Sample records for lead carbonates

  1. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, Stephen E.; Moses, William W.

    1991-01-01

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

  2. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, S.E.; Moses, W.W.

    1991-05-14

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses. 3 figures.

  3. Removing lead in drinking water with activated carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, R.M.; Kuennen, R.W.

    A point-of-use (POU) granular activated carbon (GAC) fixed bed adsorber (FBA) was evaluated for reduction of soluble and insoluble lead from drinking water. Some of the factors which affect lead removal by GAC were evaluated, such as carbon type, solution pH, and a limited amount of work on competitive interactions. The design criteria for lead reduction by a POU device are also addressed. Minicolumns were used to evaluate the capacity of carbon for lead under a variety of conditions. The importance of surface chemistry of the carbon and the relationship with the pH of the water for lead reduction wasmore » demonstrated. Results indicate that a properly designed POU-GAC-FBA can reduce lead in drinking water to below the EPA action level of 15 ppb while being tested under a variety of conditions as specified under the National Sanitation Foundation (NSF) International Standard 53 test protocol. 37 refs., 9 figs., 1 tab.« less

  4. Understanding Function and Performance of Carbon Additives in Lead-Acid Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enos, D. G.; Ferreira, S. R.; Barkholtz, H. M.

    While the low cost and strong safety record of lead-acid batteries make them an appealing option compared to lithium-ion technologies for stationary storage, they can be rapidly degraded by the extended periods of high rate, partial state-of-charge operation required in such applications. Degradation occurs primarily through a process called hard sulfation, where large PbSO 4 crystals are formed on the negative battery plates, hindering charge acceptance and reducing battery capacity. Various researchers have found that the addition of some forms of excess carbon to the negative active mass in lead-acid batteries can mitigate hard sulfation, but the mechanism through whichmore » this is accomplished is unclear. In this work, the effect of carbon composition and morphology was explored by characterizing four discrete types of carbon additives, then evaluating their effect when added to the negative electrodes within a traditional valve-regulated lead-acid battery design. The cycle life for the carbon modified cells was significantly larger than an unmodified control, with cells containing a mixture of graphitic carbon and carbon black yielding the greatest improvement. The carbons also impacted other electrochemical aspects of the battery (e.g., float current, capacity, etc.) as well as physical characteristics of the negative active mass, such as the specific surface area.« less

  5. Understanding Function and Performance of Carbon Additives in Lead-Acid Batteries

    DOE PAGES

    Enos, D. G.; Ferreira, S. R.; Barkholtz, H. M.; ...

    2017-10-31

    While the low cost and strong safety record of lead-acid batteries make them an appealing option compared to lithium-ion technologies for stationary storage, they can be rapidly degraded by the extended periods of high rate, partial state-of-charge operation required in such applications. Degradation occurs primarily through a process called hard sulfation, where large PbSO 4 crystals are formed on the negative battery plates, hindering charge acceptance and reducing battery capacity. Various researchers have found that the addition of some forms of excess carbon to the negative active mass in lead-acid batteries can mitigate hard sulfation, but the mechanism through whichmore » this is accomplished is unclear. In this work, the effect of carbon composition and morphology was explored by characterizing four discrete types of carbon additives, then evaluating their effect when added to the negative electrodes within a traditional valve-regulated lead-acid battery design. The cycle life for the carbon modified cells was significantly larger than an unmodified control, with cells containing a mixture of graphitic carbon and carbon black yielding the greatest improvement. The carbons also impacted other electrochemical aspects of the battery (e.g., float current, capacity, etc.) as well as physical characteristics of the negative active mass, such as the specific surface area.« less

  6. NHS plans to lead on carbon cutting.

    PubMed

    Pearson, Susan

    2008-10-01

    While the UK's Climate Change Bill is debated in Parliament, the NHS has been putting in place its plans to lead the way in public sector carbon cutting, which aim for a 60% reduction in CO2 emissions by 2050. Susan Pearson talks to Dr David Pencheon, director of the new NHS Sustainable Development Unit.

  7. Carbonate substitution in lead hydroxyapatite Pb5(PO4)3OH

    NASA Astrophysics Data System (ADS)

    Kwaśniak-Kominek, M.; Manecki, M.; Matusik, J.; Lempart, M.

    2017-11-01

    Synthetic carbonate lead hydroxyapatite Pb5(PO4,CO3)3(OH,CO3) was precipitated from aqueous solution and characterized. The maximum content of CO32- ion in lead apatites does not exceed 2.25 wt%. For precipitation from aqueous solutions this is even lower and controlled by the solubility of cerussite PbCO3. Carbonate substitution occurs simultaneously in two structural positions: at OH- sites (A-type substitution) and at PO43- sites (B-type substitution). This is the most pronounced in FTIR (Fourier Transform Infrared Spectroscopy) spectra at 865 cm-1 and within the range of 1300-1500 cm-1. The substitution results in slight increase of the unit cell parameter a from 9.874 to 9.904 A. The presence of CO32- in two structural positions results in two stages of the release of CO2 upon heating: at 300-350 °C and at 400 °C. The presence of carbonates has little effect on thermal decomposition of lead hydroxyapatite which starts at about 450 °C resulting in the formation of lead pyrophosphate.

  8. Electrochemical behavior of lead dioxide deposited on reticulated vitreous carbon (RVC)

    NASA Astrophysics Data System (ADS)

    Czerwiński, Andrzej; Żelazowska, Malgorzata

    The electrochemical performance of lead dioxide deposited on reticulated vitreous carbon (RVC) has been investigated in basic and acidic solutions (0.1 M NaOH, 0.1 M Na 2BB 4OO 7 and 0.5 M H 2SSO 4)). For comparison, pure lead and lead dioxide deposited on platinized RVC (Pt/ RVC) were also included in the study. Our results indicate that the behavior of RVC covered with lead dioxide (without platinum) resembles that of lead dioxide generated electrochemically on metallic lead.

  9. Altered soil microbial community at elevated CO2 leads to loss of soil carbon

    PubMed Central

    Carney, Karen M.; Hungate, Bruce A.; Drake, Bert G.; Megonigal, J. Patrick

    2007-01-01

    Increased carbon storage in ecosystems due to elevated CO2 may help stabilize atmospheric CO2 concentrations and slow global warming. Many field studies have found that elevated CO2 leads to higher carbon assimilation by plants, and others suggest that this can lead to higher carbon storage in soils, the largest and most stable terrestrial carbon pool. Here we show that 6 years of experimental CO2 doubling reduced soil carbon in a scrub-oak ecosystem despite higher plant growth, offsetting ≈52% of the additional carbon that had accumulated at elevated CO2 in aboveground and coarse root biomass. The decline in soil carbon was driven by changes in soil microbial composition and activity. Soils exposed to elevated CO2 had higher relative abundances of fungi and higher activities of a soil carbon-degrading enzyme, which led to more rapid rates of soil organic matter degradation than soils exposed to ambient CO2. The isotopic composition of microbial fatty acids confirmed that elevated CO2 increased microbial utilization of soil organic matter. These results show how elevated CO2, by altering soil microbial communities, can cause a potential carbon sink to become a carbon source. PMID:17360374

  10. Carbon nanotubes enhanced the lead toxicity on the freshwater fish

    NASA Astrophysics Data System (ADS)

    Martinez, D. S. T.; Alves, O. L.; Barbieri, E.

    2013-04-01

    Carbon nanotubes are promising nanostructures for many applications in materials industry and biotechnology. However, it is mandatory to evaluate their toxicity and environmental implications. We evaluated nitric acid treated multiwalled carbon nanotubes (HNO3-MWCNT) toxicity in Nile tilapia (Oreochromis niloticus) and also the lead (Pb) toxicity modulation after the nanotube interaction. Industrial grade multiwalled carbon nanotubes [Ctube 100, CNT Co. Ltd] were treated with 9M HNO3 for 12h at 150°C to generate oxygenated groups on the nanotube surface, to improve water dispersion and heavy metal interaction. The HNO3-treated multiwalled carbon nanotubes were physico-chemically characterized by several techniques [e.g. TEM, FE-SEM, TGA, ζ-potential and Raman spectroscopy]. HNO3-MWCNT did not show toxicity on Nile tilapia when the concentration ranged from 0.1 to 3.0 mg/L, and the maximum exposure time was 96h. After 24, 48, 72 and 96h the LC50 values of Pb were 1.65, 1.32, 1.10 and 0.99 mg/L, respectively. To evaluate the Pb-nanotube interaction influence on the ecotoxicity, we submitted the Nile tilapia to different concentrations of Pb mixed with a non-toxic concentration of HNO3-MWCNT (1.0 mg/L). After 24, 48, 72, 96 h the LC50 values of Pb plus nanotubes were: 0.32, 0.25, 0.20, 0.18 mg/L, respectively. These values showed a synergistic effect after Pb-nanotube interaction since Pb toxicity increased over five times. X-ray energy dispersive spectroscopy (EDS) was used to confirm lead adsorption on the carbon nanotube oxidized surface. The exposure of Nile tilapia to Pb plus HNO3-MWCNT caused both oxygen consumption and ammonium excretion decrease, when compared to the control. Finally, our results show that carbon nanotubes interact with classical pollutants drawing attention to the environmental implications.

  11. Highly porous carbon from a natural cellulose fiber as high efficiency sorbent for lead in waste water.

    PubMed

    Ilangovan, Manikandan; Guna, Vijaykumar; Olivera, Sharon; Ravi, Ashwini; Muralidhara, H B; Santosh, M S; Reddy, Narendra

    2017-12-01

    The persistence of hollow centre in the carbon obtained from milkweed floss provides exceptional sorption characteristics, not seen in common biomasses or their derivatives. A considerably high sorption of 320mg of lead per gram of milkweed carbon was achieved without any chemical modification to the biomass. In this research, we have carbonized milkweed floss and used the carbon as a sorbent for lead in waste water. A high surface area of 170m 2 g -1 and pore volume of 1.07cm 3 g -1 was seen in the carbon. Almost complete removal (>99% efficiency) of lead could be achieved within 5min when the concentration of lead in the solution was 100ppm, close to that prevailing in industrial waste water. SEM images showed that the carbon was hollow and confocal images confirmed that the sorbate could penetrate inside the hollow tube. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Could managed burning of peatlands lead to carbon storage?

    NASA Astrophysics Data System (ADS)

    Clay, G.; Worrall, F.

    2007-12-01

    Peatlands are the UK's largest single terrestrial carbon store with carbon stored in UK peatlands than in forests of Britain and France combined. Unlike most northern peatlands in the peat soils of the UK are heavily managed for recreation and agriculture and due to their proximity to major centres of population are under more anthropogenic pressure than most peatlands. A typical management strategy on UK upland peats is the use of managed fire to restrict vegetation. Fires are used upon a 10-25 year rotation and are described as "cool" as they remove the crown of the vegetation without scorching the litter layer or the underlying soil. In this case the fire destroys primary productivity and limits litter production but produces char. Char is a low volume, highly refractory, high carbon content product while litter is a high volume, decomposable, lower carbon content product. Therefore, the question is if there are fire conditions underwhich the production of char causes more carbon to be stored in the peat than would have been stored if no fire management had been employed. This study uses detailed vegetation studies from a long term monitoring site in order to assess litter and biomass production; in laboratory experimental burns were undertaken in order to assess the amount and controls upon char production and the carbon content of that char. Results of field and laboratory observations are used to model carbon accumulation under s aseries of fire management scenarios and the modelling shows that cools burns at long rotations could lead to higher carbon storage than if no fire had occurred, further than in several cases more carbon accumulation occurred even if less depth of peat was generated.

  13. Comparison of EDTA and SDS as potential surface impregnation agents for lead adsorption by activated carbon

    NASA Astrophysics Data System (ADS)

    Chen, Wei-fang; Pan, Ling; Chen, Li-fang; Yu, Zhe; Wang, Qiong; Yan, Chang-cheng

    2014-08-01

    Ethylene diamine tetraacetic acid (EDTA) and sodium dodecyl sulfate (SDS) were employed to impregnate activated carbons for the purpose of lead removal. The mechanisms of surface impregnation and lead adsorption method of chemical regeneration were investigated. Results showed that the highest impregnation of EDTA and SDS on activated carbon was 0.33 and 0.96 mmol/g, respectively. Adsorption capacities for lead of EDTA and SDS impregnated activated carbons reached 0.29 and 0.24 mmol/g. Rapid small scale column tests of adsorption and regeneration were conducted. Lead adsorption was greatly enhanced by EDTA impregnation. In addition, EDTA impregnated adsorbent was able to be successful regenerated by HNO3 and thus reused.

  14. Removal of lead (II) ions from aqueous solutions onto activated carbon derived from waste biomass.

    PubMed

    Erdem, Murat; Ucar, Suat; Karagöz, Selhan; Tay, Turgay

    2013-01-01

    The removal of lead (II) ions from aqueous solutions was carried out using an activated carbon prepared from a waste biomass. The effects of various parameters such as pH, contact time, initial concentration of lead (II) ions, and temperature on the adsorption process were investigated. Energy Dispersive X-Ray Spectroscopy (EDS) analysis after adsorption reveals the accumulation of lead (II) ions onto activated carbon. The Langmuir and Freundlich isotherm models were applied to analyze equilibrium data. The maximum monolayer adsorption capacity of activated carbon was found to be 476.2 mg g⁻¹. The kinetic data were evaluated and the pseudo-second-order equation provided the best correlation. Thermodynamic parameters suggest that the adsorption process is endothermic and spontaneous.

  15. Could managed burning of peatlands lead to enhanced carbon storage?

    NASA Astrophysics Data System (ADS)

    Worrall, F.; Clay, G. D.

    2009-04-01

    Peatlands are the UK's largest single terrestrial carbon store with carbon stored in UK peatlands than in forests of Britain and France combined. Unlike most northern peatlands in the peat soils of the UK are heavily managed for recreation and agriculture and due to their proximity to major centres of population are under more anthropogenic pressure than most peatlands. A typical management strategy on UK upland peats is the use of managed fire to restrict vegetation. Fires are used upon a 10-25 year rotation and are described as "cool" as they are designed to remove the crown of the vegetation without scorching the litter layer or the underlying soil. In this case the fire destroys primary productivity and limits litter production but produces char. Char is a low volume, highly refractory, high carbon content product while litter is a high volume, decomposable, lower carbon content product. Therefore, the question is if there are fire conditions under which the production of char causes more carbon to be stored in the peat than would have been stored if no fire management had been employed. This study combines field studies of recent managed burns and wildfires along with detailed vegetation studies from a long term monitoring site in order to assess litter, biomass and black carbon production. In the laboratory experimental burns were undertaken in order to assess the amount and controls upon char production and the carbon content of that char. Results of field and laboratory observations are used to model carbon accumulation under a series of fire management scenarios and the modelling shows that cools burns at long rotations could lead to higher carbon storage than if no fire had occurred, further in several cases more carbon accumulation occurred even if less depth of peat was generated.

  16. Electroplated reticulated vitreous carbon current collectors for lead-acid batteries: opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Gyenge, Elod; Jung, Joey; Mahato, Basanta

    Reticulated, open-cell structures based on vitreous carbon substrates electroplated with a Pb-Sn (1 wt.%) alloy were investigated as current collectors for lead-acid batteries. Scanning and backscattered electron microscopy, cyclic voltammetry, anodic polarization and flooded 2 V single-cell battery testing was employed to characterize the performance of the proposed collectors. A battery equipped with pasted electroplated reticulated vitreous carbon (RVC) electrodes of 137 cm 2 geometric area, at the time of manuscript submission, completed 500 cycles and over 1500 h of continuous operation. The cycling involved discharges at 63 A kg PAM-1 corresponding to a nominal 0.75 h rate and a positive active mass (PAM) utilization efficiency of 21%. The charging protocol was composed of two voltage limited (i.e. 2.6 V/cell), constant current steps of 35 and 9.5 A kg PAM-1, respectively, with a total duration of about 2 h. The charge factor was 1.05-1.15. The observed cycling behavior in conjunction with the versatility of electrodeposition to produce application-dependent optimized lead alloy coating thickness and composition shows promise for the development of lead-acid batteries using electroplated reticulated vitreous carbon collectors.

  17. Recovery of lead from lead paste in spent lead acid battery by hydrometallurgical desulfurization and vacuum thermal reduction.

    PubMed

    Ma, Yunjian; Qiu, Keqiang

    2015-06-01

    Lead sulfate, lead oxides and lead metal are the main component of lead paste in spent lead acid battery. When lead sulfate was desulfurized and transformed into lead carbonate by sodium carbonate, lead metal and lead oxides remained unchanged. Lead carbonate is easily decomposed to lead oxide and carbon dioxide under high temperature. Namely, vacuum thermal process is the reduction reaction of lead oxides. A compatible environmental process consisted of hydrometallurgical desulfurization and vacuum thermal reduction to recycle lead was investigated in this research. Lead paste was firstly desulfurized with sodium carbonate, by which, the content of sulfur declined from 7.87% to 0.26%. Then, the desulfurized lead paste was reduced by charcoal under vacuum. Under the optimized reaction conditions, i.e., vacuum thermal reduction at temperature 850°C under 20 Pa for 45 min, a 22.11×10(-2) g cm(-2) min(-1) reduction rate, and a 98.13% direct recovery ratio of fine lead (99.77%) had been achieved, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effect of Discharge Rate on Positive Active Material of Lead Carbon Battery for Energy Storage

    NASA Astrophysics Data System (ADS)

    Chen, Kailun; Liu, Hao; Hu, Chen; Gao, Fei; Yang, Kai; Wang, Hao

    2017-10-01

    Lead carbon battery has been widespread concern with its excellent performance of charge and discharge under High Rate Part State of Charge (HRPSoC) as well as its cycle performance. In this paper, the cycling performance of lead carbon battery for energy storage was tested by different discharge rate. The effects of different discharge rate on the composition and morphology of positive active materials in the cycle was studied by XRD and SEM. The effect of different discharge rate on the ohmic impedance of lead carbon battery was studied by testing Electrochemical Impedance Spectroscopy with different capacity retention rates. The results show that with the increase of the discharge rate, the content of PbO2 in the positive active material increases, the active substance utilization and the particle size of PbO2 crystal declines, and the ohmic impedance of the battery decreases.

  19. Geochemical partitioning of lead in biogenic carbonate sediments in a coral reef depositional environment.

    PubMed

    Horta-Puga, Guillermo

    2017-03-15

    The fate of trace elements in reef depositional environments has not been extensively investigated. The aim of this study was to determine the partitioning of Pb in sediments of the Veracruz Reef System, and its relation to local environmental sources. Lead was determined in four geochemical fractions: exchangeable (3.8±0.4μgg -1 ), carbonate (57.0±13.6μgg -1 ), organic matter (2.0±0.9μgg -1 ), and mineral (17.5±5.4μgg -1 ). For the mineral fraction, lead concentrations were higher in those reefs influenced by river discharge or by long-distance transport of terrigenous sediments. The bioavailable concentration of lead (range: 21.9-85.6μgg -1 ) indicates that the Veracruz Reef System is a moderately polluted area. As expected, the carbonate fraction contained the highest proportion of Pb (70%), and because the reef framework is largely made up of by biogenic carbonate sediments, hence, it is therefore the most important repository of Pb in coral reef depositional environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Adsorption of cadmium and lead onto oxidized nitrogen-doped multiwall carbon nanotubes in aqueous solution: equilibrium and kinetics

    NASA Astrophysics Data System (ADS)

    Perez-Aguilar, Nancy Veronica; Muñoz-Sandoval, Emilio; Diaz-Flores, Paola Elizabeth; Rangel-Mendez, Jose Rene

    2010-02-01

    Nitrogen-doped multiwall carbon nanotubes (CNx) were chemically oxidized and tested to adsorb cadmium and lead from aqueous solution. Physicochemical characterization of carbon nanotubes included morphological analysis, textural properties, and chemical composition. In addition, the cadmium adsorption capacity of oxidized-CNx was compared with commercially available activated carbon and single wall carbon nanotubes. Carboxylic and nitro groups on the surface of oxidized CNx shifted the point of zero charge from 6.6 to 3.1, enhancing their adsorption capacity for cadmium and lead to 0.083 and 0.139 mmol/g, respectively, at pH 5 and 25 °C. Moreover, oxidized-CNx had higher selectivity for lead when both metal ions were in solution. Kinetic experiments for adsorption of cadmium showed that the equilibrium was reached at about 4 min. Finally, the small size, geometry, and surface chemical composition of oxidized-CNx are the key factors for their higher adsorption capacity than activated carbon.

  1. Metallic Concepts for Repair of Reinforced Carbon-Carbon Space Shuttle Leading Edges

    NASA Technical Reports Server (NTRS)

    Ritzert, Frank; Nesbitt, James

    2007-01-01

    The Columbia accident has focused attention on the critical need for on-orbit repair concepts for wing leading edges in the event that potentially catastrophic damage is incurred during Space Shuttle Orbiter flight. The leading edge of the space shuttle wings consists of a series of eleven panels on each side of the orbiter. These panels are fabricated from reinforced carbon-carbon (RCC) which is a light weight composite with attractive strength at very high temperatures. The damage that was responsible for the loss of the Colombia space shuttle was deemed due to formation of a large hole in one these RCC leading edge panels produced by the impact of a large piece of foam. However, even small cracks in the RCC are considered as potentially catastrophic because of the high temperature re-entry environment. After the Columbia accident, NASA has explored various means to perform on-orbit repairs in the event that damage is sustained in future shuttle flights. Although large areas of damage, such as that which doomed Columbia, are not anticipated to re-occur due to various improvements to the shuttle, especially the foam attachment, NASA has also explored various options for both small and large area repair. This paper reports one large area repair concept referred to as the "metallic over-wrap." Environmental conditions during re-entry of the orbiter impose extreme requirements on the RCC leading edges as well as on any repair concepts. These requirements include temperatures up to 3000 F (1650 C) for up to 15 minutes in the presence of an extremely oxidizing plasma environment. Figure 1 shows the temperature profile across one panel (#9) which is subject to the highest temperatures during re-entry. Although the RCC possesses adequate mechanical strength at these temperatures, it lacks oxidation resistance. Oxidation protection is afforded by converting the outer layers of the RCC to SiC by chemical vapor deposition (CVD). At high temperatures in an oxidizing

  2. An in situ generated carbon as integrated conductive additive for hierarchical negative plate of lead-acid battery

    NASA Astrophysics Data System (ADS)

    Saravanan, M.; Ganesan, M.; Ambalavanan, S.

    2014-04-01

    In this work, we report an in situ generated carbon from sugar as additive in the Negative Active Mass (NAM) which enhances the charge-discharge characteristics of the lead-acid cells. In situ formed sugar derived carbon (SDC) with leady oxide (LO) provides a conductive network and excellent protection against NAM irreversible lead sulfation. The effect of SDC and carbon black (CB) added negative plates are characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), galvanostatic charge-discharge, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. The results show that subtle changes in the addition of carbon to NAM led to subsequent changes on the performance during partial-state-of-charge (PSoC) operations in lead-acid cells. Furthermore, SDC added cells exhibit remarkable improvement in the rate capability, active material utilization, cycle performance and charge acceptance compared to that of the conventional CB added cells. The impact of SDC with LO at various synthesis conditions on the electrochemical performance of the negative plate is studied systematically.

  3. Sorption of lead from aqueous solution by chemically modified carbon adsorbents.

    PubMed

    Nadeem, Muhammad; Mahmood, A; Shahid, S A; Shah, S S; Khalid, A M; McKay, G

    2006-12-01

    An indigenously prepared, steam activated and chemically modified carbon from husk and pods of Moringa oleifera (M. oleifera), an agricultural waste, was comparatively examined as an adsorbent for the removal of lead from aqueous solutions. Studies were conducted as a function of contact time, initial metal concentration, dose of adsorbent, agitation speed, particle size and pH. Maximum uptake capacities were found to be, 98.89, 96.58, 91.8, 88.63, 79.43% for cetyltrimethyl ammonium bromide (CTAB), phosphoric, sulfuric, hydrochloric acid treated and untreated carbon adsorbents, respectively. Bangham, pseudo-first- and second-order, intra-particle diffusion equations were implemented to express the sorption mechanism by utilized adsorbents. Adsorption rate of lead ions was found to be considerably faster for chemically modified adsorbents than unmodified. The results of adsorption were fitted to both the Langmuir and Freundlich models. Satisfactory agreement between the metal uptake capacities by the adsorbents at different time intervals was expressed by the correlation coefficient (R(2)). The Langmuir model represented the sorption process better than the Freundlich one, with R(2) values ranging from 0.994 to 0.998.

  4. Lead recovery and glass microspheres synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced acid leaching process.

    PubMed

    Mingfei, Xing; Yaping, Wang; Jun, Li; Hua, Xu

    2016-03-15

    In this study, a novel process for detoxification and reutilization of waste cathode ray tube (CRT) funnel glass was developed by carbon thermal reduction enhanced acid leaching process. The key to this process is removal of lead from the CRT funnel glass and synchronous preparation of glass microspheres. Carbon powder was used as an isolation agent and a reducing agent. Under the isolation of the carbon powder, the funnel glass powder was sintered into glass microspheres. In thermal reduction, PbO in the funnel glass was first reduced to elemental Pb by carbon monoxide and then located on the surface of glass microspheres which can be removed easily by acid leaching. Experimental results showed that temperature, carbon adding amount and holding time were the major parameters that controlled lead removal rate. The maximum lead removal rate was 94.80% and glass microspheres that measured 0.73-14.74μm were obtained successfully by setting the temperature, carbon adding amount and holding time at 1200°C, 10% and 30min, respectively. The prepared glass microspheres may be used as fillers in polymer materials and abrasive materials, among others. Accordingly, this study proposed a practical and economical process for detoxification and recycling of waste lead-containing glass. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Ferroelectric triggering of carbon monoxide adsorption on lead zirco-titanate (001) surfaces

    PubMed Central

    Tănase, Liviu Cristian; Apostol, Nicoleta Georgiana; Abramiuc, Laura Elena; Tache, Cristian Alexandru; Hrib, Luminița; Trupină, Lucian; Pintilie, Lucian; Teodorescu, Cristian Mihail

    2016-01-01

    Atomically clean lead zirco-titanate PbZr0.2Ti0.8O3 (001) layers exhibit a polarization oriented inwards P(−), visible by a band bending of all core levels towards lower binding energies, whereas as introduced layers exhibit P(+) polarization under air or in ultrahigh vacuum. The magnitude of the inwards polarization decreases when the temperature is increased at 700 K. CO adsorption on P(−) polarized surfaces saturates at about one quarter of a monolayer of carbon, and occurs in both molecular (oxidized) and dissociated (reduced) states of carbon, with a large majority of reduced state. The sticking of CO on the surface in ultrahigh vacuum is found to be directly related to the P(−) polarization state of the surface. A simple electrostatic mechanism is proposed to explain these dissociation processes and the sticking of carbon on P(−) polarized areas. Carbon desorbs also when the surface is irradiated with soft X-rays. Carbon desorption when the polarization is lost proceeds most probably in form of CO2. Upon carbon desorption cycles, the ferroelectric surface is depleted in oxygen and at some point reverses its polarization, owing to electrons provided by oxygen vacancies which are able to screen the depolarization field produced by positive fixed charges at the surface. PMID:27739461

  6. Enhanced performance of starter lighting ignition type lead-acid batteries with carbon nanotubes as an additive to the active mass

    NASA Astrophysics Data System (ADS)

    Marom, Rotem; Ziv, Baruch; Banerjee, Anjan; Cahana, Beni; Luski, Shalom; Aurbach, Doron

    2015-11-01

    Addition of various carbon materials into lead-acid battery electrodes was studied and examined in order to enhance the power density, improve cycle life and stability of both negative and positive electrodes in lead acid batteries. High electrical-conductivity, high-aspect ratio, good mechanical properties and chemical stability of multi-wall carbon nanotubes (MWCNT, unmodified and mofified with carboxylic groups) position them as viable additives to enhance the electrodes' electrical conductivity, to mitigate the well-known sulfation failure mechanism and improve the physical integration of the electrodes. In this study, we investigated the incorporation-effect of carbon nanotubes (CNT) to the positive and the negative active materials in lead-acid battery prototypes in a configuration of flooded cells, as well as gelled cells. The cells were tested at 25% and 30% depth-of-discharge (DOD). The positive effect of the carbon nanotubes (CNT) utilization as additives to both positive and negative electrodes of lead-acid batteries was clearly demonstrated and is explained herein based on microscopic studies.

  7. Optical waveguides in fluoride lead silicate glasses fabricated by carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Shen, Xiao-liang; Wang, Yue; Zhu, Qi-feng; Lü, Peng; Li, Wei-nan; Liu, Chun-xiao

    2018-03-01

    The carbon ion implantation with energy of 4.0 MeV and a dose of 4.0×1014 ions/cm2 is employed for fabricating the optical waveguide in fluoride lead silicate glasses. The optical modes as well as the effective refractive indices are measured by the prism coupling method. The refractive index distribution in the fluoride lead silicate glass waveguide is simulated by the reflectivity calculation method (RCM). The light intensity profile and the energy losses are calculated by the finite-difference beam propagation method (FD-BPM) and the program of stopping and range of ions in matter (SRIM), respectively. The propagation properties indicate that the C2+ ion-implanted fluoride lead silicate glass waveguide is a candidate for fabricating optical devices.

  8. Three modified activated carbons by different ligands for the solid phase extraction of copper and lead.

    PubMed

    Ghaedi, M; Ahmadi, F; Tavakoli, Z; Montazerozohori, M; Khanmohammadi, A; Soylak, M

    2008-04-15

    In the presented work, 5,5-diphenylimidazolidine-2,4-dione (phenytoin) (DFTD), 5,5-diphenylimidazolidine-2-thione-,4-one (thiophenytoin) (DFID) and 2-(4'-methoxy-benzylidenimine) thiophenole (MBIP) modified activated carbons have been used for the solid phase extraction of copper and lead ions prior to their flame atomic absorption spectrometric determinations. The influences of the various analytical parameters including pH, amounts of reagent, sample volume and eluent type, etc. on the recovery efficiencies of copper and lead ions were investigated. The influences of alkaline, earth alkaline and some transition metals on the adsorption of the analytes were also examined. The detection limits by three sigma for analyte ions were 0.65 and 0.42 microg L(-1) using activated carbon modified with DFID; 0.52 and 0.37 microg L(-1) using activated carbon modified with DFTD and 0.46 and 0.31 microg L(-1) using activated carbon modified with MBIP for Pb(II) and Cu(II), respectively. The procedure was applied to the determination of analytes in natural waters, soil, and blood samples with satisfactory results (recoveries greater than 95%, R.S.D.'s lower than 4%).

  9. Enhanced performance of Zn(II)-doped lead-acid batteries with electrochemical active carbon in negative mass

    NASA Astrophysics Data System (ADS)

    Xiang, Jiayuan; Hu, Chen; Chen, Liying; Zhang, Dong; Ding, Ping; Chen, Dong; Liu, Hao; Chen, Jian; Wu, Xianzhang; Lai, Xiaokang

    2016-10-01

    The effect and mechanism of Zn(II) on improving the performances of lead-acid cell with electrochemical active carbon (EAC) in negative mass is investigated. The hydrogen evolution of the cell is significantly reduced due to the deposition of Zn on carbon surface and the increased porosity of negative mass. Zn(II) additives can also improve the low-temperature and high-rate capacities of the cell with EAC in negative mass, which ascribes to the formation of Zn on lead and carbon surface that constructs a conductive bridge among the active mass. Under the co-contribution of EAC and Zn(II), the partial-state-of-charge cycle life is greatly prolonged. EAC optimizes the NAM structure and porosity to enhance the charge acceptance and retard the lead sulfate accumulation. Zn(II) additive reduces the hydrogen evolution during charge process and improves the electric conductivity of the negative electrode. The cell with 0.6 wt% EAC and 0.006 wt% ZnO in negative mass exhibits 90% reversible capacity of the initial capacity after 2100 cycles. In contrast, the cell with 0.6 wt% EAC exhibits 84% reversible capacity after 2100 cycles and the control cell with no EAC and Zn(II) exhibits less than 80% reversible capacity after 1350 cycles.

  10. Formation of cerussite and hydrocerussite during adsorption of lead from aqueous solution on oxidized carbons by cold oxygen plasma

    NASA Astrophysics Data System (ADS)

    De Velasco Maldonado, Paola S.; Hernández-Montoya, Virginia; Concheso, A.; Montes-Morán, Miguel A.

    2016-11-01

    A new procedure of elimination of Pb2+ from aqueous solution using carbon adsorbents, in which high amounts of cerussite and hydrocerussite are deposited on the carbon surfaces, is reported. The procedure includes the preparation of carbons from selected lignocellulosic wastes (pecan nut shells and peach stones) by single carbonization and further oxidation with cold oxygen plasma. The materials prior and after the oxidation treatment were characterized using elemental analysis, FT-IR spectroscopy, SEM/EDX analysis, adsorption of N2 at -196 °C and X-ray photoelectron spectroscopy. The adsorption of Pb2+ was carried out in batch systems under constant agitation. The formation of cerussite and hydrocerussite on the spent carbon surfaces was confirmed by XRD, SEM/EDX and FT-IR. A Pb2+ removal mechanism is proposed in which a co-precipitation of lead nitrate and calcium carbonate would render the formation of the lead carbonates. In such mechanism, the occurrence of CaCO3 on the surface of the adsorbents plays a crucial role. The presence of calcium carbonate on the precursors is understood on the basis of the thermal evolution of calcium oxalate originally present in the biomass. The oxygen plasma treatment helps to expose the calcium carbonate nanocrystals thus improving dramatically the removal capacity of Pb2+. Accordingly, retention capacities as high as 63 mg of Pb2+ per gram of adsorbent have been attained.

  11. The production of black carbon during managed burning of UK peatlands: could managed burning of peatlands lead to enhanced carbon storage?

    NASA Astrophysics Data System (ADS)

    Clay, G.; Worrall, F.

    2008-12-01

    Peatlands are the UK's largest single terrestrial carbon store with carbon stored in UK peatlands than in forests of Britain and France combined. Unlike most northern peatlands in the peat soils of the UK are heavily managed for recreation and agriculture and due to their proximity to major centres of population are under more anthropogenic pressure than most peatlands. A typical management strategy on UK upland peats is the use of managed fire to restrict vegetation. Fires are used upon a 10-25 year rotation and are described as "cool" as they are designed to remove the crown of the vegetation without scorching the litter layer or the underlying soil. In this case the fire destroys primary productivity and limits litter production but produces char. Char is a low volume, highly refractory, high carbon content product while litter is a high volume, decomposable, lower carbon content product. Therefore, the question is if there are fire conditions under which the production of char causes more carbon to be stored in the peat than would have been stored if no fire management had been employed. This study combines field studies of recent managed burns and wildfires along with detailed vegetation studies from a long term monitoring site in order to assess litter, biomass and black carbon production. In the laboratory experimental burns were undertaken in order to assess the amount and controls upon char production and the carbon content of that char. Results of field and laboratory observations are used to model carbon accumulation under a series of fire management scenarios and the modelling shows that cools burns at long rotations could lead to higher carbon storage than if no fire had occurred, further in several cases more carbon accumulation occurred even if less depth of peat was generated.

  12. Studies Conducted of Sodium Carbonate Contaminant Found on the Wing Leading Edge and the Nose Cap of the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Palou, Jaime J.

    2003-01-01

    In early 2001, three of the space shuttle orbiters were found to have a sodium carbonate contaminant on the wing leading edge and nose cap. These parts are made of a reinforced carbon/carbon material protected by silicon carbide (SiC) and a glass coating. The glass coating is known as Type A and is primarily sodium silicate with particles of SiC. NASA Glenn Research Center's Environmental Durability Branch was asked to determine the chemistry of this deposit formation and assess any possible detrimental effects. At low temperatures, the reverse reaction is favorable. Previous studies of the corrosion of glass show that carbon dioxide in the presence of water does form sodium carbonate on sodium silicate glass (ref. 1). It is quite likely that a similar scenario exists for the orbiter wing leading edge. All three orbiters that formed sodium carbonate were exposed to rain. This formation of sodium carbonate was duplicated in the laboratory. The Type A glass, which coats the wing leading edge and nose cap, was made in a freestanding form and exposed to water in two separate experiments. In one set of experiments, the coating was placed in a petri dish filled with water. As the water evaporated, sodium carbonate formed. In another case, water was slowly dripped on the coating and sodium carbonate formed. The sodium carbonate was detected by chemical analysis and, in some cases, xray diffraction showed a hydrated sodium carbonate. The next step was to examine possible detrimental effects of this sodium carbonate. There are three likely scenarios for the sodium carbonate deposit: (1) it may be removed with a simple rinse, (2) it may remain and flow back into the Type A glass after heating during reentry, or (3) it may remain and flow onto unprotected SiC and/or other parts after heating during reentry. The effect of case 1 is to remove the Na2O constituent from the Type A glass, thus decreasing its effectiveness as a sealant. Even so, overall, it is probably the best

  13. Removal of lead(II) by adsorption using treated granular activated carbon: batch and column studies.

    PubMed

    Goel, Jyotsna; Kadirvelu, Krishna; Rajagopal, Chitra; Kumar Garg, Vinod

    2005-10-17

    In the present study, a deeper understanding of adsorption behavior of Pb(II) from aqueous systems onto activated carbon and treated activated carbon has been attempted via static and column mode studies under various conditions. It probes mainly two adsorbents that is, activated carbon (AC) and modified activated carbon (AC-S). Characterization of both the adsorbents was one of the key focal areas of the present study. This has shown a clear change or demarcation in the various physical and chemical properties of the modified adsorbent from its precursor activated carbon. Both the adsorbents are subjected to static mode adsorption studies and then after a comparison based on isotherm analysis; more efficient adsorbent is screened for column mode adsorption studies. The lead removal increased for sample of treated carbon. The extent of Pb(II) removal was found to be higher in the treated activated carbon. The aim of carrying out the continuous-flow studies was to assess the effect of various process variables, viz., of bed height, hydraulic loading rate and initial feed concentration on breakthrough time and adsorption capacity. This has helped in ascertaining the practical applicability of the adsorbent. Breakthrough curves were plotted for the adsorption of lead on the adsorbent using continuous-flow column operation by varying different operating parameters like hydraulic loading rate (3.0-10.5 m3/(hm2)), bed height (0.3-0.5 m) and feed concentrations (2.0-6.0 mg/l). At the end, an attempt has also been made to model the data generated from column studies using the empirical relationship based on Bohart-Adams model. This model has provided an objective framework to the subjective interpretation of the adsorption system and the model constant obtained here can be used to achieve the ultimate objective of our study that is, up scaling and designing of adsorption process at the pilot plant scale level. AC-S column regeneration using 0.5 and 1.0M concentration of

  14. Incorrectly Interpreting the Carbon Mass Balance Technique Leads to Biased Emissions Estimates from Global Vegetation Fires

    NASA Astrophysics Data System (ADS)

    Surawski, N. C.; Sullivan, A. L.; Roxburgh, S. H.; Meyer, M.; Polglase, P. J.

    2016-12-01

    Vegetation fires are a complex phenomenon and have a range of global impacts including influences on climate. Even though fire is a necessary disturbance for the maintenance of some ecosystems, a range of anthropogenically deleterious consequences are associated with it, such as damage to assets and infrastructure, loss of life, as well as degradation to air quality leading to negative impacts on human health. Estimating carbon emissions from fire relies on a carbon mass balance technique which has evolved with two different interpretations in the fire emissions community. Databases reporting global fire emissions estimates use an approach based on `consumed biomass' which is an approximation to the biogeochemically correct `burnt carbon' approach. Disagreement between the two methods occurs because the `consumed biomass' accounting technique assumes that all burnt carbon is volatilized and emitted. By undertaking a global review of the fraction of burnt carbon emitted to the atmosphere, we show that the `consumed biomass' accounting approach overestimates global carbon emissions by 4.0%, or 100 Teragrams, annually. The required correction is significant and represents 9% of the net global forest carbon sink estimated annually. To correctly partition burnt carbon between that emitted to the atmosphere and that remaining as a post-fire residue requires the post-burn carbon content to be estimated, which is quite often not undertaken in atmospheric emissions studies. To broaden our understanding of ecosystem carbon fluxes, it is recommended that the change in carbon content associated with burnt residues be accounted for. Apart from correctly partitioning burnt carbon between the emitted and residue pools, it enables an accounting approach which can assess the efficacy of fire management operations targeted at sequestering carbon from fire. These findings are particularly relevant for the second commitment period for the Kyoto protocol, since improved landscape fire

  15. Hybrid lead-acid battery with reticulated vitreous carbon as a carrier- and current-collector of negative plate

    NASA Astrophysics Data System (ADS)

    Czerwiński, A.; Obrębowski, S.; Kotowski, J.; Rogulski, Z.; Skowroński, J.; Bajsert, M.; Przystałowski, M.; Buczkowska-Biniecka, M.; Jankowska, E.; Baraniak, M.; Rotnicki, J.; Kopczyk, M.

    Bare reticulated vitreous carbon (RVC) plated electrochemically with thin layer of lead was investigated as a negative plate carrier- and current-collector material for lead-acid batteries. Hybrid flooded single cell lead-acid batteries containing one negative plate based on a new type (RVC or Pb/RVC) of carrier/current-collector and two positive plates based on Pb-Ca grid collectors were assembled and subjected to charge/discharge tests (at 20-h and 1-h discharge rates) and Peukert's dependences determination. The promising results show that application of RVC as carrier- and current-collector in negative plate will significantly increase the specific capacity of lead-acid battery.

  16. Quasi-Static 3-Point Reinforced Carbon-Carbon Bend Test and Analysis for Shuttle Orbiter Wing Leading Edge Impact Damage Thresholds

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Sotiris, Kellas

    2006-01-01

    Static 3-point bend tests of Reinforced Carbon-Carbon (RCC) were conducted to failure to provide data for additional validation of an LS-DYNA RCC model suitable for predicting the threshold of impact damage to shuttle orbiter wing leading edges. LS-DYNA predictions correlated well with the average RCC failure load, and were good in matching the load vs. deflection. However, correlating the detectable damage using NDE methods with the cumulative damage parameter in LS-DYNA material model 58 was not readily achievable. The difficulty of finding internal RCC damage with NDE and the high sensitivity of the mat58 damage parameter to the load near failure made the task very challenging. In addition, damage mechanisms for RCC due to dynamic impact of debris such as foam and ice and damage mechanisms due to a static loading were, as expected, not equivalent.

  17. Electrochemical behavior of negative electrode of lead-acid cells based on reticulated vitreous carbon carrier

    NASA Astrophysics Data System (ADS)

    Czerwiński, A.; Obrębowski, S.; Kotowski, J.; Rogulski, Z.; Skowroński, J. M.; Krawczyk, P.; Rozmanowski, T.; Bajsert, M.; Przystałowski, M.; Buczkowska-Biniecka, M.; Jankowska, E.; Baraniak, M.

    Reticulated vitreous carbon (RVC ®) and RVC ® plated with lead were investigated as carriers for the negative electrode of lead-acid cell. The RVC ® and Pb/RVC ® carriers were pasted with active paste (received from JENOX Ltd., Polish producer of lead-acid batteries) and prepared to be used in lead-acid cell. Comparative study of electrodes based on RVC ® and Pb/RVC ® has been done using constant-current charging/discharging, constant-potential discharging and cycling voltammetry measurements. Scanning electron microscopy (SEM) was employed to determine the morphology of the lead layer deposited on the RVC surface. Hybrid flooded single lead-acid cells containing one negative electrode, based on new type of carrier (RVC ® or Pb/RVC ®), sandwiched between two positive electrodes, based on the Pb-Ca grids, were assembled and subjected to electrochemical tests. It has been found that both materials, RVC ® and Pb/RVC ®, can be used as carriers of negative electrode, but the latter seems to have better influence on the discharge performance.

  18. Synthesis of sodium lauryl sulphate (SLS)-modified activated carbon from risk husk for waste lead (Pb) removal

    NASA Astrophysics Data System (ADS)

    Al-Latief, D. N.; Arnelli, Astuti, Y.

    2015-12-01

    Surfactant-modified active carbon (SMAC) has been successfully synthesized from waste rice husk using a series of treatments i.e. carbonization, activation with H3PO4 and surface modification using sodium lauryl sulfate (SLS). The synthesized SMAC was characterized using SEM-EDX and FTIR. The adsorption results show that the SMAC synthesized using H3PO4 treatment for 8 hours followed with SLS treatment for 5 hours had efficiency and capacity of the waste lead removal of 99.965% and 0.499825 mg.g-1, respectively.

  19. Cadmium(II) and lead(II) adsorption onto hetero-atom functional mesoporous silica and activated carbon

    NASA Astrophysics Data System (ADS)

    Machida, Motoi; Fotoohi, Babak; Amamo, Yoshimasa; Mercier, Louis

    2012-07-01

    Adsorption of cadmium(II) and lead(II) on amino-, mercapto-functionalized mesoporous silica (HMS) and carboxylic-functionalized activated carbon (AC) were examined. The resultant isotherms fitted the Langmuir model and amino-functionalized HMS exhibited the highest adsorption capacity for both cadmium(II) and lead(II). Adsorption affinities for cadmium(II) were always greater than those for lead(II) in all three adsorbent types, while the difference between the two values was the largest for mercapto-functionalized HMS indicating a selective adsorption of cadmium(II). Influence of equilibrium solution pH on adsorption of cadmium(II), lead(II) and their binary mixtures was also studied. Carboxylic-functionalized AC adsorbed cadmium(II) and lead(II) in a wide pH range than conditions for the mercapto-functionalized HMS. It was concluded that each functional group had its own characteristics and advantages for adsorption of heavy metal ions; amino-groups showed high adsorption capacity, while mercapto-groups had good selectivity toward cadmium(II) adsorption and a wide solution pH in adsorption by carboxylic-groups were established in this study.

  20. Polypyrrole/multi-walled carbon nanotube composite for the solid phase extraction of lead(II) in water samples.

    PubMed

    Sahmetlioglu, Ertugrul; Yilmaz, Erkan; Aktas, Ece; Soylak, Mustafa

    2014-02-01

    A multi-walled carbon nanotubes-polypyrrole conducting polymer nanocomposite has been synthesized, characterized and used for the separation and preconcentration of lead at trace levels in water samples prior to its flame atomic absorption spectrometric detection. The analytical parameters like pH, sample volume, eluent, sample flow rate that were affected the retentions of lead(II) on the new nanocomposite were optimized. Matrix effects were also investigated. Limit of detection and preconcentration factors were 1.1 µg L(-1) and 200, respectively. The adsorption capacity of the nanocomposite was 25.0mg lead(II) per gram composite. The validation of the method was checked by using SPS-WW2 Waste water Level 2 certified reference material. The method was applied to the determination of lead in water samples with satisfactory results. © 2013 Elsevier B.V. All rights reserved.

  1. In situ electro-polymerization of nitrogen doped carbon dots and their application in an electrochemiluminescence biosensor for the detection of intracellular lead ions.

    PubMed

    Xiong, Chengyi; Liang, Wenbin; Wang, Haijun; Zheng, Yingning; Zhuo, Ying; Chai, Yaqin; Yuan, Ruo

    2016-04-25

    Here, a novel sensitive electrochemiluminescence (ECL) biosensor using N doped carbon dots (N-CDs) in situ electro-polymerized onto a glassy carbon electrode (GCE) as luminophores, and Pd-Au hexoctahedrons (Pd@Au HOHs) as enhancers, was developed for the detection of intracellular lead ions (Pb(2+)).

  2. Carbon dioxide gas purification and analytical measurement for leading edge 193nm lithography

    NASA Astrophysics Data System (ADS)

    Riddle Vogt, Sarah; Landoni, Cristian; Applegarth, Chuck; Browning, Matt; Succi, Marco; Pirola, Simona; Macchi, Giorgio

    2015-03-01

    The use of purified carbon dioxide (CO2) has become a reality for leading edge 193 nm immersion lithography scanners. Traditionally, both dry and immersion 193 nm lithographic processes have constantly purged the optics stack with ultrahigh purity compressed dry air (UHPCDA). CO2 has been utilized for a similar purpose as UHPCDA. Airborne molecular contamniation (AMC) purification technologies and analytical measurement methods have been extensively developed to support the Lithography Tool Manufacturers purity requirements. This paper covers the analytical tests and characterizations carried out to assess impurity removal from 3.0 N CO2 (beverage grade) for its final utilization in 193 nm and EUV scanners.

  3. As-Fabricated Reinforced Carbon/Carbon Characterized

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Calomino, Anthony M.; Webster, Neal

    2004-01-01

    Reinforced carbon/carbon (RCC) is a critical material for the space shuttle orbiter. It is used on the wing leading edge and the nose cap, where maximum temperatures are reached on reentry. The existing leading-edge system is a single-plate RCC composite construction with a wall thickness of approximately 1/4 in., making it a prime reliant protection scheme for vehicle operation.

  4. Ultrasensitive detection of lead (II) based on fluorescent aptamer-functionalized carbon nanotubes.

    PubMed

    Taghdisi, Seyed Mohammad; Emrani, Somayeh Sarreshtehdar; Tabrizian, Kaveh; Ramezani, Mohammad; Abnous, Khalil; Emrani, Ahmad Sarreshtehdar

    2014-05-01

    Lead contamination is a serious environmental problem with toxic effects in human. Here, we developed a simple and sensitive sensing method employing ATTO 647N/aptamer-SWNT ensemble for detection of Pb(2+). This method is based on the super quenching capability of single-walled carbon nanotubes (SWNTs), high affinity of the aptamer toward Pb(2+) and different propensities of ATTO 647N-aptamer and ATTO 647N-aptamer/Pb(2+) complex for adsorption on SWNTs. In the absence of Pb(2+), the fluorescence of ATTO 647N-aptamer is efficiently quenched by SWNTs. Upon addition of Pb(2+), the aptamer binds to its target, leading to the formation of a G-quadruplex/Pb(2+) complex and does not interact with SWNTs and ATTO 647N-aptamer starts fluorescing. This sensor exhibited a high selectivity toward Pb(2+) and a limit of detection (LOD) as low as 0.42 nM was obtained. Also this sensor could be applied for detection of Pb(2+) ions in tap water and biological sample like serum with high sensitivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Application of Polypyrrole Multi-Walled Carbon Nanotube Composite Layer for Detection of Mercury, Lead and Iron Ions Using Surface Plasmon Resonance Technique

    PubMed Central

    Sadrolhosseini, Amir Reza; Noor, A. S. M.; Bahrami, Afarin; Lim, H. N.; Talib, Zainal Abidin; Mahdi, Mohd. Adzir

    2014-01-01

    Polypyrrole multi-walled carbon nanotube composite layers were used to modify the gold layer to measure heavy metal ions using the surface plasmon resonance technique. The new sensor was fabricated to detect trace amounts of mercury (Hg), lead (Pb), and iron (Fe) ions. In the present research, the sensitivity of a polypyrrole multi-walled carbon nanotube composite layer and a polypyrrole layer were compared. The application of polypyrrole multi-walled carbon nanotubes enhanced the sensitivity and accuracy of the sensor for detecting ions in an aqueous solution due to the binding of mercury, lead, and iron ions to the sensing layer. The Hg ion bonded to the sensing layer more strongly than did the Pb and Fe ions. The limitation of the sensor was calculated to be about 0.1 ppm, which produced an angle shift in the region of 0.3° to 0.6°. PMID:24733263

  6. NATIONAL PERFORMANCE AUDIT PROGRAM: 1979 PROFICIENCY SURVEYS FOR SULFUR DIOXIDE, NITROGEN DIOXIDE, CARBON MONOXIDE, SULFATE, NITRATE, LEAD AND HIGH VOLUME FLOW

    EPA Science Inventory

    The Quality Assurance Division of the Environmental Monitoring Systems Laboratory, Research Triangle Park, North Carolina, administers semiannual Surveys of Analytical Proficiency for sulfur dioxide, nitrogen dioxide, carbon monoxide, sulfate, nitrate and lead. Sample material, s...

  7. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride.

    PubMed

    Boudrahem, F; Aissani-Benissad, F; Aït-Amar, H

    2009-07-01

    Lignocellulosic materials are good precursors for the production of activated carbon. In this work, coffee residue has been used as raw material in the preparation of powder activated carbon by the method of chemical activation with zinc chloride for the sorption of Pb(II) from dilute aqueous solutions. The influence of impregnation ratio (ZnCl2/coffee residue) on the physical and chemical properties of the prepared carbons was studied in order to optimize this parameter. The optimum experimental condition for preparing predominantly microporous activated carbons with high pore surface area (890 m2/g) and micropore volume (0.772 cm3/g) is an impregnation ratio of 100%. The developed activated carbon shows substantial capability to sorb lead(II) ions from aqueous solutions and for relative impregnation ratios of 75 and 100%, the maximum uptake is practically the same. Thus, 75% represents the optimal impregnation ratio. Batch experiments were conducted to study the effects of the main parameters such as contact time, initial concentration of Pb(II), solution pH, ionic strength and temperature. The maximum uptake of lead(II) at 25 degrees C was about 63 mg/g of adsorbent at pH 5.8, initial Pb(II) concentration of 10 mg/L, agitation speed of 200 rpm and ionic strength of 0.005 M. The kinetic data were fitted to the models of pseudo-first order and pseudo-second order, and follow closely the pseudo-second order model. Equilibrium sorption isotherms of Pb(II) were analyzed by the Langmuir, Freundlich and Temkin isotherm models. The Freundlich model gives a better fit than the others. Results from this study suggest that activated carbon produced from coffee residue is an effective adsorbent for the removal of lead from aqueous solutions and that ZnCl2 is a suitable activating agent for the preparation of high-porosity carbons.

  8. Experimental determination of lead carbonate solubility at high ionic strengths: A Pitzer model description

    DOE PAGES

    Xiong, Yongliang

    2015-05-06

    In this article, solubility measurements of lead carbonate, PbCO 3(cr), cerussite, as a function of total ionic strengths are conducted in the mixtures of NaCl and NaHCO 3 up to I = 1.2 mol•kg –1 and in the mixtures of NaHCO 3 and Na 2CO 3 up to I = 5.2 mol•kg –1, at room temperature (22.5 ± 0.5 °C). The solubility constant (log K sp) for cerussite, PbCO 3(cr) = Pb 2+ + CO 3 2- was determined as –13.76 ± 0.15 (2σ) with a set of Pitzer parameters describing the specific interactions of PbCO 3(aq), Pb(CO 3) 2more » 2-, and Pb(CO 3)Cl – with the bulk-supporting electrolytes, based on the Pitzer model. The model developed in this work can reproduce the experimental results including model-independent solubility values from the literature over a wide range of ionic strengths with satisfactory accuracy. The model is expected to find applications in numerous fields, including the accurate description of chemical behavior of lead in geological repositories, the modeling of formation of oxidized Pb–Zn ore deposits, and the environmental remediation of lead contamination.« less

  9. Iodide-assisted total lead measurement and determination of different lead fractions in drinking water samples.

    PubMed

    Zhang, Yuanyuan; Ng, Ding-Quan; Lin, Yi-Pin

    2012-07-01

    Lead and its compounds are toxic and can harm human health, especially the intelligence development in children. Accurate measurement of total lead present in drinking water is crucial in determining the extent of lead contamination and human exposure due to drinking water consumption. The USEPA method for total lead measurement (no. 200.8) is often used to analyze lead levels in drinking water. However, in the presence of high concentration of the tetravalent lead corrosion product PbO(2), the USEPA method was not able to fully recover particulate lead due to incomplete dissolution of PbO(2) particles during strong acid digestion. In this study, a new procedure that integrates membrane separation, iodometric PbO(2) measurement, strong acid digestion and ICP-MS measurement was proposed and evaluated for accurate total lead measurement and quantification of different lead fractions including soluble Pb(2+), particulate Pb(II) carbonate and PbO(2) in drinking water samples. The proposed procedure was evaluated using drinking water reconstituted with spiked Pb(2+), spiked particulate Pb(II) carbonate and in situ formed or spiked PbO(2). Recovery tests showed that the proposed procedure and the USEPA method can achieve 93-112% and 86-103% recoveries respectively for samples containing low PbO(2) concentrations (0.018-0.076 mg Pb per L). For samples containing higher concentrations of PbO(2) (0.089-1.316 mg Pb per L), the USEPA method failed to meet the recovery requirement for total lead (85-115%) while the proposed method can achieve satisfactory recoveries (91-111%) and differentiate the soluble Pb(2+), particulate Pb(II) carbonate and PbO(2).

  10. Does increasing rotation length lead to greater forest carbon storage?

    NASA Astrophysics Data System (ADS)

    Ter-Mikaelian, M. T.; Colombo, S. J.; Chen, J.

    2016-12-01

    Forest management is a key factor affecting climate change mitigation by forests. Increasing the age of harvesting (also referred to as rotation length) is a management practice that has been proposed as a means of increasing forest carbon sequestration and storage. However, studies of the effects of increasing harvest age on forest carbon stocks have mostly been limited to forest plantations. In contrast, this study assesses the effects of increased harvest age of managed natural forests of Ontario (Canada) at two scales. At the stand level, we assess merchantable volume yield curves to differentiate those for which increasing the age of harvest results in an increase in total forest carbon stocks versus those for which increased harvest age reduces carbon stocks. The stand level results are then applied to forest landscapes to demonstrate that the effect of increasing the age of harvest on forest carbon storage is specific to the forest growth rates for a given forest landscape and depends on the average age at which forests are harvested under current (business-as-usual) management practice. We discuss the implications of these results for forest management aimed at mitigating climate change.

  11. Carbon Sequestration: is Science Leading Policy or Will Policy Direct Science?

    NASA Astrophysics Data System (ADS)

    Anderson, A. K.

    2007-12-01

    Climate-related policy is in its infancy on capital hill, as policy makers only recently started to converge on the acceptance that climate change is a credible, scientific reality. Until recently much of the debate and policy decisions have been related to whether or not climate change, or more specifically global warming, is occurring. The climate debate has shifted from discussing the science behind climate change to addressing how we can reduce carbon dioxide emissions. In the 110th Congress, policy makers have come to realize and accept that we, as a nation, are one of the largest global emitters of carbon dioxide to the atmosphere. Geologic carbon sequestration has gained significant congressional attention and is considered to be one of the most promising carbon mitigation tools. In the present Congress, scientific experts have testified before numerous committees about the various caveats of geologic carbon sequestration. As a result, policy has been and is currently being drafted to address the challenges facing large-scale commercial demonstration of geologic sequestration facilities. Policy has been passed through both the House and Senate that is aimed at increasing funding for basic and advanced research, development, and demonstration of small- to large-scale carbon dioxide injection projects. This legislation is only the beginning of a series of legislation that is under development. In the next year, policy will be introduced that will likely address issues related to pore space and mineral rights ownership, regulatory framework for carbon dioxide transport and injection, long-term injection site monitoring protocol, personal and environmental safety, and liability issues, to name a few. Policy is not limited to the technical aspects of carbon capture, transport, and storage, but is also being developed to help stimulate a market that will be operating under climate constraints. Financial incentives have been proposed that will assist industrial

  12. Thermal behavior of metal carboxylates—II. Lead formate

    NASA Astrophysics Data System (ADS)

    Baraldi, Pietro

    Experimental data obtained by i.r. emission spectrometry indicate that the thermal behavior of lead formate is complex. By heating in air, after a phase transition at 115°C, decomposition takes place which may lead directly to metal and oxide or to carbonate, to a basic carbonate and finally to oxide. Under vacuum the same transformations occur at higher temperatures and lead to metal.

  13. Nanostructuring effect of multi-walled carbon nanotubes on electrochemical properties of carbon foam as constructive electrode for lead acid battery

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev; Kumari, Saroj; Mathur, Rakesh B.; Dhakate, Sanjay R.

    2015-01-01

    In the present study, nanostructuring effect of multi-walled carbon nanotubes (MWCNTs) on electrochemical properties of coal tar pitch (CTP) based carbon foam (CFoam) was investigated. The different weight fractions of MWCNTs were mixed with CTP and foam was developed from the mixture of CTP and MWCNTs by sacrificial template technique and heat treated at 1,400 and 2,500 °C in inert atmosphere. These foams were characterized by scanning electron microscopy, X-ray diffraction, and potentiostat PARSTAT for cyclic voltammetry. It was observed that, bulk density of CFoam increases with increasing MWCNTs content and decreases after certain amount. The MWCNTs influence the morphology of CFoam and increase the width of ligaments as well as surface area. During the heat treatment, stresses exerting at MWCNTs/carbon interface accelerate ordering of the graphene layer which have positive effect on the electrochemical properties of CFoam. The current density increases from 475 to 675 mA/cm2 of 1,400 °C heat treated and 95 to 210 mA/cm2 of 2,500 °C heat-treated CFoam with 1 wt% MWCNTs. The specific capacitance was decreases with increasing the scan rate from 100 to 1,000 mV/s. In case of 1 % MWCNTs content CFoam the specific capacitance at the scan rate 100 mV/s was increased from 850 to 1,250 μF/cm2 and 48 to 340 μF/cm2 of CFoam heat treated at 1,400 °C and 2,500 °C respectively. Thus, the higher value surface area and current density of MWCNTs-incorporated CFoam heat treated to 1,400 °C can be suitable for lead acid battery electrode with improved charging capability.

  14. Advanced X-Ray Inspection of Reinforced Carbon Composite Materials on the Orbiter Leading Edge Structural Subsystem (LESS)

    NASA Technical Reports Server (NTRS)

    Hernandez, Jose M.; Berry, Robert F.; Osborn, Robin; Bueno, Clifford; Osterlitz, Mark; Mills, Richard; Morris, Philip; Phalen, Robert; McNab, Jim; Thibodeaux, Tahanie; hide

    2004-01-01

    The post return-to-flight (RTF) inspection methodology for the Orbiter Leading Edge Structural Subsystem (LESS) is currently being defined. Numerous NDT modalities and techniques are being explored to perform the flight-to-flight inspections of the reinforced carbon/carbon (RCC) composite material for impact damage, general loss of mass in the bulk layers, or other anomalous conditions that would pose risk to safe return upon re-entry. It is possible to have an impact upon ascent that is not visually observable on the surface, yet causes internal damage. Radiographic testing may be a useful NDT technique for such occurrences. The authors have performed radiographic tests on full-sized mock samples of LESS hardware with embedded image quality phantoms. Digitized radiographic film, computed radiography and flat panel digital real-time radiography was acquired using a GE Eresco 200 x-ray tube, and Se-75 and Yb-169 radioisotopes.

  15. On-line preconcentration system for lead(II) determination in waste water by atomic absorption spectrometry using active carbon loaded with Pyrogallol Red.

    PubMed

    Ensafi, Ali A; Khayamian, Taghi; Karbasi, Mohammad H

    2003-06-01

    An on-line system for enrichment and determination of lead(II) is presented. It is based on the adsorption of lead(II) ions on a minicolumn packed with active carbon loaded with Pyrogallol Red. After preconcentration step, the metal ions are eluted automatically by 5.0 ml of 0.50 M nitric acid solution and the lead ion contents were determined by atomic absorption spectrometry. The influence of chemicals, pH and flow variables were studied as well as effect of potential interfering ions. Under the optimum conditions, the lead ions in aqueous samples were concentrated about 100 fold by the column. The detection limit was 0.001 microg ml(-1). The recovery percent of spliced lead(II) was in the range of 98%-103%.

  16. Peridotite carbonation at the leading edge of the mantle wedge: OmDP Site BT1

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.; Godard, M.; Johnson, K. T. M.; Okazaki, K.; Manning, C. E.; Urai, J. L.; Michibayashi, K.; Harris, M.; Coggon, J. A.; Teagle, D. A. H.; Phase I Science Party, T. O. D. P.

    2017-12-01

    immobile on a 1-10 m scale during introduction of C, O, lesser Ca, minor Fe, and fluid mobile trace elements (Godard ea AGU 17) during transformation of Mg-silicates to carbonate + quartz. With prior and coeval serpentinization, this implies 80% solid volume expansion compared to unaltered peridotite, in a zone >200 m thick at the leading edge of the mantle wedge.

  17. A carbon sink pathway increases carbon productivity in cyanobacteria.

    PubMed

    Oliver, John W K; Atsumi, Shota

    2015-05-01

    The burning of fossil reserves, and subsequent release of carbon into the atmosphere is depleting the supply of carbon-based molecules used for synthetic materials including plastics, oils, medicines, and glues. To provide for future society, innovations are needed for the conversion of waste carbon (CO2) into organic carbon useful for materials. Chemical production directly from photosynthesis is a nascent technology, with great promise for capture of CO2 using sunlight. To improve low yields, it has been proposed that photosynthetic capacity can be increased by a relaxation of bottlenecks inherent to growth. The limits of carbon partitioning away from growth within the cell and the effect of partitioning on carbon fixation are not well known. Here we show that expressing genes in a pathway between carbon fixation and pyruvate increases partitioning to 2,3-butanediol (23BD) and leads to a 1.8-fold increase in total carbon yield in the cyanobacterium Synechococcus elongatus PCC 7942. Specific 2,3-butanediol production increases 2.4-fold. As partitioning increases beyond 30%, it leads to a steep decline in total carbon yield. The data suggests a local maximum for carbon partitioning from the Calvin Benson cycle that is scalable with light intensity. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  18. THE EFFECT OF FLUORIDE ON LEAD SOLUBILITY

    EPA Science Inventory

    Difficulties in predicting and controlling lead corrosion are encountered by hundreds of water systems across the country. Inorganic carbonate, sulfate, silicate, orthophosphate, pH, total organic carbon, temperature and the type/amount of chlorine residual are all known factors ...

  19. Extraction of lead from waste CRT funnel glass by generating lead sulfide - An approach for electronic waste management.

    PubMed

    Hu, Biao; Hui, Wenlong

    2017-09-01

    Waste cathode ray tube (CRT) funnel glass is the key and difficult points in waste electrical and electronic equipment (WEEE) disposal. In this paper, a novel and effective process for the detoxification and reutilization of waste CRT funnel glass was developed by generating lead sulfide precipitate via a high-temperature melting process. The central function in this process was the generation of lead sulfide, which gathered at the bottom of the crucible and was then separated from the slag. Sodium carbonate was used as a flux and reaction agent, and sodium sulfide was used as a precipitating agent. The experimental results revealed that the lead sulfide recovery rate initially increased with an increase in the amount of added sodium carbonate, the amount of sodium sulfide, the temperature, and the holding time and then reached an equilibrium value. The maximum lead sulfide recovery rate was approximately 93%, at the optimum sodium carbonate level, sodium sulfide level, temperature, and holding time of 25%, 8%, 1200°C, and 2h, respectively. The glass slag can be made into sodium and potassium silicate by hydrolysis in an environmental and economical process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone.

    PubMed

    Kazemipour, Maryam; Ansari, Mehdi; Tajrobehkar, Shabnam; Majdzadeh, Majdeh; Kermani, Hamed Reihani

    2008-01-31

    In this work, adsorption of copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) that exist in industrial wastewater onto the carbon produced from nutshells of walnut, hazelnut, pistachio, almond, and apricot stone has been investigated. All the agricultural shell or stone used were ground, sieved to a defined size range, and carbonized in an oven. Time and temperature of heating were optimized at 15 min and 800 degrees C, respectively, to reach maximum removal efficiency. Removal efficiency was optimized regarding to the initial pH, flow rate, and dose of adsorbent. The maximum removal occurred at pH 6-10, flow rate of 3 mL/min, and 0.1g of the adsorbent. Capacity of carbon sources for removing cations will be considerably decreased in the following times of passing through them. Results showed that the cations studied significantly can be removed by the carbon sources. Efficiency of carbon to remove the cations from real wastewater produced by copper industries was also studied. Finding showed that not only these cations can be removed considerably by the carbon sources noted above, but also removing efficiency are much more in the real samples. These results were in adoption to those obtained by standard mixture synthetic wastewater.

  1. Lead recovery from waste CRT funnel glass by high-temperature melting process.

    PubMed

    Hu, Biao; Hui, Wenlong

    2018-02-05

    In this research, a novel and effective process for waste CRT funnel glass treatment was developed. The key to this process is removal of lead from the CRT funnel glass by high-temperature melting process. Sodium carbonate powder was used as a fusion agent, sodium sulfide serves as a catalytic agent and carbon powder acts as reducing agent. Experimental results showed that lead recovery rate increased with an increase in the amount of added sodium carbonate, sodium sulfide, carbonate, temperature and holding time initially, and then reached a stable value. The maximum lead recovery rate was approximately 94%, when the optimum adding amount of sodium carbonate, sodium sulfide, carbonate, temperature and holding time were 25%, 8%, 3.6%, 1200°C and 120min, respectively. In the high-temperature melting process, lead silicate in the funnel glass was firstly reduced, and then removed. The glass slag can be made into sodium and potassium silicate by hydrolysis process. This study proposed a practical and economical process for recovery of lead and utilization of waste glass slag. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Adsorption of lead on multi-walled carbon nanotubes with different outer diameters and oxygen contents: kinetics, isotherms and thermodynamics.

    PubMed

    Yu, Fei; Wu, Yanqing; Ma, Jie; Zhang, Chi

    2013-01-01

    The effects of different outer diameters and surface oxygen contents on the adsorption of heavy metals onto six types of multi-walled carbon nanotubes (MWCNTs) were investigated in an aqueous solution and lead was chosen as a model metal ion. The results indicated that the percentage removal and adsorption capacity of lead remarkably increased with decreasing outer diameter due to larger specific surface area (SSA). The SSA-normalized maximum adsorption capacity (qmSSA) and SSA-normalized adsorption coefficient (Kd/SSA) were strongly positively correlated with surface oxygen content, implying that lead adsorption onto MWCNTs significantly increases with the rise of oxygen content and decreases with decreasing SSA. The calculated thermodynamic parameters indicated that adsorption of lead on MWCNTs was endothermic and spontaneous. When the oxygen content of MWCNTs increased from 2.0% to 5.9%, the standard free energy (deltaG0) became more negative, which implied that the oxygenated functional groups increased the adsorption affinity of MWCNTs for lead. Through calculation of enthalpy (deltaH0), deltaG0 and free energy of adsorption (Ea), lead adsorption onto MWCNTs was recognized as a chemisorption process. The chemical interaction between lead and the phenolic groups of MWCNTs could be one of the main adsorption mechanisms due to highly positive correlations between the phenolic groups and Kd/SSA or qm/SSA.

  3. Oxidation of Carbon/Carbon through Coating Cracks

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.; Roth, d. J.; Rauser, R. W.; Cawley, J. D.; Curry, D. M.

    2008-01-01

    Reinforced carbon/carbon (RCC) is used to protect the wing leading edge and nose cap of the Space Shuttle Orbiter on re-entry. It is composed of a lay-up of carbon/carbon fabric protected by a SiC conversion coating. Due to the thermal expansion mismatch of the carbon/carbon and the SiC, the SiC cracks on cool-down from the processing temperature. The cracks act as pathways for oxidation of the carbon/carbon. A model for the diffusion controlled oxidation of carbon/carbon through machined slots and cracks is developed and compared to laboratory experiments. A symmetric cylindrical oxidation cavity develops under the slots, confirming diffusion control. Comparison of cross sectional dimensions as a function of oxidation time shows good agreement with the model. A second set of oxidation experiments was done with samples with only the natural craze cracks, using weight loss as an index of oxidation. The agreement of these rates with the model is quite reasonab

  4. Lead extraction from Cathode Ray Tube (CRT) funnel glass: Reaction mechanisms in thermal reduction with addition of carbon (C).

    PubMed

    Lu, Xingwen; Ning, Xun-An; Chen, Da; Chuang, Kui-Hao; Shih, Kaimin; Wang, Fei

    2018-06-01

    This study quantitatively determined the extraction of lead from CRT funnel glass and examined the mechanisms of thermally reducing lead in the products of sintering Pb-glass with carbon in the pre-heated furnace. The experimentally derived results indicate that a 90.3 wt% lead extraction efficiency can be achieved with 20 wt% of C addition at 950 °C for 3 min under air. The formation of viscous semi-liquid glass blocked the oxygen supply between the interaction of C and Pb-glass, and was highly effective for the extraction of metallic Pb. A maximum of 87.3% lead recover was obtained with a C to Na 2 CO 3 ratio of 1/3 at 1200 °C. The decrease of C/Na 2 CO 3 ratio enhanced the metallic lead recovery by increasing the glass viscosity for effective sedimentation of metallic lead in the bottom. However, with the further increase of temperature and treatment time, re-vitrification of lead back to silicate-glass matrix was detected in both Pb-glass/C and Pb-glass/C/Na 2 CO 3 systems. The findings indicated that with proper controls, using C as an inexpensive reagent can effectively reduce treatment time and energy, which is crucial to a waste-to-resource technology for economically recovering lead from the waste CRT glass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Potential impacts of carbon taxes on carbon flux in western Oregon private forests

    Treesearch

    Eun Ho Im; Darius M. Adams; Gregory S. Latta

    2007-01-01

    This study considers a carbon tax system as a policy tool for encouraging carbon sequestration through modification of management in existing forests and examines its welfare impacts and costs of the carbon sequestered. The simulated carbon tax leads to reduced harvest and increased carbon stock in the standing trees and understory biomass. Changes in the level of...

  6. Electrochemical response of carbon paste electrode modified with mixture of titanium dioxide/zirconium dioxide in the detection of heavy metals: lead and cadmium.

    PubMed

    Nguyen, Phuong Khanh Quoc; Lunsford, Suzanne K

    2012-11-15

    A novel carbon modified electrode was developed by incorporating titanium dioxide/zirconium dioxide into the graphite carbon paste electrode to detect heavy metals-cadmium and lead. In this work, the development of the novel titanium dioxide/zirconium dioxide modified carbon paste electrode was studied to determine the optimum synthesis conditions related to the temperature, heating duration, amount and ratio of titanium dioxide/zirconium dioxide, and amount of surfactant, to create the most reproducible results. Using cyclic voltammetric (CV) analysis, this study has proven that the novel titanium dioxide/zirconium dioxide can be utilized to detect heavy metals-lead and cadmium, at relatively low concentrations (7.6×10(-6) M and 1.1×10(-5) M for Pb and Cd, respectively) at optimum pH value (pH=3). From analyzing CV data the optimal electrodes surface area was estimated to be 0.028 (±0.003) cm(2). Also, under the specific experimental conditions, electron transfer coefficients were estimated to be 0.44 and 0.33 along with the heterogeneous electron transfer rate constants of 5.64×10(-3) and 2.42×10(-3) (cm/s) for Pb and Cd, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Microbial carbon pump and its significance for carbon sequestration in soils

    NASA Astrophysics Data System (ADS)

    Liang, Chao

    2017-04-01

    Studies of the decomposition, transformation and stabilization of soil organic carbon have dramatically increased in recent years due to growing interest in studying the global carbon cycle as it pertains to climate change. While it is readily accepted that the magnitude of the organic carbon reservoir in soils depends upon microbial involvement because soil carbon dynamics are ultimately the consequence of microbial growth and activity, it remains largely unknown how these microbe-mediated processes lead to soil carbon stabilization. Here, two pathways, ex vivo modification and in vivo turnover, were defined to jointly explain soil carbon dynamics driven by microbial catabolism and/or anabolism. Accordingly, a conceptual framework consisting of the raised concept of the soil "microbial carbon pump" (MCP) was demonstrated to describe how microbes act as an active player in soil carbon storage. The hypothesis is that the long-term microbial assimilation process may facilitate the formation of a set of organic compounds that are stabilized (whether via protection by physical interactions or a reduction in activation energy due to chemical composition), ultimately leading to the sequestration of microbial-derived carbon in soils. The need for increased efforts was proposed to seek to inspire new studies that utilize the soil MCP as a conceptual guideline for improving mechanistic understandings of the contributions of soil carbon dynamics to the responses of the terrestrial carbon cycle under global change.

  8. Followup to Columbia Investigation: Reinforced Carbon/Carbon From the Breach Location in the Wing Leading Edge Studied

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Opila, Elizabeth J.; Tallant, David

    2005-01-01

    Initial estimates on the temperature and conditions of the breach in the Space Shuttle Columbia's wing focused on analyses of the slag deposits. These deposits are complex mixtures of the reinforced carbon/carbon (RCC) constituents, insulation material, and wing structural materials. Identification of melted/solidified Cerachrome insulation (Thermal Ceramics, Inc., Augusta, GA) indicated that the temperatures at the breach had exceeded 1760 C.

  9. Combined processing of lead concentrates

    NASA Astrophysics Data System (ADS)

    Kubasov, V. L.; Paretskii, V. M.; Sidorin, G. N.; Travkin, V. F.

    2013-06-01

    A combined scheme of processing of lead concentrates with the production of pure metallic lead and the important components containing in these concentrates is considered. This scheme includes sulfating roasting of the lead concentrates and two-stage leaching of the formed cinder with the formation of a sulfate solution and lead sulfate. When transformed into a carbonate form, lead sulfate is used for the production of pure metallic lead. Silver, indium, copper, cadmium, nickel, cobalt, and other important components are separately extracted from a solution. At the last stage, zinc is extracted by either extraction followed by electrolytic extraction of a metal or the return of the forming solution of sulfuric acid to cinder leaching.

  10. Metabolic influence of lead on polyhydroxyalkanoates (PHA) production and phosphate uptake in activated sludge fed with glucose or acetic acid as carbon source.

    PubMed

    You, Sheng-Jie; Tsai, Yung-Pin; Cho, Bo-Chuan; Chou, Yi-Hsiu

    2011-09-01

    Sludge in a sequential batch reactor (SBR) system was used to investigate the effect of lead toxicity on metabolisms of polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) communities fed with acetic acid or glucose as their sole carbon source, respectively. Results showed that the effect of lead on substrate utilization of both PAOs and GAOs was insignificant. However, lead substantially inhibited both of phosphate release and uptake of PAOs. In high concentration of acetic acid trials, an abnormal aerobic phosphate release was observed instead of phosphate uptake and the release rate increased with increasing lead concentration. Results also showed that PAOs could normally synthesize polyhydroxybutyrate (PHB) in the anaerobic phase even though lead concentration was 40 mg L(-1). However, they could not aerobically utilize PHB normally in the presence of lead. On the other hand, GAOs could not normally metabolize polyhydroxyvalerate (PHV) in both the anaerobic and aerobic phases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Carbon dioxide-assisted fabrication of highly uniform submicron-sized colloidal carbon spheres via hydrothermal carbonization using soft drink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Gun-Hee; Shin, Yongsoon; Arey, Bruce W.

    An eco-friendly and economical method for the formation of uniform-sized carbon spheres by hydrothermal dehydration/condensation of a commercial carbonated beverage at 200 oC is reported. CO2 dissolved in the beverage accelerates the dehydration kinetics of the dissolved sugar molecules leading to production of homogeneous carbon spheres having a diameter less than 850 nm. In the presence of CO2, the rough surface of these carbon spheres likely results from continuous Ostwald ripening of constituent microscopic carbon-containing spheres that are formed by subsequent polymerization of intermediate HMF molecules.

  12. Amended Ballistic Sand Studies to Provide Low Maintenance Lead Containment at Active Small Arms Firing Range Systems

    DTIC Science & Technology

    2007-09-01

    Pb2+. Under alkaline conditions, elemental lead will oxidize under most circumstances to form a lead hydroxide complex Pb(OH)53-. Lead that exists...lead hydroxide [Pb(OH)2], lead carbonate [PbCO3, cerrusite], or basic lead carbonate [Pb3(OH)2 (CO3)2, hydrocerrusite]. The overall lead solubility...in a natural system is fundamentally determined by the concentrations of the anions in solution (e.g., the hydroxide and carbonate ions) and by the

  13. Dipole Alignment at the Carbon Nanotube and Methyl Ammonium Lead Iodide Perovskite Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Przepioski, Joshua

    2015-08-28

    This work correlates resonant peaks from first principles calculation on ammonia (NH 3) Nitrogen 1s x-ray absorption spectroscopy (XAS) within the methyl ammonium lead iodide perovskite (CH 3NH 3PbI 3), and proposes a curve to determine the alignment of the methyl ammonium dipole if there exists angular dependence. The Nitrogen 1s XAS was performed at varying incident angles on the perovskite with and without a carbon nanotube (CNT) interface produced from an ultrasonic spray deposition. We investigated the peak contribution from PbI 2 and the poly(9,9-dioctylfluorene- 2,7-diyl) with bipyridine (PFO-BPy) wrapped around the CNT, and used normalization techniques to bettermore » identify the dipole alignment. There was angular dependence on samples containing the CNT interface suggesting an existing dipole alignment, but there was no angular dependence on the perovskite samples alone; however, more normalization techniques and experimental work must be performed in order to ensure its validity and to better describe its alignment, and possible controlling factors.« less

  14. Ablation properties of carbon/carbon composites with tungsten carbide

    NASA Astrophysics Data System (ADS)

    Yin, Jian; Zhang, Hongbo; Xiong, Xiang; Huang, Baiyun; Zuo, Jinlv

    2009-02-01

    The ablation properties and morphologies of carbon/carbon (C/C) composites with tungsten carbide (WC) filaments were investigated by ablation test on an arc heater and scanning electron microscopy. And the results were compared with those without tungsten carbide (WC) filaments tested under the same conditions. It shows that there is a big difference between C/C composites with and without WC filaments on both macroscopic and microscopic ablation morphologies and the ablation rates of the former are higher than the latter. It is found that the ablation process of C/C composites with WC filaments includes oxidation of carbon fibers, carbon matrices and WC, melting of WC and WO 3, and denudation of WC, WO 3 and C/C composites. Oxidation and melting of WC leads to the formation of holes in z directional carbon fiber bundles, which increases the coarseness of the ablation surfaces of the composites, speeds up ablation and leads to the higher ablation rate. Moreover, it is further found that the molten WC and WO 3 cannot form a continuous film on the ablation surface to prevent further ablation of C/C composites.

  15. Carbon sequestration in croplands is mainly driven by management leading to increased net primary production - evidence from long-term field experiments in Northern Europe

    NASA Astrophysics Data System (ADS)

    Kätterer, Thomas; Bolinder, Martin Anders; Börjesson, Gunnar; Kirchmann, Holger; Poeplau, Christopher

    2014-05-01

    carbon stocks not always lead to net sequestration of atmospheric CO2 and that C sequestration not always leads to mitigation of greenhouse gas emissions. The consequences of different land use and management are discussed, taking into account two critical boundaries - the limited area of agricultural land on Earth and requirements to produce sufficient food, fibres and energy for a growing population.

  16. Blood lead and carboxyhemoglobin levels in chainsaw operators.

    PubMed

    van Netten, C; Brubaker, R L; Mackenzie, C J; Godolphin, W J

    1987-06-01

    Fallers in the British Columbia west coast lumber industry often work in climatic and local conditions where little ventilation in their immediate environment is possible. Under these conditions carbon monoxide (CO) and lead fumes from exhaust gases could build up and become a serious occupational hazard. This study monitored the environmental exposure of six fallers to carbon monoxide, nitrogen oxides, and lead under conditions where buildup of these agents would be expected. At the same time blood samples were taken to correlate these environmental concentrations to carboxyhemoglobin (COHb) and blood lead levels. Although there was a highly significant difference between the fallers and the controls regarding the exposure to CO and lead as well as their corresponding COHb and blood lead levels, the environmental and blood concentration of the agents in question did not exceed the maximum allowable concentrations. Temporary short fluctuations in carboxyhemoglobin levels were not monitored in this study and cannot be ruled out as a potential occupational hazard.

  17. Test and Analysis of a Hyper-X Carbon-Carbon Leading Edge Chine

    NASA Technical Reports Server (NTRS)

    Smith, Russell W.; Sikora, Joseph G.; Lindell, Michael C.

    2005-01-01

    During parts production for the X43A Mach 10 hypersonic vehicle nondestructive evaluation (NDE) of a leading edge chine detected on imbedded delamination near the lower surface of the part. An ultimate proof test was conducted to verify the ultimate strength of this leading edge chine part. The ultimate proof test setup used a pressure bladder design to impose a uniform distributed pressure field over the bi-planar surface of the chine test article. A detailed description of the chine test article and experimental test setup is presented. Analysis results from a linear status model of the test article are also presented and discussed. Post-test inspection of the specimen revealed no visible failures or areas of delamination.

  18. Development of highly sensitive electrochemical genosensor based on multiwalled carbon nanotubes-chitosan-bismuth and lead sulfide nanoparticles for the detection of pathogenic Aeromonas.

    PubMed

    Fernandes, António Maximiano; Abdalhai, Mandour H; Ji, Jian; Xi, Bing-Wen; Xie, Jun; Sun, Jiadi; Noeline, Rasoamandrary; Lee, Byong H; Sun, Xiulan

    2015-01-15

    In this paper, we reported the construction of new high sensitive electrochemical genosensor based on multiwalled carbon nanotubes-chitosan-bismuth complex (MWCNT-Chi-Bi) and lead sulfide nanoparticles for the detection of pathogenic Aeromonas. Lead sulfide nanoparticles capped with 5'-(NH2) oligonucleotides thought amide bond was used as signalizing probe DNA (sz-DNA) and thiol-modified oligonucleotides sequence was used as fixing probe DNA (fDNA). The two probes hybridize with target Aeromonas DNA (tDNA) sequence (fDNA-tDNA-szDNA). The signal of hybridization is detected by differential pulse voltammetry (DPV) after electrodeposition of released lead nanoparticles (PbS) from sz-DNA on the surface of glass carbon electrode decorated with MWCNT-Chi-Bi, which improves the deposition and traducing electrical signal. The optimization of incubation time, hybridization temperature, deposition potential, deposition time and the specificity of the probes were investigated. Our results showed the highest sensibility to detect the target gene when compared with related biosensors and polymerase chain reaction (PCR). The detection limit for this biosensor was 1.0×10(-14) M. We could detect lower than 10(2) CFU mL(-1) of Aeromonas in spiked tap water. This method is rapid and sensitive for the detection of pathogenic bacteria and would become a potential application in biomedical diagnosis, food safety and environmental monitoring. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Organic carbon and reducing conditions lead to cadmium immobilization by secondary Fe mineral formation in a pH-neutral soil.

    PubMed

    Muehe, E Marie; Adaktylou, Irini J; Obst, Martin; Zeitvogel, Fabian; Behrens, Sebastian; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2013-01-01

    Cadmium (Cd) is of environmental relevance as it enters soils via Cd-containing phosphate fertilizers and endangers human health when taken up by crops. Cd is known to associate with Fe(III) (oxyhydr)oxides in pH-neutral to slightly acidic soils, though it is not well understood how the interrelation of Fe and Cd changes under Fe(III)-reducing conditions. Therefore, we investigated how the mobility of Cd changes when a Cd-bearing soil is faced with organic carbon input and reducing conditions. Using fatty acid profiles and quantitative PCR, we found that both fermenting and Fe(III)-reducing bacteria were stimulated by organic carbon-rich conditions, leading to significant Fe(III) reduction. The reduction of Fe(III) minerals was accompanied by increasing soil pH, increasing dissolved inorganic carbon, and decreasing Cd mobility. SEM-EDX mapping of soil particles showed that a minor fraction of Cd was transferred to Ca- and S-bearing minerals, probably carbonates and sulfides. Most of the Cd, however, correlated with a secondary iron mineral phase that was formed during microbial Fe(III) mineral reduction and contained mostly Fe, suggesting an iron oxide mineral such as magnetite (Fe3O4). Our data thus provide evidence that secondary Fe(II) and Fe(II)/Fe(III) mixed minerals could be a sink for Cd in soils under reducing conditions, thus decreasing the mobility of Cd in the soil.

  20. Changes in soil thermal regime lead to substantial shifts in carbon and energy fluxes in drained Arctic tundra

    NASA Astrophysics Data System (ADS)

    Goeckede, M.; Kwon, M. J.; Kittler, F.; Heimann, M.; Zimov, N.; Zimov, S. A.

    2016-12-01

    Climate change impacts in the Arctic will not only depend on future temperature trajectories in this region. In particular, potential shifts in hydrologic regimes, e.g. linked to altered precipitation patterns or changes in topography following permafrost degradation, can dramatically modify ecosystem feedbacks to warming. Here, we analyze how severe drainage affects both biogeochemical and biogeophysical processes within a formerly wet Arctic tundra, with a special focus on the interactions between hydrology and soil temperatures, and related effects on the fluxes of carbon and energy. Our findings are based on year-round observations from a decade-long drainage experiment conducted near Chersky, Northeast Siberia. Through our multi-disciplinary observations we can document that the drainage triggered a suite of secondary changes in ecosystem properties, including e.g. adaptation processes in the vegetation community structure, or shifts in snow cover regime. Most profoundly, a combination of low heat capacity and reduced heat conductivity in dry organic soils lead to warmer soil temperatures near the surface, while deeper soil layers remained colder. These changes in soil thermal regime reduced the contribution of deeper soil layers with older carbon pools to overall ecosystem respiration, as documented through radiocarbon signals. Regarding methane, the observed steeper temperature gradient along the vertical soil profile slowed down methane production in deep layers, while promoting CH4 oxidation near the surface. Taken together, both processes contributed to a reduction in CH4 emissions up to a factor of 20 following drainage. Concerning the energy budget, we observed an intensification of energy transfer to the lower atmosphere, particularly in form of sensible heat, but the reduced energy transfer into deeper soil layers also led to systematically shallower thaw depths. Summarizing, drainage may contribute to slow down decomposition of old carbon from deep

  1. The Thermal Decomposition of Some Organic Lead Compounds

    DTIC Science & Technology

    1957-11-01

    either of salicylic anhydride or of its pyrolysis fragments which are reported to be a mixture of carbon dioxide , phenol and phenyl salicylate. Other...7) have studied the decomposition of the mono-salicylate in vacuo at 400°C. and have found that one molecule of carbon dioxide is evolved per...of lead nitrate and nitrosalicylic acid, though seme of the latter is decarboxylated with evolution of carbon dioxide . These points are considered

  2. Complexation of lead by Bermuda grass root exudates in aqueous media.

    PubMed

    Thomas, Catherine; Butler, Afrachanna; Larson, Steven; Medina, Victor; Begonia, Maria

    2014-01-01

    Exudates produced from Bermuda grass roots were collected in deionized water from sterilized Bermuda grass sod at 3-day intervals over a period of 15 days. Exudates were analyzed for total organic carbon, and characterized via Fourier Transform Infrared Spectroscopy. Exudate samples were adjusted to pH values of 4.5, 6.5, and 7.5, amended with lead and quantified for soluble and complexed lead via Inductively Coupled Plasma--Optical Emission Spectrometry. Data obtained from total organic carbon measurements indicated compositional changes in Bermuda grass root exudates as organic carbon concentrations increased over time. Analysis of the infrared spectroscopy data indicated that carboxylic acids and amine functional groups were present in root exudates. Also, the ability of root-exuded compounds to solubilize lead in aqueous media was demonstrated as exudate samples dissolved an average of 60% more lead than deionized water. At pH values 4.5 and 7.5, lead complexation by Bermuda grass root exudates increased with decreasing molecular weight size fractions, while an opposite trend was observed at pH 6.5. Results from this study demonstrated the ability of Bermuda grass root exudates to complex lead in aqueous media.

  3. On-line separation and preconcentration of lead(II) by solid-phase extraction using activated carbon loaded with xylenol orange and its determination by flame atomic absorption spectrometry.

    PubMed

    Ensafi, Ali A; Shiraz, A Zendegi

    2008-02-11

    Activated carbon loaded with xylenol orange in a mini-column was used for the highly selective separation and preconcentration of Pb(II) ions. An on-line system for enrichment and the determination of Pb(II) was carried out on flame atomic absorption spectrometry. The conditions of preconcentration and quantitative recovery of Pb(II) from diluted solution, such as pH of aqueous phase, amount of the sorbent, volume of the solutions and flow variables were studied as well as effect of potential interfering ions. Under the optimum conditions, Pb(II) in an aqueous sample was concentrated about 200-fold and the detection limit was 0.4 ng mL(-1) Pb(II). The adsorption capacity of the solid phase was 0.20mg of lead per one gram of the modified activated carbon. The modified activated carbon is stable for several treatments of sample solutions without the need for using any chemical reagent. The recovery of lead(II) from river water, waste water, tap water, and in the following reference materials: SRM 2711 Montana soil and GBW-07605 tea were obtained in the range of 97-104% by the proposed method.

  4. Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Serpell, Christopher J.; Rutte, Reida N.; Geraki, Kalotina; Pach, Elzbieta; Martincic, Markus; Kierkowicz, Magdalena; de Munari, Sonia; Wals, Kim; Raj, Ritu; Ballesteros, Belén; Tobias, Gerard; Anthony, Daniel C.; Davis, Benjamin G.

    2016-10-01

    The desire to study biology in situ has been aided by many imaging techniques. Among these, X-ray fluorescence (XRF) mapping permits observation of elemental distributions in a multichannel manner. However, XRF imaging is underused, in part, because of the difficulty in interpreting maps without an underlying cellular `blueprint' this could be supplied using contrast agents. Carbon nanotubes (CNTs) can be filled with a wide range of inorganic materials, and thus can be used as `contrast agents' if biologically absent elements are encapsulated. Here we show that sealed single-walled CNTs filled with lead, barium and even krypton can be produced, and externally decorated with peptides to provide affinity for sub-cellular targets. The agents are able to highlight specific organelles in multiplexed XRF mapping, and are, in principle, a general and versatile tool for this, and other modes of biological imaging.

  5. Removal of lead (II) from metal plating effluents using sludge based activated carbon as adsorbent.

    PubMed

    Raju, P; Saseetharan, M K

    2010-01-01

    A novel adsorbent was prepared from waste sludge obtained from a sugar mill for removing heavy metals from industrial wastewater. The adsorption studies were carried out in batch and continuous modes for both sugar mill sludge based carbon and commercial carbon. In batch studies, experiments were conducted at ambient temperature to assess the influence of the parameters such as pH, adsorbent dose, contact time and equilibrium concentration. Adsorption data for the prepared carbon was found to satisfy both the Freundlich and Langmuir isotherms. Column studies were carried out to delineate the effect of varying depth of carbon at constant flow rate. The breakthrough curves were drawn to establish the mechanism. The result shows that the sludge based activated carbon can be used as an alternative for commercial carbon.

  6. Carbon with hierarchical pores from carbonized metal-organic frameworks for lithium sulphur batteries.

    PubMed

    Xi, Kai; Cao, Shuai; Peng, Xiaoyu; Ducati, Caterina; Kumar, R Vasant; Cheetham, Anthony K

    2013-03-18

    This paper presents a novel method and rationale for utilizing carbonized MOFs for sulphur loading to fabricate cathode structures for lithium-sulphur batteries. Unique carbon materials with differing hierarchical pore structures were synthesized from four types of zinc-containing metal-organic frameworks (MOFs). It is found that cathode materials made from MOFs-derived carbons with higher mesopore (2-50 nm) volumes exhibit increased initial discharge capacities, whereas carbons with higher micropore (<2 nm) volumes lead to cathode materials with better cycle stability.

  7. Carbon Flux Explorers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, Jim

    Jim Bishop, senior scientist at Berkeley Lab and professor at UC Berkeley, is leading a project to deploy robotic floats that provide data on how microorganisms sequester carbon in the ocean. He recently led a research team on a 10-day voyage, funded by the National Science Foundation, to put the Carbon Flux Explorers to the test.

  8. Carbon Flux Explorers

    ScienceCinema

    Bishop, Jim

    2018-06-12

    Jim Bishop, senior scientist at Berkeley Lab and professor at UC Berkeley, is leading a project to deploy robotic floats that provide data on how microorganisms sequester carbon in the ocean. He recently led a research team on a 10-day voyage, funded by the National Science Foundation, to put the Carbon Flux Explorers to the test.

  9. The lead isotopic age of the Earth can be explained by core formation alone.

    PubMed

    Wood, Bernard J; Halliday, Alex N

    2010-06-10

    The meaning of the age of the Earth defined by lead isotopes has long been unclear. Recently it has been proposed that the age of the Earth deduced from lead isotopes reflects volatile loss to space at the time of the Moon-forming giant impact rather than partitioning into metallic liquids during protracted core formation. Here we show that lead partitioning into liquid iron depends strongly on carbon content and that, given a content of approximately 0.2% carbon, experimental and isotopic data both provide evidence of strong partitioning of lead into the core throughout the Earth's accretion. Earlier conclusions that lead is weakly partitioned into iron arose from the use of carbon-saturated (about 5% C) iron alloys. The lead isotopic age of the Earth is therefore consistent with partitioning into the core and with no significant late losses of moderately volatile elements to space during the giant impact.

  10. Development of X-43A Mach 10 Leading Edges

    NASA Technical Reports Server (NTRS)

    Ohlhorst, Craig W.; Glass, David E.; Bruce, Walter E., III; Lindell, Michael C.; Vaughn, Wallace L.; Dirling, R. B., Jr.; Hogenson, P. A.; Nichols, J. M.; Risner, N. W.; Thompson, D. R.

    2005-01-01

    The nose leading edge of the Hyper-X Mach 10 vehicle was orginally anticipated to reach temperatures near 4000 F at the leading-edge stagnation line. A SiC coated carbon/carbon (C/C) leading-edge material will not survive that extreme temperature for even a short duration single flight. To identify a suitable leading edge for the Mach 10 vehicle, arc-jet testing was performed on thirteen leading-edge segments fabricated from different material systems to evaluate their performance in a simulated flight environment. Hf, Zr, Si, and Ir based materials, in most cases as a coating on C/C, were included in the evaluation. Afterwards, MER, Tucson, AZ was selected as the supplier of the flight vehicle leading edges. The nose and the vertical and horizontal tail leading edges were fabricated out of a 3:1 biased high thermal conductivity C/C. The leading edges were coated with a three layer coating comprised of a SiC conversion of the top surface of the C/C, followed by a chemical vapor deposited layer of SiC, followed by a thin chemical vapor deposited layer of HfC. This paper will describe the fabrication of the Mach 10 C/C leading edges and the testing performed to validate performance.

  11. EXPERIMENTS WITH A RESIN-IN-PULP PROCESS FOR TREATING LEAD-CONTAMINATED SOIL

    EPA Science Inventory

    This paper presents the results of experiments to evaluate the potential for using a resin-in-pulp process to remove lead contamination from soil. These experiments examined the kinetics and equilibrium partitioning of lead, lead carbonate, lead oxide, and lead sulfate in resin-s...

  12. Lightweight, durable lead-acid batteries

    DOEpatents

    Lara-Curzio, Edgar [Lenoir City, TN; An, Ke [Knoxville, TX; Kiggans, Jr., James O.; Dudney, Nancy J [Knoxville, TN; Contescu, Cristian I [Knoxville, TN; Baker, Frederick S [Oak Ridge, TN; Armstrong, Beth L [Clinton, TN

    2011-09-13

    A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).

  13. Lightweight, durable lead-acid batteries

    DOEpatents

    Lara-Curzio, Edgar; An, Ke; Kiggans, Jr., James O; Dudney, Nancy J; Contescu, Cristian I; Baker, Frederick S; Armstrong, Beth L

    2013-05-21

    A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).

  14. Low-temperature Condensation of Carbon

    NASA Astrophysics Data System (ADS)

    Krasnokutski, S. A.; Goulart, M.; Gordon, E. B.; Ritsch, A.; Jäger, C.; Rastogi, M.; Salvenmoser, W.; Henning, Th.; Scheier, P.

    2017-10-01

    Two different types of experiments were performed. In the first experiment, we studied the low-temperature condensation of vaporized graphite inside bulk liquid helium, while in the second experiment, we studied the condensation of single carbon atoms together with H2, H2O, and CO molecules inside helium nanodroplets. The condensation of vaporized graphite leads to the formation of partially graphitized carbon, which indicates high temperatures, supposedly higher than 1000°C, during condensation. Possible underlying processes responsible for the instant rise in temperature during condensation are discussed. This suggests that such processes cause the presence of partially graphitized carbon dust formed by low-temperature condensation in the diffuse interstellar medium. Alternatively, in the denser regions of the ISM, the condensation of carbon atoms together with the most abundant interstellar molecules (H2, H2O, and CO), leads to the formation of complex organic molecules (COMs) and finally organic polymers. Water molecules were found not to be involved directly in the reaction network leading to the formation of COMs. It was proposed that COMs are formed via the addition of carbon atoms to H2 and CO molecules ({{C}}+{{{H}}}2\\to {HCH},{HCH}+{CO}\\to {{OCCH}}2). Due to the involvement of molecular hydrogen, the formation of COMs by carbon addition reactions should be more efficient at high extinctions compared with the previously proposed reaction scheme with atomic hydrogen.

  15. Trace lead analysis based on carbon-screen-printed-electrodes modified via 4-carboxy-phenyl diazonium salt electroreduction.

    PubMed

    Bouden, Sarra; Chaussé, Annie; Dorbes, Stephane; El Tall, Omar; Bellakhal, Nizar; Dachraoui, Mohamed; Vautrin-Ul, Christine

    2013-03-15

    This paper describes the use of 4-carboxyphenyl-grafted screen-printed carbon electrodes (4-CP-SPEs) for trace lead analysis. These novel and simple use of electrodes were easily prepared by the electrochemical reduction of the corresponding diazonium salt. Pb detection was then performed by a three-steps method in order to avoid oxygen interference: (i) immersion of the grafted screen-printed electrode (SPE) in the sample and adsorption of Pb(II), (ii) reduction of adsorbed Pb(II) by chronoamperometry (CA), and (iii) oxidation of Pb by Anodic Square Wave Voltammetry (SWV). The reoxidation response was exploited for lead detection and quantification. In order to optimize the analytical responses, the influence of the adsorption medium pH and the adsorption time were investigated. Moreover, an interference study was carried out with Cu(II), Hg(II), Al(III), Mn(II), Zn(II), Cd(II) and no major interference can be expected to quantify Pb(II). The described method provided a limit of detection and a limit of quantification of 1.2 × 10(-9)M and 4.1 × 10(-9)M, respectively. These performances indicate that the 4-CP-SPE could be considered as an efficient tool for environmental analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Dipole Alignment at the Carbon Nanotube and Methyl Ammonium Lead Trihalide Perovskite Interface - Oral Presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Przepioski, Joshua

    2015-08-25

    This work correlates resonant peaks from first principles calculation on ammonia (NH 3) Nitrogen 1s x-ray absorption spectroscopy (XAS) within the methyl ammonium lead iodide perovskite (CH 3NH 3PbI 3), and proposes a curve to determine the alignment of the methyl ammonium dipole if there exists angular dependence. The Nitrogen 1s XAS was performed at varying incident angles on the perovskite with and without a carbon nanotube (CNT) interface produced from an ultrasonic spray deposition. We investigated the peak contribution from PbI2 and the poly(9,9-dioctylfluorene-2,7-diyl) with bipyridine (PFO-BPy) wrapped around the CNT, and used normalization techniques to better identify themore » dipole alignment. There was angular dependence on samples containing the CNT interface suggesting an existing dipole alignment, but there was no angular dependence on the perovskite samples alone; however, more normalization techniques and experimental work must be performed in order to ensure its validity and to better describe its alignment, and possible controlling factors.« less

  17. Distribution and possible immobilization of lead in a forest soil (Luvisol) profile.

    PubMed

    Sipos, Péter; Németh, Tibor; Mohai, Ilona

    2005-02-01

    Geochemical analyses using a sequential extraction method and lead adsorption studies were carried out in order to characterize the distribution and adsorption of lead on each genetic horizon of a Luvisol profile developed on a pelagic clayey aleurolite. Clay illuviation is the most important pedogenic process in the profile studied. Its clay mineralogy is characterized by chlorite/vermiculite species with increasing chlorite component downward. The amount of carbonate minerals strongly increases in the lower part of the profile resulting in an abrupt rise in soil pH within a small distance. The Pb content of the soil profile exceeds the natural geochemical background only in the Ao horizon, and its amount decreases with depth in the profile without correcting for differences in bulk density, suggesting the binding of Pb to soil organic matter. According to the sequential extraction analysis the organic matter and carbonate content of the soil have the most significant effect on lead distribution. This effect varies in the different soil horizons. Lead adsorption experiments were carried out on whole soil samples, soil clay fractions, as well as on their carbonate and organic matter free variant. The different soil horizons adsorb lead to different extents depending on their organic matter, clay mineral and carbonate content; and the mineralogical features of soil clays significantly affect their lead adsorption capacity. The clay fraction adsorbs 25% more lead than the whole soil, while in the calcareous subsoil a significant proportion of lead is precipitated due to the alkaline conditions. 10 and 5% of adsorbed Pb can be leached with distilled water in the organic matter and clay mineral dominated soil horizons, respectively. These results suggest that soil organic matter plays a decisive role in the adsorption of Pb, but the fixation by clay minerals is stronger.

  18. Removal of lead and zinc ions from water by low cost adsorbents.

    PubMed

    Mishra, P C; Patel, R K

    2009-08-30

    In this study, activated carbon, kaolin, bentonite, blast furnace slag and fly ash were used as adsorbent with a particle size between 100 mesh and 200 mesh to remove the lead and zinc ions from water. The concentration of the solutions prepared was in the range of 50-100 mg/L for lead and zinc for single and binary systems which are diluted as required for batch experiments. The effect of contact time, pH and adsorbent dosage on removal of lead and zinc by adsorption was investigated. The equilibrium time was found to be 30 min for activated carbon and 3h for kaolin, bentonite, blast furnace slag and fly ash. The most effective pH value for lead and zinc removal was 6 for activated carbon. pH value did not effect lead and zinc removal significantly for other adsorbents. Adsorbent doses were varied from 5 g/L to 20 g/L for both lead and zinc solutions. An increase in adsorbent doses increases the percent removal of lead and zinc. A series of isotherm studies was undertaken and the data evaluated for compliance was found to match with the Langmuir and Freundlich isotherm models. To investigate the adsorption mechanism, the kinetic models were tested, and it follows second order kinetics. Kinetic studies reveals that blast furnace slag was not effective for lead and zinc removal. The bentonite and fly ash were effective for lead and zinc removal.

  19. Bioavailability of Lead in Small Arms Range Soils

    DTIC Science & Technology

    2009-08-01

    titanium TOC total organic carbon USEPA U.S. Environmental Protection Agency XRF X-ray fluorescence Zn zinc Zr zirconium 1 1.0 EXECUTIVE...particles of inert matrix such as rock or slag of variable size, shape, and association; these chemical and physical properties may influence the absorption...zirconium, Pb=lead, Cu=copper, Mn=manganese, Si=silicon, Zn= zinc , As=arsenic, Cd=cadmium, CEC= cation exchange capacity, TOC = total organic carbon, Sb

  20. Black Carbon Diesel Initiative in the Russian Arctic

    EPA Pesticide Factsheets

    Mobile and stationary diesel engines are among the largest sources of black carbon emissions in the Arctic. To address this challenge, EPA is leading the Black Carbon Diesel Initiative under the Arctic Black Carbon Initiative (ABCI).

  1. Closure device for lead-acid batteries

    DOEpatents

    Ledjeff, Konstantin

    1983-01-01

    A closure device for lead-acid batteries includes a filter of granulated activated carbon treated to be hydrophobic combined with means for preventing explosion of emitted hydrogen and oxygen gas. The explosion prevention means includes a vertical open-end tube within the closure housing for maintaining a liquid level above side wall openings in an adjacent closed end tube. Gases vent from the battery through a nozzle directed inside the closed end tube against an impingement surface to remove acid droplets. The gases then flow through the side wall openings and the liquid level to quench any possible ignition prior to entering the activated carbon filter. A wick in the activated carbon filter conducts condensed liquid back to the closure housing to replenish the liquid level limited by the open-end tube.

  2. [Adsorption kinetics and mechanism of lead (II) on polyamine-functionalized mesoporous activated carbon].

    PubMed

    Li, Kun-Quan; Wang, Yan-Jin; Yang, Mei-Rong; Zhu, Zhi-Qiang; Zheng, Zheng

    2014-08-01

    Bagasse mesoporous carbon was prepared by microwave assisted H3 PO4 activation. Amido and imido groups were modified with ethanediamine on the channels' surface of mesoporous carbon through nitric oxidation and amide reaction. The influence of Pb(II) concentration, adsorption time on Pb(II) adsorption on the ethanediamine-modified mesoporous carbon (AC-EDA) was investigated. The adsorption kinetics and mechanism were also discussed. The results showed that AC-EDA had a great performance for Pb(II) adsorption, and more than 70% of Pb(II) was adsorbed in 5 minutes. The adsorption amount of Pb(II) on the carbon increased with the increase of solution pH in acidic conditions. It was found that AC-EDA had different binding energies on different adsorption sites for Pb(II) separation. The Pb(II) adsorption process on AC-EDA was controlled by intra-particle diffusion in the first 3 min, and then film diffusion played the important pole on the adsorption. The adsorption amount increased with the increase of temperature, indicating the adsorption was an endothermic reaction. The high adsorption energy (> 11 kJ x mol(-1)) implied that the) adsorption was a chemical adsorption. The XPS of AC-EDA before and after Pb(II) adsorption showed that the polyamine group was involved in the adsorption, and should be a main factor of the high efficient adsorption.

  3. Technical Status and Progress of Lead Recycling of Battery

    NASA Astrophysics Data System (ADS)

    Li, Wei-feng; Jiang, Li-hua; Zhan, Jing; Zhang, Chuan-fu

    The characteristics of various components in waste lead acid battery are analyzed in this paper. The present status and the study progress situation in industry production and research field of recycling of waste lead acid battery and lead paste used broken-separation technology are introduced. The comparison of advantages and disadvantages in different industry processes is carried. The advantages of redox bath smelting of lead concentrate and lead paste are analyzed. The method of redox bath smelting will be a low-carbon, environmentally friendly and efficient processes of secondary lead production and can be intensive to desulfurize for high temperature pool.

  4. Structural Evolution of Q-Carbon and Nanodiamonds

    NASA Astrophysics Data System (ADS)

    Gupta, Siddharth; Bhaumik, Anagh; Sachan, Ritesh; Narayan, Jagdish

    2018-04-01

    This article provides insights pertaining to the first-order phase transformation involved in the growth of densely packed Q-carbon and nanodiamonds by nanosecond laser melting and quenching of diamond-like carbon (DLC) thin films. DLC films with different sp 3 content were melted rapidly in a controlled way in super-undercooled state and quenched, leading to formation of distinct nanostructures, i.e., nanodiamonds, Q-carbon, and Q-carbon nanocomposites. This analysis provides direct evidence of the dependence of the super-undercooling on the structural evolution of Q-carbon. Finite element heat flow calculations showed that the super-undercooling varies monotonically with the sp 3 content. The phenomenon of solid-liquid interfacial instability during directional solidification from the melt state is studied in detail. The resulting lateral segregation leads to formation of cellular filamentary Q-carbon nanostructures. The dependence of the cell size and wavelength at the onset of instability on the sp 3 content of DLC thin films was modeled based on perturbation theory.

  5. Analysis of Carbon/Carbon Fragments From the Columbia Tragedy

    NASA Technical Reports Server (NTRS)

    Tallant, David R.; Simpson, Regina L.; Jacobson, Nathan S.

    2005-01-01

    The extensive investigation following the Space Shuttle Orbiter Columbia accident of February 1, 2003 determined that hot gases entered the wing through a breach in the protective reinforced carbon/carbon (RCC) leading edge. In the current study, the exposed edges of the recovered RCC from the vicinity of the breach are examined with scanning electron microscopy and Raman spectroscopy. Electron microscopy of the exposed edges revealed regions of pointed carbon fibers, characteristic of exposure to high temperature oxidizing gases. The Raman technique relates the observed 1350 and 1580 to 1600 cm(-1) bands to graphitic dom ains and their corresponding temperatures of formation. Some of the regions showed evidence of exposure temperatures beyond 2700 ?C during the accident.

  6. Carbon nanoscrolls by pyrolysis of a polymer

    NASA Astrophysics Data System (ADS)

    Yadav, Prasad; Warule, Sambhaji; Jog, Jyoti; Ogale, Satishchandra

    2012-12-01

    3D network of carbon nanoscrolls was synthesized starting from pyrolysis of poly(acrylic acid-co-maleic acid) sodium salt. It is a catalyst-free process where pyrolysis of polymer leads to formation of carbon form and sodium carbonate. Upon water soaking of pyrolysis product, the carbon form undergoes self-assembly to form carbon nanoscrolls. The interlayer distance between the walls of carbon nanoscroll was found to be 0.34 nm and the carbon nanoscrolls exhibited a surface area of 188 m2/g as measured by the BET method.

  7. Climate extremes and the carbon cycle.

    PubMed

    Reichstein, Markus; Bahn, Michael; Ciais, Philippe; Frank, Dorothea; Mahecha, Miguel D; Seneviratne, Sonia I; Zscheischler, Jakob; Beer, Christian; Buchmann, Nina; Frank, David C; Papale, Dario; Rammig, Anja; Smith, Pete; Thonicke, Kirsten; van der Velde, Marijn; Vicca, Sara; Walz, Ariane; Wattenbach, Martin

    2013-08-15

    The terrestrial biosphere is a key component of the global carbon cycle and its carbon balance is strongly influenced by climate. Continuing environmental changes are thought to increase global terrestrial carbon uptake. But evidence is mounting that climate extremes such as droughts or storms can lead to a decrease in regional ecosystem carbon stocks and therefore have the potential to negate an expected increase in terrestrial carbon uptake. Here we explore the mechanisms and impacts of climate extremes on the terrestrial carbon cycle, and propose a pathway to improve our understanding of present and future impacts of climate extremes on the terrestrial carbon budget.

  8. Simulation of Hypervelocity Impact Effects on Reinforced Carbon-Carbon. Chapter 6

    NASA Technical Reports Server (NTRS)

    Park, Young-Keun; Fahrenthold, Eric P.

    2004-01-01

    Spacecraft operating in low earth orbit face a significant orbital debris impact hazard. Of particular concern, in the case of the Space Shuttle, are impacts on critical components of the thermal protection system. Recent research has formulated a new material model of reinforced carbon-carbon, for use in the analysis of hypervelocity impact effects on the Space Shuttle wing leading edge. The material model has been validated in simulations of published impact experiments and applied to model orbital debris impacts at velocities beyond the range of current experimental methods. The results suggest that momentum scaling may be used to extrapolate the available experimental data base, in order to predict the size of wing leading edge perforations at impact velocities as high as 13 km/s.

  9. Monolithic porous graphitic carbons obtained through catalytic graphitization of carbon xerogels

    NASA Astrophysics Data System (ADS)

    Kiciński, Wojciech; Norek, Małgorzata; Bystrzejewski, Michał

    2013-01-01

    Pyrolysis of organic xerogels accompanied by catalytic graphitization and followed by selective-combustion purification was used to produce porous graphitic carbons. Organic gels impregnated with iron(III) chloride or nickel(II) acetate were obtained through polymerization of resorcinol and furfural. During the pyrolysis stage graphitization of the gel matrix occurs, which in turn develops mesoporosity of the obtained carbons. The evolution of the carbon into graphitic structures is strongly dependent on the concentrations of the transition metal. Pyrolysis leads to monoliths of carbon xerogel characterized by substantially enhanced mesoporosity resulting in specific surface areas up to 400 m2/g. Removal of the amorphous carbon by selective-combustion purification reduces the xerogels' mesoporosity, occasionally causing loss of their mechanical strength. The graphitized carbon xerogels were investigated by means of SEM, XRD, Raman scattering, TG-DTA and N2 physisorption. Through this procedure well graphitized carbonaceous materials can be obtained as bulk pieces.

  10. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, astronaut Scott E. Parazynski points to the Reinforced Carbon Carbon panels used on the leading edge of the wing of the orbiters. With Parazynski are engineers from around the Agency who are working on improving the RCC panels used on the wing leading edge. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-12-08

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, astronaut Scott E. Parazynski points to the Reinforced Carbon Carbon panels used on the leading edge of the wing of the orbiters. With Parazynski are engineers from around the Agency who are working on improving the RCC panels used on the wing leading edge. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  11. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, astronaut Scott E. Parazynski discusses the Reinforced Carbon Carbon panels used on the leading edge of the wing of the orbiters. With him are engineers from around the Agency who are working on improving the RCC panels used on the wing leading edge. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-12-08

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, astronaut Scott E. Parazynski discusses the Reinforced Carbon Carbon panels used on the leading edge of the wing of the orbiters. With him are engineers from around the Agency who are working on improving the RCC panels used on the wing leading edge. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  12. Carbon isotopes in mollusk shell carbonates

    NASA Astrophysics Data System (ADS)

    McConnaughey, Ted A.; Gillikin, David Paul

    2008-10-01

    Mollusk shells contain many isotopic clues about calcification physiology and environmental conditions at the time of shell formation. In this review, we use both published and unpublished data to discuss carbon isotopes in both bivalve and gastropod shell carbonates. Land snails construct their shells mainly from respired CO2, and shell δ13C reflects the local mix of C3 and C4 plants consumed. Shell δ13C is typically >10‰ heavier than diet, probably because respiratory gas exchange discards CO2, and retains the isotopically heavier HCO3 -. Respired CO2 contributes less to the shells of aquatic mollusks, because CO2/O2 ratios are usually higher in water than in air, leading to more replacement of respired CO2 by environmental CO2. Fluid exchange with the environment also brings additional dissolved inorganic carbon (DIC) into the calcification site. Shell δ13C is typically a few ‰ lower than ambient DIC, and often decreases with age. Shell δ13C retains clues about processes such as ecosystem metabolism and estuarine mixing. Ca2+ ATPase-based models of calcification physiology developed for corals and algae likely apply to mollusks, too, but lower pH and carbonic anhydrase at the calcification site probably suppress kinetic isotope effects. Carbon isotopes in biogenic carbonates are clearly complex, but cautious interpretation can provide a wealth of information, especially after vital effects are better understood.

  13. Reinforced carbon-carbon oxidation behavior in convective and radiative environments

    NASA Technical Reports Server (NTRS)

    Curry, D. M.; Johansen, K. J.; Stephens, E. W.

    1978-01-01

    Reinforced carbon-carbon, which is used as thermal protection on the space shuttle orbiter wing leading edges and nose cap, was tested in both radiant and plasma arcjet heating test facilities. The test series was conducted at varying temperatures and pressures. Samples tested in the plasma arcjet facility had consistently higher mass loss than those samples tested in the radiant facility. A method using the mass loss data is suggested for predicting mission mass loss for specific locations on the Orbiter.

  14. USE OF STABLE CARBON ISOTOPE RATIOS OF FATTY ACIDS TO EVALUATE MICROBIAL CARBON SOURCES IN TERRESTRIAL ENVIRONMENTS

    EPA Science Inventory

    We use measurements of the concentration and stable carbon isotopic ratio (D 13C) of individual microbial phospholipid fatty acids (PLFAs) in soils as indicators of live microbial biomass levels and microbial carbon source. We found that intensive sugar cane cultivation leads to ...

  15. Application of Eddy Current Techniques for Orbiter Reinforced Carbon-Carbon Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Simpson, John

    2005-01-01

    The development and application of advanced nondestructive evaluation techniques for the Reinforced Carbon-Carbon (RCC) components of the Space Shuttle Orbiter Leading Edge Structural Subsystem (LESS) was identified as a crucial step toward returning the shuttle fleet to service. In order to help meet this requirement, eddy current techniques have been developed for application to RCC components. Eddy current technology has been found to be particularly useful for measuring the protective coating thickness over the reinforced carbon-carbon and for the identification of near surface cracking and voids in the RCC matrix. Testing has been performed on as manufactured and flown RCC components with both actual and fabricated defects representing impact and oxidation damage. Encouraging initial results have led to the development of two separate eddy current systems for in-situ RCC inspections in the orbiter processing facility. Each of these systems has undergone blind validation testing on a full scale leading edge panel, and recently transitioned to Kennedy Space Center to be applied as a part of a comprehensive RCC inspection strategy to be performed in the orbiter processing facility after each shuttle flight.

  16. Carbon uptake in granular basalt is mitigated by added organic carbon.

    NASA Astrophysics Data System (ADS)

    Howard, E. L.; Van Haren, J. L. M.; Dontsova, K.

    2017-12-01

    Soils represent a large, and potentially long-term, storage component of the global carbon budget. Accurate projections of the response of soil respiration -the release of CO2 from soils generated either through root respiration or microbial respiration- to rainfall events remains one of the largest uncertainties in global carbon cycling models. Similarly poorly represented in models is the uptake of CO2 by basalt soils. In an attempt to address these unknowns, we have investigated how the addition of carbon influences the negative CO2 flux observed after wetting basalt. At Biosphere 2 we have constructed a large scale environmentally controlled experiment known as the Landscape Evolution Observatory (LEO). The objective of LEO is to observe the interactions between water, microbes, and climate in the formation of soil and landscapes utilizing granular basalt as a young soil. Previous studies show that water addition to the LEO soil leads to considerable CO2 uptake and that the addition of plants does not alter this response. In this study, we conducted soil incubations to investigate the effect of varying soil carbon content on CO2 fluxes. During incubations we measured CO2 emissions from two types of soil (granular basalt and sand soil) mixed with seven (0, 5, 10, 25, 50, 75, 100%) different proportions of Kalso prairie. The carbon content varied from nearly zero in the basalt to 6.5% in the Kalso Prarie soil. Other parameters that influence soil CO2 fluxes such as pH were taken into account. In conclusion, our experiments confirm that unweathered basalt will consume CO2 when wetted, whereas added carbon will cause a strong pulse of CO2 following water addition. This supports our hypotheses that the carbon content is a large contributor and that maturation of basalt flows will lead to a shift in the carbon dynamics from inorganic to organic dominated. Likewise, these transitions would be expected to be present during soil formation after primary succession and

  17. Lead chromate detected as a source of atmospheric Pb and Cr (VI) pollution.

    PubMed

    Lee, Pyeong-Koo; Yu, Soonyoung; Chang, Hye Jung; Cho, Hye Young; Kang, Min-Ju; Chae, Byung-Gon

    2016-10-25

    Spherical black carbon aggregates were frequently observed in dust dry deposition in Daejeon, Korea. They were tens of micrometers in diameter and presented a mixture of black carbon and several mineral phases. Transmission electron microscopy (TEM) observations with energy-dispersive X-ray spectroscopy (EDS) and selected area diffraction pattern (SADP) analyses confirmed that the aggregates were compact and included significant amounts of lead chromate (PbCrO 4 ). The compositions and morphologies of the nanosized lead chromate particles suggest that they probably originated from traffic paint used in roads and were combined as discrete minerals with black carbon. Based on Pb isotope analysis and air-mass backward trajectories, the dust in Daejeon received a considerable input of anthropogenic pollutants from heavily industrialized Chinese cities, which implies that long-range transported aerosols containing PbCrO 4 were a possible source of the lead and hexavalent chromium levels in East Asia. Lead chromate should be considered to be a source of global atmospheric Pb and Cr(VI) pollution, especially given its toxicity.

  18. Lead chromate detected as a source of atmospheric Pb and Cr (VI) pollution

    NASA Astrophysics Data System (ADS)

    Lee, Pyeong-Koo; Yu, Soonyoung; Chang, Hye Jung; Cho, Hye Young; Kang, Min-Ju; Chae, Byung-Gon

    2016-10-01

    Spherical black carbon aggregates were frequently observed in dust dry deposition in Daejeon, Korea. They were tens of micrometers in diameter and presented a mixture of black carbon and several mineral phases. Transmission electron microscopy (TEM) observations with energy-dispersive X-ray spectroscopy (EDS) and selected area diffraction pattern (SADP) analyses confirmed that the aggregates were compact and included significant amounts of lead chromate (PbCrO4). The compositions and morphologies of the nanosized lead chromate particles suggest that they probably originated from traffic paint used in roads and were combined as discrete minerals with black carbon. Based on Pb isotope analysis and air-mass backward trajectories, the dust in Daejeon received a considerable input of anthropogenic pollutants from heavily industrialized Chinese cities, which implies that long-range transported aerosols containing PbCrO4 were a possible source of the lead and hexavalent chromium levels in East Asia. Lead chromate should be considered to be a source of global atmospheric Pb and Cr(VI) pollution, especially given its toxicity.

  19. Lead chromate detected as a source of atmospheric Pb and Cr (VI) pollution

    PubMed Central

    Lee, Pyeong-Koo; Yu, Soonyoung; Chang, Hye Jung; Cho, Hye Young; Kang, Min-Ju; Chae, Byung-Gon

    2016-01-01

    Spherical black carbon aggregates were frequently observed in dust dry deposition in Daejeon, Korea. They were tens of micrometers in diameter and presented a mixture of black carbon and several mineral phases. Transmission electron microscopy (TEM) observations with energy-dispersive X-ray spectroscopy (EDS) and selected area diffraction pattern (SADP) analyses confirmed that the aggregates were compact and included significant amounts of lead chromate (PbCrO4). The compositions and morphologies of the nanosized lead chromate particles suggest that they probably originated from traffic paint used in roads and were combined as discrete minerals with black carbon. Based on Pb isotope analysis and air-mass backward trajectories, the dust in Daejeon received a considerable input of anthropogenic pollutants from heavily industrialized Chinese cities, which implies that long-range transported aerosols containing PbCrO4 were a possible source of the lead and hexavalent chromium levels in East Asia. Lead chromate should be considered to be a source of global atmospheric Pb and Cr(VI) pollution, especially given its toxicity. PMID:27779222

  20. Sequestration of Soil Carbon as Secondary Carbonates (Invited)

    NASA Astrophysics Data System (ADS)

    Lal, R.

    2013-12-01

    Rattan Lal Carbon Management and Sequestration Center The Ohio State University Columbus, OH 43210 USA Abstract World soils, the major carbon (C) reservoir among the terrestrial pools, contain soil organic C (SOC) and soil inorganic C (SIC). The SIC pool is predominant in soils of arid and semi-arid regions. These regions cover a land area of about 4.9x109 ha. The SIC pool in soils containing calcic and petrocalcic horizons is estimated at about 695-748 Pg (Pg = 1015 g = 1 gigaton) to 1-m depth. There are two types of carbonates. Lithogenic or primary carbonates are formed from weathering of carbonaceous rocks. Pedogenic or secondary carbonates are formed by dissolution of CO2 in the soil air to form carbonic acid and precipitation as carbonates of Ca+2 or Mg+2. It is the availability of Ca+2 or Mg+2 from outside the ecosystem that is essential to sequester atmospheric CO2. Common among outside sources of Ca+2 or Mg+2 are irrigation water, aerial deposition, sea breeze, fertilizers, manure and other amendments. The decomposition of SOC and root respiration may increase the partial pressure of CO2 in the soil air and lead to the formation of HCO_3^- upon dissolution in H20. Precipitation of secondary carbonates may result from decreased partial pressure of CO2 in the sub-soil, increased concentration of Ca+2, Mg+2 and HCO_3^- in soil solution, and decreased soil moisture content by evapotranspiration. Transport of bicarbonates in irrigated soils and subsequent precipitation above the ground water (calcrete), activity of termites and other soil fauna, and management of urban soils lead to formation of secondary carbonates. On a geologic time scale, weathering of silicate minerals and transport of the by-products into the ocean is a geological process of sequestration of atmospheric CO2. Factors affecting formation of secondary carbonates include land use, and soil and crop management including application of biosolids, irrigation and the quality of irrigation water

  1. Lead Adsorption into Activated Carbon: A Critical Review of the Literature

    EPA Science Inventory

    Lead has been widely used in many industries due to its desirable chemical and physical properties such as its malleability and resistance to corrosion. However, Lead poisoning is a serious health hazard that causes severe damage to multiple target organs including kidney, liver,...

  2. Enhanced Removal of Lead by Chemically and Biologically Treated Carbonaceous Materials

    PubMed Central

    Mahmoud, Mohamed E.; Osman, Maher M.; Ahmed, Somia B.; Abdel-Fattah, Tarek M.

    2012-01-01

    Hybrid sorbents and biosorbents were synthesized via chemical and biological treatment of active carbon by simple and direct redox reaction followed by surface loading of baker's yeast. Surface functionality and morphology of chemically and biologically modified sorbents and biosorbents were studied by Fourier Transform Infrared analysis and scanning electron microscope imaging. Hybrid carbonaceous sorbents and biosorbents were characterized by excellent efficiency and superiority toward lead(II) sorption compared to blank active carbon providing a maximum sorption capacity of lead(II) ion as 500 μmol g−1. Sorption processes of lead(II) by these hybrid materials were investigated under the influence of several controlling parameters such as pH, contact time, mass of sorbent and biosorbent, lead(II) concentration, and foreign ions. Lead(II) sorption mechanisms were found to obey the Langmuir and BET isotherm models. The potential applications of chemically and biologically modified-active carbonaceous materials for removal and extraction of lead from real water matrices were also studied via a double-stage microcolumn technique. The results of this study were found to denote to superior recovery values of lead (95.0–99.0 ± 3.0–5.0%) by various carbonaceous-modified-bakers yeast biosorbents. PMID:22629157

  3. Thermal and Mechanical Performance of a Carbon/Carbon Composite Spacecraft Radiator

    NASA Technical Reports Server (NTRS)

    Kuhn, Jonathan; Benner, Steve; Butler, Dan; Silk, Eric

    1999-01-01

    Carbon-carbon composite materials offer greater thermal efficiency, stiffness to weight ratio, tailorability, and dimensional stability than aluminum. These lightweight thermal materials could significantly reduce the overall costs associated with satellite thermal control and weight. However, the high cost and long lead-time for carbon-carbon manufacture have limited their widespread usage. Consequently, an informal partnership between government and industrial personnel called the Carbon-Carbon Spacecraft Radiator Partnership (CSRP) was created to foster carbon-carbon composite use for thermally and structurally demanding space radiator applications. The first CSRP flight opportunity is on the New Millennium Program (NMP) Earth Orbiter-1 (EO-1) spacecraft, scheduled for launch in late 1999. For EO-1, the CSRP designed and fabricated a Carbon-Carbon Radiator (CCR) with carbon-carbon facesheets and aluminum honeycomb core, which will also serve as a structural shear panel. While carbon-carbon is an ideal thermal candidate for spacecraft radiators, in practice there are technical challenges that may compromise performance. In this work, the thermal and mechanical performance of the EO-1 CCR is assessed by analysis and testing. Both then-nal and mechanical analyses were conducted to predict the radiator response to anticipated launch and on-orbit loads. The thermal model developed was based on thermal balance test conditions. The thermal analysis was performed using SINDA version 4.0. Structural finite element modeling and analysis were performed using SDRC/1-DEAS and UAI/NASTRAN, respectively. In addition, the CCR was subjected to flight qualification thermal/vacuum and vibration tests. The panel meets or exceeds the requirements for space flight and demonstrates promise for future satellite missions.

  4. Monetary benefits of preventing childhood lead poisoning with lead-safe window replacement.

    PubMed

    Nevin, Rick; Jacobs, David E; Berg, Michael; Cohen, Jonathan

    2008-03-01

    Previous estimates of childhood lead poisoning prevention benefits have quantified the present value of some health benefits, but not the costs of lead paint hazard control or the benefits associated with housing and energy markets. Because older housing with lead paint constitutes the main exposure source today in the US, we quantify health benefits, costs, market value benefits, energy savings, and net economic benefits of lead-safe window replacement (which includes paint stabilization and other measures). The benefit per resident child from improved lifetime earnings alone is $21,195 in pre-1940 housing and $8685 in 1940-59 housing (in 2005 dollars). Annual energy savings are $130-486 per housing unit, with or without young resident children, with an associated increase in housing market value of $5900-14,300 per housing unit, depending on home size and number of windows replaced. Net benefits are $4490-5,629 for each housing unit built before 1940, and $491-1629 for each unit built from 1940-1959, depending on home size and number of windows replaced. Lead-safe window replacement in all pre-1960 US housing would yield net benefits of at least $67 billion, which does not include many other benefits. These other benefits, which are shown in this paper, include avoided Attention Deficit Hyperactivity Disorder, other medical costs of childhood lead exposure, avoided special education, and reduced crime and juvenile delinquency in later life. In addition, such a window replacement effort would reduce peak demand for electricity, carbon emissions from power plants, and associated long-term costs of climate change.

  5. Subsurface soil carbon losses offset surface carbon accumulation in abandoned agricultural fields

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Knops, J. M. H.

    2017-12-01

    Soil carbon is widely understood to accumulate after agricultural abandonment. However, most of the studies have been focused on shallow depths (10 to 30 cm), and there is a lack of deeper soil carbon data. It was reported that in temperate grasslands, 58% of the soil organic carbon in the first meter was stored between 20 and 100 cm, and organic matter in deeper soil might also be susceptible to agricultural disturbance. We used repeated sampling in 2001 and 2014 to directly measure rates of soil carbon change in both surface and subsurface soil in 21 abandoned agricultural fields at Cedar Creek Ecosystem Science Reserve, MN. Congruent with many other studies, we found carbon accumulated 384.2 C g/m2 in surface soil (0 - 20 cm) over the 13 years. However, we also found carbon pool declined 688.1 C g/m2 in the subsurface soil (40-100 cm), which resulted in a net total loss of soil carbon. We investigated the ecosystem carbon pools and fluxes to explore the mechanisms of the observed soil carbon changes. We found root carbon was not significantly correlated with soil carbon in any of the depth. In situ soil incubation showed nitrogen mineralization rates in subsurface soil are lower than that of surface soil. However, the estimated nitrogen and carbon output through decomposition is higher than inputs from roots, therefore leading to carbon loss in subsurface soil. These results suggest that the decomposition of soil organic matter by microorganisms in subsurface soil is significant, and should be incorporated in ecosystem carbon budget models.

  6. Transient climate-carbon simulations of planetary geoengineering.

    PubMed

    Matthews, H Damon; Caldeira, Ken

    2007-06-12

    Geoengineering (the intentional modification of Earth's climate) has been proposed as a means of reducing CO2-induced climate warming while greenhouse gas emissions continue. Most proposals involve managing incoming solar radiation such that future greenhouse gas forcing is counteracted by reduced solar forcing. In this study, we assess the transient climate response to geoengineering under a business-as-usual CO2 emissions scenario by using an intermediate-complexity global climate model that includes an interactive carbon cycle. We find that the climate system responds quickly to artificially reduced insolation; hence, there may be little cost to delaying the deployment of geoengineering strategies until such a time as "dangerous" climate change is imminent. Spatial temperature patterns in the geoengineered simulation are comparable with preindustrial temperatures, although this is not true for precipitation. Carbon sinks in the model increase in response to geoengineering. Because geoengineering acts to mask climate warming, there is a direct CO2-driven increase in carbon uptake without an offsetting temperature-driven suppression of carbon sinks. However, this strengthening of carbon sinks, combined with the potential for rapid climate adjustment to changes in solar forcing, leads to serious consequences should geoengineering fail or be stopped abruptly. Such a scenario could lead to very rapid climate change, with warming rates up to 20 times greater than present-day rates. This warming rebound would be larger and more sustained should climate sensitivity prove to be higher than expected. Thus, employing geoengineering schemes with continued carbon emissions could lead to severe risks for the global climate system.

  7. Fabrication and Testing of Mo-Re Heat Pipes Embedded in Carbon/Carbon

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Merrigan, Michael A.; Sena, J. Tom

    1998-01-01

    Refractory-composite/heat-pipe-cooled wing an tail leading edges are being considered for use on hypersonic vehicles to limit maximum temperatures to values below material reuse limits and to eliminate the need to actively cool the leading edges. The development of a refractory-composite/heat-pipe-cooled leading edge has evolved from the design stage to the fabrication and testing of heat pipes embedded in carbon/carbon (C/C). A three-foot-long, molybdenum-rhenium heat pipe with a lithium working fluid was fabricated and tested at an operating temperature of 2460 F to verify the individual heat-pipe design. Following the fabrication of this heat pipe, three additional heat pipes were fabricated and embedded in C/C. The C/C heat-pipe test article was successfully tested using quartz lamps in a vacuum chamber in both a horizontal and vertical orientation. Start up and steady state data are presented for the C/C heat-pipe test article. Radiography and eddy current evaluations were performed on the test article.

  8. Preparation of novel oxidized mesoporous carbon with excellent adsorption performance for removal of malachite green and lead ion

    NASA Astrophysics Data System (ADS)

    Zhang, Xialan; Lin, Qilang; Luo, Shiyuan; Ruan, Kezhao; Peng, Kaiping

    2018-06-01

    An oxidized mesoporous carbon (OMC) with fluffy structure was fabricated from the mixture of petroleum asphalt and aluminum isopropoxide, and its structures were characterized by FESEM, TEM, BET, TG, XPS and FT-IR. In addition, bath absorption experiments for malachite green (MG) and lead ion (Pb2+) were carried out to explore the effects of pH, initial concentration, contact time and temperature on its absorption process. Results show that the OMC prepared has a fluffy ultrathin-wall structure with narrow pore size distribution and rich oxygen-containing groups. It exhibits excellent absorption performance for the removal of MG as well as Pb2+, as indicated by that its maximum adsorption capacity is 963.1 mg g-1 for MG and 198.6 mg g-1 for Pb2+. The absorption experimental data are all fitted well with pseudo-second-order model and Frendlich isotherm, respectively. More importantly, the OMC still maintains relatively high adsorption capacity after five cycles.

  9. Simulation of the Thermographic Response of Near Surface Flaws in Reinforced Carbon-Carbon Panels

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Howell, Patricia A.; Burke, Eric R.

    2009-01-01

    Thermographic inspection is a viable technique for detecting in-service damage in reinforced carbon-carbon (RCC) composites that are used for thermal protection in the leading edge of the shuttle orbiter. A thermographic technique for detection of near surface flaws in RCC composite structures is presented. A finite element model of the heat diffusion in structures with expected flaw configurations is in good agreement with the experimental measurements.

  10. Systematic review: the effects of carbonated beverages on gastro-oesophageal reflux disease.

    PubMed

    Johnson, T; Gerson, L; Hershcovici, T; Stave, C; Fass, R

    2010-03-01

    Carbonated beverages have unique properties that may potentially exacerbate gastro-oesophageal reflux disease (GERD), such as high acidity and carbonation. Cessation of carbonated beverage consumption is commonly recommended as part of lifestyle modifications for patients with GERD. To evaluate the relationship of carbonated beverages with oesophageal pH, oesophageal motility, oesophageal damage, GERD symptoms and GERD complications. A systematic review. Carbonated beverage consumption results in a very short decline in intra-oesophageal pH. In addition, carbonated beverages may lead to a transient reduction in lower oesophageal sphincter basal pressure. There is no evidence that carbonated beverages directly cause oesophageal damage. Carbonated beverages have not been consistently shown to cause GERD-related symptoms. Furthermore, there is no evidence that these popular drinks lead to GERD complications or oesophageal cancer. Based on the currently available literature, it appears that there is no direct evidence that carbonated beverages promote or exacerbate GERD.

  11. Geochemical processes leading to the precipitation of subglacial carbonate crusts at Bossons glacier, Mont Blanc Massif (French Alps)

    NASA Astrophysics Data System (ADS)

    Thomazo, Christophe; Buoncristiani, Jean-Francois; Vennin, Emmanuelle; Pellenard, Pierre; Cocquerez, Theophile; Mugnier, Jean L.; Gérard, Emmanuelle

    2017-09-01

    Cold climate carbonates can be used as paleoclimatic proxies. The mineralogy and isotopic composition of subglacially precipitated carbonate crusts provide insights into the subglacial conditions and processes occurring at the meltwater-basement rock interface of glaciers. This study documents such crusts discovered on the lee side of a gneissic roche moutonnée at the terminus of the Bossons glacier in the Mont Blanc Massif area (France). The geological context and mineralogical investigations suggest that the Ca used for the precipitation of large crystals of radial fibrous sparite observed in these crusts originated from subglacial chemical weathering of Ca-bearing minerals of the local bedrock (plagioclase and amphibole). Measurements of the carbon and oxygen isotope compositions in the crusts indicate precipitation at, or near to, equilibrium with the basal meltwater under open system conditions during refreezing processes. The homogeneous and low carbonate δ13C values (ca. -11.3‰) imply a large contribution of soil organic carbon to the Bossons subglacial meltwater carbon reservoir at the time of deposition. In addition, organic remains trapped within the subglacially precipitated carbonate crusts give an age of deposition around 6500 years cal BP suggesting that the Mid-Holocene climatic and pedological optima are archived in the Bossons glacier carbonate crusts.

  12. Can Thermally Sprayed Aluminum (TSA) Mitigate Corrosion of Carbon Steel in Carbon Capture and Storage (CCS) Environments?

    NASA Astrophysics Data System (ADS)

    Paul, S.; Syrek-Gerstenkorn, B.

    2017-01-01

    Transport of CO2 for carbon capture and storage (CCS) uses low-cost carbon steel pipelines owing to their negligible corrosion rates in dry CO2. However, in the presence of liquid water, CO2 forms corrosive carbonic acid. In order to mitigate wet CO2 corrosion, use of expensive corrosion-resistant alloys is recommended; however, the increased cost makes such selection economically unfeasible; hence, new corrosion mitigation methods are sought. One such method is the use of thermally sprayed aluminum (TSA), which has been used to mitigate corrosion of carbon steel in seawater, but there are concerns regarding its suitability in CO2-containing solutions. A 30-day test was carried out during which carbon steel specimens arc-sprayed with aluminum were immersed in deionized water at ambient temperature bubbled with 0.1 MPa CO2. The acidity (pH) and potential were continuously monitored, and the amount of dissolved Al3+ ions was measured after completion of the test. Some dissolution of TSA occurred in the test solution leading to nominal loss in coating thickness. Potential measurements revealed that polarity reversal occurs during the initial stages of exposure which could lead to preferential dissolution of carbon steel in the case of coating damage. Thus, one needs to be careful while using TSA in CCS environments.

  13. Functional Carbon Materials for Electrochemical Energy Storage

    NASA Astrophysics Data System (ADS)

    Zhou, Huihui

    The ability to harvest and convert solar energy has been associated with the evolution of human civilization. The increasing consumption of fossil fuels since the industrial revolution, however, has brought to concerns in ecological deterioration and depletion of the fossil fuels. Facing these challenges, humankind is forced to seek for clean, sustainable and renewable energy resources, such as biofuels, hydraulic power, wind power, geothermal energy and other kinds of alternative energies. However, most alternative energy sources, generally in the form of electrical energy, could not be made available on a continuous basis. It is, therefore, essential to store such energy into chemical energy, which are portable and various applications. In this context, electrochemical energy-storage devices hold great promises towards this goal. The most common electrochemical energy-storage devices are electrochemical capacitors (ECs, also called supercapacitors) and batteries. In comparison to batteries, ECs posses high power density, high efficiency, long cycling life and low cost. ECs commonly utilize carbon as both (symmetric) or one of the electrodes (asymmetric), of which their performance is generally limited by the capacitance of the carbon electrodes. Therefore, developing better carbon materials with high energy density has been emerging as one the most essential challenges in the field. The primary objective of this dissertation is to design and synthesize functional carbon materials with high energy density at both aqueous and organic electrolyte systems. The energy density (E) of ECs are governed by E = CV 2/2, where C is the total capacitance and V is the voltage of the devices. Carbon electrodes with high capacitance and high working voltage should lead to high energy density. In the first part of this thesis, a new class of nanoporous carbons were synthesized for symmetric supercapacitors using aqueous Li2SO4 as the electrolyte. A unique precursor was adopted to

  14. Methods of verifying net carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClung, M.

    1996-10-01

    Problems currently exist with using net carbon as an industrial standard to gauge smelter performance. First, throughout the industry there are a number of different methods used for determining net carbon. Also, until recently there has not been a viable method to cross check or predict change in net carbon. This inherently leads to differences and most likely inaccuracies when comparing performances of different plants using a net carbon number. Ravenswood uses specific methods when calculating the net carbon balance. The R and D Carbon, Ltd. formula developed by Verner Fisher, et al, to predict and cross check net carbonmore » based on baked carbon core analysis has been successfully used. Another method is used, as a cross check, which is based on the raw materials (cokes and pitch) usage as related to the metal produced. The combination of these methods gives a definitive representation of the carbon performance in the reduction cell. This report details the methods Ravenswood Aluminum uses and the information derived from it.« less

  15. The influencing factors of China carbon price: a study based on carbon trading market in hubei province

    NASA Astrophysics Data System (ADS)

    Li, Hao; Lei, Ming

    2018-02-01

    For the carbon market, good trading mechanism is the basis for the healthy development of the carbon trading market. In order to explore the core problem of carbon price formation, our research explores the influencing factors of the price of carbon trading market. After the preliminary statistical analysis, our study found that Hubei Province is in the leading position among seven pilots in the carbon trading volume and the transaction, so our study of carbon price takes Hubei Province as sample of the empirical research. Multi-time series model and ARCH model analysis method are used in the research, we use the data of Hubei carbon trading pilot from June 2014 to December 2016 to carry out empirical research, the results found that industrial income, energy price, government intervention and the number of participating corporation have significant effect on the carbon price, which provides a meaningful reference for the other pilots in-depth study, as well as the construction of a national carbon trading market.

  16. Lead line in rodents: an old sign of lead intoxication turned into a new method for environmental surveillance.

    PubMed

    de Figueiredo, Fellipe Augusto Tocchini; Ramos, Junia; Kawakita, Erika R Hashimoto; Bilal, Alina S; de Sousa, Frederico B; Swaim, William D; Issa, Joao P Mardegan; Gerlach, Raquel F

    2016-11-01

    The "lead line" was described by Henry Burton in 1840. Rodents are used as sentinels to monitor environmental pollution, but their teeth have not been used to determine lead. To determine whether lead deposits can be observed in the teeth of lead-exposed animals, since the gingival deposits known as "lead line" would likely have a correlate in the calcified tissue to which the gums are opposed during life. Male Wistar rats were exposed to lead in the drinking water (30 mg/L) since birth until 60 days-old. Molars and the incisors of each hemimandible were analyzed by scanning electron microscopy (SEM) on regular and backscattered electrons (BSE) mode. Elements were determined using electron dispersive spectroscopy (EDS). Clean cervical margins were observed on control teeth, as opposed to the findings of extensive deposits on lead-exposed animals, even in hemimandibles that had been exhumed after being buried for 90 days. BSE/EDS indicated that those deposits were an exogenous material compatible with lead sulfite. Presence of calcium, phosphorus, magnesium, carbon, lead, and oxygen is presented. Lead-exposed animals presented marked root resorption. The lead deposits characterized here for the first time show that the "lead line" seen in gums has a calcified tissue counterpart, that is detectable post-mortem even in animals exposed to a low dose of lead. This is likely a good method to detect undue lead exposure and will likely have wide application for pollution surveillance using sentinels.

  17. [Organic carbon and carbon mineralization characteristics in nature forestry soil].

    PubMed

    Yang, Tian; Dai, Wei; An, Xiao-Juan; Pang, Huan; Zou, Jian-Mei; Zhang, Rui

    2014-03-01

    Through field investigation and indoor analysis, the organic carbon content and organic carbon mineralization characteristics of six kinds of natural forest soil were studied, including the pine forests, evergreen broad-leaved forest, deciduous broad-leaved forest, mixed needle leaf and Korean pine and Chinese pine forest. The results showed that the organic carbon content in the forest soil showed trends of gradual decrease with the increase of soil depth; Double exponential equation fitted well with the organic carbon mineralization process in natural forest soil, accurately reflecting the mineralization reaction characteristics of the natural forest soil. Natural forest soil in each layer had the same mineralization reaction trend, but different intensity. Among them, the reaction intensity in the 0-10 cm soil of the Korean pine forest was the highest, and the intensities of mineralization reaction in its lower layers were also significantly higher than those in the same layers of other natural forest soil; comparison of soil mineralization characteristics of the deciduous broad-leaved forest and coniferous and broad-leaved mixed forest found that the differences of litter species had a relatively strong impact on the active organic carbon content in soil, leading to different characteristics of mineralization reaction.

  18. Scale-up of Carbon/Carbon Bipolar Plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David P. Haack

    2009-04-08

    This project was focused upon developing a unique material technology for use in PEM fuel cell bipolar plates. The carbon/carbon composite material developed in this program is uniquely suited for use in fuel cell systems, as it is lightweight, highly conductive and corrosion resistant. The project further focused upon developing the manufacturing methodology to cost-effectively produce this material for use in commercial fuel cell systems. United Technology Fuel Cells Corp., a leading fuel cell developer was a subcontractor to the project was interested in the performance and low-cost potential of the material. The accomplishments of the program included the developmentmore » and testing of a low-cost, fully molded, net-shape carbon-carbon bipolar plate. The process to cost-effectively manufacture these carbon-carbon bipolar plates was focused on extensively in this program. Key areas for cost-reduction that received attention in this program was net-shape molding of the detailed flow structures according to end-user design. Correlations between feature detail and process parameters were formed so that mold tooling could be accurately designed to meet a variety of flow field dimensions. A cost model was developed that predicted the cost of manufacture for the product in near-term volumes and long-term volumes (10+ million units per year). Because the roduct uses lowcost raw materials in quantities that are less than competitive tech, it was found that the cost of the product in high volume can be less than with other plate echnologies, and can meet the DOE goal of $4/kW for transportation applications. The excellent performance of the all-carbon plate in net shape was verified in fuel cell testing. Performance equivalent to much higher cost, fully machined graphite plates was found.« less

  19. Carbon-polyaniline nanocomposites as supercapacitor materials

    NASA Astrophysics Data System (ADS)

    Sathish Kumar, M.; Yamini Yasoda, K.; Batabyal, Sudip Kumar; Kothurkar, Nikhil K.

    2018-04-01

    Polyaniline-based nanocomposites containing carbon nanotubes (CNT), reduced graphene oxide (rGO) and mixture of CNTs and rGO were synthesized. UV-visible spectroscopy and FT-IR spectroscopy confirmed the presence of polyaniline (PANi) and carbon nanomaterials. Scanning electron microscopy revealed that the neat PANi had a granular morphology, which can lead to increased electrical resistance to high interfacial resistance between domains of PANi. Cyclic voltammetry of PANi, PANi/CNT, PANi/rGO and PANi/CNT/rGO showed that in general, specific capacitance reduces with increasing scan rate within the range (10–100 mV s‑1). Also the specific capacitance values at any given scan rate within the above range, for PANi, PANi/CNT, PANi/rGO and PANi/CNT/rGO were found to be in increasing order. The specific capacitance of the PANi/CNT/rGO nanocomposite as measured by galvanostatic charge-discharge measurements, was found to be 312.5 F g‑1. The introduction of the carbon nanomaterials (CNTs, rGO) in PANi in general leads to improved specific capacitance, while the addition of CNTs and rGO together leads to synergistic improvement in the specific capacitance, owing to a combination of factors.

  20. Fracture Mechanics Analyses of Reinforced Carbon-Carbon Wing-Leading-Edge Panels

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Phillips, Dawn R.; Knight, Norman F., Jr.; Song, Kyongchan

    2010-01-01

    Fracture mechanics analyses of subsurface defects within the joggle regions of the Space Shuttle wing-leading-edge RCC panels are performed. A 2D plane strain idealized joggle finite element model is developed to study the fracture behavior of the panels for three distinct loading conditions - lift-off and ascent, on-orbit, and entry. For lift-off and ascent, an estimated bounding aerodynamic pressure load is used for the analyses, while for on-orbit and entry, thermo-mechanical analyses are performed using the extreme cold and hot temperatures experienced by the panels. In addition, a best estimate for the material stress-free temperature is used in the thermo-mechanical analyses. In the finite element models, the substrate and coating are modeled separately as two distinct materials. Subsurface defects are introduced at the coating-substrate interface and within the substrate. The objective of the fracture mechanics analyses is to evaluate the defect driving forces, which are characterized by the strain energy release rates, and determine if defects can become unstable for each of the loading conditions.

  1. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, astronaut Michael E. Lopez-Alegria looks at the Reinforced Carbon Carbon panels used on the leading edge of the wing of the orbiters. He and engineers from around the Agency are on a fact-finding tour for improving the RCC panels used on the wing leading edge. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-12-08

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, astronaut Michael E. Lopez-Alegria looks at the Reinforced Carbon Carbon panels used on the leading edge of the wing of the orbiters. He and engineers from around the Agency are on a fact-finding tour for improving the RCC panels used on the wing leading edge. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  2. KENNEDY SPACE CENTER, FLA. - - In the Orbiter Processing Facility astronaut Danny Olivas listens to Greg Grantham (left) talking about the Reinforced Carbon Carbon panels used on the leading edge of the wing of the orbiters. Behind Olivas are engineers from around the Agency who are working on improving the RCC panels used on the wing leading edge. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-12-08

    KENNEDY SPACE CENTER, FLA. - - In the Orbiter Processing Facility astronaut Danny Olivas listens to Greg Grantham (left) talking about the Reinforced Carbon Carbon panels used on the leading edge of the wing of the orbiters. Behind Olivas are engineers from around the Agency who are working on improving the RCC panels used on the wing leading edge. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  3. Thermochemical Degradation Mechanisms for the Reinforced Carbon/Carbon Panels on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Rapp, Robert A.

    1995-01-01

    The wing leading edge and nose cone of the Space Shuttle are fabricated from a reinforced carbon/carbon material (RCC). The material attains its oxidation resistance from a diffusion coating of SiC and a glass sealant. During re-entry, the RCC material is subjected to an oxidizing high temperature environment, which leads to degradation via several mechanisms. These mechanisms include oxidation to form a silica scale, reaction of the SiO2 with the SiC to evolve gaseous products, viscous flow of the glass, and vaporization of the glass. Each of these is discussed in detail. Following extended service and many missions, the leading-edge wing surfaces have exhibited small pinholes. A chloridation/oxidation mechanism is proposed to arise from the NaCl deposited on the wings from the sea-salt laden air in Florida. This involves a local chloridation reaction of the SiC and subsequent re-oxidation at the external surface. Thermodynamic calculations indicate the feasibility of these reactions at active pits. Kinetic calculations predict pore depths close to those observed.

  4. Catalytic activation of carbon-carbon bonds in cyclopentanones.

    PubMed

    Xia, Ying; Lu, Gang; Liu, Peng; Dong, Guangbin

    2016-11-24

    In the chemical industry, molecules of interest are based primarily on carbon skeletons. When synthesizing such molecules, the activation of carbon-carbon single bonds (C-C bonds) in simple substrates is strategically important: it offers a way of disconnecting such inert bonds, forming more active linkages (for example, between carbon and a transition metal) and eventually producing more versatile scaffolds. The challenge in achieving such activation is the kinetic inertness of C-C bonds and the relative weakness of newly formed carbon-metal bonds. The most common tactic starts with a three- or four-membered carbon-ring system, in which strain release provides a crucial thermodynamic driving force. However, broadly useful methods that are based on catalytic activation of unstrained C-C bonds have proven elusive, because the cleavage process is much less energetically favourable. Here we report a general approach to the catalytic activation of C-C bonds in simple cyclopentanones and some cyclohexanones. The key to our success is the combination of a rhodium pre-catalyst, an N-heterocyclic carbene ligand and an amino-pyridine co-catalyst. When an aryl group is present in the C3 position of cyclopentanone, the less strained C-C bond can be activated; this is followed by activation of a carbon-hydrogen bond in the aryl group, leading to efficient synthesis of functionalized α-tetralones-a common structural motif and versatile building block in organic synthesis. Furthermore, this method can substantially enhance the efficiency of the enantioselective synthesis of some natural products of terpenoids. Density functional theory calculations reveal a mechanism involving an intriguing rhodium-bridged bicyclic intermediate.

  5. Probabilistic Structural Health Monitoring of the Orbiter Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Yap, Keng C.; Macias, Jesus; Kaouk, Mohamed; Gafka, Tammy L.; Kerr, Justin H.

    2011-01-01

    A structural health monitoring (SHM) system can contribute to the risk management of a structure operating under hazardous conditions. An example is the Wing Leading Edge Impact Detection System (WLEIDS) that monitors the debris hazards to the Space Shuttle Orbiter s Reinforced Carbon-Carbon (RCC) panels. Since Return-to-Flight (RTF) after the Columbia accident, WLEIDS was developed and subsequently deployed on board the Orbiter to detect ascent and on-orbit debris impacts, so as to support the assessment of wing leading edge structural integrity prior to Orbiter re-entry. As SHM is inherently an inverse problem, the analyses involved, including those performed for WLEIDS, tend to be associated with significant uncertainty. The use of probabilistic approaches to handle the uncertainty has resulted in the successful implementation of many development and application milestones.

  6. Mass loss of a TEOS-coated, reinforced carbon-carbon composite subjected to a simulted shuttle entry environment

    NASA Technical Reports Server (NTRS)

    Stroud, C. W.; Rummler, D. R.

    1980-01-01

    Coated, reinforced carbon-carbon (RCC) is used for the leading edges of the space shuttle. The mass loss characteristics of RCC specimens coated with tetraethyl orthosilicate (TEOS) were determine for conditions which simulated the environment expected at the lug attachment area of the leading edge. Mission simulation included simultaneous application of load, temperature, and oxygen partial pressure. Maximum specimen temperature was 900 K (1160 F). Specimens were exposed for up to 80 simulated missions. Stress levels up to 6.8 MPa (980 psi) did not significantly affect the mass loss characteristics of the TEOS-coated RCC material. Mass loss was correlated with the bulk density of the specimens.

  7. Conductance Oscillations in Squashed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Mehrez, H.; Anantram, M. P.; Svizhenko, A.

    2003-01-01

    A combination of molecular dynamics and electrical conductance calculations are used to probe the electromechanical properties of squashed metallic carbon nanotubes. We find that the conductance and bandgap of armchair nanotubes show oscillations upon squashing. The physical origin of these oscillations is attributed to interaction of carbon atoms with a fourth neighbor. Squashing of armchair and zigzag nanotubes ultimately leads to metallic behavior.

  8. Carbonate pseudomatrix in siliciclastic-carbonate turbidites from the Oquirrh-Wood River basin, southern Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geslin, J.K.

    1994-01-01

    Upper Pennsylvanian to Lower Permian mixed siliciclastic-carbonate sandy turbidites from the Oquirrh-Wood River basin in southern Idaho contain 20 to 60 modal percent microspar and pseudospar. Previous interpretations suggested that neomorphism of detrital lime mud produced the observed carbonate textures. The original detrital lime mud produced the observed carbonate textures. The original detrital lime mud content, based on these interpretations, indicates matrix-rich, poorly sorted turbidite deposits. However, observed turbidite hydrodynamics, and grain-size data from experimental and naturally occurring sandy turbidite deposits, indicate that T[sub n]-T[sub c] intervals of sandy turbidites are generally moderately well sorted, with low matrix content. Fluorescencemore » microscopy reveals that the carbonate fraction of these mixed siliciclastic-carbonate turbidites contains micritized skeletal grains and fusulinids, and algal peloids. These micritized grains and peloids were physically compacted and neomorphosed to form a carbonate pseudomatrix. Formation of carbonate pseudomatrix is analogous to formation of pseudomatrix in siliciclastic lithic sands, which includes crushing and recrystallization of lithic grains. Grain-size analysis of siliciclastic and slightly compacted carbonate grains indicates that these are moderately well sorted turbidite deposits with similar grain-size populations in both fractions. Lack of recognition of carbonate pseudomatrix could lead to erroneous interpretations of carbonate petrology. Identification of carbonate pseudomatrix is important to the study of mixed siliciclastic-carbonate gravity-flow deposits. This study demonstrates the value of fluorescence microscopy in the recognition of carbonate pseudomatrix.« less

  9. The voltammetric behaviour of lead at a microband screen-printed carbon electrode and its determination in acetate leachates from glazed ceramic plates.

    PubMed

    Honeychurch, Kevin C; Al-Berezanchi, Saman; Hart, John P

    2011-05-15

    Microband screen-printed carbon electrodes (μBSPCEs) without further modification have been investigated as disposable sensors for the measurement of lead in acetate leachates from ceramic glazed plates. Cyclic voltammetry was employed to elucidate the electrochemical behaviour of Pb(2+) at these electrodes in a variety of supporting electrolytes. The anodic peaks obtained on the reverse scans, showed that Pb had been deposited as a thin layer on the surface of the μBSPCE. The anodic peak of greatest magnitude was obtained in 0.1M pH 4.1 acetate buffer containing 13 mM Cl(-). The effect of chromium, copper, phosphate, sulphate and tin was examined and under the conditions employed, no significant change in current was found. The μBSPCEs were evaluated by carrying out lead determinations for acetate leachates from glazed ceramic plates. A highly decorated ornamental plate was found to leach 400 μg Pb(2+) (%CV=1.91%). A second plate, designed for dinnerware was found not to leach any detectable levels of Pb(2+). However, once fortified with 2.10 μg of Pb (equivalent to 100 ng/ml in the leachate), a mean recovery of 82.08% (%CV=4.07%) was obtained. The performance characteristics indicate that reliable data has been obtained for this application which could identify potentially toxic sources of lead. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. A study of ignition of metal impregnated carbons: the influence of oxygen content in the activated carbon matrix.

    PubMed

    van der Merwe, M M; Bandosz, T J

    2005-02-01

    A study of the reason for the early ignition of coconut-based impregnated carbon in comparison with the peat-based impregnated carbon was conducted. The surface features of carbons were evaluated using various physicochemical methods. The metal analysis of the initial carbon indicated that the content of potassium was higher in the coconut-based carbon. The surface functional group analysis revealed the presence of similar surface species; however, the peat-based carbon was more acidic in its chemical nature. Since the oxygen content was higher in the peat-based carbon, the early ignition of the coconut-based material was attributed to its higher affinity to chemisorb oxygen, which leads to exothermic effects. This conclusion was confirmed by performing oxidation of coconut-based carbon prior to impregnation. This process increased the ignition temperature for Cu/Cr impregnated coconut-based material from 186 to 289 degrees C and for the Cu/Zn/Mo impregnated carbon from 235 to 324 degrees C.

  11. Successful application of lead isotopes in source apportionment, legal proceedings, remediation and monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulson, Brian, E-mail: brian.gulson@mq.edu.au; CSIRO Earth Science and Resource Engineering North Ryde, NSW 1670; Korsch, Michael

    In late 2006, the seaside community in Esperance Western Australia was alerted to thousands of native bird species dying. The source of the lead (Pb) was determined by Pb isotopes to derive from the handling of Pb carbonate concentrate through the Port, which began in July 2005. Concern was expressed for the impact of this on the community. Our objectives were to employ Pb isotope ratios to evaluate the source of Pb in environmental samples for use in legal proceedings, and for use in remediation and monitoring. Isotope measurements were undertaken of bird livers, plants, drinking water, soil, harbour sediments,more » air, bulk ceiling dust, gutter sludge, surface swabs and blood. The unique lead isotopic signature of the contaminating Pb carbonate enabled diagnostic apportionment of lead in samples. Apart from some soil and water samples, the proportion of contaminating Pb was >95% in the environmental samples. Lead isotopes were critical in resolving legal proceedings, are being used in the remediation of premises, were used in monitoring of workers involved in the decontamination of the storage facility, and monitoring transport of the concentrate through another port facility. Air samples show the continued presence of contaminant Pb, more than one year after shipping of concentrate ceased, probably arising from dust resuspension. Brief details of the comprehensive testing and cleanup of the Esperance community are provided along with the role of the Community. Lead isotopic analyses can provide significant benefits to regulatory agencies, interested parties, and the community where the signature is able to be characterised with a high degree of certainty. - Highlights: Black-Right-Pointing-Triangle Lead carbonate concentrate. Black-Right-Pointing-Triangle Successful use of Pb isotopes in identifying sources of Pb arising from transport and shipping. Black-Right-Pointing-Triangle Use of Pb isotopes in legal proceedings and their use in cleanup of residences

  12. Reconciling biodiversity and carbon conservation.

    PubMed

    Thomas, Chris D; Anderson, Barbara J; Moilanen, Atte; Eigenbrod, Felix; Heinemeyer, Andreas; Quaife, Tristan; Roy, David B; Gillings, Simon; Armsworth, Paul R; Gaston, Kevin J

    2013-05-01

    Climate change is leading to the development of land-based mitigation and adaptation strategies that are likely to have substantial impacts on global biodiversity. Of these, approaches to maintain carbon within existing natural ecosystems could have particularly large benefits for biodiversity. However, the geographical distributions of terrestrial carbon stocks and biodiversity differ. Using conservation planning analyses for the New World and Britain, we conclude that a carbon-only strategy would not be effective at conserving biodiversity, as have previous studies. Nonetheless, we find that a combined carbon-biodiversity strategy could simultaneously protect 90% of carbon stocks (relative to a carbon-only conservation strategy) and > 90% of the biodiversity (relative to a biodiversity-only strategy) in both regions. This combined approach encapsulates the principle of complementarity, whereby locations that contain different sets of species are prioritised, and hence disproportionately safeguard localised species that are not protected effectively by carbon-only strategies. It is efficient because localised species are concentrated into small parts of the terrestrial land surface, whereas carbon is somewhat more evenly distributed; and carbon stocks protected in one location are equivalent to those protected elsewhere. Efficient compromises can only be achieved when biodiversity and carbon are incorporated together within a spatial planning process. © 2012 John Wiley & Sons Ltd/CNRS.

  13. Post-wildfire erosion in mountainous terrain leads to rapid and major redistribution of soil organic carbon

    NASA Astrophysics Data System (ADS)

    Abney, Rebecca B.; Sanderman, Jonathan; Johnson, Dale; Fogel, Marilyn L.; Berhe, Asmeret Asefaw

    2017-11-01

    Catchments impacted by wildfire typically experience elevated rates of post-fire erosion and formation and deposition of pyrogenic carbon (PyC). To better understand the role of erosion in post-fire soil carbon dynamics, we determined distribution of soil organic carbon in different chemical fractions before and after the Gondola fire in South Lake Tahoe, CA. We analyzed soil samples from eroding and depositional landform positions in control and burned plots pre- and post-wildfire (in 2002, 2003, and 10-years post-fire in 2013). We determined elemental concentrations, stable isotope compositions, and biochemical composition of organic matter (OM) using mid-infrared (MIR) spectroscopy for all of the samples. A subset of samples was analyzed by 13C cross polarization magic angle spinning nuclear magnetic resonance spectroscopy (CPMAS 13C-NMR). We combined the MIR and CPMAS 13C-NMR data in the Soil Carbon Research Program partial least squares regression model to predict distribution of soil carbon into three different fractions: 1) particulate, humic, and resistant organic matter fractions representing relatively fresh larger pieces of OM, 2) fine, decomposed OM, and 3) pyrogenic C, respectively. Samples from the post-fire eroding landform position showed no major difference in soil organic carbon (SOC) fractions one year post-fire. The depositional samples, however, had increased concentrations of all SOC fractions, particularly the fraction that resembles PyC, one year post-fire (2002), which had a mean of 160 g/kg compared with burned hillslope soils, which had 84 g/kg. The increase in all SOC fractions in the post-fire depositional landform position one year post-fire indicates significant lateral mobilization of the eroded PyC. In addition, our NMR analyses revealed a post-fire increase in both the aryl and O-aryl carbon compounds in the soils from the depositional landform position, indicating increases in soil PyC concentrations post-fire. After 10 years, the

  14. High salinity leads to accumulation of soil organic carbon in mangrove soil.

    PubMed

    Kida, Morimaru; Tomotsune, Mitsutoshi; Iimura, Yasuo; Kinjo, Kazutoshi; Ohtsuka, Toshiyuki; Fujitake, Nobuhide

    2017-06-01

    Although mangrove forests are one of the most well-known soil organic carbon (SOC) sinks, the mechanism underlying SOC accumulation is relatively unknown. High net primary production (NPP) along with the typical bottom-heavy biomass allocation and low soil respiration (SR) have been considered to be responsible for SOC accumulation. However, an emerging paradigm postulates that SR is severely underestimated because of the leakage of dissolved inorganic carbon (DIC) in groundwater. Here we propose a simple yet unique mechanism for SOC accumulation in mangrove soils. We conducted sequential extraction of water extractable organic matter (WEOM) from mangrove soils using ultrapure water and artificial seawater, respectively. A sharp increase in humic substances (HS) concentration was observed only in the case of ultrapure water, along with a decline in salinity. Extracted WEOM was colloidal, and ≤70% of it re-precipitated by the addition of artificial seawater. These results strongly suggest that HS is selectively flocculated and maintained in the mangrove soils because of high salinity. Because sea salts are a characteristic of any mangrove forest, high salinity may be one of mechanisms underlying SOC accumulation in mangrove soils. Copyright © 2017. Published by Elsevier Ltd.

  15. Nafion/lead nitroprusside nanoparticles modified carbon ceramic electrode as a novel amperometric sensor for L-cysteine.

    PubMed

    Razmi, H; Heidari, H

    2009-05-01

    This work describes the electrochemical and electrocatalytic properties of carbon ceramic electrode (CCE) modified with lead nitroprusside (PbNP) nanoparticles as a new electrocatalyst material. The structure of deposited film on the CCE was characterized by energy dispersive X-ray (EDX), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM). The cyclic voltammogram (CV) of the PbNP modified CCE showed two well-defined redox couples due to [Fe(CN)5NO](3-)/[Fe(CN)5NO](2-) and Pb(IV)/Pb(II) redox reactions. The modified electrode showed electrocatalytic activity toward the oxidation of L-cysteine and was used as an amperometric sensor. Also, to reduce the fouling effect of L-cysteine and its oxidation products on the modified electrode, a thin film of Nafion was coated on the electrode surface. The sensor response was linearly changed with L-cysteine concentration in the range of 1 x 10(-6) to 6.72 x 10(-5)mol L(-1) with a detection limit (signal/noise ratio [S/N]=3) of 0.46 microM. The sensor sensitivity was 0.17 microA (microM)(-1), and some important advantages such as simple preparation, fast response, good stability, interference-free signals, antifouling properties, and reproducibility of the sensor for amperometric determination of L-cysteine were achieved.

  16. Emittance measurements of Space Shuttle orbiter reinforced carbon-carbon

    NASA Technical Reports Server (NTRS)

    Caram, Jose M.; Bouslog, Stanley A.; Cunnington, George R., Jr.

    1992-01-01

    The spectral and total normal emittance of the Reinforced Carbon-Carbon (RCC) used on Space Shuttle nose cap and wing leading edges has been measured at room temperature and at surface temperatures of 1200 to 2100 K. These measurements were made on virgin and two flown RCC samples. Room temperature directional emittance data were also obtained and were used to determine the total hemispherical emittance of RCC as a function of temperature. Results of the total normal emittance for the virgin samples showed good agreement with the current RCC emittance design curve; however, the data from the flown samples showed an increase in the emittance at high temperature possibly due to exposure from flight environments.

  17. The carbon-nitrogen balance of the nodule and its regulation under elevated carbon dioxide concentration.

    PubMed

    Libault, Marc

    2014-01-01

    Legumes have developed a unique way to interact with bacteria: in addition to preventing infection from pathogenic bacteria like any other plant, legumes also developed a mutualistic symbiotic relationship with one gender of soil bacteria: rhizobium. This interaction leads to the development of a new root organ, the nodule, where the differentiated bacteria fix for the plant the atmospheric dinitrogen (atmN2). In exchange, the symbiont will benefit from a permanent source of carbon compounds, products of the photosynthesis. The substantial amounts of fixed carbon dioxide dedicated to the symbiont imposed to the plant a tight regulation of the nodulation process to balance carbon and nitrogen incomes and outcomes. Climate change including the increase of the concentration of the atmospheric carbon dioxide is going to modify the rates of plant photosynthesis, the balance between nitrogen and carbon, and, as a consequence, the regulatory mechanisms of the nodulation process. This review focuses on the regulatory mechanisms controlling carbon/nitrogen balances in the context of legume nodulation and discusses how the change in atmospheric carbon dioxide concentration could affect nodulation efficiency.

  18. The Carbon-Nitrogen Balance of the Nodule and Its Regulation under Elevated Carbon Dioxide Concentration

    PubMed Central

    2014-01-01

    Legumes have developed a unique way to interact with bacteria: in addition to preventing infection from pathogenic bacteria like any other plant, legumes also developed a mutualistic symbiotic relationship with one gender of soil bacteria: rhizobium. This interaction leads to the development of a new root organ, the nodule, where the differentiated bacteria fix for the plant the atmospheric dinitrogen (atmN2). In exchange, the symbiont will benefit from a permanent source of carbon compounds, products of the photosynthesis. The substantial amounts of fixed carbon dioxide dedicated to the symbiont imposed to the plant a tight regulation of the nodulation process to balance carbon and nitrogen incomes and outcomes. Climate change including the increase of the concentration of the atmospheric carbon dioxide is going to modify the rates of plant photosynthesis, the balance between nitrogen and carbon, and, as a consequence, the regulatory mechanisms of the nodulation process. This review focuses on the regulatory mechanisms controlling carbon/nitrogen balances in the context of legume nodulation and discusses how the change in atmospheric carbon dioxide concentration could affect nodulation efficiency. PMID:24987690

  19. Biomass-based palm shell activated carbon and palm shell carbon molecular sieve as gas separation adsorbents.

    PubMed

    Sethupathi, Sumathi; Bashir, Mohammed Jk; Akbar, Zinatizadeh Ali; Mohamed, Abdul Rahman

    2015-04-01

    Lignocellulosic biomass has been widely recognised as a potential low-cost source for the production of high added value materials and proved to be a good precursor for the production of activated carbons. One of such valuable biomasses used for the production of activated carbons is palm shell. Palm shell (endocarp) is an abundant by-product produced from the palm oil industries throughout tropical countries. Palm shell activated carbon and palm shell carbon molecular sieve has been widely applied in various environmental pollution control technologies, mainly owing to its high adsorption performance, well-developed porosity and low cost, leading to potential applications in gas-phase separation using adsorption processes. This mini-review represents a comprehensive overview of the palm shell activated carbon and palm shell carbon molecular sieve preparation method, physicochemical properties and feasibility of palm shell activated carbon and palm shell carbon molecular sieve in gas separation processes. Some of the limitations are outlined and suggestions for future improvements are pointed out. © The Author(s) 2015.

  20. Parameterizing A Surface Water Model for Multiwalled Carbon Nanotubes

    EPA Science Inventory

    The unique electronic, mechanical, and structural properties of carbon nanotubes (CNTs) has lead to increasing production of these versatile materials; currently, the use of carbon-based nanomaterials in consumer products is second only to that of nano-scale silver. Although ther...

  1. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Betsy Edwards, OCO-2 program executive, NASA Headquarters, discusses the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Sunday, June 29, 2014, at the Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  2. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Ralph Basilio, OCO-2 project manager, JPL, discusses the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Sunday, June 29, 2014, at the Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  3. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Tim Dunn, NASA launch director, Kennedy Space Center, discusses the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Sunday, June 29, 2014, at the Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  4. A novel low-temperature dendritic cyclotrimerization of 2,6-diacetyl pyridine leading to mesoporous carbon containing pyridine rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Yongsoon; Wang, Chong M.; Engelhard, Mark H.

    2009-07-01

    A simple, direct synthesis of a mesoporous carbon containing pyridine rings is described. This synthesis utilizes the SiCl4 induced cyclotrimerization of 2,6-diacetylpyridine to make a dendritic polymer, built of alternating benzene and pyridine rings. The cyclotrimerization allows for a high degree of crosslinking to take place at low temperatures stabilizing the mesostructure and allowing the carbonization to be carried out at only 600°C, the lowest temperature reported to date for an N-doped mesoporous carbon. The functional mesoporous carbon so formed was found to have a surface area of 1275 m2/g, 35Å pores, and contain 6.8% N.

  5. Deforestation in Amazonia impacts riverine carbon dynamics

    NASA Astrophysics Data System (ADS)

    Langerwisch, F.; Walz, A.; Rammig, A.; Tietjen, B.; Thonicke, K.; Cramer, W.

    2015-10-01

    Fluxes of organic and inorganic carbon within the Amazon basin are considerably controlled by annual flooding, which triggers the export of terrigenous organic material to the river and ultimately to the Atlantic Ocean. The amount of carbon imported to the river and the further conversion, transport and export of it, depend on terrestrial productivity and discharge, as well as temperature and atmospheric CO2. Both terrestrial productivity and discharge are influenced by climate and land use change. To assess the impact of these changes on the riverine carbon dynamics, the coupled model system of LPJmL and RivCM (Langerwisch et al., 2015) has been used. Vegetation dynamics (in LPJmL) as well as export and conversion of terrigenous carbon to and within the river (RivCM) are included. The model system has been applied for the years 1901 to 2099 under two deforestation scenarios and with climate forcing of three SRES emission scenarios, each for five climate models. The results suggest that, following deforestation, riverine particulate and dissolved organic carbon will strongly decrease by up to 90 % until the end of the current century. In parallel, discharge increases, leading to roughly unchanged net carbon transport during the first decades of the century, as long as a sufficient area is still forested. During the following decades the amount of transported carbon will decrease drastically. In contrast to the riverine organic carbon, the amount of riverine inorganic carbon is only determined by climate change forcing, namely increased temperature and atmospheric CO2 concentration. Mainly due to the higher atmospheric CO2 it leads to an increase in riverine inorganic carbon by up to 20 % (SRES A2). The changes in riverine carbon fluxes have direct effects on the export of carbon, either to the atmosphere via outgassing, or to the Atlantic Ocean via discharge. Basin-wide the outgassed carbon will increase slightly, but can be regionally reduced by up to 60 % due to

  6. Molten metal reactor and method of forming hydrogen, carbon monoxide and carbon dioxide using the molten alkaline metal reactor

    DOEpatents

    Bingham, Dennis N.; Klingler, Kerry M.; Turner, Terry D.; Wilding, Bruce M.

    2012-11-13

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  7. Flexible Plug Repair for Shuttle Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J.; Sikora, Joseph; Smith, Russel; Rivers, H.; Scotti, Stephen J.; Fuller, Alan M.; Klacka, Robert; Reinders, Martin; Schwind, Francis; Sullivan, Brian; hide

    2012-01-01

    In response to the Columbia Accident Investigation Board report, a plug repair kit has been developed to enable astronauts to repair the space shuttle's wing leading edge (WLE) during orbit. The plug repair kit consists of several 17.78- cm-diameter carbon/silicon carbide (C/SiC) cover plates of various curvatures that can be attached to the refractory carbon-carbon WLE panels using a TZM refractory metal attach mechanism. The attach mechanism is inserted through the damage in the WLE panel and, as it is tightened, the cover plate flexes to conform to the curvature of the WLE panel within 0.050 mm. An astronaut installs the repair during an extravehicular activity (EVA). After installing the plug repair, edge gaps are checked and the perimeter of the repair is sealed using a proprietary material, developed to fill cracks and small holes in the WLE.

  8. FIELD DEMONSTRATION OF LEAD PAINT ABATEMENT TECHNOLOGIES IN RESIDENTIAL HOUSING

    EPA Science Inventory

    This study was conducted to demonstrate lead-based paint (LBP) removal from architectural wood components in CO2 unoccupied residential housing using four technologies: granular carbon dioxide (CO2 blasting), pelletized CO2 blasting, encapsulant paint remover, and wet abrasive bl...

  9. VISION-BASED MONITORING AND CONTROL OF CONSTRUCTION OPERATIONS CARBON FOOTPRINT

    EPA Science Inventory

    Automated and continuous carbon footprint monitoring of construction operations support the contractors and project managers with information required for assessment on carbon footprint of various construction operation alternatives. This can ultimately lead to reduction of...

  10. Oxidation of Reinforced Carbon-Carbon Subjected to Hypervelocity Impact

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.; Pham, Vuong T.; Norman, Ignacio; Chao, Dennis C.

    2000-01-01

    This paper presents results from arc jet tests conducted at the NASA Johnson Space Center on reinforced carbon-carbon (RCC) samples subjected to hypervelocity impact. The RCC test specimens are representative of RCC components used on the Space Shuttle Orbiter. The arc jet testing established the oxidation characteristics of RCC when hypervelocity projectiles, simulating meteoroid/orbital debris, impact the RCC material. In addition to developing correlations for use in trajectory simulations, we discuss analytical modeling of the increased material oxidation in the impacted area using measured hole growth data. Entry flight simulations are useful in assessing the increased Space Shuttle RCC component degradation as a result of impact damage and the hot gas flow through an enlarging hole into the wing leading-edge cavity.

  11. Multiwalled carbon nanotubes as a sorbent material for the solid phase extraction of lead from urine and subsequent determination by electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Peña Crecente, Rosa M.; Lovera, Carlha Gutiérrez; García, Julia Barciela; Méndez, Jennifer Álvarez; Martín, Sagrario García; Latorre, Carlos Herrero

    2014-11-01

    The determination of lead in urine is a way of monitoring the chemical exposure to this metal. In the present paper, a new method for the Pb determination by electrothermal atomic absorption spectrometry (ETAAS) in urine at low levels has been developed. Lead was separated from the undesirable urine matrix by means of a solid phase extraction (SPE) procedure. Oxidized multiwalled carbon nanotubes have been used as a sorbent material. Lead from urine was retained at pH 4.0 and was quantitatively eluted using a 0.7 M nitric acid solution and was subsequently measured by ETAAS. The effects of parameters that influence the adsorption-elution process (such as pH, eluent volume and concentration, sampling and elution flow rates) and the atomic spectrometry conditions have been studied by means of different factorial design strategies. Under the optimized conditions, the detection and quantification limits obtained were 0.08 and 0.26 μg Pb L- 1, respectively. The results demonstrate the absence of a urine matrix effect and this is the consequence of the SPE process carried out. Therefore, the developed method is useful for the analysis of Pb at low levels in real samples without the influence of other urine components. The proposed method was applied to the determination of lead in urine samples of unexposed healthy people and satisfactory results were obtained (in the range 3.64-22.9 μg Pb L- 1).

  12. Orbiting Carbon Observatory-2 (OCO-2) Launch

    NASA Image and Video Library

    2014-07-02

    A United Launch Alliance Delta II rocket launches with the Orbiting Carbon Observatory-2 (OCO-2)satellite onboard from Space Launch Complex 2 at Vandenberg Air Force Base, Calif. on Wednesday, July 2, 2014. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  13. Sediment carbon fate in phreatic karst (Part 1): Conceptual model development

    NASA Astrophysics Data System (ADS)

    Husic, A.; Fox, J.; Agouridis, C.; Currens, J.; Ford, W.; Taylor, C.

    2017-06-01

    Recent research has paid increased attention to quantifying the fate of carbon pools within fluvial networks, but few, if any, studies consider the fate of sediment organic carbon in fluviokarst systems despite that karst landscapes cover 12% of the earth's land surface. The authors develop a conceptual model of sediment carbon fate in karst terrain with specific emphasis upon phreatic karst conduits, i.e., those located below the groundwater table that have the potential to trap surface-derived sediment and turnover carbon. To assist with their conceptual model development, the authors study a phreatic system and apply a mixture of methods traditional and novel to karst studies, including electrical resistivity imaging, well drilling, instantaneous velocimetry, dye tracing, stage recording, discrete and continuous sediment and water quality sampling, and elemental and stable carbon isotope fingerprinting. Results show that the sediment transport carrying capacity of the phreatic karst water is orders of magnitude less than surface streams during storm-activated periods promoting deposition of fine sediments in the phreatic karst. However, the sediment transport carrying capacity is sustained long after the hydrologic event has ended leading to sediment resuspension and prolonged transport. The surficial fine grained laminae occurs in the subsurface karst system; but unlike surface streams, the light-limited conditions of the subsurface karst promotes constant heterotrophy leading to carbon turnover. The coupling of the hydrological processes leads to a conceptual model that frames phreatic karst as a biologically active conveyor of sediment carbon that recharges degraded organic carbon back to surface streams. For example, fluvial sediment is estimated to lose 30% of its organic carbon by mass during a one year temporary residence within the phreatic karst. It is recommended that scientists consider karst pathways when attempting to estimate organic matter stocks

  14. Thinning and opening of carbon nanotubes by oxidation using carbon dioxide

    NASA Astrophysics Data System (ADS)

    Tsang, S. C.; Harris, P. J. F.; Green, M. L. H.

    1993-04-01

    THE discovery1 and bulk synthesis2 of carbon nanotubes has stimulated great interest. It has been suggested that these structures may have useful electronic3-5 and mechanical6 properties, and these might be modified by introducing foreign materials into the nanotubes. But the tubes are invariably capped at the ends. Ajayan and lijima7 have succeeded in drawing molten material (lead or one of its compounds) into the tubes by heating them in the presence of lead and oxygen; less than 1% of the tubes in the sample studied could be filled in this way. Here we report that heating in carbon dioxide gas can result in the partial or complete destruction of the tube caps and stripping of the outer layers to produce thinner tubes. In some cases, we have thinned the extremity of tubes to a single layer. The opened tubes can be regarded as nanoscale test-tubes for adsorption of other molecules, and this controlled method of thinning may allow studies of the properties of single tubes.

  15. Low-carbon infrastructure strategies for cities

    NASA Astrophysics Data System (ADS)

    Kennedy, C. A.; Ibrahim, N.; Hoornweg, D.

    2014-05-01

    Reducing greenhouse gas emissions to avert potentially disastrous global climate change requires substantial redevelopment of infrastructure systems. Cities are recognized as key actors for leading such climate change mitigation efforts. We have studied the greenhouse gas inventories and underlying characteristics of 22 global cities. These cities differ in terms of their climates, income, levels of industrial activity, urban form and existing carbon intensity of electricity supply. Here we show how these differences in city characteristics lead to wide variations in the type of strategies that can be used for reducing emissions. Cities experiencing greater than ~1,500 heating degree days (below an 18 °C base), for example, will review building construction and retrofitting for cold climates. Electrification of infrastructure technologies is effective for cities where the carbon intensity of the grid is lower than ~600 tCO2e GWh-1 whereas transportation strategies will differ between low urban density (<~6,000 persons km-2) and high urban density (>~6,000 persons km-2) cities. As nation states negotiate targets and develop policies for reducing greenhouse gas emissions, attention to the specific characteristics of their cities will broaden and improve their suite of options. Beyond carbon pricing, markets and taxation, governments may develop policies and target spending towards low-carbon urban infrastructure.

  16. Biogeochemistry: The soil carbon erosion paradox

    NASA Astrophysics Data System (ADS)

    Sanderman, Jonathan; Berhe, Asmeret Asefaw

    2017-04-01

    Erosion is typically thought to degrade soil resources. However, the redistribution of soil carbon across the landscape, caused by erosion, can actually lead to a substantial sink for atmospheric CO2.

  17. Long-term thresholds of nonsteroidal permanent pacing leads: a 5-year study.

    PubMed

    Gumbrielle, T P; Bourke, J P; Sinkovic, M; Tynan, M; Kittpawong, P; Gold, R G

    1996-05-01

    The present commercial market supports many nonsteroidal endocardial pacing leads of differing construction. In order to compare the performance of these configurations, we studied the long-term pacing properties of three representative lead types by randomized clinical trial in 99 patients undergoing a first elective VVI implant. Thirty-one patients received sintered platinum leads, 36 activated pyrolytic carbon leads, and 32 vitreous carbon leads. All received generators capable of noninvasive threshold testing. Acute sensing parameters were R wave amplitude and ST segment elevation measured from the endocardial electrogram. Noninvasive voltage thresholds were measured at implantation, 2 days, 1, 3, and 6 months, and yearly thereafter for 5 years. There were no significant differences between leads in pacing or sensing capabilities at implantation. All three demonstrated similar increases in thresholds, peaking at 1 month, then falling to a plateau by 6 months and did not vary significantly thereafter. There were no significant differences in thresholds between leads during 5 years of follow-up. The lowest mean threshold at 5 years was 0.93 V at 0.5 ms. This study suggests that: (1) although these lead types all perform well, none offers any particular clinical advantage over another; (2) the degree of early threshold peaking precludes immediate postimplant output reduction, but later thresholds are sufficiently low to enable reductions in pacing output; (3) safe low energy pacing requires greater attention to the lead-generator combinations; (4) data obtained at subsequent annual follow-up provided no additional useful clinical information to that obtained at 1 year; and (5) in the absence of other differences, cost can be the deciding factor in lead selection.

  18. Morphology inherence from hollow MOFs to hollow carbon polyhedrons in preparing carbon-based electrocatalysts

    DOE PAGES

    Pei, Yuchen; Qi, Zhiyuan; Li, Xinle; ...

    2017-02-21

    Hollow carbon nanostructures are emerging as advanced electrocatalysts for the oxygen reduction reaction (ORR) due to the effective usage of active sites and the reduced dependence on expensive noble metals. Conventional preparation of these hollow structures is achieved through templates (e.g. SiO 2, CdS, and Ni 3C), which serve to retain the void interiors during carbonization, leading to an essential template-removal procedure using hazardous chemical etchants. Herein, we demonstrate the direct carbonization of unique hollow zeolitic imidazolate frameworks (ZIFs) for the synthesis of hollow carbon polyhedrons (HCPs) with well-defined morphologies. The hollow ZIF particles behave bi-functionally as a carbon sourcemore » and a morphology directing agent. This method evidences the strong morphology inherence from the hollow ZIFs during the carbonization, advancing the significant simplicity and environmental friendliness of this synthesis strategy. The as-prepared HCPs show a uniform polyhedral morphology and large void interiors, which enable their superior ORR activity. Iron can be doped into the HCPs (Fe/HCPs), providing the Fe/HCPs with enhanced ORR properties ( E 1/2 = 0.850 V) in comparison with those of HCPs. As a result, we highlight the efficient structural engineering to transform ZIFs into advanced carbon nanostructures accomplishing morphological control and high electrocatalytic activity.« less

  19. Morphology inherence from hollow MOFs to hollow carbon polyhedrons in preparing carbon-based electrocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Yuchen; Qi, Zhiyuan; Li, Xinle

    Hollow carbon nanostructures are emerging as advanced electrocatalysts for the oxygen reduction reaction (ORR) due to the effective usage of active sites and the reduced dependence on expensive noble metals. Conventional preparation of these hollow structures is achieved through templates (e.g. SiO 2, CdS, and Ni 3C), which serve to retain the void interiors during carbonization, leading to an essential template-removal procedure using hazardous chemical etchants. Herein, we demonstrate the direct carbonization of unique hollow zeolitic imidazolate frameworks (ZIFs) for the synthesis of hollow carbon polyhedrons (HCPs) with well-defined morphologies. The hollow ZIF particles behave bi-functionally as a carbon sourcemore » and a morphology directing agent. This method evidences the strong morphology inherence from the hollow ZIFs during the carbonization, advancing the significant simplicity and environmental friendliness of this synthesis strategy. The as-prepared HCPs show a uniform polyhedral morphology and large void interiors, which enable their superior ORR activity. Iron can be doped into the HCPs (Fe/HCPs), providing the Fe/HCPs with enhanced ORR properties ( E 1/2 = 0.850 V) in comparison with those of HCPs. As a result, we highlight the efficient structural engineering to transform ZIFs into advanced carbon nanostructures accomplishing morphological control and high electrocatalytic activity.« less

  20. Orbiting Carbon Observatory-2 (OCO-2)

    NASA Image and Video Library

    2014-06-29

    The launch gantry, surrounding the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard, is seen at the Space Launch Complex 2, Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)

  1. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-12

    Ralph Basilio, OCO-2 project manager with NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California discusses the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Thursday, June 12, 2014, at NASA Headquarters in Washington. OCO-2 is set for a July 1, 2014 launch from Vandenberg Air Force Base in California. Its mission is to measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  2. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-12

    Mike Gunson, OCO-2 project scientist with NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, discusses the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Thursday, June 12, 2014, at NASA Headquarters in Washington. OCO-2 is set for a July 1, 2014 launch from Vandenberg Air Force Base in California. Its mission is to measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  3. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-12

    Betsy Edwards, OCO-2 program executive with the Science Mission Directorate at NASA Headquarters in Washington discusses the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Thursday, June 12, 2014, at NASA Headquarters in Washington. OCO-2 is set for a July 1, 2014 launch from Vandenberg Air Force Base in California. Its mission is to measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  4. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-12

    Mike Gunson, OCO-2 project scientist with NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, listens to a question during a press briefing for the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, Thursday, June 12, 2014, at NASA Headquarters in Washington. OCO-2 is set for a July 1, 2014 launch from Vandenberg Air Force Base in California. Its mission is to measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  5. Surface analysis and depth profiling of corrosion products formed in lead pipes used to supply low alkalinity drinking water.

    PubMed

    Davidson, C M; Peters, N J; Britton, A; Brady, L; Gardiner, P H E; Lewis, B D

    2004-01-01

    Modern analytical techniques have been applied to investigate the nature of lead pipe corrosion products formed in pH adjusted, orthophosphate-treated, low alkalinity water, under supply conditions. Depth profiling and surface analysis have been carried out on pipe samples obtained from the water distribution system in Glasgow, Scotland, UK. X-ray diffraction spectrometry identified basic lead carbonate, lead oxide and lead phosphate as the principal components. Scanning electron microscopy/energy-dispersive x-ray spectrometry revealed the crystalline structure within the corrosion product and also showed spatial correlations existed between calcium, iron, lead, oxygen and phosphorus. Elemental profiling, conducted by means of secondary ion mass spectrometry (SIMS) and secondary neutrals mass spectrometry (SNMS) indicated that the corrosion product was not uniform with depth. However, no clear stratification was apparent. Indeed, counts obtained for carbonate, phosphate and oxide were well correlated within the depth range probed by SIMS. SNMS showed relationships existed between carbon, calcium, iron, and phosphorus within the bulk of the scale, as well as at the surface. SIMS imaging confirmed the relationship between calcium and lead and suggested there might also be an association between chloride and phosphorus.

  6. Comparison of lead removal behaviors and generation of water-soluble sodium compounds in molten lead glass under a reductive atmosphere

    NASA Astrophysics Data System (ADS)

    Okada, Takashi; Nishimura, Fumihiro; Xu, Zhanglian; Yonezawa, Susumu

    2018-06-01

    We propose a method of reduction-melting at 1000 °C, using a sodium-based flux, to recover lead from cathode-ray tube funnel glass. To recover the added sodium from the treated glass, we combined a reduction-melting process with a subsequent annealing step at 700 °C, generating water-soluble sodium compounds in the molten glass. Using this combined process, this study compares lead removal behavior and the generation of water-soluble sodium compounds (sodium silicates and carbonates) in order to gain fundamental information to enhance the recovery of both lead and sodium. We find that lead removal increases with increasing melting time, whereas the generation efficiency of water-soluble sodium increases and decreases periodically. In particular, near 90% lead removal, the generation of water-soluble sodium compounds decreased sharply, increasing again with the prolongation of melting time. This is due to the different crystallization and phase separation efficiencies of water-soluble sodium in molten glass, whose structure continuously changes with lead removal. Previous studies used a melting time of 60 min in the processes. However, in this study, we observe that a melting time of 180 min enhances the water-soluble sodium generation efficiency.

  7. Recycling of Zinc- and Lead-Bearing Residues with Pyrolysis Gas

    NASA Astrophysics Data System (ADS)

    Pichler, C.; Antrekowitsch, J.

    2015-09-01

    Efforts in the metallurgical industry for an approximation to the zero waste concept has led to many different investigations. Together with the greenhouse effect, CO2 emissions have caused additional costs for different process steps in the industry. For this reason, alternative carbon carriers have been sought, and charcoal was found to be an ideal substitute, due to its CO2 neutrality. In order to use it in the metallurgical industry, an optimization of the charcoal production through a carbonization process must be carried out. Beside the charcoal, pyrolysis gas also occurs during the heating of wood or agricultural wastes under the exclusion of air. Because of combustible compounds in this gas, it is possible to use it as a reduction agent instead of fossil carbon carriers. Together with the idea of preventing landfilling of metallurgical by-products, an investigation was carried out to treat zinc- and lead-containing materials. For this issue a special process concept was designed and developed. The main aspect was to recycle the zinc- and lead-containing Waelz slag, which results from the processing of steel mill dusts, in a vertical retort. Two different sizes of facilities were constructed to perform the reaction system of the solid Waelz slag with the gaseous reduction agent of pyrolysis gas.

  8. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability.

    PubMed

    Cox, Peter M; Pearson, David; Booth, Ben B; Friedlingstein, Pierre; Huntingford, Chris; Jones, Chris D; Luke, Catherine M

    2013-02-21

    The release of carbon from tropical forests may exacerbate future climate change, but the magnitude of the effect in climate models remains uncertain. Coupled climate-carbon-cycle models generally agree that carbon storage on land will increase as a result of the simultaneous enhancement of plant photosynthesis and water use efficiency under higher atmospheric CO(2) concentrations, but will decrease owing to higher soil and plant respiration rates associated with warming temperatures. At present, the balance between these effects varies markedly among coupled climate-carbon-cycle models, leading to a range of 330 gigatonnes in the projected change in the amount of carbon stored on tropical land by 2100. Explanations for this large uncertainty include differences in the predicted change in rainfall in Amazonia and variations in the responses of alternative vegetation models to warming. Here we identify an emergent linear relationship, across an ensemble of models, between the sensitivity of tropical land carbon storage to warming and the sensitivity of the annual growth rate of atmospheric CO(2) to tropical temperature anomalies. Combined with contemporary observations of atmospheric CO(2) concentration and tropical temperature, this relationship provides a tight constraint on the sensitivity of tropical land carbon to climate change. We estimate that over tropical land from latitude 30° north to 30° south, warming alone will release 53 ± 17 gigatonnes of carbon per kelvin. Compared with the unconstrained ensemble of climate-carbon-cycle projections, this indicates a much lower risk of Amazon forest dieback under CO(2)-induced climate change if CO(2) fertilization effects are as large as suggested by current models. Our study, however, also implies greater certainty that carbon will be lost from tropical land if warming arises from reductions in aerosols or increases in other greenhouse gases.

  9. Supercritical carbon dioxide for textile applications and recent developments

    NASA Astrophysics Data System (ADS)

    Eren, H. A.; Avinc, O.; Eren, S.

    2017-10-01

    In textile industry, supercritical carbon dioxide (scCO2), possessing liquid-like densities, mostly find an application on textile dyeing processes such as providing hydrophobic dyes an advantage on dissolving. Their gas-like low viscosities and diffusion properties can result in shorter dyeing periods in comparison with the conventional water dyeing process. Supercritical carbon dioxide dyeing is an anhydrous dyeing and this process comprises the usage of less energy and chemicals when compared to conventional water dyeing processes leading to a potential of up to 50% lower operation costs. The advantages of supercritical carbon dioxide dyeing method especially on synthetic fiber fabrics hearten leading textile companies to alter their dyeing method to this privileged waterless dyeing technology. Supercritical carbon dioxide (scCO2) waterless dyeing is widely known and applied green method for sustainable and eco-friendly textile industry. However, not only the dyeing but also scouring, desizing and different finishing applications take the advantage of supercritical carbon dioxide (scCO2). In this review, not only the principle, advantages and disadvantages of dyeing in supercritical carbon dioxide but also recent developments of scCO2 usage in different textile processing steps such as scouring, desizing and finishing are explained and commercial developments are stated and summed up.

  10. The effect of brushing with nano calcium carbonate and calcium carbonate toothpaste on the surface roughness of nano-ionomer

    NASA Astrophysics Data System (ADS)

    Anisja, D. H.; Indrani, D. J.; Herda, E.

    2017-08-01

    Nanotechnology developments in dentistry have resulted in the development of nano-ionomer, a new restorative material. The surface roughness of restorative materials can increase bacteria adhesion and lead to poor oral hygiene. Abrasive agents in toothpaste can alter tooth and restorative material surfaces. The aim of this study is to identify the effect of brushing with nano calcium carbonate, and calcium carbonate toothpaste on surface roughness of nano-ionomer. Eighteen nano-ionomer specimens were brushed with Aquabidest (doubledistilled water), nano calcium carbonate and calcium carbonate toothpaste. Brushing lasted 30 minutes, and the roughness value (Ra) was measured after each 10 minute segment using a surface roughness tester. The data was analyzed using repeated ANOVA and one-way ANOVA test. The value of nano-ionomer surface roughness increased significantly (p<0.05) after 20 minutes of brushing with the nano calcium carbonate toothpaste. Brushing with calcium carbonate toothpaste leaves nano-ionomer surfaces more rugged than brushing with nano calcium carbonate toothpaste.

  11. Hierarchical porous carbons prepared by an easy one-step carbonization and activation of phenol-formaldehyde resins with high performance for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zheng, Zhoujun; Gao, Qiuming

    Hierarchical porous carbons are prepared by an easy one-step process of carbonization and activation derived from phenol-formaldehyde resins, in which potassium hydroxide acts as both the catalyst of polymerization and the activation reagent. The simple one-step preparation saves the cost of carbons and leads to high yield. The porous carbons have high surface areas with abundant pore structures. The plenty of micropores and small mesopores increase the capacitance and make the electrolyte ions diffuse fast into the pores. These hierarchical porous carbons show high performance for supercapacitors possessing of the optimized capacitance of 234 F g -1 in aqueous electrolyte and 137 F g -1 in organic electrolyte with high capacitive retention.

  12. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-12

    Annmarie Eldering, OCO-2 deputy project scientist with NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, demonstrates with a few white beans in a container of black beans the small differences in carbon dioxide in the atmosphere that the Orbiting Carbon Observatory-2 (OCO-2) will be able to measure, during a press briefing, Thursday, June 12, 2014, at NASA Headquarters in Washington. OCO-2, NASA’s first spacecraft dedicated to studying carbon dioxide, is set for a July 1, 2014, launch from Vandenberg Air Force Base in California. Its mission is to measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  13. Mass loss of TEOS-coated RCC subjected to the environment at the shuttle wing leading edge

    NASA Technical Reports Server (NTRS)

    Stroud, C. W.; Rummler, D. R.

    1981-01-01

    Coated, reinforced carbon-carbon (RCC) is used for the leading edges of the Space Shuttle. The mass loss characteristics of RCC specimens coated with tetra-ethyl-ortho-silicate (TEOS) were determined for conditions which simulated the entry environment expected at the stagnation area of the wing leading edge. Maximum specimen temperature was 1632 K. Specimens were exposed for up to 100 missions. Stress levels up to 8.274 MPa caused an average increase in oxidation of 6 percent over unstressed specimens. Experimentally determined mass losses were compared with those predicted by an existing empirical analysis.

  14. Terahertz detection and carbon nanotubes

    ScienceCinema

    Leonard, Francois

    2018-04-16

    Researchers at Sandia National Laboratories, along with collaborators from Rice University and the Tokyo Institute of Technology, are developing new terahertz detectors based on carbon nanotubes that could lead to significant improvements in medical imaging, airport passenger screening, food inspection and other applications.

  15. Terahertz detection and carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard, Francois

    2014-06-11

    Researchers at Sandia National Laboratories, along with collaborators from Rice University and the Tokyo Institute of Technology, are developing new terahertz detectors based on carbon nanotubes that could lead to significant improvements in medical imaging, airport passenger screening, food inspection and other applications.

  16. Orbiting Carbon Observatory-2 (OCO-2)

    NASA Image and Video Library

    2014-06-30

    The United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard, is seen as the launch gantry is moved at the Space Launch Complex 2, Monday, June 30, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)

  17. Orbiting Carbon Observatory-2 (OCO-2)

    NASA Image and Video Library

    2014-06-30

    The United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard, is seen moments after the launch gantry was moved at the Space Launch Complex 2, Monday, June 30, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)

  18. Orbiting Carbon Observatory-2 (OCO-2)

    NASA Image and Video Library

    2014-06-30

    The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard, at the Space Launch Complex 2, Monday, June 30, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)

  19. Orbiting Carbon Observatory-2 (OCO-2)

    NASA Image and Video Library

    2014-06-29

    The upper levels of the launch gantry, surrounding the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard, are seen at the Space Launch Complex 2, Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)

  20. Characterization of coal gasification slag-based activated carbon and its potential application in lead removal.

    PubMed

    Xu, Yiting; Chai, Xiaoli

    2018-02-01

    Highly porous activated carbons were prepared from a coal gasification slag (CGS) precursor, by KOH activation to remove Pb 2+ from aqueous solution. The effects of pretreatment methods and activation parameters on the properties of the activated carbon were investigated, such as KOH/CGS mass ratio, activation temperature and activation time. The results showed that the maximum Brunauer-Emmett-Teller surface area and total pore volume with the value of 2481 m 2  g -1 and of 1.711 cc g -1 were obtained at a KOH/CGS ratio of 3.0 by physical mixing, an activation temperature of 750°C and an activation time of 80 min. SEM, FTIR and EA analyses indicated that pronounced pores existed on the exterior surface of the activated samples, and the contents of H and O decreased due to the loss of surface chemical groups during activation. Experimental data for the Pb 2+ adsorption were fitted well by Freundlich equation and a pseudo-second-order model with a maximum experimental adsorption capacity of 141 mg/g. All of the results indicated that CGS could be a promising material to prepare porous activated carbon for Pb 2+ removal from wastewater.

  1. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Ken Jucks, OCO-2 program scientist, NASA Headquarters talks during an Orbiting Carbon Observatory-2 (OCO-2) science briefing, Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  2. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Dave Crisp, OCO-2 science team leader, JPL talks during an Orbiting Carbon Observatory-2 (OCO-2) science briefing, Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  3. Orbiting Carbon Observatory-2 (OCO-2) Launch

    NASA Image and Video Library

    2014-07-02

    Lights shine on the umbilical tower shortly after a United Launch Alliance Delta II rocket launched with the Orbiting Carbon Observatory-2 (OCO-2)satellite onboard from Space Launch Complex 2 at Vandenberg Air Force Base, Calif. on Wednesday, July 2, 2014. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  4. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Annmarie Eldering, OCO-2 deputy project scientist, JPL talks during an Orbiting Carbon Observatory-2 (OCO-2) science briefing, Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  5. Removal of Heavy Metal Ions with Acid Activated Carbons Derived from Oil Palm and Coconut Shells

    PubMed Central

    Rahman, Mokhlesur M.; Adil, Mohd; Yusof, Alias M.; Kamaruzzaman, Yunus B.; Ansary, Rezaul H.

    2014-01-01

    In this work, batch adsorption experiments were carried out to investigate the suitability of prepared acid activated carbons in removing heavy metal ions such as nickel(II), lead(II) and chromium(VI). Acid activated carbons were obtained from oil palm and coconut shells using phosphoric acid under similar activation process while the differences lie either in impregnation condition or in both pretreatment and impregnation conditions. Prepared activated carbons were modified by dispersing hydrated iron oxide. The adsorption equilibrium data for nickel(II) and lead(II) were obtained from adsorption by the prepared and commercial activated carbons. Langmuir and Freundlich models fit the data well. Prepared activated carbons showed higher adsorption capacity for nickel(II) and lead(II). The removal of chromium(VI) was studied by the prepared acid activated, modified and commercial activated carbons at different pH. The isotherms studies reveal that the prepared activated carbon performs better in low concentration region while the commercial ones in the high concentration region. Thus, a complete adsorption is expected in low concentration by the prepared activated carbon. The kinetics data for Ni(II), Pb(II) and Cr(VI) by the best selected activated carbon fitted very well to the pseudo-second-order kinetic model. PMID:28788640

  6. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.

    PubMed

    Clack, Herek L

    2012-07-03

    The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions.

  7. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-12

    Ralph Basilio, OCO-2 project manager with NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, left, and Mike Gunson, OCO-2 project scientist at JPL, discuss the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Thursday, June 12, 2014, at NASA Headquarters in Washington. OCO-2 is set for a July 1, 2014 launch from Vandenberg Air Force Base in California. Its mission is to measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  8. Orbiting Carbon Observatory-2 (OCO-2)

    NASA Image and Video Library

    2014-06-27

    The launch gantry, surrounding the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard, is seen in this black and white infrared view at Space Launch Complex 2, Friday, June 27, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)

  9. Orbiting Carbon Observatory-2 (OCO-2)

    NASA Image and Video Library

    2014-06-30

    NASA Administrator Charles Bolden, left, talks with an engineer at the base of the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard, Monday, June 30, 2014, Space Launch Complex 2, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)

  10. Orbiting Carbon Observatory-2 (OCO-2)

    NASA Image and Video Library

    2014-06-30

    Workers monitor the progress of the rollback of the launch gantry from the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard, at Space Launch Complex 2, Monday, June 30, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)

  11. Drought-induced carbon loss in peatlands

    NASA Astrophysics Data System (ADS)

    Fenner, Nathalie; Freeman, Chris

    2011-12-01

    Peatlands store vast amounts of organic carbon, amounting to approximately 455 Pg. Carbon builds up in these water-saturated environments owing to the presence of phenolic compounds--which inhibit microbial activity and therefore prevent the breakdown of organic matter. Anoxic conditions limit the activity of phenol oxidase, the enzyme responsible for the breakdown of phenolic compounds. Droughts introduce oxygen into these systems, and the frequency of these events is rising. Here, we combine in vitro manipulations, mesocosm experiments and field observations to examine the impact of drought on peatland carbon loss. We show that drought stimulates bacterial growth and phenol oxidase activity, resulting in a reduction in the concentration of phenolic compounds in peat. This further stimulates microbial growth, causing the breakdown of organic matter and the release of carbon dioxide in a biogeochemical cascade. We further show that re-wetting the peat accelerates carbon losses to the atmosphere and receiving waters, owing to drought-induced increases in nutrient and labile carbon levels, which raise pH and stimulate anaerobic decomposition. We suggest that severe drought, and subsequent re-wetting, could destabilize peatland carbon stocks; understanding this process could aid understanding of interactions between peatlands and other environmental trends, and lead to the development of strategies for increasing carbon stocks.

  12. Formation of Cosmic Carbon Dust Analogues in Plasma Reactors

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2016-01-01

    Cosmic carbon dust analogs are produced, processed and analyzed in the laboratory using NASA's COSmIC (COSmIC Simulation Chamber) Facility. These experiments can be used to derive information on the most efficient molecular precursors in the chemical pathways that eventually lead to the formation of carbonaceous grains in the stellar envelopes of carbon stars.

  13. Impact of insect defoliation on forest carbon balance as assessed with a canopy assimilation model

    USDA-ARS?s Scientific Manuscript database

    As carbon sinks, forests are increasingly becoming important trading commodities in carbon trading markets. However, disturbances such as fire, hurricanes and herbivory can lead to forests being sources rather than sinks of carbon. Here, we investigate the carbon balance of an oak/pine forest in the...

  14. Wetlands, Microbes, and the Carbon Cycle: Behind the Scenes @ Berkeley Lab

    ScienceCinema

    Tringe, Susannah

    2018-02-14

    Susannah Tringe, who leads the Metagenome Program at the Department of Energy's Joint Genome Institute (JGI), a collaboration in which Berkeley Lab plays a leading role, takes us behind the scenes to show how DNA from unknown wild microbes is extracted and analyzed to see what role they play in the carbon cycle. Tringe collects samples of microbial communities living in the wetland muck of the Sacramento-San Joaquin River Delta, organisms that can determine how these wetlands store or release carbon.

  15. The determination of aluminum, copper, iron, and lead in glycol formulations by atomic absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Initial screening tests and the results obtained in developing procedures to determine Al, Cu, Fe, and Pb in glycol formulations are described. Atomic absorption completion was selected for Cu, Fe and Pb, and after comparison with emission spectroscopy, was selected for Al also. Before completion, carbon, iron, and lead are extracted with diethyl dithio carbamate (DDC) into methyl isobutyl ketone (MIBK). Aluminum was also extracted into MIBK using 8-hydroxyquinoline as a chelating agent. As little as 0.02 mg/l carbon and 0.06 mg/l lead or iron may be determined in glycol formulations. As little as 0.3 mg/l aluminum may be determined.

  16. Selective Sulfidation of Lead Smelter Slag with Sulfur

    NASA Astrophysics Data System (ADS)

    Han, Junwei; Liu, Wei; Wang, Dawei; Jiao, Fen; Qin, Wenqing

    2016-02-01

    The selective sulfidation of lead smelter slag with sulfur was studied. The effects of temperature, sulfur dosage, carbon, and Na salts additions were investigated based on thermodynamic calculation. The results indicated that more than 96 pct of zinc in the slag could be converted into sulfides. Increasing temperature, sulfur dosage, or Na salts dosage was conducive to the sulfidation of the zinc oxides in the slag. High temperature and excess Na salts would result in the more consumption of carbon and sulfur. Carbon addition not only promoted the selective sulfidation but reduced the sulfur dosage and eliminated the generation of SO2. Iron oxides had a buffering role on the sulfur efficient utilization. The transformation of sphalerite to wurtzite was feasible under reducing condition at high temperature, especially above 1273 K (1000 °C). The growth of ZnS particles largely depended upon the roasting temperature. They were significantly increased when the temperature was above 1273 K (1000 °C), which was attributed to the formation of a liquid phase.

  17. Studies on chemical evolution using carbon suboxide

    NASA Technical Reports Server (NTRS)

    Yanagawa, H.; Egami, F.

    1980-01-01

    It was learned that when carbon suboxide polymers react with hydroxylamine in modified sea water the amino acids glycine and lysine are produced and that they react with urea to produce nucleic acid-like substances. These results lead to the supposition that it is possible that carbon suboxide polymers may have accumulated in the primeval sea some three or more billion years ago and were transformed into the procursors of living molecules.

  18. Deep Carbon Observatory investigates Carbon from Crust to Core: An Academic Record of the History of Deep Carbon Science

    NASA Astrophysics Data System (ADS)

    Mitton, S. A.

    2017-12-01

    Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society's energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth's variable and uncertain climate. Yet in spite of carbon's importance, scientists remain largely ignorant of the physical, chemical, and biological behavior of many of Earth's carbon-bearing systems. The Deep Carbon Observatory (DCO) is a global research program to transform our understanding of carbon in Earth. At its heart, DCO is a community of scientists, from biologists to physicists, geoscientists to chemists, and many others whose work crosses these disciplinary lines, forging a new, integrative field of deep carbon science. As a historian of science, I specialise in the history of planetary science and astronomy since 1900. This is directed toward understanding of the history of the steps on the road to discovering the internal dynamics of our planet. Within a framework that describes the historical background to the new field of Earth System Science, I present the first history of deep carbon science. This project will identifies the key discoveries of deep carbon science. It will assess the impact of new knowledge on geochemistry, geodynamics, and geobiology. The project will lead to publication, in book form in 2019, of an illuminating narrative that will highlight the engaging human stories of many remarkable scientists and natural philosophers from whom we have learned about the complexity of Earth's internal world. On this journey of discovery we will encounter not just the pioneering researchers of deep carbon science, but also their institutions, their instrumental inventiveness, and their passion for exploration. The book is organised thematically around the four communities of the Deep Carbon Observatory: Deep Life, Extreme Physics and Chemistry, Reservoirs and Fluxes, and Deep Energy. The presentation has a gallery and list of Deep Carbon

  19. Carbon corrosion in PEM fuel cells during drive cycle operation

    DOE PAGES

    Borup, Rodney L.; Papadias, D. D.; Mukundan, Rangachary; ...

    2015-09-14

    One of the major contributors to degradation involves the electrocatalyst, including the corrosion of the carbons used as catalyst supports, which leads to changes in the catalyst layer structure. We have measured and quantified carbon corrosion during drive cycle operation and as a variation of the upper and lower potential limits used during drive cycle operation. The amount of carbon corrosion is exacerbated by the voltage cycling inherent in the drive cycle compared with constant potential operation. The potential gap between upper and lower potentials appears to be more important than the absolute operating potentials in the normal operating potentialmore » regime (0.40V to 0.95V) as changes in the measured carbon corrosion are similar when the upper potential was lower compared to raising the lower potential. Catalyst layer thinning was observed during the simulated drive cycle operation which had an associated decrease in catalyst layer porosity. This catalyst layer thinning is not due solely to carbon corrosion, although carbon corrosion likely plays a role; much of this thinning must be from compaction of the material in the catalyst layer. As a result, the decrease in catalyst layer porosity leads to additional performance losses due to mass transport losses.« less

  20. Orbiting Carbon Observatory-2 (OCO-2)

    NASA Image and Video Library

    2014-06-30

    NASA Administrator Charles Bolden answers social media attendees questions from just outside the launch pad where the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard sits ready to launch, Monday, June 30, 2014, Space Launch Complex 2 Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)

  1. Test and Analysis Correlation of Form Impact onto Space Shuttle Wing Leading Edge RCC Panel 8

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Lyle, Karen H.; Gabrys, Jonathan; Melis, Matthew; Carney, Kelly

    2004-01-01

    Soon after the Columbia Accident Investigation Board (CAIB) began their study of the space shuttle Columbia accident, "physics-based" analyses using LS-DYNA were applied to characterize the expected damage to the Reinforced Carbon-Carbon (RCC) leading edge from high-speed foam impacts. Forensic evidence quickly led CAIB investigators to concentrate on the left wing leading edge RCC panels. This paper will concentrate on the test of the left-wing RCC panel 8 conducted at Southwest Research Institute (SwRI) and the correlation with an LS-DYNA analysis. The successful correlation of the LS-DYNA model has resulted in the use of LS-DYNA as a predictive tool for characterizing the threshold of damage for impacts of various debris such as foam, ice, and ablators onto the RCC leading edge for shuttle return-to-flight.

  2. Progress and challenges in bipolar lead-acid battery development

    NASA Astrophysics Data System (ADS)

    Bullock, Kathryn R.

    1995-05-01

    Bipolar lead-acid batteries have higher power densities than any other aqueous battery system. Predicted specific powers based on models and prototypes range from 800 kW/kg for 100 ms discharge times to 1.6 kW/kg for 10 s. A 48 V automotive bipolar battery could have 2 1/2 times the cold cranking rate of a monopolar 12 V design in the same size. Problems which have precluded the development of commercial bipolar designs include the instability of substrate materials and enhanced side reactions. Design approaches include pseudo-bipolar configurations, as well as true bipolar designs in planar and tubular configurations. Substrate materials used include lead and lead alloys, carbons, conductive ceramics, and tin-oxide-coated glass fibers. These approaches are reviewed and evaluated.

  3. Interdependency of Subsurface Carbon Distribution and Graphene–Catalyst Interaction

    PubMed Central

    2014-01-01

    The dynamics of the graphene–catalyst interaction during chemical vapor deposition are investigated using in situ, time- and depth-resolved X-ray photoelectron spectroscopy, and complementary grand canonical Monte Carlo simulations coupled to a tight-binding model. We thereby reveal the interdependency of the distribution of carbon close to the catalyst surface and the strength of the graphene–catalyst interaction. The strong interaction of epitaxial graphene with Ni(111) causes a depletion of dissolved carbon close to the catalyst surface, which prevents additional layer formation leading to a self-limiting graphene growth behavior for low exposure pressures (10–6–10–3 mbar). A further hydrocarbon pressure increase (to ∼10–1 mbar) leads to weakening of the graphene–Ni(111) interaction accompanied by additional graphene layer formation, mediated by an increased concentration of near-surface dissolved carbon. We show that growth of more weakly adhered, rotated graphene on Ni(111) is linked to an initially higher level of near-surface carbon compared to the case of epitaxial graphene growth. The key implications of these results for graphene growth control and their relevance to carbon nanotube growth are highlighted in the context of existing literature. PMID:25188018

  4. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Vern Thorp, United Launch Alliance program manager, NASA missions,, left, Ralph Basilio, OCO-2 project manager, JPL, and Lt. Joseph Round, launch weather officer, USAF 30th Space Wing Weather Squadron, right, discuss the planned launch of the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Sunday, June 29, 2014, at the Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  5. Structure and Liquid Fragility in Sodium Carbonate.

    PubMed

    Wilson, Mark; Ribeiro, Mauro C C; Wilding, Martin C; Benmore, Chris; Weber, J K R; Alderman, Oliver; Tamalonis, Anthony; Parise, J B

    2018-02-01

    The relationship between local structure and dynamics is explored for molten sodium carbonate. A flexible fluctuating-charge model, which allows for changes in the shape and charge distribution of the carbonate molecular anion, is developed. The system shows the evolution of highly temperature-dependent complex low-dimensional structures which control the dynamics (and hence the liquid fragility). By varying the molecular anion charge distribution, the key interactions responsible for the formation of these structures can be identified and rationalized. An increase in the mean charge separation within the carbonate ions increases the connectivity of the emerging structures and leads to an increase in the system fragility.

  6. Carbonate fuel cells: Milliwatts to megawatts

    NASA Astrophysics Data System (ADS)

    Farooque, M.; Maru, H. C.

    The carbonate fuel cell power plant is an emerging high efficiency, ultra-clean power generator utilizing a variety of gaseous, liquid, and solid carbonaceous fuels for commercial and industrial applications. The primary mover of this generator is a carbonate fuel cell. The fuel cell uses alkali metal carbonate mixtures as electrolyte and operates at ∼650 °C. Corrosion of the cell hardware and stability of the ceramic components have been important design considerations in the early stages of development. The material and electrolyte choices are founded on extensive fundamental research carried out around the world in the 60s and early 70s. The cell components were developed in the late 1970s and early 1980s. The present day carbonate fuel cell construction employs commonly available stainless steels. The electrodes are based on nickel and well-established manufacturing processes. Manufacturing process development, scale-up, stack tests, and pilot system tests dominated throughout the 1990s. Commercial product development efforts began in late 1990s leading to prototype field tests beginning in the current decade leading to commercial customer applications. Cost reduction has been an integral part of the product effort. Cost-competitive product designs have evolved as a result. Approximately half a dozen teams around the world are pursuing carbonate fuel cell product development. The power plant development efforts to date have mainly focused on several hundred kW (submegawatt) to megawatt-class plants. Almost 40 submegawatt units have been operating at customer sites in the US, Europe, and Asia. Several of these units are operating on renewable bio-fuels. A 1 MW unit is operating on the digester gas from a municipal wastewater treatment plant in Seattle, Washington (US). Presently, there are a total of approximately 10 MW capacity carbonate fuel cell power plants installed around the world. Carbonate fuel cell products are also being developed to operate on

  7. Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III) Oxide.

    PubMed

    Koudelkova, Zuzana; Syrovy, Tomas; Ambrozova, Pavlina; Moravec, Zdenek; Kubac, Lubomir; Hynek, David; Richtera, Lukas; Adam, Vojtech

    2017-08-09

    In this study, the preparation and electrochemical application of a chromium(III) oxide modified carbon paste electrode (Cr-CPE) and a screen printed electrode (SPE), made from the same material and optimized for the simple, cheap and sensitive simultaneous determination of zinc, cadmium, lead, copper and the detection of silver ions, is described. The limits of detection and quantification were 25 and 80 µg·L -1 for Zn(II), 3 and 10 µg·L -1 for Cd(II), 3 and 10 µg·L -1 for Pb(II), 3 and 10 µg·L -1 for Cu(II), and 3 and 10 µg·L -1 for Ag(I), respectively. Furthermore, this promising modification was transferred to the screen-printed electrode. The limits of detection for the simultaneous determination of zinc, cadmium, copper and lead on the screen printed electrodes were found to be 350 µg·L -1 for Zn(II), 25 µg·L -1 for Cd(II), 3 µg·L -1 for Pb(II) and 3 µg·L -1 for Cu(II). Practical usability for the simultaneous detection of these heavy metal ions by the Cr-CPE was also demonstrated in the analyses of wastewaters.

  8. Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III) Oxide

    PubMed Central

    Koudelkova, Zuzana; Syrovy, Tomas; Ambrozova, Pavlina; Moravec, Zdenek; Kubac, Lubomir; Hynek, David; Adam, Vojtech

    2017-01-01

    In this study, the preparation and electrochemical application of a chromium(III) oxide modified carbon paste electrode (Cr-CPE) and a screen printed electrode (SPE), made from the same material and optimized for the simple, cheap and sensitive simultaneous determination of zinc, cadmium, lead, copper and the detection of silver ions, is described. The limits of detection and quantification were 25 and 80 µg·L−1 for Zn(II), 3 and 10 µg·L−1 for Cd(II), 3 and 10 µg·L−1 for Pb(II), 3 and 10 µg·L−1 for Cu(II), and 3 and 10 µg·L−1 for Ag(I), respectively. Furthermore, this promising modification was transferred to the screen-printed electrode. The limits of detection for the simultaneous determination of zinc, cadmium, copper and lead on the screen printed electrodes were found to be 350 µg·L−1 for Zn(II), 25 µg·L−1 for Cd(II), 3 µg·L−1 for Pb(II) and 3 µg·L−1 for Cu(II). Practical usability for the simultaneous detection of these heavy metal ions by the Cr-CPE was also demonstrated in the analyses of wastewaters. PMID:28792450

  9. Mussel-Inspired Dopamine and Carbon Nanotube Leading to a Biocompatible Self-Rolling Conductive Hydrogel Film.

    PubMed

    Jiang, Junzi; Huang, Yong; Wang, Yitian; Xu, Hui; Xing, Malcolm; Zhong, Wen

    2017-08-18

    We report a novel self-rolling, conductive, and biocompatible multiwall carbon nanotube (MWCNT)-dopamine-polyethylene glycol (PEG) hydrogel film. The gel can self-fold into a thin tube when it is transferred from a glass slide to an aqueous environment, regardless of the concentrations of the MWCNT. The film presents a highly organized pattern, which results from the self-assembly of hydrophilic dopamine and hydrophobic carbon nanotubes. By exploring the biomedical potential, we found that MWCNT-included rolled film is nontoxic and can promote cell growth. For further functional verification by qPCR (quantitative polymerase chain reaction), bone marrow derived mesenchymal cells present higher levels of osteogenic differentiations in response to a higher concentration of CNTs. The results suggest that the self-rolling, conductive CNT-dopamine-PEG hydrogel could have multiple potentials, including biomedical usage and as a conductive biosensor.

  10. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Annmarie Eldering, OCO-2 deputy project scientist, JPL is seen talking on the monitors during an Orbiting Carbon Observatory-2 (OCO-2) science briefing, Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  11. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    NASA Kennedy Space Center Public Affairs Officer George Diller, moderates a briefing ahead of the planned launch of the Orbiting Carbon Observatory-2 (OCO-2), Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  12. Orbiting Carbon Observatory-2 (OCO-2) Launch

    NASA Image and Video Library

    2014-07-02

    Members of the media are unable to see the launch of the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard due to heavy fog at Vandenberg Air Force Base, Calif. on Wednesday, July 2, 2014. OCO-2 launched at 2:56 a.m. PDT. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  13. Adsorption of Estrogen Contaminants by Graphene Nanomaterials under Natural Organic Matter Preloading: Comparison to Carbon Nanotube, Biochar, and Activated Carbon.

    PubMed

    Jiang, Luhua; Liu, Yunguo; Liu, Shaobo; Zeng, Guangming; Hu, Xinjiang; Hu, Xi; Guo, Zhi; Tan, Xiaofei; Wang, Lele; Wu, Zhibin

    2017-06-06

    Adsorption of two estrogen contaminants (17β-estradiol and 17α-ethynyl estradiol) by graphene nanomaterials was investigated and compared to those of a multi-walled carbon nanotube (MWCNT), a single-walled carbon nanotube (SWCNT), two biochars, a powdered activated carbon (PAC), and a granular activate carbon (GAC) in ultrapure water and in the competition of natural organic matter (NOM). Graphene nanomaterials showed comparable or better adsorption ability than carbon nanotubes (CNTs), biochars (BCs), and activated carbon (ACs) under NOM preloading. The competition of NOM decreased the estrogen adsorption by all adsorbents. However, the impact of NOM on the estrogen adsorption was smaller on graphenes than CNTs, BCs, and ACs. Moreover, the hydrophobicity of estrogens also affected the uptake of estrogens. These results suggested that graphene nanomaterials could be used to removal estrogen contaminants from water as an alternative adsorbent. Nevertheless, if transferred to the environment, they would also adsorb estrogen contaminants, leading to great environmental hazards.

  14. Nanowire modified carbon fibers for enhanced electrical energy storage

    NASA Astrophysics Data System (ADS)

    Shuvo, Mohammad Arif Ishtiaque; (Bill) Tseng, Tzu-Liang; Ashiqur Rahaman Khan, Md.; Karim, Hasanul; Morton, Philip; Delfin, Diego; Lin, Yirong

    2013-09-01

    The study of electrochemical super-capacitors has become one of the most attractive topics in both academia and industry as energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles, and portable electronics. These multifunctional structural super-capacitors provide structures combining energy storage and load bearing functionalities, leading to material systems with reduced volume and/or weight. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires, which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area thus fast ion diffusion rates. Scanning Electron Microscopy and X-Ray Diffraction measurements are used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing is performed using a potentio-galvanostat. The results show that gold sputtered nanowire carbon fiber hybrid provides 65.9% higher energy density than bare carbon fiber cloth as super-capacitor.

  15. pH-dependent electron-transport properties of carbon nanotubes.

    PubMed

    Back, Ju Hee; Shim, Moonsub

    2006-11-30

    Carbon nanotube electrochemical transistors integrated with microfluidic channels are utilized to examine the effects of aqueous electrolyte solutions on the electron-transport properties of single isolated carbon nanotubes. In particular, pH and concentration of supporting inert electrolytes are examined. A systematic threshold voltage shift with pH is observed while the transconductance and subthreshold swing remain independent of pH and concentration. Decreasing pH leads to a negative shift of the threshold voltage, indicating that protonation does not lead to hole doping. Changing the type of contact metal does not alter the observed pH response. The pH-dependent charging of SiO2 substrate is ruled out as the origin based on measurements with suspended nanotube transistors. Increasing the ionic strength leads to reduced pH response. Contributions from possible surface chargeable chemical groups are considered.

  16. Selective Sulfidation of Lead Smelter Slag with Pyrite and Flotation Behavior of Synthetic ZnS

    NASA Astrophysics Data System (ADS)

    Han, Junwei; Liu, Wei; Wang, Dawei; Jiao, Fen; Zhang, Tianfu; Qin, Wenqing

    2016-08-01

    The selective sulfidation of lead smelter slag with pyrite in the presence of carbon and Na salts, and the flotation behavior of synthetic ZnS were studied. The effects of temperature, time, pyrite dosage, Na salts, and carbon additions were investigated based on thermodynamic calculation, and correspondingly, the growth mechanism of ZnS particles was studied at high temperatures. The results indicated that the zinc in lead smelter slag was selectively converted into zinc sulfides by sulfidation roasting. The sulfidation degree of zinc was increased until the temperature, time, pyrite, and carbon dosages reached their optimum values, under which it was more than 95 pct. The growth of ZnS particles largely depended upon roasting temperature, and the ZnS grains were significantly increased above 1373 K (1100 °C) due to the formation of a liquid phase. After the roasting, the zinc sulfides generated had a good floatability, and 88.34 pct of zinc was recovered by conventional flotation.

  17. Carbonate buffering and metabolic controls on carbon dioxide in rivers

    USGS Publications Warehouse

    Stets, Edward; Butman, David; McDonald, Cory P.; Stackpoole, Sarah M.; DeGrandpre, Michael D.; Striegl, Robert G.

    2017-01-01

    Multiple processes support the significant efflux of carbon dioxide (CO2) from rivers and streams. Attribution of CO2 oversaturation will lead to better quantification of the freshwater carbon cycle and provide insights into the net cycling of nutrients and pollutants. CO2 production is closely related to O2consumption because of the metabolic linkage of these gases. However, this relationship can be weakened due to dissolved inorganic carbon inputs from groundwater, carbonate buffering, calcification, and anaerobic metabolism. CO2and O2 concentrations and other water quality parameters were analyzed in two data sets: a synoptic field study and nationwide water quality monitoring data. CO2 and O2 concentrations were strongly negatively correlated in both data sets (ρ = −0.67 and ρ = −0.63, respectively), although the correlations were weaker in high-alkalinity environments. In nearly all samples, the molar oversaturation of CO2 was a larger magnitude than molar O2 undersaturation. We used a dynamically coupled O2CO2 model to show that lags in CO2 air-water equilibration are a likely cause of this phenomenon. Lags in CO2 equilibration also impart landscape-scale differences in the behavior of CO2 between high- and low-alkalinity watersheds. Although the concept of carbonate buffering and how it creates lags in CO2 equilibration with the atmosphere is well understood, it has not been sufficiently integrated into our understanding of CO2 dynamics in freshwaters. We argue that the consideration of carbonate equilibria and its effects on CO2 dynamics are primary steps in understanding the sources and magnitude of CO2 oversaturation in rivers and streams.

  18. Carbonized asphaltene-based carbon-carbon fiber composites

    DOEpatents

    Bohnert, George; Lula, James; Bowen, III, Daniel E.

    2016-12-27

    A method of making a carbon binder-reinforced carbon fiber composite is provided using carbonized asphaltenes as the carbon binder. Combinations of carbon fiber and asphaltenes are also provided, along with the resulting composites and articles of manufacture.

  19. Experimental evidence for chemo-mechanical coupling during carbon mineralization in ultramafic rocks

    NASA Astrophysics Data System (ADS)

    Lisabeth, H. P.; Zhu, W.; Kelemen, P. B.; Ilgen, A.

    2017-09-01

    Storing carbon dioxide in the subsurface as carbonate minerals has the benefit of long-term stability and immobility. Ultramafic rock formations have been suggested as a potential reservoir for this type of storage due to the availability of cations to react with dissolved carbon dioxide and the fast reaction rates associated with minerals common in ultramafic formations; however, the rapid reactions have the potential to couple with the mechanical and hydraulic behavior of the rocks and little is known about the extent and mechanisms of this coupling. In this study, we argue that the dissolution of primary minerals and the precipitation of secondary minerals along pre-existing fractures in samples lead to reductions in both the apparent Young's modulus and shear strength of aggregates, accompanied by reduction in permeability. Hydrostatic and triaxial deformation experiments were run on dunite samples saturated with de-ionized water and carbon dioxide-rich solutions while stress, strain, permeability and pore fluid chemistry were monitored. Sample microstructures were examined after reaction and deformation using scanning electron microscopy (SEM). The results show that channelized dissolution and carbonate mineral precipitation in the samples saturated with carbon dioxide-rich solutions modify the structure of grain boundaries, leading to the observed reductions in stiffness, strength and permeability. A geochemical model was run to help interpret fluid chemical data, and we find that the apparent reaction rates in our experiments are faster than rates calculated from powder reactors, suggesting mechanically enhanced reaction rates. In conclusion, we find that chemo-mechanical coupling during carbon mineralization in dunites leads to substantial modification of mechanical and hydraulic behavior that needs to be accounted for in future modeling efforts of in situ carbon mineralization projects.

  20. KENNEDY SPACE CENTER, FLA. - United Space Alliance employee Anthony Simmons continues electrowelding on an insulator inside a Reinforced Carbon Carbon panel. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-16

    KENNEDY SPACE CENTER, FLA. - United Space Alliance employee Anthony Simmons continues electrowelding on an insulator inside a Reinforced Carbon Carbon panel. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  1. Shuttle Wing Leading Edge Root Cause NDE Team Findings and Implementation of Quantitative Flash Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Burke, Eric R.

    2009-01-01

    Comparison metrics can be established to reliably and repeatedly establish the health of the joggle region of the Orbiter Wing Leading Edge reinforced carbon carbon (RCC) panels. Using these metrics can greatly reduced the man hours needed to perform, wing leading edge scanning for service induced damage. These time savings have allowed for more thorough inspections to be preformed in the necessary areas with out affecting orbiter flow schedule. Using specialized local inspections allows for a larger margin of safety by allowing for more complete characterizations of panel defects. The presence of the t-seal during thermographic inspection can have adverse masking affects on ability properly characterize defects that exist in the joggle region of the RCC panels. This masking affect dictates the final specialized inspection should be preformed with the t-seal removed. Removal of the t-seal and use of the higher magnification optics has lead to the most effective and repeatable inspection method for characterizing and tracking defects in the wing leading edge. Through this study some inadequacies in the main health monitoring system for the orbiter wing leading edge have been identified and corrected. The use of metrics and local specialized inspection have lead to a greatly increased reliability and repeatable inspection of the shuttle wing leading edge.

  2. Chemical reactions confined within carbon nanotubes.

    PubMed

    Miners, Scott A; Rance, Graham A; Khlobystov, Andrei N

    2016-08-22

    In this critical review, we survey the wide range of chemical reactions that have been confined within carbon nanotubes, particularly emphasising how the pairwise interactions between the catalysts, reactants, transition states and products of a particular molecular transformation with the host nanotube can be used to control the yields and distributions of products of chemical reactions. We demonstrate that nanoscale confinement within carbon nanotubes enables the control of catalyst activity, morphology and stability, influences the local concentration of reactants and products thus affecting equilibria, rates and selectivity, pre-arranges the reactants for desired reactions and alters the relative stability of isomeric products. We critically evaluate the relative advantages and disadvantages of the confinement of chemical reactions inside carbon nanotubes from a chemical perspective and describe how further developments in the controlled synthesis of carbon nanotubes and the incorporation of multifunctionality are essential for the development of this ever-expanding field, ultimately leading to the effective control of the pathways of chemical reactions through the rational design of multi-functional carbon nanoreactors.

  3. In-Situ Production of Calcium Carbonate Nanoparticles in Fresh Concrete Using Pre-carbonation Method

    NASA Astrophysics Data System (ADS)

    Qian, Xin

    To reduce the carbon footprint of ordinary Portland cement (OPC)-based concrete, a novel technique, pre-carbonation process, has been developed to produce CaCO3 nanoparticles in fresh concrete. In this technique, gaseous CO2 is first absorbed into a slurry of calcium-rich minerals which is then blended with other ingredients to produce mortar/concrete. The objective of this work is to obtain an in-depth understanding of the underlying scientific mechanisms associated with the enhancement of strength and durability of the concrete induced by the new method. A comprehensive research plan has been carried out to study the carbonated slaked lime slurry and the effect of carbonated slaked lime slurry on the performance of OPC-based concrete, and to evaluate the potentials of the pre-carbonation method. Experimental studies show that carbonating the calcium-rich mineral slurry with CO2 can produce CaCO3 nanoparticles and Ca(HCO 3)2 in the slurry, and these carbonation products were dictated by four parameters of the pre-carbonation method: the duration and temperature of the carbonation, the concentration of the calcium source slurry, and the stirring method of the calcium source slurry during the carbonation. The mechanical properties and durability of the mortar/concrete made with the carbonated slurry were significantly improved, which can be attributed to major mechanisms induced by the pre-carbonation method: promoted hydration of the cement and denser microstructure of the mortar/concrete. Calorimetry testing showed that the hydration of OPC was greatly improved by the pre-carbonation because of the extra heterogenous nucleation sites provided by the CaCO3 nanoparticles. XRD and TGA results revealed that more ettringite was produced in the mortar/concrete with pre-carbonated slaked lime slurry. The overall volume of the hydration products of the cement was increased by the pre-carbonation, leading to denser microstructure of the mortar/concrete. It has been found

  4. Carbon-carbon cylinder block

    NASA Technical Reports Server (NTRS)

    Ransone, Philip O. (Inventor)

    1995-01-01

    A lightweight cylinder block composed of carbon-carbon is disclosed. The use of carbon-carbon over conventional materials, such as cast iron or aluminum, reduces the weight of the cylinder block and improves thermal efficiency of the internal combustion reciprocating engine. Due to the negligible coefficient of thermal expansion and unique strength at elevated temperatures of carbon-carbon, the piston-to-cylinder wall clearance can be small, especially when the carbon-carbon cylinder block is used in conjunction with a carbon-carbon piston. Use of the carbon-carbon cylinder has the effect of reducing the weight of other reciprocating engine components allowing the piston to run at higher speeds and improving specific engine performance.

  5. Mineral-Based Coating of Plasma-Treated Carbon Fibre Rovings for Carbon Concrete Composites with Enhanced Mechanical Performance.

    PubMed

    Schneider, Kai; Lieboldt, Matthias; Liebscher, Marco; Fröhlich, Maik; Hempel, Simone; Butler, Marko; Schröfl, Christof; Mechtcherine, Viktor

    2017-03-29

    Surfaces of carbon fibre roving were modified by means of a low temperature plasma treatment to improve their bonding with mineral fines; the latter serving as an inorganic fibre coating for the improved mechanical performance of carbon reinforcement in concrete matrices. Variation of the plasma conditions, such as gas composition and treatment time, was accomplished to establish polar groups on the carbon fibres prior to contact with the suspension of mineral particles in water. Subsequently, the rovings were implemented in a fine concrete matrix and their pull-out performance was assessed. Every plasma treatment resulted in increased pull-out forces in comparison to the reference samples without plasma treatment, indicating a better bonding between the mineral coating material and the carbon fibres. Significant differences were found, depending on gas composition and treatment time. Microscopic investigations showed that the samples with the highest pull-out force exhibited carbon fibre surfaces with the largest areas of hydration products grown on them. Additionally, the coating material ingresses into the multifilament roving in these specimens, leading to better force transfer between individual carbon filaments and between the entire roving and surrounding matrix, thus explaining the superior mechanical performance of the specimens containing appropriately plasma-treated carbon roving.

  6. Mineral-Based Coating of Plasma-Treated Carbon Fibre Rovings for Carbon Concrete Composites with Enhanced Mechanical Performance

    PubMed Central

    Schneider, Kai; Lieboldt, Matthias; Liebscher, Marco; Fröhlich, Maik; Hempel, Simone; Butler, Marko; Schröfl, Christof; Mechtcherine, Viktor

    2017-01-01

    Surfaces of carbon fibre roving were modified by means of a low temperature plasma treatment to improve their bonding with mineral fines; the latter serving as an inorganic fibre coating for the improved mechanical performance of carbon reinforcement in concrete matrices. Variation of the plasma conditions, such as gas composition and treatment time, was accomplished to establish polar groups on the carbon fibres prior to contact with the suspension of mineral particles in water. Subsequently, the rovings were implemented in a fine concrete matrix and their pull-out performance was assessed. Every plasma treatment resulted in increased pull-out forces in comparison to the reference samples without plasma treatment, indicating a better bonding between the mineral coating material and the carbon fibres. Significant differences were found, depending on gas composition and treatment time. Microscopic investigations showed that the samples with the highest pull-out force exhibited carbon fibre surfaces with the largest areas of hydration products grown on them. Additionally, the coating material ingresses into the multifilament roving in these specimens, leading to better force transfer between individual carbon filaments and between the entire roving and surrounding matrix, thus explaining the superior mechanical performance of the specimens containing appropriately plasma-treated carbon roving. PMID:28772719

  7. Fracture Mechanics Analyses of the Slip-Side Joggle Regions of Wing-Leading-Edge Panels

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Knight, Norman F., Jr.; Song, Kyongchan; Phillips, Dawn R.

    2011-01-01

    The Space Shuttle wing-leading edge consists of panels that are made of reinforced carbon-carbon. Coating spallation was observed near the slip-side region of the panels that experience extreme heating. To understand this phenomenon, a root-cause investigation was conducted. As part of that investigation, fracture mechanics analyses of the slip-side joggle regions of the hot panels were conducted. This paper presents an overview of the fracture mechanics analyses.

  8. Doped carbon-sulfur species nanocomposite cathode for Li--S batteries

    DOEpatents

    Wang, Donghai; Xu, Tianren; Song, Jiangxuan

    2015-12-29

    We report a heteroatom-doped carbon framework that acts both as conductive network and polysulfide immobilizer for lithium-sulfur cathodes. The doped carbon forms chemical bonding with elemental sulfur and/or sulfur compound. This can significantly inhibit the diffusion of lithium polysulfides in the electrolyte, leading to high capacity retention and high coulombic efficiency.

  9. Adsorption of lead over Graphite Oxide

    PubMed Central

    Olanipekun, Opeyemi; Oyefusi, Adebola; Neelgund, Gururaj M.; Oki, Aderemi

    2014-01-01

    The adsorption efficiency and kinetics of removal of lead in presence of graphite oxide (GO) was determined using the Atomic Absorption spectrophotometer (AAS). The GO was prepared by the chemical oxidation of graphite and characterized using FTIR, SEM, TGA and XRD. The adsorption efficiency of GO for the solution containing 50, 100 and 150 ppm of Pb2+ was found to be 98, 91 and 71% respectively. The adsorption ability of GO was found to be higher than graphite. Therefore, the oxidation of activated carbon in removal of heavy metals may be a viable option to reduce pollution in portable water. PMID:24152870

  10. An improved method for quantitatively measuring the sequences of total organic carbon and black carbon in marine sediment cores

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoming; Zhu, Qing; Zhou, Qianzhi; Liu, Jinzhong; Yuan, Jianping; Wang, Jianghai

    2018-01-01

    Understanding global carbon cycle is critical to uncover the mechanisms of global warming and remediate its adverse effects on human activities. Organic carbon in marine sediments is an indispensable part of the global carbon reservoir in global carbon cycling. Evaluating such a reservoir calls for quantitative studies of marine carbon burial, which closely depend on quantifying total organic carbon and black carbon in marine sediment cores and subsequently on obtaining their high-resolution temporal sequences. However, the conventional methods for detecting the contents of total organic carbon or black carbon cannot resolve the following specific difficulties, i.e., (1) a very limited amount of each subsample versus the diverse analytical items, (2) a low and fluctuating recovery rate of total organic carbon or black carbon versus the reproducibility of carbon data, and (3) a large number of subsamples versus the rapid batch measurements. In this work, (i) adopting the customized disposable ceramic crucibles with the microporecontrolled ability, (ii) developing self-made or customized facilities for the procedures of acidification and chemothermal oxidization, and (iii) optimizing procedures and carbon-sulfur analyzer, we have built a novel Wang-Xu-Yuan method (the WXY method) for measuring the contents of total organic carbon or black carbon in marine sediment cores, which includes the procedures of pretreatment, weighing, acidification, chemothermal oxidation and quantification; and can fully meet the requirements of establishing their highresolution temporal sequences, whatever in the recovery, experimental efficiency, accuracy and reliability of the measurements, and homogeneity of samples. In particular, the usage of disposable ceramic crucibles leads to evidently simplify the experimental scenario, which further results in the very high recovery rates for total organic carbon and black carbon. This new technique may provide a significant support for

  11. Carbon-carbon piston development

    NASA Technical Reports Server (NTRS)

    Gorton, Mark P.

    1994-01-01

    A new piston concept, made of carbon-carbon refractory-composite material, has been developed that overcomes a number of the shortcomings of aluminum pistons. Carbon-carbon material, developed in the early 1960's, is lighter in weight than aluminum, has higher strength and stiffness than aluminum and maintains these properties at temperatures over 2500 F. In addition, carbon-carbon material has a low coefficient of thermal expansion and excellent resistance to thermal shock. An effort, called the Advanced Carbon-Carbon Piston Program was started in 1986 to develop and test carbon-carbon pistons for use in spark ignition engines. The carbon-carbon pistons were designed to be replacements for existing aluminum pistons, using standard piston pin assemblies and using standard rings. Carbon-carbon pistons can potentially enable engines to be more reliable, more efficient and have greater power output. By utilizing the unique characteristics of carbon-carbon material a piston can: (1) have greater resistance to structural damage caused by overheating, lean air-fuel mixture conditions and detonation; (2) be designed to be lighter than an aluminum piston thus, reducing the reciprocating mass of an engine, and (3) be operated in a higher combustion temperature environment without failure.

  12. Selection and preparation of activated carbon for fuel gas storage

    DOEpatents

    Schwarz, James A.; Noh, Joong S.; Agarwal, Rajiv K.

    1990-10-02

    Increasing the surface acidity of active carbons can lead to an increase in capacity for hydrogen adsorption. Increasing the surface basicity can facilitate methane adsorption. The treatment of carbons is most effective when the carbon source material is selected to have a low ash content i.e., below about 3%, and where the ash consists predominantly of alkali metals alkali earth, with only minimal amounts of transition metals and silicon. The carbon is washed in water or acid and then oxidized, e.g. in a stream of oxygen and an inert gas at an elevated temperature.

  13. Non-ST elevation myocardial infarction secondary to carbon monoxide intoxication

    PubMed Central

    Jankowska, Danuta; Palabindala, Venkataraman; Salim, Sohail Abdul

    2017-01-01

    ABSTRACT Carbon monoxide poisoning has been documented in literature to cause severe neurological and tissue toxicity within the body. However, cardiotoxicity is often overlooked, but not uncommon. Previous research studies and case reports have revealed a significant relationship between carbon monoxide intoxication and myocardial ischemic events. We report a case of a 48-year-old male, who was exposed to severe smoke inhalation due to a house fire and subsequently developed a non-ST elevation myocardial infarction. Ischemic changes were evident on electrocardiogram, which demonstrated T-wave inversion in lead III and ST-segment depression in leads V4-V6. Elevated cardiac enzymes were also present. After standard treatment for an acute cardiac event, the patient fully recovered. This case demonstrates that myocardial ischemic changes due to carbon monoxide poisoning may be reversible if recognized in early stages and treated appropriately, thus reminding physicians that a proper cardiovascular examination and diagnostic testing should be performed on all patients with carbon monoxide poisoning. Abbreviations: NSTEMI: Non-ST elevation myocardial infarction PMID:28638579

  14. Improved thermoelectric power output from multilayered polyethylenimine doped carbon nanotube based organic composites

    NASA Astrophysics Data System (ADS)

    Hewitt, Corey A.; Montgomery, David S.; Barbalace, Ryan L.; Carlson, Rowland D.; Carroll, David L.

    2014-05-01

    By appropriately selecting the carbon nanotube type and n-type dopant for the conduction layers in a multilayered carbon nanotube composite, the total device thermoelectric power output can be increased significantly. The particular materials chosen in this study were raw single walled carbon nanotubes for the p-type layers and polyethylenimine doped single walled carbon nanotubes for the n-type layers. The combination of these two conduction layers leads to a single thermocouple Seebeck coefficient of 96 ± 4 μVK-1, which is 6.3 times higher than that previously reported. This improved Seebeck coefficient leads to a total power output of 14.7 nW per thermocouple at the maximum temperature difference of 50 K, which is 44 times the power output per thermocouple for the previously reported results. Ultimately, these thermoelectric power output improvements help to increase the potential use of these lightweight, flexible, and durable organic multilayered carbon nanotube based thermoelectric modules in low powered electronics applications, where waste heat is available.

  15. Carbonate formation on bioactive glasses.

    PubMed

    Cerruti, Marta; Morterra, Claudio

    2004-07-20

    The system termed 58S is a sol-gel-synthesized bioactive glass composed of SiO2, CaO, and P2O5, used in medicine as bone prosthetic because, when immersed in a physiological fluid, a layer of hydroxycarbonate apatite is formed on its surface. The mechanism of bioactive glass 58S carbonation was studied in the vacuum by means of in-situ FTIR spectroscopy with the use of CO2, H2O, and CD3CN as probe molecules. The study in the vacuum was necessary to identify both the molecules specifically involved in the carbonation process and the type of carbonates formed. Bioactive glass 58S was compared to a Ca-doped silica and to CaO. On CaO, ionic carbonates could form by contact with CO2 alone, whereas on 58S and on Ca-doped silica carbonation occurred only if both CO2 and an excess of H2O were present on the sample. The function of H2O was not only to block surface cationic sites, so that CO2 could not manifest its Lewis base behavior, but also to form a liquid-like (mono)layer that allowed the formation of carbonate ions. The presence of H2O is also supposed to promote Ca2+ migration from the bulk to the surface. Carbonates formed at the surface of CaO and of Ca-bearing silicas (thus including bioactive glasses) are of the same type, but are produced through two different mechanisms. The finding that a water excess is necessary to start heavy carbonation on bioactive glasses seemed to imply that the mechanism leading to in-situ carbonation simulates, in a simplified and easy-to-reproduce system, what happens both in solution, when carbonates are incorporated in the apatite layer, and during sample shelf-aging. Copyright 2004 American Chemical Society

  16. Improved Composites Using Crosslinked, Surface-Modified Carbon Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Baker, James Stewart

    2014-01-01

    Individual carbon nanotubes (CNTs) exhibit exceptional tensile strength and stiffness; however, these properties have not translated well to the macroscopic scale. Premature failure of bulk CNT materials under tensile loading occurs due to the relatively weak frictional forces between adjacent CNTs, leading to poor load transfer through the material. When used in polymer matrix composites (PMCs), the weak nanotube-matrix interaction leads to the CNTs providing less than optimal reinforcement.Our group is examining the use of covalent crosslinking and surface modification as a means to improve the tensile properties of PMCs containing carbon nanotubes. Sheet material comprised of unaligned multi-walled carbon nanotubes (MWCNT) was used as a drop-in replacement for carbon fiber in the composites. A variety of post-processing methods have been examined for covalently crosslinking the CNTs to overcome the weak inter-nanotube shear interactions, resulting in improved tensile strength and modulus for the bulk sheet material. Residual functional groups from the crosslinking chemistry may have the added benefit of improving the nanotube-matrix interaction. Composites prepared using these crosslinked, surface-modified nanotube sheet materials exhibit superior tensile properties to composites using the as received CNT sheet material.

  17. Superheated liquid carbon dioxide jets: setting up and phenomena

    NASA Astrophysics Data System (ADS)

    Engelmeier, Lena; Pollak, Stefan; Peters, Franz; Weidner, Eckhard

    2018-01-01

    We present an experimental investigation on liquid, superheated carbon dioxide jets. Our main goal is to identify the setting up requirements for generating coherent jets because these raise expectations on applications in the cleaning and cutting industry. The study leads us through a number of phenomena, which are described, categorized and explained. The experiments are based on compressed (350 MPa) and cooled carbon dioxide, which expands through a cylindrical nozzle into the atmosphere. The nozzle provokes hydraulic flip by a sharp-edge inlet leading to separation and constriction. Upstream-temperature and pressure are varied and the jet's structure and phase state are monitored by a high-speed camera. We observe coherent, liquid jets far from equilibrium, which demands the solid or gaseous state. Therefore, these jets are superheated. Carbon dioxide jets, like water jets, below certain nozzle diameters are subject to fluid dynamic instabilities resulting in breakup. Above certain diameters flashing jet breakup appears, which is associated with nucleation.

  18. Enhanced biological phosphorus removal with different carbon sources.

    PubMed

    Shen, Nan; Zhou, Yan

    2016-06-01

    Enhanced biological phosphorus removal (EBPR) process is one of the most economical and sustainable methods for phosphorus removal from wastewater. However, the performance of EBPR can be affected by available carbon sources types in the wastewater that may induce different functional microbial communities in the process. Glycogen accumulating organisms (GAOs) and polyphosphate accumulating organisms (PAOs) are commonly found by coexisting in the EBPR process. Predominance of GAO population may lead to EBPR failure due to the competition on carbon source with PAO without contributing phosphorus removal. Carbon sources indeed play an important role in alteration of PAOs and GAOs in EBPR processes. Various types of carbon sources have been investigated for EBPR performance. Certain carbon sources tend to enrich specific groups of GAOs and/or PAOs. This review summarizes the types of carbon sources applied in EBPR systems and highlights the roles of these carbon sources in PAO and GAO competition. Both single (e.g., acetate, propionate, glucose, ethanol, and amino acid) and complex carbon sources (e.g., yeast extract, peptone, and mixed carbon sources) are discussed in this review. Meanwhile, the environmental friendly and economical carbon sources that are derived from waste materials, such as crude glycerol and wasted sludge, are also discussed and compared.

  19. An Analytical Framework for the Steady State Impact of Carbonate Compensation on Atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Omta, Anne Willem; Ferrari, Raffaele; McGee, David

    2018-04-01

    The deep-ocean carbonate ion concentration impacts the fraction of the marine calcium carbonate production that is buried in sediments. This gives rise to the carbonate compensation feedback, which is thought to restore the deep-ocean carbonate ion concentration on multimillennial timescales. We formulate an analytical framework to investigate the impact of carbonate compensation under various changes in the carbon cycle relevant for anthropogenic change and glacial cycles. Using this framework, we show that carbonate compensation amplifies by 15-20% changes in atmospheric CO2 resulting from a redistribution of carbon between the atmosphere and ocean (e.g., due to changes in temperature, salinity, or nutrient utilization). A counterintuitive result emerges when the impact of organic matter burial in the ocean is examined. The organic matter burial first leads to a slight decrease in atmospheric CO2 and an increase in the deep-ocean carbonate ion concentration. Subsequently, enhanced calcium carbonate burial leads to outgassing of carbon from the ocean to the atmosphere, which is quantified by our framework. Results from simulations with a multibox model including the minor acids and bases important for the ocean-atmosphere exchange of carbon are consistent with our analytical predictions. We discuss the potential role of carbonate compensation in glacial-interglacial cycles as an example of how our theoretical framework may be applied.

  20. Nanostructured carbon films with oriented graphitic planes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teo, E. H. T.; Kalish, R.; Kulik, J.

    2011-03-21

    Nanostructured carbon films with oriented graphitic planes can be deposited by applying energetic carbon bombardment. The present work shows the possibility of structuring graphitic planes perpendicular to the substrate in following two distinct ways: (i) applying sufficiently large carbon energies for deposition at room temperature (E>10 keV), (ii) utilizing much lower energies for deposition at elevated substrate temperatures (T>200 deg. C). High resolution transmission electron microscopy is used to probe the graphitic planes. The alignment achieved at elevated temperatures does not depend on the deposition angle. The data provides insight into the mechanisms leading to the growth of oriented graphiticmore » planes under different conditions.« less

  1. Engineering evidence for carbon monoxide toxicity cases.

    PubMed

    Galatsis, Kosmas

    2016-07-01

    Unintentional carbon monoxide poisonings and fatalities lead to many toxicity cases. Given the unusual physical properties of carbon monoxide-in that the gas is odorless and invisible-unorganized and erroneous methods in obtaining engineering evidence as required during the discovery process often occurs. Such evidence gathering spans domains that include building construction, appliance installation, industrial hygiene, mechanical engineering, combustion and physics. In this paper, we attempt to place a systematic framework that is relevant to key aspects in engineering evidence gathering for unintentional carbon monoxide poisoning cases. Such a framework aims to increase awareness of this process and relevant issues to help guide legal counsel and expert witnesses. © The Author(s) 2015.

  2. Arrays of carbon nanoscrolls as deep subwavelength magnetic metamaterials

    NASA Astrophysics Data System (ADS)

    Yannopapas, Vassilios; Tzavala, Marilena; Tsetseris, Leonidas

    2013-10-01

    We demonstrate theoretically that an array of carbon nanoscrolls acts as a hyperbolic magnetic metamaterial in the terahertz regime with genuine subwavelength operation corresponding to a wavelength-to-structure ratio of about 200. Due to the low sheet resistance of graphene, the electromagnetic losses in an array of carbon nanoscrolls are almost negligible, offering a very sharp magnetic resonance of extreme positive and negative values of the effective magnetic permeability. The latter property leads to superior imaging properties for arrays of carbon nanoscrolls which can operate as magnetic endoscopes in the terahertz range where magnetic materials are scarce. Our optical modeling is supplemented with ab initio density functional calculations of the self-winding of a single layer of graphene onto a carbon nanotube so as to form a carbon nanoscroll. The latter process is viewed as a means to realize ordered arrays of carbon nanoscrolls in the laboratory based on arrays of aligned carbon nanotubes which are now routinely fabricated.

  3. Redesigning Urban Carbon Cycles: from Waste Stream to Commodity

    NASA Astrophysics Data System (ADS)

    Brabander, D. J.; Fitzstevens, M. G.

    2013-12-01

    While there has been extensive research on the global scale to quantify the fluxes and reservoirs of carbon for predictive climate change models, comparably little attention has been focused on carbon cycles in the built environment. The current management of urban carbon cycles presents a major irony: while cities produce tremendous fluxes of organic carbon waste, their populations are dependent on imported carbon because most urban have limited access to locally sourced carbon. The persistence of outdated management schemes is in part due to the fact that reimagining the handling of urban carbon waste streams requires a transdisciplinary approach. Since the end of the 19th century, U.S. cities have generally relied on the same three options for managing organic carbon waste streams: burn it, bury it, or dilute it. These options still underpin the framework for today's design and management strategies for handling urban carbon waste. We contend that urban carbon management systems for the 21st century need to be scalable, must acknowledge how climate modulates the biogeochemical cycling of urban carbon, and should carefully factor local political and cultural values. Urban waste carbon is a complex matrix ranging from wastewater biosolids to municipal compost. Our first goal in designing targeted and efficient urban carbon management schemes has been examining approaches for categorizing and geochemically fingerprinting these matrices. To date we have used a combination of major and trace element ratio analysis and bulk matrix characteristics, such as pH, density, and loss on ignition, to feed multivariable statistical analysis in order to identify variables that are effective tracers for each waste stream. This approach was initially developed for Boston, MA, US, in the context of identifying components of municipal compost streams that were responsible for increasing the lead inventory in the final product to concentrations that no longer permitted its use in

  4. Tuning carbon nanotube assembly for flexible, strong and conductive films

    NASA Astrophysics Data System (ADS)

    Wang, Yanjie; Li, Min; Gu, Yizhuo; Zhang, Xiaohua; Wang, Shaokai; Li, Qingwen; Zhang, Zuoguang

    2015-02-01

    Carbon nanotubes are ideal scaffolds for designing and architecting flexible graphite films with tunable mechanical, electrical and thermal properties. Herein, we demonstrate that the assembly of aligned carbon nanotubes with different aggregation density and morphology leads to different mechanical properties and anisotropic electrical conduction along the films. Using drying evaporation under tension treatment, the carbon nanotubes can be assembled into strong films with tensile strength and Young's modulus as high as 3.2 GPa and 124 GPa, respectively, leading to a remarkable toughness of 54.38 J g-1, greatly outperforming conventional graphite films, spider webs and even Kevlar fiber films. Different types of solvents may result in the assembly of CNTs with different aggregation morphology and therefore different modulus. In addition, we reveal that the high density assembly of aligned CNTs correlates with better electric conduction along the axial direction, enabling these flexible graphite films to be both strong and conductive.Carbon nanotubes are ideal scaffolds for designing and architecting flexible graphite films with tunable mechanical, electrical and thermal properties. Herein, we demonstrate that the assembly of aligned carbon nanotubes with different aggregation density and morphology leads to different mechanical properties and anisotropic electrical conduction along the films. Using drying evaporation under tension treatment, the carbon nanotubes can be assembled into strong films with tensile strength and Young's modulus as high as 3.2 GPa and 124 GPa, respectively, leading to a remarkable toughness of 54.38 J g-1, greatly outperforming conventional graphite films, spider webs and even Kevlar fiber films. Different types of solvents may result in the assembly of CNTs with different aggregation morphology and therefore different modulus. In addition, we reveal that the high density assembly of aligned CNTs correlates with better electric conduction

  5. Hydroxylamine-O-sulfonamide is a versatile lead compound for the development of carbonic anhydrase inhibitors.

    PubMed

    Di Fiore, Anna; Vergara, Alessandro; Caterino, Marco; Alterio, Vincenzo; Monti, Simona M; Ombouma, Joanna; Dumy, Pascal; Vullo, Daniela; Supuran, Claudiu T; Winum, Jean-Yves; De Simone, Giuseppina

    2015-07-21

    Hydroxylamine-O-sulfonamide, a molecule incorporating two zinc-binding groups (ZBGs), has been investigated as a carbonic anhydrase inhibitor (CAI) by means of kinetic, crystallographic and Raman spectroscopy studies, highlighting interesting results on its mechanism of action. These data can be exploited to design new, effective and selective CAIs.

  6. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Vern Thorp, United Launch Alliance program manager, NASA missions, discusses the launch of NASA’s Orbiting Carbon Observatory-2 (OCO-2) onboard a ULA Delta II rocket, during a press briefing, Sunday, June 29, 2014, at the Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  7. Carbon Dioxide Removal via Passive Thermal Approaches

    NASA Technical Reports Server (NTRS)

    Lawson, Michael; Hanford, Anthony; Conger, Bruce; Anderson, Molly

    2011-01-01

    A paper describes a regenerable approach to separate carbon dioxide from other cabin gases by means of cooling until the carbon dioxide forms carbon dioxide ice on the walls of the physical device. Currently, NASA space vehicles remove carbon dioxide by reaction with lithium hydroxide (LiOH) or by adsorption to an amine, a zeolite, or other sorbent. Use of lithium hydroxide, though reliable and well-understood, requires significant mass for all but the shortest missions in the form of lithium hydroxide pellets, because the reaction of carbon dioxide with lithium hydroxide is essentially irreversible. This approach is regenerable, uses less power than other historical approaches, and it is almost entirely passive, so it is more economical to operate and potentially maintenance- free for long-duration missions. In carbon dioxide removal mode, this approach passes a bone-dry stream of crew cabin atmospheric gas through a metal channel in thermal contact with a radiator. The radiator is pointed to reject thermal loads only to space. Within the channel, the working stream is cooled to the sublimation temperature of carbon dioxide at the prevailing cabin pressure, leading to formation of carbon dioxide ice on the channel walls. After a prescribed time or accumulation of carbon dioxide ice, for regeneration of the device, the channel is closed off from the crew cabin and the carbon dioxide ice is sublimed and either vented to the environment or accumulated for recovery of oxygen in a fully regenerative life support system.

  8. Stabilization of Titanium Dioxide Nanoparticles at the Surface of Carbon Nanomaterials Promoted by Microwave Heating.

    PubMed

    Zhang, Rui; Santangelo, Saveria; Fazio, Enza; Neri, Fortunato; D'Arienzo, Massimiliano; Morazzoni, Franca; Zhang, Yihe; Pinna, Nicola; Russo, Patrícia A

    2015-10-12

    TiO2 is frequently combined with carbon materials, such as reduced graphene oxide (RGO), to produce composites with improved properties, for example for photocatalytic applications. It is shown that heating conditions significantly affect the interface and photocatalytic properties of TiO2 @C, and that microwave irradiation can be advantageous for the synthesis of carbon-based materials. Composites of TiO2 with RGO or amorphous carbon were prepared from reaction of titanium isopropoxide with benzyl alcohol. During the synthesis of the TiO2 nanoparticles, the carbon is involved in reactions that lead to the covalent attachment of the oxide, the extent of which depends on the carbon characteristics, heating rate, and mechanism. TiO2 is more efficiently stabilized at the surface of RGO than amorphous carbon. Rapid heating of the reaction mixture results in a stronger coupling between the nanoparticles and carbon, more uniform coatings, and smaller particles with narrower size distributions. The more efficient attachment of the oxide leads to better photocatalytic performance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A Canadian upland forest soil profile and carbon stocks database.

    PubMed

    Shaw, Cindy; Hilger, Arlene; Filiatrault, Michelle; Kurz, Werner

    2018-04-01

    "A Canadian upland forest soil profile and carbon stocks database" was compiled in phases over a period of 10 years to address various questions related to modeling upland forest soil carbon in a national forest carbon accounting model. For 3,253 pedons, the SITES table contains estimates for soil organic carbon stocks (Mg/ha) in organic horizons and mineral horizons to a 100-cm depth, soil taxonomy, leading tree species, mean annual temperature, annual precipitation, province or territory, terrestrial ecozone, and latitude and longitude, with an assessment of the quality of information about location. The PROFILES table contains profile data (16,167 records by horizon) used to estimate the carbon stocks that appear in the SITES table, plus additional soil chemical and physical data, where provided by the data source. The exceptions to this are estimates for soil carbon stocks based on Canadian National Forest Inventory data (NFI [2006] in REFERENCES table), where data were collected by depth increment rather than horizon and, therefore, total soil carbon stocks were calculated separately before being entered into the SITES table. Data in the PROFILES table include the carbon stock estimate for each horizon (corrected for coarse fragment content), and the data used to calculate the carbon stock estimate, such as horizon thickness, bulk density, and percent organic carbon. The PROFILES table also contains data, when reported by the source, for percent carbonate carbon, pH, percent total nitrogen, particle size distribution (percent sand, silt, clay), texture class, exchangeable cations, cation and total exchange capacity, and percent Fe and Al. An additional table provides references (REFERENCES table) for the source data. Earlier versions of the database were used to develop national soil carbon modeling categories based on differences in carbon stocks linked to soil taxonomy and to examine the potential of using soil taxonomy and leading tree species to improve

  10. Indoor Air Quality in Schools (IAQ): The Importance of Monitoring Carbon Dioxide Levels.

    ERIC Educational Resources Information Center

    Sundersingh, David; Bearg, David W.

    This article highlights indoor air quality and exposure to pollutants at school. Typical air pollutants within schools include environmental tobacco smoke, formaldehyde, volatile organic compounds, nitrogen oxides, carbon monoxide, carbon dioxide, allergens, pathogens, radon, pesticides, lead, and dust. Inadequate ventilation, inefficient…

  11. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites.

    PubMed

    Gulotty, Richard; Castellino, Micaela; Jagdale, Pravin; Tagliaferro, Alberto; Balandin, Alexander A

    2013-06-25

    Carboxylic functionalization (-COOH groups) of carbon nanotubes is known to improve their dispersion properties and increase the electrical conductivity of carbon-nanotube-polymer nanocomposites. We have studied experimentally the effects of this type of functionalization on the thermal conductivity of the nanocomposites. It was found that while even small quantities of carbon nanotubes (~1 wt %) can increase the electrical conductivity, a larger loading fraction (~3 wt %) is required to enhance the thermal conductivity of nanocomposites. Functionalized multi-wall carbon nanotubes performed the best as filler material leading to a simultaneous improvement of the electrical and thermal properties of the composites. Functionalization of the single-wall carbon nanotubes reduced the thermal conductivity enhancement. The observed trends were explained by the fact that while surface functionalization increases the coupling between carbon nanotube and polymer matrix, it also leads to formation of defects, which impede the acoustic phonon transport in the single-wall carbon nanotubes. The obtained results are important for applications of carbon nanotubes and graphene flakes as fillers for improving thermal, electrical and mechanical properties of composites.

  12. High Altitude Emissions of Black Carbon Aerosols: Potential Climate Implications

    NASA Astrophysics Data System (ADS)

    Satheesh, S. K.

    2017-12-01

    Synthesizing a series of ground-based and airborne measurements of aerosols over the Indian region during summer and pre-monsoon seasons have revealed the persistence of elevated absorbing aerosol layers over most of the Indian region; more than 50% of which located above clouds. Subsequent, in situ measurements of black carbon (BC) using high-altitude balloons, showed surprising layers with high concentrations in the middle and upper troposphere even at an altitude of 8 to 10 kms. Simultaneous measurements of the vertical thermal structure have shown localized warming due to BC absorption leading to large reduction in lapse rate and sharp temperature inversion, which in turn increases the atmospheric stability. This aerosol-induced stable layer is conducive for maintaining the black carbon layer longer at that level, leading thereby to further solar absorption and subsequently triggering dry convection. These observations support the `solar escalator' concept through which absorption-warming-convection cycles lead to self-lifting of BC to upper troposphere or even to lower stratosphere under favorable conditions in a matter of a few days. Employing an on-line regional chemistry transport model (WRF-Chem), incorporating aircraft emissions, it is shown that emissions from high-flying aircrafts as the most likely source of these elevated black carbon layers. These in-situ injected particles, produce significant warming of the thin air in those heights and lift these layers to even upper tropospheric/lower stratospheric heights, aided by the strong monsoonal convection occurring over the region, which are known to overshoot the tropical tropopause leading to injection of tropospheric air mass (along with its constituent aerosols) into the stratosphere, especially during monsoon season when the tropical tropopause layer is known to be thinnest. These simulations are further supported by the CALIPSO space-borne LIDAR derived extinction coefficient profiles. Based on

  13. Highly sensitive determination of cadmium and lead using a low-cost electrochemical flow-through cell based on a carbon paste electrode.

    PubMed

    Wonsawat, Wanida; Dungchai, Wijitar; Motomizu, Shoji; Chuanuwatanakul, Suchada; Chailapakul, Orawon

    2012-01-01

    A low-cost thin-layer electrochemical flow-through cell based on a carbon paste electrode (CPE), was constructed for the highly sensitive determination of cadmium(II) (Cd(2+)) and lead(II) (Pb(2+)) ions. The sensitivity of the proposed cell for Cd(2+) and Pb(2+) ion detection was improved by using the smallest channel height without the need for any complicated electrode modification. Under the optimum conditions, the detection limits of Cd(2+) and Pb(2+) ions (0.08 and 0.07 µg dm(-3), respectively) were 13.8- and 11.4-fold lower than that of a commercial flow cell (1.1 and 0.8 µg dm(-3), respectively). Moreover, the percentage recoveries of Cd(2+) and Pb(2+) for the in-house designed thin-layer flow cell were higher than those for the commercially available cell in all tested water samples, and within the acceptable range. The proposed flow cell is promising as an inexpensive and alternative one for the highly sensitive monitoring of heavy metal ions. 2012 © The Japan Society for Analytical Chemistry

  14. Impact of the 2015 El Niño on the Indonesian carbon balance: implications for carbon mitigation

    NASA Astrophysics Data System (ADS)

    Bowman, K. W.; Liu, J.; Bloom, A. A.; Parazoo, N.; Lee, M.; Walker, T. W.; Menemenlis, D.; Jiang, Z.; Gierach, M.; Gurney, K. R.

    2016-12-01

    The COP21 or Paris Agreement in Dec. 2015 was a landmark step in a cooperative approach to reduce anthropogenic emissions from both fossil fuel and deforestation. During that same period, one of the strongest El Niños on record led to devastating droughts, fires, and air pollution in Indonesia. We assess the impact of this El Niño on the Indonesia carbon balance using the NASA Carbon Monitoring System Flux (CMS-Flux) pilot project, which assimilates satellite observations across the entire carbon cycle to attribute the CO2 growth rate to spatially resolved surface fluxes. We assimilate new xCO2 observations from the Orbital Carbon Observatory (OCO-2) to quantify net carbon fluxes and validate those fluxes against independent in-situ atmospheric data. The contribution of biomass burning to the carbon balance is independently determined from the assimilation of Measurements of Pollution in the Troposphere (MOPITT). The impact of the concomitant drought on productively is assessed from the assimilation of new solar induced fluorescence (SIF) measurements. Using these multiple lines of evidence, we investigate the relative role of biomass burning and productivity in the contribution of Indonesia to the global atmospheric growth rate. The exceptionally long turnover rates of peat carbon pools lead to effectively irreversible carbon loss to the atmosphere. The implications of these losses to Indonesian Intended Nationally Determined Contributions (INDC) as part of the Paris agreement will be explored.

  15. Modeling the Role of Bulk and Surface Characteristics of Carbon Fiber on Thermal Conductance across the Carbon Fiber/Matrix Interface (Postprint)

    DTIC Science & Technology

    2015-11-09

    Osguthorpe, D. J.; Wolff, J.; Genest, M.; Hagler, A. T. Structure and Energetics of Ligand Binding to Proteins: Escherichia Coli Dihydrofolate...available at DOI: 10.1021/acsami.5b08591 14. ABSTRACT (Maximum 200 words) The rapid heating of carbon-fiber-reinforced polymer matrix composites leads ...polymer matrix composites leads to complex thermophysical interactions which not only are dependent on the thermal properties of the constituents and

  16. Indirect Human Impacts Reverse Centuries of Carbon Sequestration and Salt Marsh Accretion

    PubMed Central

    Coverdale, Tyler C.; Brisson, Caitlin P.; Young, Eric W.; Yin, Stephanie F.; Donnelly, Jeffrey P.; Bertness, Mark D.

    2014-01-01

    Direct and indirect human impacts on coastal ecosystems have increased over the last several centuries, leading to unprecedented degradation of coastal habitats and loss of ecological services. Here we document a two-century temporal disparity between salt marsh accretion and subsequent loss to indirect human impacts. Field surveys, manipulative experiments and GIS analyses reveal that crab burrowing weakens the marsh peat base and facilitates further burrowing, leading to bank calving, disruption of marsh accretion, and a loss of over two centuries of sequestered carbon from the marsh edge in only three decades. Analogous temporal disparities exist in other systems and are a largely unrecognized obstacle in attaining sustainable ecosystem services in an increasingly human impacted world. In light of the growing threat of indirect impacts worldwide and despite uncertainties in the fate of lost carbon, we suggest that estimates of carbon emissions based only on direct human impacts may significantly underestimate total anthropogenic carbon emissions. PMID:24675669

  17. [Regional and global estimates of carbon stocks and carbon sequestration capacity in forest ecosystems: A review].

    PubMed

    Liu, Wei-wei; Wang, Xiao-ke; Lu, Fei; Ouyang, Zhi-yun

    2015-09-01

    As a dominant part of terrestrial ecosystems, forest ecosystem plays an important role in absorbing atmospheric CO2 and global climate change mitigation. From the aspects of zonal climate and geographical distribution, the present carbon stocks and carbon sequestration capacity of forest ecosystem were comprehensively examined based on the review of the latest literatures. The influences of land use change on forest carbon sequestration were analyzed, and factors that leading to the uncertainty of carbon sequestration assessment in forest ecosystem were also discussed. It was estimated that the current forest carbon stock was in the range of 652 to 927 Pg C and the carbon sequestration capacity was approximately 4.02 Pg C · a(-1). In terms of zonal climate, the carbon stock and carbon sequestration capacity of tropical forest were the maximum, about 471 Pg C and 1.02-1.3 Pg C · a(-1) respectively; then the carbon stock of boreal forest was about 272 Pg C, while its carbon sequestration capacity was the minimum, approximately 0.5 Pg C · a(-1); for temperate forest, the carbon stock was minimal, around 113 to 159 Pg C and its carbon sequestration capacity was 0.8 Pg C · a(-1). From the aspect of geographical distribution, the carbon stock of forest ecosystem in South America was the largest (187.7-290 Pg C), then followed by European (162.6 Pg C), North America (106.7 Pg C), Africa (98.2 Pg C) and Asia (74.5 Pg C), and Oceania (21.7 Pg C). In addition, carbon sequestration capacity of regional forest ecosystem was summed up as listed below: Tropical South America forest was the maximum (1276 Tg C · a(-1)), then were Tropical Africa (753 Tg C · a(-1)), North America (248 Tg C · a(-1)) and European (239 Tg C · a(-1)), and East Asia (98.8-136.5 Tg C · a(-1)) was minimum. To further reduce the uncertainty in the estimations of the carbon stock and carbon sequestration capacity of forest ecosystem, comprehensive application of long-term observation, inventories

  18. Electrical and galvanomagnetic properties of nanoporous carbon samples impregnated with bromine

    NASA Astrophysics Data System (ADS)

    Danishevskii, A. M.; Popov, V. V.; Kyutt, R. N.; Gordeev, S. K.

    2013-07-01

    Nanoporous carbon samples with a large specific surface area can be filled with heavier elements or their compounds, which makes it possible to investigate the interaction of their electronic subsystems with carbon. One of the elements convenient for filling pores of carbon materials is bromine. Impregnation of nanoporous carbon samples with bromine causes the occurrence of the processes of micropore filling, monolayer adsorption, and intercalation. It has been found that samples impregnated with bromine substantially change their electrical and galvanomagnetic properties, and these changes depend on the structure of the samples. It has been shown that, if in the skeleton of a porous carbon sample there is a fraction of graphite clusters, the impregnation of the sample with bromine increases the concentration of charged carriers (holes). But when the sample has a quasi-amorphous structure, the injection of bromine into the sample leads to the appearance of a certain concentration of electrons in addition to charged mobile holes of the initial sample; i.e., the electrical conductivity becomes bipolar. In the former case, bromine molecules intercalate graphite clusters and, since bromine is an acceptor during intercalation of graphite, the hole concentration in the carbon skeleton network increases. In the latter case, bromine molecules can only be adsorbed on pore walls. As a result, the adsorption interaction between the electron shells of bromine molecules and the carbon surface leads to the formation of a donor layer near the surface and to the generation of electrons in the carbon skeleton network.

  19. Soil organic carbon response to shrub encroachment regulated by soil aggregates

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Li, H.; Shen, H.; Feng, Y.; Fang, J.

    2017-12-01

    Shrub encroachment leads to change in soil organic carbon content, but there still exists a lot of uncertainty in its mechanism as it relates to deep soil research. Soil organic carbon is usually associated with stable aggregate quantity. In this study, we conducted a field investigation for typical steppe and desert steppe in Inner Mongolia with the view to examining the impact of shrub encroachment on soil organic carbon with soil aggregate at a depth of 0-500 cm. The results show that in the desert steppe, the particle size of soil aggregate content level in different depth are presented the trend of shrub patches is lower than the herb matrix, organic carbon content of soil aggregate under 50 cm deeper presents the trend of shrub patches is higher than herb matrix, eventually leading to shrub patches whole soil organic carbon in the 0 to 50 cm depth lower than the herb matrix, and in deeper soil below 50 cm higher than the herb matrix. In the typical steppe, there is no significant difference between soil aggregate structure of shrub patches and herb matrix, but organic carbon content of soil aggregate, especially large aggregate organic carbon content in the shrub patches is significantly higher than the herb matrix, so that the whole soil organic carbon content in the shrub patches is significantly higher than herb matrix. The rate of soil organic carbon content change (0-100 cm) by shrub encroachment showed significant negative correlation with the mean weight diameter of soil aggregate of herb matrix. We also found that the variations of soil organic carbon in desert steppe is not dominant by aggregates of some size, but the change of the typical steppe soil organic carbon mainly contributed by > 0.25 mm and 0.053-0.25 mm aggregates. The results suggested that the effects of shrub encroachment on soil organic carbon is regulated by soil aggregate, but it is varied for different type of grassland, which should provide some insights into our understanding on

  20. Using augmented reality to inform consumer choice and lower carbon footprints

    NASA Astrophysics Data System (ADS)

    Isley, Steven C.; Ketcham, Robert; Arent, Douglas J.

    2017-05-01

    Consumers who wish to consider product attributes like carbon footprints in their purchasing decisions are often blocked from meaningful action by a lack of information. We conducted a randomized controlled trial at a grocery store to evaluate the effects of providing such product attribute and carbon footprint information via augmented reality (AR) displays on bottled water and breakfast cereal, two frequently purchased goods. Using an AR smartphone app that combines comparative and detailed product information into personalized data and recommendations, a 23% reduction in carbon footprint was found for bottled water, and non-significant reductions for breakfast cereal. However, AR informed choice lead to healthier cereal purchases with an average of 32% less sugar, 15% less fat, and 9.8% less sodium. This research suggests that AR techniques can help facilitate complex decision-making and lead to better choices.

  1. Performance and Challenges of Point of Use Devices for Lead ...

    EPA Pesticide Factsheets

    this presentation summarizes the performance of POU devices for the removal of lead and some other metals, in Flint, Michigan. The mechanism of POU filters for metal removal is described as being a combination of physical filtration with surface sorption and adherence to embedded functional groups in the carbon block, along with the certification process and how to find certified products from the web listings. Finally, there is a discussion of several alternative approaches for possible improvement of the NSF/ANSI 53 and 42 standards to improve the amount of protection afforded by the devices, in the future. this presentation summarizes the performance of POU devices for the removal of lead and some other metals, in Flint, Michigan. The mechanism of POU filters for metal removal is described as being a combination of physical filtration with surface sorption and adherence to embedded functional groups in the carbon block, along with the certification process and how to find certified products from the web listings. Finally, there is a discussion of several alternative approaches for possible improvement of the NSF/ANSI 53 and 42 standards to improve the amount of protection afforded by the devices, in the future.

  2. Main controlling factors and forecasting models of lead accumulation in earthworms based on low-level lead-contaminated soils.

    PubMed

    Tang, Ronggui; Ding, Changfeng; Ma, Yibing; Wan, Mengxue; Zhang, Taolin; Wang, Xingxiang

    2018-06-02

    To explore the main controlling factors in soil and build a predictive model between the lead concentrations in earthworms (Pb earthworm ) and the soil physicochemical parameters, 13 soils with low level of lead contamination were used to conduct toxicity experiments using earthworms. The results indicated that a relatively high bioaccumulation factor appeared in the soils with low pH values. The lead concentrations between earthworms and soils after log transformation had a significantly positive correlation (R 2  = 0.46, P < 0.0001, n = 39). Stepwise multiple linear regression analysis derived a fitting empirical model between Pb earthworm and the soil physicochemical properties: log(Pb earthworm ) = 0.96log(Pb soil ) - 0.74log(OC) - 0.22pH + 0.95, (R 2  = 0.66, n = 39). Furthermore, path analysis confirmed that the Pb concentrations in the soil (Pb soil ), soil pH, and soil organic carbon (OC) were the primary controlling factors of Pb earthworm with high pathway parameters (0.71, - 0.51, and - 0.49, respectively). The predictive model based on Pb earthworm in a nationwide range of soils with low-level lead contamination could provide a reference for the establishment of safety thresholds in Pb-contaminated soils from the perspective of soil-animal systems.

  3. Electronic band gaps of confined linear carbon chains ranging from polyyne to carbyne

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Rohringer, Philip; Wanko, Marius; Rubio, Angel; Waßerroth, Sören; Reich, Stephanie; Cambré, Sofie; Wenseleers, Wim; Ayala, Paola; Pichler, Thomas

    2017-12-01

    Ultralong linear carbon chains of more than 6000 carbon atoms have recently been synthesized within double-walled carbon nanotubes (DWCNTs), and they show a promising route to one-atom-wide semiconductors with a direct band gap. Theoretical studies predicted that this band gap can be tuned by the length of the chains, the end groups, and their interactions with the environment. However, different density functionals lead to very different values of the band gap of infinitely long carbyne. In this work, we applied resonant Raman excitation spectroscopy with more than 50 laser wavelengths to determine the band gap of long carbon chains encapsulated inside DWCNTs. The experimentally determined band gaps ranging from 2.253 to 1.848 eV follow a linear relation with Raman frequency. This lower bound is the smallest band gap of linear carbon chains observed so far. The comparison with experimental data obtained for short chains in gas phase or in solution demonstrates the effect of the DWCNT encapsulation, leading to an essential downshift of the band gap. This is explained by the interaction between the carbon chain and the host tube, which greatly modifies the chain's bond-length alternation.

  4. Electrochemical Characterization of Carbon Nanotubes for Fuel Cell MEA's

    NASA Technical Reports Server (NTRS)

    Panagaris, Jael; Loyselle, Patricia

    2004-01-01

    Single-walled and multi-walled carbon nanotubes from different sources have been evaluated before and after sonication to identify structural differences and evaluate electrochemical performance. Raman spectral analysis and cyclic voltammetry in situ with QCM were the principle means of evaluating the tubes. The raman data indicates that sonication in toluene modifies the structural properties of the nanotubes. Sonication also affects the electrochemical performance of single-walled nanotubes and the multi-walled tubes differently. The characterization of different types of carbon nanotubes leads up to identifying a potential candidate for incorporating carbon nanotubes for fuel cell MEA structures.

  5. Ecosystem carbon loss with woody plant invasion of grasslands.

    PubMed

    Jackson, Robert B; Banner, Jay L; Jobbágy, Esteban G; Pockman, William T; Wall, Diana H

    2002-08-08

    The invasion of woody vegetation into deserts, grasslands and savannas is generally thought to lead to an increase in the amount of carbon stored in those ecosystems. For this reason, shrub and forest expansion (for example, into grasslands) is also suggested to be a substantial, if uncertain, component of the terrestrial carbon sink. Here we investigate woody plant invasion along a precipitation gradient (200 to 1,100 mm yr(-1)) by comparing carbon and nitrogen budgets and soil delta(13)C profiles between six pairs of adjacent grasslands, in which one of each pair was invaded by woody species 30 to 100 years ago. We found a clear negative relationship between precipitation and changes in soil organic carbon and nitrogen content when grasslands were invaded by woody vegetation, with drier sites gaining, and wetter sites losing, soil organic carbon. Losses of soil organic carbon at the wetter sites were substantial enough to offset increases in plant biomass carbon, suggesting that current land-based assessments may overestimate carbon sinks. Assessments relying on carbon stored from woody plant invasions to balance emissions may therefore be incorrect.

  6. Adsorption of lead over graphite oxide.

    PubMed

    Olanipekun, Opeyemi; Oyefusi, Adebola; Neelgund, Gururaj M; Oki, Aderemi

    2014-01-24

    The adsorption efficiency and kinetics of removal of lead in presence of graphite oxide (GO) was determined using the Atomic Absorption Spectrophotometer (AAS). The GO was prepared by the chemical oxidation of graphite and characterized using FTIR, SEM, TGA and XRD. The adsorption efficiency of GO for the solution containing 50, 100 and 150 ppm of Pb(2+) was found to be 98%, 91% and 71% respectively. The adsorption ability of GO was found to be higher than graphite. Therefore, the oxidation of activated carbon in removal of heavy metals may be a viable option to reduce pollution in portable water. Published by Elsevier B.V.

  7. Attrition and carbon formation on iron catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, S.D.; Harrington, M.S.; Jackson, N.B.

    1994-08-01

    A serious engineering problem that needs to be addressed in the scale-up of slurry-phase, Fischer-Tropsch reactors is attrition of the precipitated iron catalyst. Attrition, which can break down the catalyst into particles too small to filter, results from both mechanical and chemical forces. This study examines the chemical causes of attrition in iron catalysts. A bench-scale, slurry-phase CSTR is used to simulate operating conditions that lead to attrition of the catalyst. The average particle size and size distribution of the catalyst samples are used to determine the effect of slurry temperature, reducing gas, gas flow rate and time upon attritionmore » of the catalyst. Carbon deposition, a possible contributing factor to attrition, has been examined using gravimetric analysis and TEM. Conditions affecting the rate of carbon deposition have been compared to those leading to attrition of the precipitated iron catalyst.« less

  8. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Lt. Joseph Round, launch weather officer, USAF 30th Space Wing Weather Squadron, discusses the weather forecast for launch of NASA’s Orbiting Carbon Observatory-2 (OCO-2) onboard a ULA Delta II rocket, during a press briefing, Sunday, June 29, 2014, at the Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  9. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Dave Crisp, OCO-2 science team leader, JPL, left, and Annmarie Eldering, OCO-2 deputy project scientist, JPL, are seen during a science briefing ahead of the planned launch of the Orbiting Carbon Observatory-2 (OCO-2), Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  10. Barriers and Prospects of Carbon Sequestration in India.

    PubMed

    Gupta, Anjali; Nema, Arvind K

    2014-04-01

    Carbon sequestration is considered a leading technology for reducing carbon dioxide (CO2) emissions from fossil-fuel based electricity generating power plants and could permit the continued use of coal and gas whilst meeting greenhouse gas targets. India will become the world's third largest emitter of CO2 by 2015. Considering the dependence of health of the Indian global economy, there is an imperative need to develop a global approach which could address the capturing and securely storing carbon dioxide emitted from an array of energy. Therefore technology such as carbon sequestration will deliver significant CO2 reductions in a timely fashion. Considerable energy is required for the capture, compression, transport and storage steps. With the availability of potential technical storage methods for carbon sequestration like forest, mineral and geological storage options with India, it would facilitate achieving stabilization goal in the near future. This paper examines the potential carbon sequestration options available in India and evaluates them with respect to their strengths, weakness, threats and future prospects.

  11. Improved thermoelectric power output from multilayered polyethylenimine doped carbon nanotube based organic composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewitt, Corey A.; Montgomery, David S.; Barbalace, Ryan L.

    2014-05-14

    By appropriately selecting the carbon nanotube type and n-type dopant for the conduction layers in a multilayered carbon nanotube composite, the total device thermoelectric power output can be increased significantly. The particular materials chosen in this study were raw single walled carbon nanotubes for the p-type layers and polyethylenimine doped single walled carbon nanotubes for the n-type layers. The combination of these two conduction layers leads to a single thermocouple Seebeck coefficient of 96 ± 4 μVK{sup −1}, which is 6.3 times higher than that previously reported. This improved Seebeck coefficient leads to a total power output of 14.7 nW permore » thermocouple at the maximum temperature difference of 50 K, which is 44 times the power output per thermocouple for the previously reported results. Ultimately, these thermoelectric power output improvements help to increase the potential use of these lightweight, flexible, and durable organic multilayered carbon nanotube based thermoelectric modules in low powered electronics applications, where waste heat is available.« less

  12. Thin lead sheets in the decorative features in Pavia Charterhouse.

    PubMed

    Colombo, Chiara; Realini, Marco; Sansonetti, Antonio; Rampazzi, Laura; Casadio, Francesca

    2006-01-01

    The facade of the church of the Pavia Charterhouse, built at the end of the 15th century, shows outstanding decorative features made of different stone materials, such as marbles, breccias and sandstones. Magnificent ornamental elements are made of thin lead sheets, and some marble slabs are inlaid with them. Metal elements are shaped in complex geometric and phytomorphic design, to form a Greek fret in black contrasting with the white Carrara marble. Lead pins were fixed to the back of the thin lead sheets with the aim of attaching the metal elements to the marble; in so doing the pins and the lead sheets constitute a single piece of metal. In some areas, lead elements have been lost, and they have been substituted with a black plaster, matching the colour of the metal. To the authors' knowledge, this kind of decorative technique is rare, and confirms the refinement of Renaissance Lombard architecture. This work reports on the results of an extensive survey of the white, orange and yellowish layers, which are present on the external surface of the lead. The thin lead sheets have been characterized and their state of conservation has been studied with the aid of Optical Microscopy, SEM-EDS, FTIR and Raman analyses. Lead sulphate, lead carbonates and oxides have been identified as decay products.

  13. 77 FR 24221 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Notice of Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ...)] Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Notice of Commission Determinations... countervailing duty order on corrosion-resistant carbon steel flat products from Korea and the antidumping duty orders on corrosion- resistant carbon steel flat products from Germany and Korea would be likely to lead...

  14. Preparation of Carbon Nanosheets at Room Temperature

    PubMed Central

    Schrettl, Stephen; Schulte, Bjoern; Stefaniu, Cristina; Oliveira, Joana; Brezesinski, Gerald; Frauenrath, Holger

    2016-01-01

    Amphiphilic molecules equipped with a reactive, carbon-rich "oligoyne" segment consisting of conjugated carbon-carbon triple bonds self-assemble into defined aggregates in aqueous media and at the air-water interface. In the aggregated state, the oligoynes can then be carbonized under mild conditions while preserving the morphology and the embedded chemical functionalization. This novel approach provides direct access to functionalized carbon nanomaterials. In this article, we present a synthetic approach that allows us to prepare hexayne carboxylate amphiphiles as carbon-rich siblings of typical fatty acid esters through a series of repeated bromination and Negishi-type cross-coupling reactions. The obtained compounds are designed to self-assemble into monolayers at the air-water interface, and we show how this can be achieved in a Langmuir trough. Thus, compression of the molecules at the air-water interface triggers the film formation and leads to a densely packed layer of the molecules. The complete carbonization of the films at the air-water interface is then accomplished by cross-linking of the hexayne layer at room temperature, using UV irradiation as a mild external stimulus. The changes in the layer during this process can be monitored with the help of infrared reflection-absorption spectroscopy and Brewster angle microscopy. Moreover, a transfer of the carbonized films onto solid substrates by the Langmuir-Blodgett technique has enabled us to prove that they were carbon nanosheets with lateral dimensions on the order of centimeters. PMID:27022781

  15. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Mike Hyatt (above) finishes installing a Reinforced Carbon Carbon (RCC) panel to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-08

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Mike Hyatt (above) finishes installing a Reinforced Carbon Carbon (RCC) panel to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  16. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Mike Hyatt (above) completes installation of a Reinforced Carbon Carbon (RCC) panel onto the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-05

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Mike Hyatt (above) completes installation of a Reinforced Carbon Carbon (RCC) panel onto the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  17. KENNEDY SPACE CENTER, FLA. - United Space Alliance employee Anthony Simmons checks the electroweld he performed on an insulator inside a Reinforced Carbon Carbon panel. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-16

    KENNEDY SPACE CENTER, FLA. - United Space Alliance employee Anthony Simmons checks the electroweld he performed on an insulator inside a Reinforced Carbon Carbon panel. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  18. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Mike Hyatt attaches a Reinforced Carbon Carbon (RCC) panel onto the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-05

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Mike Hyatt attaches a Reinforced Carbon Carbon (RCC) panel onto the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  19. KENNEDY SPACE CENTER, FLA. - United Space Alliance employee Anthony Simmons electrowelds a crack formed in the insulator inside a Reinforced Carbon Carbon panel. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-16

    KENNEDY SPACE CENTER, FLA. - United Space Alliance employee Anthony Simmons electrowelds a crack formed in the insulator inside a Reinforced Carbon Carbon panel. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  20. KENNEDY SPACE CENTER, FLA. - United Space Alliance employee Anthony Simmons prepares to electroweld a crack formed in the insulator inside a Reinforced Carbon Carbon panel. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-16

    KENNEDY SPACE CENTER, FLA. - United Space Alliance employee Anthony Simmons prepares to electroweld a crack formed in the insulator inside a Reinforced Carbon Carbon panel. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  1. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Mike Hyatt looks over a Reinforced Carbon Carbon (RCC) panel that will be attached to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-08

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Mike Hyatt looks over a Reinforced Carbon Carbon (RCC) panel that will be attached to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  2. KENNEDY SPACE CENTER, FLA. - United Space Alliance employee Anthony Simmons prepares to electroweld a crack found on an insulator inside a Reinforced Carbon Carbon panel. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-16

    KENNEDY SPACE CENTER, FLA. - United Space Alliance employee Anthony Simmons prepares to electroweld a crack found on an insulator inside a Reinforced Carbon Carbon panel. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  3. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Mike Hyatt (right) attaches a Reinforced Carbon Carbon (RCC) panel onto the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-05

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Mike Hyatt (right) attaches a Reinforced Carbon Carbon (RCC) panel onto the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  4. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Mike Hyatt (above) attaches a Reinforced Carbon Carbon (RCC) panel onto the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-05

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Mike Hyatt (above) attaches a Reinforced Carbon Carbon (RCC) panel onto the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  5. Tuning carbon nanotube assembly for flexible, strong and conductive films.

    PubMed

    Wang, Yanjie; Li, Min; Gu, Yizhuo; Zhang, Xiaohua; Wang, Shaokai; Li, Qingwen; Zhang, Zuoguang

    2015-02-21

    Carbon nanotubes are ideal scaffolds for designing and architecting flexible graphite films with tunable mechanical, electrical and thermal properties. Herein, we demonstrate that the assembly of aligned carbon nanotubes with different aggregation density and morphology leads to different mechanical properties and anisotropic electrical conduction along the films. Using drying evaporation under tension treatment, the carbon nanotubes can be assembled into strong films with tensile strength and Young's modulus as high as 3.2 GPa and 124 GPa, respectively, leading to a remarkable toughness of 54.38 J g(-1), greatly outperforming conventional graphite films, spider webs and even Kevlar fiber films. Different types of solvents may result in the assembly of CNTs with different aggregation morphology and therefore different modulus. In addition, we reveal that the high density assembly of aligned CNTs correlates with better electric conduction along the axial direction, enabling these flexible graphite films to be both strong and conductive.

  6. Including carbon emissions from deforestation in the carbon footprint of Brazilian beef.

    PubMed

    Cederberg, Christel; Persson, U Martin; Neovius, Kristian; Molander, Sverker; Clift, Roland

    2011-03-01

    Effects of land use changes are starting to be included in estimates of life-cycle greenhouse gas (GHG) emissions, so-called carbon footprints (CFs), from food production. Their omission can lead to serious underestimates, particularly for meat. Here we estimate emissions from the conversion of forest to pasture in the Legal Amazon Region (LAR) of Brazil and present a model to distribute the emissions from deforestation over products and time subsequent to the land use change. Expansion of cattle ranching for beef production is a major cause of deforestation in the LAR. The carbon footprint of beef produced on newly deforested land is estimated at more than 700 kg CO(2)-equivalents per kg carcass weight if direct land use emissions are annualized over 20 years. This is orders of magnitude larger than the figure for beef production on established pasture on non-deforested land. While Brazilian beef exports have originated mainly from areas outside the LAR, i.e. from regions not subject to recent deforestation, we argue that increased production for export has been the key driver of the pasture expansion and deforestation in the LAR during the past decade and this should be reflected in the carbon footprint attributed to beef exports. We conclude that carbon footprint standards must include the more extended effects of land use changes to avoid giving misleading information to policy makers, retailers, and consumers.

  7. Water and Carbon Dioxide Adsorption at Olivine Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerisit, Sebastien N.; Bylaska, Eric J.; Felmy, Andrew R.

    2013-11-14

    Plane-wave density functional theory (DFT) calculations were performed to simulate water and carbon dioxide adsorption at the (010) surface of five olivine minerals, namely, forsterite (Mg2SiO4), calcio-olivine (Ca2SiO4), tephroite (Mn2SiO4), fayalite (Fe2SiO4), and Co-olivine (Co2SiO4). Adsorption energies per water molecule obtained from energy minimizations varied from -78 kJ mol-1 for fayalite to -128 kJ mol-1 for calcio-olivine at sub-monolayer coverage and became less exothermic as coverage increased. In contrast, carbon dioxide adsorption energies at sub-monolayer coverage ranged from -20 kJ mol-1 for fayalite to -59 kJ mol-1 for calcio-olivine. Therefore, the DFT calculations show a strong driving force for carbonmore » dioxide displacement by water at the surface of all olivine minerals in a competitive adsorption scenario. Additionally, adsorption energies for both water and carbon dioxide were found to be more exothermic for the alkaline-earth (AE) olivines than for the transition-metal (TM) olivines and to not correlate with the solvation enthalpies of the corresponding divalent cations. However, a correlation was obtained with the charge of the surface divalent cation indicating that the more ionic character of the AE cations in the olivine structure relative to the TM cations leads to greater interactions with adsorbed water and carbon dioxide molecules at the surface and thus more exothermic adsorption energies for the AE olivines. For calcio-olivine, which exhibits the highest divalent cation charge of the five olivines, ab initio molecular dynamics simulations showed that this effect leads both water and carbon dioxide to react with the surface and form hydroxyl groups and a carbonate-like species, respectively.« less

  8. Two-dimensional isobutyl acetate production pathways to improve carbon yield

    PubMed Central

    Tashiro, Yohei; Desai, Shuchi H.; Atsumi, Shota

    2015-01-01

    For an economically competitive biological process, achieving high carbon yield of a target chemical is crucial. In biochemical production, pyruvate and acetyl-CoA are primary building blocks. When sugar is used as the sole biosynthetic substrate, acetyl-CoA is commonly generated by pyruvate decarboxylation. However, pyruvate decarboxylation during acetyl-CoA formation limits the theoretical maximum carbon yield (TMCY) by releasing carbon, and in some cases also leads to redox imbalance. To avoid these problems, we describe here the construction of a metabolic pathway that simultaneously utilizes glucose and acetate. Acetate is utilized to produce acetyl-CoA without carbon loss or redox imbalance. We demonstrate the utility of this approach for isobutyl acetate (IBA) production, wherein IBA production with glucose and acetate achieves a higher carbon yield than with either sole carbon source. These results highlight the potential for this multiple carbon source approach to improve the TMCY and balance redox in biosynthetic pathways. PMID:26108471

  9. Elevated temperature alters carbon cycling in a model microbial community

    NASA Astrophysics Data System (ADS)

    Mosier, A.; Li, Z.; Thomas, B. C.; Hettich, R. L.; Pan, C.; Banfield, J. F.

    2013-12-01

    Earth's climate is regulated by biogeochemical carbon exchanges between the land, oceans and atmosphere that are chiefly driven by microorganisms. Microbial communities are therefore indispensible to the study of carbon cycling and its impacts on the global climate system. In spite of the critical role of microbial communities in carbon cycling processes, microbial activity is currently minimally represented or altogether absent from most Earth System Models. Method development and hypothesis-driven experimentation on tractable model ecosystems of reduced complexity, as presented here, are essential for building molecularly resolved, benchmarked carbon-climate models. Here, we use chemoautotropic acid mine drainage biofilms as a model community to determine how elevated temperature, a key parameter of global climate change, regulates the flow of carbon through microbial-based ecosystems. This study represents the first community proteomics analysis using tandem mass tags (TMT), which enable accurate, precise, and reproducible quantification of proteins. We compare protein expression levels of biofilms growing over a narrow temperature range expected to occur with predicted climate changes. We show that elevated temperature leads to up-regulation of proteins involved in amino acid metabolism and protein modification, and down-regulation of proteins involved in growth and reproduction. Closely related bacterial genotypes differ in their response to temperature: Elevated temperature represses carbon fixation by two Leptospirillum genotypes, whereas carbon fixation is significantly up-regulated at higher temperature by a third closely related genotypic group. Leptospirillum group III bacteria are more susceptible to viral stress at elevated temperature, which may lead to greater carbon turnover in the microbial food web through the release of viral lysate. Overall, this proteogenomics approach revealed the effects of climate change on carbon cycling pathways and other

  10. In-Space Repair of Reinforced Carbon-Carbon Thermal Protection System Structures

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2006-01-01

    Advanced repair and refurbishment technologies are critically needed for the thermal protection system of current space transportation system as well as for future Crew Exploration Vehicles (CEV). The damage to these components could be caused by impact during ground handling or due to falling of ice or other objects during launch. In addition, in-orbit damage includes micrometeoroid and orbital debris impact as well as different factors (weather, launch acoustics, shearing, etc.) during launch and re-entry. The GRC developed GRABER (Glenn Refractory Adhesive for Bonding and Exterior Repair) material has shown multiuse capability for repair of small cracks and damage in reinforced carbon-carbon (RCC) material. The concept consists of preparing an adhesive paste of desired ceramic with appropriate additives and then applying the paste to the damaged/cracked area of the RCC composites with adhesive delivery system. The adhesive paste cures at 100-120 C and transforms into a high temperature ceramic during simulated entry conditions. A number of plasma torch and ArcJet tests were carried out to evaluate the crack repair capability of GRABER materials for Reinforced Carbon-Carbon (RCC) composites. For the large area repair applications, integrated system for tile and leading edge repair (InSTALER) have been developed. In this presentation, critical in-space repair needs and technical challenges as well as various issues and complexities will be discussed along with the plasma performance and post test characterization of repaired RCC materials.

  11. Altered Plant Litter and Microbial Composition Lead to Topsoil Organic Carbon Loss Over a Shrub-encroachment Gradient in an Inner Mongolia Grassland

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Li, H.; Shen, H.; Xu, Y.; Wang, Y.; Xing, A.; Fang, J.

    2017-12-01

    Over the past 150 years, shrub encroachment has occurred in arid and semi-arid ecosystems resulting from climate change and increased human disturbance. Previous studies have revealed that shrub encroachment has substantial effects on habitat heterogeneity, aboveground biomass and bulk carbon content of grasslands, thereby affecting the regional carbon balance. Soil organic carbon (SOC) is mainly derived from aboveground litter, root litter and root exudates and is metabolized by microorganisms. The quality and quantity of plant litter together with soil microbial biomass are important drivers of SOC accumulation. However, the mechanisms regulating soil carbon accumulation by the shrub encroachment remain unclear and molecular evidence is particularly lacking. We use the data of the chemical composition of plant tissues and SOC, and the soil microbial communities to identify the effects of shrub encroachment on SOC accumulation in the top layer along a gradient of natural shrub cover in the grasslands of Inner Mongolia. Our finding indicates that nitrogen-rich legume-shrub encroachment led to soil carbon accumulation in the shrub patch, with more extensive carbon loss observed in the grassy matrix, which resulted in an overall carbon loss. In the pure grassland, a higher abundance of cutin and suberin and a lower concentration of free lipids were detected, suggesting the preservation of recalcitrant polymers derived from herb inputs. In the shrub-encroached grasslands, the labile shrub leaves did not decompose alone but were mixed with herb litter to promote the degradation of SOC via the priming of microbial activities. The SOC remained unchanged in the shrub patches with the increasing shrub cover, which might have been caused by the replacement of prior carbon decompositions with the fresh input of shrub leaves. Similarly, the SOC decreased significantly with increasing shrub cover in the grassy matrix, which likely resulted from insufficient fresh plant inputs

  12. Lead recovery and the feasibility of foam glass production from funnel glass of dismantled cathode ray tube through pyrovacuum process.

    PubMed

    Chen, Mengjun; Zhang, Fu-Shen; Zhu, Jianxin

    2009-01-30

    Cathode ray tube (CRT) is the first and foremost problem that must be solved in electronic waste disposal, and the key of which lies in the detoxification and reutilization of lead-contained funnel glass. In this study, a novel and effective process for funnel glass of dismantled CRT treatment was developed. The key point of the process was to recover metallic lead from the funnel glass and to prepare foam glass synchronously. Experimental results showed that lead recovery rate increased first with the increase of temperature, carbon adding amount, and holding time, then reached a plateau value, but pressure was on the contrary. The optimum temperature, pressure, carbon adding amount and holding time for lead recovery were 1000 degrees C, 1000 Pa, 5% and 4h, respectively, and the maximum lead recovery rate was 98.6%. In the pyrovacuum process, lead in the funnel glass was firstly detached and changed to PbO, then reduced and evaporated, and was recovered in the form of pure metal with a purity of 99.3%. The residue porous glass was environmentally acceptable for construction application.

  13. Nano-lead particle synthesis from waste cathode ray-tube funnel glass.

    PubMed

    Xing, Mingfei; Zhang, Fu-Shen

    2011-10-30

    Waste cathode ray-tube (CRT) funnel glass is classified as hazardous waste since it contains high amount of lead. In the present study, a novel process for lead nanopowder synthesis from this type of glass was developed by combining vacuum carbon-thermal reduction and inert-gas consolidation procedures. The key trait of the process was to evaporate lead out of the glass to obtain harmless glass powder and synchronously produce lead nanoparticles. In the synthesis process, lead oxide in the funnel glass was firstly reduced to elemental lead, and evaporated rapidly in vacuum circumstance, then quenched and formed nano-size particles on the surface of the cooling device. Experimental results showed that temperature, pressure and argon gas flow rate were the major parameters controlling lead evaporation ratio and the morphology of lead nanoparticles. The maximum lead evaporation ratio was 96.8% and particles of 4-34 nm were successfully obtained by controlling the temperature, holding time, process pressure, argon gas flow rate at 1000°C, 2-4h, 500-2000 Pa, 50-200 ml/min, respectively. Toxicity characteristic leaching procedure (TCLP) results showed that lead leaching from the residue glass met the USEPA threshold. Accordingly, this study developed a practical and environmental-friendly process for detoxification and reclamation of waste lead-containing glass. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Carbon Nanotubes Produced from Ambient Carbon Dioxide for Environmentally Sustainable Lithium-Ion and Sodium-Ion Battery Anodes

    PubMed Central

    2016-01-01

    The cost and practicality of greenhouse gas removal processes, which are critical for environmental sustainability, pivot on high-value secondary applications derived from carbon capture and conversion techniques. Using the solar thermal electrochemical process (STEP), ambient CO2 captured in molten lithiated carbonates leads to the production of carbon nanofibers (CNFs) and carbon nanotubes (CNTs) at high yield through electrolysis using inexpensive steel electrodes. These low-cost CO2-derived CNTs and CNFs are demonstrated as high performance energy storage materials in both lithium-ion and sodium-ion batteries. Owing to synthetic control of sp3 content in the synthesized nanostructures, optimized storage capacities are measured over 370 mAh g–1 (lithium) and 130 mAh g–1 (sodium) with no capacity fade under durability tests up to 200 and 600 cycles, respectively. This work demonstrates that ambient CO2, considered as an environmental pollutant, can be attributed economic value in grid-scale and portable energy storage systems with STEP scale-up practicality in the context of combined cycle natural gas electric power generation. PMID:27163042

  15. Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks.

    PubMed

    Mann, Paul J; Eglinton, Timothy I; McIntyre, Cameron P; Zimov, Nikita; Davydova, Anna; Vonk, Jorien E; Holmes, Robert M; Spencer, Robert G M

    2015-07-24

    Northern high-latitude rivers are major conduits of carbon from land to coastal seas and the Arctic Ocean. Arctic warming is promoting terrestrial permafrost thaw and shifting hydrologic flowpaths, leading to fluvial mobilization of ancient carbon stores. Here we describe (14)C and (13)C characteristics of dissolved organic carbon from fluvial networks across the Kolyma River Basin (Siberia), and isotopic changes during bioincubation experiments. Microbial communities utilized ancient carbon (11,300 to >50,000 (14)C years) in permafrost thaw waters and millennial-aged carbon (up to 10,000 (14)C years) across headwater streams. Microbial demand was supported by progressively younger ((14)C-enriched) carbon downstream through the network, with predominantly modern carbon pools subsidizing microorganisms in large rivers and main-stem waters. Permafrost acts as a significant and preferentially degradable source of bioavailable carbon in Arctic freshwaters, which is likely to increase as permafrost thaw intensifies causing positive climate feedbacks in response to on-going climate change.

  16. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the media record workers on the job preparing the orbiter Atlantis for Return to Flight. Both local and national reporters representing print and TV networks were invited to see work in progress on Atlantis, including the reinstallation of the Reinforced Carbon-Carbon panels on the orbiter’s wing leading edge; wiring inspections; and checks of the engines in the Orbital Maneuvering System.

    NASA Image and Video Library

    2003-09-26

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the media record workers on the job preparing the orbiter Atlantis for Return to Flight. Both local and national reporters representing print and TV networks were invited to see work in progress on Atlantis, including the reinstallation of the Reinforced Carbon-Carbon panels on the orbiter’s wing leading edge; wiring inspections; and checks of the engines in the Orbital Maneuvering System.

  17. Characteristics of lead corrosion scales formed during drinking water distribution and their potential influence on the release of lead and other contaminants.

    PubMed

    Kim, Eun Jung; Herrera, Jose E

    2010-08-15

    Destabilization of the corrosion scale present in lead pipes used in drinking water distribution systems is currently considered a major problem for municipalities serviced in part by lead pipes. Although several lead corrosion strategies have been deployed with success, a clear understanding of the chemistry of corrosion products present in the scale is needed for an effective lead control. This contribution focuses on a comprehensive characterization of the layers present in the corrosion scale formed on the inner surfaces of lead pipes used in the drinking water distribution system of the City on London, ON, Canada. Solid corrosion products were characterized using X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Toxic elements accumulated in the corrosion scale were also identified using inductively coupled plasma (ICP) spectrometry after acid digestion. Based on the XRD results, hydrocerussite was identified as the major lead crystalline corrosion phase in most of the pipes sampled, while cerussite was observed as the main crystalline component only in a few cases. Lead oxides including PbO(2) and Pb(3)O(4) were also observed in the inner layers of the corrosion scale. The presence of these highly oxidized lead species is rationalized in terms of the lead(II) carbonate phase transforming into lead(IV) oxide through an intermediate Pb(3)O(4) (2Pb(II)O x Pb(IV)O(2)) phase. In addition to lead corrosion products, an amorphous aluminosilicate phase was also identified in the corrosion scale. Its concentration is particularly high at the outer surface layers. Accumulation of toxic contaminants such as As, V, Sb, Cu, and Cr was observed in the corrosion scales, together with a strong correlation between arsenic accumulation and aluminum concentration.

  18. Ultrafast graphene and carbon nanotube film patterning by picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Bobrinetskiy, Ivan I.; Emelianov, Alexey V.; Otero, Nerea; Romero, Pablo M.

    2016-03-01

    Carbon nanomaterials is among the most promising technologies for advanced electronic applications, due to their extraordinary chemical and physical properties. Nonetheless, after more than two decades of intensive research, the application of carbon-based nanostructures in real electronic and optoelectronic devices is still a big challenge due to lack of scalable integration in microelectronic manufacturing. Laser processing is an attractive tool for graphene device manufacturing, providing a large variety of processes through direct and indirect interaction of laser beams with graphene lattice: functionalization, oxidation, reduction, etching and ablation, growth, etc. with resolution down to the nanoscale. Focused laser radiation allows freeform processing, enabling fully mask-less fabrication of devices from graphene and carbon nanotube films. This concept is attractive to reduce costs, improve flexibility, and reduce alignment operations, by producing fully functional devices in single direct-write operations. In this paper, a picosecond laser with a wavelength of 515 nm and pulse width of 30 ps is used to pattern carbon nanostructures in two ways: ablation and chemical functionalization. The light absorption leads to thermal ablation of graphene and carbon nanotube film under the fluence 60-90 J/cm2 with scanning speed up to 2 m/s. Just under the ablation energy, the two-photon absorption leads to add functional groups to the carbon lattice which change the optical properties of graphene. This paper shows the results of controlled modification of geometrical configuration and the physical and chemical properties of carbon based nanostructures, by laser direct writing.

  19. DEVELOPMENT OF A CL-IMPREGNATED ACTIVATED CARBON FOR ENTRAINED-FLOW CAPTURE OF ELEMENTAL MERCURY

    EPA Science Inventory

    Efforts to discern the role of an activated carbon's surface functional groups on the adsorption of elemental mercury [Hg(0)] and mercuric chloride demonstrated that chlorine (Cl) impregnation of a virgin activated carbon using dilute solutions of hydrogen chloride leads to incre...

  20. Hydrologic control of carbon cycling and aged carbon discharge in the Congo River basin

    NASA Astrophysics Data System (ADS)

    Schefuß, Enno; Eglinton, Timothy I.; Spencer-Jones, Charlotte L.; Rullkötter, Jürgen; de Pol-Holz, Ricardo; Talbot, Helen M.; Grootes, Pieter M.; Schneider, Ralph R.

    2016-09-01

    The age of organic material discharged by rivers provides information about its sources and carbon cycling processes within watersheds. Although elevated ages in fluvially transported organic matter are usually explained by erosion of soils and sedimentary deposits, it is commonly assumed that mainly young organic material is discharged from flat tropical watersheds due to their extensive plant cover and rapid carbon turnover. Here we present compound-specific radiocarbon data of terrigenous organic fractions from a sedimentary archive offshore the Congo River, in conjunction with molecular markers for methane-producing land cover reflecting wetland extent. We find that the Congo River has been discharging aged organic matter for several thousand years, with apparently increasing ages from the mid- to the Late Holocene. This suggests that aged organic matter in modern samples is concealed by radiocarbon from atmospheric nuclear weapons testing. By comparison to indicators for past rainfall changes we detect a systematic control of organic matter sequestration and release by continental hydrology, mediating temporary carbon storage in wetlands. As aridification also leads to exposure and rapid remineralization of large amounts of previously stored labile organic matter, we infer that this process may cause a profound direct climate feedback that is at present underestimated in carbon cycle assessments.

  1. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-12

    NASA Headquarters Public Affairs Officer Steve Cole, standing, moderates a Orbiting Carbon Observatory-2 (OCO-2) briefing with (from left), Betsy Edwards, OCO-2 program executive with the Science Mission Directorate at NASA Headquarters, Ralph Basilio, OCO-2 project manager with NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, Mike Gunson, OCO-2 project scientist with JPL, and Annmarie Eldering, OCO-2 deputy project scientist JPL, , Thursday, June 12, 2014, at NASA Headquarters in Washington. OCO-2, NASA’s first spacecraft dedicated to studying carbon dioxide, is set for a July 1, 2014 launch from Vandenberg Air Force Base in California. Its mission is to measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  2. Distribution of ancient carbon in buried soils in an eroding loess landscape

    NASA Astrophysics Data System (ADS)

    Szymanski, L. M.; Mason, J. A.; De Graaff, M. A.; Berhe, A. A.; Marin-Spiotta, E.

    2017-12-01

    Understanding the processes that contribute to the accumulation and loss of carbon in soils and the implications for land management is vital for mitigating climate change. Buried soils or paleosols that represent former surface horizons can store more organic carbon than mineral horizons at equivalent depths due to burial restricting microbial decomposition. The presence of buried soils defies modeled expectations of exponential declines in carbon concentrations with depth, especially in locations where successive depositional events lead to multiple buried soil layers. Buried soils are found in a diversity of depositional environments across latitudes and without accounting for their presence can lead to underestimates of regional carbon reservoirs. Here we present data on the spatial distribution of carbon in a paleosol loess sequence in Nebraska, focusing on one prominent paleosol, the Brady soil. The Brady soil has been identified throughout the Central Great Plains and began developing at the end of the Pleistocene and was subsequently buried by loess in the early Holocene (Mason et al. 2003). Preliminary analyses of the Brady soil at its deepest, 6-m below the surface, reveal large differences in the composition and degree of decomposition of organic matter from the modern soil. We sampled along burial and erosional transects to characterize spatial variability in the depth of Brady soil from the modern landscape surface and to determine how these differences may alter the amount and composition of organic carbon. A more accurate determination of the spatial extent and heterogeneity of buried soil carbon will improve regional estimates of carbon reservoirs. This assessment of its variability across the landscape will inform future planned work on the vulnerability of ancient carbon to disturbance.

  3. Local Gate Control of a Carbon Nanotube Double Quantum Dot

    DTIC Science & Technology

    2016-04-04

    Nanotube Double Quantum Dot N. Mason,*† M. J. Biercuk,* C. M. Marcus† We have measured carbon nanotube quantum dots with multiple electro- static gates and...computation. Carbon nanotubes have been considered lead- ing candidates for nanoscale electronic applica- tions (1, 2). Previous measurements of nano- tube...electronics have shown electron confine- ment (quantum dot) effects such as single- electron charging and energy-level quantization (3–5). Nanotube

  4. Nitrogen Alters Fungal Communities in Boreal Forest Soil: Implications for Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Allison, S. D.; Treseder, K. K.

    2005-12-01

    One potential effect of climate change in high latitude ecosystems is to increase soil nutrient availability. In particular, greater nitrogen availability could impact decomposer communities and lead to altered rates of soil carbon cycling. Since fungi are the primary decomposers in many high-latitude ecosystems, we used molecular techniques and field surveys to test whether fungal communities and abundances differed in response to nitrogen fertilization in a boreal forest ecosystem. We predicted that fungi that degrade recalcitrant carbon would decline under nitrogen fertilization, while fungi that degrade labile carbon would increase, leading to no net change in rates of soil carbon mineralization. The molecular data showed that basidiomycete fungi dominate the active fungal community in both fertilized and unfertilized soils. However, we found that fertilization reduced peak mushroom biomass by 79%, although most of the responsive fungi were ectomycorrhizal and therefore their capacity to degrade soil carbon is uncertain. Fertilization increased the activity of the cellulose-degrading enzyme beta-glucosidase by 78%, while protease activity declined by 39% and polyphenol oxidase, a lignin-degrading enzyme, did not respond. Rates of soil respiration did not change in response to fertilization. These results suggest that increased nitrogen availability does alter the composition of the fungal community, and its potential to degrade different carbon compounds. However, these differences do not affect the total flux of CO2 from the soil, even though the contribution to CO2 respiration from different carbon pools may vary with fertilization. We conclude that in the short term, increased nitrogen availability due to climate warming or nitrogen deposition is more likely to alter the turnover of individual carbon pools rather than total carbon fluxes from the soil. Future work should determine if changes in fungal community structure and associated differences in

  5. Atomic migration of carbon in hard turned layers of carburized bearing steel

    DOE PAGES

    Bedekar, Vikram; Poplawsky, Jonathan D.; Guo, Wei; ...

    2016-01-01

    In grain finement and non-equilibrium there is carbon segregation within grain boundaries alters the mechanical performance of hard turning layers in carburized bearing steel. Moreover, an atom probe tomography (APT) study on the nanostructured hard turning layers reveals carbon migration to grain boundaries as a result of carbide decomposition during severe plastic deformation. In addition, samples exposed to different cutting speeds show that the carbon migration rate increases with the cutting speed. For these two effects lead to an ultrafine carbon network structure resulting in increased hardness and thermal stability in the severely deformed surface layer.

  6. The aqueous electrochemistry of carbon-based surfaces-investigation by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Mühl, T.; Myhra, S.

    2007-04-01

    Electro-oxidation of carbon-based materials will lead to conversion of the solid to CO2/CO at the anode, with H2 being produced at the cathode. Recent voltammetric investigations of carbon nano-tubes and single crystal graphite have shown that only edge sites and other defect sites are electrochemically active. Local oxidation of diamond-like carbon films (DLC) by an STM tip in moist air followed by imaging allows correlation of topographical change with electro-chemical conditions and surface reactivity. The results may have implications for lithographic processing of carbon surfaces, and may have relevance for electrochemical H2 production.

  7. Accounting for Carbon Dioxide Emissions from Biomass Energy Combustion (released in AEO2010)

    EIA Publications

    2010-01-01

    Carbon Dioxide (CO2) emissions from the combustion of biomass to produce energy are excluded from the energy-related CO2 emissions reported in Annual Energy Outlook 2010. According to current international convention, carbon released through biomass combustion is excluded from reported energy-related emissions. The release of carbon from biomass combustion is assumed to be balanced by the uptake of carbon when the feedstock is grown, resulting in zero net emissions over some period of time]. However, analysts have debated whether increased use of biomass energy may result in a decline in terrestrial carbon stocks, leading to a net positive release of carbon rather than the zero net release assumed by its exclusion from reported energy-related emissions.

  8. Rising atmospheric CO2 leads to large impact of biology on Southern Ocean CO2 uptake via changes of the Revelle factor

    PubMed Central

    Hauck, J; Völker, C

    2015-01-01

    The Southern Ocean is a key region for global carbon uptake and is characterized by a strong seasonality with the annual CO2 uptake being mediated by biological carbon drawdown in summer. Here we show that the contribution of biology to CO2 uptake will become even more important until 2100. This is the case even if biological production remains unaltered and can be explained by the decreasing buffer capacity of the ocean as its carbon content increases. The same amount of biological carbon drawdown leads to a more than twice as large reduction in CO2(aq) concentration and hence to a larger CO2 gradient between ocean and atmosphere that drives the gas exchange. While the winter uptake south of 44°S changes little, the summer uptake increases largely and is responsible for the annual mean response. The combination of decreasing buffer capacity and strong seasonality of biological carbon drawdown introduces a strong and increasing seasonality in the anthropogenic carbon uptake. Key Points Decrease of buffer capacity leads to stronger summer CO2 uptake in the future Biology will contribute more to future CO2 uptake in Southern Ocean Seasonality affects anthropogenic carbon uptake strongly PMID:26074650

  9. Carbon foam/hydroxyapatite coating for carbon/carbon composites: Microstructure and biocompatibility

    NASA Astrophysics Data System (ADS)

    Zhang, Leilei; Li, Hejun; Li, Kezhi; Zhang, Shouyang; Lu, Jinhua; Li, Wei; Cao, Sheng; Wang, Bin

    2013-12-01

    To improve the surface biocompatibility of carbon/carbon composites, a carbon foam/hydroxyapatite coating was applied using a combination method of slurry procedure and ultrasound-assisted electrochemical deposition procedure. The morphology, microstructure and chemical composition of the coating were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray diffraction. The biocompatibility of the carbon foam/hydroxyapatite coating was investigated by osteoblast-like MG63 cell culture tests. The results showed that the carbon foam could provide a large number of pores on the surface of carbon/carbon composites. The hydroxyapatite crystals could infiltrate into the pores and form the carbon foam/hydroxyapatite coating. The coating covered the carbon/carbon composites fully and uniformly with slice morphology. The cell response tests showed that the MG63 cells on carbon foam/hydroxyapatite coating had a better cell adhesion and cell proliferation than those on uncoated carbon/carbon composites. The carbon foam/hydroxyapatite coatings were cytocompatible and were beneficial to improve the biocompatibility. The approach presented here may be exploited for fabrication of carbon/carbon composite implant surfaces.

  10. Graphene/semicrystalline-carbon derived from amylose films for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Deraman, M.; Sazali, N. E. S.; Hanappi, M. F. Y. M.; Tajuddin, N. S. M.; Hamdan, E.; Suleman, M.; Othman, M. A. R.; Omar, R.; Hashim, M. A.; Basri, N. H.; Nor, N. S. M.; Dolah, B. N. M.; Noor, A. M.; Jasni, M. R. M.

    2016-08-01

    Graphene/semicrystalline-carbon in the form of carbon flakes is produced by carbonization up to 600, 700, 800, 900 and 1000°C, respectively, of the amylose films prepared by a casting method on copper foil substrate. The carbon flakes are characterized by X-ray diffraction (XRD) method to determine their microcrystallite interlayer spacing, width and stack-height; and Raman spectroscopy (RS) method to obtain structural information from the D-, D2- and G-bands peak-intensities. The XRD results show that increase in carbonization temperature lead to ~(1-3%), ~85% and ~30%increase in the microcrystallites interlayer spacing, width and stack-height, respectively, indicating that a larger growth of microcrytallite of carbon flakes occurs in the direction parallel to (001) plane or film planar surface. The specific surface area of carbon flakes estimated from the XRD results in decreases from ~4400 to ~3400 m2/g, corresponding to the specific capacitance between ~500 to ~400 F/g, which are well within the range of specific capacitance for typical electrodes carbon for supercapacitor application. The RS results show that the multilayer graphene co-exist with semicrystalline- carbon within the carbon flakes, with the multilayer graphene relative quantities increase with increasing carbonization temperature.

  11. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Ken Jucks, OCO-2 program scientist, NASA Headquarters, left, Dave Crisp, OCO-2 science team leader, JPL, and Annmarie Eldering, OCO-2 deputy project scientist, JPL, right, give a science briefing ahead of the planned launch of the Orbiting Carbon Observatory-2 (OCO-2), Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  12. 3D Interconnected and Multiwalled Carbon@MoS2 @Carbon Hollow Nanocables as Outstanding Anodes for Na-Ion Batteries.

    PubMed

    Wang, Yan; Qu, Qunting; Li, Guangchao; Gao, Tian; Qian, Feng; Shao, Jie; Liu, Weijie; Shi, Qiang; Zheng, Honghe

    2016-11-01

    Currently, the specific capacity and cycling performance of various MoS 2 /carbon-based anode materials for Na-ion storage are far from satisfactory due to the insufficient structural stability of the electrode, incomplete protection of MoS 2 by carbon, difficult access of electrolyte to the electrode interior, as well as inactivity of the adopted carbon matrix. To address these issues, this work presents the rational design and synthesis of 3D interconnected and hollow nanocables composed of multiwalled carbon@MoS 2 @carbon. In this architecture, (i) the 3D nanoweb-like structure brings about excellent mechanical property of the electrode, (ii) the ultrathin MoS 2 nanosheets are sandwiched between and doubly protected by two layers of porous carbon, (iii) the hollow structure of the primary nanofibers facilitates the access of electrolyte to the electrode interior, (iv) the porous and nitrogen-doping properties of the two carbon materials lead to synergistic Na-storage of carbon and MoS 2 . As a result, this hybrid material as the anode material of Na-ion battery exhibits fast charge-transfer reaction, high utilization efficiency, and ultrastability. Outstanding reversible capacity (1045 mAh g -1 ), excellent rate behavior (817 mAh g -1 at 7000 mA g -1 ), and good cycling performance (747 mAh g -1 after 200 cycles at 700 mA g -1 ) are obtained. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Understanding of carbon-based supercapacitors ageing mechanisms by electrochemical and analytical methods

    NASA Astrophysics Data System (ADS)

    Liu, Yinghui; Soucaze-Guillous, Benoît; Taberna, Pierre-Louis; Simon, Patrice

    2017-10-01

    In order to shed light on ageing mechanisms of Electrochemical Double Layer Capacitor (EDLC), two kinds of activated carbons are studied in tetraethyl ammonium tetrafluoroborate (Et4NBF4) in acetonitrile. In floating mode, it turns out that two different ageing mechanisms are observed, depending on the activated carbon electrode materials used. On one hand, carbon A exhibits a continuous capacitance and series resistance fall-off; on the other hand, for carbon B, only the series resistance degrades after ageing while the capacitance keeps unchanged. Additional electrochemical characterizations (Electrochemical Impedance Spectroscopy - EIS - and diffusion coefficient calculations) were carried out showing that carbon A's ageing behavior is suspected to be primarily related to the carbon degradation while for carbon B a passivation occurs leading to the formation of a Solid Electrolyte Interphase-Like (SEI-L) film. These hypotheses are supported by TG-IR and Raman spectroscopy analysis. The outcome forms the latter is an increase of carbon defects on carbon A on positive electrode.

  14. Incorrect interpretation of carbon mass balance biases global vegetation fire emission estimates

    PubMed Central

    Surawski, N. C.; Sullivan, A. L.; Roxburgh, S. H.; Meyer, C.P. Mick; Polglase, P. J.

    2016-01-01

    Vegetation fires are a complex phenomenon in the Earth system with many global impacts, including influences on global climate. Estimating carbon emissions from vegetation fires relies on a carbon mass balance technique that has evolved with two different interpretations. Databases of global vegetation fire emissions use an approach based on ‘consumed biomass', which is an approximation to the biogeochemically correct ‘burnt carbon' approach. Here we show that applying the ‘consumed biomass' approach to global emissions from vegetation fires leads to annual overestimates of carbon emitted to the atmosphere by 4.0% or 100 Tg compared with the ‘burnt carbon' approach. The required correction is significant and represents ∼9% of the net global forest carbon sink estimated annually. Vegetation fire emission studies should use the ‘burnt carbon' approach to quantify and understand the role of this burnt carbon, which is not emitted to the atmosphere, as a sink enriched in carbon. PMID:27146785

  15. Incorrect interpretation of carbon mass balance biases global vegetation fire emission estimates.

    PubMed

    Surawski, N C; Sullivan, A L; Roxburgh, S H; Meyer, C P Mick; Polglase, P J

    2016-05-05

    Vegetation fires are a complex phenomenon in the Earth system with many global impacts, including influences on global climate. Estimating carbon emissions from vegetation fires relies on a carbon mass balance technique that has evolved with two different interpretations. Databases of global vegetation fire emissions use an approach based on 'consumed biomass', which is an approximation to the biogeochemically correct 'burnt carbon' approach. Here we show that applying the 'consumed biomass' approach to global emissions from vegetation fires leads to annual overestimates of carbon emitted to the atmosphere by 4.0% or 100 Tg compared with the 'burnt carbon' approach. The required correction is significant and represents ∼9% of the net global forest carbon sink estimated annually. Vegetation fire emission studies should use the 'burnt carbon' approach to quantify and understand the role of this burnt carbon, which is not emitted to the atmosphere, as a sink enriched in carbon.

  16. The Formation of Ethane from Carbon Dioxide under Cold Plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Xiu-ling; Zhang, Lin; Dai, Bin; Gong, Wei-min; Liu, Chang-hou

    2001-04-01

    Pulsed-corona plasma has been used as a new method for ethane dehydrogenation at low temperature and normal pressure using carbon dioxide as an oxidant in this paper. The effect of carbon dioxide content in the feed, power input, and flow rate of the reactants on the ethane dehydrogenation has been investigated. The experimental results show that the conversion of ethane increases with the increase in the amount of carbon dioxide in the feed. The yield of ethylene and acetylene decreases with the increase in the yield of carbon monoxide, indicating that the increased carbon dioxide leads to the part of ethylene and acetylene being oxidized to carbon monoxide. Power input is primarily an electrical parameter in pulsed-corona plasma, which plays an important role in reactant conversion and product formation. When the power input reaches 16 W, ethane conversion is 41.0% and carbon dioxide conversion is 26.3%. The total yield of ethylene and acetylene is 15.6%. The reduced flow rate of feed improves the conversion of ethane, carbon dioxide and the yield of acetylene, and induces carbon deposit as well.

  17. Effects of lead accumulation on the Azolla caroliniana-Anabaena association.

    PubMed

    Roberts, Anne E; Boylen, Charles W; Nierzwicki-Bauer, Sandra A

    2014-04-01

    The effect of lead accumulation on photopigment production, mineral nutrition, and Anabaena vegetative cell size and heterocyst formation in Azolla caroliniana was investigated. Plants were exposed to 0, 1, 5, 10, and 20 mg L(-1) lead acetate for ten days. Lead accumulation increased when plants were treated with higher lead concentrations. Results revealed a statistically significant decline in total chlorophyll, chlorophyll a, chlorophyll b, and carotenoids in 5, 10, and 20 mg Pb L(-1) treatment groups as compared to plants with 0 or 1 mg Pb L(-1) treatments. No statistically significant change in anthocyanin production was observed. Calcium, magnesium, and zinc concentrations in plants decreased in increasing treatment groups, whereas sodium and potassium concentrations increased. Nitrogen and carbon were also found to decrease in plant tissue. Anabaena vegetative cells decreased in size and heterocyst frequency declined rapidly in a Pb dose-dependent manner. These results indicate that, while A. caroliniana removes lead from aqueous solution, the heavy metal causes physiological and biochemical changes by impairing photosynthesis, changing mineral nutrition, and impeding the growth and formation of heterocysts of the symbiotic cyanobacteria that live within leaf cavities of the fronds. Copyright © 2014. Published by Elsevier Inc.

  18. Soil ploughing for forest regeneration leads to changes in carbon decomposition - a case study with stable isotopes

    NASA Astrophysics Data System (ADS)

    Stróżecki, Marcin; Silvennoinen, Hanna; Strzeliński, Paweł; Chojnicki, Bogdan Heronim

    2018-04-01

    It is important to quantify carbon decomposition to assess the reforestation impact on the forest floor C stocks. Estimating the loss of C stock in a short-term perspective requires measuring changes in soil respiration. This is not trivial due to the contribution of both soil microbes and vegetation to the measured CO2 flux. However, C stable isotopes can be used to partition the respiration and potentially to assess how much of the recalcitrant C stock in the forest floor is lost. Here, we measured the soil respiration at two forest sites where different regeneration methods were applied, along with an intact forest soil for reference. In so doing, we used a closed dynamic chamber for measuring respiration and the 13C composition of the emitted CO2. The chamber measurements were then supplemented with the soil organic carbon analysis and its δ13C content. The mean δ13C-CO2 estimates for the source of the CO2 were -26.4, -27.9 and -29.5‰, for the forest, unploughed and ploughed, respectively. The 13C of the soil organic carbon did, not differ significantly between sites. The higher soil respiration rate at the forest, as compared to the unploughed site, could be attributed to the autotrophic respiration by the forest floor vegetation.

  19. Carbon-Carbon Piston Architectures

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)

    2000-01-01

    An improved structure for carbon-carbon composite piston architectures is disclosed. The improvement consists of replacing the knitted fiber, three-dimensional piston preform architecture described in U.S. Pat.No. 4,909,133 (Taylor et al.) with a two-dimensional lay-up or molding of carbon fiber fabric or tape. Initially, the carbon fabric of tape layers are prepregged with carbonaceous organic resins and/or pitches and are laid up or molded about a mandrel, to form a carbon-fiber reinforced organic-matrix composite part shaped like a "U" channel, a "T"-bar, or a combination of the two. The molded carbon-fiber reinforced organic-matrix composite part is then pyrolized in an inert atmosphere, to convert the organic matrix materials to carbon. At this point, cylindrical piston blanks are cored from the "U"-channel, "T"-bar, or combination part. These blanks are then densified by reimpregnation with resins or pitches which are subsequently carbonized. Densification is also accomplished by direct infiltration with carbon by vapor deposition processes. Once the desired density has been achieved, the piston billets are machined to final piston dimensions; coated with oxidation sealants; and/or coated with a catalyst. When compared to conventional steel or aluminum alloy pistons, the use of carbon-carbon composite pistons reduces the overall weight of the engine; allows for operation at higher temperatures without a loss of strength; allows for quieter operation; reduces the heat loss; and reduces the level of hydrocarbon emissions.

  20. Carbon-Carbon Piston Architectures

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)

    1999-01-01

    An improved structure for carbon-carbon composite piston architectures consists of replacing the knitted fiber, three-dimensional piston preform architecture described in U.S. Pat. No. 4.909,133 (Taylor et al.) with a two-dimensional lay-up or molding of carbon fiber fabric or tape. Initially. the carbon fabric or tape layers are prepregged with carbonaceous organic resins and/or pitches and are laid up or molded about a mandrel. to form a carbon-fiber reinforced organic-matrix composite part shaped like a "U" channel, a "T"-bar. or a combination of the two. The molded carbon-fiber reinforced organic-matrix composite part is then pyrolized in an inert atmosphere, to convert the organic matrix materials to carbon. At this point, cylindrical piston blanks are cored from the "U" channel, "T"-bar, or combination part. These blanks are then densified by reimpregnation with resins or pitches which are subsequently carbonized. Densification is also be accomplished by direct infiltration with carbon by vapor deposition processes. Once the desired density has been achieved, the piston billets are machined to final piston dimensions; coated with oxidation sealants; and/or coated with a catalyst. When compared to conventional steel or aluminum-alloy pistons, the use of carbon-carbon composite pistons reduces the overall weight of the engine; allows for operation at higher temperatures without a loss of strength; allows for quieter operation; reduces the heat loss; and reduces the level of hydrocarbon emissions.

  1. Comparing ecosystem water and carbon exchange across a riparian mesquite invasion gradient

    Treesearch

    Russell L. Scott; Travis E. Huxman

    2005-01-01

    Ecosystem water and carbon fluxes were monitored over a riparian grassland, mesquite-invaded grassland, and mesquite woodland to understand the consequences of woody plant encroachment. Water use and carbon gain were largest at the woodland site. Results suggest that the deep roots of mesquite will lead to a decoupling of ecosystem water sources as the invading...

  2. Disequilibrium δ18O values in microbial carbonates as a tracer of metabolic production of dissolved inorganic carbon

    NASA Astrophysics Data System (ADS)

    Thaler, Caroline; Millo, Christian; Ader, Magali; Chaduteau, Carine; Guyot, François; Ménez, Bénédicte

    2017-02-01

    both disequilibrium effects are triggered by the metabolic production of CO2, which is common in many microbially-mediated carbonation processes, leads us to propose that metabolically-induced offsets from isotopic equilibrium in microbial carbonates may be more common than previously considered. Therefore, precaution should be taken when using the oxygen isotope signature of microbial carbonates for diagenetic and paleoenvironmental reconstructions.

  3. Synthesis and characterization of carbon microsphere for extinguishing sodium fire

    NASA Astrophysics Data System (ADS)

    Snehalatha, V.; Ponraju, D.; Nashine, B. K.; Chellapandi, P.

    2013-06-01

    In Sodium cooled Fast breeder Reactors (SFRs), accidental leakage of liquid sodium leads to sodium fire. Carbon microsphere is a promising and novel extinguishant for sodium fire since it possesses high thermal conductivity, chemical inertness and excellent flow characteristics. Low density Carbon microsphere (CMS) with high thermal stability was successfully synthesized from functionalized styrene divinyl benzene copolymer by carbonization under inert atmosphere. Protocol for stepwise carbonization was developed by optimizing heating rate and time of heating. The synthesized CMS was characterized by Densimeter, Scanning Electron Microscope (SEM), Fourier Transfer Infra-Red spectroscopy (FTIR), Thermogravimetry (TG), X-ray Diffraction (XRD) and RAMAN spectroscopy. CMS thus obtained was spherical in shape having diameters ranging between 60 to 80μm with narrow size distribution. The smooth surface of CMS ensures its free flow characteristics. The yield of carbonization process was about 38%. The performance of CMS was tested on small scale sodium. This paper describes the development of carbon microsphere for extinguishing sodium fire and its characteristics.

  4. Efficient electrochemical degradation of multiwall carbon nanotubes.

    PubMed

    Reipa, Vytas; Hanna, Shannon K; Urbas, Aaron; Sander, Lane; Elliott, John; Conny, Joseph; Petersen, Elijah J

    2018-07-15

    As the production mass of multiwall carbon nanotubes (MWCNT) increases, the potential for human and environmental exposure to MWCNTs may also increase. We have shown that exposing an aqueous suspension of pristine MWCNTs to an intense oxidative treatment in an electrochemical reactor, equipped with an efficient hydroxyl radical generating Boron Doped Diamond (BDD) anode, leads to their almost complete mineralization. Thermal optical transmittance analysis showed a total carbon mass loss of over two orders of magnitude due to the electrochemical treatment, a result consistent with measurements of the degraded MWCNT suspensions using UV-vis absorbance. Liquid chromatography data excludes substantial accumulation of the low molecular weight reaction products. Therefore, up to 99% of the initially suspended MWCNT mass is completely mineralized into gaseous products such as CO 2 and volatile organic carbon. Scanning electron microscopy (SEM) images show sporadic opaque carbon clusters suggesting the remaining nanotubes are transformed into structure-less carbon during their electrochemical mineralization. Environmental toxicity of pristine and degraded MWCNTs was assessed using Caenorhabditis elegans nematodes and revealed a major reduction in the MWCNT toxicity after treatment in the electrochemical flow-by reactor. Published by Elsevier B.V.

  5. Basanite-nephelinite suite from early Kilauea: Carbonated melts of phlogopite-garnet peridotite at Hawaii's leading magmatic edge

    USGS Publications Warehouse

    Sisson, T.W.; Kimura, Jun-Ichi; Coombs, M.L.

    2009-01-01

    A basanite-nephelinite glass suite from early submarine Kilauea defines a continuous compositional array marked by increasing concentrations of incompatible components with decreasing SiO2, MgO, and Al2O3. Like peripheral and post-shield strongly alkalic Hawaiian localities (Clague et al. in J Volcanol Geotherm Res 151:279-307, 2006; Dixon et al. in J Pet 38:911-939, 1997), the early Kilauea basanite-nephelinite glasses are interpreted as olivine fractionation products from primary magnesian alkalic liquids. For early Kilauea, these were saturated with a garnet-phlogopite-sulfide peridotite assemblage, with elevated dissolved CO2 contents responsible for the liquids' distinctly low-SiO2 concentrations. Reconstructed primitive liquids for early Kilauea and other Hawaiian strongly alkalic localities are similar to experimental 3 GPa low-degree melts of moderately carbonated garnet lherzolite, and estimated parent magma temperatures of 1,350-1,400??C (olivine-liquid geothermometry) match the ambient upper mantle geotherm shortly beneath the base of the lithosphere. The ???3 GPa source regions were too hot for stable crystalline carbonate and may have consisted of ambient upper mantle peridotite containing interstitial carbonate-silicate or carbonatitic liquid, possibly (Dixon et al. in Geochem Geophys Geosyst 9(9):Q09005, 2008), although not necessarily, from the Hawaiian mantle plume. Carbonate-enriched domains were particularly susceptible to further melting upon modest decompression during upward lithospheric flexure beneath the advancing Hawaiian Arch, or by conductive heating or upward drag by the Hawaiian mantle plume. The early Kilauea basanite-nephelinite suite has a HIMU-influenced isotopic character unlike other Hawaiian magmas (Shimizu et al. in EOS Tran Amer Geophys Union 82(47): abstr V12B-0962, 2001; Shimizu et al. in Geochim Cosmochim Acta 66(15A):710, 2002) but consistent with oceanic carbonatite involvement (Hoernle et al. in Contrib Mineral Petrol

  6. Basanite-nephelinite suite from early Kilauea: carbonated melts of phlogopite-garnet peridotite at Hawaii's leading magmatic edge

    NASA Astrophysics Data System (ADS)

    Sisson, T. W.; Kimura, J.-I.; Coombs, M. L.

    2009-12-01

    A basanite-nephelinite glass suite from early submarine Kilauea defines a continuous compositional array marked by increasing concentrations of incompatible components with decreasing SiO2, MgO, and Al2O3. Like peripheral and post-shield strongly alkalic Hawaiian localities (Clague et al. in J Volcanol Geotherm Res 151:279-307, 2006; Dixon et al. in J Pet 38:911-939, 1997), the early Kilauea basanite-nephelinite glasses are interpreted as olivine fractionation products from primary magnesian alkalic liquids. For early Kilauea, these were saturated with a garnet-phlogopite-sulfide peridotite assemblage, with elevated dissolved CO2 contents responsible for the liquids’ distinctly low-SiO2 concentrations. Reconstructed primitive liquids for early Kilauea and other Hawaiian strongly alkalic localities are similar to experimental 3 GPa low-degree melts of moderately carbonated garnet lherzolite, and estimated parent magma temperatures of 1,350-1,400°C (olivine-liquid geothermometry) match the ambient upper mantle geotherm shortly beneath the base of the lithosphere. The ~3 GPa source regions were too hot for stable crystalline carbonate and may have consisted of ambient upper mantle peridotite containing interstitial carbonate-silicate or carbonatitic liquid, possibly (Dixon et al. in Geochem Geophys Geosyst 9(9):Q09005, 2008), although not necessarily, from the Hawaiian mantle plume. Carbonate-enriched domains were particularly susceptible to further melting upon modest decompression during upward lithospheric flexure beneath the advancing Hawaiian Arch, or by conductive heating or upward drag by the Hawaiian mantle plume. The early Kilauea basanite-nephelinite suite has a HIMU-influenced isotopic character unlike other Hawaiian magmas (Shimizu et al. in EOS Tran Amer Geophys Union 82(47): abstr V12B-0962, 2001; Shimizu et al. in Geochim Cosmochim Acta 66(15A):710, 2002) but consistent with oceanic carbonatite involvement (Hoernle et al. in Contrib Mineral Petrol

  7. Methanol Droplet Extinction in Carbon-Dioxide-Enriched Environments in Microgravity

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Nayagam, Vedha; Williams, Forman A.

    2010-01-01

    Diffusive extinction of methanol droplets with initial diameters between 1.25 mm and 1.72 mm, burning in a quiescent microgravity environment at one atmosphere pressure, was obtained experimentally for varying levels of ambient carbon-dioxide concentrations with a fixed oxygen concentration of 21% and a balance of nitrogen. These experiments serve as precursors to those which are beginning to be performed on the International Space Station and are motivated by the need to understand the effectiveness of carbon-dioxide as a fire suppressant in low-gravity environments. In these experiments, the flame standoff distance, droplet diameter, and flame radiation are measured as functions of time. The results show that the droplet extinction diameter depends on both the initial droplet diameter and the ambient concentration of carbon dioxide. Increasing the initial droplet diameter leads to an increased extinction diameter, while increasing the carbon-dioxide concentration leads to a slight decrease in the extinction diameter. These results are interpreted using a critical Damk hler number for extinction as predicted by an earlier theory, which is extended here to be applicable in the presence of effects of heat conduction along the droplet support fibers and of the volume occupied by the support beads

  8. Protein-Mediated Precipitation of Calcium Carbonate

    PubMed Central

    Polowczyk, Izabela; Bastrzyk, Anna; Fiedot, Marta

    2016-01-01

    Calcium carbonate is an important component in exoskeletons of many organisms. The synthesis of calcium carbonate was performed by mixing dimethyl carbonate and an aqueous solution of calcium chloride dihydrate. The precipitation product was characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) measurements. In addition, the turbidity of the reaction solution was acquired to monitor the kinetics of the calcium carbonate structure’s growth in the investigated system. In this study, samples of CaCO3 particles obtained with individual proteins, such as ovalbumin, lysozyme, and a mixture of the proteins, were characterized and compared with a control sample, i.e., synthesized without proteins. The obtained data indicated that the addition of ovalbumin to the reaction changed the morphology of crystals from rhombohedral to ‘stack-like’ structures. Lysozyme, however, did not affect the morphology of calcium carbonate, yet the presence of the protein mixture led to the creation of more complex composites in which the calcium carbonate crystals were constructed in protein matrices formed by the ovalbumin-lysozyme interaction. It was also observed that in the protein mixture, ovalbumin has a major influence on the CaCO3 formation through a strong interaction with calcium ions, which leads to the coalescence and creation of a steric barrier reducing particle growth. The authors proposed a mechanism of calcium carbonate grain growth in the presence of both proteins, taking into account the interaction of calcium ions with the protein. PMID:28774065

  9. Mechanical Characterization of 3D Woven Carbon Composite

    DTIC Science & Technology

    2017-09-18

    Woven Carbon/Glass Hybrid Spar Cap for Wind Turbine Rotor Blade,” Journal of Solar Engineering: Volume 128, November 2006, pp. 562-573. 2. In Tenax...A86AD439 Lead Wire Resistance (Ω, nominal) : 1 Significance : ASTM D7078 specifies that strength, strain and modulus be reported to three significant...0.05 Strain Gage Model / Batch No. : CEA-06-250UW-350 / A86AD438 Lead Wire Resistance (Ω, nominal) : 1 Significance : ASTM D7078 specifies that

  10. Constraining the rate of oceanic deoxygenation leading up to a Cretaceous Oceanic Anoxic Event (OAE-2: ~94 Ma)

    PubMed Central

    Ostrander, Chadlin M.; Owens, Jeremy D.; Nielsen, Sune G.

    2017-01-01

    The rates of marine deoxygenation leading to Cretaceous Oceanic Anoxic Events are poorly recognized and constrained. If increases in primary productivity are the primary driver of these episodes, progressive oxygen loss from global waters should predate enhanced carbon burial in underlying sediments—the diagnostic Oceanic Anoxic Event relic. Thallium isotope analysis of organic-rich black shales from Demerara Rise across Oceanic Anoxic Event 2 reveals evidence of expanded sediment-water interface deoxygenation ~43 ± 11 thousand years before the globally recognized carbon cycle perturbation. This evidence for rapid oxygen loss leading to an extreme ancient climatic event has timely implications for the modern ocean, which is already experiencing large-scale deoxygenation. PMID:28808684

  11. Carbonate Precipitation through Microbial Activities in Natural Environment, and Their Potential in Biotechnology: A Review

    PubMed Central

    Zhu, Tingting; Dittrich, Maria

    2016-01-01

    Calcium carbonate represents a large portion of carbon reservoir and is used commercially for a variety of applications. Microbial carbonate precipitation, a by-product of microbial activities, plays an important metal coprecipitation and cementation role in natural systems. This natural process occurring in various geological settings can be mimicked and used for a number of biotechnologies, such as metal remediation, carbon sequestration, enhanced oil recovery, and construction restoration. In this study, different metabolic activities leading to calcium carbonate precipitation, their native environment, and potential applications and challenges are reviewed. PMID:26835451

  12. Research on the Development of Green Finance in Shenzhen to Boost the Carbon Trading Market

    NASA Astrophysics Data System (ADS)

    Zhou, Jiping; Xiong, Siqin; Zhou, Yucheng; Zou, Zijian; Ma, Xiaoming

    2017-08-01

    This paper analyses the current development situations of Shenzhen carbon trading market and China’s green finance, and makes the policy recommendations for promoting the carbon trading market by developing green finance in Shenzhen. Shenzhen should take the lead in driving the localized application of green principle, and formulate Shenzhen green bond guidelines ASAP, to promote carbon trading associated enterprises to finance by using green bonds; it shall work to lower the threshold for financial institutions to participate in carbon trading market, and explore development of carbon derivatives.

  13. Carbon nanotube based hybrid nanostructures: Synthesis and applications

    NASA Astrophysics Data System (ADS)

    Ou, Fung Suong

    Hybrid nanostructures are fascinating materials for their promising applications in future nanoelectronics, electrical interconnects and energy storage devices. Practical ways of connecting individual carbon nanotubes to metal contacts for their use as interconnects and in electronic devices have been challenging. In this thesis, carbon nanotube based hybrids that combine the best properties of carbon nanotubes and metal nanowires have been fabricated. The electrical properties and Raman spectra of the hybrid nanowires are also studied. This thesis will focus on our recent results in the development of carbon nanotube hybrids for various applications. Various hybrid structures of multiwalled carbon nanotubes and metal nanowires can be fabricated using a combination of electrodeposition and chemical vapor deposition techniques. Controlled fabrication of multi-segmented structures will be studied. Several novel applications of these structures, for example, as electrodes in ultra-high power supercapacitors, multi-functional smart materials are also studied. The thesis will also highlight the development of carbon nanotube hybrids based smart materials. Hybrid nanowires with hydrophobic carbon nanotube tails and hydrophilic metal nanowire heads, allows for the assembly of spheres in solution. The design and manipulation of these carbon nanotube hybrids based smart structures for various novel applications will be discussed. Such new class of carbon nanotube hybrids surfactants are likely to lead as new tools in various fields such as microfluidics or water purification. In addition, we will also look at other variations of hybrid nanostructures fabricated from our method.

  14. Tectonic controls on the long-term carbon isotope mass balance.

    PubMed

    Shields, Graham A; Mills, Benjamin J W

    2017-04-25

    The long-term, steady-state marine carbon isotope record reflects changes to the proportional burial rate of organic carbon relative to total carbon on a global scale. For this reason, times of high δ 13 C are conventionally interpreted to be oxygenation events caused by excess organic burial. Here we show that the carbon isotope mass balance is also significantly affected by tectonic uplift and erosion via changes to the inorganic carbon cycle that are independent of changes to the isotopic composition of carbon input. This view is supported by inverse covariance between δ 13 C and a range of uplift proxies, including seawater 87 Sr/ 86 Sr, which demonstrates how erosional forcing of carbonate weathering outweighs that of organic burial on geological timescales. A model of the long-term carbon cycle shows that increases in δ 13 C need not be associated with increased organic burial and that alternative tectonic drivers (erosion, outgassing) provide testable and plausible explanations for sustained deviations from the long-term δ 13 C mean. Our approach emphasizes the commonly overlooked difference between how net and gross carbon fluxes affect the long-term carbon isotope mass balance, and may lead to reassessment of the role that the δ 13 C record plays in reconstructing the oxygenation of earth's surface environment.

  15. Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2016-09-01

    Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.

  16. One-pot synthesis of transition metal ion-chelating ordered mesoporous carbon/carbon nanotube composites for active and durable fuel cell catalysts

    NASA Astrophysics Data System (ADS)

    Dombrovskis, Johanna K.; Palmqvist, Anders E. C.

    2017-07-01

    Development of non-precious metal catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells with high activity and durability and with optimal water management properties is of outmost technological importance and highly challenging. Here we study the possibilities offered through judicious selection of small molecular precursors used for the formation of ordered mesoporous carbon-based non-precious metal ORR catalysts. By combining two complementary precursors, we present a one-pot synthesis that leads to a composite material consisting of transition metal ion-chelating ordered mesoporous carbon and multi-walled carbon nanotubes (TM-OMC/CNT). The resulting composite materials show high specific surface areas and a carbon structure that exhibits graphitic signatures. The synthesis procedure allows for tuning of the carbon structure, the surface area, the pore volume and the ratio of the two components of the composite. The TM-OMC/CNT composites were processed into membrane electrode assemblies and evaluated in single cell fuel cell measurements where they showed a combination of good ORR activity and very high durability.

  17. Lead (Pb) Hohlraum: Target for Inertial Fusion Energy

    PubMed Central

    Ross, J. S.; Amendt, P.; Atherton, L. J.; Dunne, M.; Glenzer, S. H.; Lindl, J. D.; Meeker, D.; Moses, E. I.; Nikroo, A.; Wallace, R.

    2013-01-01

    Recent progress towards demonstrating inertial confinement fusion (ICF) ignition at the National Ignition Facility (NIF) has sparked wide interest in Laser Inertial Fusion Energy (LIFE) for carbon-free large-scale power generation. A LIFE-based fleet of power plants promises clean energy generation with no greenhouse gas emissions and a virtually limitless, widely available thermonuclear fuel source. For the LIFE concept to be viable, target costs must be minimized while the target material efficiency or x-ray albedo is optimized. Current ICF targets on the NIF utilize a gold or depleted uranium cylindrical radiation cavity (hohlraum) with a plastic capsule at the center that contains the deuterium and tritium fuel. Here we show a direct comparison of gold and lead hohlraums in efficiently ablating deuterium-filled plastic capsules with soft x rays. We report on lead hohlraum performance that is indistinguishable from gold, yet costing only a small fraction. PMID:23486285

  18. Lead (Pb) hohlraum: target for inertial fusion energy.

    PubMed

    Ross, J S; Amendt, P; Atherton, L J; Dunne, M; Glenzer, S H; Lindl, J D; Meeker, D; Moses, E I; Nikroo, A; Wallace, R

    2013-01-01

    Recent progress towards demonstrating inertial confinement fusion (ICF) ignition at the National Ignition Facility (NIF) has sparked wide interest in Laser Inertial Fusion Energy (LIFE) for carbon-free large-scale power generation. A LIFE-based fleet of power plants promises clean energy generation with no greenhouse gas emissions and a virtually limitless, widely available thermonuclear fuel source. For the LIFE concept to be viable, target costs must be minimized while the target material efficiency or x-ray albedo is optimized. Current ICF targets on the NIF utilize a gold or depleted uranium cylindrical radiation cavity (hohlraum) with a plastic capsule at the center that contains the deuterium and tritium fuel. Here we show a direct comparison of gold and lead hohlraums in efficiently ablating deuterium-filled plastic capsules with soft x rays. We report on lead hohlraum performance that is indistinguishable from gold, yet costing only a small fraction.

  19. Reciprocal subsidies and food web pathways leading to chum salmon fry in a temperate marine-terrestrial ecotone.

    PubMed

    Romanuk, Tamara N; Levings, Colin D

    2010-04-08

    Stable isotope analysis was used to determine the relative proportions of terrestrial and marine subsidies of carbon to invertebrates along a tidal gradient (low-intertidal, mid-intertidal, high-intertidal, supralittoral) and to determine the relative importance of terrestrial carbon in food web pathways leading to chum salmon fry Oncorhynchus keta (Walbaum) in Howe Sound, British Columbia. We found a clear gradient in the proportion of terrestrially derived carbon along the tidal gradient ranging from 68% across all invertebrate taxa in the supralittoral to 25% in the high-intertidal, 20% in the mid-intertidal, and 12% in the low-intertidal. Stable isotope values of chum salmon fry indicated carbon contributions from both terrestrial and marine sources, with terrestrially derived carbon ranging from 12.8 to 61.5% in the muscle tissue of chum salmon fry (mean 30%). Our results provide evidence for reciprocal subsidies of marine and terrestrially derived carbon on beaches in the estuary and suggest that the vegetated supralittoral is an important trophic link in supplying terrestrial carbon to nearshore food webs.

  20. Successful application of lead isotopes in source apportionment, legal proceedings, remediation and monitoring.

    PubMed

    Gulson, Brian; Korsch, Michael; Winchester, Wayne; Devenish, Matthew; Hobbs, Thad; Main, Cleve; Smith, Gerard; Rosman, Kevin; Howearth, Lynette; Burn-Nunes, Laurie; Seow, Jimmy; Oxford, Cameron; Yun, Gracie; Gillam, Lindsay; Crisp, Michelle

    2012-01-01

    In late 2006, the seaside community in Esperance Western Australia was alerted to thousands of native bird species dying. The source of the lead (Pb) was determined by Pb isotopes to derive from the handling of Pb carbonate concentrate through the Port, which began in July 2005. Concern was expressed for the impact of this on the community. Our objectives were to employ Pb isotope ratios to evaluate the source of Pb in environmental samples for use in legal proceedings, and for use in remediation and monitoring. Isotope measurements were undertaken of bird livers, plants, drinking water, soil, harbour sediments, air, bulk ceiling dust, gutter sludge, surface swabs and blood. The unique lead isotopic signature of the contaminating Pb carbonate enabled diagnostic apportionment of lead in samples. Apart from some soil and water samples, the proportion of contaminating Pb was >95% in the environmental samples. Lead isotopes were critical in resolving legal proceedings, are being used in the remediation of premises, were used in monitoring of workers involved in the decontamination of the storage facility, and monitoring transport of the concentrate through another port facility. Air samples show the continued presence of contaminant Pb, more than one year after shipping of concentrate ceased, probably arising from dust resuspension. Brief details of the comprehensive testing and cleanup of the Esperance community are provided along with the role of the Community. Lead isotopic analyses can provide significant benefits to regulatory agencies, interested parties, and the community where the signature is able to be characterised with a high degree of certainty. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  1. Nucleation and growth studies of crystalline carbon phases at nanoscale

    NASA Astrophysics Data System (ADS)

    Mani, Radhika C.

    Understanding the nucleation and early stage growth of crystals from the vapor phase is important for realizing large-area single-crystal quality films, controlled synthesis of nanocrystals, and the possible discovery of new phases of materials. Carbon provides the most interesting system because all its known crystalline phases (diamond, graphite and carbon nanotubes) are technologically important materials. Hence, this dissertation is focused on studying the nucleation and growth of carbon phases synthesized from the vapor phase. Nucleation experiments were performed in a microwave plasma chemical vapor deposition (CVD) reactor, and the resulting carbon nanocrystals were analyzed primarily using electron nanodiffraction and Raman spectroscopy. These studies led to the discovery of two new crystalline phases of sp 3 carbon other than diamond: face-centered and body-centered cubic carbon. Nanodiffraction results revealed possible hydrogen substitution into diamond-cubic lattices, indicating that these new phases probably act as intermediates in diamond nucleation. Nucleation experiments also led to the discovery of two new morphologies for sp2 carbon: nanocrystals of graphite and tapered, hollow 1-D structures termed here as "carbon nanopipettes". A Kinetic Monte Carlo (KMC) algorithm was developed to simulate the growth of individual diamond crystals from the vapor phase, starting with small clusters of carbon atoms (or seeds). Specifically, KMC simulations were used to distinguish the kinetic rules that give rise to a star-shaped decahedral morphology compared to decahedral crystals. KMC simulations revealed that slow adsorption on the {111} step-propagation sites compared to kink sites leads to star-decahedral crystals, and higher adsorption leads to decahedral crystals. Since the surfaces of the nanocrystals of graphite and nanopipettes were expected to be composed primarily of edge-plane sites, the electrochemical behavior of both these materials were

  2. Lead

    MedlinePlus

    ... Agendas, and Minutes New Blood Lead Level Information Funding Information Lead in Drinking Water Lead-based Water Lines Washington, D.C. Blood Lead Level Tests Effect of Previously Missing Blood Lead Level (BPb) Surveillance ...

  3. Warmer temperatures reduce net carbon uptake, but not water use, in a mature southern Appalachian forest

    EPA Science Inventory

    Increasing air temperature is expected to extend growing season length in temperate, broadleaf forests, leading to potential increases in evapotranspiration and net carbon uptake. However, other key processes affecting water and carbon cycles are also highly temperature-dependent...

  4. The importance of carbon footprint estimation boundaries.

    PubMed

    Matthews, H Scott; Hendrickson, Chris T; Weber, Christopher L

    2008-08-15

    Because of increasing concern about global climate change and carbon emissions as a causal factor, many companies and organizations are pursuing "carbon footprint" projects to estimate their own contributions to global climate change. Protocol definitions from carbon registries help organizations analyze their footprints. The scope of these protocols varies but generally suggests estimating only direct emissions and emissions from purchased energy, with less focus on supply chain emissions. In contrast approaches based on comprehensive environmental life-cycle assessment methods are available to track total emissions across the entire supply chain, and experience suggests that following narrowly defined estimation protocols will generally lead to large underestimates of carbon emissions for providing products and services. Direct emissions from an industry are, on average, only 14% of the total supply chain carbon emissions (often called Tier 1 emissions), and direct emissions plus industry energy inputs are, on average, only 26% of the total supply chain emissions (often called Tier 1 and 2 emissions). Without a full knowledge of their footprints, firms will be unable to pursue the most cost-effective carbon mitigation strategies. We suggest that firms use the screening-level analysis described here to set the bounds of their footprinting strategy to ensure that they do not ignore large sources of environmental effects across their supply chains. Such information can help firms pursue carbon and environmental emission mitigation projects not only within their own plants but also across their supply chain.

  5. Genesis of copper-lead mineralization in the regionally zoned Agnigundala Sulfide Belt, Cuddapah Basin, Andhra Pradesh, India

    NASA Astrophysics Data System (ADS)

    Bhattacharya, H. N.; Bandyopadhyay, Sandip

    2018-03-01

    Shallow marine sandstone-shale-carbonate sedimentary rocks of the Paleoproterozoic northern Cuddapah basin host copper (Nallakonda deposit), copper-lead (Dhukonda deposit), and lead mineralization (Bandalamottu deposit) which together constitute the Agnigundala Sulfide Belt. The Cu sulfide mineralization in sandstone is both stratabound and disseminated, and Pb sulfide mineralization occurs as stratabound fracture filling veins and/or replacement veins within dolomite. Systematic mineralogical and sulfur, carbon, and oxygen isotope studies of the three deposits indicate a common ore-fluid that deposited copper at Nallakonda, copper-lead at Dhukonda, and lead at Bandalamottu under progressive cooling during migration through sediments. The ore-fluid was of low temperature (< 200 °C) and oxidized. Thermochemical reduction of basinal water sulfate produced sulfide for ore deposition. It is envisaged that basal red-bed and evaporite-bearing rift-related continental to shallow marine sediments might have acted as the source for the metals. Rift-related faults developed during sedimentation in the basin might have punctured the ore-fluid pool in the lower sedimentary succession and also acted as conduits for their upward migration. The ore-bearing horizons have participated in deformations during basin inversion without any recognizable remobilization.

  6. Carbon-constrained health care enterprise.

    PubMed

    Gell, Michael

    2010-02-01

    The health economy is a significant part of a national economy accounting typically for about 8% of GDP spent. As national economies respond to the dual challenges of severe economic turbulence on the global scale and climate change mitigation, the health economy is coming under increasing pressure to respond. Indications for sharp reductions in budgets and reductions in greenhouse gas emissions, such as carbon dioxide, are widespread. In this paper an analysis is undertaken of the diverse forces acting on a typical health care enterprise. The forces, both economic and carbon related, are investigated in terms of their effects through the enterprise and across its boundaries on the supply, demand and waste sides. The overall aim is to show how the enterprise and whole supply chains may flip synchronously into a low-carbon evolutionary pathway. By illustrating how different elements of the health care enterprise may respond to these developments, diverse opportunities for cost reduction, carbon reduction and product (goods and services) development are identified. These opportunities involve a variety of waste reduction and energy and materials conservation measures as well as new ways of collaborating with other enterprises going through similar transformations. The overall objective is to show that the carbon-constrained health care enterprise and the low-carbon health economy in which it sits may broaden its role in the coming decades to include a degree of responsibility for the health of the environment. This broader role is likely to supplement and entangle with the traditional role of the health economy, currently focused narrowly on human health, and lead to extensive organisational transformation, and infrastructure and product developments.

  7. Surface Roughness of Various Diamond-Like Carbon Films

    NASA Astrophysics Data System (ADS)

    Liu, Dongping; Liu, Yanhong; Chen, Baoxiang

    2006-11-01

    Atomic force microscopy is used to estimate and compare the surface morphology of hydrogenated and hydrogen-free diamond-like carbon (DLC) films. The films were prepared by using DC magnetron sputtering of a graphite target, pulsed cathodic carbon arcs, electron cyclotron resonance (ECR), plasma source ion implantation and dielectric barrier discharge (DBD). The difference in the surface structure is presented for each method of deposition. The influences of various discharge parameters on the film surface properties are discussed based upon the experimental results. The coalescence process via the diffusion of adsorbed carbon species is responsible for the formation of hydrogen-free DLC films with rough surfaces. The films with surface roughness at an atomic level can be deposited by energetic ion impacts in a highly ionized carbon plasma. The dangling bonds created by atomic hydrogen lead to the uniform growth of hydrocarbon species at the a-C:H film surfaces of the ECR or DBD plasmas.

  8. Nuclear fusion and carbon flashes on neutron stars

    NASA Technical Reports Server (NTRS)

    Taam, R. E.; Picklum, R. E.

    1978-01-01

    This paper reports on detailed calculations of the thermal evolution of the carbon-burning shells in the envelopes of accreting neutron stars for mass-accretion rates of 1 hundred-billionth to 2 billionths of a solar mass per yr and neutron-star masses of 0.56 and 1.41 solar masses. The work of Hansen and Van Horn (1975) is extended to higher densities, and a more detailed treatment of nuclear processing in the hydrogen- and helium-burning regions is included. Results of steady-state calculations are presented, and results of time-dependent computations are examined for accretion rates of 3 ten-billionths and 1 billionth of solar mass per yr. It is found that two evolutionary sequences lead to carbon flashes and that the carbon abundance at the base of the helium shell is a strong function of accretion rate. Upper limits are placed on the accretion rates at which carbon flashes will be important.

  9. Organic-inorganic hybrid carbon dots for cell imaging

    NASA Astrophysics Data System (ADS)

    Liu, Huan; Zhang, Hongwen; Li, Jiayu; Tang, Yuying; Cao, Yu; Jiang, Yan

    2018-04-01

    In this paper, nitrogen-doped carbon dots (CDs) had been synthesized directly by one-step ultrasonic treatment under mild conditions. During the functionalization process, Octa-aminopropyl polyhedral oligomeric silsesquioxane hydrochloride salt (OA-POSS) was used as stabilizing and passivation agent, which lead to self-assembling of CDs in aqueous medium solution. OA-POSS was obtained via hydrolytic condensation of γ-aminopropyl triethoxy silane (APTES). The average size of CDs prepared was approximately 3.3 nm with distribution between 2.5 nm and 4.5 nm. The prepared organic-inorganic hybrid carbon dots have several characteristics such as photoluminescence emission wavelength, efficient cellular uptake, and good biocompatibility. The results indicate that OA-POSS can maintain the fluorescence properties of the carbon dots effectively, and reduced cytotoxicity provides the possibility for biomedical applications. More than 89% of the Hela cells were viable when incubated with 2 mg ml‑1 or lesser organic-inorganic hybrid carbon dots. Thus, it provides a potential for multicolor imaging with HeLa cells.

  10. Preparation and characterization of biocompatible magnetic carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Shan, Yan; Chen, Kezheng; Yu, Xuegang; Gao, Lian

    2010-11-01

    Magnetic carbon nanotubes consisting of multi-wall carbon nanotubes (MWNTs) core and Fe3O4 shell were successfully prepared by in situ thermal decomposition of Fe(acac)3 or FeCl3 or Fe(CO)5 in 2-pyrrolidone containing acid treated MWNTs at 240 °C with the protection of nitrogen gas. The samples were characterized by TEM, XRD, SEAD, XPS and superconducting quantum interference device. Also, their biocompatibility was compared with naked carbon nanotubes. The results showed that after coated with Fe3O4 nanoparticles, the obtained magnetic carbon nanotubes show superparamagnetic characteristic at room temperature, and their blocking temperature is about 80 K. The magnetic properties of the nanotubes are relevant to the content of magnetic particles, increasing content of magnetic nanoparticles leads to higher blocking temperature and saturation magnetization. The results of antimicrobial activities to bacterial cells (Escherichia coli) showed that the MWNTs have antimicrobial activity, while the magnetic nanotubes are biocompatible even with a higher concentration than that of MWNTs.

  11. Monitoring Conditions Leading to SCC/Corrosion of Carbon Steel in Fuel Grade Ethanol

    DOT National Transportation Integrated Search

    2011-02-11

    This is the draft final report of the project on field monitoring of conditions that lead to SCC in ethanol tanks and piping. The other two aspects of the consolidated program, ethanol batching and blending effects (WP#325) and source effects (WP#323...

  12. Structure and properties of carbon black particles

    NASA Astrophysics Data System (ADS)

    Xu, Wei

    Structure and properties of carbon black particles were investigated using atomic force microscopy, gas adsorption, Raman spectroscopy, and X-ray diffraction. Supplementary information was obtained using TEM and neutron scattering. The AFM imaging of carbon black aggregates provided qualitative visual information on their morphology, complementary to that obtained by 3-D modeling based on TEM images. Our studies showed that carbon black aggregates were relatively flat. The surface of all untreated carbon black particles was found to be rough and its fractal dimension was 2.2. Heating reduced the roughness and fractal dimension for all samples heat treated at above 1300 K to 2.0. Once the samples were heat treated rapid cooling did not affect the surface roughness. However, rapid cooling reduced crystallite sizes, and different Raman spectra were obtained for carbon blacks of various history of heat treatment. By analyzing the Raman spectra we determined the crystallite sizes and identified amorphous carbon. The concentration of amorphous carbon depends on hydrogen content. Once hydrogen was liberated at increased temperature, the concentration of amorphous carbon was reduced and crystallites started to grow. Properties of carbon blacks at high pressure were also studied. Hydrostatic pressure did not affect the size of the crystallites in carbon black particles. The pressure induced shift in Raman frequency of the graphitic component was a result of increased intermolecular forces and not smaller crystallites. Two methods of determining the fractal dimension, the FHH model and the yardstick technique based on the BET theory were used in the literature. Our study proved that the FHH model is sensitive to numerous assumptions and leads to wrong conclusions. On the other hand the yardstick method gave correct results, which agreed with the AFM results.

  13. Formation of carbon nanoclusters by implantation of keV carbon ions in fused silica followed by thermal annealing

    NASA Astrophysics Data System (ADS)

    Olivero, P.; Peng, J. L.; Liu, A.; Reichart, P.; McCallum, J. C.; Sze, J. Y.; Lau, S. P.; Tay, B. K.; Kalish, R.; Dhar, S.; Feldman, Leonard; Jamieson, David N.; Prawer, Steven

    2005-02-01

    In the last decade, the synthesis and characterization of nanometer sized carbon clusters have attracted growing interest within the scientific community. This is due to both scientific interest in the process of diamond nucleation and growth, and to the promising technological applications in nanoelectronics and quantum communications and computing. Our research group has demonstrated that MeV carbon ion implantation in fused silica followed by thermal annealing in the presence of hydrogen leads to the formation of nanocrystalline diamond, with cluster size ranging from 5 to 40 nm. In the present paper, we report the synthesis of carbon nanoclusters by the implantation into fused silica of keV carbon ions using the Plasma Immersion Ion Implantation (PIII) technique, followed by thermal annealing in forming gas (4% 2H in Ar). The present study is aimed at evaluating this implantation technique that has the advantage of allowing high fluence-rates on large substrates. The carbon nanostructures have been characterized with optical absorption and Raman spectroscopies, cross sectional Transmission Electron Microscopy (TEM), and Parallel Electron Energy Loss Spectroscopy (PEELS). Nuclear Reaction Analysis (NRA) has been employed to evaluate the deuterium incorporation during the annealing process, as a key mechanism to stabilize the formation of the clusters.

  14. Warmer temperatures reduce net carbon uptake, but do not affect water use, in a mature southern Appalachian forest

    Treesearch

    A. Christopher Oishi; Chelcy F. Miniat; Kimberly A. Novick; Steven T. Brantley; James M. Vose; John T. Walker

    2018-01-01

    Increasing air temperature is expected to extend growing season length in temperate, broadleaf forests, leading to potential increases in evapotranspiration and net carbon uptake. However, other key processes affecting water and carbon cycles are also highly temperature-dependent. Warmer temperatures may result in higher ecosystem carbon loss through...

  15. Infrared Spectroscopy Determination of Lead Binding to Ethylenediaminotetraacetic Acid

    NASA Astrophysics Data System (ADS)

    Fitch, Alanah; Dragan, Simona

    1998-08-01

    In an attempt to improve a thematic lab sequence based on lead analysis of community derived samples, we have considered infrared spectroscopy as a method of determining the lead bound to ethylenediaminotetraacetic acid (EDTA). Students get acquainted with infrared spectroscopy by interpreting the spectra of EDTA, disodium ethylenediaminotetraacetate (Na2EDTA) and of lead(II) ethylenediaminotetraacetate (PbEDTA). Spectral characterization of the above compounds in the 1800-1500 cm-1 region gives information about the structural changes that sodium and lead binding to EDTA, respectively, produce. The spectra show the carboxylic carbonyl absorption band shifted from 1697 cm-1 to 1633 cm-1 in Na2EDTA, and two distinctive absorption bands at 1697 cm-1 and 1558 cm-1 in PbEDTA, the former being attributed to the "free" carboxylic group, as in EDTA, and the latter to the coordinated carboxylate with the bond order of less than 1.5 between the carbon and oxygen atoms. These features led us to the conclusion that the divalent Pb is tetra-coordinated having two covalent metal-nitrogen bonds and two ionic metal-carboxylate bonds. Based on the spectral differences between PbEDTA and EDTA, we have developed a method to quantitate the amount of lead bound to EDTA by simply comparing the peak height of the most prominent peaks in the 1800-1550 cm-1 region. A potential application of this method could be determination of lead extracted by binding it to ethylenediaminotetraacetic acid, excess EDTA being added.

  16. Carbon nanostructure based mechano-nanofluidics

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Wang, Jin; Ma, Ming

    2018-03-01

    Fast transport of water inside carbon nanostructures, such as carbon nanotubes and graphene-based nanomaterials, has addressed persistent challenges in nanofluidics. Recently reported new mechanisms show that the coupling between phonons in these materials and fluids under-confinement could lead to the enhancement of the diffusion coefficient. These developments have led to the emerging field of mechano-nanofluidics, which studies the effects of mechanical actuations on the properties of nanofluidics. In this tutorial review, we provide the basic concepts and development of mechano-nanofluidics. We also summarize the current status of experimental observations of fluids flow in individual nanochannels and theoretical interpretations. Finally, we briefly discuss the challenges and opportunities for the utilization of mechano-nanofluidics, such as controlling the fluid flow through regulating the coupling between materials and fluids.

  17. Carbon cycling in high-latitude ecosystems

    NASA Technical Reports Server (NTRS)

    Townsend, Alan; Frolking, Stephen; Holland, Elizabeth

    1992-01-01

    The carbon-rich soils and peatlands of high-latitude ecosystems could substantially influence atmospheric concentrations of CO2 and CH4 in a changing climate. Currently, cold, often waterlogged conditions retard decomposition, and release of carbon back to the atmosphere may be further slowed by physical protection of organic matter in permafrost. As a result, many northern ecosystems accumulate carbon over time (Billings et al., 1982; Poole and Miller, 1982), and although such rates of accumulation are low, thousands of years of development have left Arctic ecosystems with an extremely high soil carbon content; Schlesinger's (1984) average value of 20.4 kg C/m(sup 2) leads to a global estimate of 163 x 10(exp 15) g C. All GCM simulations of a doubled CO2 climate predict the greatest warming to occur in the polar regions (Dickinson, 1986; Mitchell, 1989). Given the extensive northern carbon pools and the strong sensitivity of decomposition processes to temperature, even a slight warming of the soil could dramatically alter the carbon balance of Arctic ecosystems. If warming accelerates rates of decomposition more than rates of primary production, a sizeable additional accumulation of CO2 in the atmosphere could occur. Furthermore, CH4 produced in anaerobic soils and peatlands of the Arctic already composes a good percentage of the global efflux (Cicerone and Oremlund, 1988); if northern soils become warmer and wetter as a whole, CH4 emissions could dramatically rise. A robust understanding of the primary controls of carbon fluxes in Arctic ecosystems is critical. As a framework for a systematic examination of these controls, we discussed a conceptual model of regional-scale Arctic carbon turnover, including CH4 production, and based upon the Century soil organic matter model.

  18. Interlaminar fracture in carbon fiber/thermoplastic composites

    NASA Technical Reports Server (NTRS)

    Hinkley, J. A.; Bascom, W. D.; Allred, R. E.

    1990-01-01

    The surfaces of commercial carbon fibers are generally chemically cleaned or oxidized and then coated with an oligomeric sizing to optimize their adhesion to epoxy matrix resins. Evidence from fractography, from embedded fiber testing and from fracture energies suggests that these standard treatments are relatively ineffective for thermoplastic matrices. This evidence is reviewed and model thermoplastic composites (polyphenylene oxide/high strain carbon fibers) are used to demonstrate how differences in adhesion can lead to a twofold change in interlaminar fracture toughness. The potential for improved adhesion via plasma modification of fiber surfaces is discussed. Finally, a surprising case of fiber-catalyzed resin degradation is described.

  19. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    From left, NASA Kennedy Space Center Public Affairs Officer George Diller, Ken Jucks, OCO-2 program scientist, NASA Headquarters, Dave Crisp, OCO-2 science team leader, JPL, and Annmarie Eldering, OCO-2 deputy project scientist, JPL, give a science briefing ahead of the planned launch of the Orbiting Carbon Observatory-2 (OCO-2), Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  20. Adsorption of metal ions by pecan shell-based granular activated carbons.

    PubMed

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-09-01

    The present investigation was undertaken to evaluate the adsorption effectiveness of pecan shell-based granular activated carbons (GACs) in removing metal ions (Cu(2+), Pb(2+), Zn(2+)) commonly found in municipal and industrial wastewater. Pecan shells were activated by phosphoric acid, steam or carbon dioxide activation methods. Metal ion adsorption of shell-based GACs was compared to the metal ion adsorption of a commercial carbon, namely, Calgon's Filtrasorb 200. Adsorption experiments were conducted using solutions containing all three metal ions in order to investigate the competitive effects of the metal ions as would occur in contaminated wastewater. The results obtained from this study showed that acid-activated pecan shell carbon adsorbed more lead ion and zinc ion than any of the other carbons, especially at carbon doses of 0.2-1.0%. However, steam-activated pecan shell carbon adsorbed more copper ion than the other carbons, particularly using carbon doses above 0.2%. In general, Filtrasorb 200 and carbon dioxide-activated pecan shell carbons were poor metal ion adsorbents. The results indicate that acid- and steam-activated pecan shell-based GACs are effective metal ion adsorbents and can potentially replace typical coal-based GACs in treatment of metal contaminated wastewater.

  1. The theoretical and empirical basis for understanding the impact of thinning on carbon stores in forests

    Treesearch

    Mark E. Harmon

    2013-01-01

    Th inning of forests has been proposed as a means to increase the carbon stores of forests. Th e justifi cation often offered is that thinning increases stand productivity, which in turn leads to higher carbon stores. While thinning of forests clearly increases the growth of residual trees and increases the amount of harvested carbon compared to an unthinned stand,...

  2. Space Shuttle Orbiter Wing-Leading-Edge Panel Thermo-Mechanical Analysis for Entry Conditions

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Song, Kyongchan; Raju, Ivatury S.

    2010-01-01

    Linear elastic, thermo-mechanical stress analyses of the Space Shuttle Orbiter wing-leading-edge panels is presented for entry heating conditions. The wing-leading-edge panels are made from reinforced carbon-carbon and serve as a part of the overall thermal protection system. Three-dimensional finite element models are described for three configurations: integrated configuration, an independent single-panel configuration, and a local lower-apex joggle segment. Entry temperature conditions are imposed and the through-the-thickness response is examined. From the integrated model, it was concluded that individual panels can be analyzed independently since minimal interaction between adjacent components occurred. From the independent single-panel model, it was concluded that increased through-the-thickness stress levels developed all along the chord of a panel s slip-side joggle region, and hence isolated local joggle sections will exhibit the same trend. From the local joggle models, it was concluded that two-dimensional plane-strain models can be used to study the influence of subsurface defects along the slip-side joggle region of these panels.

  3. Hunt for improved carbon capture picks up speed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    A high-throughput metal-organic framework synthesis instrument in action. Berkeley Lab chemist Jeffrey Long's lab will soon host a round-the-clock, robotically choreographed hunt for carbon-hungry materials. The Berkeley Lab chemist leads a diverse team of scientists whose goal is to quickly discover materials that can efficiently strip carbon dioxide from a power plant's exhaust, before it leaves the smokestack and contributes to climate change. They're betting on a recently discovered class of materials called metal-organic frameworks, which boast a record-shattering internal surface area. A sugar cube-sized piece, if unfolded and flattened, would more than blanket a football field. The crystalline materialmore » can also be tweaked to absorb specific molecules. More: http://newscenter.lbl.gov/feature-stories/2010/05/26/carbon-capture-search/« less

  4. A Biochemical Magic Frequency Based on the Reduction Level of Biological Carbon

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1995-01-01

    We have calculated the average number of electron pairs required for the chemical reduction of carbon dioxide to biological carbon using (a) estimates of the reducing equivalents (electron pairs) needed to synthesize biomolecules from carbon dioxide, and (b) measurements of the molecular composition of different organisms. These calculations showed that the carbon of the Earth's biosphere is at the reduction level of formaldehyde that requires two electron pairs per carbon atom to be synthesized from carbon dioxide. This was also the reduction level of cellular carbon when fuel stored as lipid was not used in the estimate. Since this chemical characteristic of life is probably universal, it could be the one thing we know about other carbon-based life in the universe, and the one thing that other intelligent life knows about us. We believe that this common knowledge that biological carbon throughout the universe is at the reduction level of formaldehyde could lead to the selection of the 72.83814 GHz line of the 0, 0, 0 yields 1, 1, 1 rotational transition of formaldehyde as a frequency for interstellar communication.

  5. Louisiana SIP: LAC 33:III Ch. 7 Section 709. Measurement of Concentrations PM10, SO2, Carbon Monoxide, Atmospheric Oxidants, Nitrogen Oxides, and Lead; SIP effective 1989-05-08 (LAc49) and 1989-08-14 (LAc50) to 2011-08-03 (LAd34 - Revised)

    EPA Pesticide Factsheets

    Louisiana SIP: LAC 33:III Ch. 7 Section 709. Measurement of Concentrations PM10, SO2, Carbon Monoxide, Atmospheric Oxidants, Nitrogen Oxides, and Lead; SIP effective 1989-05-08 (LAc49) and 1989-08-14 (LAc50) to 2011-08-03 (LAd34 - Revised)

  6. Carbon- versus sulphur-based zinc binding groups for carbonic anhydrase inhibitors?

    PubMed

    Supuran, Claudiu T

    2018-12-01

    A set of compounds incorporating carbon-based zinc-binding groups (ZBGs), of the type PhX (X = COOH, CONH 2 , CONHNH 2 , CONHOH, CONHOMe), and the corresponding derivatives with sulphur(VI)-based ZBGs (X = SO 3 H, SO 2 NH 2 , SO 2 NHNH 2 , SO 2 NHOH, SO 2 NHOMe) were tested as inhibitors of all mammalian isoforms of carbonic anhydrase (CA, EC 4.2.1.1), CA I-XV. Three factors connected with the ZBG influenced the efficacy as CA inhibitor (CAI) of the investigated compounds: (i) the pKa of the ZBG; (ii) its geometry (tetrahedral, i.e. sulphur-based, versus trigonal, i.e. carbon-based ZBGs), and (iii) orientation of the organic scaffold induced by the nature of the ZBG. Benzenesulphonamide was the best inhibitor of all isoforms, but other ZBGs led to interesting inhibition profiles, although with an efficacy generally reduced when compared to the sulphonamide. The nature of the ZBG also influenced the CA inhibition mechanism. Most of these derivatives were zinc binders, but some of them (sulfonates, carboxylates) may interact with the enzyme by anchoring to the zinc-coordinated water molecule or by other inhibition mechanisms (occlusion of the active site entrance, out of the active site binding, etc.). Exploring structurally diverse ZBGs may lead to interesting new developments in the field of CAIs.

  7. Long-term decline of the Amazon carbon sink.

    PubMed

    Brienen, R J W; Phillips, O L; Feldpausch, T R; Gloor, E; Baker, T R; Lloyd, J; Lopez-Gonzalez, G; Monteagudo-Mendoza, A; Malhi, Y; Lewis, S L; Vásquez Martinez, R; Alexiades, M; Álvarez Dávila, E; Alvarez-Loayza, P; Andrade, A; Aragão, L E O C; Araujo-Murakami, A; Arets, E J M M; Arroyo, L; Aymard C, G A; Bánki, O S; Baraloto, C; Barroso, J; Bonal, D; Boot, R G A; Camargo, J L C; Castilho, C V; Chama, V; Chao, K J; Chave, J; Comiskey, J A; Cornejo Valverde, F; da Costa, L; de Oliveira, E A; Di Fiore, A; Erwin, T L; Fauset, S; Forsthofer, M; Galbraith, D R; Grahame, E S; Groot, N; Hérault, B; Higuchi, N; Honorio Coronado, E N; Keeling, H; Killeen, T J; Laurance, W F; Laurance, S; Licona, J; Magnussen, W E; Marimon, B S; Marimon-Junior, B H; Mendoza, C; Neill, D A; Nogueira, E M; Núñez, P; Pallqui Camacho, N C; Parada, A; Pardo-Molina, G; Peacock, J; Peña-Claros, M; Pickavance, G C; Pitman, N C A; Poorter, L; Prieto, A; Quesada, C A; Ramírez, F; Ramírez-Angulo, H; Restrepo, Z; Roopsind, A; Rudas, A; Salomão, R P; Schwarz, M; Silva, N; Silva-Espejo, J E; Silveira, M; Stropp, J; Talbot, J; ter Steege, H; Teran-Aguilar, J; Terborgh, J; Thomas-Caesar, R; Toledo, M; Torello-Raventos, M; Umetsu, R K; van der Heijden, G M F; van der Hout, P; Guimarães Vieira, I C; Vieira, S A; Vilanova, E; Vos, V A; Zagt, R J

    2015-03-19

    Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models.

  8. Future Projections and Consequences of the Changing North American Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Huntzinger, D. N.; Cooley, S. R.; Moore, D. J.

    2017-12-01

    The rise of atmospheric carbon dioxide (CO2), primarily due to human-caused fossil fuel emissions and land-use change, has been dampened by carbon uptake by the oceans and terrestrial biosphere. Nevertheless, today's atmospheric CO2 levels are higher than at any time in the past 800,000 years. Over the past decade, there has been considerable effort to understand how carbon cycle changes interact with, and influence, atmospheric CO2 concentrations and thus climate. Here, we summarize the key findings related to projected changes to the North American carbon cycle and the consequences of these changes as reported in Chapters 17 and 19 of the 2nd State of the Carbon Cycle Report (SOCCR-2). In terrestrial ecosystems, increased atmospheric CO2 causes enhanced photosynthesis, plant growth, and water-use efficiency. Together, these may lead to changes in vegetation composition, carbon storage, hydrology and biogeochemical cycling. In the ocean, increased uptake of atmospheric CO2 causes ocean acidification, which leads to changes in reproduction, survival, and growth of many marine species. These direct physiological responses to acidification are likely to have indirect ecosystem-scale consequences that we are just beginning to understand. In all environments, the effects of rising CO2 also interact with other global changes. For example, nutrient availability can set limits on growth and a warming climate alters carbon uptake depending on a number of other factors. As a result, there is low confidence in the future evolution of the North American carbon cycle. For example, models project that terrestrial ecosystems could continue to be a net sink (of up to 1.19 PgC yr-1) or switch to a net source of carbon to the atmosphere (of up to 0.60 PgC yr-1) by the end of the century under business-as-usual emission scenarios. And, while North American coastal areas have historically been a sink of carbon (e.g., 2.6 to 3.5 PgC since 1995) and are projected to continue to take up

  9. 1,3-Oxazole-based selective picomolar inhibitors of cytosolic human carbonic anhydrase II alleviate ocular hypertension in rabbits: Potency is supported by X-ray crystallography of two leads.

    PubMed

    Ferraroni, Marta; Lucarini, Laura; Masini, Emanuela; Korsakov, Mikhail; Scozzafava, Andrea; Supuran, Claudiu T; Krasavin, Mikhail

    2017-09-01

    Two lead 1,3-oxazole-based carbonic anhydrase inhibitors (CAIs) earlier identified as selective, picomolar inhibitors of hCA II (a cytosolic target for treatment of glaucoma) have been investigated further. Firstly, they were found to be conveniently synthesized on multigram scale, which enables further development. These compounds were found to be comparable in efficacy to dorzolamide eye drops when applied in the eye drop form as well. Finally, the reasons for unusually high potency of these compounds became understood from their high-resolution X-ray crystallography structures. These data significantly expand our understanding of heterocycle-based primary sulfonamides, many of which have recently emerged from our labs - particularly, from the corneal permeability standpoint. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Dynamics Impact Tolerance of Shuttle RCC Leading Edge Panels Using LS-DYNA

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Jones, Lisa E.; Hardy, Robin C.; Spellman, Regina L.; Carney, Kelly S.; Melis, Matthew E.; Stockwell, Alan E.

    2005-01-01

    This paper describes a research program conducted to enable accurate prediction of the impact tolerance of the shuttle Orbiter leading-edge wing panels using physics-based codes such as LS-DYNA, a nonlinear, explicit transient dynamic finite element code. The shuttle leading-edge panels are constructed of Reinforced-Carbon-Carbon (RCC) composite material, which is used because of its thermal properties to protect the shuttle during reentry into the Earth's atmosphere. Accurate predictions of impact damage from insulating foam and other debris strikes that occur during launch required materials characterization of expected debris, including strain-rate effects. First, analytical models of individual foam and RCC materials were validated. Next, analytical models of foam cylinders impacting 6- in. x 6-in. RCC flat plates were developed and validated. LS-DYNA pre-test models of the RCC flat plate specimens established the impact velocity of the test for three damage levels: no-detectable damage, non-destructive evaluation (NDE) detectable damage, or visible damage such as a through crack or hole. Finally, the threshold of impact damage for RCC on representative Orbiter wing panels was predicted for both a small through crack and for NDE-detectable damage.

  11. Dynamic Impact Tolerance of Shuttle RCC Leading Edge Panels using LS-DYNA

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin; Jackson, Karen E.; Lyle, Karen H.; Jones, Lisa E.; Hardy, Robin C.; Spellman, Regina L.; Carney, Kelly S.; Melis, Matthew E.; Stockwell, Alan E.

    2008-01-01

    This paper describes a research program conducted to enable accurate prediction of the impact tolerance of the shuttle Orbiter leading-edge wing panels using 'physics-based- codes such as LS-DYNA, a nonlinear, explicit transient dynamic finite element code. The shuttle leading-edge panels are constructed of Reinforced-Carbon-Carbon (RCC) composite material, which issued because of its thermal properties to protect the shuttle during re-entry into the Earth's atmosphere. Accurate predictions of impact damage from insulating foam and other debris strikes that occur during launch required materials characterization of expected debris, including strain-rate effects. First, analytical models of individual foam and RCC materials were validated. Next, analytical models of individual foam cylinders impacting 6-in. x 6-in. RCC flat plates were developed and validated. LS-DYNA pre-test models of the RCC flat plate specimens established the impact velocity of the test for three damage levels: no-detectable damage, non-destructive evaluation (NDE) detectable damage, or visible damage such as a through crack or hole. Finally, the threshold of impact damage for RCC on representative Orbiter wing panels was predicted for both a small through crack and for NDE-detectable damage.

  12. Tectonic controls on the long-term carbon isotope mass balance

    PubMed Central

    Mills, Benjamin J. W.

    2017-01-01

    The long-term, steady-state marine carbon isotope record reflects changes to the proportional burial rate of organic carbon relative to total carbon on a global scale. For this reason, times of high δ13C are conventionally interpreted to be oxygenation events caused by excess organic burial. Here we show that the carbon isotope mass balance is also significantly affected by tectonic uplift and erosion via changes to the inorganic carbon cycle that are independent of changes to the isotopic composition of carbon input. This view is supported by inverse covariance between δ13C and a range of uplift proxies, including seawater 87Sr/86Sr, which demonstrates how erosional forcing of carbonate weathering outweighs that of organic burial on geological timescales. A model of the long-term carbon cycle shows that increases in δ13C need not be associated with increased organic burial and that alternative tectonic drivers (erosion, outgassing) provide testable and plausible explanations for sustained deviations from the long-term δ13C mean. Our approach emphasizes the commonly overlooked difference between how net and gross carbon fluxes affect the long-term carbon isotope mass balance, and may lead to reassessment of the role that the δ13C record plays in reconstructing the oxygenation of earth’s surface environment. PMID:28396434

  13. Structural evolution of detonation carbon in composition B by X-ray scattering

    DOE PAGES

    Firestone, Millicent A.; Dattelbaum, Dana M.; Podlesak, David W.; ...

    2015-01-01

    Products evolved during the detonation of high explosives are primarily a collection of molecular gases and solid carbon condensates. Electron microscopy studies have revealed that detonation carbon (soot) can contain a variety of unique carbon particles possessing novel morphologies, such as carbon onions and ribbons. Despite these observations very little is known about the conditions that leads to the production of these novel carbon nanoparticles. A fuller understanding on conditions that generate such nanoparticles would greatly benefit from time-resolved studies that probe particle formation and evolution through and beyond the chemical reaction zone. Herein, we report initial results employing time-resolvedmore » X-ray scattering (TRSAXS) measurements to monitor nanosecond time-scale carbon products formed from detonating Composition B (60% TNT, 40% RDX). These studies were performed at the Dynamic Compression Sector (DCS, Sector 35) at the Advanced Photon Source (Argonne National Laboratory). Lastly, analysis of the collected scattering patterns reveals the presence of fractal multi-layered carbon condensates.« less

  14. Structural evolution of detonation carbon in composition B by X-ray scattering

    NASA Astrophysics Data System (ADS)

    Firestone, Millicent A.; Dattelbaum, Dana M.; Podlesak, David W.; Gustavsen, Richard L.; Huber, Rachel C.; Ringstrand, Bryan S.; Watkins, Erik B.; Jensen, Brian; Willey, Trevor; Lauderbauch, Lisa; Hodgin, Ralph; Bagge-Hansen, Michael; van Buuren, Tony; Seifert, Sönke; Graber, Timothy

    2017-01-01

    Products evolved during the detonation of high explosives are primarily a collection of molecular gases and solid carbon condensates. Electron microscopy studies have revealed that detonation carbon (soot) can contain a variety of unique carbon particles possessing novel morphologies, such as carbon onions and ribbons. Despite these observations very little is known about the conditions that leads to the production of these novel carbon nanoparticles. A fuller understanding on conditions that generate such nanoparticles would greatly benefit from time-resolved studies that probe particle formation and evolution through and beyond the chemical reaction zone. Herein, we report initial results employing time-resolved X-ray scattering (TRSAXS) measurements to monitor nanosecond time-scale carbon products formed from detonating Composition B (60% TNT, 40% RDX). These studies were performed at the Dynamic Compression Sector (DCS, Sector 35) at the Advanced Photon Source (Argonne National Laboratory). Analysis of the collected scattering patterns reveals the presence of fractal multi-layered carbon condensates.

  15. Processable high-carbon-yielding polymer for micro- and nanofabrication

    NASA Astrophysics Data System (ADS)

    Perpall, Mark W.; Zengin, Huseyin; Perera, K. Prasanna U.; Zhou, Wensheng; Shah, Hiren; Wu, Xinyu; Creager, Stephen E.; Smith, Dennis W., Jr.; Foulger, Stephen H.; Ballato, John M.

    2003-01-01

    Bis-ortho-Diynyl Arene (BODA) monomers polymerize to network polynapthalene by the thermally-driven Bergman cyclization and subsequent radical polymerization via oligomeric intermediates that can be melt or solution processed. Further heating of the network to 1000 °C affords a high-yield glassy carbon structure that retains the approximate size and dimensions of the polymer precursor. The higher carbon-yield for BODA networks (75- 80 % by mass) is significantly greater than that of traditional phenol-formaldehyde resins and other carbon precursor polymers leading to its greater dimensional stability. Phenyl terminated BODA derived polymers were fabricated using microprocessing such as the micromolding in capillaries (MIMIC) technique, direct microtransfer molding, and molding in quartz capillary tubes. Nano-scale fabrication using closed packed silica spheres as templates was demonstrated with an hydroxy-terminated monomer which exhibits greatly enhanced compatibility for silica surfaces. After pyrolysis to glassy carbon, the silica is chemically etched leaving an inverse carbon opal photonic crystal which is electrically conductive. The wavelength of light diffracted is a function of the average refractive index of the carbon/ filler composite, which can be modified for use as sensitive detector elements.

  16. Atomic absorption spectrometric determination of copper, zinc, and lead in geological materials

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.

    1976-01-01

    An atomic absorption spectrometric method is described for the determination of copper, zinc, and lead in geological materials. The sample is digested with HF-HCl-H2O2; the final solution for analysis is in 10 % (v/v) HCl. Copper and zinc are determined directly by aspirating the solution into an air-acetylene flame. A separate aliquot of the solution is used for determination of lead; lead is extracted into TOPO-MIBK from the acidic solution in the presence of iodide and ascorbic acid. For a 0.50-g sample, the limits of determination are 10-2000 p.p.m. for Cu and Zn, and 5-5000 p.p.m. for Pb. As much as 40 % Fe or Ca. and 10 % Al, Mg, or Mn in the sample do not interfere. The proposed method can be applied to the determination of copper, zinc, and lead in a wide range of geological materials including iron- and manganese-rich, calcareous and carbonate samples. ?? 1976.

  17. Intercomparison of terrestrial carbon fluxes and carbon use efficiency simulated by CMIP5 Earth System Models

    NASA Astrophysics Data System (ADS)

    Kim, Dongmin; Lee, Myong-In; Jeong, Su-Jong; Im, Jungho; Cha, Dong Hyun; Lee, Sanggyun

    2017-12-01

    This study compares historical simulations of the terrestrial carbon cycle produced by 10 Earth System Models (ESMs) that participated in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Using MODIS satellite estimates, this study validates the simulation of gross primary production (GPP), net primary production (NPP), and carbon use efficiency (CUE), which depend on plant function types (PFTs). The models show noticeable deficiencies compared to the MODIS data in the simulation of the spatial patterns of GPP and NPP and large differences among the simulations, although the multi-model ensemble (MME) mean provides a realistic global mean value and spatial distributions. The larger model spreads in GPP and NPP compared to those of surface temperature and precipitation suggest that the differences among simulations in terms of the terrestrial carbon cycle are largely due to uncertainties in the parameterization of terrestrial carbon fluxes by vegetation. The models also exhibit large spatial differences in their simulated CUE values and at locations where the dominant PFT changes, primarily due to differences in the parameterizations. While the MME-simulated CUE values show a strong dependence on surface temperatures, the observed CUE values from MODIS show greater complexity, as well as non-linear sensitivity. This leads to the overall underestimation of CUE using most of the PFTs incorporated into current ESMs. The results of this comparison suggest that more careful and extensive validation is needed to improve the terrestrial carbon cycle in terms of ecosystem-level processes.

  18. All-round joining method with carbon fiber reinforced interface

    NASA Astrophysics Data System (ADS)

    Miwa, Noriyoshi; Tanaka, Kazunori; Kamiya, Yoshiko; Nishi, Yoshitake

    2008-08-01

    Carbon fiber reinforced polymer (CFRP) has been recently applied to not only wing, but also fan blades of turbo fan engines. To prevent impact force, leading edge of titanium was often mounted on the CFRP fan blades with adhesive force. In order to enhance the joining strength, a joining method with carbon fiber reinforced interface has been developed. By using nickel-coated carbon fibers, a joining sample with carbon fiber-reinforced interface between CFRP and CFRM has been successfully developed. The joining sample with nickel-coated carbon fiber interface exhibits the high tensile strength, which was about 10 times higher than that with conventional adhesion. On the other hand, Al-welding methods to steel, Cu and Ti with carbon fiber reinforced interface have been successfully developed to lighten the parts of machines of racing car and airplane. Carbon fibers in felt are covered with metals to protect the interfacial reaction. The first step of the welding method is that the Al coated felt is contacted and wrapped with molten aluminum solidified under gravity pressure, whereas the second step is that the felt with double layer of Ni and Al is contacted and wrapped with molten steel (Cu or Ti) solidified under gravity pressure. Tensile strength of Al-Fe (Cu or Ti) welded sample with carbon fiber reinforced interface is higher than those of Al-Fe (Cu or Ti) welded sample.

  19. Soldering of Carbon Materials Using Transition Metal Rich Alloys.

    PubMed

    Burda, Marek; Lekawa-Raus, Agnieszka; Gruszczyk, Andrzej; Koziol, Krzysztof K K

    2015-08-25

    Joining of carbon materials via soldering has not been possible up to now due to lack of wetting of carbons by metals at standard soldering temperatures. This issue has been a severely restricting factor for many potential electrical/electronic and mechanical applications of nanostructured and conventional carbon materials. Here we demonstrate the formation of alloys that enable soldering of these structures. By addition of several percent (2.5-5%) of transition metal such as chromium or nickel to a standard lead-free soldering tin based alloy we obtained a solder that can be applied using a commercial soldering iron at typical soldering temperatures of approximately 350 °C and at ambient conditions. The use of this solder enables the formation of mechanically strong and electrically conductive joints between carbon materials and, when supported by a simple two-step technique, can successfully bond carbon structures to any metal terminal. It has been shown using optical and scanning electron microscope images as well as X-ray diffraction patterns and energy dispersive X-ray mapping that the successful formation of carbon-solder bonds is possible, first, thanks to the uniform nonreactive dispersion of transition metals in the tin-based matrix. Further, during the soldering process, these free elements diffuse into the carbon-alloy border with no formation of brazing-like carbides, which would damage the surface of the carbon materials.

  20. Estimating Effects of Brazilian Forest Wildfires on the Carbon Monoxide Concentration

    NASA Astrophysics Data System (ADS)

    Bhoi, S.; Qu, J.; Dasgupta, S.

    2004-12-01

    Forest wildfires have dramatically increased in recent years due to global warming and extreme dry conditions. Forest wildfires spew out a significant amount of atmospheric pollutants, such as carbon monoxide, due to incomplete burning of the biomass. According to United State Environmental Protection Agency (EPA), a high increase of carbon monoxide leads to the formation of carboxyhemoglobin in blood which decreases the oxygen intake capacity of human body and at moderate concentration angina, impaired vision and reduced brain function may occur. As compared to Northern America where significant amount of carbon monoxide released is caused by combustion devices and furnace, the increase of carbon monoxide concentration in Brazilian regions is mainly attributed to the forest fires. In this study, carbon monoxide datasets from the Measurements of pollution in the troposphere (MOPITT) have been analyzed to see the amount of increase in the carbon monoxide concentration after forest wildfires, ire, particularly in summer of 2003. The study reveals that there is a significant increase in the carbon monoxide concentration after forest fires.

  1. Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration?

    NASA Technical Reports Server (NTRS)

    Sumner, D. Y.; Grotzinger, J. P.

    1996-01-01

    Archean carbonates commonly contain decimetre- to metre-thick beds consisting entirely of fibrous calcite and neomorphosed fibrous aragonite that precipitated in situ on the sea floor. The fact that such thick accumulations of precipitated carbonate are rare in younger marine carbonates suggests an important change in the modes of calcium carbonate precipitation through time. Kinetics of carbonate precipitation depend on the concentration of inhibitors to precipitation that reduce crystallization rates and crystal nuclei formation, leading to kinetic maintenance of supersaturated solutions. Inhibitors also affect carbonate textures by limiting micrite precipitation and promoting growth of older carbonate crystals on the sea floor. Fe2+, a strong calcite-precipitation inhibitor, is thought to have been present at relatively high concentrations in Archean seawater because oxygen concentrations were low. The rise in oxygen concentration at 2.2-1.9 Ga led to the removal of Fe2+ from seawater and resulted in a shift from Archean facies, which commonly include precipitated beds, to Proterozoic facies, which contain more micritic sediment and only rare precipitated beds.

  2. Natural sources of greenhouse gases: carbon dioxide emissions from volcanoes

    USGS Publications Warehouse

    Gerlach, Terrence

    1990-01-01

    Volcanic degassing of carbon dioxide plays an important role in keeping the atmosphere-ocean portion of the carbon geochemical cycle in balance. The atmosphere-ocean carbon deficit requires replenishment of 6??1012 mol CO2/yr, and places an upper limit on the output of carbon dioxide from volcanoes. The CO2 output of the global mid-oceanic ridge system is ca. 0.7??1012 mol/yr, thus supplying only a fraction of the amount needed to balance the carbon deficit. The carbon dioxide flux from subaerial volcanoes is poorly known, but it appears to be at least as large as the mid-oceanic ridge flux. Much (perhaps most) of the CO2 emitted from volcanoes is degassed noneruptively. This mode of degassing may lead to impacts on the environment and biosphere that are fundamentally different in character from those envisioned in published scenarios, which are based on the assumption that CO2 degassing occurs predominantly by eruptive processes. Although the flux of carbon dioxide from volcanoes is poorly constrained at present, it is clearly two orders of magnitude lower than the anthropogenic output of CO2.

  3. Nanocatalyst shape and composition during nucleation of single-walled carbon nanotubes

    DOE PAGES

    Gomez-Ballesteros, Jose L.; Burgos, Juan C.; Lin, Pin Ann; ...

    2015-12-07

    The dynamic evolution of nanocatalyst particle shape and carbon composition during the initial stages of single-walled carbon nanotube growth by chemical vapor deposition synthesis is investigated. Classical reactive and ab initio molecular dynamics simulations are used, along with environmental transmission electron microscope video imaging analyses. A clear migration of carbon is detected from the nanocatalyst/substrate interface, leading to a carbon gradient showing enrichment of the nanocatalyst layers in the immediate vicinity of the contact layer. However, as the metal nanocatalyst particle becomes saturated with carbon, a dynamic equilibrium is established, with carbon precipitating on the surface and nucleating a carbonmore » cap that is the precursor of nanotube growth. A carbon composition profile decreasing towards the nanoparticle top is clearly revealed by the computational and experimental results that show a negligible amount of carbon in the nanoparticle region in contact with the nucleating cap. The carbon composition profile inside the nanoparticle is accompanied by a well-defined shape evolution of the nanocatalyst driven by the various opposing forces acting upon it both from the substrate and from the nascent carbon nanostructure. In conclusion, this new understanding suggests that tuning the nanoparticle/substrate interaction would provide unique ways of controlling the nanotube synthesis.« less

  4. Stereoselective heterocycle synthesis through oxidative carbon-hydrogen bond activation.

    PubMed

    Liu, Lei; Floreancig, Paul E

    2010-01-01

    Heterocycles are ubiquitous structures in both drugs and natural products, and efficient methods for their construction are being pursued constantly. Carbon-hydrogen bond activation offers numerous advantages for the synthesis of heterocycles with respect to minimizing the length of synthetic routes and reducing waste. As interest in chiral medicinal leads increases, stereoselective methods for heterocycle synthesis must be developed. The use of carbon-hydrogen bond activation reactions for stereoselective heterocycle synthesis has produced a range of creative transformations that provide a wide array of structural motifs, selected examples of which are described in this review.

  5. Heteroatom-doped highly porous carbon from human urine.

    PubMed

    Chaudhari, Nitin Kaduba; Song, Min Young; Yu, Jong-Sung

    2014-06-09

    Human urine, otherwise potentially polluting waste, is an universal unused resource in organic form disposed by the human body. We present for the first time "proof of concept" of a convenient, perhaps economically beneficial, and innovative template-free route to synthesize highly porous carbon containing heteroatoms such as N, S, Si, and P from human urine waste as a single precursor for carbon and multiple heteroatoms. High porosity is created through removal of inherently-present salt particles in as-prepared "Urine Carbon" (URC), and multiple heteroatoms are naturally doped into the carbon, making it unnecessary to employ troublesome expensive pore-generating templates as well as extra costly heteroatom-containing organic precursors. Additionally, isolation of rock salts is an extra bonus of present work. The technique is simple, but successful, offering naturally doped conductive hierarchical porous URC, which leads to superior electrocatalytic ORR activity comparable to state of the art Pt/C catalyst along with much improved durability and methanol tolerance, demonstrating that the URC can be a promising alternative to costly Pt-based electrocatalyst for ORR. The ORR activity can be addressed in terms of heteroatom doping, surface properties and electrical conductivity of the carbon framework.

  6. Heteroatom-doped highly porous carbon from human urine

    NASA Astrophysics Data System (ADS)

    Chaudhari, Nitin Kaduba; Song, Min Young; Yu, Jong-Sung

    2014-06-01

    Human urine, otherwise potentially polluting waste, is an universal unused resource in organic form disposed by the human body. We present for the first time ``proof of concept'' of a convenient, perhaps economically beneficial, and innovative template-free route to synthesize highly porous carbon containing heteroatoms such as N, S, Si, and P from human urine waste as a single precursor for carbon and multiple heteroatoms. High porosity is created through removal of inherently-present salt particles in as-prepared ``Urine Carbon'' (URC), and multiple heteroatoms are naturally doped into the carbon, making it unnecessary to employ troublesome expensive pore-generating templates as well as extra costly heteroatom-containing organic precursors. Additionally, isolation of rock salts is an extra bonus of present work. The technique is simple, but successful, offering naturally doped conductive hierarchical porous URC, which leads to superior electrocatalytic ORR activity comparable to state of the art Pt/C catalyst along with much improved durability and methanol tolerance, demonstrating that the URC can be a promising alternative to costly Pt-based electrocatalyst for ORR. The ORR activity can be addressed in terms of heteroatom doping, surface properties and electrical conductivity of the carbon framework.

  7. Cellulose and Lignin Carbon Isotope Signatures in Sphagnum Moss Reveal Complementary Environmental Properties

    NASA Astrophysics Data System (ADS)

    Loisel, J.; Nichols, J. E.; Kaiser, K.; Beilman, D. W.; Yu, Z.

    2016-12-01

    The carbon isotope signature (δ13C) of Sphagnum moss is increasingly used as a proxy for past surface wetness in peatlands. However, conflicting interpretations of these carbon isotope records have recently been published. While the water film hypothesis suggests that the presence of a thick (thin) water film around hollow (hummock) mosses leads to less (more) negative δ13C values, the carbon source hypothesis poses that a significant (insignificant) amount of CH4 assimilation by hollow (hummock) mosses leads to more (less) negative δ13C values. To evaluate these competing mechanisms and their impact on moss δ13C, we gathered 30 moss samples from 6 peatlands in southern Patagonia. Samples were collected along a strong hydrological gradient, from very dry hummocks (80 cm above water table depth) to submerged hollows (5 cm below water surface). These peat bogs have the advantage of being colonized by a single cosmopolitan moss species, Sphagnum magellanicum, limiting potential biases introduced by species-specific carbon discrimination. We measured δ13C from stem cellulose and leaf waxes on the same samples to quantify compound-specific carbon signatures. We found that stem cellulose and leaf-wax lipids were both strongly negatively correlated with moss water content, suggesting a primary role of water film thickness on carbon assimilation. In addition, isotopic fractionation during wax synthesis was greater than for cellulose. This offset decreases as conditions get drier, due to (i) a more effective carbon assimilation, or (ii) CH4 uptake through symbiosis with methanotrophic bacteria within the leaves of wet mosses. Biochemical analysis (carbohydrates, amino acids, hydrophenols, cutin acids) of surface moss are currently being conducted to characterize moss carbon allocation under different hydrological conditions. Overall, this modern calibration work should be of use for interpreting carbon isotope records from peatlands.

  8. Carbon-On-Carbon Manufacturing

    NASA Technical Reports Server (NTRS)

    Mungas, Gregory S. (Inventor); Buchanan, Larry (Inventor); Banzon, Jr., Jose T. (Inventor)

    2017-01-01

    The presently disclosed technology relates to carbon-on-carbon (C/C) manufacturing techniques and the resulting C/C products. One aspect of the manufacturing techniques disclosed herein utilizes two distinct curing operations that occur at different times and/or using different temperatures. The resulting C/C products are substantially non-porous, even though the curing operation(s) substantially gasify a liquid carbon-entrained filler material that saturates a carbon fabric that makes up the C/C products.

  9. Fracture Mechanics Analyses of the Slip-Side Joggle Regions of Wing-Leading Edge Panels

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Knight, Norman F., Jr.; Song, Kyongchan; Phillips, Dawn R.

    2010-01-01

    The Space Shuttle Orbiter wing comprises of 22 leading edge panels on each side of the wing. These panels are part of the thermal protection system that protects the Orbiter wings from extreme heating that take place on the reentry in to the earth atmosphere. On some panels that experience extreme heating, liberation of silicon carbon (SiC) coating was observed on the slip side regions of the panels. Global structural and local fracture mechanics analyses were performed on these panels as a part of the root cause investigation of this coating liberation anomaly. The wing-leading-edge reinforced carbon-carbon (RCC) panels, Panel 9, T-seal 10, and Panel 10, are shown in Figure 1 and the progression of the stress analysis models is presented in Figure 2. The global structural analyses showed minimal interaction between adjacent panels and the T-seal that bridges the gap between the panels. A bounding uniform temperature is applied to a representative panel and the resulting stress distribution is examined. For this loading condition, the interlaminar normal stresses showed negligible variation in the chord direction and increased values in the vicinity of the slip-side joggle shoulder. As such, a representative span wise slice on the panel can be taken and the cross section can be analyzed using plane strain analysis.

  10. Low dimensional carbon electronics

    NASA Astrophysics Data System (ADS)

    Herring, Patrick Kenichi

    This thesis covers several different experiments that comprised my graduate career. The main focus of these experiments was the use of carbon as an electronic material and a steady evolution of fabrication recipes that allowed us to perform reliable and consistent measurements. The second chapter describes experiments with carbon nanotubes, where our goal was to produce devices capable of manipulating electronic spin states in order create quantum bits or "qubits." The third chapter covers the development of fabrication recipes with the goal of creating qubits within Si-Ge nanowire, and the bottom-gating approach that was developed. The fourth chapter begins graphene related research, describing one of the simplest uses of graphene as a simple transparent electrode on a SiN micromembrane. The remainder of the thesis describes experiments that develop graphene based optical and infrared detectors, study their characteristics and determine the physics that underlies their detection mechanism. Key in these experiments were the fabrication recipes that had been developed to create carbon nanotube and Si-Ge nanowire devices. Finally, we demonstrate how engineering of the device's thermal characteristics can lead to improved sensitivity and how graphene can be used in novel applications where conventional materials are not suitable.

  11. Microbial activity promotes carbon storage in temperate soils

    NASA Astrophysics Data System (ADS)

    Lange, Markus; Eisenhauer, Nico; Sierra, Carlos; Gleixner, Gerd

    2014-05-01

    Soils are one of the most important carbon sink and sources. Soils contain up to 3/4 of all terrestrial carbon. Beside physical aspects of soil properties (e.g. soil moisture and texture) plants play an important role in carbon sequestration. The positive effect of plant diversity on carbon storage is already known, though the underlying mechanisms remain still unclear. In the frame of the Jena Experiment, a long term biodiversity experiment, we are able to identify these processes. Nine years after an land use change from an arable field to managed grassland the mean soil carbon concentrations increased towards the concentrations of permanent meadows. The increase was positively linked to a plant diversity gradient. High diverse plant communities produce more biomass, which in turn results in higher amounts of litter inputs. The plant litter is transferred to the soil organic matter by the soil microbial community. However, higher plant diversity also causes changes in micro-climatic condition. For instance, more diverse plant communities have a more dense vegetation structure, which reduced the evaporation of soils surface and thus, increases soil moisture in the top layer. Higher inputs and higher soil moisture lead to an enlarged respiration of the soil microbial community. Most interestingly, the carbon storage in the Jena Experiment was much more related to microbial respiration than to plant root inputs. Moreover, using radiocarbon, we found a significant younger carbon age in soils of more diverse plant communities than in soils of lower diversity, indicating that more fresh carbon is integrated into the carbon pool. Putting these findings together, we could show, that the positive link between plant diversity and carbon storage is due to a higher microbial decomposition of plant litter, pointing out that carbon storage in soils is a function of the microbial community.

  12. Microbially-induced Carbonate Precipitation for Immobilization of Toxic Metals.

    PubMed

    Kumari, Deepika; Qian, Xin-Yi; Pan, Xiangliang; Achal, Varenyam; Li, Qianwei; Gadd, Geoffrey Michael

    2016-01-01

    Rapid urbanization and industrialization resulting from growing populations contribute to environmental pollution by toxic metals and radionuclides which pose a threat to the environment and to human health. To combat this threat, it is important to develop remediation technologies based on natural processes that are sustainable. In recent years, a biomineralization process involving ureolytic microorganisms that leads to calcium carbonate precipitation has been found to be effective in immobilizing toxic metal pollutants. The advantage of using ureolytic organisms for bioremediating metal pollution in soil is their ability to immobilize toxic metals efficiently by precipitation or coprecipitation, independent of metal valence state and toxicity and the redox potential. This review summarizes current understanding of the ability of ureolytic microorganisms for carbonate biomineralization and applications of this process for toxic metal bioremediation. Microbial metal carbonate precipitation may also be relevant to detoxification of contaminated process streams and effluents as well as the production of novel carbonate biominerals and biorecovery of metals and radionuclides that form insoluble carbonates. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Formation of carbon nanosheets via simultaneous activation and catalytic carbonization of macroporous anion-exchange resin for supercapacitors application.

    PubMed

    Peng, Hui; Ma, Guofu; Sun, Kanjun; Mu, Jingjing; Zhang, Zhe; Lei, Ziqiang

    2014-12-10

    Two-dimensional mesoporous carbon nanosheets (CNSs) have been prepared via simultaneous activation and catalytic carbonization route using macroporous anion-exchange resin (AER) as carbon precursor and ZnCl2 and FeCl3 as activating agent and catalyst, respectively. The iron catalyst in the skeleton of the AER may lead to carburization to form a sheetlike structure during the carbonization process. The obtained CNSs have a large number of mesopores, a maximum specific surface area of 1764.9 m(2) g(-1), and large pore volume of 1.38 cm(3) g(-1). As an electrode material for supercapacitors application, the CNSs electrode possesses a large specific capacitance of 283 F g(-1) at 0.5 A g(-1) and excellent rate capability (64% retention ratio even at 50 A g(-1)) in 6 mol L(-1) KOH. Furthermore, CNSs symmetric supercapacitor exhibits specific energies of 17.2 W h kg(-1) at a power density of 224 W kg(-1) operated in the voltage range of 0-1.8 V in 0.5 mol L(-1) Na2SO4 aqueous electrolyte, and outstanding cyclability (retains about 96% initial capacitance after 5000 cycles).

  14. Airborne lead and other elements derived from local fires in the Himalayas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, C.I.; Grimm, T.C.; Nasta, M.A.

    1981-12-18

    The combustion of wood and yak dung for heating and cooking in a populated Nepal Himalayan valley contributes significantly to the ambient airborne concentrations of lead, copper, aluminum, magnesium, and elemental and organic carbon. A comparison of the concentrations of these elements in fresh snow with corresponding values in air suggests that the pollution aerosol is confined to the valley, with pristine air aloft.

  15. Dietary lead: effects on hepatic fatty acid composition in chicks.

    PubMed

    Donaldson, W E; Leeming, T K

    1984-03-30

    Arbor Acre broiler chicks were fed diets containing 0, 500, 750, 1000, 2000, or 4000 ppm lead (as Pb acetate X 3 H2O) from day-old through 21 days of age. There were 8 groups of 10 male chicks per lead level. Eight chicks from each dietary lead level were killed at 21 days, and hepatic fatty acid composition was determined for each chick by gas-liquid chromatography. Increasing dietary lead levels decreased the concentrations of 16:1 and 18:1 fatty acids (first No. = No. carbons; second No. = No. double bonds) and increased the concentrations of 18:0 and 20:4. The concentration of 18:2 fatty acids did not differ significantly from control values for any level of lead. However, the ratio 18:2/20:4 declined from a control value of 3.3 to approximately 2 for all lead treatments. The ratio of saturated/monoenoic fatty acids increased with dietary lead levels above 1000 ppm. In a second experiment 10 male broiler chicks per treatment were fed either a control diet or the control diet plus 2000 ppm lead, 60 ppm cadmium, 500 ppm mercury, or 10 ppm selenium (as Pb acetate X 3 H2O, CdSO4, HgCl2, or Na2SeO3, respectively) for 21 days. Six chicks from each group were killed at 21 days, and hepatic fatty acid composition was determined for each chick. In comparison to control, the ratio 18:2/20:4 was lowered by lead but unaffected by cadmium, mercury, and selenium. The data suggest that lead may increase tissue peroxidation (as noted by other workers) via a relative increase of 20:4 fatty acid and that a decrease of hepatic ratio 18:2/20:4 may be a specific sign of lead toxicity.

  16. Fabrication of porous carbon sphere@SnO2@carbon layer coating composite as high performance anode for sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Xin; Sun, Xiaohong; Gao, Zhiwen; Hu, Xudong; Guo, Jingdong; Cai, Shu; Guo, Ruisong; Ji, Huiming; Zheng, Chunming; Hu, Wenbin

    2018-03-01

    SnO2 has triggered lots of research efforts as anode for sodium-ion batteries. However, the volume expansion and poor conductivity lead to an unsatisfactory electrochemical performance for the practical application of SnO2. In this work, a novel carbon-coated SnO2 supported by porous carbon sphere composite is synthesized by hydrothermal process combining with annealing method. The porous carbon sphere@SnO2@carbon layer coating composite anode delivers a reversible capacity of 326 mAh g-1 over 80 cycles at a current density of 50 mA g-1. Even at 1600 mA g-1, a capacity of 82 mAh g-1 is still maintained after 550 cycles. Such excellent performance can be ascribed to the unique structure, which efficiently accommodates volume expansion, enhances conductivity and offers shortened sodium-ion transport pathway. The charge-storage mechanisms can be comprised of diffusion-controlled reaction and pseudocapacitance effect. At high scan rate of 1.0 mV s-1, the capacity contribution of pseudocapacitance effect could reach as high as 78%.

  17. State of the Carbon Cycle of North America: Overarching Findings

    NASA Astrophysics Data System (ADS)

    Mayes, M. A.; Reed, S.; Najjar, R.; Romero-Lankao, P.; Birdsey, R.

    2016-12-01

    This presentation will provide an overarching summary of the second "State of the Carbon Cycle of North America Report" (SOCCR2) from the perspective of the five editorial lead authors. The chapters of SOCCR2 represent a major update and much new material since the original report published a decade ago. The new report includes an overview of the North American carbon budget and future projections, the consequences of changes to the carbon budget, details of the carbon budget in major terrestrial and aquatic ecosystems and anthropogenic drivers, and implications for carbon management. The chapters focus on advances since the 2007 report, but also include new focus areas such as soil carbon, tribal lands, as well as greater emphasis on aquatic systems and the role of societal drivers and decision making on the carbon cycle. In addition, methane and the role of nitrogen will be considered to a greater extent than before. Each chapter also contains a section focusing on national and regional accounting to complement the overarching North American framework. In conclusion, SOCCR2 is expected to provide an updated assessment and a unique perspective on the carbon cycle, which will contribute to the next U.S. National Climate Assessment.

  18. Toward Reducing Uncertainties in Biospheric Carbon Uptake in the American West: An Atmospheric Perspective

    NASA Astrophysics Data System (ADS)

    Lin, J. C.; Stephens, B. B.; Mallia, D.; Wu, D.; Jacobson, A. R.

    2015-12-01

    Despite the need for an understanding of terrestrial biospheric carbon fluxes to account for carbon cycle feedbacks and predict future CO2 concentrations, knowledge of such fluxes at the regional scale remains poor. This is particularly true in mountainous areas, where lack of observations combined with difficulties in their interpretation lead to significant uncertainties. Yet mountainous regions are also where significant forest cover and biomass are found—areas that have the potential to serve as carbon sinks. In particular, understanding carbon fluxes in the American West is of critical importance for the U.S. carbon budget, as the large area and biomass indicate potential for carbon sequestration. However, disturbances such as drought, insect outbreak, and wildfires in this region can introduce significant perturbations to the carbon cycle and thereby affect the amount of carbon sequestered by vegetation in the Rockies. To date, there have been few atmospheric CO2 observations in the American Rockies due to a combination of difficulties associated with logistics and interpretation of the measurements in the midst of complex terrain. Among the few sites are those associated with NCAR's Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON). As CO2 observations in mountainous areas increase in the future, it is imperative that they can be properly interpreted to yield information about biospheric carbon fluxes. In this paper, we will present CO2 observations from RACCOON, along with atmospheric simulations that attempt to extract information about biospheric carbon fluxes in the Western U.S. from these observations. We show that atmospheric models can significantly misinterpret the CO2 observations, leading to large errors in the retrieved biospheric fluxes, due to erroneous atmospheric flows. Recommendations for ways to minimize such errors and properly link the CO2 concentrations to biospheric fluxes are discussed.

  19. Enhancement in photoluminescence performance of carbon-decorated T-ZnO

    NASA Astrophysics Data System (ADS)

    Jian, Xian; Chen, Guozhang; Wang, Chao; Yin, Liangjun; Li, Gang; Yang, Ping; Chen, Lei; Xu, Bao; Gao, Yang; Feng, Yanyu; Tang, Hui; Luan, Chunhong; Liang, Yinglin; Jiang, Jing; Cao, Yu; Wang, Siyuan; Gao, Xin

    2015-03-01

    The facile preparation of ZnO possessing high visible luminescence intensity remains challenging due to an unclear luminescence mechanism. Here, two basic approaches are proposed to enhance the luminescent intensity based on the theoretical analysis over surface defects. Based on the deduction, we introduce a methodology for obtaining hybrid tetrapod-like zinc oxide (T-ZnO), decorated by carbon nanomarterials on T-ZnO surfaces through the catalytic chemical vapor deposition approach. The intensity of the T-ZnO green emission can be modulated by topography and the proportion of carbon. Under proper experiment conditions, the carbon decorating leads to dramatically enhanced luminescence intensity of T-ZnO from 400 to 700 nm compared with no carbon decorated, which elevates this approach to a simple and effective method for the betterment of fluorescent materials in practical applications.

  20. Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes

    PubMed Central

    Chen, Mao-Lin; Wang, Bing-Wei; Tang, Dai-Ming; Jin, Qun; Guo, Qing-Xun; Zhang, Ding-Dong; Du, Jin-Hong; Tai, Kai-Ping; Tan, Jun; Kauppinen, Esko I.

    2018-01-01

    Single-wall carbon nanotubes (SWCNTs) are ideal for fabricating transparent conductive films because of their small diameter, good optical and electrical properties, and excellent flexibility. However, a high intertube Schottky junction resistance, together with the existence of aggregated bundles of SWCNTs, leads to a degraded optoelectronic performance of the films. We report a network of isolated SWCNTs prepared by an injection floating catalyst chemical vapor deposition method, in which crossed SWCNTs are welded together by graphitic carbon. Pristine SWCNT films show a record low sheet resistance of 41 ohm □−1 at 90% transmittance for 550-nm light. After HNO3 treatment, the sheet resistance further decreases to 25 ohm □−1. Organic light-emitting diodes using this SWCNT film as anodes demonstrate a low turn-on voltage of 2.5 V, a high current efficiency of 75 cd A−1, and excellent flexibility. Investigation of isolated SWCNT-based field-effect transistors shows that the carbon-welded joints convert the Schottky contacts between metallic and semiconducting SWCNTs into near-ohmic ones, which significantly improves the conductivity of the transparent SWCNT network. Our work provides a new avenue of assembling individual SWCNTs into macroscopic thin films, which demonstrate great potential for use as transparent electrodes in various flexible electronics. PMID:29736413

  1. MnO2-Based Electrochemical Supercapacitors on Flexible Carbon Substrates

    NASA Astrophysics Data System (ADS)

    Tadjer, Marko J.; Mastro, Michael A.; Rojo, José M.; Mojena, Alberto Boscá; Calle, Fernando; Kub, Francis J.; Eddy, Charles R.

    2014-04-01

    Manganese dioxide films were grown on large area flexible carbon aerogel substrates. Characterization by x-ray diffraction confirmed α-MnO2 growth. Three types of films were compared as a function of hexamethylenetetramine (HMTA) concentration during growth. The highest concentration of HM TA produced MnO2 flower-like films, as observed by scanning electron microscopy, whose thickness and surface coverage lead to both a higher specific capacitance and higher series resistance. Specific capacitance was measured to be 64 F/g using a galvanostatic setup, compared to the 47 F/g-specific capacitance of the carbon aerogel substrate. Such supercapacitor devices can be fabricated on large area sheets of carbon aerogel to achieve high total capacitance.

  2. Carbon Dioxide Snow Storms During the Polar Night on Mars

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Colaprete, Anthony

    2001-01-01

    The Mars Orbiter Laser Altimeter (MOLA) detected clouds associated with topographic features during the polar night on Mars. While uplift generated from flow over mountains initiates clouds on both Earth and Mars, we suggest that the Martian clouds differ greatly from terrestrial mountain wave clouds. Terrestrial wave clouds are generally compact features with sharp edges due to the relatively small particles in them. However, we find that the large mass of condensible carbon dioxide on Mars leads to clouds with snow tails that may extend many kilometers down wind from the mountain and even reach the surface. Both the observations and the simulations suggest substantial carbon dioxide snow precipitation in association with the underlying topography. This precipitation deposits CO2, dust and water ice to the polar caps, and may lead to propagating geologic features in the Martian polar regions.

  3. Snowball Earth prevention by dissolved organic carbon remineralization.

    PubMed

    Peltier, W Richard; Liu, Yonggang; Crowley, John W

    2007-12-06

    The 'snowball Earth' hypothesis posits the occurrence of a sequence of glaciations in the Earth's history sufficiently deep that photosynthetic activity was essentially arrested. Because the time interval during which these events are believed to have occurred immediately preceded the Cambrian explosion of life, the issue as to whether such snowball states actually developed has important implications for our understanding of evolutionary biology. Here we couple an explicit model of the Neoproterozoic carbon cycle to a model of the physical climate system. We show that the drawdown of atmospheric oxygen into the ocean, as surface temperatures decline, operates so as to increase the rate of remineralization of a massive pool of dissolved organic carbon. This leads directly to an increase of atmospheric carbon dioxide, enhanced greenhouse warming of the surface of the Earth, and the prevention of a snowball state.

  4. The prospect of carbon fiber implants in radiotherapy

    PubMed Central

    Xiao‐bin, Tang; Chang‐ran, Geng; Da, Chen

    2012-01-01

    Because of their superior characteristics, carbonaceous materials, which are still at their early stage of development, have garnered significant interest. Because of their low atomic number, carbonaceous orthopedic implants possess radiation properties similar to biological tissues and, therefore, they are more suitable to patients in need of radiotherapy. The effects of stainless steel, titanium, and carbon plates on radiation dose distributions were investigated in this work using Monte Carlo simulations and TLD measurements for 6 MV photon beams. It is found that carbon plates will neither increase the incident surface dose, nor lead to the decrease of exit surface dose (the effect of a second build‐up). Carbon fiber orthopedic implants have a good prospect for radiotherapy patients because they have minimal perturbation effects on the radiotherapy dose distribution. PACS number: 87.55.K‐,87.55.Gh, 87.55.ne PMID:22766953

  5. Visual and reversible carbon dioxide sensing enabled by doctor blade coated macroporous photonic crystals.

    PubMed

    Lin, Yi-Han; Suen, Shing-Yi; Yang, Hongta

    2017-11-15

    With significant impacts of carbon dioxide on global climate change, carbon dioxide sensing is of great importance. However, most of the existing sensing technologies are prone to interferences from carbon monoxide, or suffer from the use of sophisticated instruments. This research reports the development of reproducible carbon dioxide sensor using roll-to-roll compatible doctor blade coated three-dimensional macroporous photonic crystals. The pores are functionalized with amine groups to allow the reaction with carbon dioxide in the presence of humidity. The adsorption of carbon dioxide leads to red-shift and amplitude reduction of the optical stop bands, resulting in carbon dioxide detection with visible readout. The dependences of the diffraction wavelength on carbon dioxide partial pressure for various amine-functionalized photonic crystals and different humidities in the environment are systematically investigated. In addition, the reproducibility of carbon dioxide sensing has also been demonstrated in this research. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Single-Walled Carbon Nanotubes, Carbon Nanofibers and Laser-Induced Incandescence

    NASA Technical Reports Server (NTRS)

    Schubert, Kathy (Technical Monitor); VanderWal, Randy L.; Ticich, Thomas M.; Berger, Gordon M.; Patel, Premal D.

    2004-01-01

    Laser induced incandescence applied to a heterogeneous, multi-element reacting flows is characterized by a) temporally resolved emission spectra, time-resolved emission at selected detection wavelengths and fluence dependence. Laser fluences above 0.6 Joules per square centimeter at 1064 nm initiate laser-induced vaporization, yielding a lower incandescence intensity, as found through fluence dependence measurements. Spectrally derived temperatures show that values of excitation laser fluence beyond this value lead to a super-heated plasma, well above the vaporization of temperature of carbon. The temporal evolution of the emission signal at these fluences is consistent with plasma dissipation processes, not incandescence from solid-like structures.

  7. Storage and release of organic carbon from glaciers and ice sheets

    NASA Astrophysics Data System (ADS)

    Hood, Eran; Battin, Tom J.; Fellman, Jason; O'Neel, Shad; Spencer, Robert G. M.

    2015-02-01

    Polar ice sheets and mountain glaciers, which cover roughly 11% of the Earth's land surface, store organic carbon from local and distant sources and then release it to downstream environments. Climate-driven changes to glacier runoff are expected to be larger than climate impacts on other components of the hydrological cycle, and may represent an important flux of organic carbon. A compilation of published data on dissolved organic carbon from glaciers across five continents reveals that mountain and polar glaciers represent a quantitatively important store of organic carbon. The Antarctic Ice Sheet is the repository of most of the roughly 6 petagrams (Pg) of organic carbon stored in glacier ice, but the annual release of glacier organic carbon is dominated by mountain glaciers in the case of dissolved organic carbon and the Greenland Ice Sheet in the case of particulate organic carbon. Climate change contributes to these fluxes: approximately 13% of the annual flux of glacier dissolved organic carbon is a result of glacier mass loss. These losses are expected to accelerate, leading to a cumulative loss of roughly 15 teragrams (Tg) of glacial dissolved organic carbon by 2050 due to climate change -- equivalent to about half of the annual flux of dissolved organic carbon from the Amazon River. Thus, glaciers constitute a key link between terrestrial and aquatic carbon fluxes, and will be of increasing importance in land-to-ocean fluxes of organic carbon in glacierized regions.

  8. Storage and release of organic carbon from glaciers and ice sheets

    USGS Publications Warehouse

    Hood, Eran; Battin, Tom J.; Fellman, Jason; O'Neel, Shad; Spencer, Robert G. M.

    2015-01-01

    Polar ice sheets and mountain glaciers, which cover roughly 11% of the Earth's land surface, store organic carbon from local and distant sources and then release it to downstream environments. Climate-driven changes to glacier runoff are expected to be larger than climate impacts on other components of the hydrological cycle, and may represent an important flux of organic carbon. A compilation of published data on dissolved organic carbon from glaciers across five continents reveals that mountain and polar glaciers represent a quantitatively important store of organic carbon. The Antarctic Ice Sheet is the repository of most of the roughly 6 petagrams (Pg) of organic carbon stored in glacier ice, but the annual release of glacier organic carbon is dominated by mountain glaciers in the case of dissolved organic carbon and the Greenland Ice Sheet in the case of particulate organic carbon. Climate change contributes to these fluxes: approximately 13% of the annual flux of glacier dissolved organic carbon is a result of glacier mass loss. These losses are expected to accelerate, leading to a cumulative loss of roughly 15 teragrams (Tg) of glacial dissolved organic carbon by 2050 due to climate change — equivalent to about half of the annual flux of dissolved organic carbon from the Amazon River. Thus, glaciers constitute a key link between terrestrial and aquatic carbon fluxes, and will be of increasing importance in land-to-ocean fluxes of organic carbon in glacierized regions.

  9. Effects of ocean acidification and hydrodynamic conditions on carbon metabolism and dissolved organic carbon (DOC) fluxes in seagrass populations.

    PubMed

    Egea, Luis G; Jiménez-Ramos, Rocío; Hernández, Ignacio; Bouma, Tjeerd J; Brun, Fernando G

    2018-01-01

    Global change has been acknowledged as one of the main threats to the biosphere and its provision of ecosystem services, especially in marine ecosystems. Seagrasses play a critical ecological role in coastal ecosystems, but their responses to ocean acidification (OA) and climate change are not well understood. There have been previous studies focused on the effects of OA, but the outcome of interactions with co-factors predicted to alter during climate change still needs to be addressed. For example, the impact of higher CO2 and different hydrodynamic regimes on seagrass performance remains unknown. We studied the effects of OA under different current velocities on productivity of the seagrass Zostera noltei, using changes in dissolved oxygen as a proxy for the seagrass carbon metabolism, and release of dissolved organic carbon (DOC) in a four-week experiment using an open-water outdoor mesocosm. Under current pH conditions, increasing current velocity had a positive effect on productivity, but this depended on shoot density. However, this positive effect of current velocity disappeared under OA conditions. OA conditions led to a significant increase in gross production rate and respiration, suggesting that Z. noltei is carbon-limited under the current inorganic carbon concentration of seawater. In addition, an increase in non-structural carbohydrates was found, which may lead to better growing conditions and higher resilience in seagrasses subjected to environmental stress. Regarding DOC flux, a direct and positive relationship was found between current velocity and DOC release, both under current pH and OA conditions. We conclude that OA and high current velocity may lead to favourable growth scenarios for Z. noltei populations, increasing their productivity, non-structural carbohydrate concentrations and DOC release. Our results add new dimensions to predictions on how seagrass ecosystems will respond to climate change, with important implications for the

  10. Effects of ocean acidification and hydrodynamic conditions on carbon metabolism and dissolved organic carbon (DOC) fluxes in seagrass populations

    PubMed Central

    Jiménez-Ramos, Rocío; Hernández, Ignacio; Bouma, Tjeerd J.; Brun, Fernando G.

    2018-01-01

    Global change has been acknowledged as one of the main threats to the biosphere and its provision of ecosystem services, especially in marine ecosystems. Seagrasses play a critical ecological role in coastal ecosystems, but their responses to ocean acidification (OA) and climate change are not well understood. There have been previous studies focused on the effects of OA, but the outcome of interactions with co-factors predicted to alter during climate change still needs to be addressed. For example, the impact of higher CO2 and different hydrodynamic regimes on seagrass performance remains unknown. We studied the effects of OA under different current velocities on productivity of the seagrass Zostera noltei, using changes in dissolved oxygen as a proxy for the seagrass carbon metabolism, and release of dissolved organic carbon (DOC) in a four-week experiment using an open-water outdoor mesocosm. Under current pH conditions, increasing current velocity had a positive effect on productivity, but this depended on shoot density. However, this positive effect of current velocity disappeared under OA conditions. OA conditions led to a significant increase in gross production rate and respiration, suggesting that Z. noltei is carbon-limited under the current inorganic carbon concentration of seawater. In addition, an increase in non-structural carbohydrates was found, which may lead to better growing conditions and higher resilience in seagrasses subjected to environmental stress. Regarding DOC flux, a direct and positive relationship was found between current velocity and DOC release, both under current pH and OA conditions. We conclude that OA and high current velocity may lead to favourable growth scenarios for Z. noltei populations, increasing their productivity, non-structural carbohydrate concentrations and DOC release. Our results add new dimensions to predictions on how seagrass ecosystems will respond to climate change, with important implications for the

  11. Density functional calculations of carbon substituting for Zr in barium zirconate

    NASA Astrophysics Data System (ADS)

    Al-Hadidi, Meaad; Goss, J. P.; Al-Ani, Oras A.; Briddon, P. R.; Rayson, M. J.

    2017-06-01

    Oxide perovskites such as BaZrO3 possess many significant properties which render them useful in many technological and scientific applications such as sensors, optoelectronics, laser frequency doubling and high capacity memory cells. Several methods are used to grow BaZrO3 crystal, and organic species that may be present during growth lead to carbon contamination. We have investigated, using density-functional theory, the role of carbon impurities on the structural, electrical and electronic properties of carbon substituting of Zr in cubic barium zirconate. The local vibrational modes of the defect centre has been calculated and we suggest it is a feasible route to experimental identification

  12. N, P-codoped Mesoporous Carbon Supported PtCox Nanoparticles and Their Superior Electrochemical toward Methanol Oxidation

    NASA Astrophysics Data System (ADS)

    Cui, Hangjun; Li, Yueming; Liu, Shimin

    2018-03-01

    In this report, a novel strategy by using the N, P co-doped mesoporous carbon structure as catalyst support to enhance the electrochemical catalytic activity of Pt-based catalysts is proposed. The as-synthesized PtCox@N, P-doped mesoporous carbon nanocomposties have been studied as an anode catalyst toward methanol oxidation, exhibiting greatly improved electrochemical activity and stability compared with Pt@mesoporous carbon. The synergistic effects of N, P dual-doping and porous carbon structure help to achieve better electron transport at the electrode surface, which eventually leads to greatly enhanced catalytic activity compared to the pristine Pt/mesoporous carbon.…

  13. Phytoplankton plasticity drives large variability in carbon fixation efficiency

    NASA Astrophysics Data System (ADS)

    Ayata, Sakina-Dorothée.; Lévy, Marina; Aumont, Olivier; Resplandy, Laure; Tagliabue, Alessandro; Sciandra, Antoine; Bernard, Olivier

    2014-12-01

    Phytoplankton C:N stoichiometry is highly flexible due to physiological plasticity, which could lead to high variations in carbon fixation efficiency (carbon consumption relative to nitrogen). However, the magnitude, as well as the spatial and temporal scales of variability, remains poorly constrained. We used a high-resolution biogeochemical model resolving various scales from small to high, spatially and temporally, in order to quantify and better understand this variability. We find that phytoplankton C:N ratio is highly variable at all spatial and temporal scales (5-12 molC/molN), from mesoscale to regional scale, and is mainly driven by nitrogen supply. Carbon fixation efficiency varies accordingly at all scales (±30%), with higher values under oligotrophic conditions and lower values under eutrophic conditions. Hence, phytoplankton plasticity may act as a buffer by attenuating carbon sequestration variability. Our results have implications for in situ estimations of C:N ratios and for future predictions under high CO2 world.

  14. 76 FR 34101 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-10

    ...] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia Determinations On...-quality steel products from Russia would be likely to lead to continuation or recurrence of material...) entitled Hot-Rolled Flat-Rolled Carbon-Quality Steel Products from Brazil, Japan, and Russia: Investigation...

  15. Consideration of critical axial properties of pristine and defected carbon nanotubes under compression.

    PubMed

    Ranjbartoreh, A R; Su, D; Wang, G

    2012-06-01

    Carbon nanotubes are hexagonally configured carbon atoms in cylindrical structures. Exceptionally high mechanical strength, electrical conductivity, surface area, thermal stability and optical transparency of carbon nanotubes outperformed other known materials in numerous advanced applications. However, their mechanical behaviors under practical loading conditions remain to be demonstrated. This study investigates the critical axial properties of pristine and defected single- and multi-walled carbon nanotubes under axial compression. Molecular dynamics simulation method has been employed to consider the destructive effects of Stone-Wales and atom vacancy defects on mechanical properties of armchair and zigzag carbon nanotubes under compressive loading condition. Armchair carbon nanotube shows higher axial stability than zigzag type. Increase in wall number leads to less susceptibility of multi-walled carbon nanotubes to defects and higher stability of them under axial compression. Atom vacancy defect reveals higher destructive effect than Stone-Wales defect on mechanical properties of carbon nanotubes. Critical axial strain of single-walled carbon nanotube declines by 67% and 26% due to atom vacancy and Stone-Wales defects.

  16. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Jim Landy, NDE specialist with United Space Alliance (USA), watches a monitor off-screen to examine a Reinforced Carbon Carbon panel using flash thermography. Attached to the leading edge of the wing of the orbiters, the gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-09

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Jim Landy, NDE specialist with United Space Alliance (USA), watches a monitor off-screen to examine a Reinforced Carbon Carbon panel using flash thermography. Attached to the leading edge of the wing of the orbiters, the gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  17. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Dan Kenna and Jim Landy prepare to examine a Reinforced Carbon Carbon panel using flash thermography. Attached to the leading edge of the wing of the orbiters, the gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-09

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Dan Kenna and Jim Landy prepare to examine a Reinforced Carbon Carbon panel using flash thermography. Attached to the leading edge of the wing of the orbiters, the gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  18. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Mike Hyatt (above), Saul Ngy (right) and Jerry Belt (below) install a Reinforced Carbon Carbon (RCC) panel to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-08

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Mike Hyatt (above), Saul Ngy (right) and Jerry Belt (below) install a Reinforced Carbon Carbon (RCC) panel to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  19. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Mike Hyatt (left) Saul Ngy (center) and Jerry Belt (right) lift a Reinforced Carbon Carbon (RCC) panel to attach onto the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-05

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Mike Hyatt (left) Saul Ngy (center) and Jerry Belt (right) lift a Reinforced Carbon Carbon (RCC) panel to attach onto the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  20. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Mike Hyatt (left), Saul Ngy (center) and Jerry Belt (right) prepare to install a Reinforced Carbon Carbon (RCC) panel to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-08

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Mike Hyatt (left), Saul Ngy (center) and Jerry Belt (right) prepare to install a Reinforced Carbon Carbon (RCC) panel to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  1. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Mike Hyatt (left) Jerry Belt (center), and Saul Ngy (right), lift a Reinforced Carbon Carbon (RCC) panel they will attach to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-05

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Mike Hyatt (left) Jerry Belt (center), and Saul Ngy (right), lift a Reinforced Carbon Carbon (RCC) panel they will attach to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  2. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Mike Hyatt (above) and Saul Ngy (below right) finish installing a Reinforced Carbon Carbon (RCC) panel to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

    NASA Image and Video Library

    2003-09-08

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Mike Hyatt (above) and Saul Ngy (below right) finish installing a Reinforced Carbon Carbon (RCC) panel to the leading edge of the wing of the orbiter Atlantis. The gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.

  3. A Brazilian network of carbon flux stations

    NASA Astrophysics Data System (ADS)

    Roberti, Débora R.; Acevedo, Otávio C.; Moraes, Osvaldo L. L.

    2012-05-01

    First Brasflux Workshop; Santa Maria, Rio Grande do Sul, Brazil, 14-15 November 2011 Last November, 33 researchers participated in a workshop to establish Brasflux, the Brazilian network of carbon flux stations, with the objective of integrating previous efforts and planning for the future. Among the participants were those leading ongoing flux observation projects and others planning to establish flux stations in the near future. International scientists also participated to share the experiences gained with other networks. The need to properly characterize terrestrial ecosystems for their roles in the global carbon, water, and energy budgets has motivated the implementation of hundreds of micrometeorological research sites throughout the world in recent years. The eddy covariance (EC) technique for turbulent flux determination is the preferred method to provide integral information on ecosystematmosphere exchanges. Integrating the observations regionally and globally has proven to be an effective approach to maximizing the usefulness of this technique for carbon cycle studies at multiple scales.

  4. Photochemical cleavage of metal--carbon nanocrystals and their reconstruction into met--cars clusters

    NASA Astrophysics Data System (ADS)

    Pilgrim, J. S.; Duncan, M. A.

    1994-10-01

    Titanium and zirconium metal--carbon clusters are produced by laser vaporization in a pulsed nozzle source and detected with time-of-flight mass spectrometry. In addition to the now-familiar "met-cars" stoichiometry (M8C12), larger magic number clusters are produced with near 1:1 metal--carbon ratios. The special stoichiometries observed correspond to face-centered cubic crystal fragments, with a strong preference for fragments with symmetrical x,y,z dimensions. Mass-selected photodissociation experiments are used to investigate the structural patterns and stabilities of these systems. Photodissociation of the larger "nanocrystal" clusters leads to cleavage along crystal planes, producing smaller crystals also having highly symmetric dimensions. Photoexcitation of all these crystallites, in particular the 3 × 3 × 3 species, also leads to surface reconstruction, forming the M8C12 met-cars cluster and/or the M8C13 cluster, the latter of which is assigned to a met--cars cage with an endohedral carbon atom.

  5. Blowing Carbon Nanotubes to Carbon Nanobulbs

    NASA Astrophysics Data System (ADS)

    Su, D. S.; Zhu, Z. P.; Lu, Y.; Schlögl, R.; Weinberg, G.; Liu, Z. Y.

    2004-09-01

    We report the blowing of multi-walled carbon nanotubes into carbon nanobulbs. This is realized in a unique tube growth environment generated by explosive decomposition of picric acid mixed with nickel formate. The carbon spherical bulbs are characterized by large dimensions (up to 900 nm), thin walls (around 10 nm), and fully hollow cores. The walls are in graphitic structure of sp2 hybridized carbons. Bulb-tube assemblies are found as intermediate derivatives of blowing. A joint action of the filled high-pressure gases and the structural defects in the carbon nanotubes is responsible to the formation of the carbon nanobulbs. Our finding may indicate the possibility to engineer the carbon nanotubes to the designed nanostructures.

  6. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions

    NASA Astrophysics Data System (ADS)

    Allison, S. D.; Jastrow, J. D.

    2004-12-01

    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  7. Lead.

    PubMed

    Bellinger, David C

    2004-04-01

    Children differ from adults in the relative importance of lead sources and pathways, lead metabolism, and the toxicities expressed. The central nervous system effects of lead on children seem not to be reversible. Periods of enhanced vulnerability within childhood have not consistently been identified. The period of greatest vulnerability might be endpoint specific, perhaps accounting for the failure to identify a coherent "behavioral signature" for lead toxicity. The bases for the substantial individual variability in vulnerability to lead are uncertain, although they might include genetic polymorphisms and contextual factors. The current Centers for Disease Control and Prevention screening guideline of 10 micro g/dL is a risk management tool and should not be interpreted as a threshold for toxicity. No threshold has been identified, and some data are consistent with effects well below 10. Historically, most studies have concentrated on neurocognitive effects of lead, but higher exposures have recently been associated with morbidities such as antisocial behavior and delinquency. Studies of lead toxicity in experimental animal models are critical to the interpretation of nonexperimental human studies, particularly in addressing the likelihood that associations observed in the latter studies can be attributed to residual confounding. Animal models are also helpful in investigating the behavioral and neurobiological mechanisms of the functional deficits observed in lead-exposed humans. Studies of adults who have been exposed to lead are of limited use in understanding childhood lead toxicity because developmental and acquired lead exposure differ in terms of the maturity of the organs affected, the presumed mechanisms of toxicity, and the forms in which toxicities are expressed.

  8. Carbon cycle uncertainty in the Alaskan Arctic

    NASA Astrophysics Data System (ADS)

    Fisher, J. B.; Sikka, M.; Oechel, W. C.; Huntzinger, D. N.; Melton, J. R.; Koven, C. D.; Ahlström, A.; Arain, A. M.; Baker, I.; Chen, J. M.; Ciais, P.; Davidson, C.; Dietze, M.; El-Masri, B.; Hayes, D.; Huntingford, C.; Jain, A.; Levy, P. E.; Lomas, M. R.; Poulter, B.; Price, D.; Sahoo, A. K.; Schaefer, K.; Tian, H.; Tomelleri, E.; Verbeeck, H.; Viovy, N.; Wania, R.; Zeng, N.; Miller, C. E.

    2014-02-01

    Climate change is leading to a disproportionately large warming in the high northern latitudes, but the magnitude and sign of the future carbon balance of the Arctic are highly uncertain. Using 40 terrestrial biosphere models for Alaska, we provide a baseline of terrestrial carbon cycle structural and parametric uncertainty, defined as the multi-model standard deviation (σ) against the mean (x\\bar) for each quantity. Mean annual uncertainty (σ/x\\bar) was largest for net ecosystem exchange (NEE) (-0.01± 0.19 kg C m-2 yr-1), then net primary production (NPP) (0.14 ± 0.33 kg C m-2 yr-1), autotrophic respiration (Ra) (0.09 ± 0.20 kg C m-2 yr-1), gross primary production (GPP) (0.22 ± 0.50 kg C m-2 yr-1), ecosystem respiration (Re) (0.23 ± 0.38 kg C m-2 yr-1), CH4 flux (2.52 ± 4.02 g CH4 m-2 yr-1), heterotrophic respiration (Rh) (0.14 ± 0.20 kg C m-2 yr-1), and soil carbon (14.0± 9.2 kg C m-2). The spatial patterns in regional carbon stocks and fluxes varied widely with some models showing NEE for Alaska as a strong carbon sink, others as a strong carbon source, while still others as carbon neutral. Additionally, a feedback (i.e., sensitivity) analysis was conducted of 20th century NEE to CO2 fertilization (β) and climate (γ), which showed that uncertainty in γ was 2x larger than that of β, with neither indicating that the Alaskan Arctic is shifting towards a certain net carbon sink or source. Finally, AmeriFlux data are used at two sites in the Alaskan Arctic to evaluate the regional patterns; observed seasonal NEE was captured within multi-model uncertainty. This assessment of carbon cycle uncertainties may be used as a baseline for the improvement of experimental and modeling activities, as well as a reference for future trajectories in carbon cycling with climate change in the Alaskan Arctic.

  9. Primary production and carbon allocation in relation to nutrient supply in a tropical experimental forest

    Treesearch

    Christian P. Giardina; Michael G. Ryan; Dan Binkley; Dan Binkley; James H. Fownes

    2003-01-01

    Nutrient supply commonly limits aboveground plant productivity in forests, but the effects of an altered nutrient supply on gross primary production (GPP) and patterns of carbon (C) allocation remain poorly characterized. Increased nutrient supply may lead to a higher aboveground net primary production (ANPP), but a lower total belowground carbon allocation (TBCA),...

  10. Carbon dioxide conversion over carbon-based nanocatalysts.

    PubMed

    Khavarian, Mehrnoush; Chai, Siang-Piao; Mohamed, Abdul Rahman

    2013-07-01

    The utilization of carbon dioxide for the production of valuable chemicals via catalysts is one of the efficient ways to mitigate the greenhouse gases in the atmosphere. It is known that the carbon dioxide conversion and product yields are still low even if the reaction is operated at high pressure and temperature. The carbon dioxide utilization and conversion provides many challenges in exploring new concepts and opportunities for development of unique catalysts for the purpose of activating the carbon dioxide molecules. In this paper, the role of carbon-based nanocatalysts in the hydrogenation of carbon dioxide and direct synthesis of dimethyl carbonate from carbon dioxide and methanol are reviewed. The current catalytic results obtained with different carbon-based nanocatalysts systems are presented and how these materials contribute to the carbon dioxide conversion is explained. In addition, different strategies and preparation methods of nanometallic catalysts on various carbon supports are described to optimize the dispersion of metal nanoparticles and catalytic activity.

  11. Method for Making a Carbon-Carbon Cylinder Block

    NASA Technical Reports Server (NTRS)

    Ransone, Phillip O. (Inventor)

    1997-01-01

    A method for making a lightweight cylinder block composed of carbon-carbon is disclosed. The use of carbon-carbon over conventional materials. such as cast iron or aluminum, reduces the weight of the cylinder block and improves thermal efficiency of the internal combustion reciprocating engine. Due to the negligible coefficient of thermal expansion and unique strength at elevated temperatures of carbon-carbon, the piston-to-cylinder wall clearance can be small, especially when the carbon-carbon cylinder block is used in conjunction with a carbon-carbon piston. Use of the carbon-carbon cylinder block has the effect of reducing the weight of other reciprocating engine components allowing the piston to run at higher speeds and improving specific engine performance.

  12. Thermal Cycling of Thermal Control Paints on Carbon-Carbon and Carbon-Polyimide Composites

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    2006-01-01

    Carbon-carbon composites and carbon-polyimide composites are being considered for space radiator applications owing to their light weight and high thermal conductivity. For those radiator applications where sunlight will impinge on the surface, it will be necessary to apply a white thermal control paint to minimize solar absorptance and enhance infrared emittance. Several currently available white thermal control paints were applied to candidate carbon-carbon and carbon-polyimide composites and were subjected to vacuum thermal cycling in the range of -100 C to +277 C. The optical properties of solar absorptance and infrared emittance were evaluated before and after thermal cycling. In addition, adhesion of the paints was evaluated utilizing a tape test. The test matrix included three composites: resin-derived carbon-carbon and vapor infiltrated carbon-carbon, both reinforced with pitch-based P-120 graphite fibers, and a polyimide composite reinforced with T-650 carbon fibers, and three commercially available white thermal control paints: AZ-93, Z-93-C55, and YB-71P.

  13. Seasonally different carbon flux changes in the Southern Ocean in response to the southern annular mode.

    PubMed

    Hauck, J; Völker, C; Wang, T; Hoppema, M; Losch, M; Wolf-Gladrow, D A

    2013-12-01

    Stratospheric ozone depletion and emission of greenhouse gases lead to a trend of the southern annular mode (SAM) toward its high-index polarity. The positive phase of the SAM is characterized by stronger than usual westerly winds that induce changes in the physical carbon transport. Changes in the natural carbon budget of the upper 100 m of the Southern Ocean in response to a positive SAM phase are explored with a coupled ecosystem-general circulation model and regression analysis. Previously overlooked processes that are important for the upper ocean carbon budget during a positive SAM period are identified, namely, export production and downward transport of carbon north of the polar front (PF) as large as the upwelling in the south. The limiting micronutrient iron is brought into the surface layer by upwelling and stimulates phytoplankton growth and export production but only in summer. This leads to a drawdown of carbon and less summertime outgassing (or more uptake) of natural CO 2 . In winter, biological mechanisms are inactive, and the surface ocean equilibrates with the atmosphere by releasing CO 2 . In the annual mean, the upper ocean region south of the PF loses more carbon by additional export production than by the release of CO 2 into the atmosphere, highlighting the role of the biological carbon pump in response to a positive SAM event.

  14. Chemical vapour deposition growth and Raman characterization of graphene layers and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lai, Y.-C.; Rafailov, P. M.; Vlaikova, E.; Marinova, V.; Lin, S. H.; Yu, P.; Yu, S.-C.; Chi, G. C.; Dimitrov, D.; Sveshtarov, P.; Mehandjiev, V.; Gospodinov, M. M.

    2016-02-01

    Single-layer graphene films were grown by chemical vapour deposition (CVD) on Cu foil. The CVD process was complemented by plasma enhancement to grow also vertically aligned multiwalled carbon nanotubes using Ni nanoparticles as catalyst. The obtained samples were characterized by Raman spectroscopy analysis. Nature of defects in the samples and optimal growth conditions leading to achieve high quality of graphene and carbon nanotubes are discussed.

  15. Carbon footprint of electronic devices

    NASA Astrophysics Data System (ADS)

    Sloma, Marcin

    2013-07-01

    Paper assesses the greenhouse gas emissions related to the electronic sectors including information and communication technology and media sectors. While media often presents the carbon emission problem of other industries like petroleum industry, the airlines and automobile sectors, plastics and steel manufacturers, the electronics industry must include the increasing carbon footprints caused from their applications like media and entertainment, computers and cooling devices, complex telecommunications networks, cloud computing and powerful mobile phones. In that sense greenhouse gas emission of electronics should be studied in a life cycle perspective, including regular operational electricity use. Paper presents which product groups or processes are major contributors in emission. From available data and extrapolation of existing information we know that the information and communication technology sector produced 1.3% and media sector 1.7% of global gas emissions within production cycle, using the data from 2007.In the same time global electricity use of that sectors was 3.9% and 3.2% respectively. The results indicate that for both sectors operation leads to more gas emissions than manufacture, although impacts from the manufacture is significant, especially in the supply chain. Media electronics led to more emissions than PCs (manufacture and operation). Examining the role of electronics in climate change, including disposal of its waste, will enable the industry to take internal actions, leading to lowering the impact on the climate change within the sector itself.

  16. Field and petrological study of metasomatism and high-pressure carbonation from lawsonite eclogite-facies terrains, Alpine Corsica

    NASA Astrophysics Data System (ADS)

    Piccoli, Francesca; Vitale Brovarone, Alberto; Ague, Jay J.

    2018-04-01

    This study presents new field and petrological data on carbonated metasomatic rocks from the lawsonite-eclogite units of Alpine Corsica. These rocks form along major, slab-scale lithological boundaries of the subducted Alpine Tethys plate. Our results indicate that a large variety of rocks ranging from metamafic/ultramafic to metafelsic can react with carbon-bearing fluids, leading to carbon sequestration at high-pressure conditions. The process of carbonation includes both replacement of silicates by high-pressure carbonate, and carbonate veining. The field, microstructural and mineralogical data strongly suggest that the metasomatism was mediated by the infiltration of external fluids of mixed origin, including both mafic/ultramafic and metasedimentary sources. Our results support the following three-step evolution: (i) Release of aqueous fluids by lawsonite and/or antigorite breakdown at depth; (ii) Fluid channelization along the base of the metasedimentary pile of the subducted lithospheric plate and related reactive fluid flow leading to carbonate mineral dissolution; (iii) Further interactions of the resulting carbon-bearing fluids with slab-forming rocks at depths of ca. 70 km and carbonation of pre-existing silicate-rich lithologies. This study highlights the importance of carbonate-bearing fluids evolving along down-T, down-P paths, such as along slab-parallel lithological boundaries, for the sequestration of carbon in subduction zones, and suggests that similar processes may also operate in collisional settings. Fig. S2: Petrogenetic grid in the CaFMASH+CO2 system for the antigorite and clinopyroxene carbonation reactions, together with grossular forming reaction during decarbonation. Reactions are written with the high T assemblage to the right of the = sign.

  17. Carbon emission and sequestration of urban turfgrass systems in Hong Kong.

    PubMed

    Kong, Ling; Shi, Zhengjun; Chu, L M

    2014-03-01

    Climate change is more than just a global issue. Locally released carbon dioxide may lead to a rise in global ambient temperature and influence the surrounding climate. Urban greenery may mitigate this as they can remove carbon dioxide by storing carbon in substrates and vegetation. On the other hand, urban greenery systems which are under intense management and maintenance may contribute to the emission of carbon dioxide or other greenhouse gases. The impact of urban greenery on carbon balance in major metropolitan areas thus remains controversial. We investigated the carbon footprints of urban turf operation and maintenance by conducting a research questionnaire on different Hong Kong turfs in 2012, and showed that turf maintenance contributed 0.17 to 0.63 kg Ce m(-2)y(-1) to carbon emissions. We also determined the carbon storage of turfs at 0.05 to 0.21 kg C m(-2) for aboveground grass biomass and 1.26 to 4.89 kg C m(-2) for soils (to 15 cm depth). We estimated that the carbon sink capacity of turfs could be offset by carbon emissions in 5-24 years under current management patterns, shifting from carbon sink to carbon source. Our study suggested that maintenance management played a key role in the carbon budget and footprint of urban greeneries. The environmental impact of turfgrass systems can be optimized by shifting away from empirically designed maintenance schedules towards rational ones based on carbon sink and emission principles. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Chemistry challenges in lead optimization: silicon isosteres in drug discovery.

    PubMed

    Showell, Graham A; Mills, John S

    2003-06-15

    During the lead optimization phase of drug discovery projects, the factors contributing to subsequent failure might include poor portfolio decision-making and a sub-optimal intellectual property (IP) position. The pharmaceutical industry has an ongoing need for new, safe medicines with a genuine biomedical benefit, a clean IP position and commercial viability. Inherent drug-like properties and chemical tractability are also essential for the smooth development of such agents. The introduction of bioisosteres, to improve the properties of a molecule and obtain new classes of compounds without prior art in the patent literature, is a key strategy used by medicinal chemists during the lead optimization process. Sila-substitution (C/Si exchange) of existing drugs is an approach to search for new drug-like candidates that have beneficial biological properties and a clear IP position. Some of the fundamental differences between carbon and silicon can lead to marked alterations in the physicochemical and biological properties of the silicon-containing analogues and the resulting benefits can be exploited in the drug design process.

  19. Shock-wave studies of anomalous compressibility of glassy carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molodets, A. M., E-mail: molodets@icp.ac.ru; Golyshev, A. A.; Savinykh, A. S.

    2016-02-15

    The physico-mechanical properties of amorphous glassy carbon are investigated under shock compression up to 10 GPa. Experiments are carried out on the continuous recording of the mass velocity of compression pulses propagating in glassy carbon samples with initial densities of 1.502(5) g/cm{sup 3} and 1.55(2) g/cm{sup 3}. It is shown that, in both cases, a compression wave in glassy carbon contains a leading precursor with amplitude of 0.135(5) GPa. It is established that, in the range of pressures up to 2 GPa, a shock discontinuity in glassy carbon is transformed into a broadened compression wave, and shock waves are formedmore » in the release wave, which generally means the anomalous compressibility of the material in both the compression and release waves. It is shown that, at pressure higher than 3 GPa, anomalous behavior turns into normal behavior, accompanied by the formation of a shock compression wave. In the investigated area of pressure, possible structural changes in glassy carbon under shock compression have a reversible character. A physico-mechanical model of glassy carbon is proposed that involves the equation of state and a constitutive relation for Poisson’s ratio and allows the numerical simulation of physico-mechanical and thermophysical properties of glassy carbon of different densities in the region of its anomalous compressibility.« less

  20. The Influence of Carbon-Carbon Multiple Bonds on the Solvolyses of Tertiary Alkyl Halides: a Grunwald-Winstein Analysis

    PubMed Central

    Reis, Marina C.; Elvas-Leitão, Ruben; Martins, Filomena

    2008-01-01

    The influence of carbon-carbon multiple bonds on the solvolyses of 3-chloro-3-methylbutyne (1), 2-chloro-2-phenylpropane (2), 2-bromo-2-methyl-1-phenylpropane (3), 4-chloro-4-methyl-2-pentyne (4) and 2-chloro-2-methylbutane (5) is critically evaluated through the extended Grunwald-Winstein equation. Substrates 1, 3 and 5 lead to correlations with unexpected negative sensitivity, h, to changes in the aromatic ring parameter, I. It is claimed that I is not a pure parameter, reflecting also some solvent nucleophilicity, NOTs, character. In substrates 2 and 4 the possibility of rearside solvation is reduced due to steric hindrance and/or cation stabilization and the best found correlations involve only the solvent ionizing power, Y, and I. PMID:19325827

  1. Reinforced Carbon Carbon (RCC) oxidation resistant material samples - Baseline coated, and baseline coated with tetraethyl orthosilicate (TEOS) impregnation

    NASA Technical Reports Server (NTRS)

    Gantz, E. E.

    1977-01-01

    Reinforced carbon-carbon material specimens were machined from 19 and 33 ply flat panels which were fabricated and processed in accordance with the specifications and procedures accepted for the fabrication and processing of the leading edge structural subsystem (LESS) elements for the space shuttle orbiter. The specimens were then baseline coated and tetraethyl orthosilicate impregnated, as applicable, in accordance with the procedures and requirements of the appropriate LESS production specifications. Three heater bars were ATJ graphite silicon carbide coated with the Vought 'pack cementation' coating process, and three were stackpole grade 2020 graphite silicon carbide coated with the chemical vapor deposition process utilized by Vought in coating the LESS shell development program entry heater elements. Nondestructive test results are reported.

  2. Evaluation of removal efficiency of heavy metals by low-cost activated carbon prepared from African palm fruit

    NASA Astrophysics Data System (ADS)

    Abdulrazak, Sani; Hussaini, K.; Sani, H. M.

    2017-10-01

    This study details the removal of heavy metals; Cadmium, Copper, Nickel, and Lead from wastewater effluent using an activated carbon produced from African palm fruit. The effluent was obtained from Old Panteka market; a metal scrap Market located in Kaduna State, Nigeria, which has several components that constitute high level of pollution in the environment. The effect of temperature and contact time on the removal of these heavy metals using the activated carbon produced was investigated. The activated carbon showed a significant ability in removing heavy metals; Cadmium, Copper, Nickel, and Lead from the wastewater. Higher percentage removal was observed at a temperature of 80 °C (93.23 ± 0.035, 96.71 ± 0.097, 92.01 ± 0.018, and 95.42 ± 0.067 % for Cadmium, Copper, Nickel, and Lead, respectively) and at an optimum contact time of 60 min (99.235 ± 0.148, 96.711 ± 0.083, 95.34 ± 0.015, and 97.750 ± 0.166 % for Cadmium, Copper, Nickel, and Lead, respectively) after which the percentage removal decreases. This work, therefore, suggests that African palm fruit can be successfully applied to solve this environmental pollution.

  3. Turning sunlight into stone: the oxalate-carbonate pathway in a tropical tree ecosystem

    NASA Astrophysics Data System (ADS)

    Cailleau, G.; Braissant, O.; Verrecchia, E. P.

    2011-07-01

    An African oxalogenic tree, the iroko tree (Milicia excelsa), has the property to enhance carbonate precipitation in tropical oxisols, where such accumulations are not expected due to the acidic conditions in these types of soils. This uncommon process is linked to the oxalate-carbonate pathway, which increases soil pH through oxalate oxidation. In order to investigate the oxalate-carbonate pathway in the iroko system, fluxes of matter have been identified, described, and evaluated from field to microscopic scales. In the first centimeters of the soil profile, decaying of the organic matter allows the release of whewellite crystals, mainly due to the action of termites and saprophytic fungi. In addition, a concomitant flux of carbonate formed in wood tissues contributes to the carbonate flux and is identified as a direct consequence of wood feeding by termites. Nevertheless, calcite biomineralization of the tree is not a consequence of in situ oxalate consumption, but rather related to the oxalate oxidation inside the upper part of the soil. The consequence of this oxidation is the presence of carbonate ions in the soil solution pumped through the roots, leading to preferential mineralization of the roots and the trunk base. An ideal scenario for the iroko biomineralization and soil carbonate accumulation starts with oxalatization: as the iroko tree grows, the organic matter flux to the soil constitutes the litter, and an oxalate pool is formed on the forest ground. Then, wood rotting agents (mainly termites, saprophytic fungi, and bacteria) release significant amounts of oxalate crystals from decaying plant tissues. In addition, some of these agents are themselves producers of oxalate (e.g. fungi). Both processes contribute to a soil pool of "available" oxalate crystals. Oxalate consumption by oxalotrophic bacteria can then start. Carbonate and calcium ions present in the soil solution represent the end products of the oxalate-carbonate pathway. The solution is

  4. Turning sunlight into stone: the oxalate-carbonate pathway in a tropical tree ecosystem

    NASA Astrophysics Data System (ADS)

    Cailleau, G.; Braissant, O.; Verrecchia, E. P.

    2011-02-01

    An African oxalogenic tree, the iroko tree (Milicia excelsa), has the property to enhance carbonate precipitation in tropical oxisols, where such accumulations are not expected due to the theoretical acidic conditions of these soils. This uncommon process is linked to the oxalate-carbonate pathway, which increases soil pH through oxalate oxidation. In order to investigate the oxalate-carbonate pathway in the iroko system, fluxes of matter have been identified, described, and evaluated from field to microscopic scales. In the first centimeters of the soil profile, decaying of the organic matter allows the release of whewellite crystals, mainly due to the action of termites and saprophytic fungi. Regarding the carbonate flux, another direct consequence of wood feeding is a concomitant flux of carbonate formed in wood tissues, which is not consumed by termites. Nevertheless, calcite biomineralization of the tree is not a consequence of in situ oxalate consumption, but rather related to the oxalate oxidation inside the upper part of the soil. The consequence of this oxidation is the presence of carbonate ions in the soil solution pumped through the roots, leading to preferential mineralization of the roots and the trunk base. An ideal scenario for the iroko biomineralization and soil carbonate accumulation starts with oxalatization: as the iroko tree grows, the organic matter flux to the soil constitutes the litter. Therefore, an oxalate pool is formed on the forest ground. Then, wood rotting gents (mainly termites, fungi, and bacteria) release significant amounts of oxalate crystals from decaying plant tissues. In addition some of these gents are themselves producers of oxalate (fungi). Both processes contribute to a soil pool of "available" oxalate crystals. Oxalate consumption by oxalotrophic bacteria can start. Carbonate and calcium ions present in the soil solution represent the end products of the oxalate-carbonate pathway. The solution is pumped through the

  5. Reinforcement of single-walled carbon nanotube bundles by intertube bridging

    NASA Astrophysics Data System (ADS)

    Kis, A.; Csányi, G.; Salvetat, J.-P.; Lee, Thien-Nga; Couteau, E.; Kulik, A. J.; Benoit, W.; Brugger, J.; Forró, L.

    2004-03-01

    During their production, single-walled carbon nanotubes form bundles. Owing to the weak van der Waals interaction that holds them together in the bundle, the tubes can easily slide on each other, resulting in a shear modulus comparable to that of graphite. This low shear modulus is also a major obstacle in the fabrication of macroscopic fibres composed of carbon nanotubes. Here, we have introduced stable links between neighbouring carbon nanotubes within bundles, using moderate electron-beam irradiation inside a transmission electron microscope. Concurrent measurements of the mechanical properties using an atomic force microscope show a 30-fold increase of the bending modulus, due to the formation of stable crosslinks that effectively eliminate sliding between the nanotubes. Crosslinks were modelled using first-principles calculations, showing that interstitial carbon atoms formed during irradiation in addition to carboxyl groups, can independently lead to bridge formation between neighbouring nanotubes.

  6. Biosorption of lead and copper by heavy-metal tolerant Micrococcus luteus DE2008.

    PubMed

    Puyen, Zully M; Villagrasa, Eduard; Maldonado, Juan; Diestra, Elia; Esteve, Isabel; Solé, Antoni

    2012-12-01

    Micrococcus luteus DE2008 has the ability to absorb lead and copper. The effect of these metals on biomass and viability of this microorganism were investigated and removal of the metals from culture media was determined. Lead had no effect on the biomass expressed as mg Carbon/cm(3) of M. Iuteus DE2008, but in the case of copper, the minimum metal concentration that affected the biomass was 0.1 mM Cu(II). According to these results this microorganism shows a greater tolerance for lead. The minimum metal concentration that affected viability (expressed as the percentage of live cells) was 0.5 mM for both metals. M. luteus DE2008 exhibited a specific removal capacity of 408 mg/g for copper and 1965 mg/g for lead. This microorganism has a greater ability to absorb Pb(II) than Cu(II). M. luteus DE2008 could be seen as a microorganism capable of restoring environments polluted by lead and copper. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Influence of carbon conductive additives on electrochemical double-layer supercapacitor parameters

    NASA Astrophysics Data System (ADS)

    Kiseleva, E. A.; Zhurilova, M. A.; Kochanova, S. A.; Shkolnikov, E. J.; Tarasenko, A. B.; Zaitseva, O. V.; Uryupina, O. V.; Valyano, G. V.

    2018-01-01

    Electrochemical double-layer capacitors (EDLC) offer energy storage technology, highly demanded for rapid transition processes in transport and stationary applications, concerned with fast power fluctuations. Rough structure of activated carbon, widely used as electrode material because of its high specific area, leads to poor electrode conductivity. Therefore there is the need for conductive additive to decrease internal resistance and to achieve high specific power and high specific energy. Usually carbon blacks are widely used as conductive additive. In this paper electrodes with different conductive additives—two types of carbon blacks and single-walled carbon nanotubes—were prepared and characterized in organic electrolyte-based EDLC cells. Electrodes are based on original wood derived activated carbon produced by potassium hydroxide high-temperature activation at Joint Institute for High Temperatures RAS. Electrodes were prepared from slurry by cold-rolling. For electrode characterization cyclic voltammetry, impedance spectra analysis, equivalent series resistance measurements and galvanostatic charge-discharge were used.

  8. From carbon nanotubes to carbon atomic chains

    NASA Astrophysics Data System (ADS)

    Casillas García, Gilberto; Zhang, Weijia; José-Yacamán, Miguel

    2010-10-01

    Carbyne is a linear allotrope of carbon. It is formed by a linear arrangement of carbon atoms with sp-hybridization. We present a reliable and reproducible experiment to obtain these carbon atomic chains using few-layer-graphene (FLG) sheets and a HRTEM. First the FLG sheets were synthesized from worm-like exfoliated graphite and then drop-casted on a lacey-carbon copper grid. Once in the TEM, two holes are opened near each other in a FLG sheet by focusing the electron beam into a small spot. Due to the radiation, the carbon atoms rearrange themselves between the two holes and form carbon fibers. The beam is concentrated on the carbon fibers in order excite the atoms and induce a tension until multi wall carbon nanotube (MWCNT) is formed. As the radiation continues the MWCNT breaks down until there is only a single wall carbon nanotube (SWCNT). Then, when the SWCNT breaks, an atomic carbon chain is formed, lasts for several seconds under the radiation and finally breaks. This demonstrates the stability of this carbon structure.

  9. Quantitative Estimation of the Climatic Effects of Carbon Transferred by International Trade.

    PubMed

    Wei, Ting; Dong, Wenjie; Moore, John; Yan, Qing; Song, Yi; Yang, Zhiyong; Yuan, Wenping; Chou, Jieming; Cui, Xuefeng; Yan, Xiaodong; Wei, Zhigang; Guo, Yan; Yang, Shili; Tian, Di; Lin, Pengfei; Yang, Song; Wen, Zhiping; Lin, Hui; Chen, Min; Feng, Guolin; Jiang, Yundi; Zhu, Xian; Chen, Juan; Wei, Xin; Shi, Wen; Zhang, Zhiguo; Dong, Juan; Li, Yexin; Chen, Deliang

    2016-06-22

    Carbon transfer via international trade affects the spatial pattern of global carbon emissions by redistributing emissions related to production of goods and services. It has potential impacts on attribution of the responsibility of various countries for climate change and formulation of carbon-reduction policies. However, the effect of carbon transfer on climate change has not been quantified. Here, we present a quantitative estimate of climatic impacts of carbon transfer based on a simple CO2 Impulse Response Function and three Earth System Models. The results suggest that carbon transfer leads to a migration of CO2 by 0.1-3.9 ppm or 3-9% of the rise in the global atmospheric concentrations from developed countries to developing countries during 1990-2005 and potentially reduces the effectiveness of the Kyoto Protocol by up to 5.3%. However, the induced atmospheric CO2 concentration and climate changes (e.g., in temperature, ocean heat content, and sea-ice) are very small and lie within observed interannual variability. Given continuous growth of transferred carbon emissions and their proportion in global total carbon emissions, the climatic effect of traded carbon is likely to become more significant in the future, highlighting the need to consider carbon transfer in future climate negotiations.

  10. Net carbon exchange across the Arctic tundra-boreal forest transition in Alaska 1981-2000

    USGS Publications Warehouse

    Thompson, Catharine Copass; McGuire, A.D.; Clein, Joy S.; Chapin, F. S.; Beringer, J.

    2006-01-01

    Shifts in the carbon balance of high-latitude ecosystems could result from differential responses of vegetation and soil processes to changing moisture and temperature regimes and to a lengthening of the growing season. Although shrub expansion and northward movement of treeline should increase carbon inputs, the effects of these vegetation changes on net carbon exchange have not been evaluated. We selected low shrub, tall shrub, and forest tundra sites near treeline in northwestern Alaska, representing the major structural transitions expected in response to warming. In these sites, we measured aboveground net primary production (ANPP) and vegetation and soil carbon and nitrogen pools, and used these data to parameterize the Terrestrial Ecosystem Model. We simulated the response of carbon balance components to air temperature and precipitation trends during 1981-2000. In areas experiencing warmer and dryer conditions, Net Primary Production (NPP) decreased and heterotrophic respiration (R H ) increased, leading to a decrease in Net Ecosystem Production (NEP). In warmer and wetter conditions NPP increased, but the response was exceeded by an increase in R H ; therefore, NEP also decreased. Lastly, in colder and wetter regions, the increase in NPP exceeded a small decline in R H , leading to an increase in NEP. The net effect for the region was a slight gain in ecosystem carbon storage over the 20 year period. This research highlights the potential importance of spatial variability in ecosystem responses to climate change in assessing the response of carbon storage in northern Alaska over the last two decades. ?? Springer 2005.

  11. The use of nutshell carbons in drinking water filters for removal of trace metals.

    PubMed

    Ahmedna, Mohamed; Marshall, Wayne E; Husseiny, Abdo A; Rao, Ramu M; Goktepe, Ipek

    2004-02-01

    Filtration of drinking water by point-of-use (POU) or point-of-entry (POE) systems is becoming increasingly popular in the United States. Drinking water is filtered to remove both organic and inorganic contaminants. The objective of this study was to evaluate the use of granular activated carbon from nutshells (almond, English walnut, pecan) in a POU water filtration system to determine its effectiveness in removing select, potentially toxic metal ions, namely, copper (Cu2+), lead (Pb2+) or zinc (Zn2+) found in drinking water. The nutshell-based carbon system was designated "Envirofilter" and was compared to four commercial POU systems with brand names of BRITA, Omni Filter, PUR and Teledyne Water Pik. Eight prototype "Envirofilters", consisting of individual or binary mixtures of carbons made from acid-activated almond or pecan shells and steam-activated pecan or walnut shells were constructed and evaluated for adsorption of the three metal ions. The results indicated that a binary mixture of carbons from acid-activated almond and either steam-activated pecan or walnut shells were the most effective in removing these metals from drinking water of all the POU systems evaluated. Binary mixtures of acid-activated almond shell-based carbon with either steam-activated pecan shell- or walnut shell-based carbon removed nearly 100% of lead ion, 90-95% of copper ion and 80-90% of zinc ion. Overall the performance data on the "Envirofilters" suggest that these prototypes require less carbon than commercial filters to achieve the same metal adsorption efficiency and may also be a less expensive product.

  12. Activated Carbon Textile via Chemistry of Metal Extraction for Supercapacitors.

    PubMed

    Lam, Do Van; Jo, Kyungmin; Kim, Chang-Hyun; Kim, Jae-Hyun; Lee, Hak-Joo; Lee, Seung-Mo

    2016-12-27

    Carbothermic reduction in the chemistry of metal extraction (MO(s) + C(s) → M(s) + CO(g)) using carbon as a sacrificial agent has been used to smelt metals from diverse oxide ores since ancient times. Here, we paid attention to another aspect of the carbothermic reduction to prepare an activated carbon textile for high-rate-performance supercapacitors. On the basis of thermodynamic reducibility of metal oxides reported by Ellingham, we employed not carbon, but metal oxide as a sacrificial agent in order to prepare an activated carbon textile. We conformally coated ZnO on a bare cotton textile using atomic layer deposition, followed by pyrolysis at high temperature (C(s) + ZnO(s) → C'(s) + Zn(g) + CO(g)). We figured out that it leads to concurrent carbonization and activation in a chemical as well as mechanical way. Particularly, the combined effects of mechanical buckling and fracture that occurred between ZnO and cotton turned out to play an important role in carbonizing and activating the cotton textile, thereby significantly increasing surface area (nearly 10 times) compared with the cotton textile prepared without ZnO. The carbon textiles prepared by carbothermic reduction showed impressive combination properties of high power and energy densities (over 20-fold increase) together with high cyclic stability.

  13. Method of making carbon-carbon composites

    DOEpatents

    Engle, Glen B.

    1993-01-01

    A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.

  14. Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzhong; Forrister, Haviland; Liu, Jiumeng; Dibb, Jack; Anderson, Bruce; Schwarz, Joshua P.; Perring, Anne E.; Jimenez, Jose L.; Campuzano-Jost, Pedro; Wang, Yuhang; Nenes, Athanasios; Weber, Rodney J.

    2017-07-01

    Carbonaceous aerosols affect the global radiative balance by absorbing and scattering radiation, which leads to warming or cooling of the atmosphere, respectively. Black carbon is the main light-absorbing component. A portion of the organic aerosol known as brown carbon also absorbs light. The climate sensitivity to absorbing aerosols rapidly increases with altitude, but brown carbon measurements are limited in the upper troposphere. Here we present aircraft observations of vertical aerosol distributions over the continental United States in May and June 2012 to show that light-absorbing brown carbon is prevalent in the troposphere, and absorbs more short-wavelength radiation than black carbon at altitudes between 5 and 12 km. We find that brown carbon is transported to these altitudes by deep convection, and that in-cloud heterogeneous processing may produce brown carbon. Radiative transfer calculations suggest that brown carbon accounts for about 24% of combined black and brown carbon warming effect at the tropopause. Roughly two-thirds of the estimated brown carbon forcing occurs above 5 km, although most brown carbon is found below 5 km. The highest radiative absorption occurred during an event that ingested a wildfire plume. We conclude that high-altitude brown carbon from biomass burning is an unappreciated component of climate forcing.

  15. Microbial Carbonic Anhydrases in Biomimetic Carbon Sequestration for Mitigating Global Warming: Prospects and Perspectives

    PubMed Central

    Bose, Himadri; Satyanarayana, Tulasi

    2017-01-01

    All the leading cities in the world are slowly becoming inhospitable for human life with global warming playing havoc with the living conditions. Biomineralization of carbon dioxide using carbonic anhydrase (CA) is one of the most economical methods for mitigating global warming. The burning of fossil fuels results in the emission of large quantities of flue gas. The temperature of flue gas is quite high. Alkaline conditions are necessary for CaCO3 precipitation in the mineralization process. In order to use CAs for biomimetic carbon sequestration, thermo-alkali-stable CAs are, therefore, essential. CAs must be stable in the presence of various flue gas contaminants too. The extreme environments on earth harbor a variety of polyextremophilic microbes that are rich sources of thermo-alkali-stable CAs. CAs are the fastest among the known enzymes, which are of six basic types with no apparent sequence homology, thus represent an elegant example of convergent evolution. The current review focuses on the utility of thermo-alkali-stable CAs in biomineralization based strategies. A variety of roles that CAs play in various living organisms, the use of CA inhibitors as drug targets and strategies for overproduction of CAs to meet the demand are also briefly discussed. PMID:28890712

  16. Microbial Carbonic Anhydrases in Biomimetic Carbon Sequestration for Mitigating Global Warming: Prospects and Perspectives.

    PubMed

    Bose, Himadri; Satyanarayana, Tulasi

    2017-01-01

    All the leading cities in the world are slowly becoming inhospitable for human life with global warming playing havoc with the living conditions. Biomineralization of carbon dioxide using carbonic anhydrase (CA) is one of the most economical methods for mitigating global warming. The burning of fossil fuels results in the emission of large quantities of flue gas. The temperature of flue gas is quite high. Alkaline conditions are necessary for CaCO 3 precipitation in the mineralization process. In order to use CAs for biomimetic carbon sequestration, thermo-alkali-stable CAs are, therefore, essential. CAs must be stable in the presence of various flue gas contaminants too. The extreme environments on earth harbor a variety of polyextremophilic microbes that are rich sources of thermo-alkali-stable CAs. CAs are the fastest among the known enzymes, which are of six basic types with no apparent sequence homology, thus represent an elegant example of convergent evolution. The current review focuses on the utility of thermo-alkali-stable CAs in biomineralization based strategies. A variety of roles that CAs play in various living organisms, the use of CA inhibitors as drug targets and strategies for overproduction of CAs to meet the demand are also briefly discussed.

  17. A Review of Update Clinical Results of Carbon Ion Radiotherapy

    PubMed Central

    Tsujii, Hirohiko; Kamada, Tadashi

    2012-01-01

    Among various types of ion species, carbon ions are considered to have the most balanced, optimal properties in terms of possessing physically and biologically effective dose localization in the body. This is due to the fact that when compared with photon beams, carbon ion beams offer improved dose distribution, leading to the concentration of the sufficient dose within a target volume while minimizing the dose in the surrounding normal tissues. In addition, carbon ions, being heavier than protons, provide a higher biological effectiveness, which increases with depth, reaching the maximum at the end of the beam's range. This is practically an ideal property from the standpoint of cancer radiotherapy. Clinical studies have been carried out in the world to confirm the efficacy of carbon ions against a variety of tumors as well as to develop effective techniques for delivering an efficient dose to the tumor. Through clinical experiences of carbon ion radiotherapy at the National Institute of Radiological Sciences and Gesellschaft für Schwerionenforschung, a significant reduction in the overall treatment time with acceptable toxicities has been obtained in almost all types of tumors. This means that carbon ion radiotherapy has meanwhile achieved for itself a solid place in general practice. This review describes clinical results of carbon ion radiotherapy together with physical, biological and technological aspects of carbon ions. PMID:22798685

  18. Modeling 400-500-kyr Pleistocene carbon isotope cyclicity through variations in the dissolved organic carbon pool

    NASA Astrophysics Data System (ADS)

    Ma, Wentao; Wang, Pinxian; Tian, Jun

    2017-05-01

    The carbon isotope (δ13C) record from the Plio-Pleistocene shows prominent 400-kyr cycles with maximum values at eccentricity minima during the Pliocene. The period extends to 500 kyr in the Pleistocene after 1.6 Ma. Five δ13C maxima occurred at 0.2, 0.5, 1.0, 1.5 and 1.9 Ma over the last 2 Ma. Although several hypotheses have been suggested to explain why the 400-500-kyr cycles are so strong in δ13C records and how they may have originated, the mechanism is still not clear. The aim of this study was to test the dissolved organic carbon (DOC) hypothesis, which was proposed recently to explain this 400-500-kyr cycle in deeper time. We used an intermediate complexity box model that is computationally efficient for studies involving longer timescales. The model incorporates sophisticated microbial processes, dividing the oceanic carbon cycle into a rapid and a slow cycle. The model result suggests that when more nutrients enter the surface ocean, the rapid carbon cycle is more active, and less refractory DOC (RDOC) is produced. The opposite sequence occurs when fewer nutrients enter the ocean. The modeled RDOC concentration and the δ13C of dissolved inorganic carbon (DIC) are anti-correlated with riverine nutrient input. According to mass conservation, the release of isotopically lighter carbon from the RDOC pool leads to lighter DIC δ13C while an increase in the RDOC pool enriches it. The transient simulations produced a one-to-one correspondence between modeled and measured δ13C. This study supports the hypothesis that chemical weathering-induced variations in the DOC pool act as a pacemaker for δ13C changes over 400-500-kyr cycles.

  19. Lead in teeth from lead-dosed goats: Microdistribution and relationship to the cumulative lead dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellis, David J.; Hetter, Katherine M.; Jones, Joseph

    2008-01-15

    Teeth are commonly used as a biomarker of long-term lead exposure. There appear to be few data, however, on the content or distribution of lead in teeth where data on specific lead intake (dose) are also available. This study describes the analysis of a convenience sample of teeth from animals that were dosed with lead for other purposes, i.e., a proficiency testing program for blood lead. Lead concentration of whole teeth obtained from 23 animals, as determined by atomic absorption spectrometry, varied from 0.6 to 80 {mu}g g{sup -1}. Linear regression of whole tooth lead ({mu}g g{sup -1}) on themore » cumulative lead dose received by the animal (g) yielded a slope of 1.2, with r{sup 2}=0.647 (p<0.0001). Laser ablation inductively coupled plasma mass spectrometry was employed to determine lead content at micrometer scale spatial resolution in the teeth of seven goats representing the dosing range. Highly localized concentrations of lead, ranging from about 10 to 2000 {mu}g g{sup -1}, were found in circumpulpal dentine. Linear regression of circumpulpal lead ({mu}g g{sup -1}) on cumulative lead dose (g) yielded a slope of 23 with r{sup 2}=0.961 (p=0.0001). The data indicated that whole tooth lead, and especially circumpulpal lead, of dosed goats increased linearly with cumulative lead exposure. These data suggest that circumpulpal dentine is a better biomarker of cumulative lead exposure than is whole tooth lead, at least for lead-dosed goats.« less

  20. Polychiral semiconducting carbon nanotube-fullerene solar cells.

    PubMed

    Gong, Maogang; Shastry, Tejas A; Xie, Yu; Bernardi, Marco; Jasion, Daniel; Luck, Kyle A; Marks, Tobin J; Grossman, Jeffrey C; Ren, Shenqiang; Hersam, Mark C

    2014-09-10

    Single-walled carbon nanotubes (SWCNTs) have highly desirable attributes for solution-processable thin-film photovoltaics (TFPVs), such as broadband absorption, high carrier mobility, and environmental stability. However, previous TFPVs incorporating photoactive SWCNTs have utilized architectures that have limited current, voltage, and ultimately power conversion efficiency (PCE). Here, we report a solar cell geometry that maximizes photocurrent using polychiral SWCNTs while retaining high photovoltage, leading to record-high efficiency SWCNT-fullerene solar cells with average NREL certified and champion PCEs of 2.5% and 3.1%, respectively. Moreover, these cells show significant absorption in the near-infrared portion of the solar spectrum that is currently inaccessible by many leading TFPV technologies.

  1. Mississippi Valley-Type Lead-Zinc Deposit Model

    USGS Publications Warehouse

    Leach, David L.; Taylor, Ryan D.

    2009-01-01

    Mississippi Valley-type (MVT) lead-zinc (Pb+Zn) deposits are found throughout the world, and these deposits are characteristically distributed over hundreds of square kilometers that define individual ore districts. The median size of individual MVT deposits is 7.0 million tonnes with grades of about 7.9 percent Pb+Zn metal. However, MVT deposits usually occur in extensive districts consisting of several to as many as 400 deposits. Nearly one-quarter of the world's sedimentary and volcanic rock-hosted Pb+Zn resources are found in these deposits, with by-product commodities including silver (Ag), copper (Cu), and indium (In) for some deposits. Environmentally, MVT deposits are less of a concern than other types of mineral deposits since the carbonate-host rocks mitigate many environmental concerns.

  2. Towards a more complete SOCCR: Establishing a Coastal Carbon Data Network

    NASA Astrophysics Data System (ADS)

    Pidgeon, E.; Howard, J.; Tang, J.; Kroeger, K. D.; Windham-Myers, L.

    2015-12-01

    The 2007 State of the Carbon Cycle Report (SOCCR) was highly influential in ensuring components of the carbon cycle were accounted for in national policy and related management. However, while SOCCR detailed the significance of North American coastal wetlands, it was not until recently that leading governments began to fully recognized these ecosystems for their carbon sequestration and storage capacity and hence the significant role coastal ecosystems can play in GHG emission reductions strategies, offset mechanisms, coastal management strategies and climate mitigation policy. The new attention on coastal carbon systems has exposed limitations in terms of data availability and data quality, as well as insufficient knowledge of coastal carbon distributions, characteristics and coastal carbon cycle processes. In addition to restricting scientific progress, lack of comprehensive, comparable, and quality-controlled coastal carbon data is hindering progress towards carbon based conservation and coastal management. To directly address those limitations, we are developing a Global Science and Data Network for Coastal "Blue" Carbon, with support from the Carbon Cycle Interagency Working Group. Goals include: • Improving basic and applied science on carbon and GHG cycling in vegetated coastal ecosystems; • Supporting a coastal carbon and associated GHG data archive for use by the science community, coastal and climate practitioners and other data users; • Building the capacity of coastal carbon stakeholders globally to collect and interpret high quality coastal carbon science and data; • Providing a forum and mechanism to promote exchange and collaboration between scientists and coastal carbon data users globally; and • Outreach activities to ensure the best available data are globally accessible and that science is responsive to the needs of coastal managers and policy-makers.

  3. Direct electron transfer of glucose oxidase on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Guiseppi-Elie, Anthony; Lei, Chenghong; Baughman, Ray H.

    2002-10-01

    In this report, exploitation of the unique properties of single-walled carbon nanotubes (SWNT) leads to the achievement of direct electron transfer with the redox active centres of adsorbed oxidoreductase enzymes. Flavin adenine dinucleotide (FAD), the redox active prosthetic group of flavoenzymes that catalyses important biological redox reactions and the flavoenzyme glucose oxidase (GOx), were both found to spontaneously adsorb onto carbon nanotube bundles. Both FAD and GOx were found to spontaneously adsorb to unannealed carbon nanotubes that were cast onto glassy carbon electrodes and to display quasi-reversible one-electron transfer. Similarly, GOx was found to spontaneously adsorb to annealed, single-walled carbon nanotube paper and to display quasi-reversible one-electron transfer. In particular, GOx immobilized in this way was shown, in the presence of glucose, to maintain its substrate-specific enzyme activity. It is believed that the tubular fibrils become positioned within tunnelling distance of the cofactors with little consequence to denaturation. The combination of SWNT with redox active enzymes would appear to offer an excellent and convenient platform for a fundamental understanding of biological redox reactions as well as the development of reagentless biosensors and nanobiosensors.

  4. Potential lead exposures from lead crystal decanters.

    PubMed

    Appel, B R; Kahlon, J K; Ferguson, J; Quattrone, A J; Book, S A

    1992-12-01

    We measured the concentrations of lead leached into 4% acetic acid, white port, and a synthetic alcoholic beverage that were stored in lead crystal decanters for 1-, 2-, and 10-day periods at room temperature. In decanters from 14 different manufacturers, measured lead concentrations ranged from 100 to 1800 micrograms/L. The pH of the leaching medium is probably the dominant factor determining the extent of lead leached, with greater leaching occurring at lower pH values. The consumption of alcoholic beverages stored in lead crystal decanters is judged to pose a hazard.

  5. Integral Ring Carbon-Carbon Piston

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor)

    1999-01-01

    An improved structure for a reciprocating internal combustion engine or compressor piston fabricate from carbon-carbon composite materials is disclosed. An integral ring carbon-carbon composite piston, disclosed herein, reduces the need for piston rings and for small clearances by providing a small flexible, integral component around the piston that allows for variation in clearance due to manufacturing tolerances, distortion due to pressure and thermal loads, and variations in thermal expansion differences between the piston and cylinder liner.

  6. Development of Carbon/Carbon Composites with Through-Thickness Carbon Nanotubes for Thermal and Structural Applications

    DTIC Science & Technology

    2008-12-01

    AFRL-RX-WP-TR-2009-4013 DEVELOPMENT OF CARBON / CARBON COMPOSITES WITH THROUGH-THICKNESS CARBON NANOTUBES FOR THERMAL AND STRUCTURAL...31 August 2008 4. TITLE AND SUBTITLE DEVELOPMENT OF CARBON / CARBON COMPOSITES WITH THROUGH- THICKNESS CARBON NANOTUBES FOR THERMAL AND STRUCTURAL...13. SUPPLEMENTARY NOTES PAO Case Number: 88ABW-2009-1253; Clearance Date: 31 Mar 2009. Report contains color. 14. ABSTRACT Carbon / carbon

  7. Carbon nanotube conditioning: ab initio simulations of the effect of defects and doping on the electronic properties of carbon nanotube systems.

    NASA Astrophysics Data System (ADS)

    Soto, Matias; Barrera, Enrique

    Using carbon nanotubes for electrical conduction applications at the macroscale has proven to be a difficult task, mainly, due to defects and impurities present, and lack of uniform electronic properties in synthesized carbon nanotube bundles. Some researchers have suggested that growing only metallic armchair nanotubes and arranging them with an ideal contact length could lead to the ultimate electrical conductivity; however, such recipe presents too high of a cost to pay. A different route and the topic of this work is to learn to manage the defects, impurities, and the electronic properties of carbon nanotubes present, so that the electrical conduction of a bundle or even wire may be enhanced. We used density functional theory calculations to study the effect of defects and doping on the electronic structure of metallic, semi-metal and semiconducting carbon nanotubes in order to gain a clear picture of their properties. Additionally, using dopants to increase the conductance across a junction between two carbon nanotubes was studied for different configurations. Finally, interaction potentials obtained via first-principles calculations were generalized by developing mathematical models for the purpose of running simulations at a larger length scale using molecular dynamics. Partial funding was received from CONACyT Scholarship 314419.

  8. The Southern Ocean's role in carbon exchange during the last deglaciation.

    PubMed

    Burke, Andrea; Robinson, Laura F

    2012-02-03

    Changes in the upwelling and degassing of carbon from the Southern Ocean form one of the leading hypotheses for the cause of glacial-interglacial changes in atmospheric carbon dioxide. We present a 25,000-year-long Southern Ocean radiocarbon record reconstructed from deep-sea corals, which shows radiocarbon-depleted waters during the glacial period and through the early deglaciation. This depletion and associated deep stratification disappeared by ~14.6 ka (thousand years ago), consistent with the transfer of carbon from the deep ocean to the surface ocean and atmosphere via a Southern Ocean ventilation event. Given this evidence for carbon exchange in the Southern Ocean, we show that existing deep-ocean radiocarbon records from the glacial period are sufficiently depleted to explain the ~190 per mil drop in atmospheric radiocarbon between ~17 and 14.5 ka.

  9. Restoring forest structure and process stabilizes forest carbon in wildfire-prone southwestern ponderosa pine forests

    Treesearch

    Matthew D. Hurteau; Shuang Liang; Katherine L. Martin; Malcolm P. North; George W. Koch; Bruce A. Hungate

    2016-01-01

    Changing climate and a legacy of fire-exclusion have increased the probability of high-severity wildfire, leading to an increased risk of forest carbon loss in ponderosa pine forests in the southwestern USA. Efforts to reduce high-severity fire risk through forest thinning and prescribed burning require both the removal and emission of carbon from these forests, and...

  10. Using augmented reality to inform consumer choice and lower carbon footprints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isley, Steven C.; Ketcham, Robert; Arent, Douglas J.

    Consumers who wish to consider product attributes like carbon footprints in their purchasing decisions are often blocked from meaningful action by a lack of information. We conducted a single randomized controlled trial at a grocery store to evaluate the effects of providing such product attribute and carbon footprint information via augmented reality (AR) displays on bottled water and breakfast cereal, two frequently purchased goods. Using an AR smartphone app that incorporates comparative and detailed product information into personalized data and recommendations, a 23% statistically significant reduction in carbon footprint was found for bottled water, and non-significant reductions for breakfast cereal.more » Furthermore, AR informed choice lead to healthier cereal choices.« less

  11. Using augmented reality to inform consumer choice and lower carbon footprints

    DOE PAGES

    Isley, Steven C.; Ketcham, Robert; Arent, Douglas J.

    2017-05-23

    Consumers who wish to consider product attributes like carbon footprints in their purchasing decisions are often blocked from meaningful action by a lack of information. We conducted a single randomized controlled trial at a grocery store to evaluate the effects of providing such product attribute and carbon footprint information via augmented reality (AR) displays on bottled water and breakfast cereal, two frequently purchased goods. Using an AR smartphone app that incorporates comparative and detailed product information into personalized data and recommendations, a 23% statistically significant reduction in carbon footprint was found for bottled water, and non-significant reductions for breakfast cereal.more » Furthermore, AR informed choice lead to healthier cereal choices.« less

  12. Flow-Tube Reactor Experiments on the High Temperature Oxidation of Carbon Weaves

    NASA Technical Reports Server (NTRS)

    Panerai, Francesco; White, Jason D.; Robertson, Robert; Borner, Arnaud; Ferguson, Joseph C.; Mansour, Nagi N.

    2017-01-01

    Under entry conditions carbon weaves used in thermal protection systems (TPS) decompose via oxidation. Modeling this phenomenon is challenging due to the different regimes encountered along a flight trajectory. Approaches using equilibrium chemistry may lead to over-estimated mass loss and recession at certain conditions. Concurrently, there is a shortcoming of experimental data on carbon weaves to enable development of improved models. In this work, a flow-tube test facility was used to measure the oxidation of carbon weaves at temperatures up to 1500 K. The material tested was the 3D carbon weave used for the heat shield of the NASA Adaptive Deployable Entry and Placement Technology, ADEPT. Oxidation was characterized by quantifying decomposition gases (CO and CO2), by mass measurements, and by microscale surface analysis. The current set of measurements contributes to the development of finite rate chemistry models for carbon fabrics used in woven TPS materials.

  13. Method and system for producing lower alcohols. [Heteropolyatomic lead salt coated with alkali metal formate

    DOEpatents

    Rathke, J.W.; Klingler, R.J.; Heiberger, J.J.

    1983-09-26

    It is an object of the present invention to provide an improved catalyst for the reaction of carbon monoxide with water to produce methanol and other lower alcohols. It is a further object to provide a process for the production of methanol from carbon monoxide and water in which a relatively inexpensive catalyst permits the reaction at low pressures. It is also an object to provide a process for the production of methanol from carbon monoxide and water in which a relatively inexpensive catalyst permits the reaction at low pressures. It is also an object to provide a process for the production of methanol in which ethanol is also directly produced. It is another object to provide a process for the production of mixtures of methanol with ethanol and propanol from the reaction of carbon monoxide and water at moderate pressure with inexpensive catalysts. It is likewise an object to provide a system for the catalytic production of lower alcohols from the reaction of carbon monoxide and water at moderate pressure with inexpensive catalysts. In accordance with the present invention, a catalyst is provided for the reaction of carbon monoxide and water to produce lower alcohols. The catalyst includes a lead heteropolyatomic salt in mixture with a metal formate or a precursor to a metal formate.

  14. Modelling soil carbon flows and stocks following a carbon balance approach at regional scale for the EU-27

    NASA Astrophysics Data System (ADS)

    Lesschen, Jan Peter; Sikirica, Natasa; Bonten, Luc; Dibari, Camilla; Sanchez, Berta; Kuikman, Peter

    2014-05-01

    Soil Organic Carbon (SOC) is a key parameter to many soil functions and services. SOC is essential to support water retention and nutrient buffering and mineralization in the soil as well as to enhance soil biodiversity. Consequently, loss of SOC or low SOC levels might threaten soil productivity or even lead to a collapse of a farming system. Identification of areas in Europe with critically low SOC levels or with a negative carbon balance is a challenge in order to apply the appropriate strategies to restore these areas or prevent further SOC losses. The objective of this study is to assess current soil carbon flows and stocks at a regional scale; we follow a carbon balance approach which we developed within the MITERRA-Europe model. MITERRA-Europe is an environmental impact assessment model and calculates nitrogen and greenhouse emission on a deterministic and annual basis using emission and leaching factors at regional level (NUTS2, comparable to province level) in the EU27. The model already contained a soil carbon module based on the IPCC stock change approach. Within the EU FP7 SmartSoil project we developed a SOC balance approach, for which we quantified the input of carbon (manure, crop residues, other organic inputs) and the losses of carbon (decomposition, leaching and erosion). The calculations rules from the Roth-C model were used to estimate SOC decomposition. For the actual soil carbon stocks we used the data from the LUCAS soil sample survey. LUCAS collected soil samples in 2009 at about 22000 locations across the EU, which were analysed for a range of soil properties. Land management practices are accounted for, based on data from the EU wide Survey on Agricultural Production Methods in the 2010 Farm Structure Survey. The survey comprises data on the application of soil tillage, soil cover, crop rotation and irrigation. Based on the simulated soil carbon balance and the actual carbon stocks from LUCAS we now can identify regions within the EU that

  15. Multi-walled Carbon Nanotubes/Graphite Nanosheets Modified Glassy Carbon Electrode for the Simultaneous Determination of Acetaminophen and Dopamine.

    PubMed

    Zhang, Susu; He, Ping; Zhang, Guangli; Lei, Wen; He, Huichao

    2015-01-01

    Graphite nanosheets prepared by thermal expansion and successive sonication were utilized for the construction of a multi-walled carbon nanotubes/graphite nanosheets based amperometric sensing platform to simultaneously determine acetaminophen and dopamine in the presence of ascorbic acid in physiological conditions. The synergistic effect of multi-walled carbon nanotubes and graphite nanosheets catalyzed the electrooxidation of acetaminophen and dopamine, leading to a remarkable potential difference up to 200 mV. The as-prepared modified electrode exhibited linear responses to acetaminophen and dopamine in the concentration ranges of 2.0 × 10(-6) - 2.4 × 10(-4) M (R = 0.999) and 2.0 × 10(-6) - 2.0 × 10(-4) M (R = 0.998), respectively. The detection limits were down to 2.3 × 10(-7) M for acetaminophen and 3.5 × 10(-7) M for dopamine (S/N = 3). Based on the simple preparation and prominent electrochemical properties, the obtained multi-walled carbon nanotubes/graphite nanosheets modified electrode would be a good candidate for the determination of acetaminophen and dopamine without the interference of ascorbic acid.

  16. Experimental investigation of the stability of Fe-rich carbonates in the lower mantle

    NASA Astrophysics Data System (ADS)

    Boulard, E.; Menguy, N.; Auzende, A.; Benzerara, K.; Bureau, H.; Antonangeli, D.; Corgne, A.; Morard, G.; Siebert, J.; Perrillat, J.; Guyot, F. J.; Fiquet, G.

    2011-12-01

    Carbonates are the main C-bearing minerals that are transported deep in the Earth's mantle via subduction of the oceanic lithosphere [1]. The fate of carbonates at mantle conditions plays a key role in the deep carbon cycle. Decarbonation, melting or reduction of carbonates will affect the extent and the way carbon is recycled into the deep Earth. To clarify the fate of carbonates in the deep mantle, high-pressure high-temperature experiments were carried out up to 105 GPa and 2850 K on oxide assemblages of (Mg,Fe)O + CO2. The presence of Fe(II) in starting materials induces redox reactions from which Fe(II) is oxidized and a part of the carbon is reduced. This leads to an assemblage of magnetite, diamonds, and carbonates or, pressure depending, their newly discovered Fe(III)-bearing high-pressure polymorphs based on a silicate-like chemistry with tetrahedrally coordinated carbon [2]. Our results show the possibility for carbon to be recycled in the lowermost mantle and provide evidence of a possible coexistence of reduced and oxidized carbon at lower mantle conditions. [1] Sleep, N. H., and K. Zahnle (2001) J. Geophys. Res.-Planets 106(E1), 1373-1399. [2] Boulard et al. (2011) PNAS, 108, 5184-5187.

  17. Scanning gate microscopy of electronic inhomogeneities in single-walled carbon nanotube (SWCNT) devices

    NASA Astrophysics Data System (ADS)

    Hunt, Steven R.; Collins, Phillip G.

    2010-03-01

    The electronic properties of graphitic carbon devices are primarily determined by the contact metal and the carbon band structure. However, inhomogeneities such as substrate imperfections, surface defects, and mobile contaminants also contribute and can lead to transistor-like behaviors. We experimentally investigate this phenomena in the 1-D limit using metallic single-walled carbon nanotubes (SWCNTs) before and after the electrochemical creation of sidewall defects. While scanning gate microscopy readily identifies the defect sites, the energy-dependence of the technique allows quantitative analysis of the defects and discrimination of different defect types. This research is partly supported by the NSF (DMR 08-xxxx).

  18. 77 FR 41967 - Certain Circular Welded Carbon Steel Pipes and Tubes From India, Thailand, and Turkey; Certain...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-17

    ... Pipes and Tubes From India, Thailand, and Turkey; Certain Circular Welded Non-Alloy Steel Pipe From... on (1) certain circular welded carbon steel pipes and tubes from India, Thailand, and Turkey; (2... circular welded carbon steel pipes and tubes from Turkey would likely lead to continuation or recurrence of...

  19. Stable carbon and nitrogen isotope enrichment in primate tissues

    PubMed Central

    Carter, Melinda L.; Karpanty, Sarah M.; Zihlman, Adrienne L.; Koch, Paul L.; Dominy, Nathaniel J.

    2010-01-01

    Isotopic studies of wild primates have used a wide range of tissues to infer diet and model the foraging ecologies of extinct species. The use of mismatched tissues for such comparisons can be problematic because differences in amino acid compositions can lead to small isotopic differences between tissues. Additionally, physiological and dietary differences among primate species could lead to variable offsets between apatite carbonate and collagen. To improve our understanding of the isotopic chemistry of primates, we explored the apparent enrichment (ε*) between bone collagen and muscle, collagen and fur or hair keratin, muscle and keratin, and collagen and bone carbonate across the primate order. We found that the mean ε* values of proteinaceous tissues were small (≤1‰), and uncorrelated with body size or phylogenetic relatedness. Additionally, ε* values did not vary by habitat, sex, age, or manner of death. The mean ε* value between bone carbonate and collagen (5.6 ± 1.2‰) was consistent with values reported for omnivorous mammals consuming monoisotopic diets. These primate-specific apparent enrichment values will be a valuable tool for cross-species comparisons. Additionally, they will facilitate dietary comparisons between living and fossil primates. Electronic supplementary material The online version of this article (doi:10.1007/s00442-010-1701-6) contains supplementary material, which is available to authorized users. PMID:20628886

  20. From Carbon-Based Nanotubes to Nanocages for Advanced Energy Conversion and Storage.

    PubMed

    Wu, Qiang; Yang, Lijun; Wang, Xizhang; Hu, Zheng

    2017-02-21

    Carbon-based nanomaterials have been the focus of research interests in the past 30 years due to their abundant microstructures and morphologies, excellent properties, and wide potential applications, as landmarked by 0D fullerene, 1D nanotubes, and 2D graphene. With the availability of high specific surface area (SSA), well-balanced pore distribution, high conductivity, and tunable wettability, carbon-based nanomaterials are highly expected as advanced materials for energy conversion and storage to meet the increasing demands for clean and renewable energies. In this context, attention is usually attracted by the star material of graphene in recent years. In this Account, we overview our studies on carbon-based nanotubes to nanocages for energy conversion and storage, including their synthesis, performances, and related mechanisms. The two carbon nanostructures have the common features of interior cavity, high conductivity, and easy doping but much different SSAs and pore distributions, leading to different performances. We demonstrated a six-membered-ring-based growth mechanism of carbon nanotubes (CNTs) with benzene precursor based on the structural similarity of the benzene ring to the building unit of CNTs. By this mechanism, nitrogen-doped CNTs (NCNTs) with homogeneous N distribution and predominant pyridinic N were obtained with pyridine precursor, providing a new kind of support for convenient surface functionalization via N-participation. Accordingly, various transition-metal nanoparticles were directly immobilized onto NCNTs without premodification. The so-constructed catalysts featured high dispersion, narrow size distribution and tunable composition, which presented superior catalytic performances for energy conversions, for example, the oxygen reduction reaction (ORR) and methanol oxidation in fuel cells. With the advent of the new field of carbon-based metal-free electrocatalysts, we first extended ORR catalysts from the electron-rich N-doped to the