDL-induced translocation of PKC{beta}{sub II} and PKC{theta}, suggesting that Gi protein plays a role in LDL effects. Of LPA, S1P, andmore » LDL, whose signaling is conveyed via Gi/o proteins, only LDL induced translocation of PKC{beta}{sub II} and PKC{theta}. Inhibition of PKC{beta}{sub II} or PKC{theta}, as well as of Erk1/2 and GPCR, decreases LDL-induced upregulation of Egr-1, which is critical for cell proliferation. This is the first report, to our knowledge, that the participation of PKC{theta} in VSMC proliferation is unique.« less

  12. MicroRNA-155 silencing enhances inflammatory response and lipid uptake in oxidized low-density lipoprotein-stimulated human THP-1 macrophages.

    PubMed

    Huang, Ri-sheng; Hu, Guan-qiong; Lin, Bin; Lin, Zhi-yi; Sun, Cheng-chao

    2010-12-01

    It has been proposed that the inflammatory response of monocytes/macrophages induced by oxidized low-density lipoprotein (oxLDL) is a key event in the pathogenesis of atherosclerosis. MicroRNA-155 (miR-155) is an important regulator of the immune system and has been shown to be involved in acute inflammatory response. However, the function of miR-155 in oxLDL-stimulated inflammation and atherosclerosis remains unclear. Here, we show that the exposure of human THP-1 macrophages to oxLDL led to a marked up-regulation of miR-155 in a dose-dependent manner. Silencing of endogenous miR-155 in THP-1 cells using locked nucleic acid-modified antisense oligonucleotides significantly enhanced oxLDL-induced lipid uptake, up-regulated the expression of scavenger receptors (lectinlike oxidized LDL receptor-1, cluster of differentiation 36 [CD36], and CD68), and promoted the release of several cytokines including interleukin (IL)-6, -8, and tumor necrosis factor α (TNF-α). Luciferase reporter assay showed that targeting miR-155 promoted nuclear factor-kappa B (NF-κB) nuclear translocation and potentiated the NF-κB-driven transcription activity. Moreover, miR-155 knockdown resulted in a marked increase in the protein amount of myeloid differentiation primary response gene 88 (MyD88), an important adapter protein used by Toll-like receptors to activate the NF-κB pathway. Our data demonstrate that miR-155 serves as a negative feedback regulator in oxLDL-stimulated THP-1 inflammatory responses and lipid uptake and thus might have potential therapeutic implications in atherosclerosis.

  13. Deer carcass decomposition and potential scavenger exposure to chronic wasting disease

    USGS Publications Warehouse

    Jennelle, C.S.; Samuel, M.D.; Nolden, C.A.; Berkley, E.A.

    2009-01-01

    Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy afflicting the Cervidae family in North America, causing neurodegeneration and ultimately death. Although there are no reports of natural cross-species transmission of CWD to noncervids, infected deer carcasses pose a potential risk of CWD exposure for other animals. We placed 40 disease-free white-tailed deer (Odocoileus virginianus) carcasses and 10 gut piles in the CWD-affected area of Wisconsin (USA) from September to April in 2003 through 2005. We used photos from remotely operated cameras to characterize scavenger visitation and relative activity. To evaluate factors driving the rate of carcass removal (decomposition), we used KaplanMeier survival analysis and a generalized linear mixed model. We recorded 14 species of scavenging mammals (6 visiting species) and 14 species of scavenging birds (8 visiting species). Prominent scavengers included American crows (Corvus brachyrhynchos), raccoons (Procyon lotor), and Virginia opossums (Didelphis virginiana). We found no evidence that deer consumed conspecific remains, although they visited gut piles more often than carcasses relative to temporal availability in the environment. Domestic dogs, cats, and cows either scavenged or visited carcass sites, which could lead to human exposure to CWD. Deer carcasses persisted for 18 days to 101 days depending on the season and year, whereas gut piles lasted for 3 days. Habitat did not influence carcass decomposition, but mammalian and avian scavenger activity and higher temperatures were positively associated with faster removal. Infected deer carcasses or gut piles can serve as potential sources of CWD prions to a variety of scavengers. In areas where surveillance for CWD exposure is practical, management agencies should consider strategies for testing primary scavengers of deer carcass material.

  14. In Vitro and in Vivo Analysis of the Binding of the C Terminus of the HDL Receptor Scavenger Receptor Class B, Type I (SR-BI), to the PDZ1 Domain of Its Adaptor Protein PDZK1*

    PubMed Central

    Kocher, Olivier; Birrane, Gabriel; Tsukamoto, Kosuke; Fenske, Sara; Yesilaltay, Ayce; Pal, Rinku; Daniels, Kathleen; Ladias, John A. A.; Krieger, Monty

    2010-01-01

    The PDZ1 domain of the four PDZ domain-containing protein PDZK1 has been reported to bind the C terminus of the HDL receptor scavenger receptor class B, type I (SR-BI), and to control hepatic SR-BI expression and function. We generated wild-type (WT) and mutant murine PDZ1 domains, the mutants bearing single amino acid substitutions in their carboxylate binding loop (Lys14-Xaa4-Asn19-Tyr-Gly-Phe-Phe-Leu24), and measured their binding affinity for a 7-residue peptide corresponding to the C terminus of SR-BI (503VLQEAKL509). The Y20A and G21Y substitutions abrogated all binding activity. Surprisingly, binding affinities (Kd) of the K14A and F22A mutants were 3.2 and 4.0 μm, respectively, similar to 2.6 μm measured for the WT PDZ1. To understand these findings, we determined the high resolution structure of WT PDZ1 bound to a 5-residue sequence from the C-terminal SR-BI (505QEAKL509) using x-ray crystallography. In addition, we incorporated the K14A and Y20A substitutions into full-length PDZK1 liver-specific transgenes and expressed them in WT and PDZK1 knock-out mice. In WT mice, the transgenes did not alter endogenous hepatic SR-BI protein expression (intracellular distribution or amount) or lipoprotein metabolism (total plasma cholesterol, lipoprotein size distribution). In PDZK1 knock-out mice, as expected, the K14A mutant behaved like wild-type PDZK1 and completely corrected their hepatic SR-BI and plasma lipoprotein abnormalities. Unexpectedly, the 10–20-fold overexpressed Y20A mutant also substantially, but not completely, corrected these abnormalities. The results suggest that there may be an additional site(s) within PDZK1 that bind(s) SR-BI and mediate(s) productive SR-BI-PDZK1 interaction previously attributed exclusively to the canonical binding of the C-terminal SR-BI to PDZ1. PMID:20739281

  15. Mapping Interaction Sites on Human Chemokine Receptors by Deep Mutational Scanning.

    PubMed

    Heredia, Jeremiah D; Park, Jihye; Brubaker, Riley J; Szymanski, Steven K; Gill, Kevin S; Procko, Erik

    2018-06-01

    Chemokine receptors CXCR4 and CCR5 regulate WBC trafficking and are engaged by the HIV-1 envelope glycoprotein gp120 during infection. We combine a selection of human CXCR4 and CCR5 libraries comprising nearly all of ∼7000 single amino acid substitutions with deep sequencing to define sequence-activity landscapes for surface expression and ligand interactions. After consideration of sequence constraints for surface expression, known interaction sites with HIV-1-blocking Abs were appropriately identified as conserved residues following library sorting for Ab binding, validating the use of deep mutational scanning to map functional interaction sites in G protein-coupled receptors. Chemokine CXCL12 was found to interact with residues extending asymmetrically into the CXCR4 ligand-binding cavity, similar to the binding surface of CXCR4 recognized by an antagonistic viral chemokine previously observed crystallographically. CXCR4 mutations distal from the chemokine binding site were identified that enhance chemokine recognition. This included disruptive mutations in the G protein-coupling site that diminished calcium mobilization, as well as conservative mutations to a membrane-exposed site (CXCR4 residues H79 2.45 and W161 4.50 ) that increased ligand binding without loss of signaling. Compared with CXCR4-CXCL12 interactions, CCR5 residues conserved for gp120 (HIV-1 BaL strain) interactions map to a more expansive surface, mimicking how the cognate chemokine CCL5 makes contacts across the entire CCR5 binding cavity. Acidic substitutions in the CCR5 N terminus and extracellular loops enhanced gp120 binding. This study demonstrates how comprehensive mutational scanning can define functional interaction sites on receptors, and novel mutations that enhance receptor activities can be found simultaneously. Copyright © 2018 by The American Association of Immunologists, Inc.

  16. Activation of Peroxisome Proliferator-activated Receptor γ (PPARγ) and CD36 Protein Expression

    PubMed Central

    Yang, Xiaoxiao; Zhang, Wenwen; Chen, Yuanli; Li, Yan; Sun, Lei; Liu, Ying; Liu, Mengyang; Yu, Miao; Li, Xiaoju; Han, Jihong; Duan, Yajun

    2016-01-01

    Progesterone or its analog, one of components of hormone replacement therapy, may attenuate the cardioprotective effects of estrogen. However, the underlying mechanisms have not been fully elucidated. Expression of CD36, a receptor for oxidized LDL (oxLDL) that enhances macrophage/foam cell formation, is activated by the transcription factor peroxisome proliferator-activated receptor γ (PPARγ). CD36 also functions as a fatty acid transporter to influence fatty acid metabolism and the pathophysiological status of several diseases. In this study, we determined that progesterone induced macrophage CD36 expression, which is related to progesterone receptor (PR) activity. Progesterone enhanced cellular oxLDL uptake in a CD36-dependent manner. Mechanistically, progesterone increased PPARγ expression and PPARγ promoter activity in a PR-dependent manner and the binding of PR with the progesterone response element in the PPARγ promoter. Specific deletion of macrophage PPARγ (MφPPARγ KO) expression in mice abolished progesterone-induced macrophage CD36 expression and cellular oxLDL accumulation. We also determined that, associated with gestation and increased serum progesterone levels, CD36 and PPARγ expression in mouse adipose tissue, skeletal muscle, and peritoneal macrophages were substantially activated. Taken together, our study demonstrates that progesterone can play dual pathophysiological roles by activating PPARγ expression, in which progesterone increases macrophage CD36 expression and oxLDL accumulation, a negative effect on atherosclerosis, and enhances the PPARγ-CD36 pathway in adipose tissue and skeletal muscle, a protective effect on pregnancy. PMID:27226602

  17. Sequences Flanking the Gephyrin-Binding Site of GlyRβ Tune Receptor Stabilization at Synapses

    PubMed Central

    Grünewald, Nora; Salvatico, Charlotte; Kress, Vanessa

    2018-01-01

    Abstract The efficacy of synaptic transmission is determined by the number of neurotransmitter receptors at synapses. Their recruitment depends upon the availability of postsynaptic scaffolding molecules that interact with specific binding sequences of the receptor. At inhibitory synapses, gephyrin is the major scaffold protein that mediates the accumulation of heteromeric glycine receptors (GlyRs) via the cytoplasmic loop in the β-subunit (β-loop). This binding involves high- and low-affinity interactions, but the molecular mechanism of this bimodal binding and its implication in GlyR stabilization at synapses remain unknown. We have approached this question using a combination of quantitative biochemical tools and high-density single molecule tracking in cultured rat spinal cord neurons. The high-affinity binding site could be identified and was shown to rely on the formation of a 310-helix C-terminal to the β-loop core gephyrin-binding motif. This site plays a structural role in shaping the core motif and represents the major contributor to the synaptic confinement of GlyRs by gephyrin. The N-terminal flanking sequence promotes lower affinity interactions by occupying newly identified binding sites on gephyrin. Despite its low affinity, this binding site plays a modulatory role in tuning the mobility of the receptor. Together, the GlyR β-loop sequences flanking the core-binding site differentially regulate the affinity of the receptor for gephyrin and its trapping at synapses. Our experimental approach thus bridges the gap between thermodynamic aspects of receptor-scaffold interactions and functional receptor stabilization at synapses in living cells. PMID:29464196

  18. Antagonism of human CC-chemokine receptor 4 can be achieved through three distinct binding sites on the receptor

    PubMed Central

    Slack, Robert J; Russell, Linda J; Barton, Nick P; Weston, Cathryn; Nalesso, Giovanna; Thompson, Sally-Anne; Allen, Morven; Chen, Yu Hua; Barnes, Ashley; Hodgson, Simon T; Hall, David A

    2013-01-01

    Chemokine receptor antagonists appear to access two distinct binding sites on different members of this receptor family. One class of CCR4 antagonists has been suggested to bind to a site accessible from the cytoplasm while a second class did not bind to this site. In this report, we demonstrate that antagonists representing a variety of structural classes bind to two distinct allosteric sites on CCR4. The effects of pairs of low-molecular weight and/or chemokine CCR4 antagonists were evaluated on CCL17- and CCL22-induced responses of human CCR4+ T cells. This provided an initial grouping of the antagonists into sets which appeared to bind to distinct binding sites. Binding studies were then performed with radioligands from each set to confirm these groupings. Some novel receptor theory was developed to allow the interpretation of the effects of the antagonist combinations. The theory indicates that, generally, the concentration-ratio of a pair of competing allosteric modulators is maximally the sum of their individual effects while that of two modulators acting at different sites is likely to be greater than their sum. The low-molecular weight antagonists could be grouped into two sets on the basis of the functional and binding experiments. The antagonistic chemokines formed a third set whose behaviour was consistent with that of simple competitive antagonists. These studies indicate that there are two allosteric regulatory sites on CCR4. PMID:25505571

  19. P2X(7) is a scavenger receptor for apoptotic cells in the absence of its ligand, extracellular ATP.

    PubMed

    Gu, Ben J; Saunders, Bernadette M; Petrou, Steven; Wiley, James S

    2011-09-01

    Phagocytosis of apoptotic cells is essential during development and tissue remodeling. Our previous study has shown that the P2X(7) receptor regulates phagocytosis of nonopsonized particles and bacteria. In this study, we demonstrate that P2X(7) also mediates phagocytosis of apoptotic lymphocytes and neuronal cells by human monocyte-derived macrophages under serum-free conditions. ATP inhibited this process to a similar extent as observed with cytochalasin D. P2X(7)-transfected HEK-293 cells acquired the ability to phagocytose apoptotic lymphocytes. Injection of apoptotic thymocytes into the peritoneal cavity of wild-type mice resulted in their phagocytosis by macrophages, but injection of ATP prior to thymocytes markedly decreased this uptake. In contrast, ATP failed to inhibit phagocytosis of apoptotic thymocytes in vivo by P2X(7)-deficient peritoneal macrophages. The surface expression of P2X(7) on phagocytes increased significantly during phagocytosis of either beads or apoptotic cells. A peptide screen library containing 24 biotin-conjugated peptides mimicking the extracellular domain of P2X(7) was used to evaluate the binding profile to beads, bacteria, and apoptotic cells. One peptide showed binding to all particles and cell membrane lipids. Three other cysteine-containing peptides uniquely bound the surface of apoptotic cells but not viable cells, whereas substitution of alanine for cysteine abolished peptide binding. Several thiol-reactive compounds including N-acetyl-L-cysteine abolished phagocytosis of apoptotic SH-SY5Y cells by macrophages. These data suggest that the P2X(7) receptor in its unactivated state acts like a scavenger receptor, and its extracellular disulphide bonds play an important role in direct recognition and engulfment of apoptotic cells.

  20. Obesity induced during sexual maturation is linked to LDL-triacylglycerols in Yucatan miniature swine.

    PubMed

    Sébert, Sylvain P; Lecannu, Gérard; Sené, Sandrine; Hucteau, Séverine; Chetiveaux, Maud; Ouguerram, Khadija; Champ, Martine M-J

    2005-08-01

    The incidence of childhood obesity is rising dramatically throughout industrialised countries. To evaluate and study the impact of childhood obesity on lipoprotein metabolism, we developed a new animal model of premature obesity. Yucatan mini-pigs aged 4 months were studied over a 12-month period from childhood to adulthood. Animals were divided into two groups: the first group were overfed a Western misbalanced diet; the second group were normally fed a recommended human-type diet. Cholesterol and triacylglycerol concentrations in VLDL-, LDL- and HDL-lipoproteins were followed from baseline to adulthood by fast protein liquid chromatography. At 10 (the end of sexual maturation) and 16 months old (adulthood), liver, visceral and subcutaneous adipose tissues were sampled. Real-time RT-PCR was performed in order to compare apo AI, apo B, apo C-III, PPAR-alpha, insulin receptor and lipoprotein lipase gene expression between groups and ages. Differences between groups were observed only after sexual maturity. Adult overfed mini-pigs had a higher LDL-cholesterol:HDL-cholesterol ratio (P < 0.05; 0.55 (SE 0.06) for overfed v. 0.42 (SE 0.04) for normally fed pigs at the tenth month of the study). In both groups, VLDL-triacylglycerol decreased (P < 0.05). VLDL-triacylglycerol evolution in the overfed group was associated with an increase in LDL-triacylglycerol plasma concentrations (P < 0.05) after sexual maturation. LDL-triacylglycerol concentration in overfed mini-pigs went from an average of 0.28 mmol/l before sexual maturation to reach an average concentration of 0.56 mmol/l afterwards. This phenomenon has never been observed in similar studies when obesity is induced in adult mini-pigs and may represent a specific hallmark of an obesity induced during sexual maturity.

  1. Two signaling molecules share a phosphotyrosine-containing binding site in the platelet-derived growth factor receptor.

    PubMed

    Nishimura, R; Li, W; Kashishian, A; Mondino, A; Zhou, M; Cooper, J; Schlessinger, J

    1993-11-01

    Autophosphorylation sites of growth factor receptors with tyrosine kinase activity function as specific binding sites for Src homology 2 (SH2) domains of signaling molecules. This interaction appears to be a crucial step in a mechanism by which receptor tyrosine kinases relay signals to downstream signaling pathways. Nck is a widely expressed protein consisting exclusively of SH2 and SH3 domains, the overexpression of which causes cell transformation. It has been shown that various growth factors stimulate the phosphorylation of Nck and its association with autophosphorylated growth factor receptors. A panel of platelet-derived growth factor (PDGF) receptor mutations at tyrosine residues has been used to identify the Nck binding site. Here we show that mutation at Tyr-751 of the PDGF beta-receptor eliminates Nck binding both in vitro and in living cells. Moreover, the Y751F PDGF receptor mutant failed to mediate PDGF-stimulated phosphorylation of Nck in intact cells. A phosphorylated Tyr-751 is also required for binding of phosphatidylinositol-3 kinase to the PDGF receptor. Hence, the SH2 domains of p85 and Nck share a binding site in the PDGF receptor. Competition experiments with different phosphopeptides derived from the PDGF receptor suggest that binding of Nck and p85 is influenced by different residues around Tyr-751. Thus, a single tyrosine autophosphorylation site is able to link the PDGF receptor to two distinct SH2 domain-containing signaling molecules.

  2. Mechanisms of foam cell formation in atherosclerosis.

    PubMed

    Chistiakov, Dimitry A; Melnichenko, Alexandra A; Myasoedova, Veronika A; Grechko, Andrey V; Orekhov, Alexander N

    2017-11-01

    Low-density lipoprotein (LDL) and cholesterol homeostasis in the peripheral blood is maintained by specialized cells, such as macrophages. Macrophages express a variety of scavenger receptors (SR) that interact with lipoproteins, including SR-A1, CD36, and lectin-like oxLDL receptor-1 (LOX-1). These cells also have several cholesterol transporters, including ATP-binding cassette transporter ABCA1, ABCG1, and SR-BI, that are involved in reverse cholesterol transport. Lipids internalized by phagocytosis are transported to late endosomes/lysosomes, where lysosomal acid lipase (LAL) digests cholesteryl esters releasing free cholesterol. Free cholesterol in turn is processed by acetyl-CoA acetyltransferase (ACAT1), an enzyme that transforms cholesterol to cholesteryl esters. The endoplasmic reticulum serves as a depot for maintaining newly synthesized cholesteryl esters that can be processed by neutral cholesterol ester hydrolase (NCEH), which generates free cholesterol that can exit via cholesterol transporters. In atherosclerosis, pro-inflammatory stimuli upregulate expression of scavenger receptors, especially LOX-1, and downregulate expression of cholesterol transporters. ACAT1 is also increased, while NCEH expression is reduced. This results in deposition of free and esterified cholesterol in macrophages and generation of foam cells. Moreover, other cell types, such as endothelial (ECs) and vascular smooth muscle cells (VSMCs), can also become foam cells. In this review, we discuss known pathways of foam cell formation in atherosclerosis.

  3. Endoplasmic reticulum stress in diabetic mouse or glycated LDL-treated endothelial cells: protective effect of Saskatoon berry powder and cyanidin glycans.

    PubMed

    Zhao, Ruozhi; Xie, Xueping; Le, Khuong; Li, Wende; Moghadasian, Mohammed H; Beta, Trust; Shen, Garry X

    2015-11-01

    Endoplasmic reticulum (ER) stress is associated with insulin resistance and diabetic cardiovascular complications, and mechanism or remedy for ER stress remains to be determined. The results of the present study demonstrated that the levels of ER stress or unfolded protein response (UPR) markers, the intensity of thioflavin T (ThT) fluorescence and the abundances of GRP78/94, XBP-1 and CHOP proteins were elevated in cardiovascular tissue of diabetic leptin receptor-deficient (db/db) mice. Cyanidin-3-glucoside (C3G) and cyanidin-3-galactoside (C3Ga) are major anthocyanins in Saskatoon berry (SB) powder. The administration of 5% SB powder for 4 weeks attenuated ThT fluorescence and the UPR markers in hearts and aortae of wild-type and db/db mice. Treatment with glycated low-density lipoprotein (gLDL) increased ThT intensity in human umbilical vein endothelial cells (ECs). Elevated UPR markers were detected in gLDL-treated EC compared to control cultures. The involvement of ER stress in gLDL-treated EC was supported by that the addition of 4-phenyl butyrate acid (a known ER stress antagonist) inhibited gLDL-induced increases in ER stress or UPR markers. C3G at 30 μM or C3Ga at 100 μM reached their maximal inhibition on gLDL-induced increases in ThT, GRP78/94, XBP-1 and CHOP in EC. The results demonstrated that ER stress was enhanced in cardiovascular tissue of db/db mice or gLDL-treated EC. SB powder or cyanidin glycans prevented the abnormal increases in ER stress and UPR markers in cardiovascular tissue of diabetic db/db mice or gLDL-treated EC. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Coarse-Grained Molecular Simulation of Epidermal Growth Factor Receptor Protein Tyrosine Kinase Multi-Site Self-Phosphorylation

    PubMed Central

    Koland, John G.

    2014-01-01

    Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR), the intrinsic protein tyrosine kinase (PTK) activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites) in either of the two C-terminal (CT) domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in molecules such as EGFR

  5. On the antioxidant properties of kynurenic acid: free radical scavenging activity and inhibition of oxidative stress.

    PubMed

    Lugo-Huitrón, R; Blanco-Ayala, T; Ugalde-Muñiz, P; Carrillo-Mora, P; Pedraza-Chaverrí, J; Silva-Adaya, D; Maldonado, P D; Torres, I; Pinzón, E; Ortiz-Islas, E; López, T; García, E; Pineda, B; Torres-Ramos, M; Santamaría, A; La Cruz, V Pérez-De

    2011-01-01

    Kynurenic acid (KYNA) is an endogenous metabolite of the kynurenine pathway for tryptophan degradation and an antagonist of both N-methyl-D-aspartate (NMDA) and alpha-7 nicotinic acetylcholine (α7nACh) receptors. KYNA has also been shown to scavenge hydroxyl radicals (OH) under controlled conditions of free radical production. In this work we evaluated the ability of KYNA to scavenge superoxide anion (O(2)(-)) and peroxynitrite (ONOO(-)). The scavenging ability of KYNA (expressed as IC(50) values) was as follows: OH=O(2)(-)>ONOO(-). In parallel, the antiperoxidative and scavenging capacities of KYNA (0-150 μM) were tested in cerebellum and forebrain homogenates exposed to 5 μM FeSO(4) and 2.5 mM 3-nitropropionic acid (3-NPA). Both FeSO(4) and 3-NPA increased lipid peroxidation (LP) and ROS formation in a significant manner in these preparations, whereas KYNA significantly reduced these markers. Reactive oxygen species (ROS) formation were determined in the presence of FeSO(4) and/or KYNA (0-100 μM), both at intra and extracellular levels. An increase in ROS formation was induced by FeSO(4) in forebrain and cerebellum in a time-dependent manner, and KYNA reduced this effect in a concentration-dependent manner. To further know whether the effect of KYNA on oxidative stress is independent of NMDA and nicotinic receptors, we also tested KYNA (0-100 μM) in a biological preparation free of these receptors - defolliculated Xenopus laevis oocytes - incubated with FeSO(4) for 1 h. A 3-fold increase in LP and a 2-fold increase in ROS formation were seen after exposure to FeSO(4), whereas KYNA attenuated these effects in a concentration-dependent manner. In addition, the in vivo formation of OH evoked by an acute infusion of FeSO(4) (100 μM) in the rat striatum was estimated by microdialysis and challenged by a topic infusion of KYNA (1 μM). FeSO(4) increased the striatal OH production, while KYNA mitigated this effect. Altogether, these data strongly suggest that KYNA

  6. Low-density lipoprotein receptor genetic polymorphism in chronic hepatitis C virus Egyptian patients affects treatment response

    PubMed Central

    Naga, Mazen; Amin, Mona; Algendy, Dina; Elbadry, Ahmed; Fawzi, May; Foda, Ayman; Esmat, Serag; Sabry, Dina; Rashed, Laila; Gabal, Samia; Kamal, Manal

    2015-01-01

    AIM: To correlate a genetic polymorphism of the low-density lipoprotein (LDL) receptor with antiviral responses in Egyptian chronic hepatitis C virus (HCV) patients. METHODS: Our study included 657 HCV-infected patients with genotype 4 who received interferon-based combination therapy. Patients were divided into two groups based on their response to therapy: 356 were responders, and 301 were non-responders. Patients were compared to 160 healthy controls. All patients and controls underwent a thorough physical examination, measurement of body mass index (BMI) and the following laboratory tests: serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, albumin, total bilirubin, direct bilirubin, prothrombin time, prothrombin concentration, INR, complete blood count, serum creatinine, fasting blood sugar, HCV antibody, and hepatitis B surface antigen. All HCV patients were further subjected to the following laboratory tests: HCV-RNA using quantitative polymerase chain reaction (PCR), antinuclear antibodies, thyroid-stimulating hormone, an LDL receptor (LDLR) genotype study of LDLR exon8c.1171G>A and exon10c.1413G>A using real-time PCR-based assays, abdominal ultrasonography, ultrasonographic-guided liver biopsy, and histopathological examination of liver biopsies. Correlations of LDL receptor polymorphisms with HAI, METAVIR score, presence of steatosis, and BMI were performed in all cases. RESULTS: There were no statistically significant differences in response rates between the different types of interferon used or LDLR exon10c.1413G>A. However, there was a significant difference in the frequency of the LDL receptor exon8c.1171G>A genotype between cases (AA: 25.9%, GA: 22.2%, GG: 51.9%) and controls (AA: 3.8%, GA: 53.1% and GG: 43.1%) (P < 0.001). There was a statistically significant difference in the frequency of the LDLR exon 8C:1171 G>A polymorphism between responders (AA: 3.6%, GA: 15.2%, GG: 81.2%) and non-responders (AA: 52.2%, GA: 30

  7. Mechanism and Site of Inhibition of AMPA Receptors: Pairing a Thiadiazole with a 2,3-Benzodiazepine Scaffold

    PubMed Central

    2013-01-01

    2,3-Benzodiazepine compounds are synthesized as drug candidates for treatment of various neurological disorders involving excessive activity of AMPA receptors. Here we report that pairing a thiadiazole moiety with a 2,3-benzodiazepine scaffold via the N-3 position yields an inhibitor type with >28-fold better potency and selectivity on AMPA receptors than the 2,3-benzodiazepine scaffold alone. Using whole-cell recording, we characterized two thiadiazolyl compounds, that is, one contains a 1,3,4-thiadiazole moiety and the other contains a 1,2,4-thiadiazole-3-one moiety. These compounds exhibit potent, equal inhibition of both the closed-channel and the open-channel conformations of all four homomeric AMPA receptor channels and two GluA2R-containing complex AMPA receptor channels. Furthermore, these compounds bind to the same receptor site as GYKI 52466 does, a site we previously termed as the “M” site. A thiadiazole moiety is thought to occupy more fully the side pocket of the receptor site or the “M” site, thereby generating a stronger, multivalent interaction between the inhibitor and the receptor binding site. We suggest that, as a heterocycle, a thiadiazole can be further modified chemically to produce a new class of even more potent, noncompetitive inhibitors of AMPA receptors. PMID:24313227

  8. FOLLITROPIN RECEPTORS CONTAIN CRYPTIC LIGAND BINDING SITES1

    PubMed Central

    Lin, Win; Bernard, Michael P.; Cao, Donghui; Myers, Rebecca V.; Kerrigan, John E.; Moyle, William R.

    2007-01-01

    Human choriogonadotropin (hCG) and follitropin (hFSH) have been shown to contact different regions of the extracellular domains of G-protein coupled lutropin (LHR) and follitropin (FSHR) receptors. We report here that hCG and hFSH analogs interact with an FSHR/LHR chimera having only two unique LHR residues similar to the manners in which they dock with LHR and FSHR, respectively. This shows that although the FSHR does not normally bind hCG, it contains a cryptic lutropin binding site that has the potential to recognize hCG in a manner similar to the LHR. The presence of this cryptic site may explain why equine lutropins bind many mammalian FSHR and why mutations in the transmembrane domain distant from the extracellular domain enable the FSHR to bind hCG. The leucine-rich repeat domain (LRD) of the FSHR also appears to contain a cryptic FSH binding site that is obscured by other parts of the extracellular domain. This will explain why contacts seen in crystals of hFSH complexed with an LRD fragment of the human FSHR are hard to reconcile with the abilities of FSH analogs to interact with membrane G-protein coupled FSHR. We speculate that cryptic lutropin binding sites in the FSHR, which are also likely to be present in thyrotropin receptors (TSHR), permit the physiological regulation of ligand binding specificity. Cryptic FSH binding sites in the LRD may enable alternate spliced forms of the FSHR to interact with FSH. PMID:17059863

  9. In vitro and in vivo Analysis of the Binding of the C Terminus of the HDL Receptor Scavenger Receptor Class B type I (SR-BI) to the PDZ1 Domain of its Cytoplasmic Adaptor Protein PDZK1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O Kocher; G Birrane; K Tsukamoto

    2011-12-31

    The PDZ1 domain of the four PDZ domain-containing protein PDZK1 has been reported to bind the C terminus of the HDL receptor scavenger receptor class B, type I (SR-BI), and to control hepatic SR-BI expression and function. We generated wild-type (WT) and mutant murine PDZ1 domains, the mutants bearing single amino acid substitutions in their carboxylate binding loop (Lys(14)-Xaa(4)-Asn(19)-Tyr-Gly-Phe-Phe-Leu(24)), and measured their binding affinity for a 7-residue peptide corresponding to the C terminus of SR-BI ((503)VLQEAKL(509)). The Y20A and G21Y substitutions abrogated all binding activity. Surprisingly, binding affinities (K(d)) of the K14A and F22A mutants were 3.2 and 4.0 ?M,more » respectively, similar to 2.6 ?M measured for the WT PDZ1. To understand these findings, we determined the high resolution structure of WT PDZ1 bound to a 5-residue sequence from the C-terminal SR-BI ((505)QEAKL(509)) using x-ray crystallography. In addition, we incorporated the K14A and Y20A substitutions into full-length PDZK1 liver-specific transgenes and expressed them in WT and PDZK1 knock-out mice. In WT mice, the transgenes did not alter endogenous hepatic SR-BI protein expression (intracellular distribution or amount) or lipoprotein metabolism (total plasma cholesterol, lipoprotein size distribution). In PDZK1 knock-out mice, as expected, the K14A mutant behaved like wild-type PDZK1 and completely corrected their hepatic SR-BI and plasma lipoprotein abnormalities. Unexpectedly, the 10-20-fold overexpressed Y20A mutant also substantially, but not completely, corrected these abnormalities. The results suggest that there may be an additional site(s) within PDZK1 that bind(s) SR-BI and mediate(s) productive SR-BI-PDZK1 interaction previously attributed exclusively to the canonical binding of the C-terminal SR-BI to PDZ1.« less

  10. Increased ability of LDL from normolipidemic type 2 diabetic women to generate peroxides.

    PubMed

    Guerci, B; Antebi, H; Meyer, L; Durlach, V; Ziegler, O; Nicolas, J P; Alcindor, L G; Drouin, P

    1999-09-01

    We assessed the ability of LDL from 30 type 1 diabetic patients (18 men, 12 women), 65 type 2 diabetic patients (35 men, 30 women), and 35 controls (19 men, 16 women) to generate peroxides. The men and women in the diabetic groups were studied separately and matched for age, body mass index, duration of diabetes, glycohemoglobin, and conventional lipid characteristics according to the presence or absence of hyperlipidemia. The ability of LDL to form peroxides was assessed by measuring the thiobarbituric acid-reactive substances corrected for LDL-cholesterol [ratio of malondialdehyde (MDA) to LDL-cholesterol]. LDL particle size was expressed as the ratio of LDL-cholesterol to apolipoprotein B (LDL-cholesterol/apoB). The MDA/LDL-cholesterol ratio was higher in type 1 and type 2 diabetic patients with hyperlipidemia than in controls. The MDA/LDL-cholesterol ratio was also higher in type 2 normolipidemic women than in controls (P <0.01). The LDL-cholesterol/apoB ratio was lower in type 2 diabetic women than in type 2 diabetic men (P <0.05). The MDA/LDL-cholesterol ratio was negatively correlated with the LDL-cholesterol/apoB ratio (r = -0.78, P <0.001) in hyperlipidemic type 1 (not type 2) diabetic patients. In normolipidemic type 2 diabetic patients, the MDA/LDL-cholesterol ratio was also negatively correlated with the LDL-cholesterol/apoB ratio (r = -0.75, P <0.001) because of the highly significant negative correlation in type 2 diabetic women (r = -0.89, P <0.01). LDL from well-controlled type 2 diabetic women is smaller and more prone to form peroxides. This could explain why diabetic women are at greater risk of cardiovascular disease.

  11. LOX-1 activation by oxLDL triggers an epithelial mesenchymal transition and promotes tumorigenic potential in prostate cancer cells.

    PubMed

    González-Chavarría, I; Fernandez, E; Gutierrez, N; González-Horta, E E; Sandoval, F; Cifuentes, P; Castillo, C; Cerro, R; Sanchez, O; Toledo, Jorge R

    2018-02-01

    Obesity is related to an increased risk of developing prostate cancer with high malignancy stages or metastasis. Recent results demonstrated that LOX-1, a receptor associated with obesity and atherosclerosis, is overexpressed in advanced and metastatic prostate cancer. Furthermore, high levels of oxLDL, the main ligand for LOX-1, have been found in patients with advanced prostate cancer. However, the role of LOX-1 in prostate cancer has not been unraveled completely yet. Here, we show that LOX-1 is overexpressed in prostate cancer cells and its activation by oxLDL promotes an epithelial to mesenchymal transition, through of lowered expression of epithelial markers (E-cadherin and plakoglobin) and an increased expression of mesenchymal markers (vimentin, N-cadherin, snail, slug, MMP-2 and MMP-9). Consequently, LOX-1 activation by oxLDL promotes actin cytoskeleton restructuration and MMP-2 and MMP-9 activity inducing prostate cancer cell invasion and migration. Additionally, LOX-1 increased the tumorigenic potential of prostate cancer cells and its expression was necessary for tumor growth in nude mice. In conclusion, our results suggest that oxLDL/LOX-1 could be ones of mechanisms that explain why obese patients with prostate cancer have an accelerated tumor progression and a greater probability of developing metastasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Mitotic spindle defects and chromosome mis-segregation induced by LDL/cholesterol-implications for Niemann-Pick C1, Alzheimer's disease, and atherosclerosis.

    PubMed

    Granic, Antoneta; Potter, Huntington

    2013-01-01

    Elevated low-density lipoprotein (LDL)-cholesterol is a risk factor for both Alzheimer's disease (AD) and Atherosclerosis (CVD), suggesting a common lipid-sensitive step in their pathogenesis. Previous results show that AD and CVD also share a cell cycle defect: chromosome instability and up to 30% aneuploidy-in neurons and other cells in AD and in smooth muscle cells in atherosclerotic plaques in CVD. Indeed, specific degeneration of aneuploid neurons accounts for 90% of neuronal loss in AD brain, indicating that aneuploidy underlies AD neurodegeneration. Cell/mouse models of AD develop similar aneuploidy through amyloid-beta (Aß) inhibition of specific microtubule motors and consequent disruption of mitotic spindles. Here we tested the hypothesis that, like upregulated Aß, elevated LDL/cholesterol and altered intracellular cholesterol homeostasis also causes chromosomal instability. Specifically we found that: 1) high dietary cholesterol induces aneuploidy in mice, satisfying the hypothesis' first prediction, 2) Niemann-Pick C1 patients accumulate aneuploid fibroblasts, neurons, and glia, demonstrating a similar aneugenic effect of intracellular cholesterol accumulation in humans 3) oxidized LDL, LDL, and cholesterol, but not high-density lipoprotein (HDL), induce chromosome mis-segregation and aneuploidy in cultured cells, including neuronal precursors, indicating that LDL/cholesterol directly affects the cell cycle, 4) LDL-induced aneuploidy requires the LDL receptor, but not Aß, showing that LDL works differently than Aß, with the same end result, 5) cholesterol treatment disrupts the structure of the mitotic spindle, providing a cell biological mechanism for its aneugenic activity, and 6) ethanol or calcium chelation attenuates lipoprotein-induced chromosome mis-segregation, providing molecular insights into cholesterol's aneugenic mechanism, specifically through its rigidifying effect on the cell membrane, and potentially explaining why ethanol

  13. Differential regulation of the human progesterone receptor gene through an estrogen response element half site and Sp1 sites.

    PubMed

    Petz, Larry N; Ziegler, Yvonne S; Schultz, Jennifer R; Kim, Hwajin; Kemper, J Kim; Nardulli, Ann M

    2004-02-01

    The progesterone receptor (PR) gene is regulated by estrogen in normal reproductive tissues and in MCF-7 human breast cancer cells. Although it is generally thought that estrogen responsiveness is mediated by interaction of the ligand-occupied estrogen receptor (ER) with estrogen response elements (EREs) in target genes, the human progesterone receptor (PR) gene lacks a palindromic ERE. Promoter A of the PR gene does, however, contain an ERE half site upstream of two adjacent Sp1 sites from +571 to +595, the +571 ERE/Sp1 site. We have examined the individual contributions of the ERE half site and the two Sp1 sites in regulating estrogen responsiveness. Transient transfection assays demonstrated that both Sp1 sites were critical for estrogen-mediated activation of the PR gene. Interestingly, rather than decreasing transcription, mutations in the ERE half site increased transcription substantially suggesting that this site plays a role in limiting transcription. Chromatin immunoprecipitation assays demonstrated that Sp1 was associated with the +571 ERE/Sp1 site in the endogenous PR gene in the absence and in the presence of estrogen, but that ERalpha was only associated with this region of the PR gene after MCF-7 cells had been treated with estrogen. Our studies provide evidence that effective regulation of transcription through the +571 ERE/Sp1 site requires the binding of ERalpha and Sp1 to their respective cis elements and the appropriate interaction of ERalpha and Sp1 with other coregulatory proteins and transcription factors.

  14. C1q/TNF-Related Protein-9 Ameliorates Ox-LDL-Induced Endothelial Dysfunction via PGC-1α/AMPK-Mediated Antioxidant Enzyme Induction

    PubMed Central

    Sun, Haijian; Zhu, Xuexue; Zhou, Yuetao; Cai, Weiwei; Qiu, Liying

    2017-01-01

    Oxidized low-density lipoprotein (ox-LDL) accumulation is one of the critical determinants in endothelial dysfunction in many cardiovascular diseases such as atherosclerosis. C1q/TNF-related protein 9 (CTRP9) is identified to be an adipocytokine with cardioprotective properties. However, the potential roles of CTRP9 in endothelial function remain largely elusive. In the present study, the effects of CTRP9 on the proliferation, apoptosis, migration, angiogenesis, nitric oxide (NO) production and oxidative stress in human umbilical vein endothelial cells (HUVECs) exposed to ox-LDL were investigated. We observed that treatment with ox-LDL inhibited the proliferation, migration, angiogenesis and the generation of NO, while stimulated the apoptosis and reactive oxygen species (ROS) production in HUVECs. Incubation of HUVECs with CTRP9 rescued ox-LDL-induced endothelial injury. CTRP9 treatment reversed ox-LDL-evoked decreases in antioxidant enzymes including heme oxygenase-1 (HO-1), nicotinamide adenine dinucleotide phosphate (NAD(P)H) dehydrogenase quinone 1, and glutamate-cysteine ligase (GCL), as well as endothelial nitric oxide synthase (eNOS). Furthermore, CTRP9 induced activation of peroxisome proliferator-activated receptor γ co-activator 1α (PGC1-α) and phosphorylation of adenosine monophosphate-activated protein kinase (AMPK). Of interest, AMPK inhibition or PGC1-α silencing abolished CTRP9-mediated antioxidant enzymes levels, eNOS expressions, and endothelial protective effects. Collectively, we provided the first evidence that CTRP9 attenuated ox-LDL-induced endothelial injury by antioxidant enzyme inductions dependent on PGC-1α/AMPK activation. PMID:28587104

  15. Atypical chemokine receptors in cancer: friends or foes?

    PubMed

    Massara, Matteo; Bonavita, Ornella; Mantovani, Alberto; Locati, Massimo; Bonecchi, Raffaella

    2016-06-01

    The chemokine system is a fundamental component of cancer-related inflammation involved in all stages of cancer development. It controls not only leukocyte infiltration in primary tumors but also angiogenesis, cancer cell proliferation, and migration to metastatic sites. Atypical chemokine receptors are a new, emerging class of regulators of the chemokine system. They control chemokine bioavailability by scavenging, transporting, or storing chemokines. They can also regulate the activity of canonical chemokine receptors with which they share the ligands by forming heterodimers or by modulating their expression levels or signaling activity. Here, we summarize recent results about the role of these receptors (atypical chemokine receptor 1/Duffy antigen receptor for chemokine, atypical chemokine receptor 2/D6, atypical chemokine receptor 3/CXC-chemokine receptor 7, and atypical chemokine receptor 4/CC-chemokine receptor-like 1) on the tumorigenesis process, indicating that their effects are strictly dependent on the cell type on which they are expressed and on their coexpression with other chemokine receptors. Indeed, atypical chemokine receptors inhibit tumor growth and progression through their activity as negative regulators of chemokine bioavailability, whereas, on the contrary, they can promote tumorigenesis when they regulate the signaling of other chemokine receptors, such as CXC-chemokine receptor 4. Thus, atypical chemokine receptors are key components of the regulatory network of inflammation and immunity in cancer and may have a major effect on anti-inflammatory and immunotherapeutic strategies. © Society for Leukocyte Biology.

  16. Fluid-Phase Pinocytosis of Native Low Density Lipoprotein Promotes Murine M-CSF Differentiated Macrophage Foam Cell Formation

    PubMed Central

    Xu, Qing; Bohnacker, Thomas; Wymann, Matthias P.; Kruth, Howard S.

    2013-01-01

    During atherosclerosis, low-density lipoprotein (LDL)-derived cholesterol accumulates in macrophages to form foam cells. Macrophage uptake of LDL promotes foam cell formation but the mechanism mediating this process is not clear. The present study investigates the mechanism of LDL uptake for macrophage colony-stimulating factor (M-CSF)-differentiated murine bone marrow-derived macrophages. LDL receptor-null (LDLR−/−) macrophages incubated with LDL showed non-saturable accumulation of cholesterol that did not down-regulate for the 24 h examined. Incubation of LDLR−/− macrophages with increasing concentrations of 125I-LDL showed non-saturable macrophage LDL uptake. A 20-fold excess of unlabeled LDL had no effect on 125I-LDL uptake by wild-type macrophages and genetic deletion of the macrophage scavenger receptors CD36 and SRA did not affect 125I-LDL uptake, showing that LDL uptake occurred by fluid-phase pinocytosis independently of receptors. Cholesterol accumulation was inhibited approximately 50% in wild-type and LDLR−/− mice treated with LY294002 or wortmannin, inhibitors of all classes of phosphoinositide 3-kinases (PI3K). Time-lapse, phase-contrast microscopy showed that macropinocytosis, an important fluid-phase uptake pathway in macrophages, was blocked almost completely by PI3K inhibition with wortmannin. Pharmacological inhibition of the class I PI3K isoforms alpha, beta, gamma or delta did not affect macrophage LDL-derived cholesterol accumulation or macropinocytosis. Furthermore, macrophages from mice expressing kinase-dead class I PI3K beta, gamma or delta isoforms showed no decrease in cholesterol accumulation or macropinocytosis when compared with wild-type macrophages. Thus, non-class I PI3K isoforms mediated macropinocytosis in these macrophages. Further characterization of the components necessary for LDL uptake, cholesterol accumulation, and macropinocytosis identified dynamin, microtubules, actin, and vacuolar type H(+)-ATPase as

  17. LOX-1 in atherosclerosis: biological functions and pharmacological modifiers

    PubMed Central

    Xu, Suowen; Ogura, Sayoko; Chen, Jiawei; Little, Peter J.; Moss, Joel; Liu, Peiqing

    2013-01-01

    Lectin-like oxidized LDL (oxLDL) receptor-1 (LOX-1, also known as OLR-1), is a class E scavenger receptor that mediates the uptake of oxLDL by vascular cells. LOX-1 is involved in endothelial dysfunction, monocyte adhesion, the proliferation, migration, and apoptosis of smooth muscle cells, foam cell formation, platelet activation, as well as plaque instability; all of these events are critical in the pathogenesis of atherosclerosis. These LOX-1-dependent biological processes contribute to plaque instability and the ultimate clinical sequelae of plaque rupture and life-threatening tissue ischemia. Administration of anti-LOX-1 antibodies inhibits atherosclerosis by decreasing these cellular events. Over the past decade, multiple drugs including naturally occurring antioxidants, statins, antiinflammatory agents, antihypertensive and antihyperglycemic drugs have been demonstrated to inhibit vascular LOX-1 expression and activity. Therefore, LOX-1 represents an attractive therapeutic target for the treatment of human atherosclerotic diseases. This review aims to integrate the current understanding of LOX-1 signaling, regulation of LOX-1 by vasculoprotective drugs, and the importance of LOX-1 in the pathogenesis of atherosclerosis. PMID:23124189

  18. Streptococcal Serum Opacity Factor Increases Hepatocyte Uptake of Human Plasma High Density Lipoprotein-Cholesterol1

    PubMed Central

    Gillard, Baiba K.; Rosales, Corina; Pillai, Biju K.; Lin, Hu Yu; Courtney, Harry S.; Pownall, Henry J.

    2010-01-01

    Serum opacity factor (SOF), a virulence determinant of Streptococcus pyogenes, converts plasma high density lipoproteins (HDL) to three distinct species: lipid-free apolipoprotein (apo) A-I, neo HDL, a small discoidal HDL-like particle, and a large cholesteryl ester-rich microemulsion (CERM), that contains the cholesterol esters (CE) of up to ~400,000 HDL particles and apo E as its major protein. Similar SOF reaction products are obtained with HDL, total plasma lipoproteins and whole plasma. We hypothesized that hepatic uptake of CERM-CE via multiple apo E dependent receptors would be faster than that of HDL-CE. We tested our hypothesis using human hepatoma cells and lipoprotein receptor-specific Chinese hamster ovary (CHO) cells. [3H]CE uptake by HepG2 and Huh7 cells from HDL after SOF treatment, which transfers >90% of HDL-CE to CERM, was respectively 2.4 and 4.5 times faster than from control HDL. CERM-[3H]CE uptake was inhibited by LDL and HDL, suggestive of uptake by both the LDL receptor (LDL-R) and scavenger receptor class B type I (SR-BI). Studies in CHO cells specifically expressing LDL-R and SR-BI confirmed CERM-[3H]CE uptake by both receptors. RAP and heparin inhibit CERM-[3H]CE but not HDL-[3H]CE uptake thereby implicating LRP-1 and cell surface proteoglycans in this process. These data demonstrate that SOF treatment of HDL increases CE uptake via multiple hepatic apo E receptors. In so doing, SOF might increase hepatic disposal of plasma cholesterol in a way that is therapeutically useful. PMID:20879789

  19. Intercomparison between Individual Particles Scavenged as CCN and Those Collected at Ground-based Site on West Coast of Japan During Asian Dust Storm

    NASA Astrophysics Data System (ADS)

    Ma, C. J.; Tohno, S.; Kasahara, M.; Hayakawa, S.

    2002-12-01

    Asian dust storm particles can affect precipitation composition because they are either incorporated into cloud via condensation of water vapour (nucleation) or due to the uptake of particles by existing droplets. And subsequently they affect aquatic and terrestrial ecosystems. In order to study the intercorrelation between the chemical natures of both the particles collected at ground-based site and those scavenged as CCN, the intensive field measurement was carried out on west coast of Japan (Yasaka, Tango Peninsula, 35.62°N; 135.07°E) during dense Asian dust storm event on March 22, 2002. Due to the size dependence of the chemical composition of aerosol particle, size-segregated aerosol particles were collect using Low pressure Andersen impactor sampler. Also, to collect cloud droplets individually, a particular method for the cloud droplet replication was newly applied using collodion (nitrocellulose) film. Sampling of cloud droplets was performed at summit of a mountain (680 m) in Yasaka. To analyze the ambient individual aerosol particles and individual retained particles in cloud droplet, X-ray fluorescence (XRF) analytical method set at SPring-8 on BL39XU was applied. Analytical result enables us not only to compare the characteristics of individual particles scavenged as CCN and those collected at ground-based site, but also to estimate the influence of long-range transport.

  20. Peroxynitrite scavenging activity of herb extracts.

    PubMed

    Choi, Hye Rhi; Choi, Jae Sue; Han, Yong Nam; Bae, Song Ja; Chung, Hae Young

    2002-06-01

    Peroxynitrite (ONOO(-)) is a cytotoxicant with strong oxidizing properties toward various cellular constituents, including sulphydryls, lipids, amino acids and nucleotides and can cause cell death, lipid peroxidation, carcinogenesis and aging. The aim of this study was to characterize ONOO(-) scavenging constituents from herbs. Twenty-eight herbs were screened for their ONOO(-) scavenging activities with the use of a fluorometric method. The potency of scavenging activity following the addition of authentic ONOO(-) was in the following order: witch hazel bark > rosemary > jasmine tea > sage > slippery elm > black walnut leaf > Queen Anne's lace > Linden flower. The extracts exhibited dose-dependent ONOO(-) scavenging activities. We found that witch hazel (Hamamelis virginiana L.) bark showed the strongest effect for scavenging ONOO(-) of the 28 herbs. Hamamelitannin, the major active component of witch hazel bark, was shown to have a strong ability to scavenge ONOO(-). It is suggested that hamamelitannin might be developed as an effective peroxynitrite scavenger for the prevention of ONOO(-) involved diseases. Copyright 2002 John Wiley & Sons, Ltd.

  1. Kimchi methanol extract and the kimchi active compound, 3'-(4'-hydroxyl-3',5'-dimethoxyphenyl)propionic acid, downregulate CD36 in THP-1 macrophages stimulated by oxLDL.

    PubMed

    Yun, Ye-Rang; Kim, Hyun-Ju; Song, Yeong-Ok

    2014-08-01

    Macrophage foam cell formation by oxidized low-density lipoprotein (oxLDL) is a key step in the progression of atherosclerosis, which is involved in cholesterol influx and efflux in macrophages mediated by related proteins such as peroxisome proliferator-activated receptor γ (PPARγ), CD36, PPARα, liver-X receptor α (LXRα), and ATP-binding cassette transporter A1 (ABCA1). The aim of this study was to investigate the beneficial effects of kimchi methanol extract (KME) and a kimchi active compound, 3-(4'-hydroxyl-3',5'-dimethoxyphenyl)propionic acid (HDMPPA) on cholesterol flux in THP-1-derived macrophages treated with oxLDL. The effects of KME and HDMPPA on cell viability and lipid peroxidation were determined. Furthermore, the protein expression of PPARγ, CD36, PPARα, LXRα, and ABCA1 was examined. OxLDL strongly induced cell death and lipid peroxidation in THP-1-derived macrophages. However, KME and HDMPPA significantly improved cell viability and inhibited lipid peroxidation induced by oxLDL in THP-1-derived macrophages (P<.05). Moreover, KME and HDMPPA suppressed CD36 and PPARγ expressions, both of which participate in cholesterol influx. In contrast, KME and HDMPPA augmented LXRα, PPARα, and ABCA1 expression, which are associated with cholesterol efflux. Consequently, KME and HDMPPA suppressed lipid accumulation. These results indicate that KME and HDMPPA may inhibit lipid accumulation, in part, by regulating cholesterol influx- and efflux-related proteins. These findings will thus be useful for future prevention strategies against atherosclerosis.

  2. Scavenging Rate Ecoassay: A Potential Indicator of Estuary Condition

    PubMed Central

    Porter, Augustine G.; Scanes, Peter R.

    2015-01-01

    Monitoring of estuary condition is essential due to the highly productive and often intensely impacted nature of these ecosystems. Assessment of the physico-chemical condition of estuaries is expensive and difficult due to naturally fluctuating water quality and biota. Assessing the vigour of ecosystem processes is an alternative method with potential to overcome much of the variability associated with physico-chemical measures. Indicators of estuary condition should have small spatial and temporal variability, have a predictable response to perturbation and be ecologically relevant. Here, we present tests of the first criterion, the spatio-temporal variability of a potential ecoassay measuring the rate of scavenging in estuaries. We hypothesised that the proposed scavenging ecoassay would not vary significantly among A) sites in an estuary, B) trips separated by weeks, or C) days in a trip. Because not all habitats are present in all estuaries, this test was undertaken in two habitats. When conducted over bare substrate there were occasional significant differences, but no discernible patterns, within levels of the experiment. When conducted over vegetated substrate, days within a trip did not vary significantly, but later trips experienced greater scavenging. This scavenging ecoassay shows potential as a tool for assessing the condition of estuarine ecosystems, and further exploration of this protocol is warranted by implementation in estuaries across a gradient of anthropogenic stress. PMID:26024225

  3. Scavenging rate ecoassay: a potential indicator of estuary condition.

    PubMed

    Porter, Augustine G; Scanes, Peter R

    2015-01-01

    Monitoring of estuary condition is essential due to the highly productive and often intensely impacted nature of these ecosystems. Assessment of the physico-chemical condition of estuaries is expensive and difficult due to naturally fluctuating water quality and biota. Assessing the vigour of ecosystem processes is an alternative method with potential to overcome much of the variability associated with physico-chemical measures. Indicators of estuary condition should have small spatial and temporal variability, have a predictable response to perturbation and be ecologically relevant. Here, we present tests of the first criterion, the spatio-temporal variability of a potential ecoassay measuring the rate of scavenging in estuaries. We hypothesised that the proposed scavenging ecoassay would not vary significantly among A) sites in an estuary, B) trips separated by weeks, or C) days in a trip. Because not all habitats are present in all estuaries, this test was undertaken in two habitats. When conducted over bare substrate there were occasional significant differences, but no discernible patterns, within levels of the experiment. When conducted over vegetated substrate, days within a trip did not vary significantly, but later trips experienced greater scavenging. This scavenging ecoassay shows potential as a tool for assessing the condition of estuarine ecosystems, and further exploration of this protocol is warranted by implementation in estuaries across a gradient of anthropogenic stress.

  4. LDL Particle Size and Reactive Oxygen Metabolites in Dyslipidemic Patients

    PubMed Central

    Kotani, Kazuhiko; Tsuzaki, Kokoro; Taniguchi, Nobuyuki; Sakane, Naoki

    2012-01-01

    Objectives: Small dense low-density lipoprotein (sdLDL) which has a small LDL particle size with greater susceptibility to oxidation is regarded as a risk marker for cardiovascular disease. The diacron reactive oxygen metabolites (d-ROMs) test has recently been introduced as an oxidative stress-related marker in the clinic. The aim of the present study was to investigate the correlation between the mean LDL particle size and the oxidative stress status as evaluated by the d-ROMs in dyslipidemic patients. Methods: The study included 278 dyslipidemic patients (121 male and 157 female, mean age, 60 years). Clinical data including the conventional atherosclerotic risk factors in addition to the mean LDL particle size measured with the gel electrophoresis and the d-ROMs were collected. Results: Male patients had a significantly smaller mean LDL particle size than females (262.2 ± 7.5 [SD] vs. 264.3 ± 6.7 Å, P<0.05), while female patients had a significantly higher d-ROMs level than males (318 ± 68 vs. 350 ± 72 U. Carr., P<0.01). A multiple regression analysis revealed that there was an independent, significant, and inverse correlation between the mean LDL particle size and the d-ROMs (β=−0.19, P<0.05). Conclusions: These findings of the co-existence of both markers suggest that sdLDL and oxidative stress can be cooperative in atherogenesis, possibly leading to the incidence of CVD, in dyslipidemic patients. PMID:22448308

  5. LDL Particle Size and Reactive Oxygen Metabolites in Dyslipidemic Patients.

    PubMed

    Kotani, Kazuhiko; Tsuzaki, Kokoro; Taniguchi, Nobuyuki; Sakane, Naoki

    2012-03-01

    Small dense low-density lipoprotein (sdLDL) which has a small LDL particle size with greater susceptibility to oxidation is regarded as a risk marker for cardiovascular disease. The diacron reactive oxygen metabolites (d-ROMs) test has recently been introduced as an oxidative stress-related marker in the clinic. The aim of the present study was to investigate the correlation between the mean LDL particle size and the oxidative stress status as evaluated by the d-ROMs in dyslipidemic patients. The study included 278 dyslipidemic patients (121 male and 157 female, mean age, 60 years). Clinical data including the conventional atherosclerotic risk factors in addition to the mean LDL particle size measured with the gel electrophoresis and the d-ROMs were collected. Male patients had a significantly smaller mean LDL particle size than females (262.2 ± 7.5 [SD] vs. 264.3 ± 6.7 Å, P<0.05), while female patients had a significantly higher d-ROMs level than males (318 ± 68 vs. 350 ± 72 U. Carr., P<0.01). A multiple regression analysis revealed that there was an independent, significant, and inverse correlation between the mean LDL particle size and the d-ROMs (β=-0.19, P<0.05). These findings of the co-existence of both markers suggest that sdLDL and oxidative stress can be cooperative in atherogenesis, possibly leading to the incidence of CVD, in dyslipidemic patients.

  6. Mitotic Spindle Defects and Chromosome Mis-Segregation Induced by LDL/Cholesterol—Implications for Niemann-Pick C1, Alzheimer’s Disease, and Atherosclerosis

    PubMed Central

    Granic, Antoneta; Potter, Huntington

    2013-01-01

    Elevated low-density lipoprotein (LDL)-cholesterol is a risk factor for both Alzheimer’s disease (AD) and Atherosclerosis (CVD), suggesting a common lipid-sensitive step in their pathogenesis. Previous results show that AD and CVD also share a cell cycle defect: chromosome instability and up to 30% aneuploidy–in neurons and other cells in AD and in smooth muscle cells in atherosclerotic plaques in CVD. Indeed, specific degeneration of aneuploid neurons accounts for 90% of neuronal loss in AD brain, indicating that aneuploidy underlies AD neurodegeneration. Cell/mouse models of AD develop similar aneuploidy through amyloid-beta (Aß) inhibition of specific microtubule motors and consequent disruption of mitotic spindles. Here we tested the hypothesis that, like upregulated Aß, elevated LDL/cholesterol and altered intracellular cholesterol homeostasis also causes chromosomal instability. Specifically we found that: 1) high dietary cholesterol induces aneuploidy in mice, satisfying the hypothesis’ first prediction, 2) Niemann-Pick C1 patients accumulate aneuploid fibroblasts, neurons, and glia, demonstrating a similar aneugenic effect of intracellular cholesterol accumulation in humans 3) oxidized LDL, LDL, and cholesterol, but not high-density lipoprotein (HDL), induce chromosome mis-segregation and aneuploidy in cultured cells, including neuronal precursors, indicating that LDL/cholesterol directly affects the cell cycle, 4) LDL-induced aneuploidy requires the LDL receptor, but not Aß, showing that LDL works differently than Aß, with the same end result, 5) cholesterol treatment disrupts the structure of the mitotic spindle, providing a cell biological mechanism for its aneugenic activity, and 6) ethanol or calcium chelation attenuates lipoprotein-induced chromosome mis-segregation, providing molecular insights into cholesterol’s aneugenic mechanism, specifically through its rigidifying effect on the cell membrane, and potentially explaining why ethanol

  7. Receptor binding sites for atrial natriuretic factor are expressed by brown adipose tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacay, A.C.; Mantyh, C.R.; Vigna, S.R.

    1988-09-01

    To explore the possibility that atrial natriuretic factor (ANF) is involved in thermoregulation we used quantitative receptor autoradiography and homogenate receptor binding assays to identify ANF bindings sites in neonatal rat and sheep brown adipose tissue, respectively. Using quantitative receptor autoradiography were were able to localize high levels of specific binding sites for {sup 125}I-rat ANF in neonatal rat brown adipose tissue. Homogenate binding assays on sheep brown fat demonstrated that the radioligand was binding to the membrane fraction and that the specific binding was not due to a lipophilic interaction between {sup 125}I-rat ANF and brown fat. Specific bindingmore » of {sup 125}I-rat ANF to the membranes of brown fat cells was inhibited by unlabeled rat ANF with a Ki of 8.0 x 10(-9) M, but not by unrelated peptides. These studies demonstrate that brown fat cells express high levels of ANF receptor binding sites in neonatal rat and sheep and suggest that ANF may play a role in thermoregulation.« less

  8. CD47 and Nox1 Mediate Dynamic Fluid-Phase Macropinocytosis of Native LDL

    PubMed Central

    Csányi, Gábor; Feck, Douglas M.; Ghoshal, Pushpankur; Singla, Bhupesh; Lin, Huiping; Nagarajan, Shanmugam; Meijles, Daniel N.; Al Ghouleh, Imad; Cantu-Medellin, Nadiezhda; Kelley, Eric E.; Mateuszuk, Lukasz; Isenberg, Jeffrey S.; Watkins, Simon

    2017-01-01

    Abstract Aims: Macropinocytosis has been implicated in cardiovascular and other disorders, yet physiological factors that initiate fluid-phase internalization and the signaling mechanisms involved remain poorly identified. The present study was designed to examine whether matrix protein thrombospondin-1 (TSP1) stimulates macrophage macropinocytosis and, if so, to investigate the potential signaling mechanism involved. Results: TSP1 treatment of human and murine macrophages stimulated membrane ruffle formation and pericellular solute internalization by macropinocytosis. Blockade of TSP1 cognate receptor CD47 and NADPH oxidase 1 (Nox1) signaling, inhibition of phosphoinositide 3-kinase, and transcriptional knockdown of myotubularin-related protein 6 abolished TSP1-induced macropinocytosis. Our results demonstrate that Nox1 signaling leads to dephosphorylation of actin-binding protein cofilin at Ser-3, actin remodeling, and macropinocytotic uptake of unmodified native low-density lipoprotein (nLDL), leading to foam cell formation. Finally, peritoneal chimera studies suggest the role of CD47 in macrophage lipid macropinocytosis in hypercholesterolemic ApoE−/− mice in vivo. Innovation: Activation of a previously unidentified TSP1-CD47 signaling pathway in macrophages stimulates direct receptor-independent internalization of nLDL, leading to significant lipid accumulation and foam cell formation. These findings reveal a new paradigm in which delimited Nox1-mediated redox signaling, independent of classical lipid oxidation, contributes to early propagation of vascular inflammatory disease. Conclusions: The findings of the present study demonstrate a new mechanism of solute uptake with implications for a wide array of cell types, including macrophages, dendritic cells, and cancer cells, and multiple pathological conditions in which matrix proteins are upregulated. Antioxid. Redox Signal. 26, 886–901. PMID:27958762

  9. Associations of serum LDL particle concentration with carotid intima-media thickness and coronary artery calcification.

    PubMed

    Zaid, Maryam; Miura, Katsuyuki; Fujiyoshi, Akira; Abbott, Robert D; Hisamatsu, Takashi; Kadota, Aya; Arima, Hisatomi; Kadowaki, Sayaka; Torii, Sayuki; Miyagawa, Naoko; Suzuki, Sentaro; Takashima, Naoyuki; Ohkubo, Takayoshi; Sekikawa, Akira; Maegawa, Hiroshi; Horie, Minoru; Nakamura, Yasuyuki; Okamura, Tomonori; Ueshima, Hirotsugu

    2016-01-01

    Low-density lipoprotein particle (LDL-P) has recently been found to be a stronger predictor of cardiovascular disease (CVD) than LDL-cholesterol (LDL-C). Whether LDL-P is associated with subclinical atherosclerosis, independent of LDL-C, as well as other lipid measures has not been fully examined. We aimed to analyze LDL-P associations with measures of subclinical atherosclerosis. We examined 870 Japanese men randomly selected from Kusatsu City, Shiga, Japan, aged 40-79 years from 2006-2008, free of clinical CVD and not using lipid-lowering medication. Cross-sectional associations of lipid measures with carotid intima-media thickness (cIMT) and coronary artery calcification (CAC; >0 Agatston score) were examined. LDL-P was significantly positively associated with cIMT and maintained this association after adjustments for LDL-C and other lipid measures. Although these lipid measures were positively associated with cIMT, model adjustment for LDL-P removed any significant relationships. Higher LDL-P was associated with a significantly higher odds ratio of CAC and further adjustment for LDL-C did not affect this relationship. In contrast, the LDL-C association with CAC was no longer significant after adjustment for LDL-P. Other lipid measures attenuated associations of LDL-P with CAC. Likewise, associations of these measures with CAC were attenuated when model adjustments for LDL-P were made. In a community-based sample of Japanese men, free of clinical CVD, LDL-P was a robust marker for subclinical atherosclerosis, independent of LDL-C and other lipid measures. Associations of LDL-C and other lipid measures with either cIMT or CAC were generally not independent of LDL-P. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  10. Scavenging and recombination kinetics in a radiation spur: The successive ordered scavenging events

    NASA Astrophysics Data System (ADS)

    Al-Samra, Eyad H.; Green, Nicholas J. B.

    2018-03-01

    This study describes stochastic models to investigate the successive ordered scavenging events in a spur of four radicals, a model system based on a radiation spur. Three simulation models have been developed to obtain the probabilities of the ordered scavenging events: (i) a Monte Carlo random flight (RF) model, (ii) hybrid simulations in which the reaction rate coefficient is used to generate scavenging times for the radicals and (iii) the independent reaction times (IRT) method. The results of these simulations are found to be in agreement with one another. In addition, a detailed master equation treatment is also presented, and used to extract simulated rate coefficients of the ordered scavenging reactions from the RF simulations. These rate coefficients are transient, the rate coefficients obtained for subsequent reactions are effectively equal, and in reasonable agreement with the simple correction for competition effects that has recently been proposed.

  11. Regulation of low-density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme A reductase expression by Zingiber officinale in the liver of high-fat diet-fed rats.

    PubMed

    Nammi, Srinivas; Kim, Moon S; Gavande, Navnath S; Li, George Q; Roufogalis, Basil D

    2010-05-01

    Zingiber officinale has been used to control lipid disorders and reported to possess remarkable cholesterol-lowering activity in experimental hyperlipidaemia. In the present study, the effect of a characterized and standardized extract of Zingiber officinale on the hepatic lipid levels as well as on the hepatic mRNA and protein expression of low-density lipoprotein (LDL) receptor and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase was investigated in a high-fat diet-fed rat model. Rats were treated with an ethanol extract of Zingiber officinale (400 mg/kg) extract along with a high-fat diet for 6 weeks. The extract of Zingiber officinale significantly decreased hepatic triglyceride and tended to decrease hepatic cholesterol levels when administered over 6 weeks to the rats fed a high-fat diet. We found that in parallel, the extract up-regulated both LDL receptor mRNA and protein level and down-regulated HMG-CoA reductase protein expression in the liver of these rats. The metabolic control of body lipid homeostasis is in part due to enhanced cholesterol biosynthesis and reduced expression of LDL receptor sites following long-term consumption of high-fat diets. The present results show restoration of transcriptional and post-transcriptional changes in low-density lipoprotein and HMG CoA reductase by Zingiber officinale administration with a high-fat diet and provide a rational explanation for the effect of ginger in the treatment of hyperlipidaemia.

  12. Oxidized LDL accumulation in experimental renal ischemia reperfusion injury model.

    PubMed

    Kulah, Eyup; Tascilar, Oge; Acikgoz, Serefden; Tekin, Ishak Ozel; Karadeniz, Guldeniz; Can, Murat; Gun, Banu; Barut, Figen; Comert, Mustafa

    2007-01-01

    The aim of this study was to identify oxidative damage of kidney during ischemia reperfusion injury (IRI) by evaluating changes in lipid peroxidation markers in tissue and blood by an experimental model. Oxidized LDL (ox-LDL) was used as an oxidative stress biomarker, whereas paraoxonase (PON-1) activity was used as an antioxidative biomarker. Sixty-three male Wistar rats were randomly assigned into three groups: renal IRI, sham, and control. In the renal IRI group, the right kidney was removed and the artery and vein of the left kidney were clamped for 90 minutes. The presence of ox-LDL in the kidney tissue sections was determined by using an immunofluorescent staining method. The plasma ox-LDL levels did not increase significantly at the 24th hour following IRI, made a peak at the 48th hour, and declined at the 72nd hour. Accumulation of ox-LDL was detected in the kidney tissue on the 24th, 48th, and 72nd hours of the renal IRI. Serum PON-1 levels have peaked on the 24th hour and then declined. This study demonstrates the accumulation of ox-LDL molecules in the renal tissues of the IRI model. Future strategies aimed to reduce the lipid peroxidation during the initial hours of renal IRI may be useful to prevent complications of ischemia.

  13. Site-specific effects of the nonsteroidal anti-inflammatory drug lysine clonixinate on rat brain opioid receptors.

    PubMed

    Ortí, E; Coirini, H; Pico, J C

    1999-04-01

    In addition to effects in the periphery through inhibition of prostaglandin synthesis, several lines of evidence suggest that nonsteroidal anti-inflammatory drugs (NSAIDs) act in the central nervous system. The possibility that the central action of NSAIDs involves regulation of opioid receptors was investigated by quantitative autoradiography of mu, delta, and kappa sites in rat brain slices. Increased (p < 0.05) labeling of mu receptors was observed in thalamic nuclei, gyrus dentate, and layers of the parietal cortex of rats treated for 10 days with lysine clonixinate. Labeling of delta receptors was lower in the lateral septum, and kappa sites decreased in thalamic nuclei. These effects were not mediated through direct interaction with opioid-binding sites, since receptor-binding assays using rat brain membranes confirmed that clonixinate up to 1 x 10(-4) mol/l does not inhibit mu, delta, and kappa receptor specific binding. Central effects of NSAIDs might, therefore, involve interaction with the opioid receptor system through indirect mechanisms.

  14. Antagonism of ligand-gated ion channel receptors: two domains of the glycine receptor alpha subunit form the strychnine-binding site.

    PubMed Central

    Vandenberg, R J; French, C R; Barry, P H; Shine, J; Schofield, P R

    1992-01-01

    The inhibitory glycine receptor (GlyR) is a member of the ligand-gated ion channel receptor superfamily. Glycine activation of the receptor is antagonized by the convulsant alkaloid strychnine. Using in vitro mutagenesis and functional analysis of the cDNA encoding the alpha 1 subunit of the human GlyR, we have identified several amino acid residues that form the strychnine-binding site. These residues were identified by transient expression of mutated cDNAs in mammalian (293) cells and examination of resultant [3H]strychnine binding, glycine displacement of [3H]strychnine, and electrophysiological responses to the application of glycine and strychnine. This mutational analysis revealed that residues from two separate domains within the alpha 1 subunit form the binding site for the antagonist strychnine. The first domain includes the amino acid residues Gly-160 and Tyr-161, and the second domain includes the residues Lys-200 and Tyr-202. These results, combined with analyses of other ligand-gated ion channel receptors, suggest a conserved tertiary structure and a common mechanism for antagonism in this receptor superfamily. PMID:1311851

  15. Athletes with higher VO2max present reduced oxLDL after a marathon race

    PubMed Central

    Bachi, André L L; Sierra, Ana Paula R; Rios, Francisco J O; Gonçalves, Danieli A; Ghorayeb, Nabil; Abud, Ronaldo L; Victorino, Angélica B; dos Santos, Juliana M B; Kiss, Maria Augusta D P; Pithon-Curi, Tania C; Vaisberg, Mauro

    2015-01-01

    Background During a session of prolonged and exhaustive exercise, such as a marathon race, large quantities of free radicals are produced and can oxidise (ox) several molecules, such as low-density lipoprotein (LDL). To prevent oxidative damage, athletes present higher antioxidant levels. However, the effect of marathon running on the natural IgM or IgG anti-oxLDL autoantibodies is not understood. Thus, we investigated the effect of a marathon race on oxidative stress and the mechanisms of control of this stress. Methods Blood samples of 20 marathon runners were collected 24 hours before, immediately and 72 hours after a marathon race to evaluate: plasma lipid profile; serum levels of oxLDL and anti-oxLDL autoantibodies (IgM and IgG isotype) and total antioxidant capacity (TAC). Maximum oxygen uptake (VO2max) was also determined. Results Immediately after the race, oxLDL and TAC levels decreased in comparison to the basal levels; however, the IgM or IgG anti-oxLDL levels remain unchanged. Whereas no differences were observed in the IgM or IgG anti-oxLDL levels 72h after the marathon, the oxLDL and TAC levels returned to the basal values. Significant positive correlations were observed between oxLDL and LDL-cholesterol before, and 72h after the marathon. Significant negative correlations were observed between oxLDL and VO2max immediately after the marathon and 72 h later, as well as between oxLDL and TAC 72 h after the race. Conclusions Athletes with a higher VO2max and total antioxidant activity presented reduced LDL oxidation. The levels of IgM or IgG anti-oxLDL autoantibodies were not affected by running the marathon. PMID:27900109

  16. 21 CFR 868.5590 - Scavenging mask.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Scavenging mask. 868.5590 Section 868.5590 Food... DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5590 Scavenging mask. (a) Identification. A scavenging mask is a device positioned over a patient's nose to deliver anesthetic or analgesic gases to the...

  17. Site-Selective Regulation of Platelet-Derived Growth Factor β Receptor Tyrosine Phosphorylation by T-Cell Protein Tyrosine Phosphatase

    PubMed Central

    Persson, Camilla; Sävenhed, Catrine; Bourdeau, Annie; Tremblay, Michel L.; Markova, Boyka; Böhmer, Frank D.; Haj, Fawaz G.; Neel, Benjamin G.; Elson, Ari; Heldin, Carl-Henrik; Rönnstrand, Lars; Östman, Arne; Hellberg, Carina

    2004-01-01

    The platelet-derived growth factor (PDGF) β receptor mediates mitogenic and chemotactic signals. Like other tyrosine kinase receptors, the PDGF β receptor is negatively regulated by protein tyrosine phosphatases (PTPs). To explore whether T-cell PTP (TC-PTP) negatively regulates the PDGF β receptor, we compared PDGF β receptor tyrosine phosphorylation in wild-type and TC-PTP knockout (ko) mouse embryos. PDGF β receptors were hyperphosphorylated in TC-PTP ko embryos. Fivefold-higher ligand-induced receptor phosphorylation was observed in TC-PTP ko mouse embryo fibroblasts (MEFs) as well. Reexpression of TC-PTP partly abolished this difference. As determined with site-specific phosphotyrosine antibodies, the extent of hyperphosphorylation varied among different autophosphorylation sites. The phospholipase Cγ1 binding site Y1021, previously implicated in chemotaxis, displayed the largest increase in phosphorylation. The increase in Y1021 phosphorylation was accompanied by increased phospholipase Cγ1 activity and migratory hyperresponsiveness to PDGF. PDGF β receptor tyrosine phosphorylation in PTP-1B ko MEFs but not in PTPɛ ko MEFs was also higher than that in control cells. This increase occurred with a site distribution different from that seen after TC-PTP depletion. PDGF-induced migration was not increased in PTP-1B ko cells. In summary, our findings identify TC-PTP as a previously unrecognized negative regulator of PDGF β receptor signaling and support the general notion that PTPs display site selectivity in their action on tyrosine kinase receptors. PMID:14966296

  18. Pregnancy-associated osteoporosis with a heterozygous deactivating LDL receptor-related protein 5 (LRP5) mutation and a homozygous methylenetetrahydrofolate reductase (MTHFR) polymorphism.

    PubMed

    Cook, Fiona J; Mumm, Steven; Whyte, Michael P; Wenkert, Deborah

    2014-04-01

    Pregnancy-associated osteoporosis (PAO) is a rare, idiopathic disorder that usually presents with vertebral compression fractures (VCFs) within 6 months of a first pregnancy and delivery. Spontaneous improvement is typical. There is no known genetic basis for PAO. A 26-year-old primagravida with a neonatal history of unilateral blindness attributable to hyperplastic primary vitreous sustained postpartum VCFs consistent with PAO. Her low bone mineral density (BMD) seemed to respond to vitamin D and calcium therapy, with no fractures after her next successful pregnancy. Investigation of subsequent fetal losses revealed homozygosity for the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism associated both with fetal loss and with osteoporosis (OP). Because her neonatal unilateral blindness and OP were suggestive of loss-of-function mutation(s) in the gene that encodes LDL receptor-related protein 5 (LRP5), LRP5 exon and splice site sequencing was also performed. This revealed a unique heterozygous 12-bp deletion in exon 21 (c.4454_4465del, p.1485_1488del SSSS) in the patient, her mother and sons, but not her father or brother. Her mother had a normal BMD, no history of fractures, PAO, ophthalmopathy, or fetal loss. Her two sons had no ophthalmopathy and no skeletal issues. Her osteoporotic father (with a family history of blindness) and brother had low BMDs first documented at ages ∼40 and 32 years, respectively. Serum biochemical and bone turnover studies were unremarkable in all subjects. We postulate that our patient's heterozygous LRP5 mutation together with her homozygous MTHFR polymorphism likely predisposed her to low peak BMD. However, OP did not cosegregate in her family with the LRP5 mutation, the homozygous MTHFR polymorphism, or even the combination of the two, implicating additional genetic or nongenetic factors in her PAO. Nevertheless, exploration for potential genetic contributions to PAO may explain part of the pathogenesis of this

  19. Electron-Scavenging Chemistry of Benzoquinone on TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Michael A.; Shen, Mingmin

    The chemistry of benzoquinone (BQ) on TiO2(110) was examined using temperature programmed desorption (TPD), electron energy loss spectroscopy (EELS) and Auger electron spectroscopy (AES). BQ adsorbs mostly molecularly on the clean surface, although EELS demonstrates that electrons from surface Ti3+ sites at oxygen vacancy sites (VO) are readily oxidized by the high electron scavenging ability of the molecule. In contrast, when the surface is covered with water, subsequently adsorbed BQ molecules that scavenge surface electrons also abstract H from surface OHbr groups to form hydroquinone (HQ), which desorbs at ~450 K. This work was supported by the US Department ofmore » Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.« less

  20. Mangifera indica L. extract (Vimang®) reduces plasma and liver cholesterol and leucocyte oxidative stress in hypercholesterolemic LDL receptor deficient mice.

    PubMed

    Dorighello, Gabriel G; Inada, Natália M; Paim, Bruno A; Pardo-Andreu, Gilberto L; Vercesi, Anibal E; Oliveira, Helena C F

    2018-06-01

    Cardiovascular diseases are major causes of death worldwide. Beyond the classical cholesterol risk factor, other conditions such as oxidative stress are well documented to promote atherosclerosis. The Mangifera indica L. extract (Vimang®) was reported to present antioxidant and hypocholesterolemic properties. Thus, here we evaluate the effects of Vimang treatment on risk factors of the atherosclerosis prone model of familial hypercholesterolemia, the LDL receptor knockout mice. Mice were treated with Vimang during 2 weeks and were fed a cholesterol-enriched diet during the second week. The Vimang treated mice presented significantly reduced levels of plasma (15%) and liver (20%) cholesterol, increased plasma total antioxidant capacity (10%) and decreased reactive oxygen species (ROS) production by spleen mononuclear cells (50%), P < 0.05 for all. In spite of these benefits, the average size of aortic atherosclerotic lesions stablished in this short experimental period did not change significantly in Vimang treated mice. Therefore, in this study we demonstrated that Vimang has protective effects on systemic and tissue-specific risk factors, but it is not sufficient to promote a reduction in the initial steps of atherosclerosis development. In addition, we disclosed a new antioxidant target of Vimang, the spleen mononuclear cells that might be relevant for more advanced stages of atherosclerosis. © 2018 International Federation for Cell Biology.

  1. Structures of Receptor Complexes of a North American H7N2 Influenza Hemagglutinin with a Loop Deletion in the Receptor Binding Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Hua; Chen, Li-Mei; Carney, Paul J.

    2012-02-21

    Human infections with subtype H7 avian influenza viruses have been reported as early as 1979. In 1996, a genetically stable 24-nucleotide deletion emerged in North American H7 influenza virus hemagglutinins, resulting in an eight amino acid deletion in the receptor-binding site. The continuous circulation of these viruses in live bird markets, as well as its documented ability to infect humans, raises the question of how these viruses achieve structural stability and functionality. Here we report a detailed molecular analysis of the receptor binding site of the North American lineage subtype H7N2 virus A/New York/107/2003 (NY107), including complexes with an avianmore » receptor analog (3'-sialyl-N-acetyllactosamine, 3'SLN) and two human receptor analogs (6'-sialyl-N-acetyllactosamine, 6'SLN; sialyllacto-N-tetraose b, LSTb). Structural results suggest a novel mechanism by which residues Arg220 and Arg229 (H3 numbering) are used to compensate for the deletion of the 220-loop and form interactions with the receptor analogs. Glycan microarray results reveal that NY107 maintains an avian-type ({alpha}2-3) receptor binding profile, with only moderate binding to human-type ({alpha}2-6) receptor. Thus despite its dramatically altered receptor binding site, this HA maintains functionality and confirms a need for continued influenza virus surveillance of avian and other animal reservoirs to define their zoonotic potential.« less

  2. LDL oxidation, antioxidant capacity and growth of cultured grey mullet ( Mugil cephalus ) fed dietary sorghum distillery residue pretreated with polyethylene glycol.

    PubMed

    Lee, Shin Mei; Cheng, Hui Ling; Pan, Bonnie Sun

    2009-09-09

    Dietary sorghum distillery residue (SDR) showed antioxidant and blood thinning effects on grey mullet during winter, but inhibited their growth. The objective of this study was to establish a preliminary treatment of the dietary SDR with polyethylene glycol (PEG), a tannin-binding agent, to enhance growth and blood antioxidant capacity of grey mullet ( Mugil cephalus ) feed. The feeding trial was carried out from June to November. The water temperature was between 25 and 30 degrees C; the specific growth rate of mullet was reduced significantly by feeding diet containing 20% SDR in comparison to fish fed the control diet or diet containing 20% SDR and PEG. In the period of October-November, the water temperature decreased to 19-25 degrees C; the specific growth rates of the 20% SDR-PEG group and the 20% SDR group were 0.13 and 0.19% day(-1), respectively, significantly higher than those fed the control diet (0.07% day(-1)). Feeding with 20% SDR or 20% SDR-PEG diets resulted in prolonged lag phase of low-density lipoprotein (LDL) oxidation compared to fish fed the control diet. The total antioxidant capacity of the plasma of the grey mullet fed 20% SDR-PEG was 1.24 mmol/L, significantly higher than those in the fish fed 20% SDR diet (0.84 mmol/L) or the control (0.72 mmol/L). In vivo observations found that preliminary treatment of SDR with PEG eliminated the endogenous undesirable growth inhibitory factors but maintained its protective effects against LDL oxidation in blood and improved the total antioxidant capacity and cold adaptation of grey mullet. The ethanol extract of SDR contained 31.9 +/- 7.8 mg/g gallic acids equivalent. The concentration needed to scavenge 50% of the DPPH radicals (IC(50)) was 0.86 mg/mL. Increased gallic acid equivalent and decreased IC(50) of DPPH scavenging activity of SDR fed to fish increased the total antioxidant capacity in blood plasma of grey mullet significantly.

  3. The evaluation of potential limonene scavengers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, R.; Ebert, D.; Shepodd, T.J.

    1995-01-01

    This work is the study of different scavengers of limonene. Limonene is a citrus-based, low toxicity, hydrocarbon solvent for cleaning circuit boards and other parts. Though almost all limonene evaporates after cleaning procedures, trace residual limonene would be a concern if allowed to migrate freely through a sealed system. This work was charted to investigate materials that would effectively scavenge and permanently immobilize trace limonene. The requirements of a successful scavenger are the following: it must remove >90% of 30 mg/l limonene from a sealed volume with 3 months, at 20--25 C; it must not release any volatiles over prolongedmore » aging; it must be packaged such that limonene vapors can access the scavenger, but not such that the scavenging medium can migrate; and it must operate in the presence of water, oxygen, pentane, toluene, and carbon dioxide gases. A number of adsorbents were evaluated. Additionally, a scheme for scavenging limonene by chemical reaction was investigated at Sandia. This attempt was not successful. The details of this investigation are found at the end of this report.« less

  4. Structure-based discovery and binding site analysis of histamine receptor ligands.

    PubMed

    Kiss, Róbert; Keserű, György M

    2016-12-01

    The application of structure-based drug discovery in histamine receptor projects was previously hampered by the lack of experimental structures. The publication of the first X-ray structure of the histamine H1 receptor has been followed by several successful virtual screens and binding site analysis studies of H1-antihistamines. This structure together with several other recently solved aminergic G-protein coupled receptors (GPCRs) enabled the development of more realistic homology models for H2, H3 and H4 receptors. Areas covered: In this paper, the authors review the development of histamine receptor models and their application in drug discovery. Expert opinion: In the authors' opinion, the application of atomistic histamine receptor models has played a significant role in understanding key ligand-receptor interactions as well as in the discovery of novel chemical starting points. The recently solved H1 receptor structure is a major milestone in structure-based drug discovery; however, our analysis also demonstrates that for building H3 and H4 receptor homology models, other GPCRs may be more suitable as templates. For these receptors, the authors envisage that the development of higher quality homology models will significantly contribute to the discovery and optimization of novel H3 and H4 ligands.

  5. Analysis of a two-domain binding site for the urokinase-type plasminogen activator-plasminogen activator inhibitor-1 complex in low-density-lipoprotein-receptor-related protein.

    PubMed

    Andersen, O M; Petersen, H H; Jacobsen, C; Moestrup, S K; Etzerodt, M; Andreasen, P A; Thøgersen, H C

    2001-07-01

    The low-density-lipoprotein-receptor (LDLR)-related protein (LRP) is composed of several classes of domains, including complement-type repeats (CR), which occur in clusters that contain binding sites for a multitude of different ligands. Each approximately 40-residue CR domain contains three conserved disulphide linkages and an octahedral Ca(2+) cage. LRP is a scavenging receptor for ligands from extracellular fluids, e.g. alpha(2)-macroglobulin (alpha(2)M)-proteinase complexes, lipoprotein-containing particles and serine proteinase-inhibitor complexes, like the complex between urokinase-type plasminogen activator (uPA) and the plasminogen activator inhibitor-1 (PAI-1). In the present study we analysed the interaction of the uPA-PAI-1 complex with an ensemble of fragments representing a complete overlapping set of two-domain fragments accounting for the ligand-binding cluster II (CR3-CR10) of LRP. By ligand blotting, solid-state competition analysis and surface-plasmon-resonance analysis, we demonstrate binding to multiple CR domains, but show a preferential interaction between the uPA-PAI-1 complex and a two-domain fragment comprising CR domains 5 and 6 of LRP. We demonstrate that surface-exposed aspartic acid and tryptophan residues at identical positions in the two homologous domains, CR5 and CR6 (Asp(958,CR5), Asp(999,CR6), Trp(953,CR5) and Trp(994,CR6)), are critical for the binding of the complex as well as for the binding of the receptor-associated protein (RAP) - the folding chaperone/escort protein required for transport of LRP to the cell surface. Accordingly, the present work provides (1) an identification of a preferred binding site within LRP CR cluster II; (2) evidence that the uPA-PAI-1 binding site involves residues from two adjacent protein domains; and (3) direct evidence identifying specific residues as important for the binding of uPA-PAI-1 as well as for the binding of RAP.

  6. Improved Carbohydrate Metabolism After Bariatric Surgery Raises Antioxidized LDL Antibody Levels in Morbidly Obese Patients

    PubMed Central

    Garrido-Sánchez, Lourdes; García-Almeida, Jose M.; García-Serrano, Sara; Cardona, Isabel; García-Arnes, Juan; Soriguer, Federico; Tinahones, Francisco J.; García-Fuentes, Eduardo

    2008-01-01

    OBJECTIVE—Antioxidized LDL (anti-oxLDL) antibodies have recently been suggested to be protective against the development of diabetes. We measured the changes in anti-oxLDL antibody levels in the inverse situation of improvement in carbohydrate metabolism. RESEARCH DESIGN AND METHODS—The study was undertaken in 73 morbidly obese individuals, 21 of whom had type 2 diabetes, before and 7 months after they underwent bariatric surgery and in 11 healthy, nonobese individuals. Measurements were made of the area under the curve of glucose (AUCGlu) by an intravenous glucose tolerance test and of oxidized LDL (oxLDL) and IgG and IgM anti-oxLDL antibodies. RESULTS—The morbidly obese patients with diabetes had significantly higher levels of oxLDL compared with the morbidly obese patients with normal fasting glucose and the control subjects and significantly lower levels of IgM anti-oxLDL antibodies. An inverse correlation was found between the levels of oxLDL and IgM anti-oxLDL antibodies (r = −0.352, P = 0.012). Although the levels of IgG and IgM anti-oxLDL antibodies rose after surgery, this increase was only significant in the diabetic patients, who experienced an improvement in their metabolic profile. Different multiple linear regression models showed that the AUCGlu was the main factor explaining the behavior of the levels of oxLDL and anti-oxLDL antibodies. CONCLUSIONS—We found a close association between carbohydrate metabolism and IgM anti-oxLDL antibodies, which were significantly reduced in the morbidly obese patients with diabetes. The improvement in carbohydrate metabolism after bariatric surgery led to a significant increase in the levels of IgG and IgM anti-oxLDL antibodies. PMID:18835956

  7. Evaluation of scavenging in two-stroke-cycle engines

    NASA Technical Reports Server (NTRS)

    Venediger, Herbert J

    1934-01-01

    The viewpoints are discussed, according to which the scavenging of two-stroke-cycle engines can be evaluated, and the relations between scavenging pressure and the quantity of the scavenging medium required, as also between the scavenging pressure and the revolution speed, are developed. It is further shown that the power increase is limited by the scavenging process, so that further researches are desirable for qualitative improvement. These results lead to several conclusions regarding the propulsion of motor vehicles by the two-stroke-cycle engines. Lastly, attention is called to the fundamental defect of the two-dimensional treatment of the scavenging process and to the consequent distinction between the two-dimensional and three-dimensional scavenging-type efficiency.

  8. Unesterified plant sterols and stanols do not affect LDL electrophoretic characteristics in hypercholesterolemic subjects.

    PubMed

    Charest, Amélie; Desroches, Sophie; Vanstone, Catherine A; Jones, Peter J H; Lamarche, Benoît

    2004-03-01

    The extent to which sterols and stanols modulate LDL particle size is unknown. We examined the effects of supplementation with unesterified plant sterols and stanols on several LDL electrophoretic characteristics. Healthy hypercholesterolemic subjects (n = 14) consumed each of four experimental diets contained plant sterols (S), plant stanols (SN), a 50:50 mixture of sterols and stanols (SSN), or cornstarch (control) in a randomized crossover design. The butter component of the diet was blended with unesterified sterols and stanols at a dose of 1.8 g/d. The LDL particles were characterized by polyacrylamide gradient gel electrophoresis of whole plasma. LDL cholesterol (LDL-C) concentrations decreased by 8.8, 13.6, and 13.1% in the S, SN, and SSN groups, respectively (P < 0.01) with a significant increase of 4.3% in the control group. None of the treatments with sterols and stanols induced significant changes in LDL peak particle diameter or in the cholesterol levels of the small LDL subfraction (<25.5 nm). The reduction in plasma LDL-C levels with SN consumption was due mainly to a decrease (P < 0.05) in the concentration of cholesterol in the large subfraction (>26.0 nm). The significant reduction in plasma LDL-C concentrations by sterol and stanol consumption in subjects was not paralleled by any beneficial changes in LDL electrophoretic characteristics.

  9. Apple peel bioactive rich extracts effectively inhibit in vitro human LDL cholesterol oxidation.

    PubMed

    Thilakarathna, Surangi H; Rupasinghe, H P Vasantha; Needs, Paul W

    2013-05-01

    Apple peels are rich in antioxidant bioactives and hence can possess the ability to inhibit human low density lipoprotein cholesterol (LDL-C) oxidation. LDL-C oxidation is known to initiate atherosclerotic plaque formation. Unique quercetin-rich (QAE) and triterpene-rich (TAE) apple peel extracts, their constituent compounds and three in vivo quercetin metabolites were investigated for in vitro LDL-C oxidation inhibition. Both extracts effectively inhibited Cu(2+)-induced LDL-C oxidation. IC(50) of QAE and TAE for LDL-C oxidation products were 0.06-8.29 mg/L and 29.58-95.49 mg/L, respectively. Quercetin compounds, chlorogenic acid and phloridzin could contribute more to the effectiveness of QAE at physiological concentrations. The three in vivo quercetin metabolites; quercetin-3'-sulfate, quercetin-3-glucuronic acid and isorhamnetin-3-glucuronic acid were effective at physiological concentrations and therefore, QAE can be effective in LDL-C oxidation inhibition under physiological conditions. Constituent TAE compounds did not perform well under Cu(2+)-induction. Overall, both extracts effectively inhibited LDL-C oxidation in vitro. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Scavenging of ice-nucleating microorganisms from the atmosphere by artificial rain events

    NASA Astrophysics Data System (ADS)

    Hanlon, Regina; Powers, Craig; Failor, Kevin; Vinatzer, Boris; Schmale, David

    2015-04-01

    Little is known about how microorganisms are scavenged from the atmosphere during rainfall. Microorganisms are abundant and diverse in rain (precipitation) collected near the surface of the earth. Some of these rain-associated microorganisms produce proteins that catalyze the nucleation of ice crystals at significantly warmer temperatures than would normally be required for ice formation, suggesting that they may play important roles in weather, including the onset of precipitation. We conducted a series of field experiments to test the hypothesis that ice-nucleating microorganisms are scavenged from the atmosphere by rainfall. Thirteen artificial rain events were conducted off the side of the Smart Road Bridge in Blacksburg, VA, USA. In each event, sterile water was dispensed over the side of the bridge (simulated rainfall), and recovered in sterile containers following gravitational settling from the side of the bridge to an open fallow agricultural field below (a distance of ~55m from the release site to the collection site). Microbes scavenged from the artificial rain events were cultured on six different types of agar media (R2A, TSA, CA; +/- cycloheximide) and the ice nucleation activity was examined for colonies cultured from the different media types. Mean CFUs scavenged by artificial rain ranged from 83 to 196 CFUs/mL across all six media types. Ice-nucleating microorganisms were recovered from 85% (11/13) of the simulated rain events, and represented about 1% of the total number of colonies assayed from each event. Strikingly, this percentage is nearly identical to the percentage of culturable ice-nucleating microorganisms occurring in about half of the natural rain events studied to date in Blacksburg, Virginia. This work expands our knowledge of the scavenging properties of rain, and suggests that at least some ice nucleators in natural precipitation events may have been stripped from the atmosphere during rainfall, thus negating their potential role in

  11. Gluten-free vegan diet induces decreased LDL and oxidized LDL levels and raised atheroprotective natural antibodies against phosphorylcholine in patients with rheumatoid arthritis: a randomized study

    PubMed Central

    Elkan, Ann-Charlotte; Sjöberg, Beatrice; Kolsrud, Björn; Ringertz, Bo; Hafström, Ingiäld; Frostegård, Johan

    2008-01-01

    Introduction The purpose of this study was to investigate the effects of vegan diet in patients with rheumatoid arthritis (RA) on blood lipids oxidized low-density lipoprotein (oxLDL) and natural atheroprotective antibodies against phosphorylcholine (anti-PCs). Methods Sixty-six patients with active RA were randomly assigned to either a vegan diet free of gluten (38 patients) or a well-balanced non-vegan diet (28 patients) for 1 year. Thirty patients in the vegan group completed more than 3 months on the diet regimen. Blood lipids were analyzed by routine methods, and oxLDL and anti-PCs were analyzed by enzyme-linked immunosorbent assay. Data and serum samples were obtained at baseline and after 3 and 12 months. Results Mean ages were 50.0 years for the vegan group and 50.8 years for controls. Gluten-free vegan diet induced lower body mass index (BMI) and low-density lipoprotein (LDL) and higher anti-PC IgM than control diet (p < 0.005). In the vegan group, BMI, LDL, and cholesterol decreased after both 3 and 12 months (p < 0.01) and oxLDL after 3 months (p = 0.021) and trendwise after 12 months (p = 0.090). Triglycerides and high-density lipoprotein did not change. IgA anti-PC levels increased after 3 months (p = 0.027) and IgM anti-PC levels increased trendwise after 12 months (p = 0.057). There was no difference in IgG anti-PC levels. In the control diet group, IgM anti-PC levels decreased both after 3 and 12 months (p < 0.01). When separating vegan patients into clinical responders and non-responders at 12 months, the effects on oxLDL and anti-PC IgA were seen only in responders (p < 0.05). Conclusion A gluten-free vegan diet in RA induces changes that are potentially atheroprotective and anti-inflammatory, including decreased LDL and oxLDL levels and raised anti-PC IgM and IgA levels. PMID:18348715

  12. Gluten-free vegan diet induces decreased LDL and oxidized LDL levels and raised atheroprotective natural antibodies against phosphorylcholine in patients with rheumatoid arthritis: a randomized study.

    PubMed

    Elkan, Ann-Charlotte; Sjöberg, Beatrice; Kolsrud, Björn; Ringertz, Bo; Hafström, Ingiäld; Frostegård, Johan

    2008-01-01

    The purpose of this study was to investigate the effects of vegan diet in patients with rheumatoid arthritis (RA) on blood lipids oxidized low-density lipoprotein (oxLDL) and natural atheroprotective antibodies against phosphorylcholine (anti-PCs). Sixty-six patients with active RA were randomly assigned to either a vegan diet free of gluten (38 patients) or a well-balanced non-vegan diet (28 patients) for 1 year. Thirty patients in the vegan group completed more than 3 months on the diet regimen. Blood lipids were analyzed by routine methods, and oxLDL and anti-PCs were analyzed by enzyme-linked immunosorbent assay. Data and serum samples were obtained at baseline and after 3 and 12 months. Mean ages were 50.0 years for the vegan group and 50.8 years for controls. Gluten-free vegan diet induced lower body mass index (BMI) and low-density lipoprotein (LDL) and higher anti-PC IgM than control diet (p < 0.005). In the vegan group, BMI, LDL, and cholesterol decreased after both 3 and 12 months (p < 0.01) and oxLDL after 3 months (p = 0.021) and trendwise after 12 months (p = 0.090). Triglycerides and high-density lipoprotein did not change. IgA anti-PC levels increased after 3 months (p = 0.027) and IgM anti-PC levels increased trendwise after 12 months (p = 0.057). There was no difference in IgG anti-PC levels. In the control diet group, IgM anti-PC levels decreased both after 3 and 12 months (p < 0.01). When separating vegan patients into clinical responders and non-responders at 12 months, the effects on oxLDL and anti-PC IgA were seen only in responders (p < 0.05). A gluten-free vegan diet in RA induces changes that are potentially atheroprotective and anti-inflammatory, including decreased LDL and oxLDL levels and raised anti-PC IgM and IgA levels.

  13. Regulatory role of NADPH oxidase in glycated LDL-induced upregulation of plasminogen activator inhibitor-1 and heat shock factor-1 in mouse embryo fibroblasts and diabetic mice.

    PubMed

    Zhao, Ruozhi; Le, Khuong; Moghadasian, Mohammed H; Shen, Garry X

    2013-08-01

    Cardiovascular disease is the predominant cause of death in diabetic patients. Fibroblasts are one of the major types of cells in the heart or vascular wall. Increased levels of glycated low-density lipoprotein (glyLDL) were detected in diabetic patients. Previous studies in our group demonstrated that oxidized LDL increased the amounts of NADPH oxidase (NOX), plasminogen activator inhibitor-1 (PAI-1), and heat shock factor-1 (HSF1) in fibroblasts. This study examined the expression of NOX, PAI-1, and HSF1 in glyLDL-treated wild-type or HSF1-deficient mouse embryo fibroblasts (MEFs) and in leptin receptor-knockout (db/db) diabetic mice. Treatment with physiologically relevant levels of glyLDL increased superoxide and H2O2 release and the levels of NOX4 and p22phox (an essential component of multiple NOX complexes) in wild-type or HSF1-deficient MEFs. The levels of HSF1 and PAI-1 were increased by glyLDL in wild-type MEFs, but not in HSF1-deficient MEFs. Diphenyleneiodonium (a nonspecific NOX inhibitor) or small interfering RNA for p22phox prevented glyLDL-induced increases in the levels of NOX4, HSF1, or PAI-1 in MEFs. The amounts of NOX4, HSF1, and PAI-1 were elevated in hearts of db/db diabetic mice compared to wild-type mice. The results suggest that glyLDL increased the abundance of NOX4 or p22phox via an HSF1-independent pathway, but that of PAI-1 via an HSF1-dependent manner. NOX4 plays a crucial role in glyLDL-induced expression of HSF1 and PAI-1 in mouse fibroblasts. Increased expression of NOX4, HSF1, and PAI-1 was detected in cardiovascular tissue of diabetic mice. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Characterization of a neurokinin B receptor site in rat brain using a highly selective radioligand.

    PubMed

    Laufer, R; Gilon, C; Chorev, M; Selinger, Z

    1986-08-05

    We have recently characterized a tachykinin receptor subtype (SP-N) whose preferred ligand is the mammalian neuropeptide, neurokinin B (Laufer, R., Wormser, U., Friedman, Z. Y., Gilon, C., Chorev, M., and Selinger, Z. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 7444-7448). To investigate this novel tachykinin receptor, we have now prepared a radiolabeled peptide, N alpha-[( 125I]desamino-3-iodotyrosyl)-[Asp5,6, N-methyl-Phe8]substance P (5-11) heptapeptide (125I-BH-NH-Senktide), which selectively interacts with the SP-N receptor subtype. The binding of 125I-BH-NH-Senktide to rat cerebral cortex membranes was studied under conditions that minimized nonspecific binding. Unlike other tachykinin receptor probes, this radioligand is not degraded during the binding experiment. Binding of 125I-BH-NH-Senktide is reversible, saturable, and of high affinity (KD = 0.9 nM). The radioligand labels a single class of binding site (122 fmol binding sites/mg of protein), as indicated by a linear Scatchard plot and a Hill coefficient close to unity (nH = 1.05). The pharmacological specificity of this binding site corresponds to that of the neuronal SP-N receptor in guinea pig ileum myenteric plexus, which was determined by a functional bioassay. Among various rat brain regions, the highest binding was observed in the cerebral cortex, olfactory bulb, hypothalamus, and hippocampus. These results suggest the existence and specific distribution of a neurokinin B receptor site of the SP-N type in rat brain. 125I-BH-NH-Senktide is the first selective and potent probe for this receptor and is thus an important tool for further studies of its distribution, regulation, and functional role.

  15. Kinetic analysis of thermal stability of human low density lipoproteins: a model for LDL fusion in atherogenesis.

    PubMed

    Lu, Mengxiao; Gantz, Donald L; Herscovitz, Haya; Gursky, Olga

    2012-10-01

    Fusion of modified LDL in the arterial wall promotes atherogenesis. Earlier we showed that thermal denaturation mimics LDL remodeling and fusion, and revealed kinetic origin of LDL stability. Here we report the first quantitative analysis of LDL thermal stability. Turbidity data show sigmoidal kinetics of LDL heat denaturation, which is unique among lipoproteins, suggesting that fusion is preceded by other structural changes. High activation energy of denaturation, E(a) = 100 ± 8 kcal/mol, indicates disruption of extensive packing interactions in LDL. Size-exclusion chromatography, nondenaturing gel electrophoresis, and negative-stain electron microscopy suggest that LDL dimerization is an early step in thermally induced fusion. Monoclonal antibody binding suggests possible involvement of apoB N-terminal domain in early stages of LDL fusion. LDL fusion accelerates at pH < 7, which may contribute to LDL retention in acidic atherosclerotic lesions. Fusion also accelerates upon increasing LDL concentration in near-physiologic range, which likely contributes to atherogenesis. Thermal stability of LDL decreases with increasing particle size, indicating that the pro-atherogenic properties of small dense LDL do not result from their enhanced fusion. Our work provides the first kinetic approach to measuring LDL stability and suggests that lipid-lowering therapies that reduce LDL concentration but increase the particle size may have opposite effects on LDL fusion.

  16. Lectin-like oxidized low-density lipoprotein receptor (LOX-1) in sickle cell disease vasculopathy

    PubMed Central

    Chen, Mingyi; Qiu, Hong; Lin, Xin; Nam, David; Ogbu-Nwobodo, Lucy; Archibald, Hannah; Joslin, Amelia; Wun, Ted; Sawamura, Tatsuya; Green, Ralph

    2017-01-01

    Lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1) is an endothelial receptor for oxidized LDL. Increased expression of LOX-1 has been demonstrated in atherosclerotic lesions and diabetic vasculopathy. In this study, we investigate the expression of LOX-1 receptor in sickle cell disease (SCD) vasculopathy. Expression of LOX-1 in brain vascular endothelium is markedly increased and LOX-1 gene expression is upregulated in cultured human brain microvascular endothelial cells by incubation with SCD erythrocytes. Also, the level of circulating soluble LOX-1 concentration is elevated in the plasma of SCD patients. Increased LOX-1 expression in endothelial cells is potentially involved in the pathogenesis of SCD vasculopathy. Soluble LOX-1 concentration in SCD may provide a novel biomarker for risk stratification of sickle cell vascular complications. PMID:27519944

  17. Optimization of LDL targeted nanostructured lipid carriers of 5-FU by a full factorial design.

    PubMed

    Andalib, Sare; Varshosaz, Jaleh; Hassanzadeh, Farshid; Sadeghi, Hojjat

    2012-01-01

    Nanostructured lipid carriers (NLC) are a mixture of solid and liquid lipids or oils as colloidal carrier systems that lead to an imperfect matrix structure with high ability for loading water soluble drugs. The aim of this study was to find the best proportion of liquid and solid lipids of different types for optimization of the production of LDL targeted NLCs used in carrying 5-Fu by the emulsification-solvent evaporation method. The influence of the lipid type, cholesterol or cholesteryl stearate for targeting LDL receptors, oil type (oleic acid or octanol), lipid and oil% on particle size, surface charge, drug loading efficiency, and drug released percent from the NLCs were studied by a full factorial design. The NLCs prepared by 54.5% cholesterol and 25% of oleic acid, showed optimum results with particle size of 105.8 nm, relatively high zeta potential of -25 mV, drug loading efficiency of 38% and release efficiency of about 40%. Scanning electron microscopy of nanoparticles confirmed the results of dynamic light scattering method used in measuring the particle size of NLCs. The optimization method by a full factorial statistical design is a useful optimization method for production of nanostructured lipid carriers.

  18. Influence of pulsatile flow on LDL transport in the arterial wall.

    PubMed

    Sun, Nanfeng; Wood, Nigel B; Hughes, Alun D; Thom, Simon A M; Xu, X Yun

    2007-10-01

    The accumulation of low-density lipoprotein (LDL) is one of the important factors in atherogenesis. Two different time scales may influence LDL transport in vivo: (1) LDL transport is coupled to blood flow with a pulse cycle of around 1 s in humans; (2) LDL transport within the arterial wall is mediated by transmural flow in the order of 10(-8) m/s. Most existing models have assumed steady flow conditions and overlooked the interactions between physical phenomena with different time scales. The objective of this study was to investigate the influence of pulsatile flow on LDL transport and examine the validity of steady flow assumption. The effect of pulsatile flow on transmural transport was incorporated by using a lumen-free cyclic (LFC) and a lumen-free time-averaged (LFTA) procedures. It is found that the steady flow simulation predicted a focal distribution in the post-stenotic region, differing from the diffuse distribution pattern produced by the pulsatile flow simulation. The LFTA procedure, in which time-averaged shear-dependent transport properties calculated from instantaneous wall shear stress (WSS) were used, predicted a similar distribution pattern to the LFC simulations. We conclude that the steady flow assumption is inadequate and instantaneous hemodynamic conditions have important influence on LDL transmural transport in arterial geometries with disturbed and complicated flow patterns.

  19. An experimental evaluation of potential scavenger effects on snake road mortality detections

    USGS Publications Warehouse

    Hubbard, Kaylan A.; Chalfoun, Anna D.

    2012-01-01

    As road networks expand and collisions between vehicles and wildlife become more common, accurately quantifying mortality rates for the taxa that are most impacted will be critical. Snakes are especially vulnerable to collisions with vehicles because of their physiology and behavior. Reptile road mortality is typically quantified using driving or walking surveys; however, scavengers can rapidly remove carcasses from the road and cause underestimation of mortality. Our objective was to determine the effect that scavengers might have had on our ability to accurately detect reptile road mortality during over 150 h and 4,000 km of driving surveys through arid shrublands in southwest Wyoming, which resulted in only two observations of mortality. We developed unique simulated snake carcasses out of Burbot (Lota lota), a locally invasive fish species, and examined removal rates across three different road types at three study sites. Carcass size was not a significant predictor of time of removal, and carcass removal was comparable during the daytime and nighttime hours. However, removal of simulated carcasses was higher on paved roads than unpaved or two-track roads at all study sites, with an average of 75% of the carcasses missing within 60 h compared to 34% and 31%, respectively. Scavengers may therefore negatively impact the ability of researchers to accurately detect herpetofaunal road mortality, especially for paved roads where road mortality is likely the most prevalent.

  20. HEMOGLOBIN A1C, BLOOD PRESSURE, AND LDL-CHOLESTEROL CONTROL AMONG HISPANIC/LATINO ADULTS WITH DIABETES: RESULTS FROM THE HISPANIC COMMUNITY HEALTH STUDY/STUDY OF LATINOS (HCHS/SOL).

    PubMed

    Casagrande, Sarah Stark; Aviles-Santa, Larissa; Corsino, Leonor; Daviglus, Martha L; Gallo, Linda C; Espinoza Giacinto, Rebeca A; Llabre, Maria M; Reina, Samantha A; Savage, Peter J; Schneiderman, Neil; Talavera, Gregory A; Cowie, Catherine C

    2017-10-01

    To determine the prevalence of Hispanic/Latino adults with diabetes who meet target hemoglobin A1c, blood pressure (BP), and low-density-lipoprotein cholesterol (LDL-C) recommendations, and angiotensin-converting enzyme (ACE) inhibitors/angiotensin receptor blocker (ARB) and statin medication use by heritage and sociodemographic and diabetes-related characteristics. Data were cross-sectional, collected between 2008 and 2011, and included adults age 18 to 74 years who reported a physician diagnosis of diabetes in the Hispanic Community Health Study/Study of Latinos (N = 2,148). Chi-square tests compared the prevalence of hemoglobin A1c, BP, and LDL-C targets and ACE/ARB and statin use across participant characteristics. Predictive margins regression was used to determine the prevalence adjusted for sociodemographic characteristics. The overall prevalence of A1c <7.0% (53 mmol/mol), BP <130/80 mm Hg, and LDL-C <100 mg/dL was 43.0, 48.7, and 36.6%, respectively, with 8.4% meeting all three targets. Younger adults aged 18 to 39 years with diabetes were less likely to have A1c <7.0% (53 mmol/mol) or LDL-C <100 mg/dL compared to those aged 65 to 74 years; younger adults were more likely to have BP <130/80 mm Hg (P<.05 for all). Individuals of Mexican heritage were significantly less likely to have A1c <7.0% (53 mmol/mol) compared to those with Cuban heritage, but they were more likely to have BP <130/80 mm Hg compared to those with Dominican, Cuban, or Puerto Rican heritage (P<.05 for all); there was no difference in LDL-C by heritage. Overall, 38.2% of adults with diabetes were taking a statin, and 50.5% were taking ACE/ARB medications. Hemoglobin A1c, BP, and LDL-C control are suboptimal among Hispanic/Latinos with diabetes living in the U.S. With 8.4% meeting all three recommendations, substantial opportunity exists to improve diabetes control in this population. A1c = hemoglobin A1c; ABC = hemoglobin A1c, blood pressure, low-density-lipoprotein cholesterol; ACE

  1. THE WATER-WATER CYCLE IN CHLOROPLASTS: Scavenging of Active Oxygens and Dissipation of Excess Photons.

    PubMed

    Asada, Kozi

    1999-06-01

    Photoreduction of dioxygen in photosystem I (PSI) of chloroplasts generates superoxide radicals as the primary product. In intact chloroplasts, the superoxide and the hydrogen peroxide produced via the disproportionation of superoxide are so rapidly scavenged at the site of their generation that the active oxygens do not inactivate the PSI complex, the stromal enzymes, or the scavenging system itself. The overall reaction for scavenging of active oxygens is the photoreduction of dioxygen to water via superoxide and hydrogen peroxide in PSI by the electrons derived from water in PSII, and the water-water cycle is proposed for these sequences. An overview is given of the molecular mechanism of the water-water cycle and microcompartmentalization of the enzymes participating in it. Whenever the water-water cycle operates properly for scavenging of active oxygens in chloroplasts, it also effectively dissipates excess excitation energy under environmental stress. The dual functions of the water-water cycle for protection from photoinihibition are discussed.

  2. The scavenger activity of the human P2X7 receptor differs from P2X7 pore function by insensitivity to antagonists, genetic variation and sodium concentration: Relevance to inflammatory brain diseases.

    PubMed

    Ou, Amber; Gu, Ben J; Wiley, James S

    2018-04-01

    Activation of P2X7 receptors is widely recognised to initiate proinflammatory responses. However P2X7 also has a dual function as a scavenger receptor which is active in the absence of ATP and plasma proteins and may be important in central nervous system (CNS) diseases. Here, we investigated both P2X7 pore formation and its phagocytic function in fresh human monocytes (as a model of microglia) by measuring ATP-induced ethidium dye uptake and fluorescent bead uptake respectively. This was studied in monocytes expressing various polymorphic variants as well as in the presence of different P2X7 antagonists and ionic media. P2X7-mediated phagocytosis was found to account for about half of Latrunculin (or Cytochalasin D)-sensitive bead engulfment by fresh human monocytes. Monocytes harbouring P2X7 Ala348Thr or Glu496Ala polymorphic variants showed increase or loss of ethidium uptake respectively, but these changes in pore formation did not always correspond to the changes in phagocytosis of YG beads. Unlike pore function, P2X7-mediated phagocytosis was not affected by three potent selective P2X7 antagonists and remained identical in Na + and K + media. Taken together, our results show that P2X7 is a scavenger receptor with important function in the CNS but its phagocytic function has features distinct from its pore function. Both P2X7 pore formation and P2X7-mediated phagocytosis should be considered in the design of new P2X7 antagonists for the treatment of CNS diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Viral receptor-binding site antibodies with diverse germline origins.

    PubMed

    Schmidt, Aaron G; Therkelsen, Matthew D; Stewart, Shaun; Kepler, Thomas B; Liao, Hua-Xin; Moody, M Anthony; Haynes, Barton F; Harrison, Stephen C

    2015-05-21

    Vaccines for rapidly evolving pathogens will confer lasting immunity if they elicit antibodies recognizing conserved epitopes, such as a receptor-binding site (RBS). From characteristics of an influenza-virus RBS-directed antibody, we devised a signature motif to search for similar antibodies. We identified, from three vaccinees, over 100 candidates encoded by 11 different VH genes. Crystal structures show that antibodies in this class engage the hemagglutinin RBS and mimic binding of the receptor, sialic acid, by supplying a critical dipeptide on their projecting, heavy-chain third complementarity determining region. They share contacts with conserved, receptor-binding residues but contact different residues on the RBS periphery, limiting the likelihood of viral escape when several such antibodies are present. These data show that related modes of RBS recognition can arise from different germline origins and mature through diverse affinity maturation pathways. Immunogens focused on an RBS-directed response will thus have a broad range of B cell targets. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Malondialdehyde-acetaldehyde (MAA) adducted surfactant protein induced lung inflammation is mediated through scavenger receptor a (SR-A1).

    PubMed

    Sapkota, Muna; DeVasure, Jane M; Kharbanda, Kusum K; Wyatt, Todd A

    2017-02-13

    Co-exposure to cigarette smoke and alcohol leads to the generation of high concentrations of acetaldehyde and malondialdehyde in the lung. These aldehydes being highly electrophilic in nature react with biologically relevant proteins such as surfactant protein D (SPD) through a Schiff base reaction to generate SPD adducted malondialdehyde-acetaldehyde adduct (SPD-MAA) in mouse lung. SPD-MAA results in an increase in lung pro-inflammatory chemokine, keratinocyte chemoattractant (KC), and the recruitment of lung lavage neutrophils. Previous in vitro studies in bronchial epithelial cells and macrophages show that scavenger receptor A (SR-A1/CD204) is a major receptor for SPD-MAA. No studies have yet examined the in vivo role of SR-A1 in MAA-mediated lung inflammation. Therefore, we hypothesize that in the absence of SR-A1, MAA-induced inflammation in the lung is reduced or diminished. To test this hypothesis, C57BL/6 WT and SR-A1 KO mice were nasally instilled with 50 μg/mL of SPD-MAA for 3 weeks (wks). After 3 weeks, bronchoalveolar lavage (BAL) fluid was collected and assayed for a total cell count, a differential cell count and CXCL1 (KC) chemokine. Lung tissue sections were stained with hematoxylin and eosin (H&E) and antibodies to MAA adduct. Results showed that BAL cellularity and influx of neutrophils were decreased in SR-A1 KO mice as compared to WT following repetitive SPD-MAA exposure. MAA adduct staining in the lung epithelium was decreased in SR-A1 KO mice. In comparison to WT, no increase in CXCL1 was observed in BAL fluid from SR-A1 KO mice over time. Overall, the data demonstrate that SR-A1/CD204 plays an important role in SPD-MAA induced inflammation in lung.

  5. Flavonoids from Machilus japonica Stems and Their Inhibitory Effects on LDL Oxidation

    PubMed Central

    Joo, Se-Jin; Park, Hee-Jung; Park, Ji-Hae; Cho, Jin-Gyeong; Kang, Ji-Hyun; Jeong, Tae-Sook; Kang, Hee Cheol; Lee, Dae-Young; Kim, Hack-Soo; Byun, Sang-Yo; Baek, Nam-In

    2014-01-01

    Stems of Machilus japonica were extracted with 80% aqueous methanol (MeOH) and the concentrated extract was successively extracted with ethyl acetate (EtOAc), normal butanol (n-BuOH), and water. Six flavonoids were isolated from the EtOAc fraction: (+)-taxifolin, afzelin, (−)-epicatechin, 5,3'-di-O-methyl-(−)-epicatechin, 5,7,3'-tri-O-methyl-(−)-epicatechin, and 5,7-di-O-methyl-3',4'-methylenedioxyflavan-3-ol. The chemical structures were identified using spectroscopic data including NMR, mass spectrometry and infrared spectroscopy. This is the first report of isolation of these six compounds from M. japonica. The compounds were evaluated for their diphenyl picryl hydrazinyl scavenging activity and inhibitory effects on low-density lipoprotein oxidation. Compounds 1 and 3–6 exhibited DPPH antioxidant activity equivalent with that of ascorbic acid, with half maximal inhibitory concentration (IC50) values of 0.16, 0.21, 0.17, 0.15 and 0.07 mM, respectively. The activity of compound 1 was similar to the positive control butylated hydroxytoluene, which had an IC50 value of 1.9 µM, while compounds 3 and 5 showed little activity. Compounds 1, 3, and 5 exhibited LDL antioxidant activity with IC50 values of 2.8, 7.1, and 4.6 µM, respectively. PMID:25229822

  6. Factor VIII Interacts with the Endocytic Receptor Low-density Lipoprotein Receptor-related Protein 1 via an Extended Surface Comprising "Hot-Spot" Lysine Residues.

    PubMed

    van den Biggelaar, Maartje; Madsen, Jesper J; Faber, Johan H; Zuurveld, Marleen G; van der Zwaan, Carmen; Olsen, Ole H; Stennicke, Henning R; Mertens, Koen; Meijer, Alexander B

    2015-07-03

    Lysine residues are implicated in driving the ligand binding to the LDL receptor family. However, it has remained unclear how specificity is regulated. Using coagulation factor VIII as a model ligand, we now study the contribution of individual lysine residues in the interaction with the largest member of the LDL receptor family, low-density lipoprotein receptor-related protein (LRP1). Using hydrogen-deuterium exchange mass spectrometry (HDX-MS) and SPR interaction analysis on a library of lysine replacement variants as two independent approaches, we demonstrate that the interaction between factor VIII (FVIII) and LRP1 occurs over an extended surface containing multiple lysine residues. None of the individual lysine residues account completely for LRP1 binding, suggesting an additive binding model. Together with structural docking studies, our data suggest that FVIII interacts with LRP1 via an extended surface of multiple lysine residues that starts at the bottom of the C1 domain and winds around the FVIII molecule. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. B cell recognition of the conserved HIV-1 co-receptor binding site is altered by endogenous primate CD4.

    PubMed

    Forsell, Mattias N E; Dey, Barna; Mörner, Andreas; Svehla, Krisha; O'dell, Sijy; Högerkorp, Carl-Magnus; Voss, Gerald; Thorstensson, Rigmor; Shaw, George M; Mascola, John R; Karlsson Hedestam, Gunilla B; Wyatt, Richard T

    2008-10-03

    The surface HIV-1 exterior envelope glycoprotein, gp120, binds to CD4 on the target cell surface to induce the co-receptor binding site on gp120 as the initial step in the entry process. The binding site is comprised of a highly conserved region on the gp120 core, as well as elements of the third variable region (V3). Antibodies against the co-receptor binding site are abundantly elicited during natural infection of humans, but the mechanism of elicitation has remained undefined. In this study, we investigate the requirements for elicitation of co-receptor binding site antibodies by inoculating rabbits, monkeys and human-CD4 transgenic (huCD4) rabbits with envelope glycoprotein (Env) trimers possessing high affinity for primate CD4. A cross-species comparison of the antibody responses showed that similar HIV-1 neutralization breadth was elicited by Env trimers in monkeys relative to wild-type (WT) rabbits. In contrast, antibodies against the co-receptor site on gp120 were elicited only in monkeys and huCD4 rabbits, but not in the WT rabbits. This was supported by the detection of high-titer co-receptor antibodies in all sera from a set derived from human volunteers inoculated with recombinant gp120. These findings strongly suggest that complexes between Env and (high-affinity) primate CD4 formed in vivo are responsible for the elicitation of the co-receptor-site-directed antibodies. They also imply that the naïve B cell receptor repertoire does not recognize the gp120 co-receptor site in the absence of CD4 and illustrate that conformational stabilization, imparted by primary receptor interaction, can alter the immunogenicity of a type 1 viral membrane protein.

  8. Tauroursodeoxycholic Acid Attenuates Lipid Accumulation in Endoplasmic Reticulum-Stressed Macrophages

    PubMed Central

    Hua, Yinan; Kandadi, Machender R.; Zhu, Meijun; Ren, Jun; Sreejayan, Nair

    2011-01-01

    Background/Aim Recent evidence suggests that endoplasmic reticulum (ER) stress provoked under diabetic conditions augments the expression of scavenger receptors on macrophages, promoting the uptake of oxidized low-density lipoprotein (ox-LDL) uptake and atherogenesis. The aim of the present study was to test the hypothesis that the chemical chaperone tauroursodeoxycholic acid (TUDCA) attenuates lipid accumulation in macrophages subjected to ER stress. Methods Cultured human macrophages were subjected to ER-stress by treating them with tunicamycin. Lipid-uptake by macrophages subjected to ER-stress in the presence or absence of TUDCA was assessed by oil red O staining and by assessing the cellular uptake of Dil-ox-LDL by fluorescence measurement. Protein levels and phosphorylation status of ER stress markers, insulin-signalling molecules and scavenger receptor were assessed by Western blotting. Results Treatment of cultured human macrophages with the ER-stressor tunicamycin caused an increase in the protein levels of CD-36, and augmentation of lipid-uptake both of which were inhibited by TUDCA. TUDCA-treatment inhibited tunicamycin-induced ER-stress as evidenced by the attenuation of phosphorylation of eukaryotic translation initiation factor-2α and glucose reactive protein-78. In addition, TUDCA improved insulin signaling in macrophages by augmenting Akt-phosphorylation and blunting c-Jun N-terminal kinase activity. Conclusion Inhibition of macrophage ER-stress may represent a potential strategy in preventing atherogenesis under diabetic conditions. PMID:19834331

  9. Human mast cell neutral proteases generate modified LDL particles with increased proteoglycan binding.

    PubMed

    Maaninka, Katariina; Nguyen, Su Duy; Mäyränpää, Mikko I; Plihtari, Riia; Rajamäki, Kristiina; Lindsberg, Perttu J; Kovanen, Petri T; Öörni, Katariina

    2018-04-13

    Subendothelial interaction of LDL with extracellular matrix drives atherogenesis. This interaction can be strengthened by proteolytic modification of LDL. Mast cells (MCs) are present in atherosclerotic lesions, and upon activation, they degranulate and release a variety of neutral proteases. Here we studied the ability of MC proteases to cleave apoB-100 of LDL and affect the binding of LDL to proteoglycans. Mature human MCs were differentiated from human peripheral blood-derived CD34 + progenitors in vitro and activated with calcium ionophore to generate MC-conditioned medium. LDL was incubated in the MC-conditioned medium or with individual MC proteases, and the binding of native and modified LDL to isolated human aortic proteoglycans or to human atherosclerotic plaques ex vivo was determined. MC proteases in atherosclerotic human coronary artery lesions were detected by immunofluorescence and qPCR. Activated human MCs released the neutral proteases tryptase, chymase, carboxypeptidase A3, cathepsin G, and granzyme B. Of these, cathepsin G degraded most efficiently apoB-100, induced LDL fusion, and enhanced binding of LDL to isolated human aortic proteoglycans and human atherosclerotic lesions ex vivo. Double immunofluoresence staining of human atherosclerotic coronary arteries for tryptase and cathepsin G indicated that lesional MCs contain cathepsin G. In the lesions, expression of cathepsin G correlated with the expression of tryptase and chymase, but not with that of neutrophil proteinase 3. The present study suggests that cathepsin G in human atherosclerotic lesions is largely derived from MCs and that activated MCs may contribute to atherogenesis by enhancing LDL retention. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Evolutionary Analysis of Functional Divergence among Chemokine Receptors, Decoy Receptors, and Viral Receptors

    PubMed Central

    Daiyasu, Hiromi; Nemoto, Wataru; Toh, Hiroyuki

    2012-01-01

    Chemokine receptors (CKRs) function in the inflammatory response and in vertebrate homeostasis. Decoy and viral receptors are two types of CKR homologs with modified functions from those of the typical CKRs. The decoy receptors are able to bind ligands without signaling. On the other hand, the viral receptors show constitutive signaling without ligands. We examined the sites related to the functional difference. At first, the decoy and viral receptors were each classified into five groups, based on the molecular phylogenetic analysis. A multiple amino acid sequence alignment between each group and the CKRs was then constructed. The difference in the amino acid composition between the group and the CKRs was evaluated as the Kullback–Leibler (KL) information value at each alignment site. The KL information value is considered to reflect the difference in the functional constraints at the site. The sites with the top 5% of KL information values were selected and mapped on the structure of a CKR. The comparisons with decoy receptor groups revealed that the detected sites were biased on the intracellular side. In contrast, the sites detected from the comparisons with viral receptor groups were found on both the extracellular and intracellular sides. More sites were found in the ligand binding pocket in the analyses of the viral receptor groups, as compared to the decoy receptor groups. Some of the detected sites were located in the GPCR motifs. For example, the DRY motif of the decoy receptors was often degraded, although the motif of the viral receptors was basically conserved. The observations for the viral receptor groups suggested that the constraints in the pocket region are loose and that the sites on the intracellular side are different from those for the decoy receptors, which may be related to the constitutive signaling activity of the viral receptors. PMID:22855685

  11. Evolutionary Analysis of Functional Divergence among Chemokine Receptors, Decoy Receptors, and Viral Receptors.

    PubMed

    Daiyasu, Hiromi; Nemoto, Wataru; Toh, Hiroyuki

    2012-01-01

    Chemokine receptors (CKRs) function in the inflammatory response and in vertebrate homeostasis. Decoy and viral receptors are two types of CKR homologs with modified functions from those of the typical CKRs. The decoy receptors are able to bind ligands without signaling. On the other hand, the viral receptors show constitutive signaling without ligands. We examined the sites related to the functional difference. At first, the decoy and viral receptors were each classified into five groups, based on the molecular phylogenetic analysis. A multiple amino acid sequence alignment between each group and the CKRs was then constructed. The difference in the amino acid composition between the group and the CKRs was evaluated as the Kullback-Leibler (KL) information value at each alignment site. The KL information value is considered to reflect the difference in the functional constraints at the site. The sites with the top 5% of KL information values were selected and mapped on the structure of a CKR. The comparisons with decoy receptor groups revealed that the detected sites were biased on the intracellular side. In contrast, the sites detected from the comparisons with viral receptor groups were found on both the extracellular and intracellular sides. More sites were found in the ligand binding pocket in the analyses of the viral receptor groups, as compared to the decoy receptor groups. Some of the detected sites were located in the GPCR motifs. For example, the DRY motif of the decoy receptors was often degraded, although the motif of the viral receptors was basically conserved. The observations for the viral receptor groups suggested that the constraints in the pocket region are loose and that the sites on the intracellular side are different from those for the decoy receptors, which may be related to the constitutive signaling activity of the viral receptors.

  12. 21 CFR 868.5430 - Gas-scavenging apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gas-scavenging apparatus. 868.5430 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5430 Gas-scavenging apparatus. (a) Identification. A gas-scavenging apparatus is a device intended to collect excess anesthetic, analgesic, or trace...

  13. 21 CFR 868.5430 - Gas-scavenging apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gas-scavenging apparatus. 868.5430 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5430 Gas-scavenging apparatus. (a) Identification. A gas-scavenging apparatus is a device intended to collect excess anesthetic, analgesic, or trace...

  14. Association of Scavenger Receptor Class B Type I Polymorphisms with Subclinical Atherosclerosis: The Multi-Ethnic Study of Atherosclerosis

    PubMed Central

    Naj, Adam C.; West, Michael; Rich, Stephen S.; Post, Wendy; Kao, W.H. Linda; Wasserman, Bruce A.; Herrington, David M.; Rodriguez, Annabelle

    2012-01-01

    Background Little is known regarding the association of scavenger receptor class B type I (SCARB1) single nucleotide polymorphisms (SNPs) and subclinical atherosclerosis (SCA), particularly in subjects of different racial/ethnic backgrounds. We examined this relationship in the Multi-Ethnic Study of Atherosclerosis (MESA). Methods and Results Forty-three SCARB1 tagging SNPs were genotyped. Baseline examinations included fasting lipids and SCA phenotypes (coronary artery calcium [CAC], and common and internal carotid artery thickness [CCIMT and ICIMT]). Examining SNP associations with different SCA phenotypes across multiple racial/ethnic groups with adjustment for multiple covariates, we found the C allele of SNP rs10846744 was associated with higher CCIMT in African American (P=0.03), Chinese (P=0.02), European American (P=0.05), and Hispanic participants (P=0.03), and was strongly associated in pooled analyses (P=0.0002). The results also showed that the association of this SNP with CCIMT was independent of lipids and other well-established cardiovascular risk factors. Stratifying by sex, there appeared to be a strong association of rs10846744 with CCIMT in females, but no genotype-sex interactions were observed. Conclusions Variation in SCARB1 at rs10846744 was significantly associated with CCIMT across racial/ethnic groups in MESA. PMID:20160195

  15. Cleavage of Type I Collagen by Fibroblast Activation Protein-α Enhances Class A Scavenger Receptor Mediated Macrophage Adhesion

    PubMed Central

    Mazur, Anna; Holthoff, Emily; Vadali, Shanthi; Kelly, Thomas; Post, Steven R.

    2016-01-01

    Pathophysiological conditions such as fibrosis, inflammation, and tumor progression are associated with modification of the extracellular matrix (ECM). These modifications create ligands that differentially interact with cells to promote responses that drive pathological processes. Within the tumor stroma, fibroblasts are activated and increase the expression of type I collagen. In addition, activated fibroblasts specifically express fibroblast activation protein-α (FAP), a post-prolyl peptidase. Although FAP reportedly cleaves type I collagen and contributes to tumor progression, the specific pathophysiologic role of FAP is not clear. In this study, the possibility that FAP-mediated cleavage of type I collagen modulates macrophage interaction with collagen was examined using macrophage adhesion assays. Our results demonstrate that FAP selectively cleaves type I collagen resulting in increased macrophage adhesion. Increased macrophage adhesion to FAP-cleaved collagen was not affected by inhibiting integrin-mediated interactions, but was abolished in macrophages lacking the class A scavenger receptor (SR-A/CD204). Further, SR-A expressing macrophages localize with activated fibroblasts in breast tumors of MMTV-PyMT mice. Together, these results demonstrate that FAP-cleaved collagen is a substrate for SR-A-dependent macrophage adhesion, and suggest that by modifying the ECM, FAP plays a novel role in mediating communication between activated fibroblasts and macrophages. PMID:26934296

  16. The Mediterranean Diet decreases LDL atherogenicity in high cardiovascular risk individuals: a randomized controlled trial.

    PubMed

    Hernáez, Álvaro; Castañer, Olga; Goday, Alberto; Ros, Emilio; Pintó, Xavier; Estruch, Ramón; Salas-Salvadó, Jordi; Corella, Dolores; Arós, Fernando; Serra-Majem, Lluis; Martínez-González, Miguel Ángel; Fiol, Miquel; Lapetra, José; de la Torre, Rafael; López-Sabater, M Carmen; Fitó, Montserrat

    2017-09-01

    Traditional Mediterranean diet (TMD) protects against cardiovascular disease through several mechanisms such as decreasing LDL cholesterol levels. However, evidence regarding TMD effects on LDL atherogenic traits (resistance against oxidation, size, composition, cytotoxicity) is scarce. We assessed the effects of a 1-year intervention with a TMD on LDL atherogenic traits in a random sub-sample of individuals from the PREDIMED study (N = 210). We compared two TMDs: one enriched with virgin olive oil (TMD-VOO, N = 71) and another with nuts (TMD-Nuts, N = 68), versus a low-fat control diet (N = 71). After the TMD-VOO intervention, LDL resistance against oxidation increased (+6.46%, p = 0.007), the degree of LDL oxidative modifications decreased (-36.3%, p<0.05), estimated LDL particle size augmented (+3.06%, p = 0.021), and LDL particles became cholesterol-rich (+2.41% p = 0.013) relative to the low-fat control diet. LDL lipoproteins became less cytotoxic for macrophages only relative to baseline (-13.4%, p = 0.019). No significant effects of the TMD-Nuts intervention on LDL traits were observed versus the control diet. Adherence to a TMD, particularly when enriched with virgin olive oil, decreased LDL atherogenicity in high cardiovascular risk individuals. The development of less atherogenic LDLs could contribute to explaining some of the cardioprotective benefits of this dietary pattern. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Antisense inhibition of proprotein convertase subtilisin/kexin type 9 reduces serum LDL in hyperlipidemic mice.

    PubMed

    Graham, Mark J; Lemonidis, Kristina M; Whipple, Charles P; Subramaniam, Amuthakannan; Monia, Brett P; Crooke, Stanley T; Crooke, Rosanne M

    2007-04-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a member of a family of proteases that is thought to promote the degradation of the low density lipoprotein receptor (LDLR) through an as yet undefined mechanism. We developed second generation antisense oligonucleotide (ASO) inhibitors targeting murine PCSK9 to determine their potential as lipid-lowering agents. Administration of a PCSK9 ASO to high fat-fed mice for 6 weeks reduced total cholesterol and LDL by 53% and 38%, respectively. Moreover, inhibition of PCSK9 expression resulted in a 2-fold increase in hepatic LDLR protein levels. This phenotype closely resembles that reported previously in Pcsk9-deficient mice. The absence of cholesterol lowering in Ldlr-deficient mice effectively demonstrated a critical role for this receptor in mediating the lipid-lowering effects of PCSK9 inhibition. Antisense inhibition of PCSK9 is an attractive and novel therapeutic approach for treating hypercholesterolemia in human.

  18. Dielectric polymer: scavenging energy from human motion

    NASA Astrophysics Data System (ADS)

    Jean-Mistral, Claire; Basrour, Skandar; Chaillout, Jean-Jacques

    2008-03-01

    More and more sensors are embedded in human body for medical applications, for sport. The short lifetime of the batteries, available on the market, reveals a real problem of autonomy of these systems. A promising alternative is to scavenge the ambient energy such as the mechanical one. Up to now, few scavenging structures have operating frequencies compatible with ambient one. And, most of the developed structures are rigid and use vibration as mechanical source. For these reasons, we developed a scavenger that operates in a large frequency spectrum from quasi-static to dynamic range. This generator is fully flexible, light and does not hamper the human motion. Thus, we report in this paper an analytical model for dielectric generator with news electrical and mechanical characterization, and the development of an innovating application: scavenging energy from human motion. The generator is located on the knee and design to scavenge 0.1mJ per scavenging cycle at a frequency of 1Hz, enough to supply a low consumption system and with a poling voltage as low as possible to facilitate the power management. Our first prototype is a membrane with an area of 5*3cm and 31µm in thickness which scavenge 0.1mJ under 170V at constant charge Q.

  19. microRNA-150 inhibits the formation of macrophage foam cells through targeting adiponectin receptor 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jing; Zhang, Suhua, E-mail: drsuhuangzhang@qq.com

    Transformation of macrophages into foam cells plays a critical role in the pathogenesis of atherosclerosis. The aim of this study was to determine the expression and biological roles of microRNA (miR)-150 in the formation of macrophage foam cells and to identify its functional target(s). Exposure to 50 μg/ml oxidized low-density lipoprotein (oxLDL) led to a significant upregulation of miR-150 in THP-1 macrophages. Overexpression of miR-150 inhibited oxLDL-induced lipid accumulation in THP-1 macrophages, while knockdown of miR-150 enhanced lipid accumulation. apoA-I- and HDL-mediated cholesterol efflux was increased by 66% and 43%, respectively, in miR-150-overexpressing macrophages relative to control cells. In contrast, downregulationmore » of miR-150 significantly reduced cholesterol efflux from oxLDL-laden macrophages. Bioinformatic analysis and luciferase reporter assay revealed adiponectin receptor 2 (AdipoR2) as a direct target of miR-150. Small interfering RNA-mediated downregulation of AdipoR2 phenocopied the effects of miR-150 overexpression, reducing lipid accumulation and facilitating cholesterol efflux in oxLDL-treated THP-1 macrophages. Knockdown of AdipoR2 induced the expression of proliferator-activated receptor gamma (PPARγ), liver X receptor alpha (LXRα), ABCA1, and ABCG1. Moreover, pharmacological inhibition of PPARγ or LXRα impaired AdipoR2 silencing-induced upregulation of ABCA1 and ABCG1. Taken together, our results indicate that miR-150 can attenuate oxLDL-induced lipid accumulation in macrophages via promotion of cholesterol efflux. The suppressive effects of miR-150 on macrophage foam cell formation are mediated through targeting of AdipoR2. Delivery of miR-150 may represent a potential approach to prevent macrophage foam cell formation in atherosclerosis. -- Highlights: •miR-150 inhibits macrophage foam cell formation. •miR-150 accelerates cholesterol efflux from oxLDL-laden macrophages. •miR-150 suppresses macrophage foam

  20. Surveillance of avian influenza virus type A in semi-scavenging ducks in Bangladesh

    PubMed Central

    2013-01-01

    Background Ducks are the natural reservoir of influenza A virus and the central host for highly pathogenic avian influenza (H5N1), while domestic ducks rearing in semi-scavenging system could serve as re-assortment vessels for re-emerging new subtypes of influenza viruses between birds to human. Avian influenza virus (AIV) surveillance in Bangladesh has been passive, relying on poultry farmers to report suspected outbreaks of highly pathogenic H5N1 influenza. Here, the results of an active surveillance effort focusing on the semi-scavenging ducks are presented. Result A total of 2100 cloacal swabs and 2100 sera were collected from semi-scavenging ducks from three wintering-sites of Bangladesh during three successive winter seasons, December through February in the years between 2009 and 2012. Virus isolation and identification were carried out from the cloacal swabs by virus propagation in embryonated hen eggs followed by amplification of viral RNA using Avian influenza virus (AIV) specific RT-PCR. The overall prevalence of avian influenza type A was 22.05% for swab samples and 39.76% ducks were sero-positive for avian influenza type A antibody. Extremely low sero-prevalence (0.09%) of AIV H5N1 was detected. Conclusions Based on our surveillance results, we conclude that semi-scavenging ducks in Bangladesh might play important role in transmitting Avian Influenza virus (AIV) type A. However, the current risk of infection for humans from domestic ducks in Bangladesh is negligible. We believe that this relatively large dataset over three winters in Bangladesh might create a strong foundation for future studies of AIV prevalence, evolution, and ecology in wintering sites around the globe. PMID:24099526

  1. Targeting of glycine site on NMDA receptor as a possible new strategy for autism treatment.

    PubMed

    Ghanizadeh, Ahmad

    2011-05-01

    The exact pathophysiology of the neurodevelopment disorder of autism is not clear and there is not any curative approach for it. There is only one FDA-approved medication for its management. Therefore, providing of novel treatments is highly required. The hypofunction of GABAergic system and glutamate toxicity are generally believed to have a causal role for autism. The antagonist of the N-methyl-D-aspartic acid (NMDA) glutamate receptor improves autism. Glycine is required for the activation of NMDA receptor. The antagonist of glycine site decreases NMDA receptor conductance. It is hypothesis that glycine site antagonists can be tested as a new strategy for the management of autism.

  2. Apolipoprotein E polymorphism and low density lipoprotein (LDL) oxidation in patients with dementia.

    PubMed

    Wehr, Hanna; Bednarska-Makaruk, Małgorzata; Graban, Ałła; Kunicki, Paweł K; Lojkowska, Wanda; Rodo, Maria; Ryglewicz, Danuta

    2003-01-01

    In patients with dementia, 29 diagnosed as probably suffering from Alzheimer's disease and 46 subjects with dementia of vascular origin, and in 41 non demented control subjects LDL oxidation in vitro was compared in carriers of various apolipoprotein E alleles. Restriction isotyping was performed by gene amplification and cleavage with Hhal, LDL oxidation was investigated by determination of conjugated dienes and vitamin E (alpha tocopherol) plasma level was measured by HPLC. In subjects with dementia oxidation of LDL was shown to be higher in carriers of epsilon4 allele as compared with non-carriers of this allele. It was especially observed in the propagation phase, which illustrates oxidation intensity after the exhaustion of the antioxidant reserve in LDL. Vitamin E level did not show differences between carriers of different alleles. It is concluded that the differences in oxidation susceptibility of LDL between demented subjects possessing particular apolipoprotein E forms can result partially from differing antioxidant properties of apolipoprotein E isoforms and, in a substantial degree, from the size and quality of LDL.

  3. Case study of a solid-waste-scavenger community with respect to health and environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kungskulniti, Nipapun.

    1991-01-01

    This study was an investigation of a solid waste scavenger community at the On-Nooch Dump Site in Bangkok, Thailand. The purpose was to identify the dimensions of the public health conditions of solid waste scavengers and their community. Cross-sectional field surveys and measurements were undertaken to characterize the distribution and magnitude of health-related problems and environmental conditions. Scavengers were found to be exposed to hazardous conditions due to the waste materials at the dump site. Cuts and punctures from sharp materials were the most common complaints among scavengers. Health symptoms like headache, diarrhea, respiratory illness, skin diseases and back painmore » were also reported. There was a high prevalence of childhood respiratory illness especially among those children of households where cigarette smoking was present. Children had poor nutritional status and were commonly infected by intestinal protozoa and helminths. An appreciable proportion of adult respondents was below the normal range for lung function performance. Seroprevalence of HBV infection was found to be high among male respondents in addition to six respondents that had possible HIV infections. The quality of the community water supply was low. Air pollution measurements showed acceptable ambient air levels except for particulate levels (TSP and RSP). Levels of indoor, outdoor, and personal exposure NO{sub 2} were found to be similar. Data for an inner-city project apartment community named Din-Dang were also collected for comparison. A priority rating index and recommendations for public health condition improvements were presented.« less

  4. Sex Differences in the Impact of the Mediterranean Diet on LDL Particle Size Distribution and Oxidation.

    PubMed

    Bédard, Alexandra; Corneau, Louise; Lamarche, Benoît; Dodin, Sylvie; Lemieux, Simone

    2015-05-15

    Sex differences have been previously highlighted in the cardioprotective effects of the Mediterranean diet (MedDiet). The objective of this study was to investigate whether sex differences also exist with regard to LDL particle size distribution and oxidation. Participants were 37 men and 32 premenopausal women (24-53 years) with slightly elevated LDL-C concentrations (3.4-4.9 mmol/L) or total cholesterol/HDL-C ≥5.0. Variables were measured before and after a four-week isoenergetic MedDiet. Sex differences were found in response to the MedDiet for the proportion of medium LDL (255-260 Å) (p for sex-by-time interaction = 0.01) and small, dense LDL (sdLDL; <255 Å) (trend; p for sex-by-time interaction = 0.06), men experiencing an increase in the proportion of medium LDL with a concomitant reduction in the proportion of sdLDL, while an opposite trend was observed in women. A sex difference was also noted for estimated cholesterol concentrations among sdLDL (p for sex-by-time interaction = 0.03), with only men experiencing a reduction in response to the MedDiet. The MedDiet marginally reduced oxidized LDL (oxLDL) concentrations (p = 0.07), with no sex difference. Results suggest that short-term consumption of the MedDiet leads to a favorable redistribution of LDL subclasses from smaller to larger LDL only in men. These results highlight the importance of considering sex issues in cardiovascular benefits of the MedDiet.

  5. Benzodiazepine-site pharmacology on GABAA receptors in histaminergic neurons.

    PubMed

    May, A C; Fleischer, W; Kletke, O; Haas, H L; Sergeeva, O A

    2013-09-01

    The histaminergic tuberomamillary nucleus (TMN) of the posterior hypothalamus controls the cognitive aspects of vigilance which is reduced by common sedatives and anxiolytics. The receptors targeted by these drugs in histaminergic neurons are unknown. TMN neurons express nine different subunits of the GABAA receptor (GABAA R) with three α- (α1, α2 and α5) and two γ- (γ1, γ 2) subunits, which confer different pharmacologies of the benzodiazepine-binding site. We investigated the actions of zolpidem, midazolam, diazepam, chlordiazepoxide, flumazenil (Ro15-1788) and methyl-6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylate (DMCM) in TMN neurons using mouse genetics, electrophysiological and molecular biological methods. We find the sensitivity of GABAA R to zolpidem, midazolam and DMCM significantly reduced in TMN neurons from γ2F77I mice, but modulatory activities of diazepam, chlordiazepoxide and flumazenil not affected. Potencies and efficacies of these compounds are in line with the dominance of α2- and α1-subunit containing receptors associated with γ2- or γ1-subunits. Functional expression of the γ1-subunit is supported by siRNA-based knock-down experiments in γ2F77I mice. GABAA R of TMN neurons respond to a variety of common sedatives with a high affinity binding site (γ2F77I) involved. The γ1-subunit likely contributes to the action of common sedatives in TMN neurons. This study is relevant for understanding the role of neuronal histamine and benzodiazepines in disorders of sleep and metabolism. © 2013 The British Pharmacological Society.

  6. The roles of TAM receptor tyrosine kinases in the mammalian testis and immunoprivileged sites.

    PubMed

    Deng, Tingting; Chen, Qiaoyuan; Han, Daishu

    2016-01-01

    Three members of a receptor tyrosine kinase family, including Tyro3, Axl, and Mer, are collectively called as TAM receptors. TAM receptors have two common ligands, namely, growth arrest specific gene 6 (Gas6) and protein S (ProS). The TAM-Gas6/ProS system is essential for phagocytic removal of apoptotic cells, and plays critical roles in regulating immune response. Genetic studies have shown that TAM receptors are essential regulators of the tissue homeostasis in immunoprivileged sites, including the testis, retina and brain. The mechanisms by which the TAM-Gas6/ProS system regulates the tissue homeostasis in immunoprivileged sites are emerging. The roles of the TAM-Gas6/ProS system in regulating the immune privilege were intensively investigated in the mouse testis, and several studies were performed in the eye and brain. This review summarizes our current understanding of TAM signaling in the testis and other immunoprivileged tissues, as well as highlights topics that are worthy of further investigation.

  7. Kinetic analysis of thermal stability of human low density lipoproteins: a model for LDL fusion in atherogenesis[S

    PubMed Central

    Lu, Mengxiao; Gantz, Donald L.; Herscovitz, Haya; Gursky, Olga

    2012-01-01

    Fusion of modified LDL in the arterial wall promotes atherogenesis. Earlier we showed that thermal denaturation mimics LDL remodeling and fusion, and revealed kinetic origin of LDL stability. Here we report the first quantitative analysis of LDL thermal stability. Turbidity data show sigmoidal kinetics of LDL heat denaturation, which is unique among lipoproteins, suggesting that fusion is preceded by other structural changes. High activation energy of denaturation, Ea = 100 ± 8 kcal/mol, indicates disruption of extensive packing interactions in LDL. Size-exclusion chromatography, nondenaturing gel electrophoresis, and negative-stain electron microscopy suggest that LDL dimerization is an early step in thermally induced fusion. Monoclonal antibody binding suggests possible involvement of apoB N-terminal domain in early stages of LDL fusion. LDL fusion accelerates at pH < 7, which may contribute to LDL retention in acidic atherosclerotic lesions. Fusion also accelerates upon increasing LDL concentration in near-physiologic range, which likely contributes to atherogenesis. Thermal stability of LDL decreases with increasing particle size, indicating that the pro-atherogenic properties of small dense LDL do not result from their enhanced fusion. Our work provides the first kinetic approach to measuring LDL stability and suggests that lipid-lowering therapies that reduce LDL concentration but increase the particle size may have opposite effects on LDL fusion. PMID:22855737

  8. Inhibiting LDL glycation ameliorates increased cholesteryl ester synthesis in macrophages and hypercholesterolemia and aortic lipid peroxidation in streptozotocin diabetic rats

    PubMed Central

    Cohen, Margo P.; Shea, Elizabeth A.; Wu, Van-Yu

    2009-01-01

    Increased nonenzymatic glycation of apoB-containing lipoproteins impairs uptake and metabolism by the high affinity low density lipoprotein (LDL) receptor, and is one of the post-secretory modifications contributory to accelerated atherosclerosis in diabetes. The present study evaluated in vitro and in vivo effects of 2,2-chlorophenylaminophenylacetate (CAP22) to probe the influence of glycated lipoprotein on cholesterol homeostasis. This compound prevented the increased formation of glycated products in LDL incubated with 200 mM glucose and the increased cholesteryl ester synthesis in THP-1 macrophages induced by apoB-containing lipoproteins preincubated with high glucose concentration. The elevated circulating concentrations of glycated lipoprotein and cholesterol and higher vascular levels of lipid peroxidation products observed in streptozotocin diabetic rats compared to nondiabetic controls were significantly reduced in diabetic animals treated for six months with test compound. These results are the first to demonstrate that inhibiting nonenzymatic glycation of apoB-containing lipoproteins ameliorates abnormalities contributory to hypercholesterolemia and atherogenic risk in diabetes. PMID:19922964

  9. Binding site stoichiometry and the effects of phosphorylation on human α1 homomeric glycine receptors

    PubMed Central

    Gentet, Luc J; Clements, John D

    2002-01-01

    The kinetic properties of the human α1 homomeric glycine receptor were investigated. Receptors were expressed in HEK 293 cells, and glycine was applied to outside-out membrane patches with sub-millisecond solution exchange. The activation time course of the glycine response was used to investigate receptor stoichiometry. The unbinding of three strychnine molecules and the cooperative binding of two glycine molecules were required to activate the channel. The effects of phosphorylation on glycine receptor kinetics were investigated by pretreating cells with phosphorylators or with phosphatases. Phosphorylation accelerated desensitisation, but slowed deactivation and recovery from desensitisation. A chemical-kinetic model was developed that reproduced the experimental observations. The model suggests that only three binding sites on the glycine channel are functional, while the remaining two binding sites are ‘silent’, possibly due to strong negative cooperativity. PMID:12356883

  10. Activation of Peroxisome Proliferator-activated Receptor γ (PPARγ) and CD36 Protein Expression: THE DUAL PATHOPHYSIOLOGICAL ROLES OF PROGESTERONE.

    PubMed

    Yang, Xiaoxiao; Zhang, Wenwen; Chen, Yuanli; Li, Yan; Sun, Lei; Liu, Ying; Liu, Mengyang; Yu, Miao; Li, Xiaoju; Han, Jihong; Duan, Yajun

    2016-07-15

    Progesterone or its analog, one of components of hormone replacement therapy, may attenuate the cardioprotective effects of estrogen. However, the underlying mechanisms have not been fully elucidated. Expression of CD36, a receptor for oxidized LDL (oxLDL) that enhances macrophage/foam cell formation, is activated by the transcription factor peroxisome proliferator-activated receptor γ (PPARγ). CD36 also functions as a fatty acid transporter to influence fatty acid metabolism and the pathophysiological status of several diseases. In this study, we determined that progesterone induced macrophage CD36 expression, which is related to progesterone receptor (PR) activity. Progesterone enhanced cellular oxLDL uptake in a CD36-dependent manner. Mechanistically, progesterone increased PPARγ expression and PPARγ promoter activity in a PR-dependent manner and the binding of PR with the progesterone response element in the PPARγ promoter. Specific deletion of macrophage PPARγ (MφPPARγ KO) expression in mice abolished progesterone-induced macrophage CD36 expression and cellular oxLDL accumulation. We also determined that, associated with gestation and increased serum progesterone levels, CD36 and PPARγ expression in mouse adipose tissue, skeletal muscle, and peritoneal macrophages were substantially activated. Taken together, our study demonstrates that progesterone can play dual pathophysiological roles by activating PPARγ expression, in which progesterone increases macrophage CD36 expression and oxLDL accumulation, a negative effect on atherosclerosis, and enhances the PPARγ-CD36 pathway in adipose tissue and skeletal muscle, a protective effect on pregnancy. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Sex Differences in the Impact of the Mediterranean Diet on LDL Particle Size Distribution and Oxidation

    PubMed Central

    Bédard, Alexandra; Corneau, Louise; Lamarche, Benoît; Dodin, Sylvie; Lemieux, Simone

    2015-01-01

    Sex differences have been previously highlighted in the cardioprotective effects of the Mediterranean diet (MedDiet). The objective of this study was to investigate whether sex differences also exist with regard to LDL particle size distribution and oxidation. Participants were 37 men and 32 premenopausal women (24–53 years) with slightly elevated LDL-C concentrations (3.4–4.9 mmol/L) or total cholesterol/HDL-C ≥5.0. Variables were measured before and after a four-week isoenergetic MedDiet. Sex differences were found in response to the MedDiet for the proportion of medium LDL (255–260 Å) (p for sex-by-time interaction = 0.01) and small, dense LDL (sdLDL; <255 Å) (trend; p for sex-by-time interaction = 0.06), men experiencing an increase in the proportion of medium LDL with a concomitant reduction in the proportion of sdLDL, while an opposite trend was observed in women. A sex difference was also noted for estimated cholesterol concentrations among sdLDL (p for sex-by-time interaction = 0.03), with only men experiencing a reduction in response to the MedDiet. The MedDiet marginally reduced oxidized LDL (oxLDL) concentrations (p = 0.07), with no sex difference. Results suggest that short-termconsumption of the MedDiet leads to a favorable redistribution of LDL subclasses from smaller to larger LDL only in men. These results highlight the importance of considering sex issues in cardiovascular benefits of the MedDiet. PMID:25988764

  12. Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauch, Eva-Maria; Bernard, Steffen M.; La, David

    Many viral surface glycoproteins and cell surface receptors are homo-oligomers1, 2, 3, 4, and thus can potentially be targeted by geometrically matched homo-oligomers that engage all subunits simultaneously to attain high avidity and/or lock subunits together. The adaptive immune system cannot generally employ this strategy since the individual antibody binding sites are not arranged with appropriate geometry to simultaneously engage multiple sites in a single target homo-oligomer. We describe a general strategy for the computational design of homo-oligomeric protein assemblies with binding functionality precisely matched to homo-oligomeric target sites5, 6, 7, 8. In the first step, a small protein ismore » designed that binds a single site on the target. In the second step, the designed protein is assembled into a homo-oligomer such that the designed binding sites are aligned with the target sites. We use this approach to design high-avidity trimeric proteins that bind influenza A hemagglutinin (HA) at its conserved receptor binding site. The designed trimers can both capture and detect HA in a paper-based diagnostic format, neutralizes influenza in cell culture, and completely protects mice when given as a single dose 24 h before or after challenge with influenza.« less

  13. Kinetic Reaction Mechanism of Sinapic Acid Scavenging NO2 and OH Radicals: A Theoretical Study

    PubMed Central

    Lu, Yang; Wang, AiHua; Shi, Peng; Zhang, Hui; Li, ZeSheng

    2016-01-01

    The mechanism and kinetics underlying reactions between the naturally-occurring antioxidant sinapic acid (SA) and the very damaging ·NO2 and ·OH were investigated through the density functional theory (DFT). Two most possible reaction mechanisms were studied: hydrogen atom transfer (HAT) and radical adduct formation (RAF). Different reaction channels of neutral and anionic sinapic acid (SA-) scavenging radicals in both atmosphere and water medium were traced independently, and the thermodynamic and kinetic parameters were calculated. We find the most active site of SA/SA- scavenging ·NO2 and ·OH is the –OH group in benzene ring by HAT mechanism, while the RAF mechanism for SA/SA- scavenging ·NO2 seems thermodynamically unfavorable. In water phase, at 298 K, the total rate constants of SA eliminating ·NO2 and ·OH are 1.30×108 and 9.20×109 M-1 S-1 respectively, indicating that sinapic acid is an efficient scavenger for both ·NO2 and ·OH. PMID:27622460

  14. Intranasally delivered small interfering RNA-mediated suppression of scavenger receptor Mac-1 attenuates microglial phenotype switching and working memory impairment following hypoxia.

    PubMed

    Das, Sudeshna; Mishra, K P; Ganju, Lilly; Singh, S B

    2018-05-05

    Brain, being the highest consumer of oxygen, is prone to increased risk of hypoxia-induced neurological insults. In response to hypoxia, microglia, the major resident immune cells of brain switches to an activated phenotype and promote inflammatory responses leading to tissue damage and loss of cognitive functions including working memory impairment. Till date, no proven clinical therapeutics is available to retard the progression of neurodegenerative memory impairment. In the present study, we investigated the therapeutic potential of intranasal small interfering RNA (siRNA) delivery in a mouse model of hypoxia-induced working memory impairment using microglial receptor, Mac-1 as a target gene. Here, we implicate Mac-1 scavenger receptor in microglial phenotype switching, neurodegeneration in prefrontal cortex, hippocampus and working memory impairment. RNA mediated silencing of Mac-1 in both in vitro and in vivo model showed significant impact of it on hypoxia induced altered expression of Mac-1 endogenous ligand, signaling cascade proteins, transcription factors and NADPH oxidase pathway. Efficient degradation of Mac-1 mRNA suppressed expression of M1 phenotypic markers, inflammatory chemokines, and cytokines, but on the other hand, it upregulated M2 phenotypic markers and anti-inflammatory cytokines. Neuronal viability and synaptic plasticity markers were also modulated significantly by this strategy. Behavioral study revealed significant downregulation in the number of working memory errors at a time-dependent manner after silencing the Mac-1 gene during continuous hypoxic exposure. The novel findings of this study for the very first time, unmasked the role of Mac-1 receptor in neurodegenerative disease progression under hypoxic condition and at the same time indicated the potential therapeutic value of this non-invasive siRNA delivery approach for treating working memory loss. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. ATP-binding cassette transporter 1 participates in LDL oxidation by artery wall cells.

    PubMed

    Reddy, Srinivasa T; Hama, Susan; Ng, Carey; Grijalva, Victor; Navab, Mohamad; Fogelman, Alan M

    2002-11-01

    We have previously reported that products of the lipoxygenase pathway, hydroperoxyoctadecadienoic acid and hydroperoxyeicosatetraenoic acid, as well as cholesterol linoleate hydroperoxides, collectively termed seeding molecules, are removed by apolipoprotein A-I (apoA-I) from the artery wall cells and render low density lipoprotein (LDL) resistant to oxidation by human artery wall cells. The mechanisms by which oxidized lipids are transported and/or transferred to lipoproteins and the pathways by which apoA-I facilitates their removal remain unclear. ATP-binding cassette transporter 1 (ABCA1) is known to facilitate the release of cellular phospholipids and cholesterol from the plasma membrane to apoA-I and high density lipoprotein. Therefore, we evaluated whether ABCA1 participates in LDL oxidation. In this report, we show that (1) chemical inhibitors of ABCA1 function, glyburide and DIDS, block artery wall cell-mediated oxidative modification of LDL, (2) inhibition of ABCA1 with the use of antisense (but not sense) oligonucleotides prevents LDL-induced lipid hydroperoxide formation and LDL-induced monocyte chemotactic activity by the artery wall cells, and (3) oxysterols that induce ABCA1 expression, such as 22(R)hydroxycholesterol, enhance cell-mediated LDL oxidation. Furthermore, we also show that 22(R)hydroxycholesterol induces the production of reactive oxygen species in the artery wall cells, which can be removed by incubating the artery wall cells with apoA-I. Our data suggest that ABCA1 plays an important role in artery wall cell-mediated modification/oxidation of LDL by modulating the release of reactive oxygen species from artery wall cells that are necessary for LDL oxidation.

  16. Ordovas-Oxidized LDL is associated with metabolic syndrome traits independently of central obesity and insulin resistance

    USDA-ARS?s Scientific Manuscript database

    This study assesses whether oxidative stress, using oxidized LDL (ox-LDL) as a proxy, is associated with metabolic syndrome (MS), whether ox-LDL mediates the association between central obesity and MS, and whether insulin resistance mediates the association between ox-LDL and MS. We examined baselin...

  17. Low density lipoprotein (LDL)-antioxidant flavonoids from roots of Sophora flavescens.

    PubMed

    Jeong, Tae-Sook; Ryu, Young Bae; Kim, Hoi Young; Curtis-Long, Marcus John; An, Sojin; An, So Jin; Lee, Jin Hwan; Lee, Woo Song; Park, Ki Hun

    2008-11-01

    Oxidation of low density lipoprotein (LDL) is strongly implicated as a key process in the onset of atherosclerosis. In this study, nine alkylated (C10-C5) flavonoids from Sophora flavescens were examined for their inhibitory effects on copper-induced LDL oxidation. Of the flavonoids tested, sophoraflavanone G (1), kurarinone (2), kurarinol (3), norkurarinol (4), and kuraridin (9) inhibited the generation of thiobarbituric acid reactive substances (TBARS) with IC50s of 7.9, 14.5, 22.0, 26.9, and 17.5 microM, respectively. The most potent inhibitor, compound 1, also demonstrated significant activities in complementary in vitro investigations, such as lag time (130 min at 5 microM), relative electrophoretic mobility (REM) of ox-LDL (80% inhibition at 20 microM), and fragmentation of apoB-100 (inhibition of 71% at 20 microM). Analysis of the structures of these compounds reveals that a resorcinol moiety in the B-ring is strongly correlated with protection of LDL-oxidation.

  18. LDL oxidation by THP-1 monocytes: implication of HNP-1, SgIII and DMT-1.

    PubMed

    He, Chunyan; Huang, Rui; Du, Fen; Zheng, Fang; Wei, Lei; Wu, Junzhu

    2009-04-01

    Oxidized low-density lipoprotein (oxLDL) plays an important role in the pathogenesis of atherosclerosis. However, the mechanisms of the initiation and progression of LDL oxidation by cells are still unknown. We investigated the molecular mechanism underlying THP-1 cell-mediated LDL oxidation. LDL oxidation was monitored at 234 nm by detecting the formation of conjugated dienes. cDNA array analysis was applied to profile changes in gene expression of human THP-1 monocytes in response to LDL stimulation. The mRNA and protein levels of secretogranin III (SgIII), divalent metal transporter (DMT-1) and human alpha-defensin 1 (HNP-1) were determined by real-time RT-PCR and Western blotting respectively. Eukaryotic expression vectors containing full-length cDNA sequence of HNP-1 (pEGFP-C1/HNP-1) SgIII (pEGFP-C1/SgIII) or DMT-1 (pEGFP-C1/DMT-1) were constructed and transfected to THP-1 cells. The effects of overexpression of these three genes on THP-1 cell-mediated LDL oxidation were observed. LDL oxidation was most pronounced after LDL was incubated with THP-1 cells for 9 h. 1651 genes in total were detected by cDNA array analysis in THP-1 cells with or without LDL treatment for 9 h. Thirteen genes with >2-fold relative expression difference were identified, including nine genes whose expression was up-regulated and four genes whose expression was down-regulated. Among the up-regulated genes, SgIII, DMT-1 and HNP-1 were reported to be associated with atherosclerosis. The increased mRNA expressions of these three genes were confirmed by real-time RT-PCR. Western blotting analysis demonstrated that protein expressions of SgIII and DMT-1 were also enhanced in THP-1 cells in response to LDL. Furthermore, transient overexpression of HNP-1, SgIII or DMT-1 in THP-1 cells significantly increased THP-1 cell-mediated LDL oxidation. Our data suggest that SgIII, DMT-1 and HNP-1 are implicated in cell-mediated LDL oxidation.

  19. Deciphering Scavenging Propensity Among Arthropod Predators.

    USDA-ARS?s Scientific Manuscript database

    Scavenging is a well documented feeding behavior among many arthrop predators. However, quantifying scavenging feeding activity is not well understood because many predators are small elusive. This makes directly observing predation events in nature almost impossible. If predators prefer dead prey ...

  20. Microbial ice nucleators scavenged from the atmosphere during simulated rain events

    NASA Astrophysics Data System (ADS)

    Hanlon, Regina; Powers, Craig; Failor, Kevin; Monteil, Caroline L.; Vinatzer, Boris A.; Schmale, David G.

    2017-08-01

    Rain and snow collected at ground level have been found to contain biological ice nucleators. These ice nucleators have been proposed to have originated in clouds, where they may have participated in the formation of precipitation via ice phase nucleation. We conducted a series of field experiments to test the hypothesis that at least some of the microbial ice nucleators (prokaryotes and eukaryotes) present in rain may not originate in clouds but instead be scavenged from the lower atmosphere by rainfall. Thirty-three simulated rain events were conducted over four months off the side of the Smart Road Bridge in Blacksburg, VA, USA. In each event, sterile water was dispensed over the side of the bridge and recovered in sterile containers in an open fallow agricultural field below (a distance of ∼55 m). Microbes scavenged from the simulated rain events were cultured and their ice nucleation activity was examined. Putative microbial ice nucleators were cultured from 94% (31/33) of the simulated rain events, and represented 1.5% (121/8331) of the total colonies assayed. Putative ice nucleators were subjected to additional droplet freezing assays, and those confirmed through these repeated assays represented 0.4% (34/8331) of the total. Mean CFUs scavenged by simulated rain ranged from 2 to 267 CFUs/mL. Scavenged ice nucleators belong to a number of taxa including the bacterial genera Pseudomonas, Pantoea, and Xanthomonas, and the fungal genera Fusarium, Humicola, and Mortierella. An ice-nucleating strain of the fungal genus Penicillium was also recovered from a volumetric air sampler at the study site. This work expands our knowledge of the scavenging properties of rainfall, and suggests that at least some ice nucleators in natural precipitation events may have been scrubbed from the atmosphere during rainfall, and thus are not likely to be involved in precipitation.

  1. Identification of an Inhibitory Alcohol Binding Site in GABAA ρ1 Receptors

    PubMed Central

    Borghese, Cecilia M.; Ruiz, Carlos I.; Lee, Ui S.; Cullins, Madeline A.; Bertaccini, Edward J.; Trudell, James R.; Harris, R. Adron

    2016-01-01

    Alcohols inhibit γ-aminobutyric acid type A ρ1 receptor function. After introducing mutations in several positions of the second transmembrane helix in ρ1, we studied the effects of ethanol and hexanol on GABA responses using two-electrode voltage clamp electrophysiology in Xenopus laevis oocytes. The 6′ mutations produced the following effects on ethanol and hexanol responses: small increase or no change (T6′M), increased inhibition (T6′V) and small potentiation (T6′Y and T6′F). The 5′ mutations produced mainly increases in hexanol inhibition. Other mutations produced small (3′ and 9′) or no changes (2′ and L277 in the first transmembrane domain) in alcohol effects. These results suggest an inhibitory alcohol binding site near the 6′ position. Homology models of ρ1 receptors based on the X-ray structure of GluCl showed that the 2′, 5′, 6’ and 9′ residues were easily accessible from the ion pore, with 5′ and 6′ residues from neighboring subunits facing each other; L3′ and L277 also faced the neighboring subunit. We tested ethanol through octanol on single and double mutated ρ1 receptors [ρ1(I15′S), ρ1(T6′Y) and ρ1(T6′Y,I15′S)] to further characterize the inhibitory alcohol pocket in the wild-type ρ1 receptor. The pocket can only bind relatively short-chain alcohols and is eliminated by introducing Y in the 6’ position. Replacing the bulky 15′ residue with a smaller side chain introduced a potentiating binding site, more sensitive to long-chain than to short-chain alcohols. In conclusion, the net alcohol effect on the ρ1 receptor is determined by the sum of its actions on inhibitory and potentiating sites. PMID:26571107

  2. Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome

    PubMed Central

    Shi, Yuan; Chen, Xiang; Elsasser, Suzanne; Stocks, Bradley B.; Tian, Geng; Lee, Byung-Hoon; Shi, Yanhong; Zhang, Naixia; de Poot, Stefanie A. H.; Tuebing, Fabian; Sun, Shuangwu; Vannoy, Jacob; Tarasov, Sergey G.; Engen, John R.; Finley, Daniel; Walters, Kylie J.

    2016-01-01

    Structured Abstract INTRODUCTION The ubiquitin-proteasome system comprises hundreds of distinct pathways of degradation, which converge at the step of ubiquitin recognition by the proteasome. Five proteasomal ubiquitin receptors have been identified, two that are intrinsic to the proteasome (Rpn10 and Rpn13) and three reversibly associated proteasomal ubiquitin receptors (Rad23, Dsk2, and Ddi1). RATIONALE We found that the five known proteasomal ubiquitin receptors of yeast are collectively nonessential for ubiquitin recognition by the proteasome. We therefore screened for additional ubiquitin receptors in the proteasome and identified subunit Rpn1 as a candidate. We used nuclear magnetic resonance (NMR) spectroscopy to characterize the structure of the binding site within Rpn1, which we term the T1 site. Mutational analysis of this site showed its functional importance within the context of intact proteasomes. T1 binds both ubiquitin and ubiquitin-like (UBL) proteins, in particular the substrate-delivering shuttle factor Rad23. A second site within the Rpn1 toroid, T2, recognizes the UBL domain of deubiquitinating enzyme Ubp6, as determined by hydrogen-deuterium exchange mass spectrometry analysis and validated by amino acid substitution and functional assays. The Rpn1 toroid thus serves a critical scaffolding role within the proteasome, helping to assemble multiple proteasome cofactors as well as substrates. RESULTS Our results indicate that proteasome subunit Rpn1 can recognize both ubiquitin and UBL domains of substrate shuttling factors that themselves bind ubiquitin and function as reversibly-associated proteasomal ubiquitin receptors. Recognition is mediated by the T1 site within the Rpn1 toroid, which supports proteasome function in vivo. We found that the capacity of T1 to recognize both ubiquitin and UBL proteins was shared with Rpn10 and Rpn13. The surprising multiplicity of ubiquitin-recognition domains within the proteasome may promote enhanced

  3. Acid Sphingomyelinase Mediates Oxidized-LDL Induced Apoptosis in Macrophage via Endoplasmic Reticulum Stress

    PubMed Central

    Zhao, Min; Pan, Wei; Shi, Rui-zheng; Bai, Yong-ping; You, Bo-yang; Zhang, Kai; Fu, Qiong-mei; Schuchman, Edward H.

    2016-01-01

    Aim: Macrophage apoptosis is a vital event in advanced atherosclerosis, and oxidized low-density lipoprotein (ox-LDL) is a major contributor to this process. Acid sphingomyelinase (ASM) and ceramide are also involved in the induction of apoptosis, particularly in macrophages. Our current study focuses on ASM and investigates its role in ox-LDL-induced macrophage apoptosis. Methods: Human THP-1 and mouse peritoneal macrophages were cultured in vitro and treated with ox-LDL. ASM activity and ceramide levels were quantified using ultra performance liquid chromatography. Protein and mRNA levels were analyzed using Western blot analysis and quantitative realtime PCR, respectively. Cell apoptosis was determined using Hoechst staining and flow cytometry. Results: Ox-LDL-induced macrophage apoptosis was triggered by profound endoplasmic reticulum (ER) stress, leading to an upregulation of ASM activity and ceramide levels at an early stage. ASM was inhibited by siRNA or desipramine (DES), and/or ceramide was degraded by recombinant acid ceramidase (AC). These events attenuated the effect of ox-LDL on ER stress. In contrast, recombinant ASM upregulated ceramide and ER stress. ASM siRNA, DES, recombinant AC, and ER stress inhibitor 4-phenylbutyric acid were blocked by elevated levels of C/EBP homologous protein (CHOP); ox-LDL induced elevated levels of CHOP. These events attenuated macrophage apoptosis. Conclusion: These results indicate that ASM/ceramide signaling pathway is involved in ox-LDL-induced macrophage apoptosis via ER stress pathway. PMID:26923251

  4. Quantitative and qualitative effects of rosuvastatin on LDL-cholesterol: what is the clinical significance?

    PubMed

    Rizzo, M; Berneis, K; Spinas, G A; Rini, G B; Kapur, N K

    2009-03-01

    Statins have emerged as the global leader in pharmacologic therapy for dyslipidaemia, and rosuvastatin has demonstrated clinical efficacy as well as safety in several clinical trials and postmarketing analyses. The present article reviewed the effects of rosuvastatin on the quantity and the quality of low-density lipoproteins (LDL). We searched for and reviewed all the available evidence in a systematic way. A literature search (by Medline and Scopus) was performed using the following headings: 'LDL-cholesterol', 'LDL size', 'LDL subclasses', 'small dense LDL', 'apolipoprotein B, apo B' and 'rosuvastatin' up to 11 November 2008. The authors also manually reviewed the references of selected articles for any pertinent material. Rosuvastatin reduces LDL-cholesterol levels to a greater extent than other statins and is able to modulate significantly LDL size and subclasses towards less atherogenic particles as well as the LDL particle number, as indirectly measured by the levels of apo B. The recent Justification for the Use of statins in Primary prevention: an Intervention Trial Evaluating Rosuvastatin study provides more evidence about the effectiveness of rosuvastatin therapy in reducing cardiovascular risk, even among persons who would not currently be considered for pharmacotherapy. Further insights on cardiovascular outcomes will be available by the on-going trials included in the GALAXY program that includes subjects with type-2 diabetes, haemodialysis recipients, patients with congestive heart failure and specific ethnic groups, such as African American, Hispanic and South Asian populations.

  5. Vascular peroxide 1 promotes ox-LDL-induced programmed necrosis in endothelial cells through a mechanism involving β-catenin signaling.

    PubMed

    Zhang, Yin-Zhuang; Wang, Lei; Zhang, Jie-Jie; Xiong, Xiao-Ming; Zhang, Di; Tang, Xuan-Meng; Luo, Xiu-Ju; Ma, Qi-Lin; Peng, Jun

    2018-05-03

    Vascular peroxidase 1 (VPO1) plays a key role in mediation of cardiovascular oxidative injury. This study aims to determine whether VPO1 can promote programmed necrosis of endothelial cells and the underlying mechanisms. Human umbilical vein endothelial cells (HUVECs) were incubated with oxidized low-density lipoprotein (ox-LDL, 100 μg/mL) for 48 h to induce cell injury, which showed an elevation in cell necrosis (reflected by the increased propidium iodide (PI) positive-staining cells, LDH release and decreased cell viability), concomitant with an increase in programmed necrosis-relevant proteins including receptor-interacting protein kinase 1/3 (RIPK1/3), p-RIPK3 and mixed lineage kinase domain like (MLKL); these phenomena were attenuated by necrostatin-1(Nec-1) and RIPK3 siRNA. Meanwhile, VPO1 was up-regulated in ox-LDL-treated endothelial cells accompanied by a decrease in GSK-3β activity and p-β-catenin levels, and an elevation of β-catenin levels; these phenomena were reversed in the presence of VPO1 siRNA or hypochlorous acid (HOCl) inhibitor; replacement of ox-LDL with HOCl could also induce endothelial programmed necrosis and activate the β-catenin signaling; β-catenin inhibitor could also suppress ox-LDL-induced RIPK-dependent necrosis. In hyperlipidemic patients, the plasma level of VPO1 was obviously increased concomitant with an elevation in plasma levels of RIPK1, RIPK3 and MLKL, and they were positively correlated. VPO1 plays an important role in promotion of endothelial programmed necrosis under hyperlipidemic conditions through activation of β-catenin signaling. It may serve as a novel therapeutic target for prevention of endothelial dysfunction in hyperlipidemia. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Melatonin and its precursors scavenge nitric oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noda, Y.; Mori, A.; Liburdy, R.

    Nitric oxide (NO) scavenging activity of melatonin, N-acetyl-5-hydroxytryptamine, serotonin, 5-hydroxytryptophan and L-tryptophan was examined by the Griess reaction using flow injection analysis. 1-Hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene(NOC-7) was used as NO generator. The Griess reagent stoichiometrically reacts with NO2-, which was converted by a cadmium-copper reduction column from the stable end products of NO oxidation. Except for tryptophan, all the compounds examined scavenged NO in a dose-dependent manner. Melatonin, which has a methoxy group in the 5-position and an acetyl side chain, exhibited the most potent scavenging activity among the compounds tested. Serotonin, N-acetyl-5-hydroxytryptamine, and 5-hydroxytryptophan, respectively, showed moderate scavenging activity compared to melatonin.more » Tryptophan, which has neither a methoxy nor a hydroxyl group in the 5-position, exhibited the least NO scavenging activity.« less

  7. Impact of high-fat diet and voluntary running on body weight and endothelial function in LDL receptor knockout mice.

    PubMed

    Langbein, Heike; Hofmann, Anja; Brunssen, Coy; Goettsch, Winfried; Morawietz, Henning

    2015-05-01

    Obesity and physical inactivity are important cardiovascular risk factors. Regular physical exercise has been shown to mediate beneficial effects in the prevention of cardiovascular diseases. However, the impact of physical exercise on endothelial function in proatherosclerotic low-density lipoprotein receptor deficient (LDLR(-/-)) mice has not been studied so far. Six-week-old male LDLR(-/-) mice were fed a standard diet or a high-fat diet (39 kcal% fat diet) for 20 weeks. The impact of high-fat diet and voluntary running on body weight and amount of white adipose tissue was monitored. Basal tone and endothelial function was investigated in aortic rings using a Mulvany myograph. LDLR(-/-) mice on high-fat diet had increased cumulative food energy intake, but also higher physical activity compared to mice on control diet. Body weight and amount of visceral and retroperitoneal white adipose tissue of LDLR(-/-) mice were significantly increased by high-fat diet and partially reduced by voluntary running. Endothelial function in aortae of LDLR(-/-) mice was impaired after 20 weeks on standard and high-fat diet and could not be improved by voluntary running. Basal tone showed a trend to be increased by high-fat diet. Voluntary running reduced body weight and amount of white adipose tissue in LDLR(-/-) mice. Endothelial dysfunction in LDLR(-/-) mice could not be improved by voluntary running. In a clinical context, physical exercise alone might not have an influence on functional parameters and LDL-C levels in patients with familial hypercholesterolemia. However, physical activity in these patients may be in general beneficial and should be performed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Differential Scavenging Among Pig, Rabbit, and Human Subjects.

    PubMed

    Steadman, Dawnie Wolfe; Dautartas, Angela; Kenyhercz, Michael W; Jantz, Lee M; Mundorff, Amy; Vidoli, Giovanna M

    2018-04-12

    Different animal species have been used as proxies for human remains in decomposition studies for decades, although few studies have sought to validate their use in research aimed at estimating the postmortem interval. This study examines 45 pig, rabbit, and human subjects placed in three seasonal trials at the Anthropology Research Facility. In an earlier paper, we found that overall decomposition trends did vary between species that could be due to differential insect and scavenger behavior. This study specifically examines if scavenger behavior differs by carrion species. Daily photographs, game camera photographs, written observations, and Total Body Score (TBS) documented scavenging and decomposition changes. Results show that raccoons were the most commonly observed vertebrate scavenger, that scavenging was most extensive in winter, and that certain human subjects were preferred over other humans and all non-human subjects. Finally, scavenging activity greatly reduces the accuracy of postmortem interval estimates based on TBS. © 2018 American Academy of Forensic Sciences.

  9. Endothelial LOX-1 activation differentially regulates arterial thrombus formation depending on oxLDL levels: role of the Oct-1/SIRT1 and ERK1/2 pathways.

    PubMed

    Akhmedov, Alexander; Camici, Giovanni G; Reiner, Martin F; Bonetti, Nicole R; Costantino, Sarah; Holy, Erik W; Spescha, Remo D; Stivala, Simona; Schaub Clerigué, Ariane; Speer, Thimoteus; Breitenstein, Alexander; Manz, Jasmin; Lohmann, Christine; Paneni, Francesco; Beer, Juerg-Hans; Lüscher, Thomas F

    2017-04-01

    The lectin-like oxLDL receptor-1 (LOX-1) promotes endothelial uptake of oxidized low-density lipoprotein (oxLDL) and plays an important role in atherosclerosis and acute coronary syndromes (ACS). However, its role in arterial thrombus formation remains unknown. We investigated whether LOX-1 plays a role in arterial thrombus formation in vivo at different levels of oxLDL using endothelial-specific LOX-1 transgenic mice (LOX-1TG) and a photochemical injury thrombosis model of the carotid artery. In mice fed a normal chow diet, time to arterial occlusion was unexpectedly prolonged in LOX-1TG as compared to WT. In line with this, tissue factor (TF) expression and activity in carotid arteries of LOX-1TG mice were reduced by half. This effect was mediated by activation of octamer transcription factor 1 (Oct-1) leading to upregulation of the mammalian deacetylase silent information regulator-two 1 (SIRT1) via binding to its promoter and subsequent inhibition of NF-κB signaling. In contrast, intravenous injection of oxLDL as well as high cholesterol diet for 6 weeks led to a switch from the Oct-1/SIRT1 signal transduction pathway to the ERK1/2 pathway and in turn to an enhanced thrombotic response with shortened occlusion time. Thus, LOX-1 differentially regulates thrombus formation in vivo depending on the degree of activation by oxLDL. At low oxLDL levels LOX-1 activates the protective Oct-1/SIRT1 pathway, while at higher levels of the lipoprotein switches to the thrombogenic ERK1/2 pathway. These findings may be important for arterial thrombus formation in ACS and suggest that SIRT1 may represent a novel therapeutic target in this context. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  10. The role of the lectin-like oxLDL receptor (LOX-1) in traffic-generated air pollution exposure-mediated alteration of the brain microvasculature in Apolipoprotein (Apo) E knockout mice.

    PubMed

    Lucero, JoAnn; Suwannasual, Usa; Herbert, Lindsay M; McDonald, Jacob D; Lund, Amie K

    2017-05-01

    Recent studies have shown a strong correlation between air pollution-exposure and detrimental outcomes in the central nervous system, including alterations in blood brain barrier (BBB) integrity, neuroinflammation, and neurodegeneration. However, the mechanisms mediating these pathologies have not yet been fully elucidated. We have previously reported that exposure to traffic-generated air pollution results in increased circulating oxidized low-density lipoprotein (oxLDL), associated with alterations in BBB integrity, in atherosclerotic Apolipoprotein E null (ApoE -/- ) mice. Thus, we investigated the role of the lectin-like oxLDL receptor (LOX)-1 in mediating these deleterious effects in ApoE -/- mice exposed to a mixture of gasoline and diesel engine exhaust (MVE: 100 PM µg/m 3 ) for 6 h/d, 7d/week, for 30 d by inhalation. Concurrent with exposures, a subset of mice were treated with neutralizing antibodies to LOX-1 (LOX-1 Ab) i.p., or IgG (control) i.p., every other day during exposures. Resulting brain microvascular integrity, tight junction (TJ) protein expression, matrix metalloproteinase (MMP)-9/-2 activity, ROS, and markers of cellular adhesion and monocyte/macrophage sequestration were assessed. MVE-exposure resulted in decreased BBB integrity and alterations in microvascular TJ protein expression, associated with increased LOX-1 expression, MMP-9/-2 activities, and lipid peroxidation, each of which was attenuated with LOX-1 Ab treatment. Furthermore, MVE-exposure induced cerebral microvascular ROS and adhesion molecules, expression of which was not normalized through LOX-1 Ab-treatment. Such findings suggest that alterations in brain microvascular structure and integrity observed with MVE-exposure may be mediated, at least in part, via LOX-1 signaling.

  11. Glycation of a food allergen by the Maillard reaction enhances its T-cell immunogenicity: role of macrophage scavenger receptor class A type I and II.

    PubMed

    Ilchmann, Anne; Burgdorf, Sven; Scheurer, Stephan; Waibler, Zoe; Nagai, Ryoji; Wellner, Anne; Yamamoto, Yasuhiko; Yamamoto, Hiroshi; Henle, Thomas; Kurts, Christian; Kalinke, Ulrich; Vieths, Stefan; Toda, Masako

    2010-01-01

    The Maillard reaction occurs between reducing sugars and proteins during thermal processing of foods. It produces chemically glycated proteins termed advanced glycation end products (AGEs). The glycation structures of AGEs are suggested to function as pathogenesis-related immune epitopes in food allergy. This study aimed at defining the T-cell immunogenicity of food AGEs by using ovalbumin (OVA) as a model allergen. AGE-OVA was prepared by means of thermal processing of OVA in the presence of glucose. Activation of OVA-specific CD4(+) T cells by AGE-OVA was evaluated in cocultures with bone marrow-derived murine myeloid dendritic cells (mDCs) as antigen-presenting cells. The uptake mechanisms of mDCs for AGE-OVA were investigated by using inhibitors of putative cell-surface receptors for AGEs, as well as mDCs deficient for these receptors. Compared with the controls (native OVA and OVA thermally processed without glucose), AGE-OVA enhanced the activation of OVA-specific CD4(+) T cells on coculture with mDCs, indicating that the glycation of OVA enhanced the T-cell immunogenicity of the allergen. The mDC uptake of AGE-OVA was significantly higher than that of the controls. We identified scavenger receptor class A type I and II (SR-AI/II) as a mediator of the AGE-OVA uptake, whereas the receptor for AGEs and galectin-3 were not responsible. Importantly, the activation of OVA-specific CD4(+) T cells by AGE-OVA was attenuated on coculture with SR-AI/II-deficient mDCs. SR-AI/II targets AGE-OVA to the MHC class II loading pathway in mDCs, leading to an enhanced CD4(+) T-cell activation. The Maillard reaction might thus play an important role in the T-cell immunogenicity of food allergens. Copyright 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  12. Differential inhibition of oxidized LDL-induced apoptosis in human endothelial cells treated with different flavonoids.

    PubMed

    Jeong, Yu-Jin; Choi, Yean-Jung; Kwon, Hyang-Mi; Kang, Sang-Wook; Park, Hyoung-Sook; Lee, Myungsook; Kang, Young-Hee

    2005-05-01

    High plasma level of cholesterol is a well-known risk factor for atherosclerotic diseases. Oxidized LDL induces cellular and nuclear damage that leads to apoptotic cell death. We tested the hypothesis that flavonoids may function as antioxidants with regard to LDL incubated with 5 microm-Cu(2+) alone or in combination with human umbilical vein endothelial cells (HUVEC). Cytotoxicity and formation of thiobarbituric acid-reactive substances induced by Cu(2+)-oxidized LDL were examined in the presence of various subtypes of flavonoid. Flavanols, flavonols and flavanones at a non-toxic dose of 50 microm markedly inhibited LDL oxidation by inhibiting the formation of peroxidative products. In contrast, the flavones luteolin and apigenin had no such effect, with >30 % of cells killed after exposure to 0.1 mg LDL/ml. Protective flavonoids, especially (-)-epigallocatechin gallate, quercetin, rutin and hesperetin, inhibited HUVEC nuclear condensation and fragmentation induced by Cu(2+)-oxidized LDL. In addition, immunochemical staining and Western blot analysis revealed that anti-apoptotic Bcl-2 expression was enhanced following treatment with these protective flavonoids. However, Bax expression and caspase-3 cleavage stimulated by 18 h incubation with oxidized LDL were reduced following treatment with these protective flavonoids. The down-regulation of Bcl-2 and up-regulation of caspase-3 activation were reversed by the cytoprotective flavonoids, (-)-epigallocatechin gallate, quercetin and hesperetin, at >/=10 microm. These results suggest that flavonoids may differentially prevent Cu(2+)-oxidized LDL-induced apoptosis and promote cell survival as potent antioxidants. Survival potentials of certain flavonoids against cytotoxic oxidized LDL appeared to stem from their disparate chemical structure. Furthermore, dietary flavonoids may have therapeutic potential for protecting the endothelium from oxidative stress and oxidized LDL-triggered atherogenesis.

  13. Imputation of Baseline LDL Cholesterol Concentration in Patients with Familial Hypercholesterolemia on Statins or Ezetimibe.

    PubMed

    Ruel, Isabelle; Aljenedil, Sumayah; Sadri, Iman; de Varennes, Émilie; Hegele, Robert A; Couture, Patrick; Bergeron, Jean; Wanneh, Eric; Baass, Alexis; Dufour, Robert; Gaudet, Daniel; Brisson, Diane; Brunham, Liam R; Francis, Gordon A; Cermakova, Lubomira; Brophy, James M; Ryomoto, Arnold; Mancini, G B John; Genest, Jacques

    2018-02-01

    Familial hypercholesterolemia (FH) is the most frequent genetic disorder seen clinically and is characterized by increased LDL cholesterol (LDL-C) (>95th percentile), family history of increased LDL-C, premature atherosclerotic cardiovascular disease (ASCVD) in the patient or in first-degree relatives, presence of tendinous xanthomas or premature corneal arcus, or presence of a pathogenic mutation in the LDLR , PCSK9 , or APOB genes. A diagnosis of FH has important clinical implications with respect to lifelong risk of ASCVD and requirement for intensive pharmacological therapy. The concentration of baseline LDL-C (untreated) is essential for the diagnosis of FH but is often not available because the individual is already on statin therapy. To validate a new algorithm to impute baseline LDL-C, we examined 1297 patients. The baseline LDL-C was compared with the imputed baseline obtained within 18 months of the initiation of therapy. We compared the percent reduction in LDL-C on treatment from baseline with the published percent reductions. After eliminating individuals with missing data, nonstandard doses of statins, or medications other than statins or ezetimibe, we provide data on 951 patients. The mean ± SE baseline LDL-C was 243.0 (2.2) mg/dL [6.28 (0.06) mmol/L], and the mean ± SE imputed baseline LDL-C was 244.2 (2.6) mg/dL [6.31 (0.07) mmol/L] ( P = 0.48). There was no difference in response according to the patient's sex or in percent reduction between observed and expected for individual doses or types of statin or ezetimibe. We provide a validated estimation of baseline LDL-C for patients with FH that may help clinicians in making a diagnosis. © 2017 American Association for Clinical Chemistry.

  14. Comparative receptor mapping of serotoninergic 5-HT3 and 5-HT4 binding sites*

    NASA Astrophysics Data System (ADS)

    López-Rodríguez, María L.; Morcillo, María José; Benhamú, Bellinda; Rosado, María Luisa

    1997-11-01

    The clinical use of currently available drugs acting at the5-HT4 receptor has been hampered by their lack of selectivityover 5-HT3 binding sites. For this reason, there is considerableinterest in the medicinal chemistry of these serotonin receptor subtypes, andsignificant effort has been made towards the discovery of potent and selectiveligands. Computer-aided conformational analysis was used to characterizeserotoninergic 5-HT3 and 5-HT4 receptorrecognition. On the basis of the generally accepted model of the5-HT3 antagonist pharmacophore, we have performed a receptormapping of this receptor binding site, following the active analog approach(AAA) defined by Marshall. The receptor excluded volume was calculated as theunion of the van der Waals density maps of nine active ligands(pKi ≥ 8.9), superimposed in pharmacophoric conformations.Six inactive analogs (pKi < 7.0) were subsequently used todefine the essential volume, which in its turn can be used to define theregions of steric intolerance of the 5-HT3 receptor. Five activeligands (pKi ≥ 9.3) at 5-HT4 receptors wereused to construct an antagonist pharmacophore for this receptor, and todetermine its excluded volume by superimposition of pharmacophoricconformations. The volume defined by the superimposition of five inactive5-HT4 receptor analogs that possess the pharmacophoric elements(pKi ≤ 6.6) did not exceed the excluded volume calculated forthis receptor. In this case, the inactivity may be due to the lack of positiveinteraction of the amino moiety with a hypothetical hydrophobic pocket, whichwould interact with the voluminous substituents of the basic nitrogen ofactive ligands. The difference between the excluded volumes of both receptorshas confirmed that the main difference is indeed in the basic moiety. Thus,the 5-HT3 receptor can only accommodate small substituents inthe position of the nitrogen atom, whereas the 5-HT4 receptorrequires more voluminous groups. Also, the basic nitrogen is located at ca

  15. Expression of human factors CD81, claudin-1, scavenger receptor, and occludin in mouse hepatocytes does not confer susceptibility to HCV entry.

    PubMed

    Hikosaka, Keisuke; Noritake, Hidenao; Kimura, Wataru; Sultana, Nishat; Sharkar, Mohammad T K; Tagawa, Yoh-Ichi; Uezato, Tadayoshi; Kobayashi, Yoshimasa; Wakita, Takaji; Miura, Naoyuki

    2011-04-01

    No suitable mouse model is available for studying chronic liver disease caused by hepatitis C virus (HCV). CD81, claudin-1, scavenger receptor class B type I, and occludin were recently reported to be the important factors in HCV entry into hepatocytes. We made transgenic mice (Alb-CCSO) expressing the four human proteins and examined whether HCV from a patient serum or HCV pseudoparticles (HCVpp) were capable of infecting them. HCV was not detected in the mouse serum after injecting the mice with HCV from a patient serum. We also found no indications of HCVpp entry into primary hepatocytes from Alb-CCSO mice. In addition, HCV-infectible Hep3B cells were fused with HCV-resistant primary mouse hepatocytes and the fused cells showed 35-fold lower infectivity compared to wild-type Hep3B cells, indicating that primary mouse hepatocytes have the inhibitory factor(s) in HCVpp entry. Our results suggest that the expression of the human factors does not confer susceptibility to HCV entry into the liver.

  16. Involvement of specific macrophage-lineage cells surrounding arterioles in barrier and scavenger function in brain cortex.

    PubMed Central

    Mato, M; Ookawara, S; Sakamoto, A; Aikawa, E; Ogawa, T; Mitsuhashi, U; Masuzawa, T; Suzuki, H; Honda, M; Yazaki, Y; Watanabe, E; Luoma, J; Yla-Herttuala, S; Fraser, I; Gordon, S; Kodama, T

    1996-01-01

    The transport of solutes between blood and brain is regulated by a specific barrier. Capillary endothelial cells of brain are known to mediate barrier function and facilitate transport. Here we report that specific cells surrounding arterioles, known as Mato's fluorescent granular perithelial (FGP) cells or perivascular microglial cells, contribute to the barrier function. Immunohistochemical and in situ hybridization studies indicate that, in normal brain cortex, type I and type II macrophage scavenger receptors are expressed only in FGP/perivascular microglial cells, and surface markers of macrophage lineage are also detected on them. These cells mediate the uptake of macromolecules, including modified low density lipoprotein, horseradish peroxidase, and ferritin injected either into the blood or into the cerebral ventricles. Accumulation of scavenged materials with aging or after the administration of a high-fat diet results in the formation of honeycomb-like foam cells and the narrowing of the lumen of arterioles in the brain cortex. These results indicate involvement of FGP/perivascular microglial cells in the barrier and scavenger functions in the central nervous system. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 Fig. 6 PMID:8622926

  17. Hydrogen Sulfide Suppresses Oxidized Low-density Lipoprotein (Ox-LDL)-stimulated Monocyte Chemoattractant Protein 1 generation from Macrophages via the Nuclear Factor κB (NF-κB) Pathway*

    PubMed Central

    Du, Junbao; Huang, Yaqian; Yan, Hui; Zhang, Qiaoli; Zhao, Manman; Zhu, Mingzhu; Liu, Jia; Chen, Stella X.; Bu, Dingfang; Tang, Chaoshu; Jin, Hongfang

    2014-01-01

    This study was designed to examine the role of hydrogen sulfide (H2S) in the generation of oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 (MCP-1) from macrophages and possible mechanisms. THP-1 cells and RAW macrophages were pretreated with sodium hydrosulfide (NaHS) and hexyl acrylate and then treated with ox-LDL. The results showed that ox-LDL treatment down-regulated the H2S/cystathionine-β-synthase pathway, with increased MCP-1 protein and mRNA expression in both THP-1 cells and RAW macrophages. Hexyl acrylate promoted ox-LDL-induced inflammation, whereas the H2S donor NaHS inhibited it. NaHS markedly suppressed NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter in ox-LDL-treated macrophages. Furthermore, NaHS decreased the ratio of free thiol groups in p65, whereas the thiol reductant DTT reversed the inhibiting effect of H2S on the p65 DNA binding activity. Most importantly, site-specific mutation of cysteine 38 to serine in p65 abolished the effect of H2S on the sulfhydration of NF-κB and ox-LDL-induced NF-κB activation. These results suggested that endogenous H2S inhibited ox-LDL-induced macrophage inflammation by suppressing NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter. The sulfhydration of free thiol group on cysteine 38 in p65 served as a molecular mechanism by which H2S inhibited NF-κB pathway activation in ox-LDL-induced macrophage inflammation. PMID:24550391

  18. Delineation of the peptide binding site of the human galanin receptor.

    PubMed Central

    Kask, K; Berthold, M; Kahl, U; Nordvall, G; Bartfai, T

    1996-01-01

    Galanin, a neuroendocrine peptide of 29 amino acids, binds to Gi/Go-coupled receptors to trigger cellular responses. To determine which amino acids of the recently cloned seven-transmembrane domain-type human galanin receptor are involved in the high-affinity binding of the endogenous peptide ligand, we performed a mutagenesis study. Mutation of the His264 or His267 of transmembrane domain VI to alanine, or of Phe282 of transmembrane domain VII to glycine, results in an apparent loss of galanin binding. The substitution of Glu271 to serine in the extracellular loop III of the receptor causes a 12-fold loss in affinity for galanin. We combined the mutagenesis results with data on the pharmacophores (Trp2, Tyr9) of galanin and with molecular modelling of the receptor using bacteriorhodopsin as a model. Based on these studies, we propose a binding site model for the endogenous peptide ligand in the galanin receptor where the N-terminus of galanin hydrogen bonds with Glu271 of the receptor, Trp2 of galanin interacts with the Zn2+ sensitive pair of His264 and His267 of transmembrane domain VI, and Tyr9 of galanin interacts with Phe282 of transmembrane domain VII, while the C-terminus of galanin is pointing towards the N-terminus of th Images PMID:8617199

  19. [The role of glycine binding site in NMDA receptor--interactions between NMDA and D-serine in artificial anoxia/agycemia rat hippocampus].

    PubMed

    Kawasaki, Kazuyoshi; Ogawa, Seturou

    2003-01-01

    NMDA receptor contributes to cause neuronal death in anoxic condition. It is not known how a part of NMDA receptors, NMDA-binding site and/or glycine-binding site, influence neuronal damage in rats' hippocampus in vitro. Rats' hippocampus, labeled with norepinephrine (3H-NE), was incubated in artificial cerebrospinal fluid (aCSF) and we measured 3H-NE in superfusion solution and remaining tissue. Glucose was eliminated from aCSF and 95% N2 + 5% CO2 produced the anoxic state. The amount of 3H-NE release increased in anoxia with NMDA (NMDA-binding site agonist), while there was no influence on NMDA receptor in non-anoxic state even after D-serine (glycine-binding site agonist) has been administered. The 3H-NE was released more when D-serine (100 mu mM) and NMDA (100 mu mM) were administered together than when only D-serine (10 mu mM, 100 mu mM, 1000 mu mM) in anoxia or NMDA (10 mu mM, 100 mu mM, 1000 mu mM) in anoxia was administered. Glycine-binding site agonist alone does not act significantly but ion channels in NMDA receptor open more and become more effective when both glycine-binding site agonist and NMDA-binding site agonist exist, suggesting that there are interactions between NMDA-binding site and glycine-binding site in NMDA-receptor during anoxia.

  20. Americans with Disabilities Act Scavenger Hunt

    ERIC Educational Resources Information Center

    Ramsey, Ursula

    2018-01-01

    This article describes a scavenger hunt for Business Law students. Specifically, students compete in this scavenger hunt to identify accessible design features on campus to undergird their study of Title III of the Americans with Disabilities Act (ADA). Title III of the ADA prohibits public accommodations from discriminating on the basis of…

  1. Differing predictive relationships between baseline LDL-C, systolic blood pressure, and cardiovascular outcomes.

    PubMed

    Deedwania, Prakash C; Pedersen, Terje R; DeMicco, David A; Breazna, Andrei; Betteridge, D John; Hitman, Graham A; Durrington, Paul; Neil, Andrew

    2016-11-01

    Traditional cardiovascular risk factors, such as hypertension and dyslipidemia, predispose individuals to cardiovascular disease, particularly patients with diabetes. We investigated the predictive value of baseline systolic blood pressure (SBP) and low-density lipoprotein cholesterol (LDL-C) on the risk of vascular outcomes in a large population of patients at high risk of future cardiovascular events. Data were pooled from the TNT (Treating to New Targets), CARDS (Collaborative Atorvastatin Diabetes Study), and IDEAL (Incremental Decrease in End-Points Through Aggressive Lipid Lowering) trials and included a total of 21,727 patients (TNT: 10,001; CARDS: 2838; IDEAL: 8888). The effect of baseline SBP and LDL-C on cardiovascular events, coronary events, and stroke was evaluated using a multivariate Cox proportional-hazards model. Overall, risk of cardiovascular events was significantly higher for patients with higher baseline SBP or LDL-C. Higher baseline SBP was significantly predictive of stroke but not coronary events. Conversely, higher baseline LDL-C was significantly predictive of coronary events but not stroke. Results from the subgroup with diabetes (5408 patients; TNT: 1501; CARDS: 2838; IDEAL: 1069) were broadly consistent with those of the total cohort: baseline SBP and LDL-C were significantly predictive of cardiovascular events overall, with the association to LDL-C predominantly related to an effect on coronary events. However, baseline SBP was not predictive of either coronary or stroke events in the pooled diabetic population. In this cohort of high-risk patients, baseline SBP and LDL-C were significantly predictive of cardiovascular outcomes, but this effect may differ between the cerebrovascular and coronary systems. NCT00327691 (TNT); NCT00327418 (CARDS); NCT00159835 (IDEAL). Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. STK/RON receptor tyrosine kinase mediates both apoptotic and growth signals via the multifunctional docking site conserved among the HGF receptor family.

    PubMed Central

    Iwama, A; Yamaguchi, N; Suda, T

    1996-01-01

    STK/RON tyrosine kinase, a member of the hepatocyte growth factor (HGF) receptor family, is a receptor for macrophage-stimulating protein (MSP). To examine the STK/RON signalling pathway, we generated STK/ RON transfectants showing opposite features in growth. STK/RON-expressing Ba/F3 pro-B cells (BaF/STK) exhibited MSP-dependent growth, whereas STK/ RON-expressing mouse erythroleukaemia cells (MEL/ STK) displayed MSP-induced apoptosis. This apoptosis was accompanied by the prolonged activation of c-Jun N-terminal kinase (JNK), which has recently been implicated in the initiation of apoptosis. Co-immunoprecipitation analyses showed that autophosphorylated STK/RON associated with PLC-gamma, P13-kinase, Shc and Grb2 in both transfectants. However, major tyrosine-phosphorylated proteins, p61 and p65, specifically associated with STK/RON in MEL/STK cells. Mutations at two C-terminal tyrosine residues, Y1330 and Y1337, in the counterpart of the multifunctional docking site of the HGF receptor abolished both MSP-induced growth and apoptosis. Analyses of these mutants and in vitro association revealed that signalling proteins including p61 and p65 directly bound to the phosphotyrosines in the multifunctional docking site. These results demonstrate that positive or negative signals toward cell growth are generated through the multifunctional docking site and suggest the involvement of p61 and p65 as well as JNK in apoptosis. Our findings provide the first evidence for apoptosis via a receptor tyrosine kinase. Images PMID:8918464

  3. Effects of cumin extract on oxLDL, paraoxanase 1 activity, FBS, total cholesterol, triglycerides, HDL-C, LDL-C, Apo A1, and Apo B in in the patients with hypercholesterolemia

    PubMed Central

    Samani, Keihan Ghatreh; Farrokhi, Effat

    2014-01-01

    Objectives Paraoxanase 1 (PON1) plays a protective role against the oxidative modification of plasma lipoproteins and hydrolyzes lipid peroxides in human atherosclerotic lesions. Cumin is the dried seed of the herb Cuminumcyminum that is known as Zeera in Iran. Cumin seeds contain flavonoids which are now generally recognized to have antioxidant activity and improve the antioxidant system. So, they possibly modify PON1 activity and oxidized low density lipoprotein (oxLDL) level. The present study was aimed to evaluate the effects of cumin extract supplementation on oxLDL, paraoxanase 1 activity, FBS, total cholesterol, triglycerides, High density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), apolipoprotein A1 (Apo A1), and apolipoprotein B (Apo B)in the patients with hypercholesterolemia. Methodology A fasting venous blood sample was obtained from the voluntary persons before and 45±3 days after taking cumin. Glucose, total cholesterol, and triglycerides were assayed using standard enzymatic procedures. HDL-Cand LDL-C were measured by direct method and ApoA1 and ApoB levels by immunoturbidimeteric methods. The levels of arylesterase and paraoxanase activities in the samples were measured by photometry methods and oxLDL by enzyme-linked immunosorbent assay (ELISA) method. 3 to 5 drops of cumin extract were added to the patient’s diet three times a day based on manufacturer’s instruction for 45±3 days. The biochemical parameters were compared before and after taking cumin. Data were analyzed using paired Student’s t-test in SPSS statistical software (version 11.5). Results The results demonstrated that there was a significant decrease in the level of oxLDL after receiving cumin. Paraoxonase and arylesterase activities increased in serum after taking cumin extract. Conclusion Based on the results, cumin reduces oxLDL level and increases both paraoxonase and arylesterase activity. PMID:24899878

  4. Decreased immunostaining for macrophage scavenger receptor is associated with poor prognosis of prostate cancer.

    PubMed

    Takayama, Hitoshi; Nonomura, Norio; Nishimura, Kazuo; Oka, Daizo; Shiba, Masahiro; Nakai, Yasutomo; Nakayama, Masashi; Tsujimura, Akira; Aozasa, Katsuyuki; Okuyama, Akihiko

    2009-02-01

    The aim of this study is to evaluate the expression of the macrophage scavenger receptor (MSR) in prostate needle biopsy specimens as a possible prognostic factor for prostate cancer. As MSR reportedly has a role in recognizing foreign pathogenic substances, MSR-positive inflammatory cells are often detected in solid tumours, and there is a correlation between the relative risk of prostate cancer and polymorphism of the MSR gene. MSR was evaluated by immunostaining in needle biopsies of the prostate from 135 patients who were confirmed to have prostate cancer. Among these men, 70 were treated by radical prostatectomy or by radiotherapy as definitive therapy; the other 65 were treated by hormonal therapy because of advanced disease or age. Needle-biopsy specimens were sectioned at 5 microm and immunostained with a monoclonal antibody against MSR. Six microscopic (x400) fields around the cancer foci were selected in each case for analysis. The median number of MSR-positive cells (MSR count) in each case was 24. There was an inverse correlation between the MSR count and Gleason score and clinical stage. The MSR count was lower in patients with biochemical (prostate-specific antigen, PSA) failure than that in those with no PSA failure (P < 0.001). In all patients, the recurrence-free survival (RFS) rate was significantly higher in those with a high MSR count (> or =24) than that in those with low MSR count (<24, P < 0.001). Moreover, for patients treated by definitive or hormonal therapy, the RFS rates in those with a higher MSR count were higher than in those with a lower MSR count (P < 0.001 and 0.014, respectively). Cox multivariate analysis showed that the MSR count was a prognostic factor for prostate cancer in addition to extraprostatic extension and Gleason score (P = 0.002, 0.038 and 0.011, respectively). The results of immunostaining of MSR in needle-biopsy specimens is a prognostic factor for prostate cancer.

  5. Specificity of binding of clathrin adaptors to signals on the mannose-6-phosphate/insulin-like growth factor II receptor.

    PubMed Central

    Glickman, J N; Conibear, E; Pearse, B M

    1989-01-01

    Adaptors mediate the interaction of clathrin with select groups of receptors. Two distinct types of adaptors, the HA-II adaptors (found in plasma membrane coated pits) and the HA-I adaptors (localized to Golgi coated pits) bind to the cytoplasmic portion of the 270 kd mannose 6-phosphate (M6P) receptor-a receptor which is concentrated in coated pits on both the plasma membrane and in the trans-Golgi network. Neither type of adaptor appears to compete with the other for binding, suggesting that each type recognizes a distinct site on the M6P receptor tail. Mutation of the two tyrosines in the tail essentially eliminates the interaction with the HA-II plasma membrane adaptor, which recognizes a 'tyrosine' signal on other endocytosed receptors (for example, the LDL receptor and the poly Ig receptor). In contrast, the wild type and the mutant M6P receptor tail (lacking tyrosines) are equally effective at binding HA-I adaptors. This suggests that there is an HA-I recognition signal in another region of the M6P receptor tail, C-terminal to the tyrosine residues, which remains intact in the mutant. This signal is presumably responsible for the concentration of the M6P receptor, with bound lysosomal enzymes, into coated pits which bud from the trans-Golgi network, thus mediating efficient transfer of these enzymes to lysosomes. Images PMID:2545438

  6. Lysophosphatidic acid directly induces macrophage-derived foam cell formation by blocking the expression of SRBI.

    PubMed

    Chen, Linmu; Zhang, Jun; Deng, Xiao; Liu, Yan; Yang, Xi; Wu, Qiong; Yu, Chao

    2017-09-23

    The leading cause of morbidity and mortality is the result of cardiovascular disease, mainly atherosclerosis. The formation of macrophage foam cells by ingesting ox-LDL and focal retention in the subendothelial space are the hallmarks of the early atherosclerotic lesion. Lysophosphatidic acid (LPA), which is a low-molecular weight lysophospholipid enriched in oxidized LDL, exerts a range of effects on the cardiovascular system. Previous reports show that LPA increases the uptake of ox-LDL to promote the formation of foam cells. However, as the most active component of ox-LDL, there is no report showing whether LPA directly affects foam cell formation. The aim of this study was to investigate the effects of LPA on foam cell formation, as well as to elucidate the underlying mechanism. Oil red O staining and a Cholesterol/cholesteryl ester quantitation assay were used to evaluate foam cell formation in Raw264.7 macrophage cells. We utilized a Western blot and RT-PCR to investigate the relationship between LPA receptors and lipid transport related proteins. We found that LPA promoted foam cell formation, using 200 μM for 24 h. Meanwhile, the expression of the Scavenger receptor BI (SRBI), which promotes the efflux of free cholesterol, was decreased. Furthermore, the LPA 1/3 receptor antagonist Ki16425 significantly abolished the LPA effects, indicating that LPA 1/3 was involved in the foam cell formation and SRBI expression induced by LPA. Additionally, the LPA-induced foam cell formation was blocked with an AKT inhibitor. Our results suggest that LPA-enhanced foam cell formation is mediated by LPA 1/3 -AKT activation and subsequent SRBI expression. Copyright © 2017. Published by Elsevier Inc.

  7. Diet rich in high glucoraphanin broccoli reduces plasma LDL cholesterol: Evidence from randomised controlled trials

    PubMed Central

    Armah, Charlotte N; Derdemezis, Christos; Traka, Maria H; Dainty, Jack R; Doleman, Joanne F; Saha, Shikha; Leung, Wing; Potter, John F; Lovegrove, Julie A; Mithen, Richard F

    2015-01-01

    Scope Cruciferous-rich diets have been associated with reduction in plasma LDL-cholesterol (LDL-C), which may be due to the action of isothiocyanates derived from glucosinolates that accumulate in these vegetables. This study tests the hypothesis that a diet rich in high glucoraphanin (HG) broccoli will reduce plasma LDL-C. Methods and results One hundred and thirty volunteers were recruited to two independent double-blind, randomly allocated parallel dietary intervention studies, and were assigned to consume either 400 g standard broccoli or 400 g HG broccoli per week for 12 weeks. Plasma lipids were quantified before and after the intervention. In study 1 (37 volunteers), the HG broccoli diet reduced plasma LDL-C by 7.1% (95% CI: –1.8%, –12.3%, p = 0.011), whereas standard broccoli reduced LDL-C by 1.8% (95% CI +3.9%, –7.5%, ns). In study 2 (93 volunteers), the HG broccoli diet resulted in a reduction of 5.1% (95% CI: –2.1%, –8.1%, p = 0.001), whereas standard broccoli reduced LDL-C by 2.5% (95% CI: +0.8%, –5.7%, ns). When data from the two studies were combined the reduction in LDL-C by the HG broccoli was significantly greater than standard broccoli (p = 0.031). Conclusion Evidence from two independent human studies indicates that consumption of high glucoraphanin broccoli significantly reduces plasma LDL-C. PMID:25851421

  8. Diet rich in high glucoraphanin broccoli reduces plasma LDL cholesterol: Evidence from randomised controlled trials.

    PubMed

    Armah, Charlotte N; Derdemezis, Christos; Traka, Maria H; Dainty, Jack R; Doleman, Joanne F; Saha, Shikha; Leung, Wing; Potter, John F; Lovegrove, Julie A; Mithen, Richard F

    2015-05-01

    Cruciferous-rich diets have been associated with reduction in plasma LDL-cholesterol (LDL-C), which may be due to the action of isothiocyanates derived from glucosinolates that accumulate in these vegetables. This study tests the hypothesis that a diet rich in high glucoraphanin (HG) broccoli will reduce plasma LDL-C. One hundred and thirty volunteers were recruited to two independent double-blind, randomly allocated parallel dietary intervention studies, and were assigned to consume either 400 g standard broccoli or 400 g HG broccoli per week for 12 weeks. Plasma lipids were quantified before and after the intervention. In study 1 (37 volunteers), the HG broccoli diet reduced plasma LDL-C by 7.1% (95% CI: -1.8%, -12.3%, p = 0.011), whereas standard broccoli reduced LDL-C by 1.8% (95% CI +3.9%, -7.5%, ns). In study 2 (93 volunteers), the HG broccoli diet resulted in a reduction of 5.1% (95% CI: -2.1%, -8.1%, p = 0.001), whereas standard broccoli reduced LDL-C by 2.5% (95% CI: +0.8%, -5.7%, ns). When data from the two studies were combined the reduction in LDL-C by the HG broccoli was significantly greater than standard broccoli (p = 0.031). Evidence from two independent human studies indicates that consumption of high glucoraphanin broccoli significantly reduces plasma LDL-C. © 2015 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. More Than Cholesterol Transporters: Lipoprotein Receptors in CNS Function and Neurodegeneration

    PubMed Central

    Lane-Donovan, Courtney E.; Philips, Gary T.; Herz, Joachim

    2014-01-01

    Members of the low-density lipoprotein (LDL) receptor gene family have a diverse set of biological functions that transcend lipid metabolism. Lipoprotein receptors have broad effects in both the developing and adult brain and participate in synapse development, cargo trafficking, and signal transduction. In addition, several family members play key roles in Alzheimer's disease pathogenesis and neurodegeneration. This review summarizes our current understanding of the role lipoprotein receptors play in CNS function and AD pathology, with a special emphasis on amyloid-independent roles in endocytosis and synaptic dysfunction. PMID:25144875

  10. Associations of Circulating Oxidized LDL and Conventional Biomarkers of Cardiovascular Disease in a Cross-Sectional Study of the Navajo Population

    PubMed Central

    Harmon, Molly E.; Campen, Matthew J.; Miller, Curtis; Shuey, Chris; Cajero, Miranda; Lucas, Selita; Pacheco, Bernadette; Erdei, Esther; Ramone, Sandy; Nez, Teddy; Lewis, Johnnye

    2016-01-01

    The prevalences of cardiovascular disease (CVD) and type 2 diabetes (T2D) have increased among the Navajo Native American community in recent decades. Oxidized low-density lipoprotein (oxLDL) is a novel CVD biomarker that has never been assessed in the Navajo population. We examined the relationship of oxLDL to conventional CVD and T2D risk factors and biomarkers in a cross-sectional population of Navajo participants. This cross-sectional study included 252 participants from 20 Navajo communities from the Diné Network for Environmental Health Project. Plasma samples were tested for oxLDL levels by a sandwich enzyme-linked immunosorbent assay. Univariate and multivariate analyses were used to determine the relationship of oxLDL and oxidized- to non-oxidized lipoprotein ratios to glycated hemoglobin (HbA1c), C-reactive protein (CRP), interleukin 6 (IL6) and demographic and health variables. Type 2 diabetes, hypertension and obesity are very prevalent in this Navajo population. HbA1c, CRP, body mass index (BMI), high-density lipoprotein, and triglycerides were at levels that may increase risk for CVD and T2D. Median oxLDL level was 47 (36.8–57) U/L. Correlational analysis showed that although oxLDL alone was not associated with HbA1c, oxLDL/HDL, oxLDL/LDL and CRP were significantly associated with HbA1c and glucose. OxLDL, oxLDL/HDL and oxLDL/LDL were significantly associated with CRP. Multivariate analysis showed that triglycerides were a common and strong predictor of oxLDL, oxLDL/HDL and oxLDL/LDL. OxLDL was trended with HbA1c and glucose but did not reach significance, however, HbA1c was an independent predictor of OxLDL/HDL. CRP trended with oxLDL/HDL and was a weak predictor of oxLDL/LDL. This Navajo subset appears to have oxLDL levels comparable to subjects without evidence of CVD reported in other studies. The high prevalence of T2D, hypertension and obesity along with abnormal levels of other biomarkers including HbA1c indicate that the Navajo population

  11. Deletion of angiotensin II type 1 receptor gene or scavenge of superoxide prevents chronic alcohol-induced aortic damage and remodelling.

    PubMed

    Bai, Yang; Tan, Yi; Wang, Bo; Miao, Xiao; Chen, Qiang; Zheng, Yang; Cai, Lu

    2012-10-01

    To investigate whether chronic alcohol consumption induces vascular injury via angiotensin II (Ang II) type 1 (AT1) receptor-dependent superoxide generation, male transgenic mice with knockout of AT1 gene (AT1-KO) and age-matched wild-type (WT) C57BL/6 mice were pair-fed a modified Lieber-DeCarli alcohol or isocaloric maltose dextrin control liquid diet for 2 months. Ethanol content (%, W/V) in the diet was 4.8 (34% of total calories) at initiation, and gradually increased up to 5.4 (38% of total calories). For some WT mice with and without alcohol treatment, superoxide dismutase mimetic (MnTMPyP) was given simultaneously by intraperitoneal injection at 5 mg/kg body weight daily for 2 months. At the end of studies, aortas were harvested for histopathological and immunohistochemical examination. Significant increases in the wall thickness and structural disarrangement of aorta were found in alcohol group, along with significant increases in aortic oxidative and/or nitrosative damage, expressions of NADPH oxidases (NOXs), inflammatory response, cell death and proliferation, and remodelling (fibrosis). However, these pathological changes were completely attenuated in alcohol-treated AT1-KO mice or in alcohol-treated WT mice that were also simultaneously treated with MnTMPyP for 2 months. These results suggest that chronic alcohol consumption may activate NOX via Ang II/AT1 receptor, to generate superoxide and associated peroxynitrite that in turn causes aortic nitrosative damage, inflammation, cell death and proliferation, and remodelling. Therefore, blocking Ang II/AT1 system or scavenging superoxide may become a potential preventive and/therapeutic approach to alcoholic vascular damage. © 2012 The Authors Journal of Cellular and Molecular Medicine © 2012 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  12. Extra-epitopic hepatitis C virus polymorphisms confer resistance to broadly neutralizing antibodies by modulating binding to scavenger receptor B1.

    PubMed

    El-Diwany, Ramy; Cohen, Valerie J; Mankowski, Madeleine C; Wasilewski, Lisa N; Brady, Jillian K; Snider, Anna E; Osburn, William O; Murrell, Ben; Ray, Stuart C; Bailey, Justin R

    2017-02-01

    Broadly-neutralizing monoclonal antibodies (bNAbs) may guide vaccine development for highly variable viruses including hepatitis C virus (HCV), since they target conserved viral epitopes that could serve as vaccine antigens. However, HCV resistance to bNAbs could reduce the efficacy of a vaccine. HC33.4 and AR4A are two of the most potent anti-HCV human bNAbs characterized to date, binding to highly conserved epitopes near the amino- and carboxy-terminus of HCV envelope (E2) protein, respectively. Given their distinct epitopes, it was surprising that these bNAbs showed similar neutralization profiles across a panel of natural HCV isolates, suggesting that some viral polymorphisms may confer resistance to both bNAbs. To investigate this resistance, we developed a large, diverse panel of natural HCV envelope variants and a novel computational method to identify bNAb resistance polymorphisms in envelope proteins (E1 and E2). By measuring neutralization of a panel of HCV pseudoparticles by 10 μg/mL of each bNAb, we identified E1E2 variants with resistance to one or both bNAbs, despite 100% conservation of the AR4A binding epitope across the panel. We discovered polymorphisms outside of either binding epitope that modulate resistance to both bNAbs by altering E2 binding to the HCV co-receptor, scavenger receptor B1 (SR-B1). This study is focused on a mode of neutralization escape not addressed by conventional analysis of epitope conservation, highlighting the contribution of extra-epitopic polymorphisms to bNAb resistance and presenting a novel mechanism by which HCV might persist even in the face of an antibody response targeting multiple conserved epitopes.

  13. Investigation into Seasonal Scavenging Patterns of Raccoons on Human Decomposition.

    PubMed

    Jeong, Yangseung; Jantz, Lee Meadows; Smith, Jake

    2016-03-01

    Although raccoons are known as one of the most common scavengers in the U.S., scavenging by these animals has seldom been studied in terms of forensic significance. In this research, the seasonal pattern of raccoon scavenging and its effect on human decomposition was investigated using 178 human cadavers placed at the Anthropological Research Facility (ARF) of the University of Tennessee, Knoxville (UTK) between February 2011 and December 2013. The results reveal that (i) the frequency of scavenging increases during summer, (ii) scavenging occurs relatively immediately and lasts shorter in summer months, and (iii) scavenging influences the decomposition process by hollowing limbs and by disturbing insect activities, both of which eventually increases the chance of mummification on the affected body. This information is expected to help forensic investigators identify raccoon scavenging as well as make a more precise interpretation of the effect of raccoon scavenging on bodies at crime scenes. © 2015 American Academy of Forensic Sciences.

  14. The low density lipoprotein receptor-related protein 1: Unique tissue-specific functions revealed by selective gene knockout studies

    PubMed Central

    Lillis, Anna P.; Van Duyn, Lauren B.; Murphy-Ullrich, Joanne E.; Strickland, Dudley K.

    2008-01-01

    The low-density lipoprotein (LDL) receptor-related protein (originally called LRP, but now referred to as LRP1) is a large endocytic receptor that is widely expressed in several tissues. LRP1 is a member of the LDL receptor family that plays diverse roles in various biological processes including lipoprotein metabolism, degradation of proteases, activation of lysosomal enzymes and cellular entry of bacterial toxins and viruses. Deletion of the LRP1 gene leads to lethality in mice, revealing a critical, but as of yet, undefined role in development. Tissue-specific gene deletion studies reveal an important contribution of LRP1 in the vasculature, central nervous system, in macrophages and in adipocytes. Three important properties of LRP1 dictate its diverse role in physiology: first, its ability to recognize more than thirty distinct ligands; second, its ability to bind a large number of cytoplasmic adaptor proteins via determinants located on its cytoplasmic domain in a phosphorylation-specific manner; and third, its ability to associate with and modulate the activity of other transmembrane receptors such as integrins and receptor tyrosine kinases. PMID:18626063

  15. The Receptor-Binding Site of the Measles Virus Hemagglutinin Protein Itself Constitutes a Conserved Neutralizing Epitope

    PubMed Central

    Ohno, Shinji; Sakai, Kouji; Ito, Yuri; Fukuhara, Hideo; Komase, Katsuhiro; Brindley, Melinda A.; Rota, Paul A.; Plemper, Richard K.; Maenaka, Katsumi; Takeda, Makoto

    2013-01-01

    Here, we provide direct evidence that the receptor-binding site of measles virus (MV) hemagglutinin protein itself forms an effective conserved neutralizing epitope (CNE). Several receptor-interacting residues constitute the CNE. Thus, viral escape from neutralization has to be associated with loss of receptor-binding activity. Since interactions with both the signaling lymphocyte activation molecule (SLAM) and nectin4 are critical for MV pathogenesis, its escape, which results from loss of receptor-binding activity, should not occur in nature. PMID:23283964

  16. Usefulness of the LDL-C/apoB ratio in the overall evaluation of atherogenicity of lipid profile.

    PubMed

    Kaneva, Anastasiya M; Potolitsyna, Natalya N; Bojko, Evgeny R

    2017-02-01

    The ratio of low-density lipoprotein cholesterol to apolipoprotein-B (LDL-C/apoB) conventionally represents an alternative index of LDL particle size. This study was undertaken to determine the importance of LDL-C/apoB ratio in the overall evaluation of atherogenicity of lipid profile. The plasma levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), apolipoprotein (apo) A-I, apoB and apoE were measured in 186 apparently healthy men using enzymatic and immunoturbidimetric methods. The subjects with low values of the LDL-C/apoB ratio, indicating a predominance of small dense LDL (sd-LDL) particles in plasma, were characterized by higher TG levels and lower apoE levels. Low levels of apoE are most likely a cause of reduced clearance of TG-rich lipoproteins, which promotes the formation of sd-LDL. Determination of the LDL-C/apoB ratio can be used for monitoring qualitative changes in lipid profile, in addition to traditional lipid variables indicating quantitative changes.

  17. Glycine Hinges with Opposing Actions at the Acetylcholine Receptor-Channel Transmitter Binding SiteS⃞

    PubMed Central

    Purohit, Prasad

    2011-01-01

    The extent to which agonists activate synaptic receptor-channels depends on both the intrinsic tendency of the unliganded receptor to open and the amount of agonist binding energy realized in the channel-opening process. We examined mutations of the nicotinic acetylcholine receptor transmitter binding site (α subunit loop B) with regard to both of these parameters. αGly147 is an “activation” hinge where backbone flexibility maintains high values for intrinsic gating, the affinity of the resting conformation for agonists and net ligand binding energy. αGly153 is a “deactivation” hinge that maintains low values for these parameters. αTrp149 (between these two glycines) serves mainly to provide ligand binding energy for gating. We propose that a concerted motion of the two glycine hinges (plus other structural elements at the binding site) positions αTrp149 so that it provides physiologically optimal binding and gating function at the nerve-muscle synapse. PMID:21115636

  18. [Difference in action sites between mecamylamine and hexamethonium on nicotinic receptors of sympathetic neurons].

    PubMed

    Liu, Wei; Zheng, Jian-Quan; Liu, Zhen-Wei; Li, Li-Jun; Wan, Qin; Liu, Chuan-Gui

    2002-12-25

    To compare the difference in action sites between mecamylamine (MEC) and hexamethonium (HEX) on nicotinic receptors of sympathetic neurons, we investigated the effects of MEC and HEX on the nicotine-induced currents in cultured superior cervical ganglion neurons by whole-cell patch clamp technique. The IC(50) of MEC and HEX for antagonizing the effect of 0.08 mmol/L nicotine was 0.0012 and 0.0095 mmol/L, respectively. Both MEC and HEX accelerated the desensitization of nicotinic receptors. Furthermore, by comparing their effects at holding potentials 30, 70 and 110 mV, it was indicated that their suppressing effect on the nicotine-induced currents was voltage-dependent. However, different from that of HEX, the inhibitory effect of MEC increased with administering the mixture of MEC and nicotine at intervals of 3 min, indicating a use-dependent effect of MEC. It is concluded that the action site of MEC on nicotinic receptors of sympathetic neurons is different from that of HEX.

  19. CD36 signaling inhibits the translation of heat shock protein 70 induced by oxidized low density lipoprotein through activation of peroxisome proliferators-activated receptor γ

    PubMed Central

    Lee, Kyoung-Jin; Ha, Eun-Soo; Kim, Min-Kyoung; Lee, Sang-Hoon; Suh, Jae Sung; Lee, Sun-Hee; Park, Kyeong Han; Park, Jeong Hyun; Kim, Dae Joong; Kang, Dongmin; Kim, Byung-Chul; Jeoung, Dooil; Kim, Young-Kyoun; Kim, Ho-Dirk

    2008-01-01

    Oxidized LDL (OxLDL), a causal factor in atherosclerosis, induces the expression of heat shock proteins (Hsp) in a variety of cells. In this study, we investigated the role of CD36, an OxLDL receptor, and peroxisome proliferator-activated receptor γ (PPARγ) in OxLDL-induced Hsp70 expression. Overexpression of dominant-negative forms of CD36 or knockdown of CD36 by siRNA transfection increased OxLDL-induced Hsp70 protein expression in human monocytic U937 cells, suggesting that CD36 signaling inhibits Hsp70 expression. Similar results were obtained by the inhibition of PPARγ activity or knockdown of PPARγ expression. In contrast, overexpression of CD36, which is induced by treatment of MCF-7 cells with troglitazone, decreased Hsp70 protein expression induced by OxLDL. Interestingly, activation of PPARγ through a synthetic ligand, ciglitazone or troglitazone, decreased the expression levels of Hsp70 protein in OxLDL-treated U937 cells. However, major changes in Hsp70 mRNA levels were not observed. Cycloheximide studies demonstrate that troglitazone attenuates Hsp70 translation but not Hsp70 protein stability. PPARγ siRNA transfection reversed the inhibitory effects of troglitazone on Hsp70 translation. These results suggest that CD36 signaling may inhibit stress-induced gene expression by suppressing translation via activation of PPARγ in monocytes. These findings reveal a new molecular basis for the anti-inflammatory effects of PPARγ. PMID:19116451

  20. Chinese yellow wine and red wine inhibit matrix metalloproteinase-2 and improve atherosclerotic plaque in LDL receptor knockout mice.

    PubMed

    Guo, Hangyuan; Liu, Longbin; Shi, Yafei; Sun, Aijing; Xu, Fukang; Chi, Jufang; Huang, Dilai

    2010-06-01

    Our previous study found that Chinese yellow wine could inhibit the production of homocysteine (HCY) induced extracellular matrix metalloproteinase-2 (MMP-2) in the cultured rat vascular smooth muscle cells. Little is known about the relationship between Chinese yellow wine and atherosclerosis or MMP-2 in vivo. Thirty-two LDL Receptor knockout mice on a high-fat and L-methionine diet developed plasma hyperhomocysteinemia and atherosclerosis. They were randomly divided into yellow wine group (n = 8), red wine group (n = 8), ethanol group (n = 8), and control group (n = 8), they were sacrificed after 14 weeks. There were no significant differences with plasma total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels in the four groups. Plasma HCY was significantly decreased in the yellow wine group compared to the other three groups (P < 0.01). Yellow wine and red wine groups significantly reduced the atherosclerosis lesion area compared to ethanol and control groups (P < 0.001). However, there was no significant discrepancy between the yellow wine group and red wine group. Compared to the control group and ethanol group, the production of MMP-2 reduced 26.8% and 23.6% in the aortic sinus and the activation of MMP-2 reduced 32.6% and 27.3% in the aortic arch in the yellow wine group; the production of MMP-2 reduced 25.7% and 22.4% in the aortic sinus and the activation of MMP-2 reduced 30.2% and 26.6% in the aortic arch in the red wine group. These results suggest that Chinese yellow wine and red wine can inhibit MMP-2 and improve atherosclerosis, and maybe both Chinese yellow wine and red wine have beneficial effects on cardiovascular disease by inhibiting MMP-2.

  1. Inhibition of low-density lipoprotein oxidation and up-regulation of low-density lipoprotein receptor in HepG2 cells by tropical plant extracts.

    PubMed

    Salleh, Mohd Nizar; Runnie, Irine; Roach, Paul D; Mohamed, Suhaila; Abeywardena, Mahinda Y

    2002-06-19

    Twelve edible plant extracts rich in polyphenols were screened for their potential to inhibit oxidation of low-density lipoprotein (LDL) in vitro and to modulate LDL receptor (LDLr) activity in cultured HepG2 cells. The antioxidant activity (inhibition of LDL oxidation) was determined by measuring the formation of conjugated dienes (lag time) and thiobarbituric acid reagent substances (TBARS). Betel leaf (94%), cashew shoot (63%), Japanese mint (52%), semambu leaf (50%), palm frond (41%), sweet potato shoot, chilli fruit, papaya shoot, roselle calyx, and maman showed significantly increased lag time (>55 min, P < 0.05) and inhibition of TBARS formation (P < 0.05) compared to control. LDLr was significantly up-regulated (P < 0.05) by Japanese mint (67%), semambu (51%), cashew (50%), and noni (49%). Except for noni and betel leaf, most plant extracts studied demonstrated a positive association between antioxidant activity and the ability to up-regulate LDL receptor. Findings suggest that reported protective actions of plant polyphenols on lipoprotein metabolism might be exerted at different biochemical mechanisms.

  2. Antioxidant protection of LDL by physiological concentrations of 17 beta-estradiol. Requirement for estradiol modification.

    PubMed

    Shwaery, G T; Vita, J A; Keaney, J F

    1997-03-18

    Exposure to estrogens reduces the risk for coronary artery disease and associated clinical events; however, the mechanisms responsible for these observations are not clear. Supraphysiological levels of estrogens act as antioxidants in vitro, limiting oxidation of low-density lipoprotein (LDL), an event implicated in atherogenesis. We investigated the conditions under which physiological concentrations of 17 beta-estradiol (E2) inhibit oxidative modification of LDL. Plasma incubated with E2 (0.1 to 100 nmol/L) for 4 hours yielded LDL that demonstrated a dose-related increase in resistance to oxidation by Cu2+ as measured by conjugated diene formation. This effect was dependent on plasma, because incubation of isolated LDL with E2 at these concentrations in buffered saline produced no effect on Cu(2+)-mediated oxidation. Incubation of plasma with E2 had no effect on LDL alpha-tocopherol content or cholesteryl ester hydroperoxide formation during the 4-hour incubation. Plasma incubation with [3H]E2 was associated with dose-dependent association of 3H with LDL. High-performance liquid chromatographic analysis of LDL derived from plasma incubated with [3H]E2 indicated that the majority of the associated species were not detectable as authentic E2 but as nonpolar forms of E2 that were susceptible to base hydrolysis consistent with fatty acid esterification of E2. Plasma-mediated association of E2 and subsequent antioxidant protection was inhibited by 5,5'-dithiobis(2-nitrobenzoic acid), an inhibitor of plasma acyltransferase activity. Exposure of LDL to physiological levels of E2 in a plasma milieu is associated with enhanced resistance to Cu(2+)-mediated oxidation and incorporation of E2 derivatives into LDL. This antioxidant capacity may be another means by which E2 limits coronary artery disease in women.

  3. Crank case scavenging of a two-stroke-cycle engine

    NASA Technical Reports Server (NTRS)

    Holm, Otto

    1928-01-01

    Experiments with a two-stroke-cycle, crank case scavenging engine. Effect of systematic variation of the height of the scavenge and exhaust ports on the scavenging, as determined by gas analysis. The best results were obtained under conditions differing from the usual ones.

  4. Facile preparation of heparinized polysulfone membrane assisted by polydopamine/polyethyleneimine co-deposition for simultaneous LDL selectivity and biocompatibility

    NASA Astrophysics Data System (ADS)

    Wang, Liwei; Fang, Fei; Liu, Yang; Li, Jing; Huang, Xiaojun

    2016-11-01

    Low-density lipoprotein (LDL) gains worldwide attention for decades as the key risk factor to atherosclerosis that progressively deteriorating into cardiovascular diseases. Until recent years, LDL-apheresis comes to be extensively used as a direct and efficient LDL removal method, with LDL adsorption materials particularly important. In this paper, a new strategy based on the co-deposition of polydopamine (PDA) with polyethylenimine (PEI) onto polysulfone (PSf) membranes, then subsequent heparinization by amino-carbonyl reactions, to achieve LDL selectivity and simultaneous biocompatibility, is proposed. Surface properties of modified PSf membranes are characterized by ATR-FTIR, XPS, FESEM, Zeta potential and WCA measurements. LDL adsorption ability is investigated by ELISA, while blood biocompatibility is evaluated by platelet adhesion experiments. Results suggest that heparin-modified PSf membranes show high selectivity for LDL removal and fine biocompatibility in contact with plasma, as excellent potential materials for LDL-apheresis.

  5. Carcass Type Affects Local Scavenger Guilds More than Habitat Connectivity.

    PubMed

    Olson, Zachary H; Beasley, James C; Rhodes, Olin E

    2016-01-01

    Scavengers and decomposers provide an important ecosystem service by removing carrion from the environment. Scavenging and decomposition are known to be temperature-dependent, but less is known about other factors that might affect carrion removal. We conducted an experiment in which we manipulated combinations of patch connectivity and carcass type, and measured responses by local scavenger guilds along with aspects of carcass depletion. We conducted twelve, 1-month trials in which five raccoon (Procyon lotor), Virginia opossum (Didelphis virginiana), and domestic rabbit (Oryctolagus spp.) carcasses (180 trials total) were monitored using remote cameras in 21 forest patches in north-central Indiana, USA. Of 143 trials with complete data, we identified fifteen species of vertebrate scavengers divided evenly among mammalian (N = 8) and avian species (N = 7). Fourteen carcasses (9.8%) were completely consumed by invertebrates, vertebrates exhibited scavenging behavior at 125 carcasses (87.4%), and four carcasses (2.8%) remained unexploited. Among vertebrates, mammals scavenged 106 carcasses, birds scavenged 88 carcasses, and mammals and birds scavenged 69 carcasses. Contrary to our expectations, carcass type affected the assemblage of local scavenger guilds more than patch connectivity. However, neither carcass type nor connectivity explained variation in temporal measures of carcass removal. Interestingly, increasing richness of local vertebrate scavenger guilds contributed moderately to rates of carrion removal (≈6% per species increase in richness). We conclude that scavenger-specific differences in carrion utilization exist among carcass types and that reliable delivery of carrion removal as an ecosystem service may depend on robust vertebrate and invertebrate communities acting synergistically.

  6. Carcass Type Affects Local Scavenger Guilds More than Habitat Connectivity

    PubMed Central

    Olson, Zachary H.; Beasley, James C.; Rhodes, Olin E.

    2016-01-01

    Scavengers and decomposers provide an important ecosystem service by removing carrion from the environment. Scavenging and decomposition are known to be temperature-dependent, but less is known about other factors that might affect carrion removal. We conducted an experiment in which we manipulated combinations of patch connectivity and carcass type, and measured responses by local scavenger guilds along with aspects of carcass depletion. We conducted twelve, 1-month trials in which five raccoon (Procyon lotor), Virginia opossum (Didelphis virginiana), and domestic rabbit (Oryctolagus spp.) carcasses (180 trials total) were monitored using remote cameras in 21 forest patches in north-central Indiana, USA. Of 143 trials with complete data, we identified fifteen species of vertebrate scavengers divided evenly among mammalian (N = 8) and avian species (N = 7). Fourteen carcasses (9.8%) were completely consumed by invertebrates, vertebrates exhibited scavenging behavior at 125 carcasses (87.4%), and four carcasses (2.8%) remained unexploited. Among vertebrates, mammals scavenged 106 carcasses, birds scavenged 88 carcasses, and mammals and birds scavenged 69 carcasses. Contrary to our expectations, carcass type affected the assemblage of local scavenger guilds more than patch connectivity. However, neither carcass type nor connectivity explained variation in temporal measures of carcass removal. Interestingly, increasing richness of local vertebrate scavenger guilds contributed moderately to rates of carrion removal (≈6% per species increase in richness). We conclude that scavenger-specific differences in carrion utilization exist among carcass types and that reliable delivery of carrion removal as an ecosystem service may depend on robust vertebrate and invertebrate communities acting synergistically. PMID:26886299

  7. Maternal-fetal cholesterol transport in the second half of mouse pregnancy does not involve LDL receptor-related protein 2.

    PubMed

    Zwier, M V; Baardman, M E; van Dijk, T H; Jurdzinski, A; Wisse, L J; Bloks, V W; Berger, R M F; DeRuiter, M C; Groen, A K; Plösch, T

    2017-08-01

    LDL receptor-related protein type 2 (LRP2) is highly expressed on both yolk sac and placenta. Mutations in the corresponding gene are associated with severe birth defects in humans, known as Donnai-Barrow syndrome. We here characterized the contribution of LRP2 and maternal plasma cholesterol availability to maternal-fetal cholesterol transport and fetal cholesterol levels in utero in mice. Lrp2 +/- mice were mated heterozygously to yield fetuses of all three genotypes. Half of the dams received a 0.5% probucol-enriched diet during gestation to decrease maternal HDL cholesterol. At E13.5, the dams received an injection of D7-labelled cholesterol and were provided with 1- 13 C acetate-supplemented drinking water. At E16.5, fetal tissues were collected and maternal cholesterol transport and fetal synthesis quantified by isotope enrichments in fetal tissues by GC-MS. The Lrp2 genotype did not influence maternal-fetal cholesterol transport and fetal cholesterol. However, lowering of maternal plasma cholesterol levels by probucol significantly reduced maternal-fetal cholesterol transport. In the fetal liver, this was associated with increased cholesterol synthesis rates. No indications were found for an interaction between the Lrp2 genotype and maternal probucol treatment. Maternal-fetal cholesterol transport and endogenous fetal cholesterol synthesis depend on maternal cholesterol concentrations but do not involve LRP2 in the second half of murine pregnancy. Our results suggest that the mouse fetus can compensate for decreased maternal cholesterol levels. It remains a relevant question how the delicate system of cholesterol transport and synthesis is regulated in the human fetus and placenta. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  8. Review of clinical practice guidelines for the management of LDL-related risk.

    PubMed

    Morris, Pamela B; Ballantyne, Christie M; Birtcher, Kim K; Dunn, Steven P; Urbina, Elaine M

    2014-07-15

    Managing risk related to low-density lipoprotein (LDL) is vital in therapy for patients at risk for atherosclerotic cardiovascular disease (ASCVD) events given its important etiologic role in atherogenesis. Despite decades of research showing reduction of ASCVD risk with multiple approaches to lowering of LDL cholesterol, there continue to be significant gaps in care with inadequate numbers of patients receiving standard of care lipid-lowering therapy. Confusion regarding implementation of the multiple published clinical practice guidelines has been identified as one contributor to suboptimal management of LDL-related risk. This review summarizes the current guidelines for reduction of LDL-related cardiovascular risk provided by a number of major professional societies, which have broad applicability to diverse populations worldwide. Statements have varied in the process and methodology of development of recommendations, the grading system for level and strength of evidence, the inclusion or exclusion of expert opinion, the suggested ASCVD risk assessment tool, the lipoproteins recommended for risk assessment, and the lipoprotein targets of therapy. The similarities and differences among important guidelines in the United States and internationally are discussed, with recommendations for future strategies to improve consistency in approaches to LDL-related ASCVD risk and to reduce gaps in implementation of evidence-based therapies. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  9. Salivary agglutinin, which binds Streptococcus mutans and Helicobacter pylori, is the lung scavenger receptor cysteine-rich protein gp-340.

    PubMed

    Prakobphol, A; Xu, F; Hoang, V M; Larsson, T; Bergstrom, J; Johansson, I; Frängsmyr, L; Holmskov, U; Leffler, H; Nilsson, C; Borén, T; Wright, J R; Strömberg, N; Fisher, S J

    2000-12-22

    Salivary agglutinin is a high molecular mass component of human saliva that binds Streptococcus mutans, an oral bacterium implicated in dental caries. To study its protein sequence, we isolated the agglutinin from human parotid saliva. After trypsin digestion, a portion was analyzed by matrix-assisted laser/desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), which gave the molecular mass of 14 unique peptides. The remainder of the digest was subjected to high performance liquid chromatography, and the separated peptides were analyzed by MALDI-TOF/post-source decay; the spectra gave the sequences of five peptides. The molecular mass and peptide sequence information showed that salivary agglutinin peptides were identical to sequences in lung (lavage) gp-340, a member of the scavenger receptor cysteine-rich protein family. Immunoblotting with antibodies that specifically recognized either lung gp-340 or the agglutinin confirmed that the salivary agglutinin was gp-340. Immunoblotting with an antibody specific to the sialyl Le(x) carbohydrate epitope detected expression on the salivary but not the lung glycoprotein, possible evidence of different glycoforms. The salivary agglutinin also interacted with Helicobacter pylori, implicated in gastritis and peptic ulcer disease, Streptococcus agalactiae, implicated in neonatal meningitis, and several oral commensal streptococci. These results identify the salivary agglutinin as gp-340 and suggest it binds bacteria that are important determinants of either the oral ecology or systemic diseases.

  10. Active Shaping of Chemokine Gradients by Atypical Chemokine Receptors: A 4D Live-Cell Imaging Migration Assay.

    PubMed

    Werth, Kathrin; Förster, Reinhold

    2016-01-01

    Diffusion of chemokines away from their site of production results in the passive formation of chemokine gradients. We have recently shown that chemokine gradients can also be formed in an active manner, namely by atypical chemokine receptors (ACKRs) that scavenge chemokines locally. Here, we describe an advanced method that allows the visualization of leukocyte migration in a three-dimensional environment along a chemokine gradient that is actively established by cells expressing an ACKR. Initially developed to visualize the migration of dendritic cells along gradients of CCL19 or CCL21 that were actively shaped by an ACKR4-expressing cell line, we expect that this chamber system can be exploited to study many other combinations of atypical and conventional chemokine receptor-expressing cells. © 2016 Elsevier Inc. All rights reserved.

  11. Molecular blueprint of allosteric binding sites in a homologue of the agonist-binding domain of the α7 nicotinic acetylcholine receptor

    PubMed Central

    Spurny, Radovan; Debaveye, Sarah; Farinha, Ana; Veys, Ken; Vos, Ann M.; Gossas, Thomas; Atack, John; Bertrand, Sonia; Bertrand, Daniel; Danielson, U. Helena; Tresadern, Gary; Ulens, Chris

    2015-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) belongs to the family of pentameric ligand-gated ion channels and is involved in fast synaptic signaling. In this study, we take advantage of a recently identified chimera of the extracellular domain of the native α7 nicotinic acetylcholine receptor and acetylcholine binding protein, termed α7-AChBP. This chimeric receptor was used to conduct an innovative fragment-library screening in combination with X-ray crystallography to identify allosteric binding sites. One allosteric site is surface-exposed and is located near the N-terminal α-helix of the extracellular domain. Ligand binding at this site causes a conformational change of the α-helix as the fragment wedges between the α-helix and a loop homologous to the main immunogenic region of the muscle α1 subunit. A second site is located in the vestibule of the receptor, in a preexisting intrasubunit pocket opposite the agonist binding site and corresponds to a previously identified site involved in positive allosteric modulation of the bacterial homolog ELIC. A third site is located at a pocket right below the agonist binding site. Using electrophysiological recordings on the human α7 nAChR we demonstrate that the identified fragments, which bind at these sites, can modulate receptor activation. This work presents a structural framework for different allosteric binding sites in the α7 nAChR and paves the way for future development of novel allosteric modulators with therapeutic potential. PMID:25918415

  12. Homology modeling, binding site identification and docking study of human angiotensin II type I (Ang II-AT1) receptor.

    PubMed

    Vyas, Vivek K; Ghate, Manjunath; Patel, Kinjal; Qureshi, Gulamnizami; Shah, Surmil

    2015-08-01

    Ang II-AT1 receptors play an important role in mediating virtually all of the physiological actions of Ang II. Several drugs (SARTANs) are available, which can block the AT1 receptor effectively and lower the blood pressure in the patients with hypertension. Currently, there is no experimental Ang II-AT1 structure available; therefore, in this study we modeled Ang II-AT1 receptor structure using homology modeling followed by identification and characterization of binding sites and thereby assessing druggability of the receptor. Homology models were constructed using MODELLER and I-TASSER server, refined and validated using PROCHECK in which 96.9% of 318 residues were present in the favoured regions of the Ramachandran plots. Various Ang II-AT1 receptor antagonist drugs are available in the market as antihypertensive drug, so we have performed docking study with the binding site prediction algorithms to predict different binding pockets on the modeled proteins. The identification of 3D structures and binding sites for various known drugs will guide us for the structure-based drug design of novel compounds as Ang II-AT1 receptor antagonists for the treatment of hypertension. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Fabrication of self-assembled chitosan-dispersed LDL nanoparticles for drug delivery with a one-step green method.

    PubMed

    Tian, Jing; Xu, Shasha; Deng, Hongbing; Song, Xinxing; Li, Xiujuan; Chen, Jiajia; Cao, Feng; Li, Bin

    2017-01-30

    Self-assembled nanoparticles (NPs) composed of chitosan (CS) and low density lipoprotein (LDL) of hen eggs were prepared by a one-step green synthesis of mixing CS solution and LDL suspension. The formulated CS-LDL NPs were then applied to encapsulate doxorubicin hydrochloride (DOX) with the encapsulation efficiency of 51.7%. The average particle size and ζ-potential of DOX-loaded CS-LDL NPs (CS-LDL-DOX NPs) were 179nm and +48.3mV, respectively. The encapsulated DOX showed less cytotoxicity than free DOX after 24-h incubation with gastric cancer SGC7901 cells, which may be due to extended release. Cellular uptake of CS-LDL-DOX NPs was significant higher than that of free DOX due to the endocytosis of tumor cells. Thus CS-LDL-DOX NPs showed a potential in reducing cytotoxicity of DOX by extended release behavior and preferential uptake compared to free DOX. In addition, flow cytometry and terminal-deoxynucleotidyl-transferase-mediated dUTP nick-end labeling assay demonstrated that CS-LDL-DOX NPs induced the apoptosis of cancer cells. Autophagy was involved in effects caused by CS-LDL-DOX NPs through blocking AKT/mTOR signaling, which was demonstrated by the analyses of the expression of LC3, p62, AKT, p-AKT, mTOR and p-mTOR. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Benzodiazepine and kainate receptor binding sites in the RCS rat retina.

    PubMed

    Stasi, Kalliopi; Naskar, Rita; Thanos, Solon; Kouvelas, Elias D; Mitsacos, Ada

    2003-02-01

    The effect of age and photoreceptor degeneration on the kainate subtype of glutamate receptors and on the benzodiazepine-sensitive gamma-aminobutyric acid-A receptors (GABA(A)) in normal and RCS (Royal College of Surgeons) rats were investigated. [(3)H]Kainate and [(3)H]flunitrazepam were used as radioligands for kainate and GABA(A)/benzodiazepine()receptors, respectively, using the quantitative receptor autoradiography technique. In both normal and RCS rat retina we observed that [(3)Eta]flunitrazepam and [(3)Eta]kainate binding levels were several times higher in inner plexiform layer (IPL) than in outer plexiform layer (OPL) at all four ages studied (P17, P35, P60 and P180). Age-related changes in receptor binding were observed in normal rat retina: [(3)Eta]flunitrazepam binding showed a significant decrease of 25% between P17 and P60 in IPL,and [(3)Eta]kainate binding showed significant decreases between P17 and P35 in both synaptic layers (71% in IPL and 63% in OPL). Degeneration-related changes in benzodiazepine and kainate receptor binding were observed in RCS rat retina. In IPL, [(3)Eta]flunitrazepam and [(3)Eta]kainate binding levels were higher than in normal retina at P35 (by 24% and 86%, respectively). In OPL, [(3)Eta]flunitrazepam binding was higher in RCS than in normal retina on P35 (74%) and also on P60 (62%). The results indicate that postnatal changes occur in kainate and benzodiazepine receptor binding sites in OPL and IPL of the rat retina up to 6 months of age. The data also suggest that the receptor binding changes observed in the RCS retina could be a consequence of the primary photoreceptor degeneration.

  15. A molecular characterization of the agonist binding site of a nematode cys-loop GABA receptor

    PubMed Central

    Kaji, Mark D; Kwaka, Ariel; Callanan, Micah K; Nusrat, Humza; Desaulniers, Jean-Paul; Forrester, Sean G

    2015-01-01

    Background and Purpose Cys-loop GABA receptors represent important targets for human chemotherapeutics and insecticides and are potential targets for novel anthelmintics (nematicides). However, compared with insect and mammalian receptors, little is known regarding the pharmacological characteristics of nematode Cys-loop GABA receptors. Here we have investigated the agonist binding site of the Cys-loop GABA receptor UNC-49 (Hco-UNC-49) from the parasitic nematode Haemonchus contortus. Experimental Approach We used two-electrode voltage-clamp electrophysiology to measure channel activation by classical GABA receptor agonists on Hco-UNC-49 expressed in Xenopus laevis oocytes, along with site-directed mutagenesis and in silico homology modelling. Key Results The sulphonated molecules P4S and taurine had no effect on Hco-UNC-49. Other classical Cys-loop GABAA receptor agonists tested on the Hco-UNC-49B/C heteromeric channel had a rank order efficacy of GABA > trans-4-aminocrotonic acid > isoguvacine > imidazole-4-acetic acid (IMA) > (R)-(−)-4-amino-3-hydroxybutyric acid [R(−)-GABOB] > (S)-(+)-4-amino-3-hydroxybutyric acid [S(+)-GABOB] > guanidinoacetic acid > isonipecotic acid > 5-aminovaleric acid (DAVA) (partial agonist) > β-alanine (partial agonist). In silico ligand docking revealed some variation in binding between agonists. Mutagenesis of a key serine residue in binding loop C to threonine had minimal effects on GABA and IMA but significantly increased the maximal response to DAVA and decreased twofold the EC50 for R(−)- and S(+)-GABOB. Conclusions and Implications The pharmacological profile of Hco-UNC-49 differed from that of vertebrate Cys-loop GABA receptors and insect resistance to dieldrin receptors, suggesting differences in the agonist binding pocket. These findings could be exploited to develop new drugs that specifically target GABA receptors of parasitic nematodes. PMID:25850584

  16. Weight savings in aerospace vehicles through propellant scavenging

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Reed, Brian D.

    1988-01-01

    Vehicle payload benefits of scavenging hydrogen and oxygen propellants are addressed. The approach used is to select a vehicle and a mission and then select a scavenging system for detailed weight analysis. The Shuttle 2 vehicle on a Space Station rendezvous mission was chosen for study. The propellant scavenging system scavenges liquid hydrogen and liquid oxygen from the launch propulsion tankage during orbital maneuvers and stores them in well insulated liquid accumulators for use in a cryogenic auxiliary propulsion system. The fraction of auxiliary propulsion propellant which may be scavenged for propulsive purposes is estimated to be 45.1 percent. The auxiliary propulsion subsystem dry mass, including the proposed scavenging system, an additional 20 percent for secondary structure, an additional 5 percent for electrical service, a 10 percent weight growth margin, and 15.4 percent propellant reserves and residuals is estimated to be 6331 kg. This study shows that the fraction of the on-orbit vehicle mass required by the auxiliary propulsion system of this Shuttle 2 vehicle using this technology is estimated to be 12.0 percent compared to 19.9 percent for a vehicle with an earth-storable bipropellant system. This results in a vehicle with the capability of delivering an additional 7820 kg to the Space Station.

  17. Beneficial effects of virgin coconut oil on lipid parameters and in vitro LDL oxidation.

    PubMed

    Nevin, K G; Rajamohan, T

    2004-09-01

    The present study was conducted to investigate the effect of consumption of virgin coconut oil (VCO) on various lipid parameters in comparison with copra oil (CO). In addition, the preventive effect of polyphenol fraction (PF) from test oils on copper induced oxidation of LDL and carbonyl formation was also studied. After 45 days of oil feeding to Sprague-Dawley rats, several lipid parameters and lipoprotein levels were determined. PF was isolated from the oils and its effect on in vitro LDL oxidation was assessed. VCO obtained by wet process has a beneficial effect in lowering lipid components compared to CO. It reduced total cholesterol, triglycerides, phospholipids, LDL, and VLDL cholesterol levels and increased HDL cholesterol in serum and tissues. The PF of virgin coconut oil was also found to be capable of preventing in vitro LDL oxidation with reduced carbonyl formation. The results demonstrated the potential beneficiary effect of virgin coconut oil in lowering lipid levels in serum and tissues and LDL oxidation by physiological oxidants. This property of VCO may be attributed to the biologically active polyphenol components present in the oil.

  18. The Effect of Hypertension on the Transport of LDL Across the Deformable Arterial Wall

    NASA Astrophysics Data System (ADS)

    Dabagh, Mahsa; Jalali, Payman

    2010-05-01

    The influences of increased endothelial cell turnover and deformation of the intima on the transport of low-density lipoprotein (LDL) under hypertension are investigated by applying a multilayered model of aortic wall. The thickness and properties of the endothelium, intima, internal elastic lamina (IEL), and media are affected by the transmural pressure. Navier-Stokes and Brinkman equations are applied for the transport of the transmural flow and the convective-diffusion equation is solved for LDL transport. LDL macromolecules enter the intima through leaky junctions, and then pass through the media layer where they permeate over the surface of smooth muscle cells (SMC). Uptake of LDL by cells is modeled through a uniform reaction evenly distributed in the macroscopically homogeneous media layer. The results show that transmural pressure significantly affects the LDL fluxes across the leaky junction, the intima, fenestral pores in the IEL, and the media layer. Many realistic predictions including the proper magnitudes for the permeability of endothelium and intimal layers, and the hydraulic conductivity of all layers as well as their trends with pressure are predicted by the present model.

  19. Lipid effects of peroxisome proliferator-activated receptor-δ agonist GW501516 in subjects with low high-density lipoprotein cholesterol: characteristics of metabolic syndrome.

    PubMed

    Olson, Eric J; Pearce, Gregory L; Jones, Nigel P; Sprecher, Dennis L

    2012-09-01

    Peroxisome proliferator-activated receptor-δ-induced upregulation in skeletal muscle fatty acid oxidation would predict the modulation of lipid/lipoproteins. GW501516 (2.5, 5.0, or 10.0 mg) or placebo was given for 12 weeks to patients (n=268) with high-density lipoprotein (HDL) cholesterol <1.16 mmol/L. Fasting lipids/apolipoproteins (apos), insulin, glucose, and free fatty acid were measured; changes from baseline were calculated and assessed. A second smaller exploratory study (n=37) in a similar population was conducted using a sequence of 5 and 10 mg dosing for the assessment of lipoprotein particle concentration. GW501516 demonstrated HDL cholesterol increases up to 16.9% (10 mg) and apoA-I increases up to 6.6%. Reductions were observed in low-density lipoprotein (LDL) cholesterol (-7.3%), triglycerides (-16.9%), apoB (-14.9%), and free fatty acids (-19.4%). The exploratory study showed significant reductions in the concentration of very LDL (-19%), intermediate-density lipoprotein (-52%), and LDL (-14%, predominantly a reduction in small particles), whereas the number of HDL particles increased (+10%; predominantly medium and large HDL). GW501516 produced significant changes in HDL cholesterol, LDL cholesterol, apoA1, and apoB. Fewer very LDL and larger LDL support a transition toward less atherogenic lipoprotein profiles. These data are consistent with peroxisome proliferator-activated receptor-δ being a potentially important target for providing cardiovascular protection in metabolic syndrome-like patients.

  20. Seroepidemiologic Survey of Potential Pathogens in Obligate and Facultative Scavenging Avian Species in California

    PubMed Central

    Straub, Mary H.; Kelly, Terra R.; Rideout, Bruce A.; Eng, Curtis; Wynne, Janna; Braun, Josephine; Johnson, Christine K.

    2015-01-01

    Throughout the world, populations of scavenger birds are declining rapidly with some populations already on the brink of extinction. Much of the current research into the factors contributing to these declines has focused on exposure to drug residues, lead, and other toxins. Despite increased monitoring of these declining populations, little is known about infectious diseases affecting scavenger bird species. To assess potential infectious disease risks to both obligate and facultative scavenger bird species, we performed a serosurvey for eleven potential pathogens in three species of scavenging birds in California: the California condor (Gymnogyps californianus), turkey vulture (Cathartes aura) and golden eagle (Aquila chrysaetos). California condors were seropositive for avian adenovirus, infectious bronchitis virus, Mycoplasma gallisepticum, avian paramyxovirus-2, West Nile virus (WNV) and Toxoplasma gondii. Golden eagles were seropositive for avian adenovirus, Chlamydophila psittaci and Toxoplasma gondii, and turkey vultures were seropositive for avian adenovirus, Chlamydophila psittaci, avian paramyxovirus-1, Toxoplasma gondii and WNV. Risk factor analyses indicated that rearing site and original release location were significantly associated with a positive serologic titer to WNV among free-flying condors. This study provides preliminary baseline data on infectious disease exposure in these populations for aiding in early disease detection and provides potentially critical information for conservation of the endangered California condor as it continues to expand its range and encounter new infectious disease threats. PMID:26606755

  1. Mechanism of transfer of LDL-derived free cholesterol to HDL subfractions in human plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miida, T.; Fielding, C.J.; Fielding, P.E.

    1990-11-01

    The transfer of ({sup 3}H)cholesterol in low-density lipoprotein (LDL) to different high-density lipoprotein (HDL) species in native human plasma was determined by using nondenaturing two-dimensional electrophoresis. Transfer from LDL had a t{sub 1/2} at 37{degree}C of 51 {plus minus} 8 min and an activation energy of 18.0 kCal mol{sup {minus}1}. There was unexpected specificity among HDL species as acceptors of LDL-derived labeled cholesterol. The largest fraction of the major {alpha}-migrating class (HDL{sub 2b}) was the major initial acceptor of LDL-derived cholesterol. Kinetic analysis indicated a rapid secondary transfer from HDL{sub 2b} to smaller {alpha}HDL (particularly HDL{sub 3}) driven enzymatically bymore » the lecithin-cholesterol acyltransferase reaction. Rates of transfer among {alpha}HDL were most rapid from the largest {alpha}HDL fraction (HDL{sub 2b}), suggesting possible protein-mediated facilitation. Simultaneous measurements of the transport of LDL-derived and cell-derived isotopic cholesterol indicated that the former preferably utilized the {alpha}HDL pathyway, with little label in pre-{beta}HDL. The same experiments confirmed earlier data that cell-derived cholesterol is preferentially channeled through pre-{beta}HDL. The authors suggest that the functional heterogeneity of HDL demonstrated here includes the ability to independently process cell- and LDL-derived free cholesterol.« less

  2. Whole-Exome Sequencing Identifies Rare and Low-Frequency Coding Variants Associated with LDL Cholesterol

    PubMed Central

    Lange, Leslie A.; Hu, Youna; Zhang, He; Xue, Chenyi; Schmidt, Ellen M.; Tang, Zheng-Zheng; Bizon, Chris; Lange, Ethan M.; Smith, Joshua D.; Turner, Emily H.; Jun, Goo; Kang, Hyun Min; Peloso, Gina; Auer, Paul; Li, Kuo-ping; Flannick, Jason; Zhang, Ji; Fuchsberger, Christian; Gaulton, Kyle; Lindgren, Cecilia; Locke, Adam; Manning, Alisa; Sim, Xueling; Rivas, Manuel A.; Holmen, Oddgeir L.; Gottesman, Omri; Lu, Yingchang; Ruderfer, Douglas; Stahl, Eli A.; Duan, Qing; Li, Yun; Durda, Peter; Jiao, Shuo; Isaacs, Aaron; Hofman, Albert; Bis, Joshua C.; Correa, Adolfo; Griswold, Michael E.; Jakobsdottir, Johanna; Smith, Albert V.; Schreiner, Pamela J.; Feitosa, Mary F.; Zhang, Qunyuan; Huffman, Jennifer E.; Crosby, Jacy; Wassel, Christina L.; Do, Ron; Franceschini, Nora; Martin, Lisa W.; Robinson, Jennifer G.; Assimes, Themistocles L.; Crosslin, David R.; Rosenthal, Elisabeth A.; Tsai, Michael; Rieder, Mark J.; Farlow, Deborah N.; Folsom, Aaron R.; Lumley, Thomas; Fox, Ervin R.; Carlson, Christopher S.; Peters, Ulrike; Jackson, Rebecca D.; van Duijn, Cornelia M.; Uitterlinden, André G.; Levy, Daniel; Rotter, Jerome I.; Taylor, Herman A.; Gudnason, Vilmundur; Siscovick, David S.; Fornage, Myriam; Borecki, Ingrid B.; Hayward, Caroline; Rudan, Igor; Chen, Y. Eugene; Bottinger, Erwin P.; Loos, Ruth J.F.; Sætrom, Pål; Hveem, Kristian; Boehnke, Michael; Groop, Leif; McCarthy, Mark; Meitinger, Thomas; Ballantyne, Christie M.; Gabriel, Stacey B.; O’Donnell, Christopher J.; Post, Wendy S.; North, Kari E.; Reiner, Alexander P.; Boerwinkle, Eric; Psaty, Bruce M.; Altshuler, David; Kathiresan, Sekar; Lin, Dan-Yu; Jarvik, Gail P.; Cupples, L. Adrienne; Kooperberg, Charles; Wilson, James G.; Nickerson, Deborah A.; Abecasis, Goncalo R.; Rich, Stephen S.; Tracy, Russell P.; Willer, Cristen J.; Gabriel, Stacey B.; Altshuler, David M.; Abecasis, Gonçalo R.; Allayee, Hooman; Cresci, Sharon; Daly, Mark J.; de Bakker, Paul I.W.; DePristo, Mark A.; Do, Ron; Donnelly, Peter; Farlow, Deborah N.; Fennell, Tim; Garimella, Kiran; Hazen, Stanley L.; Hu, Youna; Jordan, Daniel M.; Jun, Goo; Kathiresan, Sekar; Kang, Hyun Min; Kiezun, Adam; Lettre, Guillaume; Li, Bingshan; Li, Mingyao; Newton-Cheh, Christopher H.; Padmanabhan, Sandosh; Peloso, Gina; Pulit, Sara; Rader, Daniel J.; Reich, David; Reilly, Muredach P.; Rivas, Manuel A.; Schwartz, Steve; Scott, Laura; Siscovick, David S.; Spertus, John A.; Stitziel, Nathaniel O.; Stoletzki, Nina; Sunyaev, Shamil R.; Voight, Benjamin F.; Willer, Cristen J.; Rich, Stephen S.; Akylbekova, Ermeg; Atwood, Larry D.; Ballantyne, Christie M.; Barbalic, Maja; Barr, R. Graham; Benjamin, Emelia J.; Bis, Joshua; Boerwinkle, Eric; Bowden, Donald W.; Brody, Jennifer; Budoff, Matthew; Burke, Greg; Buxbaum, Sarah; Carr, Jeff; Chen, Donna T.; Chen, Ida Y.; Chen, Wei-Min; Concannon, Pat; Crosby, Jacy; Cupples, L. Adrienne; D’Agostino, Ralph; DeStefano, Anita L.; Dreisbach, Albert; Dupuis, Josée; Durda, J. Peter; Ellis, Jaclyn; Folsom, Aaron R.; Fornage, Myriam; Fox, Caroline S.; Fox, Ervin; Funari, Vincent; Ganesh, Santhi K.; Gardin, Julius; Goff, David; Gordon, Ora; Grody, Wayne; Gross, Myron; Guo, Xiuqing; Hall, Ira M.; Heard-Costa, Nancy L.; Heckbert, Susan R.; Heintz, Nicholas; Herrington, David M.; Hickson, DeMarc; Huang, Jie; Hwang, Shih-Jen; Jacobs, David R.; Jenny, Nancy S.; Johnson, Andrew D.; Johnson, Craig W.; Kawut, Steven; Kronmal, Richard; Kurz, Raluca; Lange, Ethan M.; Lange, Leslie A.; Larson, Martin G.; Lawson, Mark; Lewis, Cora E.; Levy, Daniel; Li, Dalin; Lin, Honghuang; Liu, Chunyu; Liu, Jiankang; Liu, Kiang; Liu, Xiaoming; Liu, Yongmei; Longstreth, William T.; Loria, Cay; Lumley, Thomas; Lunetta, Kathryn; Mackey, Aaron J.; Mackey, Rachel; Manichaikul, Ani; Maxwell, Taylor; McKnight, Barbara; Meigs, James B.; Morrison, Alanna C.; Musani, Solomon K.; Mychaleckyj, Josyf C.; Nettleton, Jennifer A.; North, Kari; O’Donnell, Christopher J.; O’Leary, Daniel; Ong, Frank; Palmas, Walter; Pankow, James S.; Pankratz, Nathan D.; Paul, Shom; Perez, Marco; Person, Sharina D.; Polak, Joseph; Post, Wendy S.; Psaty, Bruce M.; Quinlan, Aaron R.; Raffel, Leslie J.; Ramachandran, Vasan S.; Reiner, Alexander P.; Rice, Kenneth; Rotter, Jerome I.; Sanders, Jill P.; Schreiner, Pamela; Seshadri, Sudha; Shea, Steve; Sidney, Stephen; Silverstein, Kevin; Smith, Nicholas L.; Sotoodehnia, Nona; Srinivasan, Asoke; Taylor, Herman A.; Taylor, Kent; Thomas, Fridtjof; Tracy, Russell P.; Tsai, Michael Y.; Volcik, Kelly A.; Wassel, Chrstina L.; Watson, Karol; Wei, Gina; White, Wendy; Wiggins, Kerri L.; Wilk, Jemma B.; Williams, O. Dale; Wilson, Gregory; Wilson, James G.; Wolf, Phillip; Zakai, Neil A.; Hardy, John; Meschia, James F.; Nalls, Michael; Singleton, Andrew; Worrall, Brad; Bamshad, Michael J.; Barnes, Kathleen C.; Abdulhamid, Ibrahim; Accurso, Frank; Anbar, Ran; Beaty, Terri; Bigham, Abigail; Black, Phillip; Bleecker, Eugene; Buckingham, Kati; Cairns, Anne Marie; Caplan, Daniel; Chatfield, Barbara; Chidekel, Aaron; Cho, Michael; Christiani, David C.; Crapo, James D.; Crouch, Julia; Daley, Denise; Dang, Anthony; Dang, Hong; De Paula, Alicia; DeCelie-Germana, Joan; Drumm, Allen DozorMitch; Dyson, Maynard; Emerson, Julia; Emond, Mary J.; Ferkol, Thomas; Fink, Robert; Foster, Cassandra; Froh, Deborah; Gao, Li; Gershan, William; Gibson, Ronald L.; Godwin, Elizabeth; Gondor, Magdalen; Gutierrez, Hector; Hansel, Nadia N.; Hassoun, Paul M.; Hiatt, Peter; Hokanson, John E.; Howenstine, Michelle; Hummer, Laura K.; Kanga, Jamshed; Kim, Yoonhee; Knowles, Michael R.; Konstan, Michael; Lahiri, Thomas; Laird, Nan; Lange, Christoph; Lin, Lin; Lin, Xihong; Louie, Tin L.; Lynch, David; Make, Barry; Martin, Thomas R.; Mathai, Steve C.; Mathias, Rasika A.; McNamara, John; McNamara, Sharon; Meyers, Deborah; Millard, Susan; Mogayzel, Peter; Moss, Richard; Murray, Tanda; Nielson, Dennis; Noyes, Blakeslee; O’Neal, Wanda; Orenstein, David; O’Sullivan, Brian; Pace, Rhonda; Pare, Peter; Parker, H. Worth; Passero, Mary Ann; Perkett, Elizabeth; Prestridge, Adrienne; Rafaels, Nicholas M.; Ramsey, Bonnie; Regan, Elizabeth; Ren, Clement; Retsch-Bogart, George; Rock, Michael; Rosen, Antony; Rosenfeld, Margaret; Ruczinski, Ingo; Sanford, Andrew; Schaeffer, David; Sell, Cindy; Sheehan, Daniel; Silverman, Edwin K.; Sin, Don; Spencer, Terry; Stonebraker, Jackie; Tabor, Holly K.; Varlotta, Laurie; Vergara, Candelaria I.; Weiss, Robert; Wigley, Fred; Wise, Robert A.; Wright, Fred A.; Wurfel, Mark M.; Zanni, Robert; Zou, Fei; Nickerson, Deborah A.; Rieder, Mark J.; Green, Phil; Shendure, Jay; Akey, Joshua M.; Bustamante, Carlos D.; Crosslin, David R.; Eichler, Evan E.; Fox, P. Keolu; Fu, Wenqing; Gordon, Adam; Gravel, Simon; Jarvik, Gail P.; Johnsen, Jill M.; Kan, Mengyuan; Kenny, Eimear E.; Kidd, Jeffrey M.; Lara-Garduno, Fremiet; Leal, Suzanne M.; Liu, Dajiang J.; McGee, Sean; O’Connor, Timothy D.; Paeper, Bryan; Robertson, Peggy D.; Smith, Joshua D.; Staples, Jeffrey C.; Tennessen, Jacob A.; Turner, Emily H.; Wang, Gao; Yi, Qian; Jackson, Rebecca; Peters, Ulrike; Carlson, Christopher S.; Anderson, Garnet; Anton-Culver, Hoda; Assimes, Themistocles L.; Auer, Paul L.; Beresford, Shirley; Bizon, Chris; Black, Henry; Brunner, Robert; Brzyski, Robert; Burwen, Dale; Caan, Bette; Carty, Cara L.; Chlebowski, Rowan; Cummings, Steven; Curb, J. David; Eaton, Charles B.; Ford, Leslie; Franceschini, Nora; Fullerton, Stephanie M.; Gass, Margery; Geller, Nancy; Heiss, Gerardo; Howard, Barbara V.; Hsu, Li; Hutter, Carolyn M.; Ioannidis, John; Jiao, Shuo; Johnson, Karen C.; Kooperberg, Charles; Kuller, Lewis; LaCroix, Andrea; Lakshminarayan, Kamakshi; Lane, Dorothy; Lasser, Norman; LeBlanc, Erin; Li, Kuo-Ping; Limacher, Marian; Lin, Dan-Yu; Logsdon, Benjamin A.; Ludlam, Shari; Manson, JoAnn E.; Margolis, Karen; Martin, Lisa; McGowan, Joan; Monda, Keri L.; Kotchen, Jane Morley; Nathan, Lauren; Ockene, Judith; O’Sullivan, Mary Jo; Phillips, Lawrence S.; Prentice, Ross L.; Robbins, John; Robinson, Jennifer G.; Rossouw, Jacques E.; Sangi-Haghpeykar, Haleh; Sarto, Gloria E.; Shumaker, Sally; Simon, Michael S.; Stefanick, Marcia L.; Stein, Evan; Tang, Hua; Taylor, Kira C.; Thomson, Cynthia A.; Thornton, Timothy A.; Van Horn, Linda; Vitolins, Mara; Wactawski-Wende, Jean; Wallace, Robert; Wassertheil-Smoller, Sylvia; Zeng, Donglin; Applebaum-Bowden, Deborah; Feolo, Michael; Gan, Weiniu; Paltoo, Dina N.; Sholinsky, Phyliss; Sturcke, Anne

    2014-01-01

    Elevated low-density lipoprotein cholesterol (LDL-C) is a treatable, heritable risk factor for cardiovascular disease. Genome-wide association studies (GWASs) have identified 157 variants associated with lipid levels but are not well suited to assess the impact of rare and low-frequency variants. To determine whether rare or low-frequency coding variants are associated with LDL-C, we exome sequenced 2,005 individuals, including 554 individuals selected for extreme LDL-C (>98th or <2nd percentile). Follow-up analyses included sequencing of 1,302 additional individuals and genotype-based analysis of 52,221 individuals. We observed significant evidence of association between LDL-C and the burden of rare or low-frequency variants in PNPLA5, encoding a phospholipase-domain-containing protein, and both known and previously unidentified variants in PCSK9, LDLR and APOB, three known lipid-related genes. The effect sizes for the burden of rare variants for each associated gene were substantially higher than those observed for individual SNPs identified from GWASs. We replicated the PNPLA5 signal in an independent large-scale sequencing study of 2,084 individuals. In conclusion, this large whole-exome-sequencing study for LDL-C identified a gene not known to be implicated in LDL-C and provides unique insight into the design and analysis of similar experiments. PMID:24507775

  3. Characterization of [3H] oxymorphone binding sites in mouse brain: Quantitative autoradiography in opioid receptor knockout mice.

    PubMed

    Yoo, Ji Hoon; Borsodi, Anna; Tóth, Géza; Benyhe, Sándor; Gaspar, Robert; Matifas, Audrey; Kieffer, Brigitte L; Metaxas, Athanasios; Kitchen, Ian; Bailey, Alexis

    2017-03-16

    Oxymorphone, one of oxycodone's metabolic products, is a potent opioid receptor agonist which is thought to contribute to the analgesic effect of its parent compound and may have high potential abuse liability. Nonetheless, the in vivo pharmacological binding profile of this drug is still unclear. This study uses mice lacking mu (MOP), kappa (KOP) or delta (DOP) opioid receptors as well as mice lacking all three opioid receptors to provide full characterisation of oxymorphone binding sites in the brain. Saturation binding studies using [ 3 H]oxymorphone revealed high affinity binding sites in mouse brain displaying Kd of 1.7nM and Bmax of 147fmol/mg. Furthermore, we performed quantitative autoradiography binding studies using [ 3 H]oxymorphone in mouse brain. The distribution of [ 3 H]oxymorphone binding sites was found to be similar to the selective MOP agonist [ 3 H]DAMGO in the mouse brain. [ 3 H]Oxymorphone binding was completely abolished across the majority of the brain regions in mice lacking MOP as well as in mice lacking all three opioid receptors. DOP and KOP knockout mice retained [ 3 H]oxymorphone binding sites suggesting oxymorphone may not target DOP or KOP. These results confirm that the MOP, and not the DOP or the KOP is the main high affinity binding target for oxymorphone. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Potent neutralization of hepatitis A virus reveals a receptor mimic mechanism and the receptor recognition site.

    PubMed

    Wang, Xiangxi; Zhu, Ling; Dang, Minghao; Hu, Zhongyu; Gao, Qiang; Yuan, Shuai; Sun, Yao; Zhang, Bo; Ren, Jingshan; Kotecha, Abhay; Walter, Thomas S; Wang, Junzhi; Fry, Elizabeth E; Stuart, David I; Rao, Zihe

    2017-01-24

    Hepatitis A virus (HAV) infects ∼1.4 million people annually and, although there is a vaccine, there are no licensed therapeutic drugs. HAV is unusually stable (making disinfection problematic) and little is known of how it enters cells and releases its RNA. Here we report a potent HAV-specific monoclonal antibody, R10, which neutralizes HAV infection by blocking attachment to the host cell. High-resolution cryo-EM structures of HAV full and empty particles and of the complex of HAV with R10 Fab reveal the atomic details of antibody binding and point to a receptor recognition site at the pentamer interface. These results, together with our observation that the R10 Fab destabilizes the capsid, suggest the use of a receptor mimic mechanism to neutralize virus infection, providing new opportunities for therapeutic intervention.

  5. The role of mitosis in LDL transport through cultured endothelial cell monolayers.

    PubMed

    Cancel, Limary M; Tarbell, John M

    2011-03-01

    We (7) have previously shown that leaky junctions associated with dying or dividing cells are the dominant pathway for LDL transport under convective conditions, accounting for >90% of the transport. We (8) have also recently shown that the permeability of bovine aortic endothelial cell monolayers is highly correlated with their rate of apoptosis and that inhibiting apoptosis lowers the permeability of the monolayers to LDL. To explore the role of mitosis in the leaky junction pathway, the microtubule-stabilizing agent paclitaxel was used to alter the rate of mitosis, and LDL flux and water flux (J(v)) were measured. Control monolayers had an average mitosis rate of 0.029%. Treatment with paclitaxel (2.5 μM) for 1.5, 3, 4.5, or 6 h yielded increasing rates of mitosis ranging from 0.099% to 1.03%. The convective permeability of LDL (P(e)) increased up to fivefold, whereas J(v) increased up to threefold, over this range of mitosis rates. We found strong correlations between the mitosis rate and both P(e) and J(v). However, compared with our previous apoptosis study (8), we found that mitosis was only half as effective as apoptosis in increasing P(e). The results led us to conclude that while mitosis-related leaky junctions might play a role in the initial infiltration of LDL into the artery wall, the progression of atherosclerosis might be more closely correlated with apoptosis-related leaky junctions.

  6. The role of mitosis in LDL transport through cultured endothelial cell monolayers

    PubMed Central

    Cancel, Limary M.

    2011-01-01

    We (7) have previously shown that leaky junctions associated with dying or dividing cells are the dominant pathway for LDL transport under convective conditions, accounting for >90% of the transport. We (8) have also recently shown that the permeability of bovine aortic endothelial cell monolayers is highly correlated with their rate of apoptosis and that inhibiting apoptosis lowers the permeability of the monolayers to LDL. To explore the role of mitosis in the leaky junction pathway, the microtubule-stabilizing agent paclitaxel was used to alter the rate of mitosis, and LDL flux and water flux (Jv) were measured. Control monolayers had an average mitosis rate of 0.029%. Treatment with paclitaxel (2.5 μM) for 1.5, 3, 4.5, or 6 h yielded increasing rates of mitosis ranging from 0.099% to 1.03%. The convective permeability of LDL (Pe) increased up to fivefold, whereas Jv increased up to threefold, over this range of mitosis rates. We found strong correlations between the mitosis rate and both Pe and Jv. However, compared with our previous apoptosis study (8), we found that mitosis was only half as effective as apoptosis in increasing Pe. The results led us to conclude that while mitotsis-related leaky junctions might play a role in the initial infiltration of LDL into the artery wall, the progression of atherosclerosis might be more closely correlated with apoptosis-related leaky junctions. PMID:21169397

  7. Active-oxygen scavenging activity of plant extracts.

    PubMed

    Masaki, H; Sakaki, S; Atsumi, T; Sakurai, H

    1995-01-01

    To find antioxidative compounds present in plants, 65 types of plant extract were tested using the neotetrazolium method for evidence of superoxide anion-scavenging effects and 7 plant extracts were selected for further investigation. The activity of active-oxygen scavengers such as superoxide anion radicals, hydroxyl radicals, singlet oxygens and lipid peroxides in the 7 plant extracts (Aeseclus hippocastanum L., Hamamelis virginiana L. Polygonum cuspidatum Sieb., Quercus robur L., Rosemarinous officinalis L., Salvia officinalis L. and Sanguisorba officinalis L.) was examined in detail by both ESR spin-trapping and malondialdehyde generation. Furthermore, the active-oxygen scavenging activity of these plant extracts was evaluated using a murine dermal fibroblast culture system. Both Aeseclus hippocastanum L. and Hamamelis virginia L. were found to have strong active-oxygen scavenging activity of and protective activity against cell damage induced by active oxygen. Both Aeseclus hippocastanum L. and Hamamelis virginiana L. are proposed as potent plant extracts with potential application as anti-aging or anti-wrinkle material for the skin.

  8. P2Y(2)R activation by nucleotides released from oxLDL-treated endothelial cells (ECs) mediates the interaction between ECs and immune cells through RAGE expression and reactive oxygen species production.

    PubMed

    Eun, So Young; Park, Sang Won; Lee, Jae Heun; Chang, Ki Churl; Kim, Hye Jung

    2014-04-01

    Lipoprotein oxidation, inflammation, and immune responses involving the vascular endothelium and immune cells contribute to the pathogenesis of atherosclerosis. In an atherosclerotic animal model, P2Y2 receptor (P2Y2R) upregulation and stimulation were previously shown to induce intimal hyperplasia and increased intimal monocyte infiltration. Thus, we investigated the role of P2Y2R in oxidized low-density lipoprotein (oxLDL)-mediated oxidative stress and the subsequent interaction between endothelial cells (ECs) and immune cells. The treatment of human ECs with oxLDL caused the rapid release of ATP (maximum after 5 min). ECs treated with oxLDL or the P2Y2R agonists ATP/UTP for 1h exhibited significant reactive oxygen species (ROS) production, but this effect was not observed in P2Y2R siRNA-transfected ECs. In addition, oxLDL and ATP/UTP both induced RAGE expression, which was P2Y2R dependent. Oxidized LDL- and ATP/UTP-mediated ROS production was diminished in RAGE siRNA-transfected ECs, suggesting that RAGE is an important mediator in P2Y2R-mediated ROS production. Treatment with oxLDL for 24h induced P2Y2R expression in the human monocyte cell line THP-1 and increased THP-1 cell migration toward ECs. The addition of apyrase, an enzyme that hydrolyzes nucleotides, or diphenyleneiodonium (DPI), a well-known inhibitor of NADPH oxidase, significantly inhibited the increase in cell migration caused by oxLDL. P2Y2R siRNA-transfected THP-1 cells did not migrate in response to oxLDL or ATP/UTP treatment, indicating a critical role for P2Y2R and nucleotide release in oxLDL-induced monocyte migration. Last, oxLDL and ATP/UTP effectively increased ICAM-1 and VCAM-1 expression and the subsequent binding of THP-1 cells to ECs, which was inhibited by pretreatment with DPI or by siRNA against P2Y2R or RAGE, suggesting that P2Y2R is an important mediator in oxLDL-mediated monocyte adhesion to ECs through the regulation of ROS-dependent adhesion molecule expression in ECs. Taken

  9. Vaccine-elicited receptor-binding site antibodies neutralize two New World hemorrhagic fever arenaviruses.

    PubMed

    Clark, Lars E; Mahmutovic, Selma; Raymond, Donald D; Dilanyan, Taleen; Koma, Takaaki; Manning, John T; Shankar, Sundaresh; Levis, Silvana C; Briggiler, Ana M; Enria, Delia A; Wucherpfennig, Kai W; Paessler, Slobodan; Abraham, Jonathan

    2018-05-14

    While five arenaviruses cause human hemorrhagic fevers in the Western Hemisphere, only Junin virus (JUNV) has a vaccine. The GP1 subunit of their envelope glycoprotein binds transferrin receptor 1 (TfR1) using a surface that substantially varies in sequence among the viruses. As such, receptor-mimicking antibodies described to date are type-specific and lack the usual breadth associated with this mode of neutralization. Here we isolate, from the blood of a recipient of the live attenuated JUNV vaccine, two antibodies that cross-neutralize Machupo virus with varying efficiency. Structures of GP1-Fab complexes explain the basis for efficient cross-neutralization, which involves avoiding receptor mimicry and targeting a conserved epitope within the receptor-binding site (RBS). The viral RBS, despite its extensive sequence diversity, is therefore a target for cross-reactive antibodies with activity against New World arenaviruses of public health concern.

  10. α‐Conotoxin M1 (CTx) blocks αδ binding sites of adult nicotinic receptors while ACh binding at αε sites elicits only small and short quantal synaptic currents

    PubMed Central

    Dudel, Josef

    2014-01-01

    Abstract In ‘embryonic’ nicotinic receptors, low CTx concentrations are known to block only the αδ binding site, whereas binding of ACh at the αγ‐site elicits short single channel openings and short bursts. In adult muscles the αγ‐ is replaced by the αε‐site. Quantal EPSCs (qEPSCs) were elicited in adult muscles by depolarization pulses and recorded through a perfused macropatch electrode. One to 200 nmol L−1 CTx reduced amplitudes and decay time constants of qEPSCs, but increased their rise times. CTx block at the αδ binding sites was incomplete: The qEPSCs still contained long bursts from not yet blocked receptors, whereas their average decay time constants were reduced by a short burst component generated by ACh binding to the αε‐site. Two nanomolar CTx applied for 3 h reduced the amplitudes of qEPSCs to less than half with a constant slope. The equilibrium concentration of the block is below 1 nmol L−1 and lower than that of embryonic receptors. CTx‐block increased in proportion to CTx concentrations (average rate 2 × 104 s−1·mol−1 L). Thus, the reactions of ‘embryonic’ and of adult nicotinic receptors to block by CTx are qualitatively the same. – The study of the effects of higher CTx concentrations or of longer periods of application of CTx was limited by presynaptic effects of CTx. Even low CTx concentrations severely reduced the release of quanta by activating presynaptic M2 receptors at a maximal rate of 6 × 105 s−1·mol−1 L. When this dominant inhibition was prevented by blocking the M2 receptors with methoctramine, activation of M1 receptors was unmasked and facilitated release. PMID:25501436

  11. New therapeutic principles in dyslipidaemia: focus on LDL and Lp(a) lowering drugs

    PubMed Central

    Norata, Giuseppe Danilo; Ballantyne, Christie M.; Catapano, Alberico Luigi

    2013-01-01

    Dyslipidaemias play a key role in determining cardiovascular risk; the discovery of statins has contributed a very effective approach. However, many patients do not achieve, at the maximal tolerated dose, the recommended goals for low-density lipoprotein-cholesterol (LDL-C), non-high-density lipoprotein-cholesterol, and apolipoprotein B (apoB). Available agents combined with statins can provide additional LDL-C reduction, and agents in development will increase therapeutic options impacting also other atherogenic lipoprotein classes. In fact, genetic insights into mechanisms underlying regulation of LDL-C levels has expanded potential targets of drug therapy and led to the development of novel agents. Among them are modulators of apoB containing lipoproteins production and proprotein convertase subtilisin/kexin type-9 inhibitors. Alternative targets such as lipoprotein(a) also require attention; however, until we have a better understanding of these issues, further LDL-C lowering in high and very high-risk patients will represent the most sound clinical approach. PMID:23509227

  12. Brain ischaemia induces shedding of a BDNF-scavenger ectodomain from TrkB receptors by excitotoxicity activation of metalloproteinases and γ-secretases.

    PubMed

    Tejeda, Gonzalo S; Ayuso-Dolado, Sara; Arbeteta, Raquel; Esteban-Ortega, Gema M; Vidaurre, Oscar G; Díaz-Guerra, Margarita

    2016-04-01

    Stroke remains a leading cause of death and disability in the world with limited therapies available to restrict brain damage or improve functional recovery after cerebral ischaemia. A promising strategy currently under investigation is the promotion of brain-derived neurotrophic factor (BDNF) signalling through tropomyosin-related kinase B (TrkB) receptors, a pathway essential for neuronal survival and function. However, TrkB and BDNF-signalling are impaired by excitotoxicity, a primary pathological process in stroke also associated with neurodegenerative diseases. Pathological imbalance of TrkB isoforms is critical in neurodegeneration and is caused by calpain processing of BDNF high affinity full-length receptor (TrkB-FL) and an inversion of the transcriptional pattern of the Ntrk2 gene, to favour expression of the truncated isoform TrkB-T1 over TrkB-FL. We report here that both TrkB-FL and neuronal TrkB-T1 also undergo ectodomain shedding by metalloproteinases activated after ischaemic injury or excitotoxic damage of cortical neurons. Subsequently, the remaining membrane-bound C-terminal fragments (CTFs) are cleaved by γ-secretases within the transmembrane region, releasing their intracellular domains (ICDs) into the cytosol. Therefore, we identify TrkB-FL and TrkB-T1 as new substrates of regulated intramembrane proteolysis (RIP), a mechanism that highly contributes to TrkB-T1 regulation in ischaemia but is minor for TrkB-FL which is mainly processed by calpain. However, since the secreted TrkB ectodomain acts as a BDNF scavenger and significantly alters BDNF/TrkB signalling, the mechanism of RIP could contribute to neuronal death in excitotoxicity. These results are highly relevant since they reveal new targets for the rational design of therapies to treat stroke and other pathologies with an excitotoxic component. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  13. MMP-9-Dependent Serum-Borne Bioactivity Caused by Multiwalled Carbon Nanotube Exposure Induces Vascular Dysfunction via the CD36 Scavenger Receptor

    PubMed Central

    Aragon, Mario; Erdely, Aaron; Bishop, Lindsey; Salmen, Rebecca; Weaver, John; Liu, Jim; Hall, Pamela; Eye, Tracy; Kodali, Vamsi; Zeidler-Erdely, Patti; Stafflinger, Jillian E.; Ottens, Andrew K.; Campen, Matthew J.

    2016-01-01

    Inhalation of multiwalled carbon nanotubes (MWCNT) causes systemic effects including vascular inflammation, endothelial dysfunction, and acute phase protein expression. MWCNTs translocate only minimally beyond the lungs, thus cardiovascular effects thereof may be caused by generation of secondary biomolecular factors from MWCNT-pulmonary interactions that spill over into the systemic circulation. Therefore, we hypothesized that induced matrix metalloproteinase-9 (MMP-9) is a generator of factors that, in turn, drive vascular effects through ligand-receptor interactions with the multiligand pattern recognition receptor, CD36. To test this, wildtype (WT; C57BL/6) and MMP-9−/− mice were exposed to varying doses (10 or 40 µg) of MWCNTs via oropharyngeal aspiration and serum was collected at 4 and 24 h postexposure. Endothelial cells treated with serum from MWCNT-exposed WT mice exhibited significantly reduced nitric oxide (NO) generation, as measured by electron paramagnetic resonance, an effect that was independent of NO scavenging. Serum from MWCNT-exposed WT mice inhibited acetylcholine (ACh)-mediated relaxation of aortic rings at both time points. Absence of CD36 on the aortic rings (obtained from CD36-deficient mice) abolished the serum-induced impairment of vasorelaxation. MWCNT exposure induced MMP-9 protein levels in both bronchoalveolar lavage and whole lung lysates. Serum from MMP-9−/− mice exposed to MWCNT did not diminish the magnitude of vasorelaxation in naïve WT aortic rings, although a modest right shift of the ACh dose–response curve was observed in both MWCNT dose groups relative to controls. In conclusion, pulmonary exposure to MWCNT leads to elevated MMP-9 levels and MMP-9-dependent generation of circulating bioactive factors that promote endothelial dysfunction and decreased NO bioavailability via interaction with vascular CD36. PMID:26801584

  14. Multiple free-radical scavenging capacity in serum

    PubMed Central

    Oowada, Shigeru; Endo, Nobuyuki; Kameya, Hiromi; Shimmei, Masashi; Kotake, Yashige

    2012-01-01

    We have developed a method to determine serum scavenging-capacity profile against multiple free radical species, namely hydroxyl radical, superoxide radical, alkoxyl radical, alkylperoxyl radical, alkyl radical, and singlet oxygen. This method was applied to a cohort of chronic kidney disease patients. Each free radical species was produced with a common experimental procedure; i.e., uv/visible-light photolysis of free-radical precursor/sensitizer. The decrease in free-radical concentration by the presence of serum was quantified with electron spin resonance spin trapping method, from which the scavenging capacity was calculated. There was a significant capacity change in the disease group (n = 45) as compared with the healthy control group (n = 30). The percent values of disease’s scavenging capacity with respect to control group indicated statistically significant differences in all free-radical species except alkylperoxyl radical, i.e., hydroxyl radical, 73 ± 12% (p = 0.001); superoxide radical, 158 ± 50% (p = 0.001); alkoxyl radical, 121 ± 30% (p = 0.005); alkylperoxyl radical, 123 ± 32% (p>0.1); alkyl radical, 26 ± 14% (p = 0.001); and singlet oxygen, 57 ± 18% (p = 0.001). The scavenging capacity profile was illustrated using a radar chart, clearly demonstrating the characteristic change in the disease group. Although the cause of the scavenging capacity change by the disease state is not completely understood, the profile of multiple radical scavenging capacities may become a useful diagnostic tool. PMID:22962529

  15. Molecular Properties of neurotoxin receptors sites associated with sodium channels from mammalian brain.

    PubMed

    Catterall, W A; Hartshorne, R P; Beneski, D A

    1982-01-01

    Neurotoxins that act at specific receptor sites on voltage-sensitive sodium channels have been used as molecular probes to identify and purify protein components of sodium channels from mammalian brain. Photoreactive derivatives of scorpion toxin have been prepared and used to covalently label sodium channels in intact synaptosomes. Two polypeptides, alpha with Mr approximately 270,000 and beta with Mr approximately 38,000, are specifically labeled indicating that they are components of the scorpion toxin receptor site on the sodium channel. The sodium channel can be solubilized with retention of specific binding of [3H] saxitoxin using nonionic detergents such as Triton X-100. The solubilized saxitoxin receptor has molecular weight of 316,000 +/- 63,000 and binds 0.9 g of Triton X-100 and phospholipid per g of protein. The solubilized receptor can be purified 750-fold by ion exchange chromatography, wheat germ lectin/Sepharose chromatography and sucrose gradient sedimentation to a final specific activity of 1488 pmol/mg. Analysis of the polypeptide chain composition of the most highly purified fractions indicates that alpha and beta comprise 65% of the protein of these fractions and are only the polypeptides whose presence correlates with saxitoxin binding activity. These studies lead to a working hypothesis of sodium channel structure in which the intact channel is comprised of a complex with Mr of approximately 316,000 containing one mole of alpha (Mr approximately 270,000) and one to three moles of beta (Mr approximately 38,000).

  16. A cation-pi interaction in the binding site of the glycine receptor is mediated by a phenylalanine residue.

    PubMed

    Pless, Stephan A; Millen, Kat S; Hanek, Ariele P; Lynch, Joseph W; Lester, Henry A; Lummis, Sarah C R; Dougherty, Dennis A

    2008-10-22

    Cys-loop receptor binding sites characteristically contain many aromatic amino acids. In nicotinic ACh and 5-HT3 receptors, a Trp residue forms a cation-pi interaction with the agonist, whereas in GABA(A) receptors, a Tyr performs this role. The glycine receptor binding site, however, contains predominantly Phe residues. Homology models suggest that two of these Phe side chains, Phe159 and Phe207, and possibly a third, Phe63, are positioned such that they could contribute to a cation-pi interaction with the primary amine of glycine. Here, we test this hypothesis by incorporation of a series of fluorinated Phe derivatives using unnatural amino acid mutagenesis. The data reveal a clear correlation between the glycine EC(50) value and the cation-pi binding ability of the fluorinated Phe derivatives at position 159, but not at positions 207 or 63, indicating a single cation-pi interaction between glycine and Phe159. The data thus provide an anchor point for locating glycine in its binding site, and demonstrate for the first time a cation-pi interaction between Phe and a neurotransmitter.

  17. Free Radical Scavenging Properties of Annona squamosa

    PubMed

    Vikas, Biba; Akhil B, S; P, Remani; Sujathan, K

    2017-10-26

    Annona squamosa has extensively been used in the traditional and folkloric medicine and found to possess many biological activities. Different solvents, petroleum ether, chloroform, ethyl acetate and methanol extracts of Annona squamosa seeds (ASPE, ASCH, ASEA, ASME) have been used to prepare plant extracts. The present investigations dealt with the free radical scavenging activity of four extracts using various techniques such as total reducing power estimation, total phenolic count, 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging effect, evaluation of ABTS cation decolorisation capacity, FRAP assay, hdroxyl radical scavenging assay, super oxide assay and Nitric oxide radical scavenging assay of the extracts. The results showed that the four extracts of Annona squamosa showed significant reducing power in four extracts. The total phenolic contents in petroleum ether, chloroform, ethyl acetate, methanol extracts and positive control were 0.64±0.17, 0.54±0.27, 0.49±0.24, 0.57±0.22 and 0.66±0.33. The antioxidant capacity by ABTS assay of ASPE, ASCH, ASEA, ASME and positive control, trolox showed 77.75±0.5,73.25±1.7,78.5± 1.2 , 80 ± 0.8 μg/ml and 94.2 ± 0.9 respectively. The (50 % scavenging activity) SA50 of ASPE and ASCH, ASEA and ASME was found to be 34.4 μg/ml, 43.8 μg/ml 34.7 μg/m and 28.8 μg/ml respectively by DPPH assay. The percentage of hydroxyl radical scavenging increased with the increasing concentration of the extracts. ASPE, ASCH, ASEA and ASME showed superoxide radical scavenging activity, as indicated by their values 66 ± 0.5, 68 ± 1 ,63 ± 1 and 70 ± 0.5 μg/ml respectively compared to gallic acid which was 97 ± 0.5 μg/ml. The values for scavenging of nitric oxide for ASPE, ASCH, ASEA and ASME were 91.0 ± 1.0, 66.75 ± 0.5, 71.75 ± 1.1 and 75.75 ± 1.15 μg/ml while value for standard ascorbic acid was 91.0 ± 1.0 μg/ml. The results revealed strong antioxidants in four extracts may lead to the development of potent

  18. Receptor-mediated endocytosis and intracellular trafficking of insulin and low-density lipoprotein by retinal vascular endothelial cells.

    PubMed

    Stitt, A W; Anderson, H R; Gardiner, T A; Bailie, J R; Archer, D B

    1994-08-01

    The authors investigated the receptor-mediated endocytosis (RME) and intracellular trafficking of insulin and low-density lipoprotein (LDL) in cultured retinal vascular endothelial cells (RVECs). Low-density lipoprotein and insulin were conjugated to 10 nm colloidal gold, and these ligands were added to cultured bovine RVECs for 20 minutes at 4 degrees C. The cultures were then warmed to 37 degrees C and fixed after incubation times between 30 seconds and 1 hour. Control cells were incubated with unconjugated gold colloid at times and concentrations similar to those of the ligands. Additional control cells were exposed to several concentrations of anti-insulin receptor antibody or a saturating solution of unconjugated insulin before incubation with gold insulin. Using transmission electron microscopy, insulin gold and LDL gold were both observed at various stages of RME. Insulin-gold particles were first seen to bind to the apical plasma membrane (PM) before clustering in clathrin-coated pits and internalization in coated vesicles. Gold was later visualized in uncoated cytoplasmic vesicles, corresponding to early endosomes and multivesicular bodies (MVBs) or late endosomes. In several instances, localized regions of the limiting membrane of the MVBs appeared coated, a feature of endosomal membranes not previously described. After RME at the apical PM and passage through the endosomal system, the greater part of both insulin- and LDL-gold conjugates was seen to accumulate in large lysosome-like compartments. However, a small but significant proportion of the internalized ligands was transcytosed and released as discrete membrane-associated quanta at the basal cell surface. The uptake of LDL gold was greatly increased in highly vacuolated, late-passage RVECs. In controls, anti-insulin receptor antibody and excess unconjugated insulin caused up to 89% inhibition in gold-insulin binding and internalization. These results illustrate the internalization and intracellular

  19. Bergamot polyphenolic fraction enhances rosuvastatin-induced effect on LDL-cholesterol, LOX-1 expression and protein kinase B phosphorylation in patients with hyperlipidemia.

    PubMed

    Gliozzi, Micaela; Walker, Ross; Muscoli, Saverio; Vitale, Cristiana; Gratteri, Santo; Carresi, Cristina; Musolino, Vincenzo; Russo, Vanessa; Janda, Elzbieta; Ragusa, Salvatore; Aloe, Antonio; Palma, Ernesto; Muscoli, Carolina; Romeo, Franco; Mollace, Vincenzo

    2013-12-10

    Statins are the most commonly prescribed drugs to reduce cardiometabolic risk. Besides the well-known efficacy of such compounds in both preventing and treating cardiometabolic disorders, some patients experience statin-induced side effects. We hypothesize that the use of natural bergamot-derived polyphenols may allow patients undergoing statin treatment to reduce effective doses while achieving target lipid values. The aim of the present study is to investigate the occurrence of an enhanced effect of bergamot-derived polyphenolic fraction (BPF) on rosuvastatin-induced hypolipidemic and vasoprotective response in patients with mixed hyperlipidemia. A prospective, open-label, parallel group, placebo-controlled study on 77 patients with elevated serum LDL-C and triglycerides was designed. Patients were randomly assigned to a control group receiving placebo (n=15), two groups receiving orally administered rosuvastatin (10 and 20mg/daily for 30 days; n=16 for each group), a group receiving BPF alone orally (1000 mg/daily for 30 days; n=15) and a group receiving BPF (1000 mg/daily given orally) plus rosuvastatin (10mg/daily for 30 days; n=15). Both doses of rosuvastatin and BPF reduced total cholesterol, LDL-C, the LDL-C/HDL-C ratio and urinary mevalonate in hyperlipidemic patients, compared to control group. The cholesterol lowering effect was accompanied by reductions of malondialdehyde, oxyLDL receptor LOX-1 and phosphoPKB, which are all biomarkers of oxidative vascular damage, in peripheral polymorphonuclear cells. Addition of BPF to rosuvastatin significantly enhanced rosuvastatin-induced effect on serum lipemic profile compared to rosuvastatin alone. This lipid-lowering effect was associated with significant reductions of biomarkers used for detecting oxidative vascular damage, suggesting a multi-action enhanced potential for BPF in patients on statin therapy. © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Outdoor temperature is associated with serum HDL and LDL.

    PubMed

    Halonen, Jaana I; Zanobetti, Antonella; Sparrow, David; Vokonas, Pantel S; Schwartz, Joel

    2011-02-01

    While exposures to high and low air temperatures are associated with cardiovascular mortality, the underlying mechanisms are poorly understood. The risk factors for cardiovascular disease include high levels of total cholesterol and low-density lipoprotein (LDL), and low levels of high-density lipoprotein (HDL). We investigated whether temperature was associated with changes in circulating lipid levels, and whether this might explain part of the association with increased cardiovascular events. The study cohort consisted of 478 men in the greater Boston area with a mean age of 74.2 years. They visited the clinic every 3-5 years between 1995 and 2008 for physical examination and to complete questionnaires. We excluded from analyses all men taking statin medication and all days with missing data, resulting in a total of 862 visits. Associations between three temperature variables (ambient, apparent, and dew point temperature) and serum lipid levels (total cholesterol, HDL, LDL, and triglycerides) were studied with linear mixed models that included possible confounders such as air pollution and a random intercept for each subject. We found that HDL decreased -1.76% (95% CI: from -3.17 to -0.32, lag 2 days), and -5.58% (95% CI: from -8.87 to -2.16, moving average of 4 weeks) for each 5°C increase in mean ambient temperature. For the same increase in mean ambient temperature, LDL increased by 1.74% (95% CI: 0.07-3.44, lag 1 day) and 1.87% (95% CI: 0.14-3.63, lag 2 days). These results were also similar for apparent and dew point temperatures. No changes were found in total cholesterol or triglycerides in relation to temperature increase. Changes in HDL and LDL levels associated with an increase in ambient temperature may be among the underlying mechanisms of temperature-related cardiovascular mortality. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Effect of shear stress on water and LDL transport through cultured endothelial cell monolayers.

    PubMed

    Kang, Hongyan; Cancel, Limary M; Tarbell, John M

    2014-04-01

    Previous animal experiments have shown that the transport of LDL into arterial walls is shear stress dependent. However, little work has probed shear effects on LDL transport in vitro where conditions are well defined and mechanisms are more easily explored. Therefore, we measured shear induced water and LDL fluxes across cultured bovine aortic endothelial (BAEC) monolayers in vitro and developed a three-pore model to describe the transport dynamics. Cell apoptosis was quantified by TdT-mediated dUTP nick end labeling (TUNEL) assay. We also examined the role of nitric oxide (NO) in shear induced water and LDL fluxes by incubating BAEC monolayers with an NO synthase inhibitor, NG-monomethyl-L-arginine (L-NMMA). Our results show that direct exposure of endothelial monolayers to 12 dyn/cm2 shear stress for 3 h elicited a 2.37-fold increase in water flux (Jv), a 3.00-fold increase in LDL permeability (Pe), a 1.32-fold increase in LDL uptake, and a 1.68-fold increase in apoptotic rate. L-NMMA treatment of BAEC monolayers blocked shear induced Jv response, but had no significant effect on shear responses of Pe and cell apoptosis. A long time shear exposure (12 h) of endothelial monolayers reduced Pe and apoptotic rate close to the baseline. These results suggest that an acute change in shear stress from a static baseline state induces increases in water flux that are mediated by an NO dependent mechanism. On the other hand, the permeability of endothelial monolayers to LDL is enhanced by a short term-shear application and reduced nearly to the baseline level by a longer time shear exposure, positively correlated to the leaky junctions forming around apoptotic cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Effect of shear stress on water and LDL transport through cultured endothelial cell monolayers

    PubMed Central

    Kang, Hongyan; Cancel, Limary M.; Tarbell, John M.

    2014-01-01

    Previous animal experiments have shown that the transport of LDL into arterial walls is shear stress dependent. However, little work has probed shear effects on LDL transport in vitro where conditions are well defined and mechanisms are more easily explored. Therefore, we measured shear induced water and LDL fluxes across cultured bovine aortic endothelial (BAEC) monolayers in vitro and developed a three-pore model to describe the transport dynamics. Cell apoptosis was quantified by TdT-mediated dUTP nick end labeling (TUNEL) assay. We also examined the role of nitric oxide (NO) in shear induced water and LDL fluxes by incubating BAEC monolayers with a NO synthase inhibitor, NG-monomethyl-L-arginine (L-NMMA). Our results show that direct exposure of endothelial monolayers to 12 dyn/cm2 shear stress for 3 hours elicited a 2.37-fold increase in water flux (Jv), a 3.00-fold increase in LDL permeability (Pe), a 1.32-fold increase in LDL uptake, and a 1.68-fold increase in apoptotic rate. L-NMMA treatment of BAEC monolayers blocked shear induced Jv response, but had no significant effect on shear responses of Pe and cell apoptosis. A long time shear exposure (12 h) of endothelial monolayers reduced Pe and apoptotic rate close to the baseline. These results suggest that an acute change in shear stress from a static baseline state induces increases in water flux that are mediated by a NO dependent mechanism. On the other hand, the permeability of endothelial monolayers to LDL is enhanced by a short term-shear application and reduced nearly to the baseline level by a longer time shear exposure, positively correlated to the leaky junctions forming around apoptotic cells. PMID:24583416

  3. The oxygen-centered radicals scavenging activity of sulfasalazine and its metabolites. A direct protection of the bowel.

    PubMed

    Prónai, L; Yukinobu, I; Láng, I; Fehér, J

    1992-01-01

    Oxygen-centered radicals, such as superoxide (O2-) and hydroxyl radicals (.OH) generated by phagocytes have been suggested to be involved in the pathogenesis of chronic inflammations of the bowel, such as Crohn's disease and colitis ulcerosa. Recently, sulfasalazine (SASP) and its metabolites have been reported to exert their effects as a direct scavenger of oxygen-centered radicals in the bowel. To scavenge oxygen-centered radicals in vivo, however, SASP and its metabolites have to react with O2- and/or .OH in vitro very rapidly, furthermore they have to reach an appropriate (possible millimolar) concentration range at the site of inflammation. To test this possibility, we investigated the direct O2- and .OH scavenging activity of SASP and its metabolites using the specific electron paramagnetic resonance/spin trapping method, and we compared the 50% inhibition rates of SASP and its metabolites with their known concentrations in the bowel and in the human plasma. It was found that SASP and its metabolites, such as 5-amino-salicylic acid (5-ASA), and acetyl-5-amino-salicylic acid (AC-5-ASA), but not sulfapyridine (SP) and acetyl-sulfapyridine (Ac-SP) have a direct O2- and .OH scavenging activity in vitro systems. Among the compounds, SASP and 5-ASA can reach a concentration which is appropriate to scavenge oxygen-centered radicals in the bowel but not in the human plasma. It was concluded that the in vivo antiinflammatory effects of SASP and its metabolites are, at least partly, due to the direct oxygen-centered scavenging activity of these drugs.

  4. Whole-exome sequencing identifies rare and low-frequency coding variants associated with LDL cholesterol.

    PubMed

    Lange, Leslie A; Hu, Youna; Zhang, He; Xue, Chenyi; Schmidt, Ellen M; Tang, Zheng-Zheng; Bizon, Chris; Lange, Ethan M; Smith, Joshua D; Turner, Emily H; Jun, Goo; Kang, Hyun Min; Peloso, Gina; Auer, Paul; Li, Kuo-Ping; Flannick, Jason; Zhang, Ji; Fuchsberger, Christian; Gaulton, Kyle; Lindgren, Cecilia; Locke, Adam; Manning, Alisa; Sim, Xueling; Rivas, Manuel A; Holmen, Oddgeir L; Gottesman, Omri; Lu, Yingchang; Ruderfer, Douglas; Stahl, Eli A; Duan, Qing; Li, Yun; Durda, Peter; Jiao, Shuo; Isaacs, Aaron; Hofman, Albert; Bis, Joshua C; Correa, Adolfo; Griswold, Michael E; Jakobsdottir, Johanna; Smith, Albert V; Schreiner, Pamela J; Feitosa, Mary F; Zhang, Qunyuan; Huffman, Jennifer E; Crosby, Jacy; Wassel, Christina L; Do, Ron; Franceschini, Nora; Martin, Lisa W; Robinson, Jennifer G; Assimes, Themistocles L; Crosslin, David R; Rosenthal, Elisabeth A; Tsai, Michael; Rieder, Mark J; Farlow, Deborah N; Folsom, Aaron R; Lumley, Thomas; Fox, Ervin R; Carlson, Christopher S; Peters, Ulrike; Jackson, Rebecca D; van Duijn, Cornelia M; Uitterlinden, André G; Levy, Daniel; Rotter, Jerome I; Taylor, Herman A; Gudnason, Vilmundur; Siscovick, David S; Fornage, Myriam; Borecki, Ingrid B; Hayward, Caroline; Rudan, Igor; Chen, Y Eugene; Bottinger, Erwin P; Loos, Ruth J F; Sætrom, Pål; Hveem, Kristian; Boehnke, Michael; Groop, Leif; McCarthy, Mark; Meitinger, Thomas; Ballantyne, Christie M; Gabriel, Stacey B; O'Donnell, Christopher J; Post, Wendy S; North, Kari E; Reiner, Alexander P; Boerwinkle, Eric; Psaty, Bruce M; Altshuler, David; Kathiresan, Sekar; Lin, Dan-Yu; Jarvik, Gail P; Cupples, L Adrienne; Kooperberg, Charles; Wilson, James G; Nickerson, Deborah A; Abecasis, Goncalo R; Rich, Stephen S; Tracy, Russell P; Willer, Cristen J

    2014-02-06

    Elevated low-density lipoprotein cholesterol (LDL-C) is a treatable, heritable risk factor for cardiovascular disease. Genome-wide association studies (GWASs) have identified 157 variants associated with lipid levels but are not well suited to assess the impact of rare and low-frequency variants. To determine whether rare or low-frequency coding variants are associated with LDL-C, we exome sequenced 2,005 individuals, including 554 individuals selected for extreme LDL-C (>98(th) or <2(nd) percentile). Follow-up analyses included sequencing of 1,302 additional individuals and genotype-based analysis of 52,221 individuals. We observed significant evidence of association between LDL-C and the burden of rare or low-frequency variants in PNPLA5, encoding a phospholipase-domain-containing protein, and both known and previously unidentified variants in PCSK9, LDLR and APOB, three known lipid-related genes. The effect sizes for the burden of rare variants for each associated gene were substantially higher than those observed for individual SNPs identified from GWASs. We replicated the PNPLA5 signal in an independent large-scale sequencing study of 2,084 individuals. In conclusion, this large whole-exome-sequencing study for LDL-C identified a gene not known to be implicated in LDL-C and provides unique insight into the design and analysis of similar experiments. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  5. Hydrogen scavengers

    DOEpatents

    Carroll, David W.; Salazar, Kenneth V.; Trkula, Mitchell; Sandoval, Cynthia W.

    2002-01-01

    There has been invented a codeposition process for fabricating hydrogen scavengers. First, a .pi.-bonded allylic organometallic complex is prepared by reacting an allylic transition metal halide with an organic ligand complexed with an alkali metal; and then, in a second step, a vapor of the .pi.-bonded allylic organometallic complex is combined with the vapor of an acetylenic compound, irradiated with UV light, and codeposited on a substrate.

  6. The role of apoptosis in LDL transport through cultured endothelial cell monolayers.

    PubMed

    Cancel, Limary M; Tarbell, John M

    2010-02-01

    We have previously shown that leaky junctions associated with dying or dividing cells are the dominant pathway for low density lipoprotein (LDL) transport under convective conditions, accounting for more than 90% of the transport [Cancel LM, Fitting A, Tarbell JM. In vitro study of LDL transport under pressurized (convective) conditions. Am J Physiol Heart Circ Physiol 2007;293:H126-32]. To explore the role of apoptosis in the leaky junction pathway, TNFalpha and cycloheximide (TNFalpha/CHX) were used to induce an elevated rate of apoptosis in cultured bovine aortic endothelial cell (BAEC) monolayers and the convective fluxes of LDL and water were measured. Treatment with TNFalpha/CHX induced a 18.3-fold increase in apoptosis and a 4.4-fold increase in LDL permeability. Increases in apoptosis and permeability were attenuated by treatment with the caspase inhibitor Z-VAD-FMK. Water flux increased by 2.7-fold after treatment with TNFalpha/CHX, and this increase was not attenuated by treatment with Z-VAD-FMK. Immunostaining of the tight junction protein ZO-1 showed that TNFalpha/CHX treatment disrupts the tight junction in addition to inducing apoptosis. This disruption is present even when Z-VAD-FMK is used to inhibit apoptosis, and likely accounts for the increase in water flux. We found a strong correlation between the rate of apoptosis and the permeability of BAEC monolayers to LDL. These results demonstrate the potential of manipulating endothelial monolayer permeability by altering the rate of apoptosis pharmacollogicaly. This has implications for the treatment of atherosclerosis. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  7. Low-calorie cranberry juice supplementation reduces plasma oxidized LDL and cell adhesion molecule concentrations in men.

    PubMed

    Ruel, Guillaume; Pomerleau, Sonia; Couture, Patrick; Lemieux, Simone; Lamarche, Benoît; Couillard, Charles

    2008-02-01

    Elevated circulating concentrations of oxidized LDL (OxLDL) and cell adhesion molecules are considered to be relevant markers of oxidative stress and endothelial activation which are implicated in the development of CVD. On the other hand, it has been suggested that dietary flavonoid consumption may be cardioprotective through possible favourable impacts on LDL particle oxidation and endothelial activation. The present study was undertaken to determine the effect of the daily consumption of low-calorie cranberry juice cocktail on plasma OxLDL, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-selectin concentrations in men. Thirty men (mean age 51 (sd 10) years) were recruited and asked to consume increasing daily doses of cranberry juice cocktail (125, 250 and 500 ml/d) over three successive periods of 4 weeks. Plasma OxLDL and adhesion molecule concentrations were measured by ELISA before and after each phase. We noted a significant decrease in plasma OxLDL concentrations following the intervention (P < 0.0001). We also found that plasma ICAM-1 (P < 0.0001) and VCAM-1 (P < 0.05) concentrations decreased significantly during the course of the study. In summary, the present results show that daily cranberry juice cocktail consumption is associated with decreases in plasma OxLDL, ICAM-1 and VCAM-1 concentrations in men.

  8. Scavenger removal: Bird and bat carcass persistence in a tropical wind farm

    NASA Astrophysics Data System (ADS)

    Villegas-Patraca, Rafael; Macías-Sánchez, Samuel; MacGregor-Fors, Ian; Muñoz-Robles, Carlos

    2012-08-01

    Energy produced by wind farms has diverse positive environmental effects, but can also be related to negative impacts, including wildlife mortality through collisions with wind turbines. Bird and bat mortality caused by collisions with wind turbines can be estimated indirectly by counting carcasses within wind farms. However, carcass removal by scavengers often biases such measurements. In this study, we identified the main scavengers removing bird and bat carcasses in a tropical wind farm. A known fate analysis was done to assess the effect of carcass type (i.e., small bird, large bird, bat), vegetation type (i.e., secondary vegetation, croplands) and season (dry and rainy seasons of 2009) on carcass persistence rates. We identified three main scavenger groups, with mammals being the most abundant group. Our results show high rates of carcass removal relative to previous studies, especially for bats; there were fewer remaining carcasses after 20 days in our tropical site than in non-tropical environments reported elsewhere. We found a higher carcass persistence rate during the rainy season than in the dry season, possibly due to a greater abundance of food resources for scavenger organisms in the rainy season. Although we found some evidence for higher persistence rates for large bird carcasses than for small bird and bat carcasses during the rainy season, overall carcass type was not a strong predictor of persistence rates. Similarly, we did not find a strong effect of vegetation type on carcass persistence rates. Results suggest that in order to estimate accurate bird and bat mortality in tropical wind farm areas, seasonality should be incorporated to correction factors of carcass removal rates.

  9. GLUCOCORTICOID RECEPTOR REGULATION IN THE RAT EMBRYO: A POTENTIAL SITE FOR DEVELOPMENTAL TOXICITY?

    EPA Science Inventory

    Glucocorticoid receptor regulation in the rat embryo: a potential site for developmental toxicity?

    Ghosh B, Wood CR, Held GA, Abbott BD, Lau C.

    National Research Council, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.

  10. Dietary fish oil stimulates hepatic low density lipoprotein transport in the rat.

    PubMed Central

    Ventura, M A; Woollett, L A; Spady, D K

    1989-01-01

    These studies were undertaken to examine the effect of fish oil, safflower oil, and hydrogenated coconut oil on the major processes that determine the concentration of low density lipoprotein (LDL) in plasma, i.e., the rate of LDL production and the rates of receptor-dependent and receptor-independent LDL uptake in the various organs of the body. When fed at the 20% level, fish oil reduced plasma LDL-cholesterol levels by 38% primarily by increasing LDL receptor activity in the liver. Dietary safflower oil also increased hepatic LDL receptor activity; however, since the rate of LDL production also increased, plasma LDL-cholesterol levels remained essentially unchanged. Hydrogenated coconut oil had no effect on LDL receptor activity but increased the rate of LDL-cholesterol production causing plasma LDL-cholesterol levels to increase 46%. Dietary fish oil had no effect on the receptor-dependent transport of asialofetuin by the liver, suggesting that the effect of fish oil on hepatic LDL receptor activity was specific and not due to a generalized alteration in the physical properties of hepatic membranes. Finally, dietary fish oil increased hepatic cholesteryl ester levels and suppressed hepatic cholesterol synthesis rates, suggesting that the up-regulation of hepatic LDL receptor activity in these animals was not simply a response to diminished cholesterol availability in the liver. PMID:2760200

  11. Spatial complexity of carcass location influences vertebrate scavenger efficiency and species composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Joshua B.; Laatsch, Lauren J.; Beasley, James C.

    Scavenging plays an important role in shaping communities through inter- and intra-specific interactions. Although vertebrate scavenger efficiency and species composition is likely influenced by the spatial complexity of environments, heterogeneity in carrion distribution has largely been disregarded in scavenging studies. We tested this hypothesis by experimentally placing juvenile bird carcasses on the ground and in nests in trees to simulate scenarios of nestling bird carrion availability. We used cameras to record scavengers removing carcasses and elapsed time to removal. Carrion placed on the ground was scavenged by a greater diversity of vertebrates and at > 2 times the rate ofmore » arboreal carcasses, suggesting arboreal carrion may represent an important resource to invertebrate scavengers, particularly in landscapes with efficient vertebrate scavenging communities. Nonetheless, six vertebrate species scavenged arboreal carcasses. Rat snakes (Elaphe obsolete), which exclusively scavenged from trees, and turkey vultures (Cathartes aura) were the primary scavengers of arboreal carrion, suggesting such resources are potentially an important pathway of nutrient acquisition for some volant and scansorial vertebrates. Our results highlight the intricacy of carrion-derived food web linkages, and how consideration of spatial complexity in carcass distribution (i.e., arboreal) may reveal important pathways of nutrient acquisition by invertebrate and vertebrate scavenging guilds.« less

  12. Spatial complexity of carcass location influences vertebrate scavenger efficiency and species composition.

    PubMed

    Smith, Joshua B; Laatsch, Lauren J; Beasley, James C

    2017-08-31

    Scavenging plays an important role in shaping communities through inter- and intra-specific interactions. Although vertebrate scavenger efficiency and species composition is likely influenced by the spatial complexity of environments, heterogeneity in carrion distribution has largely been disregarded in scavenging studies. We tested this hypothesis by experimentally placing juvenile bird carcasses on the ground and in nests in trees to simulate scenarios of nestling bird carrion availability. We used cameras to record scavengers removing carcasses and elapsed time to removal. Carrion placed on the ground was scavenged by a greater diversity of vertebrates and at > 2 times the rate of arboreal carcasses, suggesting arboreal carrion may represent an important resource to invertebrate scavengers, particularly in landscapes with efficient vertebrate scavenging communities. Nonetheless, six vertebrate species scavenged arboreal carcasses. Rat snakes (Elaphe obsolete), which exclusively scavenged from trees, and turkey vultures (Cathartes aura) were the primary scavengers of arboreal carrion, suggesting such resources are potentially an important pathway of nutrient acquisition for some volant and scansorial vertebrates. Our results highlight the intricacy of carrion-derived food web linkages, and how consideration of spatial complexity in carcass distribution (i.e., arboreal) may reveal important pathways of nutrient acquisition by invertebrate and vertebrate scavenging guilds.

  13. Spatial complexity of carcass location influences vertebrate scavenger efficiency and species composition

    DOE PAGES

    Smith, Joshua B.; Laatsch, Lauren J.; Beasley, James C.

    2017-08-31

    Scavenging plays an important role in shaping communities through inter- and intra-specific interactions. Although vertebrate scavenger efficiency and species composition is likely influenced by the spatial complexity of environments, heterogeneity in carrion distribution has largely been disregarded in scavenging studies. We tested this hypothesis by experimentally placing juvenile bird carcasses on the ground and in nests in trees to simulate scenarios of nestling bird carrion availability. We used cameras to record scavengers removing carcasses and elapsed time to removal. Carrion placed on the ground was scavenged by a greater diversity of vertebrates and at > 2 times the rate ofmore » arboreal carcasses, suggesting arboreal carrion may represent an important resource to invertebrate scavengers, particularly in landscapes with efficient vertebrate scavenging communities. Nonetheless, six vertebrate species scavenged arboreal carcasses. Rat snakes (Elaphe obsolete), which exclusively scavenged from trees, and turkey vultures (Cathartes aura) were the primary scavengers of arboreal carrion, suggesting such resources are potentially an important pathway of nutrient acquisition for some volant and scansorial vertebrates. Our results highlight the intricacy of carrion-derived food web linkages, and how consideration of spatial complexity in carcass distribution (i.e., arboreal) may reveal important pathways of nutrient acquisition by invertebrate and vertebrate scavenging guilds.« less

  14. Update on melatonin receptors: IUPHAR Review 20.

    PubMed

    Jockers, Ralf; Delagrange, Philippe; Dubocovich, Margarita L; Markus, Regina P; Renault, Nicolas; Tosini, Gianluca; Cecon, Erika; Zlotos, Darius P

    2016-09-01

    Melatonin receptors are seven transmembrane-spanning proteins belonging to the GPCR superfamily. In mammals, two melatonin receptor subtypes exist - MT1 and MT2 - encoded by the MTNR1A and MTNR1B genes respectively. The current review provides an update on melatonin receptors by the corresponding subcommittee of the International Union of Basic and Clinical Pharmacology. We will highlight recent developments of melatonin receptor ligands, including radioligands, and give an update on the latest phenotyping results of melatonin receptor knockout mice. The current status and perspectives of the structure of melatonin receptor will be summarized. The physiological importance of melatonin receptor dimers and biologically important and type 2 diabetes-associated genetic variants of melatonin receptors will be discussed. The role of melatonin receptors in physiology and disease will be further exemplified by their functions in the immune system and the CNS. Finally, antioxidant and free radical scavenger properties of melatonin and its relation to melatonin receptors will be critically addressed. © 2016 The British Pharmacological Society.

  15. Scavenger receptor class A type I/II determines matrix metalloproteinase-mediated cartilage destruction and chondrocyte death in antigen-induced arthritis.

    PubMed

    van Lent, P L E M; Hofkens, W; Blom, A B; Grevers, L; Sloetjes, A; Takahashi, N; van Tits, L J; Vogl, T; Roth, J; de Winther, M P; van den Berg, W B

    2009-10-01

    Scavenger receptor class A type I (SR-AI) and SR-AII are expressed by macrophages in particular and bind and internalize a broad range of molecules (including endotoxins, apoptotic bodies, and oxidized low-density lipoprotein). This study was undertaken to investigate the role of SR-AI/II in mediating severe cartilage destruction in antigen-induced arthritis (AIA). AIA was induced in the knee joints of SR-AI/II(-/-) mice and wild-type (WT) controls. Joint inflammation and cartilage destruction (chondrocyte death) were measured by examining the histology of total knee joints. Matrix metalloproteinase (MMP)-mediated neoepitopes were measured by immunolocalization using anti-VDIPEN antibodies and chondrocyte activation with anti-S100A8 antibodies. Messenger RNA (mRNA) levels were determined in inflamed synovium using microarray analysis and quantitative reverse transcriptase-polymerase chain reaction. In synovial washouts, cytokines (interleukin-1beta [IL-1beta], IL-10, and tumor necrosis factor alpha) and S100A8/S100A9 were measured using Luminex and enzyme-linked immunosorbent assay. Levels of SR-AI/II mRNA were strongly elevated in inflamed synovium in AIA. On days 2, 8, and 14 after AIA induction, joint inflammation (exudates/infiltrate) was similar between the 2 groups. In WT mice, severe cartilage destruction was found in multiple cartilage surfaces of the inflamed knee joint on day 14 after AIA induction. MMP-mediated matrix destruction ranged between 40% and 60%, and chondrocyte death was prominent in 40-75% of the cartilage surfaces. In striking contrast, in SR-AI/II(-/-) mice, despite comparable joint inflammation, pronounced cartilage destruction was almost completely absent. Levels of IL-1beta and S100A8/S100A9 were significantly lower on days 7 and 14 after AIA induction, but levels of mRNA for various MMPs (MMP-2, MMP-3, MMP-9, and MMP-13) were comparable. Our findings indicate that SR-AI and SR-AII are crucial receptors involved in mediating severe

  16. A novel LDL-mimic nanocarrier for the targeted delivery of curcumin into the brain to treat Alzheimer's disease.

    PubMed

    Meng, Fanfei; Asghar, Sajid; Gao, Shiya; Su, Zhigui; Song, Jue; Huo, Meirong; Meng, Weidong; Ping, Qineng; Xiao, Yanyu

    2015-10-01

    In this study, a novel low density lipoprotein (LDL)-mimic nanostructured lipid carrier (NLC) modified with lactoferrin (Lf) and loaded with curcumin (Cur) was designed for brain-targeted delivery, and its effect on controlling the progression of Alzheimer's disease (AD) in rats was evaluated. NLC with the composition resembling the lipid portion of LDL was prepared by using solvent evaporation method. Lf was adsorbed onto the surface of NLC via electrostatic interaction to yield Lf modified-NLC (Lf-mNLC) as the LDL-mimic nanocarrier. In order to make sure more Lf was adsorbed on the surface of NLC, negatively charged carboxylated polyethylene glycol (100) monostearate (S100-COOH) was synthesized and anchored into NLC. Different levels of S100-COOH (0-0.02 mmol) and Lf modified NLC (0.5-2.5 mg/mL of Lf solution) were prepared and characterized. The uptake and potential cytotoxicities of different preparations were investigated in the brain capillary endothelial cells (BCECs). An AD model of rats was employed to evaluate the therapeutic effects of Lf-mNLC. The results indicate that Lf-mNLC with a high level of Lf showed the maximum uptake in BCECs (1.39 folds greater than NLC) as cellular uptake of Lf-mNLC by BCECs was found to be mediated by the Lf receptor. FRET studies showed Cur still wrapped inside NLC after uptake by BCECs, demonstrating stability of the carrier as it moved across the BBB. Ex vivo imaging studies exposed Lf-mNLC could effectively permeate BBB and preferentially accumulate in the brain (2.78 times greater than NLC). Histopathological evaluation confirmed superior efficacy of Lf-mNLC in controlling the damage associated with AD. In conclusion, Lf-mNLC is a promising drug delivery system for targeting therapy of brain disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Rare earth element scavenging in seawater

    NASA Astrophysics Data System (ADS)

    Byrne, Robert H.; Kim, Ki-Hyun

    1990-10-01

    Examinations of rare earth element (REE) adsorption in seawater, using a variety of surface-types, indicated that, for most surfaces, light rare earth elements (LREEs) are preferentially adsorbed compared to the heavy rare earths (HREEs). Exceptions to this behavior were observed only for silica phases (glass surfaces, acid-cleaned diatomaceous earth, and synthetic SiO 2). The affinity of the rare earths for surfaces can be strongly affected by thin organic coatings. Glass surfaces which acquired an organic coating through immersion in Tampa Bay exhibited adsorptive behavior typical of organic-rich, rather than glass, surfaces. Models of rare earth distributions between seawater and carboxylate-rich surfaces indicate that scavenging processes which involve such surfaces should exhibit a strong dependence on pH and carbonate complexation. Scavenging models involving carboxylate surfaces produce relative REE abundance patterns in good general agreement with observed shale-normalized REE abundances in seawater. Scavenging by carboxylate-rich surfaces should produce HREE enrichments in seawater relative to the LREEs and may produce enrichments of lanthanum relative to its immediate trivalent neighbors. Due to the origin of distribution coefficients as a difference between REE solution complexation (which increases strongly with atomic number) and surface complexation (which apparently also increases with atomic number) the relative solution abundance patterns of the REEs produced by scavenging reactions can be quite complex.

  18. Antibodies against oxidized LDL and apolipoprotein E polymorphism in demented patients.

    PubMed

    Bednarska-Makaruk, Małgorzata; Rodo, Maria; Graban, Ałła; Lojkowska, Wanda; Bochyńska, Anna; Ryglewicz, Danuta; Wehr, Hanna

    2009-08-15

    In serum of 114 patients with dementia and of 102 controls the level of IG class immunoglobulins directed against oxidized LDL and lipids were determined. In isolated DNA apolipoprotein E gene (APOE) polymorphism was identified. In some individuals very high levels of the antibodies were observed. exceeding the 90 percentile in the investigated group. The prevalence of very high anti-ox LDL antibodies level was significantly more frequent in the carriers of epsilon2 allele and less frequent in the carriers of epsilon4 allele.

  19. Five of Five VHHs Neutralizing Poliovirus Bind the Receptor-Binding Site

    PubMed Central

    Strauss, Mike; Schotte, Lise; Thys, Bert; Filman, David J.

    2016-01-01

    ABSTRACT Nanobodies, or VHHs, that recognize poliovirus type 1 have previously been selected and characterized as candidates for antiviral agents or reagents for standardization of vaccine quality control. In this study, we present high-resolution cryo-electron microscopy reconstructions of poliovirus with five neutralizing VHHs. All VHHs bind the capsid in the canyon at sites that extensively overlap the poliovirus receptor-binding site. In contrast, the interaction involves a unique (and surprisingly extensive) surface for each of the five VHHs. Five regions of the capsid were found to participate in binding with all five VHHs. Four of these five regions are known to alter during the expansion of the capsid associated with viral entry. Interestingly, binding of one of the VHHs, PVSS21E, resulted in significant changes of the capsid structure and thus seems to trap the virus in an early stage of expansion. IMPORTANCE We describe the cryo-electron microscopy structures of complexes of five neutralizing VHHs with the Mahoney strain of type 1 poliovirus at resolutions ranging from 3.8 to 6.3Å. All five VHHs bind deep in the virus canyon at similar sites that overlap extensively with the binding site for the receptor (CD155). The binding surfaces on the VHHs are surprisingly extensive, but despite the use of similar binding surfaces on the virus, the binding surface on the VHHs is unique for each VHH. In four of the five complexes, the virus remains essentially unchanged, but for the fifth there are significant changes reminiscent of but smaller in magnitude than the changes associated with cell entry, suggesting that this VHH traps the virus in a previously undescribed early intermediate state. The neutralizing mechanisms of the VHHs and their potential use as quality control agents for the end game of poliovirus eradication are discussed. PMID:26764003

  20. Five of Five VHHs Neutralizing Poliovirus Bind the Receptor-Binding Site.

    PubMed

    Strauss, Mike; Schotte, Lise; Thys, Bert; Filman, David J; Hogle, James M

    2016-01-13

    Nanobodies, or VHHs, that recognize poliovirus type 1 have previously been selected and characterized as candidates for antiviral agents or reagents for standardization of vaccine quality control. In this study, we present high-resolution cryo-electron microscopy reconstructions of poliovirus with five neutralizing VHHs. All VHHs bind the capsid in the canyon at sites that extensively overlap the poliovirus receptor-binding site. In contrast, the interaction involves a unique (and surprisingly extensive) surface for each of the five VHHs. Five regions of the capsid were found to participate in binding with all five VHHs. Four of these five regions are known to alter during the expansion of the capsid associated with viral entry. Interestingly, binding of one of the VHHs, PVSS21E, resulted in significant changes of the capsid structure and thus seems to trap the virus in an early stage of expansion. We describe the cryo-electron microscopy structures of complexes of five neutralizing VHHs with the Mahoney strain of type 1 poliovirus at resolutions ranging from 3.8 to 6.3Å. All five VHHs bind deep in the virus canyon at similar sites that overlap extensively with the binding site for the receptor (CD155). The binding surfaces on the VHHs are surprisingly extensive, but despite the use of similar binding surfaces on the virus, the binding surface on the VHHs is unique for each VHH. In four of the five complexes, the virus remains essentially unchanged, but for the fifth there are significant changes reminiscent of but smaller in magnitude than the changes associated with cell entry, suggesting that this VHH traps the virus in a previously undescribed early intermediate state. The neutralizing mechanisms of the VHHs and their potential use as quality control agents for the end game of poliovirus eradication are discussed. Copyright © 2016, American Society for Microbiology. All Rights Reserved.