Science.gov

Sample records for le modele standard

  1. Minimal quiver standard model

    SciTech Connect

    Berenstein, David; Pinansky, Samuel

    2007-05-01

    This paper discusses the minimal quiver gauge theory embedding of the standard model that could arise from brane world type string theory constructions. It is based on the low energy effective field theory of D branes in the perturbative regime. The model differs from the standard model by the addition of one extra massive gauge boson, and contains only one additional parameter to the standard model: the mass of this new particle. The coupling of this new particle to the standard model is uniquely determined by input from the standard model and consistency conditions of perturbative string theory. We also study some aspects of the phenomenology of this model and bounds on its possible observation at the Large Hadron Collider.

  2. Standard model and beyond

    SciTech Connect

    Marciano, W.J.

    1985-01-01

    The ''standard'' SU(3)/sub C/ x SU(2)/sub L/ x U(1) model of strong and electroweak interactions elegantly incorporates all the proven symmetries and successes of the quark model, quantum electrodynamics, and the Four-Fermi theory. It correctly predicted weak neutral currents as well as the existence and properties of W/sup + -/, Z and gluons. ''Only'' the predicted Higgs scalar boson remains undiscovered. At this time there are no solid experimental results that cannot be accommodated by the standard model (at the 1 or 2 sigma level). Nevertheless, we do anticipate the emergence of new physics, beyond standard model expectations, which will hopefully provide guidance for theoretical advancement. Indeed, hints of some new phenomena may already be starting to appear in the CERN anti pp collider data. Details are discussed. 65 refs.

  3. The standard cosmological model

    NASA Astrophysics Data System (ADS)

    Scott, D.

    2006-06-01

    The Standard Model of Particle Physics (SMPP) is an enormously successful description of high-energy physics, driving ever more precise measurements to find "physics beyond the standard model", as well as providing motivation for developing more fundamental ideas that might explain the values of its parameters. Simultaneously, a description of the entire three-dimensional structure of the present-day Universe is being built up painstakingly. Most of the structure is stochastic in nature, being merely the result of the particular realization of the "initial conditions" within our observable Universe patch. However, governing this structure is the Standard Model of Cosmology (SMC), which appears to require only about a dozen parameters. Cosmologists are now determining the values of these quantities with increasing precision to search for "physics beyond the standard model", as well as trying to develop an understanding of the more fundamental ideas that might explain the values of its parameters. Although it is natural to see analogies between the two Standard Models, some intrinsic differences also exist, which are discussed here. Nevertheless, a truly fundamental theory will have to explain both the SMPP and SMC, and this must include an appreciation of which elements are deterministic and which are accidental. Considering different levels of stochasticity within cosmology may make it easier to accept that physical parameters in general might have a nondeterministic aspect.

  4. Beyond the Standard Model

    SciTech Connect

    Peskin, M.E.

    1997-05-01

    These lectures constitute a short course in ``Beyond the Standard Model`` for students of experimental particle physics. The author discusses the general ideas which guide the construction of models of physics beyond the Standard model. The central principle, the one which most directly motivates the search for new physics, is the search for the mechanism of the spontaneous symmetry breaking observed in the theory of weak interactions. To illustrate models of weak-interaction symmetry breaking, the author gives a detailed discussion of the idea of supersymmetry and that of new strong interactions at the TeV energy scale. He discusses experiments that will probe the details of these models at future pp and e{sup +}e{sup {minus}} colliders.

  5. Beyond the Standard Model

    SciTech Connect

    Lykken, Joseph D.; /Fermilab

    2010-05-01

    'BSM physics' is a phrase used in several ways. It can refer to physical phenomena established experimentally but not accommodated by the Standard Model, in particular dark matter and neutrino oscillations (technically also anything that has to do with gravity, since gravity is not part of the Standard Model). 'Beyond the Standard Model' can also refer to possible deeper explanations of phenomena that are accommodated by the Standard Model but only with ad hoc parameterizations, such as Yukawa couplings and the strong CP angle. More generally, BSM can be taken to refer to any possible extension of the Standard Model, whether or not the extension solves any particular set of puzzles left unresolved in the SM. In this general sense one sees reference to the BSM 'theory space' of all possible SM extensions, this being a parameter space of coupling constants for new interactions, new charges or other quantum numbers, and parameters describing possible new degrees of freedom or new symmetries. Despite decades of model-building it seems unlikely that we have mapped out most of, or even the most interesting parts of, this theory space. Indeed we do not even know what is the dimensionality of this parameter space, or what fraction of it is already ruled out by experiment. Since Nature is only implementing at most one point in this BSM theory space (at least in our neighborhood of space and time), it might seem an impossible task to map back from a finite number of experimental discoveries and measurements to a unique BSM explanation. Fortunately for theorists the inevitable limitations of experiments themselves, in terms of resolutions, rates, and energy scales, means that in practice there are only a finite number of BSM model 'equivalence classes' competing at any given time to explain any given set of results. BSM phenomenology is a two-way street: not only do experimental results test or constrain BSM models, they also suggest - to those who get close enough to listen

  6. Why the Standard Model

    NASA Astrophysics Data System (ADS)

    Chamseddine, Ali H.; Connes, Alain

    2008-01-01

    The Standard Model is based on the gauge invariance principle with gauge group U(1)×SU(2)×SU(3) and suitable representations for fermions and bosons, which are begging for a conceptual understanding. We propose a purely gravitational explanation: space-time has a fine structure given as a product of a four-dimensional continuum by a finite noncommutative geometry F. The raison d'être for F is to correct the K-theoretic dimension from four to ten (modulo eight). We classify the irreducible finite noncommutative geometries of K-theoretic dimension six and show that the dimension (per generation) is a square of an integer k. Under an additional hypothesis of quaternion linearity, the geometry which reproduces the Standard Model is singled out (and one gets k=4) with the correct quantum numbers for all fields. The spectral action applied to the product M×F delivers the full Standard Model, with neutrino mixing, coupled to gravity, and makes predictions (the number of generations is still an input).

  7. The standard model

    SciTech Connect

    Marciano, W.J.

    1994-03-01

    In these lectures, my aim is to provide a survey of the standard model with emphasis on its renormalizability and electroweak radiative corrections. Since this is a school, I will try to be somewhat pedagogical by providing examples of loop calculations. In that way, I hope to illustrate some of the commonly employed tools of particle physics. With those goals in mind, I have organized my presentations as follows: In Section 2, renormalization is discussed from an applied perspective. The technique of dimensional regularization is described and used to define running couplings and masses. The utility of the renormalization group for computing leading logs is illustrated for the muon anomalous magnetic moment. In Section 3 electroweak radiative corrections are discussed. Standard model predictions are surveyed and used to constrain the top quark mass. The S, T, and U parameters are introduced and employed to probe for ``new physics``. The effect of Z{prime} bosons on low energy phenomenology is described. In Section 4, a detailed illustration of electroweak radiative corrections is given for atomic parity violation. Finally, in Section 5, I conclude with an outlook for the future.

  8. Second order Standard Model

    NASA Astrophysics Data System (ADS)

    Espin, Johnny; Krasnov, Kirill

    2015-06-01

    It is known, though not commonly, that one can describe fermions using a second order in derivatives Lagrangian instead of the first order Dirac one. In this description the propagator is scalar, and the complexity is shifted to the vertex, which contains a derivative operator. In this paper we rewrite the Lagrangian of the fermionic sector of the Standard Model in such second order form. The new Lagrangian is extremely compact, and is obtained from the usual first order Lagrangian by integrating out all primed (or dotted) 2-component spinors. It thus contains just half of the 2-component spinors that appear in the usual Lagrangian, which suggests a new perspective on unification. We sketch a natural in this framework SU (2) × SU (4) ⊂ SO (9) unified theory.

  9. Phenomenology beyond the standard model

    SciTech Connect

    Lykken, Joseph D.; /Fermilab

    2005-03-01

    An elementary review of models and phenomenology for physics beyond the Standard Model (excluding supersymmetry). The emphasis is on LHC physics. Based upon a talk given at the ''Physics at LHC'' conference, Vienna, 13-17 July 2004.

  10. Beyond Standard Model Physics

    SciTech Connect

    Bellantoni, L.

    2009-11-01

    There are many recent results from searches for fundamental new physics using the TeVatron, the SLAC b-factory and HERA. This talk quickly reviewed searches for pair-produced stop, for gauge-mediated SUSY breaking, for Higgs bosons in the MSSM and NMSSM models, for leptoquarks, and v-hadrons. There is a SUSY model which accommodates the recent astrophysical experimental results that suggest that dark matter annihilation is occurring in the center of our galaxy, and a relevant experimental result. Finally, model-independent searches at D0, CDF, and H1 are discussed.

  11. Reference and Standard Atmosphere Models

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Roberts, Barry C.; Vaughan, William W.; Parker, Nelson C. (Technical Monitor)

    2002-01-01

    This paper describes the development of standard and reference atmosphere models along with the history of their origin and use since the mid 19th century. The first "Standard Atmospheres" were established by international agreement in the 1920's. Later some countries, notably the United States, also developed and published "Standard Atmospheres". The term "Reference Atmospheres" is used to identify atmosphere models for specific geographical locations. Range Reference Atmosphere Models developed first during the 1960's are examples of these descriptions of the atmosphere. This paper discusses the various models, scopes, applications and limitations relative to use in aerospace industry activities.

  12. Dynamics of the Standard Model

    NASA Astrophysics Data System (ADS)

    Donoghue, John F.; Golowich, Eugene; Holstein, Barry R.

    2014-04-01

    Preface; 1. Inputs to the Standard Model; 2. Interactions of the Standard Model; 3. Symmetries and anomalies; 4. Introduction to effective field theory; 5. Charged leptons; 6. Neutrinos; 7. Effective field theory for low energy QCD; 8. Weak interactions of Kaons; 9. Mass mixing and CP violation; 10. The Nc-1 expansion; 11. Phenomenological models; 12. Baryon properties; 13. Hadron spectroscopy; 14. Weak interactions of heavy quarks; 15. The Higgs boson; 16. The electroweak sector; Appendixes; References; Index.

  13. MODeLeR: A Virtual Constructivist Learning Environment and Methodology for Object-Oriented Design

    ERIC Educational Resources Information Center

    Coffey, John W.; Koonce, Robert

    2008-01-01

    This article contains a description of the organization and method of use of an active learning environment named MODeLeR, (Multimedia Object Design Learning Resource), a tool designed to facilitate the learning of concepts pertaining to object modeling with the Unified Modeling Language (UML). MODeLeR was created to provide an authentic,…

  14. Colorado Model Content Standards: Science

    ERIC Educational Resources Information Center

    Colorado Department of Education, 2007

    2007-01-01

    The Colorado Model Content Standards for Science specify what all students should know and be able to do in science as a result of their school studies. Specific expectations are given for students completing grades K-2, 3-5, 6-8, and 9-12. Five standards outline the essential level of science knowledge and skills needed by Colorado citizens to…

  15. UPWT check standard model test

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Installation of the check standard model in test section 2 of the Unitary Plan Wind Tunnel (UPWT). Testing was conducted as part of a Data Quality Control assessment in the Research Facilities Branch/Aerodynamics Aerothermodynamics Acoustics Competency.

  16. Dynamics of the standard model

    SciTech Connect

    Donoghue, J.F.; Golowich, E.; Holstein, B.R.

    1992-01-01

    Given the remarkable successes of the standard model, it is appropriate that books in the field no longer dwell on the development of our current understanding of high-energy physics but rather present the world as we now know it. Dynamics of the Standard Model by Donoghue, Golowich, and Holstein takes just this approach. Instead of showing the confusion of the 60s and 70s, the authors present the enlightenment of the 80s. They start by describing the basic features and structure of the standard model and then concentrate on the techniques whereby the model can be applied to the physical world, connecting the theory to the experimental results that are the source of its success. Because they do not dwell on ancient (pre-1980) history, the authors of this book are able to go into much more depth in describing how the model can be tied to experiment, and much of the information presented has been accessible previously only in journal articles in a highly technical form. Though all of the authors are card-carrying theorists they go out of their way to stress applications and phenomenology and to show the reader how real-life calculations of use to experimentalists are done and can be applied to physical situations: what assumptions are made in doing them and how well they work. This is of great value both to the experimentalist seeking a deeper understanding of how the standard model can be connected to data and to the theorist wanting to see how detailed the phenomenological predictions of the standard model are and how well the model works. Furthermore, the authors constantly go beyond the lowest-order predictions of the standard model to discuss the corrections to it, as well as higher-order processes, some of which are now experimentally accessible and others of which will take well into the decade to uncover.

  17. The standard model and colliders

    SciTech Connect

    Hinchliffe, I.

    1987-03-01

    Some topics in the standard model of strong and electroweak interactions are discussed, as well as how these topics are relevant for the high energy colliders which will become operational in the next few years. The radiative corrections in the Glashow-Weinberg-Salam model are discussed, stressing how these corrections may be measured at LEP and the SLC. CP violation is discussed briefly, followed by a discussion of the Higgs boson and the searches which are relevant to hadron colliders are then discussed. Some of the problems which the standard model does not solve are discussed, and the energy ranges accessible to the new colliders are indicated. (LEW)

  18. CoLeMo: A Collaborative Learning Environment for UML Modelling

    ERIC Educational Resources Information Center

    Chen, Weiqin; Pedersen, Roger Heggernes; Pettersen, Oystein

    2006-01-01

    This paper presents the design, implementation, and evaluation of a distributed collaborative UML modelling environment, CoLeMo. CoLeMo is designed for students studying UML modelling. It can also be used as a platform for collaborative design of software. We conducted formative evaluations and a summative evaluation to improve the environment and…

  19. Standard model of knowledge representation

    NASA Astrophysics Data System (ADS)

    Yin, Wensheng

    2016-03-01

    Knowledge representation is the core of artificial intelligence research. Knowledge representation methods include predicate logic, semantic network, computer programming language, database, mathematical model, graphics language, natural language, etc. To establish the intrinsic link between various knowledge representation methods, a unified knowledge representation model is necessary. According to ontology, system theory, and control theory, a standard model of knowledge representation that reflects the change of the objective world is proposed. The model is composed of input, processing, and output. This knowledge representation method is not a contradiction to the traditional knowledge representation method. It can express knowledge in terms of multivariate and multidimensional. It can also express process knowledge, and at the same time, it has a strong ability to solve problems. In addition, the standard model of knowledge representation provides a way to solve problems of non-precision and inconsistent knowledge.

  20. The New Minimal Standard Model

    SciTech Connect

    Davoudiasl, Hooman; Kitano, Ryuichiro; Li, Tianjun; Murayama, Hitoshi

    2005-01-13

    We construct the New Minimal Standard Model that incorporates the new discoveries of physics beyond the Minimal Standard Model (MSM): Dark Energy, non-baryonic Dark Matter, neutrino masses, as well as baryon asymmetry and cosmic inflation, adopting the principle of minimal particle content and the most general renormalizable Lagrangian. We base the model purely on empirical facts rather than aesthetics. We need only six new degrees of freedom beyond the MSM. It is free from excessive flavor-changing effects, CP violation, too-rapid proton decay, problems with electroweak precision data, and unwanted cosmological relics. Any model of physics beyond the MSM should be measured against the phenomenological success of this model.

  1. The standard model and beyond

    SciTech Connect

    Marciano, W.J.

    1989-05-01

    In these lectures, my aim is to present a status report on the standard model and some key tests of electroweak unification. Within that context, I also discuss how and where hints of new physics may emerge. To accomplish those goals, I have organized my presentation as follows. I survey the standard model parameters with particular emphasis on the gauge coupling constants and vector boson masses. Examples of new physics appendages are also commented on. In addition, I have included an appendix on dimensional regularization and a simple example which employs that technique. I focus on weak charged current phenomenology. Precision tests of the standard model are described and up-to-date values for the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix parameters are presented. Constraints implied by those tests for a 4th generation, extra Z' bosons, and compositeness are discussed. An overview of the physics of tau decays is also included. I discuss weak neutral current phenomenology and the extraction of sin/sup 2//theta/W from experiment. The results presented there are based on a global analysis of all existing data. I have chosen to concentrate that discussion on radiative corrections, the effect of a heavy top quark mass, implications for grand unified theories (GUTS), extra Z' gauge bosons, and atomic parity violation. The potential for further experimental progress is also commented on. Finally, I depart from the narrowest version of the standard model and discuss effects of neutrino masses, mixings, and electromagnetic moments. 32 refs., 3 figs., 5 tabs

  2. Model Standards Advance the Profession

    ERIC Educational Resources Information Center

    Journal of Staff Development, 2011

    2011-01-01

    Leadership by teachers is essential to serving the needs of students, schools, and the teaching profession. To that end, the Teacher Leadership Exploratory Consortium has developed Teacher Leader Model Standards to codify, promote, and support teacher leadership as a vehicle to transform schools for the needs of the 21st century. The Teacher…

  3. Consistency Across Standards or Standards in a New Business Model

    NASA Technical Reports Server (NTRS)

    Russo, Dane M.

    2010-01-01

    Presentation topics include: standards in a changing business model, the new National Space Policy is driving change, a new paradigm for human spaceflight, consistency across standards, the purpose of standards, danger of over-prescriptive standards, a balance is needed (between prescriptive and general standards), enabling versus inhibiting, characteristics of success-oriented standards, characteristics of success-oriented standards, and conclusions. Additional slides include NASA Procedural Requirements 8705.2B identifies human rating standards and requirements, draft health and medical standards for human rating, what's been done, government oversight models, examples of consistency from anthropometry, examples of inconsistency from air quality and appendices of government and non-governmental human factors standards.

  4. Beyond the Standard Model II

    NASA Astrophysics Data System (ADS)

    Milton, Kimball A.; Kantowski, Ronald; Samuel, Mark A.

    1991-07-01

    The Table of Contents for the full book PDF is as follows: * Preface * Electroweak Symmetry-Breaking Effects at Colliders * Precision Tests of the Electroweak Theory * Hadron Colliders: B Factories for Now and the Future * The MSW Effect as the Solution to the Solar Neutrino Problem * New Physics Effects from String Models * Strings and Large N QCD * Searching for Millicharged Particles * Recent Results from CLEO * Standard Model Investigations at ALEPH * Z0 Couplings to Hadrons and Charged Leptons * Is Chiral Symmetry Restored at High Temperatures? * Fermion Masses out of Radiative Corrections * Extra Z and Atomic Parity Violation * Lepton Number and Supersymmetry * The Mass Generation in the Standard Electroweak Theory * GRANDE: A Neutrino Telescope for Arkansas * Neutrino and Gravitational Radiation Observations from Supernovae * Supersymmetric Contributions to the Neutrino Magnetic Moment * Observables from p overline {p} rightarrow {W^+X} rightarrow {e^+vX} Beyond Leading Order * Random Walks on p-adic Numbers * Solar Neutrino Puzzle and Physics Beyond the Standard Model * The SFT: A Super Fixed Target Beauty Facility at the SSC * Non-Standard Stellar Evolution * Analogous Behavior in the Quantum Hall Effect, Anyon Superconductivity, and the Standard Model * Gauge Boson Dynamics * Rare Decays and CP Asymmetries in Charged B Decays * Total Hadronic Cross-section in e+e- Annihilation at the Four-loop Level of Perturbative QCD * Neutrino Oscillations and Solar Neutrinos * Canonical Quantization of Axial Gauges: Perturbative and Non-perturbative Implications * Large Technicolor Effect at Z0 * Finite Size Scaling for Heavy Mesons in the Continuum * Are There Electroweak Skyrmions? * Testing the Flipped String * Virasoro Constructions from Twisted Kac-Moody Algebras * Electroweak Symmetry Breaking by Fourth Generation Quark and Lepton Condensates * Novel Extension of the Standard Model * O * Interpreting Precision Measurements * Rare K Decays: Present Status and

  5. The standard model and beyond

    SciTech Connect

    Gaillard, M.K.

    1989-05-01

    The field of elementary particle, or high energy, physics seeks to identify the most elementary constituents of nature and to study the forces that govern their interactions. Increasing the energy of a probe in a laboratory experiment increases its power as an effective microscope for discerning increasingly smaller structures of matter. Thus we have learned that matter is composed of molecules that are in turn composed of atoms, that the atom consists of a nucleus surrounded by a cloud of electrons, and that the atomic nucleus is a collection of protons and neutrons. The more powerful probes provided by high energy particle accelerators have taught us that a nucleon is itself made of objects called quarks. The forces among quarks and electrons are understood within a general theoretical framework called the ''standard model,'' that accounts for all interactions observed in high energy laboratory experiments to date. These are commonly categorized as the ''strong,'' ''weak'' and ''electromagnetic'' interactions. In this lecture I will describe the standard model, and point out some of its limitations. Probing for deeper structures in quarks and electrons defines the present frontier of particle physics. I will discuss some speculative ideas about extensions of the standard model and/or yet more fundamental forces that may underlie our present picture. 11 figs., 1 tab.

  6. Beyond the Standard Model IV

    NASA Astrophysics Data System (ADS)

    Gunion, John F.; Han, Tao; Ohnemus, James

    1995-08-01

    The Table of Contents for the book is as follows: * Preface * Organizing and Advisory Committees * PLENARY SESSIONS * Looking Beyond the Standard Model from LEP1 and LEP2 * Virtual Effects of Physics Beyond the Standard Model * Extended Gauge Sectors * CLEO's Views Beyond the Standard Model * On Estimating Perturbative Coefficients in Quantum Field Theory and Statistical Physics * Perturbative Corrections to Inclusive Heavy Hadron Decay * Some Recent Developments in Sphalerons * Searching for New Matter Particles at Future Colliders * Issues in Dynamical Supersymmetry Breaking * Present Status of Fermilab Collider Accelerator Upgrades * The Extraordinary Scientific Opportunities from Upgrading Fermilab's Luminosity ≥ 1033 cm-2 sec-1 * Applications of Effective Lagrangians * Collider Phenomenology for Strongly Interacting Electroweak Sector * Physics of Self-Interacting Electroweak Bosons * Particle Physics at a TeV-Scale e+e- Linear Collider * Physics at γγ and eγ Colliders * Challenges for Non-Minimal Higgs Searchers at Future Colliders * Physics Potential and Development of μ+μ- Colliders * Beyond Standard Quantum Chromodynamics * Extracting Predictions from Supergravity/Superstrings for the Effective Theory Below the Planck Scale * Non-Universal SUSY Breaking, Hierarchy and Squark Degeneracy * Supersymmetric Phenomenology in the Light of Grand Unification * A Survey of Phenomenological Constraints on Supergravity Models * Precision Tests of the MSSM * The Search for Supersymmetry * Neutrino Physics * Neutrino Mass: Oscillations and Hot Dark Matter * Dark Matter and Large-Scale Structure * Electroweak Baryogenesis * Progress in Searches for Non-Baryonic Dark Matter * Big Bang Nucleosynthesis * Flavor Tests of Quark-Lepton * Where are We Coming from? What are We? Where are We Going? * Summary, Perspectives * PARALLEL SESSIONS * SUSY Phenomenology I * Is Rb Telling us that Superpartners will soon be Discovered? * Dark Matter in Constrained Minimal

  7. Issues in the standard model

    SciTech Connect

    Gaillard, M.K.

    1983-04-01

    Focussing on the standard electroweak model, we examine physics issues which may be addressed with the help of intense beams of strange particles. I have collected miscellany of issues, starting with some philosophical remarks on how things stand and where we should go from here. I will then focus on a case study: the decay K/sup +/ ..-->.. ..pi../sup +/ + nothing observable, which provides a nice illustration of the type of physics that can be probed through rare decays. Other topics I will mention are CP violation in K-decays, hyperon and anti-hyperon physics, and a few random comments on other relevant phenomena.

  8. Standard for Models and Simulations

    NASA Technical Reports Server (NTRS)

    Steele, Martin J.

    2016-01-01

    This NASA Technical Standard establishes uniform practices in modeling and simulation to ensure essential requirements are applied to the design, development, and use of models and simulations (MS), while ensuring acceptance criteria are defined by the program project and approved by the responsible Technical Authority. It also provides an approved set of requirements, recommendations, and criteria with which MS may be developed, accepted, and used in support of NASA activities. As the MS disciplines employed and application areas involved are broad, the common aspects of MS across all NASA activities are addressed. The discipline-specific details of a given MS should be obtained from relevant recommended practices. The primary purpose is to reduce the risks associated with MS-influenced decisions by ensuring the complete communication of the credibility of MS results.

  9. Approximation auto-coherente a deux particules, pseudogap et supraconductivite dans le modele de Hubbard attractif

    NASA Astrophysics Data System (ADS)

    Allen, Steve

    2000-10-01

    Dans cette these nous presentons une nouvelle methode non perturbative pour le calcul des proprietes d'un systeme de fermions. Notre methode generalise l'approximation auto-coherente a deux particules proposee par Vilk et Tremblay pour le modele de Hubbard repulsif. Notre methode peut s'appliquer a l'etude du comportement pre-critique lorsque la symetrie du parametre d'ordre est suffisamment elevee. Nous appliquons la methode au probleme du pseudogap dans le modele de Hubbard attractif. Nos resultats montrent un excellent accord avec les donnees Monte Carlo pour de petits systemes. Nous observons que le regime ou apparait le pseudogap dans le poids spectral a une particule est un regime classique renormalise caracterise par une frequence caracteristique des fluctuations supraconductrices inferieure a la temperature. Une autre caracteristique est la faible densite de superfluide de cette phase demontrant que nous ne sommes pas en presence de paires preformees. Les resultats obtenus semblent montrer que la haute symetrie du parametre d'ordre et la bidimensionalite du systeme etudie elargissent le domaine de temperature pour lequel le regime pseudogap est observe. Nous argumentons que ce resultat est transposable aux supraconducteurs a haute temperature critique ou le pseudogap apparait a des' temperatures beaucoup plus grandes que la temperature critique. La forte symetrie dans ces systemes pourraient etre reliee a la theorie SO(5) de Zhang. En annexe, nous demontrons un resultat tout recent qui permettrait d'assurer l'auto-coherence entre les proprietes a une et a deux particules par l'ajout d'une dynamique au vertex irreductible. Cet ajout laisse entrevoir la possibilite d'etendre la methode au cas d'une forte interaction.

  10. Beyond the cosmological standard model

    NASA Astrophysics Data System (ADS)

    Joyce, Austin; Jain, Bhuvnesh; Khoury, Justin; Trodden, Mark

    2015-03-01

    After a decade and a half of research motivated by the accelerating universe, theory and experiment have reached a certain level of maturity. The development of theoretical models beyond Λ or smooth dark energy, often called modified gravity, has led to broader insights into a path forward, and a host of observational and experimental tests have been developed. In this review we present the current state of the field and describe a framework for anticipating developments in the next decade. We identify the guiding principles for rigorous and consistent modifications of the standard model, and discuss the prospects for empirical tests. We begin by reviewing recent attempts to consistently modify Einstein gravity in the infrared, focusing on the notion that additional degrees of freedom introduced by the modification must "screen" themselves from local tests of gravity. We categorize screening mechanisms into three broad classes: mechanisms which become active in regions of high Newtonian potential, those in which first derivatives of the field become important, and those for which second derivatives of the field are important. Examples of the first class, such as f(R) gravity, employ the familiar chameleon or symmetron mechanisms, whereas examples of the last class are galileon and massive gravity theories, employing the Vainshtein mechanism. In each case, we describe the theories as effective theories and discuss prospects for completion in a more fundamental theory. We describe experimental tests of each class of theories, summarizing laboratory and solar system tests and describing in some detail astrophysical and cosmological tests. Finally, we discuss prospects for future tests which will be sensitive to different signatures of new physics in the gravitational sector. The review is structured so that those parts that are more relevant to theorists vs. observers/experimentalists are clearly indicated, in the hope that this will serve as a useful reference for

  11. Experiments beyond the standard model

    SciTech Connect

    Perl, M.L.

    1984-09-01

    This paper is based upon lectures in which I have described and explored the ways in which experimenters can try to find answers, or at least clues toward answers, to some of the fundamental questions of elementary particle physics. All of these experimental techniques and directions have been discussed fully in other papers, for example: searches for heavy charged leptons, tests of quantum chromodynamics, searches for Higgs particles, searches for particles predicted by supersymmetric theories, searches for particles predicted by technicolor theories, searches for proton decay, searches for neutrino oscillations, monopole searches, studies of low transfer momentum hadron physics at very high energies, and elementary particle studies using cosmic rays. Each of these subjects requires several lectures by itself to do justice to the large amount of experimental work and theoretical thought which has been devoted to these subjects. My approach in these tutorial lectures is to describe general ways to experiment beyond the standard model. I will use some of the topics listed to illustrate these general ways. Also, in these lectures I present some dreams and challenges about new techniques in experimental particle physics and accelerator technology, I call these Experimental Needs. 92 references.

  12. From Interactive Open Learner Modelling to Intelligent Mentoring: STyLE-OLM and Beyond

    ERIC Educational Resources Information Center

    Dimitrova, Vania; Brna, Paul

    2016-01-01

    STyLE-OLM (Dimitrova 2003 "International Journal of Artificial Intelligence in Education," 13, 35-78) presented a framework for interactive open learner modelling which entails the development of the means by which learners can "inspect," "discuss" and "alter" the learner model that has been jointly…

  13. Nuclear Physics and the New Standard Model

    SciTech Connect

    Ramsey-Musolf, Michael J.

    2010-08-04

    Nuclear physics studies of fundamental symmetries and neutrino properties have played a vital role in the development and confirmation of the Standard Model of fundamental interactions. With the advent of the CERN Large Hadron Collider, experiments at the high energy frontier promise exciting discoveries about the larger framework in which the Standard Model lies. In this talk, I discuss the complementary opportunities for probing the 'new Standard Model' with nuclear physics experiments at the low-energy high precision frontier.

  14. Conductivite dans le modele de Hubbard bi-dimensionnel a faible couplage

    NASA Astrophysics Data System (ADS)

    Bergeron, Dominic

    Le modele de Hubbard bi-dimensionnel (2D) est souvent considere comme le modele minimal pour les supraconducteurs a haute temperature critique a base d'oxyde de cuivre (SCHT). Sur un reseau carre, ce modele possede les phases qui sont communes a tous les SCHT, la phase antiferromagnetique, la phase supraconductrice et la phase dite du pseudogap. Il n'a pas de solution exacte, toutefois, plusieurs methodes approximatives permettent d'etudier ses proprietes de facon numerique. Les proprietes optiques et de transport sont bien connues dans les SCHT et sont donc de bonne candidates pour valider un modele theorique et aider a comprendre mieux la physique de ces materiaux. La presente these porte sur le calcul de ces proprietes pour le modele de Hubbard 2D a couplage faible ou intermediaire. La methode de calcul utilisee est l'approche auto-coherente a deux particules (ACDP), qui est non-perturbative et inclue l'effet des fluctuations de spin et de charge a toutes les longueurs d'onde. La derivation complete de l'expression de la conductivite dans l'approche ACDP est presentee. Cette expression contient ce qu'on appelle les corrections de vertex, qui tiennent compte des correlations entre quasi-particules. Pour rendre possible le calcul numerique de ces corrections, des algorithmes utilisant, entre autres, des transformees de Fourier rapides et des splines cubiques sont developpes. Les calculs sont faits pour le reseau carre avec sauts aux plus proches voisins autour du point critique antiferromagnetique. Aux dopages plus faibles que le point critique, la conductivite optique presente une bosse dans l'infrarouge moyen a basse temperature, tel qu'observe dans plusieurs SCHT. Dans la resistivite en fonction de la temperature, on trouve un comportement isolant dans le pseudogap lorsque les corrections de vertex sont negligees et metallique lorsqu'elles sont prises en compte. Pres du point critique, la resistivite est lineaire en T a basse temperature et devient

  15. Le modele de Hubbard bidimensionnel a faible couplage: Thermodynamique et phenomenes critiques

    NASA Astrophysics Data System (ADS)

    Roy, Sebastien

    Une etude systematique du modele de Hubbard en deux dimensions a faible couplage a l'aide de la theorie Auto-Coherente a Deux Particules (ACDP) dans le diagramme temperature-dopage-interaction-sauts permet de mettre en evidence l'influence des fluctuations magnetiques sur les proprietes thermodynamiques du systeme electronique sur reseau. Le regime classique renormalise a temperature finie pres du dopage nul est marque par la grandeur de la longueur de correlation de spin comparee a la longueur thermique de de Broglie et est caracterisee par un accroissement drastique de la longueur de correlation de spin. Cette croissance exponentielle a dopage nul marque la presence d'un pic de chaleur specifique en fonction de la temperature a basse temperature. Une temperature de crossover est alors associee a la temperature a laquelle la longueur de correlation de spin est egale a la longueur thermique de de Broglie. C'est a cette temperature caracteristique, ou est observee l'ouverture du pseudogap dans le poids spectral, que se situe le maximum du pic de chaleur specifique. La presence de ce pic a des consequences sur l'evolution du potentiel chimique avec le dopage lorsque l'uniformite thermodynamique est respectee. Les contraintes imposees par les lois de la thermodynamique font en sorte que l'evolution du potentiel chimique avec le dopage est non triviale. On demontre entre autres que le potentiel chimique est proportionnel a la double occupation qui est reliee au moment local. Par ailleurs, une derivation de la fonction de mise a l'echelle de la susceptibilite de spin a frequence nulle au voisinage d'un point critique marque sans equivoque la presence d'un point critique quantique en dopage pour une valeur donnee de l'interaction. Ce point critique, associe a une transition de phase magnetique en fonction du dopage a temperature nulle, induit un comportement non trivial sur les proprietes physiques du systeme a temperature finie. L'approche quantitative ACDP permet de

  16. Modeling in the Common Core State Standards

    ERIC Educational Resources Information Center

    Tam, Kai Chung

    2011-01-01

    The inclusion of modeling and applications into the mathematics curriculum has proven to be a challenging task over the last fifty years. The Common Core State Standards (CCSS) has made mathematical modeling both one of its Standards for Mathematical Practice and one of its Conceptual Categories. This article discusses the need for mathematical…

  17. Krajewski diagrams and the standard model

    SciTech Connect

    Stephan, Christoph A.

    2009-04-15

    This paper provides a complete list of Krajewski diagrams representing the standard model of particle physics. We will give the possible representations of the algebra and the anomaly free lifts which provide the representation of the standard model gauge group on the fermionic Hilbert space. The algebra representations following from the Krajewski diagrams are not complete in the sense that the corresponding spectral triples do not necessarily obey to the axiom of Poincare duality. This defect may be repaired by adding new particles to the model, i.e., by building models beyond the standard model. The aim of this list of finite spectral triples (up to Poincare duality) is therefore to provide a basis for model building beyond the standard model.

  18. Beyond the supersymmetric standard model

    SciTech Connect

    Hall, L.J.

    1988-02-01

    The possibility of baryon number violation at the weak scale and an alternative primordial nucleosynthesis scheme arising from the decay of gravitations are discussed. The minimal low energy supergravity model is defined and a few of its features are described. Renormalization group scaling and flavor physics are mentioned.

  19. SCaLeM: A Framework for Characterizing and Analyzing Execution Models

    SciTech Connect

    Chavarría-Miranda, Daniel; Manzano Franco, Joseph B.; Krishnamoorthy, Sriram; Vishnu, Abhinav; Barker, Kevin J.; Hoisie, Adolfy

    2014-10-13

    As scalable parallel systems evolve towards more complex nodes with many-core architectures and larger trans-petascale & upcoming exascale deployments, there is a need to understand, characterize and quantify the underlying execution models being used on such systems. Execution models are a conceptual layer between applications & algorithms and the underlying parallel hardware and systems software on which those applications run. This paper presents the SCaLeM (Synchronization, Concurrency, Locality, Memory) framework for characterizing and execution models. SCaLeM consists of three basic elements: attributes, compositions and mapping of these compositions to abstract parallel systems. The fundamental Synchronization, Concurrency, Locality and Memory attributes are used to characterize each execution model, while the combinations of those attributes in the form of compositions are used to describe the primitive operations of the execution model. The mapping of the execution model’s primitive operations described by compositions, to an underlying abstract parallel system can be evaluated quantitatively to determine its effectiveness. Finally, SCaLeM also enables the representation and analysis of applications in terms of execution models, for the purpose of evaluating the effectiveness of such mapping.

  20. Standardized Tests and Froebel's Original Kindergarten Model

    ERIC Educational Resources Information Center

    Jeynes, William H.

    2006-01-01

    The author argues that American educators rely on standardized tests at too early an age when administered in kindergarten, particularly given the original intent of kindergarten as envisioned by its founder, Friedrich Froebel. The author examines the current use of standardized tests in kindergarten and the Froebel model, including his emphasis…

  1. Less minimal supersymmetric standard model

    SciTech Connect

    de Gouvea, Andre; Friedland, Alexander; Murayama, Hitoshi

    1998-03-28

    Most of the phenomenological studies of supersymmetry have been carried out using the so-called minimal supergravity scenario, where one assumes a universal scalar mass, gaugino mass, and trilinear coupling at M{sub GUT}. Even though this is a useful simplifying assumption for phenomenological analyses, it is rather too restrictive to accommodate a large variety of phenomenological possibilities. It predicts, among other things, that the lightest supersymmetric particle (LSP) is an almost pure B-ino, and that the {mu}-parameter is larger than the masses of the SU(2){sub L} and U(1){sub Y} gauginos. We extend the minimal supergravity framework by introducing one extra parameter: the Fayet'Iliopoulos D-term for the hypercharge U(1), D{sub Y}. Allowing for this extra parameter, we find a much more diverse phenomenology, where the LSP is {tilde {nu}}{sub {tau}}, {tilde {tau}} or a neutralino with a large higgsino content. We discuss the relevance of the different possibilities to collider signatures. The same type of extension can be done to models with the gauge mediation of supersymmetry breaking. We argue that it is not wise to impose cosmological constraints on the parameter space.

  2. An alternative to the standard model

    SciTech Connect

    Baek, Seungwon; Ko, Pyungwon; Park, Wan-Il

    2014-06-24

    We present an extension of the standard model to dark sector with an unbroken local dark U(1){sub X} symmetry. Including various singlet portal interactions provided by the standard model Higgs, right-handed neutrinos and kinetic mixing, we show that the model can address most of phenomenological issues (inflation, neutrino mass and mixing, baryon number asymmetry, dark matter, direct/indirect dark matter searches, some scale scale puzzles of the standard collisionless cold dark matter, vacuum stability of the standard model Higgs potential, dark radiation) and be regarded as an alternative to the standard model. The Higgs signal strength is equal to one as in the standard model for unbroken U(1){sub X} case with a scalar dark matter, but it could be less than one independent of decay channels if the dark matter is a dark sector fermion or if U(1){sub X} is spontaneously broken, because of a mixing with a new neutral scalar boson in the models.

  3. Towards LHC physics with nonlocal Standard Model

    NASA Astrophysics Data System (ADS)

    Biswas, Tirthabir; Okada, Nobuchika

    2015-09-01

    We take a few steps towards constructing a string-inspired nonlocal extension of the Standard Model. We start by illustrating how quantum loop calculations can be performed in nonlocal scalar field theory. In particular, we show the potential to address the hierarchy problem in the nonlocal framework. Next, we construct a nonlocal abelian gauge model and derive modifications of the gauge interaction vertex and field propagators. We apply the modifications to a toy version of the nonlocal Standard Model and investigate collider phenomenology. We find the lower bound on the scale of nonlocality from the 8 TeV LHC data to be 2.5-3 TeV.

  4. Exploring the Standard Model of Particles

    ERIC Educational Resources Information Center

    Johansson, K. E.; Watkins, P. M.

    2013-01-01

    With the recent discovery of a new particle at the CERN Large Hadron Collider (LHC) the Higgs boson could be about to be discovered. This paper provides a brief summary of the standard model of particle physics and the importance of the Higgs boson and field in that model for non-specialists. The role of Feynman diagrams in making predictions for…

  5. Supersymmetric standard model spectra from RCFT orientifolds

    NASA Astrophysics Data System (ADS)

    Dijkstra, T. P. T.; Huiszoon, L. R.; Schellekens, A. N.

    2005-03-01

    We present supersymmetric, tadpole-free d=4,N=1 orientifold vacua with a three family chiral fermion spectrum that is identical to that of the standard model. Starting with all simple current orientifolds of all Gepner models we perform a systematic search for such spectra. We consider several variations of the standard four-stack intersecting brane realization of the standard model, with all quarks and leptons realized as bifundamentals and perturbatively exact baryon and lepton number symmetries, and with a U(1 vector boson that does not acquire a mass from Green-Schwarz terms. The number of supersymmetric Higgs pairs H+H is left free. In order to cancel all tadpoles, we allow a "hidden" gauge group, which must be chirally decoupled from the standard model. We also allow for non-chiral mirror-pairs of quarks and leptons, non-chiral exotics and (possibly chiral) hidden, standard model singlet matter, as well as a massless B-L vector boson. All of these less desirable features are absent in some cases, although not simultaneously. In particular, we found cases with massless Chan-Paton gauge bosons generating nothing more than SU(3)×SU(2)×U(1). We obtain almost 180 000 rationally distinct solutions (not counting hidden sector degrees of freedom), and present distributions of various quantities. We analyse the tree level gauge couplings, and find a large range of values, remarkably centered around the unification point.

  6. Neutrino in standard model and beyond

    NASA Astrophysics Data System (ADS)

    Bilenky, S. M.

    2015-07-01

    After discovery of the Higgs boson at CERN the Standard Model acquired a status of the theory of the elementary particles in the electroweak range (up to about 300 GeV). What general conclusions can be inferred from the Standard Model? It looks that the Standard Model teaches us that in the framework of such general principles as local gauge symmetry, unification of weak and electromagnetic interactions and Brout-Englert-Higgs spontaneous breaking of the electroweak symmetry nature chooses the simplest possibilities. Two-component left-handed massless neutrino fields play crucial role in the determination of the charged current structure of the Standard Model. The absence of the right-handed neutrino fields in the Standard Model is the simplest, most economical possibility. In such a scenario Majorana mass term is the only possibility for neutrinos to be massive and mixed. Such mass term is generated by the lepton-number violating Weinberg effective Lagrangian. In this approach three Majorana neutrino masses are suppressed with respect to the masses of other fundamental fermions by the ratio of the electroweak scale and a scale of a lepton-number violating physics. The discovery of the neutrinoless double β-decay and absence of transitions of flavor neutrinos into sterile states would be evidence in favor of the minimal scenario we advocate here.

  7. SOFA 2015: Authoritative Tools & Standard Models

    NASA Astrophysics Data System (ADS)

    Hohenkerk, Catherine

    2015-08-01

    The International Astronomical Union's Standards of Fundamental Astronomy (SOFA) service has the responsibility of establishing and maintaining an accessible and authoritative set of algorithms and procedures that implement standard models used in fundamental astronomy. This poster not only gives a summary of usage and available algorithms, but also highlights tools for astrometry and galactic coordinates, which have been added since the last IAU General Assembly.

  8. Standard Model as a Double Field Theory.

    PubMed

    Choi, Kang-Sin; Park, Jeong-Hyuck

    2015-10-23

    We show that, without any extra physical degree introduced, the standard model can be readily reformulated as a double field theory. Consequently, the standard model can couple to an arbitrary stringy gravitational background in an O(4,4) T-duality covariant manner and manifest two independent local Lorentz symmetries, Spin(1,3)×Spin(3,1). While the diagonal gauge fixing of the twofold spin groups leads to the conventional formulation on the flat Minkowskian background, the enhanced symmetry makes the standard model more rigid, and also stringy, than it appeared. The CP violating θ term may no longer be allowed by the symmetry, and hence the strong CP problem can be solved. There are now stronger constraints imposed on the possible higher order corrections. We speculate that the quarks and the leptons may belong to the two different spin classes. PMID:26551099

  9. Standard Model as a Double Field Theory

    NASA Astrophysics Data System (ADS)

    Choi, Kang-Sin; Park, Jeong-Hyuck

    2015-10-01

    We show that, without any extra physical degree introduced, the standard model can be readily reformulated as a double field theory. Consequently, the standard model can couple to an arbitrary stringy gravitational background in an O (4 ,4 ) T -duality covariant manner and manifest two independent local Lorentz symmetries, Spin(1 ,3 )×Spin(3 ,1 ) . While the diagonal gauge fixing of the twofold spin groups leads to the conventional formulation on the flat Minkowskian background, the enhanced symmetry makes the standard model more rigid, and also stringy, than it appeared. The C P violating θ term may no longer be allowed by the symmetry, and hence the strong C P problem can be solved. There are now stronger constraints imposed on the possible higher order corrections. We speculate that the quarks and the leptons may belong to the two different spin classes.

  10. Standard model on a D-brane.

    PubMed

    Berenstein, David; Jejjala, Vishnu; Leigh, Robert G

    2002-02-18

    We present a consistent string theory model which produces a simple extension of the standard model, consisting of a D3-brane at a simple orbifold singularity. We envision this as a local singularity within a warped compactification. The phenomenology of the model has some novel features. We note that, for the model to be viable, the scale of stringy physics must be in the multi-TeV range. There are natural hierarchies in the fermion spectrum and there are several possible experimental signatures of the model. PMID:11863881

  11. New Physics Beyond the Standard Model

    NASA Astrophysics Data System (ADS)

    Cai, Haiying

    In this thesis we discuss several extensons of the standard model, with an emphasis on the hierarchy problem. The hierachy problem related to the Higgs boson mass is a strong indication of new physics beyond the Standard Model. In the literature, several mechanisms, e.g. , supersymmetry (SUSY), the little Higgs and extra dimensions, are proposed to explain why the Higgs mass can be stabilized to the electroweak scale. In the Standard Model, the largest quadratically divergent contribution to the Higgs mass-squared comes from the top quark loop. We consider a few novel possibilities on how this contribution is cancelled. In the standard SUSY scenario, the quadratic divergence from the fermion loops is cancelled by the scalar superpartners and the SUSY breaking scale determines the masses of the scalars. We propose a new SUSY model, where the superpartner of the top quark is spin-1 rather than spin-0. In little Higgs theories, the Higgs field is realized as a psudo goldstone boson in a nonlinear sigma model. The smallness of its mass is protected by the global symmetry. As a variation, we put the little Higgs into an extra dimensional model where the quadratically divergent top loop contribution to the Higgs mass is cancelled by an uncolored heavy "top quirk" charged under a different SU(3) gauge group. Finally, we consider a supersymmetric warped extra dimensional model where the superpartners have continuum mass spectra. We use the holographic boundary action to study how a mass gap can arise to separate the zero modes from continuum modes. Such extensions of the Standard Model have novel signatures at the Large Hadron Collider.

  12. Models of the Primordial Standard Clock

    NASA Astrophysics Data System (ADS)

    Chen, Xingang; Namjoo, Mohammad Hossein; Wang, Yi

    2015-02-01

    Oscillating massive fields in the primordial universe can be used as Standard Clocks. The ticks of these oscillations induce features in the density perturbations, which directly record the time evolution of the scale factor of the primordial universe, thus if detected, provide a direct evidence for the inflation scenario or the alternatives. In this paper, we construct a full inflationary model of primordial Standard Clock and study its predictions on the density perturbations. This model provides a full realization of several key features proposed previously. We compare the theoretical predictions from inflation and alternative scenarios with the Planck 2013 temperature data on Cosmic Microwave Background (CMB), and identify a statistically marginal but interesting candidate. We discuss how future CMB temperature and polarization data, non-Gaussianity analysis and Large Scale Structure data may be used to further test or constrain the Standard Clock signals.

  13. Inclusive Standard Model Higgs searches with ATLAS

    SciTech Connect

    Polci, Francesco

    2008-11-23

    The update of the discovery potential for a Standard Model Higgs boson through the inclusive searches H{yields}{gamma}{gamma}, H{yields}ZZ* and H{yields}WW with the ATLAS detector is reported. The analysis are based on the most recent available simulations of signal, backgrounds as well as the detector response.

  14. Inflation in the standard cosmological model

    NASA Astrophysics Data System (ADS)

    Uzan, Jean-Philippe

    2015-12-01

    The inflationary paradigm is now part of the standard cosmological model as a description of its primordial phase. While its original motivation was to solve the standard problems of the hot big bang model, it was soon understood that it offers a natural theory for the origin of the large-scale structure of the universe. Most models rely on a slow-rolling scalar field and enjoy very generic predictions. Besides, all the matter of the universe is produced by the decay of the inflaton field at the end of inflation during a phase of reheating. These predictions can be (and are) tested from their imprint of the large-scale structure and in particular the cosmic microwave background. Inflation stands as a window in physics where both general relativity and quantum field theory are at work and which can be observationally studied. It connects cosmology with high-energy physics. Today most models are constructed within extensions of the standard model, such as supersymmetry or string theory. Inflation also disrupts our vision of the universe, in particular with the ideas of chaotic inflation and eternal inflation that tend to promote the image of a very inhomogeneous universe with fractal structure on a large scale. This idea is also at the heart of further speculations, such as the multiverse. This introduction summarizes the connections between inflation and the hot big bang model and details the basics of its dynamics and predictions. xml:lang="fr"

  15. Standard Model Higgs Searches at the Tevatron

    SciTech Connect

    Knoepfel, Kyle J.

    2012-06-01

    We present results from the search for a standard model Higgs boson using data corresponding up to 10 fb{sup -1} of proton-antiproton collision data produced by the Fermilab Tevatron at a center-of-mass energy of 1.96 TeV. The data were recorded by the CDF and D0 detectors between March 2001 and September of 2011. A broad excess is observed between 105 < m{sub H} < 145 GeV/c{sup 2} with a global significance of 2.2 standard deviations relative to the background-only hypothesis.

  16. Supersymmetric Standard Model from the Heterotic String

    SciTech Connect

    Buchmueller, Wilfried; Hamaguchi, Koichi; Lebedev, Oleg; Ratz, Michael

    2006-03-31

    We present a Z{sub 6} orbifold compactification of the E{sub 8}xE{sub 8} heterotic string which leads to the (supersymmetric) standard model gauge group and matter content. The quarks and leptons appear as three 16-plets of SO(10), whereas the Higgs fields do not form complete SO(10) multiplets. The model has large vacuum degeneracy. For generic vacua, no exotic states appear at low energies and the model is consistent with gauge coupling unification. The top quark Yukawa coupling arises from gauge interactions and is of the order of the gauge couplings, whereas the other Yukawa couplings are suppressed.

  17. Supersymmetric standard model from the heterotic string.

    PubMed

    Buchmüller, Wilfried; Hamaguchi, Koichi; Lebedev, Oleg; Ratz, Michael

    2006-03-31

    We present a [FORMULA: SEE TEXT] orbifold compactification of the E8xE8 heterotic string which leads to the (supersymmetric) standard model gauge group and matter content. The quarks and leptons appear as three 16-plets of SO(10), whereas the Higgs fields do not form complete SO(10) multiplets. The model has large vacuum degeneracy. For generic vacua, no exotic states appear at low energies and the model is consistent with gauge coupling unification. The top quark Yukawa coupling arises from gauge interactions and is of the order of the gauge couplings, whereas the other Yukawa couplings are suppressed. PMID:16605895

  18. Produce Live News Broadcasts Using Standard AV Equipment: A Success Story from the Le Center High School in Minnesota.

    ERIC Educational Resources Information Center

    Rostad, John

    1997-01-01

    Describes the production of news broadcasts on video by a high school class in Le Center, Minnesota. Topics include software for Apple computers, equipment used, student responsibilities, class curriculum, group work, communication among the production crew, administrative and staff support, and future improvements. (LRW)

  19. Electroweak standard model with very special relativity

    NASA Astrophysics Data System (ADS)

    Alfaro, Jorge; González, Pablo; Ávila, Ricardo

    2015-05-01

    The very special relativity electroweak Standard Model (VSR EW SM) is a theory with SU (2 )L×U (1 )R symmetry, with the same number of leptons and gauge fields as in the usual Weinberg-Salam model. No new particles are introduced. The model is renormalizable and unitarity is preserved. However, photons obtain mass and the massive bosons obtain different masses for different polarizations. Besides, neutrino masses are generated. A VSR-invariant term will produce neutrino oscillations and new processes are allowed. In particular, we compute the rate of the decays μ →e +γ . All these processes, which are forbidden in the electroweak Standard Model, put stringent bounds on the parameters of our model and measure the violation of Lorentz invariance. We investigate the canonical quantization of this nonlocal model. Second quantization is carried out, and we obtain a well-defined particle content. Additionally, we do a counting of the degrees of freedom associated with the gauge bosons involved in this work, after spontaneous symmetry breaking has been realized. Violations of Lorentz invariance have been predicted by several theories of quantum gravity [J. Alfaro, H. Morales-Tecotl, and L. F. Urrutia, Phys. Rev. Lett. 84, 2318 (2000); Phys. Rev. D 65, 103509 (2002)]. It is a remarkable possibility that the low-energy effects of Lorentz violation induced by quantum gravity could be contained in the nonlocal terms of the VSR EW SM.

  20. The Standard Model of Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Detmold, William

    2015-04-01

    At its core, nuclear physics, which describes the properties and interactions of hadrons, such as protons and neutrons, and atomic nuclei, arises from the Standard Model of particle physics. However, the complexities of nuclei result in severe computational difficulties that have historically prevented the calculation of central quantities in nuclear physics directly from this underlying theory. The availability of petascale (and prospect of exascale) high performance computing is changing this situation by enabling us to extend the numerical techniques of lattice Quantum Chromodynamics (LQCD), applied successfully in particle physics, to the more intricate dynamics of nuclear physics. In this talk, I will discuss this revolution and the emerging understanding of hadrons and nuclei within the Standard Model.

  1. Imperfect mirror copies of the standard model

    NASA Astrophysics Data System (ADS)

    Berryman, Jeffrey M.; de Gouvêa, André; Hernández, Daniel; Kelly, Kevin J.

    2016-08-01

    Inspired by the standard model of particle physics, we discuss a mechanism for constructing chiral, anomaly-free gauge theories. The gauge symmetries and particle content of such theories are identified using subgroups and complex representations of simple anomaly-free Lie groups, such as S O (10 ) or E6. We explore, using mostly S O (10 ) and the 16 representation, several of these "imperfect copies" of the standard model, including U (1 )N theories, S U (5 )⊗U (1 ) theories, S U (4 )⊗U (1 )2 theories with 4-plets and 6-plets, and chiral S U (3 )⊗S U (2 )⊗U (1 ) . A few general properties of such theories are discussed, as is how they might shed light on nonzero neutrino masses, the dark matter puzzle, and other phenomenologically relevant questions.

  2. Anomalous Abelian symmetry in the standard model

    SciTech Connect

    Ramond, P.

    1995-12-31

    The observed hierarchy of quark and lepton masses can be parametrized by nonrenormalizable operators with dimensions determined by an anomalous Abelian family symmetry, a gauge extension to the minimal supersymmetric standard model. Such an Abelian symmetry is generic to compactified superstring theories, with its anomalies compensated by the Green-Schwarz mechanism. If we assume these two symmetries to be the same, we find the electroweak mixing angle to be sin {sup 2}{theta}{sub {omega}} = 3/8 at the string scale, just by setting the ratio of the product of down quark to charged lepton masses equal to one at the string scale. This assumes no GUT structure. The generality of the result suggests a superstring origin for the standard model. We generalize our analysis to massive neutrinos, and mixings in the lepton sector.

  3. Temperature dependence of standard model CP violation.

    PubMed

    Brauner, Tomáš; Taanila, Olli; Tranberg, Anders; Vuorinen, Aleksi

    2012-01-27

    We analyze the temperature dependence of CP violation effects in the standard model by determining the effective action of its bosonic fields, obtained after integrating out the fermions from the theory and performing a covariant gradient expansion. We find nonvanishing CP violating terms starting at the sixth order of the expansion, albeit only in the C-odd-P-even sector, with coefficients that depend on quark masses, Cabibbo-Kobayashi-Maskawa matrix elements, temperature and the magnitude of the Higgs field. The CP violating effects are observed to decrease rapidly with temperature, which has important implications for the generation of a matter-antimatter asymmetry in the early Universe. Our results suggest that the cold electroweak baryogenesis scenario may be viable within the standard model, provided the electroweak transition temperature is at most of order 1 GeV. PMID:22400822

  4. Standard model fermions and K (E10)

    NASA Astrophysics Data System (ADS)

    Kleinschmidt, Axel; Nicolai, Hermann

    2015-07-01

    In recent work [1] it was shown how to rectify Gell-Mann's proposal for identifying the 48 quarks and leptons of the Standard Model with the 48 spin-1/2 fermions of maximal SO(8) gauged supergravity remaining after the removal of eight Goldstinos, by deforming the residual U(1) symmetry at the SU(3) × U(1) stationary point of N = 8 supergravity, so as to also achieve agreement of the electric charge assignments. In this Letter we show that the required deformation, while not in SU(8), does belong to K (E10), the 'maximal compact' subgroup of E10 which is a possible candidate symmetry underlying M theory. The incorporation of infinite-dimensional Kac-Moody symmetries of hyperbolic type, apparently unavoidable for the present scheme to work, opens up completely new perspectives on embedding Standard Model physics into a Planck scale theory of quantum gravity.

  5. Renormalization Group in the Standard Model

    SciTech Connect

    Kielanowski, P.; Juarez W, S. R.

    2007-11-27

    We discuss two applications of the renormalization group method in the Standard Model. In the first one we present some theorems about the running of the Cabibbo-Kobayashi-Maskawa matrix and show that the evolution depends on one function of energy only. In the second one we discuss the properties of the running of the Higgs potential and derive the limits for the Higgs mass.

  6. Gravitational corrections to standard model vacuum decay

    SciTech Connect

    Isidori, Gino; Rychkov, Vyacheslav S.; Strumia, Alessandro; Tetradis, Nikolaos

    2008-01-15

    We refine and update the metastability constraint on the standard model (SM) top and Higgs masses by analytically including gravitational corrections to the vacuum decay rate. Present best-fit ranges of the top and Higgs masses mostly lie in the narrow metastable region. Furthermore, we show that the SM potential can be fine-tuned in order to be made suitable for inflation. However, SM inflation results in a power spectrum of cosmological perturbations not consistent with observations.

  7. Indoorgml - a Standard for Indoor Spatial Modeling

    NASA Astrophysics Data System (ADS)

    Li, Ki-Joune

    2016-06-01

    With recent progress of mobile devices and indoor positioning technologies, it becomes possible to provide location-based services in indoor space as well as outdoor space. It is in a seamless way between indoor and outdoor spaces or in an independent way only for indoor space. However, we cannot simply apply spatial models developed for outdoor space to indoor space due to their differences. For example, coordinate reference systems are employed to indicate a specific position in outdoor space, while the location in indoor space is rather specified by cell number such as room number. Unlike outdoor space, the distance between two points in indoor space is not determined by the length of the straight line but the constraints given by indoor components such as walls, stairs, and doors. For this reason, we need to establish a new framework for indoor space from fundamental theoretical basis, indoor spatial data models, and information systems to store, manage, and analyse indoor spatial data. In order to provide this framework, an international standard, called IndoorGML has been developed and published by OGC (Open Geospatial Consortium). This standard is based on a cellular notion of space, which considers an indoor space as a set of non-overlapping cells. It consists of two types of modules; core module and extension module. While core module consists of four basic conceptual and implementation modeling components (geometric model for cell, topology between cells, semantic model of cell, and multi-layered space model), extension modules may be defined on the top of the core module to support an application area. As the first version of the standard, we provide an extension for indoor navigation.

  8. Beyond the standard model in many directions

    SciTech Connect

    Chris Quigg

    2004-04-28

    These four lectures constitute a gentle introduction to what may lie beyond the standard model of quarks and leptons interacting through SU(3){sub c} {direct_product} SU(2){sub L} {direct_product} U(1){sub Y} gauge bosons, prepared for an audience of graduate students in experimental particle physics. In the first lecture, I introduce a novel graphical representation of the particles and interactions, the double simplex, to elicit questions that motivate our interest in physics beyond the standard model, without recourse to equations and formalism. Lecture 2 is devoted to a short review of the current status of the standard model, especially the electroweak theory, which serves as the point of departure for our explorations. The third lecture is concerned with unified theories of the strong, weak, and electromagnetic interactions. In the fourth lecture, I survey some attempts to extend and complete the electroweak theory, emphasizing some of the promise and challenges of supersymmetry. A short concluding section looks forward.

  9. Beyond standard model calculations with Sherpa

    SciTech Connect

    Höche, Stefan; Kuttimalai, Silvan; Schumann, Steffen; Siegert, Frank

    2015-03-24

    We present a fully automated framework as part of the Sherpa event generator for the computation of tree-level cross sections in beyond Standard Model scenarios, making use of model information given in the Universal FeynRules Output format. Elementary vertices are implemented into C++ code automatically and provided to the matrix-element generator Comix at runtime. Widths and branching ratios for unstable particles are computed from the same building blocks. The corresponding decays are simulated with spin correlations. Parton showers, QED radiation and hadronization are added by Sherpa, providing a full simulation of arbitrary BSM processes at the hadron level.

  10. Toward a midisuperspace quantization of LeMaitre-Tolman-Bondi collapse models

    SciTech Connect

    Vaz, Cenalo; Witten, Louis; Singh, T. P.

    2001-05-15

    LeMaitre-Tolman-Bondi models of spherical dust collapse have been used and continue to be used extensively to study various stellar collapse scenarios. It is by now well known that these models lead to the formation of black holes and naked singularities from regular initial data. The final outcome of the collapse, particularly in the event of naked singularity formation, depends very heavily on quantum effects during the final stages. These quantum effects cannot generally be treated semiclassically as quantum fluctuations of the gravitational field are expected to dominate before the final state is reached. We present a canonical reduction of LeMaitre-Tolman-Bondi space-times describing the marginally bound collapse of inhomogeneous dust, in which the physical radius R, the proper time of the collapsing dust {tau}, and the mass function F are the canonical coordinates R(r), {tau}(r) and F(r) on the phase space. Dirac's constraint quantization leads to a simple functional (Wheeler-DeWitt) equation. The equation is solved and the solution can be employed to study some of the effects of quantum gravity during gravitational collapse with different initial conditions.

  11. Extended spin symmetry and the standard model

    SciTech Connect

    Besprosvany, J.; Romero, R.

    2010-12-23

    We review unification ideas and explain the spin-extended model in this context. Its consideration is also motivated by the standard-model puzzles. With the aim of constructing a common description of discrete degrees of freedom, as spin and gauge quantum numbers, the model departs from q-bits and generalized Hilbert spaces. Physical requirements reduce the space to one that is represented by matrices. The classification of the representations is performed through Clifford algebras, with its generators associated with Lorentz and scalar symmetries. We study a reduced space with up to two spinor elements within a matrix direct product. At given dimension, the demand that Lorentz symmetry be maintained, determines the scalar symmetries, which connect to vector-and-chiral gauge-interacting fields; we review the standard-model information in each dimension. We obtain fermions and bosons, with matter fields in the fundamental representation, radiation fields in the adjoint, and scalar particles with the Higgs quantum numbers. We relate the fields' representation in such spaces to the quantum-field-theory one, and the Lagrangian. The model provides a coupling-constant definition.

  12. The soft-wall standard model

    SciTech Connect

    Batell, Brian; Sword, Daniel; Gherghetta, Tony

    2008-12-01

    We explore the possibility of modeling electroweak physics in a warped extra dimension with a soft wall. The infrared boundary is replaced with a smoothly varying dilaton field that provides a dynamical spacetime cutoff. We analyze gravity, gauge fields, and fermions in the soft-wall background and obtain a discrete spectrum of Kaluza-Klein states which can exhibit linear Regge-like behavior. Bulk Yukawa interactions give rise to nonconstant fermion mass terms, leading to fermion localization in the soft-wall background and a possible explanation of the standard model flavor structure. Furthermore we construct electroweak models with custodial symmetry, where the gauge symmetry is broken with a bulk Higgs condensate. The electroweak constraints are not as stringent as in hard-wall models, allowing Kaluza-Klein masses of order the TeV scale.

  13. Experimentally testing the standard cosmological model

    SciTech Connect

    Schramm, D.N. Fermi National Accelerator Lab., Batavia, IL )

    1990-11-01

    The standard model of cosmology, the big bang, is now being tested and confirmed to remarkable accuracy. Recent high precision measurements relate to the microwave background; and big bang nucleosynthesis. This paper focuses on the latter since that relates more directly to high energy experiments. In particular, the recent LEP (and SLC) results on the number of neutrinos are discussed as a positive laboratory test of the standard cosmology scenario. Discussion is presented on the improved light element observational data as well as the improved neutron lifetime data. alternate nucleosynthesis scenarios of decaying matter or of quark-hadron induced inhomogeneities are discussed. It is shown that when these scenarios are made to fit the observed abundances accurately, the resulting conclusions on the baryonic density relative to the critical density, {Omega}{sub b}, remain approximately the same as in the standard homogeneous case, thus, adding to the robustness of the standard model conclusion that {Omega}{sub b} {approximately} 0.06. This latter point is the deriving force behind the need for non-baryonic dark matter (assuming {Omega}{sub total} = 1) and the need for dark baryonic matter, since {Omega}{sub visible} < {Omega}{sub b}. Recent accelerator constraints on non-baryonic matter are discussed, showing that any massive cold dark matter candidate must now have a mass M{sub x} {approx gt} 20 GeV and an interaction weaker than the Z{sup 0} coupling to a neutrino. It is also noted that recent hints regarding the solar neutrino experiments coupled with the see-saw model for {nu}-masses may imply that the {nu}{sub {tau}} is a good hot dark matter candidate. 73 refs., 5 figs.

  14. 42 CFR 403.210 - NAIC model standards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 2 2012-10-01 2012-10-01 false NAIC model standards. 403.210 Section 403.210... model standards. (a) NAIC model standards means the National Association of Insurance Commissioners (NAIC) “Model Regulation to Implement the Individual Accident and Insurance Minimum Standards Act”...

  15. 42 CFR 403.210 - NAIC model standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 2 2013-10-01 2013-10-01 false NAIC model standards. 403.210 Section 403.210... model standards. (a) NAIC model standards means the National Association of Insurance Commissioners (NAIC) “Model Regulation to Implement the Individual Accident and Insurance Minimum Standards Act”...

  16. 42 CFR 403.210 - NAIC model standards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false NAIC model standards. 403.210 Section 403.210... model standards. (a) NAIC model standards means the National Association of Insurance Commissioners (NAIC) “Model Regulation to Implement the Individual Accident and Insurance Minimum Standards Act”...

  17. 42 CFR 403.210 - NAIC model standards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 2 2014-10-01 2014-10-01 false NAIC model standards. 403.210 Section 403.210... model standards. (a) NAIC model standards means the National Association of Insurance Commissioners (NAIC) “Model Regulation to Implement the Individual Accident and Insurance Minimum Standards Act”...

  18. A Global View Beyond the Standard Model

    SciTech Connect

    Not Available

    2008-01-20

    By 1973, the theoretical foundations of the Standard Model of fundamental interactions had been completed. In the decades that followed, new particles and phenomena predicted by the Standard Model were discovered in a dramatic series of experiments at laboratories around the world. This began with the discovery of the charm quark at SLAC and Brookhaven, predicted by Glashow, Illiopoulos and Maiani from flavor properties of the SM. The W and Z bosons were produced directly in experiments at CERN, and signals of energetic gluons were observed at DESY. Experiments eventually found a full third generation of fermions, culminating with the discovery of the top quark and tau neutrino at Fermilab. During this same period, major theoretical advances made it possible to push the accuracy of Standard Model predictions. This allowed compelling tests of the SM at the level of radiative corrections, and to test the predictions of QCD in the confining domain. Thus experiments confirmed the quantum dynamics of the SM, and validated the CKM picture of flavor mixing and CP violation. While this process took a long time, and may have appeared frustrating to many to just achieve the confirmation of the 'standard' theory, the outcome of these 30-odd years is now a cornerstone of our understanding of the natural world, occupying a deserved place next to Maxwell's electromagnetism, to relativity, and to quantum mechanics. The timescale and size of this enterprise, at the same time, gives us a benchmark for the magnitude of the efforts that may be required to go beyond the Standard Model to the next level of fundamental understanding. New ideas and theories have been put forward in the attempt to understand great questions left unanswered by the Standard Model. These theories attempt to explain why nature needs both gravitational and gauge interactions, and why their energy scales are so different. They address the possible origins of matter-antimatter asymmetry, of particle masses, and

  19. Statistical model with a standard Γ distribution

    NASA Astrophysics Data System (ADS)

    Patriarca, Marco; Chakraborti, Anirban; Kaski, Kimmo

    2004-07-01

    We study a statistical model consisting of N basic units which interact with each other by exchanging a physical entity, according to a given microscopic random law, depending on a parameter λ . We focus on the equilibrium or stationary distribution of the entity exchanged and verify through numerical fitting of the simulation data that the final form of the equilibrium distribution is that of a standard Gamma distribution. The model can be interpreted as a simple closed economy in which economic agents trade money and a saving criterion is fixed by the saving propensity λ . Alternatively, from the nature of the equilibrium distribution, we show that the model can also be interpreted as a perfect gas at an effective temperature T(λ) , where particles exchange energy in a space with an effective dimension D(λ) .

  20. The Hypergeometrical Universe: Cosmology and Standard Model

    SciTech Connect

    Pereira, Marco A.

    2010-12-22

    This paper presents a simple and purely geometrical Grand Unification Theory. Quantum Gravity, Electrostatic and Magnetic interactions are shown in a unified framework. Newton's, Gauss' and Biot-Savart's Laws are derived from first principles. Unification symmetry is defined for all the existing forces. This alternative model does not require Strong and Electroweak forces. A 4D Shock -Wave Hyperspherical topology is proposed for the Universe which together with a Quantum Lagrangian Principle and a Dilator based model for matter result in a quantized stepwise expansion for the whole Universe along a radial direction within a 4D spatial manifold. The Hypergeometrical Standard Model for matter, Universe Topology and a new Law of Gravitation are presented.

  1. Biomechanical evaluation of different fixation systems after Le Fort I osteotomy in polyurethane models of unilateral clefts.

    PubMed

    Esen, Alparslan; Isik, Kubilay; Saglam, Haci; Ozdemir, Yusuf Bugra; Dolanmaz, Dogan

    2016-09-01

    We compared the stability of three different titanium plate-and-screw fixation systems after Le Fort I osteotomy in polyurethane models of unilateral clefts. Thirty-six models were divided into 3 groups. In the first group, we adapted standard Plates 1mm thick with 2.0mm screws and placed them bilaterally on the zygomatic buttress and the piriform rim. In the second group, we did the same and added Plates 0.6mm thick with 1.6mm screws between the standard 2mm miniplates on both sides. In the last group, we placed Plates 1.4mm thick with 2.0mm screws bilaterally on the maxillary zygomatic buttress and piriform rim. Each group was tested in the inferosuperior (IS) and anteroposterior (AP) directions with a servo-hydraulic testing unit. In the IS direction, displacement values were not significantly different up to 80N, but between 80 and 210N, those in the 2×1.4mm group were better. In the AP direction, displacement values were not significantly different up to 40N, but between 40 and 180N, they were better in the standard with 1.6×0.6mm group and the 2×1.4mm group. When normal biting forces (90 - 260N) in the postoperative period are considered, the greatest resistance to occlusal loads was seen in the 2×1.4mm group. In the others, the biomechanical properties were better in the AP direction. PMID:27182011

  2. Physics Beyond the Standard Model at Colliders

    NASA Astrophysics Data System (ADS)

    Matchev, Konstantin

    These lectures introduce the modern machinery used in searches and studies of new physics Beyond the Standard Model (BSM) at colliders. The first lecture provides an overview of the main simulation tools used in high energy physics, including automated parton-level calculators, general purpose event generators, detector simulators, etc. The second lecture is a brief introduction to low energy supersymmetry (SUSY) as a representative BSM paradigm. The third lecture discusses the main collider signatures of SUSY and methods for measuring the masses of new particles in events with missing energy.

  3. Search for the standard model Higgs boson

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Pietrzyk, B.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Blucher, E.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Lohse, T.; Maggi, M.; Markou, C.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miotto, A.; Miguel, R.; Moser, H.-G.; Palazzi, P.; Pater, J. R.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Tomalin, I. R.; Veenhof, R.; Wachsmuth, H.; Wasserbaech, S.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Focardi, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Levinthal, D.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Moutoussi, A.; Nash, J.; Patton, S.; Payne, D. G.; Phillips, M. J.; San Martin, G.; Sedgbeer, J. K.; Wright, A. G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Vogl, R.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wanke, R.; Wolf, B.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Jakobs, K.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Dennis, R. St.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Manneli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Techini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Gao, Y.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Cartwright, S.; Combley, F.; Dawson, I.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Conway, J. S.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Nachtman, J. M.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I.; Sharma, V.; Shi, Z. H.; Turk, J. D.; Walsh, A. M.; Weber, F. V.; Sau Lan Wu; Wu, X.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1993-08-01

    Using a data sample corresponding to about 1 233 000 hadronic Z decays collected by the ALEPH experiment at LEP, the reaction e+e- → HZ∗ has been used to search for the standard model Higgs boson, in association with missing energy when Z∗ → v v¯, or with a pair of energetic leptons when Z∗ → e+e-or μ +μ -. No signal was found and, at the 95% confidence level, mH exceeds 58.4 GeV/ c2.

  4. Beyond the standard model with the LHC

    NASA Astrophysics Data System (ADS)

    Ellis, John

    2007-07-01

    Whether or not the Large Hadron Collider reveals the long-awaited Higgs particle, it is likely to lead to discoveries that add to, or challenge, the standard model of particle physics. Data produced will be pored over for any evidence of supersymmetric partners for the existing denizens of the particle 'zoo' and for the curled-up extra dimensions demanded by string theory. There might also be clues as to why matter dominates over antimatter in the Universe, and as to the nature of the Universe's dark matter.

  5. Twisted spectral geometry for the standard model

    NASA Astrophysics Data System (ADS)

    Martinetti, Pierre

    2015-07-01

    In noncommutative geometry, the spectral triple of a manifold does not generate bosonic fields, for fluctuations of the Dirac operator vanish. A Connes-Moscovici twist forces the commutative algebra to be multiplied by matrices. Keeping the space of spinors untouched, twisted-fluctuations then yield perturbations of the spin connection. Applied to the spectral triple of the Standard Model, a similar twist yields the scalar field needed to stabilize the vacuum and to make the computation of the Higgs mass compatible with its experimental value.

  6. Beyond the standard model with the LHC.

    PubMed

    Ellis, John

    2007-07-19

    Whether or not the Large Hadron Collider reveals the long-awaited Higgs particle, it is likely to lead to discoveries that add to, or challenge, the standard model of particle physics. Data produced will be pored over for any evidence of supersymmetric partners for the existing denizens of the particle 'zoo' and for the curled-up extra dimensions demanded by string theory. There might also be clues as to why matter dominates over antimatter in the Universe, and as to the nature of the Universe's dark matter. PMID:17637660

  7. Probing beyond the Standard Model with Muons

    SciTech Connect

    Hisano, Junji

    2008-02-21

    Muon's Properties are the most precisely studied among unstable particles. After discovery of muons in 40's, the studies of muons contributed to construction and establishment of the standard model in the particle physics. Now we are going to LHC era, however, precision frontier is still important in the particle physics. In this article, we review roles of muon physics in the particle physics. Muon g-2, lepton flavor violation (LFV) in muon decay, and electric dipole moment (EDM) of muon are mainly discussed.

  8. Higgs inflation from standard model criticality

    NASA Astrophysics Data System (ADS)

    Hamada, Yuta; Kawai, Hikaru; Oda, Kin-ya; Park, Seong Chan

    2015-03-01

    The observed Higgs mass MH=125.9 ±0.4 GeV leads to the criticality of the standard model, that is, the Higgs potential becomes flat around the scale 1 017 - 18 GeV for the top mass 171.3 GeV. Earlier we proposed a Higgs inflation scenario in which this criticality plays a crucial role. In this paper, we investigate the detailed cosmological predictions of this scenario in light of the latest Planck and BICEP2 results. We also consider the Higgs portal scalar dark matter model, and compute the Higgs one-loop effective potential with the two-loop renormalization group improvement. We find a constraint on the coupling between the Higgs boson and dark matter which depends on the inflationary parameters.

  9. Phenomenology of the utilitarian supersymmetric standard model

    NASA Astrophysics Data System (ADS)

    Fraser, Sean; Kownacki, Corey; Ma, Ernest; Pollard, Nicholas; Popov, Oleg; Zakeri, Mohammadreza

    2016-08-01

    We study the 2010 specific version of the 2002 proposed U(1)X extension of the supersymmetric standard model, which has no μ term and conserves baryon number and lepton number separately and automatically. We consider in detail the scalar sector as well as the extra ZX gauge boson, and their interactions with the necessary extra color-triplet particles of this model, which behave as leptoquarks. We show how the diphoton excess at 750 GeV, recently observed at the LHC, may be explained within this context. We identify a new fermion dark-matter candidate and discuss its properties. An important byproduct of this study is the discovery of relaxed supersymmetric constraints on the Higgs boson's mass of 125 GeV.

  10. Can the superstring inspire the standard model?

    NASA Astrophysics Data System (ADS)

    Ellis, John; Enqvist, K.; Nanopoulos, D. V.; Olive, Keith A.

    1988-02-01

    We discuss general features of models in which the E 8 × E' 8 heterotic superstring is compactified on a specific Calabi-Yau manifold. The gauge group of rank-6 in four dimensions is supposed to be broken down at an intermediate scale mI to the standard model group SU(3) C × SU(2) L × U(1) Y, as a result of two neutral scalar fields acquiring large vacuum expectations (vev's) in one of many flat directions of the effective potential. We find that it is difficult to generate such an intermediate scale by radiative symmetry breaking, whilst such models have prima facie problems with baryon decay mediated by massive particles and with non-perturbative behaviour of the gauge couplings, unless mI ≳ 10 16 GeV. Rapid baryon decay mediated by light particles, large neutrino masses, other ΔL ≠ 0 processes and flavour-changing neutral currents are generic features of these models. We illustrate these observations with explicit calculations in a number of different models given by vev's in different flat directions.

  11. Sphaleron rate in the minimal standard model.

    PubMed

    D'Onofrio, Michela; Rummukainen, Kari; Tranberg, Anders

    2014-10-01

    We use large-scale lattice simulations to compute the rate of baryon number violating processes (the sphaleron rate), the Higgs field expectation value, and the critical temperature in the standard model across the electroweak phase transition temperature. While there is no true phase transition between the high-temperature symmetric phase and the low-temperature broken phase, the crossover is sharp and located at temperature T(c) = (159.5 ± 1.5)  GeV. The sphaleron rate in the symmetric phase (T>T(c)) is Γ/T(4) = (18 ± 3)α(W)(5), and in the broken phase in the physically interesting temperature range 130 GeV < T < T(c) it can be parametrized as log(Γ/T(4)) = (0.83 ± 0.01)T/GeV-(147.7 ± 1.9). The freeze-out temperature in the early Universe, where the Hubble rate wins over the baryon number violation rate, is T* = (131.7 ± 2.3) GeV. These values, beyond being intrinsic properties of the standard model, are relevant for, e.g., low-scale leptogenesis scenarios. PMID:25325629

  12. Scenarios of physics beyond the standard model

    NASA Astrophysics Data System (ADS)

    Fok, Ricky

    This dissertation discusses three topics on scenarios beyond the Standard Model. Topic one is the effects from a fourth generation of quarks and leptons on electroweak baryogenesis in the early universe. The Standard Model is incapable of electroweak baryogenesis due to an insufficiently strong enough electroweak phase transition (EWPT) as well as insufficient CP violation. We show that the presence of heavy fourth generation fermions solves the first problem but requires additional bosons to be included to stabilize the electroweak vacuum. Introducing supersymmetric partners of the heavy fermions, we find that the EWPT can be made strong enough and new sources of CP violation are present. Topic two relates to the lepton avor problem in supersymmetry. In the Minimal Supersymmetric Standard Model (MSSM), the off-diagonal elements in the slepton mass matrix must be suppressed at the 10-3 level to avoid experimental bounds from lepton avor changing processes. This dissertation shows that an enlarged R-parity can alleviate the lepton avor problem. An analysis of all sensitive parameters was performed in the mass range below 1 TeV, and we find that slepton maximal mixing is possible without violating bounds from the lepton avor changing processes: mu → egamma; mu → e conversion, and mu → 3e. Topic three is the collider phenomenology of quirky dark matter. In this model, quirks are particles that are gauged under the electroweak group, as well as a dark" color SU(2) group. The hadronization scale of this color group is well below the quirk masses. As a result, the dark color strings never break. Quirk and anti-quirk pairs can be produced at the LHC. Once produced, they immediately form a bound state of high angular momentum. The quirk pair rapidly shed angular momentum by emitting soft radiation before they annihilate into observable signals. This dissertation presents the decay branching ratios of quirkonia where quirks obtain their masses through electroweak

  13. Wisconsin's Model Academic Standards for Agricultural Education. Bulletin No. 9003.

    ERIC Educational Resources Information Center

    Fortier, John D.; Albrecht, Bryan D.; Grady, Susan M.; Gagnon, Dean P.; Wendt, Sharon, W.

    These model academic standards for agricultural education in Wisconsin represent the work of a task force of educators, parents, and business people with input from the public. The introductory section of this bulletin defines the academic standards and discusses developing the standards, using the standards, relating the standards to all…

  14. Beyond the standard model of particle physics.

    PubMed

    Virdee, T S

    2016-08-28

    The Large Hadron Collider (LHC) at CERN and its experiments were conceived to tackle open questions in particle physics. The mechanism of the generation of mass of fundamental particles has been elucidated with the discovery of the Higgs boson. It is clear that the standard model is not the final theory. The open questions still awaiting clues or answers, from the LHC and other experiments, include: What is the composition of dark matter and of dark energy? Why is there more matter than anti-matter? Are there more space dimensions than the familiar three? What is the path to the unification of all the fundamental forces? This talk will discuss the status of, and prospects for, the search for new particles, symmetries and forces in order to address the open questions.This article is part of the themed issue 'Unifying physics and technology in light of Maxwell's equations'. PMID:27458261

  15. Sequestering the standard model vacuum energy.

    PubMed

    Kaloper, Nemanja; Padilla, Antonio

    2014-03-01

    We propose a very simple reformulation of general relativity, which completely sequesters from gravity all of the vacuum energy from a matter sector, including all loop corrections and renders all contributions from phase transitions automatically small. The idea is to make the dimensional parameters in the matter sector functionals of the 4-volume element of the Universe. For them to be nonzero, the Universe should be finite in spacetime. If this matter is the standard model of particle physics, our mechanism prevents any of its vacuum energy, classical or quantum, from sourcing the curvature of the Universe. The mechanism is consistent with the large hierarchy between the Planck scale, electroweak scale, and curvature scale, and early Universe cosmology, including inflation. Consequences of our proposal are that the vacuum curvature of an old and large universe is not zero, but very small, that w(DE) ≃ -1 is a transient, and that the Universe will collapse in the future. PMID:24655240

  16. Standard model with partial gauge invariance

    NASA Astrophysics Data System (ADS)

    Chkareuli, J. L.; Kepuladze, Z.

    2012-03-01

    We argue that an exact gauge invariance may disable some generic features of the Standard Model which could otherwise manifest themselves at high energies. One of them might be related to the spontaneous Lorentz invariance violation (SLIV), which could provide an alternative dynamical approach to QED and Yang-Mills theories with photon and non-Abelian gauge fields appearing as massless Nambu-Goldstone bosons. To see some key features of the new physics expected we propose partial rather than exact gauge invariance in an extended SM framework. This principle applied, in some minimal form, to the weak hypercharge gauge field B μ and its interactions, leads to SLIV with B field components appearing as the massless Nambu-Goldstone modes, and provides a number of distinctive Lorentz breaking effects. Being naturally suppressed at low energies they may become detectable in high energy physics and astrophysics. Some of the most interesting SLIV processes are considered in significant detail.

  17. The Standard Solar Model and beyond

    NASA Astrophysics Data System (ADS)

    Turck-Chièze, S.

    2016-01-01

    The Standard Solar Model (SSM) is an important reference in Astrophysics as the Sun stays today the most observed star. This model is used to predict the internal observables like neutrino fluxes and oscillation frequencies and consequently to validate its assumptions for its generalization to other stars. The model outputs result from the resolution of the classical stellar equations and the knowledge of fundamental physics like nuclear reaction rates, screening, photon interaction, plasma physics. The plasma conditions remained unmeasurable in laboratory for long due to the high temperature and high density conditions of the solar interior. Today, neutrino detections and helioseismology aboard SoHO have largely revealed the solar interior, in particular the nuclear solar core so one can estimate the reliability of SSM and also its coherence with the different indicators and between them. This has been possible thanks to a Seismic Solar Model (SeSM) which takes into account in addition the observed sound speed profile. Seismology quantifies also some internal dynamical processes that need to be properly introduced in the description of stars. This review describes the different steps of building of the SSM, its predictions and the comparisons with observations. It discusses the accuracy of such model compared to the accuracy of the SeSM. The noticed differences and observational constraints put some limits on other possible processes like dark matter, magnetic field or waves and determine the directions of progress for the near future that will come from precise emitted neutrino fluxes. High density laser facilities promise also unprecedented checks of energy transfer by photons and nuclear reaction rates.

  18. Geometrical Standard Model Enhancements to the Standard Model of Particle Physics

    NASA Astrophysics Data System (ADS)

    Strickland, Ken; Duvernois, Michael

    2011-10-01

    The Standard Model (SM) is the triumph of our age. As experimentation at the LHC tracks particles for the Higgs phenomena, theoreticians and experimentalist struggle to close in on a cohesive theory. Both suffer greatly as expectation waivers those who seek to move beyond the SM and those who cannot do without. When it seems like there are no more good ideas enter Rate Change Graph Technology (RCGT). From the science of the rate change graph, a Geometrical Standard Model (GSM) is available for comprehensive modeling, giving rich new sources of data and pathways to those ultimate answers we punish ourselves to achieve. As a new addition to science, GSM is a tool that provides a structured discovery and analysis environment. By eliminating value and size, RCGT operates with the rules of RCGT mechanics creating solutions derived from geometry. The GSM rate change graph could be the ultimate validation of the Standard Model yet. In its own right, GSM is created from geometrical intersections and comes with RCGT mechanics, yet parallels the SM to offer critical enhancements. The Higgs Objects along with a host of new objects are introduced to the SM and their positions revealed in this proposed modification to the SM.

  19. D -oscillons in the standard model extension

    NASA Astrophysics Data System (ADS)

    Correa, R. A. C.; da Rocha, Roldão; de Souza Dutra, A.

    2015-06-01

    In this work we investigate the consequences of the Lorentz symmetry violation on extremely long-lived, time-dependent, and spatially localized field configurations, named oscillons. This is accomplished for two interacting scalar field theories in (D +1 ) dimensions in the context of the so-called standard model extension. We show that D -dimensional scalar field lumps can present a typical size Rmin≪RKK , where RKK is the extent of extra dimensions in Kaluza-Klein theories. The size Rmin is shown to strongly depend upon the terms that control the LV of the theory. This implies either contraction or dilation of the average radius Rmin, and a new rule for its composition, likewise. Moreover, we show that the spatial dimensions for existence of oscillating lumps have an upper limit, opening new possibilities to probe the existence of D -dimensional oscillons at TeV energy scale. In addition, in a cosmological scenario with Lorentz symmetry breaking, we show that in the early Universe with an extremely high energy density and a strong LV, the typical size Rmin was highly dilated. As the Universe had expanded and cooled down, it then passed through a phase transition toward a Lorentz symmetry, wherein Rmin tends to be compact.

  20. Experimental tests of the standard model.

    SciTech Connect

    Nodulman, L.

    1998-11-11

    The title implies an impossibly broad field, as the Standard Model includes the fermion matter states, as well as the forces and fields of SU(3) x SU(2) x U(1). For practical purposes, I will confine myself to electroweak unification, as discussed in the lectures of M. Herrero. Quarks and mixing were discussed in the lectures of R. Aleksan, and leptons and mixing were discussed in the lectures of K. Nakamura. I will essentially assume universality, that is flavor independence, rather than discussing tests of it. I will not pursue tests of QED beyond noting the consistency and precision of measurements of {alpha}{sub EM} in various processes including the Lamb shift, the anomalous magnetic moment (g-2) of the electron, and the quantum Hall effect. The fantastic precision and agreement of these predictions and measurements is something that convinces people that there may be something to this science enterprise. Also impressive is the success of the ''Universal Fermi Interaction'' description of beta decay processes, or in more modern parlance, weak charged current interactions. With one coupling constant G{sub F}, most precisely determined in muon decay, a huge number of nuclear instabilities are described. The slightly slow rate for neutron beta decay was one of the initial pieces of evidence for Cabbibo mixing, now generalized so that all charged current decays of any flavor are covered.

  1. Augmented standard model and the simplest scenario

    NASA Astrophysics Data System (ADS)

    Wu, Tai Tsun; Wu, Sau Lan

    2015-11-01

    The experimental discovery of the Higgs particle in 2012 by the ATLAS Collaboration and the CMS Collaboration at CERN ushers in a new era of particle physics. On the basis of these data, scalar quarks and scalar leptons are added to each generation of quarks and leptons. The resulting augmented standard model has fermion-boson symmetry for each of three generations, but only one Higgs doublet giving masses to all the elementary particles. A specific special case, the simplest scenario, is studied in detail. In this case, there are twenty six quadratic divergences, and all these divergences are cancelled provided that one single relation between the masses is satisfied. This mass relation contains a great deal of information, and in particular determines the masses of all the right-handed scalar quarks and scalar leptons, while gives relations for the masses of the left-handed ones. An alternative procedure is also given with a different starting point and less reliance on the experimental data. The result is of course the same.

  2. Standard Model thermodynamics across the electroweak crossover

    SciTech Connect

    Laine, M.; Meyer, M.

    2015-07-22

    Even though the Standard Model with a Higgs mass m{sub \\tiny H}=125 GeV possesses no bulk phase transition, its thermodynamics still experiences a “soft point” at temperatures around T=160 GeV, with a deviation from ideal gas thermodynamics. Such a deviation may have an effect on precision computations of weakly interacting dark matter relic abundances if their mass is in the few TeV range, or on leptogenesis scenarios operating in this temperature range. By making use of results from lattice simulations based on a dimensionally reduced effective field theory, we estimate the relevant thermodynamic functions across the crossover. The results are tabulated in a numerical form permitting for their insertion as a background equation of state into cosmological particle production/decoupling codes. We find that Higgs dynamics induces a non-trivial “structure” visible e.g. in the heat capacity, but that in general the largest radiative corrections originate from QCD effects, reducing the energy density by a couple of percent from the free value even at T>160 GeV.

  3. Geometrical basis for the Standard Model

    SciTech Connect

    Potter, F. )

    1994-02-01

    The robust character of the Standard Model is confirmed. Examination of its geometrical basis in three equivalent internal symmetry spaces - the unitary plane C[sup 2], the quaternion space Q, and the real space R[sup 4] - as well as the real space R[sup 3] uncovers mathematical properties that predict the physical properties of leptons and quarks. The finite rotational subgroups of the gauge group SU(2)[sub L] [times] U(1)[sub Y] generate exactly three lepton families and four quark families and reveal how quarks and leptons are related. Among the physical properties explained are the mass ratios of the six leptons and eight quarks, the origin of the left-handed preference by the weak interaction, the geometrical source of color symmetry, and the zero neutrino masses. The (u,d) and (c,s) quark families team together to satisfy the triangle anomaly cancellation with the electron family, while the other families pair one-to-one for cancellation. The spontaneously broken symmetry is discrete and needs no Higgs mechanism. Predictions include all massless neutrinos, the top quark at 160 GeV/c[sup 2], the b[prime] quark at 80 GeV/c[sup 2], and the t[prime] quark at 2600 GeV/c[sup 2].

  4. Colorado Model Content Standards for Geography.

    ERIC Educational Resources Information Center

    Colorado State Dept. of Education, Denver.

    The geography standards for Colorado schools offer suggestions for geography education that prepare students to cope with the complexities of contemporary life. The standards give students a firm grasp of the place and terrain that surrounds them; the patterns of human development around the world; and the interactions of peoples, places, and…

  5. Models of Teaching: Connecting Student Learning with Standards

    ERIC Educational Resources Information Center

    Dell'Olio, Jeanine M.; Donk, Tony

    2007-01-01

    "Models of Teaching: Connecting Student Learning with Standards" features classic and contemporary models of teaching appropriate to elementary and secondary settings. Authors Jeanine M. Dell'Olio and Tony Donk use detailed case studies to discuss 10 models of teaching and demonstrate how the models can incorporate state content standards and…

  6. Beyond the Standard Model with supersymmetry

    NASA Astrophysics Data System (ADS)

    Sessolo, Enrico Maria

    We introduce recent research topics in beyond the Standard Model particle physics with Supersymmetry. In the first part we implement a new, extended approach to placing bounds on trilinear R-parity violating couplings. We focus on a limited set of leptonic and semi-leptonic processes involving neutrinos, combining multidimensional plotting and cross-checking constraints from different experiments. This allows us to explore new regions of parameter space and to relax a number of bounds given in the literature. We look for qualitatively different results compared to those obtained previously using the assumption that a single coupling dominates the R-parity violating contributions to a process. In the second part we investigate the prospects for indirect detection of fermion WIMPless dark matter at the neutrino telescopes IceCube and DeepCore. The dark matter annihilating in the Sun is a hidden sector Majorana fermion that couples through Yukawa couplings to a connector particle and a visible sector particle, and it exhibits only spin-dependent scattering with nuclei via couplings to first generation quarks. We consider cases where the annihilation products are taus, staus, or sneutrinos of the three generations. To evaluate the muon fluxes incident at the detector, we propagate the neutrino spectra through the solar medium and to the Earth and account for the effects of neutrino oscillations, energy losses due to neutral- and charged-current interactions, and tau regeneration. We find that for the stau and sneutrino channels, a 5 yr sigma detection of dark matter lighter than about 300~GeV is possible at IceCube for large Yukawa couplings or for dark matter and connector particles with similar masses. The tau channel offers far better detection prospects. However, due to its lower energy threshold and better muon background rejection capability, DeepCore is able to detect signals in all annihilation channels and for a wider range of dark matter masses.

  7. Selective experimental review of the Standard Model

    SciTech Connect

    Bloom, E.D.

    1985-02-01

    Before disussing experimental comparisons with the Standard Model, (S-M) it is probably wise to define more completely what is commonly meant by this popular term. This model is a gauge theory of SU(3)/sub f/ x SU(2)/sub L/ x U(1) with 18 parameters. The parameters are ..cap alpha../sub s/, ..cap alpha../sub qed/, theta/sub W/, M/sub W/ (M/sub Z/ = M/sub W//cos theta/sub W/, and thus is not an independent parameter), M/sub Higgs/; the lepton masses, M/sub e/, M..mu.., M/sub r/; the quark masses, M/sub d/, M/sub s/, M/sub b/, and M/sub u/, M/sub c/, M/sub t/; and finally, the quark mixing angles, theta/sub 1/, theta/sub 2/, theta/sub 3/, and the CP violating phase delta. The latter four parameters appear in the quark mixing matrix for the Kobayashi-Maskawa and Maiani forms. Clearly, the present S-M covers an enormous range of physics topics, and the author can only lightly cover a few such topics in this report. The measurement of R/sub hadron/ is fundamental as a test of the running coupling constant ..cap alpha../sub s/ in QCD. The author will discuss a selection of recent precision measurements of R/sub hadron/, as well as some other techniques for measuring ..cap alpha../sub s/. QCD also requires the self interaction of gluons. The search for the three gluon vertex may be practically realized in the clear identification of gluonic mesons. The author will present a limited review of recent progress in the attempt to untangle such mesons from the plethora q anti q states of the same quantum numbers which exist in the same mass range. The electroweak interactions provide some of the strongest evidence supporting the S-M that exists. Given the recent progress in this subfield, and particularly with the discovery of the W and Z bosons at CERN, many recent reviews obviate the need for further discussion in this report. In attempting to validate a theory, one frequently searches for new phenomena which would clearly invalidate it. 49 references, 28 figures.

  8. Neutrinos: in and out of the standard model

    SciTech Connect

    Parke, Stephen; /Fermilab

    2006-07-01

    The particle physics Standard Model has been tremendously successful in predicting the outcome of a large number of experiments. In this model Neutrinos are massless. Yet recent evidence points to the fact that neutrinos are massive particles with tiny masses compared to the other particles in the Standard Model. These tiny masses allow the neutrinos to change flavor and oscillate. In this series of Lectures, I will review the properties of Neutrinos In the Standard Model and then discuss the physics of Neutrinos Beyond the Standard Model. Topics to be covered include Neutrino Flavor Transformations and Oscillations, Majorana versus Dirac Neutrino Masses, the Seesaw Mechanism and Leptogenesis.

  9. The Standard Solar Model versus Experimental Observations

    NASA Astrophysics Data System (ADS)

    Manuel, O.

    2000-12-01

    The standard solar model (ssm) assumes the that Sun formed as a homogeneous body, its interior consists mostly of hydrogen, and its radiant energy comes from H-fusion in its core. Two sets of measurements indicate the ssm is wrong: 1. Analyses of material in the planetary system show that - (a) Fe, O, Ni, Si, Mg, S and Ca have high nuclear stability and comprise 98+% of ordinary meteorites that formed at the birth of the solar system; (b) the cores of inner planets formed in a central region consisting mostly of heavy elements like Fe, Ni and S; (c) the outer planets formed mostly from elements like H, He and C; and (d) isotopic heterogeneities accompanied these chemical gradients in debris of the supernova that exploded here 5 billion years ago to produce the solar system (See Origin of the Elements at http://www.umr.edu/õm/). 2. Analyses of material coming from the Sun show that - (a) there are not enough neutrinos for H-fusion to be its main source of energy; (b) light-weight isotopes (mass =L) of He, Ne, Ar, Kr and Xe in the solar wind are enriched relative to heavy isotopes (mass = H) by a factor, f, where log f = 4.56 log [H/L] -- - Eq. (1); (c) solar flares by-pass 3.4 of these 9-stages of diffusion and deplete the light-weight isotopes of He, Ne, Mg and Ar by a factor, f*, where log f* = -1.7 log [H/L] --- Eq. (2); (d) proton-capture on N-14 increased N-15 in the solar wind over geologic time; and (e) solar flares dredge up nitrogen with less N-15 from this H-fusion reaction. Each observation above is unexplained by ssm. After correcting photospheric abundances for diffusion [Observation 2(b)], the most abundant elements in the bulk sun are Fe, Ni, O, Si, S, Mg and Ca, the same elements that comprise ordinary meteorites [Observation 1(a)]. The probability that Eq. (1) would randomly select these elements from the photosphere, i.e., the likelihood for a meaningless agreement between observations 2(b) and 1(a), is < 2.0E(-33). Thus, ssm does not describe the

  10. Multilevel Linkages between State Standards, Teacher Standards, and Student Achievement: Testing External versus Internal Standards-Based Education Models

    ERIC Educational Resources Information Center

    Lee, Jaekyung; Liu, Xiaoyan; Amo, Laura Casey; Wang, Weichun Leilani

    2014-01-01

    Drawing on national and state assessment datasets in reading and math, this study tested "external" versus "internal" standards-based education models. The goal was to understand whether and how student performance standards work in multilayered school systems under No Child Left Behind Act of 2001 (NCLB). Under the…

  11. Primordial lithium and the standard model(s)

    NASA Technical Reports Server (NTRS)

    Deliyannis, Constantine P.; Demarque, Pierre; Kawaler, Steven D.; Romanelli, Paul; Krauss, Lawrence M.

    1989-01-01

    The results of new theoretical work on surface Li-7 and Li-6 evolution in the oldest halo stars are presented, along with a new and refined analysis of the predicted primordial Li abundance resulting from big-bang nucleosynthesis. This makes it possible to determine the constraints which can be imposed on cosmology using primordial Li and both standard big-bang and stellar-evolution models. This leads to limits on the baryon density today of 0.0044-0.025 (where the Hubble constant is 100h km/sec Mpc) and imposes limitations on alternative nucleosynthesis scenarios.

  12. 42 CFR 403.210 - NAIC model standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false NAIC model standards. 403.210 Section 403.210 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS SPECIAL PROGRAMS AND PROJECTS Medicare Supplemental Policies General Provisions § 403.210 NAIC model standards. (a) NAIC model...

  13. Mathematics Teacher TPACK Standards and Development Model

    ERIC Educational Resources Information Center

    Niess, Margaret L.; Ronau, Robert N.; Shafer, Kathryn G.; Driskell, Shannon O.; Harper, Suzanne R.; Johnston, Christopher; Browning, Christine; Ozgun-Koca, S. Asli; Kersaint, Gladis

    2009-01-01

    What knowledge is needed to teach mathematics with digital technologies? The overarching construct, called technology, pedagogy, and content knowledge (TPACK), has been proposed as the interconnection and intersection of technology, pedagogy, and content knowledge. Mathematics Teacher TPACK Standards offer guidelines for thinking about this…

  14. Particle Physics Primer: Explaining the Standard Model of Matter.

    ERIC Educational Resources Information Center

    Vondracek, Mark

    2002-01-01

    Describes the Standard Model, a basic model of the universe that describes electromagnetic force, weak nuclear force radioactivity, and the strong nuclear force responsible for holding particles within the nucleus together. (YDS)

  15. Creating Better School-Age Care Jobs: Model Work Standards.

    ERIC Educational Resources Information Center

    Haack, Peggy

    Built on the premise that good school-age care jobs are the cornerstone of high-quality services for school-age youth and their families, this guide presents model work standards for school-age care providers. The guide begins with a description of the strengths and challenges of the school-age care profession. The model work standards are…

  16. Le Indeterminacy in Spanish.

    ERIC Educational Resources Information Center

    Foster, David William

    The standard treatment of object pronouns in Latin American Spanish assigns a direct-object function to "lo" and "la" and an indirect-object function to "le." This study challenges this descriptive attribution in light of the contradictory and refractory evidence in Spanish morphosyntax. It is suggested that more detailed research, especially…

  17. Energy standards and model codes development, adoption, implementation, and enforcement

    SciTech Connect

    Conover, D.R.

    1994-08-01

    This report provides an overview of the energy standards and model codes process for the voluntary sector within the United States. The report was prepared by Pacific Northwest Laboratory (PNL) for the Building Energy Standards Program and is intended to be used as a primer or reference on this process. Building standards and model codes that address energy have been developed by organizations in the voluntary sector since the early 1970s. These standards and model codes provide minimum energy-efficient design and construction requirements for new buildings and, in some instances, existing buildings. The first step in the process is developing new or revising existing standards or codes. There are two overall differences between standards and codes. Energy standards are developed by a consensus process and are revised as needed. Model codes are revised on a regular annual cycle through a public hearing process. In addition to these overall differences, the specific steps in developing/revising energy standards differ from model codes. These energy standards or model codes are then available for adoption by states and local governments. Typically, energy standards are adopted by or adopted into model codes. Model codes are in turn adopted by states through either legislation or regulation. Enforcement is essential to the implementation of energy standards and model codes. Low-rise residential construction is generally evaluated for compliance at the local level, whereas state agencies tend to be more involved with other types of buildings. Low-rise residential buildings also may be more easily evaluated for compliance because the governing requirements tend to be less complex than for commercial buildings.

  18. Big bang nucleosynthesis - The standard model and alternatives

    NASA Technical Reports Server (NTRS)

    Schramm, David N.

    1991-01-01

    The standard homogeneous-isotropic calculation of the big bang cosmological model is reviewed, and alternate models are discussed. The standard model is shown to agree with the light element abundances for He-4, H-2, He-3, and Li-7 that are available. Improved observational data from recent LEP collider and SLC results are discussed. The data agree with the standard model in terms of the number of neutrinos, and provide improved information regarding neutron lifetimes. Alternate models are reviewed which describe different scenarios for decaying matter or quark-hadron induced inhomogeneities. The baryonic density relative to the critical density in the alternate models is similar to that of the standard model when they are made to fit the abundances. This reinforces the conclusion that the baryonic density relative to critical density is about 0.06, and also reinforces the need for both nonbaryonic dark matter and dark baryonic matter.

  19. Improved time-domain accuracy standards for model gravitational waveforms

    SciTech Connect

    Lindblom, Lee; Baker, John G.

    2010-10-15

    Model gravitational waveforms must be accurate enough to be useful for detection of signals and measurement of their parameters, so appropriate accuracy standards are needed. Yet these standards should not be unnecessarily restrictive, making them impractical for the numerical and analytical modelers to meet. The work of Lindblom, Owen, and Brown [Phys. Rev. D 78, 124020 (2008)] is extended by deriving new waveform accuracy standards which are significantly less restrictive while still ensuring the quality needed for gravitational-wave data analysis. These new standards are formulated as bounds on certain norms of the time-domain waveform errors, which makes it possible to enforce them in situations where frequency-domain errors may be difficult or impossible to estimate reliably. These standards are less restrictive by about a factor of 20 than the previously published time-domain standards for detection, and up to a factor of 60 for measurement. These new standards should therefore be much easier to use effectively.

  20. Issues in standard model symmetry breaking

    SciTech Connect

    Golden, M.

    1988-04-01

    This work discusses the symmetry breaking sector of the SU(2) x U(1) electroweak model. The first two chapters discuss Higgs masses in two simple Higgs models. The author proves low-enery theorems for the symmetry breaking sector: The threshold behavior of gauge-boson scattering is completely determined, whenever the symmetry breaking sector meets certain simple conditions. The author uses these theorems to derive event rates for the superconducting super collider (SSC). The author shows that the SSC may be able to determine whether the interactions of the symmetry breaking sector are strong or weak. 54 refs.

  1. A Standardized Generalized Dimensionality Discrepancy Measure and a Standardized Model-Based Covariance for Dimensionality Assessment for Multidimensional Models

    ERIC Educational Resources Information Center

    Levy, Roy; Xu, Yuning; Yel, Nedim; Svetina, Dubravka

    2015-01-01

    The standardized generalized dimensionality discrepancy measure and the standardized model-based covariance are introduced as tools to critique dimensionality assumptions in multidimensional item response models. These tools are grounded in a covariance theory perspective and associated connections between dimensionality and local independence.…

  2. Comparison of cosmological models using standard rulers and candles

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Lei; Cao, Shuo; Zheng, Xiao-Gang; Li, Song; Biesiada, Marek

    2016-05-01

    In this paper, we used standard rulers and standard candles (separately and jointly) to explore five popular dark energy models under the assumption of the spatial flatness of the Universe. As standard rulers, we used a data set comprised of 118 galactic scale strong lensing systems (individual standard rulers if properly calibrated for the mass density profile) combined with BAO diagnostics (statistical standard ruler). Type Ia supernovae served as standard candles. Unlike most previous statistical studies involving strong lensing systems, we relaxed the assumption of a singular isothermal sphere (SIS) in favor of its generalization: the power-law mass density profile. Therefore, along with cosmological model parameters, we fitted the power law index and its first derivative with respect to the redshift (thus allowing for mass density profile evolution). It turned out that the best fitted γ parameters are in agreement with each other, irrespective of the cosmological model considered. This demonstrates that galactic strong lensing systems may provide a complementary probe to test the properties of dark energy. The fits for cosmological model parameters which we obtained are in agreement with alternative studies performed by other researchers. Because standard rulers and standard candles have different parameter degeneracies, a combination of standard rulers and standard candles gives much more restrictive results for cosmological parameters. Finally, we attempted an analysis based on model selection using information theoretic criteria (AIC and BIC). Our results support the claim that the cosmological constant model is still best and there is no (at least statistical) reason to prefer any other more complex model.

  3. Physics Beyond the Standard Model: Supersymmetry

    SciTech Connect

    Nojiri, M.M.; Plehn, T.; Polesello, G.; Alexander, John M.; Allanach, B.C.; Barr, Alan J.; Benakli, K.; Boudjema, F.; Freitas, A.; Gwenlan, C.; Jager, S.; /CERN /LPSC, Grenoble

    2008-02-01

    This collection of studies on new physics at the LHC constitutes the report of the supersymmetry working group at the Workshop 'Physics at TeV Colliders', Les Houches, France, 2007. They cover the wide spectrum of phenomenology in the LHC era, from alternative models and signatures to the extraction of relevant observables, the study of the MSSM parameter space and finally to the interplay of LHC observations with additional data expected on a similar time scale. The special feature of this collection is that while not each of the studies is explicitly performed together by theoretical and experimental LHC physicists, all of them were inspired by and discussed in this particular environment.

  4. Theory of Time beyond the standard model

    SciTech Connect

    Poliakov, Eugene S.

    2008-05-29

    A frame of non-uniform time is discussed. A concept of 'flow of time' is presented. The principle of time relativity in analogy with Galilean principle of relativity is set. Equivalence principle is set to state that the outcome of non-uniform time in an inertial frame of reference is equivalent to the outcome of a fictitious gravity force external to the frame of reference. Thus it is flow of time that causes gravity rather than mass. The latter is compared to experimental data achieving precision of up to 0.0003%. It is shown that the law of energy conservation is inapplicable to the frames of non-uniform time. A theoretical model of a physical entity (point mass, photon) travelling in the field of non-uniform time is considered. A generalized law that allows the flow of time to replace classical energy conservation is introduced on the basis of the experiment of Pound and Rebka. It is shown that linear dependence of flow of time on spatial coordinate conforms the inverse square law of universal gravitation and Keplerian mechanics. Momentum is shown to still be conserved.

  5. CP violation and electroweak baryogenesis in the Standard Model

    NASA Astrophysics Data System (ADS)

    Brauner, Tomáš

    2014-04-01

    One of the major unresolved problems in current physics is understanding the origin of the observed asymmetry between matter and antimatter in the Universe. It has become a common lore to claim that the Standard Model of particle physics cannot produce sufficient asymmetry to explain the observation. Our results suggest that this conclusion can be alleviated in the so-called cold electroweak baryogenesis scenario. On the Standard Model side, we continue the program initiated by Smit eight years ago; one derives the effective CP-violating action for the Standard Model bosons and uses the resulting effective theory in numerical simulations. We address a disagreement between two previous computations performed effectively at zero temperature, and demonstrate that it is very important to include temperature effects properly. Our conclusion is that the cold electroweak baryogenesis scenario within the Standard Model is tightly constrained, yet producing enough baryon asymmetry using just known physics still seems possible.

  6. The standard data model approach to patient record transfer.

    PubMed Central

    Canfield, K.; Silva, M.; Petrucci, K.

    1994-01-01

    This paper develops an approach to electronic data exchange of patient records from Ambulatory Encounter Systems (AESs). This approach assumes that the AES is based upon a standard data model. The data modeling standard used here is IDEFIX for Entity/Relationship (E/R) modeling. Each site that uses a relational database implementation of this standard data model (or a subset of it) can exchange very detailed patient data with other such sites using industry standard tools and without excessive programming efforts. This design is detailed below for a demonstration project between the research-oriented geriatric clinic at the Baltimore Veterans Affairs Medical Center (BVAMC) and the Laboratory for Healthcare Informatics (LHI) at the University of Maryland. PMID:7949973

  7. Enhancements to ASHRAE Standard 90.1 Prototype Building Models

    SciTech Connect

    Goel, Supriya; Athalye, Rahul A.; Wang, Weimin; Zhang, Jian; Rosenberg, Michael I.; Xie, YuLong; Hart, Philip R.; Mendon, Vrushali V.

    2014-04-16

    This report focuses on enhancements to prototype building models used to determine the energy impact of various versions of ANSI/ASHRAE/IES Standard 90.1. Since the last publication of the prototype building models, PNNL has made numerous enhancements to the original prototype models compliant with the 2004, 2007, and 2010 editions of Standard 90.1. Those enhancements are described here and were made for several reasons: (1) to change or improve prototype design assumptions; (2) to improve the simulation accuracy; (3) to improve the simulation infrastructure; and (4) to add additional detail to the models needed to capture certain energy impacts from Standard 90.1 improvements. These enhancements impact simulated prototype energy use, and consequently impact the savings estimated from edition to edition of Standard 90.1.

  8. A Repository for Beyond-the-Standard-Model Tools

    SciTech Connect

    Skands, P.; Richardson, P.; Allanach, B.C.; Baer, H.; Belanger, G.; El Kacimi, M.; Ellwanger, U.; Freitas, A.; Ghodbane, N.; Goujdami, D.; Hahn, T.; Heinemeyer, S.; Kneur, J.-L.; Landsberg, G.; Lee, J.S.; Muhlleitner, M.; Ohl, T.; Perez, E.; Peskin, M.; Pilaftsis, A.; Plehn, T.

    2005-05-01

    To aid phenomenological studies of Beyond-the-Standard-Model (BSM) physics scenarios, a web repository for BSM calculational tools has been created. We here present brief overviews of the relevant codes, ordered by topic as well as by alphabet.

  9. NASA Standard for Models and Simulations: Philosophy and Requirements Overview

    NASA Technical Reports Server (NTRS)

    Blattnig, Steve R.; Luckring, James M.; Morrison, Joseph H.; Sylvester, Andre J.; Tripathi, Ram K.; Zang, Thomas A.

    2013-01-01

    Following the Columbia Accident Investigation Board report, the NASA Administrator chartered an executive team (known as the Diaz Team) to identify those CAIB report elements with NASA-wide applicability and to develop corrective measures to address each element. One such measure was the development of a standard for the development, documentation, and operation of models and simulations. This report describes the philosophy and requirements overview of the resulting NASA Standard for Models and Simulations.

  10. NASA Standard for Models and Simulations: Philosophy and Requirements Overview

    NASA Technical Reports Server (NTRS)

    Blattnig, St3eve R.; Luckring, James M.; Morrison, Joseph H.; Sylvester, Andre J.; Tripathi, Ram K.; Zang, Thomas A.

    2009-01-01

    Following the Columbia Accident Investigation Board report, the NASA Administrator chartered an executive team (known as the Diaz Team) to identify those CAIB report elements with NASA-wide applicability and to develop corrective measures to address each element. One such measure was the development of a standard for the development, documentation, and operation of models and simulations. This report describes the philosophy and requirements overview of the resulting NASA Standard for Models and Simulations.

  11. Sustainable model building the role of standards and biological semantics.

    PubMed

    Krause, Falko; Schulz, Marvin; Swainston, Neil; Liebermeister, Wolfram

    2011-01-01

    Systems biology models can be reused within new simulation scenarios, as parts of more complex models or as sources of biochemical knowledge. Reusability does not come by itself but has to be ensured while creating a model. Most important, models should be designed to remain valid in different contexts-for example, for different experimental conditions-and be published in a standardized and well-documented form. Creating reusable models is worthwhile, but it requires some efforts when a model is developed, implemented, documented, and published. Minimum requirements for published systems biology models have been formulated by the MIRIAM initiative. Main criteria are completeness of information and documentation, availability of machine-readable models in standard formats, and semantic annotations connecting the model elements with entries in biological Web resources. In this chapter, we discuss the assumptions behind bottom-up modeling; present important standards like MIRIAM, the Systems Biology Markup Language (SBML), and the Systems Biology Graphical Notation (SBGN); and describe software tools and services for handling semantic annotations. Finally, we show how standards can facilitate the construction of large metabolic network models. PMID:21943907

  12. Animal Models of Tourette Syndrome—From Proliferation to Standardization

    PubMed Central

    Yael, Dorin; Israelashvili, Michal; Bar-Gad, Izhar

    2016-01-01

    Tourette syndrome (TS) is a childhood onset disorder characterized by motor and vocal tics and associated with multiple comorbid symptoms. Over the last decade, the accumulation of findings from TS patients and the emergence of new technologies have led to the development of novel animal models with high construct validity. In addition, animal models which were previously associated with other disorders were recently attributed to TS. The proliferation of TS animal models has accelerated TS research and provided a better understanding of the mechanism underlying the disorder. This newfound success generates novel challenges, since the conclusions that can be drawn from TS animal model studies are constrained by the considerable variation across models. Typically, each animal model examines a specific subset of deficits and centers on one field of research (physiology/genetics/pharmacology/etc.). Moreover, different studies do not use a standard lexicon to characterize different properties of the model. These factors hinder the evaluation of individual model validity as well as the comparison across models, leading to a formation of a fuzzy, segregated landscape of TS pathophysiology. Here, we call for a standardization process in the study of TS animal models as the next logical step. We believe that a generation of standard examination criteria will improve the utility of these models and enable their consolidation into a general framework. This should lead to a better understanding of these models and their relationship to TS, thereby improving the research of the mechanism underlying this disorder and aiding the development of new treatments. PMID:27065791

  13. Animal Models of Tourette Syndrome-From Proliferation to Standardization.

    PubMed

    Yael, Dorin; Israelashvili, Michal; Bar-Gad, Izhar

    2016-01-01

    Tourette syndrome (TS) is a childhood onset disorder characterized by motor and vocal tics and associated with multiple comorbid symptoms. Over the last decade, the accumulation of findings from TS patients and the emergence of new technologies have led to the development of novel animal models with high construct validity. In addition, animal models which were previously associated with other disorders were recently attributed to TS. The proliferation of TS animal models has accelerated TS research and provided a better understanding of the mechanism underlying the disorder. This newfound success generates novel challenges, since the conclusions that can be drawn from TS animal model studies are constrained by the considerable variation across models. Typically, each animal model examines a specific subset of deficits and centers on one field of research (physiology/genetics/pharmacology/etc.). Moreover, different studies do not use a standard lexicon to characterize different properties of the model. These factors hinder the evaluation of individual model validity as well as the comparison across models, leading to a formation of a fuzzy, segregated landscape of TS pathophysiology. Here, we call for a standardization process in the study of TS animal models as the next logical step. We believe that a generation of standard examination criteria will improve the utility of these models and enable their consolidation into a general framework. This should lead to a better understanding of these models and their relationship to TS, thereby improving the research of the mechanism underlying this disorder and aiding the development of new treatments. PMID:27065791

  14. The standard model and beyond in noncommutative geometry

    NASA Astrophysics Data System (ADS)

    Schelp, Richard Charles

    2000-11-01

    Noncommutative geometry and the formulation of the standard model within it is reviewed. The phrasing within noncommutative geometry of a model of particle physics based on S(U(2) × U(3)) is attempted and found to be incompatible with the mathematical structure. Noncommutative geometry versions of unified theories based on SU(15) and SU(16) are found not to yield the necessary spontaneous symmetry breaking. An extension of the standard model which includes right-handed neutrinos (and no additional fermions) is shown to be compatible with Poincaré duality only if the number of right- handed neutrinos is not equal to three.

  15. A Standard Kinematic Model for Flight Simulation at NASA Ames

    NASA Technical Reports Server (NTRS)

    Mcfarland, R. E.

    1975-01-01

    A standard kinematic model for aircraft simulation exists at NASA-Ames on a variety of computer systems, one of which is used to control the flight simulator for advanced aircraft (FSAA). The derivation of the kinematic model is given and various mathematical relationships are presented as a guide. These include descriptions of standardized simulation subsystems such as the atmospheric turbulence model and the generalized six-degrees-of-freedom trim routine, as well as an introduction to the emulative batch-processing system which enables this facility to optimize its real-time environment.

  16. Non-standard models and the sociology of cosmology

    NASA Astrophysics Data System (ADS)

    López-Corredoira, Martín

    2014-05-01

    I review some theoretical ideas in cosmology different from the standard "Big Bang": the quasi-steady state model, the plasma cosmology model, non-cosmological redshifts, alternatives to non-baryonic dark matter and/or dark energy, and others. Cosmologists do not usually work within the framework of alternative cosmologies because they feel that these are not at present as competitive as the standard model. Certainly, they are not so developed, and they are not so developed because cosmologists do not work on them. It is a vicious circle. The fact that most cosmologists do not pay them any attention and only dedicate their research time to the standard model is to a great extent due to a sociological phenomenon (the "snowball effect" or "groupthink"). We might well wonder whether cosmology, our knowledge of the Universe as a whole, is a science like other fields of physics or a predominant ideology.

  17. Conformal Loop quantization of gravity coupled to the standard model

    NASA Astrophysics Data System (ADS)

    Pullin, Jorge; Gambini, Rodolfo

    2016-03-01

    We consider a local conformal invariant coupling of the standard model to gravity free of any dimensional parameter. The theory is formulated in order to have a quantized version that admits a spin network description at the kinematical level like that of loop quantum gravity. The Gauss constraint, the diffeomorphism constraint and the conformal constraint are automatically satisfied and the standard inner product of the spin-network basis still holds. The resulting theory has resemblances with the Bars-Steinhardt-Turok local conformal theory, except it admits a canonical quantization in terms of loops. By considering a gauge fixed version of the theory we show that the Standard model coupled to gravity is recovered and the Higgs boson acquires mass. This in turn induces via the standard mechanism masses for massive bosons, baryons and leptons.

  18. Higgs phenomenology in the standard model and beyond

    NASA Astrophysics Data System (ADS)

    Field, Bryan Jonathan

    2005-07-01

    The way in which the electroweak symmetry is broken in nature is currently unknown. The electroweak symmetry is theoretically broken in the Standard Model by the Higgs mechanism which generates masses for the particle content and introduces a single scalar to the particle spectrum, the Higgs boson. This particle has not yet been observed and the value of it mass is a free parameter in the Standard Model. The observation of one (or more) Higgs bosons would confirm our understanding of the Standard Model. In this thesis, we study the phenomenology of the Standard Model Higgs boson and compare its production observables to those of the Pseudoscalar Higgs boson and the lightest scalar Higgs boson of the Minimally Supersymmetric Standard Model. We study the production at both the Fermilab Tevatron and the future CERN Large Hadron Collider (LHC). In the first part of the thesis, we present the results of our calculations in the framework of perturbative QCD. In the second part, we present our resummed calculations.

  19. Explore Physics Beyond the Standard Model with GLAST

    SciTech Connect

    Lionetto, A. M.

    2007-07-12

    We give an overview of the possibility of GLAST to explore theories beyond the Standard Model of particle physics. Among the wide taxonomy we will focus in particular on low scale supersymmetry and theories with extra space-time dimensions. These theories give a suitable dark matter candidate whose interactions and composition can be studied using a gamma ray probe. We show the possibility of GLAST to disentangle such exotic signals from a standard production background.

  20. Models, standards and structures of nursing documentation in European countries.

    PubMed

    Thoroddsen, Asta; Saranto, Kaija; Ehrenberg, Anna; Sermeus, Walter

    2009-01-01

    The use of standardized nursing languages varies between and even within different European countries. Standardization of a nursing language is a demanding process which requires substantial methodological and technological knowledge as well as cultural experience in terminology development work. A survey was carried out to describe the current state of art of the use of models, standards and structures in nursing documentation. A web-based questionnaire was targeted to members of the Association for Common European Nursing Diagnoses, Interventions and Outcomes (ACENDIO). Replies were received from 17 countries in Europe. Results show that the nursing process is the model most often used to structure nursing documentation in Europe. Many standardized nursing terminologies are used in Europe but general use in nursing is still lacking which makes access to nursing data an obstacle. In more than 60% of the institutions in the countries that replied were nursing data not stored and could therefore not be retrieved. These results should be a major concern to nurses in Europe. This relates to the lack of use of standards in use of nursing terminologies and information systems. Standardization activities in existing and evolving networks in Europe, as well as in other parts of the world, need to be enhanced. As a European platform, ACENDIO can play a role in these standardization activities and should develop its role accordingly. PMID:19592859

  1. NASA Standard for Models and Simulations: Credibility Assessment Scale

    NASA Technical Reports Server (NTRS)

    Babula, Maria; Bertch, William J.; Green, Lawrence L.; Hale, Joseph P.; Mosier, Gary E.; Steele, Martin J.; Woods, Jody

    2009-01-01

    As one of its many responses to the 2003 Space Shuttle Columbia accident, NASA decided to develop a formal standard for models and simulations (M&S). Work commenced in May 2005. An interim version was issued in late 2006. This interim version underwent considerable revision following an extensive Agency-wide review in 2007 along with some additional revisions as a result of the review by the NASA Engineering Management Board (EMB) in the first half of 2008. Issuance of the revised, permanent version, hereafter referred to as the M&S Standard or just the Standard, occurred in July 2008. Bertch, Zang and Steeleiv provided a summary review of the development process of this standard up through the start of the review by the EMB. A thorough recount of the entire development process, major issues, key decisions, and all review processes are available in Ref. v. This is the second of a pair of papers providing a summary of the final version of the Standard. Its focus is the Credibility Assessment Scale, a key feature of the Standard, including an example of its application to a real-world M&S problem for the James Webb Space Telescope. The companion paper summarizes the overall philosophy of the Standard and an overview of the requirements. Verbatim quotes from the Standard are integrated into the text of this paper, and are indicated by quotation marks.

  2. Prediction of Standard Enthalpy of Formation by a QSPR Model

    PubMed Central

    Vatani, Ali; Mehrpooya, Mehdi; Gharagheizi, Farhad

    2007-01-01

    The standard enthalpy of formation of 1115 compounds from all chemical groups, were predicted using genetic algorithm-based multivariate linear regression (GA-MLR). The obtained multivariate linear five descriptors model by GA-MLR has correlation coefficient (R2 = 0.9830). All molecular descriptors which have entered in this model are calculated from chemical structure of any molecule. As a result, application of this model for any compound is easy and accurate.

  3. Peer Review of NRC Standardized Plant Analysis Risk Models

    SciTech Connect

    Anthony Koonce; James Knudsen; Robert Buell

    2011-03-01

    The Nuclear Regulatory Commission (NRC) Standardized Plant Analysis Risk (SPAR) Models underwent a Peer Review using ASME PRA standard (Addendum C) as endorsed by NRC in Regulatory Guide (RG) 1.200. The review was performed by a mix of industry probabilistic risk analysis (PRA) experts and NRC PRA experts. Representative SPAR models, one PWR and one BWR, were reviewed against Capability Category I of the ASME PRA standard. Capability Category I was selected as the basis for review due to the specific uses/applications of the SPAR models. The BWR SPAR model was reviewed against 331 ASME PRA Standard Supporting Requirements; however, based on the Capability Category I level of review and the absence of internal flooding and containment performance (LERF) logic only 216 requirements were determined to be applicable. Based on the review, the BWR SPAR model met 139 of the 216 supporting requirements. The review also generated 200 findings or suggestions. Of these 200 findings and suggestions 142 were findings and 58 were suggestions. The PWR SPAR model was also evaluated against the same 331 ASME PRA Standard Supporting Requirements. Of these requirements only 215 were deemed appropriate for the review (for the same reason as noted for the BWR). The PWR review determined that 125 of the 215 supporting requirements met Capability Category I or greater. The review identified 101 findings or suggestions (76 findings and 25 suggestions). These findings or suggestions were developed to identify areas where SPAR models could be enhanced. A process to prioritize and incorporate the findings/suggestions supporting requirements into the SPAR models is being developed. The prioritization process focuses on those findings that will enhance the accuracy, completeness and usability of the SPAR models.

  4. Test of a Power Transfer Model for Standardized Electrofishing

    USGS Publications Warehouse

    Miranda, L.E.; Dolan, C.R.

    2003-01-01

    Standardization of electrofishing in waters with differing conductivities is critical when monitoring temporal and spatial differences in fish assemblages. We tested a model that can help improve the consistency of electrofishing by allowing control over the amount of power that is transferred to the fish. The primary objective was to verify, under controlled laboratory conditions, whether the model adequately described fish immobilization responses elicited with various electrical settings over a range of water conductivities. We found that the model accurately described empirical observations over conductivities ranging from 12 to 1,030 ??S/cm for DC and various pulsed-DC settings. Because the model requires knowledge of a fish's effective conductivity, an attribute that is likely to vary according to species, size, temperature, and other variables, a second objective was to gather available estimates of the effective conductivity of fish to examine the magnitude of variation and to assess whether in practical applications a standard effective conductivity value for fish may be assumed. We found that applying a standard fish effective conductivity of 115 ??S/cm introduced relatively little error into the estimation of the peak power density required to immobilize fish with electrofishing. However, this standard was derived from few estimates of fish effective conductivity and a limited number of species; more estimates are needed to validate our working standard.

  5. Non-standard Hubbard models in optical lattices: a review

    NASA Astrophysics Data System (ADS)

    Dutta, Omjyoti; Gajda, Mariusz; Hauke, Philipp; Lewenstein, Maciej; Lühmann, Dirk-Sören; Malomed, Boris A.; Sowiński, Tomasz; Zakrzewski, Jakub

    2015-06-01

    Originally, the Hubbard model was derived for describing the behavior of strongly correlated electrons in solids. However, for over a decade now, variations of it have also routinely been implemented with ultracold atoms in optical lattices, allowing their study in a clean, essentially defect-free environment. Here, we review some of the vast literature on this subject, with a focus on more recent non-standard forms of the Hubbard model. After giving an introduction to standard (fermionic and bosonic) Hubbard models, we discuss briefly common models for mixtures, as well as the so-called extended Bose-Hubbard models, that include interactions between neighboring sites, next-neighbor sites, and so on. The main part of the review discusses the importance of additional terms appearing when refining the tight-binding approximation for the original physical Hamiltonian. Even when restricting the models to the lowest Bloch band is justified, the standard approach neglects the density-induced tunneling (which has the same origin as the usual on-site interaction). The importance of these contributions is discussed for both contact and dipolar interactions. For sufficiently strong interactions, the effects related to higher Bloch bands also become important even for deep optical lattices. Different approaches that aim at incorporating these effects, mainly via dressing the basis, Wannier functions with interactions, leading to effective, density-dependent Hubbard-type models, are reviewed. We discuss also examples of Hubbard-like models that explicitly involve higher p orbitals, as well as models that dynamically couple spin and orbital degrees of freedom. Finally, we review mean-field nonlinear Schrödinger models of the Salerno type that share with the non-standard Hubbard models nonlinear coupling between the adjacent sites. In that part, discrete solitons are the main subject of consideration. We conclude by listing some open problems, to be addressed in the future.

  6. Non-standard Hubbard models in optical lattices: a review.

    PubMed

    Dutta, Omjyoti; Gajda, Mariusz; Hauke, Philipp; Lewenstein, Maciej; Lühmann, Dirk-Sören; Malomed, Boris A; Sowiński, Tomasz; Zakrzewski, Jakub

    2015-06-01

    Originally, the Hubbard model was derived for describing the behavior of strongly correlated electrons in solids. However, for over a decade now, variations of it have also routinely been implemented with ultracold atoms in optical lattices, allowing their study in a clean, essentially defect-free environment. Here, we review some of the vast literature on this subject, with a focus on more recent non-standard forms of the Hubbard model. After giving an introduction to standard (fermionic and bosonic) Hubbard models, we discuss briefly common models for mixtures, as well as the so-called extended Bose-Hubbard models, that include interactions between neighboring sites, next-neighbor sites, and so on. The main part of the review discusses the importance of additional terms appearing when refining the tight-binding approximation for the original physical Hamiltonian. Even when restricting the models to the lowest Bloch band is justified, the standard approach neglects the density-induced tunneling (which has the same origin as the usual on-site interaction). The importance of these contributions is discussed for both contact and dipolar interactions. For sufficiently strong interactions, the effects related to higher Bloch bands also become important even for deep optical lattices. Different approaches that aim at incorporating these effects, mainly via dressing the basis, Wannier functions with interactions, leading to effective, density-dependent Hubbard-type models, are reviewed. We discuss also examples of Hubbard-like models that explicitly involve higher p orbitals, as well as models that dynamically couple spin and orbital degrees of freedom. Finally, we review mean-field nonlinear Schrödinger models of the Salerno type that share with the non-standard Hubbard models nonlinear coupling between the adjacent sites. In that part, discrete solitons are the main subject of consideration. We conclude by listing some open problems, to be addressed in the future

  7. Loop Corrections to Standard Model fields in inflation

    NASA Astrophysics Data System (ADS)

    Chen, Xingang; Wang, Yi; Xianyu, Zhong-Zhi

    2016-08-01

    We calculate 1-loop corrections to the Schwinger-Keldysh propagators of Standard-Model-like fields of spin-0, 1/2, and 1, with all renormalizable interactions during inflation. We pay special attention to the late-time divergences of loop corrections, and show that the divergences can be resummed into finite results in the late-time limit using dynamical renormalization group method. This is our first step toward studying both the Standard Model and new physics in the primordial universe.

  8. Heavy-lepton production in the minimal supersymmetric standard model

    SciTech Connect

    Cieza Montalvo, J.E. ); Eboli, O.J.P.; Novaes, S.F. )

    1992-07-01

    We study the production of a charged-heavy-lepton pair considering the minimal supersymmetric standard model. We show that the cross section for the process {ital pp}{r arrow}{ital gg}{r arrow}{ital l}{sup +}{ital l{minus}} is enhanced for large values of the ratio between the two-Higgs-doublet vacuum expectation values, in comparison with the standard model result. The gluon fusion mechansim is the most important contribution to the lepton pair production for {ital M}{sub {ital l}}{gt}50 GeV.

  9. Status of the AIAA Modeling and Simulation Format Standard

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Hildreth, Bruce L.

    2008-01-01

    The current draft AIAA Standard for flight simulation models represents an on-going effort to improve the productivity of practitioners of the art of digital flight simulation (one of the original digital computer applications). This initial release provides the capability for the efficient representation and exchange of an aerodynamic model in full fidelity; the DAVE-ML format can be easily imported (with development of site-specific import tools) in an unambiguous way with automatic verification. An attractive feature of the standard is the ability to coexist with existing legacy software or tools. The draft Standard is currently limited in scope to static elements of dynamic flight simulations; however, these static elements represent the bulk of typical flight simulation mathematical models. It is already seeing application within U.S. and Australian government agencies in an effort to improve productivity and reduce model rehosting overhead. An existing tool allows import of DAVE-ML models into a popular simulation modeling and analysis tool, and other community-contributed tools and libraries can simplify the use of DAVE-ML compliant models at compile- or run-time of high-fidelity flight simulation.

  10. Search for the standard model Higgs boson in $l\

    SciTech Connect

    Li, Dikai

    2013-01-01

    Humans have always attempted to understand the mystery of Nature, and more recently physicists have established theories to describe the observed phenomena. The most recent theory is a gauge quantum field theory framework, called Standard Model (SM), which proposes a model comprised of elementary matter particles and interaction particles which are fundamental force carriers in the most unified way. The Standard Model contains the internal symmetries of the unitary product group SU(3)c ⓍSU(2)L Ⓧ U(1)Y , describes the electromagnetic, weak and strong interactions; the model also describes how quarks interact with each other through all of these three interactions, how leptons interact with each other through electromagnetic and weak forces, and how force carriers mediate the fundamental interactions.

  11. Recherche du boson de Higgs du nideke standard dans le canal ZH->e+e-b$\\bar{b}$ avec le detecteur DØ aupres du Tevatron

    SciTech Connect

    Calpas, Betty Constante

    2010-06-11

    The organization of this thesis consists of three main ideas: the first presents the theoretical framework and experimental, as well as objects used in the analysis and the second relates to the various work tasks of service that I performed on the calorimeter, and the third is the search for the Higgs boson in the channel ZH → e+e-b$\\bar{b}$. Thus, this thesis has the following structure: Chapter 1 is an introduction to the standard model of particle physics and the Higgs mechanism; Chapter 2 is an overview of the complex and the acceleration of the Tevatron at Fermilab DØ detector; Chapter 3 is an introduction to physical objects used in this thesis; Chapter 4 presents the study made on correcting the energy measured in the calorimeter; Chapter 5 describes the study of certification of electrons in the calorimeter; Chapter 6 describes the study of certification of electrons in the intercryostat region of calorimeter; Chapter 7 Detailed analysis on the search for Higgs production in the channel ZH → e+e-b$\\bar{b}$; and Chapter 8 presents the final results of the calculations of upper limits to the production cross section of the Higgs boson on a range of low masses.

  12. Home Economics Education Career Path Guide and Model Curriculum Standards.

    ERIC Educational Resources Information Center

    California State Univ., Northridge.

    This curriculum guide developed in California and organized in 10 chapters, provides a home economics education career path guide and model curriculum standards for high school home economics programs. The first chapter contains information on the following: home economics education in California, home economics careers for the future, home…

  13. Precision tests of quantum chromodynamics and the standard model

    SciTech Connect

    Brodsky, S.J.; Lu, H.J.

    1995-06-01

    The authors discuss three topics relevant to testing the Standard Model to high precision: commensurate scale relations, which relate observables to each other in perturbation theory without renormalization scale or scheme ambiguity, the relationship of compositeness to anomalous moments, and new methods for measuring the anomalous magnetic and quadrupole moments of the W and Z.

  14. An Exercise in Modelling Using the US Standard Atmosphere

    ERIC Educational Resources Information Center

    LoPresto, Michael C.; Jacobs, Diane A.

    2007-01-01

    In this exercise the US Standard Atmosphere is used as "data" that a student is asked to model by deriving equations to reproduce it with the help of spreadsheet and graphing software. The exercise can be used as a laboratory or an independent study for a student of introductory physics to provide an introduction to scientific research methods…

  15. Radiative breaking of conformal symmetry in the Standard Model

    NASA Astrophysics Data System (ADS)

    Arbuzov, A. B.; Nazmitdinov, R. G.; Pavlov, A. E.; Pervushin, V. N.; Zakharov, A. F.

    2016-02-01

    Radiative mechanism of conformal symmetry breaking in a comformal-invariant version of the Standard Model is considered. The Coleman-Weinberg mechanism of dimensional transmutation in this system gives rise to finite vacuum expectation values and, consequently, masses of scalar and spinor fields. A natural bootstrap between the energy scales of the top quark and Higgs boson is suggested.

  16. Teacher Leader Model Standards: Implications for Preparation, Policy, and Practice

    ERIC Educational Resources Information Center

    Berg, Jill Harrison; Carver, Cynthia L.; Mangin, Melinda M.

    2014-01-01

    Teacher leadership is increasingly recognized as a resource for instructional improvement. Consequently, teacher leader initiatives have expanded rapidly despite limited knowledge about how to prepare and support teacher leaders. In this context, the "Teacher Leader Model Standards" represent an important development in the field. In…

  17. View of a five inch standard Mark III model 1 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of a five inch standard Mark III model 1 #39, manufactured in 1916 at the naval gun factory waterveliet, NY; this is the only gun remaining on olympia dating from the period when it was in commission; note ammunition lift at left side of photograph. (p36) - USS Olympia, Penn's Landing, 211 South Columbus Boulevard, Philadelphia, Philadelphia County, PA

  18. Superconducting self propulsion requires beyond the standard model

    NASA Astrophysics Data System (ADS)

    Nassikas, A. A.

    2012-09-01

    The standard model implies the energy and momentum conservation law and the Higgs boson existence. Thus, the violation of the conservation law implies the violation of the standard model and its implications. Object of this paper is to describe the experimental verification of a self-propulsive force created by means of a superconducting device. This device is a converging nozzle made of a superconductor like YBCO and two permanent magnets, acting as a self-propulsion mechanism with direction towards the converging area. This device is activated when it is immersed within a coolant as the liquid Nitrogen. The force is measured through the slope of a pendulum created by the device mentioned hanged by means of a string from a constant point. This self propulsion violates the conservation law and requires beyond the standard model. Through logic analysis and by means of a theorem, stating the contradictory nature of communication, we can reach the minimum contradictions physics; according to this physics space-time is quantumstochastic and matter itself; there are (g)-mass and (em)-charge space-time which interact-communicate through photons [(g) or (em) particles with zero rest mass]. A quick explanation, of the experiment mentioned, is given by means of the minimum contradictions physics; this physics can imply the neutron synthesis which has been experimentally verified and explained via Hadronic Mechanics by R. M. Santilli. Since, according to this, quantum space time is matter itself there is not need for Higgs-implied by standard model-to exist; mass is a property of quantum space time itself. According to the CERN discovery there is a Higgs-like boson; according to this paper there is not the standard model Higgs boson.

  19. GIS-based RUSLE modelling of Leça River Basin, Northern Portugal, in two different grid scales

    NASA Astrophysics Data System (ADS)

    Petan, S.; Barbosa, J. L. P.; Mikoš, M.; Pinto, F. T.

    2009-04-01

    Soil erosion is the mechanical degradation caused by the natural forces and it is also influenced by human activities. The biggest threats are the related loss of fertile soil for food production and disturbances of aquatic ecosystems which could unbalance the environment in a wider range. Thus, precise predictions of the soil erosion processes are of a major importance for preventing any kind of environmental degradations. Spatial GIS modelling and erosion maps greatly support the policymaking for land planning and environmental management. Leça River Basin, with a surface of 187 km2, is located in the Northern part of Portugal and it was chosen for testing RUSLE methodology for soil loss prediction and identifying areas with high potential erosion. The model involves daily rainfall data for rainfall erosivity estimation, topographic data for slope length and steepness factor calculation, soil type data, CORINE land cover and land use data. The raster layer model was structured in two different scales: with a grid cell size of 10 and 30 meters. The similarities and differences between the model results of both scales were evaluated.

  20. Intraday LeBaron effects

    PubMed Central

    Bianco, Simone; Corsi, Fulvio; Renò, Roberto

    2009-01-01

    We study the relation at intraday level between serial correlation and volatility of the Standard and Poor (S&P) 500 stock index futures returns. At daily and weekly levels, serial correlation and volatility forecasts have been found to be negatively correlated (LeBaron effect). After finding a significant attenuation of the original effect over time, we show that a similar but more pronounced effect holds by using intraday measures, by such as realized volatility and variance ratio. We also test the impact of unexpected volatility, defined as the part of volatility which cannot be forecasted, on the presence of intraday serial correlation in the time series by employing a model for realized volatility based on the heterogeneous market hypothesis. We find that intraday serial correlation is negatively correlated to volatility forecasts, whereas it is positively correlated to unexpected volatility.

  1. Performance of a model for egg hatching of the western corn rootworm, Diabrotica virgifera virgifera LeConte, using measured and modelled soil temperatures as input

    NASA Astrophysics Data System (ADS)

    Schaafsma, A. W.; Fuentes, J. D.; Gillespie, T. J.; Whitfield, G. H.; Ellis, C. R.

    1993-03-01

    A model for egg hatching of the western corn rootworm, Diabrotica virgifera virgifera LeConte, was tested at several locations in Ontario, Canada, during the 1989 and 1990 seasons. The model required soil temperatures as input and was tested using measured and modelled data. Modelled soil temperatures at 5 and 10 cm depths were obtained from empirically and physically based models. The physically based model provided better estimates of soil temperatues, but both models slightly underestimated the temperatures. Predicted egg hatching, using measured and modelled soil temperature at 5 and 10 cm depths for all locations, compared reasonably well with the observations of egg hatching. When using modelled soil temperatures, the egg developmental model performed better using soil temperatures from the physically based model. However, both soil temperature models provided sufficiently accurate temperature values for use in the egg developmental model. Unlike the empirically based model, the physically based model was not site-specific and its application to larger areas appeared feasible.

  2. Progress Toward a Format Standard for Flight Dynamics Models

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Hildreth, Bruce L.

    2006-01-01

    In the beginning, there was FORTRAN, and it was... not so good. But it was universal, and all flight simulator equations of motion were coded with it. Then came ACSL, C, Ada, C++, C#, Java, FORTRAN-90, Matlab/Simulink, and a number of other programming languages. Since the halcyon punch card days of 1968, models of aircraft flight dynamics have proliferated in training devices, desktop engineering and development computers, and control design textbooks. With the rise of industry teaming and increased reliance on simulation for procurement decisions, aircraft and missile simulation models are created, updated, and exchanged with increasing frequency. However, there is no real lingua franca to facilitate the exchange of models from one simulation user to another. The current state-of-the-art is such that several staff-months if not staff-years are required to 'rehost' each release of a flight dynamics model from one simulation environment to another one. If a standard data package or exchange format were to be universally adopted, the cost and time of sharing and updating aerodynamics, control laws, mass and inertia, and other flight dynamic components of the equations of motion of an aircraft or spacecraft simulation could be drastically reduced. A 2002 paper estimated over $ 6 million in savings could be realized for one military aircraft type alone. This paper describes the efforts of the American Institute of Aeronautics and Astronautics (AIAA) to develop a standard flight dynamic model exchange standard based on XML and HDF-5 data formats.

  3. Using geodetic VLBI to test Standard-Model Extension

    NASA Astrophysics Data System (ADS)

    Hees, Aurélien; Lambert, Sébastien; Le Poncin-Lafitte, Christophe

    2016-04-01

    The modeling of the relativistic delay in geodetic techniques is primordial to get accurate geodetic products. And geodetic techniques can also be used to measure the relativistic delay and get constraints on parameters describing the relativity theory. The effective field theory framework called the Standard-Model Extension (SME) has been developed in order to systematically parametrize hypothetical violations of Lorentz symmetry (in the Standard Model and in the gravitational sector). In terms of light deflexion by a massive body like the Sun, one can expect a dependence in the elongation angle different from GR. In this communication, we use geodetic VLBI observations of quasars made in the frame of the permanent geodetic VLBI monitoring program to constrain the first SME coefficient. Our results do not show any deviation from GR and they improve current constraints on both GR and SME parameters.

  4. Higgs decays in gauge extensions of the standard model

    NASA Astrophysics Data System (ADS)

    Bunk, Don; Hubisz, Jay; Jain, Bithika

    2014-02-01

    We explore the phenomenology of virtual spin-1 contributions to the h→γγ and h→Zγ decay rates in gauge extensions of the standard model. We consider generic Lorentz and gauge-invariant vector self-interactions, which can have nontrivial structure after diagonalizing the quadratic part of the action. Such features are phenomenologically relevant in models where the electroweak gauge bosons mix with additional spin-1 fields, such as occurs in little Higgs models, extra dimensional models, strongly coupled variants of electroweak symmetry breaking, and other gauge extensions of the standard model. In models where nonrenormalizable operators mix field strengths of gauge groups, the one-loop Higgs decay amplitudes can be logarithmically divergent, and we provide power counting for the size of the relevant counterterm. We provide an example calculation in a four-site moose model that contains degrees of freedom that model the effects of vector and axial-vector resonances arising from TeV scale strong dynamics.

  5. Towards realistic standard model from D-brane configurations

    SciTech Connect

    Leontaris, G. K.; Tracas, N. D.; Korakianitis, O.; Vlachos, N. D.

    2007-12-01

    Effective low energy models arising in the context of D-brane configurations with standard model (SM) gauge symmetry extended by several gauged Abelian factors are discussed. The models are classified according to their hypercharge embeddings consistent with the SM spectrum hypercharge assignment. Particular cases are analyzed according to their perspectives and viability as low energy effective field theory candidates. The resulting string scale is determined by means of a two-loop renormalization group calculation. Their implications in Yukawa couplings, neutrinos and flavor changing processes are also presented.

  6. Galactic chemical evolution and nucleocosmochronology - Standard model with terminated infall

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1984-01-01

    Some exactly soluble families of models for the chemical evolution of the Galaxy are presented. The parameters considered include gas mass, the age-metallicity relation, the star mass vs. metallicity, the age distribution, and the mean age of dwarfs. A short BASIC program for calculating these parameters is given. The calculation of metallicity gradients, nuclear cosmochronology, and extinct radioactivities is addressed. An especially simple, mathematically linear model is recommended as a standard model of galaxies with truncated infall due to its internal consistency and compact display of the physical effects of the parameters.

  7. Achieving Peak Flow and Sediment Loading Reductions through Increased Water Storage in the Le Sueur Watershed, Minnesota: A Modeling Approach

    NASA Astrophysics Data System (ADS)

    Mitchell, N. A.; Gran, K. B.; Cho, S. J.; Dalzell, B. J.; Kumarasamy, K.

    2015-12-01

    A combination of factors including climate change, land clearing, and artificial drainage have increased many agricultural regions' stream flows and rates at which channel banks and bluffs are eroded. Increasing erosion rates within the Minnesota River Basin have contributed to higher sediment-loading rates, excess turbidity levels, and increases in sedimentation rates in Lake Pepin further downstream. Water storage sites (e.g., wetlands) have been discussed as a means to address these issues. This study uses the Soil and Water Assessment Tool (SWAT) to assess a range of water retention site (WRS) implementation scenarios in the Le Sueur watershed in south-central Minnesota, a subwatershed of the Minnesota River Basin. Sediment loading from bluffs was assessed through an empirical relationship developed from gauging data. Sites were delineated as topographic depressions with specific land uses, minimum areas (3000 m2), and high compound topographic index values. Contributing areas for the WRS were manually measured and used with different site characteristics to create 210 initial WRS scenarios. A generalized relationship between WRS area and contributing area was identified from measurements, and this relationship was used with different site characteristics (e.g., depth, hydraulic conductivity (K), and placement) to create 225 generalized WRS scenarios. Reductions in peak flow volumes and sediment-loading rates are generally maximized by placing site with high K values in the upper half of the watershed. High K values allow sites to lose more water through seepage, emptying their storages between precipitation events and preventing frequent overflowing. Reductions in peak flow volumes and sediment-loading rates also level off at high WRS extents due to the decreasing frequencies of high-magnitude events. The generalized WRS scenarios were also used to create a simplified empirical model capable of generating peak flows and sediment-loading rates from near

  8. Beyond standard model physics at current and future colliders

    NASA Astrophysics Data System (ADS)

    Liu, Zhen

    The Large Hadron Collider (LHC), a multinational experiment which began running in 2009, is highly expected to discover new physics that will help us understand the nature of the universe and begin to find solutions to many of the unsolved puzzles of particle physics. For over 40 years the Standard Model has been the accepted theory of elementary particle physics, except for one unconfirmed component, the Higgs boson. The experiments at the LHC have recently discovered this Standard-Model-like Higgs boson. This discovery is one of the most exciting achievements in elementary particle physics. Yet, a profound question remains: Is this rather light, weakly-coupled boson nothing but a Standard Model Higgs or a first manifestation of a deeper theory? Also, the recent discoveries of neutrino mass and mixing, experimental evidences of dark matter and dark energy, matter-antimatter asymmetry, indicate that our understanding of fundamental physics is currently incomplete. For the next decade and more, the LHC and future colliders will be at the cutting-edge of particle physics discoveries and will shed light on many of these unanswered questions. There are many promising beyond-Standard-Model theories that may help solve the central puzzles of particle physics. To fill the gaps in our knowledge, we need to know how these theories will manifest themselves in controlled experiments, such as high energy colliders. I discuss how we can probe fundamental physics at current and future colliders directly through searches for new phenomena such as resonances, rare Higgs decays, exotic displaced signatures, and indirectly through precision measurements on Higgs in this work. I explore beyond standard model physics effects from different perspectives, including explicit models such as supersymmetry, generic models in terms of resonances, as well as effective field theory approach in terms of higher dimensional operators. This work provides a generic and broad overview of the physics

  9. E-health stakeholders experiences with clinical modelling and standardizations.

    PubMed

    Gøeg, Kirstine Rosenbeck; Elberg, Pia Britt; Højen, Anne Randorff

    2015-01-01

    Stakeholders in e-health such as governance officials, health IT-implementers and vendors have to co-operate to achieve the goal of a future-proof interoperable e-health infrastructure. Co-operation requires knowledge on the responsibility and competences of stakeholder groups. To increase awareness on clinical modeling and standardization we conducted a workshop for Danish and a few Norwegian e-health stakeholders' and made them discuss their views on different aspects of clinical modeling using a theoretical model as a point of departure. Based on the model, we traced stakeholders' experiences. Our results showed there was a tendency that stakeholders were more familiar with e-health requirements than with design methods, clinical information models and clinical terminology as they are described in the scientific literature. The workshop made it possible for stakeholders to discuss their roles and expectations to each other. PMID:25991150

  10. Standard Model Physics Results from Atlas and Cms

    NASA Astrophysics Data System (ADS)

    Dordevic, Milos

    2015-06-01

    The most recent results of Standard Model physics studies in proton-proton collisions at 7 TeV and 8 TeV center-of-mass energy based on data recorded by ATLAS and CMS detectors during the LHC Run I are reviewed. This overview includes studies of vector boson production cross section and properties, results on V+jets production with light and heavy flavours, latest VBS and VBF results, measurement of diboson production with an emphasis on ATGC and AQGC searches, as well as results on inclusive jet cross sections with strong coupling constant measurement and PDF constraints. The outlined results are compared to the prediction of the Standard Model.

  11. Search for Beyond the Standard Model Physics at D0

    SciTech Connect

    Kraus, James

    2011-08-01

    The standard model (SM) of particle physics has been remarkably successful at predicting the outcomes of particle physics experiments, but there are reasons to expect new physics at the electroweak scale. Over the last several years, there have been a number of searches for beyond the standard model (BSM) physics at D0. Here, we limit our focus to three: searches for diphoton events with large missing transverse energy (E{sub T}), searches for leptonic jets and E{sub T}, and searches for single vector-like quarks. We have discussed three recent searches at D0. There are many more, including limits on heavy neutral gauge boson in the ee channel, a search for scalar top quarks, a search for quirks, and limits on a new resonance decaying to WW or WZ.

  12. Beyond the Standard Model Physics with Lattice Simulations

    NASA Astrophysics Data System (ADS)

    Rinaldi, Enrico

    2016-03-01

    Lattice simulations of gauge theories are a powerful tool to investigate strongly interacting systems like Quantum ChromoDynamics (QCD). In recent years, the expertise gathered from lattice QCD studies has been used to explore new extensions of the Standard Model of particle physics that include strong dynamics. This change of gear in lattice field theories is related to the growing experimental search for new physics, from accelerator facilites like the Large Hadron Collider (LHC) to dark matter detectors like LUX or ADMX. In my presentation I will explore different plausible scenarios for physics beyond the standard model where strong dynamics play a dominant role and can be tackled by numerical lattice simulations. The importance of lattice field theories is highlighted in the context of dark matter searches and the search for new resonances at the LHC. Acknowledge the support of the DOE under Contract DE-AC52-07NA27344 (LLNL).

  13. Precision Electroweak Measurements and Constraints on the Standard Model

    SciTech Connect

    Not Available

    2011-11-11

    This note presents constraints on Standard Model parameters using published and preliminary precision electroweak results measured at the electron-positron colliders LEP and SLC. The results are compared with precise electroweak measurements from other experiments, notably CDF and D0 at the Tevatron. Constraints on the input parameters of the Standard Model are derived from the results obtained in high-Q{sup 2} interactions, and used to predict results in low-Q{sup 2} experiments, such as atomic parity violation, Moller scattering, and neutrino-nucleon scattering. The main changes with respect to the experimental results presented in 2007 are new combinations of results on the W-boson mass and width and the mass of the top quark.

  14. Precision Electroweak Measurements and Constraints on the Standard Model

    SciTech Connect

    The , ALEPH, CDF, D0, ...

    2009-12-11

    This note presents constraints on Standard Model parameters using published and preliminary precision electroweak results measured at the electron-positron colliders LEP and SLC. The results are compared with precise electroweak measurements from other experiments, notably CDF and D0 at the Tevatron. Constraints on the input parameters of the Standard Model are derived from the combined set of results obtained in high-Q{sup 2} interactions, and used to predict results in low-Q{sup 2} experiments, such as atomic parity violation, Moeller scattering, and neutrino-nucleon scattering. The main changes with respect to the experimental results presented in 2008 are new combinations of results on the W-boson mass and the mass of the top quark.

  15. Precision Electroweak Measurements and Constraints on the Standard Model

    SciTech Connect

    None, None

    2009-11-01

    This note presents constraints on Standard Model parameters using published and preliminary precision electroweak results measured at the electron-positron colliders LEP and SLC. The results are compared with precise electroweak measurements from other experiments, notably CDF and D0 at the Tevatron. Constraints on the input parameters of the Standard Model are derived from the combined set of results obtained in high-Q{sup 2} interactions, and used to predict results in low-Q{sup 2} experiments, such as atomic parity violation, Moeller scattering, and neutrino-nucleon scattering. The main changes with respect to the experimental results presented in 2008 are new combinations of results on the W-boson mass and the mass of the top quark.

  16. Precision electroweak measurements and constraints on the Standard Model

    SciTech Connect

    Not Available

    2010-12-01

    This note presents constraints on Standard Model parameters using published and preliminary precision electroweak results obtained at the electron-positron colliders LEP and SLC. The results are compared with precise electroweak measurements from other experiments, notably CDF and D0 at the Tevatron. Constraints on the input parameters of the Standard Model are derived from the combined set of results obtained in high-Q{sup 2} interactions, and used to predict results in low-Q{sup 2} experiments, such as atomic parity violation, Moeller scattering, and neutrino-nucleon scattering. The main changes with respect to the experimental results presented in 2009 are new combinations of results on the width of the W boson and the mass of the top quark.

  17. Challenges to the standard model of Big Bang nucleosynthesis.

    PubMed Central

    Steigman, G

    1993-01-01

    Big Bang nucleosynthesis provides a unique probe of the early evolution of the Universe and a crucial test of the consistency of the standard hot Big Bang cosmological model. Although the primordial abundances of 2H, 3He, 4He, and 7Li inferred from current observational data are in agreement with those predicted by Big Bang nucleosynthesis, recent analysis has severely restricted the consistent range for the nucleon-to-photon ratio: 3.7 standard model and suggest that no new light particles may be allowed (N(BBN)nu

  18. Development of a standard documentation protocol for communicating exposure models.

    PubMed

    Ciffroy, P; Altenpohl, A; Fait, G; Fransman, W; Paini, A; Radovnikovic, A; Simon-Cornu, M; Suciu, N; Verdonck, F

    2016-10-15

    An important step in building a computational model is its documentation; a comprehensive and structured documentation can improve the model applicability and transparency in science/research and for regulatory purposes. This is particularly crucial and challenging for environmental and/or human exposure models that aim to establish quantitative relationships between personal exposure levels and their determinants. Exposure models simulate the transport and fate of a contaminant from the source to the receptor and may involve a large set of entities (e.g. all the media the contaminants may pass though). Such complex models are difficult to be described in a comprehensive, unambiguous and accessible way. Bad communication of assumptions, theory, structure and/or parameterization can lead to lack of confidence by the user and it may be source of errors. The goal of this paper is to propose a standard documentation protocol (SDP) for exposure models, i.e. a generic format and a standard structure by which all exposure models could be documented. For this purpose, a CEN (European Committee for Standardisation) workshop was set up with objective to agree on minimum requirements for the amount and type of information to be provided on exposure models documentation along with guidelines for the structure and presentation of the information. The resulting CEN workshop agreement (CWA) was expected to facilitate a more rigorous formulation of exposure models description and the understanding by users. This paper intends to describe the process followed for defining the SDP, the standardisation approach, as well as the main components of the SDP resulting from a wide consultation of interested stakeholders. The main outcome is a CEN CWA which establishes terms and definitions for exposure models and their elements, specifies minimum requirements for the amount and type of information to be documented, and proposes a structure for communicating the documentation to different

  19. Constraints on standard and non-standard early universe models from CMB B-mode polarization

    SciTech Connect

    Ma, Yin-Zhe; Brown, Michael L.; Zhao, Wen E-mail: Wen.Zhao@astro.cf.ac.uk

    2010-10-01

    We investigate the observational signatures of three models of the early Universe in the B-mode polarization of the Cosmic Microwave Background (CMB) radiation. In addition to the standard single field inflationary model, we also consider the constraints obtainable on the loop quantum cosmology model (from Loop Quantum Gravity) and on cosmic strings, expected to be copiously produced during the latter stages of Brane inflation. We first examine the observational features of the three models, and then use current B-mode polarization data from the BICEP and QUaD experiments to constrain their parameters. We also examine the detectability of the primordial B-mode signal predicted by these models and forecast the parameter constraints achievable with future CMB polarization experiments. We find that: (a) since B-mode polarization measurements are mostly unaffected by parameter degeneracies, they provide the cleanest probe of these early Universe models; (b) using the BICEP and QUaD data we obtain the following parameter constraints: r = 0.02{sup +0.31}{sub −0.26} (1σ for the tensor-to-scalar ratio in the single field inflationary model); m < 1.36 × 10{sup −8}M{sub pl} and k{sub *} < 2.43 × 10{sup −4} Mpc{sup −1} (1σ for the mass and scale parameters in the loop quantum cosmology model); and Gμ < 5.77 × 10{sup −7} (1σ for the cosmic string tension); (c) future CMB observations (both satellite missions and forthcoming sub-orbital experiments) will provide much more rigorous tests of these early Universe models.

  20. Aspects of Particle Physics Beyond the Standard Model

    NASA Astrophysics Data System (ADS)

    Lu, Xiaochuan

    This dissertation describes a few aspects of particles beyond the Standard Model, with a focus on the remaining questions after the discovery of a Standard Model-like Higgs boson. In specific, three topics are discussed in sequence: neutrino mass and baryon asymmetry, naturalness problem of Higgs mass, and placing constraints on theoretical models from precision measurements. First, the consequence of the neutrino mass anarchy on cosmology is studied. Attentions are paid in particular to the total mass of neutrinos and baryon asymmetry through leptogenesis. With the assumption of independence among mass matrix entries in addition to the basis independence, Gaussian measure is the only choice. On top of Gaussian measure, a simple approximate U(1) flavor symmetry makes leptogenesis highly successful. Correlations between the baryon asymmetry and the light-neutrino quantities are investigated. Also discussed are possible implications of recently suggested large total mass of neutrinos by the SDSS/BOSS data. Second, the Higgs mass implies fine-tuning for minimal theories of weak-scale supersymmetry (SUSY). Non-decoupling effects can boost the Higgs mass when new states interact with the Higgs, but new sources of SUSY breaking that accompany such extensions threaten naturalness. I will show that two singlets with a Dirac mass can increase the Higgs mass while maintaining naturalness in the presence of large SUSY breaking in the singlet sector. The modified Higgs phenomenology of this scenario, termed "Dirac NMSSM", is also studied. Finally, the sensitivities of future precision measurements in probing physics beyond the Standard Model are studied. A practical three-step procedure is presented for using the Standard Model effective field theory (SM EFT) to connect ultraviolet (UV) models of new physics with weak scale precision observables. With this procedure, one can interpret precision measurements as constraints on the UV model concerned. A detailed explanation is

  1. Beyond-standard-model tensor interaction and hadron phenomenology

    SciTech Connect

    Courtoy, Aurore; Baessler, Stefan; Gonzalez-Alonso, Martin; Liuti, Simonetta

    2015-10-15

    Here, we evaluate the impact of recent developments in hadron phenomenology on extracting possible fundamental tensor interactions beyond the standard model. We show that a novel class of observables, including the chiral-odd generalized parton distributions, and the transversity parton distribution function can contribute to the constraints on this quantity. Experimental extractions of the tensor hadronic matrix elements, if sufficiently precise, will provide a, so far, absent testing ground for lattice QCD calculations.

  2. Beyond-Standard-Model Tensor Interaction and Hadron Phenomenology.

    PubMed

    Courtoy, Aurore; Baeßler, Stefan; González-Alonso, Martín; Liuti, Simonetta

    2015-10-16

    We evaluate the impact of recent developments in hadron phenomenology on extracting possible fundamental tensor interactions beyond the standard model. We show that a novel class of observables, including the chiral-odd generalized parton distributions, and the transversity parton distribution function can contribute to the constraints on this quantity. Experimental extractions of the tensor hadronic matrix elements, if sufficiently precise, will provide a, so far, absent testing ground for lattice QCD calculations. PMID:26550868

  3. Standard model parameters and the search for new physics

    SciTech Connect

    Marciano, W.J.

    1988-04-01

    In these lectures, my aim is to present an up-to-date status report on the standard model and some key tests of electroweak unification. Within that context, I also discuss how and where hints of new physics may emerge. To accomplish those goals, I have organized my presentation as follows: I discuss the standard model parameters with particular emphasis on the gauge coupling constants and vector boson masses. Examples of new physics appendages are also briefly commented on. In addition, because these lectures are intended for students and thus somewhat pedagogical, I have included an appendix on dimensional regularization and a simple computational example that employs that technique. Next, I focus on weak charged current phenomenology. Precision tests of the standard model are described and up-to-date values for the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix parameters are presented. Constraints implied by those tests for a 4th generation, supersymmetry, extra Z/prime/ bosons, and compositeness are also discussed. I discuss weak neutral current phenomenology and the extraction of sin/sup 2/ /theta//sub W/ from experiment. The results presented there are based on a recently completed global analysis of all existing data. I have chosen to concentrate that discussion on radiative corrections, the effect of a heavy top quark mass, and implications for grand unified theories (GUTS). The potential for further experimental progress is also commented on. I depart from the narrowest version of the standard model and discuss effects of neutrino masses and mixings. I have chosen to concentrate on oscillations, the Mikheyev-Smirnov- Wolfenstein (MSW) effect, and electromagnetic properties of neutrinos. On the latter topic, I will describe some recent work on resonant spin-flavor precession. Finally, I conclude with a prospectus on hopes for the future. 76 refs.

  4. Charged Neutrinos and Atoms in the Standard Model

    NASA Astrophysics Data System (ADS)

    Takasugi, E.; Tanaka, M.

    1992-03-01

    The possibility of the charge quantization in the standard model is examined in the absence of the ``generation as copies'' rule. It is shown that neutrinos and atoms can have mini-charges, while neutron is neutral. If a triplet Higgs boson is introduced, neutrinos have masses. Two neutrinos form a Konopinski-Mahmoud Dirac particle and the other becomes a Majorana particle due to the hidden local anomaly free U(1) symmetry.

  5. Gravity, CPT, and the standard-model extension

    NASA Astrophysics Data System (ADS)

    Tasson, Jay D.

    2015-08-01

    Exotic atoms provide unique opportunities to search for new physics. The search for CPT and Lorentz violation in the context of the general field-theory based framework of the gravitational Standard-Model Extension (SME) is one such opportunity. This work summarizes the implications of Lorentz and CPT violation for gravitational experiments with antiatoms and atoms containing higher-generation matter as well as recent nongravitational proposals to test CPT and Lorentz symmetry with muons and muonic systems.

  6. Qweak, N --> {Delta}, and physics beyond the standard model

    SciTech Connect

    Leacock, John D.

    2014-01-01

    The data-taking phase of the Qweak experiment ended in May of 2012 at the Thomas Jefferson National Accelerator Facility. Qweak aims to measure the weak charge of the proton, Q{sub W}{sup p}, via parity-violating elastic electron-proton scattering. The expected value of Q{sub W}{sup p} is fortuitously suppressed, which leads to an increased sensitivity to physics beyond the Standard Model.

  7. Qweak, N → Δ, and physics beyond the standard model

    NASA Astrophysics Data System (ADS)

    Leacock, J.

    2014-01-01

    The data-taking phase of the Qweak experiment ended in May of 2012 at the Thomas Jefferson National Accelerator Facility. Qweak aims to measure the weak charge of the proton, Q {/W p }, via parity-violating elastic electron-proton scattering. The expected value of Q {/W p } is fortuitously suppressed, which leads to an increased sensitivity to physics beyond the Standard Model.

  8. Wisconsin Model Early Learning Standards Alignment with Wisconsin Common Core State Standards for English Language Arts and Mathematics

    ERIC Educational Resources Information Center

    Wisconsin Department of Public Instruction, 2011

    2011-01-01

    Wisconsin's adoption of the Common Core State Standards provides an excellent opportunity for Wisconsin school districts and communities to define expectations from birth through preparation for college and work. By aligning the existing Wisconsin Model Early Learning Standards with the Wisconsin Common Core State Standards, expectations can be…

  9. Phenomenology of the N = 3 Lee-Wick Standard Model

    NASA Astrophysics Data System (ADS)

    TerBeek, Russell Henry

    With the discovery of the Higgs Boson in 2012, particle physics has decidedly moved beyond the Standard Model into a new epoch. Though the Standard Model particle content is now completely accounted for, there remain many theoretical issues about the structure of the theory in need of resolution. Among these is the hierarchy problem: since the renormalized Higgs mass receives quadratic corrections from a higher cutoff scale, what keeps the Higgs boson light? Many possible solutions to this problem have been advanced, such as supersymmetry, Randall-Sundrum models, or sub-millimeter corrections to gravity. One such solution has been advanced by the Lee-Wick Standard Model. In this theory, higher-derivative operators are added to the Lagrangian for each Standard Model field, which result in propagators that possess two physical poles and fall off more rapidly in the ultraviolet regime. It can be shown by an auxiliary field transformation that the higher-derivative theory is identical to positing a second, manifestly renormalizable theory in which new fields with opposite-sign kinetic and mass terms are found. These so-called Lee-Wick fields have opposite-sign propagators, and famously cancel off the quadratic divergences that plague the renormalized Higgs mass. The states in the Hilbert space corresponding to Lee-Wick particles have negative norm, and implications for causality and unitarity are examined. This dissertation explores a variant of the theory called the N = 3 Lee-Wick Standard Model. The Lagrangian of this theory features a yet-higher derivative operator, which produces a propagator with three physical poles and possesses even better high-energy behavior than the minimal Lee-Wick theory. An analogous auxiliary field transformation takes this higher-derivative theory into a renormalizable theory with states of alternating positive, negative, and positive norm. The phenomenology of this theory is examined in detail, with particular emphasis on the collider

  10. Impersonating the Standard Model Higgs boson: Alignment without decoupling

    SciTech Connect

    Carena, Marcela; Low, Ian; Shah, Nausheen R.; Wagner, Carlos E. M.

    2014-04-03

    In models with an extended Higgs sector there exists an alignment limit, in which the lightest CP-even Higgs boson mimics the Standard Model Higgs. The alignment limit is commonly associated with the decoupling limit, where all non-standard scalars are significantly heavier than the Z boson. However, alignment can occur irrespective of the mass scale of the rest of the Higgs sector. In this work we discuss the general conditions that lead to “alignment without decoupling”, therefore allowing for the existence of additional non-standard Higgs bosons at the weak scale. The values of tan β for which this happens are derived in terms of the effective Higgs quartic couplings in general two-Higgs-doublet models as well as in supersymmetric theories, including the MSSM and the NMSSM. In addition, we study the information encoded in the variations of the SM Higgs-fermion couplings to explore regions in the mA – tan β parameter space.

  11. Impersonating the Standard Model Higgs boson: Alignment without decoupling

    DOE PAGESBeta

    Carena, Marcela; Low, Ian; Shah, Nausheen R.; Wagner, Carlos E. M.

    2014-04-03

    In models with an extended Higgs sector there exists an alignment limit, in which the lightest CP-even Higgs boson mimics the Standard Model Higgs. The alignment limit is commonly associated with the decoupling limit, where all non-standard scalars are significantly heavier than the Z boson. However, alignment can occur irrespective of the mass scale of the rest of the Higgs sector. In this work we discuss the general conditions that lead to “alignment without decoupling”, therefore allowing for the existence of additional non-standard Higgs bosons at the weak scale. The values of tan β for which this happens are derivedmore » in terms of the effective Higgs quartic couplings in general two-Higgs-doublet models as well as in supersymmetric theories, including the MSSM and the NMSSM. In addition, we study the information encoded in the variations of the SM Higgs-fermion couplings to explore regions in the mA – tan β parameter space.« less

  12. BiGG Models: A platform for integrating, standardizing and sharing genome-scale models.

    PubMed

    King, Zachary A; Lu, Justin; Dräger, Andreas; Miller, Philip; Federowicz, Stephen; Lerman, Joshua A; Ebrahim, Ali; Palsson, Bernhard O; Lewis, Nathan E

    2016-01-01

    Genome-scale metabolic models are mathematically-structured knowledge bases that can be used to predict metabolic pathway usage and growth phenotypes. Furthermore, they can generate and test hypotheses when integrated with experimental data. To maximize the value of these models, centralized repositories of high-quality models must be established, models must adhere to established standards and model components must be linked to relevant databases. Tools for model visualization further enhance their utility. To meet these needs, we present BiGG Models (http://bigg.ucsd.edu), a completely redesigned Biochemical, Genetic and Genomic knowledge base. BiGG Models contains more than 75 high-quality, manually-curated genome-scale metabolic models. On the website, users can browse, search and visualize models. BiGG Models connects genome-scale models to genome annotations and external databases. Reaction and metabolite identifiers have been standardized across models to conform to community standards and enable rapid comparison across models. Furthermore, BiGG Models provides a comprehensive application programming interface for accessing BiGG Models with modeling and analysis tools. As a resource for highly curated, standardized and accessible models of metabolism, BiGG Models will facilitate diverse systems biology studies and support knowledge-based analysis of diverse experimental data. PMID:26476456

  13. BiGG Models: A platform for integrating, standardizing and sharing genome-scale models

    DOE PAGESBeta

    King, Zachary A.; Lu, Justin; Drager, Andreas; Miller, Philip; Federowicz, Stephen; Lerman, Joshua A.; Ebrahim, Ali; Palsson, Bernhard O.; Lewis, Nathan E.

    2015-10-17

    In this study, genome-scale metabolic models are mathematically structured knowledge bases that can be used to predict metabolic pathway usage and growth phenotypes. Furthermore, they can generate and test hypotheses when integrated with experimental data. To maximize the value of these models, centralized repositories of high-quality models must be established, models must adhere to established standards and model components must be linked to relevant databases. Tools for model visualization further enhance their utility. To meet these needs, we present BiGG Models (http://bigg.ucsd.edu), a completely redesigned Biochemical, Genetic and Genomic knowledge base. BiGG Models contains more than 75 high-quality, manually-curated genome-scalemore » metabolic models. On the website, users can browse, search and visualize models. BiGG Models connects genome-scale models to genome annotations and external databases. Reaction and metabolite identifiers have been standardized across models to conform to community standards and enable rapid comparison across models. Furthermore, BiGG Models provides a comprehensive application programming interface for accessing BiGG Models with modeling and analysis tools. As a resource for highly curated, standardized and accessible models of metabolism, BiGG Models will facilitate diverse systems biology studies and support knowledge-based analysis of diverse experimental data.« less

  14. BiGG Models: A platform for integrating, standardizing and sharing genome-scale models

    SciTech Connect

    King, Zachary A.; Lu, Justin; Drager, Andreas; Miller, Philip; Federowicz, Stephen; Lerman, Joshua A.; Ebrahim, Ali; Palsson, Bernhard O.; Lewis, Nathan E.

    2015-10-17

    In this study, genome-scale metabolic models are mathematically structured knowledge bases that can be used to predict metabolic pathway usage and growth phenotypes. Furthermore, they can generate and test hypotheses when integrated with experimental data. To maximize the value of these models, centralized repositories of high-quality models must be established, models must adhere to established standards and model components must be linked to relevant databases. Tools for model visualization further enhance their utility. To meet these needs, we present BiGG Models (http://bigg.ucsd.edu), a completely redesigned Biochemical, Genetic and Genomic knowledge base. BiGG Models contains more than 75 high-quality, manually-curated genome-scale metabolic models. On the website, users can browse, search and visualize models. BiGG Models connects genome-scale models to genome annotations and external databases. Reaction and metabolite identifiers have been standardized across models to conform to community standards and enable rapid comparison across models. Furthermore, BiGG Models provides a comprehensive application programming interface for accessing BiGG Models with modeling and analysis tools. As a resource for highly curated, standardized and accessible models of metabolism, BiGG Models will facilitate diverse systems biology studies and support knowledge-based analysis of diverse experimental data.

  15. BiGG Models: A platform for integrating, standardizing and sharing genome-scale models

    PubMed Central

    King, Zachary A.; Lu, Justin; Dräger, Andreas; Miller, Philip; Federowicz, Stephen; Lerman, Joshua A.; Ebrahim, Ali; Palsson, Bernhard O.; Lewis, Nathan E.

    2016-01-01

    Genome-scale metabolic models are mathematically-structured knowledge bases that can be used to predict metabolic pathway usage and growth phenotypes. Furthermore, they can generate and test hypotheses when integrated with experimental data. To maximize the value of these models, centralized repositories of high-quality models must be established, models must adhere to established standards and model components must be linked to relevant databases. Tools for model visualization further enhance their utility. To meet these needs, we present BiGG Models (http://bigg.ucsd.edu), a completely redesigned Biochemical, Genetic and Genomic knowledge base. BiGG Models contains more than 75 high-quality, manually-curated genome-scale metabolic models. On the website, users can browse, search and visualize models. BiGG Models connects genome-scale models to genome annotations and external databases. Reaction and metabolite identifiers have been standardized across models to conform to community standards and enable rapid comparison across models. Furthermore, BiGG Models provides a comprehensive application programming interface for accessing BiGG Models with modeling and analysis tools. As a resource for highly curated, standardized and accessible models of metabolism, BiGG Models will facilitate diverse systems biology studies and support knowledge-based analysis of diverse experimental data. PMID:26476456

  16. Modeling micro-electronics drill bit behavior with ABAQUS Standard

    SciTech Connect

    Anderson, C.A.; Ricketson, E.

    1997-06-01

    Modeling of drill bit behavior under applied forces as well as modeling of the drilling process itself can aid in the understanding of the relative importance of the various drill bit process parameters and can eventually lead to improved drill bit designs. In this paper the authors illustrate the application of ABAQUS Standard to the stress and deformation analysis of micro-electronics drill bits that are used in manufacturing printed circuit boards. Effects of varying point geometry, web taper and flute length on the stress and deformation in a drill bit are illustrated.

  17. Development of tools for evaluating rainfall estimation models in real- time using the Integrated Meteorological Observation Network in Castilla y León (Spain)

    NASA Astrophysics Data System (ADS)

    Merino, Andres; Guerrero-Higueras, Angel Manuel; López, Laura; Gascón, Estibaliz; Sánchez, José Luis; Lorente, José Manuel; Marcos, José Luis; Matía, Pedro; Ortiz de Galisteo, José Pablo; Nafría, David; Fernández-González, Sergio; Weigand, Roberto; Hermida, Lucía; García-Ortega, Eduardo

    2014-05-01

    The integration of various public and private observation networks into the Observation Network of Castile-León (ONet_CyL), Spain, allows us to monitor the risks in real-time. One of the most frequent risks in this region is severe precipitation. Thus, the data from the network allows us to determine the area where precipitation was registered and also to know the areas with precipitation in real-time. The observation network is managed with a LINUX system. The observation platform makes it possible to consult the observation data in a specific point in the region, or otherwise to see the spatial distribution of the precipitation in a user-defined area and time interval. In this study, we compared several rainfall estimation models, based on satellite data for Castile-León, with precipitation data from the meteorological observation network. The rainfall estimation models obtained from the meteorological satellite data provide us with a precipitation field covering a wide area, although its operational use requires a prior evaluation using ground truth data. The aim is to develop a real-time evaluation tool for rainfall estimation models that allows us to monitor the accuracy of its forecasting. This tool makes it possible to visualise different Skill Scores (Probability of Detection, False Alarm Ratio and others) of each rainfall estimation model in real time, thereby not only allowing us to know the areas where the rainfall models indicate precipitation, but also the validation of the model in real-time for each specific meteorological situation. Acknowledgements The authors would like to thank the Regional Government of Castile-León for its financial support through the project LE220A11-2. This study was supported by the following grants: GRANIMETRO (CGL2010-15930); MICROMETEO (IPT-310000-2010-22).

  18. Non-generic couplings in supersymmetric standard models

    NASA Astrophysics Data System (ADS)

    Buchbinder, Evgeny I.; Constantin, Andrei; Lukas, Andre

    2015-09-01

    We study two phases of a heterotic standard model, obtained from a Calabi-Yau compactification of the E8 ×E8 heterotic string, in the context of the associated four-dimensional effective theories. In the first phase we have a standard model gauge group, an MSSM spectrum, four additional U (1) symmetries and singlet fields. In the second phase, obtained from the first by continuing along the singlet directions, three of the additional U (1) symmetries are spontaneously broken and the remaining one is a B-L symmetry. In this second phase, dimension five operators inducing proton decay are consistent with all symmetries and as such, they are expected to be present. We show that, contrary to this expectation, these operators are forbidden due to the additional U (1) symmetries present in the first phase of the model. We emphasise that such "unexpected" absences of operators, due to symmetry enhancement at specific loci in the moduli space, can be phenomenologically relevant and, in the present case, protect the model from fast proton decay.

  19. Standardization of Thermo-Fluid Modeling in Modelica.Fluid

    SciTech Connect

    Franke, Rudiger; Casella, Francesco; Sielemann, Michael; Proelss, Katrin; Otter, Martin; Wetter, Michael

    2009-09-01

    This article discusses the Modelica.Fluid library that has been included in the Modelica Standard Library 3.1. Modelica.Fluid provides interfaces and basic components for the device-oriented modeling of onedimensional thermo-fluid flow in networks containing vessels, pipes, fluid machines, valves and fittings. A unique feature of Modelica.Fluid is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used with one and the same model as long as the modeling assumptions made hold. Furthermore, trace substances are supported. Modeling assumptions can be configured globally in an outer System object. This covers in particular the initialization, uni- or bi-directional flow, and dynamic or steady-state formulation of mass, energy, and momentum balance. All assumptions can be locally refined for every component. While Modelica.Fluid contains a reasonable set of component models, the goal of the library is not to provide a comprehensive set of models, but rather to provide interfaces and best practices for the treatment of issues such as connector design and implementation of energy, mass and momentum balances. Applications from various domains are presented.

  20. Right-right-left extension of the Standard Model

    NASA Astrophysics Data System (ADS)

    Abbas, Gauhar

    2016-06-01

    A right-right-left extension of the Standard Model is proposed. In this model, SM gauge group SU(2)L ⊗U(1)Y is extended to SU(2)L ⊗SU(2)R ⊗SU(2)R‧⊗SU(2) L‧⊗U(1) Y. The gauge symmetries SU(2)R‧, SU(2)L‧ are the mirror counterparts of the SU(2)L and SU(2)R, respectively. Parity is spontaneously broken when the scalar Higgs fields acquire vacuum expectation values (VEVs) in a certain pattern. Parity is restored at the scale of SU(2)L‧. The gauge sector has a unique pattern. The scalar sector of the model is optimum, elegant and unique.

  1. Sterile Neutrinos in Non-Standard Cosmologies and Particle Models

    NASA Astrophysics Data System (ADS)

    Osoba, Efunwande

    2010-12-01

    The discovery of neutrino masses suggests that the Standard Model should be supplemented with new gauge-singlet fermions, often called sterile neutrinos. These sterile neutrinos can shed new light on open questions in cosmology. I will highlight some interesting contributions that sterile neutrinos bring to the understanding of cosmology. In this dissertation, I will show a novel way in which sterile neutrinos could be a dark matter candidate in the form of "Inert-Sterile" neutrinos. In usual particle models, sterile neutrinos can account for the dark matter of the Universe only if they have niasses in the keV range and are warm dark matter. Stringent cosmological and astrophysical bounds, in particular imposed by X-ray observations, apply to them. I will point out that in a particular variation of the Inert Doublet Model, sterile neutrinos can account for the dark matter in the Universe and may be either cold or warm dark matter candidates, even for masses much larger than the keV range. These "Inert-Sterile" neutrinos, produced non-thermally in the early Universe, would be stable and have very small couplings to Standard Model particles, rendering very difficult their detection in either direct or indirect dark matter searches. They could be, in principle, revealed in colliders by discovering other particles in the model. I also show how the existence of the sterile neutrino may force us to rethink the standard cosmology. It is commonly assumed that the cosmological and astrophysical bounds on the mixings of sterile with active neutrinos are much more stringent than those obtained from laboratory measurements. In this dissertation, I show that in scenarios with a very low reheating temperature at the end of (the last episode of) inflation or entropy creation, the abundance of heavy (> 1 MeV) sterile neutrinos becomes largely suppressed with respect to that obtained within the standard framework. Thus, in this case cosmological bounds become much less stringent

  2. The Beyond the standard model working group: Summary report

    SciTech Connect

    G. Azuelos et al.

    2004-03-18

    In this working group we have investigated a number of aspects of searches for new physics beyond the Standard Model (SM) at the running or planned TeV-scale colliders. For the most part, we have considered hadron colliders, as they will define particle physics at the energy frontier for the next ten years at least. The variety of models for Beyond the Standard Model (BSM) physics has grown immensely. It is clear that only future experiments can provide the needed direction to clarify the correct theory. Thus, our focus has been on exploring the extent to which hadron colliders can discover and study BSM physics in various models. We have placed special emphasis on scenarios in which the new signal might be difficult to find or of a very unexpected nature. For example, in the context of supersymmetry (SUSY), we have considered: how to make fully precise predictions for the Higgs bosons as well as the superparticles of the Minimal Supersymmetric Standard Model (MSSM) (parts III and IV); MSSM scenarios in which most or all SUSY particles have rather large masses (parts V and VI); the ability to sort out the many parameters of the MSSM using a variety of signals and study channels (part VII); whether the no-lose theorem for MSSM Higgs discovery can be extended to the next-to-minimal Supersymmetric Standard Model (NMSSM) in which an additional singlet superfield is added to the minimal collection of superfields, potentially providing a natural explanation of the electroweak value of the parameter {micro} (part VIII); sorting out the effects of CP violation using Higgs plus squark associate production (part IX); the impact of lepton flavor violation of various kinds (part X); experimental possibilities for the gravitino and its sgoldstino partner (part XI); what the implications for SUSY would be if the NuTeV signal for di-muon events were interpreted as a sign of R-parity violation (part XII). Our other main focus was on the phenomenological implications of extra

  3. Object Oriented Design and the Standard Model of particle physics

    NASA Astrophysics Data System (ADS)

    Lipovaca, Samir

    2007-04-01

    Inspired by the computer as both tool and metaphor, a new path emerges toward understanding life, physics, and existence. The path leads throughout all of nature, from the interior of cells to inside black holes. This view of science is based on the idea that information is the ultimate ``substance'' from which all things are made. Exploring this view, we will focus on Object - Oriented (OO) design as one of the most important designs in software development. The OO design views the world as composed of objects with well defined properties. The dynamics is pictured as interactions among objects. Interactions are mediated by messages that objects exchange with each other. This description closely resembles the view of the elementary particles world created by the Standard Model of particle physics. The object model (OM) provides a theoretical foundation upon which the OO design is built. The OM is based on the principles of abstraction, encapsulation, modularity and hierarchy. We will show that the Standard Model of particle physics follows the OM principles.

  4. Future high precision experiments and new physics beyond Standard Model

    SciTech Connect

    Luo, Mingxing.

    1993-01-01

    High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here.

  5. Future high precision experiments and new physics beyond Standard Model

    SciTech Connect

    Luo, Mingxing

    1993-04-01

    High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here.

  6. Searches for the standard model Higgs at the Tevatron

    SciTech Connect

    Kilminster, Ben; /Ohio State U.

    2007-05-01

    The CDF and D0 experiments at the Tevatron are currently the only capable of searching for the Standard Model Higgs boson. This article describes their most sensitive searches in the expected Higgs mass range, focusing on advanced methods used to extract the maximal sensitivity from the data. CDF presents newly updated results for H {yields} W{sup +}W{sup -} and Zh {yields} l{sup +}l{sup -}b{bar b}. D0 presents two new searches for WH {yields} lvb{bar b}. These new analyses use the same 1 fb{sup -1} dataset as previous searches, but with improved techniques resulting in markedly improved sensitivity.

  7. A theorem on the Higgs sector of the Standard Model

    NASA Astrophysics Data System (ADS)

    Frasca, Marco

    2016-06-01

    We provide the solution of the classical theory for the Higgs sector of the Standard Model obtaining the exact Green's function for the broken phase. Solving the Dyson-Schwinger equations for the Higgs field we show that the propagator coincides with that of the classical theory confirming the spectrum also at the quantum level. In this way we obtain a proof of triviality using the Källen-Lehman representation. This has as a consequence that higher excited states must exist for the Higgs particle, representing an internal spectrum for it. Higher excited states have exponentially smaller amplitudes and, so, their production rates are significantly depressed.

  8. Searches for the standard model Higgs boson at the Tevatron

    SciTech Connect

    Dorigo, Tommaso; /Padua U.

    2005-05-01

    The CDF and D0 experiments at the Tevatron have searched for the Standard Model Higgs boson in data collected between 2001 and 2004. Upper limits have been placed on the production cross section times branching ratio to b{bar b} pairs or W{sup +}W{sup -} pairs as a function of the Higgs boson mass. projections indicate that the Tevatron experiments have a chance of discovering a M{sub H} = 115 GeV Higgs with the total dataset foreseen by 2009, or excluding it at 95% C.L. up to a mass of 135 GeV.

  9. What is Air? A Standard Model for Combustion Simulations

    SciTech Connect

    Cloutman, L D

    2001-08-01

    Most combustion devices utilize air as the oxidizer. Thus, reactive flow simulations of these devices require the specification of the composition of air as part of the physicochemical input. A mixture of only oxygen and nitrogen often is used, although in reality air is a more complex mixture of somewhat variable composition. We summarize some useful parameters describing a standard model of dry air. Then we consider modifications to include water vapor for creating the desired level of humidity. The ''minor'' constituents of air, especially argon and water vapor, can affect the composition by as much as about 5 percent in the mole fractions.

  10. Quantum corrections in Higgs inflation: the Standard Model case

    NASA Astrophysics Data System (ADS)

    George, Damien P.; Mooij, Sander; Postma, Marieke

    2016-04-01

    We compute the one-loop renormalization group equations for Standard Model Higgs inflation. The calculation is done in the Einstein frame, using a covariant formalism for the multi-field system. All counterterms, and thus the betafunctions, can be extracted from the radiative corrections to the two-point functions; the calculation of higher n-point functions then serves as a consistency check of the approach. We find that the theory is renormalizable in the effective field theory sense in the small, mid and large field regime. In the large field regime our results differ slightly from those found in the literature, due to a different treatment of the Goldstone bosons.

  11. Dark Matter and Color Octets Beyond the Standard Model

    SciTech Connect

    Krnjaic, Gordan Zdenko

    2012-07-01

    Although the Standard Model (SM) of particles and interactions has survived forty years of experimental tests, it does not provide a complete description of nature. From cosmological and astrophysical observations, it is now clear that the majority of matter in the universe is not baryonic and interacts very weakly (if at all) via non-gravitational forces. The SM does not provide a dark matter candidate, so new particles must be introduced. Furthermore, recent Tevatron results suggest that SM predictions for benchmark collider observables are in tension with experimental observations. In this thesis, we will propose extensions to the SM that address each of these issues.

  12. Electroweak baryogenesis in the exceptional supersymmetric standard model

    SciTech Connect

    Chao, Wei

    2015-08-28

    We study electroweak baryogenesis in the E{sub 6} inspired exceptional supersymmetric standard model (E{sub 6}SSM). The relaxation coefficients driven by singlinos and the new gaugino as well as the transport equation of the Higgs supermultiplet number density in the E{sub 6}SSM are calculated. Our numerical simulation shows that both CP-violating source terms from singlinos and the new gaugino can solely give rise to a correct baryon asymmetry of the Universe via the electroweak baryogenesis mechanism.

  13. NONGRAVITATIONAL FORCES ON COMETS: AN EXTENSION OF THE STANDARD MODEL

    SciTech Connect

    Aksnes, K.; Mysen, E.

    2011-09-15

    The accuracy of comet orbit computations is limited by uncertain knowledge of the recoil force due to outgassing from the nuclei. The standard model assumes an exponential dependence of the force on distance from the Sun. This variable force times constants A{sub 1}, A{sub 2}, and A{sub 3} represents the radial, transverse, and normal components of the net force. Orbit solutions show that the As often vary considerably over a few apparitions of the comets. In this paper, we allow for time variations of the As, and we show that for several comets this improves the orbit accuracy considerably.

  14. Naturalness of CP Violation in the Standard Model

    SciTech Connect

    Gibbons, Gary W.; Gielen, Steffen; Pope, C. N.; Turok, Neil

    2009-03-27

    We construct a natural measure on the space of Cabibbo-Kobayashi-Maskawa matrices in the standard model, assuming the fermion mass matrices are randomly selected from a distribution which incorporates the observed quark mass hierarchy. This measure allows us to assess the likelihood of Jarlskog's CP violation parameter J taking its observed value J{approx_equal}3x10{sup -5}. We find that the observed value, while well below the mathematically allowed maximum, is in fact typical once the observed quark masses are assumed.

  15. Strong CP problem with 10(32) standard model copies.

    PubMed

    Dvali, Gia; Farrar, Glennys R

    2008-07-01

    We show that a recently proposed solution to the hierarchy problem simultaneously solves the strong CP problem, without requiring an axion or any further new physics. Consistency of black hole physics implies a nontrivial relation between the number of particle species and particle masses, so that with approximately 10(32) copies of the standard model, the TeV scale is naturally explained. At the same time, as shown here, this setup predicts a typical expected value of the strong-CP parameter in QCD of theta approximately 10(-9). This strongly motivates a more sensitive measurement of the neutron electric dipole moment. PMID:18764102

  16. Big bang nucleosynthesis: The standard model and alternatives

    NASA Technical Reports Server (NTRS)

    Schramm, David N.

    1991-01-01

    Big bang nucleosynthesis provides (with the microwave background radiation) one of the two quantitative experimental tests of the big bang cosmological model. This paper reviews the standard homogeneous-isotropic calculation and shows how it fits the light element abundances ranging from He-4 at 24% by mass through H-2 and He-3 at parts in 10(exp 5) down to Li-7 at parts in 10(exp 10). Furthermore, the recent large electron positron (LEP) (and the stanford linear collider (SLC)) results on the number of neutrinos are discussed as a positive laboratory test of the standard scenario. Discussion is presented on the improved observational data as well as the improved neutron lifetime data. Alternate scenarios of decaying matter or of quark-hadron induced inhomogeneities are discussed. It is shown that when these scenarios are made to fit the observed abundances accurately, the resulting conlusions on the baryonic density relative to the critical density, omega(sub b) remain approximately the same as in the standard homogeneous case, thus, adding to the robustness of the conclusion that omega(sub b) approximately equals 0.06. This latter point is the driving force behind the need for non-baryonic dark matter (assuming omega(sub total) = 1) and the need for dark baryonic matter, since omega(sub visible) is less than omega(sub b).

  17. Colorado Model Content Standards for Science: Suggested Grade Level Expectations.

    ERIC Educational Resources Information Center

    Colorado State Dept. of Education, Denver.

    This document outlines the content standards for science in the state of Colorado. The document is organized into six standards, each of which is subdivided into a set of guiding questions exemplifying the standard and a series of lists defining what is expected of students at each grade level within the standard. The standards are that students…

  18. Electro symmetry breaking and beyond the standard model

    SciTech Connect

    Barklow, T.; Dawson, S.; Haber, H.E.; Siegrist, J.

    1995-05-01

    The development of the Standard Model of particle physics is a remarkable success story. Its many facets have been tested at present day accelerators; no significant unambiguous deviations have yet been found. In some cases, the model has been verified at an accuracy of better than one part in a thousand. This state of affairs presents our field with a challenge. Where do we go from here? What is our vision for future developments in particle physics? Are particle physicists` recent successes a signal of the field`s impending demise, or do real long-term prospects exist for further progress? We assert that the long-term health and intellectual vitality of particle physics depends crucially on the development of a new generation of particle colliders that push the energy frontier by an order of magnitude beyond present capabilities. In this report, we address the scientific issues underlying this assertion.

  19. Alive and well: A short review about standard solar models

    NASA Astrophysics Data System (ADS)

    Serenelli, Aldo

    2016-04-01

    Standard solar models (SSMs) provide a reference framework across a number of research fields: solar and stellar models, solar neutrinos, particle physics the most conspicuous among them. The accuracy of the physical description of the global properties of the Sun that SSMs provide has been challenged in the last decade by a number of developments in stellar spectroscopic techniques. Over the same period of time, solar neutrino experiments, and Borexino in particular, have measured the four solar neutrino fluxes from the pp-chains that are associated with 99% of the nuclear energy generated in the Sun. Borexino has also set the most stringent limit on CNO energy generation, only ˜ 40% larger than predicted by SSMs. More recently, and for the first time, radiative opacity experiments have been performed at conditions that closely resemble those at the base of the solar convective envelope. In this article, we review these developments and discuss the current status of SSMs, including its intrinsic limitations.

  20. Z' boson detection in the minimal quiver standard model

    SciTech Connect

    Berenstein, D.; Martinez, R.; Ochoa, F.; Pinansky, S.

    2009-05-01

    We undertake a phenomenological study of the extra neutral Z' boson in the minimal quiver standard model and discuss limits on the model's parameters from previous precision electroweak experiments, as well as detection prospects at the Large Hadron Collider at CERN. We find that masses lower than around 700 GeV are excluded by the Z-pole data from the CERN LEP collider, and below 620 GeV by experimental data from di-electron events at the Fermilab Tevatron collider. We also find that at a mass of 1 TeV the LHC cross section would show a small peak in the di-lepton and top pair channel.

  1. Modeling the wet bulb globe temperature using standard meteorological measurements.

    SciTech Connect

    Liljegren, J. C.; Carhart, R. A.; Lawday, P.; Tschopp, S.; Sharp, R.; Decision and Information Sciences

    2008-10-01

    The U.S. Army has a need for continuous, accurate estimates of the wet bulb globe temperature to protect soldiers and civilian workers from heat-related injuries, including those involved in the storage and destruction of aging chemical munitions at depots across the United States. At these depots, workers must don protective clothing that increases their risk of heat-related injury. Because of the difficulty in making continuous, accurate measurements of wet bulb globe temperature outdoors, the authors have developed a model of the wet bulb globe temperature that relies only on standard meteorological data available at each storage depot for input. The model is composed of separate submodels of the natural wet bulb and globe temperatures that are based on fundamental principles of heat and mass transfer, has no site-dependent parameters, and achieves an accuracy of better than 1 C based on comparisons with wet bulb globe temperature measurements at all depots.

  2. How to use the Standard Model effective field theory

    NASA Astrophysics Data System (ADS)

    Henning, Brian; Lu, Xiaochuan; Murayama, Hitoshi

    2016-01-01

    We present a practical three-step procedure of using the Standard Model effective field theory (SM EFT) to connect ultraviolet (UV) models of new physics with weak scale precision observables. With this procedure, one can interpret precision measurements as constraints on a given UV model. We give a detailed explanation for calculating the effective action up to one-loop order in a manifestly gauge covariant fashion. This covariant derivative expansion method dramatically simplifies the process of matching a UV model with the SM EFT, and also makes available a universal formalism that is easy to use for a variety of UV models. A few general aspects of RG running effects and choosing operator bases are discussed. Finally, we provide mapping results between the bosonic sector of the SM EFT and a complete set of precision electroweak and Higgs observables to which present and near future experiments are sensitive. Many results and tools which should prove useful to those wishing to use the SM EFT are detailed in several appendices.

  3. Standard model on a domain-wall brane?

    SciTech Connect

    Davies, Rhys; George, Damien P.; Volkas, Raymond R.

    2008-06-15

    We propose a 4+1-dimensional action that is a candidate for realizing a standard-model-like effective theory for fields dynamically localized to a domain-wall brane. Our construction is in part based on the conjecture that the Dvali-Shifman mechanism for dynamically localizing gauge bosons to a domain wall works correctly in 4+1-d. Assuming this to be so, we require the gauge symmetry to be SU(5) in the bulk, spontaneously breaking to SU(3) x SU(2) x U(1) inside the domain wall, thus dynamically localizing the standard-model gauge bosons provided that the SU(5) theory in the bulk exhibits confinement. The wall is created jointly by a real singlet-Higgs field {eta} configured as a kink, and an SU(5) adjoint-Higgs field {chi} that takes nonzero values inside the wall. Chiral 3+1-dimensional quarks and leptons are confined and split along the bulk direction via their Yukawa couplings to {eta} and {chi}. The Higgs doublet and its color triplet SU(5) partner are similarly localized and split. The splittings can suppress colored-Higgs-induced proton decay and, because of the different localization profiles, the usual SU(5) mass relation m{sub e}=m{sub d} does not arise. Localized gravity is generated via the Randall-Sundrum alternative to compactification.

  4. Penguin-like diagrams from the standard model

    NASA Astrophysics Data System (ADS)

    Ping, Chia Swee

    2015-04-01

    The Standard Model is highly successful in describing the interactions of leptons and quarks. There are, however, rare processes that involve higher order effects in electroweak interactions. One specific class of processes is the penguin-like diagram. Such class of diagrams involves the neutral change of quark flavours accompanied by the emission of a gluon (gluon penguin), a photon (photon penguin), a gluon and a photon (gluon-photon penguin), a Z-boson (Z penguin), or a Higgs-boson (Higgs penguin). Such diagrams do not arise at the tree level in the Standard Model. They are, however, induced by one-loop effects. In this paper, we present an exact calculation of the penguin diagram vertices in the `tHooft-Feynman gauge. Renormalization of the vertex is effected by a prescription by Chia and Chong which gives an expression for the counter term identical to that obtained by employing Ward-Takahashi identity. The on-shell vertex functions for the penguin diagram vertices are obtained. The various penguin diagram vertex functions are related to one another via Ward-Takahashi identity. From these, a set of relations is obtained connecting the vertex form factors of various penguin diagrams. Explicit expressions for the gluon-photon penguin vertex form factors are obtained, and their contributions to the flavor changing processes estimated.

  5. Penguin-like diagrams from the standard model

    SciTech Connect

    Ping, Chia Swee

    2015-04-24

    The Standard Model is highly successful in describing the interactions of leptons and quarks. There are, however, rare processes that involve higher order effects in electroweak interactions. One specific class of processes is the penguin-like diagram. Such class of diagrams involves the neutral change of quark flavours accompanied by the emission of a gluon (gluon penguin), a photon (photon penguin), a gluon and a photon (gluon-photon penguin), a Z-boson (Z penguin), or a Higgs-boson (Higgs penguin). Such diagrams do not arise at the tree level in the Standard Model. They are, however, induced by one-loop effects. In this paper, we present an exact calculation of the penguin diagram vertices in the ‘tHooft-Feynman gauge. Renormalization of the vertex is effected by a prescription by Chia and Chong which gives an expression for the counter term identical to that obtained by employing Ward-Takahashi identity. The on-shell vertex functions for the penguin diagram vertices are obtained. The various penguin diagram vertex functions are related to one another via Ward-Takahashi identity. From these, a set of relations is obtained connecting the vertex form factors of various penguin diagrams. Explicit expressions for the gluon-photon penguin vertex form factors are obtained, and their contributions to the flavor changing processes estimated.

  6. Long-term archiving and data access: modelling and standardization

    NASA Technical Reports Server (NTRS)

    Hoc, Claude; Levoir, Thierry; Nonon-Latapie, Michel

    1996-01-01

    This paper reports on the multiple difficulties inherent in the long-term archiving of digital data, and in particular on the different possible causes of definitive data loss. It defines the basic principles which must be respected when creating long-term archives. Such principles concern both the archival systems and the data. The archival systems should have two primary qualities: independence of architecture with respect to technological evolution, and generic-ness, i.e., the capability of ensuring identical service for heterogeneous data. These characteristics are implicit in the Reference Model for Archival Services, currently being designed within an ISO-CCSDS framework. A system prototype has been developed at the French Space Agency (CNES) in conformance with these principles, and its main characteristics will be discussed in this paper. Moreover, the data archived should be capable of abstract representation regardless of the technology used, and should, to the extent that it is possible, be organized, structured and described with the help of existing standards. The immediate advantage of standardization is illustrated by several concrete examples. Both the positive facets and the limitations of this approach are analyzed. The advantages of developing an object-oriented data model within this contxt are then examined.

  7. Supersymmetry and String Theory: Beyond the Standard Model

    NASA Astrophysics Data System (ADS)

    Dine, Michael

    2007-01-01

    The past decade has witnessed dramatic developments in the field of theoretical physics. This book is a comprehensive introduction to these recent developments. It contains a review of the Standard Model, covering non-perturbative topics, and a discussion of grand unified theories and magnetic monopoles. It introduces the basics of supersymmetry and its phenomenology, and includes dynamics, dynamical supersymmetry breaking, and electric-magnetic duality. The book then covers general relativity and the big bang theory, and the basic issues in inflationary cosmologies before discussing the spectra of known string theories and the features of their interactions. The book also includes brief introductions to technicolor, large extra dimensions, and the Randall-Sundrum theory of warped spaces. This will be of great interest to graduates and researchers in the fields of particle theory, string theory, astrophysics and cosmology. The book contains several problems, and password protected solutions will be available to lecturers at www.cambridge.org/9780521858410. Provides reader with tools to confront limitations of the Standard Model Includes several exercises and problems Solutions are available to lecturers at www.cambridge.org/9780521858410

  8. Gravitational mass-shift effect in the standard model

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.

    2012-02-01

    The gravitational mass-shift effect is investigated in the framework of the standard model with the energy cutoff regularization both for stationary and nonstationary backgrounds at the one-loop level. The problem of singularity of the effective potential of the Higgs field on the horizon of a black hole, which was reported earlier, is resolved. The equations characterizing the properties of a vacuum state are derived and solved in a certain approximation for the Schwarzschild black hole. The gravitational mass-shift effect is completely described in this case. The behavior of masses of the massive particles of the standard model depends on the value of the Higgs boson mass in a flat spacetime. If the Higgs boson mass in a flat spacetime is less than 263.6 GeV then a mass of any massive particle approaching a gravitating object grows. If the Higgs boson mass in a flat spacetime is greater than or equal to 278.2 GeV, the masses of all the massive particles decrease in a strong gravitational field. The Higgs boson masses lying between these two values prove to lead to instability, at least at the one-loop level, and so they are excluded. It turns out that the vacuum possesses the same properties as an ultrarelativistic fluid in a certain approximation. The expression for the entropy and enthalpy densities and the pressure of this fluid are obtained. The sound speed in this fluid is also derived.

  9. Symmetries for standard model alignment in multi-Higgs doublet models

    NASA Astrophysics Data System (ADS)

    Pilaftsis, Apostolos

    2016-04-01

    We derive the complete set of continuous maximal symmetries for standard model (SM) alignment that may occur in the tree-level scalar potential of multi-Higgs doublet models, with n >2 Higgs doublets. Our results generalize the symmetries of SM alignment, without decoupling of large mass scales or fine-tuning, previously obtained in the context of two-Higgs doublet models.

  10. Comparison of standard ruler and standard candle constraints on dark energy models

    SciTech Connect

    Lazkoz, R; Nesseris, S; Perivolaropoulos, L E-mail: snesseris@grads.uoi.gr

    2008-07-15

    We compare the dark energy model constraints obtained by using recent standard ruler data (baryon acoustic oscillations (BAO) at z = 0.2 and 0.35 and cosmic microwave background (CMB) shift parameters R and l{sub a}) with the corresponding constraints obtained by using recent type Ia supernovae (SnIa) standard candle data (ESSENCE+SNLS+HST from astro-ph/0701510). We find that, even though both classes of data are consistent with {Lambda}CDM (CDM: cold dark matter) at the 2{sigma} level, there is a systematic difference between the two classes of data. In particular, we find that for practically all values of the parameters ({Omega}{sub 0m},{Omega}{sub b}) in the 2{sigma} range of the three-year WMAP data (WMAP3) best fit, {Lambda}CDM is significantly more consistent with the SnIa data than with the CMB+BAO data. For example for ({Omega}{sub 0m},{Omega}{sub b}) = (0.24,0.042) corresponding to the best fit values of WMAP3, the dark energy equation of state parameterization w(z) = w{sub 0}+w{sub 1}(z/1+z) best fit is at a 0.5{sigma} distance from {Lambda}CDM (w{sub 0} = -1,w{sub 1} = 0) using the SnIa data and 1.7{sigma} away from {Lambda}CDM using the CMB+BAO data. There is a similar trend in the earlier data (SNLS versus CMB+BAO at z = 0.35). This trend is such that the standard ruler CMB+BAO data show a mild preference for crossing of the phantom divide line w = -1, while the recent SnIa data favor {Lambda}CDM. Despite this mild difference in trends, we find no statistically significant evidence for violation of the cosmic distance duality relation {eta} {identical_to} d{sub L}(z)/d{sub A}(z)(1+z){sup 2}=1. For example, using a prior of {Omega}{sub 0m} = 0.24, we find {eta} = 0.95 {+-} 0.025 in the redshift range 0

  11. Chiral supersymmetric Standard Model spectra from orientifolds of Gepner models [rapid communication

    NASA Astrophysics Data System (ADS)

    Dijkstra, T. P. T.; Huiszoon, L. R.; Schellekens, A. N.

    2005-03-01

    We construct d = 4, N = 1 orientifolds of Gepner models with just the chiral spectrum of the Standard Model. We consider all simple current modular invariants of c = 9 tensor products of N = 2 minimal models. For some very specific tensor combinations, and very specific modular invariants and orientifold projections, we find a large number of such spectra. We allow for Standard Model singlet (dark) matter and non-chiral exotics. The Chan-Paton gauge group is either U (3) × Sp (2) × U (1) × U (1) or U (3) × U (2) × U (1) × U (1). In many cases the Standard Model hypercharge U (1) has no coupling to RR 2-forms and hence remains massless; in some of those models the B-L gauge boson does acquire a mass.

  12. Rapid simulation rescaling from standard to modified gravity models

    NASA Astrophysics Data System (ADS)

    Mead, A. J.; Peacock, J. A.; Lombriser, L.; Li, B.

    2015-10-01

    We develop and test an algorithm to rescale a simulated dark-matter particle distribution or halo catalogue from a standard gravity model to that of a modified gravity model. This method is based on that of Angulo & White but with some additional ingredients to account for (i) scale-dependent growth of linear density perturbations and (ii) screening mechanisms that are generic features of viable modified gravity models. We attempt to keep the method as general as possible, so that it may plausibly be applied to a wide range of modified theories, although tests against simulations are restricted to a subclass of f (R) models at this stage. We show that rescaling allows the power spectrum of matter to be reproduced at the ˜3 per cent level in both real and redshift space up to k = 0.1h Mpc-1 if we change the box size and alter the particle displacement field; this limit can be extended to k = 1h Mpc-1 if we additionally alter halo internal structure. We simultaneously develop an algorithm that can be applied directly to a halo catalogue, in which case the halo mass function and clustering can be reproduced at the ˜5 per cent level. Finally, we investigate the clustering of halo particle distributions, generated from rescaled halo catalogues, and find that a similar accuracy can be reached.

  13. Type II Supernovae: Model Light Curves and Standard Candle Relationships

    NASA Astrophysics Data System (ADS)

    Kasen, Daniel; Woosley, S. E.

    2009-10-01

    A survey of Type II supernovae explosion models has been carried out to determine how their light curves and spectra vary with their mass, metallicity, and explosion energy. The presupernova models are taken from a recent survey of massive stellar evolution at solar metallicity supplemented by new calculations at subsolar metallicity. Explosions are simulated by the motion of a piston near the edge of the iron core and the resulting light curves and spectra are calculated using full multi-wavelength radiation transport. Formulae are developed that describe approximately how the model observables (light curve luminosity and duration) scale with the progenitor mass, explosion energy, and radioactive nucleosynthesis. Comparison with observational data shows that the explosion energy of typical supernovae (as measured by kinetic energy at infinity) varies by nearly an order of magnitude—from 0.5 to 4.0 × 1051 ergs, with a typical value of ~0.9 × 1051 ergs. Despite the large variation, the models exhibit a tight relationship between luminosity and expansion velocity, similar to that previously employed empirically to make SNe IIP standardized candles. This relation is explained by the simple behavior of hydrogen recombination in the supernova envelope, but we find a sensitivity to progenitor metallicity and mass that could lead to systematic errors. Additional correlations between light curve luminosity, duration, and color might enable the use of SNe IIP to obtain distances accurate to ~20% using only photometric data.

  14. TYPE II SUPERNOVAE: MODEL LIGHT CURVES AND STANDARD CANDLE RELATIONSHIPS

    SciTech Connect

    Kasen, Daniel; Woosley, S. E.

    2009-10-01

    A survey of Type II supernovae explosion models has been carried out to determine how their light curves and spectra vary with their mass, metallicity, and explosion energy. The presupernova models are taken from a recent survey of massive stellar evolution at solar metallicity supplemented by new calculations at subsolar metallicity. Explosions are simulated by the motion of a piston near the edge of the iron core and the resulting light curves and spectra are calculated using full multi-wavelength radiation transport. Formulae are developed that describe approximately how the model observables (light curve luminosity and duration) scale with the progenitor mass, explosion energy, and radioactive nucleosynthesis. Comparison with observational data shows that the explosion energy of typical supernovae (as measured by kinetic energy at infinity) varies by nearly an order of magnitude-from 0.5 to 4.0 x 10{sup 51} ergs, with a typical value of approx0.9 x 10{sup 51} ergs. Despite the large variation, the models exhibit a tight relationship between luminosity and expansion velocity, similar to that previously employed empirically to make SNe IIP standardized candles. This relation is explained by the simple behavior of hydrogen recombination in the supernova envelope, but we find a sensitivity to progenitor metallicity and mass that could lead to systematic errors. Additional correlations between light curve luminosity, duration, and color might enable the use of SNe IIP to obtain distances accurate to approx20% using only photometric data.

  15. Application of standards and models in body composition analysis.

    PubMed

    Müller, Manfred J; Braun, Wiebke; Pourhassan, Maryam; Geisler, Corinna; Bosy-Westphal, Anja

    2016-05-01

    The aim of this review is to extend present concepts of body composition and to integrate it into physiology. In vivo body composition analysis (BCA) has a sound theoretical and methodological basis. Present methods used for BCA are reliable and valid. Individual data on body components, organs and tissues are included into different models, e.g. a 2-, 3-, 4- or multi-component model. Today the so-called 4-compartment model as well as whole body MRI (or computed tomography) scans are considered as gold standards of BCA. In practice the use of the appropriate method depends on the question of interest and the accuracy needed to address it. Body composition data are descriptive and used for normative analyses (e.g. generating normal values, centiles and cut offs). Advanced models of BCA go beyond description and normative approaches. The concept of functional body composition (FBC) takes into account the relationships between individual body components, organs and tissues and related metabolic and physical functions. FBC can be further extended to the model of healthy body composition (HBC) based on horizontal (i.e. structural) and vertical (e.g. metabolism and its neuroendocrine control) relationships between individual components as well as between component and body functions using mathematical modelling with a hierarchical multi-level multi-scale approach at the software level. HBC integrates into whole body systems of cardiovascular, respiratory, hepatic and renal functions. To conclude BCA is a prerequisite for detailed phenotyping of individuals providing a sound basis for in depth biomedical research and clinical decision making. PMID:26541411

  16. Wisconsin's Model Academic Standards for Art and Design Education.

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Public Instruction, Madison.

    This Wisconsin academic standards guide for art and design explains what is meant by academic standards. The guide declares that academic standards specify what students should know and be able to do; what students might be asked to do to give evidence of standards; how well students must perform; and that content, performance, and proficiency…

  17. Evolution of Climate Science Modelling Language within international standards frameworks

    NASA Astrophysics Data System (ADS)

    Lowe, Dominic; Woolf, Andrew

    2010-05-01

    The Climate Science Modelling Language (CSML) was originally developed as part of the NERC Data Grid (NDG) project in the UK. It was one of the first Geography Markup Language (GML) application schemas describing complex feature types for the metocean domain. CSML feature types can be used to describe typical climate products such as model runs or atmospheric profiles. CSML has been successfully used within NDG to provide harmonised access to a number of different data sources. For example, meteorological observations held in heterogeneous databases by the British Atmospheric Data Centre (BADC) and Centre for Ecology and Hydrology (CEH) were served uniformly as CSML features via Web Feature Service. CSML has now been substantially revised to harmonise it with the latest developments in OGC and ISO conceptual modelling for geographic information. In particular, CSML is now aligned with the near-final ISO 19156 Observations & Measurements (O&M) standard. CSML combines the O&M concept of 'sampling features' together with an observation result based on the coverage model (ISO 19123). This general pattern is specialised for particular data types of interest, classified on the basis of sampling geometry and topology. In parallel work, the OGC Met Ocean Domain Working Group has established a conceptual modelling activity. This is a cross-organisational effort aimed at reaching consensus on a common core data model that could be re-used in a number of met-related application areas: operational meteorology, aviation meteorology, climate studies, and the research community. It is significant to note that this group has also identified sampling geometry and topology as a key classification axis for data types. Using the Model Driven Architecture (MDA) approach as adopted by INSPIRE we demonstrate how the CSML application schema is derived from a formal UML conceptual model based on the ISO TC211 framework. By employing MDA tools which map consistently between UML and GML we

  18. Standards and Guidelines for Numerical Models for Tsunami Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Titov, V.; Gonzalez, F.; Kanoglu, U.; Yalciner, A.; Synolakis, C. E.

    2006-12-01

    An increased number of nations around the workd need to develop tsunami mitigation plans which invariably involve inundation maps for warning guidance and evacuation planning. There is the risk that inundation maps may be produced with older or untested methodology, as there are currently no standards for modeling tools. In the aftermath of the 2004 megatsunami, some models were used to model inundation for Cascadia events with results much larger than sediment records and existing state-of-the-art studies suggest leading to confusion among emergency management. Incorrectly assessing tsunami impact is hazardous, as recent events in 2006 in Tonga, Kythira, Greece and Central Java have suggested (Synolakis and Bernard, 2006). To calculate tsunami currents, forces and runup on coastal structures, and inundation of coastlines one must calculate the evolution of the tsunami wave from the deep ocean to its target site, numerically. No matter what the numerical model, validation (the process of ensuring that the model solves the parent equations of motion accurately) and verification (the process of ensuring that the model used represents geophysical reality appropriately) both are an essential. Validation ensures that the model performs well in a wide range of circumstances and is accomplished through comparison with analytical solutions. Verification ensures that the computational code performs well over a range of geophysical problems. A few analytic solutions have been validated themselves with laboratory data. Even fewer existing numerical models have been both validated with the analytical solutions and verified with both laboratory measurements and field measurements, thus establishing a gold standard for numerical codes for inundation mapping. While there is in principle no absolute certainty that a numerical code that has performed well in all the benchmark tests will also produce correct inundation predictions with any given source motions, validated codes

  19. New extended standard model, dark matters and relativity theory

    NASA Astrophysics Data System (ADS)

    Hwang, Jae-Kwang

    2016-03-01

    Three-dimensional quantized space model is newly introduced as the extended standard model. Four three-dimensional quantized spaces with total 12 dimensions are used to explain the universes including ours. Electric (EC), lepton (LC) and color (CC) charges are defined to be the charges of the x1x2x3, x4x5x6 and x7x8x9 warped spaces, respectively. Then, the lepton is the xi(EC) - xj(LC) correlated state which makes 3x3 = 9 leptons and the quark is the xi(EC) - xj(LC) - xk(CC) correlated state which makes 3x3x3 = 27 quarks. The new three bastons with the xi(EC) state are proposed as the dark matters seen in the x1x2x3 space, too. The matter universe question, three generations of the leptons and quarks, dark matter and dark energy, hadronization, the big bang, quantum entanglement, quantum mechanics and general relativity are briefly discussed in terms of this new model. The details can be found in the article titled as ``journey into the universe; three-dimensional quantized spaces, elementary particles and quantum mechanics at https://www.researchgate.net/profile/J_Hwang2''.

  20. CosPA 2015 and the Standard Model

    NASA Astrophysics Data System (ADS)

    Pauchy Hwang, W.-Y.

    2016-07-01

    In this keynote speech, I describe briefly “The Universe”, a journal/newsletter launched by APCosPA Organization, and my lifetime research on the Standard Model of particle physics. In this 21st Century, we should declare that we live in the quantum 4-dimensional Minkowski space-time with the force-fields gauge-group structure SUc(3) × SUL(2) × U(1) × SUf(3) built-in from the very beginning. This background can see the lepton world, of atomic sizes, and offers us the eyes to see other things. It also can see the quark world, of the Fermi sizes, and this fact makes this entire world much more interesting.

  1. Consistent constraints on the Standard Model Effective Field Theory

    NASA Astrophysics Data System (ADS)

    Berthier, Laure; Trott, Michael

    2016-02-01

    We develop the global constraint picture in the (linear) effective field theory generalisation of the Standard Model, incorporating data from detectors that operated at PEP, PETRA, TRISTAN, SpS, Tevatron, SLAC, LEPI and LEP II, as well as low energy precision data. We fit one hundred and three observables. We develop a theory error metric for this effective field theory, which is required when constraints on parameters at leading order in the power counting are to be pushed to the percent level, or beyond, unless the cut off scale is assumed to be large, Λ ≳ 3 TeV. We more consistently incorporate theoretical errors in this work, avoiding this assumption, and as a direct consequence bounds on some leading parameters are relaxed. We show how an S, T analysis is modified by the theory errors we include as an illustrative example.

  2. Consistent use of the standard model effective potential.

    PubMed

    Andreassen, Anders; Frost, William; Schwartz, Matthew D

    2014-12-12

    The stability of the standard model is determined by the true minimum of the effective Higgs potential. We show that the potential at its minimum when computed by the traditional method is strongly dependent on the gauge parameter. It moreover depends on the scale where the potential is calculated. We provide a consistent method for determining absolute stability independent of both gauge and calculation scale, order by order in perturbation theory. This leads to a revised stability bounds m(h)(pole)>(129.4±2.3)  GeV and m(t)(pole)<(171.2±0.3)  GeV. We also show how to evaluate the effect of new physics on the stability bound without resorting to unphysical field values. PMID:25541764

  3. Triple neutral gauge boson couplings in noncommutative Standard Model

    NASA Astrophysics Data System (ADS)

    Deshpande, N. G.; He, Xiao-Gang

    2002-05-01

    It has been shown recently that the triple neutral gauge boson couplings are not uniquely determined in noncommutative extension of the Standard Model (NCSM). Depending on specific schemes used, the couplings are different and may even be zero. To distinguish different realizations of the NCSM, additional information either from theoretical or experimental considerations is needed. In this Letter we show that these couplings can be uniquely determined from considerations of unification of electroweak and strong interactions. Using SU(5) as the underlying theory and integrating out the heavy degrees of freedom, we obtain unique non-zero new triple γγγ, γγZ, γZZ, ZZZ, γGG, ZGG and GGG couplings at the leading order in the NCSM. We also briefly discuss experimental implications.

  4. Baryon number dissipation at finite temperature in the standard model

    SciTech Connect

    Mottola, E. ); Raby, S. . Dept. of Physics); Starkman, G. . Dept. of Astronomy)

    1990-01-01

    We analyze the phenomenon of baryon number violation at finite temperature in the standard model, and derive the relaxation rate for the baryon density in the high temperature electroweak plasma. The relaxation rate, {gamma} is given in terms of real time correlation functions of the operator E{center dot}B, and is directly proportional to the sphaleron transition rate, {Gamma}: {gamma} {preceq} n{sub f}{Gamma}/T{sup 3}. Hence it is not instanton suppressed, as claimed by Cohen, Dugan and Manohar (CDM). We show explicitly how this result is consistent with the methods of CDM, once it is recognized that a new anomalous commutator is required in their approach. 19 refs., 2 figs.

  5. Image contrast enhancement based on a local standard deviation model

    SciTech Connect

    Chang, Dah-Chung; Wu, Wen-Rong

    1996-12-31

    The adaptive contrast enhancement (ACE) algorithm is a widely used image enhancement method, which needs a contrast gain to adjust high frequency components of an image. In the literature, the gain is usually inversely proportional to the local standard deviation (LSD) or is a constant. But these cause two problems in practical applications, i.e., noise overenhancement and ringing artifact. In this paper a new gain is developed based on Hunt`s Gaussian image model to prevent the two defects. The new gain is a nonlinear function of LSD and has the desired characteristic emphasizing the LSD regions in which details are concentrated. We have applied the new ACE algorithm to chest x-ray images and the simulations show the effectiveness of the proposed algorithm.

  6. Combination of Standard Model Higgs searches at CDF

    SciTech Connect

    Potamianos, Karolos; /Purdue U. /Fermilab

    2010-12-01

    We present the latest combination of searches for a standard model (SM) Higgs boson in p{bar p} collisions at {radical}s = 1.96 TeV recorded by the CDF II detector at the Fermilab Tevatron. Using data corresponding to 2.3-5.9 fb{sup -1} of integrated luminosity, we perform searches in a number of different production and decay modes and then combine them to improve sensitivity. No excess in data above that expected from backgrounds is observed; therefore, we set upper limits on the production cross section times branching fraction as a function of the SM Higgs boson mass (m{sub H}). The combined observed (expected) limit is 1.9 (1.8) times the SM prediction at m{sub H} =115 GeV/c{sup 2} and 1.0 (1.1) times the SM prediction at m{sub H} = 165 GeV/c{sup 2}.

  7. New phenomena beyond both the standard model and MSSM

    SciTech Connect

    Hewett, J.L.

    1995-07-01

    The Standard Model (SM) is in complete agreement with present experimental data. Nevertheless, it is believed to leave many questions unanswered, and this belief has resulted in numerous attempts to find a more fundamental underlying theory. One key ingredient in the extrapolation of the SM to higher energies is to identify the complete particle spectrum at the electroweak scale. Two popular examples of theories which populate the TeV scale with a plethora of new particles are supersymmetry and technicolor. This has resulted in extensive searches for super- and techni-particles, which have been reported elsewhere at this meeting. In this talk, the author identifies other possible manifestations of new physics, and discusses their implications on hadron collider physics.

  8. Standard model cross-over on the lattice

    NASA Astrophysics Data System (ADS)

    D'Onofrio, Michela; Rummukainen, Kari

    2016-01-01

    With the physical Higgs mass the standard model symmetry restoration phase transition is a smooth cross-over. We study the thermodynamics of the cross-over using numerical lattice Monte Carlo simulations of an effective SU (2 )×U (1 ) gauge+Higgs theory, significantly improving on previously published results. We measure the Higgs field expectation value, thermodynamic quantities like pressure, energy density, speed of sound and heat capacity, and screening masses associated with the Higgs and Z fields. While the cross-over is smooth, it is very well defined with a width of only ˜5 GeV . We measure the cross-over temperature from the maximum of the susceptibility of the Higgs condensate, with the result Tc=159.5 ±1.5 GeV . Outside of the narrow cross-over region the perturbative results agree well with nonperturbative ones.

  9. Quantum Gravity and Lorentz Invariance Violation in the Standard Model

    SciTech Connect

    Alfaro, Jorge

    2005-06-10

    The most important problem of fundamental physics is the quantization of the gravitational field. A main difficulty is the lack of available experimental tests that discriminate among the theories proposed to quantize gravity. Recently, Lorentz invariance violation by quantum gravity (QG) has been the source of growing interest. However, the predictions depend on an ad hoc hypothesis and too many arbitrary parameters. Here we show that the standard model itself contains tiny Lorentz invariance violation terms coming from QG. All terms depend on one arbitrary parameter {alpha} that sets the scale of QG effects. This parameter can be estimated using data from the ultrahigh energy cosmic ray spectrum to be vertical bar {alpha} vertical bar <{approx}10{sup -22}-10{sup -23}.

  10. Physics Beyond the Standard Model from Molecular Hydrogen Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ubachs, Wim; Salumbides, Edcel John; Bagdonaite, Julija

    2015-06-01

    The spectrum of molecular hydrogen can be measured in the laboratory to very high precision using advanced laser and molecular beam techniques, as well as frequency-comb based calibration [1,2]. The quantum level structure of this smallest neutral molecule can now be calculated to very high precision, based on a very accurate (10-15 precision) Born-Oppenheimer potential [3] and including subtle non-adiabatic, relativistic and quantum electrodynamic effects [4]. Comparison between theory and experiment yields a test of QED, and in fact of the Standard Model of Physics, since the weak, strong and gravitational forces have a negligible effect. Even fifth forces beyond the Standard Model can be searched for [5]. Astronomical observation of molecular hydrogen spectra, using the largest telescopes on Earth and in space, may reveal possible variations of fundamental constants on a cosmological time scale [6]. A study has been performed at a 'look-back' time of 12.5 billion years [7]. In addition the possible dependence of a fundamental constant on a gravitational field has been investigated from observation of molecular hydrogen in the photospheres of white dwarfs [8]. The latter involves a test of the Einsteins equivalence principle. [1] E.J. Salumbides et al., Phys. Rev. Lett. 107, 143005 (2011). [2] G. Dickenson et al., Phys. Rev. Lett. 110, 193601 (2013). [3] K. Pachucki, Phys. Rev. A82, 032509 (2010). [4] J. Komasa et al., J. Chem. Theory Comp. 7, 3105 (2011). [5] E.J. Salumbides et al., Phys. Rev. D87, 112008 (2013). [6] F. van Weerdenburg et al., Phys. Rev. Lett. 106, 180802 (2011). [7] J. Badonaite et al., Phys. Rev. Lett. 114, 071301 (2015). [8] J. Bagdonaite et al., Phys. Rev. Lett. 113, 123002 (2014).